
User Interaction Context

Studying and Enhancing Automatic User Task Detection on the Computer

Desktop via an Ontology-based User Interaction Context Model

Dissertation submitted to the

Graz University of Technology,

Faculty of Computer Science,

for the attainment of the degree of

Doctor of Engineering Sciences (Dr. techn.)

by

Dipl.-Ing. Dipl.-Ing. Andreas S. Rath

andreas.rath@tugraz.at

Knowledge Management Institute,

Graz University of Technology

Graz University of Technology

First Assessor and Advisor: Univ.-Prof. Dr. Klaus Tochtermann

Second Assessor: Univ.-Prof. Dr. Ronald Maier

Advisor: Dr. Stefanie N. Lindstaedt

Graz, March 8, 2010

Abstract

User context detection has recently gained momentum, thanks to the interest shown by several
established research areas, such as information retrieval, personal information management, tech-
nology enhanced learning as well as task and process management. In the information retrieval
area user context is exploited for personalizing search, in personal information management for
relating tasks, processes, persons, documents and projects, in task and process mining for discov-
ering task and process flows as well as in the fields of technology enhanced learning and knowledge
work support for generating rich user profiles in order to provide appropriate learning and work
material. Automatic task detection is one important challenge in the area of user context detec-
tion because once the user task is known it is possible to support her better. Automatic task
detection on the computer desktop is classically seen as a machine learning problem, but has
only been explored with text-based and switching sequence based user context features. Fur-
thermore no public standard datasets from laboratory or real-world experiments for investigating
task detection are available.

The goal of this dissertation research is to automatically detect the task of a user on her com-
puter desktop in order to enable task-specific support which is especially important for knowledge
workers facing complex tasks and information overload in today’s knowledge economy. More
specifically, this research strives to study and enhance automatic task detection on the computer
desktop via an ontology-based user interaction context model (UICO). The user interaction con-
text is a subset of the user context and is defined as “all interactions of the user with resources,
applications and the operating system on the computer desktop”. The proposed ontology including
the automatically observed user interaction context data is utilized for the feature engineering
for automatic task detection, more specifically automatic task classification.

This thesis introduces a novel task detection approach referred to as the “ontology-based task
detection approach” and evaluates it on three independent datasets containing over 500 tasks
from over 40 users of two different domains. These datasets are from three laboratory user
experiments designed and performed as part of this research effort. The most important insights
gained from these evaluations are: (i) combinations of features engineered from the UICO almost
always outperform feature combinations suggested by existing task detection approaches, (ii)
the J48 decision tree and Näıve Bayes classifiers perform globally better than the k-Nearest
Neighbor and the Linear Support Vector Machine algorithms, (iii) six single features showing
a good discriminative power for classifying tasks as well as a stable performance across the
evaluation datasets (the acc. obj. name feature, the window title feature, the used res. metadata
feature, the acc. obj. value feature, the datatype properties feature and the acc. obj. role feature),
(iv) the best overall task detection results are achieved by the UICO feature category Application
Cat. and by the combination of all 50 features (All Categories) and (v) knowledge-intensive tasks
can be classified as well as routine tasks.

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used other
than the declared sources / resources, and that I have explicitly marked all material
which has been quoted either literally or by content from the used sources.

Graz, March 8, 2010
. .
. Date Andreas S. Rath

Contents

Preface and Acknowledgments 1

1 Introduction 5

1.1 Motivation . 9

1.1.1 Automatic User Context Detection . 9

1.1.2 Automatic Task Detection . 10

1.2 Research Question and Approach . 11

1.2.1 Automatic User Context Detection . 12

1.2.2 Automatic Task Detection . 13

1.2.3 Realization . 14

1.3 Focus and Non-Focus . 15

1.4 Contributions . 16

1.5 Thesis Outline . 19

2 Related Work: User Context Detection 23

2.1 Introduction . 23

2.2 Context Modeling . 24

2.2.1 Personal Information Ontologies . 24

2.2.2 Connection to this research. 29

2.3 Context Observation . 29

2.3.1 APOSDLE . 30

2.3.2 Contextual Attention Metadata Framework 31

2.3.3 Mylar/Mylyn . 32

2.3.4 Plum . 33

2.3.5 TaskTracer . 33

i

2.3.6 The Semantic Logger . 33

2.3.7 Connection to this research. 34

2.4 Context Utilization and Exploitation . 37

2.4.1 Connection to this research. 37

2.5 Application Areas of Context . 38

2.5.1 Task- and Process Mining and Management 38

2.5.2 Work-Integrated Learning . 40

2.5.3 Semantic Desktop & Personal Information Management 40

2.5.4 Information Retrieval . 41

2.6 Summary . 42

3 User Interaction Context Approach 43

3.1 Introduction . 44

3.2 Conceptual Model - The Semantic Pyramid . 44

3.3 User Interaction Context Ontology (UICO) . 46

3.3.1 Action Dimension . 49

3.3.2 Resource Dimension . 51

3.3.3 Information Need Dimension . 51

3.3.4 User Dimension . 53

3.3.5 Application Dimension . 53

3.3.6 Comparison with existing Personal Information Ontologies 53

3.4 Context Sensors and Context Observation . 54

3.4.1 Context Observers . 54

3.5 Sensor Data Abstraction and Aggregation . 55

3.5.1 Event Creation . 56

3.5.2 Resource Discovery and Resource Building 56

3.5.3 Event to Event Block Mapping Rules . 59

3.5.4 Tasks . 69

3.6 Discussion about Ontology-based User Interaction Context Observation 69

3.6.1 Advantages . 70

3.6.2 Disadvantages . 71

3.7 Lessons Learned . 73

3.8 Open Questions . 73

3.9 Summary . 73

ii

4 Related Work: Task Detection 75

4.1 Introduction . 75

4.2 Task Detection in Emails . 76

4.3 Task Detection in Web Browsers . 77

4.4 Task Detection on the Computer Desktop . 77

4.4.1 ActivityExtractor . 79

4.4.2 APOSDLE Task Predictor . 79

4.4.3 Dyonipos Task Recognizer . 80

4.4.4 Smart Desktop . 81

4.4.5 SWISH . 82

4.4.6 TaskPredictor1 . 83

4.4.7 TaskPredictor2 . 83

4.4.8 Task Switch Detection Approach by Nair et al. in 2005 84

4.5 Discussion about existing Task Detection Approaches 85

4.6 Summary . 87

5 Ontology-Based Task Detection Approach 89

5.1 Introduction . 89

5.2 Training Instance Construction . 90

5.3 Feature Engineering . 92

5.3.1 Standard Text Preprocessing Steps . 92

5.3.2 Action Feature Category . 93

5.3.3 Application Feature Category . 101

5.3.4 Content Feature Category . 104

5.3.5 Ontology Feature Category . 105

5.3.6 Resource Feature Category . 106

5.3.7 Switching Sequence Feature Category . 109

5.4 Summary . 111

6 Prototyping 113

6.1 Introduction . 113

6.2 First Prototype - Dyonipos . 114

6.3 Second Prototype - KnowSe . 116

6.3.1 Architecture . 120

6.4 Context OBservation Evaluation Toolkit (COBET) 123

6.4.1 Architecture . 123

6.5 UICO-based Applications . 127

6.5.1 User Interaction Context Visualization . 127

6.5.2 User Interruptibility . 128

6.5.3 Context-Aware Proactive Information Delivery 130

6.6 Summary . 131

iii

7 Evaluation of the Ontology-Based Task Detection Approach 133

7.1 Introduction . 133

7.2 Evaluation Methodology . 134

7.2.1 Experiment Design and Dataset Collection 134

7.2.2 Level of Training/Class Instance Construction 135

7.2.3 Performance Measurements . 136

7.3 Performance Evaluations . 136

7.3.1 Learning Algorithms . 136

7.3.2 Attribute Selection . 136

7.3.3 Algorithm Evaluation Methods . 137

7.3.4 Algorithm Performance . 137

7.3.5 Dominance Matrices and Significance Tests 138

7.4 Laboratory Experiment 1 - Know-Center GmbH. 141

7.4.1 Experiment Design . 141

7.4.2 Research Question: Can the task model of the task instances be automati-
cally detected? . 147

7.4.3 Research Question: Can task models of task instances from personal work-
stations be detected based on laboratory task executions for training the
classifier? . 150

7.4.4 Research Question: Can task models of task instances from personal task
executions be detected based on predefined standard task executions for
training the classifier? . 153

7.4.5 Research Question: Is there a difference in automatically detecting tasks
on a laboratory computer or on a personal workstation? 157

7.4.6 Research Question: Can the type of task be automatically detected when
distinguishing routine and knowledge-intensive tasks? 166

7.4.7 Research Question: Can the task model of a task instance be automatically
detected based on task instances from only one expert user? 169

7.4.8 Research Question: Can the task model of a task instance of a single user
be automatically detected based on task instances from multiple expert users?173

7.4.9 Finding the Best Features/Feature Categories 177

7.4.10 Finding the Best Learning Algorithms . 178

7.4.11 Concluding Remarks . 180

7.5 Laboratory Experiment 2 - Computer Science Students 184

7.5.1 Experiment Design . 184

7.5.2 Research Question: Can the task model of the task instances be automati-
cally detected? . 187

iv

7.5.3 Research Question: Can the task models of the task instances from personal
task executions be detected based on predefined standard task executions
for training the classifier? . 190

7.5.4 Research Question: Can the task model of the task instances be auto-
matically detected when evaluating routine and knowledge-intensive tasks
separately? . 194

7.5.5 Research Question: Can the type of task be automatically detected when
distinguishing routine and knowledge-intensive tasks? 200

7.5.6 Finding the Best Features/Feature Categories 203

7.5.7 Finding the Best Learning Algorithms . 204

7.5.8 Concluding Remarks . 206

7.6 Laboratory Experiment 3 - Computer Science Students 209

7.6.1 Experiment Design . 209

7.6.2 Research Question: Can the task model of a task instances be automatically
detected? . 212

7.6.3 Research Question: Can the task models of analytic task instances be au-
tomatically detected? . 215

7.6.4 Research Question: Can the task models of synthetic task instances be
automatically detected? . 218

7.6.5 Research Question: Can the analytic and the synthetic knowledge-intensive
task models of the task instances be automatically detected? 221

7.6.6 Finding the Best Features/Feature Categories 225

7.6.7 Finding the Best Learning Algorithms . 225

7.6.8 Concluding Remarks . 227

7.7 Concluding Remarks and Open Questions . 230

7.7.1 Discussion about the Proposed Ontology-based Task Detection Approach . 230

7.7.2 Best Generalizing Context Features . 231

7.7.3 Best Generalizing Classifiers . 232

7.7.4 Detectability of Types of Tasks . 234

7.7.5 Comparison with Related Work . 235

7.7.6 Open Questions . 236

7.8 Summary . 236

8 Conclusion and Future Work 239

8.1 Assessment . 239

8.1.1 Automatic User Context Detection . 242

8.1.2 Automatic Task Detection . 243

8.1.3 Generalizability . 245

8.1.4 Discussion about Value and Effort . 248

v

8.2 Future Work . 249

8.2.1 Scaling of the Ontology-based Task Detection Approach 249

8.2.2 Real-Time Task Detection on the Computer Desktop 249

8.2.3 Better Support for Work-Integrated Learning 250

8.2.4 Better Support for Personal Information Management 250

8.2.5 Better Support for Information Retrieval 251

8.2.6 Better Support for Computer-Supported Collaborative Work 251

8.3 Summary . 252

Bibliography 253

8.4 Task Models of the Laboratory Experiment 1 . 269

8.4.1 [Task 1] Filling in the official journey form 269

8.4.2 [Task 2] Filling in the cost recompense form for the official journal 269

8.4.3 [Task 3] Creating and handing in an application for leave 270

8.4.4 [Task 4] Planning an official journey . 270

8.4.5 [Task 5] Organization of a project meeting 271

8.5 Task Models of the Laboratory Experiment 2 . 271

8.5.1 [Task 1] Register for an examination . 271

8.5.2 [Task 2] Finding course dates . 272

8.5.3 [Task 3] Reserve a book in the university’s library 272

8.5.4 [Task 4] Course Registration . 272

8.5.5 [Task 5] Algorithm programming . 273

8.5.6 [Task 6] Prepare a scientific talk . 273

8.5.7 [Task 7] Plan a study trip . 273

8.6 Task Models of the Laboratory Experiment 3 . 274

8.6.1 [Task Analytic 1] Task Classify . 274

8.6.2 [Task Analytic 2] Task Diagnose . 275

8.6.3 [Task Analytic 3] Task Assess . 279

8.6.4 [Task Analytic 4] Task Predict . 279

8.6.5 [Task Synthetic 1] Task Design . 279

8.6.6 [Task Synthetic 2] Task Assign . 280

8.6.7 [Task Synthetic 3] Task Plan . 280

8.6.8 [Task Synthetic 4] Task Schedule . 281

vi

List of Figures

1.1 The Maurer-Tochtermann Model for Knowledge Management 6

1.2 User Interaction Context Ontology (UICO) Task Detection Pipeline 12

1.3 Structure of this Thesis . 20

2.1 Learning in Progress (LIP) Ontology . 26

2.2 Native Operations (NOP) Ontology . 27

2.3 Personal Information Management Ontology (PIMO) 28

2.4 Observed Context Features in the APOSDLE System 31

2.5 The Contextual Attention Metadata (CAM) Framework 32

2.6 The Semantic Logger . 34

3.1 User Interaction Context Detection Pipeline . 44

3.2 The Semantic Pyramid (Conceptual Model) . 45

3.3 User Interaction Context Ontology (UICO) . 48

3.4 NEPOMUK’s Task Management Model . 51

3.5 The Resource Dimension of the User Interaction Context Ontology (UICO) 52

4.1 Implicit Measures for the Detection of Tasks in Web Browsers 78

5.1 Training Instance Construction for the Ontology-based Task Detection Approach . 91

5.2 Visualization of a Task Instance of the Task Model“Planning a official journey” . . 91

6.1 First Research Prototype Dyonipos . 115

6.2 Second Research Prototype KnowSe . 118

6.3 KnowSe GUI for User Interaction Context History Exploration 119

6.4 Context OBservation Service (COBS) . 120

vii

6.5 Context Analysis Component . 122

6.6 Context OBservation Evaluation Toolkit (COBET) 124

6.7 Examples of Graphical Outputs generated automatically by COBET 126

6.8 Timeline Visualization of the User Interaction Context 127

6.9 Graph-Based Visualization of a “Plan a Trip” Task Execution 128

6.10 Graph-Based User Interaction Context Visualization of Multiple Users 129

6.11 The Notification Bubble in the KnowSe Prototype 129

6.12 The Tray Icon Notification in the KnowSe Prototype 129

6.13 The Proactive Context-Aware Information Retrieval Prototype - KnowSe Suggest . 130

6.14 The Proactive Context-Aware Information Retrieval Prototype - KnowSe Wave . . 131

viii

List of Tables

2.1 Summary of the Presented Context Observation Frameworks 36

3.1 EventType Concepts . 49

3.1 EventType Concepts . 50

3.2 System Context Sensors . 55

3.3 Application Context Sensors . 56

4.1 Overview of Task Detection Approaches For The Computer Desktop 88

5.1 Overview of All Features of the User Interaction Context Ontology (UICO) Task
Detection Approach . 92

5.2 Features of the Action Feature Category . 94

5.3 Intervals of the Event Block Duration Feature . 95

5.4 Intervals of the Number of Events per Event Block Feature 96

5.5 Features of the Application Feature Category . 101

5.6 Features of the Content Feature Category . 104

5.7 Features of the Ontology Structure Feature Category 105

5.8 Features of the Resource Feature Category . 107

5.9 Features of the Switching Sequence Feature Category 109

7.1 Software Requirements for the Task Detection Experiment 1 145

7.2 Task Distribution for Studying the Research Question: Can the task model of the
task instances be automatically detected? . 147

7.3 UICO Task Detection Results for the Research Question: Can the task model of
the task instances be automatically detected? . 148

7.4 Dyonipos, SWISH and TaskPredictor Task Detection Results for the Research
Question: Can the task model of the task instances be automatically detected? . . 149

ix

7.5 Task Distribution for Studying the Research Question: Can task models of task
instances from personal workstations be detected based on laboratory task execu-
tions for training the classifier? . 150

7.6 UICO Task Detection Results for the Research Question: Can task models of
task instances from personal workstations be detected based on laboratory task
executions for training the classifier? . 151

7.7 Dyonipos, Swish and TaskPredictor Task Detection Results for the Research Ques-
tion: Can task models of task instances from personal workstations be detected
based on laboratory task executions for training the classifier? 152

7.8 Task Distribution for Studying the Research Question: Can task models of task
instances from personal task executions be detected based on predefined standard
task executions for training the classifier? . 153

7.9 UICO Task Detection Results for the Research Question: Can task models of task
instances from personal task executions be detected based on predefined standard
task executions for training the classifier? . 155

7.10 Dyonipos combinations, Swish and TaskPredictor Task Detection Results for the
Research Question: Can task models of task instances from personal task execu-
tions be detected based on predefined standard task executions for training the
classifier? . 156

7.11 Task Distribution of Laboratory Computer Workstation Tasks without Task 5 of
Laboratory Experiment 1 . 157

7.12 UICO Task Detection Results for Detecting Laboratory Computer Workstation
Tasks without Task 5 . 159

7.13 Dyonipos, Swish and TaskPredictor Task Detection Results for Detecting Labora-
tory Computer Workstation Tasks without Task 5 160

7.14 Task Distribution of Personal Workstation Tasks without Task 5 in the Laboratory
Experiment 1 . 161

7.15 UICO Task Detection Results for Personal Workstation Tasks without Task 5 in
the Laboratory Experiment 1 . 162

7.16 Dyonipos, Swish and TaskPredictor Task Detection Results for Personal Worksta-
tion Tasks without Task 5 in the Laboratory Experiment 1 163

7.17 This table shows the distribution of the stratified 10-fold cross-validation train-
ing/test instances for the different task classes ranging from Task 1 to Task 5
recorded on the personal workstations. 163

7.18 UICO Task Detection Results for Personal Workstation Tasks without Task 5 in
the Laboratory Experiment 1 . 164

7.19 Dyonipos, Swish and TaskPredictor Task Detection Results for Personal Worksta-
tion Tasks without Task 5 in the Laboratory Experiment 1 166

7.20 Task Distribution for Studying the Research Question: Can the type of task be
automatically detected when distinguishing routine and knowledge-intensive task? 166

x

7.21 UICO Task Detection Results for the Research Question: Can the type of task be
automatically detected when distinguishing routine and knowledge-intensive task? 167

7.22 Dyonipos, Swish and TaskPredictor Task Detection Results for the Research Ques-
tion: Can the type of task be automatically detected when distinguishing routine
and knowledge-intensive task? . 168

7.23 Task Distributions for Studying the Research Question: Can the task model of
a task instance be automatically detected based on task instances from only one
expert user? . 169

7.24 UICO Task Detection Results for the Research Question: Can the task model of
a task instance be automatically detected based on task instances from only one
expert user? . 170

7.25 Dyonipos, Swish and TaskPredictor Task Detection Results for the Research Ques-
tion: Can the task model of a task instance be automatically detected based on
task instances from only one expert user? . 172

7.26 Extended Evaluation of Feature Combinations of the Task Detection Performance
for Detecting Users’ Tasks by Training on Tasks from One Expert of the Laboratory
Experiment 1 . 172

7.27 Task Distribution for Studying the Research Question: Can the task model of a
task instance of a single user be automatically detected based on task instances
from multiple expert users? . 173

7.28 UICO Task Detection Results for the Research Question: Can the task model of
a task instance of a single user be automatically detected based on task instances
from multiple expert users? . 175

7.29 Dyonipos, Swish and TaskPredictor Task Detection Results for the Research Ques-
tion: Can the task model of a task instance of a single user be automatically
detected based on task instances from multiple expert users? 176

7.30 Extended Evaluation of Feature Combinations of the Task Detection Performance
for Detecting Single User’s Tasks by Training on Tasks from Multiple Experts of
the Laboratory Experiment 1 . 176

7.31 Dominance Matrix for the Top 15 Features and Feature Combinations for Labora-
tory Experiment 1 . 178

7.32 Feature Significance Matrix for the Top 15 Features without Rank Transformation
for Laboratory Experiment 1 . 178

7.33 Feature Significance Matrix for the Top 15 Features with Rank Transformation for
Laboratory Experiment 1 . 179

7.34 Dominance Matrix for the Classifiers l ∈ {J48, KNN-1, KNN-10, KNN-35, KNN-5,
NB, SVM-lin } for Laboratory Experiment 1 . 179

7.35 Significance Matrix for the Classifiers l ∈ {J48, KNN-1, KNN-10, KNN-35, KNN-5,
NB, SVM-lin} with and without Rank Transformation for Laboratory Experiment 1180

7.36 Overview of all Results of the Laboratory Experiment 1 in the Know-Center GmbH.
Domain . 180

xi

7.37 Task Distribution for Studying the Research Question: Can the task model of the
task instances be automatically detected? . 187

7.38 UICO Task Detection Results for the Research Question: Can the task model of
the task instances be automatically detected? . 188

7.39 Dyonipos, SWISH and TaskPredictor Task Detection Results for the the Research
Question: Can the task model of the task instances be automatically detected? . . 189

7.40 Task Distribution for Studying the Research Question: Can task models of task
instances from personal task executions be detected based on predefined standard
task executions for training the classifier? . 190

7.41 UICO Task Detection Results for the Research Question: Can the task models of
the task instances from personal task executions be detected based on predefined
standard task executions for training the classifier? 192

7.42 Dyonipos, Swish and TaskPredictor Task Detection Results for the Research Ques-
tion: Can the task models of the task instances from personal task executions be
detected based on predefined standard task executions for training the classifier? . 193

7.43 Task Distribution for Studying the Research Question: Can the task model of the
task instances be automatically detected when evaluating routine and knowledge-
intensive tasks separately? . 195

7.44 UICO Task Detection Results for the Research Question: Can the task model of the
task instances be automatically detected when evaluating routine and knowledge-
intensive tasks separately? . 196

7.45 Dyonipos, Swish and TaskPredictor Task Detection Results for the Research Ques-
tion: Can the task model of the task instances be automatically detected when
evaluating routine and knowledge-intensive tasks separately? 197

7.46 UICO Task Detection Results for Knowledge-Intensive Tasks on the Laboratory
Experiment 2 Dataset . 198

7.47 Dyonipos, Swish and TaskPredictor Task Detection Results for Knowledge-
Intensive Tasks on the Laboratory Experiment 2 Dataset 199

7.48 Task Distribution for Studying the Research Question: Can the type of task be
automatically detected when distinguishing routine and knowledge-intensive task? 200

7.49 UICO Task Detection Results for the Research Question: Can the type of task be
automatically detected when distinguishing routine and knowledge-intensive task? 201

7.50 Dyonipos, Swish and TaskPredictor Task Detection Results for the Research Ques-
tion: Can the type of task be automatically detected when distinguishing routine
and knowledge-intensive task? . 202

7.51 Dyonipos Best 25 Discriminating Window Title Attributes for the Research Ques-
tion: Can the type of task be automatically detected when distinguishing routine
and knowledge-intensive tasks? . 203

7.52 Dominance Matrix for the Top 15 Features and Feature Combinations for Labora-
tory Experiment 2 . 204

xii

7.53 Feature Significance Matrix for the Top 15 Features and Feature Combinations
without Rank Transformation for Laboratory Experiment 2 204

7.54 Feature Significance Matrix for the Top 15 Features and Feature Combinations
with Rank Transformation for Laboratory Experiment 2 205

7.55 Dominance Matrix for the Classifiers l ∈ {J48, KNN-1, KNN-10, KNN-35, KNN-5,
NB, SVM-lin} for Laboratory Experiment 2 . 205

7.56 Significance Matrix for the Classifiers l ∈ {J48, KNN-1, KNN-10, KNN-35, KNN-5,
NB, SVM-lin} without Rank Transformation for Laboratory Experiment 2 206

7.57 Significance Matrix for the Classifiers l ∈ {J48, KNN-1, KNN-10, KNN-35, KNN-5,
NB, SVM-lin} with Rank Transformation for Laboratory Experiment 2 206

7.58 Overview of all Results of the Laboratory Experiment 2 207

7.59 Task Distribution for Studying the Research Question: Can the task model of a
task instances be automatically detected? . 212

7.60 UICO Task Detection Results for the Research Question: Can the task model of a
task instances be automatically detected? . 213

7.61 Dyonipos, Swish and TaskPredictor Task Detection Results for the Research Ques-
tion: Can the task model of a task instances be automatically detected? 214

7.62 Task Distribution for Studying the Research Question: Can the task models of
analytic task instances be automatically detected? 215

7.63 UICO Task Detection Results for the Research Question: Can the task models of
analytic task instances be automatically detected? 217

7.64 Dyonipos, Swish and TaskPredictor Task Detection Results for the Research Ques-
tion: Can the task models of analytic task instances be automatically detected? . . 218

7.65 Task Distribution for Studying the Research Question: Can the task models of
synthetic task instances be automatically detected? 218

7.66 UICO Task Detection Results for the Research Question: Can the task models of
synthetic task instances be automatically detected? 220

7.67 Dyonipos, Swish and TaskPredictor Task Detection Results for the Research Ques-
tion: Can the task models of synthetic task instances be automatically detected? . 221

7.68 Task Distribution for Studying the Research Question: Can analytic and synthetic
knowledge-intensive task models of task instances be automatically detected? . . . 221

7.69 UICO Task Detection Results for the Research Question: Can analytic and syn-
thetic knowledge-intensive task models of task instances be automatically detected?223

7.70 Dyonipos, Swish and TaskPredictor Task Detection Results for the Research Ques-
tion: Can analytic and synthetic knowledge-intensive task models of task instances
be automatically detected? . 224

7.71 Dominance Matrix for Feature Categories and Single Features for Laboratory Ex-
periment 3 . 225

7.72 Significance Matrix for the Top 15 Features and Feature Combinations without
Rank Transformation for Laboratory Experiment 3 226

xiii

7.73 Significance Matrix for the Top 15 Features and Feature Combinations with Rank
Transformation for Laboratory Experiment 3 . 226

7.74 Dominance Matrix for the Classifiers l ∈ { J48, KNN-1, KNN-10, KNN-35, KNN-5,
NB, SVM-lin } for Laboratory Experiment 3 . 227

7.75 Significance Matrix for the Classifiers l ∈ { J48, KNN-1, KNN-10, KNN-35, KNN-
5, NB, SVM-lin } for Laboratory Experiment 3 . 227

7.76 Overview of all Results of the Laboratory Experiment 3 228

7.77 Ranking of Best Features of the UICO Task Detection Approach for the 3 Labo-
ratory Experiments . 232

7.78 Ranking of the Classifiers l ∈ {J48, KNN-1, KNN-10, KNN-35, KNN-5, NB, SVM-
lin } for the 3 Laboratory Experiments based on the Dominance Matrices 233

7.79 Partial Orders of the Classifiers l ∈ {J48, KNN-1, KNN-10, KNN-35, KNN-5, NB,
SVM-lin } for the 3 Laboratory Experiments based on the Statistical Significance
Tests . 233

7.80 Overview of the All Task Detection Performance Results of the Real-World User
Study and the Three Laboratory Experiments . 234

xiv

List of Algorithms

1 Default Application Rules for the Aggregation of Events to Event Blocks 61
2 Rules for the Aggregating of Events from the Clipboard Sensor to Event Blocks . . 62
3 Rules for aggregating events from the Mozilla Thunderbird and Novell GroupWise

sensors to event blocks . 63
4 Rules for the Aggregation of Events from the Microsoft Windows Explorer Sensor

to Event Blocks . 64
5 Rules for the Aggregation of Events from the Microsoft Outlook sensor to Event

blocks . 65
6 Rules for grouping events from Microsoft Winword, Excel, PowerPoint to event

blocks . 66
7 Rules for the Aggregating of Events from the Microsoft Internet Explorer and

Mozilla Firefox to Event Blocks . 68

xv

Preface and Acknowledgments

This PhD thesis represents the key results of my research performed at the Know-Center in
the Knowledge Services division during the last four years. The Know-Center, Austria’s Com-
petence Center for knowledge-based Applications and Systems, and its associated Knowledge
Management Institute, Graz University of Technology, represented an inspiring, idea generating
and open-minded environment for me to pursue my dissertation research. Based on the work
on technology-oriented knowledge management [Maurer & Tochtermann, 2002; Tochtermann,
2003] and how to increase the productivity of knowledge-workers through work-integrated
learning [Lindstaedt et al., 2008a], this dissertation investigates in mechanisms for automatically
detecting the task of a user on the computer desktop through user observations. The knowledge
discovery framework from Granitzer [2008], the KnowMiner framework, also provided a valuable
base for indexing and retrieval of digital resources as well as applying information extraction
techniques for enriching the resource dimension of the user context (see Section 3.5.2). In the
Know-Center I had the great opportunity to be part of the national funded research project
DYONIPOS [DYONIPOS, 2006] and the KnowSe project [KnowSe, 2009] which is one of the
research projects regarding user context detection of the Knowledge Services division of the
Know-Center. At this point I would like to thank Prof. Klaus Tochtermann and Dr. Stefanie N.
Lindstaedt for establishing and providing this fruitful environment.

I would like to acknowledge and thank many people for their valuable support during my
research work. Especially, I would like to thank Prof. Klaus Tochtermann, my Ph.D. adviser
and professor, as well as Dr. Stefanie N. Lindstaedt, my advisor and division manager, for their
willingness to support me in my discovery into the evolving areas of user context detection
and task detection. They encouraged me to explore and to try out new ways as well as
helped me to keep the big picture in mind. I benefited from their continuous constructive
feedback and their valuable support during my research work and during the writing process
of this thesis. I would also like to thank Prof. Ronald Maier for willing to serve as a second reader.

Without my wonderful collaborators of the Know-Center and the Knowledge Management

1

2

Institute I couldn’t have made it this far: Dr. Tobias Ley and Barbara Kump for their feedback
about the design of the task detection experiments. Dr. Stefanie N. Lindstaedt and Dr. Michael
Granitzer for providing me with interesting perspectives and insights as well as for paving the
way to the execution of the user experiments in terms of time, hardware, experiment environment
and supportive students. Dr. Michael Granitzer, Mark Kröll, Christin Seifert, Peter Prettenhofer
and Markus Muhr for teaching me the beauty of machine learning, their discussions and fruitful
input about feature engineering, supervised machine learning and algorithm evaluation as well
as for kindly answering my questions. Markus Leitner for investigating and testing several user
context detection tools as part of his bachelor thesis [Leitner, 2007]. Georg Kompacher, Daniel
Resanovic, and Didier Devaurs for their impressive work in the design and development of the
KnowSe prototype as well as their support in helping me carrying out the experiments. Didier
Devaurs for the interesting discussions and the new perspectives on user context detection as
well as the great time during publishing the research results. Nicolas Weber, Mark Kröll and
Dr. Michael Granitzer for their good collaboration in engineering the first Dyonipos prototype.
Andreas Rechberger and Thomas Pichler for extending the list of available user interaction
context sensors by developing one for Mozilla Thunderbird, Novell GroupWise and a Network
Stream Sensor. Stefanie Wechtitch for her work on user interruptibility aspects for KnowSe.
Nicolas Weber for his feedback on the chapter about the user interaction context ontology
approach. Dr. Markus Strohmaier for reading the expose of my research proposal and his
comments. Many thanks to the PhD. students of the “dissertation circle” of the Know-Center
and the Knowledge Management Institute. In general, I would like to thank all the people from
the Know-Center and the students from Graz University of Technology who participated in the
experiments and supported me in carrying out my research work.

Parts of this dissertation research has also been published elsewhere. The conceptual
model about the user interaction context, the Semantic Pyramid, is introduced in [Rath et al.,
2006]. The developed user interaction context sensors are described in [Pichler, 2007; Rath et al.,
2007; Rechberger, 2007]. The automatic detection and fulfillment of the user’s information need
based on the user context is elaborated in [Kröll et al., 2006; Rath, 2007; Rath et al., 2007]. The
provision of context-aware knowledge services for personal information management is presented
based on use cases in [Rath et al., 2008]. [Granitzer et al., 2009a, 2008; Kröll et al., 2007]
represent the joint work about automatic task detection during the Dyonipos project on which
this dissertation research builds. The ontology-based user context model, the user interaction
context ontology (UICO), is shown and described in [Rath et al., 2009d]. In this paper also the
ontology-based task detection approach is introduced. Furthermore this paper gives the first
results of this novel task detection approach based on the experiment’s dataset collected in the
domain of the Know-Center (see Section 7.4.2). The detection of real user tasks by training
on user interaction context data observed in a laboratory setting is explored in [Rath et al.,
2009a] (see Section 7.4.3). KnowSe services for fostering “awareness” in computer supported
collaborative work environments are presented in [Rath et al., 2009c]. In [Rath et al., 2009b]
an overview of the knowledge services for personalized learner support provided by the KnowSe
framework is given.

3

Finally, I would like to thank my family. They have provided tremendous support during
my university years and helped me organizing my non-university life during intense research
periods. Especially, I would like to say thank you to my generous, wise and beloved parents.
This thesis is dedicated to them.

Graz, March 8, 2010
. ———————————————
. Andreas S. Rath

4

1
Introduction

Knowledge plays an increasingly important role in organization of all types in today’s knowledge
economy. The management of knowledge can decide upon the success or failure of an organization.
This has been acknowledged by the interdisciplinary research field knowledge management that
involves several research areas such as computer science, economics and psychology. In order
to stay competitive within a global market an “effective knowledge management has become
imperative for organizations” [Tochtermann, 2003]. The shift of the society towards a knowledge
economy has also resulted into a change in the type of work that is in focus by organization
executives to gain a competitive advantage. Today the challenge is to increase the productivity
of knowledge work and knowledge workers [Drucker, 1999] in order to speed up the innovation
cycles and the development of new products. Knowledge work can be characterized as “creative
work solving unstructured problems that require exploration or creation of knowledge” [Maier,
2005] as opposed to manual work in which the task and how it should be performed is clear.
This was different a few decades ago when the focus was put on increasing the productivity of
manual workers in manufacturing [Drucker, 1999]. Since knowledge workers, people who perform
knowledge work, are getting more important for organizations, organizations strive to support
them as much as possible in order to increase their productivity.

Nowadays a lot of knowledge work is done with the help of computer systems which enable
the access to information of various sources from inside and outside the organization, e.g., the
Internet, the organizations intranet, organizational information systems, or databases. Since the
amount of information available is continuously growing, these knowledge workers are more and
more facing an information overload. A literature survey about information overload research
from Edmunds & Morris [2000] recognizes the theme that although enough information is available
it is difficult to obtain relevant, useful information when it is needed. Feldman [2004] reported

5

6 Introduction

about IDC1 studies unveiling that (i) knowledge workers spend between 15% to 35% of their time
searching for information and that (ii) 40% of corporate users reported that they can not find
the information they need to do their work on their intranets. Possible solutions to information
overload Edmunds & Morris [2000] identified are: a reduction in the duplication of information,
the adaption of personal information management strategies together with intelligent software
solutions and the provisioning of value-added information.

These findings among others motivated this dissertation research, which goal is to automat-
ically identify the user task on a desktop computer system in order to enable a task-specific
support. Task-specific support can be of various forms, such as providing useful, relevant mate-
rial for work and learn situations, suggesting topical experts, finding collaborators as well as the
management and the access of task-specific information.

Technology-oriented Knowledge Management

Supporting knowledge workers with the knowledge required to efficiently perform a specific task is
the objective of technology-oriented knowledge management [Tochtermann, 2003]. The Maurer-
Tochtermann Model (MT-Model) for Knowledge Management [Maurer & Tochtermann, 2002]
visualized in Figure 1.1 describes knowledge management from an information technology per-
spective. Although the focus of the MT-Model is on the communication between people and
computer systems (KM-system), they also included the organizational perspective. As can be
observed in Figure 1.1, a large amount of knowledge exchange happens over a KM-system.

Figure 1.1: The Maurer-Tochtermann Model for Knowledge Management [Maurer & Tochtermann, 2002]

Description: All organizational aspects of knowledge management are subsumed by
arrow 1. Arrow 2 and 3 symbolizes the various ways of explicit and implicit input
of information into the KM-system respectively. Explicit input is the direct input of
data by a user, e.g, the user enters data in a web form. Implicit input is such kind

1International Data Corporation (IDC): http://www.idc.com/

7

of information and knowledge entering into the KM-system that is produced as a by-
product of the user’s activities and hence not requiring any user effort. An example
they give for implicit input is the sending of an announcement of an event to a group
of persons by email. By sending this email over a KM-system, the information about
the event is also put into a folder “upcoming events” and is automatically moved to
a “past events” folder by the KM-system when the event is over.

Arrow 4 stands for the creation of new knowledge by the KM-system through user
observations. The idea is to utilize the input of different sources, e.g., databases and
employees, to derive general rules and procedures that can be suggested in similar
situations. An example here is the observation of the interactions of a user with
resources and applications to infer her tasks [Granitzer et al., 2009a] as done in the
research project DYONIPOS [Tochtermann et al., 2006]. Further examples for task
detection are given in Chapter 4. The research field process mining even works on
the identification of process flows and the extraction of process models through user
observations [Aalst & Weijters, 2004].

Arrow 5 indicates the classical query mechanism for information systems and
databases. The user has to explicitly formulate a query for retrieving information
from the KM-system. Here, information retrieval [Rijsbergen, 1979] is one of the
main research areas that work on finding a good match between the query and the
available information.

Arrow 6 indicates that the KM-system can generate and offer knowledge pro-
actively, i.e., without an explicit request from the user. A sub-research area of infor-
mation retrieval called context-aware information retrieval [Fuhr, 2005], also referred
to as just-in-time information retrieval [Rhodes, 2000], focuses on exploiting the con-
text of the user for retrieving information relevant to the user’s current situation.
In the research project APOSDLE learn and work support is provided based on the
current task and the current topic the user is working on [Lindstaedt et al., 2008b,
2009a].

Arrow 7 symbolizes that a KM-system has the possibility to generate new knowl-
edge based on existing knowledge autonomously. Examples for the autonomous knowl-
edge creation are an automatic interlinking of resources (e.g., documents, persons,
emails web pages etc.), ontology learning and ontology alignment, inferencing with
semantic web technologies [Sirin et al., 2007]. An example for a knowledge discov-
ery framework is the KnowMiner [Granitzer, 2008] that offers knowledge discovery
services such as clustering, information extraction and information retrieval.

A KM-system is distinguished from a classical information system by the additional
actions described through the arrows 3, 4, 6, and 7.

The actions symbolized by the arrows 4, 6 and 7 are of special relevance to this dissertation re-
search, because this dissertation also shows that such kind of actions can indeed be implemented
today. The goal of this dissertation research is to study and enhance automatic user task detection
on the computer desktop through user observations (cf. arrow 4) in order to get to know the user
and her tasks better. Detecting the user task is one important step towards task-specific support.
For achieving this goal this dissertation proposes an approach that brings together machine learn-

8 Introduction

ing and semantic web technology. More specifically a user interaction context ontology (UICO)
is proposed for engineering novel features for the machine learning problem “task detection” (see
Chapter 4 and 5). While user observations according to the MT-model can be the input from
different sources, this dissertation research focuses only on a subset of possible user observations,
the “user context”. User context is “any information that can be used to characterize the situa-
tion of entities that are considered relevant to the interaction between a user and an application,
including the user and the application themselves” [Dey et al., 2001]. The user interaction con-
text is a subset of this user context and is defined as “all interactions of the user with resources,
applications and the operating system on the computer desktop. Resources are digital artifacts on
the computer desktop, e.g., documents, web pages, emails, persons, appointments and notes”. It
strongly focuses on user interactions.

For the representation of the user interaction context semantic web technology is utilized.
More specifically, an “ontology” is created. An ontology is “an explicit specification of a concep-
tualization.” [Gruber, 1993]. It is a knowledge representation that defines what objects and what
relationships between those objects exist. In user context detection research the representation of
the user context as an ontology is referred to as an ontology-based user context model [Ötztürck &
Amodt, 1997]. The ontology-based user context modeling approach has been advocated as being
the most promising one [Baldauf et al., 2007; Strang & Linnhoff-Popien, 2004] mainly because of
its dynamicity, expressiveness and extensibility. Furthermore reasoning mechanisms [Sirin et al.,
2007] can be applied to an ontology-based user context model to infer new knowledge based on
existing one (cf. arrow 7).

In order to do automatic task detection the user interaction context has to be automati-
cally observed on the computer desktop. For this, context sensors which enable an unobtrusive
capturing of all interactions of a user with her computer desktop are developed as part of this dis-
sertation research. The captured user interaction context is then used to automatically populate
the highly connected UICO. Automatic population here means an autonomous instantiation of
concepts and creation of properties between concept instances of the UICO based on the observed
and the automatically inferred user interaction context. The automatic population exploits the
structure of user interface elements of standard office applications as well as preserves data types
and relationships between the data through a combination of rule-based, information extraction
and supervised learning techniques (cf. arrow 7). The UICO is a much richer representation of the
user interaction context than is typically stored in attention metadata sensor streams [Wolpers
et al., 2007] since it preserves relationships that otherwise are lost. Furthermore, the UICO
not only stores low-level data but also high level concepts. These high level concepts constitute
connection points to other semantic desktop ontologies (see Section 2.2.1). Semantic desktop
ontologies gain access to low-level user interaction context data through these high-level UICO
concepts.

The highly connected UICO is naturally enabling a variety of context-aware applications (see
Section 6.5) and “mining” activities for in-depth analyzes of for example user characteristics,
actions, preferences, interests and goals. The results of such mining activities is new knowledge
about the user (cf. arrow 7). One of the possible mining activities is task detection. Task
detection in this dissertation research is seen as a classification problem which exploits the UICO
for feature engineering (see Chapter 5). Once a task is detected based on the observed user

Motivation 9

interaction context, the knowledge about the detected task is added to the UICO (cf. arrow 7)
and hence enables the provisioning of knowledge specific to this task to the user (cf. arrow 6).

The purpose of this chapter is to motivate this research, to give an overview of the research
approach taken and to clarify what is “in focus” and “not in focus”. The contributions of this
research effort are also highlighted and the structure of the thesis including a short overview of
the content of each chapter presented.

1.1 Motivation

Researchers from various fields have already started investing into getting a deeper understanding
about the user’s context. A selection of research areas are information retrieval that utilizes the
user context for personalizing search queries [Budzik et al., 2001; Fuhr, 2005; INTELLEXT Inc.,
2007], knowledge maturing [Maier & Schmidt, 2007; Schmidt, 2005b] for providing a glue between
the knowledge maturing phases as well as for the decontextualization and recontextualization
during a maturing process, personal information management [Bellotti & Smith, 2000; Jones,
2007; Lansdale, 1988] to relate the user context to projects [Jones et al., 2008; Schwarz, 2006],
tasks [Catarci et al., 2007], processes [Fenstermacher, 2005], topics [Sauermann et al., 2005] and
notes [Chirita et al., 2006; Kleek et al., 2007; Sauermann et al., 2006a], technology enhanced
learning [Schmidt, 2005a; Wolpers et al., 2007] and work-integrated learning [Lindstaedt et al.,
2005, 2008a; Ulbrich et al., 2006] to provide the appropriate learning material, as well as task and
process management for discovering tasks [Dragunov et al., 2005; Granitzer et al., 2008; Kleek
& Shrobe, 2007; Kröll et al., 2006; Oliver et al., 2006; Shen et al., 2007] and process flows [Aalst
& Weijters, 2004; Medeiros et al., 2003; Weijters & Aalst, 2001].

The next sections motivate specifically the investigated research areas of this dissertation
effort which are (i) automatic user context detection and (ii) automatic task detection and points
to open questions in these areas.

1.1.1 Automatic User Context Detection

Several research areas strive to get to know the user better and to gather more insights about
the user’s current situation in order to enable better and more accurate support. Since the user
cannot be bothered to manually enter information about her current situation, automatic means
providing this information are required. Among these research areas two are information retrieval
and information management.

As recently discussed in the information retrieval community, the emphasis of future informa-
tion retrieval applications ought to be put on exploiting the user’s context in order to increase
the accuracy of retrieval results [Callan et al., 2007]. For formulating a context-aware query to
an information retrieval system (i) the context of the user has to be detected beforehand and
(ii) the features utilized for a contextualized search and ranking procedure have to be selected.
A manual specification of the user’s context for automatic query formulation or manually con-

10 Introduction

structing a context-aware query by the user is not an optimal solution since it requires expert
knowledge as well as user effort. In the personal and organizational information management
area research works on solving the information fragmentation problem [Bellotti & Smith, 2000]
by relating resources on the computer desktop [Jones, 2007]) to projects, tasks, topics, processes
etc. as well as to each other, i.e., capturing the user context of personal information management
objects [Sauermann et al., 2007]. Building these relations manually is cumbersome and requires
a lot of effort from the user side. This additionally introduced user effort often leads to missing
relations and to an incomplete picture about different aspects of context [Schwarz, 2006].

In both described areas above unobtrusive automatic user context detection mechanisms which
observe the user and her interactions as well as algorithms for aggregating, abstracting and
analyzing the observed data are highly appreciated. Furthermore sophisticated user context
models are required to represent and relate different aspects of the user’s context. Strang &
Linnhoff-Popien [2004] distinguish in their survey between key-value models, markup scheme
models, graphical models, object oriented models, logic-based models and ontology-based models.
A more recent survey from [Baldauf et al., 2007] agrees with the conclusions of Strang & Linnhoff-
Popien [2004] and Dourish [2004] to favor an ontology-based context model. The main reasons
mentioned are its dynamicity, expressiveness and extensibility. An ontology modeled with the
ontology web language (OWL) [OWL, 2007] can provide this easy access requirement through
its querying possibility with the query language SPARQL [Prud’Hommeaux & Seaborne, 2008].
A further advantage of using an ontology-based user context model is that an ontology can be
validated through reasoners [Sirin et al., 2007], i.e., checked for consistency. From a context-
aware application and service perspective a user context model ideally allows an easy access to
up-to-date contextual information to leverage this information for improving today’s personal and
organizational information management, intelligent retrieval systems as well as task and process
management systems.

Three important open questions in the area of user context detection are (i) What is the
appropriate level of detail for sensing contextual information?, (ii) Which techniques should be
used to aggregate, relate and reason about contextual information? and (iii) How to share and
exchange contextual information?. The answers to these questions depend on the application
requiring the contextual information as well as on the capabilities of the computer environment
on which the sensing process takes place (e.g., mobile or desktop environment).

1.1.2 Automatic Task Detection

Understanding the “user context”, more specifically the task of the user, in which resources are
used, produced and distributed is of great interest, because once the links between the user’s
tasks and utilized resources is clear, research can start developing automatic means to detect the
user’s task. Automatically detecting the task of a user is valuable because once the task is known
the user can be better supported with relevant information such as learning and work resources
as well as with task guidance.

Task detection belongs to the field of activity recognition [Andrews et al., 2004; Horvitz et al.,
1998, 1999; Philipose et al., 2004]. In activity recognition the system observes a sequence of
events, tries to determine and understand the goals of the user, and responds to them. Focusing

Research Question and Approach 11

on automatic task detection on the computer desktop a classical approach in recent research
is to model task detection as a machine learning problem, more specifically as a classification
problem. The need for automating the task detection process comes from the unrealistic cost of
developing and maintaining a detailed knowledge base containing information about the user’s
different activities including the involved people, meetings, emails etc. [Mitchell et al., 2006].

However, the focus so far was on using only text-based features and switching sequences [Cher-
nov, 2008; Dredze et al., 2006; Granitzer et al., 2008; Horvitz et al., 1998; Kushmerick & Lau,
2005; Lokaiczyk et al., 2007; Oliver et al., 2006; Shen, 2009] for detecting the user’s task. None
of the approaches so far rely on ontology models which are seen to be advantageous and ben-
eficial in comparison to other user context modeling approaches in the user context detection
research field [Baldauf et al., 2007; Strang & Linnhoff-Popien, 2004]. Next to the advantages of
an ontology-based user context model for user context detection, the advantages for automatic
task detection are (i) the possibility to construct various types of features based on the (pop-
ulated) ontology ranging from text-based, ontology structure-based, time-based to graph-based
features, (ii) the easy access of the data representation with the rich query language SPARQL
and (iii) the flexible data representation that allows to easily adapt to the requirements of various
domains.

In the area of task detection freely available standard datasets for studying task detection
approaches are still missing. Furthermore the representative number of field studies and labora-
tory experiments performed to gather task detection datasets is low. Some reasons for this are
(i) the tedious, labor-intensive and expensive process for designing and carrying out user studies
and (large-scale) experiments for the data collection and the data labeling [Oliver et al., 2006],
(ii) the amount of time required for developing user context observation mechanisms, and (iii)
the difficulty of making the recorded usage data anonymous [Chernov et al., 2008].

Three important open questions in the area of automatic task detection modeled as a machine
learning problem are (i) What kind of tasks can be automatically detected? (ii) Which context
features are most discriminative between tasks? and (iii) Which machine learning algorithm
should be used?. The answers to these questions have only been investigated in limited ways and
require further research efforts, both in a single and in different domains as well as in experimental
and real world settings. These questions are investigated and addressed in this dissertation
research through the approach described bellow.

1.2 Research Question and Approach

The goal of this dissertation research is to automatically detect the task of a user on her com-
puter desktop in order to enable task-specific support. More specifically, this research strives to
study and enhance automatic task detection on the computer desktop via an ontology-based user
interaction context model. Hereby, the main research hypothesis of this dissertation effort is:

“The accuracy of automatic task detection can be enhanced by features engineered from
an ontology-based user interaction context model in comparison to features and feature
combinations of existing approaches.”

12 Introduction

In Figure 1.2 the complete user interaction context ontology task detection pipeline (UICO
pipeline) that sums up the steps of the task detection process is presented. It starts from
observing the user’s interactions and ends at the detected user task. The automatic user context
detection approach and the automatic task detection approach are displayed in the left and
right area of Figure 1.2 respectively. The UICO pipeline is used for testing the main research
hypothesis as well as for answering the sub-research questions in the areas of automatic user
context detection and automatic task detection presented bellow.

Figure 1.2: This figure visualizes the complete user interaction context ontology task detection

pipeline(UICO pipeline) starting from (1) the automatic unobtrusive user interaction observation mech-

anisms to (4) detecting the user’s task. The automatic population of the user interaction context model

(2) is displayed in two ways (i) the instantiation of entities in the conceptual model (conceptual view)

and (ii) in the ontology model (ontology view). In (3) the feature engineering process for transforming a

task instance into a training instance is shown. The training instance is further fed to attribute selection

and learning algorithms for (4) detecting the task of the user.

1.2.1 Automatic User Context Detection

A conceptual user interaction context model including its realization as an ontology-based user
interaction context model (UICO) is proposed for automatically constructing the relations be-
tween user interactions, resources and applications by unobtrusively capturing low-level contex-
tual attention metadata [Wolpers et al., 2007]. Automatic user interaction context observation
mechanisms, referred to as context sensors, were developed for automatically capturing the user’s
interactions with resources, applications and the operating system on the computer desktop.
Based on the observed user interaction context automatic population mechanisms for the UICO
comprising of static rules, information extraction and machine learning techniques were devel-
oped and integrated. The concepts and relations present in the UICO were created via a bottom
up approach. New concepts and relations were added to the UICO based on (i) new data and
metadata about the user interaction context captured by context sensors and (ii) based on the

Research Question and Approach 13

results of the user interaction context analysis algorithms. An important requirement was that
the state, the relations and the entities of the model are synchronous on a single user interac-
tion basis. This means that each user interaction with a resource and an application is directly
reflected in the UICO and hence up-to-date at all times.

User context observation experiments in three laboratory settings were conducted to evaluate
the applicability of the proposed user context detection approach for enhancing automatic task
detection.

Following sub-research questions were investigated:

� To what extend is it possible to automatically and unobtrusively observe how users interact
with resources and applications available on their computer desktops?

� Which aggregation levels can be reached with what kind of techniques when utilizing the
automatically captured contextual information about the user’s interactions with resources,
applications and the operating system on the user’s desktop?

1.2.2 Automatic Task Detection

The research approach to automatic task detection is based on the user context detection
approach described in Section 1.2.1 above. Novel context features for automatic task detection
were engineered based on the populated UICO and tested for their discriminative power among
users’ tasks and task types. A variety of standard classifiers were evaluated with the engineered
UICO features and UICO feature combinations on three different datasets. Among the classifiers
were the Näıve Bayes, the Linear Support Vector Machine (SVM) with various cost parameter
settings, the J48 decision tree and the k-Nearest Neighbor (KNN-k) algorithm with different
k settings. Since no freely-available standard datasets for evaluating automatic task detection
are available, the approach was to create new datasets for evaluating this research’s automatic
task detection approach. This research reports on the design and execution of three large-scale
laboratory task detection experiments in which over 500 task executions were recorded. The sum
of all collected datasets were about 1500 megabytes. The task detection performances of the
UICO features/feature combinations evaluated on the recorded datasets were compared to ones
of feature/feature combinations of already existing approaches. Significance tests were performed
for ranking features and feature combinations according to their discriminative power between
tasks as well as ranking classifiers according to their achieved task detection performance for
each laboratory experiment.

Following sub-research questions were investigated:

� What kind of tasks can be detected?

� Are there user interaction context features/feature combinations automatically observable
by context sensors on the computer desktop that influence the performance of automatic
task detection more than others?

� Which classifiers should be used for automatic task detection?

14 Introduction

� Does the computer desktop environment influence the performance of automatic task de-
tection?

� Can a single expert train a classifier in advance such that it detects other users’ tasks?

� Can a group of experts train a classifier such that it recognizes the tasks of another user?

� Can a classifier be trained with predefined standard task executions classify personal tasks
correctly?

1.2.3 Realization

The research for this dissertation was performed during the DYONIPOS and the KnowSe project,
both carried out as part of the authors work at the Know-Center2, Austria’s Competence Center
for Knowledge Management.

The DYONIPOS (DYnamic ONtology based Integrated Process OptimiSation)3 project [Tochter-
mann et al., 2006] was a two-year national funded research project financed by the Austrian
Research Promotion Agency4 within the strategic objective FIT-IT. The DYONIPOS project
partners were from the Know-Center, Hewlett Packard Austria5, the Institute for Information
Systems and Computer Media of Graz University of Technology6, m2n - consulting and devel-
opment gmbh7 and Austria Federal Ministry of Finance8 as a use case partner. DYONIPOS
targeted to resolve the dilemma of the organizational need for standardization and control on
the one hand and the creative freedom required by knowledge workers on the other hand. The
idea was to support both, the process executer and the process engineer. Process executers
were provided with supportive resources that were useful and relevant to their current tasks and
processes. Hereby, the user interactions with the computer desktop were automatically recorded
in order to infer the current task and process. Process engineers were supported in reviewing and
analyzing the recorded task and process executions in order to validate and to enhance existing
standard processes as well as to derive new ones. The DYONIPOS prototypes were evaluated in
the business environment of the use case partner, the Austria Federal Ministry of Finance.

The conceptual model, the Semantic Pyramid (see Section 3.2), most of the user interaction
context sensors (see Section 3.4.1) and aggregation mechanism described in Section 3.5 originated
from the work of the author in the DYONIPOS project. A screenshot of the first prototype is
given in Figure 6.1.

The KnowSe (Knowledge Services) project9 is one of the research projects of the Knowl-
edge Services division of the Know-Center including user context detection and attention
metadata extraction. As part of this project the equally named service-oriented knowledge

2http://www.know-center.at
3http://www.dyonipos.at
4http://www.ffg.at
5http://www.hp.com/at
6http://www.iicm.tugraz.at
7http://www.m2n.at
8https://www.bmf.gv.at
9http://en.know-center.at/forschung/knowledge_services

http://www.know-center.at
http://www.dyonipos.at
http://www.ffg.at
http://www.hp.com/at
http://www.iicm.tugraz.at
http://www.m2n.at
https://www.bmf.gv.at
http://en.know-center.at/forschung/knowledge_services

Focus and Non-Focus 15

services framework (KnowSe) has been developed which forms the basis for dynamically orches-
trating a large variety of intelligent knowledge services. KnowSe’s goal is to provide knowledge
services, highly contextualized to a persons work context, interconnected with a multitude of
knowledge sources as well as is able to detect patterns and make inferences based on uncertain
information. The user interaction context detection and the ontology-based task detection
approach has been integrated as services in the KnowSe framework. The user interaction
context ontology (UICO) is a key ingredient of KnowSe, by providing a coherent view on and
a single access point to the data and information stored about the user’s interaction context.
The user interaction context detection mechanisms developed in the DYONIPOS project were
refined during this dissertation in order to automatically populate the UICO by discovering new
concepts, and deriving inter-concepts relations. Hereby also the knowledge discovery framework
of the Know-Center, the KnowMiner [Granitzer, 2008], is utilized for information extraction and
information retrieval. The ontology-based task detection approach proposed in this dissertation
further enriches the available information about the user through automatically identifying the
user’s tasks. This allows KnowSe to make hidden information and connections between tasks,
resources, and people visible and usable. Examples of knowledge services provided by KnowSe
are context-aware information retrieval, user interruptibility and visual reflection services.
Further details about the knowledge services including screenshots are presented in Section 6.5.

1.3 Focus and Non-Focus

This sections gives a compressed overview of what is in focus and not in focus of this research.

Focus:

� Studying the user interaction context in relation to the user’s tasks on the computer desktop.

� Development of user interaction context sensors, more specially application and windows
operating system sensors for commonly used applications of office workers.

� Design of a conceptual model of the user interaction context including its realization as an
ontology-based user interaction context model.

� Bottom up creation of a user interaction context model that stores the data and meta-data
observed by context sensors as well as the relations and concept instances discovered by
user context analysis algorithms.

� Design and development of algorithms and mechanisms for automatically populating the
ontology-based user interaction context model.

� Design and execution of three laboratory experiments for collecting datasets with tasks form
different domains, different users and different tasks as well as task types.

� Discovery of highly discriminative user context features for automatic task detection based
on the datasets of three laboratory experiments.

� Studying the task detection performance of the standard classifiers: the Näıve Bayes, the
Linear Support Vector Machine (SVM) with various cost parameter settings, the J48 de-
cision tree and k-Nearest Neighbor (KNN-k) with different k settings. The performance

16 Introduction

of the classifiers were evaluated on the collected datasets with both novel features/feature
combinations engineered from the user interaction context ontology as well as well-known
features/feature combinations of already existing approaches.

Non-Focus:

� “Context” and “user context” in other research areas than in computer science.

� Developing new machine learning or attribute selection algorithms or methods.

� Tackling the task switch detection problem or the online learning of tasks.

� The evaluation of context-aware proactive information delivery based on the populated user
interaction context model.

� Proposing a new context modeling technique. This research utilizes the ontology-based
context modeling approach which several researchers noted as advantageous [Baldauf et al.,
2007; Strang & Linnhoff-Popien, 2004].

� Design nor development nor evaluation of context-aware knowledge-work or learn support
applications or systems.

� The detection of the user’s context other than the user interaction context on the computer
desktop.

� Privacy issues regarding user context detection or task detection.

1.4 Contributions

This dissertation investigates user context detection and task detection in order to enhance
automatic task detection on the computer desktop for enabling task-specific support. Since
user context detection and task detection are relevant for several research areas such as
technology-oriented knowledge management, personal information management, human-
computer interaction, work-integrated learning as well as information retrieval this section
describes the contributions of this research effort in greater detail. The contributions of this
thesis are described bellow in the order they are presented and discussed in this dissertation:

First, this thesis introduces the “user interaction context” as a subset of Dey et al. [2001]’s
definition of the user context. The user interaction context is defined as “all interactions of the
user with resources, applications and the operating system on the computer desktop. Resources
are digital artifacts on the computer desktop, e.g., documents, web pages, emails, persons,
appointments and notes”. For this user interaction context a conceptual model referred to as the
semantic pyramid is presented. Furthermore, a bottom up approach is shown how to realize this
conceptual model as an ontology-based user context model, referred to as the user interaction
context ontology (UICO).

The UICO is a richer representation of the user interaction context than normally stored
in context sensor streams (see Section 2.3) since it preserves relationships that otherwise are
lost. This rich representation can be utilized by several types of applications requiring user
interaction context data as shown in Section 6.5. Examples for such applications are context-aware

Contributions 17

information retrieval, measuring user interruptibility, or visually representing the relationships
between tasks, users and resources.

In user context detection research several context sensor data formats, such as Attention.Xml,
Contextualized Attention Metadata (CAM), APOSDLE or DYONIPOS event log XML exist
which make it difficult to exchange user context data. These data formats very much depend
on the context sensors and do not include aggregated or inferred contextual information. The
UICO is built bottom-up based on the data and metadata delivered by context sensors and
includes aggregated and inferred contextual information. It could serve as a starting point for
the discussion about a shared representation of the user context and hence pave the way to a
shared user context data exchange format.

Second, this thesis presents mechanisms and techniques to automatically and unobtru-
sively observe the user interaction context on the computer desktop which automatically
populate the user interaction context ontology in real-time. These include (i) context sensors
that capture the user interaction context in a variety of standard office and desktop applications,
(ii) algorithms and information extraction techniques for discovering resources (e.g., documents,
files, folder, persons, web links, etc.) in the raw sensor stream and automatically relating
resources, (iii) heuristic algorithms for aggregating and abstracting low-level context sensor
events to blocks of user interactions on resources (event blocks).

The Maurer-Tochtermann Model for Knowledge Management (MT-Model) [Maurer & Tochter-
mann, 2002] includes the creation of new knowledge based on user observations (cf. MT-Model
arrow 4). This thesis shows that the creation of new knowledge about the user interaction con-
text based on unobtrusive user observations is possible. The knowledge about the user interaction
context is represented as an ontology, more specifically in the automatically populated UICO.
The populated, highly-connected UICO is naturally enabling a variety of “mining” activities for
in-depth analyzes of user characteristics, actions, preferences, interests, goals, application usage,
social network, user competences, access and usage of learning materials and tasks. The results
of such mining activities is new knowledge about the user (cf. MT-Model arrow 7).

Through combining several populated UICO’s mining activities on an organizational level are
enabled for creating new knowledge about the organization and its daily business. Examples are
information and process flows, topic expert identification, social networks, cooperation between
groups and divisions, topical trends as well as access and usage of organizational resources such
as paid subscription services, licensed applications or servers.

The relationships preserved in the UICO are also valuable for personal and organizational
information management research that strives to relate projects, tasks, processes, persons and
other digital resources in order to target the information fragmentation problem [Bellotti &
Smith, 2000]. The mechanisms for automatically constructing these relationships reduce the
time required by users to manually create them.

For human-computer interaction research the user interaction context data is interesting in
order to get to know how users interact with applications, i.e., the application usage. An example
is the identification of navigational paths of novice users for identifying errors in the user interface
design [Fenstermacher & Ginsburg, 2002]. In adaptive systems research, a sub-area of human-
computer interaction, the user interaction context could be utilized to automatically adapt the

18 Introduction

user interface, i.e., remove/hide unimportant user interface elements, in order to ease the execution
of the current task of the user.

In work-integrated learning the user interaction context can serve for building rich user/learner
profiles [Lindstaedt et al., 2009a], the automatic annotation of learning resources about how
these resources are used by the learner, for enhancing the retrieval process [Ochoa & Duval,
2006], and for computing the user’s competences [Ley et al., 2008] based on the access and usage
of learning resources as well as the performed tasks.

Third, a flexible, reusable and service-oriented application, referred to as Context OBser-
vation Service (COBS) is one of the technical outcomes of this dissertation research. It can be
utilized to enrich applications and systems with real-time user interaction context information
for various purposes (e.g., context-aware information retrieval, task detection or user interrup-
tions) as well as for various domains (e.g., technology enhanced learning and work-integrated
learning, computer supported collaborative work, personal information management or seman-
tic desktop systems). Examples for proof of concept implementations are described in Section 6.5.

Fourth, this thesis introduces the ontology-based task detection approach and evaluates it
on three datasets containing over 500 tasks from over 40 users. These datasets stem from three
laboratory experiments designed and performed part of this dissertation research. The evaluation
results confirm that automatic task detection can be successfully performed by applying machine
learning techniques. They show that routine as well as knowledge-intensive tasks can be classified
with a high accuracy based on the automatically captured user interaction context with the
ontology-based task detection approach.

A comparison with existing task detection approaches highlights that the features engineered
based on the user interaction context ontology for training the machine learning algorithms sig-
nificantly outperformed features and feature combinations proposed by existing approaches in
the settings explored here. Furthermore novel context features were discovered that significantly
enhance automatic task detection. The best performing single features were the acc. obj. name
feature, the window title feature, the used res. metadata feature, the acc. obj. value feature, the
datatype properties feature and the acc. obj. role feature. The best overall feature combinations
were the combinations of features of the application category and the combination of all 50 fea-
tures (All Categories). The best results for a specific task detection problem were achieved by
combining the top k single performing features.

Task detection is classically seen as a machine learning problem. In machine learning feature
engineering is a key aspect to achieve good results. The features and feature combinations
with a high discriminating power for classifying different types of tasks identified by this
dissertation research are an important contribution to task detection research, because good
features are difficult to find. Furthermore, the ontology-based task detection approach includes
50 distinguished features engineered from the user interaction context ontology that cover various
aspects of the available user interaction context data and thus could prove to be adaptive for
various tasks and domains.

Fifth, this thesis offers evidence of influencing factors for the task detection performance

Thesis Outline 19

(see Section 7.3). In particular it investigates the following factors: (i) types of tasks (routine
and knowledge-intensive), (ii) computer environment, (iii) specific goals of tasks, (iv) “offline”
and “expert user(s) task” training, (v) context features and context feature combinations and
(vi) machine learning algorithms.

The identification and investigation of influencing factors to the task detection problem en-
riches our understanding of the task detection phenomenon. The better we understand this
phenomenon, the better we can identify settings in which task detection can be applied and the
better we can tune our algorithms for automatically detecting the user’s tasks.

1.5 Thesis Outline

This thesis consists of 8 chapters. The structure of this thesis is displayed in Figure 1.3 and
further described in the following:

Chapter 1 outlines the motivation for this work, gives an overview of the investigated re-
search questions and the followed approaches. A listing of the contributions of this work to
the area of human-computer interaction and information systems as well as an overview of the
structure of this thesis round off the first chapter.

Chapter 2 gives an overview of the related work in the areas of “context” and “context-
awareness”. Past and current research about user context modeling, user context observation,
user context utilization and user context exploitation as well as application areas for user
context are presented. A special focus is put on approaches after 2000 that have not already
been presented as part of Dey’s dissertation [Dey, 2000] or in the survey papers by Strang &
Linnhoff-Popien [2004] and Baldauf et al. [2007]. A selection of highly relevant approaches to
the user context detection approach of this dissertation research is discussed in further detail.
The chapter finishes by highlighting application areas for user context.

Chapter 3 presents the user interaction context approach starting by introducing the term “user
interaction context” as a subset of the user context as defined by Dey et al. [2001]. The “user
interaction context” is defined as “all interactions of the user with resources, applications and
the operating system on the computer desktop. Resources are digital artifacts on the computer
desktop, e.g., documents, web pages, emails, persons, appointments and notes”. The conceptual
model, referred to as the Semantic Pyramid, as well as a realization of this model as an ontology-
based user context model, referred to as the user interaction context ontology (UICO), are also
explained in this chapter. After presenting the UICO as a semantic representation of the user
interaction context this chapter elaborates on automatic UICO population mechanisms. Hereby
it gives an overview of the context sensors that were implemented in order to automatically
and unobtrusively observe the user interaction context on the computer desktop. Furthermore
it shows the techniques and the methods used to aggregate and to transform the raw context
sensor data into concept instances and relations of the UICO. Next to the automatic population
of the ontology which is based on the automatically observed user interaction context also the
computation and creation of the relations between the concept instances are explained.

20 Introduction

Figure 1.3: Structure of this thesis

Chapter 4 discusses the related work on task detection. A selection of relevant approaches to
this research regarding automatic task detection in emails, in web browsers and on the complete
computer desktop are highlighted in greater detail. A discussion of the relevant literature in
respect to the research goals of this dissertation rounds off this chapter.

Chapter 5 introduces the ontology-based task detection approach which is a novel approach to
task detection that combines semantic technologies with machine learning in order to improve
task detection. In this approach the user interaction context ontology (UICO) is utilized
to engineer novel features and feature combinations for doing automatic task detection. 50
features classifiable into 5 feature categories were extracted from the UICO. On behalf of
the ontology-based task detection pipeline this chapter explains the transformation of the user
interaction context stored in the UICO to class/training instances of machine learning algorithms
(training instance construction) and elaborates on the construction and preprocessing of each
feature (feature engineering).

Chapter 6 is intended to give an overview of the prototypes built for observing the user
interaction context. Next to the architecture also the graphical user interfaces of the prototypes
are presented. In this chapter also the architecture of the designed and implemented toolkit for
studying and evaluating the task detection performance on the gathered task usage datasets is

Thesis Outline 21

given. Application prototypes in the area of user interaction context visualization, context-aware
information retrieval and user interruptions based on the user interaction context ontology are
described and visualized.

Chapter 7 presents the evaluation of the ontology-based task detection approach. It gives
insides into the methodology used to evaluate the approach and explains the performance
measures used to assess task detection performance. Three large-scale laboratory experiments
conducted as part of this thesis research for evaluating different aspects of the task detection
performance of the ontology-based task detection approach in comparison to existing approaches.
Aspects regarding automatic task detection studied in this chapter are: (i) types of tasks
(routine and knowledge-intensive), (ii) computer environment, (iii) specific goals of tasks, (iv)
“offline” and “expert task” training, (v) context features and context feature combinations and
(vi) machine learning algorithms. The design and execution of the experiments for collecting
the task usage datasets as well as the conducted task detection evaluations are presented and
discussed for each laboratory experiment. This chapter closes with an attempt to generalize the
findings of the experiments’ and a listing of open questions.

Chapter 8 concludes this thesis It reflects on the set goals (self-assessment) and presents
a number of interesting possibilities for future research based on the outcomes of this disserta-
tion.

22 Introduction

2
Related Work: User Context Detection

This chapter describes the related work regarding “context” and “context-awareness” as used in
computer science. Past and current research is described for context modeling in Section 2.2,
for context observation in Section 2.3 and for context utilization and context exploitation in
Section 2.4. A special focus in the presentation of the related work is put on research after
2000 that has not already been discussed as part of Dey’s dissertation [Dey, 2000] or in the
survey papers by Strang & Linnhoff-Popien [2004] and Baldauf et al. [2007]. A selection of
highly relevant approaches to the user context detection approach of this dissertation research is
discussed in further detail. This chapter finishes by highlighting application areas for user context
in Section 2.5.

2.1 Introduction

Massive amounts of digital information are available to to a computer user today. It is important
to find the information that is relevant to a user’s context and also to put information into
context, i.e., to clarify in which setting information is used and produced. This research work
focuses on a subset of the user context which is introduced as the user interaction context. For
representing contextual information about the user a model is required. Various approaches
to model the user context have been surveyed and discussed in [Baldauf et al., 2007; Strang
& Linnhoff-Popien, 2004]. Both surveys conclude to favor the ontology-based approach mainly
because of its dynamicity, expressiveness and extensibility. In 1994 the term context-aware was
first defined by [Schilit et al., 1994] and referred to location, identities of nearby people and objects
and changes to those objects. In 2001 Dey et al. [2001] provided a well elaborated list of historical
definitions of the term context and introduced a new definition that has become widely accepted
in computer science literature nowadays. They defined context as “any information that can be
used to characterize the situation of entities that are considered relevant to the interaction between
a user and an application, including the user and the application themselves”. Furthermore they

23

24 Related Work: User Context Detection

also described requirements of a conceptional framework for context-aware applications. All the
definitions of context in computer science have in common that there are features and relations
that describe what context is. Zimmermann et al. [2007] elaborated “five fundamental categories
of context information” and Schwarz [2006] pointed out different “aspects of context”.

Dey [2000] evaluated several context capturing frameworks available until 2000. Most of
the frameworks were able to sense virtual features, for example, currently visit web page or
content of currently viewed document, as well as physical context features, for example, location,
screen resolution, camera pictures, or temperature. None of these evaluated frameworks used
semantic technologies for representing the relations between the captured context features or for
describing the user context. Since application and hardware change in the course of time and
new applications become popular on the desktop, the ancient sensors may be outdated. Most
frameworks had their own idea which sensors are required to observe information about the user
context as well as how this contextual information had to be processed and stored. Dey [2000]
described a process to decide which contextual information about the user should be observed
and passed to the application. In his view the application is the steering unit in this decision
process. A selection of context capturing frameworks since 2001 are presented and discussed in
Section 2.3.

2.2 Context Modeling

Strang & Linnhoff-Popien [2004] wrote a survey paper about the different context modeling
approaches and models that have been around till then. They distinguished between key-value
models, markup scheme models, graphical models, object oriented models, logic-based models and
ontology-based models. A rather critical discussion about the possibility to define or represent
context can be found in [Dourish, 2004] where Dourish stated that “context is slippery”, because
context is continuously renegotiated and defined in the course of the user’s action. Both concluded
that for the requirements they defined for ubiquitous computing systems, the ontology-based
approach for modeling context was the most appropriate. A more recent context modeling survey
from [Baldauf et al., 2007] also favored the ontology-based approach and hereby went hand in
hand with Strang & Linnhoff-Popien [2004] and Dourish [2004] conclusions about ontology-based
context models. In Section 3.3 the approach of this dissertation research went along with their
findings and followed an ontology-based approach for modeling user interactions with resources,
applications and the operating system. One of the first ontology-based user context models
has been proposed by Ötztürck & Amodt [1997] in 1997 in which they analyzed psychological
experiments in a clinical setting. They investigated the difference between recall and recognition of
several issues in combination with contextual information and derived the necessity of normalizing
and combining knowledge from different domains [Strang & Linnhoff-Popien, 2004].

2.2.1 Personal Information Ontologies

The first vision of personal information management (PIM) systems was pointed out by Vannevar
Bush who noted that the human mind operates by associations and that we should “learn from it”
in building Memex [Bush, 1996]. This theory of how the mind works is also shared by Anderson

Context Modeling 25

[1983] who described the architecture of cognition. Ontologies can be seen as a possible way of
modeling these connections between entities. By applying the association modeling approach to
the user’s desktop environment several researchers created an ontology for the user’s context. For
example, ontologies were suggested by Lindstaedt et al. [2008b] for modeling the user’s domain,
her tasks and her learning goals as well as the corresponding interrelations. Maier & Sametinger
[2007] proposed a top-level ontology for documents by focusing on the dimensions when, what,
where, who, why and how in order to make the access and the retrieval of documents smarter
through federating existing meta-data standards and ontologies.

Selected approaches that focus on the modeling of ontologies for personal information man-
agement on the user’s computer desktop domain are briefly described in this section. These
approaches have been chosen because they are the most related ones for this research in terms
of modeling the user interaction context by means of an ontology (see Section 3.3). Other more
general ontology-based context modeling approaches are discussed by Strang & Linnhoff-Popien
[2004] and for ubiquitous systems by Baldauf et al. [2007].

2.2.1.1 Haystack

The Haystack project’s goal is “to develop a tool that allows users to easily manage their doc-
uments, e-mail messages, appointments, tasks, and other information” [Huynh et al., 2003].
Haystack utilizes an ontology-based approach for interrelating the user’s information and ad-
dresses four specific expectations of the user: (i) maximum flexibility for the user how to organize
information, (ii) support for user-defined ontologies, (iii) easy manipulation and visualization of
information in ways appropriate to the task at hand as well as (iv) delegation of repetitive infor-
mation processing tasks to agents. For providing homogeneous access Haystack uses the resource
description framework (RDF)1 and ontologies for organizing, manipulating and retrieving per-
sonal information. A more detailed specification of the ontology, its concepts and its properties
was not found in the literature or on the project’s web page. Hence it was difficult to discuss the
applicability for task detection.

2.2.1.2 Learning In Progress (LIP) Ontology

The learning in progress (LIP) ontology [Schmidt, 2007] represents four types of context features:
(i) personal, (ii) social, (iii) organization and (iv) technical. Personal ones include the previously
acquired knowledge or competencies, goals, preferred interactivity level and semantic density,
preferred communication channels and current time capacity/time pressure. Social ones refer to
the information about the user’s social network whereas organization ones represent the units,
the roles and the processes the user is involved in. The technical features are operating system,
used applications, network and audio information. All four types of features can be observed in
Figure 2.1. The LIP ontology was developed in order to enrich learning solutions with context-
awareness.

1Resource description framework (RDF): http://www.w3.org/RDF/

http://www.w3.org/RDF/

26 Related Work: User Context Detection

Figure 2.1: This figure shows the Learning in Progress (LIP) ontology with the following four types of

context features: (i) personal, (ii) social, (iii) organization and (iv) technical. This figure was published

in [Schmidt, 2007].

The LIP ontology does not have any concepts or properties for modeling desktop resources,
applications or user interactions. From the perspective of the user interaction context the LIP can
be seen as a high-level ontology and hence not appropriate to reach the goals of this dissertation
research.

2.2.1.3 Native Operations Ontology (NOP)

The Native Operations (NOP) ontology2 which is used in the Mymory project [Biedert et al.,
2008] models native operations (e.g., AddBookmark or CopyFile) on generic information objects
(e.g., emails, bookmarks or files) which are recorded by system and application sensors. “NOPs
correspond to actions undertaken during work” [Biedert et al., 2008]. The DataObject concepts
describe several desktop resources in a coarse granular way. The NOP ontology has 102 concepts,
40 datatype properties and 22 object type properties. The majority of the concepts are sub-
concepts of the NativeOperation concept which shows a strong focus on modeling the types
of operations. The DataObject concept has 12 sub-concepts that contains the application and
desktop resources as concepts as well as an abstract concept called PimoConcept. The kinds of
datatype and objecttype properties indicate that the focus of this ontology was not to model

2NOP Ontology: http://usercontext.opendfki.de/wiki/NopOntology

http://usercontext.opendfki.de/wiki/NopOntology

Context Modeling 27

resources but instead the “native operations a user does when using a device” [Biedert et al.,
2008]. The picture of the NOP ontology in Figure 2.2 illuminates this as well. The user interaction
context also includes all user interactions with applications and the operating system. Since NOP
is not about observing applications in great detail or capturing all user interactions (mouse or
keyboard interactions) the user interaction context can not be modeled with this ontology without
extending it. It was decided not to extend this ontology because at the time the first version
of the NOP was published on the Internet the user interaction context ontology (UICO) (see
Section 3.3) as a realization of the semantic pyramid (see Section 3.2) was almost finished.

Figure 2.2: The Native Operations (NOP) ontology visualized in Protégé. In the left area this figure shows

the NativeOperation concepts, in the right area the DataObject, and in the top area the Window concept.

2.2.1.4 Personal Information Model Ontology (PIMO)

The Personal Information Model Ontology (PIMO) [Sauermann et al., 2007] visualized in Fig-
ure 2.3 was first developed in the research project GNOWSIS [Sauermann, 2003, 2005].
The PIMO was further refined in EPOS [Sauermann et al., 2006a] and NEPOMUK3 [Groza et al.,
2007]. The purposes of the PIMO is to allow the user to model her personal information space.
PIMO provides a set of “high level” concepts such as people, places, topics, documents, and
time 4. These personal information objects [Sauermann et al., 2007] can be extended manually
by the user. During the work done in the NEPOMUK project, the PIMO became the central

3NEPOMUK’s project web page: http://nepomuk.semanticdesktop.org
4Personal Information Management Ontology (PIMO): http://dev.nepomuk.semanticdesktop.org/wiki/

PimoOntology

http://nepomuk.semanticdesktop.org
http://dev.nepomuk.semanticdesktop.org/wiki/PimoOntology
http://dev.nepomuk.semanticdesktop.org/wiki/PimoOntology

28 Related Work: User Context Detection

Figure 2.3: The Personal Information Management Ontology (PIMO) allows the user to model her per-

sonal information space by providing a set of “high level” concepts such as people, places, topics, docu-

ments, and time. Here the PIMO is visualized in Protégé.

Context Observation 29

part of the social semantic desktop for a user. The PIMO ontology can be seen as the realization
of the so called personal information model :

“A PIMO is a Personal Information Model of one person. It is a formal representation
of parts of the users Mental Model. Each concept in the Mental Model can be represented
using a Thing or a subclass of this class in RDF. Native Resources found in the Personal
Knowledge Workspace can be categorized, then they are occurrences of a Thing.” [Sauer-
mann et al., 2007]

For modeling user interactions, application details or fine-grained resource data and metadata,
PIMO only consists of high-level concepts and is hence not appropriate for storing the fine-grained
user interaction context.

2.2.2 Connection to this research. . .

The definition of the term “context” [Dey et al., 2001] served as a starting point of this research
of the user’s context. Although context research has been performed intensively in the recent
years, it still requires further work to understand how interactions influence and can contribute
to the user context. Furthermore it is still unclear if there are relations/features/parts of the
user context that are more significant for a user task than others. In other words, are there
context features that have a higher discriminative power for distinguishing tasks than others. An
example of this would be the following with the features content and keyboard input: “Has
the content of a viewed document a higher discriminative power for distinguishing tasks than the
user’s keyboard input?”. The challenge of finding the most relevant features for a given task is a
not yet completely solved issue. However, first well-discriminative features have been proposed by
[Lokaiczyk et al., 2007; Oliver et al., 2006; Shen, 2009]. Well known features comprise the window

title, the file URL of a used resource and the window switching sequence. For getting
a deeper understanding, this dissertation research argues to study the discriminative power of
various context features for different tasks, domains and users.

In order to allow the exploration of the feature space, a representation of the user context is
required in order to show clearly what kind of information about the user context is available/s-
tored. Ontologies are a well-formed representation which allow not only a good overview of the
available contextual information but also to validate the data against the ontology specification.
Further discussions of using an ontology for storing user context information can be found in
[Baldauf et al., 2007; Strang & Linnhoff-Popien, 2004] and in Section 3.6.

2.3 Context Observation

In 2004 a standard for modeling user attention called Attention.Xml [Sifry et al., 2007] was
proposed. This standard has been adapted and extended in the contextual attention metadata
framework [Najjar et al., 2006]. Regarding to Wolpers et al. [2007] this framework is able to
capture information about the user’s handling of digital content and to describe what a user
likes, dislikes, reads, publishes, produces, watches and listens to. In EPOS [Schwarz, 2006] the
captured usage data is even sent as a RDF [Herman et al., 2008] graph to the context processing

30 Related Work: User Context Detection

facility. A further way to capture context is elaborated in [Chirita et al., 2006] where the authors
identified desktop usage context based upon the distance between documents, also taking into
account the documents’ access time stamps. The idea behind distance is that if two files are
often accessed in a small window of time the distance is smaller and hence higher related to each
other. A similar approach is followed recently by Pedersen & McDonald [2008]. They related
all documents displayed at the same time on the user’s desktop to add a further dimension of
relevancy between documents and leveraged this dimension for enhancing information retrieval.

In several recent research projects the collection of attention metadata from the user’s desk-
top has become a key element. Once the information about the user’s behavior is recorded, a
wide area of possibilities for exploitation opens. Application domains are personal information
management [Fernandez-Garcia et al., 2006; Kleek et al., 2007; Sauermann et al., 2006b], task
recognition and management [Kersten & Murphy, 2006; Kleek & Shrobe, 2007; Oliver et al., 2006;
Shen & Dietterich, 2007], technology enhanced and work-integrated learning [Lindstaedt et al.,
2008a, 2009b; Maier & Schmidt, 2007; Wolpers et al., 2007] as well as context-aware information
retrieval [Fuhr, 2005; INTELLEXT Inc., 2007; Ochoa & Duval, 2006]. A selection of projects
relevant to this research effort are discussed bellow.

2.3.1 APOSDLE

APOSDLE [APOSDLE, 2006](Advanced Process-Oriented Self- Directed Learning Environment)
is a work-integrated learning framework that enhances the productivity of knowledge workers by
integrating learning, teaching, and working [Lindstaedt et al., 2005]. The goal of APOSDLE is
to enhance knowledge worker productivity by supporting informal learning activities: (i) during
work task execution and tightly contextualized to the user’s work context, (ii) within the work
environment, and (iii) utilizing knowledge artifacts and people available within the organizational
memory, consisting of textual documents, video documents and knowledgeable persons for learn-
ing [Lindstaedt et al., 2008a]. In order to get to know the user better APOSDLE employs “scruffy
methods” [Lindstaedt et al., 2008a] for capturing and analyzing the user’s actions.

The APOSDLE prototype features a daemon running in the background that observes various
contextual features from the complete user’s computer desktop [Lokaiczyk, 2008; Lokaiczyk et al.,
2007]. An overview of the automatic context sensing capabilities of the APOSDLE framework is
given in Figure 2.4. It can be observed that a variety of sensors were implemented ranging from
(i) capturing keyboard input and mouse interactions to (ii) context features specific to Microsoft
Word, Microsoft Outlook and Microsoft Internet Explorer as well as (iii) operating specific sensors
for tracking file system, window, process and printer information Based on the observed user
context data the APOSDLE system automatically detects the current task of the user [Lokaiczyk
& Goertz, 2009; Lokaiczyk et al., 2007] and constructs a digital user profile [Lindstaedt et al.,
2009a] via inference mechanisms and heuristics. This user profile not only stores the user’s
usage history but also keeps the current context with respect to her personal work, learning,
and collaboration related experiences of the user. This digital user profile information is then
utilized to determine the user’s knowledge levels as well as enabling adaptive support to the user’s
needs, her competences [Ley et al., 2008] and her interests, such as recommendation for work and
learning material [Lindstaedt et al., 2008b].

Context Observation 31

Figure 2.4: This figure taken from [Lokaiczyk et al., 2007] shows the observed context features in the

APOSDLE system.

2.3.2 Contextual Attention Metadata Framework

The observation of attention metadata about the user’s activity is the focus of the contextual
attention metadata (CAM) framework described in [Wolpers et al., 2007]. The design goal of the
CAM schema was to allow the tracking of user activities in all systems the user may interact with
while working with documents. A specific XML format was introduced to observe user attention
on the computer desktop referred to as contextual attention metadata. CAM is based on an
open schema called Attention.Xml [Sifry et al., 2007] which is a specification how to capture
data about people using information in diverse applications. The Attention.Xml format was
extended by CAM in order to allow the tracking of attention information about the application
and context of usage, the type of task and actions the user is involved in, user information,
working session, search activities and obtained results as well as user ratings and annotations for
accessed documents [Najjar et al., 2006].

Wolpers et al. [2007] motivated their approach based on the fact that information overload in
learning and teaching scenarios is a hindering factor for learning. By taking into account the user’s
attention in the learning environment or the complete computer desktop, detailed user profiles
can be build in order to provide contextual services. Statistical data about the usage of learning
objects and the calculation of interest indicators for learning content were one of the simpler use
cases they mentioned. More advanced ones were the identification and extraction of patterns of
user behavior such as correlation of activities carried out by one user and related to the context
and content of other users. User profiles can be utilized for a clustering of users/learners and the
attention metadata to detect the user’s goals and to identify user aims. The CAM framework

32 Related Work: User Context Detection

Figure 2.5: The contextual attention metadata (CAM) framework and its usage tracking capabilities. This

figure was published in [Wolpers et al., 2007].

can observe contextual data in several applications: WINAMP, web browsers, Microsoft Office
and OpenOffice as well as in chat and email applications. A detailed overview of the framework
and its sensing capabilities is given in Figure 2.5.

2.3.3 Mylar/Mylyn

Mylar [Kersten & Murphy, 2006] is an open source plug-in for the Eclipse IDE5 that observes the
user’s attention on different Eclipse views and elements. In the background of this plug-in there is
a context model that relates tasks categories, tasks and context information. Context information
origins from changes in the source files and in the file system. This context information is utilized
for task management, like task scheduling and planing, and user interface adaption, like e.g., only
displaying files or elements of the source code the user has recently interacted during a specific
task. The other parts of the source code as well as file or package listings are filtered. The context
detection is only possible in the Eclipse workbench. Mylar has been renamed to Mylyn and has
become a standard plugin in the recent Eclipse distributions.

5Eclipse IDE: http://www.eclipse.org

http://www.eclipse.org

Context Observation 33

2.3.4 Plum

Plum [Kleek & Shrobe, 2007] stands for personal lifetime user modeling and is a research project
at MIT CSAIL6 that captures user interaction and application usage data on the MacOS X
operating system for learning long-term models of user activity. It employs ontologies to organize
the captured data in a versatile, reusable representation and allows continuous learning of models
of activity. Plum in comparison to this dissertation research approach is similar in terms of
storing the information about the user context in a semantic triple store. Plum is focused on the
MacOS X operating system by utilizing AppleScript7 for user observation.

[Kleek & Shrobe, 2007] reported the context observation possibilities of Plum on the MacOS
X operating system to be the determination of window placement, the application focus, the
actively running processes, the nearby WiFi access points, the keyboard/mouse idleness, the
active network connections and the accessed documents within the user’s home directory as well
as the retrieval of the viewed content of the following applications: Adobe Reader, Apple Safari,
Mozilla Firefox, Apple Mail, Preview, iTunes, iChat and Microsoft Word. According to the Plum
web site they are extending their context sensing capabilities to the Microsoft Windows operating
system and to Microsoft Office applications.

2.3.5 TaskTracer

The TaskTracer tool [Dragunov et al., 2005] developed at the Oregon State University allowed the
desktop user to define a set of projects and corresponding activities that characterize the user’s
desktop work. By continuously observing the user’s interactions in various applications, digital
artifacts, like files, folders, links are related to tasks and projects. Events from MS Office 2003,
Microsoft Visual.Net, Internet Explorer and from the Microsoft Windows XP operating system
are collected by the TaskTracer system [Shen, 2009]. They also did experiments with machine
learning algorithms to automatically detect task switches. The task switch detection components
are named TaskPredictor 1 [Shen & Dietterich, 2007] and the newest one TaskPredictor 2 [Shen
et al., 2009]. They reported good task switch detection performances with a combination of the
window title and the file url features in TaskPredictor 1 [Shen & Dietterich, 2007]. The
differences between the TaskTracer approach and the one presented in this dissertation research
are the user observation techniques used, the usage data exchange format, the type and number of
the observed context features as well as the interpretation and representation the user’s context.
Detailed descriptions of TaskPredictor 1 and TaskPredictor 2 are given in Section 4.4.

2.3.6 The Semantic Logger

The Semantic Logger is a system for importing, housing and exploiting of personal informa-
tion [Tuffield et al., 2006]. Its aim is to aggregate as much information as possible about the
user and its context into a central semantic web technology enabled knowledge space. Hereby
they utilized a variety of sensors which can be observed in Figure 2.6. The raw sensor data is

6PLUM Web page: http://plum.csail.mit.edu
7AppleScript web page: http://www.apple.com/applescript

http://plum.csail.mit.edu
http://www.apple.com/applescript

34 Related Work: User Context Detection

Figure 2.6: The sensing architecture of the Semantic Logger tool taken from [Tuffield et al., 2006].

automatically mapped to RDF representations based on vocabularies published by the W3C.
The authors argue that one of the main advantages next to the automatic context gathering
is the fact that they collect all their information in a semantic store which can be queried
with the semantic query language SPARQL. Two context-aware applications were presented
based on the Semantic Logger tool, namely (i) a recommender system that utilizes contextual
information in order to improve the accuracy of the recommendations and (ii) a photo-annotation
tool that automatically extends the available metadata with context and community based
knowledge [Tuffield et al., 2006].

2.3.7 Connection to this research. . .

Automatic context observation mechanisms developed in the mentioned projects above and
the corresponding lessons learned from these projects served as a valuable starting point for
the design and the development of the context observation mechanisms for this research effort.
Especially helpful were the different ways shown for capturing usage data from the computer
desktop. During this dissertation research new context sensors had to be developed from scratch
because only sensors for Mozilla Thunderbird8, Mozilla Firefox9 and Microsoft Outlook10 were
freely available. Examples of context observation mechanisms are plug-ins, macros, extensions,
application and operating system hooks via the component object model (COM) interface of
Microsoft Windows or sensor applications themselves.

8Mozilla Thunderbird 1.5 extension: http://dragontalk.opendfki.de/wiki/Thunderbird_userobs
9Mozilla Firefox 1 and 2 extension: http://dragontalk.opendfki.de/wiki/Firefox_userobs

10Outlook 2003 and 2007 extension: http://sourceforge.net/projects/activity-logger/

http://dragontalk.opendfki.de/wiki/Thunderbird_userobs
http://dragontalk.opendfki.de/wiki/Firefox_userobs
http://sourceforge.net/projects/activity-logger/

Context Observation 35

Table 2.1 gives a global summary of the presented context observation approaches in this section
in respect to the following criteria: (i) context sensing, (ii) context model, and (iii) context storage.

Description of the criteria:

(i) Context sensing describes the capabilities of sensing the context in applications and from
the operating system.

(ii) Context model distinguishes the representation of the context according to Strang &
Linnhoff-Popien [2004]’s categorization: key-value models, markup scheme models, graphi-
cal models, object oriented models, logic-based models and ontology-based models.

(iii) Context storage [Truong & Dustdar, 2009] is about the following aspects: the storage
location of the context (storage model), the database used for storing the context (storage
database), the interface available to access the stored context (access interface), and the
query language used for querying the context (request specification). The storage model
distinguishes between central and distributed storage of the context. The storage databases
can be relational databases (rel), semantic stores (sem), or XML based stores (xml). The
access interfaces are web services (ws) and others. A SPARQL endpoint is also considered
as a web service. The request specification is categorized in SQL, XQuery/XPath, SPARQL
and others.

The goal of the context sensors of this research was to keep them as simple as possible and to
shift the complexity of the inferring algorithms to a central unit. The XML format suggested
by the CAM approach seemed to be too sophisticated for this purpose. The storage of personal
information in a semantic store suggested by the Semantic Logger and Plum approach including
the resulting advantages regarding querying and inferencing possibilities influenced the decision
to use semantic technologies for user interaction context observation, representation and storage.
Since good task detection performances were reported for the window title feature in SWISH
and for a combination of the window title and the file URL features in Task Predictor 1 context
sensors for these two features were implemented as well.

36 Related Work: User Context Detection

Criteria Sub Criteria APO CAM MYL PLUM TT SL

Context

Sensing

Application:

Office Suite12 x x x x

Multimedia13 x x x

Instant Messaging14 x x

Web Browser x x x x x

Email x x x x x

Development Environment x x

Others x x

Operating System:

Mouse Input x x x

Keyboard Input x x x

Application Details15 x x x x x

Printer x

File System x x x x x

Clipboard x x

Context

Model

Graphical

Key-Value x

Logic-based

Markup Scheme x x

Object Oriented

Ontology x x x

Context

Storage

Storage Model16 C C C C C C

Storage Database17 rel xml xml sem ? sem

Access Interface ws ? ? ws ws

Request Specification SQL XQuery ? SPARQL ? SPARQL

Table 2.1: This table shows a summary of the context observation approach presented in this section:

APOSDLE (APO), Contextual Attention Metadata Framework (CAM), Mylar/Mylyn (MYL), Personal

Lifetime User Modeling (PLUM), TaskTracer (TT) and Semantic Logger (SL). The question mark “?”

indicates that no information about this criterion was available. The “x” and the “ ” signal that the

criterion is met or not respectively.

12Office applications: text editors, spreadsheet applications, presentation applications, etc.
13Multimedia applications: Winamp, Windows Media Player, graphic editor, photo viewer etc.
14Instant messaging applications: Skype, ICQ, MSN Messenger, etc.
15Application details: window title, process name, application name, file/web page URL etc.
16Storage model: C. . . centralized storage, D. . . distributed storage.
17Storage database: relational database (rel), semantic store (sem), XML (xml)

Context Utilization and Exploitation 37

2.4 Context Utilization and Exploitation

The utilization of semantic technologies for context modeling and context-aware applications
has become quite popular recently. However, many of the projects undertaken between Dey’s
evaluation [Dey, 2000] in 2000 and now, define their own data capturing schema and implement
the context capturing mechanisms for their purpose by their own again. In SWISH [Oliver et al.,
2006], a Microsoft research project, used only the window title to determine the tasks of a user.
Further context features in the Microsoft Windows operating system environment were captured
in the client-side monitoring framework introduced by Fenstermacher & Ginsburg [2002] and in
the TaskTracer [Dragunov et al., 2005] project. They observed file system and phone usage, web
page navigation, text selection and various metadata from Microsoft Office products. Some of the
captured context features were used for task switch detection and unsupervised task learning [Shen
& Dietterich, 2007; Shen et al., 2007, 2009].

Other approaches focusing on directly capturing the user context are Lumiere [Horvitz et al.,
1998], GNOWSIS [Sauermann, 2003], APOSDLE [Lindstaedt et al., 2008a], EPOS [Dengel et al.,
2002] and its follow up project Mymory [Elst, 2006], Dyonipos [Tochtermann et al., 2006],
Plum [Kleek & Shrobe, 2007], Jourknow [Bernstein et al., 2008], Watson [Budzik et al., 2001;
INTELLEXT Inc., 2007], Java Context Awareness Framework [Bardram, 2005] and Learning in
Process [Schmidt, 2005a]. Mylyn [Kersten & Murphy, 2006], an Eclipse plug-in project, observes
the attention of the programmer in Eclipse and adapts the user interface based on the observa-
tions. EPOS, Plum, Learning in Process, APOSDLE and Dyonipos utilize RDF to represent the
user’s context. Indirect approaches utilize log files of various applications as a representation of
the performed work [Aalst et al., 2005; Fenstermacher, 2005; Maruster et al., 2002]. For analyzing
log files of different granularity levels the open-source ProM Framework [ProM Framework, 2007]
has become a standard workbench for process mining. It includes 150 task and process mining al-
gorithms. The approaches mentioned above differ in the granularity of the captured usage data,
whereas the direct approaches gather more fine-granular data about the users’ activities than
available in log files of applications and systems. The goals of the mentioned projects and the in-
tentions to exploit contextual features overlap. Although the main areas of context exploitation
identified in the mentioned projects are task and process detection and mining, context-based
information retrieval, task as well as process modeling and optimization, work and learn support.

2.4.1 Connection to this research. . .

There are several projects going on in the area of context and context-awareness at the moment.
The high number of projects shows that context is a hot topic in research. Interesting is that
there are multiple areas in which context plays a crucial role in achieving the project’s targets,
such as in the work-integrated learning area, task and process management, information retrieval
and personal information management. By knowing the approaches, goals and problems of the
above mentioned projects this research built on their results and derived requirements and further
directions. Especially this research benefited from the results achieved in the task mining area
by [Fenstermacher, 2005] who used event logs from workflow management systems, [Oliver et al.,
2006] who utilized the window titles and the window switching sequence for task detection and
[Shen et al., 2007] who performed task switch detection based on window title, the file pathname

38 Related Work: User Context Detection

and the url of the web page.

In comparison, this dissertation research studied novel context features/feature combinations
engineered from the proposed ontology-based user interaction context model which are for ex-
ample the interconnectivity of resources, user interaction patters, ontology structural features as
well as new text based context features. In this research the discriminative power of these novel
features/feature combinations as well as the one of features/feature combinations of existing
approaches for distinguishing tasks are investigated (see Chapter 5 and 7).

2.5 Application Areas of Context

In the following sections an overview of projects and approaches involving user context informa-
tion in the areas of (i) task- and process mining and management, (ii) work-integrated learning,
(iii) semantic desktop and personal information management, and (iv) information retrieval are
presented.

2.5.1 Task- and Process Mining and Management

The common process modeling approach, where processes are modeled manually based on the
available process data or information, is called the top-down approach. Data and information
about executed tasks and processes, involved persons and resources are usually obtained from
interviews, existing workflow management systems (WFMS), observations during site visits, doc-
ument inspection, or (if available) previous process descriptions. The various information sources
and the retrieved data need to be structured and aligned manually by the process engineer [Rath
et al., 2006]. WFMSs have become quite popular for managing complex organizational processes,
but fail in supporting knowledge-intensive and agile processes [Schwarz et al., 2001]. The prob-
lem with this kind of process is that they cannot be modeled in advance. The context of a user
can also not be modeled in advanced which means that it is not straight forward to match the
observed user context with a pre-modeled one and hence difficult to detect the situation or the
task in which a user currently is.

Further limitations of WFMSs are their minor ability to deal with dynamic changes [Aalst
et al., 2005] because of the implemented static process models. Weakly-structured workflows
address this insufficiency by suggesting lazy and late modeling or interleaving process modeling
with process execution [Elst et al., 2003]. Detection of process changes is limited in standard
WFMS, because refinement and deviations of standard workflows are usually not allowed and
hence no workflow logs about the deviation exist.

The contrasting approach to process modeling is the bottom-up approach, which means that
the information originates from process executors instead of process engineers [Riss et al., 2005].
The bottom-up approach is also referred to as process mining [Aalst & Weijters, 2004; Fensterma-
cher, 2005; Wen et al., 2008]. In this approach, the process model can be derived from workflow,
task, and/or event logs. The instantiation of a workflow, a process or a task as well as the data
collected about deviations are parts of the organizational context which is according to [Schwarz,
2006] an aspect of the user context. In order to transform the monitored data stored in the logs
into tasks and processes advanced algorithms [Aalst et al., 2004] are needed. The advantages of

Application Areas of Context 39

this bottom-up approach are the intensive data and information gathering possibilities as well as
the continuous refinement and enhancement of the calculated processes as the number of cases,
i.e., process executions, increases.

Event log mining [Fenstermacher, 2005] has the advantage of providing fine-grained data to
the mining step in comparison to [Aalst et al., 2004] where tasks from workflow logs are used as
a basis. Event logs incorporate data about the executions of standard and ad-hoc processes and
hence event log mining considers both types of processes when calculating the process model.
Fine-grained event logs are also used for automatically detecting tasks of users.

In the area of task detection, Shen & Dietterich [2007] used a classifier to predict the current
task based on features, like for example, window title and the file pathname, extracted from
the window in focus. In [Oliver et al., 2006] task assignment is based on relations of the windows
on the user’s desktop. Lokaiczyk et al. [2007] evaluated five algorithms for task detection based
on observed context features and report achieved an accuracy of over 85% whereas the support
vector machine (SVM) approach with the sequential minimal optimization algorithm performs
best. In the area of task-centered information management Catarci et al. [2007] developed a top-
down approach to task inference in which users define the main aspects of tasks using forms of
declarative scripting. They developed a task specification language and proposed an architecture
for supporting task inference.

2.5.1.1 Connection to this research. . .

From the process management area can be learned that there are some processes that cannot be
modeled in advance, such as ad-hoc processes or weakly structured workflows. The user interac-
tion context is quite similar to these ad-hoc processes or weakly structured workflows. Similar in
such a way that both the user interaction context and processes and workflows are created and
evolute while the user performs her actions, i.e., interacts with resources and applications. The
recording of the user actions in a workflow management system for process and task mining can
be compared to capturing the user interactions on the user’s desktop while performing a task.
The resulting event logs of the observed actions of both attempts can be utilized for mining or
detecting tasks.

Event logs/streams are also exploited for task recognition [Granitzer et al., 2008; Lokaiczyk
et al., 2007; Oliver et al., 2006] and task switch detection [Shen, 2009; Shen & Dietterich, 2007].
The research results that have been achieved in these two areas about utilizing machine learning
algorithms for task recognition were a starting point for this research. Further investigations have
still to be carried out for understanding the influence of automatically observed context features
for the accuracy of task detection. Since there are no standard task detection datasets available,
experiments have to be designed and performed for collecting the task usage data from various
domains, from different users and for different tasks. This dissertation effort targeted this issue
and collected datasets from three large-scale laboratory experiments. These datasets were used to
study influencing factors for task detection in order to enhance the accuracy of the task detection
algorithms.

40 Related Work: User Context Detection

2.5.2 Work-Integrated Learning

Learning activities can also happen within work processes [Eraut, 2004]. Work-integrated learning
(WIL) [Lindstaedt et al., 2008a,b, 2009b; Smith, 2003] takes up on this and sees learning as a
dimension of work. The goal of WIL is to foster learning at the workplace during work in order
to enhance task performance. It focuses on the learning perspective of the individual as opposed
to the training perspective of an organization [Lindstaedt et al., 2008a]. Hereby it greatly differs
from more traditional learning approaches like seminars, formal courses or e-learning approaches
in such a way that WIL happens spontaneously and often unintentionally within work processes.
For assisting the learner in this kind of learning situation her user profile [Fischer, 2001; Ulbrich
et al., 2006], her interests [Goecks & Shavlik, 2000] or her competencies [Ley et al., 2008] as well
as her user context [Lindstaedt et al., 2008a; Schmidt, 2007; Wolpers et al., 2007] are utilized to
improve the quality of support mechanisms. Automatic task detection has also been explored for
improving work-integrated learning by Lokaiczyk et al. [2007].

2.5.2.1 Connection to this research. . .

The user context plays an important role in work-integrated learning because learning happens
spontaneously within work tasks. Hence it is important o understand the user’s current situation
which is described by her user context. The user context not only describes the user’s current
situation but also includes her current task. Through automatic user context detection and task
detection mechanisms a situation and task specific learn support is possible. Examples include
retrieval of learning objects [Duval & Hodgins, 2003] or suggestions of course material, links,
documents or topical experts [Lindstaedt et al., 2008a]. WIL will benefit from the outcomes of
this thesis in terms of a more accurate computation of user profiles, user competencies and user
interests as well as up-to-date task and user context information for enriching learn support.

2.5.3 Semantic Desktop & Personal Information Management

The hype of the Semantic Web has also reached the user’s computer desktop. Projects like
GNOWSIS [Fernandez-Garcia et al., 2006; Sauermann et al., 2006b], EPOS [Dengel et al., 2002]
and NEPOMUK [Groza et al., 2007] have been started to combine the power of semantic web
technologies and the user’s computer desktop environment. One of the main goals of this project
was to identify every item on the user’s computer desktop with an unified resource identifier
(URI) and represent it as a semantic object with metadata relations. Many new ways of doing
search, supporting personal information management [Sauermann et al., 2006a] and organize
work [Riss & Grebner, 2006] were built upon the semantic desktop. In 2007 Braun et al. [2007]
evaluated four semantic desktop systems for context awareness and discussed requirements and
architectural implications for such kind of systems. They concluded that such systems have to
take into account temporality, imperfection and integration issues as well as invest into scalability
and flexibility of information integration.

Personal information management (PIM), first introduced in the 1980s by Lansdale [1988],
deals with how people process and manage information. PIM is about finding, keeping,
organizing, maintaining and evaluating information and making sense of the information [Jones,

Application Areas of Context 41

2007]. Several PIM tools have been created to study and improve the human-computer
interaction [Boardman & Sasse, 2004; Teevan et al., 2008]. These PIM tools combine email
management with time, task, and contact management [Jones, 2007], support the finding and
re-finding [Dumais et al., 2003] as well as note taking [Bernstein et al., 2008]. In the combination
of these approaches there is still potential to take into account the context of the users, which
means that they would benefit in including information about the situation of the users when
doing PIM activities and about how they do it. This is why this “activity dimension” requires
further research. PIM sometimes fails because there is too much effort for the user to add the
relations between PIM objects [Sauermann et al., 2007]. A possibility to reduce this additionally
introduced user workload would be automated or semi-automated relation creation mechanisms.

2.5.3.1 Connection to this research. . .

The connection between semantic desktop systems and this research is the usage of unified re-
source identifiers (URI) to represent every resource on the computer desktop the user interacted
with. Common is also the utilization of semantic technologies for storing data and metadata
about resources and their relations in an ontology. The advantage of an ontology-based user
interaction context model is that it would allow a seamless and straight forward integration of
contextual information into semantic desktop systems. By keeping in mind that the user context
relations are automatically computed from observed user interactions, this would contribute a
new dimension, an so called action dimension to a semantic desktop system and to PIM tools.
The user interaction context model proposed in this dissertation research (see Section 3.3) is able
to handle dynamic change and temporality, which were demanded by Braun et al. [2007].

2.5.4 Information Retrieval

Context-aware information retrieval [Fuhr, 2005] differs from classical information retrieval [Ri-
jsbergen, 1979; Salton & McGill, 1986] in such a way that the user context is included in the
information retrieval task. In the SIGIR workshop report [Allan et al., 2003] contextual retrieval
is defined as “combining search technologies and knowledge about query and user context into a
single framework in order to provide the most appropriate answer for a user’s information needs”.

In a recent ACM SIGIR Forum meeting an information retrieval research agenda was elabo-
rated. It lists three important elements regarding context [Callan et al., 2007]: (i) understanding
the user who is asking questions (search), (ii) the underlying information domain which repre-
sents the relationships between documents as well as other rich entities within them, and (iii)
the larger task the user tries to accomplish. They concluded that the better the context of the
search (user, domain of interest, larger task) is understood, the better the right information can
be delivered to the right people at the right time.

Context-aware information retrieval components become more and more popular to be in-
cluded in tools developed in today’s research projects. These tools observe the user on the
desktop, on the web or in mobile environments. Several do not exploit the relationships among
the contextual elements they observe [Budzik et al., 2001; Dragunov et al., 2005; INTELLEXT
Inc., 2007; Oliver et al., 2006] and hence not utilizing the complete strength of context. Some of
them though keep the relations they discover but hardly use them in the information retrieval

42 Related Work: User Context Detection

task [Belizki et al., 2006; Kröll et al., 2006; Lindstaedt et al., 2008a; Schmidt, 2005a]. One big
challenge in the area of context-aware information retrieval is the evaluation. There are no stan-
dardized datasets with usage data available for comparing such systems [Callan et al., 2007]. The
privacy protection issues when dealing with contextual data of users “in the wild” unveil further
difficulty. A possible solution for making usage data anonymous was proposed by [Chernov et al.,
2008].

2.5.4.1 Connection to this research. . .

In context-aware information retrieval systems some features of the user context is used to trigger
or enhance the retrieval process. The selection which features to use in a current situation to
construct a query is kind of similar to selecting the most significant features for a current situation
of a user when performing a task. The Watson system [INTELLEXT Inc., 2007] uses the content
of the document that is currently in focus for query into online information sources, whereas
in the Dyonipos system [Kröll et al., 2006; Rath et al., 2008] and in the application described
in [Belizki et al., 2006] various aspects of the user context, for example, the window title, the
document name or the subject of an email is used to enhance proactive information delivery and
full-text desktop search respectively.

2.6 Summary

This chapter gave an overview of the related literature in the area of user context detection.
Hereby approaches to user context modeling and user context observation were presented and
discussed. Context utilization and exploitation work as well as application areas of context in-
cluding (i) task- and process mining and management, (ii) work-integrated learning, (iii) semantic
desktop and personal information management, and (iv) information retrieval were highlighted.

3
User Interaction Context Approach

This chapter introduces the user interaction context detection approach proposed by this disser-
tation research. In Section 3.2 the term user interaction context as a subset of Dey’s definition
of user context [Dey et al., 2001] is presented. A conceptual model for this user interaction con-
text, referred to as the Semantic Pyramid, and the realization of this conceptual model as a user
interaction context ontology (UICO) are introduced and explained in Section 3.3.

Furthermore this chapter elaborates on the three key steps of the automatic ontology-based
user interaction context detection pipeline which are (i) the automatic observation of the user
interaction context, (ii) the automatic abstraction and aggregation of the raw sensor data and (iii)
the automatic population of the user interaction context ontology (UICO). Section 3.4 describes
the capabilities of the sensors that were implemented for observing the user interactions with
resources, applications and the operating system. It also gives an overview of the data and
metadata that can be sensed. The abstraction and aggregation mechanisms for transforming the
raw sensor data to the action and resource pair constituting user interactions with resources is
elaborated in Section 3.5. Section 3.5 also explains the automatic instantiation of concepts of the
ontology as well as the computation and creation of the relations between the concept instances.

The complete user interaction context detection pipeline starting from the sensors that cap-
ture the user interaction context via the automatic model population mechanisms including the
construction of an event from low-level sensor data, resource discovery, resources building as well
as event to event block aggregation to the populated user interaction context model is illuminated
in Figure 3.1. A discussion about the advantages and disadvantages of following an ontology-
based user context modeling approach from a practitioner’s perspective in Section 3.6 rounds off
this chapter.

43

44 User Interaction Context Approach

Figure 3.1: This figure visualizes the user interaction context detection pipeline starting from the context

sensors (1) that capture the user interaction context to (3) the populated user interaction context model.

The automatic model population mechanism (2) includes the construction of an event from low-level

sensor data, resource discovery, resources building as well as event to event block aggregation.

3.1 Introduction

For a user it is not convenient to manually enter the data about her user context on a fine-granular
level as defined in the user interaction context ontology (UICO). Hence semi-automatic and
automatic mechanisms are required to ease the process of “populating” the ontology. Rule-based,
information extraction and machine learning approaches are utilized to automatically populate the
ontology and to automatically derive relations between the model’s entities. The user interaction
context is observed, instances of concepts are created and relations between the concept instances
are augmented. The following sections elaborate on what kind of sensors are used to observe
user interactions, how resources the user has utilized are automatically discovered and built as
concept instances of the Resource concept, connections between resources are computed, and the
aggregation of single user interactions (events) to user interactions on the same resource (event
blocks) and tasks.

3.2 Conceptual Model - The Semantic Pyramid

The user interaction context is defined as

“ all interactions of the user with resources, applications and the operating system
on the computer desktop. Resources are digital artifacts on the computer desktop, e.g.,
documents, web pages, emails, persons, appointments and notes.”

Conceptual Model - The Semantic Pyramid 45

This user interaction context is a subset of Dey et al. [2001]’s definition of context which is defined
as

“any information that can be used to characterize the situation of entities that are
considered relevant to the interaction between a user and an application, including the
user and the application themselves”.

The user interaction context can be seen as a pyramid, the semantic pyramid [Rath et al., 2006]
from a user action point of view which connects the user’s actions with resources and aggregate
them. It also integrates the idea of delivering resources that are relevant to the user’s actions
based on information needs of the user. The semantic pyramid describes the continuous evolution
of contextual information through different semantic layers and is illuminated in Figure 3.2.

Starting at the bottom with events that result from user interactions with the computer
desktop by one user and ending with tasks. The semantic pyramid is from a users’ perspective
who utilize the computer desktop and its digital resources and applications to fulfill their tasks.
The layers of the semantic pyramid represent the aggregation levels of the action dimension
from the event level to the task level of a single user. The levels of the semantic pyramid can be
compared to the hierarchical structure of an activity (operation, action, and task) like defined in
activity theory [Leont’ev, 1978]. The operation level would correspond to the event block level
and the action level to the task level. The activity level could be seen as a more coarse granular
task (e.g., leading a project) since the boundaries between the activity and action level are not
clearly distinguishable The event level is too fine-granular and hence has no correspondent in
activity theory but can be dedicated to the operation level.

Figure 3.2: The semantic pyramid [Rath et al., 2008] comprises the event, the event block and the task

layer. Information needs can origin from each layer and are fulfilled by resources.

User interactions with the computer desktop represent events. Events form atomic units within
an event block. Events can be for example user keyboard inputs, such as mouse movements,

46 User Interaction Context Approach

mouse clicks, starting a program, creating a folder, a web search, or opening a file. An event is
an action on a single resource. At the moment only actions on a single resource are considered,
but this concept could be extended to actions on multiple resources as well. An example for
this would be if the user selected multiple files on the computer desktop or communicating with
multiple users in an instant messaging application.

An event block is defined by a sum of events that act on the same resource. These
events are totally ordered. An example of an event block is “editing a document on page 2”.
Event blocks are formed using predefined static rules, which map a set of events originating
from the user interactions with a single resource to an event block. Event blocks are combined
into tasks by grouping together similar event blocks into semantic sets. Thus one resulting set
represents one task.

A task is a well-defined step in a process, which can not be divided into sub tasks and
in which only one person is involved. Collaborative tasks are not included at the task level. This
means that collaborative tasks are tasks from various persons that run parallel in a process.

Information needs are needs that emerge from an active information request or from a
change of the user interaction context. In the first situation the user directly requests informa-
tion from an information source, for example, an external or local database, an application’s
data storage, or the web. The detection of information needs is based on the detection of a
change in the user interaction context. The investigation of information needs is not in focus of
this research but is mentioned for completing the picture for the reader.

Resources are digital artifacts on the user’s computer desktop. All resources can be
identified with a uniform resource identifier (URI). Examples of resources are documents, web
pages, emails, persons, appointments, notes, and so on. A resource is not bound to a specific
application, for example a text document can be modified in Microsoft Word, in the Windows
Notepad or in the Vi editor. A further example is an email that can be read on the web or in
diverse email applications, like Microsoft Outlook or Mozilla Thunderbird. For resources that do
not have an URI-based representation on the user’s computer desktop, e.g., clipboard content,
an artificial URI is computed. Resources are also used to fulfill the user’s information needs.

3.3 User Interaction Context Ontology (UICO)

The user interaction context ontology (UICO) can be seen as the realization of the semantic
pyramid with the support of semantic technologies. The UICO is a fine-grained ontology, driven by
the goal of representing automatically captured low-level user interaction information. The UICO
follows a bottom-up approach. It is built on the basis of the semantic pyramid. New relations are
incrementally added as new context sensor data or user interaction context analysis algorithms
are added. The UICO reflects the sensed information about the user interaction context and
relates the information automatically derived from it. User interaction context information here
means the concepts and the relations between concepts of the semantic pyramid as well as the

User Interaction Context Ontology (UICO) 47

resource data and meta data captured by the context sensors. A bottom-up approach for adding
concepts and relations to the UICO has been chosen in order to be continuously synchronous with
the capabilities of the context sensors (see Section 3.4) as well as the user interaction context
analysis algorithms (see Section 3.5).
At the moment the UICO contains 107 concepts (classes) and 281 properties modeled. From these
281 properties there are 224 datatype properties and 57 objecttype properties. The ontology
is in OWL-DL [OWL, 2007]. OWL was used because (i) it is a W3C standard for modeling
ontologies, (ii) it is widely used in the semantic web community and (iii) tools for supporting
the ontology modeling process are available. The Protégé ontology modeling tool [Protégé, 2009]
was used for modeling the UICO. A visualization of the concept hierarchy (sub-class relation) in
Protégé is given in Figure 3.3. A comparison with related ontologies is elaborated in Section 3.3.6.

Five different dimensions can be identified in the UICO: (i) action dimension, (ii) resource
dimension, (iii) information need dimension, (iv) application dimension and (v) user dimension.
These five dimension of the UICO are described in further detail in the next sections.

48
U

ser
Interaction

C
ontext

A
pproach

Figure 3.3: The concepts of the user interaction context ontology (UICO) visualized in the Protégé tool. In the left area this figure shows the action dimension, in

the right area the resource dimension, in the bottom left area the user dimension and the information need dimension on the bottom right area. The application

dimension has no concepts and hence not visible here.

User Interaction Context Ontology (UICO) 49

3.3.1 Action Dimension

The action dimension consists of concepts representing user actions, task states and connection
points to higher level concepts of an upper ontology. User actions are present based on the
granularity, i.e., Event at the lowest level, then EventBlock and then Task. These action concepts
corresponds to the levels of the semantic pyramid. The ActionType concepts specify which types
of actions are distinguished on each granularity level. Currently only types of actions on the
event level (EventType concept) are distinguished but the elaboration of EventBlockTypes and
TaskTypes are in progress. There are 25 different EventTypes, each one representing a single
type of user interaction. An example is the following: if the user clicks on the search button of a
search engine’s web page in a web browser, this user interaction will generate an Event of type
WebSearch. The various types of events are described in more detail in Table 3.3.1.

EventType Description

ClipboardChange Indicates that the clipboard application has received
new content, e.g., user pressed the key combination
Control+C

Close The user has closed an application, e.g., the user clicks
on the top right corner of the application window such
that the application closes.

Command This is a special EventType that is used to remote con-
trol the user interaction context observation process,
e.g., ”create a new task”, ”stop context observation”.

Copy Indicates that the user has copied some content from a
resource.

Create Indicates that the user has created a resource, e.g., cre-
ate a new email.

Cut Indicates that the user has cut content from a resource,
e.g., cut a piece of text from a text document.

DesktopSearch Indicates that the user has performed a desktop search,
e.g., Google Desktop Search, MSN Desktop Search.

Format A style modification of text is indicated by this concept
and its 14 sub-concepts, e.g., a user formats a text to a
bold text.

ForwardAs Attach-
ment

The user forwards a resource as an attachment, e.g.,
forwarding an email as an attachment.

Open The user opens a resource, e.g., opening an appointment
or an address book entry.

Paste The user pastes the content of the clipboard to a re-
source.

Continued on next page

Table 3.1: This table lists the EventType concepts of the user interaction context ontology and gives a

short descriptions when an event is related to an instance of a EventType concepts.

50 User Interaction Context Approach

EventType Description

Post Indicates that the user posts a resource, e.g.,posting a
message to a newsgroup.

Print Indicates that the user prints a resource, e.g., printing
of a text document, source code of a program, a picture,
or a presentation slide.

Pull The Pull EventType indicates that the user consumes
the content of the resource that is present in an ap-
plication. This EventType is assigned to the Event if
navigational and command inputs are executed by the
user.

Push The Push EventType indicates that the user produces
content in a resource that is present in an application.
This EventType is assigned to the Event if non naviga-
tional and non command keys are executed by the user.

Reply, ReplyToSender,
ReplyToSenderAnd-
Group, Reply-
ToGroup, ReplyFrom

The user replies to one or more PersonResource con-
cept instances, e.g., reply to the sender of an email, task
assignment or appointment invitation.

ReplyAll The user replies to all PersonResource concept in-
stances, e.g., reply to the sender of an email, task as-
signment or appointment invitation.

Save The user saves a resource, e.g., saving the contact details
of a person.

Select The users selects a resource for viewing in the current
application or selects some text of a resource.

Send Indicates that the user sends a resource, e.g., email, ap-
pointment invitation or contact.

WebSearch The users executes a search on a search engines web
page, e.g., Google, MSN Live or Yahoo!.

Table 3.1: This table lists the EventType concepts of the user interaction context ontology and gives a

short descriptions when an Event instance is related to an instance of a EventType concept.

The TaskState concept and its sub concepts (visualized in the upper right corner of Figure 3.3)
are used to model the ways the user does task management and task executions. The types of
task states are derived from the NEPOMUK Task Management Model [Grebner et al., 2007] and
integrated into the UICO. Figure 3.4 shows the task states and its transitions. With the help
of task states UICO can model the user’s task handling, i.e., creating, executing, interrupting,
finishing, aborting, approving and archiving a task. The behavioral patterns of the user’s task
handling and task state changes are tracked via the TaskStateChange concept.

User Interaction Context Ontology (UICO) 51

Figure 3.4: This figure displays the NEPOMUK’s Task Management Model from [Grebner et al., 2007].

The Model concept has been introduced to have connection points to high level concepts of
other ontologies, e.g., semantic desktop ontologies. Currently only one connection point in form
of the TaskModel, a sub class of the Model concept, is present. The TaskModel concept is similar
to those defined in the area of workflow management systems or task process analysis.

At the moment, the TaskModel concept can be seen as a way of categorizing a task. An exam-
ple of instances of the TaskModel and the Task concept is “Planning a journey” and “Planning
the journey to CIAO 2009 workshop” respectively.

3.3.2 Resource Dimension

The resource dimension, visualized in the upper left corner of Figure 3.3 contains concepts for
representing resources on the computer desktop. Specifically the focus is on modeling resources
used by office workers. These were identified by informal interviews. The UICO can easily be
extended by further types of resources by adding new concepts and relations. In the UICO there
are 28 different resource concepts and sub concepts at the moment. A resource is constructed
based on the data and meta data captured by the context sensors. The detailed description of
the resource discovery and construction processes is given in Section 3.5.2.

Relations are defined between concepts of the resource dimension and the action dimension
for modeling on which resources what kind of user actions have been performed. For example,
if the user enters a text in a Microsoft Word document, all keyboard entries are instances of
the Event concept, connected via the objecttype property isActionOn to the same instance of a
TextDocument (and a FileResource) representing that document.

3.3.3 Information Need Dimension

The information need dimension represents the context-aware proactive information delivery as-
pect of the UICO. An information need is detected by a set of fixed rules based on the available
user context information. The InformationNeed concepts has properties to define the accuracy
of the detection and the importance to fulfill the information need in a certain time-frame. For
details about information need detection it is referred to [Rath et al., 2007].

An information need is associated with the user’s action(s) that trigger(s) a rule. Hence
a connection between the information need dimension and the action dimension exists. The
resource dimension is also connected to the information need dimension in such a manner that
each resource that has been found for fulfilling the user’s information need is related to this one
via the objecttype property suggestsResource.

52 User Interaction Context Approach

Figure 3.5: This figure shows the resource dimension of the user interaction context ontology (UICO)

visualized in the Protégé ontology modeling tool [Protégé, 2009].

User Interaction Context Ontology (UICO) 53

3.3.4 User Dimension

The user dimension contains two concepts, the User and the Session concept. The User concept
includes basic user information such as user name, password, first name and second name. The
user dimension is related to the action dimension in such a way that each Action is associated
with a User via the objecttype relation hasUser. Indirectly the user dimension is also related
to the resource dimension and the information need dimension via the action dimension. The
Session concept is used for tracking the time of user logins and the duration of a user session in
the application.

3.3.5 Application Dimension

The application dimension is a “hidden” dimension because it is not modeled as concepts in the
UICO. This dimension is present in such a way that each user interaction happens within the
focus of a certain application, e.g., the user’s desktop, Microsoft Word or the Microsoft Windows
Explorer. The Event concept holds the information about the user interaction with the applica-
tion by the datatype properties hasApplicationName and hasProcessId. Standard applications
that run on the Microsoft Windows desktop normally consist of graphical user interface (GUI)
elements. Also console applications have GUI elements such as the window itself, scroll bar(s)
and buttons for minimizing, maximizing and closing the application. Most of the GUI elements
have an associated accessibility object [Microsoft, 2009] which can be accessed by context sen-
sors. Datatype properties of the Event concept hold the data about the interactions with GUI
elements. Later in Section 7.7 it is shown that these accessibility objects play an important role
in automatic task detection.

A resource is normally accessed and manipulated by the user within an application hence
there is a relation between the resource dimension and the application dimension. This relation
is indirectly captured by the relation between the resource dimension and the action dimension,
i.e., by the datatype property hasApplicationName of the Event concept.

For a user it is not convenient to manually enter the data about her user interaction context
on such a fine-granular level. Hence semi-automatic and automatic mechanisms are required to
ease the population process.

3.3.6 Comparison with existing Personal Information Ontologies

The UICO is similar to the Personal Information Model Ontology (PIMO) [Sauermann et al.,
2007] in terms of representing desktop resources. However, for the purposes of automatic user
interaction context capturing, a limitation of the PIMO is the coarse granularity of concepts and
relations. The UICO is a fine-grained ontology, driven by the goal of representing automatically
captured low-level user interaction information with applications and resources on the computer
desktop whereas the intention of PIMO is to enable the user to manually extend the ontology
with new concepts and relations to define her environment for personal information management.
Although it would be possible to allow the user to manually add new concepts (e.g., tags) and
relations (e.g., isProjectMemberOf, hasTag etc.) to the UICO this is not the focus.

Native Operations (NOP) [Biedert et al., 2008] define operations on information objects, so
called data objects. These are similar to the UICO’s ActionType concepts and more specifically to

54 User Interaction Context Approach

the EventType concepts. The DataObject concepts of the NOP ontology contains representations
of several desktop resources but only in a more coarse granular way than the UICO’s Resource

concepts.

In [Xiao & Cruz, 2005] a layered and semantic ontology-based framework is described which
follows the principles of semantic data organization, flexible data manipulation and rich visualiza-
tion. The framework consists of an application, domain and resource layer as well as a personal
information space. The resource dimension of the UICO can be seen as a combination of the do-
main and resource layer because resource instances are mapped to concepts of the domain layer.
The intention of the approach is to propose a framework for PIM whereas the UICO focuses on
representing the user interaction context. The main differences to the UICO are (i) the lack of an
ontology for resources and (ii) the missing concepts and relations for representing user actions.

3.4 Context Sensors and Context Observation

Context sensors, also referred to as context observers or just sensors, observe the user’s inter-
actions with resources, applications and the operating system, which is a similar approach as
followed by contextual attention metadata [Najjar et al., 2006; Wolpers et al., 2007] and other
context observation approaches [Budzik et al., 2001; Chernov et al., 2008; Dragunov et al., 2005;
Kleek & Shrobe, 2007; Lokaiczyk et al., 2007]. This section deals with the mechanisms used
to capture the user’s behavior in achieving her goals. For this low-level operating system and
application events initiated by the user while interacting with her desktop, are recorded by con-
text sensors. Context sensors observe the user interaction context. The information about the
occurred events is sent as a XML stream to the context capturing framework for processing and
analysis. In this processing and analysis step, the information from different sensors are collected
and aggregated. The result of these steps is a semantic representation of the metadata and data
about the events received from various sensor clients.

The targeted domain of this dissertation research is the Microsoft Windows environment.
Especially, the focus is on supporting tools office workers are likely to use in their daily work.
Through informal interviews following applications were identified to be worthwhile for developing
context sensors for: the Microsoft Office suites, Microsoft Internet Explorer, Mozilla Thunderbird,
Mozilla Firefox, Novell GroupWise, and Microsoft Outlook.

3.4.1 Context Observers

Context observers, also referred to as context sensors or simply sensors, observe the users’
interaction behavior on their computer desktop. Context sensors are programs, macros or
plugins that exploit application program interfaces (APIs) of applications and the operating
system. Sensors on the computer desktop are distinguished based on the origin of the sensor
data they deliver. System and application sensors were developed [Rath et al., 2007]. It could
be also reasonable to integrate an environmental sensor [Zimmermann et al., 2005], like for
example, a GPS receiver, for mobile applications, or biometric sensors for getting information
about physical conditions of the user, for example, the user’s stress level.

Sensor Data Abstraction and Aggregation 55

Sensor Observed Metadata and Data

File System Sensor copying from/to, deleting, renaming from/to, moving from/to,

modification of files and folders (file/folder URL)

Clipboard Sensor clipboard changes, i.e., text copied to clipboard

Network Stream Sen-

sor

header and payload content from network layer packets (http, ftp,

nttp, smtp, messenger, ICQ, Skype,. . .)

Generic Windows XP

System Sensor

mouse movement, mouse clicks, keyboard input, window title, date

and time of occurrence, window id/handle, process id, application

name, accessibility objects

Accessibility Object

Sensor

name, value, description, help text, help text description and tooltip

of the accessibility object.

Table 3.2: This table lists the context sensors for the Microsoft Windows operating system.

System sensors: System sensors capture data related to system events. System events
are input device data streams, like for example, keystrokes, mouse movements and mouse clicks.
On the operating system level information about clipboard events, file system changes and
network stream monitoring 1 is also included. A detailed overview of the developed system
sensors is given in Table 3.2.

Application sensors: Application sensors collect information about the user’s behavior
when interacting with specific applications. Typically application sensors are plugins, macros
or small programs that utilize application specific libraries for the user interaction context
observation. Application sensors for Microsoft Word, Microsoft Excel, Microsoft PowerPoint,
Microsoft Explorer, Microsoft Internet Explorer 6, 7 and 8, Mozilla Thunderbird and Mozilla
Firefox 2, Microsoft Outlook 2003 and 2007 were developed. These sensors were utilized for the
experiments described in Chapter 7.

In Table 3.3 a comprehensive list of the supported applications including the captured data
and metadata are listed.

3.5 Sensor Data Abstraction and Aggregation

This section describes the steps from low-level sensor events containing semi-structured data to
structured data in from of a populated ontology. The algorithms and techniques used for discov-
ering user interaction with resources and relationships between resources in the event data stream
as well as aggregating events to blocks of events (event blocks), are described and elaborated in
this section.

1The Network Stream Sensor was developed by Pichler [2007].
2The Mozilla Thunderbird and the Novell GroupWise sensor were developed by Rechberger [2007].

56 User Interaction Context Approach

Application Observed Metadata and Data

Microsoft Word document title, document URL, folder, user name, language, text

encoding, content of visible area, file name

Microsoft Power-

Point

document title, document URL, document template name, current

slide number, file name, language, content

Microsoft Excel spreadsheet title, worksheet name, folder, spreadsheet URL, user

name, authors, language, content of the currently viewed cell, file

name, file URI

Microsoft Internet

Explorer

currently viewed URL, URLs of embedded frames, content as

HTML and content as plain text

Microsoft Explorer currently viewed folder/drive name, URL of folder/drive path

Mozilla Firefox 2.x

and 3.x

currently viewed URL, URLs of embedded frames, content as

HTML

Mozilla Thunderbird (HTML/plain text) content of currently viewed or sent email, sub-

ject, unique path (URI of email/news message) on server, user’s

mail action (compose, read, send, forward, reply), received/sent

time, email addresses and full names of the email entries

Microsoft Outlook

2003/2007

(create, delete, modify, open and distribute) tasks, notes, calendar

entries, contacts and data about email handling

Novell GroupWise

email client

(create, delete, modify, and distribute) tasks, notes, calendar en-

tries, and todos, and data about email handling like in the Mozilla

Thunderbird application

Table 3.3: This table shows a listing of the developed application specific sensors.

3.5.1 Event Creation

Events are observed by application and operating system sensors and submitted to a central
processing unit that transforms the XML-based data to an object that can be further manipulated.
This process is similar to the contextual attention metadata (CAM) approach [Wolpers et al.,
2007] for supporting learners or building user profiles. Based on the event object an instance of
the Event concept is created that has the same identifier (URI) as the event object. Resource
discovery and resource building algorithms (see Section 3.5.2) as well as algorithms for detecting
the user’s information need (see Section 3.2) are applied. The results of the applied algorithms lead
to new instances of the Resource concept, the InformationNeed concept and the EventBlock

concept as well as relations between the concept instances. What kind of instances and relations
are created and added are elaborated in the following sections.

3.5.2 Resource Discovery and Resource Building

Resources can be links, documents, persons, emails, files, folders, web pages, organizations, loca-
tions, files, folders, presentations, text documents and spreadsheets. Resource discovery is about
the identification of resources and the extraction of meta data about the referenced resources in
the user interaction context data stream, referred to as the event stream. Furthermore resource
discovery deals with finding resources the user has interacted with as well as identifying resources

Sensor Data Abstraction and Aggregation 57

that are included or referenced in used resources. A resource is included in another resource if
the content of a resource is part of the content of another resource, e.g., copy of a part of a text
from the content of an email to a text document. A resource is referenced by another resource if
the location of the resource appears in the content of another resource, e.g., a link to a web page
appears in the content of an email.

Three techniques are applied to discover the resources. These are (i) the regular expres-
sion, (ii) the information extraction and (iii) the direct resource identification approach.

1. Regular Expressions: The regular expression approach identifies resources in the event
stream based on certain character sequences predefined as regular expressions. This
approach is utilized to identify files, folders, web links and email addresses for example.

2. Information Extraction: The information extraction approach extracts person, location
and organization entities in text-based elements in the event stream. These entities
have to be predefined in a so called look-up list. A look-up list entry is a pair of
strings, in which the first element defines the character sequence to look for. The second
element is the uniform resource identifier (URI) which uniquely identifies the found
character sequence as a specific resource. An example of such an entry for a person is
(Rath Andreas; mailto:arath@know-center.at), for an organization (Know-Center;

http://www.know-center.at) and for a location (Graz; http://www.graz.at).

3. Direct Resource Identification: The direct resource identification approach uses the
data about a resource sent by the context sensor to directly identify and build the resource.
With this approach it is possible to directly map certain fields of the event stream data
to a resource. An example for this is the sensor data about an email that the user has
opened. It this case the sensor sends the information that a specific email identified by
the server message id has been opened for reading. Additionally, metadata about the
email is attached by the sensor an added to the referenced resource. Another example
is the ClipboardSnippetResource which is built based on the content of the clipboard
application sensed by the clipboard observer. In this case an artificial URI is calculated
based on the content of the clipboard application in order to uniquely identify it.

The resources identified by these resource discovery mechanisms are related to instances of
the Event concept by the isActionOn objecttype property. There are two special types of
resources: (i) fake resources and (ii) artificial resources. Fake resource are introduced to support
the understanding of the relation between sensor data and resource discovery whereas artificial
resources allow a more fine-granular tracking of user interactions on parts of resources.

Fake Resources: Fake resources are resources that are not identifiable in the applica-
tion nor in the file system. Typical examples are the following: suppose a new Microsoft Word
2007 document or a new Microsoft PowerPoint 2007 presentations has been been created without
being saved afterwards. This document has the window title “Document1 - Microsoft Word” or
“Presentation1 - Microsoft PowerPoint” respectively. The sensed path of the word document is

58 User Interaction Context Approach

“Document1”. For the presentation the sensor does not sense a path at all but senses the name
of the presentation as being “Presentation1”. These peculiarities appear for multiple sensors
and use cases. These special cases have to be taken into account when grouping events to event
blocks as well as in the resource discovery and resource building process.

Artificial Resources: Artificial resources are resources that can not be identified by an
unique URI pointing to a file system or web location. Examples for artificial resources are
parts of resources, e.g., a text paragraph of a document or sub page or frame of a web page.
Identifying this type of resources is interesting for tracking user interactions on a fine-granular
level, i.e., user interactions with parts of resources. Consider that the user selects some text
in a resource, then the selected text is transformed into an artificial resource with an unique
identifiable automatically generated URI. This allows to identify which parts of a text appears
in different resources. Artificial resources allow to study which parts of a resource are edited,
read, formatted or extended by a user. Merging multiple user interaction contexts enables then
to identify collaboration topics and the user’s collaboration/editing role (e.g., reader, writer,
designer, etc.).

Resources of the type ClipboardSnippetResource are also artificial resources. If a user
copies some text from one resource to another, one an instance of a ClipboardSnippetResource

concept is built and related to the resource where the text has been copied from as well as the
target resource via the isIncludedResourceFrom objecttype property. Instances of the Copy

and Paste concept which are a sub-concept EventType and hence a sub-concept of ActionType
are related to the instance of the ClipboardSnippetResource. The difficulty here is to identify
the paste location. One approach is “monitoring the clipboard captures Cut and Copy episodes,
and Paste episodes are determined through analysis of changes in window contents” [Pedersen
& McDonald, 2008]. A different much simpler approach is introduced and followed in this
research which is user interaction driven. It leverages the fact that the user has to interact with
input devices or specific application and desktop elements to do a “copy”, “cut” or “paste”.
Accessibility objects are used to identify if a user clicks on a “copy”, “cut” or “insert” button
or respective menu elements. Since the name of the desktop elements derived from accessibility
objects are language depended only algorithms for the targeted languages, which are German
and English, were implemented. The monitoring of key stroke events also gives hints if a user
copies and pastes when looking for key stroke combinations like “Control+C” and “Control+P”
on an English keyboard or “Strg+C” and “Strg+V” on an German one. This approach is easier
to realize than window content analysis but has a few drawbacks. One is that it does not take
into account manually configured keyboard shortcuts by the user. Another one is that it fails
to recognize copy and paste events if the application does not follow the standard keyboard
shortcuts for copy, cut, paste or does not name the menu elements in an intuitive way.

Until this point no aggregation in terms of grouping actions of the user that belong to-
gether was done.

Sensor Data Abstraction and Aggregation 59

3.5.3 Event to Event Block Mapping Rules

The context sensors observe low-level context data which result in events. For aggregating these
events logically to blocks of events, so called event blocks, static rules are used. Logically in this
sense means to group the events that capture the interactions of the user with a single resource
together to an event block. Resources can be of various types (see Section 3.2) and used in
various applications. Therefore for different types of applications different rules are applied in
the grouping process. An application can also handle multiple resource types. As an example
for such an application is Microsoft Outlook or Novell GroupWise in which emails, tasks, notes,
appointments and contact details are handled. The complexity and accuracy of the static rules
depend on the mechanism of the application to identify a single resource and on the possibility
to capture this resource id with a sensor. If the application is not possible to deliver an unique
identifier for a resource or it is not possible for a sensor to capture it then heuristics are used for
identifying a resource.

Sensors influence the static rules: The static rules are further dependent on the re-
ceived sensor data which is encapsulated in the attributes of the events. This means that if a
sensor is not capable of delivering information about a specific attribute it can not be used in the
event to event block mapping process. From the experience with the sensors gained in the course
of the prototype testing and evaluation phases, some sensors seem to be more reliable than others.
Especially the in deep operating system calls are sometime failing in delivering information about
the pressed key strokes as well as the window and application currently in focus. For these rea-
sons several backup scenarios are included in the mapping algorithms to get an accurate grouping.

Rules are dependent on the application domain: The domain in which the sensors
are used for context observation and what aspects of the user’s context to be observed direct
the number of event to event block mapping rules required. Since the targeted environment
of this research is the computer desktop of office workers, the rules are developed for common
office applications. Sensors can be easily extended to other domains and applications if applicable.

Difficulty of Just-In Time Sensor Fusion: Sensor fusion here means the combination
of data from various sensors to achieve a better information about the user interaction context.
The challenge here origins from the fact that multiple sensors observe complementary information
about the same user interaction but send this information at different points in time. The
difficulty is to align the correct events and combine the data and hereby enrich the information
about the user interaction context. It is not clear if there is another sensor that senses the
same user interaction or how long to wait for another “similar” event from another sensor.
For grouping events to event blocks a 3-events window “online processing”, i.e., “just-in time
processing” approach is followed. This means that an event will be assigned to an event block
immediately. A dynamic refining of this assignment takes place for the last three events.
As an example consider a user writing an email. In the case of the utilized sensors for the
experiments (see Section 3.4) the generic context observer recognizes the user inputs but misses
the details about the email resource. These details are sensed by the Microsoft Outlook sensor

60 User Interaction Context Approach

at two points in time when (i) the user clicks on “Create new mail” button and (ii) when the
user sends the email. The effect is that both sensors observe the creation of the email and the
sending of the email. These two events and all the events about entering the email text have to
be grouped to the same event block. Furthermore the order in which the events are received is
not fixed. Since the event block grouping rules do not have the details about a resource being
available throughout all the events. The approach followed is to group “intermediate” events
based on more general terms, i.e., the window title or application name.

3.5.3.1 Support Methods

The static rules listed in the following sections make use of so called support methods which help
describing the functionality of the algorithms.

Support methods:

� The TokenSimilarity(String s1, String s2) calculates the token based similarity between
the two supplied string values with the cosine similarity measure [Manning & Schutze,
1999]. The implemented measure of similarity is similarity = cos(θ) = A∗B

‖A‖∗‖B‖ , whereas
A and B are token vectors of n dimensions. Each dimension represents a token of the
strings. The cosine of the angle between these two token vectors constitute the similarity
measure.

� The WeightedTokenSimilarity(String s1, String s2) calculates the weighted token similarity
between the two supplied string values based on the cosine similarity measure [Manning
& Schutze, 1999]. The similarity measure is the same as for the TokenSimilarity except
that the token vectors A and B are extended with new entries. The new entries comprise
of equal sub-strings of the strings s1 and s2 which will get a weight of 2. Suppose
s1=”My name is Adam.” and s2=”Your name is wonderful.” then the token vectors
A = {my,name,is,Adam}, B = {Your,name,is,wonderful} are extended both with a “name
is” token with a weight of 2 because of the same sub-string.

� The CharacterSimilarity(String s1, String s2) calculates the character based similarity
between the two supplied string values based on the cosine similarity measure [Manning &
Schutze, 1999]. The used measure of similarity is similarity = cos(θ) = A∗B

‖A‖∗‖B‖ , whereas
A and B are character vectors of n dimensions. Each dimension represents a character
appearing in the strings. The cosine of the angle between these two character vectors
constitute the similarity measure.

� The DefaultApplicationMappingRules(Event event, EventBlock eventBlock) method stands
for the default application rules that are described bellow in Section 3.5.3.2. These rules
are used as a backup scenario if the application specific attributes for mapping the event to
an event block are not sufficiently available in the event stream.

Sensor Data Abstraction and Aggregation 61

3.5.3.2 Default Application Rules

The default application rules are rules that are applied if no application specific rule is defined for
the currently processed event. The goal of these rules are to heuristically group events to event
blocks based on event attributes which can be observed application independently. Example
for such kind of attributes are the title of the window of the application, the windows process
number/id and the id of the window handle. The window handle id3 is a unique identification of
the window that is constructed by the Microsoft Windows operating system’s window manager.
The window title and the process id showed the best choice for a generic event to event block
grouping in which no application specific attributes are present. In SWISH [Oliver et al., 2006] a
Microsoft research team showed that they can utilize the window title to identify selected tasks
by about 76% accuracy. This finding goes hand in hand with Shen & Dietterich [2007] in which
the window title next to the file path of the currently edited document played an important role.
A description of the algorithm is presented bellow.

Algorithm 1 Default application rules for the aggregation of events to event blocks.
Let e denotes the current event and e<ea> its attribute < ea >

Let eb denotes the previous event block and eb<eba> its attribute < eba >

Let ebe
last

denotes the last event of the previous event block

and e last
<ela> the last event’s attribute < ela >

1: if ∃eb then

2: if @ehasWindowTitle ∨ @ ebhasWindowTitle then

3: if ∃ehasProcessId ∧ ∃ebe
last
hasP rocessId ∧ (ehasProcessId == ebe

last
hasP rocessId) then

4: return true

5: else if ∃ehasApplicationName ∧ ∃ebe
last
hasApplicationName

∧ (ehasApplicationName == ebe
last
hasApplicationName) then

6: return true

7: else

8: return false

9: end if

10: else

11: Simc ← CharacterSimilarity(ehasWindowTitle, ebhasWindowTitle);

12: Simwt ← WeightedTokenSimilarity(ehasWindowTitle, ebhasWindowTitle);

13: if Simc > 0.985 then

14: return Simwt > 0.7

15: else

16: Simt ← TokenSimilarity(ehasWindowTitle, ebhasWindowTitle);

17: return Simt > 0.8 ∨ Simwt > 0.85

18: end if

19: end if

20: else

21: return false

22: end if

3NativeWindow Class, http://msdn.microsoft.com/en-us/library/system.windows.forms.nativewindow.aspx.

http://msdn.microsoft.com/en-us/library/system.windows.forms.nativewindow.aspx

62 User Interaction Context Approach

Attribute Description

� The hasWindowTitle is the title of the window that was instantiated by the application
and drawn by the operating system’s window manager. The operating system is responsible
for drawing these windows and it is possible to access it with operating system libraries.

� The hasProcessId is the unique identification of an instance of an application during
runtime. On a Microsoft Windows operating system this is a positive number.

� The hasApplicationName is the name of the application the user has interacted with.

Algorithm Description

The algorithm checks in the first place if the preferred generic event to event block grouping
feature, the window title, is present or not (line 3). If this feature is not present then the process
id of the window that is currently in focus will be used as the discriminating feature. If this
feature is also not available, then the name of the application of the currently window in focus
will be used for deciding if the event belongs to the last event block or should be used as the basis
for building a new event block. But if the window title is available then it will be compared to
the window title of the last event of the event block. The comparison takes place on two levels,
on the character and on a token level. The cosine similarity measures between the characters
and the tokens used in the window title are computed to decide if these two are similar. The
thresholds used in the algorithm come from exploring and analyzing thousands of events about
user interactions with various applications and resources. The threshold values have continuously
been refined. Since the developed prototypes allowed the simulation of events, the threshold
values and the algorithm could be further fine-tuned.

3.5.3.3 Clipboard Rules

The rules for the data from the clipboard sensor is simple because the action of copying a text
snippet into the clipboard happens in the same application as the previous event. This previous
event is an event about the interaction with the same application. Suppose the previous event
would be an event in application A1 and the next seen event in another application A2, then this
one would be the event of switching from A1 to A2, i.e., set the focus to the window of A2 and
hence cannot be the clipboard sensor event. The only exception to this would be a sensor that
sends data without any previous interaction from the user, for example, a sensor that notifies
about a new incoming email. Since there are no sensors of this type deployed in this system, this
use case is obsolete at the moment.

Algorithm 2 Rules for the aggregation of events from the clipboard sensor to event blocks
Let eb denotes the previous event block and eb<eba> its attribute < eba >

1: if ∃eb then

2: return true

3: else

4: return false

5: end if

Sensor Data Abstraction and Aggregation 63

3.5.3.4 FileSystemWatcher Rules

The FileSystemWatcher is a sensor that monitors file system changes. Since many operating sys-
tem and application services and applications use temporary files such kind of sensor is constantly
creating a lot of events in a short time period. To restrict the events to file system changes that
are useful for the aim of detecting the user interaction context, the sensor only monitors files and
folders that have been at least accessed once by the user.

There is no special algorithm for grouping events from the FileSystemWatcher sensor to event
blocks. Every event from this sensor is added to the last event block as a reaction of the file system
to the behavior of the user.

3.5.3.5 Mozilla Thunderbird and Novell GroupWise Rules

These rules aggregate events from the Mozilla Thunderbird and Novell GroupWise sensors to
event blocks.

Algorithm 3 Rules for aggregating events from the Mozilla Thunderbird and Novell GroupWise
sensors to event blocks
Let e denotes the current event and e<ea> its attribute < ea >

Let eb denotes the previous event block and eb<eba> its attribute < eba >

Let ebe
last

denotes the last event of the previous event block

and e last
<ela> the last event’s attribute < ela >

1: if ∃eb then

2: if ∃ehasUsedResource ∧ ∃ebhasUsedResource then

3: return ehasUsedResource == ebhasUsedResource

4: end if

5: if ∃ehasSensor ∧ ((ehasSensor == DYOBS SENSOR)

∨ (ehasSensor == DYGOBS SENSOR)) then

6: return ∃ehasUri ∧ ∃ebe
last
hasUri ∧ (ehasUri == ebe

last
hasUri)

7: else

8: return DefaultApplicationMappingRules(e, eb)

9: end if

10: else

11: return false

12: end if

Constants Descriptions

� The DYOBS SENSOR constant stands for the name of the Mozilla Thunderbird sensor (see
Section 3.4.1).

� The DYGOBS SENSOR constant stands for the name of the Novell GroupWise sensor (see
Section 3.4.1).

Attribute Description

� The hasUsedResource attribute of an event stands for the resource that was associated
with the event during the resource analysis process (see Section 3.5.2).

64 User Interaction Context Approach

� The hasSensor attribute of an event holds the name of the sensor which observed the event.

� The hasUri attribute of an event holds the unique id of a resource in the Mozilla Thunder-
bird and in the Novell GroupWise application.

Algorithm Description

At the beginning the algorithm checks if there has already been a resource associated with the
event and with the event block during the resource analysis process and if they are equal. If yes
then the event belongs to the event block.

If the hasUsedResource attribute is not sufficiently available then the hasUri attribute is
used for the event to event block mapping decision but only if the event is from a special applica-
tion sensor, the DYOBS SENSOR, (Mozilla Thunderbird application sensor) or the DYGOBS SENSOR

(Novell GroupWise application sensor). Since both mentioned sensors are only sending events on
selected types of user interactions, key stroke and mouse click events from the Generic Windows
Context Observer have to be added to the corresponding event block as well. This is assured by
applying the default application mapping rules (see Section 3.5.3.2) on those events. An example
for such a use case would be the writing of an email. For this the user has to create a new mail.
This is sensed by the special application sensor, while the actual writing of the email is captured
by the Generic Windows Context Observer. The sending of the email results in an event from a
special application sensor. All the resulting events from all sensors about that particular email
belong to the same event block.

3.5.3.6 Microsoft Windows Explorer Rules

The Microsoft Windows Explorer sensor senses the user interactions in the Microsoft Windows
Explorer, more specifically the navigation behavior of the user. The event to event block algorithm
groups together all the events that happen in a specific folder view.

Algorithm 4 Rules for the aggregation of events from the Microsoft Windows Explorer sensor
to event blocks
Let e denotes the current event and e<ea> its attribute < ea >

Let eb denotes the previous event block and eb<eba> its attribute < eba >

Let ebe
last

denotes the last event of the previous event block

and e last
<ela> the last event’s attribute < ela >

1: if ∃eb then

2: if ∃ehasUsedResource ∧ ∃ebe
last
hasUsedResource then

3: return ehasUsedResource == ebe
last
hasUsedResource

4: end if

5: return DefaultApplicationMappingRules(e, eb)

6: else

7: return false

8: end if

Sensor Data Abstraction and Aggregation 65

Attribute Description

� The hasUsedResource attribute of an event stands for the resource that was associated
with the event during the resource analysis process 3.5.2.

Algorithm Description

At the beginning the algorithm checks if there has already been a resource associated with the
event and with the event block during the resource analysis process and if they are equal. If yes
then the event belongs to the event block. If this comparison can not be carried out, the default
application mapping rules (see Section 3.5.3.2) are applied for the event to event block grouping.

3.5.3.7 Microsoft Outlook Rules

The rules for assigning an event to an event block is straight forward for all the various resources
which can be interacted with in Microsoft Outlook because they all have an unique entry id. This
entry id is observed by the Microsoft Outlook sensor. Resources that are observed by the sensor
are emails, tasks, notes, contacts and calendar entries.

Algorithm 5 Rules for the aggregation of events from the Microsoft Outlook sensor to event
blocks
Let e denotes the current event and e<ea> its attribute < ea >

Let eb denotes the previous event block and eb<eba> its attribute < eba >

Let ebe
last

denotes the last event of the previous event block

and e last
<ela> the last event’s attribute < ela >

1: if ∃eb then

2: if ∃ehasUsedResource ∧ ∃ebe
last
hasUsedResource then

3: return ehasUsedResource == ebe
last
hasUsedResource

4: end if

5: if ∃ehasEntryId then

6: for all event such that event ∈ eb from last to first do

7: if ∃eventhasEntryId then

8: return ehasEntryId == eventhasEntryId

9: end if

10: end for

11: end if

12: return DefaultApplicationMappingRules(e, eb)

13: else

14: return false

15: end if

Attribute Description

� The hasUsedResource attribute of an event stands for the resource that was associated
with the event during the resource analysis process (see Section 3.5.2).

� The hasEntryId attribute of an event holds the unique id of a resource in Microsoft Outlook.
Resources can be emails, notes, tasks, contacts and calendar entries.

66 User Interaction Context Approach

Algorithm Description

At the beginning the algorithm checks if there has already been a resource associated with the
event and with the event block during the resource analysis process and if they are equal. If yes,
then the event belongs to the event block.

If this comparison is not possible then the algorithm takes the hasEntryId attribute of the
event and compares it with the hasEntryId attribute of each event of the last event block. If
an entry id exists in one of the events of the event block and matches, then the event belongs to
the last event block. If it does not match, then it does not belong to the last event block. If no
hasEntryId attribute is present in any event of the last event block then the default application
mapping rules (see Section 3.5.3.2) are applied.

3.5.3.8 Microsoft Word, Excel, PowerPoint Rules

For observed events in the Microsoft Word, Microsoft Excel and Microsoft PowerPoint application
this section describes the static event to event block mapping rules. The reason why there is only
one set of rules for all three applications is that the attributes allowing a good identification of a
specific resource are the same for all three applications.

Algorithm 6 Rules for grouping events from Microsoft Winword, Excel, PowerPoint to event
blocks
Let e denotes the current event and e<ea> its attribute < ea >

Let eb denotes the previous event block and eb<eba> its attribute < eba >

Let ebe
last

denotes the last event of the previous event block
and e last

<ela> the last event’s attribute < ela >

1: if ∃eb then

2: if ∃ehasUsedResource ∧ ∃ebe
last
hasUsedResource then

3: return ehasUsedResource == ebe
last
hasUsedResource

4: end if

5: if ∃ehasPath ∧ ∃ebhasPath

∧ CharacterSimilarity(ehasPath, ebhasPath) > 0.95 then

6: return true
7: else if ∃ehasName ∧ ∃ebhasName then

8: if WeightedTokenSimilarity(ehasName, ebhasName) > 0.8
∨ (CharacterSimilarity(ehasName, ebhasName) > 0.8) then

9: return true
10: else

11: return DefaultApplicationMappingRules(e, eb)
12: end if

13: end if

14: else

15: return false
16: end if

Sensor Data Abstraction and Aggregation 67

Attribute Description

� The hasUsedResource attribute of an event stands for the resource that was associated
with the event during the resource analysis process (see Section 3.5.2).

� The hasPath attribute of an event holds the detected full path of the resource used in the
application.

� The hasName attribute stands for the name, i.e. title, of the resource. For Microsoft Word
this is the name of the document, for Microsoft Excel the name of the spreadsheet and for
Microsoft PowerPoint the name of the presentation.

Algorithm Description

At the beginning the algorithm checks if there has already been a resource associated with the
event and with the event block during the resource analysis process. If both associated resources
are the same then the event belongs to the event block. This part of the algorithm is the same
for all the other application specific rules.
If the comparison based on the used resources is not possible then the hasPath attribute is used
to find out if the user continuous interacting with the same resource. If this attribute is not
available than the hasName attribute of the event will be compared with the hasName attribute
of the last event of the event block if present. The reason why a text comparison with thresholds
is needed here is motivated by the following use case: suppose that a user opens a resource in or
from the web browser, edits it and saves it to the local file system. While interacting with the
resource, it lives only in memory and is not persisted in the local file system and therefore has
no valid path. After saving the resource to the local file system the resource has a valid path.
To not loose the events about the user interactions on this resource the name of the document
is used for tracking. When the user saves the resource to the local file system it is likely that a
similar file name is chosen. If none of the application specific attributes are sufficiently present
than the default application mapping rules (see Section 3.5.3.2) are applied.

68 User Interaction Context Approach

3.5.3.9 Microsoft Internet Explorer and Mozilla Firefox Rules

The rules for the grouping of events captured by the Microsoft Internet Explorer and the Mozilla
Firefox sensor to event blocks are the same. The intention is to group all events that capture the
interactions with a single web resources to an event block.

Algorithm 7 Rules for the aggregation of events from the Microsoft Internet Explorer and
Mozilla Firefox to event blocks
Let e denotes the current event and e<ea> its attribute < ea >

Let eb denotes the previous event block and eb<eba> its attribute < eba >

Let ebe
last

denotes the last event of the previous event block

and e last
<ela> the last event’s attribute < ela >

1: if ∃eb then

2: if ∃ehasUsedResource ∧ ∃ebhasUsedResource ∧
(ehasUsedResource == ebhasUsedResource) then

3: return true

4: end if

5: if ∃ehasApplicationName ∧ ∃ebe
last
hasApplicationName ∧

(ehasApplicationName 6= ebe
last
hasApplicationName) then

6: return false

7: end if

8: if ∃ehasWebApplicationName ∧ ∃ebhasWebApplicationName ∧
(ehasWebApplicationName == ebhasWebApplicationName) then

9: if ∃ehasWebApplicationPageName ∧ ∃ebhasWebApplicationPageName then

10: return ehasWebApplicationPageName == ebhasWebApplicationPageName

11: else

12: return true

13: end if

14: else

15: return false

16: end if

17: if ∃ehasDomain ∧ ∃ebhasDomain ∧ (ehasDomain == ebhasDomain) then

18: return true

19: end if

20: return DefaultApplicationMappingRules(e, eb)

21: else

22: return false

23: end if

Attribute Description

� The hasUsedResource attribute of an event stands for the resource that was associated
with the event during the resource analysis process (see Section 3.5.2).

� The hasApplicationName holds the name of the application from which the sensor captured
the event. For Microsoft Internet Explorer the application name is iexplore or explorer.

� The hasWebApplicationName is the name of the web application that is available on the

Discussion about Ontology-based User Interaction Context Observation 69

web page. An example is an embedded wiki application.

� The hasWebApplicationPageName attribute stands for the name of the page of a web
application. An example is a single wiki page of a wiki application.

� The hasDomain attribute is the domain of the web page which the user has interacted with.

Algorithm Description

At the beginning the algorithm checks if there has already been a resource associated with the
event and with the event block during the resource analysis process and if they are equal. If yes,
then the event belongs to the event block.

Since the algorithm is used for events captured in the Microsoft Internet Explorer and the
Mozilla Firefox application, the algorithm has to check if the hasApplication attribute of the
event is the same as the one of the last event of the event block. If they are not the same then
the event does not belong to the event block.

For grouping the interactions of a user with a particular web application or even the in-
teractions with a special page of a web application the next two rules check based on the
hasWebApplicationName attribute and the hasWebApplicationPageName attribute if the user
is still interaction with the same part of a web page.

On some web pages the URI of the currently viewed web page does not change when the user
navigates on inner site pages, such that only the hasDomain attribute is present in the sensor
data. For this reason the next rule is used to at least achieve a not that specific resource based
grouping of events to event blocks. If there are no browser specific attributes present then the
default application mapping rules (see Section 3.5.3.2) are applied.

3.5.4 Tasks

The aggregation of user actions into tasks is different form the previous rule-based approach since
it would otherwise require to manually design rules for each task. This might be a reasonable
approach for well-structured tasks, like administrative or routine tasks, but is obviously not
appropriate for knowledge-intensive tasks that involve a certain freedom and creativity in the
execution [Tochtermann et al., 2006], e.g., “Planning a journey” or “Writing a research paper”.
To be able to also handle such kind of unstructured tasks the idea is to automatically extract
tasks from the information available in the user interaction context model by means of machine
learning techniques. Once automatically detected, these tasks will enrich the existing populated
ontology model by contributing information about the user’s tasks.

Chapter 4 describes and discusses several task detection task detection approaches. The
ontology-based task detection approach proposed by this dissertation research is introduced in
Chapter 5 and evaluated in Chapter 7.

3.6 Discussion about Ontology-based User Interaction

Context Observation

Various representation formats were proposed by the research community for modeling the user’s
context. So why use an ontology to model the user context? Surveys from Strang & Linnhoff-

70 User Interaction Context Approach

Popien [2004] and Baldauf et al. [2007] pointed out the strong points of using an ontology-
based approach and advocate using ontologies for modeling the user context. Some strong points
mentioned are strengths in the field of normalization and formality. This thesis research goes along
with their conclusions and an ontology-based user context modeling approach. An ontology-based
user interaction context model (UICO) was designed and implemented including context sensors
and automatic ontology population mechanisms. This section reflects retro-perspectively on the
advantages and disadvantages on the ontology-based approach.

3.6.1 Advantages

Using an ontology-based user context model brings several advantages next to the ones mentioned
in recent surveys, such as [Rath et al., 2009d]: (i) It allows to easily integrate new context
data sensed by context observers to map the sensor data into a user context model. (ii) It
can be easily extended with concepts and properties about new resources and user actions.
(iii) The relationships between resources on various granularity levels can be represented. (iv)
The evolution of datatype properties (i.e., data and metadata) into objecttype properties (i.e.,
relations between instances of ontology concepts) can be easily accomplished. (v) Being a
formal model, it also allows other applications and services to build upon it and to access the
encapsulated context information in a uniform way.

Easy Integration of new Sensors: Sensing context is done by so called sensors that
observe the user desktop and the user’s interaction with it (see Section 3.4). The kinds of sensors
that are necessary depend on the context information that should be sensed which further
depends on the application requirements. As an example, the types of sensors as well as the kind
of sensor information for observing context information in an email application is different to
sensing the location context on a mobile device. Here the strength of an ontology is to make the
integration of new sensor data into the data model easy without invalidating previously recorded
context data or rewriting database schemata. Ontology reasoners, like for example Pellet [Sirin
et al., 2007], can be utilized to validate the ontology model and check its consistency. The
integration process only consists of adding new concepts and relations to the ontology and hence
is very flexible.

Simple Mapping of Sensor Data to Ontology Concepts and Relations: The
strengths of an ontology are in the fields of normalization and formalization as well as in the
area of combining knowledge from different domains [Ötztürck & Amodt, 1997]. Because of
the well-defined concepts and relations of an ontology the mapping of context data to them is
straight forward.

Easy Extendability: Next to the unprocessed sensor data that may be included in an
ontology-based user context model, inferred and derived information based on this data is stored
as well. This new information about the user interaction context can easily be included by adding
new relations between existing concepts or by adding new concepts and relations to the ontology.
It also supports the “evolution” of datatype properties to objecttype properties if new inferring

Discussion about Ontology-based User Interaction Context Observation 71

techniques or algorithms are added. An example for this is an instance of a Resource concept
with the datatype property hasContent that holds a string literal representing the content of
a text. Information extraction can detect cities mentioned in the text and hence connects the
name of the mentioned cities as literals and the Resource instance with the referencesCity

datatype property. There are no relations between cities with the same name until now. The
required relations can be built by adding a new concept LocationResource, transforming the
literals into instances of this concept and relating the instance of the Resource concept with the
created LocationResource instance via the objecttype relation referencesResource utilizing
SPARQL CONSTRUCT queries [Prud’Hommeaux & Seaborne, 2008].

Easy Access and Integration: The user context data has to follow the ontology speci-
fication. This can be verified by using reasoners that validate the data according to an ontology.
This reliability allows other applications and services to easily access, query and process the user
interaction context data. The easy access is provided by the utilization of the SPARQL query
language.

From a development perspective good tools are already available for modeling ontolo-
gies. An example of a tool is Protégé [Protégé, 2009] which comes with different visualizations
for ontologies and a variety of plug-ins. The OpenAnzo framework [OpenAnzo.org, 2008] used in
this research also features the automatic generation of Java classes based on an ontology which
eases/semi-automates the synchronization of the ontology and the Java object model.

From an application perspective an ontology-based user context model for this re-
search enhances the performance of automatic task detection in comparison to previous mostly
text-based approaches. This is achieved by extracting novel features from the ontology which
increase the task detection performance on the studied datasets (see Chapter 7).

3.6.2 Disadvantages

The disadvantages experienced during the utilization of an ontology-based user context modeling
approach for context observation on the computer desktop are (i) an increasing of computation
time during the ontology population process, (ii) the increased query processing time on large
populated ontology models, (iii) the large amount of data for storing all the sensor data and
computed relations as well as (iv) the CPU and memory requirements.

Ontology Population Time: A population of an ontology is done by adding triples to
the ontology model. The time required to add a triple increases by the size of the model. To
avoid that two of the same triples are stored in the model, it has to be checked if the triple to
be added already existed or not. In case of the triple store OpenAnzo [OpenAnzo.org, 2008]
which is used in this thesis research, this check is performed with SPARQL queries. The query
execution time increases by the size of the model and hence ontology population time increases.
A solution implemented in this thesis research prototype for keeping the number of triples in the
model low as well as assuring reasonable query execution time is to use named graphs [Sintek

72 User Interaction Context Approach

et al., 2007] to split the big model into multiple smaller models.

Query Processing Time: Large populated ontologies consist of many triples/statements. By
utilizing the SPARQL query language the query time increases as the number of triples increases.
Complex SPARQL queries on large datasets may also take several minutes or even hours to
terminate. In the automatic UICO population (see Chapter 3) it was important to keep the
execution time of SPARQL queries as litte as possible to allow online user interaction context
detection. This was successfully managed by reformulating and hence optimizing queries as well
as splitting the populated user interaction context model into separate named graphs.

Large Amount of Data: Information about the user context is represented in terms of
instances of concepts, literals, objecttype and datatype properties. These are stored as triples/s-
tatements. Depending on the granularity level of the context observation the number of triples
of a populated context model for one day of work can easily result in 300000 to 500000 triples. A
task approximately contains between 4000 and 50000 triples and requires in form of a RDF/XML
file approximately 3 to 20 megabytes. The numbers of resulting triples and megabytes per task
have approximated based on the tasks from the laboratory experiments described in Chapter 5.
The amount of data can be reduced when switching off sensors and user interaction context
analysis algorithms that are not needed for a specific type of context-aware application. The
difficulty is to distinguish which features are required and which are not needed for a certain type
of context-aware application. An example is task detection in which it is better to concentrate
on sensing features with a high task discriminating power than sensing everything (see Chapter 7).

CPU and Memory Requirements: In the automatic ontology population step a sig-
nificant amount of CPU performance and memory are required in order to analyze and to
abstract the raw sensor information as well as constructing and executing SPARQL queries for
inserting and verifying the information stored in the UICO. The low-level usage data is captured
by context sensors. The CPU and memory usage of these sensors depend on the intervals of
the user interactions. The shorter the intervals are the more data about the user interactions
with resources, applications and the operating system has to be captured which increases CPU
and memory load. The CPU and memory usage can influence the productivity of a computer
desktop user. It decreases if the applications on the computer desktop stall and the operating
system blocks any of the user’s inputs. This normally happens if applications use a lot of
memory and CPU performance. In case of the user interaction context detection approach, a
standard desktop computer with 2 gigabytes of memory and a double core CPU with 2 GHz and
all context sensors installed (see Section 3.4.1) can handle 8 events per second over a period of
8 hours (a work day) in the current implementation of the KnowSe prototype (see Section 6.3).
In the context observation phases of the experiments described in Chapter 7 standard single as
well as dual core desktop computers and notebooks with approximately 1-2 GHz CPUs and 1-2
gigabytes of memory were also successfully able to run the KnowSe prototype for recording task
executions.

Lessons Learned 73

3.7 Lessons Learned

Continuous Resource Identification Data: Successful grouping of interactions on a single resource
becomes more difficult if the sensors do not detect the data and metadata about the resource all
the time, i.e., on each interaction with a resource. Heuristics and flexible rules have to be used
for these “intermediate and incomplete” events.

Reliability of Sensors: Sometimes the sensors fail in observing events from the operating
system or applications because of failing callback method calls of API methods or DLL (dynamic
link library) calls to the in-depth operating system hooks. This leads to incomplete and not
reliable sensor data which has also been identified by Pedersen & McDonald [2008] as an issue in
automatic context detection. These issues have to be taken into account not only in the event to
event block grouping algorithms but also in the resource discovery and resource building process.

3.8 Open Questions

Automatic user interaction context observation from the software development point of view
seems to be almost “unlimited”. This means that the operating systems and the applications
provide a variety of mechanisms to expose their usage. The questions which are still open are:

� Which sensors have to be developed?

� What kind of context features have to be observed/captured?

� On which granularity level should the context features be sensed?

For studying these questions in respect to the research goal of enhancing automatic task detection
via an ontology-based user interaction context model multiple experiments in diverse domains
were designed and executed. The following chapters will unveil more insights about which context
features are good discriminators for user tasks and hence worth observing for detecting the user’s
tasks automatically.

3.9 Summary

This chapter introduced the term user interaction context and the conceptual model referred to
as the Semantic Pyramid for representing this user interaction context. The user interaction
context ontology (UICO) as a realization of the Semantic Pyramid as an ontology-based user
context model was presented and explained. Furthermore this chapter elaborated on the user
interaction context observation mechanisms implemented and their capabilities to sense the user
interaction context. Furthermore the algorithms for discovering resources and their relations
in the event sensor streams were explained as well as the algorithms for aggregating low-level
events, i.e., user interactions, to event blocks were shown. Hand in hand with the described
algorithms the UICO population mechanisms were revealed. The advantages and disadvantages
of an ontology-based user interaction context observation approach were discussed. At the end
of this chapter lessons learned and open questions regarding automatic low-level user interaction
context observation were mentioned.

74 User Interaction Context Approach

4
Related Work: Task Detection

This chapter gives an overview of the related work in the area of task detection on the computer
desktop. A selection of relevant approaches to this research regarding automatic task detection in
emails (see Section 4.2), in web browsers (see Section 4.3) and on the complete computer desktop
(see Section 4.4) are highlighted in greater detail. A discussion of the relevant literature in respect
to the research of this dissertation rounds off this chapter.

4.1 Introduction

Massive amounts of digital information are available to us today and are still constantly increasing.
No matter if we talk about the information on the world wide web or the numerous documents,
presentations, emails, and multimedia files we store on our computer desktops. Intelligent search
technologies were developed to tackle the challenge of finding and re-finding information [Teevan,
2008] we need for achieving our goals but what is still missing is to understand the user context
in which information is used and produced. Especially the relation between this user context
and the user’s task is of great interest [Callan et al., 2007]. Task detection is an important sub
challenge within user context analysis [Coutaz et al., 2005; Dey et al., 2001]: if the user’s current
task is detected automatically the user can be better supported with relevant information such as
learning and work resources as well as task guidance. The relations between the used resources
and the user’s task also enriches personal information management [Dumais et al., 2003; Teevan
et al., 2008].

Task detection belongs to the field of activity recognition [Andrews et al., 2004; Horvitz
et al., 1998, 1999; Philipose et al., 2004]. In activity recognition the system observes a sequence
of events, tries to determine and understand the goals of the user, and responds to it. Task
detection on the user’s computer desktop can be further categorized into two categories: (i)
task switch detection and (ii) task classification. Task switch detection which is a special
case of the general problem of change-point detection involves “monitoring the behavior of the

75

76 Related Work: Task Detection

user and predicting in real time when the user moves from one task to another” [Shen, 2009].
Task classification deals with the recognition of a class/type of a task. An example for task
classification is to recognize to which class the task “Planning an official journey to the CHI 2009
conference” belongs to. “Planning” would be an example task class for this task according to
the task type classification of knowledge-intensive tasks proposed by CommonKADS [Schreiber
et al., 1999].

The focus in this section is put on approaches for detecting the user’s task on the com-
puter desktop since activity recognition can also be found in the ubiquitous computing
field [Choudhury et al., 2008; Favela et al., 2007; Huynh & Schiele, 2005; Philipose et al., 2004].
In this “off desktop” setting environmental sensors are preferably used as input for the activity
recognition as opposed to system and application sensors used for task detection in computer
desktop environments. For presenting a selection of the state of art approaches in the area of
task detection on the computer desktop the following categorization is used: (i) task detection
in emails, (ii) on the web and (iii) on the whole computer desktop.

4.2 Task Detection in Emails

Email has become a central tool in today’s digital work environment. Since the amount of emails
in the inboxes is continuously increasing several researchers have identified the issue of informa-
tion overload [Whittaker & Sidner, 1996] in the user’s inbox. The research challenges for coping
with the big amount of email data focus on (i) reducing the amount of “unwanted” emails (spam
and junk) [Balamurugan & Rajaram, 2008; Sahami et al., 1998; Segal et al., 2004], (ii) automati-
cally categorizing emails to topics [Cselle et al., 2007; Mock, 2001], (iii) email folders [Kiritchenko
& Matwin, 2001] and (iv) activities [Dredze et al., 2006; Kushmerick & Lau, 2005]. Text clas-
sification [Balamurugan & Rajaram, 2008; Boone, 1998] is one of the most popular approaches
for classifying emails. In these approaches classifiers are trained based on the text content of an
email. The majority of text-based email classification systems would use classification algorithms
such as Näıve Bayes, rule learners, and support vector machines reported Dredze et al. [2006].

Regarding activity detection in emails, unsupervised learning approaches [Cselle et al., 2007;
Kushmerick & Lau, 2005] and supervised ones [Dredze et al., 2006] were employed. Dredze
et al. [2006] have developed the SimSubset, SimOverlap and SimContent algorithm in order to
classify emails into activities. The first two algorithms compared the people involved in an activity
against the recipients of each incoming message whereas the SimContent algorithm used a variant
of latent semantic indexing called iterative residual rescaling [Ando & Lee, 2001] to classify emails
into activities using the similarity based on message contents. They reported 93% accuracy of
detecting activities by using the message content and message metadata (subject, sender, receiver)
and the network of people involved in an activity. Kushmerick & Lau [2005] described an activity
management system that clustered the user’s email into user activities. This system considers
the challenge of automatically learning an activity’s structure which was modeled as a finite state
automaton in order to derive workflow models. By utilizing text classification and clustering to
attach labels, they reported accuracy values between 86% and 94% correctness in identifying the

Task Detection in Web Browsers 77

next state of an activity, the end of an activity and the “message overlap”1.

4.3 Task Detection in Web Browsers

Kellar & Watters [2006] noted that the knowledge of a user’s current task type would allow
information filtering systems to apply useful measures for user interest. For that they studied the
predictability of the task types Fact Finding, Information Gathering and Transactions in web
browsers. Especially they focused on discovering the features significant for a specific task type.
From a study with 21 participants consisting of university computer science students and 1192
tasks , they found strong differences in how the participants interacted with their web browsers
during different tasks. By utilizing decision trees on the recorded task executions data they could
successfully identify the task types of 53.8% of the task instances via stratified 10-fold cross-
validation. In the first results of their experiments they discovered a high degree of variability
across the participants implicit measures such as dwell time2, number of pages viewed, and number
of windows loaded. Driven by these results they trained the learning algorithm on the data from
participants who performed more than 30 tasks separately. Hereby they achieved between 43.6%
and 94.3% accuracy. An overview of all implicit measures used is given in Figure 4.1.

In 2008 Gutschmidt et al. [2008] studied different characteristics of user behavior regarding the
execution of tasks of the task types similar to [Kellar & Watters, 2006; Kellar et al., 2007]. They
carried out a laboratory study with 20 students and employees of a university solving exemplary
exercises on a single newspaper web page. The results showed that there were differences in the
discriminating power for task types of the page view attributes average page view duration, number
of page views per minute, number of unique URLs in proportion to the total number of page views
as well as the time spent on the start page of the newspaper web page. In comparison to [Kellar
& Watters, 2006] in which the Microsoft Internet Explorer was used, Gutschmidt et al. [2008]
observed the user’s interactions in the Mozilla Firefox browser via a self-developed extension.
Mouse events, scrolling, keystrokes, tab events, browser events, page events were captured during
the experiment sessions. The number of user context features captured were a subset of the ones
observed by [Kellar et al., 2007].

4.4 Task Detection on the Computer Desktop

One of the earliest systems for eliciting user goals was developed by Microsoft in the research
project Lumiere [Horvitz et al., 1998]. The Lumiere system is a predecessor of the Microsoft
Office assistant application, nicknamed “Microsoft Clippy”, that assists the user in fulfilling her
tasks based on a learned user model from user behavior. In Lumiere they used a Näıve Bayes
user model derived from user interactions within the Microsoft Office applications to predict the
user’s goals as well as valuable learning content for the user. Lumiere is restricted to building user

1The message overlap is the overlap between the predicted and correct transitions’ messages [Kushmerick & Lau,

2005].
2The dwell time is the amount of time participants spend reading and interacting with a particular web page [Kellar

et al., 2007]

78 Related Work: Task Detection

Figure 4.1: Implicit measures logged during Kellar et al. [2007]’s field study about predicting tasks based

on user interaction in web browsers. The figure is taken from [Kellar et al., 2007].

models from user interactions within Microsoft Office applications. Fenstermacher & Ginsburg
[2002] argued that cross-application integration would be one of the key features of any user
activity monitoring software.

In 2005 Fenstermacher [2005] worked on identifying processes based on low-level events and
tasks derived from the complete user desktop by utilizing the TaskTracer system [Dragunov
et al., 2005]. The study participants were graduate students who were asked to write a sum-
mary of Radio Frequency Identification (RFID) technology and to create a corresponding brief
Microsoft PowerPoint slide in 90 minutes. This study was “simply a test of the technology and
its installation, and not a carefully controlled experiment” [Fenstermacher, 2005].

Czerwinski et al. [2004] carried out an in situ diary study for identifying task switching and
interruption experiences of ten knowledge workers over the course of a week. They found out
that (i) an average of 1.75 documents were utilized in an activity, (ii) the majority of tasks were
described as routine tasks (27%), email related tasks (23%) and project-related (18%) tasks and
(iii) more complex tasks, i.e., tasks that lasted longer and included more documents were difficult
to switch to. They concluded that methods for capturing and remembering representations of
tasks may be valuable in both reminding users about suspended tasks and in assisting users to
switch among the tasks.

A selection of the most relevant task detection approaches to this thesis research is pre-
sented in greater detail in the following sections.

Task Detection on the Computer Desktop 79

4.4.1 ActivityExtractor

The ActivityExtractor system [Mitchell et al., 2006] extracts knowledge about the user’s activities
from emails based on raw workstation data via a clustering approach. Specific to the approach is
that not only emails are considered for extracting activities or for classifying emails into activities
but also the whole desktop content made accessible via the Google Desktop Search 3 index. Using
this sophisticated search index the ActivityExtractor system can retrieve data about non email
related sources like e.g., the online calendar of the user or the distribution of text terms in the
index. This is also the reason why the ActivityExtractor system is mentioned in this section
rather than in the previous email-based task detection section.

Mitchell et al. [2006]’s approach has three steps: (i) cluster emails based on the content of
the email collection inclusive calendar meetings and person names, user-specified number of clus-
ters and a set of activity names as input, (ii) perform social network analysis on each cluster
based on the sender-recipient graph and (iii) construct a structured representation of each ac-
tivity cluster as well as associating calendar meetings and person names with the activity. The
output representation is an activity description consisting of (i) keywords, (ii) list of senders
and recipient, (iii) fraction of user emails in this activity cluster, (iv) fraction of emails au-
thored by the user in this activity cluster, (v) meetings as well as (vi) person names. They
studied their approach based on a dataset from three user workstations. The three users A,
B, C input a set of emails (A=2822,B=420,C=617), meeting text strings (A=1231,B=25,C=0),
email addresses (A=2159,B=385,C=293), person names (A=470,B=76,C=56) and activity names
(A=23,B=8,C=11). For each user they evaluated the performance of their approach separately.
The accuracy values for correctly assigning emails to tasks were 73%, 80% and 83% for A, B and
C respectively. They reported a positive influence of using social network analysis to refine the
activity clusters initially formed based on email content clustering by an increase of 15% to 17%
in the achieved accuracy. Furthermore they highlighted that the accuracy of the activity cluster
also improved through utilizing the user activity names and the Google Desktop Search index.

4.4.2 APOSDLE Task Predictor

APOSDLE (Advanced Process-Oriented Self- Directed Learning Environment) is a framework
that enhances the productivity of knowledge workers by integrating learning, teaching, and work-
ing [Lindstaedt et al., 2005, 2008b]. In this project a task prediction component was developed
that observed various user context features from the complete user’s computer desktop in order
to predict the active task of the user at any point in time [Lokaiczyk & Goertz, 2009; Lokaiczyk
et al., 2007]. An overview of all the observed user context features is given in Figure 2.4.

In [Lokaiczyk et al., 2007] they studied the performance of decision trees, rule learners, Näıve
Bayes, the incremental reduced error pruning (IREP) algorithm [Fürnkranz & Widmer, 1994] and
support vector machines (SVM). The influence of the data preprocessing methods (i) splitting full
text into textual features, (ii) information gain attribute selection and (iii) filtering frequent and
noisy events as well as the number of used training samples were in focus of their investigations.

3Google Desktop Search: http://desktop.google.com

http://desktop.google.com

80 Related Work: Task Detection

For real time task detection they developed a window slice algorithm that split the observed
contextual features into a training instance for the classifiers every t seconds.

For evaluating their approach Lokaiczyk et al. [2007] designed an experiment with business
tasks such as market analysis, product design and specification, find and contact suppliers, contract
placement, and triggering production. These tasks were executed several times by one student
in order to generate the evaluation dataset. The performance of the different classifiers were
measured by applying stratified 10-fold cross-validation on the dataset. In [Lokaiczyk et al.,
2007] they reported a task detection accuracy of about 85% with SVMs. They suggest that the
window size should not be lower than 5 seconds and should not exceed 30 seconds in order to
achieve good accuracy values. Regarding the detection of window slices they noted that almost
full coverage was achieved. From the paper Lokaiczyk et al. [2007] it is not clear in which ways the
observed user context information is utilized to construct the training instances for the classifiers.

4.4.3 Dyonipos Task Recognizer

The Dyonipos [DYONIPOS, 2006; Granitzer et al., 2009b; Tochtermann et al., 2006] project
aimed at supporting both knowledge workers and process engineers. For knowledge workers
Dyonipos provided information need detection and proactive context-aware information delivery
services [Rath et al., 2007] as well as personal information management support [Rath et al.,
2008] in order to increase the productivity of knowledge workers. For the process engineer Dy-
onipos allowed to get insights into the knowledge workers working behavior and provided the
process engineer with a support environment with advanced process modeling services, such as
process visualization, standard process validation, and ad-hoc process analysis and optimization
services [Rath et al., 2006]. In the course of the Dyonipos project a task detection component
was developed. Part of the following described research was also contributed by this dissertation
effort and elaborated in detail by Granitzer et al. [2008] and Granitzer et al. [2009a]. An example
is the conceptual model about the user interaction context, the Semantic Pyramid, on which also
the ontology-based task detection approach described in Section 5 builds.

The goal of the task detection component of Dyonipos was to discover the current task of
the user by utilizing classification algorithms and automatically observable user context features.
User context features consisted of the window title, the application name, the content and the
semantic type. The application name field contained the abbreviation of the application the user
was working with. In the content field the content of the current window was stored. In the
window title field the title of the current window of the application in focus was stored. The
semantic type field contained a rule-based application depended type generated based on the
observed context features, e.g., read, write, or unknown. For preprocessing these user context
features they performed: (i) remove end of line characters, (ii) remove markup, e.g., \&lg and
![CDATA, (iii) remove all characters but letters, (iv) remove German and English stopwords as well
as formed bag of words for all fields and calculated the tf/idf 4 measure. For attribute selection
the information gain (IG) measure was used.

Granitzer et al. [2008] evaluated classifiers and user context features for their applicability

4tf/idf: term frequency-inverse document frequency

Task Detection on the Computer Desktop 81

to the task detection challenge by utilizing a dataset gathered from one user during a four week
study in Austria’s ministry of finance. They manually relabeled the training instances which
were build on an event block basis, i.e., one training instance for the classifier resulted for each
event block. By this method they constructed two datasets I and II. Dataset I and II contained
5 classes (email handling, paper writing, research, documentation, information collection) and
4 classes (communication, organization, writing, reading) respectively. This manual relabeling
of the training data by a single expert based on the user assigned labels may have introduced
wrong labels. In their evaluation the influence of three parameters was evaluated: (i) the number
of attributes (ii) the classification model (Näıve Bayes, Support Vector Machines and k-Nearest
Neighbor) and (iii) the field combination. On dataset I the k-Nearest Neighbor (k=1) performed
best with the semantic type and content features with an accuracy of 74.51%, with 156 attributes,
a precision of 0.91 and a 0.75 recall. On dataset II the k-Nearest Neighbor (k=1) performed best
with the window title feature with an accuracy of 76.42%, with 188 attributes, a precision of 0.90
and a recall of 0.74.

4.4.4 Smart Desktop

The Smart Desktop system [Lowd & Kushmerick, 2009] is a desktop information management
application for information workers. It was inspired by the TaskTracer system [Dragunov et al.,
2005]. In the Smart Desktop system there is a task detection component that allows to auto-
matically infer the current project the user is working on. The hypothesis of their approach is
that characteristics of the resources being accessed at a given point in time and the aspects of
the user’s ongoing activities (recent project, resources, etc.) are related.

Lowd & Kushmerick [2009] see the project prediction problem as a classical machine learning
problem, more specifically a classification problem. For training the classification algorithms they
engineer four different types of features based on automatically observed user context data: (i)
resource features, (ii) past project features, (iii) salience features and (iv) shared salience features.
Resource features consist of attributes about the utilized resources in a project including full URI
of the resource, meaningful sub-path of the URI, first 100 words in the body of a resource, the
resource type (e.g., web page, email, calendar entry, document, etc.) as well as specific fields of
email messages. The past project features consist of attributes representing the last k projects
the user worked on. The salience features result from the idea to recognize the similarity between
current and recent user activities. A particular attribute of a resource feature which was last seen
within a particular project represents a new attribute. In order to keep the number of generated
attributes low only the feature types were used for building new attributes. The shared salience
features were introduced to reduce the number of weights introduced by the set of salience features.
A shared salience feature is constructed for each type of resource feature. The computation of
the value of a shared salience feature is done by calculating the number of observed attributes of
a particular type that was seen most recently in a particular project.

For evaluating the performance of their proposed features they recorded usage data from
five employees over a two-week period in a real-world setting. They collected for each employee
between 161-1181 resources distributed over 26-40 projects. This dataset also included 465-5036
time segments of activity data for each user. They evaluated four machine learning algorithms by a

82 Related Work: Task Detection

leave-one-out evaluation on a user basis: (i) the Näıve Bayes algorithm, (ii) the passive-aggressive
algorithm, (iii) logistic regression and (iv) linear support vector machines. Their baseline was an
expert system that combined expert knowledge and educated guesses. Users were asked to select
from the engineered features a set of features to build the expert system. Lowd & Kushmerick
[2009] reported that the Näıve Bayes algorithm was as competitive as the expert system and that
the linear support vector machine made 10% fewer errors than the expert system. In conclusion
they suggest to have data from several months and train logistic regression or linear support
vector machine on the user’s own data. From the paper by Lowd & Kushmerick [2009] it is
unclear how high the detection accuracy, recall values or precision values were because only the
error rates of the approaches were reported.

4.4.5 SWISH

SWISH [Oliver et al., 2006] followed an unsupervised approach to identify the tasks of the user.
The underlying assumption was that windows belonging to the same task share a common set
of features. SWISH constantly monitors the user’s desktop activities and utilizes the recorded
stream of window events for extracting features for the clustering algorithm. Oliver et al. [2006]
distinguished two types of context features on which they based their task detection on: (i)
semantic similarity of window titles and (ii) temporal closeness.

The semantic similarity is computed based on word term vector representation of window
titles. The window titles are preprocessed with stopword removal, splitting long words, and
removing common application specific words as well as applying simple stemming and tf/idf -
computation5. Analysis of patterns of window usage, i.e., how the windows were accessed by the
user, constituted the temporal closeness feature. This features is based on the observation that
related windows are used in a temporal sequence. Based on the transitions between the windows
a window switching matrix is constructed. This matrix includes the number of switches between
the windows and is used to construct a directed graph. In this graph the windows and transitions
are represented by nodes and edges respectively. The weights of the edges are calculated based
on the number of switches from the window where the edge starts to the window where it ends.
Edges under a certain threshold are eliminated. The rest of the graph is used as input for the
Bron-Kerbosch algorithm [Bron & Kerbosch, 1973] that groups the nodes related to each other
together. The resulting groupings represent tasks. Based on these two types of features clustering
was performed. SWISH does not need an advance labeling and hence no additional work on the
user’s side.

Oliver et al. [2006] reported task detection accuracy values of about 70% based on over 4 hours
of real usage data observed from a single user. The dataset contained 5 tasks which were manually
labeled for evaluating the clustering algorithm. In the experiments they employed a window size
of 5 minutes and a threshold of 3 for constructing the directed graph of the window switching
sequence. They also mentioned that 20% to 30% of the windows did not belong to any of the
main 5 tasks. Furthermore they noted that applying the preprocessing steps had a high impact
on the accuracy of their automatic task detection approach. With window title preprocessing

5tf/idf: term frequency versus inverse document frequency [Witten & Frank, 2005]

Task Detection on the Computer Desktop 83

0.49 precision and 0.72 recall values were achieved in comparison to 0.39 precision and 0.65 recall
values without applying the preprocessing. SWISH always used the full range of attributes and
did not apply any attribute selection methods. Although the accuracy values with 70% for a
clustering approach are good, the resulting clusters such as “buying a book of Harry Potter” do
not seem to generalize well since the keywords representing the cluster were too specific to allow
an abstraction for other books [Granitzer et al., 2008] For future work they intended to look into
other types of features that can be added in order to improve the task detection results.

4.4.6 TaskPredictor1

TaskTracer [Dragunov et al., 2005] is an intelligent activity management system that supports
the organization and re-finding of information based on activities, predicts folders the user is most
likely to access and detects task switches.

For detecting task switches the TaskPredictor 1 component [Shen et al., 2006] of the Task-
Tracer system was developed. This component observes a sequence of events and constructs
window document sequences (WDS) from it. For each WDS the window title, the file path name
and the URL of web pages are extracted and represented as a set of words. This set of words is
represented as a term vector in which each word is a binary variable that is set to 1 if the term
appears in the WDS else to 0. For preprocessing a stopword list is used to eliminate very common
words. Furthermore the Porter stemmer [Porter, 1997] is applied to stem English words to their
roots. For attribute selection mutual information is employed. Mutual information, one of the
most common measures of relevance for machine learning [Yang & Pedersen, 1997], is applied to
select the 200 attributes with the highest predictive power. For the task switch detection a Näıve
Bayes classifier is trained to decide whether to make a prediction or not. If the confidence of the
classifier decision is over a certain threshold a prediction of the task switch is generated by using
a support vector machine (SVM) [Joachims et al., 2001].

Based on a dataset obtained from two users that included 177 tasks and about 10000 task
switches TaskPredictor 1 was able to attain a precision of 80% with a coverage of 10% for one
user and a precision of 80% with a coverage of 20% for the other user [Shen et al., 2006].

4.4.7 TaskPredictor2

The TaskPredictor2 [Shen, 2009; Shen et al., 2009] utilizes an online learning algorithm that
only needs to take the last observation into account to update the classifier which reduces the
computational costs. Driven by the disadvantages of the approach of TaskPredictor 1 the focus
of TaskPredictor 2 was on increasing accuracy, memory and CPU costs, prediction delay and
interruption cost as well as proactive association changes. This resulted in a new task switch
detection system that computes an information vector for each minute that summarized the
state of the user’s desktop. Based on the comparison of two information vectors at time t and
t − 1 a prediction for a task switch is made. The information vector contains two types of
features [Shen, 2009]: (i) task-specific features and (ii) switch-specific features. Task-specific
features are the strength of association of the active resource with a task, the percentage of open
resources associated with a task and the importance of a window title word to a task. Switch-
specific feature are the number of resources closed in the last s seconds, the percentage of open

84 Related Work: Task Detection

resources that were accessed in the last s seconds and the time since the user’s last explicit task
switch.

For evaluating their approach they deployed their system in their research group and collected
manually labeled data from two regular users. The dataset consisted of 304 different tasks, about
4000 task switches as well as about 70000 information vectors. It was unbalanced since one user
contributed 4 months and the other one 6 days of usage data. From the figures presented in [Shen
et al., 2009] an accuracy increase of about 10% in comparison to TaskPredictor1 can be observed.
There are no precision and recall values directly given for the best detection performance in [Shen,
2009; Shen et al., 2009] but instead figures presenting the precision as a function of the recall by
varying the confidence threshold required to make a prediction are given.

4.4.8 Task Switch Detection Approach by Nair et al. in 2005

Nair et al. [2005] designed a software systems that is able to identify the task switches of a user
based on low level window manipulation data. This approach developed their own task switch
detection algorithm an does not utilize machine learning algorithms. The underlying assumption
of the approach is that there is a difference in the user behavior for the user interaction activities
involved for switching a task in comparison to normal work. More specifically, they hypothesized
that a task switch results in window operations with a different frequency than for normal work.
Window operation considered by their approach are create, activate, maximize, minimize, hide,
show and destroy a window which are automatically captured by their software systems via
hooking into the window system events on the Microsoft Windows operating system. Based on
the observed window operations the detection algorithm calculates (i) the average time between
window events for a given task, (ii) the simple moving average of the time between the last k
interactions and (iii) the ratio between the overall task average and the moving average. If this
ratio is above a certain threshold the system signals a task switch to the user via a pop-up window.
The system hereby can detect task switches without requiring an identification of the underlying
task itself.

In order to evaluate their approach Nair et al. [2005] designed a two week study with six
participants consisting of two professors, three graduate students, one IT professional. At the end
of this two study they did questionnaires and interviews for gathering user feedback about their
system. A dataset of 1033 task switches were collected. The system managed to correctly identify
422 task switches which are 40.86% percent of the whole dataset. On a singular participant basis
the detection accuracy ranged from 21.33% to 94.74% with a mean of 50.12%. Nair et al. [2005]
also reported the following three insights about their results: (i) their system was not able to detect
task switches if the user switches between tasks very quickly, (ii) the use of instant messaging
decreases the detection accuracy (“The Instant Messaging Effect”), because the software system
detected instant messaging usage as a task switch while users felt that this was not a new task
but just a side channel of information, and (iii) considering the last 7 windows together with the
threshold limits between 0.67 and 1.5 for the ratio provide a good balance between accurate task
switch detection and the false positive alarm rate. In future work they planned to investigate
additional features for the detection algorithm, e.g., the web browser URL information, as well
as allowing the user to manually specify windows to ignore. Dynamically adapting window sizes,

Discussion about existing Task Detection Approaches 85

threshold values and user pop-up notifications were part of their future work.

4.5 Discussion about existing Task Detection Approaches

Task detection is classically seen as a machine learning problem. Some approaches focused on
unsupervised learning approaches [Cselle et al., 2007; Kushmerick & Lau, 2005; Oliver et al.,
2006] whereas some explore the applicability of supervised learning algorithms to the task
detection challenge [Dredze et al., 2006; Granitzer et al., 2009a; Kellar et al., 2007; Lokaiczyk
et al., 2007; Lowd & Kushmerick, 2009; Mitchell et al., 2006; Oliver et al., 2006; Shen et al.,
2006, 2009]. In [Shen et al., 2006] also a combination of two supervised learning algorithms
was utilized for the task prediction, namely the Näıve Bayes algorithm for deciding if a new
prediction should be calculated and the support vector machine algorithm for the prediction
itself. A special case among the presented approaches is the task switch detection approach by
Nair et al. [2005] because it does not use a machine learning algorithm. Instead they developed
an algorithm based on the frequency of the observed window operations of a user.

The task detection approaches for the computer desktop presented in Section 4.4 are es-
pecially relevant for this dissertation and hence discussed in further detail regarding features,
class instance construction, algorithms, attribute selection, evaluation methods as well as used
datasets and the corresponding evaluation results. A summary of these aspects is visualized in
Table 4.1.

Features: All the presented approaches utilize text-based features. Among the most fa-
mous text-based features are the “window title” feature, the “file/web page URL” feature and
the “content of a resource” feature. The APOSDLE and DYONIPOS systems only concentrate
on text-based features. SWISH is the only task detection approach next to the task switch
detection approaches that use sequence-based features. SWISH refers to this feature as the
“temporal closeness” feature, that takes into account the temporal sequence of application
windows.

The Activity Extractor and the TaskPredictor 2 approaches utilize structure-based features
next to text-based features for clustering emails to activities and for identifying a task switch
respectively. Structure-based features are ones that include some kind of relation between entities,
e.g., task with resource, or person with person. The Activity Extractor approach constructs a
sender-recipient graph and performs social network analysis on this graph in order to refine the
activity clusters detected based on text-based features. TaskPredictor 2 includes the “strength
of association of the active resource with a task” as a feature. Both approach report an accuracy
increase through including structure-based features.

For assigning time-segments of user activity data to projects the Smart Desktop approach
employs next to text-based features also sequence-based ones. It uses “past project features”,
“salience features” and “shared salience features” for recognize the similarity between current
and recent user activities. However, the number of features that have been used for task
detection is very small and hence possibly limited in adapting to new domains. The evaluation
results of the approaches seem to rely mainly on the good performance of the “window title”

86 Related Work: Task Detection

feature and hence may not adapt well to situations in which this specific feature has a low task
discriminating power (see Section 7.6). None of the approaches utilize an ontology model for
engineering features or combinations of features. This dissertation will argue later that features
engineered from an ontology model will outperform classical text-based features of Dyonipos,
SWISH and TaskPredictor 1 (see Chapter 7).

Class Instance Construction: The task detection approaches on the computer desktop
disagree on how to build training instances for classifiers. The result of this disagreement is
that they are difficult to compare among each other6. Lokaiczyk et al. [2007] suggests using a
sliding window approach with a window size of 5 to 30 seconds. In SWISH, TaskPredictor 1 and
TaskPredictor 2 intervals of 300 seconds, 60 seconds and 20-60 seconds were used respectively.
In comparison to a time-based boundary Dyonipos utilized the boundaries of an event block7

for constructing training instances. When comparing the task detection performance measures
reported by the mentioned approaches someone has to be aware that the results origin from
training instances of different “size”. By varying the size of a training instance the accuracy of
the task detection can vary as well. None of the approaches compare the detectability of tasks
on the “task level”. Task level here means that a single training instance for the classifier is
constructed based on the usage data of a fully executed task. In order to study the discriminative
power of user context features for specific tasks one training instance should be constructed
based on the usage data of one executed task.

Algorithms: Different influencing factors for task detection were evaluated for (i) the
type of classifier [Granitzer et al., 2009a; Lokaiczyk et al., 2007], (ii) the number of at-
tributes [Granitzer et al., 2009a; Lokaiczyk et al., 2007; Shen, 2009] (iii) different user context
feature combinations [Granitzer et al., 2009a; Lokaiczyk et al., 2007] as well as (iv) various
feature preprocessing methods [Lokaiczyk et al., 2007; Oliver et al., 2006]. The classification
approaches to task detection agree to use standard machine learning measure like accuracy,
precision and recall for evaluating task detection performance. However, they do not agree on
the classifier that works best. Although, there is a slight tendency that the Näıve Bayes and the
linear Support Vector Machine algorithms work well.

Attribute Selection: Some of the presented task detection approaches utilize an at-
tribute selection algorithm for identifying the most discriminative attributes on which the
classifier should be trained. The approaches agree that Information Gain [Witten & Frank,
2005] is one of the attribute selection algorithms of choice [Granitzer et al., 2009a; Lokaiczyk
et al., 2007; Shen, 2009]. These approaches agree that suggested number of attributes for train-
ing the classifiers should be between 100 to 300 attributes. This can also be observed in Table 4.1.

Evaluation Method: The evaluation method used for assess the task detection or task
switch detection performance varies. While APOSDLE and DYONIPOS use stratified 10-fold

6A detail discussion on this topic is given in Section 7.2.2.
7An event block represents all interactions with a single resource.

Summary 87

cross-validation, TaskPredictor 1 and 2 use train/test set evaluation. The evaluations of the
Activity Extractor and the task switch detection system of Nair et al. [2005] involve the user
in evaluating the approach’s performance. In the Activity Extractor approach user determine
which of their activities was best represented by a sub-cluster and then assign a label for the
emails in the cluster [Mitchell et al., 2006]. Nair et al. [2005]’s system asks the user each time it
detects a task switch to confirm if a task switch has happened or not.

Dataset: The datasets used to evaluate the task detection approaches on the computer
desktop mentioned in this section are rather small, i.e., origin only from experiments with one
or two users. Furthermore the datasets gathered from real world experiments (i) might have
introduced noise in the user labeling [Shen et al., 2006] or expert relabeling process [Granitzer
et al., 2009a], (ii) do not generalize well [Oliver et al., 2006], (iii) were done by non-domain
experts [Lokaiczyk et al., 2007] or (iv) were unbalanced regarding training instances [Mitchell
et al., 2006]. Details about the dataset, the number of users involved and the evaluation results
are given in Table 4.1. In order to study the influence of user context features and machine
learning algorithms balanced datasets are preferable. Such datasets are difficult to gather in
a real world setting because of the working behavior of people and the continuous changing
requirements of a real-world setting. A possible solution to get to a well-balanced task detection
dataset from several domain experts of a domain a controlled setting, i.e., a laboratory setting,
is required. In Chapter 7 the design of three laboratory experiments with multiple users in two
different domains are described that fulfill the mentioned requirements and can be utilized to
study the influence of features for task detection.

Evaluation Results: The accuracy values reported by the task detection approaches
range from 70% to 85%. A direct comparison of these accuracy values has to be done with
caution since the datasets on which these results are achieved differed in terms of (i) number of
classes, (ii) number of class instances, (iii) number of users, (iv) type of studied tasks and (v)
the used evaluation method.

In comparison to the mentioned existing approaches the ontology-based feature engineer-
ing and task detection approach introduced in this dissertation utilizes an automatically
populated user interaction context ontology (see Chapter 3) for studying and enhancing
automatic task detection on the computer desktop (see Chapter 5 and Chapter 7).

4.6 Summary

This chapter gave an overview of the related work about task detection. Task detection in emails,
in web browser and on the complete computer desktop were described and discussed. A special
focus was put on presenting task detection approaches for detecting tasks on the whole computer
desktop. A discussion about the related task detection research in respect to the research of this
dissertation rounded off this chapter.

88
R

elated
W

ork:
T

ask
D

etection
Approach Detection Features

Class

Instance

Construction

Algorithms
Evaluation

Method
Dataset

T
a
sk

T
a
sk

S
w

it
ch

P
ro

je
c
t

T
e
x
t-

b
a
se

d

S
e
q
u
e
n
c
e
-b

a
se

d

S
tr

u
c
tu

re
-b

a
se

d

ID
3

IR
E

P

J
4
8

K
N

N

L
o
g
is

ti
c
-R

e
g
re

ss
io

n

N
ä
ıv

e
B

a
y
e
s

P
L

S
I

S
M

O

S
V

M

C
lu

st
e
ri

n
g

(U
n
k
n
o
w

n
)

O
th

e
r

A
t
t
r
ib

u
t
e

S
e
le

c
t
io

n

C
ro

ss
-V

a
li
d
a
ti

o
n

L
e
a
v
e

O
n
e

O
u
t

T
ra

in
/
T

e
st

S
e
t

O
th

e
r

R
e
a
l-

W
o
rl

d
(r

)/
L

a
b
(l

)

#
U

se
r(

s)

#
C

la
ss

e
s

#
In

st
a
n
c
e
s

#
A

tt
ri

b
u
te

s

A
c
c
u
ra

c
y

P
re

c
is

io
n

R
e
c
a
ll

Activity
Extractor

x x x Email x x x8 r 1 23 2822 ? 73%
x x x Email x x x8 r 1 8 420 ? 80%
x x x Email x x x8 r 1 11 617 ? 83%

APOSDLE x x 30sec Sequence x x x x x x x l 1 5 591 200 85% ? ?

Dyonipos
x x Event Block x x x x x r 1 5 ? 156 73.6% 0.91 0.75
x x Event Block x x x x x r 1 4 ? 188 76.4% 0.90 0.74
x x Task9 x x x x x x l 14 5 218 300 83.5% 0.95 0.85

SWISH x x x 5min Sequence x x x r 1 5 ? ? 70% 0.49 0.72

Task
Predictor 1

x x WDS10 x x x x r 1 96 5894 200 ? 0.8 ?
x x WDS10 x x x x r 1 81 4151 200 ? 0.8 ?

Nair et al.
2005

x x x x11 r 1 54/4712 94.7%
x x x x11 r 1 43/7612 56.6%
x x Interaction x x11 r 1 123/36712 33.5%
x x Sequence13 x x11 r 1 117/21712 53.9%
x x x x11 r 1 37/9112 40.7%
x x x x11 r 1 48/22512 21.3%

Task
Predictor 2

x x x Info-Vector14 x ? x r 1 3657 65049 ? ? ?15 ?15

x x x Info-Vector14 x ? x r 1 359 3641 ? ? ?15 ?15

Smart Desktop x x x 1 User Interaction x x x x x x r 4 26-40 465-5036 ? ? ? ?

Table 4.1: This table gives an overview of the task detection approaches for the computer desktop presented in this chapter. The “x” and the “ “ signal that the

criterion is met or not respectively. The question mark “?” indicates that no information about the criterion was available.

8User evaluation methodology: the emails were clustered to activities and compared to ground truth labels from each user. The users examined each cluster and “determined

which of their activities was best represented by the sub-cluster, then assigned this as true label for emails in the cluster” [Mitchell et al., 2006].
9These task detection results stem from the evaluations described in Section 7.4.2. They have also been published as part of [Granitzer et al., 2009a].

10The window document sequence (WDS) is “the maximal contiguous segment of time in which a particular window has focus and the name of the document in that window

does not change. [Shen et al., 2006]
11User evaluation methodology: every time the system detects a task switch the user is asked to confirm if a task switch has happened or not.
12The first number indicates how many task switches have correctly been detected, i.e., confirmed by the user. The second number indicates the total number of switches

detected by the system.
13The Nair et al. [2005]’s detection algorithm is based on the observed window operations and calculates (i) the average time between window events for a given task, (ii) the

simple moving average of the time between the last k interactions and (iii) the ratio between the overall task average and the moving average to make a prediction.
14An information vector is constructed every 20-60 seconds and based on (i) task-specific features and (ii) switch-specific features [Shen, 2009].
15There are no precision and recall values directly given for the best detection performance in [Shen, 2009; Shen et al., 2009] but instead figures presenting the precision as a

function of the recall by varying the confidence threshold required to make a prediction are given.

5
Ontology-Based Task Detection

Approach

The purpose of this part of the thesis is to introduce the ontology-based task detection approach
proposed in this dissertation research. It is a novel approach to task detection that combines
semantic technologies with machine learning in order to improve task detection. This chapter
elaborates on the utilization of the ontology-based user interaction context ontology (UICO)
presented in Section 3.3 for enhancing the performance of the machine learning problem automatic
task detection.

In this approach the UICO is utilized to engineer novel features and feature combinations for
doing automatic task detection. 50 features classifiable into 5 feature categories are extracted
from the UICO. On behalf of the ontology-based task detection pipeline this chapter explains the
transformation of the user interaction context stored in the UICO to (training) class instances
of machine learning algorithms (training instance construction) in Section 5.2 and elaborates on
the construction and preprocessing of each feature (feature engineering) in Section 5.3.

5.1 Introduction

A classical approach to automatic task detection is to model it as a machine learning problem,
more specifically a classification problem. This approach has been used for recognizing web based
tasks [Gutschmidt et al., 2008; Kellar & Watters, 2006], tasks within emails [Dredze et al., 2006;
Kushmerick & Lau, 2005] or from the complete user’s desktop [Granitzer et al., 2008; Lokaiczyk
et al., 2007; Oliver et al., 2006; Shen et al., 2007]. All these approaches are based on the following
steps [Rath et al., 2009d]: First, the contextual attention metadata has to be captured by context
sensors. Second, it has to be chosen which parts of the data (features) are used for building the
training instances for the machine learning part. Since these features can not directly be used

89

90 Ontology-Based Task Detection Approach

as inputs for machine learning algorithms the third step is to transform the context features
into attributes [Witten & Frank, 2005]. This transformation may also include data preprocessing
operations. An example for the famous window title feature is the summarization of the words
appearing in the window title into a “bag of words” then transformed into word vector format. For
text-based features, preprocessing steps like removing stopwords [Granitzer et al., 2008; Lokaiczyk
et al., 2007; Shen et al., 2007] or application specific terms [Oliver et al., 2006], are applied. The
fourth step is to apply attribute selection algorithms [Granitzer et al., 2008; Shen et al., 2006] to
select the most important attributes for the learning algorithms (optional). The fifth step is the
training and testing of the learned model. A widely used method for testing the task detection
performance of the mentioned approaches was stratified 10-fold cross-validation [Witten & Frank,
2005].

5.2 Training Instance Construction

Constructing training instances for the machine learning algorithms is done on the task level.
This means that each task represents a training instance for a specific class to be learned. A class
corresponds to a specific task model. Having multiple task models hence results in a multi-class
classification problem. In Figure 5.1 the conceptual and the ontology view for constructing a
training instance for a class is shown. A training instance for a class is built from features and
feature combinations of the user interaction context of an instance of a Task concept. A sample
task instance used in the training instance construction process is displayed in Figure 5.2. The
process of constructing features representing a task instance and transforming them into attributes
that can be used to train machine learning algorithms is referred to as feature engineering.

The 50 context features engineered for constructing the training instances can be grouped in
six categories [Rath et al., 2009a]: (i) ontology structure, (ii) content, (iii) application (iv) re-
source, (v) action and (vi) switching sequences. The ontology structure category contains features
representing the number of instances of concepts and the number of datatype and objecttype
relations used per task. The content category consists of the content of task-related resources,
the content in focus and the text input of the user. The application category contains the classi-
cal window title feature [Granitzer et al., 2008; Lokaiczyk et al., 2007; Oliver et al., 2006; Shen
& Dietterich, 2007], the application name feature [Granitzer et al., 2008] and the newly intro-
duced graphical user interface elements features (accessibility objects [Microsoft, 2009]). The
resource category includes the complete contents and URIs (URLs) [Shen & Dietterich, 2007] of
the used, referenced and included resources, as well as a feature that combines all the metadata
about the used resources in a ‘bag of words’. The action category represents the user interactions
and contains features about the interactions with applications [Granitzer et al., 2008], resources
types, resources, key input types (navigational keys, letters, numbers), the number of events and
event blocks, the duration of the event blocks, and the time intervals between event blocks. The
switching sequences category comprises features about switches between applications, resources
as well as event types and resource types. Besides the ontology structure category, there are
also new ontology-based features in the action and resource categories. These new features are
constructed based on combinations of concepts with concepts as well as concepts with concept
instances. An example for the first one is the combination of the EventType with the sub-concepts

Training Instance Construction 91

Figure 5.1: This figure visualizes the conceptual and the ontology model for constructing a training in-

stance based on an instance of the Task concept. An instance of the TaskModel concept serves as the class

label for the machine learning algorithms. (1) shows the two populated models, (2) the feature engineering

process for getting a representation of a task as a training instance for the feature selection and learning

algorithms as well as (3) the detection of the task based on the learned classification model.

Figure 5.2: This figure shows the populated UICO of a task instance of a real task instance belonging to

the task model “Planning a official journey” recorded during the task experiment described in Section 7.4.

The graph visualization of the populated ontology was done in the Protégé ontology modeling tool [Protégé,

2009].

92 Ontology-Based Task Detection Approach

of the Resource concept. For the second one the combination of the EventType with an instance
of the TextDocument concept is an example.

A detailed explanation of the six feature categories and the included features together with
the preprocessing steps applied is given in the next Section 5.3.

5.3 Feature Engineering

50 features are engineered based on the concepts and relations of the user interaction context
ontology (UICO). These features are detailed in this section. Furthermore preprocessing steps
and the order in which they are performed are explained and listed for each feature separately.
A complete listing of all features and their corresponding feature category is given in Table 5.1.

Nr. Feature Nr. Feature Nr. Feature

Action Category 20 semantic type 37 objecttype properties
1 EB duration 21 action type of event Resource Category

2 res. types interact. Application Category 38 used res. content
3 control input keys 22 acc. obj. name 39 resource content
4 nr. of E/EB 23 acc. obj. description 40 used res. metadata
5 included res. interact. 24 acc. obj. role 41 referenced resources
6 referenced res. interact. 25 acc. obj. role des. 42 used resources
7 res. interact. 26 acc. obj. value 43 included res. content
8 letter input keys 27 acc. obj. help 44 included res.

9 task duration 28 acc. obj. help topic 45 referenced res. content
10 applications interact. 29 application name Switching Sequence Category

11 navigation input keys 30 window title 46 app. switch seq.

12 EB res. interact. 31 raw event source 47 E type switch seq.

13 mean EB duration Content Category 48 E level res. switch seq.

14 mean time between EBs 32 content of EB 49 E&EB res. switch seq.

15 used res. interact. 33 content in focus 50 E&EB res. type switch seq.

16 action element of event 34 user input
17 median time between EBs Ontology Category

18 number input keys 35 concept instances
19 median EB duration 36 datatype properties

Table 5.1: Overview of all features and their corresponding feature category engineered based on the user

interaction context ontology (UICO).

5.3.1 Standard Text Preprocessing Steps

For standard text-based features the following preprocessing steps are applied in the following
order:

1. fixing the German character encoding1, e.g., ü, ä and ö.

2. remove end of line characters

3. remove multiple blank characters

4. remove null strings

5. remove markups, e.g.,\&lg and ![CDATA

6. remove bracket characters, e.g., (, \{ and [

1This step is required for the data in the first experiment since there was an encoding issue with special German

characters called “Umlaute”.

Feature Engineering 93

7. remove URL encoded characters

8. remove all characters but letters

9. remove German and English stopwords

10. remove words shorter than three characters

11. multiple blanks

12. transform all strings to lower case

13. apply the porter stemmer [Porter, 1997] from the Snowball software package [Porter, 2009]

14. transform all strings to a word vector, where each dimension of the vector represents a word
appearing in the string and the value the number of occupancies of this word

15. tf/idf computation for the values of the word vector according to the Weka tf/idf capa-
bilities [Witten & Frank, 2005]

5.3.2 Action Feature Category

The feature category action category includes features that origin from interactions of the user
with input devices, with resources and and with applications. This category includes 21 different
features that are listed in Table 5.2. The construction procedure and the preprocessing steps
applied to each feature are described in further detail in this section.

5.3.2.1 Feature 1: EB duration

The event block duration (EB duration) feature holds the information about the duration of
interactions with a certain resource. The feature consists of nominal attributes that repre-
sent the 13 intervals of event block durations. The chosen intervals including examples of
interactions for each interval are displayed in Table 5.3. Manual inspection of multiple event
blocks from the data generated during the laboratory studies led to the boundaries of the intervals.

Applied Preprocessing Steps:

1. calculation of the event block duration and the corresponding interval

2. transforming the “interval category strings” into a word vector, i.e., for each category a
new attribute is built and the number of event block durations that fall in this category is
assigned to the attribute’s value

5.3.2.2 Feature 2: res. types interact.

The resource types interaction (res. types interact.) feature represents the number of different
types of combinations of the EventType and the ResourceType concept. These combinations
can be interpreted as how often the user interacted in a specific way with a specific resource
type. An example is a user who clicks on the search button of an online search engine four times.
These interactions result into the event type WebSearch and the resource types OnlineResource.
For each combination a new attribute is built, e.g., attribute WebSearch OnlineResource=4.

94 Ontology-Based Task Detection Approach

Nr. Feature Brief Feature Description

1 EB duration the duration of event blocks in seconds

2 res. types interact. the number of combinations of EventType and

ResourceType

3 control input keys the number of control keys pressed by the user

4 nr. of E/EB the number of events per event block

5 included res.

interact.

the URIs of resources that are included in used

resources

6 referenced res.

interact.

the URIs of resources that are included in used

resources

7 res. interact. the number of combinations of EventType in-

stances and the URI of the used resource

8 letter input keys the number of letters in the keyboard input of the

user

9 task duration the duration of the task in seconds

10 applications interact. the combinations of EventType instances and the

application name

11 navigation input keys the number navigation keys (keyboard and

mouse) pressed by the user

12 EB res. interact. the number of events of the event block that act

on the used resource

13 mean EB duration the mean duration of event blocks of a task in

seconds

14 mean time between

EBs

the mean of the duration between two event blocks

of a task

15 used res. interact. the URI of the used resource

16 action element of

event

the text-based action element of an event sent by

the sensor

17 median time between

EBs

the median of the duration between two event

blocks of a task

18 number input keys the number of numbers in the input of the user

19 median EB duration the median duration of event blocks of a task

20 semantic type the automatically computed textual description of

the user’s interaction

21 action type of event the text-based action type of an event sent by the

sensor

Table 5.2: Overview of all features of the action feature category.

Feature Engineering 95

Interval Example

<1s a single interaction with an application or a resource

2s-3s switch to an application and copying some text content

4s-10s looking up a word in an online dictionary

11s-19s writing an instant message

20s-50s reading a short email

51s-100s reading an online article

101s-200s rephrasing a short text paragraph

201s-500s writing an email

501s-750s writing a long email

751s-1000s calculating a schedule in a spreadsheet application

1001s-2000s rewriting a text paragraph of a document

2001s-5000s drawing a figure

>5000s reading a document

Table 5.3: Intervals of the EB duration feature.

Applied Preprocessing Steps:

1. transforming the combinations into a word vector, i.e., for each combination a new attribute
is built and the number of occurrences of each combination is assigned to the value of the
attribute

5.3.2.3 Feature 3: control input keys

The control input keys feature counts the number of control keys the user has pressed during
the execution of a task. Following keys are considered as control keys: shift key, return key,
F1-F* keys, tabulator key and numpad key.

Applied Preprocessing Steps:

1. discretizing the number of pressed control keys by utilizing the PKIDiscretize filter of
the Weka software package, which transforms the numeric attribute values into intervals.

5.3.2.4 Feature 4: nr. of E/EB

The number of events per event block (nr. of E/EB) feature holds the information about the
number of interactions with a certain resource. The feature consists of nominal attributes that
represent the 12 intervals. The chosen intervals including examples of interactions for each
interval are displayed in Table 5.4. Manual inspection of multiple event blocks from the data
generated during the laboratory studies led to the boundaries of the intervals.

Applied Preprocessing Steps:

1. calculation of the number of events of an event block and the corresponding interval

96 Ontology-Based Task Detection Approach

2. transforming the intervals into a word vector, i.e., for each interval a new attribute is built
and the number of events of an event block instance is assigned to the attribute’s value

Interval Example

1 web browsing, Microsoft Windows Explorer navigation

2-3 selecting and copying some text content

4-19 writing an instant message

20-50 writing a short email

51-100 reading a blog entry

101-200 editing a text paragraph

201-500 creating a single presentation slide

501-750 writing an email

751-1000 writing a paragraph in a document

1001-2000 writing a one page article

2001-5000 writing a long text document

>5000 writing and formatting a long text

Table 5.4: Intervals of the nr. of E/EB feature.

5.3.2.5 Feature 5: included res. interact.

The included resource interaction (included res. interact.) feature counts the number of interac-
tion with a resources that includes another resource. An example is when a user interacts with
a specific part of a web page multiple times. The web page and the part of the web page are
represented as an instance of the OnlineResource concept and the relation includesResource

exists between the two instances. For each included resource a new numeric attribute is created
which holds the number of interaction as its attributes value.

Applied Preprocessing Steps:

1. retrieving the URIs of the included resources and storing them in a single string

2. transforming the URI string into a word vector, i.e., for each included resource a new
attribute is built and the number of interactions is assigned to the attribute’s value

5.3.2.6 Feature 6: referenced res. interact.

The referenced resource interaction (referenced res. interact.) feature counts the number of
interaction with a resources that references another resource. An example is multiple user
interactions with an email that includes a link to a web page. The email and the link are
represented as instances of the EmailResource and OnlineResource respectively as well as
connected with the referencesResource relation. For each referenced resource a new numeric
attribute is created which holds the number of interactions as its attribute’s value.

Feature Engineering 97

Applied Preprocessing Steps:

1. retrieving the URIs of the referenced resources and storing them in a single string

2. transforming the URI string into a word vector, i.e., for each referenced resource a new
attribute is built and the number of interactions is assigned to the attribute’s value

5.3.2.7 Feature 7: res. interact.

The resource interaction (res. interact.) feature counts the number of different type of com-
binations of the EventType and an instance of a Resource concept. These combinations can
be interpreted as how often the user interacted in a specific way with a specific resource. An
example is a user entering 20 characters into a text document. These interactions result into the
event type Push and an instance of the resource type TextDocument. For each new event type
and resource instance a new numeric attribute is built. In this example the attribute Push <URI

of the text document> with value 20 is created.

Applied Preprocessing Steps:

1. transforming the combinations into a word vector, i.e., for each combination a new attribute
is built and the number of occurrences of the combination is assigned to the value of the
attribute.

5.3.2.8 Feature 8: letter input keys

The letter input keys feature counts the number of letter keys the user has pressed. Following
keys are considered as letter keys described as a regular expression: [a-zA-ZäöüÄÖÜß].

Applied Preprocessing Steps:

1. discretizing the number of pressed letter keys by utilizing the PKIDiscretize filter of the
Weka software package, which transforms the numeric attribute values into intervals.

5.3.2.9 Feature 9: task duration

The task duration feature stands for the length of a task measured in seconds and is represented
by a numeric attribute.

Applied Preprocessing Steps:

1. discretizing the number of seconds of the task duration by utilizing the PKIDiscretize filter
of the Weka software package, which transforms the numeric attribute values into intervals.

5.3.2.10 Feature 10: applications interact.

The applications interactions (applications interact.) feature counts the number of different types
of combinations of the EventType concept and the name of the application. These combinations

98 Ontology-Based Task Detection Approach

can be interpreted as how often the user interacted in a specific way with a specific application.
An example is a user navigating through her folder hierarchy in the Microsoft Windows Explorer
with 10 mouse clicks. These interactions result into the event type Navigate and the application
name explorer. For each new event type and application name a new numeric attribute is built,
e.g., attribute Navigate explorer with value 10.

Applied Preprocessing Steps:

1. transforming the combinations into a word vector, i.e., for each combination a new attribute
is built and the number of occurrences of the combination is assigned to the value of the
attribute

5.3.2.11 Feature 11: navigation input keys

The navigation input keys feature counts the number of navigation keys the user has pressed.
Following keys are considered as navigation keys: keyboard up/down/left/right/home/prior/end
keys, the F1-F* keys2 as well as left and right mouse buttons.

Applied Preprocessing Steps:

1. discretizing the number of pressed navigation keys by utilizing the PKIDiscretize filter of
the Weka software package, which transforms the numeric attribute values into intervals.

5.3.2.12 Feature 12: EB res. interact.

The event block resource interactions (EB res. interact.) feature counts the number of events
of an event block that has a isActionOn relation to a specific instance of an used resource.
An example is a user who writes an email in Microsoft Outlook. The events about the
user’s interactions with the email are associated with the same event block but not all events
include the information that a specific user interaction has happened on this email because
of the utilization of multiple sensors (see Section 3.4.1). For each used resource a new nu-
meric attribute is created that stores the number of events of the event block as its attribute value.

Applied Preprocessing Steps:

1. retrieving the URIs of the used resource of the event block and storing them in a single
string

2. transforming the URI string into a word vector, i.e., for each used resource a new attribute
is built and the number of events of the event block is assigned to the attribute’s value

5.3.2.13 Feature 13: mean EB duration

The mean event block duration (mean EB duration) feature calculates the mean length of event
block durations of a task measured in seconds. It is represented by a numeric attribute.

2The F1-F* keys also count as control keys since the final interpretation of the action behind these keys is application

and user configuration dependent.

Feature Engineering 99

Applied Preprocessing Steps:

1. discretizing the mean number of seconds of the duration of event blocks of a task by utilizing
the PKIDiscretize filter of the Weka software package, which transforms the numeric
attribute values into intervals.

5.3.2.14 Feature 14: mean time between EBs

The mean time between event blocks (mean time between EBs) feature calculates the mean
duration between the end time and the start time of two consecutive event blocks belonging to
the same task. From a more general perspective, this feature can be seen as representing the
amount of time required by a user to switch from one resource to another one. This duration is
measured in seconds. The feature is represented by a numeric attribute.

Applied Preprocessing Steps:

1. discretizing the mean duration between the end time and the start time of two consecutive
event blocks of a task by utilizing the PKIDiscretize filter of the Weka software package,
which transforms the numeric attribute values into intervals.

5.3.2.15 Feature 15: used res. interact.

The used resource interactions (used res. interact.) feature counts the number of interactions
with a specific used resources. Examples are multiple user interactions with a web page.
The web page is represented as an instance of the OnlineResource concept. For each used
resource a new numeric attribute is created which holds the number of interactions as its at-
tribute’s value. An interaction here is an event that has an isActionOn relation with this resource.

Applied Preprocessing Steps:

1. retrieving the URIs of the used resources of all events of a task and storing them in a single
string

2. transforming the URI string into a word vector, i.e., for each used resource a new attribute
is built and the number of interactions (events) is assigned to the attribute’s value

5.3.2.16 Feature 16: action element of event

The action element of event feature represents a concatenation of all hasActionElement

properties of a sensor event. An example would be an event from the Novell GroupWise
application when the user opens an email. The resulting event from the DyGobs sensor includes
the string “email” as its hasActionElement value.

Applied Preprocessing Steps: Standard text processing steps are applied to this feature
(see Section 5.3.1).

100 Ontology-Based Task Detection Approach

5.3.2.17 Feature 17: median time between EBs

The medium time between event blocks (median time between EBs) feature calculates the median
length of event block durations of a task measured in seconds and is represented by a numeric
attribute.

Applied Preprocessing Steps:

1. discretizing the median number of seconds of the duration of event blocks of a task by
utilizing the PKIDiscretize filter of the Weka software package, which transforms the
numeric attribute values into intervals.

5.3.2.18 Feature 18: number input keys

The number input keys feature counts the number of number keys the user has pressed.
Following keys are considered as number keys described as a regular expression: [0-9].

Applied Preprocessing Steps:

1. discretizing the number of pressed number keys by utilizing the PKIDiscretize filter of
the Weka software package, which transforms the numeric attribute values into intervals.

5.3.2.19 Feature 18: median EB duration

The medium event block duration (median EB duration) feature calculates the median length of
event block durations of a task measured in seconds and is represented by a numeric attribute.

Applied Preprocessing Steps:

1. discretizing the median number of seconds of the duration of event blocks of a task by
utilizing the PKIDiscretize filter of the Weka software package, which transforms the
numeric attribute values into intervals.

5.3.2.20 Feature 20: semantic type

The semantic type stores a rule-based generated type describing the event in natural language
text. Example values indicate whether a document is (i) read or (ii) edited by the user, or
whether the state is (iii) unknown. The assignment of a semantic type is application dependent.
Only MS Word, MS PowerPoint and MS Excel sensors are capable of allotting the semantic types
(i) reading or (ii) writing. The discrimination is based on simple rules based on the keyboard
input, the application and the interacted resource. The feature represents a concatenation of all
the hasSemanticType relations of an event.

Applied Preprocessing Steps: Standard text processing steps are applied to this feature
(see Section 5.3.1).

Feature Engineering 101

5.3.2.21 Feature 21: action type of event

The action type of event feature represents a concatenation of all hasActionType properties of
a sensor event. An example is an event from the Novell GroupWise application when the user
opens an email. The resulting event from the DyGobs sensor includes the string “open” as its
hasActionType value.

Applied Preprocessing Steps: Standard text processing steps are applied to this feature
(see Section 5.3.1).

5.3.3 Application Feature Category

The feature category application category includes features originating from user interactions with
operating system elements and with application controls. This category includes 10 different
features that are listed in Table 5.5. The construction procedure and the preprocessing steps
applied for each feature are described in further detail in this section.

Nr. Feature Brief Feature Description

22 acc. obj. name the name of the accessibility object

23 acc. obj. description the text describing the visual appearance of the

accessibility object

24 acc. obj. role the role of the accessibility object

25 acc. obj. role des. the description of the role of the accessibility ob-

ject

26 acc. obj. value the value of the accessibility object

27 acc. obj. help the Help property string of an accessibility object

28 acc. obj. help topic full path of the WinHelp3 file associated with the

accessibility object and the identifier of the appro-

priate topic within that file

29 application name the name of the application in focus

30 window title the title of the window in focus

31 raw event source the unmodified source of the event sent by the

sensors

Table 5.5: Overview of all features of the application feature category.

5.3.3.1 Feature 22: acc. obj. name

The accessibility objects name (acc. obj. name))feature represents a concatenation of all
hasAccName relations of an event. An example is an event originating from a mouse click on the
close button of a command window on a German Microsoft Windows operating system. The
hasAccName value in this example is “Schließen”4

4“Schließen” in English is “close”.

102 Ontology-Based Task Detection Approach

Applied Preprocessing Steps: Standard text processing steps are applied to this feature
(see Section 5.3.1).

5.3.3.2 Feature 23: acc. obj. description

The accessibility objects description (acc. obj. description) feature represents a concatena-
tion of all hasAccDescription relations of an event. An example is an event originating
from a mouse click on the close button of a command window on a German Microsoft Win-
dows operating system. The hasAccDescription value in this example is “Schließt das Fenster”5.

Applied Preprocessing Steps: Standard text processing steps are applied to this feature
(see Section 5.3.1).

5.3.3.3 Feature 24: acc. obj. role

The accessibility objects role (acc. obj. role) feature represents a concatenation of all hasAccRole
relations of an event. An example is an event originating from a mouse click on the close button
of a command window on a German Microsoft Windows operating system. The hasAccRole

value in this example is “43” which is an internal number for the role of the accessibility object.

Applied Preprocessing Steps:

1. retrieving the role numbers of the accessibility objects of all events of a task and storing
them in a single string

2. transforming the role number into a word vector, i.e., for each role number string a new
attribute is built and the number of occuracies is assigned to the attribute’s value

5.3.3.4 Feature 25: acc. obj. role des.

The accessibility objects role description (acc. obj. role des.) feature represents a concatenation
of all hasAccRoleDescription relations of an event. An example is an event originating from
a mouse click on the close button of a command window on a German Microsoft Windows
operating system. The hasAccRoleDescription value in this example is “Schaltfläche”6.

Applied Preprocessing Steps: Standard text processing steps are applied to this feature
(see Section 5.3.1).

5.3.3.5 Feature 26: acc. obj. value

The accessibility objects value (acc. obj. value) feature represents a concatenation of all
hasAccValue relations of an event. These relations origin from the values of the accessiblity
objects the user has interacted with. An example is an event originating from a mouse click on

5“Schließt das Fenster.” in English is “Closes the window.”.
6“Schaltfläche” in English means “button”.

Feature Engineering 103

the filled in subject line of an email message in Microsoft Outlook. The acc. obj. value value
in this example is the text content of this subject line.

Applied Preprocessing Steps: Standard text processing steps are applied to this feature
(see Section 5.3.1).

5.3.3.6 Feature 27: acc. obj. help

The accessibility objects help (acc. obj. help) feature represents a concatenation of all hasAccHelp
relations of an event. These relations origin from the help text of the accessibility objects the
user has interacted with. An example is an event originating from a mouse click on the tab of
the editor pane. The acc. obj. help value is the text content of this tab, i.e., the name of file
opened in this tab for editing.

Applied Preprocessing Steps: Standard text processing steps are applied to this feature
(see Section 5.3.1).

5.3.3.7 Feature 28: acc. obj. help topic

The accessibility objects help topic (acc. obj. help topic) feature represents a concatenation of
all hasAccHelpTopic relations of an event. These relations origin from the help text of an
accessibility objects the user has interacted with. This is the full path of the WinHelp7 file
associated with the accessibility object and the identifier of the appropriate topic within that
file.

Applied Preprocessing Steps: Standard text processing steps are applied to this feature
(see Section 5.3.1).

5.3.3.8 Feature 29: application name

The application name feature represents a concatenation of all hasApplicationName relations
of an event. These relations hold the name of the application the user has interacted with. An
example is a mouse click of a user within the Mozilla Firefox browser window. The value of the
hasApplicationName in this example is “firefox”.

Applied Preprocessing Steps: Standard text processing steps are applied to this feature
(see Section 5.3.1).

5.3.3.9 Feature 30: window title

The window title feature represents a concatenation of all hasWindowTitle relations of the
events. This feature contains the title of the window of the application the user has interacted
with. Depending on the application the window title may (e.g. Microsoft Word) or may not

7WinHelp: http://msdn.microsoft.com/en-us/library/bb762267%28VS.85%29.aspx

http://msdn.microsoft.com/en-us/library/bb762267%28VS.85%29.aspx

104 Ontology-Based Task Detection Approach

include (e.g. Novel Groupwise’s new email window) the name of the application.

Applied Preprocessing Steps: Standard text processing steps are applied to this feature
(see Section 5.3.1).

5.3.3.10 Feature 31: raw event source

The raw event source feature represents a concatenation of the hasEventSource relation of the
events. This feature contains the unmodified source of the event sent by the sensors.

Applied Preprocessing Steps:

1. remove end of line characters

2. remove multiple blank characters

3. remove all numbers

4. remove German and English stopwords

5. remove words shorter than three characters

6. transform all strings to lower case

7. remove multiple blanks

8. transform all strings to a word vector, i.e., for each string a new attribute is built and the
number of occuracies of this string is assigned to the attribute’s value

5.3.4 Content Feature Category

The feature category content category includes features that origin from interactions of the user
with viewed and input text. This category consists of 3 different features that are listed in
Table 5.6. The construction procedure and the preprocessing steps applied to each feature are
described in further detail in this section.

Nr. Feature Brief Feature Description

32 content of EB the automatically aggregated text content the

user has interacted with

33 content in focus the concatenated text content of the windows in

focus

34 user input the automatically aggregated keyboard input of

the user

Table 5.6: Overview of all features of the content feature category.

5.3.4.1 Feature 32: content of EB

The content of event block (content of EB) feature represents a concatenation of all hasContent
relations of an event block. This features consists of the automatically aggregated text content
based on the hasContent relation of all events of the event block. It can also be interpreted

Feature Engineering 105

that it stores the content of the current window, which can be the text on the current Microsoft
PowerPoint slide or the content of the website the user is viewing. The raw text content includes
also special characters, markup and end-of-line characters.

Applied Preprocessing Steps: Standard text processing steps are applied to this feature
(see Section 5.3.1).

5.3.4.2 Feature 33: content in focus

The content in focus feature is a concatenation of all hasContent relations of all events of an
event block. The hasContent relation holds the text content of the window in focus.

Applied Preprocessing Steps: Standard text processing steps are applied to this feature
(see Section 5.3.1).

5.3.4.3 Feature 34: user input

The user input feature is a concatenation of all hasPreprocessedInput relations of all event
blocks. It holds the input of the user after automatic preprocessing steps have been applied to
the values of the hasInput relation of all events of the event block. An example are events with
the following values for the hasInput relation: “h”, ”e”, ”l”,”l”, ”i”, ”Back”, ”o”. These values
are automatically preprocessed such that the hasPreprocessedInput relation of the event block
only contains the word “hello”.

Applied Preprocessing Steps: Standard text processing steps are applied to this feature
(see Section 5.3.1).

5.3.5 Ontology Feature Category

The feature category ontology category contains features representing the number of instances of
concepts as well as the number of datatype and objecttype relations. This category consists of 3
different features that are listed in Table 5.7. The construction procedure and the preprocessing
steps applied to each feature are described in further detail in this section.

Nr. Feature Brief Feature Description

35 concept instances the number of instances of a specific concept

36 datatype properties the number of datatype properties used between

concept instances and literals

37 objecttype properties the number of objecttype properties used between

concept instances

Table 5.7: Overview of all features and their corresponding feature category constructed from the concepts

and relations of the User Interaction Context Ontology (UICO).

106 Ontology-Based Task Detection Approach

5.3.5.1 Feature 35: concept instances

The concept instances feature represents the number of instances for each concept of the UICO
(see Section 3.3). For each concept a new attribute is constructed which holds the number of
instances of this concept.

Applied Preprocessing Steps: No preprocessing steps are applied.

5.3.5.2 Feature 36: datatype properties

The datatype properties feature holds the number of datatype properties used by instances of the
UICO (see Section 3.3). For each datatype property a new attribute is constructed which holds
the number of times a datatype porperty is used.

Applied Preprocessing Steps: No preprocessing steps are applied.

5.3.5.3 Feature 37: objecttype properties

The objecttype properties feature holds the number of objecttype properties used by instances of
the UICO (see Section 3.3). For each objecttype property a new attribute is constructed which
holds the number of times a objecttype property is used.

Applied Preprocessing Steps: No preprocessing steps are applied.

5.3.6 Resource Feature Category

The feature category resource category contains features that include the complete content and
URIs of the used, referenced and included resources, as well as a features that combine all the
metadata about the used resources. This category consists of 8 different features that are listed
in Table 5.8. The construction procedure and the preprocessing steps applied to each feature are
described in further detail in this section.

5.3.6.1 Feature 38: used res. content

The used res. content feature represents the content of the used resources the user has directly
interacted with. Examples are the content of a Microsoft PowerPoint slide, an email or a web page.

Applied Preprocessing Steps: Standard text processing steps are applied to this feature
(see Section 5.3.1).

5.3.6.2 Feature 39: resource content

The resource content feature concatenates the text content of all used, included and referenced
resources. An example is an email that contains a link to an online resource as well as a copied
& pasted text snippet from text document. The text content of the email, the online resource
and the text document is concatenated as a string for this feature.

Feature Engineering 107

Nr. Feature Brief Feature Description

38 used res. content the content of the resource the user has directly

interacted with (used resource)

39 resource content the text content of all used, included and refer-

enced resources

40 used res. metadata the concatenated text of all data and metadata

about an used resource

41 referenced resources the URIs of the referenced resources in the used

resources

42 used resources the URIs of the used resources

43 included res. content the content of the included resources in an used

resource

44 included res. the URIs of the included resources

45 referenced res. con-

tent

the content of the referenced resources in an used

resource

Table 5.8: Overview of all features of the resource feature category.

Applied Preprocessing Steps: Standard text processing steps are applied to this feature
(see Section 5.3.1).

5.3.6.3 Feature 40: used res. metadata

The used resource metadata (used res. metadata) feature concatenates the text content of all
data and metadata about an used resource. An example for this feature is a concatenated string
based on the content of a text document, the author of this document and the folder in which
the document is stored.

Applied Preprocessing Steps:

1. fixing the German character encoding, e.g., ü, ä and ö.

2. remove end of line characters

3. remove multiple blank characters

4. remove null strings

5. remove markups, e.g.,\&lg and ![CDATA

6. remove bracket characters, e.g., (, \{ and [

7. remove URL encoded characters

8. remove remove everything except letters and German special characters

9. remove German and English stopwords

10. remove words shorter than three characters

11. multiple blanks

12. transform all strings to lower case

108 Ontology-Based Task Detection Approach

13. transform all strings to a word vector

14. compute tf/idf values for the vector entries

5.3.6.4 Feature 41: referenced resources

The referenced resources feature represents the URIs of the referenced resources in the used
resources. An example is a text document that contains an email address. The text doc-
ument and the email address result in instances of the TextDocument and PersonResource

concepts respectively with the relation isReferencedResourceFrom from the TextDocument

instance to the PersonResource instance. For each referenced resource a new attribute is created.

Applied Preprocessing Steps:

1. retrieving the URIs of the referenced resources and storing them in a single string

2. transforming the URI string into a word vector, i.e., for each referenced resource a new
attribute is built and the number of interactions is assigned to the attribute’s value

5.3.6.5 Feature 42: used resources

The used resources feature represents the URIs of the used resources. For each used resource a
new attribute is created. An example are the interactions with a single web page. The web page
results in an instance of the OnlineResource concept. The number of interactions on this web
page are stored as the attribute’s value.

Applied Preprocessing Steps:

1. retrieving the URIs of the used resources and storing them in a single string

2. transforming the URI string into a word vector, i.e., for each used resource a new attribute
is built and the number of interactions is assigned to the attribute’s value

5.3.6.6 Feature 43: included res. content

The included resource content (included res. content) feature concatenates the text content of the
included resources of the used resources. An example is a text document in which the user has
copied text passages from multiple web sites and presentations. Theses copied text passages re-
sult in instances of the ClipboardSnippetResource concept with the isIncludedResourceFrom

relation. The concatenation of these text passages constitutes this feature.

Applied Preprocessing Steps: Standard text processing steps are applied to this feature
(see Section 5.3.1).

5.3.6.7 Feature 44: included res.

The included resources (included res.) feature represents the URIs of the included resources
in the used resources. An example is a text document that contains a copied & pasted
text paragraph from an email. The text document and the added text result in instances of

Feature Engineering 109

the TextDocument and ClipboardSnippetResource concepts respectively with the relation
isIncludedResourceFrom from the TextDocument instance to the ClipboardSnippetResource

instance. For each included resource a new attribute is created.

Applied Preprocessing Steps:

1. retrieving the URIs of the included resources and storing them in a single string

2. transforming the URI string into a word vector, i.e., for each included resource a new
attribute is built and the number of interactions with the used resource is assigned to the
attribute’s value

5.3.6.8 Feature 45: referenced res. content

The referenced resource content (referenced res. content) feature concatenates the text content
of the referenced resources of the used resources. An example is a text document that contains
a path to a file. The text document and the file path result in instances of the TextDocument

and FileResource concepts respectively with the relation isReferencedResourceFrom from
the TextDocument instance to the FileResource instance. The text content of the referenced
files are concatenated which consitutes this feature.

Applied Preprocessing Steps: Standard text processing steps are applied to this feature
(see Section 5.3.1).

5.3.7 Switching Sequence Feature Category

The feature category switching sequence category includes features that origin from switching
between applications, event types, resources and resource types. This category includes 5 different
features that are listed in Table 5.9. The construction procedure and the preprocessing steps
applied to each feature are described in further detail in this section.

Nr. Feature Brief Feature Description

46 app. switch seq. the number of switches between two specific ap-

plications

47 E type switch seq. the number of switches between combinations of

two EventType instances

48 E level res. switch

seq.

the combinations of switches from one used re-

source to another one (event level)

49 E&EB res. switch

seq.

the combinations of switches from one used re-

source to another one (event and event block level)

50 E&EB res. type

switch seq.

the combinations of switches from one type of an

used resource to another type of an used resource

(event and event block level)

Table 5.9: Overview of all features of the switching sequence feature category.

110 Ontology-Based Task Detection Approach

5.3.7.1 Feature 46: app. switch seq.

The application switching sequence of length 2 (app. switch seq.) feature represents the number
of switches between two applications. An application switch occurs if two consecutive events
are captured from two different applications. An example for this is the switch between the
Microsoft Internet Explorer and the Microsoft Word application. This results in the string
“iexplore winword”. For each combination of an application switch a new attribute is created.
The order counts, which means that switching from Microsoft Internet Explorer to Microsoft
Word results in a different attribute than vice versa.

Applied Preprocessing Steps:

1. calculating the combinations of application switches and storing them in a single string as
tokens, like e.g., “iexplore winword”

2. transforming the string into a word vector, i.e., for each token a new attribute is built and
the number of tokens appearing in the string is assigned to the attribute’s value

5.3.7.2 Feature 47: E type switch seq.

The event type switching sequence of length 2 (E type switch seq.) feature represents the number
of switches between two event types, i.e., two consecutive events belong to two different instances
of the EventType concepts. An example for this is a user entering a letter in an email and
then clicking on the send email button. The event type resulting from the first interaction is
an instance of the Push concept. The second one is an instance of the Send concept. As a
result the following numeric attribute is built: “push send”. For each combination of an event
type switch a new attribute is created. The order counts similar to the app. switch seq. feature.

Applied Preprocessing Steps:

1. calculating the combinations of event type switches and storing them in a single string as
tokens, like e.g., “push send”

2. transforming the string into a word vector, i.e., for each token a new attribute is built and
the number of tokens appearing in the string is assigned to the attribute’s value

5.3.7.3 Feature 48: E level res. switch seq.

The event level resource switching sequence of length 2 (E level res. switch seq.) feature represents
the combinations of switches from one used resource to the another one on the event level.
On the event level means that two consecutive events have to have the isActionOn relation
with different URIs associated with them. An example is a single interaction with a text
document and then another one with a web page. Both events have the isActionOn relation
but one targets the instance of the TextDocument concept and the other one an instance of the
OnlineResource concept and hence has another URI as well. The resulting attribute is “<URI
of text document> <URI of web page>”. For each combination of resource switches on the
event level a new attribute is created. The order counts similar to the app. switch seq. feature.

Summary 111

Applied Preprocessing Steps:

1. calculating the combinations of used resource switches and storing them in a single string
as tokens, like e.g., “<URI of text document> <URI of web page>”

2. transforming the string into a word vector, i.e., for each token a new attribute is built and
the number of tokens appearing in the string is assigned to the attribute’s value

5.3.7.4 Feature 49: E&EB res. switch seq.

The event and event block level resource switching sequence of length 2 (E&EB res. switch seq.)
feature encapsulates the combinations of switches from one used resource to another one com-
bining the event and the event block level. The event level is the same as for the E level res.

switch seq. feature. The event block level is different because the detection of a switch between
two different used resources is more coarse granular. A switch is detected if two consecutive event
blocks have two different used resources associated with them. An event block can have zero
or one used resource associated. Such an association takes place if one event of the event block
has a isActionOn relation. The attribute construction and the preprocessing is similar to the E

level res. switch seq. feature. The only exception is that for switches on the event level a the
“eventlevel ” prefix and for the one on the event block level a “eventblocklevel ” prefix are used.

5.3.7.5 Feature 50: E&EB res. type switch seq.

The event and event block level resource type switching sequence of length 2 (E&EB res.
type switch seq.) feature is constructed similar to the E&EB res. switch seq. feature with
the difference that the resource type is considered instead of the URI of the used resource.
The applied preprocessing steps are the same. An example for an event level attribute is
“eventlevel OnlineResource TextDocument” and for an event block level attribute is “eventblock-
level OnlineResource EmailResource”.

5.4 Summary

This chapter introduced the ontology-based task detection approach proposed in this research
effort to do task detection. The engineering of 50 distinguished features based on the user inter-
action context ontology (UICO) including the corresponding preprocessing steps for transforming
these features into attributes. These attributes can then be used as input for machine learning al-
gorithms. The implementation and the evaluation of the ontology-based task detection approach
is reported in Chapter 6 and in Chapter 7 respectively.

112 Ontology-Based Task Detection Approach

6
Prototyping

This chapter gives an overview about the prototypes that were built in course of this dissertation
research effort. The first prototype which is described in Section 6.2 was developed in the frame
of the national funded research project Dyonipos [Tochtermann et al., 2006]. The second pro-
totype based on the user interaction context ontology (UICO)(see Section 3.3) is described and
visualized in Section 6.3. The task detection evaluation environment’s architecture and features
are presented in Section 6.4. Application prototypes developed based on the UICO on top of the
second prototype are highlighted in Section 6.5. These application prototypes concentrate on the
areas of user context visualization, context-aware information retrieval and user interruptions.

6.1 Introduction

In the course of this dissertation effort two prototypes were designed and implemented. These
prototypes featured context sensors (see Section 3.4) as well as aggregation and resource discovery
algorithms (see Section 3.5). Both prototypes were based on the conceptual model referred to as
the semantic pyramid (see Section 3.2) but only the second prototype includes the user interaction
context ontology (UICO) and automatic ontology population mechanisms.

The first prototype described in Section 6.2 was developed in the frame of the national funded
research project Dyonipos [Tochtermann et al., 2006]. This prototype was utilized to record the
dataset for the task detection experiment in the course of the Dyonipos task detection experiment
in Austria’s ministry of Finance. Dyonipos and the experiment are highlighted in Section 4.4.3
and further described in [Granitzer et al., 2009a, 2008].

The second prototype is based on the UICO and includes mechanisms for automatically pop-
ulating the UICO as well as a user interface for the task recording and user interaction context
exploration. It was used during the three laboratory experiments explained in Chapter 7. The
second prototype features a fully service-oriented architecture. The service which is responsible

113

114 Prototyping

for recording the usage data during the task executions is called Context OBservation Service
(COBS). An architectural overview of COBS as well as screenshots of the second prototype is
given in Section 6.3.

The Context OBservation Evaluation Toolkit (COBET) is a service (i) for evaluating the
ontology-based task detection approach and (ii) for comparing it to existing approaches. COBET
is part of the second prototype. Its architecture is presented in Section 6.4. COBET can be seen
as a flexible pipeline for evaluating features and classifiers of task detection approaches starting
from training instance construction including feature engineering to evaluating different attribute
selection methods and classifiers. COBET also featured several visual and textual presentations
of the evaluation results for assessing the classification models.

A variety of applications building on top of the second prototype of this research effort, more
specifically the context observation service, are introduced and visualized in Section 6.5. These
applications illuminate what kind of applications are possible to create on top of an automatically
real-time populated ontology-driven user interaction context model. The application areas span
from (i) user interaction context visualizations, (ii) context-aware proactive information retrieval
and (iii) measuring the user’s interruptibility.

6.2 First Prototype - Dyonipos

The first prototype was developed as part of the research project Dyonipos. This prototype
has a client-server architecture constituting of the following four components: (i) a context ob-
server, (ii) a context compiler, (iii) a context processor and (iv) a context analyzer. The context
observer targets the Microsoft Windows XP environment (keystrokes and mouse clicks) and stan-
dard Microsoft Office applications. It is fine-tuned to the domain of the testing and evaluation
environment (Austria’s Ministry of Finance). It is able to observe user interactions like keyboard
input, mouse clicks and clipboard events, the handling of files in Microsoft Word, Microsoft Excel
and Microsoft PowerPoint and the visited web pages in the Microsoft Internet Explorer 6. The
context compiler is responsible for receiving the captured user interaction context data (events)
from the context observer, transforms it to objects and hand these over to the context ana-
lyzer and context processor for further processing. Further processing includes the aggregation
to blocks of related events (event blocks) as well as resource discovery and analysis. Resource
discovery results in an indexing of the found resources and the extraction of metadata based on
the KnowMiner knowledge discovery framework [Granitzer, 2008].

The first prototype was tested and evaluated by 10 users of the Austria’s Federal Ministry of
Finance in a productive environment for approximately 5 weeks. The observed usage data from
one user was used to carry out the first task detection experiment highlighted in Section 4.4.3
and further described in [Granitzer et al., 2009a, 2008]. The graphical user interface can be
observed in Figure 6.1. The handling of the prototype and its visual components is explained
via a short use case scenario in the following paragraphs. For a more detailed description about
the first prototype and it’s architecture the reader is referred to [Rath, 2007].

Use Case Scenario: After a user has started the Dyonipos Task Recognizer application,
she begins her daily work on her computer desktop. The task recognizer observes her actions,

First Prototype - Dyonipos 115

Figure 6.1: The graphical user interface of the first prototype developed as part of the research project

Dyonipos. The top area lists the user’s tasks including the corresponding event blocks and events. The

middle section shows the detected information needs. The resources for fulfilling the user’s information

need are visualized in the bottom area.

116 Prototyping

categorizes and displays them in the first area of the graphical user interface - the action view.
This section shows the user’s activities with the corresponding event blocks and events. The
yellow button with the ”Play” symbol enables the context sensors, i.e., starts the context
observer. A person can provide feedback to the system by moving the wrongly matched event
blocks to other task entries or confirm the correctly matched ones. Additionally it is possible
to create new tasks and event blocks to allow specifying ”offline” activities, e.g., meeting in the
conference room or telephone conference. The user can delete the observed actions and stop
the context sensor process at any time. The information need view visualizes the recognized
information need that origin from the user interaction context. By selecting an information
need the resources intended to fulfill the information need are displayed. In the resources view
relevant information sources for the actual task, event block, event or information need, are
visualized. Resources are not limited to documents or links as showed in Figure 6.1 but can also
include other resources available on the user’s computer desktop. At the bottom of the graphical
user interface there is a search field that allows the user to search through the iteratively built
resource repository.

6.3 Second Prototype - KnowSe

The second prototype was built based on the lessons learned from the first prototype. This
prototype is called KnowSe which stands for “Knowledge Services”. “KnowSe forms the basis for
dynamically orchestrating a large variety of intelligent knowledge services, highly contextualized
to a persons work context and interconnected with a multitude of knowledge sources [KnowSe,
2009]. KnowSe’s services can be utilized for example to support personalized learning [Rath
et al., 2009b] and improve computer supported collaborative work [Rath et al., 2009c]. KnowSe
is a service-oriented Eclipse Rich Client Platform (Eclipse RCP) application comprised of several
OSGI -services [OSGI2008, 2008].

Two screenshot of the KnowSe application utilized in the observation of the task executions
in the three laboratory experiments described in Chapter 7 is visualized in Figure 6.2 and in
Figure 6.3. Figure 6.2 illuminates the user interaction context observation capabilities for var-
ious resources and for various applications. The second screenshot in Figure 6.3 displays the
implementation and realization of the software requirements derived from the results of the user
questionnaires discussed in Section 7.4. The Task History and the Triple View allows the user
to explore their recorded usage data on various granularity levels. Furthermore these views pro-
vides the users with the functionality to do text-based search and to easily delete UICO concept
instances and relations. The SPARQL view is an easy to use testbed on the one hand and on the
other hand to show the great potential of the populated UICO model for user profiling, informa-
tion and expert recommendation, relation analysis as well as a complementary part of semantic
desktop systems.

The OSGI services were designed and implemented as part of this dissertation research ef-
fort together with the help and support of several up-to-date technology enthusiastic students:
(i) Daniel Resanovic implemented the mapping algorithms between the user interaction con-
text model and the graphical user interface as well as a connection to the APOSDLE plat-
form [Resanovic, 2008], (ii) Georg Kompacher did the graphical interface components for the

Second Prototype - KnowSe 117

task experiment [Kompacher, 2008], (iii) Stefanie Wechtitsch worked on the integration of user
interruptibility measures [Wechtitsch, 2008] and (iv) Thomas Pichler contributed the timeline
visualization[Pichler, 2010]. Didier Devaurs, a colleague also working in the KnowSe project,
designed and implemented the OSGI service that is responsible for interfacing the KnowMiner
knowledge discovery framework [Granitzer, 2008].

Two exceptions to this are the Context OBservation Service (COBS) and the Context
OBservation Evaluation Toolkit (COBET) which were fully designed and implemented as part
of this dissertation research effort. It followed a service-oriented architecture approach and is
realized as an OSGI service. COBS utilizes the OpenAnzo framework1 [OpenAnzo.org, 2008] as a
semantic middleware for storing and manipulating the automatically populated user interaction
context model (see Section 3.3). The reasons why the OpenAnzo framework was chosen for COBS
are manifold and listed bellow:

� named graph support

� tracking of graph modifications

� offline storage and synchronization of graphs

� versioning of named graphs

� notify/update mechanism

� SPARQL query support on named graphs and sets of named graphs

� user roles and policy support

� open source and freely modifiable

� automatic Java class generation support based on an ontology

A global overview of the architecture of COBS is given in the next section.

1The OpenAnzo framework - an open source RDF store, query engine and related middleware for the development

of semantic applications.

118
P

rototyping

Figure 6.2: A screenshot of the KnowSe prototype which was developed as part of this research effort and utilized in the observation of the task executions in

the three laboratory experiments is displayed in this figure. On the top left side in (1) the task models are listed from which the user can choose to instantiate a

task. Also on the left the current task is shown including the captured used and computed discovered resources (2). On the right and bottom part of this figure

the applications are displayed from which the user interaction context were automatically captured.

Second
P

rototype
-

K
now

Se
119

Figure 6.3: A screenshot of the user interaction context exploration views. On the left the figure shows the Task History view (1) with the UICO concept instances

as well as a detailed view about the selected used resource (2), in this case the Google results web page. In the right area there is the Triple view (3) which lists

all statements/triples about the selected concept, in this case the used resource. The SPARQL view (4) in the bottom right area illuminates the SPARQL query

for all automatically recognized locations in the populated UICO. Beneath the query the resulting locations are listed.

120 Prototyping

6.3.1 Architecture

The base architecture of COBS consists of six components: (i) the ContextObservationService,
(ii) the UserMonitor, (iii) the ContextObservers, (iv) the TaskManagemnent, the (v)
OntologyAccess and (vi) the ContextAnalysis component. The component diagram of COBS
is visualized in Figure 6.4. An overview of the components is given in the following paragraphs.

Figure 6.4: The component diagram of the base components consisting of (i) the

ContextObservationService, (ii) the UserMonitor, (iii) the ContextObservers, (iv) the

TaskManagemnent, (v) the OntologyAccess and (vi) the ContextAnalysis component for auto-

matically observing and detecting the user interaction context as well as automatically populating the

user interaction context ontology (UICO).

ContextObservationService: The ContextObservationService is the main service compo-
nent which exposes a wide range of functionalities of the central UserMonitor component to
other application and services. The service interface provides methods for starting and stopping
the context observation, configuring the information need detection mechanism, controlling the
task handling and most importantly querying the UICO with the SPARQL semantic web query
language.

UserMonitor: The UserMonitor is the central component which controls the task man-
agement (TaskManagement), the access to the UICO via the OntologyAccess component, the
starting and stopping of the external context sensors (ContextObservers) including the receiving
and parsing of the raw sensor data as well as the forwarding of this data to the ContextAnalyis

component.

ContextObservers: Multiple sensors were developed for observing the user’s interac-
tions with applications and resources as well as retrieving data and metadata about the acted
upon resources as described in Section 3.4. The ContextObservers component stands for all
the sensors. A listing of all developed application and operating system sensors is given in
Section 3.4.1. The sensors are implemented in different programming languages in respect to
the applications they monitor. The Microsoft Office sensor pack is implemented in C# and C
whereas the Mozilla Thunderbird and Firefox extensions are written in the XML User Interface

Second Prototype - KnowSe 121

Language (XUL) 2 and JavaScript. The UserMonitor acts as a server and the sensors as clients
that send their observed usage data in form of an event xml format also developed as part of
this dissertation research. The sensors are “lightweight” implementations, which means that
they do not have additional functionality except observing the user interaction context and
sending it to the UserMonitor. The advantage of this design is that other context sensors can
be rapidly developed independently in the most suitable programming language, since there is
no sophisticated preprocessing required on the context sensor side. This allows an easy and fast
extensibility of the sensing capabilities.

TaskManagement: The TaskManagement is responsible for the appropriate handling of
tasks including checking the preconditions for a task state transition. This component is inspired
by the NEPOMUK Task State Model [Grebner et al., 2007] and implements the NEPOMUK
task states in form of a finite-state automaton. This task state model allows the users to
modify their user interaction context manually by creating, executing, interrupting, finishing,
aborting, approving and archiving a task. The connection to the OntologyAccess allows the
TaskManagement to directly map the resulting tasks, task states and task transitions into the
UICO. All the manipulations of a task, e.g., create, delete, suspend and so on, are reflected
directly in the context model which means that the state of the UICO is synchronous with the
state of the tasks at all times. This synchronization is especially important for other services
when querying the UICO for task or task switch information at a certain point in time. The
renaming and the labeling as well as the assignment of a task to a task model is one of the
TaskManagement component’s responsibilities.

OntologyAccess: The OntologyAccess component is the key component that manages
all manipulations of the UICO. The UICO is implemented as a quadstore. A quadstore in
comparison to a triple store has an additionally value that stores the URI of the associated graph,
called named graph, in which a triple/statement exists. The UICO consists of multiple named
graphs. Named graphs make it easier to implement relations between graphs like for example,
versioning, user policies, change tracking, imperfection of data or trust [Sintek et al., 2007]. Each
application session, each task, the UICO ontology itself and the combined task models have their
own named graph. The advantage of the separation into multiple named graphs is to decrease
the number of total triples in one graph. This speeds up the performance of the SPARQL
queries. The OntologyAccess component has its internal graph management functionality
which handles the association of the UICO concept instances and properties to the correct
graph. The graphs can be queried together and separately. A serialization, synchronization,
versioning and restricting the access rights of the graphs is also possible. The utilized semantic
middleware is the OpenAnzo framework [OpenAnzo.org, 2008]. Following advantages come
with the ontology-based user interaction context model in combination with the used semantic
framework:

� Analysis of the user interaction context at a specific time or time frame (e.g., a task).

2XML User Interface Language (XUL), https://developer.mozilla.org/en/XUL

https://developer.mozilla.org/en/XUL

122 Prototyping

� Tracking and analyzing changes of the UICO instances and relations on the graph and triple
level.

� Actuality of the UICO: the observed contextual data and the derived information are stored
directly in the user interaction context ontology model.

� Maintaining consistency of the UICO during automatic population, i.e., following the specifi-
cations of the ontology by having the Java classes automatically generated from the ontology.
The access to the ontology instances through Java classes is realized through automatically
generated SPARQL queries.

ContextAnalysis: The events originating from the context sensors are analyzed by the
ContextAnalysis component. The analysis steps include (i) the abstraction and analysis of user
interactions (see Section 3.3.1), (ii) the detection of information needs [Rath et al., 2007] and (iii)
the discovery of used, references as well as included resources (see Section 3.5.2). These analysis
steps are performed by the UserInteractionAnalysis, the InformationNeedDetection, the
ResourceDiscovery and ResourceRetriever components. The ContextAnalysis component
also indexes all resources the user has interacted with and retrieves relevant resources as a
fulfillment mechanisms to the user’s information needs. The ContextAnalysis component brings
together the information about the resources and the user interactions as well as the retrieved
resources.

Figure 6.5: The component diagram of the ContextAnalysis component consisting of the

UserInteractionAnalysis, the InformationNeedDetection, the ResourceDiscovery and the

ResourceRetriever components for analyzing the user interaction context.

UserInteractionAnalysis: Abstracting and aggregating events to event blocks as well as
the computation of event types as described in Section 3.5 are situated in this component.
Events are grouped together to event blocks based on static rules depending on the application
in which the event are observed. These rules are implemented in Java and detailed in Section 3.5.3.

ResourceDiscovery: The ResourceDiscovery component identifies resources in the event
data stream with various techniques as elaborated in Section 3.5.2. Next to regular expressions
and direct resource identification the knowledge discovery framework, the KnowMiner frame-
work [Granitzer, 2008], is utilized for information extraction. Persons, locations and organization
are recognized, related to the resources in which they are detected and directly mapped to

Context OBservation Evaluation Toolkit (COBET) 123

concept instances and relations of the UICO and stored in the UICO via the OntologyAccess

component. All the discovered resources are indexed by the KnowMiner framework for search,
retrieval and clustering. The URIs of a specific resource in the index, in the Java object model
and in the UICO are equal and unique.

InformationNeedDetection: The detection of information needs of the user is handled
by this component. Static rules are defined and implemented to recognize a user’s information
need. The rules utilize the current user interaction context of the user for query expansion as
well as search space narrowing. The detection of information needs is based on various context
features, e.g., application name, input characters, browser’s request URL, current resource in
focus, or last accessed resources. A more elaborated description about this component is given
in [Kröll et al., 2006; Rath et al., 2007] and about the exploitation in [Rath et al., 2008].

6.4 Context OBservation Evaluation Toolkit (COBET)

The Context OBservation Evaluation Toolkit (COBET) was designed and implemented as an
important part of this research. COBET is the key component for evaluating the performance
of the ontology-based task detection approach as well as for comparing it to already existing
approaches. Here the features, feature combinations and the reported preprocessing steps for the
Dyonipos [Granitzer et al., 2008], the SWISH [Oliver et al., 2006], and the TaskPredictor 1
[Shen, 2009; Shen et al., 2006] approaches were implemented based on the explanations available
in the existing literature.

6.4.1 Architecture

The architecture of COBET can be seen as a flexible and an easy to use pipeline based system for
evaluating machine learning algorithm performance on a given dataset. In the machine learning
part the machine learning toolkit Weka [Witten & Frank, 2005], which is well-known and widely
used in the machine learning research community, is used for various operations regarding data
preprocessing, filtering, attribute selection, classification and performance measurements. The
focus of COBET is not on implementing new attribute selection methods or new classifiers.
COBET’s main focus is on exploring and discovering the best features, feature combinations,
preprocessing steps and classifiers for a machine learning task, i.e., studying the classification
problem “task detection”. The base components of the architecture are displayed in Figure 6.6
and described in the following paragraphs.

Pipeline: The Pipeline component is the central part which combines data loading, training
instance construction, context feature to attributes transformation, performance evaluation
and finally the graphical and text-based output generation. For the UICO, the Dyonipos, the
SWISH and the TaskPredictor 1 approaches own instances of a pipeline were built in order to
evaluate the task detection performance on the experiment’s datasets.

124 Prototyping

Figure 6.6: This figure shows the component diagram of the Context OBservation Evaluation Toolkit

(COBET) designed and implemented to evaluate the ontology-based task detection approach proposed in

this research for the experiments described in Chapter 7.

TrainingInstanceConstructor: Constructing the training/test instances from the
task execution data based on a predefined configuration is the responsibility of the
TrainingInstanceConstructor component. It uses the DataLoader component for re-
trieving the data from the UICO or from arff files3. Based on the configuration of the attributes
provided by the AttributeConfigurator component the TrainingInstanceConstructor

constructs the training/test instances for the classifiers. The labeling of the training/test
instances is flexible and configurable through the ClassMapper component. Regarding the
construction of the training and test instances, it is important to note here, that the construction
of each training and each test instance is done separately and independently in order to assure
that there are no influencing factors introduced in the construction and later in the evaluation
process of the task detection approaches.

DataLoader: This component handles the loading of task execution data from (i) an ex-
isting arff file and (ii) is able to retrieve task execution data from a populated UICO graph.
In the latter case, both retrieving data from a locally stored UICO graph in a file as well as
retrieving the data via querying a remote UICO stored on an OpenAnzo server are supported.

AttributeConfigurator: The configuration of the attributes that constitute a training/test
instance is specified in the AttributeConfigurator component. The configuration of an
attribute includes the type of the attribute, e.g., nominal, string, boolean or numeric attribute,
as well as the name of the attribute.

ClassMapper: This component allows the specification of rules how a training/test in-
stance is labeled. An example for this is the labeling of the training/test instances with the
corresponding task model, with routine or knowledge-intensive task or with laboratory or
personal workstation task.

3The arff file format is the application specific file format of Weka for storing training instances, and learned

classification models.

Context OBservation Evaluation Toolkit (COBET) 125

AttributePreprocessor: The preprocessing steps are configured in advanced for each
attribute or group of attributes separately. Since the order of the preprocessing steps influence
the classification result, the order in which the preprocessing steps are performed on the
attributes are important to follow. Based on the configuration of the attributes they are
preprocessed. Both, the configuration and the preprocessing of the attributes happen in the
AttributePreprocessor component. Some of the attribute transformation methods4 used are
provided by Weka, such as StringToWordVector or Discretize. Other preprocessing methods
were newly implemented, such as a specialized form of StopwordRemoval or string manipulation
methods. The attribute transformation methods used for the UICO approach are described in
Section 5.3.

Evaluator: The Evaluator component evaluates the the performance of a task detection
pipeline. For this it utilizes the following three components which are (i) AttributeSelector

for selecting a specific number of attributes for the classifier, (ii) the ClassifierEvaluator for
classifier performance evaluation and (iii) the ResultGenerator for text-based and graphical
output generation.

AttributeSelector: The AttributeSelector selects a specific number of attributes for
the classifiers in order to evaluate on how many attributes a classifier performs best.

ClassifierEvaluator: The evaluation of the classifier performance can be done in two
ways: (i) stratified 10-fold cross-validation and (ii) train/test set evaluation. In both cases
the Weka functionalities are utilized by the ClassifierEvaluator component to evaluate the
classification performance.

ResultGenerator: The ResultGenerator component creates graphical as well as text-
based output based on the classifiers’ performance results. The graphical output is based on the
functionalities provided by Gnuplot5, a function plotting utility.

Implemented graphical outputs are visualized in Figure 6.7 and include:

� dataset statistic about the distribution of task models, tasks and users

� graph plots about classification accuracy values of classifiers versus the number of attributes
with and without including the standard definition of the cross-validation folds

� top 10 and top 20 best performing configurations of a specific number of attributes and
classifiers in respect to accuracy, micro precision, micro recall as bar charts

4In Weka the attribute transformation methods are called Filters
5Gnuplot, http://www.gnuplot.info

http://www.gnuplot.info

126 Prototyping

(a) Task instance distribution in respect to the
task models.

(b) Task instance distribution in respect to the
users.

(c) J48 classifier accuracy values including the
standard deviation across the cross-validation

folds.

(d) Classification accuracy values of the
classifiers varying the number of used

attributes.

(e) Top 10 best performing pipeline configurations in terms of mean classification accuracy of
the stratified 10-fold cross-validation folds

Figure 6.7: Examples of graphical outputs automatically generated by COBET during the evaluation of the

task detection performance of the UICO pipeline on the laboratory experiment 2 dataset (see Section 7.5).

UICO-based Applications 127

6.5 UICO-based Applications

On the top of the Context OBservation Service (see Section 6.3) including the user interaction
context ontology (UICO) as an integrated part, several application prototypes were built in the
frame of the KnowSe project. This section allows the reader to get a short glance what kind of
applications are possible to create based on this research efforts.

6.5.1 User Interaction Context Visualization

The visualization of the user interaction context is not only useful for users to inspect what kind
of information was recorded about them (see Section 7.4) but also to enable a reflection possibility
on the tasks performed and the utilized resource. The timeline visualization shows the tasks and
the utilized resources during a work day, week, or month. The graph-based visualization allows
an identification of similar tasks of the user and of colleagues. This view also supports the finding
of possible collaborators based on topics, resources and tasks.

6.5.1.1 Timeline Visualization

A timeline visualization was created on the basis of the user interaction context. This visualization
allows the users to reflect on their performed tasks including the utilized resources. A timeline
visualization of the automatically captured and computed user interaction context of a work day
was developed together with Pichler [2010]. A sample timeline is visualized in Figure 6.8. The
SIMILE Widgets toolkit available at [MIT, 2009] served as a base for this visualization.

Figure 6.8: This figure shows a timeline visualization of the user interaction context comprising of tasks

and resources of a work day.

128 Prototyping

6.5.1.2 Graph Visualization

The UICO can also be seen as a graph representing the relations between users, user interactions,
resources, tasks and applications. The graph visualizations were developed together with Georg
Kompacher and are shown in Figure 6.9 and Figure 6.10. They utilize the open source RaViz
Relational Analysis Component [RaVis, 2009] library for rendering the concept instances and the
corresponding relations of the user interaction context. In Figure 6.9 a user’s task is displayed
with the utilized resources during a task execution. Figure 6.10 shows the relations between
tasks of multiple users.

Figure 6.9: This figure displays a graph visualization of the user interaction context observed during a

“Plan a trip” task focusing on resources related to this task.

6.5.2 User Interruptibility

Handling user interruptions and notifications is one of the challenges a user has to deal with
during work on a computer desktop. The user is constantly interrupted by instant messaging
applications or email notifications. These interruptions and notifications are disruptive, have
negative impact on the productivity, annoy and distract the user.

KnowSe also uses notifications about task detection and proactive information delivery. To
motivate users to work with the application instead of switching it off, a mediator is required

UICO-based Applications 129

Figure 6.10: A graph visualization of user interaction context of multiple users with a focus on the utilized

resources during the task executions.

to decide when and how to interrupt the user [McFarlane, 2002]. The computation of how
interruptible a user is, is based on the user context [Gievska & Sibert, 2004].

Together with Stefanie Wechtitsch [Wechtitsch, 2008] and Didier Devaurs a mediator was
implemented that utilizes the automatically captured user interaction context by COBS in order to
(i) suppress notifications, (ii) trigger task detection and (iii) decide upon the visual representation
of a notification. Following characteristics of the current context were taken into account [Horvitz
et al., 2004]: the application on focus, the last switch of applications, the number of window title
switches, the number of mouse clicks and keystrokes, and the duration a user was inactive. Two
illustrative examples of notifications are shown in Figure 6.11 and Figure 6.12 that display a
notification bubble (balloon) and a tray icon notification respectively for signaling the user that
a new task was detected.

Figure 6.11: This figure visualizes the KnowSe’s no-

tification bubble that notifies the user about the de-

tection of her current task.

Figure 6.12: This figure highlights the KnowSe’s tray

icon notification in the bottom right area that notifies

the user about the detection of her current task.

130 Prototyping

6.5.3 Context-Aware Proactive Information Delivery

For users it is worthwhile to automatically have the currently needed resources at hand because
it reduces the time spent on searching and navigating through their file collections [Rath et al.,
2007]. In order to deliver these valuable resources their work patterns are utilized for context-
aware information retrieval [Fuhr, 2005]. A proactive context-aware delivery agent on the basis of
the automatically observed user interaction context was realized that retrieves relevant resources
from the UICO. The automatically observed user’s interactions constitute the base for discovering
information needs. An information need has a priority that indicates the need for fulfillment. The
priority is based on the accuracy of the detection mechanism and to what extend the fulfillment is
time-critical. The value takes the last accessed resource into account in order to broaden and to
narrow the search space as well as to enhance the ranking of the delivered resources. The overall
objective of just-in-time information delivery is that users actually use more information than they
would with search engines since there is no additional effort in obtaining resources, e.g., finding
key words or entering the query into a search box. The effortless accessibility enables the users
to incorporate additional resources into their work and thus improving the overall work quality
and performance. The same policy as JITIR agents [Rhodes, 2000] is followed, i.e., proactively,
presentation of retrieved information in an accessible yet non intrusive manner and context-
awareness. The KnowSe Suggest prototype is shown in Figure 6.13. The visual components
of the prototype were developed together with Georg Kompacher. For further details about
information need detection and fulfillment the reader is referred to [Rath et al., 2007].

Figure 6.13: This figure displays the proactive context-aware information retrieval prototype KnowSe

Suggest utilizing the user interaction context for detecting the user’s information needs including the

information need fulfillment (resource delivery) in the left area. The right area visualizes a part of the

Microsoft PowerPoint slide which was the source of the detected information need.

The UICO with its concepts and relations can also be seen as a big graph thus enabling the
utilization of graph based algorithms for context-aware information retrieval. KnowSe Wave is
based on the UICO and utilizes spreading activation algorithms to identify relevant resources,
tasks and task models. Spreading activation [Anderson, 1983] has its roots in the cognitive
psychology and is used as an explanatory model to understand the operation method of the human
brain. In the cognitive psychology the idea is about neurons and synapses which interconnect the

Summary 131

neurons. In the case of the KnowSe Wave application (i) the concepts represent the neurons and
(ii) the synapses represent the relationship between two concepts (object type properties). The
KnowSe Wave application is visualized in Figure 6.14. The visual components of the prototype
were developed together with Georg Kompacher. The mechanisms and algorithms for identifying
relevant concepts of the UICO were contributed by Kompacher [2010].

Figure 6.14: This figure displays the proactive context-aware information retrieval prototype KnowSe

Wave utilizing the graph structure of the user interaction context ontology for identifying relevant concepts

(e.g., resources, tasks, task models). The KnowSe Wave view is on the right side and shows (i) a flag

indicating the relevance of a concept, (ii) the activation value as a numerical value for the relevance of a

concept, (iii) the type of the suggested concept and (iv) a short description of the identified concept.

6.6 Summary

This chapter gave an overview of the prototyping efforts that were part of this research. It
showed the first prototype which was built during the Dyonipos project. A global overview of the
architecture of the second prototype referred to as KnowSe including the Context OBservation
Service (COBS) which was used in the latter three laboratory experiments was given. The
Context OBservation Evaluation Toolkit (COBET) developed in this research for evaluating the
performance of the ontology-based task detection approach including a comparison with existing
task detection approaches was presented. A presentation of the prototype applications created
on top of COBS in the frame of the KnowSe prototype rounded off this chapter.

132 Prototyping

7
Evaluation of the Ontology-Based Task

Detection Approach

This chapter’s purpose is to present the evaluations of the ontology-based task detection approach
performed on three independent datasets obtained from three large-scale laboratory user exper-
iments. In Section 7.2 the methodology of the evaluations is explained. Section 7.3 describes
the measures used to assess the performance of the ontology-based task detection approach. The
design and execution of the experiments as well as the conducted task detection evaluations are
explained for the laboratory experiment 1 in Section 7.4, for the laboratory experiment 2 in
Section 7.5, and for the laboratory experiment 3 in Section 7.6. Section 7.7 elaborates on the
attempt of generalizing the findings and concludes this chapter with open questions.

7.1 Introduction

For evaluating a task detection approach a dataset consisting of user context data of recorded
task executions is required. The more datasets are used to evaluate the task detection approach
the more reliable the findings are. Ideally, evaluation datasets consist of usage data (i) of different
task executions, (ii) different tasks (task models/task categories), (iii) from various users, (iv)
from various domains as well as (v) contains no or less noise. Such kind of datasets are not
available by the knowledge of the author. Furthermore there are no standard datasets available
for the evaluation of the task detection approaches.

Datasets collected and utilized in other task detection approaches contains usage data from
only 1 user to 4 users of only a single domain (see Section 4.4. Examples of tasks are “buy-
ing a book” or “final review” tasks [Oliver et al., 2006], business tasks [Lokaiczyk et al., 2007],
or tasks as in [Granitzer et al., 2008] including “email handling”, “paper writing”, “research”,
“documentation” or “information collection”.

133

134 Evaluation of the Ontology-Based Task Detection Approach

7.2 Evaluation Methodology

The methodology chosen for evaluating the proposed ontology-based task detection approach
(see Chapter 5) is explained based on the following aspects: (i) experiment design and dataset
collection, (ii) level of training (class) instance construction and (iii) performance measurements.

7.2.1 Experiment Design and Dataset Collection

Since no standard public datasets are available for evaluating task detection approaches, three
independent laboratory experiments with several users from two different domains executing
different kind of tasks were designed and performed. By the nature of laboratory experiments
the experimenters have control of the experimental setting and conditions. This power of
control is useful in laboratory experiments to (i) reduce the possibilities of the participants
to introduce noise into the recorded task usage data as well as (ii) varying the experiments
conditions (experiment design) and controlling the execution of the experiment. In the exper-
iments of this dissertation research effort different conditions were varied, e.g., the task itself,
the type of task or the computer environment. In the execution of the experiment, the se-
quence in which the participants executed their tasks were also randomized to reduce bias as well.

From the author’s previous work in the Dyonipos project reported in [Granitzer et al.,
2009a, 2008] regarding dataset collection in real-world settings following experiences were gained:

Free User Task Labeling: The labeling of the task was done by users during their
task executions. The users were free in how they labeled their tasks but were limited in terms
of providing a description about the task. There was no possibility for the users to add a
description for a task. In the experiment evaluation the labels by an expert were used to
manually group the tasks into task clusters. Although the task clusters were coarse granular,
the manual grouping could have introduced a bias because of the lack of knowledge about the
executed tasks originating from the missing task descriptions. In the performed laboratory
experiments of this dissertation research a set of tasks belonging to a specific type of task or
task classification of a domain were selected during workshops by domain experts in order to re-
duce the bias. Furthermore real domain experts executed the selected tasks in a controlled setting.

Noise in the Usage Data: The tasks were collected from users during their real work
in the user’s domain, i.e., “in the wild of a working day”. This might have introduced unpre-
dictable noise and false task labels in the observed usage data. External interruptions, e.g.,
people entering the room, phone calls, leaving the desk, checking or receiving emails and instant
messages etc., or switching to another task without telling the recording tool that a switch has
happened are typical examples for noise in the observed usage data.

Further reasons why laboratory experiments were chosen for the dataset collection over real-world
settings, were the lack of existing datasets from laboratory experiments with more than two users.
It is also very difficult to vary experiment conditions in a real-world setting.

Evaluation Methodology 135

7.2.2 Level of Training/Class Instance Construction

As summarized in Section 4.5 existing task detection approaches vary in terms of how they
construct training/class instances for the machine learning algorithms. Possibilities are a sliding
window approach, a certain time interval (5 to 300 seconds) or grouping all interactions with
a single resource (“event block level”). These approaches have limitations for finding the best
discriminating features for tasks because a training instance corresponds to just a part of a task
and not to a single task. Hence, these approaches study the discriminative power of features
among parts of tasks and not the whole tasks themselves. The same applies to the performance
of the studied machine learning algorithms. However, for real-time task detection it can be
useful to know which features discriminate parts of tasks best. In case of this dissertation
research, one of the goals is to find the best discriminative feature between tasks and hence it is
argued to build the training instances on a task level, i.e., one task execution corresponds to one
training/class instance.

From the author’s previous work in the Dyonipos project reported in [Granitzer et al.,
2009a, 2008] and the author’s follow up work regarding the level of the training/class instance
construction used, it seems that event block level training instance construction can introduce a
not unimportant bias in the task detection evaluation results:

Event Block Level Training Instance Construction: Task detection on the event
block level with stratified 10-fold cross-validation has limits when interpreting the detectability
of a task. If there are long lasting tasks or tasks with a lot of event blocks then the chance of
randomly choosing one or more event block/s of the same task in a cross-validation step is high.
Event blocks of the same task, especially event blocks constructed based on the interaction with
the same resource, are easy to detect because of the similar content or the same window title.
Evaluations showed that when taking away the event block boundaries and constructing events
based on a sliding window approach an arbitrarily high or low accuracy of task detection can be
reached through varying the size of the window.

A variable window size relates to (i) the rules how event blocks are constructed and (ii) to
the user’s interaction behavior with applications and resources. Since event block rules group
events based on the interaction with a single resource, the user’s behavior directs the number of
constructed event block based on the user’s resource switching behavior. If the user switches a lot
between multiple resources, small event blocks are the outcome. In contrary, if the user interacts
with a single resource for a long time, only one single event block is created. Rephrasing this
effect in terms of a machine learning problem means that the number of resulting training/class
instances for a class could vary based on the task and could be kind of “unbalanced” (number of
events per event block). In both cases, (i) if the event blocks are too small or too large1 and (ii)
if a task has a big amount of or just a few event blocks, it influences the resulting task detection
accuracy.

1Here “large” refers to the number of events per event block

136 Evaluation of the Ontology-Based Task Detection Approach

For evaluating the detectability of tasks and finding well discriminating context features,
a construction of training instances on the task level, i.e., the construction of a training instance
for the classifier based on a single task execution, seems to be more reliable than an “event block
level” construction or a sliding window approach.

7.2.3 Performance Measurements

Task detection is classically seen as a machine learning problem in task detection research. In case
of this dissertation research task detection is seen as a classification problem because supervised
machine learning algorithms, more specifically classification algorithms, are studied for their
applicability for the task detection challenge. Standard machine learning measure [Witten &
Frank, 2005] such as accuracy, precision, recall and the f1 measure are suggested to measure the
performance of the task detection results by the task detection literature. This dissertation goes
along with their suggestions and calculates standard machine learning measures as described in
Section 7.3.

7.3 Performance Evaluations

In all the ontology-based task detection experiments the performance of well-known learning al-
gorithms in the area of text classification were studied The same evaluation methodology was ap-
plied to ensure comparability across the results from the evaluations of the different experiment’s
datasets. The ontology-based task detection approach is referred to as the UICO approach.

7.3.1 Learning Algorithms

Evaluated learning algorithms were the Näıve Bayes (NB), Linear Support Vector Machine (SVM)
with cost parameter c ∈ {2−5, 2−3, 2−1, 20, 21, 23, 25, 28, 210}, J48 decision tree (J48) and k-
Nearest Neighbor (KNN-k) with k ∈ {1, 5, 10, 35} algorithms. The interval for the cost parameters
for the SVM were chosen according to the libSVM practical guide at [Chang & Lin, 2001]. The
variations of the number of neighbors k were introduced in order to explore the task detection
performance with different decision boundaries for the KNN learning algorithms.

7.3.2 Attribute Selection

For each classifier/learning algorithm l ∈ L, for each feature category φ ∈ Φ and each fea-
ture f ∈ F the g attributes having the highest Information Gain (IG) value to obtain the
dataset were selected. Information gain attribute selection was used because (i) it is one of the
most popular and fastest algorithms in text classification and because (ii) “pre-evaluations” with
more advanced attribute selection methods showed that the influence of using more advanced
ones is rather small. An extensive study of different attribute selection methods was not in
focus. As values for g, 50 different measure points were used. Half of them were equally dis-
tributed over the available number of attributes with an upper bound of 5000 attributes. The
other half was defined by G = {3, 5, 10, 25, 50, 75, 100, 125, 150, 175, 200, 250, 300, 500, 750, 1000,
1500, 2000, 2500, 3000, 3500, 4000, 5000, 7500, 10000}. If the maximum number of attributes of a

Performance Evaluations 137

dataset was less than 10000 attributes than the performance was evaluated on the maximum
number of attributes available. On the other hand if the maximum number of attributes of the
dataset exceeded 10000 attributes then 10000 attributes constituted the last measuring point.
The interval as well as the special measuring points were chosen because of two reasons: (i) sev-
eral evaluations of task detection performance research reported that they achieved good results
for a lower number of attributes (200-300 attributes) [Granitzer et al., 2008; Lokaiczyk et al.,
2007; Shen et al., 2006], and hence a special focus was put on these number of attributes and (ii)
to also investigate the performance of the learning algorithms for a higher number of attributes.

From a practical evaluation point of view only a few measuring points were chosen because
(i) the training of classifiers with a high number of features take a long time, (ii) requires high
computational power and (iii) is not possible to perform on standard desktop computers in a
productive scenario. The focus was to find a good combination of classifiers and features that
work well on a standard desktop computer. Which attributes were finally used for training the
classifiers depended on the attribute selection algorithm (IG).

7.3.3 Algorithm Evaluation Methods

Two types of learning algorithm performance evaluations were done: (i) stratified 10-fold cross-
validation and (ii) training and test set evaluation. In (i) statistical values for each fold were
computed as well as the mean and standard deviation of all values across all folds calculated. In
(ii) a training and a test set were constructed based on the investigated research question. Each
learning algorithm was trained on the training set and evaluated on the test set. The training and
test set instances were strictly parted which means constructed and preprocessed independently
to ensure that there was no bias or influence what so ever.

The Weka machine learning toolkit [Witten & Frank, 2005] provided the necessary tools set
to measure the performance of the Näıve Bayes (NB), Linear Support Vector Machine (SVM),
J48 decision tree (J48) and k-Nearest Neighbor (KNN-k) algorithm. The Weka integration [EL-
Manzalawy & Honavar, 2005] of the libSVM [Chang & Lin, 2001] allowed hereby the evaluation
of a SVM as well.

7.3.4 Algorithm Performance

In all the experiments the influence of five parameters on the task detection performance were
evaluated: (i) the number of features, (ii) the classification model, (iii) the feature category, (iv)
single features and (v) the combination of the Top k best performing single features with k ∈ {2, 3,
4, 5, 6, 7, 8, 9, 10, 15, 20}. For each research question of each experiment’s dataset the task detec-
tion performance of the feature and feature combinations of the UICO approach was compared
to the features and feature combinations of the existing approaches of Dyonipos [Granitzer et al.,
2008], SWISH [Oliver et al., 2006] and TaskPredictor 1 [Shen, 2009; Shen et al., 2006]. For
the comparison with the three already existing approaches the features and the corresponding
feature preprocessing steps were implemented based on the description and details given in the
published papers. For the Dyonipos and TaskPredictor 1 also the same stopword list was used
in the feature preprocessing steps. For SWISH a new stopword list has been created based on
the description in [Oliver et al., 2006].

138 Evaluation of the Ontology-Based Task Detection Approach

7.3.5 Dominance Matrices and Significance Tests

This section describes the dominance matrix computations and the significance tests. The compu-
tation of dominance matrices for the feature/feature combinations and classifiers were performed.
Significance tests were done in order to produce a statistically significant ranking for (i) fea-
tures/feature combinations as well as (ii) for classifiers for each experiment’s dataset separately.

7.3.5.1 Finding the Best Features/Feature Categories

Studying the best features and feature combinations was done twofold: (i) dominance matrices
and (ii) paired t-tests [Bortz & Döring, 2006]. Similar cross-dataset comparison methods were
proposed by [Yang & Liu, 1999] for learning algorithm evaluation for text categorization and by
[Zhao et al., 2005] for hierarchical clustering algorithm evaluation for multiple document datasets.

Feature Dominance Matrix: The feature dominance matrix shows how often a fea-
ture/feature combination outperforms another one. The rows and columns of this matrix
correspond to the features/feature combinations whereas its values correspond to the number
of times the feature/feature combinations of the row outperforms the one in the column. A
feature/feature combination outperforms another one according to the following order: (i) higher
accuracy (ii) higher micro precision, (iii) higher micro recall and (iv) lower number of attributes.

Paired T-Tests for Features/Feature Categories: The paired t-test tests if the per-
formance of a features/feature combination was statistically significantly better than another
one. Testing was performed with the Apache Commons Mathematics Library [The Apache
Software Foundation, 2009] for the three significance levels α = 0.005, α = 0.01 and α = 0.5. The
following notion explains the symbols used to indicate the different significance levels in tables:

� indicates that the feature/feature combination in the row achieved a significantly higher
value than the feature/feature combination in the column with a significantly level of α =
0.005

. indicates that the feature/feature combination in the row achieved a significantly higher
value than the feature/feature combination in the column with a significantly level of α =
0.01

> indicates that the feature/feature combination in the row achieved a significantly higher
value than the feature/feature combination in the column with a significantly level of α =
0.05

� indicates that the feature/feature combination in the column achieved a significantly higher
value than the feature/feature combination in the row with a significantly level of α = 0.005

/ indicates that the feature/feature combination in the column achieved a significantly higher
value than the feature/feature combination in the row with a significantly level of α = 0.01

< indicates that the feature/feature combination in the column achieved a significantly higher
value than the feature/feature combination in the row with a significantly level of α = 0.05

~ indicates that there is no significance at any of the three levels α ∈ {0.005,0.001,0.05}, i.e.,
the p-value [Bortz & Döring, 2006] p ≥ 0.05.

Performance Evaluations 139

Ψ the number of times the feature/feature combination outperformed other features/feature
combinations at a α = 0.05 significance level. (This value is not corresponding to the sum
of the values of the row of the tables because only the top 15 features are listed.)

The paired t-test for features and feature combinations was computed with and without rank
transformation. When rank transformation was performed the test is referred to as T − Testfrt

and T − Testf otherwise. The significance tests with rank transformation were done to reduce
the influence introduced by the difference of the performance values when comparing across
datasets.

Rank Transformation: The rank transformation [Sachs & Hedderich, 2006] computes
the ranks of each value of two vectors. The values of both vectors are pooled together and sorted.
Each value is substituted with the appropriate rank based on its position in the sorting. If two
values are the same then this situation is called binding and is handled in the following way: Let
vp be a value v of one of the vectors, p the position in the sorted array and vr the rank r of the
value v. The same values vj , vj+1, . . . , vj+i will result in vr

j , v
r
j+1, . . . , v

r
j+i with r =

∑i
k=0 j+k

j+i .

7.3.5.2 Finding the Best Learning Algorithms

Dominance matrices and significance tests were computed for comparing the classifier’s perfor-
mances on each experiment’s dataset. These two methods are explained in this section and the
results are discussed in the respective experiment’s sections.

Learning Algorithm Dominance Matrix: The learning algorithm dominance matrix
shows how often the best run of a learning algorithm outperforms another one for all features,
feature combinations, and Top k single performing feature combinations. The rows and columns
of this dominance matrix correspond to the learning algorithms whereas its values correspond to
the number of times the learning algorithm of the row outperforms the one in the column. A
learning algorithm outperforms another one according to the following order: (i) higher accuracy
(ii) higher micro precision, (iii) higher micro recall and (iv) lower number of attributes.

Paired T-Tests for Learning Algorithms: The paired t-test tests if the performance
of a classifier was statistically significantly better than another one. Testing was performed with
the Apache Commons Mathematics Library [The Apache Software Foundation, 2009] for the
three significance levels α = 0.005, α = 0.01 and α = 0.5. The paired t-tests were also computed
based on the micro f-measures for having a second view on the classifier performance next to
the accuracy measure. The following notion explains the symbols used to indicate the different
significance levels in tables:

� indicates that the classifier in the row achieved a significantly higher value than the classifier
in the column with a significantly level of α = 0.005

. indicates that the classifier in the row achieved a significantly higher value than the classifier
in the column with a significantly level of α = 0.01

> indicates that the classifier in the row achieved a significantly higher value than the classifier
in the column with a significantly level of α = 0.05

140 Evaluation of the Ontology-Based Task Detection Approach

� indicates that the classifier in the column achieved a significantly higher value than the
classifier in the row with a significantly level of α = 0.005

/ indicates that the classifier in the column achieved a significantly higher value than the
classifier in the row with a significantly level of α = 0.01

< indicates that the classifier in the column achieved a significantly higher value than the
classifier in the row with a significantly level of α = 0.05

~ indicates that there was no significance at any of the three levels α ∈ {0.005,0.001,0.05},
i.e., the p-value [Bortz & Döring, 2006] p ≥ 0.05.

Ψ the number of runs the classifier outperformed other classifiers.

The paired t-tests for the learning algorithms were computed with and without rank transfor-
mation (see Section 7.3.5.1). When rank transformation was performed the test is referred to as
T − Testcrt and T − Testc otherwise. The significance tests with rank transformation were done
to reduce the influence introduced by the difference of the performance values when comparing
across multiple datasets.

Laboratory Experiment 1 - Know-Center GmbH. 141

7.4 Laboratory Experiment 1 - Know-Center GmbH.

The task experiment 1 is an experiment to get insights into the capabilities of automatic context
detection in a controlled setting. In this experiment task executions were recorded on a single
laboratory computer and on the personal employees’ workstations. 14 subjects participated in
the experiment and made their usage data available for evaluation. The experiment lasted for
about two weeks.

Following questions were investigated:

� What are the requirements and conditions for the users and the software to for a user
interaction context observation experiment?

� Can the task model of a task instances be automatically detected?

� Can task models of task instances from personal workstations be detected based on labo-
ratory task executions for training the classifier?

� Can task models of task instances from personal task executions be detected based on
predefined standard task executions for training the classifier?

� Is there a difference in automatically detecting tasks on a laboratory computer or on a
personal workstation?

� Can the type of task be automatically detected when distinguishing routine and knowledge-
intensive tasks?

� Can the task model of a task instance be automatically detected based on task instances
from only one expert user?

� Can the task model of a task instance of a single user be automatically detected based on
task instances from multiple expert users?

� Which context features are most discriminative for the studied tasks?

� Which learning algorithm performs best in terms of automatic task detection on the col-
lected dataset?

7.4.1 Experiment Design

The comparison was within subjects [Bortz & Döring, 2006] and the manipulations were achieved
by (i) the computer environment (laboratory or personal workstation), (ii) the type of task
(standard or personal) and (iii) the task to be executed (5 different tasks). The experiment
was designed in three phases. Phase 1 was the phase before the execution of the recording of
user interaction context observations. Phase 2 was the user interaction context observation
phase. This phase was followed by Phase 3, which included the evaluation of the task detection
approaches of the proposed UICO approach and the existing approaches based on the recorded
task usage dataset. A description of the steps of the phases of the experiment as well as the
obtained results are discussed in the following sections.

Manipulation 1: Laboratory and Personal Workstation

The first manipulation was achieved by varying the work environment, i.e., the computer

142 Evaluation of the Ontology-Based Task Detection Approach

desktop environment the experiment’s participants utilized to perform the tasks. Half of the
participants started performing the tasks on a laboratory computer on which a set of standard
software used in the company was installed. The other half began working on their company’s
personal workstation with their personal computer desktop settings and access to their personal
files, folder, bookmarks, emails and so on. The assignment of the experiment’s participants to
“starting at the laboratory computer” or “starting at the personal workstation” was randomized.

Manipulation 2: Standard and Personal tasks

Tasks that have a specific goal are referred to as standard tasks. An example of a specific goal is
“Bill Adams plans a journey to the CHI 2010 conference”. By having multiple users executing
a task with the same specific goal very similar task instances were expected. On behalf of an
artificial person (persona) called “Bill Adams” who also worked in the same company the tasks
were executed (standard tasks). The tasks were also performed on behalf of the experiment’s
participants themselves (personal tasks). The order to start with a standard or a personal task
was randomized.

Manipulation 3: Tasks

The third manipulation resulted from varying the tasks themselves. Five tasks were studied.
In a proceeding workshop the participants of the experiment agreed on the selection of five
tasks typically for the company to execute during the experiment. The tasks had different
characteristics, like for example, complexity, estimated execution time, number of involved
resources or granularity. A short questionnaire was issued before starting the experiment to make
sure that the subjects understood the tasks to perform. Another reason for this questionnaire
was to have the subjects think about the tasks before they actually started executing them.

The five task models are listed bellow. A detailed description of the task models and example
tasks is given in Section 8.4.

1. Routine Tasks:

Task 1: Filling in the official journey form

Task 2: Filling in the cost recompense form for the official journal

Task 3: Creating and handing in an application for leave

2. Knowledge-intensive Tasks:

Task 4: Planning an official journey

Task 5: Organization of a project meeting

The order in which the subjects were asked to execute the tasks was randomized. The fifth task
“Organization of a project” meeting was only executed on the personal workstation and not on
the laboratory computer. The reason was the outcome of the held workshop. The experiment’s
participants agreed that they would only be able to perform this kind of task if they had access
to their personal files, bookmarks, as well as their email, notes and calendar program. However,
it was decided from the experiment design perspective to keep this task since it was such a
typical work task for the studied domain.

Laboratory Experiment 1 - Know-Center GmbH. 143

Example of a task model:

[Task 1] Filling in the official journey form

Task Model (Description):
The employee fills in the details about the planned journey in the official journey
form, prints it and gives it to her division manager.

Task Instance (Task Example):
Suppose you are a researcher named Bill Adams, who is working in the Knowledge
Services division on the KnowSe project. You are traveling to the Computer-Human
Interaction (CHI 2009) conference in Boston, USA, with a colleague of yours. The
conference starts at the 4th April 2009 and ends at the 9th April. Your secretary has
already compiled some information about your trip. Here are the details:

� Project KnowSe

� Your division: Knowledge Services

� Your name: Bill Adams

� Your colleague’s name: Mary Jones

� Flight 3rd April from Graz (Austria) to Frankfurt (Germany) at 06:00

� Flight 3rd April from Frankfurt (Germany) to Boston (USA) at 12:25

� Flight 10th April from Boston (USA) to Frankfurt (Germany) at 21:40

� Flight 11th April from Frankfurt (Germany) to Graz (Austria) at 09:15

� CHI 2009 conference fees are 1000 Euros per person

� Hotel costs are 500 Euros

� Traveling costs are 950 Euros per person (flight and bus)

� All expenses will have to be payed in advance by yourself and will be refunded after

the journey.

7.4.1.1 Laboratory Experiment 1 - Phase 1 - Before the Experiment

Phase 1 included the analysis of requirements for a research experiment in which user interaction
context data is automatically observed from the user’s computer desktop. The instrument of the
requirement analysis was informal interviews. The interviews, carried out with 8 subjects, had two
parts, an explorative part and a semi-structured part. In the explorative part following question
was asked “What are the conditions for you to contribute the data about your user interaction
context for a research experiment?”. It was intended to ask such an open question to not limit
or lead the subjects in any direction. The semi-structured interview part dealt with 19 specific
areas whereas 11 areas focused on the design requirements and the setup for the experiment. The
questions regarding the software requirements focused on 8 specific areas that generated the most
discussions in the workshop.

7.4.1.1.1 Requirement Analysis

Requirements for the design of the experiment:

144 Evaluation of the Ontology-Based Task Detection Approach

� In advance information about the capabilities of the context sensors as well as the aggrega-
tion and representation of the user interaction context.

� A formal or an informal agreement to the specific purposes of the analysis of the captured
usage data during the experiment.

� The goal of the data gathering and the evaluation has to be clear to the subjects and must
not be modified without explicit allowance of the subjects.

� A little manual user effort on the subject’s side is ok during the period of the experiment.
Especially the creation, the start, the suspending, the deletion of task instances is ok.
Furthermore it is ok that the subject’s computer is a bit slower than normally during the
experiment.

� The captured data is only allowed to be distributed among a predefined circle of persons.
This circle has to be defined before the experiment.

� The evaluation results have to be made anonymous.

� Manual inspection and automatic evaluation of the captured user interaction context is
allowed. Manual inspection means that the predefined circle of persons is approved to look
at every single item of the captured user interaction context. Automatic evaluation here
stands for statistic, heuristic and algorithm based evaluations of the captured usage data.

The software requirements for the prototype used in the experiment were derived from the ex-
plorative and the semi-structured parts of the interviews. These are listed below in Table 7.1
and sorted based on the number of times the subjects named the specific requirement in the
interviews. All the requirements for the design of the experiment and for the used prototype were
followed. Furthermore all wishes of the subjects mentioned during the interviews were carefully
respected.

Context Sensing and User Interaction Context Information

Phase 1 further included the compilation of an informative document that described the capabil-
ities of the context sensors, i.e., what they observe about the user’s behavior, the representation
of the user interaction context as the result of the sensor data processing and a short description
about the architecture behind the software used in the experiment. This document was compiled
and distributed to the experiment’s subjects before the start of the user interaction context
observation phase.

Two Week Testing Period

A two week software testing period was planned to allow the subjects to get familiar with
the prototype and to reduce the bias of insecurity and unfamiliarity in handling the software
during the experiment. This period also gave the subjects the possibility to ask questions and
to get clarification about prototype handling issues. The KnowSe prototype was used in this
experiment. It is described in Section 6.3 as well as visualized in Figure 6.2 and Figure 6.3.

7.4.1.2 Laboratory Experiment 1 - Phase 2 - User Interaction Context Observation

The test design was a within subjects design [Bortz & Döring, 2006] which means that each subject
carried out the experiment for every condition of the tasks. This test design was chosen because

Laboratory Experiment 1 - Know-Center GmbH. 145

SR Description #Votes

SR1 Information about the data that will be recorded (sensor
capabilities)

8

SR2 Displaying the data that has been observed from my usage
behavior

7

SR3 Deleting data stored about my user behavior on a concept
and triple level

6

SR4 Switching the context observation on and off 5

SR5 Performance criterion: Software should allow reasonable
working speed with the computer

4

SR6 Knowing/Showing which data will leave my computer 3

SR7 No automatic transfer of the usage data to the server /ask-
ing user before submission

3

SR8 No mixing of my usage data with the data of other users
(clear separation)

2

SR9 Clear indication when context observation is active or when
not

1

SR10 Software uninstallation routine (everything has to be
cleanly removed after the experiment)

1

SR11 Searching and navigating through the recorded and derived
user interaction context data (concept and triple level)

1

SR12 Local storage of observed usage data in log files 1

SR13 Easy installation 1

Table 7.1: This table shows the software requirements (SR) derived from explorative and semi-structured

interviews with the 8 subjects. The last column (#Votes) indicates the number of people who mentioned

the software requirement stated in the row as an important one.

of the number of subjects available (14 subjects). With this test design it was also possible to
illuminate dependency and difference hypothesis [Bortz & Döring, 2006].

In phase 2 the subjects executed the Tasks 1-4 on a remote computer with a standard soft-
ware installation (Know-Center standard software installation) and the Tasks 1-5 on their own
company computer system. The subjects were asked to execute an example task for each task
model and a free task in respect to the corresponding task model. To reduce the bias of a training
effect, half of the subjects started on the remote computer and the other half on their company
computer. The selection of the subjects who started on which environment and the order in which
the subjects were asked to execute the tasks were randomized to reduce bias and the training
effect [Bortz & Döring, 2006]. The reasons why the subjects had to execute the tasks on different
computers were that the computer system with the standard software installed provided a more
controlled environment and reduced disturb factors. Examples for such possible factors are in-
coming instant messaging requests, Skype calls, personal information management issues, or new
email notifications.

146 Evaluation of the Ontology-Based Task Detection Approach

A further reason for the different task execution environments was the ability to test the
hypothesis that the task execution on a familiar and non-familiar computer environment differs.
Possible differences expected were for example the task length, the number of resources used, the
number or types of user interactions, navigation patterns and so on. The explorative study of the
observed user interaction context data led to more discriminating criteria between tasks.

Task 5 which was about the organization of a project meeting was special because it was the
most complex and the longest task for the subjects. Since it was not easy to complete Task 5
without the subject’s personal computer environment, i.e., files, folders, email etc., this task was
only executed on their personal workstations. This decision was made beforehand in the task
selection workshops by the domain experts.

7.4.1.3 Laboratory Experiment 1 - Phase 3 - Task Detection

The evaluation and the analysis of the data plays the main part of phase 3 of the experiment.
The well known machine learning toolkit Weka [Witten & Frank, 2005] in combination with
the Weka integration of the libSVM [Chang & Lin, 2001] were utilized to study appropriate
parameters and algorithms for attribute selection and automatic task detection performance.
The training instances for the learning algorithms were built based the user interaction context
ontology (UICO) as described in Section 5.

Laboratory Experiment 1 - Know-Center GmbH. 147

7.4.2 Research Question: Can the task model of the task instances be

automatically detected?

The goal of this evaluation was to answer the question “Can the task model of the task instances
be automatically detected?”. The dataset on which this question was investigated contained 218
tasks from 14 users. The same evaluation was done in [Rath et al., 2009d] except the fact that
two task instances were removed from the 220 tasks dataset because of their short duration of the
user interaction context observation for these two tasks. These tasks had less than three event
blocks.

The distribution of the task instances in respect to the classes and the computer environment
is shown in Table 7.2. Laboratory workstation tasks and personal workstation tasks were not
distinguished in this evaluation but are listed in Table 7.2 to provide the reader with a com-
plete picture about the task distribution in the dataset. An overview of all results about the
performance of detecting the tasks (Task 1-5) is given in Table 7.3. The results were achieved
by applying stratified 10-fold cross-validation on the training instances. A training instance was
built for each task instance independently.

Classes Laboratory Workstation Personal Workstation Sum

Task 1 30 25 55

Task 2 26 19 45

Task 3 26 25 51

Task 4 24 28 52

Task 5 0 15 15

Dataset CV 106 112 218

Table 7.2: This table shows the distribution of the stratified 10-fold cross-validation training/test instances

for the different task classes ranging from Task 1 to Task 5 recorded on the laboratory computer and on

the personal workstations.

Feature Categories: The feature category which achieved the highest accuracy values was the
combination of all 50 features of all categories (l=J48, a=86.71%, g=750, p=0.96, r=0.85). Close
behind with the same algorithm was the application category with the same accuracy but with a
0.01 lower micro recall value with 50 attributes. The resource category obtained an accuracy of
66.49% (l=NB, g=3000, p=0.89, r=0.72) which was only sufficient for the global rank RG=17.
The number of attributes of the best runs for the feature categories were between 50 and 4000
attributes.

Single Features: The best performing single feature was the acc. obj. name feature
(l=J48, a=86.21%, g=50, p=0.96, r=0.86). Only 5.05% less accurate was the window title
feature with the second highest accuracy (l=J48, a=81.26%, g=75, p=0.94, r=0.81). The acc.
obj. value feature achieved the third rank of the best performing single features with an accuracy
of 71.15% on 25 attributes (l=J48, p=0.90, r=0.69) with the same algorithm as the top two
single performing features. The range of the numbers of attributes for the best runs of the top

148 Evaluation of the Ontology-Based Task Detection Approach

Set RS f l g a p r RG

Feat.

Cat.

1 All Categories J48 750 86.71 0.96 0.85 10

2 Application Cat. J48 50 86.71 0.96 0.84 11

3 Resource Cat. NB 3000 66.49 0.89 0.72 17

4 Content Cat. NB 4000 65.15 0.87 0.65 18

5 Ontology Str. Cat. J48 359 63.38 0.86 0.64 21

6 Action Cat. J48 750 58.23 0.85 0.61 24

7 Switching Seq. Cat. NB 300 49.59 0.80 0.53 32

Single

Feat.

1 acc. obj. name J48 50 86.21 0.96 0.86 13

2 window title J48 75 81.26 0.94 0.81 15

3 acc. obj. value J48 25 71.15 0.90 0.69 16

4 content in focus J48 1500 64.72 0.87 0.64 19

5 content of EB KNN-1 75 63.74 0.87 0.66 20

6 used res. metadata J48 125 62.94 0.87 0.65 22

7 datatype properties J48 150 62.38 0.86 0.64 23

8 acc. obj. role des. J48 5 57.77 0.82 0.52 25

9 used res. content NB 100 56.04 0.83 0.57 26

10 acc. obj. role NB 10 55.17 0.80 0.56 27

11 resource content KNN-5 75 54.63 0.81 0.56 28

12 applications interact. J48 69 52.79 0.81 0.56 29

13 res. types interact. J48 36 50.93 0.81 0.56 30

14 concept instances J48 81 50.37 0.79 0.52 31

15 E type switch seq. J48 45 47.21 0.78 0.50 33

Top

k

Feat.

1 Top k = 4 J48 5000 88.55 0.97 0.87 1

2 Top k = 5 J48 1000 88.53 0.97 0.87 2

3 Top k = 2 KNN-10 25 88.12 0.96 0.89 3

4 Top k = 20 J48 500 88.07 0.96 0.87 4

5 Top k = 3 J48 3500 87.66 0.96 0.88 5

6 Top k = 7 J48 300 87.19 0.96 0.85 6

7 Top k = 6 J48 250 87.16 0.96 0.86 7

8 Top k = 8 J48 3000 87.14 0.96 0.84 8

9 Top k = 10 J48 300 86.73 0.96 0.85 9

10 Top k = 15 J48 500 86.28 0.96 0.85 12

11 Top k = 9 J48 300 85.76 0.96 0.83 14

Table 7.3: Overview of the best accuracy values (a) for each feature (f) and the Top k best performing

single features from the UICO for detecting the task model (Task 1-5) of the task instances by stratified

10-fold cross-validation. The learning algorithm (l), the number of attributes (g), the micro precision (p)

and the micro recall (r) are also given.

Laboratory Experiment 1 - Know-Center GmbH. 149

15 single performing features was between 5 and 150 attributes except for the feature content
in focus which had its best run with 1500 attributes. In comparison with the Top k feature
combinations, all Top k feature combinations outperformed each single feature except the worst
Top k feature combination which was the Top k = 9.

Top k Features: The Top k feature combinations achieved accuracy values ranging from
85.76% to 88.55%. The highest accuracy resulted from the Top k=4 feature combination (l=J48,
a=88.55%, p=0.97, r=0.87). The range of the number of attributes of the best runs of the
classifiers of the Top k feature combinations were between 25 and 5000 attributes.

Comparison with existing approaches: A comparison with the existing approaches
showed that the best overall tested feature combination of the UICO features, the Top k=4 fea-
ture combination (l=J48, a=88.55%, p=0.97, r=0.87), outperformed all the existing approaches
by at least 5.04% in terms of accuracy. The SWISH , the TaskPredictor 1 and the best
Dyonipos feature combination ACW were outperformed by 9.2%, 9.13% and 5.04% respectively.
The SWISH approach had its best run with 150 attributes and the J48 algorithm (a=79.35%,
p=0.93, r=0.78). The TaskPredictor 1 approach also performed best with the J48 algorithm
(a=79.42%, p=0.94, r=0.81) but required 1387 attributes. Among the existing approaches the
Dyonipos ACW resulted in the highest accuracy (l=J48, a=83.51%,p=0.95, r=0.85).

A detailed comparison of the feature and classifier performance evaluation of the existing
approaches is given in Table 7.4. The Dyonipos evaluations were also published as part of
[Granitzer et al., 2009a].

Set RG f l g a p r

1 ACW NB 300 83.51 0.95 0.85

2 CW NB 750 82.58 0.95 0.85

3 AW J48 100 80.28 0.94 0.80

Dyonipos 6 W NB 100 78.87 0.93 0.80

7 AC J48 150 68.27 0.89 0.69

8 C KNN-1 125 63.38 0.86 0.63

9 A J48 24 48.20 0.78 0.52

SWISH 5 J48 150 79.35 0.93 0.78

TaskPredictor 1 4 J48 1387 79.42 0.94 0.81

Table 7.4: Overview of the best results about the performance of detecting the task model (Task 1-5) of

the task instances for Dyonipos combinations, Swish and TaskPredictor. The learning algorithm (l), the

number of attributes (g), the micro precision (p), the micro recall (r), and the ranking (RG) are also

given.

Concluding Remarks: The evaluation results showed that the task model of the task instances
were detected with an accuracy of 88.55% on this task dataset. The UICO Top k=4 best per-

150 Evaluation of the Ontology-Based Task Detection Approach

forming single feature combination outperformed all the existing approaches between 5.04% to
9.20%.

7.4.3 Research Question: Can task models of task instances from per-

sonal workstations be detected based on laboratory task execu-

tions for training the classifier?

The goal of this evaluation was to answer the question “Can task models of task instances from
personal workstations be detected based on laboratory task executions for training the classifier?”.
The dataset contains 203 task instances from 14 users: 106 tasks from the laboratory computer
and 97 from personal workstations. The distribution of the task instances in respect to the classes
(Task 1 to Task 4) as well as in respect to the computer environment is shown in Table 7.5. The
same question has also been studied on a similar dataset with additional measuring points in
the interval between 5000 and 10000 attributes in [Rath et al., 2009a]. An overview of all results
about the performance of detecting real workstation tasks by training on task executions observed
on a laboratory workstation is given in Table 7.6.

Classes Laboratory Workstation Personal Workstation Sum

Task 1 30 25 55

Task 2 26 19 45

Task 3 26 25 51

Task 4 24 28 52

Dataset (Train/Test) 106 97 218

Table 7.5: This table shows the distribution of training instances (laboratory workstation tasks) and test

instances (personal workstation tasks) for the different task classes. Training and test instances were

constructed based on the usage data recorded on the laboratory computer and on the personal workstations

respectively.

Feature Categories: The best feature category was the application category that correctly
identified 91.75% of the real tasks (l=NB, g=500, p=0.97, r=0.92). Approximately 5% behind
in terms of accuracy was the content category (l=NB, a=86.60%, g=500, p=0.95, r=0.87).
Using all 50 features resulted in a 82.47% accuracy, which was about 9% worse than the best
performing feature category.

Single Features: The performance of each single feature was evaluated separately and
confirmed that the window title [Granitzer et al., 2008; Lokaiczyk et al., 2007; Oliver et al., 2006;
Shen et al., 2007] was the best discriminative feature: it obtained an accuracy of 85.57% (l=J48,
g=100, p=0.95, r=0.87). Of great interest were the good performances of accessibility object
features: the acc. obj. name with a=80.41% (l=J48, g=100, p=0.92, r=0.81) and the acc. obj.
value with a=71.13% (l=J48, g=150, p=0.89, r=0.72). Simply counting the number of UICO
datatype relations (a=70.10%) was also quite efficient.

Laboratory Experiment 1 - Know-Center GmbH. 151

Set RS f l g a p r RG

Feat.

Cat.

1 Application Cat. NB 175 90.72 0.97 0.91 3

2 Content Cat. NB 50 85.57 0.94 0.85 9

3 All Categories NB 750 82.47 0.93 0.83 16

4 Resource Cat. NB 4435 68.04 0.87 0.68 21

5 Ontology Str. Cat. J48 359 65.98 0.86 0.67 23

6 Action Cat. SVM-C25 10 59.79 0.81 0.58 25

7 Switching Seq. Cat. NB 1500 44.33 0.71 0.44 32

Single

Feat.

1 window title J48 100 85.57 0.95 0.87 7

2 content in focus NB 10 84.54 0.94 0.84 11

3 acc. obj. name J48 50 80.41 0.92 0.81 17

4 content of EB NB 200 73.20 0.89 0.76 18

5 acc. obj. value J48 10 71.13 0.89 0.72 19

6 datatype properties J48 221 70.10 0.88 0.71 20

7 used res. metadata J48 1000 68.04 0.86 0.68 22

8 used res. content NB 125 62.89 0.84 0.65 24

9 resource content NB 200 58.76 0.81 0.61 26

10 acc. obj. role J48 31 54.64 0.79 0.55 27

11 acc. obj. role des. NB 25 51.55 0.77 0.52 28

12 E type switch seq. NB 25 47.42 0.74 0.48 29

13 res. types interact. SVM-C210 10 45.36 0.69 0.42 30

14 concept instances SVM-C2−2 3 44.33 0.71 0.45 31

15 acc. obj. help topic KNN-10 1 44.33 0.70 0.44 33

Top

k

Feat.

1 Top k = 6 NB 250 94.85 0.98 0.95 1

2 Top k = 5 NB 150 92.78 0.97 0.94 2

3 Top k = 4 NB 500 89.69 0.96 0.91 4

4 Top k = 3 NB 300 89.69 0.96 0.90 5

5 Top k = 2 NB 50 86.60 0.95 0.87 6

6 Top k = 20 NB 7637 85.57 0.95 0.86 8

7 Top k = 15 NB 7265 84.54 0.94 0.85 10

8 Top k = 9 NB 750 82.47 0.93 0.84 12

9 Top k = 8 NB 750 82.47 0.93 0.84 13

10 Top k = 7 NB 750 82.47 0.93 0.84 14

11 Top k = 10 NB 750 82.47 0.93 0.84 15

Table 7.6: Overview of the best results about the performance of detecting real workstation tasks by training

on task executions from a laboratory setting for each feature category, each single feature as well as the

Top k performing single features. The learning algorithm (l), the number of attributes (g), the micro

precision (p), the micro recall (r), the ranking in the corresponding section (RS) and across sections

(RG) are also given.

152 Evaluation of the Ontology-Based Task Detection Approach

Top k Features: The performance for different k was studied and obtained with the
NB classifier at g=250 attributes with the Top k = 6 features the highest accuracy (a=94.85%),
precision (p=0.98) and recall (r=0.95), among all studied features, feature categories and Top
k combinations. This was an accuracy increase of 9.28%, a precision increase of 0.03 and a
recall increase of 0.08 compared to the performance of the window title feature. The Top k

feature combinations achieved accuracy values between 82.47% and 94.85% with the Näıve Bayes
algorithm.

Comparison with existing approaches: The best performance of the already existing
approaches was 88.66% accuracy with the Näıve Bayes algorithm with 50 features by the
Dyonipos feature combinations CW and ACW . This was 5.22% and 8.25% better than
the SWISH and the TaskPredictor 1 approach respectively. In comparison with the best
UICO result, the Top k = 6 feature combination (l=NB, a=94.85%, g=250, p=0.98, r=0.95)
outperformed the best Dyonipos approach by 6.16%, the SWISH approach (l=NB, a=80.41%,
g=50, p=0.93, r=0.82) by 13.41% and the TaskPredictor 1 approach (l=NB, a=80.41%, g=100,
p=0.92, r=0.81) by 14.44%. All the feature combinations of the existing approaches had their
best run with the Näıve Bayes learner like the Top k = 6 UICO feature combination. A detailed
comparison of the feature and classifier performance evaluation of the existing approaches is
given in Table 7.7.

Set RG f l g a p r

1 CW NB 50 88.66 0.96 0.90

2 ACW NB 50 88.66 0.96 0.90

3 W NB 75 85.57 0.95 0.87

Dyonipos 4 AW NB 100 85.57 0.95 0.87

5 AC NB 50 85.57 0.95 0.86

8 C NB 500 69.07 0.87 0.72

9 A KNN-35 3 36.08 0.62 0.35

SWISH 6 NB 50 81.44 0.93 0.82

TaskPredictor 1 7 NB 100 80.41 0.92 0.81

Table 7.7: Overview of the best results about the performance of detecting real workstation tasks by

training on task executions from laboratory setting for Dyonipos combinations, Swish and TaskPredictor.

The learning algorithm (l), the number of attributes (g), the micro precision (p), the micro recall (r),

and the ranking (RG) are also given.

Concluding Remarks: The good performance of the classical window title feature was con-
firmed but significantly outperformed by a specific combination of the Top k = 6 UICO features.
The positive influence of specific context features on task detection performance could be an
indication that it is not necessary to sense “everything” about the user’s interactions with her
computer desktop but only some relevant elements. This would have an impact on what kind
of sensors have to be developed, i.e. which context features have to be sensed, to achieve a rea-

Laboratory Experiment 1 - Know-Center GmbH. 153

sonable task detection performance. It would also impact the user’s system performance because
capturing less data normally leads to less CPU (central processing unit) requirements. Further-
more if we know which features are performing well for supervised machine learning algorithms
in laboratory settings, it could provide a first indication on which features could be used in an
unsupervised learning approach and in real world settings. However, this would require further
experiments in laboratory and real world settings.

7.4.4 Research Question: Can task models of task instances from per-

sonal task executions be detected based on predefined standard

task executions for training the classifier?

The goal of this evaluation was to answer the question “Can task models of task instances from
personal task executions be detected based on predefined standard task executions for training
the classifier?” This question studies the relation of a task instance to its task model and
to what degree the “specific goal” of a task instance influences the detectability. An example
of a specific goal is “Bill Adams is planning a journey to the CHI 2010 conference”. Having
multiple users executing a task with the same specific goal means that the task instances only
vary in terms of how the user performs the task, i.e., her user interactions with applications and
resources. The specific is the same. The answer to this research question is important because
it will give an insight if it was sufficient to train on task instances with one specific goal in
order to detect similar task instances with other specific goals. In order to answer this research
question the data from the first laboratory task experiment described in Section 7.4 was used. The
participants of the experiment were asked to pretend to be the artificial employee “Bill Adams”
while performing predefined standard task executions. This data was used to train different
classification algorithms. The subjects were also asked to execute the same tasks as themselves.
The order in which the tasks were executed was randomized. It was also randomized if the
subjects started performing the task on behalf of Bill Adams or themselves. The training instance
construction, the preprocessing steps, the attribute selection and the classification algorithms were
the same as described in Section 7.3.

Classes Standard Tasks Personal Tasks Sum

Task 1 28 27 55

Task 2 23 22 45

Task 3 26 24 50

Task 4 27 24 51

Task 5 9 8 17

Dataset (Train/Test) 113 105 218

Table 7.8: This table shows the distribution of the training instances (standard tasks) and test instances

(personal tasks) for the different task classes ranging from Task 1 to Task 5 recorded on the laboratory

and on the personal workstations.

154 Evaluation of the Ontology-Based Task Detection Approach

In Table 7.8 the distribution of the task instances in respect to the classes (Task 1 to Task 5) as
well as in respect to the standard and personal tasks is shown. The dataset contained 218 tasks
from 14 users. Among these 218 tasks there were 113 standard tasks and 105 personal tasks.
Standard tasks are tasks that have a specific goal, as described in Section 7.4.1. Personal tasks
are tasks the subjects performed on behalf of themselves.

An overview of all results about the performance of detecting the tasks (Task 1-5) is given
in Table 7.9. A training instance was built for each standard task and a test instance for each
personal task independently. For the evaluation of the task classification the evaluation method
train and test set (see Section 7.3.3) was used whereas the standard task instances constituted
the training set and the personal task instances the test set.

Feature Categories: The best feature category was the application category that cor-
rectly identified 75.24% of the personal tasks (l=NB, g=200, p=0.92, r=0.77). The same
accuracy was achieved by the combination of all 50 features of all categories (l=NB, a=75.24%,
g=5000, p=0.92, r=0.76). The next place in the category ranking went to the ontology structure
category with an accuracy of 61.90%, which was 13.34% worse than the best performing feature
category. The best two accuracy values were achieved by the Näıve Bayes algorithm and third
best result by the J48 decision tree learner on 250 attributes.

Single Features: The best performing single feature was the acc. obj. name feature
which obtained an accuracy of 66,67% (l=KNN-35, g=25, p=0.88, r=0.66). The window title
feature was a little bit worse with the Näıve Bayes classifier in terms of accuracy (a=65.71%),
precision (p=0.88). Simply counting the number of UICO datatype relations (a=60.00%) was
also quite efficient and only 6.67% worse than the best performing single feature. The range of
attributes for the best runs of the single performing features was between 3 and 360 attributes
except for the used res. metadata and content of EB features which had their best runs with
1000 and 750 attributes respectively.

Top k Features: The task detection performance for the different k best performing
single feature combinations resulted between 69.52% and 77.14% accuracy. The Top k = 2 fea-
tures obtained the best result with the KNN-35 classifier on only 25 attributes (p=0.93,r=0.75).
This combination also achieved the highest accuracy in comparison to all evaluated single
features and feature categories. The precision and recall values of the Top k features were close
together between p=0.90 and p=0.92 and r=0.73 and r=0.75 respectively. The Näıve Bayes
classifier was the best performing learning algorithm for all Top k feature combinations except
for the one with the highest accuracy which was the Top k = 2. The number of attributes
required to achieve the best results was quite high. The Top k with k = 5, 7, 8, 9, 10, 15, 20 had
their best runs with attributes from a range between 2500 and 10000 attributes.

Comparison with existing approaches: The context features utilized by already existing ap-
proaches showed a similar performance in terms of accuracy. They all obtained an accuracy above
70%, more specifically the best Dyonipos feature combination CW had the highest accuracy
among the existing approaches with 75.24% followed by the SWISH approach with 72.38% and

Laboratory Experiment 1 - Know-Center GmbH. 155

Set RS f l g a p r RG

Feat.

Cat.

1 Application Cat. NB 200 75.24 0.92 0.77 2

2 All Categories NB 5000 75.24 0.92 0.76 3

3 Ontology Str. Cat. J48 250 61.90 0.86 0.59 16

4 Resource Cat. J48 150 59.05 0.85 0.62 18

5 Content Cat. KNN-35 125 58.10 0.85 0.61 19

6 Action Cat. J48 300 56.19 0.83 0.54 24

7 Switching Seq. Cat. J48 2000 44.76 0.73 0.40 33

Single

Feat.

1 acc. obj. name KNN-35 25 66.67 0.88 0.66 14

2 window title NB 360 65.71 0.88 0.64 15

3 datatype properties KNN-35 224 60.00 0.85 0.61 17

4 used res. metadata NB 1000 58.10 0.85 0.59 20

5 content of EB NB 750 58.10 0.83 0.54 21

6 content in focus KNN-35 75 56.19 0.84 0.58 22

7 acc. obj. value J48 50 56.19 0.84 0.57 23

8 acc. obj. role KNN-35 35 50.48 0.79 0.47 25

9 used res. content KNN-35 50 49.52 0.79 0.50 26

10 resource content KNN-35 25 49.52 0.79 0.50 27

11 acc. obj. role des. KNN-35 61 48.57 0.77 0.46 28

12 applications interact. J48 50 46.67 0.76 0.45 29

13 objecttype properties KNN-35 25 45.71 0.77 0.46 30

14 nr. of E/EB NB 3 45.71 0.75 0.42 31

15 res. types interact. KNN-35 25 44.76 0.75 0.43 32

Top

k

Feat.

1 Top k = 2 KNN-35 25 77.14 0.93 0.75 1

2 Top k = 3 NB 75 74.29 0.92 0.78 4

3 Top k = 8 NB 2000 73.33 0.92 0.76 5

4 Top k = 7 NB 2000 73.33 0.92 0.76 6

5 Top k = 10 NB 2500 73.33 0.92 0.76 7

6 Top k = 20 NB 10000 73.33 0.92 0.74 8

7 Top k = 15 NB 7500 73.33 0.92 0.74 9

8 Top k = 5 NB 1500 72.38 0.91 0.75 10

9 Top k = 9 NB 2500 72.38 0.91 0.73 11

10 Top k = 6 NB 750 69.52 0.90 0.73 12

11 Top k = 4 NB 500 69.52 0.90 0.73 13

Table 7.9: Overview of the best results about the performance of detecting personal tasks by training

on usage data from standard tasks for each feature category, each single feature as well as the k top

performing single features. The learning algorithm (l), the number of attributes (g), the micro precision

(p), the micro recall (r), the ranking in the corresponding section (RS) and across sections (RG) are also

given.

156 Evaluation of the Ontology-Based Task Detection Approach

then the TaskPredictor 1 approach with 70.48%. Whereas the SWISH and the TaskPredictor
1 had their best run with the J48 learner, the best result was achieved by the Dyonipos approach
with the Näıve Bayes algorithm. In comparison with the best UICO feature combination, the
Top k = 2 and the combination of all 50 features outperformed the best Dyonipos feature
combination, the SWISH approach and the TaskPredictor 1 approach by 1.9%, 4.8% and 6.66%
respectively. The Top k = 2 UICO feature combination only needed 25 attributes whereas the
best Dyonipos approach and the SWISH approach required 1000 and 497 attributes respectively.

Set RG f l g a p r

1 CW NB 1000 75.24 0.92 0.77

2 ACW NB 1000 74.29 0.92 0.77

3 AW NB 175 73.33 0.92 0.75

Dyonipos 4 W NB 175 72.38 0.91 0.74

7 AC J48 2000 61.90 0.86 0.63

8 C NB 1308 60.00 0.85 0.59

9 A J48 21 40.00 0.71 0.39

SWISH 5 J48 497 72.38 0.91 0.71

TaskPredictor 1 6 J48 25 70.48 0.90 0.71

Table 7.10: Overview of the best results about the performance of detecting personal tasks by training

on usage data from standard tasks for Dyonipos combinations, Swish and TaskPredictor. The learning

algorithm (l), the number of attributes (g), the micro precision (p), the micro recall (r), and the ranking

(RG) are also given.

Influence of the “Specific Goal”: The task detection performance was also evaluated based
on standard task and personal tasks separately. This was done in order to study the influence
of the specific goal in the automatic task detection. The results of the evaluation for the stan-
dard tasks unveiled a task detection performance of 88.41% accuracy with 175 attributes with
the J48 decision tree algorithm (p=0.96,r=0.86) with the Top k = 5 best performing single
features combination. The best two single performing features were the acc. obj. name feature
(l=J48, a=87.80%, g=25, p=0.96, r=0.88) and the window title feature (l=KNN-5, a=81.44,
g=25, p=0.94, r=0.84). The best feature category was the Application Cat. with an accuracy of
87.73% (l=J48, a=87.73, g=100, p=0.96, r=0.84).

For the personal tasks an accuracy of 86.00% was achieved by the Top k = 5 feature combina-
tion (l=NB, g=300, p=0.95, r=0.86). The best three single performing features were the acc. obj.
name feature (l=J48, a=76.00%, g=25, p=0.92, r=0.77), window title (l=NB, a=71.18%, g=100,
p=0.90, r=0.74) feature and the acc. obj. value (l=KNN-5, a=68.45%, g=50, p=0.88, r=0.66)
feature. The best feature category in terms of accuracy was the application feature category with
an accuracy of 83.09% (l=KNN-5, a=83.09%, g=75, p=0.94, r=0.81).

The difference of the accuracy values of detecting standard and personal tasks, i.e., tasks
with a single predefined specific goal and without one, was only 2.41% in terms of accuracy.
The highest accuracy values were achieved with the J48 decision tree learner on a rather small

Laboratory Experiment 1 - Know-Center GmbH. 157

number of attributes in both evaluations. For standard and personal tasks the highest accuracy
values were reached with 175 and 75 attributes respectively.

Concluding Remarks: The UICO, the Dyonipos, SWISH and TaskPredictor 1 ap-
proaches had a similar performance in terms of accuracy. However, the UICO approach
outperformed all the other existing approaches. The accuracy of detecting the task model of
personal task when training on standard tasks was about 77% which could be an indication that
it was possible to automatically detect new personal task instances when training the classifier on
a predefined set of standard tasks. This indication has to be investigated in further experimental
as well as real world settings, in another domains with other users and other tasks. The results
of comparing the task detection performance of standard and personal tasks, i.e., tasks with a
single predefined specific goal and without one, suggested that the influence of the specific goal
was limited. The task detection performance for standard tasks was only 2.41% better than for
personal tasks in terms of accuracy.

7.4.5 Research Question: Is there a difference in automatically detect-

ing tasks on a laboratory computer or on a personal workstation?

This sections investigated the influence of the environment, i.e., computer desktop, for automatic
task detection and the discriminative features for tasks. For this the usage data observed during
the task executions were split into tasks from the laboratory computer and into ones from the
personal workstations. First, the task detection performance and the most significant features
without Task 5 “Organization of a project meeting” was evaluated for both settings. Secondly,
this Task 5 was included again for studying the task detection performance and the most dis-
criminative features for personal workstation tasks.

7.4.5.1 Laboratory Computer Workstation Tasks without Task 5

This section evaluates the task detection performance of detecting the task model of the task
instances on the dataset resulted from the task executions on the laboratory workstation. The
distribution of the task instances in respect to the task models is shown in Table 7.11. An
overview of all results about the performance of detecting the laboratory tasks (Task 1-4) is
given in Table 7.12. Stratified 10-fold cross-validation was applied on the training instances. A
training instance was built for each task instance.

Set Task 1 Task 2 Task 3 Task 4 Sum

Laboratory Workstation 30 26 26 24 106

Table 7.11: This table shows the distribution of training/test instances of the different task classes ranging

from Task 1 to Task 4 for stratified 10-fold cross-validation. Training and test instances were constructed

based on the usage data recorded on the laboratory workstation.

158 Evaluation of the Ontology-Based Task Detection Approach

Feature Categories: The best feature category was the application category which correctly
identified 83.91% of the tasks (l=J48, g=750, p=0.94, r=0.84) and hence also achieved the
second best result among all tested combinations. About 2.5% behind in terms of accuracy was
the combination of all 50 features of all categories (l=NB, a=81.36%, g=5000, p=0.92, r=0.82).
The third place in the category ranking went to the resource category with an 59.73% accuracy
(l=KNN-1, g=50, p=0.79, r=0.59) which was about 24% worse than the best performing feature
category. The high precision of 0.94 of the application category outperformed the resource
category with 0.15. The range of the recall values was between 0.84 for the best one and 0.59 for
the third best one. The worst performing feature categories were the content category and action
category which achieved about 50% accuracy with the J48 learner. The range of the number of
attributes for training the classification algorithms spanned from 50 to 5000 attributes for the
best runs of the classifiers. The highest accuracy among the feature categories was achieved with
750 attributes.

Single Features: The performance of each single feature was evaluated separately and
showed that the acc. obj. name feature was with an accuracy of 83.36% the best performing
single feature (l=KNN-1, g=50, p=0.93, r=0.84). The feature acc. obj. value obtained a about
8% lower accuracy with 74.55% (l=J48, g=50, p=0.90, r=0.76) on the same number of attributes
(g=50). The window title feature reached the third place of the single performing features with
the J48 learner on 293 attribtues with an accuracy of 72.36% (p=0.88, r=0.73). Simply counting
the number of UICO datatype relations, which was done by the datatype properties feature
resulted in an accuracy of 58.91% (l=J48, g=221, p=0.80, r=0.58) and hence was about 13%
worse than window title feature. The accuracy values of the single performing features from
rank 7 downwards were bellow 50%. Interesting to note here is that the range of the numbers of
attributes for the best runs of the single performing features was between 50 and 291 which goes
along with the findings of [Shen et al., 2006] and [Lokaiczyk et al., 2007].

Top k Features: The task detection performance for the different k best performing
single feature combinations resulted between 80.64% and 83.91% accuracy. The Top k = 4
features obtained the best result with the Näıve Bayes classifier on 125 attributes (a=83.91%,
p=0.94, r=0.85). This combination also achieved the highest accuracy in comparison to all
evaluated single features and feature categories. The precision and recall values of the Top k

features were close together between p=0.91 and p=0.94 and r=0.80 and r=0.85 respectively.
The Näıve Bayes and the J48 classifier were the best performing learning algorithms for the Top
k feature combinations. The range of the numbers of attributes for the best runs of the Top k

performing features was between 25 and 500 except for the Top k = 20 combination which had
its best run with 2500 attributes.

Comparison with existing approaches: The highest accuracy value of 75.18% among the
existing approaches was achieved by the Dyoniops feature combination ACW with the Näıve
Bayes learner on 250 attributes. The SWISH and the TaskPredictor 1 approaches obtained
71.91% with the J48 learner and 70.82% with the KNN-10 learner respectively. In comparison with

Laboratory Experiment 1 - Know-Center GmbH. 159

Set RS f l g a p r RG

Feat.

Cat.

1 Application Cat. J48 750 83.91 0.94 0.84 2

2 All Categories J48 5000 81.36 0.92 0.82 10

3 Resource Cat. KNN-1 50 59.73 0.79 0.59 17

4 Ontology Str. Cat. J48 359 57.82 0.79 0.58 20

5 Switching Seq. Cat. J48 50 52.91 0.75 0.51 21

6 Content Cat. J48 1614 50.73 0.71 0.49 23

7 Action Cat. J48 1751 50.18 0.74 0.50 25

Single

Feat.

1 acc. obj. name KNN-1 50 83.36 0.93 0.84 4

2 acc. obj. value J48 50 74.55 0.90 0.76 15

3 window title J48 293 72.36 0.88 0.73 16

4 datatype properties J48 221 58.91 0.80 0.58 18

5 used res. metadata KNN-10 75 58.36 0.79 0.58 19

6 content of EB NB 175 52.27 0.74 0.50 22

7 mean EB duration SVM-C2−2 1 50.27 0.74 0.51 24

8 applications interact. J48 5 49.45 0.71 0.48 26

9 concept instances KNN-10 50 49.09 0.73 0.50 27

10 used resources NB 10 48.18 0.72 0.47 28

11 content in focus J48 50 48.09 0.71 0.48 29

12 acc. obj. role SVM-C210 3 47.73 0.72 0.48 30

13 acc. obj. role des. J48 10 47.55 0.72 0.49 31

14 res. types interact. J48 25 47.09 0.73 0.49 32

15 objecttype properties J48 57 46.82 0.71 0.46 33

Top

k

Feat.

1 Top k = 4 NB 125 83.91 0.94 0.85 1

2 Top k = 5 J48 125 83.55 0.93 0.84 3

3 Top k = 2 J48 25 83.18 0.93 0.83 5

4 Top k = 20 J48 2500 82.82 0.93 0.84 6

5 Top k = 3 NB 125 82.18 0.92 0.82 7

6 Top k = 15 J48 200 81.82 0.92 0.82 8

7 Top k = 9 J48 500 81.36 0.92 0.82 9

8 Top k = 8 J48 150 81.36 0.92 0.80 11

9 Top k = 6 J48 125 81.09 0.93 0.82 12

10 Top k = 10 J48 250 80.82 0.91 0.81 13

11 Top k = 7 J48 250 80.64 0.92 0.80 14

Table 7.12: Overview of the best results about the performance of detecting laboratory computer tasks

(Task 1-4) by stratified 10-fold cross-validation for each feature category, each single feature as well as

the k top performing single features. The learning algorithm (l), the number of attributes (g), the micro

precision (p), the micro recall (r), the ranking in the corresponding section (RS) and across sections (RG)

are also given.

160 Evaluation of the Ontology-Based Task Detection Approach

the best UICO feature combination, the Top k = 4, all the existing approaches were outperformed.
More specifically, the Top k = 4 topped the best Dyonipos feature combination, the SWISH and
the TaskPredictor 1 approaches by 8.18%, 12% and 13.09%. A detailed overview of the feature
and classifier performances of the existing approaches is given in Table 7.13.

Set RG f l g a p r

1 ACW NB 250 76.18 0.90 0.78

2 CW NB 200 75.45 0.90 0.75

4 AW NB 367 71.73 0.88 0.71

Dyonipos 5 W KNN-5 25 71.64 0.88 0.73

7 AC KNN-1 25 54.64 0.77 0.54

8 C NB 200 53.00 0.75 0.52

9 A J48 16 40.64 0.65 0.39

SWISH 3 J48 413 71.91 0.87 0.71

TaskPredictor 1 6 KNN-10 75 70.82 0.87 0.71

Table 7.13: Overview of the best results about the performance of detecting laboratory computer tasks

(Task 1-4) by stratified 10-fold cross-validation for Dyonipos combinations, Swish and TaskPredictor.

The learning algorithm (l), the number of attributes (g), the micro precision (p), the micro recall (r),

and the ranking (RG) are also given.

Concluding Remarks: All the Top k combinations outperformed the feature categories and the
single features except the application feature category (a=83.91%, RG=2) and the acc. obj. name
(a=83.36%, RG=4) single feature. The highest accuracy was achieved by the Top k = 4 feature
combination with the Näıve Bayes algorithm on 125 attributes with 83.91% accuracy. The UICO
feature combination was between 8.18% and 13.09% better than the already existing approaches.

7.4.5.2 Personal Workstation Tasks without Task 5

This section describes the results achieved by training the learning algorithms on personal work-
station tasks. For training, the tasks Task 1 to Task 4 were used. Task 5 was not considered
for this experiment to assure better comparability to the laboratory task experiment results
in Section 7.4.5.1. The task distribution in respect to the task models is shown in Table 7.14
An overview of all results about the performance of detecting the workstation computer tasks
(Task 1-4) is given in Table 7.15. Stratified 10-fold cross-validation was applied on the training
instances. A training instance was built for each task instance of a personal workstation task.

Feature Categories: The combination of all 50 features achieved 91.29% accuracy (l=NB,
g=500, p=0.97, r=0.92) which was the highest accuracy value of all studied feature categories.
On the second rank was the application category with 88.56% accuracy which was only 2.73%
worse (l=NB, g=300, p=0.96, r=0.89). The content category obtained an accuracy of 84.52%

Laboratory Experiment 1 - Know-Center GmbH. 161

Set Task 1 Task 2 Task 3 Task 4 Sum

Dataset CV 25 19 25 28 97

Table 7.14: This table shows the distribution of the stratified 10-fold cross-validation training/test in-

stances for the different task classes ranging from Task 1 to Task 4 recorded on the personal workstations.

(l=NB, g=50, p=0.93, r=0.85) which was 6.77% worse than the combination of all feature
categories. The precision values of the top three categories were all above 0.93 which was rather
high and differed not more than 0.04. The range of the number of attributes for the best classifier
runs spanned from 50 to 500 attributes. The highest accuracy among the feature categories were
achieved with 500 attributes.

Single Features: The window title feature performed best among the single features
with an accuracy of 87.78% (l=J48, g=3, p=0.95, r=0.88). The second best accuracy was
obtained the acc. obj. name feature with 86.67% (l=J48, g=75, p=0.95, r=0.86) which was
about 1% worse than the best one. The feature content in focus obtained 3% lower accuracy
than the best one with 83.78% (l=KNN-10, p=0.93, r=0.84) based on only 10 attributes. Close
behind was the content of EB feature with 82.78% accuracy based on 300 attributes (l=KNN-35,
p=0.92, r=0.82). The top 4 and the top 9 best single performing features were above 80% and
70% accuracy respectively. The range of the numbers of the selected attributes for the 10 best
performing single features was between 3 and 750 whereas the highest accuracy and precision
was achieved with 3 attributes by the window title feature.

Top k Features: The task detection performance for the different Top k best perform-
ing single feature combinations resulted between 87.44% and 91.78% accuracy. The best
UICO Top k feature combinations were the Top k = 9 (p=0.97,r=0.92) and Top k = 15
(p=0.97,r=0.91) with an accuracy of 91.78% with the Näıve Bayes on 300 and 175 attributes
respectively. These two feature combinations also achieved the highest accuracy values of all
UICO feature combinations. The best 10 Top k feature combinations outperformed all the other
single features and feature categories with the Näıve Bayes learner on a range of 3 to 1000
attributes. The only exception was the Top k = 5 combination which had its best run with 3000
attributes.

Comparison with existing approaches: The TaskPredictor 1 approach achieved the highest
accuracy with 88.78% (l=J48, g=250, p=0.96, r=0.89). Very close behind was the Dyonipos
ACW feature combination with 88.44% accuracy (l=NB, g=200, p=0.96, r=0.88). With a
4.22% lower accuracy than the TaskPredictor 1 was the SWISH approach (l=J48, a=84.56%,
g=125, p=0.96, r=0.89). The number of attributes for the best runs of the existing approach
were between 25 and 250 attributes. The best UICO feature combinations, the Top k = 9 and
Top k = 15 outperformed all the existing approaches with an accuracy of 91.78% on 300 and
175 attributes respectively by 3% to 7.22%. A detailed comparison of the feature and classifier
performance evaluation of the existing approaches is given in Table 7.16.

162 Evaluation of the Ontology-Based Task Detection Approach

Set RS f l g a p r RG

Feat.

Cat.

1 All Categories NB 500 91.29 0.97 0.92 4

2 Application Cat. NB 300 88.56 0.96 0.89 8

3 Content Cat. NB 50 84.22 0.93 0.85 16

4 Ontology Str. Cat. J48 359 70.00 0.86 0.70 19

5 Resource Cat. KNN-5 125 78.67 0.91 0.79 20

6 Action Cat. NB 100 66.22 0.85 0.67 26

7 Switching Seq. Cat. J48 250 60.11 0.80 0.60 29

Single

Feat.

1 window title J48 3 87.78 0.95 0.88 9

2 acc. obj. name J48 75 86.67 0.95 0.86 15

3 content in focus KNN-10 10 83.78 0.93 0.84 17

4 content of EB KNN-35 300 82.78 0.92 0.82 18

5 resource content KNN-1 250 76.67 0.90 0.76 21

6 used res. content KNN-5 175 75.44 0.88 0.74 22

7 acc. obj. value J48 750 73.89 0.89 0.74 23

8 datatype properties J48 200 73.33 0.87 0.72 24

9 used res. metadata SVM-C210 5 73.11 0.88 0.72 25

10 acc. obj. role des. KNN-10 10 65.78 0.84 0.63 27

11 acc. obj. role J48 37 64.78 0.83 0.64 28

12 applications interact. KNN-10 5 56.00 0.78 0.57 30

13 res. types interact. J48 25 56.89 0.79 0.56 31

14 concept instances KNN-5 5 55.78 0.77 0.52 32

15 objecttype properties J48 57 54.78 0.77 0.55 33

Top

k

Feat.

1 Top k = 9 NB 300 91.78 0.97 0.92 1

2 Top k = 15 NB 175 91.78 0.97 0.91 2

3 Top k = 10 NB 200 91.67 0.97 0.91 3

4 Top k = 20 NB 300 90.78 0.97 0.91 5

5 Top k = 8 NB 750 89.78 0.96 0.90 6

6 Top k = 7 NB 1000 89.78 0.96 0.90 7

7 Top k = 3 NB 1000 87.67 0.95 0.88 10

8 Top k = 5 NB 3000 87.56 0.95 0.88 11

9 Top k = 4 NB 200 87.56 0.95 0.88 12

10 Top k = 2 J48 3 87.56 0.95 0.87 13

11 Top k = 6 NB 200 87.44 0.95 0.87 14

Table 7.15: Overview of the best results about the performance of detecting personal workstation tasks

(Tasks 1-4) by stratified 10-fold cross-validation for each feature category, each single feature as well as

the k top performing single features. The learning algorithm (l), the number of attributes (g), the micro

precision (p), the micro recall (r), the ranking in the corresponding section (RS) and across sections (RG)

are also given.

Laboratory Experiment 1 - Know-Center GmbH. 163

Set RG f l g a p r

2 ACW NB 200 88.44 0.96 0.88

3 CW NB 125 87.67 0.95 0.88

4 AW SVM-C210 25 86.78 0.95 0.87

Dyonipos 5 W SVM-C20 25 86.44 0.94 0.87

6 AC NB 25 85.78 0.94 0.86

8 C NB 150 83.78 0.93 0.84

9 A J48 19 50.11 0.74 0.50

SWISH 7 J48 125 84.56 0.94 0.85

TaskPredictor 1 1 J48 250 88.78 0.96 0.89

Table 7.16: Overview of the best results about the performance of detecting laboratory computer tasks

(Task 1-4) by stratified 10-fold cross-validation for Dyonipos combinations, Swish and TaskPredictor.

The learning algorithm (l), the number of attributes (g), the micro precision (p), the micro recall (r),

and the ranking (RG) are also given.

Concluding Remarks: This classification problem of detecting the task model (Task 1-
4) of task instances observed on the personal workstations was solved with an accuracy of
91.78% with the Näıve Bayes classifier on this dataset. The best UICO feature combination
outperformed the existing approaches by 3% to 7.22% in terms of accuracy.

7.4.5.3 Personal Workstation Tasks with Task 5

This section describes the results achieved by training the learning algorithms on the complete set
of personal workstation task available (Task 1-5). This evaluation is different in comparison to
Section 7.4.5.2 in which Task 5 was excluded. Having five tasks resulted in having five classes for
the classification task, i.e., a five class classification problem. The dataset is shown in Table 7.17.
An overview of all results about the performance of detecting the workstation computer tasks
(Task 1-5) is given in Table 7.18. The results were achieved by applying 10-fold cross-validation
on the training instances. A training instance was built for each task instance of a personal
workstation task.

Set Task 1 Task 2 Task 3 Task 4 Task 5 Sum

Dataset CV 25 19 25 28 15 112

Table 7.17: This table shows the distribution of the stratified 10-fold cross-validation training/test in-

stances for the different task classes ranging from Task 1 to Task 5 recorded on the personal workstations.

Feature Categories: The combination of all 50 features achieved 91.06% accuracy (l=NB,
g=250, p=0.97, r=0.92) which was the highest accuracy value of all studied feature categories.

164 Evaluation of the Ontology-Based Task Detection Approach

Set RS f l g a p r RG

Feat.

Cat.

1 All Categories NB 250 91.06 0.97 0.92 4

2 Application Cat. J48 75 85.53 0.95 0.86 14

3 Content Cat. NB 750 82.35 0.94 0.81 15

4 Resource Cat. KNN-1 175 76.14 0.92 0.75 19

5 Action Cat. J48 2062 60.00 0.85 0.62 24

6 Ontology Str. Cat. J48 300 69.77 0.89 0.70 25

7 Switching Seq. Cat. SVM-C25 500 46.67 0.74 0.41 35

Single

Feat.

1 window title J48 25 86.67 0.96 0.85 13

2 content of EB NB 75 82.12 0.94 0.79 16

3 content in focus J48 125 80.61 0.94 0.80 17

4 acc. obj. name J48 25 79.55 0.93 0.78 18

5 used res. metadata KNN-5 175 75.68 0.92 0.76 20

6 resource content KNN-35 75 73.18 0.90 0.72 21

7 used res. content KNN-10 100 72.50 0.90 0.71 22

8 acc. obj. value J48 1323 70.68 0.89 0.69 23

9 datatype properties J48 221 69.62 0.89 0.70 26

10 acc. obj. role des. J48 64 60.98 0.84 0.59 27

11 acc. obj. role J48 37 60.53 0.85 0.61 28

12 concept instances J48 81 55.45 0.82 0.56 29

13 res. types interact. J48 33 52.73 0.80 0.53 30

14 applications interact. KNN-5 59 51.89 0.79 0.48 31

15 objecttype properties J48 57 51.14 0.77 0.50 32

Top

k

Feat.

1 Top k = 8 NB 1000 91.21 0.97 0.91 1

2 Top k = 9 NB 300 91.14 0.98 0.93 2

3 Top k = 20 NB 500 91.06 0.97 0.92 3

4 Top k = 15 NB 2000 90.91 0.97 0.92 5

5 Top k = 7 NB 250 90.30 0.97 0.90 6

6 Top k = 10 NB 3500 90.15 0.97 0.91 7

7 Top k = 6 NB 500 90.08 0.97 0.92 8

8 Top k = 5 NB 300 89.47 0.97 0.91 9

9 Top k = 4 NB 2500 87.73 0.96 0.88 10

10 Top k = 2 NB 150 87.50 0.96 0.89 11

11 Top k = 3 NB 1500 86.74 0.96 0.86 12

Table 7.18: Overview of the best results about the performance of detecting personal workstation tasks

(Tasks 1-5) by stratified 10-fold cross-validation for each feature category, each single feature as well as

the k top performing single features. The learning algorithm (l), the number of attributes (g), the micro

precision (p), the micro recall (r), the ranking in the corresponding section (RS) and across sections (RG)

are also given.

Laboratory Experiment 1 - Know-Center GmbH. 165

On the second rank was the application category with 88.56% accuracy which was almost 6%
worse (l=J48, g=75, p=0.95, r=0.86). The content category obtained an accuracy of 82.35%
(l=NB, g=750, p=0.94, r=0.81) which was almost 9% worse than the combination of all features
from all categories. The precision values of the top four categories were all above 0.92 which was
rather high and differed not more than 0.05. The range of the number of attributes of the best
classifier runs spanned from 75 to 2062 attributes but the highest accuracy values were achieved
between 75 and 750 attributes. The precision values were quite high (0.89 to 0.97) except for the
switching sequence category which just achieved a precision of 0.74 and 46.67% accuracy.

Single Features: The best performing single feature was the window title feature with
an accuracy of 86.67% (l=J48, g=25, p=0.96, r=0.85). On the second place was the content
of EB feature which was approximately 4.5% worse in terms of accuracy than the best single
performing feature (l=NB, g=75, p=0.94, r=0.79). The content in focus feature obtained
an accuracy of 80.61% (l=J48, g=125, p=0.94, r=0.80) which led to the third rank. The
accuracy values for the top four single performing features were close together and differed only
approximately 6% raning from 79.55% to 86.67%. The range of the numbers of the selected
attributes for the best top 20 best performing single features was between 10 and 221 except for
the acc. obj. value and the used resources which performed best with 1323 and 582 attributes
respectively. Based on only 25 attributes the window title feature achieved the highest accuracy
of 86.67% among the single performing features.

Top k Features: The best task detection performance for different k best performing
single feature combinations achieved the Top k = 8 best single features combination with 91.21%
with the Näıve Bayes learner on 1000 attributes. This was also the highest accuracy among all
UICO features and feature categories. The second best among the Top k was the one with k = 9
with the same learner but only with 300 attributes and an accuracy of 91.15%. This one was
only 0.07% worse in terms of accuracy. The range of accuracy values resulted from the Top k

feature combination was between 86.74% and 91.15% accuracy with Näıve Bayes learner. The
number of attributes used in the best runs of the classifiers spanned from 150 to 3500 attributes.

Comparison with existing approaches: The Dyonipos feature combination ACW obtained
the highest accuracy with 89.55% on 200 attributes with the Näıve Bayes classifier. This
combination was 6.6% better than the SWISH and 2.05% better than the TaskPredictor 1
approach in terms of accuracy. All the existing approaches were outperformed by the best seven
Top k with k = {6, 7, 8, 9, 10, 15, 20} UICO single feature combinations. The best Dyonipos
approach, the SWISH and the TaskPredictor 1 approach were worse by 1.66%, 8.26% and
3.71% accuracy. A detailed comparison of the feature and classifier performance evaluation of
the existing approaches is given in Table 7.19.

Concluding Remarks: The task models of the task instances from personal worksta-
tions can be detected with an accuracy of 91.21% with the Näıve Bayes learner. The existing
approaches were outperformed by 1.66% to 8.26% by the best UICO feature combination which
was the Top k = 9.

166 Evaluation of the Ontology-Based Task Detection Approach

Set RG f l g a p r

1 ACW NB 200 89.55 0.97 0.90

2 CW NB 200 88.41 0.97 0.89

4 W NB 25 85.76 0.96 0.87

Dyonipos 5 AW NB 125 85.76 0.96 0.86

7 C NB 150 82.35 0.94 0.80

8 AC NB 500 82.27 0.94 0.82

9 A J48 21 53.33 0.81 0.54

SWISH 6 J48 50 82.95 0.95 0.84

TaskPredictor 1 3 J48 250 87.50 0.96 0.87

Table 7.19: Overview of the best results about the performance of detecting personal workstation tasks

(Tasks 1-5) by stratified 10-fold cross-validation for Dyonipos combinations, Swish and TaskPredictor.

The learning algorithm (l), the number of attributes (g), the micro precision (p), the micro recall (r),

and the ranking (RG) are also given.

7.4.6 Research Question: Can the type of task be automatically

detected when distinguishing routine and knowledge-intensive

tasks?

The goal of the following evaluations was to answer the question “Can the type of task be auto-
matically detected when distinguishing routine and knowledge-intensive tasks?”. The dataset on
which this question was investigated contained 218 tasks from 14 users. Among these 218 tasks
there were 151 routine tasks (Task 1-3) and 67 knowledge-intensive tasks (Task 4 and 5). The
distribution of the task instances in respect to the task type (routine or knowledge-intensive) is
shown in Table 7.20.

Type Classes Class Instances Sum

Routine Tasks

Task 1 55

151Task 2 45

Task 3 51

Knowledge Intensive Tasks
Task 4 52

67
Task 5 15

Dataset CV 218

Table 7.20: This table shows the distribution of the stratified 10-fold cross-validation training/test in-

stances for the different task classes routine tasks (Task 1,2,3) and knowledge-intensive tasks (Task 4,5)

which were recorded on the laboratory computer as well as on the personal workstations from 14 users.

An overview of all results about the performance of detecting if a task instance is a routine task
or a knowledge-intensive task by applying stratified 10-fold cross-validation is given in Table 7.21.

Laboratory Experiment 1 - Know-Center GmbH. 167

Set RS f l g a p r RG

Feat.

Cat.

1 Application Cat. SVM-C2−5 3 94.07 0.92 0.92 3

2 All Categories J48 300 92.73 0.91 0.91 14

3 Resource Cat. SVM-C2−2 10 91.77 0.90 0.90 18

4 Action Cat. NB 500 88.61 0.84 0.84 19

5 Ontology Str. Cat. J48 3 87.62 0.84 0.84 24

6 Switching Seq. Cat. NB 175 86.23 0.81 0.81 25

7 Content Cat. KNN-35 200 82.60 0.73 0.73 34

Single

Feat.

1 window title J48 25 93.64 0.91 0.91 6

2 acc. obj. name J48 100 93.61 0.92 0.92 7

3 acc. obj. value SVM-C2−2 25 92.68 0.90 0.90 15

4 used res. metadata SVM-C25 10 91.80 0.90 0.90 17

5 datatype properties KNN-35 100 88.55 0.85 0.85 20

6 applications interact. J48 25 88.55 0.85 0.85 21

7 acc. obj. role des. J48 5 88.05 0.83 0.83 22

8 concept instances SVM-C21 5 88.03 0.86 0.86 23

9 res. types interact. NB 36 85.84 0.80 0.80 26

10 used resources NB 300 85.78 0.80 0.80 27

11 objecttype properties J48 57 85.76 0.82 0.82 28

12 acc. obj. role SVM-C20 3 85.30 0.82 0.82 29

13 EB res. interact. SVM-C22 25 84.85 0.79 0.79 30

14 used res. interact. KNN-5 125 83.96 0.77 0.77 31

15 res. interact. KNN-5 50 83.55 0.75 0.75 32

Top

k

Feat.

1 Top k = 3 NB 500 94.94 0.94 0.94 1

2 Top k = 4 SVM-C20 10 94.55 0.93 0.93 2

3 Top k = 2 NB 100 94.05 0.93 0.93 4

4 Top k = 7 J48 2500 93.64 0.92 0.92 5

5 Top k = 10 J48 300 93.59 0.92 0.92 8

6 Top k = 20 J48 150 93.16 0.92 0.92 9

7 Top k = 5 NB 125 93.14 0.93 0.93 10

8 Top k = 9 J48 175 93.14 0.92 0.92 11

9 Top k = 15 J48 3500 93.07 0.92 0.92 12

10 Top k = 6 J48 750 92.73 0.92 0.92 13

11 Top k = 8 J48 3500 92.66 0.91 0.91 16

Table 7.21: Overview of the best results about the performance of detecting routine (Task 1-3) and

knowledge-intensive tasks (Task 4 and 5) for each feature category, for all feature categories combined,

each single feature as well as the k top performing single features. The learning algorithm (l), the number

of attributes (g), the micro precision (p), the micro recall (r), the ranking in the corresponding section

(RS) and across sections (RG) are also given.

168 Evaluation of the Ontology-Based Task Detection Approach

Feature Categories: The application category performed best with 94.07% accuracy on only 3
attributes with the linear SVM algorithm (p=0.92, r=0.92) which resulted in the third rank of
the global ranking (RG = 3). Only 1.34% less accurate was the combination of all 50 features
with the J48 learner on 300 attributes (a=92.73%, p=0.91, r=0.91). The resource category
achieved with 91.77% accuracy with the linear SVM algorithm on 10 attributes the third rank
(a=92.73%, p=0.91, r=0.92). The number of attributes for the best runs of the classifiers for
the feature categories ranged from 3 to 500 attributes.

Single Features: The best performing single feature was the window title feature with
an accuracy of 93.64% with the J48 algorithm. The performance in terms of accuracy was only
0.43% less than the best performing feature category, the application category. The acc. obj.
name feature obtained 93.61% accuracy with the same algorithm as the window title feature but
required additional 75 attributes. With 92.68% accuracy the acc. obj. value feature achieved
92.68% accuracy with the linear SVM learner on 25 attributes. The accuracy of the best 15
single performing features ranged from 83.55% to 93.64% whereas the top 4 ones were above 91%.

Top k Features: The Top k feature combinations resulted in accuracy values between
92.66% to 94.94%. The best among the Top k feature combinations was the Top k = 3 with
an accuracy of 94.94% with the Näıve Bayes learner on 500 attributes (p=0.94, r=0.94) which
outperformed all the other UICO single features and feature categories. The second and third
best ones were the Top k = 4 and Top k = 2 which obtained 94.55% (l=SVM, g=10, p=0.93,
r=0.93) and 94.05% (l=NB, g=100, p=0.93, r=0.93) accuracy. The number of attributes for the
best runs was between 10 and 3500 attributes.

Set RG f l g a p r

1 AW SVM-C2−5 125 94.55 0.93 0.93

2 W SVM-C2−5 100 94.50 0.93 0.93

3 CW SVM-C2−5 300 94.05 0.92 0.92

Dyonipos 6 ACW SVM-C28 300 93.61 0.91 0.91

7 AC NB 5 82.51 0.72 0.72

8 C NB 125 79.85 0.68 0.68

9 A SVM-C28 24 78.98 0.67 0.67

5 SWISH NB 150 94.03 0.92 0.92

4 TaskPredictor 1 NB 150 94.03 0.93 0.93

Table 7.22: Overview of the best results about the performance of detecting routine (Task 1-3) and

knowledge-intensive tasks (Task 4 and 5) for Dyonipos combinations, Swish and TaskPredictor. The

learning algorithm (l), the number of attributes (g), the micro precision (p), the micro recall (r), and the

ranking (RG) are also given.

Comparison with existing approaches: The best Dyonipos feature combination AW , the
SWISH and the TaskPredictor 1 approach performed almost equally well with an accuracy

Laboratory Experiment 1 - Know-Center GmbH. 169

of 94.55% (l=SVM, g=125,p=0.93,r=0.93), 94.03% (l=NB, g=150,p=0.92,r=0.92) and 94.03%
(l=NB, g=150,p=0.93,r=0.93) respectively. However, the best UICO feature combination, the
Top k = 3 with an accuracy of 94.94%, outperformed all the existing approaches. The difference
in terms of accuracy was very low ranging from 0.39% to 0.91%. The number of attributes of
the best runs of the classifiers for the existing approaches were between 5 and 300 attributes.

Concluding Remarks: The classification task for identifying routine (Task 1-3) and
knowledge-intensive tasks (Task 4 and Task 5) based on this dataset was solved with an
accuracy of 94.94% by the UICO feature combination Top k = 3. The performance of the
existing approaches were very close to the accuracy of the best UICO feature combination.

7.4.7 Research Question: Can the task model of a task instance be

automatically detected based on task instances from only one

expert user?

The goal of the following evaluation was to answer the question “Can the task model of a task
instance be automatically detected based on task instances from only one expert user?”. The
dataset on which this question was investigated contained 271 tasks from 14 users whereas 68
task instances came from the expert user and 203 task instances from 13 other users. These 271
tasks were almost equally distributed among the five task models (Task 1-5) for the expert user
as well as the user group as visualized in Table 7.23.

Class Single Expert User Group Sum

Task 1 15 51 66

Task 2 15 41 56

Task 3 18 47 65

Task 4 11 48 59

Task 5 9 16 25

Dataset (Train/Test/Sum) 68 203 271

Table 7.23: This table shows the distribution of the training instances (single expert user) and the test

instances (multiple users) for the task models (Task 1-5) recorded on the laboratory computer and on the

personal workstations.

An overview of all results about the task detection performance of detecting is given in Table 7.24.
These results were achieved by training on the task instance of the single expert user and testing
on the task instances of the user group. For each task instance a training instance was built.

Feature Categories: The best feature category was the application category with an accuracy
of 57.64% (l=NB, g=1000, p=0.85, r=0.60). The performance of this feature category obtained
the 11th rank in the overall ranking (RG = 11). Only 0.50% behind in terms of accuracy was the
combination of all 50 features which correctly identified 57.14% of the classes with the maximum

170 Evaluation of the Ontology-Based Task Detection Approach

Set RS f l g a p r RG

Feat.

Cat.

1 Application Cat. NB 1000 57.64 0.85 0.60 11

2 All Categories J48 9348 57.14 0.81 0.50 12

3 Resource Cat. NB 500 54.68 0.81 0.52 15

4 Content Cat. KNN-35 100 52.71 0.80 0.48 18

5 Ontology Str. Cat. KNN-35 300 44.83 0.74 0.41 25

6 Switching Seq. Cat. J48 50 41.87 0.74 0.42 27

7 Action Cat. KNN-35 75 39.90 0.70 0.36 32

Single

Feat.

1 window title NB 75 68.97 0.88 0.63 2

2 acc. obj. value NB 75 61.58 0.86 0.62 4

3 used res. metadata NB 3000 54.19 0.82 0.54 17

4 datatype properties KNN-35 75 50.74 0.78 0.46 19

5 content in focus J48 150 49.26 0.77 0.45 20

6 acc. obj. name NB 270 48.28 0.79 0.50 21

7 content of EB NB 125 47.78 0.77 0.46 22

8 objecttype properties KNN-35 25 45.81 0.75 0.42 23

9 applications interact. J48 25 44.83 0.75 0.44 24

10 acc. obj. role KNN-10 3 42.36 0.71 0.37 26

11 res. types interact. KNN-35 10 41.38 0.74 0.44 28

12 EB duration J48 5 41.38 0.71 0.37 29

13 app. switch seq. NB 25 40.39 0.73 0.41 30

14 E type switch seq. J48 19 39.90 0.70 0.37 31

15 used res. content J48 50 37.93 0.67 0.33 33

Top

k

Feat.

1 Top k = 2 NB 100 72.91 0.91 0.71 1

2 Top k = 3 NB 500 65.52 0.88 0.65 3

3 Top k = 10 KNN-35 300 60.59 0.84 0.55 5

4 Top k = 9 KNN-35 300 59.61 0.84 0.55 6

5 Top k = 7 KNN-35 300 59.61 0.84 0.55 7

6 Top k = 8 KNN-35 300 59.11 0.83 0.54 8

7 Top k = 6 J48 300 59.11 0.83 0.52 9

8 Top k = 5 J48 300 59.11 0.83 0.52 10

9 Top k = 20 KNN-35 750 55.17 0.82 0.53 13

10 Top k = 4 NB 500 55.17 0.82 0.52 14

11 Top k = 15 KNN-35 1500 54.19 0.82 0.54 16

Table 7.24: Overview of the best results about the performance of detecting user tasks (Tasks 1-5) by

training on expert tasks for each feature category, each single feature as well as the k top performing

single features. The learning algorithm (l), the number of attributes (g), the micro precision (p), the

micro recall (r), the ranking in the corresponding section (RS) and across sections (RG) are also given.

Laboratory Experiment 1 - Know-Center GmbH. 171

of available attributes (l=J48, g=9348, p=0.81, r=0.50). The third place in the category ranking
went to the resource category with an accuracy of 54.68% (l=NB, g=500, p=0.81, r=0.52), which
was 2.96% worse than the best performing feature category. The accuracy values of the feature
categories ranged from 39.90% (action category) to 57.64% (application category). The range
of the number of attributes for training the classification algorithms spanned from 50 to 9348
attributes. The highest accuracy among the feature categories were achieved with 1000 attributes.

Single Features: The performance of each single feature was evaluated separately and
showed that the window title feature was with an accuracy of 68.97% and with only 75 attributes
(l=NB, p=0.88, r=0.63) the best performing single feature as well as the second best one in the
global ranking (RG). The acc. obj. value feature reached with the same number of attributes and
the same learner but with an 7.39% less accuracy the second highest accuracy value of the single
performing features (l=NB, g=75, p=0.86, r=0.62). The used res. metadata feature obtained an
accuracy of 54.19% (l=NB, g=3000, p=0.82, r=0.54) and hence achieved the third place of the
single performing features with a 14.78% less accuracy than the best one.

The accuracy values of the best 15 single performing features spanned from 37.93% to
68.97%. The range of the numbers of attributes for the best classifier runs of the best 15 single
performing features was between 3 and 270 attributes except for the used res. metadata which
had its best run with 3000 attributes. The best two performing single features outperformed all
the feature categories in terms of accuracy. The window title feature was 11.33% more accurate
in detecting the classes than the best feature category.

Top k Features: The classification performance for the combination of the Top k single
performing features ranged from 54.19% to 72.91% accuracy. The Top k = 2 features obtained
the best result with the NB classifier on 100 attributes (a=72.91%, p=0.91, r=0.71). This
combination also achieved the highest accuracy in comparison to all evaluated single features
and feature categories. The second best Top k feature combination was the Top k = 3 with a
7.39% less accuracy value (l=NB, a=65.52%, g=500, p=0.88, r=0.65) than the best one. With
an accuracy of 60.59% the Top k = 10 feature combination obtained the third place in this
category. This accuracy value was 12.32% lower then the best Top k feature combination.

The range of the numbers of attributes for the best runs of the Top k performing feature
combinations were between 100 and 1500 attributes. The best eight Top k feature combinations
outperformed all the feature categories in terms of accuracy.

Comparison with existing approaches: A comparison with existing approaches showed
that the best overall tested combination of the UICO features, the Top k = 2 with 72.91%
accuracy, achieved a higher accuracy than all the existing approaches. The SWISH (l=NB,
a=65.52%, g=75, p=0.88, r=0.64), the TaskPredictor 1 (l=NB, a=68.97%, g=100, p=0.89,
r=0.69) and the best Dyonipos feature combination ACW (l=NB, a=69.46%, g=250, p=0.89,
r=0.64) were outperformed by 7.39%, 3.94% and 3.45% accuracy respectively. The existing
approaches’ accuracy values ranged from 32.51% to 69.46% whereas the best Dyonipos, SWISH
and TaskPredictor 1 approach only differed about 3%. The number of attributes of the best
classifier runs of the algorithms were between 12 and 250 attributes. A detailed comparison of

172 Evaluation of the Ontology-Based Task Detection Approach

Set RG f l g a p r

1 ACW NB 250 69.46 0.89 0.64

3 CW NB 250 67.98 0.88 0.61

5 W SVM-C = 210 75 65.52 0.86 0.56

Dyonipos 6 AW NB 50 65.02 0.88 0.67

7 AC NB 125 57.64 0.82 0.52

8 C NB 100 48.28 0.77 0.45

9 A KNN-35 12 32.51 0.66 0.34

SWISH 4 NB 75 65.52 0.88 0.64

TaskPredictor 1 2 NB 100 68.97 0.89 0.69

Table 7.25: Overview of the best results about the performance of detecting user tasks (Tasks 1-5) by

training on expert tasks for Dyonipos combinations, Swish and TaskPredictor. The learning algorithm

(l), the number of attributes (g), the micro precision (p), the micro recall (r), and the ranking (RG) are

also given.

the feature and classifier performance evaluation of the existing approaches is given in Table 7.64.

Extended Evaluation: In order to explore the capabilities of the UICO features beyond
the chosen evaluation methodology, all feature combinations consisting of 2-6 features of the 10
best performing single features was performed. The best single features can be observed in Ta-
ble 7.28. This extended evaluation resulted in

∑6
k=2

10!
k!∗(10−k!) = 837 feature combinations. The

results show that an accuracy of 75.37% was reached with multiple feature combinations as shown
in Table 7.26. The accuracy of the standard evaluation methodology was only increased by 2.34%.

FC L l g a p r

f1+f2+f7 3 NB 500 75.37 0.92 0.73

f1+f2+f5 3 NB 500 74.38 0.92 0.73

f1+f2+f5+f7+f9 5 NB 500 74.38 0.92 0.73

f1+f2+f5+f7 4 NB 500 74.38 0.91 0.72

f1+f2 2 NB 100 72.91 0.91 0.71

f1+f2+f5+f9 4 NB 500 72.41 0.91 0.72

f2+f7 2 NB 200 72.41 0.91 0.70

Table 7.26: Overview of the best results about the performance of detecting users’ tasks (Tasks 1-5) by

training on tasks from one expert via the evaluation of all feature combinations (FC) consisting of 2-6

features of the best 10 performing single features (f1 − f10). The number of features involved in the

combination (L), learning algorithm (l), the number of attributes (g), the micro precision (p), the micro

recall (r), and the ranking (RG) are also given.

Laboratory Experiment 1 - Know-Center GmbH. 173

Concluding Remarks: The evaluations of the task classification performance of detecting user
tasks by training on expert tasks when focusing on five task models (Tasks 1-5) showed that an
accuracy of about 73% can be reached when utilizing the UICO’s Top k = 2 best single performing
feature combination on this dataset. This feature combination was specific to the UICO approach
and outperformed the feature and feature combinations of the existing approaches. The extended
evaluation methodology showed that the accuracy was only increased by 2.34% to 75.37% in
comparison with the standard evaluation methodology. This can be seen as an indication that
although calculating multiple combinations of the best single performing this only lead to a small
accuracy increase. In case of this research question the minor accuracy increase strengthen the
view that one expert is not enough for classifier training in order to reach a high accuracy.

7.4.8 Research Question: Can the task model of a task instance of

a single user be automatically detected based on task instances

from multiple expert users?

The goal of this evaluation was to answer the question “Can the task model of a task instance
of a single user be automatically detected based on task instances from multiple expert users?”.
The datasets on which this question was investigated contained 271 tasks from 14 users whereas
203 task instances came from the expert user group and 68 task instances from one single user.
These 271 tasks were almost equally distributed among the five task models (Task 1-5) for the
expert user group as well as for the single user as visualized in in Table 7.27. This evaluation
was exactly the opposite to the one described in Section 7.4.7 in the sense that the tasks used for
training and testing were swapped.

An overview of all results about the task detection performance is given in Table 7.28. These
results were achieved by training on the task instances of the expert group and testing on the
task instances of the single user. For each task instance a training instance was built.

Class Expert User Group Single User Sum

Task 1 51 15 66

Task 2 41 15 56

Task 3 47 18 65

Task 4 48 11 59

Task 5 16 9 25

Dataset (Train/Test/Sum) 203 68 271

Table 7.27: This table shows the distribution of the training instances (expert user group) and the test

instances (one single user) for the task models (Task 1-5) recorded on the laboratory computer and on the

personal workstations.

Feature Categories: The feature category which achieved the highest accuracy values was
the combination of all 50 features of all feature categories with the J48 algorithm and 92.65%

174 Evaluation of the Ontology-Based Task Detection Approach

accuracy (g=250, p=0.98, r=0.91). This feature combination resulted in the global rank RG = 6.
A 2.94% less accuracy was obtained by the application category with 89.71% accuracy and the NB
algorithm on 500 attributes (p=0.97, r=0.90). The ontology structure category achieved 85.29%
accuracy (l=KNN-35, g=75, p=0.96, r=0.85) and hence rank 3 in the feature category ranking.

The accuracy values resulting based on the feature categories were between 54.41% and
92.65%. In comparison to the performance of the single features and the best Top k feature
combinations the best feature category the combination of all features of all categories, had the
same accuracy values. The range of the number of attributes for the best classifier runs was
between 75 and 3206 attributes whereas the best feature category used 250 attributes.

Single Features: The best performing single feature was the window title feature with an
accuracy of 92.65% (l=NB, g=75, p=0.98, r=0.92). Only 1.47% less accurate in detecting the
classes was the datatype properties feature with 57 attributes (l=NB, a=91.18%, p=0.98, r=0.91).
The third rank of the best performing single features went to the concept instances feature which
achieved an accuracy of 83.82% with 150 attributes (l=KNN-35, p=0.95, r=0.83).

The range of the numbers of attributes for the best runs of the best 15 single performing
features was between 3 and 1500 attributes. The accuracy values for the best 15 single features
ranged from 67.65% to 92.65%. In comparison with the Top k feature combinations and feature
categories only the best single feature, the window title feature, performed equally well.

Top k Features: The Top k best single feature combinations achieved accuracy values
ranging from 88.24% to 92.65% and hence only differed among each other by 4.41%. The highest
accuracy values resulted from the Top k with k = {3, 6, 7, 20} with the Näıve Bayes and the J48
learner with 50 to 250 attributes. This high accuracy of 92.65% was also obtained by the best
single performing feature, the window title, and the best feature category (All Categories).

The range of the number of attributes for the best runs of the algorithms was between 50
and 250 attributes except for the Top k = 4 which had its best run with 1000 attributes and the
KNN-35 algorithm.

Comparison with existing approaches: The evaluation of the existing approaches
showed that the best two Dyonipos approaches, CW and ACW as well as the TaskPredictor
1 approach achieved 97.06% accuracy with the Näıve Bayes algorithm. The SWISH approach
achieved 89.71% accuracy also with the Näıve Bayes learner. The Dyonipos CW and ACW
as well as the TaskPredictor 1 approach outperformed the best UICO feature combination by
4.41% accuracy.

In all the best performing existing and UICO approaches the window title was one of the
involved features. In the Top k best performing single feature construction strategy only the first
k were considered in the set of features. This was the reason why there was no combination of
the two features window title and content of EB or window title and content in focus.

A detailed overview of the feature and classifier performances of the existing approaches is
given in Table 7.29.

Laboratory Experiment 1 - Know-Center GmbH. 175

Set RS f l g a p r RG

Feat.

Cat.

1 All Categories J48 250 92.65 0.98 0.91 6

2 Application Cat. NB 500 89.71 0.97 0.90 10

3 Ontology Str. Cat. KNN-35 75 85.29 0.96 0.85 16

4 Content Cat. KNN-35 75 82.35 0.95 0.79 22

5 Action Cat. J48 300 76.47 0.92 0.75 27

6 Resource Cat. NB 3500 72.06 0.91 0.71 29

7 Switching Seq. Cat. J48 3206 54.41 0.83 0.58 36

Single

Feat.

1 window title NB 75 92.65 0.98 0.92 2

2 objecttype properties NB 57 91.18 0.98 0.91 8

3 datatype properties KNN-35 150 83.82 0.95 0.83 17

4 content in focus KNN-35 125 82.35 0.95 0.80 18

5 used res. content NB 1000 82.35 0.95 0.79 19

6 content of EB SVM-C = 210 1000 82.35 0.95 0.79 20

7 resource content NB 1500 82.35 0.95 0.79 21

8 acc. obj. name SVM-C = 210 10 80.88 0.94 0.81 23

9 user input NB 500 80.88 0.94 0.81 24

10 acc. obj. value KNN-35 25 77.94 0.93 0.78 25

11 acc. obj. role des. J48 3 77.94 0.93 0.71 26

12 EB duration SVM-C = 2−1 3 73.53 0.91 0.68 28

13 acc. obj. role NB 3 70.59 0.90 0.63 30

14 res. types interact. J48 25 69.12 0.90 0.70 31

15 concept instances KNN-35 50 67.65 0.89 0.70 32

Top

k

Feat.

1 Top k = 3 NB 150 92.65 0.98 0.92 1

2 Top k = 7 J48 50 92.65 0.98 0.91 3

3 Top k = 6 J48 50 92.65 0.98 0.91 4

4 Top k = 20 J48 250 92.65 0.98 0.91 5

5 Top k = 2 NB 100 91.18 0.98 0.91 7

6 Top k = 15 NB 250 91.18 0.98 0.89 9

7 Top k = 9 NB 150 89.71 0.97 0.87 11

8 Top k = 8 NB 150 89.71 0.97 0.87 12

9 Top k = 10 NB 200 89.71 0.97 0.87 13

10 Top k = 5 KNN-35 200 88.24 0.97 0.86 14

11 Top k = 4 KNN-35 1000 88.24 0.97 0.86 15

Table 7.28: Overview of the best results about the performance of detecting a single user’s tasks (Tasks

1-5) by training on tasks from multiple experts for each feature category, each single feature as well as

the k top performing single features. The learning algorithm (l), the number of attributes (g), the micro

precision (p), the micro recall (r), the ranking in the corresponding section (RS) and across sections (RG)

are also given.

176 Evaluation of the Ontology-Based Task Detection Approach

Set RG f l g a p r

2 CW NB 750 97.06 0.99 0.97

3 ACW NB 1000 97.06 0.99 0.97

4 W NB 25 92.65 0.98 0.93

Dyonipos 6 AW J48 10 89.71 0.97 0.88

7 AC J48 500 86.76 0.96 0.85

8 C NB 25 82.35 0.95 0.80

9 A J48 22 57.35 0.84 0.59

SWISH 5 NB 75 89.71 0.97 0.90

TaskPredictor 1 1 NB 200 97.06 0.99 0.97

Table 7.29: Overview of the best results about the performance of detecting a single user’s tasks (Tasks

1-5) by training on tasks from multiple experts for Dyonipos combinations, Swish and TaskPredictor. The

learning algorithm (l), the number of attributes (g), the micro precision (p), the micro recall (r), and the

ranking (RG) are also given.

FC L l g a p r

f2+f6+f8 3 SVM-C = 210 25 98.53 1.00 0.98

f2+f6+f8+f9 4 SVM-C = 210 25 98.53 1.00 0.98

f2+f3+f4+f6+f8 5 J48 100 98.53 1.00 0.98

f2+f4+f5+f7+f8 5 J48 75 98.53 1.00 0.98

f2+f3+f4+f5+f7+f8 6 J48 100 98.53 1.00 0.98

f2+f3+f4+f6+f8+f9 6 J48 100 98.53 1.00 0.98

f2+f4+f5+f7+f8+f9 6 J48 75 98.53 1.00 0.98

Table 7.30: Overview of the best results about the performance of detecting single user’s tasks (Tasks 1-5)

by training on tasks from multiple experts via the evaluation of all feature combinations (FC) consisting

of 2-6 features of the best 10 performing single features (f1 − f10). The number of features involved in

the combination (L), learning algorithm (l), the number of attributes (g), the micro precision (p), the

micro recall (r), and the ranking (RG) are also given.

Laboratory Experiment 1 - Know-Center GmbH. 177

Extended Evaluation: The UICO approach was outperformed by some combinations of
features of the existing approaches because of the chosen evaluation methodology. The evalu-
ation methodology for measuring the performance of the best k single performing features did
not take into account all possible feature combinations such that the best performing feature
combinations were not evaluated. Since it is not feasible to calculate all possible combinations
with computers available today some combinations of features were not evaluated. For a more
detailed discussion about finding the best feature combination it is referred to Section 7.7.
However, in order to explore the capabilities of the UICO features beyond the chosen evaluation
methodology, all feature combinations consisting of 2-6 features of the 10 best performing
single features was performed. The best single features can be observed in Table 7.28. This
extended evaluation resulted in

∑6
k=2

10!
k!∗(10−k!) = 837 feature combinations. The results

show that an accuracy of 98.53% was reached with multiple feature combinations as shown in
Table 7.30. The accuracy of the standard evaluation methodology was increased by 5.88% and
hence all the existing approaches were outperformed by UICO feature combinations. Interest-
ing to note here is that the window title feature was not part of the best performing combinations.

Concluding Remarks: The evaluations of the task classification performance of detecting a
single user’s tasks (Tasks 1-5) by training on tasks from multiple experts (Tasks 1-5) showed
that an accuracy of 97.06% was reached by the Dyonipos CW and ACW as well as the
TaskPredictor 1 approach on this dataset. A 4.41% lower accuracy was reached by utilizing
the best UICO feature combinations based on the standard evaluation methodology. Through an
extended evaluation of all feature combinations consisting of 2-6 features of the 10 best performing
single features an accuracy of 98.53% was reached. Hence the UICO features outperformed all
the existing features and feature combinations of the existing approaches.

7.4.9 Finding the Best Features/Feature Categories

Feature Dominance Matrix: Table 7.31 displays the dominance matrix for the features and
feature combinations as described in Section 7.3.5.1. It showed that the application category, the
window title feature and the combination of all features (All Categories) outperformed the other
features and feature combinations most often. As expected the window title feature performed
really well. Surprising was that the four accessibility object features acc. obj. name, acc. obj.
value, acc. obj. role des., acc. obj. role turned out to have such a good performance. The acc.
obj. name feature was only 26 times less dominant to other features than the well-known window
title feature. A good performance as well showed the datatype properties feature and the ontology
structure category which achieved the 8th and the 10th rank in the feature dominance matrix
respectively.

Paired T-Tests: The statistical significance tests T − Testf and T − Testfrt as described in
Section 7.3.5.1 are summarized in Table 7.32 and Table 7.33 respectively. The T − Testf showed
that the application category and the combination of all features (All Categories) performed
statistically significantly better than all other features and feature combinations on a p < 0.05
significance level. By comparing the results for the T − Testf and T − Testfrt one can observe

178 Evaluation of the Ontology-Based Task Detection Approach

A
p
p
li
c
a
ti

o
n

C
a
t.

w
in

d
o
w

ti
tl

e

A
ll

C
a
te

g
o
ri

e
s

a
c
c
.

o
b

j.
n
a
m

e

a
c
c
.

o
b

j.
v
a
lu

e

R
e
so

u
rc

e
C

a
t.

C
o
n
te

n
t

C
a
t.

d
a
ta

ty
p
e

p
ro

p
e
rt

ie
s

u
se

d
re

s.
m

e
ta

d
a
ta

O
n
to

lo
g
y

S
tr

.
C

a
t.

c
o
n
te

n
t

o
f

E
B

c
o
n
te

n
t

in
fo

c
u
s

A
c
ti

o
n

C
a
t.

a
c
c
.

o
b

j.
ro

le
d
e
s.

re
so

u
rc

e
c
o
n
te

n
t

a
c
c
.

o
b

j.
ro

le

Ψ

Application Cat. - 6 5 9 8 9 9 9 9 9 9 9 9 9 9 9 495
window title 3 - 4 6 8 9 9 9 9 9 9 9 9 9 9 9 489
All Categories 4 5 - 7 8 8 7 8 8 9 9 8 9 9 9 9 486
acc. obj. name 0 3 2 - 8 8 5 7 8 8 7 5 9 9 8 9 463
acc. obj. value 1 1 1 1 - 6 4 7 7 7 4 4 9 9 6 9 440
Resource Cat. 0 0 1 1 3 - 5 6 8 7 5 5 8 8 8 9 439
Content Cat. 0 0 2 4 5 4 - 5 6 5 8 8 8 8 9 8 437
datatype properties 0 0 1 2 2 3 4 - 5 5 5 5 8 9 7 9 430
used res. metadata 0 0 1 1 2 1 3 4 - 6 4 4 8 8 7 8 419
Ontology Str. Cat. 0 0 0 1 2 2 4 4 3 - 4 4 8 8 7 9 418
content of EB 0 0 0 2 5 4 1 4 5 5 - 4 8 8 9 8 416
content in focus 0 0 1 4 5 4 1 4 5 5 5 - 7 8 9 8 415
Action Cat. 0 0 0 0 0 1 1 1 1 1 1 2 - 7 5 7 380
acc. obj. role des. 0 0 0 0 0 1 1 0 1 1 1 1 2 - 3 5 362
resource content 0 0 0 1 3 1 0 2 2 2 0 0 4 6 - 5 361
acc. obj. role 0 0 0 0 0 0 1 0 1 0 1 1 2 4 4 - 361

Table 7.31: Feature dominance matrix for the top 15 features and feature combinations. (The last two

features performed equally well, hence the matrix has 16 rows and columns.)

that (i) the first 13 features and feature combinations appear in both tables and (ii) that the order
in which they were ranked (Ψ) was only slightly different. A comparison of the t-test tables with
the feature dominance matrix in Table 7.31 highlights that the best 15 ranked features appear in
all three tables. These results strength the argument that these were the best performing features
for this dataset, i.e., the ones with the highest discriminative power.

A
ll

C
a
te

g
o
ri

e
s

A
p
p
li
c
a
ti

o
n

C
a
t.

w
in

d
o
w

ti
tl

e

a
c
c
.

o
b

j.
n
a
m

e

C
o
n
te

n
t

C
a
t.

R
e
so

u
rc

e
C

a
t.

a
c
c
.

o
b

j.
v
a
lu

e

c
o
n
te

n
t

o
f

E
B

d
a
ta

ty
p
e

p
ro

p
e
rt

ie
s

O
n
to

lo
g
y

S
tr

.
C

a
t.

c
o
n
te

n
t

in
fo

c
u
s

u
se

d
re

s.
m

e
ta

d
a
ta

A
c
ti

o
n

C
a
t.

a
c
c
.

o
b

j.
ro

le

u
se

d
re

s.
c
o
n
te

n
t

Ψ

All Categories - ~ ~ > > � > � � � . � � � � 54
Application Cat. ~ - ~ . . � � � � � � � � � � 54
window title ~ ~ - ~ � � � � � � � � � � � 53
acc. obj. name < / ~ - ~ > ~ > > . ~ > � � . 50
Content Cat. < / � ~ - ~ ~ ~ ~ ~ � ~ > . � 46
Resource Cat. � � � < ~ - ~ ~ ~ ~ ~ > . � > 46
acc. obj. value < � � ~ ~ ~ - ~ ~ ~ ~ ~ . � > 45
content of EB � � � < ~ ~ ~ - ~ ~ ~ ~ > . � 45
datatype properties � � � < ~ ~ ~ ~ - ~ ~ ~ � � > 45
Ontology Str. Cat. � � � / ~ ~ ~ ~ ~ - ~ ~ � � ~ 43
content in focus / � � ~ � ~ ~ ~ ~ ~ - ~ ~ > . 43
used res. metadata � � � < ~ < ~ ~ ~ ~ ~ - ~ � ~ 41
Action Cat. � � � � < / / < � � ~ ~ - > ~ 40
acc. obj. role � � � � / � � / � � < � < - ~ 38
used res. content � � � / � < < � < ~ / ~ ~ ~ - 37

Table 7.32: Feature significance matrix for the top 15 features without rank transformation (T − Testf)

7.4.10 Finding the Best Learning Algorithms

Classifier Dominance Matrix: Table 7.34 visualizes the results from the classifier dominance
matrix computations as described in Section 7.3.5.2. The order of the best performing classifiers
is NB�230J48�377SVM-lin�97KNN-5�42KNN-1�13KNN-35�41KNN-10, whereas c1�dc2

indicates that classifier c1 performed d times better than c2 based on the Ψ.

Laboratory Experiment 1 - Know-Center GmbH. 179

A
p
p
li
c
a
ti

o
n

C
a
t.

A
ll

C
a
te

g
o
ri

e
s

w
in

d
o
w

ti
tl

e

a
c
c
.

o
b

j.
n
a
m

e

C
o
n
te

n
t

C
a
t.

d
a
ta

ty
p
e

p
ro

p
e
rt

ie
s

O
n
to

lo
g
y

S
tr

.
C

a
t.

c
o
n
te

n
t

o
f

E
B

R
e
so

u
rc

e
C

a
t.

a
c
c
.

o
b

j.
v
a
lu

e

c
o
n
te

n
t

in
fo

c
u
s

u
se

d
re

s.
m

e
ta

d
a
ta

A
c
ti

o
n

C
a
t.

a
c
c
.

o
b

j.
ro

le

a
c
c
.

o
b

j.
ro

le
d
e
s.

Ψ

Application Cat. - ~ ~ > � � � � � � � � � � � 54
All Categories ~ - ~ ~ > � � � � � . � � � � 53
window title ~ ~ - ~ � � � � � . � � � � � 53
acc. obj. name < ~ ~ - ~ > > ~ . . ~ . � � � 50
Content Cat. � < � ~ - ~ ~ ~ ~ ~ . ~ > > > 45
datatype properties � � � < ~ - ~ ~ ~ ~ ~ ~ � � � 45
Ontology Str. Cat. � � � < ~ ~ - ~ ~ ~ ~ ~ . � � 44
content of EB � � � ~ ~ ~ ~ - ~ ~ ~ ~ ~ > > 44
Resource Cat. � � � / ~ ~ ~ ~ - ~ ~ > . � � 44
acc. obj. value � � / / ~ ~ ~ ~ ~ - ~ ~ . � . 43
content in focus � / � ~ / ~ ~ ~ ~ ~ - ~ ~ > ~ 42
used res. metadata � � � / ~ ~ ~ ~ < ~ ~ - ~ > > 42
Action Cat. � � � � < � / ~ / / ~ ~ - ~ ~ 39
acc. obj. role � � � � < � � < � � < < ~ - ~ 39
acc. obj. role des. � � � � < � � < � / ~ < ~ ~ - 37

Table 7.33: Feature significance matrix for the top 15 features with rank transformation (T − Testfrt)

N
B

J
4
8

S
V

M
-l

in

K
N

N
-5

K
N

N
-1

K
N

N
-3

5

K
N

N
-1

0

Ψ

NB - 291 360 328 331 336 342 1988

J48 251 - 347 288 292 291 289 1758

SVM-lin 207 211 - 241 242 237 243 1381

KNN-5 208 221 322 - 173 176 184 1284

KNN-1 206 216 321 156 - 164 179 1242

KNN-35 200 222 325 152 166 - 164 1229

KNN-10 195 222 321 136 151 163 - 1188

Table 7.34: Dominance matrix for the classifiers l ∈ {J48, KNN-1, KNN-10, KNN-35, KNN-5, NB,

SVM-lin}

Paired T-Tests: Table 7.35 summarizes the statistical significance tests for classifiers as de-
scribed in Section 7.4.10. Since the results of “with” and “without” rank transformation were
the same Table 7.35 shows both. Using each column of this table the following complete partial
order of the classifiers was obtained for the different significance levels: {J48, NB} � {KNN-1,
KNN-5, KNN-10, KNN-35}�{SVM-lin}, whereas the classifiers with insignificant performance
differences were grouped into one set.

Paired t-tests performed based on the micro f-measures without and with rank transformation
resulted in the same partial order.

The results suggested the conclusion that the Näıve Bayes and the J48 decision tree learners
performed better on this dataset as the k-Nearest Neighbor (KNN) algorithms and the linear
Support Vector Machines (SVM-lin).

180 Evaluation of the Ontology-Based Task Detection Approach

J
4
8

N
B

K
N

N
-1

K
N

N
-1

0

K
N

N
-3

5

K
N

N
-5

S
V

M
-l

in

Ψ

J48 - ~ � � � � � 5

NB ~ - � � � � � 5

KNN-1 � � - ~ ~ ~ � 1

KNN-10 � � ~ - ~ ~ � 1

KNN-35 � � ~ ~ - ~ � 1

KNN-5 � � ~ ~ ~ - � 1

SVM-lin � � � � � � - 0

Table 7.35: Significance matrix for the classifiers l ∈ {J48, KNN-1, KNN-10, KNN-35, KNN-5, NB,

SVM-lin} with and without rank transformation (both have equal entries)

7.4.11 Concluding Remarks

In Table 7.36 the results of the task detection laboratory experiment 1 described in this section
are summarized. Table 7.36 shows which research questions were investigated as well as the task
detection performance results of the UICO approach in comparison with the Dyonipos, SWISH
and TaskPredictor 1 approaches. One can observe that the UICO approach outperformed all
the other approaches on all research questions investigated.

Evaluations UICO Dyonipos SWISH Task P. 1

Task Models (5 TM) 88.55% 83.51% 79.35% 79.42%

Pers. based on Lab. Workst. (4 TM) 94.85% 88.66% 81.44% 80.41%

Laboratory Computer (4 TM) 83.91% 76.18% 71.91% 71.91%

Personal Computer (4 TM) 91.78% 88.44% 84.56% 88.78%

Personal Computer (5 TM) 91.21% 89.55% 82.95% 87.50%

Routine vs. Knowledge-Int. T. (5 TM) 94.94% 94.55% 94.03% 94.03%

Pers. based on Std. Tasks (5 TM) 77.14% 75.24% 72.38% 72.38%

Standard Tasks (5 TM) 88.41% 83.18% 77.05% 76.97%

Personal Tasks (5 TM) 86.00% 72.36% 73.45% 70.27%

One Expert and User Group (5 TM) 75.37%1 69.46% 65.52% 68.97%

Expert Group and One User (5 TM) 98.53%2 97.06% 89.71% 97.06%

Table 7.36: This table displays an overview of the results of the laboratory experiment 1. The highest

achieved accuracy value for the evaluation of each investigated research question is marked in bold.

1Achieved with an extended feature combination evaluation as described in Section 7.4.7. The standard evaluation

methodology described in Section 7.3.3 only reached 72.91% because not all feature combinations were evaluated.
2Achieved with an extended feature combination evaluation as described in Section 7.4.8. The standard evaluation

methodology described in Section 7.3.3 only reached 92.65% because not all feature combinations were evaluated.

Laboratory Experiment 1 - Know-Center GmbH. 181

The answers to the research questions were elaborated for the influence of the environment in
Section 7.4.11.1, for personal and standard task in Section 7.4.11.2, for routine and knowledge-
intensive tasks in Section 7.4.11.3, and for expert task training in Section 7.4.11.4. Concluding
remarks and open questions round off this section.

7.4.11.1 Influence of the Computer Environment

The task instances recorded on the laboratory computer and the personal workstations during
this experiment were classified to the four task models (Task 1-4) with an accuracy of 83.91%
and 91.78% respectively. The difference in terms of accuracy was 7.87% which was unexpected
because the laboratory computer seemed to be a more controlled environment. The limitations
of the laboratory computer environment were shared among the experiment’s participants. It
was expected that these limited conditions would result into very similar task executions and
hence would increase the task detection performance. However, this was not the case. The
better detectability of personal workstation tasks suggested that the performance of classification
algorithms was positively influenced by the variety of task executions and by the users’ freedom
in performing the tasks. The generalizability of these findings have to be further investigated
with other tasks as well as other users and in other domains.

A training on laboratory task usage data and testing on personal workstation task executions
resulted in an accuracy of 94.85%. The accuracy increased by 3.07% and 10.94% in compar-
ison to only detecting the task models of personal workstation or laboratory task executions
respectively. This could be an indication that the computer environment did not have that much
influence in how users performed these four tasks and hence limited influence in the task detection
performance.

What is further interesting next to the high accuracy values is that these results could be an
indication that it would be possible to “train offline”. Train offline here means to gather a group
of users in a lab for executing tasks of a certain domain and recording these task execution for
training the classifier. Packaging this trained classifier within a product and role it out to the
whole domain or company for automatic task detection. This would then bring all the benefits
of task-based work and learn support to the users. The arguments that (i) these task were very
specific to the domain and that (ii) only four tasks were studied are supported at this point.

The influence of adding one further task model and further task instances to the personal
workstation environment was also studied. The result was an accuracy of 91.21% which was only
0.57% less accurate than detecting four task models. For getting a clearer picture about the task
detection performance in case of a continous adding of new tasks models requires long-term task
observation experiments. For generalizing the achieved results further, experiments are suggested.
For a discussion about the generalizability of the results the reader is referred to Section 8.1.3.

7.4.11.2 Detecting Personal Tasks based on Standard Tasks

Standard tasks are task that have a specific goal which was predefined by the experimenter.
Personal tasks are tasks for which the experiment’s participant can freely choose the specific goal
to accomplish. The results showed that by training on tasks with a shared specific goal the task
models of the task instances of personal task instances could be detected with an accuracy of

182 Evaluation of the Ontology-Based Task Detection Approach

77.14%. This could indicate that the specific goal of a task has an influence in task detection
performance when comparing this result to the detection of only standard tasks (88.41%) and
only personal tasks (86.00%).

7.4.11.3 Routine vs. Knowledge-Intensive Tasks

The routine task instances (Task 1-3) and the knowledge-intensive task instances (Task 4 and
Task 5) were correctly identified as routine and knowledge intensive tasks with an accuracy
of 94.94%. From the machine learning perspective this was a two-class or binary classification
problem which was solved with a very high accuracy on this dataset.

7.4.11.4 Expert(s) and User(s) Tasks

The results of the evaluation in Section 7.4.7 about the performance of detecting user tasks by
training on expert tasks when focusing on five task models (Tasks 1-5) showed that an accuracy
of 72.91% can be reached when utilizing the UICO’s Top k = 2 best single performing feature
combination on this dataset. This feature combination was specific to the UICO approach and
outperformed the feature and feature combinations proposed by the existing approaches.

Through an extended evaluation of all feature combinations consisting of 2-6 features of the
10 best performing single features an accuracy increase of 2.34% to 75.37% was achieved. This
can be seen as an indication that (i) although calculating multiple combinations of the best single
performing features only leads to a small accuracy increase and (ii) that one expert is not enough
for classifier training in order to reach a high accuracy.

In Section 7.4.8 the reversed question was studied, namely the task classification performance
of detecting a single user’s tasks by training on tasks from multiple experts. It resulted in an
accuracy of 97.06% obtained by the Dyonipos CW and ACW as well as the TaskPredictor 1
approach. A 4.41% lower accuracy was reached by utilizing the best UICO feature combinations
based on the standard evaluation methodology. Through an extended evaluation of all feature
combinations consisting of 2-6 features of the 10 best performing single features an accuracy of
98.53% reached which outperformed all the existing features and feature combinations of the
existing approaches.

7.4.11.5 Remarks about the Experiment

The small number of task models investigated in this domain had multiple reasons. The first one
was that the same participants had to perform the tasks twice, once on the laboratory computer
and once on their personal workstations. Since the experiment should not last longer than 90
min for each setting, the number of tasks were limited. From the participant’s point of view it is
an exhausting task to perform multiple task in a short period of time.

The tasks to be executed were chosen together with the participants beforehand during pre-
liminary workshops such that the tasks reflect their actual work. Since the domain was a research
company the routine tasks were about standard administration tasks and the knowledge-intensive
tasks about journey planning and the organization of project meetings.

The execution of the experiment and the data collection went well. However, the time required
for saving the observed usage data to the file system was very long. Sometimes it took over an

Laboratory Experiment 1 - Know-Center GmbH. 183

hour because of the mass of usage data observed. At the point in time when the usage data
collection took place the optimization mechanisms about separating triples into multiple named
graphs were not yet implemented in the prototype. Although the application freezed and could
not be closed during the saving time this did not cause any problems for the participants since
they left their computer running in the background after returning to their daily work.

The laboratory computer was not the fastest machine such that a few participants mentioned
that they were not able to be as fast and productive as usual in executing the tasks. These issues
might have introduced a bias in the usage data collection process.

184 Evaluation of the Ontology-Based Task Detection Approach

7.5 Laboratory Experiment 2 - Computer Science Students

The experiment described in this section investigated the domain of “computer science students
of Graz University of Technology in Austria”. Preceding informal interviews showed that
computer science students performed routine as well as knowledge-intensive tasks during their
university time. This experiment was conducted to get further insights into the capabilities of
automatic task detection for computer science tasks in a controlled setting. Four laboratory
computers were setup and prepared for the experiment (see Section 7.5.1.1). 10 computer science
students participated in this experiment. These students were considered as experts of the
investigated domain. They allowed the observation of their user interaction context during their
task executions and made it freely available for the evaluations described in this section.

Following questions were investigated:

� Can the task model of the task instances be automatically detected?

� Can the task models of the task instances from personal task executions be detected based
on predefined standard task executions for training the classifier?

� Can the task model of the task instances be automatically detected when evaluating routine
and knowledge-intensive tasks separately?

� Can the type of task be automatically detected when distinguishing routine and knowledge-
intensive tasks?

� Which context features are most discriminative for the studied tasks?

� Which learning algorithm performs best in terms of automatic task detection on the col-
lected dataset?

7.5.1 Experiment Design

The comparison was within subjects and the manipulations were achieved by (i) the type of task
(standard or personal) and (ii) the task to be executed (7 different tasks). The experiment was
designed in three phases. Phase 1 was the phase before the subjects executed the tasks on the
laboratory computers. Phase 2 was the user interaction context observation phase. This phase
was followed by Phase 3, which included the evaluation of the observed user interaction context
about the task executions. A description of the steps in the phases of the experiment as well as
the obtained results is given in the following sections.

Manipulation 1: Standard and Personal Tasks

Standard tasks are tasks that have a specific goal, like described in Section 7.4.1. By having
multiple users executing a task with the same specific goal, similar task instances were expected.
Tasks performed on behalf of the experiment’s participants themselves are referred to as per-
sonal tasks. The order to start with a standard or a personal task of a task model was randomized.

Manipulation 2: Tasks

The second manipulation resulted from varying the tasks. Seven tasks chosen by four domain
experts were studied. The tasks had different characteristics, like for example, complexity,

Laboratory Experiment 2 - Computer Science Students 185

estimated execution time, number of involved resources, granularity and so on. Before starting
the experiment the subjects were asked to read through the task descriptions and to confirm that
they understood the tasks. The order in which the subjects executed the tasks was randomized.
Furthermore it was randomized on which behalf they started to perform the tasks: (i) on behalf
of themselves and (ii) on behalf of an artificial student (persona). The seven task models are
listed bellow. A detailed description of them including the example tasks is given in Section 8.5.

1. Routine Tasks

Task 1: Register for an examination

Task 2: Finding course dates

Task 3: Reserve a book in the university’s
library

Task 4: Course registration

2. Knowledge-intensive Tasks

Task 5: Algorithm programming

Task 6: Prepare a scientific talk

Task 7: Plan a study trip

Example of a task model:

[Task 1] Register for an examination

Task Model (Description):
The registration for an exam is a task in which the student has to sign in to the
TUGonline system and to register himself to a particular examination. Registration
is required for doing and passing an exam at the university.

Task Instance (Task Standard):
Suppose you are a student named Georg Kompacher studying Software Development
and Business Management at Graz University of Technology in Austria. You want
to register for a specific examination named “Verifikation und Testen” taking place
on the 15th May 2009. To register you have to use the TUGonline system. Use the
Microsoft Internet Explorer and visit the web site http://online.tugraz.at and
sign in with the following account: user name: <wttestaccountuser> and password:
<wttestpassword>. Search for the examination for “Verifikation und Testen” and
register for that exam.

Task Instance (Task Personal):
Open the browser of your choice. Search for an examination at the Graz University of
Technology you want to participate and register for that exam using the TUGonline
system.

7.5.1.1 Phase 1 - Before the Experiment

The selection of the appropriate tasks for the investigated domain and for the asked research
questions were a key part of this phase. There had to be a almost balanced ratio between routine
and knowledge-intensive tasks. At the beginning the computer science students were asked what
kind of tasks they do during their university’s curriculum. From the experiment’s participants list

http://online.tugraz.at

186 Evaluation of the Ontology-Based Task Detection Approach

of tasks, four computer science students selected four routine and four knowledge-intensive tasks
during several workshops. In the task selection process the task execution times were measured
by three students. The durations of the task executions of these students were averaged to get an
estimation of how long it would take the participants to complete the tasks. Since a usage data
recording session for a participant should not take longer than 90 minutes the longest knowledge-
intensive task was deselected because it was the longest one.

The second key part of this phase was to prepare the experiment’s computers. All the used
laboratory computers were notebooks and should have the same software as well as the appro-
priate software for a computer science student installed. The operating systems were Microsoft
Windows XP and Vista which were the mainly used operating systems of the experiment’s
participants. The list of the software products was compiled based on the experiences of the four
higher semester computer science students and included all the software that they have used in
their university courses.

Following software products were installed:

� Windows XP or Vista

� Microsoft Office 2003 or 2007

� Internet Explorer 7 or 8

� Integrated development environments (IDEs): Eclipse 3.x, MS Visual Studio 2008, Net-
Beans 6.x

� Diverse editors: Emacs, JEdit++, Notepad++, Vim, Microsoft Notepad

� Compiler: C, C++, C#, Java, Python, Perl, Ruby

� KnowSe Prototype and the context sensors for the installed applications

7.5.1.2 Phase 2 - User Context Observation

The user interaction context observation phase of the experiment took about two weeks with a
maximum of two sessions per day. Per session no more than four subjects were asked to execute
their tasks in parallel which allowed ongoing servicing during the experiment if required. There
was a five minute introduction about how to use the user interaction context observation prototype
KnowSe (see Chapter 6) but no specific training period as in the first laboratory experiment (see
Section 7.4). However, the participants seemed to become very fast familiar with the handling
of the prototype. Only very few questions were raised about the usage of the prototype. The
prototype used in this experiment is described in Section 6.3.

7.5.1.3 Phase 3 - Task Detection

The evaluation and the analysis of the data played the main part of phase 3 of the experiment.
The well known machine learning toolkit Weka [Witten & Frank, 2005] in combination with Weka
integration of the libSVM [Chang & Lin, 2001] were utilized to study appropriate parameters and
algorithms for attribute selection and automatic task detection performance. The training in-
stances for the learning algorithms were built based the user interaction context ontology (UICO)
as described in Section 5.

Laboratory Experiment 2 - Computer Science Students 187

7.5.2 Research Question: Can the task model of the task instances be

automatically detected?

The goal of this evaluation was to answer the question “Can the task model of the task instances
be automatically detected?”. The dataset on which this question was investigated contained 134
tasks from 10 users. The distribution of the task instances in respect to the classes is shown in
Table 7.37. An overview of all results about the performance of detecting the tasks (Task 1-7)
is given in Table 7.38. A training instance was built for each task instance independently. For
the evaluation of the task classification the evaluation method stratified 10-fold cross-validation
was used (see Section 7.3.3).

Classes Class Instances

Task 1 19

Task 2 20

Task 3 20

Task 4 17

Task 5 20

Task 6 19

Task 7 19

Dataset CV 134

Table 7.37: This table shows the distribution of the training/test instances for the different task classes

ranging from Task 1 to Task 7 which were recorded on the laboratory computers.

Feature Categories: The feature category which achieved the highest accuracy value was
the combination of all 50 features of all categories with the Näıve Bayes algorithm (a=94.84%,
g=2500, p=0.99, r=0.95). This combination was also the best one among all single performing
features and the Top k features. Very close behind with the same algorithm was the application
category with approximately 1.5% lower accuracy (l=NB, a=93.30%, g=500, p=0.99, r=0.94).
The resource category obtained an accuracy of 87.91% (l=J48, a=87.91%, g=500, p=0.97,
r=0.87) which was only sufficient for the 12th global rank. The number of attributes of the best
classifier runs were between 75 and 500 attributes except for the combination of all 50 features
which required 2500 attributes for achieving the best overall accuracy.

Single Features: The best performing single feature was the used res. metadata feature
(l=J48, a=90.33%, g=300, p=0.98, r=0.91). The acc. obj. name feature was the one with the
second highest accuracy (l=NB, a=88.79%, g=50, p=0.98, r=0.89) and only about 2.5% worse
than the best one. The third rank of the best performing single features went to the window
title feature with an accuracy of 88.13% on 75 attributes with the J48 learner (p=0.98, r=0.89).
The range of the numbers of attributes for the best classifier runs of the single performing
features was between 5 and 300 attributes except for the features E&EB res. switch seq. and E

188 Evaluation of the Ontology-Based Task Detection Approach

Set RS f l g a p r RG

Feat.

Cat.

1 All Categories NB 2500 94.84 0.99 0.95 1

2 Application Cat. NB 500 93.30 0.99 0.94 7

3 Resource Cat. J48 200 87.91 0.97 0.87 17

4 Ontology Str. Cat. J48 359 81.59 0.96 0.82 19

5 Action Cat. NB 250 80.49 0.96 0.81 20

6 Switching Seq. Cat. NB 100 73.85 0.94 0.73 26

7 Content Cat. J48 75 50.88 0.85 0.49 36

Single

Feat.

1 used res. metadata J48 300 90.33 0.98 0.91 12

2 acc. obj. name NB 50 88.79 0.98 0.89 14

3 window title J48 75 88.13 0.98 0.89 15

4 datatype properties J48 221 82.14 0.96 0.83 18

5 res. types interact. J48 27 79.07 0.95 0.79 21

6 acc. obj. value KNN-5 75 78.35 0.95 0.79 22

7 res. interact. NB 50 76.15 0.95 0.75 23

8 used res. interact. NB 50 75.49 0.94 0.76 24

9 used resources NB 125 74.73 0.94 0.74 25

10 applications interact. J48 65 72.31 0.93 0.71 27

11 concept instances NB 81 71.76 0.94 0.71 28

12 EB res. interact. NB 175 69.56 0.92 0.69 29

13 objecttype properties J48 57 61.81 0.90 0.61 30

14 E&EB res. switch seq. J48 500 58.19 0.88 0.59 31

15 E level res. switch seq. J48 1238 57.64 0.88 0.57 32

Top

k

Feat.

1 Top k = 6 J48 100 94.07 0.99 0.94 2

2 Top k = 15 NB 4000 94.01 0.99 0.94 3

3 Top k = 5 NB 175 93.35 0.99 0.94 4

4 Top k = 20 NB 3000 93.35 0.99 0.94 5

5 Top k = 9 NB 750 93.30 0.99 0.94 6

6 Top k = 10 NB 750 93.24 0.99 0.94 8

7 Top k = 8 NB 150 92.58 0.99 0.93 9

8 Top k = 7 NB 500 92.58 0.99 0.93 10

9 Top k = 4 NB 250 91.87 0.98 0.91 11

10 Top k = 3 NB 750 89.62 0.98 0.90 13

11 Top k = 2 KNN-5 750 88.13 0.98 0.88 16

Table 7.38: Overview of the best results about the performance of detecting tasks (Tasks 1-7) by stratified

10-fold cross-validation for each feature category, for all feature categories combined, each single feature

as well as the k top performing single features. The learning algorithm (l), the number of attributes (g),

the micro precision (p), the micro recall (r), the ranking in the corresponding section (RS) and across

sections (RG) are also given.

Laboratory Experiment 2 - Computer Science Students 189

level res. switch seq. that achieved their highest accuracy values with 500 and 1238 attributes
respectively. In comparison with the Top k feature combinations just the two best single features
outperformed the two worst Top k feature combinations.

Top k Features: The Top k feature combinations achieved accuracy values ranging from
88.13% to 94.07%. The highest and the second highest accuracy resulted from the Top k = 6
features (l=J48, a=94.07%, g=100, p=0.99, r=0.94) and the Top k = 15 features (l=NB,
a=94.01%, g=4000, p=0.99, r=0.94). The Top k = 15 had its best run on 4000 attributes
whereas the Top k = 6 feature only required 100 attributes. Based on 175 attributes the Top
k = 5 features achieved the third highest accuracy value with 93.35% and the Näıve Bayes
algorithm (p=0.99, r=0.94). The best eight Top k features had a hight precision of 0.99 and a
recall between 0.93 and 0.94. The range of the numbers of attributes for the best classifier runs
of the Top k performing features was between 100 and 750 except for the Top k = 15 and the Top
k = 20 features which had their best classifier runs with 4000 and 3000 attributes respectively.

Set RG f l g a p r

1 CW NB 125 95.49 0.99 0.96

2 ACW NB 125 94.73 0.99 0.95

3 W NB 50 94.01 0.99 0.94

Dyonipos 4 AW SVM-C2−2 50 93.35 0.99 0.94

7 AC J48 25 67.25 0.92 0.66

8 A J48 24 55.82 0.88 0.56

9 C SVM-C25 125 45.71 0.83 0.45

SWISH 6 J48 50 88.90 0.98 0.89

TaskPredictor 1 5 NB 300 93.24 0.99 0.92

Table 7.39: Overview of the best results about the performance of detecting tasks (Tasks 1-7) by stratified

10-fold cross-validation for Dyonipos combinations, Swish and TaskPredictor. The learning algorithm (l),

the number of attributes (g), the micro precision (p), the micro recall (r), and the ranking (RG) are also

given.

Comparison with existing approaches: A comparison with existing approaches showed
that the best overall tested combinations of the UICO features were the combination of all 50
features. It outperformed the SWISH and the TaskPredictor 1 approach by 5.94% and 1.6%
accuracy respectively. Only the CW combination of the Dyonipos approach had a 0,65% higher
accuracy than the best UICO feature combination. The top four performed features of the
Dyonipos approach achieved over 93% accuracy, 0.99 micro precision and over 0.94 micro recall.
All approaches had an accuracy value between 88.9% and 95.49%. Part of the best feature
combinations was always the window title feature. The number of attributes of the SWISH ,
the TaskPredictor 1 and the best Dyonipos feature combination achieved the highest accuracy
values within 50 and 300 attributes whereas the best UICO feature combination required 2500

190 Evaluation of the Ontology-Based Task Detection Approach

attributes. The second best UICO feature combination, the Top k = 6, laid with 100 attributes
in the range of the compared approaches. A detailed comparison of the feature and classifier
performance evaluation of the existing approaches is given in Table 7.39.

Concluding Remarks: Most of the Top k features outperformed the feature categories
and the single features. The best overall performances were achieved by the combination of all
50 features and the Top k = 6 with 94.84% and 94.07% respectively. Only the CW combination
of the Dyonipos approach had a 0,65% higher accuracy. This was not significantly higher and
might have originated from the random selection process in the 10-fold cross-evaluation for the
classifiers. Another reason could have been the UICO feature evaluation method, because the
task detection performance of the combination of content of EB feature and window title were
not evaluated. For a further discussion about the UICO feature evaluation method the reader is
referred to Section 7.7. All in all the UICO and the three existing approaches performed very
well on this dataset with an accuracy value between 88.9% and 95.49% percent. These results
showed that these seven tasks could be detected with a very high accuracy based on this dataset.

7.5.3 Research Question: Can the task models of the task instances

from personal task executions be detected based on predefined

standard task executions for training the classifier?

The goal of this evaluation was to answer the question “Can the task models of the task instances
from personal task executions be detected based on predefined standard task executions for training
the classifier?” The dataset on which this question was investigated contained 134 tasks from
10 users. Among these 134 tasks there were 68 standard tasks and 66 personal tasks. Standard
tasks are tasks that have a specific goal, as described in Section 7.4.1. Personal tasks were tasks
in which the subjects performed the task on behalf of themselves. The distribution of the task
instances in respect to the classes (Task 1-7) as well as in respect to the standard and personal
tasks is shown in Table 7.40.

Classes Standard Tasks Personal Tasks Sum

Task 1 10 9 19

Task 2 10 10 20

Task 3 10 10 20

Task 4 8 9 17

Task 5 10 10 20

Task 6 10 9 19

Task 7 10 9 19

Dataset (Train/Test) 68 66 134

Table 7.40: This table shows the distribution of the training instances (standard tasks) and test instances

(personal tasks) for the different task classes ranging from Task 1 to Task 7.

Laboratory Experiment 2 - Computer Science Students 191

An overview of all results about the performance of detecting the tasks (Task 1-7) is given in
Table 7.41. A training instance was built for each standard task and a test instance for each
personal task independently. For the evaluation of the task classification the evaluation method
train and test set (see Section 7.3.3) was used whereas the standard task instances constituted
the training set and the personal task instances the test set.

Feature Categories: The feature category which achieved the highest accuracy value
was the combination of all 50 features of all categories (l=NB, a=92.42%, g=7500, p=0.99,
r=0.92). This was also the best among all UICO feature combinations and the Top k features
with a global rank RG=1. Close behind with the same algorithm, the Näıve Bayes, was the
application category with a 3.03% lower accuracy (l=NB, a=93.30%, g=250, p=0.98, r=0.90)
with only 250 attributes instead of 7500 attributes. The resource category obtained an accuracy
of 81.82% (l=NB, a=81.82%, g=75, p=0.96, r=0.81) which was only sufficient for the global
rank RG=16. The number of attributes of the best runs were between 75 and 500 attributes
except for the combination of all 50 features which required 7500 attributes for achieving the best
overall accuracy. All feature categories performed best with the Näıve Bayes classifier except the
ontology structure category which achieved its best classifier run with the KNN-35 classifier.

Single Features: The best performing single feature was the acc. obj. name feature
(l=NB, a=86.36%, g=50, p=0.97, r=0.86). Only 4.54% less accurate was the window title
feature with the second highest accuracy (l=NB, a=81.82%, g=125, p=0.96, r=0.82). The
used res. metadata feature achieved the third rank of the best performing single features with
an accuracy of 78.79% on 200 attributes with the KNN-35 learner (p=0.96, r=0.82). The
range of the numbers of attributes for the best classifier runs of the best 15 single performing
features was between 3 and 250 attributes. The only exception were the feature acc. obj. value
and E level res. switch seq. that had its best classifier run with 750 attributes. In comparison
with the Top k feature combinations all Top k feature combinations outperformed the best sin-
gle feature except the worst two Top k feature combinations which were Top k = 4 and Top k = 3.

Top k Features: The Top k feature combinations achieved accuracy values ranging from
81.82% to 90.91%. The highest accuracy resulted from the Top k with k = {2, 6, 7, 8, 9, 10}
features (l=NB, a=90.91%, p=0.98, r=0.91). All these Top k feature combinations had their
best classifier runs with 300 attributes except the Top k = 2 which only required 125 attributes.
The range of the numbers of attributes for the best classifier runs of the Top k performing
features was between 125 and 300 attributes. All the Top k feature combinations achieved their
highest accuracy with the Näıve Bayes classifier.

Comparison with existing approaches: A comparison with existing approaches showed
that the best overall tested combinations of the UICO features, the combination of all 50
features (l=NB, a=92.42%, g=7500, p=0.99, r=0.92), outperformed all the existing approaches.
The SWISH , the TaskPredictor 1 and the best Dyonipos feature combination AW were
outperformed by 13.63%, 4.54% and 1.51% respectively. The SWISH approach had its best
classifier run with 423 attributes with the Näıve Bayes algorithm (l=NB, a=78.79%,p=0.96,

192 Evaluation of the Ontology-Based Task Detection Approach

Set RS f l g a p r RG

Feat.

Cat.

1 All Categories NB 7500 92.42 0.99 0.92 1

2 Application Cat. NB 250 89.39 0.98 0.90 8

3 Resource Cat. NB 75 81.82 0.96 0.81 16

4 Action Cat. NB 100 77.27 0.95 0.77 19

5 Ontology Str. Cat. KNN-35 75 65.15 0.92 0.65 22

6 Switching Seq. Cat. NB 50 62.12 0.91 0.62 24

7 Content Cat. NB 500 48.48 0.85 0.49 34

Single

Feat.

1 acc. obj. name NB 50 86.36 0.97 0.86 12

2 window title NB 125 81.82 0.96 0.82 15

3 used res. metadata KNN-35 200 78.79 0.96 0.78 17

4 acc. obj. value NB 750 77.27 0.95 0.77 18

5 datatype properties J48 50 72.73 0.94 0.73 20

6 res. types interact. KNN-35 10 69.70 0.93 0.69 21

7 concept instances J48 25 65.15 0.92 0.65 23

8 used res. interact. NB 25 59.09 0.90 0.59 25

9 res. interact. NB 25 59.09 0.90 0.59 26

10 applications interact. NB 25 57.58 0.89 0.57 27

11 objecttype properties NB 25 54.55 0.88 0.53 28

12 acc. obj. role des. NB 54 53.03 0.87 0.53 29

13 EB res. interact. NB 250 51.52 0.87 0.52 30

14 acc. obj. role J48 10 51.52 0.86 0.51 31

15 E type switch seq. SVM-C210 3 50.00 0.86 0.50 32

Top

k

Feat.

1 Top k = 9 NB 300 90.91 0.98 0.91 2

2 Top k = 8 NB 300 90.91 0.98 0.91 3

3 Top k = 7 NB 300 90.91 0.98 0.91 4

4 Top k = 6 NB 300 90.91 0.98 0.91 5

5 Top k = 2 NB 125 90.91 0.98 0.91 6

6 Top k = 10 NB 300 90.91 0.98 0.91 7

7 Top k = 5 NB 300 89.39 0.98 0.89 9

8 Top k = 20 NB 250 89.39 0.98 0.89 10

9 Top k = 15 NB 250 89.39 0.98 0.89 11

10 Top k = 4 NB 250 83.33 0.97 0.83 13

11 Top k = 3 NB 200 81.82 0.96 0.82 14

Table 7.41: Overview of the best results about the performance of detecting personal tasks by training on

standard tasks for each feature category, for all feature categories combined, each single feature as well as

the k top performing single features. The learning algorithm (l), the number of attributes (g), the micro

precision (p), the micro recall (r), the ranking in the corresponding section (RS) and across sections (RG)

are also given.

Laboratory Experiment 2 - Computer Science Students 193

r=0.78). The TaskPredictor 1 approach also performed best with the Näıve Bayes algorithm
but required more than double the number of attributes than the SWISH and the Dyonipos
approaches. Among the existing approaches the Dyonipos one with the AW resulted in the
highest accuracy (l=NB, a=90.91%,p=0.98, r=0.91). All the existing approaches had their
best classifier runs with the Näıve Bayes algorithm. A detailed comparison of the feature and
classifier performance evaluation of the existing approaches is given in Table 7.42.

Set RG f l g a p r

1 AW NB 300 90.91 0.98 0.91

2 CW NB 75 89.39 0.98 0.89

3 W NB 50 89.39 0.98 0.89

Dyonipos 4 ACW NB 75 89.39 0.98 0.89

7 AC NB 200 59.09 0.90 0.60

8 A NB 17 50.00 0.85 0.49

9 C NB 250 40.91 0.81 0.41

SWISH 6 NB 423 78.79 0.96 0.78

TaskPredictor 1 5 NB 1000 87.88 0.98 0.88

Table 7.42: Overview of the best results about the performance of detecting personal tasks by training

on standard tasks for Dyonipos combinations, Swish and TaskPredictor. The learning algorithm (l), the

number of attributes (g), the micro precision (p), the micro recall (r), and the ranking (RG) are given.

Influence of the “Specific Goal”: The task detection performance was also evaluated based
on standard task and personal tasks separately. This was done in order to study the influence of
the specific goal in the automatic task detection performance.

The results of the evaluation for the standard tasks unveiled a task detection performance
of 98.57% accuracy on 300 attributes with the Näıve Bayes algorithm (p=1.00, r=0.99) with
the Top k = 5 best performing single features combination. The best five single performing
features were the window title feature (l=J48, a=97.14%, g=50, p=0.99, r=0.97), the used res.
metadata feature (l=KNN-10, a=92.62%, g=250, p=0.99, r=0.93), the acc. obj. name feature
(l=NB, a=91.43%, g=50, p=0.98, r=0.91), the res. interact. feature (l=NB, a=89.05%, g=25,
p=0.97, r=0.89), and the acc. obj. value feature (l=KNN-1, a=88.33%, g=75, p=0.97, r=0.88).
The best feature category was the combination of all features of all categories with an accuracy
of 95.71% (l=NB, g=300, p=0.99, r=0.96).

The task detection of the personal tasks resulted in an accuracy of 94.05% with the Top k = 4
best performing single features combination (l=J48, g=125, p=0.99, r=0.94). The best three
single performing features were the acc. obj. name feature (l=NB, a=90.95%, g=50, p=0.98,
r=0.91), the window title feature (l=KNN-10, a=86.67%, g=10, p=0.97, r=0.87), the datatype
properties feature (l=J48, a=86.67%, g=75, p=0.97, r=0.87) and the used res. metadata feature
(l=J48, a=86.43%, g=75, p=0.97, r=0.86). The best feature category was the combination of all
features of all categories with an accuracy of 93.81% (l=J48, g=200, p=0.99, r=0.94).

The difference of the accuracy of detecting standard and personal tasks, i.e., task with a

194 Evaluation of the Ontology-Based Task Detection Approach

single predefined specific goal and without one, was 4,52% in terms of accuracy. The highest
accuracy values were achieved in both evaluations with the J48 decision tree learner on a rather
small number of attributes. For standard and personal tasks the highest accuracy values were
reached with 300 and 125 attributes respectively.

Concluding Remarks: The majority of the Top k features outperformed the feature
categories and the single features. The best overall performances were achieved by the com-
bination of all 50 features and the Top k with k = {2, 6, 7, 8, 9, 10} with 92.42% and 90.91%
respectively. The SWISH , the TaskPredictor 1 and the best Dyonipos feature combination
AW were outperformed by 13.63%, 4.54% and 1.51% respectively.

These results showed that the task model of a personal task execution can be detected with
an accuracy of over 90% when training on standard task executions on the gathered dataset. In
other words, it seemed to be possible to have a standard set of tasks executed once by users for
the classifier training purposes in order to allow an accurate classification of personal tasks to the
task models.

Regarding the influence of the specific goal in the automatic task detection performance, the
obtained results suggested that there was a rather small influence. The accuracy for standard
tasks was only 4.52% higher than the one for personal tasks.

7.5.4 Research Question: Can the task model of the task instances be

automatically detected when evaluating routine and knowledge-

intensive tasks separately?

The goal of the following evaluations was to answer the question “Can the task model of the
task instances be automatically detected when evaluating routine and knowledge-intensive tasks
separately?”. The datasets on which this question was investigated contained 134 tasks from 10
users. Among these 134 tasks there were 76 routine tasks (Task 1-4) and 58 knowledge-intensive
tasks (Task 5-7). The distribution of the task instances in respect to the classes (Task 1-7) as well
as in respect to the task type (routine and knowledge-intensive) is shown in Table 7.43. For both,
the routine task and the knowledge-intensive task dataset the task classification performance and
the discriminative power of features were evaluated.

An overview of all results about the performance of detecting routine tasks and knowledge-
intensive tasks is given in Table 7.44. These results were achieved by applying stratified 10-fold
cross-validation on the routine and the knowledge-intensive tasks dataset.

7.5.4.1 Routine Tasks

The evaluation of the task detection performance for routine tasks was a 4-class classification
problem because four task models (Task 1-4) were studied.

Feature Categories: The best feature category was the one with the combination of all
50 features which correctly identified 93.57% of the routine task classes (l=NB, g=750, p=0.98,
r=0.94) and also achieved the third best result among all tested UICO feature combinations.
Only 1.25% behind in terms of accuracy was resource category (l=KNN-35, a=92.32%, g=175,

Laboratory Experiment 2 - Computer Science Students 195

Type Classes Class Instances Sum

Task 1 19

76
Routine Task 2 20

Tasks Task 3 20

Task 4 17

Knowledge Task 5 20

58Intensive Task 6 19

Tasks Task 7 19

Dataset CV 134

Table 7.43: This table shows the distribution of the training/test instances for stratified 10-fold cross-

validation for the routine tasks Task 1 to Task 4 and the knowledge-intensive tasks Task 5 to Task 7

which were recorded on laboratory computers from 10 users.

p=0.97, r=0.92). The third place in the category ranking went to the application category
with an accuracy of 92.14% (l=J48, g=25, p=0.97, r=0.92), which was only 1.43% worse than
the best performing feature category. In the overall ranking (RG) the second and third best
feature categories only achieved the 15th and 16th place respectively. The range of the number
of attributes for training the classification algorithms spanned from 25 to 650 attributes. The
highest accuracy among the feature categories were achieved with 750 attributes.

Single Features: The performance of each single feature was evaluated separately and
showed that the window title feature was with an accuracy of 93.39% on only 25 attributes the
best performing single feature (l=KNN-5, p=0.93, r=0.84). The used res. metadata feature
obtained only a 1.07% lower accuracy with 92.32% (l=NB, g=75, p=0.97, r=0.92). The acc. obj.
name feature reached the third place of the best performing single features with an accuracy of
89.64% and the KNN-35 learner on 10 attribtues (p=0.96, r=0.89). The range of the numbers
of attributes for the best classifier runs of the best 15 single performing features was between
3 and 75 except for the EB res. interact. (g=280) and the E level res. switch seq. (g=472) features.

Top k Features: The classification performance of the combination of the Top k best
single performing features ranged from 92.32% to 94.64% accuracy. The Top k = 8 features
obtained the best result with the KNN-5 classifier on 100 attributes (a=94.64%, p=0.98,
r=0.94). This combination also achieved the highest accuracy in comparison to all evaluated
single features and feature categories. The precision and recall values of the Top k features were
close together between p=0.97 and p=0.98 and r=0.92 and r=0.94 respectively. The range of
the numbers of attributes for the best runs of the Top k performing features was between 75 and
750 attributes. All the Top k feature combinations outperformed all the other single performing
features and feature categories except the resource category which achieved 93.57% accuracy.

196 Evaluation of the Ontology-Based Task Detection Approach

Set RS f l g a p r RG

Feat.

Cat.

1 All Categories NB 750 93.57 0.98 0.94 3

2 Resource Cat. KNN-35 175 92.32 0.97 0.92 15

3 Application Cat. J48 25 92.14 0.97 0.92 16

4 Ontology Str. Cat. J48 385 85.54 0.94 0.86 19

5 Action Cat. NB 25 80.54 0.92 0.80 21

6 Switching Seq. Cat. NB 150 72.68 0.88 0.72 28

7 Content Cat. KNN-35 347 54.46 0.76 0.54 33

Single

Feat.

1 window title KNN-5 25 93.39 0.98 0.94 8

2 used res. metadata NB 75 92.32 0.97 0.92 14

3 acc. obj. name KNN-35 10 89.64 0.96 0.89 17

4 acc. obj. value J48 25 86.79 0.95 0.88 18

5 datatype properties KNN-10 3 85.54 0.94 0.85 20

6 concept instances KNN-1 3 79.11 0.91 0.79 22

7 res. interact. KNN-10 25 78.04 0.90 0.78 23

8 used resources NB 10 76.07 0.89 0.76 24

9 EB res. interact. J48 280 75.18 0.90 0.75 25

10 used res. interact. J48 10 74.46 0.88 0.74 26

11 res. types interact. J48 13 74.29 0.88 0.72 27

12 applications interact. SVM-C2−1 5 71.43 0.88 0.72 29

13 objecttype properties KNN-10 25 63.57 0.83 0.61 30

14 E level res. switch seq. J48 472 62.32 0.81 0.60 31

15 E&EB res. switch seq. NB 25 60.89 0.81 0.60 32

Top

k

Feat.

1 Top k = 8 KNN-5 100 94.64 0.98 0.94 1

2 Top k = 7 KNN-1 500 93.75 0.98 0.94 2

3 Top k = 4 NB 75 93.57 0.98 0.94 4

4 Top k = 20 NB 75 93.57 0.98 0.94 5

5 Top k = 3 NB 750 93.57 0.98 0.92 6

6 Top k = 6 KNN-5 100 93.57 0.97 0.92 7

7 Top k = 15 KNN-1 175 93.39 0.98 0.92 9

8 Top k = 2 NB 75 93.21 0.98 0.94 10

9 Top k = 9 KNN-5 150 92.50 0.97 0.92 11

10 Top k = 10 J48 750 92.50 0.97 0.92 12

11 Top k = 5 NB 75 92.32 0.97 0.92 13

Table 7.44: Overview of the best results about the performance of detecting routine tasks (Tasks 1-4)

by stratified 10-fold cross-validation for each feature category, for all feature categories combined, each

single feature as well as the k top performing single features. The learning algorithm (l), the number of

attributes (g), the micro precision (p), the micro recall (r), the ranking in the corresponding section (RS)

and across sections (RG) are also given.

Laboratory Experiment 2 - Computer Science Students 197

Set RG f l g a p r

3 W SVM-C210 25 93.39 0.98 0.94

4 AW SVM-C2−2 25 93.21 0.97 0.94

5 CW KNN-35 10 93.21 0.97 0.92

Dyonipos 6 ACW SVM-C210 25 92.32 0.97 0.92

7 AC KNN-5 149 55.89 0.77 0.55

8 C SVM-C2−5 50 54.46 0.76 0.51

9 A KNN-1 6 33.39 0.57 0.31

SWISH 2 KNN-5 25 93.57 0.98 0.94

TaskPredictor 1 1 KNN-5 25 93.75 0.98 0.94

Table 7.45: Overview of the best results about the performance of detecting routine tasks (Tasks 1-4)

by stratified 10-fold cross-validation for Dyonipos combinations, Swish and TaskPredictor. The learning

algorithm (l), the number of attributes (g), the micro precision (p), the micro recall (r), and the ranking

(RG) are also given.

Comparison with existing approaches: The SWISH , the TaskPredictor 1 and some
feature combinations of the Dyonipos approach achieved over 93% accuracy on this dataset. In
comparison with the UICO feature performances the existing approaches were only about 1%
worse than the best UICO feature combination, the Top k=8. A detailed overview of the feature
and classifier performances of the existing approaches is given in Table 7.45.

Concluding Remarks: The evaluations of the task detection performance of the routine
tasks (Task 1-4) on this task dataset showed that an accuracy of approximately 95% was reached
when utilizing UICO feature combinations and that the UICO approach slightly outperformed
existing approaches.

7.5.4.2 Knowledge-Intensive Tasks

The evaluation of the task detection performance for knowledge-intensive tasks was a 3-class
classification problem because three task models (Task 1-3) were studied.

Feature Categories: The combination of all 50 features (l=KNN-35, g=25), the switch-
ing sequence category (l=NB, g=25), application category (l=NB, g=150) and the action
category (l=NB, g=10) achieved 100% accuracy in detecting the task models of the knowledge-
intensive task instances. The range of utilized attributes was between 10 and 150 attributes.
The worse feature categories performed between 86.67% and 96.67% accuracy.

Single Features: The best performing single feature was the res. types interact. feature with
100% accuracy (l=NB, g=3). The window title feature, the app. switch seq. feature, and the
applications interact. feature achieved the second highest accuracy with only 1.77% behind the
best performing single feature. The range of the number of attributes of the best 15 performing

198 Evaluation of the Ontology-Based Task Detection Approach

Set RS f l g a p r RG

Feat.

Cat.

1 All Categories KNN-35 25 100.00 1.00 1.00 1

2 Switching Seq. Cat. NB 25 100.00 1.00 1.00 13

3 Application Cat. NB 150 100.00 1.00 1.00 15

4 Action Cat. NB 10 100.00 1.00 1.00 16

5 Resource Cat. NB 300 96.67 0.98 0.97 20

6 Ontology Str. Cat. KNN-35 50 96.67 0.98 0.97 21

7 Content Cat. SVM-C2−1 175 86.67 0.93 0.87 31

Single

Feat.

1 res. types interact. NB 3 100.00 1.00 1.00 14

2 window title NB 383 98.33 0.99 0.98 17

3 app. switch seq. NB 50 98.33 0.99 0.98 18

4 applications interact. NB 25 98.33 0.99 0.98 19

5 application name NB 10 96.67 0.98 0.97 22

6 acc. obj. name NB 200 96.67 0.98 0.97 23

7 used res. metadata NB 1000 95.00 0.97 0.95 24

8 concept instances NB 50 95.00 0.97 0.95 25

9 used res. interact. J48 50 95.00 0.97 0.95 26

10 datatype properties J48 224 92.67 0.96 0.93 27

11 res. interact. NB 300 91.67 0.95 0.92 28

12 objecttype properties KNN-1 10 89.67 0.94 0.90 29

13 acc. obj. role des. KNN-35 5 88.33 0.93 0.88 30

14 E&EB res. switch seq. SVM-C21 200 86.33 0.93 0.87 32

15 used resources NB 25 86.33 0.92 0.87 33

Top

k

Feat.

1 Top k = 9 KNN-35 50 100.00 1.00 1.00 2

2 Top k = 8 KNN-35 50 100.00 1.00 1.00 3

3 Top k = 7 KNN-35 75 100.00 1.00 1.00 4

4 Top k = 6 KNN-35 25 100.00 1.00 1.00 5

5 Top k = 5 KNN-35 25 100.00 1.00 1.00 6

6 Top k = 4 KNN-35 10 100.00 1.00 1.00 7

7 Top k = 3 KNN-35 10 100.00 1.00 1.00 8

8 Top k = 2 KNN-35 10 100.00 1.00 1.00 9

9 Top k = 20 KNN-35 25 100.00 1.00 1.00 10

10 Top k = 15 KNN-35 25 100.00 1.00 1.00 11

11 Top k = 10 KNN-35 25 100.00 1.00 1.00 12

Table 7.46: Overview of the best results about the performance of detecting knowledge-intensive tasks

(Tasks 5-7) by stratified 10-fold cross-validation for each feature category, each single feature as well as

the k top performing single features. The learning algorithm (l), the number of attributes (g), the micro

precision (p), the micro recall (r), the ranking in the corresponding section (RS) and across sections (RG)

are also given.

Laboratory Experiment 2 - Computer Science Students 199

single features was between 3 and 383 attributes except for the used res. metadata feature which
had it’s best classifier run with 1000 attributes.

Top k Features: All the Top k feature combinations achieved 100% accuracy with the
smallest number of attributes with the KNN-35 learner. The range of the numbers of attributes
for the best runs of the Top k performing features was between 10 and 75 attributes.

Comparison with existing approaches: The evaluation of the existing approaches
showed that the Dyonipos and the TaskPredictor 1 approaches also achieved 100% accuracy.
Whereas the TaskPredictor 1 approach only achieved 100% with the Näıve Bayes learner the
feature combinations AC , CW and ACW of the Dyonipos approach managed it with the KNN,
NB and the SVM-lin learners. The SWISH approach performed worse with 96.67% accuracy
and the J48 decision tree learner. A detailed overview of the feature and classifier performances
of the existing approaches is given in Table 7.47.

Set RG f l g a p r

2 CW SVM-C25 100 100.00 1.00 1.00

3 W KNN-35 25 100.00 1.00 1.00

4 ACW SVM-C210 125 100.00 1.00 1.00

Dyonipos 5 AW KNN-35 25 100.00 1.00 1.00

6 AC SVM-C210 10 100.00 1.00 1.00

7 A KNN-35 24 100.00 1.00 1.00

9 C SVM-C210 75 79.33 0.88 0.80

SWISH 8 J48 175 96.67 0.98 0.97

TaskPredictor 1 1 NB 50 100.00 1.00 1.00

Table 7.47: Overview of the best results about the performance of detecting knowledge-intensive tasks

(Tasks 5-7) by stratified 10-fold cross-validation for Dyonipos combinations, Swish and TaskPredictor.

The learning algorithm (l), the number of attributes (g), the micro precision (p), the micro recall (r),

and the ranking (RG) are also given.

Concluding Remarks: The evaluations of the task detection performance of the knowledge-
intensive tasks (Task 5-7) showed that an accuracy of 100% was reached on this task dataset
UICO feature combinations as well as feature combinations of the Dyonipos and TaskPredictor
1 approaches managed to identify all task instances correctly. The high accuracy values achieved
for this three class classification problem seemed to origin from the nature of the classes. The
classes corresponded to the knowledge-intensive tasks. Since these tasks were very different, the
resulting classification problem was easy to solve for the classification models based on various
feature configurations.

200 Evaluation of the Ontology-Based Task Detection Approach

7.5.5 Research Question: Can the type of task be automatically

detected when distinguishing routine and knowledge-intensive

tasks?

The goal of the following evaluations was to answer the question “Can the type of task be au-
tomatically detected when distinguishing routine and knowledge-intensive tasks?”. The datasets
on which this question was investigated contained 134 tasks from 10 users. Among these 134
tasks there were 76 routine tasks (Task 1-4) and 58 knowledge-intensive tasks (Task 5-7). The
distribution of the task instances in respect to the task type (routine and knowledge-intensive
tasks) is shown in Table 7.48.

An overview of all results about the performance of detecting if a task instance was a routine
task or a knowledge-intensive task is given in Table 7.49. These results were achieved by applying
stratified 10-fold cross-validation on the routine and the knowledge-intensive tasks dataset.

Classes Class Instances

Routine Tasks (Task 1-4) 76

Knowledge-Intensive Tasks (Task 5-7) 58

Dataset CV 134

Table 7.48: This table shows the distribution of the stratified 10-fold cross-validation training/test in-

stances for the different task classes routine tasks (Task 1-4) and knowledge-intensive tasks (Task 5-7)

which were recorded on a laboratory computer

Feature Categories: The combination of all 50 features with 300 attributes and the application
category with 75 attributes achieved 100% accuracy with the Näıve Bayes algorithm in detecting
whether a task instance was a routine or a knowledge-intensive task. Very close behind were the
action category, the resource category, the ontology structure category and the switching sequence
category with an accuracy of 99.29%, 97.80%, 97.69% and 96.43% respectively. The worst fea-
ture category was the content category with 82.20% accuracy (l=KNN-10, g=75, p=0.81, r=0.81).

Single Features: The best 20 performing single features achieved an accuracy higher
than 90%. The best one was the window title feature with 99.29% accuracy with 50 attributes
(l=NB, p=0.99, r=0.99). Only 0.83% worse were the used res. metadata feature (l=KNN-35,
g=200) and the acc. obj. name feature (l=NB, g=100) with 0.99 micro precision and 0.99 micro
recall. None of the single performing features scored 100% accuracy.

Top k Features: All the Top k feature combinations obtained 100% accuracy whereas
the number of utilized attributes ranged from 75 to 1000 attributes. The Näıve Bayes and the
KNN-35 algorithms were the most accurate.

Comparison with existing approaches: The best four Dyonipos feature combinations
CW (l=NB, g=50), W (l=KNN-35, g=25), ACW (l=KNN-35, g=50), ACW (g=NB,

Laboratory Experiment 2 - Computer Science Students 201

Set RS f l g a p r RG

Feat.

Cat.

1 All Categories NB 300 100.00 1.00 1.00 1

2 Application Cat. NB 75 100.00 1.00 1.00 12

3 Action Cat. NB 750 99.29 0.99 0.99 14

4 Resource Cat. KNN-1 150 97.80 0.98 0.98 18

5 Ontology Str. Cat. KNN-35 3 97.69 0.97 0.97 20

6 Switching Seq. Cat. NB 300 96.43 0.96 0.96 21

7 Content Cat. KNN-10 75 82.20 0.81 0.81 46

Single

Feat.

1 window title NB 50 99.29 0.99 0.99 13

2 used res. metadata KNN-35 200 98.46 0.98 0.98 16

3 acc. obj. name NB 100 98.46 0.98 0.98 17

4 datatype properties KNN-35 25 97.80 0.98 0.98 19

5 res. interact. NB 125 96.26 0.96 0.96 22

6 res. types interact. J48 3 94.89 0.94 0.94 23

7 used res. interact. KNN-10 25 94.84 0.94 0.94 24

8 acc. obj. value KNN-1 25 93.46 0.94 0.94 25

9 applications interact. J48 50 93.35 0.93 0.93 26

10 concept instances KNN-35 5 93.24 0.93 0.93 27

11 E type switch seq. NB 42 92.80 0.92 0.92 28

12 application name SVM-C2−5 24 92.75 0.92 0.92 29

13 app. switch seq. SVM-C210 97 91.98 0.92 0.92 30

14 used resources NB 616 91.92 0.93 0.93 31

15 EB duration SVM-C25 9 91.21 0.90 0.90 32

Top

k

Feat.

1 Top k = 9 NB 200 100.00 1.00 1.00 2

2 Top k = 8 KNN-35 75 100.00 1.00 1.00 3

3 Top k = 7 KNN-35 75 100.00 1.00 1.00 4

4 Top k = 6 KNN-35 75 100.00 1.00 1.00 5

5 Top k = 5 KNN-35 75 100.00 1.00 1.00 6

6 Top k = 4 KNN-35 75 100.00 1.00 1.00 7

7 Top k = 3 NB 750 100.00 1.00 1.00 8

8 Top k = 20 NB 250 100.00 1.00 1.00 9

9 Top k = 15 NB 250 100.00 1.00 1.00 10

10 Top k = 10 NB 250 100.00 1.00 1.00 11

11 Top k = 2 NB 1000 99.23 0.99 0.99 15

Table 7.49: Overview of the best results about the performance of detecting routine or knowledge-intensive

tasks for each feature category, for all feature categories combined, each single feature as well as the k top

performing single features. The learning algorithm (l), the number of attributes (g), the micro precision

(p), the micro recall (r), the ranking in the corresponding section (RS) and across sections (RG) are also

given.

202 Evaluation of the Ontology-Based Task Detection Approach

g=50) and AW (g=NB, g=50) performed with 100% accuracy. The SWISH and the
TaskPredictor 1 approach were close behind the highest accuracy values of the UICO and
Dyonipos feature combinations with only 1.48% and 0.71%. The number of attributes required
for the 100% accuracy of the Dyonipos feature combinations ranged between 25 and 50 attributes.

Set RG f l g a p r

1 CW NB 50 100.00 1.00 1.00

2 W KNN-35 25 100.00 1.00 1.00

3 ACW KNN-35 50 100.00 1.00 1.00

Dyonipos 4 AW KNN-35 50 100.00 1.00 1.00

7 AC J48 1137 91.87 0.91 0.91

8 A J48 24 91.04 0.90 0.90

9 C SVM-C2−1 125 74.84 0.71 0.71

SWISH 6 NB 75 98.52 0.98 0.98

TaskPredictor 1 5 NB 300 99.29 0.99 0.99

Table 7.50: Overview of the best results about the performance of detecting routine or knowledge-intensive

tasks for Dyonipos combinations, Swish and TaskPredictor. The learning algorithm (l), the number of

attributes (g), the micro precision (p), the micro recall (r), and the ranking (RG) are also given.

Concluding Remarks: The evaluations showed that routine task instances were distinguished
from knowledge-intensive task instances with an accuracy of 100% on this dataset. All the
approaches performed really well on this two-class classification problem. The accuracy values of
the best UICO and Dyonipos feature combinations were 100% whereas the ones of the SWISH
and the TaskPredictor 1 approaches were 98.52% and 99.29% respectively.

Why were accuracy values of 100% possible? The classification problem was binary with
the classes (i) routine and (ii) knowledge-intensive tasks. The window title feature of the UICO
approach and the window title feature of the Dyonipos approach showed an accuracy of 99.29%
with 50 attributes and 100% with 25 attributes respectively. All the routine tasks included to
log in the online university’s information management system called TUGonline. None of the
knowledge-intensive tasks required such a login step. The used 25 attributes of the Dyonipos
window title feature are listed in Table 7.51. It was not surprising that the two attributes
with the highest discriminative power include the term ‘‘Anmeldung’’2 and ‘‘TUGonline’’. In
Table 7.51 the terms that were specific to the TUGonline system are marked with a small “x”.
All attributes listed in Table 7.51 except the attribute containing “http” are also part of the 50
attributes of the window title feature of the UICO which resulted in an accuracy of 99.29%. It
seemed that the tasks involving the TUGonline system were the reason for the high accuracy

2“Anmeldung” is a German term and translates to “Login” in English.

Laboratory Experiment 2 - Computer Science Students 203

values for this binary classification problem.

Rank TUGonline Term Attribute Rank TUGonline Term Attribute

1 x Anmeldung 14 x tugraz

2 x TUGonline 15 x Termine

3 Google 16 Berlin

4 Microsoft 17 x Bibliothek

5 Präsentation 18 x Detailansicht

6 PowerPoint 19 Internet

7 x Lehrveranstaltung 20 Explorer

8 Suche 21 Einfache

9 x Visitenkarte 22 x Katalog

10 x Gruppenauswahl 23 Java

11 java 24 files

12 Hotels 25 x Ergebnisliste

13 http

Table 7.51: Dyonipos best 25 discriminating window title attributes. A small “x” in the “TUGonline

Term” columns indicates that this term is highly specific to the university’s information management

system. The ranks were computed by the information gain attribute selection algorithm.

7.5.6 Finding the Best Features/Feature Categories

Feature Dominance Matrix: Table 7.52 displays the results of the dominance matrix evalua-
tions for the features and feature combinations as explained in Section 7.3.5.1. It shows that the
combination of all 50 features (All Categories), application category and the window title feature
outperformed the other features and feature combinations most often. Although the acc. obj.
name feature, the action category, the used res. metadata feature and the resource category were
very close behind the well-known window title feature with a difference of 7, 10, 11 and 12 respec-
tively. Among the top 15 features and feature combinations were two times an accessibility object
features. These were the acc. obj. name feature and acc. obj. value feature. Two features of the
ontology structure category, the datatype properties feature and the concept instances feature, as
well as the ontology structure category itself were one of the top 15. In the top 15 list all feature
categories were present.

Paired T-Tests: The statistical significance tests T − Testf and T − Testfrt as described in Sec-
tion 7.3.5.1 are summarized in Table 7.53 and in Table 7.54 respectively. The T − Testf showed
that the best seven ranked features and feature combinations were not statistically significantly
better in comparison to each other on a p < 0.05 significance level. The only exception was the
combination of all 50 features (All Categories) which was statistically significantly better than
the resource category on a p < 0.05 significance level. After applying a rank transforming a higher

204 Evaluation of the Ontology-Based Task Detection Approach

A
ll

C
a
te

g
o
ri

e
s

A
p
p
li
c
a
ti

o
n

C
a
t.

w
in

d
o
w

ti
tl

e

a
c
c
.

o
b

j.
n
a
m

e

A
c
ti

o
n

C
a
t.

u
se

d
re

s.
m

e
ta

d
a
ta

R
e
so

u
rc

e
C

a
t.

O
n
to

lo
g
y

S
tr

.
C

a
t.

d
a
ta

ty
p
e

p
ro

p
e
rt

ie
s

re
s.

ty
p
e
s

in
te

ra
c
t.

S
w

it
ch

in
g

S
e
q

.
C

a
t.

a
c
c
.

o
b

j.
v
a
lu

e

re
s.

in
te

ra
c
t.

c
o
n
c
e
p
t

in
st

a
n
c
e
s

u
se

d
re

s.
in

te
ra

c
t.

Ψ

All Categories - 4 5 5 4 5 5 5 5 4 4 5 5 5 5 276
Application Cat. 1 - 4 5 4 4 4 5 5 4 4 5 5 5 5 270
window title 0 1 - 3 4 4 5 5 5 4 4 5 5 5 5 263
acc. obj. name 0 0 2 - 3 3 4 4 5 4 4 5 5 5 5 256
Action Cat. 1 1 1 2 - 2 2 3 3 4 5 4 5 5 5 253
used res. metadata 0 1 1 2 3 - 3 4 5 4 4 5 5 4 4 252
Resource Cat. 0 1 0 1 3 2 - 4 4 4 4 5 5 5 5 250
Ontology Str. Cat. 0 0 0 1 2 1 1 - 2 3 4 3 5 4 5 238
datatype properties 0 0 0 0 2 0 1 3 - 4 4 3 5 4 4 237
res. types interact. 1 1 1 1 1 1 1 2 1 - 4 3 3 4 4 236
Switching Seq. Cat. 0 1 1 1 0 1 1 1 1 1 - 2 3 3 3 226
acc. obj. value 0 0 0 0 1 0 0 2 2 2 3 - 3 4 3 219
res. interact. 0 0 0 0 0 0 0 0 0 2 2 2 - 2 3 218
concept instances 0 0 0 0 0 1 0 1 1 1 2 1 3 - 2 216
used res. interact. 0 0 0 0 0 1 0 0 1 1 2 2 1 2 - 215

Table 7.52: Dominance matrix for the top 15 features and feature combinations.

number of statistically significant pairs were found. This does not necessarily mean that the first
test was invalid. It means that the tests provided a complementary view that can be used in
the decision which features and feature combination to use. Since all the feature and feature
combinations are present among the top results of the T − Testf evaluation in Table 7.53 and
of T − Testfrt evaluation in Table 7.54 suggested that these were the best features and feature
combinations with the highest discriminative power for this dataset.

A
ll

C
a
te

g
o
ri

e
s

A
p
p
li
c
a
ti

o
n

C
a
t.

w
in

d
o
w

ti
tl

e

R
e
so

u
rc

e
C

a
t.

u
se

d
re

s.
m

e
ta

d
a
ta

A
c
ti

o
n

C
a
t.

O
n
to

lo
g
y

S
tr

.
C

a
t.

a
c
c
.

o
b

j.
n
a
m

e

d
a
ta

ty
p
e

p
ro

p
e
rt

ie
s

S
w

it
ch

in
g

S
e
q

.
C

a
t.

re
s.

ty
p
e
s

in
te

ra
c
t.

re
s.

in
te

ra
c
t.

u
se

d
re

s.
in

te
ra

c
t.

c
o
n
c
e
p
t

in
st

a
n
c
e
s

a
p
p
li
c
a
ti

o
n
s

in
te

ra
c
t.

Ψ

All Categories - ~ ~ > ~ ~ ~ . > ~ > > > > > 50
Application Cat. ~ - ~ ~ ~ ~ ~ � > ~ > > > > > 49
window title ~ ~ - ~ ~ ~ ~ ~ . ~ ~ > > > > 45
Resource Cat. < ~ ~ - ~ ~ ~ ~ > ~ ~ > > > ~ 44
used res. metadata ~ ~ ~ ~ - ~ ~ ~ > ~ ~ > > > ~ 44
Action Cat. ~ ~ ~ ~ ~ - ~ ~ ~ ~ ~ ~ > > > 43
Ontology Str. Cat. ~ ~ ~ ~ ~ ~ - ~ ~ ~ ~ . > ~ ~ 41
acc. obj. name / � ~ ~ ~ ~ ~ - ~ ~ ~ ~ ~ > ~ 41
datatype properties < < / < < ~ ~ ~ - ~ ~ ~ ~ ~ ~ 39
Switching Seq. Cat. ~ ~ ~ ~ ~ ~ ~ ~ ~ - ~ ~ ~ ~ > 38
res. types interact. < < ~ ~ ~ ~ ~ ~ ~ ~ - ~ ~ ~ ~ 37
res. interact. < < < < < ~ / ~ ~ ~ ~ - ~ ~ ~ 37
used res. interact. < < < < < < < ~ ~ ~ ~ ~ - ~ ~ 37
concept instances < < < < < < ~ < ~ ~ ~ ~ ~ - ~ 36
applications interact. < < < ~ ~ < ~ ~ ~ < ~ ~ ~ ~ - 36

Table 7.53: Feature significance matrix for the top 15 features and feature combinations without rank

transformation (T − Testf).

7.5.7 Finding the Best Learning Algorithms

Classifier Dominance Matrix: Table 7.55 visualizes the results from the classifier dominance
matrix computations as described in Section 7.3.5.2. The order of the best performing classifiers
was NB�351J48�100KNN-10�51KNN-35�3KNN-5�14KNN-1�5SVM-lin, whereas c1�dc2

Laboratory Experiment 2 - Computer Science Students 205

A
ll

C
a
te

g
o
ri

e
s

A
p
p
li
c
a
ti

o
n

C
a
t.

w
in

d
o
w

ti
tl

e

A
c
ti

o
n

C
a
t.

R
e
so

u
rc

e
C

a
t.

a
c
c
.

o
b

j.
n
a
m

e

u
se

d
re

s.
m

e
ta

d
a
ta

O
n
to

lo
g
y

S
tr

.
C

a
t.

S
w

it
ch

in
g

S
e
q

.
C

a
t.

d
a
ta

ty
p
e

p
ro

p
e
rt

ie
s

re
s.

ty
p
e
s

in
te

ra
c
t.

re
s.

in
te

ra
c
t.

a
p
p
li
c
a
ti

o
n
s

in
te

ra
c
t.

c
o
n
c
e
p
t

in
st

a
n
c
e
s

u
se

d
re

s.
in

te
ra

c
t.

Ψ

All Categories - ~ > > > . > . . . � 55
Application Cat. ~ - ~ > ~ > ~ . > > > . � > � 52
window title < ~ - ~ > ~ ~ � ~ � ~ � > . . 48
Action Cat. < < ~ - ~ ~ ~ ~ > ~ ~ � � � � 46
Resource Cat. / ~ < ~ - ~ ∼ > ~ > ~ � ~ � . 46
acc. obj. name / < ~ ~ ~ - ~ > ~ > ~ � ~ � . 46
used res. metadata / ~ ~ ~ ∼ ~ - ~ ~ � ~ . ~ > > 44
Ontology Str. Cat. / / � ~ < < ~ - ~ ~ ~ � ~ > > 43
Switching Seq. Cat. < < ~ < ~ ~ ~ ~ - ~ ~ ~ � ~ ~ 40
datatype properties / < � ~ < < � ~ ~ - ~ � ~ ~ ~ 40
res. types interact. < < ~ ~ ~ ~ ~ ~ ~ ~ - ~ � ~ ~ 40
res. interact. / / � � � � / � ~ � ~ - ~ ~ ~ 39
applications interact. / � < � ~ ~ ~ ~ � ~ � ~ - ~ ~ 39
concept instances / < / � � � < < ~ ~ ~ ~ ~ - ∼ 38
used res. interact. � � / � / / < < ~ ~ ~ ~ ~ ∼ - 37

Table 7.54: Feature significance matrix for the top 15 features and feature combinations with rank trans-

formation (T − Testfrt).

indicates that classifier c1 performed d times better than c2 based on Ψ. The Näıve Bayes
(NB) learner seemed to perform significantly better than the other learning algorithms. This
intention was confirmed by the paired t-test results highlighted in Table 7.56 and in Table 7.57
for “without” and “with” rank transformation respectively.

N
B

J
4
8

K
N

N
-1

0

K
N

N
-3

5

K
N

N
-5

K
N

N
-1

S
V

M
-l

in

Ψ

NB - 193 206 213 215 215 208 1250

J48 97 - 144 154 155 151 198 899

KNN-10 88 152 - 115 126 129 189 799

KNN-35 77 141 106 - 124 110 190 748

KNN-5 78 139 103 106 - 123 196 745

KNN-1 76 143 102 114 107 - 189 731

SVM-lin 107 117 127 127 120 128 - 726

Table 7.55: Dominance matrix for the classifiers l ∈ { J48, KNN-1, KNN-10, KNN-35, KNN-5, NB,

SVM-lin}

Paired T-Tests: Two complete partial orders of classifiers were computed by using each column
of Table 7.56 and Table 7.57 for the different significance levels. The classifiers that showed
no significant performance differences were grouped together. The partial order of the results
without rank transformation was {NB}�{J48, KNN-1, KNN-5, KNN-10,KNN-35}�{SVM-
lin}. The one for the results with rank transformation was {NB}�{J48}>{KNN-1, KNN-5,
KNN-10, KNN-35}�{SVM-lin}. The effect that the J48 decision tree learner was statistically
significantly better with a p < 0.05 significance level in the second case, might be the result of

206 Evaluation of the Ontology-Based Task Detection Approach

the smoothing of the differences of the accuracy values after a rank transformation. However,
this result went hand in hand with the ranking obtained from the classifier dominance matrix in
Table 7.55.

Paired t-tests performed based on the micro f-measures without and with rank transformation
resulted in a similar partial order {NB}�{J48, KNN-1, KNN-5, KNN-10,KNN-35}�{SVM-lin}.

N
B

J
4
8

K
N

N
-1

0

K
N

N
-1

K
N

N
-3

5

K
N

N
-5

S
V

M
-l

in

Ψ

NB - � � � � � � 6

J48 � - ~ > > ~ � 3

KNN-10 � ~ - > > ~ � 3

KNN-1 � < < - ~ ~ � 1

KNN-35 � < < ~ - ~ � 1

KNN-5 � ~ ~ ~ ~ - � 1

SVM-lin � � � � � � - 0

Table 7.56: Significance matrix for the classifiers l ∈ {J48, KNN-1, KNN-10, KNN-35, KNN-5, NB,

SVM-lin} without rank transformation.

N
B

J
4
8

K
N

N
-1

K
N

N
-1

0

K
N

N
-3

5

K
N

N
-5

S
V

M
-l

in

Ψ

NB - � � � � � � 6

J48 � - > > > > � 5

KNN-1 � < - ~ ~ ~ � 1

KNN-10 � < ~ - ~ ~ � 1

KNN-35 � < ~ ~ - ~ � 1

KNN-5 � < ~ ~ ~ - � 1

SVM-lin � � � � � � - 0

Table 7.57: Significance matrix for the classifiers l ∈ {J48, KNN-1, KNN-10, KNN-35, KNN-5, NB,

SVM-lin} with rank transformation.

These results suggested the conclusion that the Näıve Bayes and the J48 decision tree learners
perform better on this dataset as the k-Nearest Neighbor (KNN) algorithms and the linear Support
Vector Machines (SVM).

7.5.8 Concluding Remarks

In Table 7.58 the results of laboratory experiment 2 which were described in this section, are sum-
marized. It shows (i) which research questions were investigated and (ii) the results of automatic
task detection of the UICO approach in comparison to the Dyonipos, SWISH and TaskPre-
dictor 1 approaches. One can observe in Table 7.58 that the UICO approach outperformed all
the existing approaches on the majority of the investigated research questions. Further remarks

Laboratory Experiment 2 - Computer Science Students 207

about the answers to the research questions are elaborated for personal and standard task in
Section 7.5.8.1 and for routine and knowledge-intensive tasks in Section 7.5.8.2. Remarks about
the experiment itself are mentioned in Section 7.5.8.3.

Evaluations UICO Dyonipos SWISH Task P. 1

Task Models (7 TM) 94.84% 95.49% 88.90% 93.24%

Routine vs. Knowledge-Int. (7 TM) 100.00% 100.00% 98.52% 99.29%

Routine (4 TM) 94.64% 93.39% 93.57% 93.75%

Knowledge-Int. (3 TM) 100.00% 100.00% 100.00% 100.00%

Pers. based on Std. Task (7 TM) 92.42% 90.91% 78.79% 87.88%

Standard Tasks (7 TM) 98.57% 97.14% 95.71% 97.14%

Personal Tasks (7 TM) 94.05% 91.19% 87.86% 89.76%

Table 7.58: Overview of the results of the laboratory experiment 2. The task detection performances for

the task models (TM) elaborated in this chapter are visualized in this table. The highest achieved accuracy

values for each evaluation are marked in bold.

7.5.8.1 Detecting Personal Tasks based on Standard Tasks

The answer to the question if it is possible to detect personal task executions with a learning
algorithm trained on standard task execution can be answered with a clear yes on this dataset.
The results of this experiment were that the UICO approach detected 92.43% of the personal
executed tasks. This was a very high accuracy which suggested that a training on standard task
executions was sufficient for detecting personal tasks, i.e., the influence of the specific goal of a
task was not that great as expected (see Section 7.5). The results also suggested that a set of
standard tasks could be defined for execution in a training phase by users prior deployment. This
would allow an automatic detection of real personal tasks in a productive environment without
training the classifier during work.

7.5.8.2 Routine vs. Knowledge-Intensive Tasks

The results of the task detection laboratory experiment 2 made the impression that routine tasks
and knowledge task can be distinguished very well. A 100% accuracy in detecting whether a task
execution was a routine or a knowledge-intensive task by the UICO and the Dyonipos approach
on this dataset underlines this impression. It can of course be argued that the tasks were too
different such that an easy classification was possible. However, laboratory experiment 2 (see
Section 7.4.6) showed also a high accuracy (94%) in solving this two-class classifiction problem.
Nevertheless further experiments with other tasks and users of other domains are recommended
to study this effect in more detail.

208 Evaluation of the Ontology-Based Task Detection Approach

7.5.8.3 Remarks about the Experiment

The experiment was designed to reduce bias as much as possible. For this randomization of tasks
as well as task types were introduced. Since the prototype utilized in the experiment required a
not insignificantly large amount of memory, at some points the laboratory computer slowed down
a little bit or the prototype had to be restarted. This might had introduced bias in the interaction
behavior of the participants and hence in the task execution data collected. One participant had
to execute a few tasks again because of a not prototype related software failure. The collection
of the data from the other participants went well and was reliable. The participants had only a
few questions about the prototype at the beginning of a test session regarding its functionality
about creating, starting, suspending and completing a task.

7.5.8.4 Open Questions

The evaluations on the dataset of this laboratory experiment showed a 100% accuracy in detecting
knowledge-intensive tasks. Due to the fact that only 3 knowledge-intensive tasks were studied
in this experiment the open question if other ones are as well distinguishable among each other
as the ones captured in this experiment remains open. This question was investigated in the
third laboratory experiment in which a special focus was put on knowledge-intensive tasks (see
Section 7.6).

Laboratory Experiment 3 - Computer Science Students 209

7.6 Laboratory Experiment 3 - Computer Science Students

The experiment described here investigated knowledge-intensive tasks in the domain of “computer
science students at Graz University of Technology”. The CommonKADS knowledge-intensive
task classification [Schreiber et al., 1999] was utilized to categorize tasks. Informal interviews
showed that students performed knowledge-intensive tasks during their university time. This
experiment was conducted to get insights into the capabilities of automatic task detection
applied to usage data observed during executions of knowledge-intensive tasks. The tasks of the
student’s domain were studied in a controlled setting consisting of four laboratory computers.
18 computer science students participated in the experiment. These students were considered as
experts of the studied domain. They allowed the observation of their user interaction context
during their task executions and made it freely available for the evaluations described in this
section.

Following questions were investigated:

� Can the task model of the task instances be automatically detected?

� Can the task models of analytic task instances be automatically detected?

� Can the task models of synthetic task instances be automatically detected?

� Can the analytic and the synthetic knowledge-intensive task models of the task instances
be automatically detected?

� Which context features are most discriminative for the studied tasks?

� Which learning algorithm performs best in terms of automatic task detection on the col-
lected dataset?

7.6.1 Experiment Design

The comparison was within subjects and the manipulations were achieved by (i) the type of
knowledge-intensive task (analytic and synthetic) and (ii) the task to be executed (8 different
tasks).

The experiment was designed in three phases. Phase 1 was the phase before the recording of
the user interaction context. Phase 2 was the user interaction context observation phase. This
phase was followed by Phase 3, which included the evaluation of the automatic task detection
performance. Phase 1, 2 and 3 were the same as in the experiment described in Section 7.5 with
one exception in Phase 2. In Phase 2 an additional 10 minutes “get familiar with the computer
system” time slot was introduced in order to allow the participants to get familiar with the
computer setup, the installed applications and resources available. The intention was to further
reduce the chance of introducing a bias through an unfamiliar computer desktop environment by
including a short training phase.

Manipulation 1: Type of tasks (analytic and synthetic)

The first manipulation was achieved by varying the type (class/categorization) of a knowledge-
intensive task according to the CommonKADS task classification. CommonKADS distinguishes
knowledge-intensive tasks into two groups of task types: analytic tasks and synthetic tasks.

210 Evaluation of the Ontology-Based Task Detection Approach

“The distinguishing feature between the two groups is the ”system” the task operates
on. ’System’ is an abstract term for the object to which the task is applied. For
example, in technical diagnosis the system is the artifact or device being diagnosed;
in elevator configuration it is the elevator to be designed. In analytic tasks the system
preexists although it is typically not completely ’known’. All analytic tasks take as
input some data about the system, and produce some characterization of the system
as output. In contrast, for synthetic tasks the system does not yet exist: the purpose
of the task is to construct a system description. The input of a synthetic task typically
consists of requirements that the system to be constructed should satisfy [Schreiber
et al., 1999].”

Four analytic and four synthetic task executions from each participant were recorded. The order
in which the experiment’s participants started performing a task of a specific type was randomized.

Manipulation 2: Tasks

The second manipulation resulted from varying the tasks themselves. Eight knowledge intensive
tasks were studied. Four tasks from the sub-categories of analytic tasks and four tasks from
the sub-categories of synthetic tasks had to be executed by the experiment’s participants. The
hierarchy of the studied task types is shown bellow within the task classification. A detailed
description of the task models and example tasks is given in Section 8.6.

1. Analytic Task

Task A1: Classification

Task A2: Diagnose

Task A3: Assess

Task A4: Predict

2. Synthetic Task

Task S1: Design

Task S2: Assign

Task S3: Plan

Task S4: Schedule

In the experiment the two task types of the CommonKADS classification monitoring and
modeling were excluded because of the following reasons: Monitoring would have required
several assessment cycles which would not have been possible because of the experiment’s time
constraints. Furthermore monitoring is a kind of “long-term task” and hence should be studied
separately and not in an approximately 120min laboratory experiment. Modeling involves the
modeling of a physical phenomena. In the test domain of computer science students at Graz
University of Technology, the modeling of a physical artifact is normally not a common task and
hence was excluded.

Example of a task model:

[Task A1] Task Classify (max. 5 min.)

Task Model (Description):
In classification, an object needs to be characterized in terms of the class to which it
belongs.

Laboratory Experiment 3 - Computer Science Students 211

Task Instance:
The following list contains 10 well-known computer specific terms. Please classify
them into the following categorization schema: hardware (with the sub-categories
input device and non-input device) and software (with the sub-categories game, office
application and operating system). Your classification schema shall be stored on the
computer. Choose a program of your choice and save the result on the computer.

Terms to categorize: Ahead Nero 9.0, Adobe Acrobat 9.0 Professional, Adobe
Photoshop CS4, Call of Duty 5 - World at War, Intel Core 2 Duo E8400 (C0), 2x
3.0GHz, Logitech Classic Keyboard 200, Logitech MX 518 Optical Gaming Mouse
Refresh, Microsoft Office 2007 Professional, Microsoft Windows Vista Business 32Bit,
Seagate Barracuda 7200.11 1500GB, SATA II

Before the participants of the experiment started the execution of the tasks they were asked
to read through the task descriptions and to confirm that they were clear to them. Since they
were asked to execute the task on a laboratory computer, they were given a time to get familiar
with the capabilities of the computer and the installed programs. The instruction given to the
participants was:

“At the begin of the experiment you have 10 min. to get familiar with the configuration
of the PC and the resources available. If you think you are ready earlier you can start
with your first task.”

The participants were especially instructed to utilize the given computer as much as possible and
to not use any other resources except the computer. The instructions given to the participants
are shown bellow:

“Interact as much as possible with the PC and do everything you need for performing
the task on the PC (e.g, note taking, drawings, calculations etc.). Do not take any
notes on paper. Your interactions with the PC are important for our research. You are
free to use any resources available on the PC (applications, tools, internet, documents,
files, folders etc.). Thank you for your participation!”

212 Evaluation of the Ontology-Based Task Detection Approach

7.6.2 Research Question: Can the task model of a task instances be

automatically detected?

The goal of this evaluation was to answer the question “Can the task model of the task instances
be automatically detected?”. The dataset on which this question was investigated contained 132
tasks from 18 users. The distribution of the task instances in respect to the classes and the
knowledge-intensive task type (analytic and synthetic task) is shown in Table 7.59. Analytic and
synthetic tasks were not distinguished in this evaluation but are listed in Table 7.59 to provide
the reader with a complete picture about the task distribution in the dataset. An overview of
all results about the performance of detecting the tasks (Tasks A1-A4 and Tasks S1-S4) is given
in Table 7.6.2. The results were achieved by applying stratified 10-fold cross-validation on the
training instances. A training instance was built for each task instance independently.

Type Task Class Task Instances Sum

Analytic Tasks

Task A1 17

67
Task A2 15

Task A3 19

Task A4 16

Synthetic Tasks

Task S1 18

65
Task S2 16

Task S3 16

Task S4 15

Dataset CV 132

Table 7.59: This table shows the distribution of the training/test instances for the different analytic and

synthetic task classes ranging from Task A1 to A4 and from Task S1 to S4 which were recorded on the

laboratory computers.

Feature Categories: The feature category which achieved the highest accuracy value was the
combination of all 50 features of all categories (l=J48, a=85.00%, g=10000, p=0.97, r=0.86).
This category only achieved rank 4 in the global ranking. About 5% less accurate was with
the same algorithm but with only 500 attributes the application category (l=J48, a=80.38%,
p=0.97, r=0.81). The resource category obtained an accuracy of 62.86% with 1500 attributes
(l=J48, p=0.92, r=0.64) which was 22.14% worse than the best feature category. The number of
attributes of the best runs were between 75 and 10000 attributes.

Single Features: The best performing single feature with 80.27% accuracy was the acc. obj.
name feature (l=J48, g=175, p=0.96, r=0.82). Far behind with a 16.7% less high accuracy value
was the window title feature with the same algorithm (l=J48, a=63.57%, p=0.91, r=0.64). The
used res. metadata feature achieved the third rank of the best performing single features with an
accuracy of 61.43% on 2000 attributes with the same algorithm as the best two performing single
features. The range of the numbers of attributes for the best classifier runs of the top 15 single

Laboratory Experiment 3 - Computer Science Students 213

Set RS f l g a p r RG

Feat.

Cat.

1 All Categories J48 10000 85.00 0.97 0.86 4

2 Application Cat. J48 500 80.38 0.96 0.81 12

3 Resource Cat. J48 1500 62.86 0.92 0.64 16

4 Action Cat. NB 250 60.71 0.90 0.60 18

5 Content Cat. J48 250 59.78 0.91 0.60 20

6 Switching Seq. Cat. NB 1173 54.51 0.88 0.52 22

7 Ontology Str. Cat. KNN-10 75 53.02 0.88 0.54 23

Single

Feat.

1 acc. obj. name J48 175 80.27 0.96 0.82 13

2 window title J48 250 63.57 0.91 0.64 15

3 used res. metadata J48 2000 61.43 0.91 0.60 17

4 acc. obj. value J48 100 60.55 0.92 0.62 19

5 applications interact. J48 50 54.67 0.89 0.58 21

6 concept instances KNN-1 10 52.09 0.86 0.51 24

7 content in focus J48 150 48.52 0.85 0.49 25

8 content of EB NB 712 47.91 0.86 0.51 26

9 datatype properties J48 221 47.69 0.85 0.48 27

10 used resources NB 150 46.21 0.83 0.45 28

11 app. switch seq. NB 182 46.04 0.84 0.48 29

12 res. interact. NB 150 45.60 0.83 0.42 30

13 res. types interact. KNN-10 5 45.49 0.85 0.46 31

14 acc. obj. role NB 37 45.38 0.84 0.46 32

15 used res. interact. J48 125 44.18 0.83 0.43 33

Top

k

Feat.

1 Top k = 6 J48 1500 86.43 0.98 0.86 1

2 Top k = 20 J48 10000 85.66 0.97 0.84 2

3 Top k = 7 J48 2000 85.49 0.98 0.86 3

4 Top k = 8 J48 2000 84.89 0.97 0.85 5

5 Top k = 10 J48 10000 84.89 0.97 0.84 6

6 Top k = 4 J48 2000 84.78 0.97 0.86 7

7 Top k = 5 J48 7500 84.07 0.97 0.87 8

8 Top k = 9 J48 7500 83.41 0.97 0.86 9

9 Top k = 3 J48 2500 82.64 0.97 0.82 10

10 Top k = 15 J48 7500 82.58 0.97 0.83 11

11 Top k = 2 J48 150 80.27 0.96 0.79 14

Table 7.60: Overview of the best results about the performance of detecting knowledge-intensive tasks

(Tasks A1-A4 and S1-S4) by stratified 10-fold cross-validation for each feature category, each single feature

as well as the k top performing single features. The learning algorithm (l), the number of attributes (g),

the micro precision (p), the micro recall (r), the ranking in the corresponding section (RS) and across

sections (RG) are also given.

214 Evaluation of the Ontology-Based Task Detection Approach

performing features was between 3 and 250 attributes except for the used res. metadata feature
and the content of EB feature which had their best classifier runs with 2000 and 712 attributes
respectively. In comparison with the Top k feature combinations all Top k feature combinations
except the worst Top k feature combination which was the Top k = 2 outperformed all the single
features.

Top k Features: The Top k single feature combinations achieved accuracy values rang-
ing from 80.27% to 86.43%. The highest accuracy resulted from the Top k = 6 single feature
combination (l=J48, a=86.43%, p=0.98, r=0.86) which obtained also the highest accuracy value
among all feature categories and single features. All the Top k feature combinations had their
best classifier runs with a high number of attributes ranging from 1500 to 10000 attributes. The
only exception was the Top k = 2 which had its best classifier run with 150 attributes and the
J48 learner. The Top k = 2 obtained an 6.26% worse accuracy than the best performing Top k

feature combination. All the Top k feature combinations achieved their highest accuracy with
the J48 classifier.

Set RG f l g a p r

1 CW SVM-C2−2 500 66.04 0.93 0.66

2 ACW KNN-5 175 64.23 0.92 0.64

4 W J48 337 59.78 0.91 0.61

Dyonipos 5 AW J48 250 58.57 0.90 0.59

6 AC KNN-35 150 57.42 0.90 0.57

8 A KNN-1 10 45.60 0.84 0.44

9 C NB 750 43.85 0.83 0.45

SWISH 7 J48 414 56.76 0.91 0.61

TaskPredictor 1 3 J48 150 63.85 0.92 0.64

Table 7.61: Overview of the best results about the performance of detecting knowledge-intensive tasks

(Tasks A1-A4 and S1-S4) by stratified 10-fold cross-validation for Dyonipos combinations, Swish and

TaskPredictor. The learning algorithm (l), the number of attributes (g), the micro precision (p), the

micro recall (r), and the ranking (RG) are also given.

Comparison with existing approaches: A detailed comparison of the feature and classifier
performance evaluation of the existing approaches is given in Table 7.61. This comparison shows
that the best overall tested combinations of the UICO features, the Top k = 6 single feature
combination (l=J48, a=86.43%, p=0.98, r=0.86), outperformed all the existing approaches. The
SWISH , the TaskPredictor 1 and the best Dyonipos feature combination CW were outper-
formed by 29.67%, 22.58% and 20.39% respectively. The SWISH approach had its best run at
414 attributes with the J48 algorithm (a=56.76%,p=0.91, r=0.61). The TaskPredictor 1 ap-
proach also performed best with the J48 algorithm but required only 150 attributes. Among the
existing approaches the Dyonipos one with the CW resulted in the highest accuracy (l=SVM,

Laboratory Experiment 3 - Computer Science Students 215

a=66.04%,p=0.93, r=0.66).
All the existing approaches had their best runs with the J48 algorithm which was similar

to all the best runs of the Top k single feature combinations. The range of attributes of the
best runs of the existing approaches ranged from 10 to 500 attributes which was rather low in
comparison with the best ones of the UICO Top k single feature combinations.

Concluding Remarks: All except one of the Top k single feature combinations outper-
formed the feature categories and the single features. The highest accuracy was achieved by
the Top k = 6 single feature combination (l=J48, a=86.43%, p=0.98, r=0.86). This best UICO
feature combination outperformed significantly the SWISH , the TaskPredictor 1 and the best
Dyonipos feature combination CW by 29.67%, 22.58% and 20.39% respectively. These results
showed that the task model of knowledge-intensive tasks can be detected with an accuracy of
86.43% on the gathered dataset from a large scale experiment with 18 participants. In other
words, it seemed to be possible to detect unstructured, knowledge-intensive and “free will how
to achieve the requested goal” tasks even with a high accuracy. Although these results were
promising, experiments with other tasks and users of the same domain and in other ones are
necessary to further investigate the generalizability of these findings.

7.6.3 Research Question: Can the task models of analytic task in-

stances be automatically detected?

The goal of the following evaluations was to answer the question “Can the task models of analytic
task instances be automatically detected?”. The dataset on which this question was investigated
contained 67 tasks from 18 users. These 67 tasks were almost equally distributed among the four
analytic knowledge-intensive task types (Task A1-A4) as visualized in in Table 7.62.

An overview of all results about the task detection performance is given in Table 7.63. These
results were achieved by applying stratified 10-fold cross-validation. For each task instance a
training instance was built.

Set Task A1 Task A2 Task A3 Task A4 Sum

Dataset CV 17 15 19 16 67

Table 7.62: This table shows the distribution of the training/test instances for stratified 10-fold cross-

validation for the different analytic task classes ranging from Task A1 to Task A4 which were recorded on

the laboratory computers.

Feature Categories: The feature category which achieved the highest accuracy value of 95.71%
was the resource category with the J48 learner (g=75, p=0.98, r=0.96). A 1.42% less accuracy
was obtained by the application category with the same algorithm (l=J48, a=94.29%, g=200,
p=0.98, r=0.95). The combination of all 50 features of all categories resulted in a 94.05%
accuracy with 750 attributes and the KNN-35 algorithm (p=0.98, r=0.94). The range of the
number of attributes of the best classifier runs was between 75 and 385 attributes except for

216 Evaluation of the Ontology-Based Task Detection Approach

the combination of all 50 features which had its best one with 750 attributes. The accuracy
values resulting from the feature categories’ evaluations were between 76.67% and 95.71%. In
comparison with the performance of the single features only the resource category could match
the accuracy of the best single feature.

Single Features: The best performing single feature was the used res. metadata feature
(l=J48, a=95.71%, g=125, p=0.98, r=0.95). The acc. obj. value feature was the one with
the second highest accuracy (l=J48, a=92.38%, g=25, p=0.97, r=0.92) and only 3.33% worse
than the best single feature’s accuracy. The third rank of the best performing single features
went to the acc. obj. name feature with an accuracy of 91.43% on 75 attributes and the Näıve
Bayes learner (p=0.92, r=0.92). The range of the numbers of attributes for the best classifier
runs of the single performing features was between 3 and 214 attributes. The accuracy values
for the best 15 single features ranged from 76.43% to 95.71%. In comparison with the Top k

feature combinations only the best single feature outperformed the worst three Top k feature
combinations.

Top k Features: The Top k best single feature combinations achieved accuracy values
ranging from 94.05% to 97.14%. The highest accuracy value resulted from the Top k = 7 (l=J48,
a=97.14%, g=125, p=0.99, r=0.98) and the Top k = 15 single feature combinations (l=J48,
a=97.14%, g=175, p=0.99, r=0.98). These two also outperformed all the other feature categories
and single features in terms of accuracy. The Top k = 8 had its best run on 175 attributes with
an accuracy of 96.90% which was an only 0.24% worse accuracy than the best two ones. The
range of the numbers of attributes for the best runs of the Top k best performing single features
was between 75 and 200 except for the Top k = 5 which had its best classifier run with 1000
attributes (l=J48, a=95.71%, p=0.98, r=0.96). The Top k with k = {2, 3, 5, 6, 9} performed
equally well in terms of accuracy with 95.71%. All the Top k achieved their highest accuracy
with the J48 learner.

Comparison with existing approaches: A comparison with existing approaches showed that
the best overall tested combinations of the UICO features which were the Top k = {7, 15} best
performing single feature combinations achieved a slightly higher accuracy than all the existing
approaches. The SWISH (l=J48, a=92.86%, g=300, p=0.97, r=0.94), the TaskPredictor 1
(l=J48, a=95.48%, g=10, p=0.98, r=0.95) and the best Dyonipos feature combination ACW
(l=KNN-35, a=96.90%, g=150, p=0.99, r=0.98) were outperformed by 4.28%, 1.66% and
0.24% accuracy respectively. The existing approaches’ accuracy values ranged from 72.38% to
96.90%. The number of attributes of the best runs of the algorithms were between 5 and 500
attributes. A detailed comparison of the feature and classifier performances is given in Table 7.64.

Concluding Remarks: The evaluations of the task classification performance of ana-
lytic knowledge-intensive tasks (Task A1-A4) on this task dataset showed that an accuracy of
about 97% can be reached when utilizing the UICO’s Top k = {7, 15} best performing single
feature combinations. The accuracy values achieved by the existing approaches were only 0.24%
to 4.28% worse in comparison with the best UICO feature combinations.

Laboratory Experiment 3 - Computer Science Students 217

Set RS f l g a p r RG

Feat.

Cat.

1 Resource Cat. J48 75 95.71 0.98 0.96 9

2 Application Cat. J48 200 94.29 0.98 0.95 13

3 All Categories KNN-35 750 94.05 0.98 0.94 14

4 Action Cat. NB 125 92.38 0.97 0.92 17

5 Switching Seq. Cat. NB 100 90.00 0.96 0.91 20

6 Ontology Str. Cat. J48 385 88.33 0.96 0.90 21

7 Content Cat. KNN-5 250 76.67 0.90 0.75 32

Single

Feat.

1 used res. metadata J48 125 95.71 0.98 0.95 10

2 acc. obj. value J48 25 92.38 0.97 0.92 16

3 acc. obj. name NB 75 91.43 0.97 0.92 18

4 window title J48 214 91.19 0.97 0.92 19

5 concept instances J48 104 88.33 0.95 0.88 22

6 datatype properties J48 175 85.48 0.94 0.88 23

7 res. types interact. KNN-35 10 85.24 0.94 0.85 24

8 applications interact. J48 50 82.38 0.93 0.82 25

9 acc. obj. role KNN-5 10 81.67 0.93 0.84 26

10 res. interact. NB 25 80.71 0.91 0.79 27

11 used res. interact. KNN-5 50 79.29 0.92 0.79 28

12 used resources NB 75 78.81 0.91 0.76 29

13 app. switch seq. J48 3 77.14 0.90 0.78 30

14 E&EB res. switch seq. KNN-35 25 76.67 0.90 0.76 31

15 EB res. interact. KNN-35 50 76.43 0.90 0.75 33

Top

k

Feat.

1 Top k = 7 J48 125 97.14 0.99 0.98 1

2 Top k = 15 J48 175 97.14 0.99 0.98 2

3 Top k = 8 J48 175 96.90 0.99 0.98 3

4 Top k = 9 J48 125 95.71 0.98 0.96 4

5 Top k = 6 J48 200 95.71 0.98 0.96 5

6 Top k = 5 J48 1000 95.71 0.98 0.96 6

7 Top k = 3 J48 75 95.71 0.98 0.96 7

8 Top k = 2 J48 100 95.71 0.98 0.96 8

9 Top k = 10 J48 175 95.48 0.98 0.95 11

10 Top k = 4 J48 100 94.29 0.98 0.95 12

11 Top k = 20 J48 150 94.05 0.98 0.94 15

Table 7.63: Overview of the best results about the performance of detecting the sub-types of analytic tasks

(Tasks A1-A4) by stratified 10-fold cross-validation for each feature category, each single feature as well as

the k top performing single features. The learning algorithm (l), the number of attributes (g), the micro

precision (p), the micro recall (r), the ranking in the corresponding section (RS) and across sections (RG)

are also given.

218 Evaluation of the Ontology-Based Task Detection Approach

Set RG f l g a p r

1 ACW KNN-35 150 96.90 0.99 0.98

2 CW KNN-35 175 95.71 0.98 0.95

5 AW SVM-C210 10 92.86 0.97 0.94

Dyonipos 6 W SVM-C210 10 92.62 0.97 0.94

7 AC J48 500 79.52 0.92 0.81

8 A NB 5 75.00 0.90 0.78

9 C KNN-1 125 72.38 0.87 0.74

SWISH 4 J48 300 92.86 0.97 0.94

TaskPredictor 1 3 J48 10 95.48 0.98 0.95

Table 7.64: Overview of the best results about the performance of detecting the sub-types of analytic tasks

(Tasks 1-4) by stratified 10-fold cross-validation for Dyonipos combinations, Swish and TaskPredictor.

The learning algorithm (l), the number of attributes (g), the micro precision (p), the micro recall (r),

and the ranking (RG) are also given.

7.6.4 Research Question: Can the task models of synthetic task in-

stances be automatically detected?

The goal of the following evaluations was to answer the question “Can the task models of synthetic
task instances be automatically detected?”. The dataset on which this question was investigated
contained 65 tasks from 18 users. These 65 tasks were almost equally distributed among the
four synthetic knowledge-intensive task types (Task S1-S4) as visualized in in Table 7.65. An
overview of all results achieved by applying stratified 10-fold cross-validation on dataset is given
in Table 7.66. For each task instance a training instance was built.

Set Task S1 Task S2 Task S3 Task S4 Sum

Dataset CV 18 16 16 15 65

Table 7.65: This table shows the distribution of the training/test instances for the different task classes

ranging from Task 1 to Task 7 which were recorded on the laboratory computers.

Feature Categories: The feature category which achieved the highest accuracy values was
the combination of all 50 features with 93.23% and the J48 algorithm (g=150, p=0.92, r=0.82).
This feature combination resulted in the global rank RG = 5. Only 0.24% less accurate was the
application category with 91.76% with the same algorithm on only 5 attributes (p=0.92, r=0.79).
The content category accomplished 63.57% accuracy (l=KNN-35, g=50, p=0.82, r=0.65) and
hence was about 18.57% worse than the best feature category.

The accuracy values of the feature categories were between 54.29% and 82.14%. The number
of attributes of the best classifier runs of the algorithms of the feature category ranged from 5 to

Laboratory Experiment 3 - Computer Science Students 219

175 except for the resource category which had its best run with 2000 attributes. In comparison
with the performance of the single features the best two feature categories, the combination of
all features of all categories as well as the application category, outperformed all single features
in terms of accuracy.

Single Features: The best performing single feature was the acc. obj. name feature
with an accuracy of 81.67% on only 3 attributes (l=KNN-5, p=0.92, r=0.82). The datatype
properties feature was 23.10% worse in terms of accuracy (l=KNN-5, a=58.57%, g=25, p=0.92,
r=0.82). The third best single performing feature was the content in focus feature with 57.62%
accuracy (l=J48, g=50, p=0.78, r=0.55). The range of the numbers of attributes for the best
classifier runs of the best 15 single performing features was between 1 and 300 attributes with
accuracy values between 46.90% and 81.67%. Only the best single performing feature, the acc.
obj. name feature, outperformed the worst two Top k feature combinations.

Top k Features: The Top k single feature combinations achieved accuracy values rang-
ing from 80.24% to 85.24% and hence only differ among each other by 5%. The highest accuracy
value resulted from the Top k = 20 (l=J48, a=85.24%, g=7500, p=0.93, r=0.82) and was hence
also the best among all feature categories and single features in terms of accuracy. The Top
k = 15 feature combination obtained the global rank RG = 2 with 83.57% accuracy on 5000
attributes with the same algorithm, the same micro precision as well as the same micro recall
values. The third rank went to the Top k = 10 feature combination with an accuracy of 83.33%
(l=J48, g=6807, p=0.94, r=0.84).

The best four Top k feature combinations, Top k = {9, 10, 15, 20}, outperformed all the other
feature categories and single features in terms of accuracy but required many more attributes.
The range of the number of attributes for the best classifier runs of the algorithms was generally
high for this dataset and ranged between 1997 and 6807 attributes. The only exceptions to this
high number of required attributes were the Top k = 2 and the Top k = 3 which had their best
runs with 10 and 5 attributes respectively. The decrease of accuracy when focusing on a low
number of attributes in comparison to the best Top k one was between 3.34% and 5%.

Comparison with existing approaches: The best five Dyonipos feature combinations
achieved a higher accuracy value than the SWISH and TaskPredictor 1 approaches. The
Dyonipos ACW obtained the highest accuracy with 73.81% (l=NB, g=50, p=0.88, r=0.72).
The SWISH and the TaskPredictor 1 approach accomplished 55.48% accuracy. The range
of the number of attributes of the best runs of the algorithms of the existing approaches was
between 10 and 250 which was a lot less than the best UICO feature combination which required
7500 attributes. In comparison with the best UICO feature combination, the Top k = 20
(l=J48, a=85.24%, g=7500, p=0.93, r=0.82), the best Dyonipos feature combination ACW ,
the SWISH approach and the TaskPredictor 1 approach were outperformed by 11.43%, 29.76%
and 29.76% respectively.

Concluding Remarks: These evaluation results showed that synthetic task instances
could be distinguished from each other with an accuracy of 85.24% and that the UICO’s

220 Evaluation of the Ontology-Based Task Detection Approach

Set RS f l g a p r RG

Feat.

Cat.

1 All Categories J48 150 82.14 0.92 0.82 5

2 Application Cat. J48 5 81.90 0.92 0.79 10

3 Content Cat. KNN-35 50 63.57 0.82 0.65 15

4 Action Cat. NB 175 56.19 0.76 0.58 20

5 Resource Cat. J48 2000 55.71 0.74 0.51 21

6 Switching Seq. Cat. NB 100 54.76 0.76 0.58 23

7 Ontology Str. Cat. NB 25 54.29 0.74 0.54 25

Single

Feat.

1 acc. obj. name KNN-5 3 81.67 0.92 0.82 12

2 datatype properties KNN-5 25 58.57 0.78 0.55 16

3 content in focus J48 50 57.62 0.78 0.58 17

4 window title J48 153 57.62 0.74 0.58 18

5 used res. metadata J48 300 57.14 0.77 0.55 19

6 applications interact. NB 64 55.24 0.75 0.55 22

7 acc. obj. value J48 75 54.52 0.78 0.56 24

8 res. interact. NB 168 52.62 0.75 0.52 26

9 res. types interact. NB 29 52.14 0.76 0.51 27

10 user input KNN-1 5 51.19 0.74 0.52 28

11 app. switch seq. SVM-C210 50 48.10 0.71 0.50 29

12 application name KNN-35 10 47.38 0.70 0.48 30

13 content of EB NB 5 47.38 0.68 0.44 31

14 task duration SVM-C2−1 1 47.14 0.69 0.49 32

15 mean time between EBs SVM-C2−5 1 46.90 0.69 0.48 33

Top

k

Feat.

1 Top k = 20 J48 7500 85.24 0.93 0.82 1

2 Top k = 15 J48 5000 83.57 0.93 0.82 2

3 Top k = 10 J48 6807 83.33 0.94 0.84 3

4 Top k = 9 J48 5000 83.10 0.93 0.84 4

5 Top k = 8 J48 5000 81.90 0.93 0.81 6

6 Top k = 6 J48 5364 81.90 0.92 0.82 7

7 Top k = 3 KNN-10 5 81.90 0.92 0.82 8

8 Top k = 7 J48 6030 81.90 0.92 0.81 9

9 Top k = 4 J48 1997 81.67 0.93 0.85 11

10 Top k = 5 J48 5000 81.43 0.92 0.81 13

11 Top k = 2 J48 10 80.24 0.91 0.79 14

Table 7.66: Overview of the best results about the performance of detecting the sub-types of synthetic tasks

(Tasks S1-S4) by stratified 10-fold cross-validation for each feature category, each single feature as well as

the k top performing single features. The learning algorithm (l), the number of attributes (g), the micro

precision (p), the micro recall (r), the ranking in the corresponding section (RS) and across sections (RG)

are also given.

Laboratory Experiment 3 - Computer Science Students 221

Set RG f l g a p r

1 ACW NB 50 73.81 0.88 0.72

2 CW NB 25 73.10 0.87 0.71

3 AC NB 25 64.76 0.83 0.65

Dyonipos 4 W NB 10 60.00 0.77 0.54

5 AW NB 10 59.76 0.79 0.56

8 C NB 250 48.57 0.71 0.51

9 A KNN-1 10 47.14 0.70 0.48

SWISH 6 J48 25 55.48 0.77 0.52

TaskPredictor 1 7 J48 175 55.48 0.74 0.56

Table 7.67: Overview of the best results about the performance of detecting the sub-types of synthetic tasks

(Tasks S1-S4) by stratified 10-fold cross-validation for Dyonipos combinations, Swish and TaskPredictor.

The learning algorithm (l), the number of attributes (g), the micro precision (p), the micro recall (r),

and the ranking (RG) are also given.

approach achieved a higher accuracy than all the existing approaches on this dataset. More
specifically, all UICO’s Top k feature combinations performed better than all the existing
approaches. The best one, the Top k = 20, significantly outperformed the best Dyonipos feature
combination ACW , the SWISH approach and the TaskPredictor 1 approach 11.43%, 29.76%
and 29.76% respectively.

7.6.5 Research Question: Can the analytic and the synthetic

knowledge-intensive task models of the task instances be auto-

matically detected?

The goal of this evaluation was to answer the question “Can the analytic and the synthetic
knowledge-intensive task models of the task instances be automatically detected?”. The dataset
on which the question was investigated contained 132 tasks from 18 users. The distribution of
the task instances in respect to the classes (analytic and synthetic) is shown in Table 7.68. An
overview of the UICO task detection results is given in Table 7.69. The results were achieved by
applying 10-fold cross-validation on the training instances. A training instance was built for each
task instance independently.

Set Analytic Tasks Synthetic Tasks Sum

Dataset CV 67 65 132

Table 7.68: This table shows the distribution of the training/test instances for the knowledge-intensive

task models analytic and synthetic tasks for stratified 10-fold cross-validation which were recorded on

laboratory computers.

222 Evaluation of the Ontology-Based Task Detection Approach

Feature Categories: The highest accuracy of 93.23% was achieved by the combination of all
50 features with the J48 algorithm (g=3500, p=0.93, r=0.93). This feature combination resulted
in the global rank RG = 4. A 1.48% lower accuracy values was obtained by the application
category with 91.76% and the KNN-5 algorithm on only 125 attributes (g=125, p=0.92, r=0.92).
The resource category achieved 87.75% accuracy (l=J48, g=2000, p=0.88, r=0.88) and hence
got the third rank in the feature category ranking. The accuracy values resulting from the
feature categories’ evaluations were between 80.16% and 93.24%. In comparison with the perfor-
mance of the single features the best two feature categories, the combination of all features of all
categories as well as the application category, outperformed all single features in terms of accuracy.

Single Features: The best performing single feature was the acc. obj. name feature
with an accuracy of 91.10% (g=25, p=0.91, r=0.91). The window title feature was the one with
the second highest accuracy with 86.48% (l=J48, g=279, p=0.87, r=0.87) and hence 4.62% worse
than the best single feature’s accuracy. The third rank of the best performing single features
went to the used res. metadata feature which achieved an accuracy of 85.66% on 1813 attributes
(l=J48, p=0.86, r=0.86). The range of the numbers of attributes for the best classifier runs of
the single performing features was between 3 and 279 attributes. The only exception was the
used res. metadata feature which had its best classifier run with 1813 attributes. The accuracy
values for the best 15 single features ranged from 75.77% to 91.10%. In comparison with the Top
k feature combinations non of the single features achieved a higher accuracy.

Top k Features: The Top k best single feature combinations achieved accuracy values ranging
from 92.53% to 94.73% and hence only differ among each other by 2.2%. The highest accuracy
value resulted from the Top k = 6 (l=J48, a=94.73%, g=2000, p=0.95, r=0.95). Only 0.66%
worse in terms of accuracy was the Top k = 3 with 94.07% accuracy (l=J48, g=3248, p=0.94,
r=0.94) with the same algorithm but with 1248 attributes more than the Top k = 6. With 1000
attributes and the J48 algorithm the Top k = 20 obtained 93.90% accuracy and hence the third
best ranking in this category. The range of the number of attributes for the best classifier runs
of the algorithms was between 25 and 3000 attributes. The best three Top k best single feature
performance combinations, Top k = {3, 6, 20}, outperformed all the other feature categories and
single features in terms of accuracy. All the Top k had their best classifier runs with the J48
decision tree learner.

Comparison with existing approaches: The best Dyonipos feature combination CW , the
SWISH and the TaskPredictor 1 approach achieved 90.11%, 85.00% and 85.00% respectively. In
comparison with the best UICO feature combination, the Top k = 6 with 94.73% outperformed
the best Dyonipos CW feature combination by 4.72% as well as the SWISH and TaskPredictor
1 approaches by 9.73%. The number of attributes of the SWISH , the TaskPredictor 1 and
the Dyonipos feature combinations for the runs with the highest accuracy were between 5 and
2392 attributes whereas the best UICO feature combination required 2000 attributes. A detailed
comparison of the feature and classifier performance evaluation of the existing approaches is
given in Table 7.70.

Laboratory Experiment 3 - Computer Science Students 223

Set RS f l g a p r RG

Feat.

Cat.

1 All Categories J48 3500 93.24 0.93 0.93 4

2 Application Cat. KNN-5 125 91.76 0.92 0.92 13

3 Resource Cat. J48 2000 87.75 0.88 0.88 15

4 Action Cat. NB 75 81.15 0.81 0.81 19

5 Ontology Str. Cat. KNN-10 150 81.10 0.81 0.81 20

6 Switching Seq. Cat. NB 75 80.38 0.81 0.81 21

7 Content Cat. KNN-5 250 80.16 0.80 0.80 23

Single

Feat.

1 acc. obj. name KNN-5 25 91.10 0.91 0.91 14

2 window title J48 279 86.48 0.87 0.87 16

3 used res. metadata J48 1813 85.66 0.86 0.86 17

4 acc. obj. value KNN-5 150 85.66 0.86 0.86 18

5 datatype properties SVM-C20 3 80.27 0.80 0.80 22

6 applications interact. SVM-C2−1 5 79.67 0.79 0.79 24

7 app. switch seq. SVM-C20 3 79.56 0.80 0.80 25

8 resource content SVM-C210 125 78.90 0.79 0.79 26

9 application name J48 26 78.90 0.79 0.79 27

10 res. interact. KNN-5 50 78.68 0.79 0.79 28

11 concept instances J48 50 78.19 0.78 0.78 29

12 res. types interact. SVM-C20 5 76.65 0.76 0.76 30

13 objecttype properties J48 57 76.59 0.77 0.77 31

14 used resources NB 251 76.43 0.77 0.77 32

15 E level res. switch seq. KNN-35 100 75.77 0.76 0.76 33

Top

k

Feat.

1 Top k = 6 J48 2000 94.73 0.95 0.95 1

2 Top k = 3 J48 3248 94.07 0.94 0.94 2

3 Top k = 20 J48 1000 93.90 0.94 0.94 3

4 Top k = 8 J48 500 93.24 0.93 0.93 5

5 Top k = 4 J48 3000 93.24 0.93 0.93 6

6 Top k = 15 J48 3000 93.24 0.93 0.93 7

7 Top k = 7 J48 500 93.19 0.93 0.93 8

8 Top k = 10 J48 500 93.13 0.93 0.93 9

9 Top k = 9 J48 2000 93.08 0.93 0.93 10

10 Top k = 5 J48 750 92.53 0.93 0.93 11

11 Top k = 2 KNN-35 25 92.53 0.93 0.93 12

Table 7.69: Overview of the best results about the performance of classifying task instances to analytic

and synthetic tasks by stratified 10-fold cross-validation for each feature category, each single feature as

well as the k top performing single features. The learning algorithm (l), the number of attributes (g),

the micro precision (p), the micro recall (r), the ranking in the corresponding section (RS) and across

sections (RG) are also given.

224 Evaluation of the Ontology-Based Task Detection Approach

Set RG f l g a p r

1 CW SVM-C21 1000 90.11 0.90 0.90

2 ACW SVM-C25 750 89.51 0.90 0.90

3 AC J48 2392 85.82 0.86 0.86

Dyonipos 6 AW NB 50 82.64 0.82 0.82

7 W J48 125 81.81 0.82 0.82

8 A SVM-C2−1 10 80.16 0.80 0.80

9 C NB 826 77.25 0.77 0.77

SWISH 5 J48 414 85.00 0.85 0.85

TaskPredictor 1 4 KNN-5 5 85.00 0.85 0.85

Table 7.70: Overview of the best results about the performance of classifying task instances to analytic and

synthetic tasks by stratified 10-fold cross-validation for Dyonipos combinations, Swish and TaskPredictor.

The learning algorithm (l), the number of attributes (g), the micro precision (p), the micro recall (r),

and the ranking (RG) are also given.

Concluding Remarks: The evaluations of the task classification performance of classi-
fying tasks into analytic and synthetic knowledge-intensive tasks showed that an accuracy of
approximately 95% was reached when utilizing the UICO’s Top k = 6 best performing single
feature combination on this dataset. All the existing approaches were outperformed between
4.72% and 9.73% accuracy by a combination of six features specific to the UICO approach.

Laboratory Experiment 3 - Computer Science Students 225

7.6.6 Finding the Best Features/Feature Categories

Feature Dominance Matrix: Table 7.71 displays the dominance matrix for the features and
feature combinations as explained in Section 7.3.5.1. It shows that the combination of all 50
features (All Categories), application category and the acc. obj. name feature outperformed the
other features and feature combinations most often. As expected the accessibility object’s features
as well as the window title feature performed really well. Surprisingly in comparison with the
previous two experiments described in Section 7.4.9 and in Section 7.5.6 in which the window
title feature achieved both times the second rank, this time this feature only obtained the seventh
rank. All the feature categories were present in the top 15 rankings of the feature dominance
matrix.

A
ll

C
a
te

g
o
ri

e
s

A
p
p
li
c
a
ti

o
n

C
a
t.

a
c
c
.

o
b

j.
n
a
m

e

R
e
so

u
rc

e
C

a
t.

u
se

d
re

s.
m

e
ta

d
a
ta

w
in

d
o
w

ti
tl

e

A
c
ti

o
n

C
a
t.

a
c
c
.

o
b

j.
v
a
lu

e

S
w

it
ch

in
g

S
e
q

.
C

a
t.

d
a
ta

ty
p
e

p
ro

p
e
rt

ie
s

O
n
to

lo
g
y

S
tr

.
C

a
t.

C
o
n
te

n
t

C
a
t.

a
p
p
li
c
a
ti

o
n
s

in
te

ra
c
t.

c
o
n
c
e
p
t

in
st

a
n
c
e
s

re
s.

in
te

ra
c
t.

Ψ

All Categories - 3 4 3 3 4 4 4 4 4 4 4 4 4 4 221
Application Cat. 1 - 4 3 3 4 4 4 4 4 4 4 4 4 4 219
acc. obj. name 0 0 - 3 3 4 3 3 4 4 4 4 4 4 4 212
Resource Cat. 1 1 1 - 3 2 3 4 4 3 4 3 4 4 4 208
used res. metadata 1 1 1 1 - 1 4 3 4 3 4 3 4 4 4 205
window title 0 0 0 2 3 - 3 3 4 3 4 3 4 4 4 204
Action Cat. 0 0 1 1 0 1 - 2 4 3 4 3 4 4 4 198
acc. obj. value 0 0 1 0 1 1 2 - 3 3 4 3 3 4 4 196
Switching Seq. Cat. 0 0 0 0 0 0 0 1 - 3 3 2 2 4 4 186
datatype properties 0 0 0 1 1 1 1 1 1 - 1 2 3 2 4 184
Ontology Str. Cat. 0 0 0 0 0 0 0 0 1 3 - 2 2 4 4 183
Content Cat. 0 0 0 1 1 1 1 1 2 2 2 - 3 3 3 182
applications interact. 0 0 0 0 0 0 0 1 2 1 2 1 - 3 4 180
concept instances 0 0 0 0 0 0 0 0 0 2 0 1 1 - 2 162
res. interact. 0 0 0 0 0 0 0 0 0 0 0 1 0 2 - 161

Table 7.71: Dominance matrix for feature categories and single features.

Paired T-Tests: The results of the statistical significance tests T − Testf and T − Testfrt as
described in Section 7.3.5.1 are highlighted in Table 7.72 and in Table 7.73 respectively. The
T − Testf results showed that the top 8 ranked feature and feature combinations did not signif-
icantly outperform each other (p ≥ 0.05 in the paired t-tests). The only exception to this was
the resource category which was statistically significantly better on a p < 0.05 significance level
than the acc. obj. value feature. When looking at the results of the T − Testfrt evaluation in
Table 7.72 one can observe that (i) the number of statistical significant pairs have increased, (ii)
that the top 3 ranked features and feature combinations were the same and (iii) that 14 features
appear in both tables on slightly different ranks. The feature dominance matrix, the paired t-test
with and without rank transformation visualizes that 14 out of the 15 top features and feature
combinations appear in all tables. These results suggested that these were the best performing,
i.e., the most discriminative, features and feature combinations for this dataset.

7.6.7 Finding the Best Learning Algorithms

Classifier Dominance Matrix: Table 7.74 summarizes the results from the classifier domi-
nance matrix computations as described in Section 7.3.5.2. The order of the best performing

226 Evaluation of the Ontology-Based Task Detection Approach

A
p
p
li
c
a
ti

o
n

C
a
t.

A
ll

C
a
te

g
o
ri

e
s

a
c
c
.

o
b

j.
n
a
m

e

R
e
so

u
rc

e
C

a
t.

w
in

d
o
w

ti
tl

e

u
se

d
re

s.
m

e
ta

d
a
ta

a
c
c
.

o
b

j.
v
a
lu

e

A
c
ti

o
n

C
a
t.

O
n
to

lo
g
y

S
tr

.
C

a
t.

a
p
p
li
c
a
ti

o
n
s

in
te

ra
c
t.

S
w

it
ch

in
g

S
e
q

.
C

a
t.

d
a
ta

ty
p
e

p
ro

p
e
rt

ie
s

C
o
n
te

n
t

C
a
t.

re
s.

in
te

ra
c
t.

a
p
p

.
sw

it
ch

se
q

.

Ψ

Application Cat. - ~ ~ ~ ~ ~ ~ ~ > > ~ > � > > 47
All Categories ~ - ~ ~ ~ ~ ~ ~ ~ > ~ > . > > 46
acc. obj. name ~ ~ - ~ ~ ~ ~ ~ ~ > ~ ~ � > > 45
Resource Cat. ~ ~ ~ - ~ ~ > ~ > ~ > ~ ~ > > 44
window title ~ ~ ~ ~ - ~ ~ ~ ~ > ~ ~ ~ > > 44
used res. metadata ~ ~ ~ ~ ~ - ~ ~ > ~ > ~ ~ > > 43
acc. obj. value ~ ~ ~ < ~ ~ - ~ ~ ~ ~ ~ ~ ~ > 40
Action Cat. ~ ~ ~ ~ ~ ~ ~ - ~ ~ ~ ~ ~ ~ ~ 37
Ontology Str. Cat. < ~ ~ < ~ < ~ ~ - ~ ~ ~ ~ ~ > 37
applications interact. < < < ~ < ~ ~ ~ ~ - ~ ~ ~ ~ ~ 35
Switching Seq. Cat. ~ ~ ~ < ~ < ~ ~ ~ ~ - ~ ~ ~ ~ 34
datatype properties < < ~ ~ ~ ~ ~ ~ ~ ~ ~ - ~ > ~ 32
Content Cat. � / � ~ ~ ~ ~ ~ ~ ~ ~ ~ - ~ ~ 31
res. interact. < < < < < < ~ ~ ~ ~ ~ < ~ - ~ 29
app. switch seq. < < < < < < < ~ < ~ ~ ~ ~ ~ - 25

Table 7.72: Significance matrix for the top 15 features and feature combinations without rank transfor-

mation.

A
ll

C
a
te

g
o
ri

e
s

A
p
p
li
c
a
ti

o
n

C
a
t.

a
c
c
.

o
b

j.
n
a
m

e

O
n
to

lo
g
y

S
tr

.
C

a
t.

S
w

it
ch

in
g

S
e
q

.
C

a
t.

C
o
n
te

n
t

C
a
t.

u
se

d
re

s.
m

e
ta

d
a
ta

a
p
p
li
c
a
ti

o
n
s

in
te

ra
c
t.

R
e
so

u
rc

e
C

a
t.

w
in

d
o
w

ti
tl

e

d
a
ta

ty
p
e

p
ro

p
e
rt

ie
s

a
c
c
.

o
b

j.
v
a
lu

e

a
p
p

.
sw

it
ch

se
q

.

A
c
ti

o
n

C
a
t.

c
o
n
te

n
t

in
fo

c
u
s

Ψ

All Categories - ~ > > > . ~ > ~ � > � . . . 53
Application Cat. ~ - > � > � ~ . ~ > . ~ � ~ � 51
acc. obj. name < < - � � � ~ . ~ ~ > ~ � ~ � 49
Ontology Str. Cat. < � � - ~ ∼ ~ ~ ~ ~ ~ ~ > ~ ~ 36
Switching Seq. Cat. < < � ~ - ∼ ~ ∼ ~ ~ ~ ~ > ~ ~ 36
Content Cat. / � � ∼ ∼ - ~ ~ ~ ~ ∼ ~ ~ ~ � 35
used res. metadata ~ ~ ~ ~ ~ ~ - > ~ ~ ~ ~ > � ~ 35
applications interact. < / / ~ ∼ ~ < - < < ~ ~ > ~ ~ 35
Resource Cat. ~ ~ ~ ~ ~ ~ ~ > - ∼ ~ � > ~ ~ 34
window title � < ~ ~ ~ ~ ~ > ∼ - ~ ~ > ~ ~ 34
datatype properties < / < ~ ~ ∼ ~ ~ ~ ~ - ~ ~ ~ ~ 33
acc. obj. value � ~ ~ ~ ~ ~ ~ ~ � ~ ~ - > ~ ~ 32
app. switch seq. / � � < < ~ < < < < ~ < - < ∼ 32
Action Cat. / ~ ~ ~ ~ ~ � ~ ~ ~ ~ ~ > - ~ 31
content in focus / � � ~ ~ � ~ ~ ~ ~ ~ ~ ∼ ~ - 29

Table 7.73: Significance matrix for the top 15 features and feature combinations with rank transformation.

classifiers was J48�220KNN-5�23KNN-35�1KNN-1�13NB�4KNN-10�197SVM-lin, whereas
c1�dc2 indicates that classifier c1 performed d times better than c2 based on Ψ. The J48 decision
tree learner seemed to perform significantly better than the other learning algorithms.

Paired T-Tests: The intention from the classifier dominance matrix was confirmed by the paired
t-test results illuminated in Table 7.75 for “without” and “with” rank transformation respectively.
Since there was no difference in these results they are displayed together in one table. A complete
partial order of classifiers can be computed by using each column of Table 7.56 for the different
significance levels. The classifiers that showed no significant performance differences were grouped
together. The partial order of the results was {J48}�{NB, KNN-1, KNN-5, KNN-10, KNN-
35}�{SVM-lin} (and {KNN-5}>{KNN-10}).

Laboratory Experiment 3 - Computer Science Students 227

J
4
8

K
N

N
-5

K
N

N
-3

5

K
N

N
-1

N
B

K
N

N
-1

0

S
V

M
-l

in

Ψ

J48 - 165 171 166 155 167 185 1009

KNN-5 87 - 126 130 134 139 173 789

KNN-35 81 123 - 116 139 134 173 766

KNN-1 84 114 135 - 133 126 173 765

NB 100 119 116 122 - 125 170 752

KNN-10 86 113 119 125 132 - 173 748

SVM-lin 81 93 93 94 97 93 - 551

Table 7.74: Dominance matrix for the classifiers l ∈ { J48, KNN-1, KNN-10, KNN-35, KNN-5, NB,

SVM-lin }

Paired t-tests performed based on the micro f-measures without rank transformation resulted in
the similar partial orders {J48}�{KNN-1, KNN-5, KNN-10}�{SVM-lin} and {J48}>{NB,
KNN-35}�{SVM-lin} With rank transformation the resulting partial order was {J48}�{NB,
KNN-1, KNN-5, KNN-10, KNN-35}�{SVM-lin}.

These results went hand in hand with the ranking obtained from the classifier dominance
matrix in Table 7.74 and suggested the conclusion that the J48 decision tree learner performed
better on this dataset as the Näıve Bayes (NB), the k-Nearest Neighbor (KNN) and the linear
Support Vector Machines (SVM-lin) algorithms.

J
4
8

K
N

N
-5

K
N

N
-1

K
N

N
-1

0

K
N

N
-3

5

N
B

S
V

M
-l

in

Ψ

J48 - � � � � � � 6

KNN-5 � - ~ > ~ ~ � 2

KNN-1 � ~ - ~ ~ ~ � 1

KNN-10 � < ~ - ~ ~ � 1

KNN-35 � ~ ~ ~ - ~ � 1

NB � ~ ~ ~ ~ - � 1

SVM-lin � � � � � � - 0

Table 7.75: Significance matrix for the classifiers l ∈ { J48, KNN-1, KNN-10, KNN-35, KNN-5, NB,

SVM-lin } (with and without rank transformation).

7.6.8 Concluding Remarks

In Table 7.76 the results of laboratory experiment 3, which was described in this section, are
summarized. It shows which research questions were investigated as well as the task detec-
tion performance results of the UICO approach in comparison with the Dyonipos, SWISH and
TaskPredictor 1 approaches. One can observe in Table 7.76 that the UICO approach outper-

228 Evaluation of the Ontology-Based Task Detection Approach

formed all the other approaches on all research questions investigated.

The answers to the research questions were elaborated for the detectability of the sub-types
analytic and synthetic knowledge-intensive task types in Section 7.6.8.1 and for distinguishing
analytic and synthetic task types in Section 7.6.8.2. Remarks about the experiment itself were
mentioned in Section 7.4.11.5.

Evaluations UICO Dyonipos SWISH Task P. 1

Task Models (8 TM) 86.43% 66.04% 56.76% 63.85%

Analytic Tasks (4 TM) 97.14% 96.90% 92.86% 95.48%

Synthetic Tasks (4 TM) 85.24% 73.81% 55.48% 55.48%

Analytic vs. Synthetic Tasks (8 TM) 94.73% 90.11% 85.00% 85.00%

Table 7.76: Overview of the results of the laboratory experiment 3. The task detection performances

elaborated for Analytic & Synthetic, Analytic, Synthetic and Analytic vs. Synthetic in Section 7.6.2,

Section 7.6.3, Section 7.6.4 and Section 7.6.5 respectively show that the UICO approach outperformed in

terms of accuracy all the existing approaches. The highest achieved accuracy values for each evaluation

are marked in bold.

7.6.8.1 Detectability of Knowledge-Intensive Tasks

According to the CommonKADS knowledge-intensive task classification knowledge-intensive
tasks are analytic or synthetic tasks. Analytic tasks are further distinguished into Analysis, Clas-
sification, Diagnosis, Assessment, Monitoring and Prediction. Synthetic subtypes are Synthesis,
Design, Configuration Design, Assignment, Planning, Scheduling and Modeling.

The detectability of a subset of the subtypes of analytic and synthetic task types were in-
vestigated via an experiment with 18 computer science students in Section 7.5. The accuracy
of detecting these subtypes was 86.43% with a combination of 6 features specific to the UICO
approach (see Section 7.6.2). This accuracy value was more than 20% higher than the one of the
best evaluated existing approach. For studying the detectability of analytic tasks, the synthetic
tasks were removed from the dataset (see Section 7.6.3). The evaluation of the detectability of
analytic tasks resulted in an accuracy of 97.14% with 7 features specific to the UICO approach.
The accuracy of the best classifier runs of the existing approaches ranged from 92.86% to 96.90%
which almost reached the same accuracy value of the UICO approach. The synthetic tasks were
also studied separately (see Section 7.6.4). Again the highest accuracy value of 85.24% accuracy
was reached by 20 features specific to the UICO approach. The existing approaches were worse
between 11.43% (Dyonipos) and 29.76% (SWISH and TaskPredictor 1).

These results showed that (i) subtypes of analytic tasks were easier to detected than sub-types
of synthetic task types and that (ii) the feature combination of the UICO approach outperformed
all the existing approaches on analytic tasks slightly but significantly on synthetic tasks. The more
difficult detectability of synthetic tasks might also had an impact of the overall task detection
performance evaluated on the whole dataset in Section 7.6.2.

Laboratory Experiment 3 - Computer Science Students 229

7.6.8.2 Analytic vs. Synthetic Tasks

While in Section 7.6.8.1 the detectability of the subtypes of the CommonKADS knowledge-
intensive task classification was reported, this section sums up the result of the task detection
performance of analytic and synthetic tasks types elaborated in Section 7.6.5. With an accuracy
of 94.73% a task instance was identified as an analytic or a synthetic task with 6 features specific
to the UICO approach. This was a 4.62% to 9.73% higher accuracy than achieved by features
and feature combinations of the existing approaches.

7.6.8.3 Remarks about the Experiment

Although the design and execution of the experiment were similar to the one described in Sec-
tion 7.5 there were significant differences in (i) the types of tasks the participants were asked
to perform and (ii) in the specification of these tasks. In the previous experiments described in
Section 7.4 and in Section 7.5 the tasks were defined based on the role model of the company
employee “Bill Adams” and in the computer science domain based on the one of the student
“Georg Kompacher” respectively.

In this experiment the type of the task was described to the participants as well as the task
itself. The descriptions of the task did not lead in any direction of how to execute the task. The
form of the expected result was also not specified. In other words, there was no exact specification
of the “procedure” to utilize in order to solve the given tasks. The reasons for this setting were (i)
to not influence the participants in any way how to perform the tasks and (ii) to not direct them
to the utilization of certain types of applications, resources or types of resources. The challenges
with these conditions affected both, the participants and automatic classification of the tasks.

The vague task descriptions made it clear for the participants what the goals of the tasks
were but left unclear what the expected form of the result had to look like. Participants asked
whether to create an Excel sheet or if a simple text file would be sufficient. It seemed that some
participants had issues in dealing with their freedom of choice.

Since the experiment did not specify or lead to an exact procedure but rather encouraged the
creative thinking of the experiment’s participants for solving the tasks in their own way, various
forms of solving the tasks appeared in the recorded usage data.

This resulting diversity in application and resource usage was also a great challenge for auto-
matic task detection. The thought was that the selected individual procedures for accomplishing
a task would be specific for this task. Since the tasks were designed to be from a certain category
(analytic and synthetic or their sub categories) the selected procedure would be specific for the
category as well. The differences in the applied procedures would be user specific but the common
points accross individual procedures would be category specific. Automatic task detection would
then focus on learning the common points of the category specific procedure.

A further challenge was the fact that the sensors did not cover all the application that were
installed on the testing machine. This fact can be observed by comparing the available sensors
described in Section 3.4.1 and the listing of installed applications on the laboratory computers in
Section 7.6. The thought was that automatic task detection would perform well without having
full sensor coverage. The results on the laboratory experiment 3 dataset suggested that a rather
high task detection performance would be possible even without a full sensor coverage.

230 Evaluation of the Ontology-Based Task Detection Approach

7.7 Concluding Remarks and Open Questions

7.7.1 Discussion about the Proposed Ontology-based Task Detection

Approach

The advantages of using an ontology-based user context model for task detection are the new
possibilities of constructing features (see Section 5.3) for the machine learning algorithms. The
experiments reported in this chapter showed that the features engineered from the user interaction
context ontology (UICO) outperformed features proposed by existing approaches. Especially well
worked the UICO features for detecting knowledge-intensive tasks.

A further advantage of the ontology-specific approach is that the data representation is easy
to access. This means it is queryable with a rich query language SPARQL that allows an easy
way to create various types of features based on the relationships of two entities or the structure
of a set of entities of the user interaction context. In case of the UICO approach it made it
possible to create features about the combination of the type of user interaction and the type of
resource the user has interacted with. Furthermore time-based features like switching sequences
between applications, resources, resource types or interaction types were possible to create.

The disadvantages of the utilization of an ontology-based approach for task detection is
the amount of data that is required for representing the user interaction context as well as
the introduced costs. Firstly, the amount of data is significantly influenced by the utilization
of semantic technologies for storing the user interaction context data, i.e., the number of
concept instances and relation between them (see Section 3.6). Secondly, following costs of the
ontology-based task detection approach were identified:

� CPU and Memory Costs: The ontology-based task detection approach requires the
UICO populated with user interaction context data. The population of the UICO is done
via adding triples to the UICO. Depending on the number of triples already existing in the
UICO this step requires a greater amount of memory and CPU usage (see Section 3.6.2).
The same applies in the step of retrieving information from the UICO during the feature
extraction and training instance construction process. A standard desktop computer with 2
gigabytes of memory and a double core CPU with 2 GHz is suggested to build to classify a
training instance for a supervised learning algorithm based on the user interaction context
data of a single task execution. For the training phase, i.e., the phase in which a classification
model is learned based on several task executions, a server system is suggested in order to
not decrease the user’s productivity. The server system used for the evaluations described in
this chapter was a 64-bit quad core server machine with 2.5 GHz CPUs and with 6 gigabytes
of memory.

� User Privacy & Security Costs: The user interaction context data stored in the UICO
is a very detailed representation of the user’s interests, characteristics, utilized resources,
the user’s social network etc. The UICO not only stores high level concepts but also low-
level sensor data. This could be a thread to the user’s privacy because the UICO may
include sensitive information, e.g., passwords, login information, credit card numbers or the
content of a confidential documents or instant messaging conversation. Since the ontology-

Concluding Remarks and Open Questions 231

based task detection approach extracts features based on the user interaction context data
stored in the UICO, it could happen that sensitive information is extracted as part of a
feature for training the machine learning algorithm. Possible solutions for securing the
user’s privacy are (i) to not use context sensors that sense user privacy related data, (ii)
to filter the captured usage data based on predefined rules, or (iii) to encrypt the stored
user interaction context data in the UICO. Addressing these issues was not in focus of this
thesis but are mentioned here in order to raise awareness that such issues are important to
focus on when deploying the ontology-based task detection approach in real world settings.

� Usage Data Labeling Costs: The ontology-based task detection approach is a su-
pervised learning approach, more specifically a classification approach. This means that a
classifier has to be trained with labeled usage data before a detection of a task is possible.
The construction of a training dataset for a domain that results in a classification model
which achieves good task detection accuracy values introduces costs. Costs are for example
the time required to identify the tasks of the domain that should automatically be detected
or the time needed for experts to record and label multiple task executions for training the
classifiers.

7.7.2 Best Generalizing Context Features

For each of the three laboratory experiments the feature dominance matrices as described in Sec-
tion 7.3.5.1 were computed. Based on these results a ranking of the features and feature categories
was computed and visualized in Table 7.77. The computation of this ranking only considered a
feature or feature category appearing once in the best 15 feature and feature categories of the
feature dominance matrices of the three laboratory experiments. The average, standard deviation
and standard error were also computed and are given in Table 7.77.

Based on the evaluations performed on the three datasets, the stability of the performance
achieved by each feature and each feature category was studied (see Table 5.1). By computing
a dominance matrix for each experiment (based on how often a feature/feature category outper-
forms the others) a ranking of the features/feature categories can be obtained. An overview of
the results for the top 22 features/feature categories is presented in Table 7.77. Those are the
features/feature categories that appear in the top 15 ranking in at least one dataset.

Several interesting insights are provided by Table 7.77. First, the good ranks of features and
feature categories partly or totally engineered based on the ontology (cf. column O) clearly signals
the positive influence on the task detection performance of adopting our UICO approach. Second,
the best results are achieved by the application category and by the combination of all 50 features
(All Categories). The fact that the application category performs slightly better also shows that
it is not true that the more features are considered, the better the achieved classification accuracy
is. Third, the single features achieving the best results are the acc. obj. name and the window
title. Besides, the standard deviation of the acc. obj. name feature is one of the lowest, which
indicates the good stability of its performance across datasets. The fact that the acc. obj. name
feature performs slightly better than the well-known window title feature also signals the benefits
of making use of the features derived from the accessibility objects. Fourth, if one reduces this
table by considering only the features that appear in the top 15 rankings produced by the three

232 Evaluation of the Ontology-Based Task Detection Approach

RG O T Feature / Feature Category R1 R2 R3 µR δ2R δR

1 x Application Cat. 1 2 2 1,67 0,33 0,58

2 x x All Categories 3 1 1 1,67 1,33 1,15

3 x acc. obj. name 4 4 3 3,67 0,33 0,58

4 x window title 2 3 6 3,67 4,33 2,08

5 x x Resource Cat. 6 7 4 5,67 2,33 1,53

6 x used res. metadata 9 6 5 6,67 4,33 2,08

7 x acc. obj. value 5 12 8 8,33 12,33 3,51

8 x x Action Cat. 13 5 7 8,33 17,33 4,16

9 x datatype properties 8 9 10 9 1 1

10 x Ontology Str. Cat. 10 8 11 9,67 2,33 1,53

11 x x Switching Seq. Cat. 20 11 9 13,33 34,33 5,86

12 x acc. obj. role 15 15 15 15 0 0

13 x res. types interact. 19 10 16 15 21 4,58

14 x Content Cat. 7 27 12 15,33 108,33 10,41

15 x applications interact. 21 16 13 16,67 16,33 4,04

16 x concept instances 22 14 14 16,67 21,33 4,62

17 x res. interact. 31 13 15 19,67 97,33 9,87

18 x content of EB 11 28 21 20 73 8,54

19 x content in focus 12 30 18 20 84 9,17

20 x acc. obj. role des. 14 25 30 23 67 8,19

21 x used res. interact. 32 15 22 23 73 8,54

22 x x resource content 15 35 23 24,33 101,33 10,07

Table 7.77: Computation of the ranking of the features and feature categories. The global ranking RG

is given by the average µR of the rankings for the 3 laboratory experiment’s datasets (R1, R2 and R3)

and by the standard deviation δR in case of a draw. The columns O and T are used to indicate which

features/feature categories are ontology-based, text-based or both.

datasets, one can isolate what can be considered as being the best performing features: the acc.
obj. name feature, the window title feature, the used res. metadata feature, the acc. obj. value
feature, the datatype properties feature and the acc. obj. role feature. Because of the low standard
deviation values associated with them, the performances of these six features also suggested to
be stable across datasets. It is again worth noting that four of these features are new and specific
to the UICO approach.

7.7.3 Best Generalizing Classifiers

In the three laboratory experiments described in this chapter the task detection performance in
evaluating several research questions were studied. In particular next to the features and feature
combinations the performances of the machine learning algorithms the J48 decision tree, the
Näıve Bayes, the k-Nearest Neighbor and the linear Support Vector Machines were measured.
The ranks achieved by the learning algorithms in the experiments based on the computed
dominance matrices are highlighted in Table 7.78. One can observe that the J48 learner obtained
the first rank as well as the lowest standard deviation. This indicates that the J48 learner was the

Concluding Remarks and Open Questions 233

most stable across the features and feature combinations of the three datasets. The Näıve Bayes
algorithm performed very well on the first two experiment’s datasets but not that well on the third
experiment’s dataset which only contained knowledge-intensive. Since the performance of these
knowledge-intensive tasks involved a certain creative freedom of the experiment’s participants
because of the experiments conditions it seemed that the Näıve Bayes algorithm could not handle
this freedom very well. The linear Support Vector Machines showed a rather well performance
in experiment one but had a bad performance on the second and third experiments’ datasets.
The k-Nearest Neighbor algorithm showed a rather constant performance on all datasets but
performed best on the knowledge-intensive tasks’ dataset of experiment 3. Both the Näıve
Bayes and the linear Support Vector Machines are linear classifiers and both performed rather
bad on the third experiment’s dataset while the k-Nearest Neighbor and the J48 decision tree
algorithm performed well. This might be an indication that the decision boundary was non-linear.

RG Classifier R1 R2 R3 µr δ2r δr

1 J48 2 2 1 1,67 0,33 0,51

2 NB 1 1 5 2,33 5,33 2,04

3 KNN-5 4 5 2 3,67 2,33 1,50

4 KNN-35 6 4 3 4,33 2,33 0,69

5 KNN-1 5 6 4 5,00 1,00 1,00

6 KNN-10 7 3 6 5,33 4,33 1,58

7 SVM-lin 3 7 7 5,67 5,33 0,77

Table 7.78: Ranking of the best classifiers l ∈ {J48, KNN-1, KNN-10, KNN-35, KNN-5, NB, SVM-lin}
for the 3 laboratory experiment’s datasets (R1, R2 and R3) based on the dominance matrices. The average

(µ) and the global rank (RG) across the experiments are also given.

Exp. Without Rank Transformation

1 {J48,NB}�{KNN-1,KNN-5,KNN-10,KNN-35}�{SVM-lin}
2 {NB}�{J48,KNN-1,KNN-5,KNN-10,KNN-35}�{SVM-lin}
3 {J48}�{NB,KNN-1,KNN-5,KNN-10,KNN-35}�{SVM-lin}

({KNN-5}>{KNN-10})

Exp. With Rank Transformation

1 {J48,NB}�{KNN-1,KNN-5,KNN-10,KNN-35}�{SVM-lin}
2 {NB}�{J48}>{KNN-1,KNN-5,KNN-10,KNN-35}�{SVM-lin}
3 {J48}�{NB,KNN-1,KNN-5,KNN-10,KNN-35}�{SVM-lin}

({KNN-5}>{KNN-10})

Table 7.79: Partial orders of the best classifiers l ∈ {J48, KNN-1, KNN-10, KNN-35, KNN-5, NB,

SVM-lin} based on the statistical significance tests for the 3 laboratory experiment’s datasets.

234 Evaluation of the Ontology-Based Task Detection Approach

The partial orders of the classifiers computed based on the statistical significance tests without
and with rank transformation are summarized in Table 7.79. It can be observed that the Näıve
Bayes and the J48 decision tree learner outperformed the k-Nearest Neighbor and the Support
Vector Machine learners. These results support the results of the classifier dominance matrix
evaluations. It can be concluded that for automatic task classification on the datasets of these
three laboratory experiments the Näıve Bayes and the J48 decision tree learner were the best
ones and the k-Nearest Neighbors learners are the second best ones.

7.7.4 Detectability of Types of Tasks

The results of the three laboratory experiments described this Chapter 7 are illuminated in
Table 7.80. Two evaluation methods were used to achieve these results: (i) stratified 10-fold
cross-validation and (ii) train/test set evaluation. The evaluations methods were explained in
detail in Section 7.3.3.

Evaluations Exp. 1 Exp. 2 Exp. 3

Stratified 10-Fold Cross-Validation

Detection of Task Models (5 TM, 7 TM & 8 TM) 88.55% 94.84% 86.43%

Routine vs. Knowledge-Int. (5 & 7 TM) 94.94% 100.00% -

Routine (4 TM) - 94.64% -

Knowledge-Int. (3 TM) - 100.00% -

Standard Tasks (5 & 7 TM) 88.41% 98.57% -

Personal Tasks (5 & 7 TM) 86.00% 94.05% -

Analytic vs. Synthetic (8 TM) - - 94.73%

Analytic (4 TM) - - 97.14%

Synthetic (4 TM) - - 85.24%

Train/Test Set Evaluation

Pers. based on Lab. Computer (4 TM) 94.85% - -

Pers. based on Std. Task (5 TM & 7 TM) 77.14% 92.42% -

One Expert and User Group (5 TM) 75.37%1 - -

Expert Group and One User (5 TM) 98.53%2 - -

Table 7.80: Overview of all task detection performance results of the real-world user study and the three

laboratory experiments.

1Achieved with an extended feature combination evaluation as described in Section 7.4.7. The standard evaluation

methodology described in Section 7.3.3 only reached 72.91% because not all feature combinations were evaluated.
2Achieved with an extended feature combination evaluation as described in Section 7.4.8. The standard evaluation

methodology described in Section 7.3.3 only reached 92.65% because not all feature combinations were evaluated.

Concluding Remarks and Open Questions 235

Task Model Detection: The performance of detecting the task models of the task instances of
the experiments’ datasets via stratified 10-fold cross-validation showed that an accuracy between
approximately 88% and 95% could be reached. These high accuracy values were achieved on
tasks with various granularity levels, from two different domains and observed from over 40
different users.

Routine and Knowledge-Intensive Tasks: Routine and knowledge-Intensive tasks are
two distinguished task types. The identifiability of these task types by automatic means was
investigated in the first as well as second laboratory experiment and obtained accuracy values of
94.94% and 100.00% respectively. These results show that on these two datasets routine tasks
and knowledge-intensive tasks could be detected with a high accuracy. A further result of the
second experiment was that the task models of routine tasks and knowledge-intensive tasks
were detected with an accuracy of 94.64% and 100.00% respectively. The 100.00% accuracy of
detecting knowledge-intensive tasks looked promising but suspicious in two ways: (i) only three
knowledge-intensive task models were distinguished and hence only a three-class classification
problem had to be solved and (ii) these task models were very different such that it could be
too easy for the classifier to find separating features. For a better understanding what kind of
knowledge-intensive tasks are detectable a third experiment was designed.

The CommonKADS [Schreiber et al., 1999] knowledge-intensive task categorization served as
a base for designing the experiment’s tasks for studying the detectability of knowledge-intensive
tasks. The categorization distinguishes analytic and synthetic tasks. With an accuracy of 94.73%
a task instance was classified into one of these task types. Both task types also have multiple sub-
types. The detectability of these subtypes was investigated further. Task instances were correctly
assigned to one of the eight subtypes with an accuracy of 86.43%. When focusing on the four
subtypes of analytic tasks and on synthetic tasks separately an accuracy of 97.14% and 85.24%
was obtained. This shows that knowledge-intensive task categories were successfully identified
with a high accuracy and hence well distinguishable among each other. The free choice of the
participants in the way how to perform and to complete the tasks encourages the generalizability
of these results.

7.7.5 Comparison with Related Work

The most popular features identified for having a high discriminative power among tasks are the
window title feature [Granitzer et al., 2008; Oliver et al., 2006; Shen et al., 2006], the file

path/web page URL feature [Shen et al., 2006], and the content in focus feature [Granitzer
et al., 2008]. In this research’s findings the feature choice of these approaches could be confirmed
and is compared to the novel context features and feature categories introduced by the UICO
approach.

In terms of attributes used for training the machine learning algorithms an interval of 200-300
attributes is suggested to be sufficient by [Granitzer et al., 2008; Shen, 2009]. This dissertation
research’s results also suggest that only a small ratio of attributes are required to successfully iden-
tify tasks. The best overall accuracies were obtained on the interval between 100-500 attributes.
The results that lead to this interval can be observed in the tables presented in Section 7.4,

236 Evaluation of the Ontology-Based Task Detection Approach

Section 7.5, Section 7.6 for laboratory experiment 1, 2 and 3 respectively.

In the task detection experiments reported in [Lokaiczyk et al., 2007] the SVM learning algo-
rithm was mentioned as the one with the highest achieved accuracy. In [Granitzer et al., 2008] the
good performance of the SVM learning algorithm was confirmed and the high accuracy achieved
by the KNN learner highlighted. On the three laboratory experiment’s datasets the SVM showed
the worst accuracy and f1-measures. The good performance of the KNN learner could be con-
firmed. In contradiction to [Granitzer et al., 2008] the Näıve Bayes learner performed very well
across the three laboratory experiment’s datasets.

7.7.6 Open Questions

There are three open questions still requiring further research efforts: (i) the best combination of
features, (ii) the best generalizing classifier and (iii) the generalizability of the results regarding
which tasks are automatically detectable.

1. Since it is not possible nowadays to investigate all possible combinations of the 50 UICO fea-
tures as highlighted in Section 8.1.3.4 the question “What is the best feature combination?”
remains an open question.

2. This research investigated the task detection performance of four types of machine learning
algorithms: J48 decision tree, k-Nearest Neighbor, Näıve Bayes and linear Support Vector
Machines. There are a lot more classifiers that have to be studied for their applicability
to the classification problem “task detection” in order to answer “Which classifier should
be used for task detection?” or “Which combination of classifiers should be used for task
detection?”.

3. The degree of generalizability of the results of the evaluations of the investigated research
questions require further experiments in laboratory as well as real world settings. Especially
the influence factors to automatic task detection, like for example the computer environment
or the specific goal, the type of task, need to be further investigated for datasets including
tasks of other users from other domains. Although the results are promising, the question
“How much do the influencing factors impact automatic task detection?” remains open.

7.8 Summary

This chapter reports on the design and execution of three large-scale laboratory experiments.
Through these experiments three task detection datasets consisting of over 500 tasks from over
40 users of two different domains were collected for evaluating the ontology-based task detection
approach. Several insights were gained from the performed evaluations:

1. First, combinations of features engineered from the UICO almost always outperformed
feature combinations suggested by existing task detection approaches on the evaluation
datasets.

2. Second, the J48 decision tree and Näıve Bayes classifiers provide a better classification
accuracy than other classifiers.

Summary 237

3. Third, six single features could be isolated that show a good discriminative power for clas-
sifying tasks as well as a stable performance across the evaluation datasets. These features
are the acc. obj. name feature, the window title feature, the used res. metadata feature, the
acc. obj. value feature, the datatype properties feature and the acc. obj. role feature.

4. Fourth, the best overall task detection results were achieved by the application category and
by the combination of all 50 features (All Categories).

5. Fifth, even though it could seem easier to classify routine tasks, the results seem to suggest
that knowledge-intensive tasks can be classified as well as routine tasks.

238 Evaluation of the Ontology-Based Task Detection Approach

8
Conclusion and Future Work

The more a system knows about the user and her current task the better it can support her.
This dissertation introduces and evaluates an ontology-based approach for studying and enhanc-
ing automatic task detection on the computer desktop. The final chapter reflects on the goals
set at the beginning of this research in form of an assessment regarding the main research ques-
tion and the sub-research questions. Furthermore the assessment includes a discussion about
the generalizability of the achieved results and a discussion about the “value and effort” of the
proposed approach. Finally, this chapter highlights future directions in the areas of task de-
tection, work-integrated learning, personal information management, information retrieval and
computer-supported collaborative work, inspired by the contributions of this research work.

8.1 Assessment

This section serves as a self-assessment part of this thesis to reflect on the achievements in
respect to the asked research questions as listed in Section 1.2. In the following the investigated
research questions are reflected from a retrospective viewpoint.

The main research hypothesis investigated by this dissertation is:

“The accuracy of automatic task detection can be enhanced by features engineered from
an ontology-based user interaction context model in comparison to features and feature
combinations of existing approaches.”

The proposed ontology-based task detection approach (UICO approach) utilizes an ontology-
based user interaction context model, referred to as the user interaction context ontology (see
Section 3.3), for engineering features for machine learning algorithms in order to do automatic task
detection on the computer desktop (see Section 5.3). The task detection performance of these
features was evaluated on three independent datasets (see Chapter 7). The evaluation results

239

240 Conclusion and Future Work

show that a high accuracy in correctly detecting different kind of tasks can be achieved. In order
to measure whether the features of the UICO approach increase or decrease the task detection
performance, three task detection approaches were selected from the literature for comparison
purposes. The task detection performance of the features suggested by the DYONIPOS, SWISH
and TaskPredictor 1 approaches (see Section 4.4) were evaluated on the same datasets as the
UICO features. The comparisons of the resulting accuracy values show that on the first and
third datasets the features from the UICO approach achieve higher accuracy values than the
ones of the studied approaches. Although the accuracy values of the investigated features of all
studied approaches were quite similar on the second dataset, the UICO features outperformed
the features of the other approaches in most of the times. The third dataset consists only of
knowledge-intensive tasks. The users were given a great amount of freedom in choosing the
applications and resources for accomplishing the tasks. On this knowledge-intensive tasks dataset
the UICO approach achieved a more than 20% higher accuracy than the other studied approaches.
This dissertation research shows that, when considering more sophisticated tasks, involving more
freedom in their execution or in the produced result, approaches that rely heavily on the “window
title” feature does not achieve good accuracy results during task classification, and that more
sophisticated feature combinations are needed.

The results of the evaluations of the UICO approach in comparison to the studied approaches
show evidence that the research hypothesis can be accepted based on the studied datasets. How-
ever, there are limitations regarding the datasets used for comparing the task detection ap-
proaches. One limitation is the utilization of non-standardized datasets. Since there are no stan-
dard datasets freely available that allow an objective comparison of the task detection approaches,
new datasets were collected and utilized for investigating the research question. Although (i) the
tasks studied in the user experiments were freely chosen by experts of the studied domains, (ii) the
users were free in the way they performed the tasks, (iii) the sequence of the tasks to be executed
was randomized and (iv) the experiments were carried out in a laboratory setting, someone could
argue that these datasets have been specifically constructed to favor a specific task detection
approach. In order to overcome this limitation the task detection community has to agree on
a standard dataset for objectively evaluating task detection approaches. A second limitation is
the small number of datasets on which the task detection evaluations took place. One dataset
used for testing the research hypothesis was collected during an experiment in the domain of the
Know-Center GmbH. with a set of 5 tasks, and the other two datasets in the domain of computer
science students of Graz University of Technology with two sets of 7 and 8 tasks respectively. It
must be admitted that (i) the investigated tasks did not cover all the tasks of the domain, (ii)
only a small set of representatives of the investigated domain participated in the experiments and
(iii) only two domains were studied. For resolving these limitations other tasks of the studied
domains have to be investigated as well, other representatives of the studied domain are required
to perform the same tasks, and further experiments have to be performed in other domains.

This dissertation research successfully identified six features out of 50 features engineered
from an ontology-based user interaction context model that show a high accuracy and stable
performance across all three studied datasets (see Section 7.7.2). These are the acc. obj. name
feature, the window title feature, the used res. metadata feature, the acc. obj. value feature, the
datatype properties feature and the acc. obj. role feature. Since feature engineering is a key aspect

Assessment 241

in a machine learning task, these features can be considered as a valuable suggestion for other
machine learning based task detection approaches regarding which features to include in a set
of features used for task detection. Furthermore, this dissertation research also investigated into
combinations of single features. The results suggest that, only a small set of features are required
to achieve high task detection performance. It seems that, this small set when constructed of
the best single performing UICO features, referred to as the Top-k feature combinations in this
thesis, outperform each single feature as well as the combination of all 50 UICO features. On the
other hand, feature engineering is data dependent. For task detection this means that, the set
of features achieving high task detection accuracy values can vary for different settings, i.e., for
a different set of tasks and for different domains. In order to test the applicability of a feature
set for task detection in another setting one has to run experiments for investigating the domain,
the tasks of the domain and the users of the domain.

The UICO approach enabled the engineering of a set of 50 features (see Section 5.3) covering
various aspects of the user interaction context that can be used for constructing training instances
for the machine learning algorithms. Having a pool of features speeds up the adaption process for
task detection to another domain because identifying a feature combination with an appropriate
accuracy for the requirements of a domain is faster than starting by engineering features. In
this dissertation it is shown that the 50 features can successfully adapt to both of the studied
domains, the domain of the Know-Center GmbH. and the domain of computer science students
of Graz University of Technology. However, it has to be noted that, investigating two domains
has limitations in claiming the adaptability of a set of features. Further experiments in other
domains would be necessary to accept or reject such a claim.

Task detection is classically seen as a machine learning problem. This dissertation
agrees on this view and confirms on the studied datasets that, the task detection problem
can be solved with a high accuracy with classification algorithms. Four different classifiers
with different parameter settings have been evaluated throughout this dissertation research:
the Näıve Bayes (NB), the Linear Support Vector Machine (SVM) with cost parameters
c ∈ {2−5, 2−3, 2−1, 20, 21, 23, 25, 28, 210}, the J48 decision tree (J48) and the k-Nearest Neighbor
(KNN-k) algorithm with k ∈ {1, 5, 10, 35}. The results of the performed task detection evalu-
ations show that, the J48 decision tree algorithm and the Näıve Bayes learner achieve higher
task detection accuracies than the k-Nearest Neighbor and the Linear Support Vector Machine
algorithms on the studied datasets. The J48 decision tree and the Näıve Bayes algorithms also
show a good stability across the studied datasets (see Section 7.7.3). However, next to the
limitations introduced by the number of datasets studied there are many more machine learning
algorithms available in the machine learning community that could prove to be valuable for task
detection. By studying other classifiers or combinations of classifiers it could be possible to
further increase the task detection performance.

An ontology-based task detection approach has several advantages for the feature engi-
neering for the machine learning problem “task detection”: (i) the possibility to construct
various types of features based on the populated ontology ranging from text-based, ontology
structure-based, time-based to graph-based features, (ii) the easy access of the data representa-
tion with the rich query language SPARQL and (iii) the flexible data representation that allows

242 Conclusion and Future Work

to easily adapt to the requirements of other domains. The disadvantages of this approach are
(i) the massive amount of user interaction context data processed and stored in the ontology
which has an impact on the CPU and memory requirements, (ii) the fine-granular storage of data
about the user which can be seen as a threat to the user’s privacy, and (iii) the effort introduced
by the requirement of labeled training data for supervised machine learning. A more elaborated
discussion about advantages and disadvantages of ontology-based task detection can be found in
Section 3.6.1. For a discussion about the value and effort of the UICO approach and when to
use it, the reader is referred to Section 8.1.4.

8.1.1 Automatic User Context Detection

Various existing approaches to user context detection were presented in the literature overview
in Chapter 2. In this research work the following sub-research questions were investigated:

• To what extent is it possible to automatically and unobtrusively observe how users interact
with resources, applications and the operating system available on their computer desktops?

⇒ From the software technology point of view, there is a wide area of possibilities to observe the
user’s interactions with resources and applications. This is due to the fact that an operating
system, in this research’s case Microsoft Windows XP and Vista, exposes interfaces in form
of dynamic link libraries (DLL) or the .Net Framework to hook into their internal event
queues. Applications also expose such interfaces and libraries. Furthermore most of the
applications provide a plug-in mechanism in order to access the internal application states
and the user triggered events, i.e., the user’s usage data. Evidence for this is provided by
the comprehensive set of developed context sensors and their capabilities of sensing the
user interaction context. A challenge discovered during the development of the sensors was
to hook into Java1, Microsoft Silverlight2 and Adobe Flash3 applications from an external
context sensing program.

• Which aggregation levels can be reached with what kind of techniques when utilizing the
automatically captured contextual information about the user’s interactions with resources,
applications and the operating system on the computer desktop?

⇒ The first aggregation level when applying the proposed conceptual model, the Semantic
Pyramid, is the event level that comprises a single user interaction with a resource. Discov-
ering resources in the raw context sensor data stream is highly dependent on the reliability
and capabilities of the context sensors. Techniques for resource discovery are regular expres-
sions, information extraction and direct resource identification as described in Section 3.5.2.
The aggregation to the second level, the event block level, which groups together user in-
teractions on the same resource, can also be successfully achieved by a rule based approach
(see Section 3.5.3). The next aggregation step is the task level, which is difficult to achieve
with a rule-based approach. Reasons for this are (i) the subjective definition of a task by

1Java, http://java.sun.com/
2Microsoft Silverlight, http://silverlight.net/
3Adobe Flash, http://www.adobe.com/products/flash/

http://java.sun.com/
http://silverlight.net/
http://www.adobe.com/products/flash/

Assessment 243

each user, (ii) the large variety of different tasks and (iii) the multiple ways a task can
be performed and successfully completed. The standard approach of handling these issues
is to model task detection as a machine learning problem which was also followed in this
research. The results of this research work support this standard approach to automatic
task detection.

8.1.2 Automatic Task Detection

In the area of task detection several research approaches were presented and discussed in
Chapter 4. Most of them modeled task detection as a machine learning problem, more specifically
as a classification problem. Next to the overall research question, the following sub-research
questions were also investigated:

• What kind of tasks can be detected?

⇒ The automatic detectability of over 500 different tasks from over 40 users from two different
domains (Know-Center GmbH. and computer science student at Graz University of Tech-
nology) ranging from “plan a trip” to “algorithm programming” was investigated. High
accuracy values were reached with the proposed ontology-based task detection approach on
the gathered datasets. About 88% to 95% of the task instances were correctly classified
to the corresponding task models, based on the evaluation on three large-scale laboratory
user experiments’ datasets. Routine tasks could be distinguished from knowledge-intensive
tasks with an accuracy ranging from about 95% to 100%, the evaluations based on two
laboratory datasets. A special focus was put on knowledge-intensive tasks in the third lab-
oratory experiment in which the detection of different types of knowledge-intensive tasks
according to the CommonKADS [Schreiber et al., 1999] classification were investigated. An
accuracy of about 95% was obtained for classifying a task instance into an analytic or a
synthetic task. Task instances of eight sub-categories of the CommonKADS classification
were correctly identified by about 86% accuracy. Personal and standard tasks as defined in
Section 7.4 were almost as well detectable. An accuracy between 86% to 99% was reached
on two datasets. This research successfully started to explore what kind of tasks are de-
tectable with a machine learning approach by starting the investigation with routine and
knowledge-intensive tasks. For getting a deeper understanding how these results general-
ize to other tasks, task types, users and domains, further experiments in laboratory and
real-world settings are required.

• Are there user interaction context features/feature combinations automatically observable
by context sensors on the computer desktop that influence the performance of automatic
task detection more than others?

⇒ This hypothesis can be accepted. The task detection performance of features and feature
combinations specific to the ontology-based task detection approach showed a difference
of the discriminative power of features and feature combinations for the classification of
tasks. Evidence for this are the task detection performance evaluations on the conducted
experiments’ datasets as well as the statistical significance tests and the dominance matrix
calculations carried out in this dissertation. The positive influence of specific user context

244 Conclusion and Future Work

features on task detection performance could be an indication that it is not necessary to
sense “everything” about the user’s interactions with her computer desktop. This would
have an impact on what kind of sensors have to be developed, i.e. which context features
have to be sensed to achieve a reasonable task detection performance. It would also impact
the user’s system performance because capturing less data normally leads to less CPU
requirements. Furthermore, if the well-performing features for supervised machine learning
algorithms in laboratory settings are known, they can provide a first hint about which
features should be utilized in an unsupervised learning approach and in real world settings.
Finding the best user interaction context feature combination for the ontology-based task
detection approach is still an open research question since with today’s computers it is not
possible to evaluate all possible feature combinations (see Section 8.1.3.4). Further research
work is necessary to approximate a good feature combination as well as discovering novel
features with a high discriminative power.

• Which classifiers should be used for automatic task detection?

⇒ The results of the task detection performance evaluations based on three independent labo-
ratory datasets suggest that the J48 decision tree learner and the Näıve Bayes algorithm are
the ones to choose for task detection. Since only four types of algorithms, namely the J48
decision tree learner, the Näıve Bayes algorithm, k-Nearest Neighbor algorithms and linear
Support Vector Machines, were investigated, this question can not be answered completely
in respect to the variety of available machine learning algorithms. The investigation of the
applicability of other classifiers is part of future research work.

• Does the computer desktop environment influence the performance of automatic task de-
tection?

⇒ In the first laboratory experiment described in Section 7.4.5 this question was investigated.
The results suggested that there is a small influence of about 8% in terms of accuracy on the
experiment’s dataset. The results showed that the task detection on a personal computer
was better than on the laboratory computer. This was in contrast to the expected result
from the experiment design point of view since a laboratory computer seemed to be a
more controlled environment in comparison to an employee’s self-administrated personal
computer. The following reasons might be responsible for this effect: (i) the classifiers
favored the variability of the observed task execution data on the personal computers in the
training process, (ii) the peculiarities of the tasks and (iii) too few tasks were studied. A
longer discussion about this topic can be found in Section 7.4.11.1. In order to understand
this effect better further experiments with more and different tasks would be required.

• Can a single expert train a classifier in advance such that it detects other users’ tasks?

⇒ The results of the evaluation in Section 7.4.7 on a single dataset showed that an accuracy of
72.91% can be reached when utilizing the UICO’s Top k = 2 best single performing feature
combination on this dataset. Through an extended evaluation of all feature combinations
consisting of 2-6 features of the 10 best performing single features an accuracy increase of
2.34% was achieved and resulted in an accuracy of 75.37%. This can be seen as an indication
that (i) although calculating multiple combinations of the best single performing features

Assessment 245

only leads to a small accuracy increase and (ii) that one expert is not enough for classifier
training in order to reach a high accuracy. The preliminary answer to this research question
is yes, but with a limited accuracy. Further experiments are required to study this question
in greater detail.

• Can a group of experts train a classifier such that it recognizes the tasks of another user?

⇒ The task detection performance evaluations on the dataset with 203 tasks from multiple
experts and 68 tasks from a single user resulted in an accuracy of about 93% with the
standard evaluation and of about 98.5% with the extended evaluation as described in Sec-
tion 7.4.8. These results suggested that the answer to this research question is yes on this
dataset, but it has to be taken into account that only 5 task models from a single domain
were studied.

• Can a classifier be trained with predefined standard task executions classify personal tasks
correctly?

⇒ In the laboratory experiments 1 and 2 the evaluation of the task detection performance of
training on predefined standard task executions and testing on personal ones resulted in
accuracy values of about 77% (see Section 7.4.4) and 92% (see Section 7.5.3) respectively.
These results seems promising since (i) the datasets included 218 tasks (113 standard/ 105
personal) for the laboratory experiment 1 and 134 tasks (68 standard/ 66 personal) for the
laboratory experiment 2, (ii) there were 14 and 10 users tested respectively and (iii) the
tasks were from two different domains. For accepting the hypothesis further experiments
are necessary.

8.1.3 Generalizability

This section discusses the generalizability of the results obtained in the ontology-based automatic
task detection experiments described in Section 7.4, in Section 7.5 and in Section 7.6. Some of
the discussions presented here were also published in [Rath et al., 2009a] and [Rath et al., 2009d].

8.1.3.1 Generalizability to Other User Context Capturing Frameworks

User context capturing frameworks, CAM frameworks [Wolpers et al., 2007], that observe user
contextual information differ in terms of utilized sensors and of granularity of the captured CAM.
The ontology-based user interaction context observation approach proposed in this research is
very fine-granular since not only the path name, the URL of a document [Dragunov et al., 2005]
or the window title of the application in focus [Oliver et al., 2006] but also the user’s interactions
with all desktop elements and application controls (accessibility objects) as listed in Section 3.4
are observed. In this research’s approach every single interaction of the user with an application
and a resource is important and hence captured, stored and analyzed. Using a different CAM
framework could result in leaving out context features with a good task discriminative power
(see Section 7.3.5.1) and could hence have a negative impact on the task detection performance.
However, context features that are not listed in Table 7.77 showed a low discriminative power on
the evaluation datasets and hence can be omitted.

246 Conclusion and Future Work

8.1.3.2 Generalizability to Other Tasks and Domains

The generalizability of the results obtained by this research work to other tasks and domains is of
course not completely possible because (i) only two domains with (ii) selected tasks were studied
and (iii) only a sample of experts of the domain were involved in the experiments. However, this
research work successfully discovered novel features and feature combinations engineered based
on an ontology-based user interaction context model proposed in this research work. It also eval-
uated their task detection performance with different configurations of four types of classifiers.
The results were compared to features and feature combinations proposed by other approaches
and showed that the proposed ontology-based task detection approach achieved a higher accu-
racy value in most of the cases. Studying a task detection approach in such great detail and
based on multiple experiments’ datasets has not been done before based on the knowledge of
the author of this thesis. A comparison of the task detection performance of the features and
feature combinations unveiled that some of them performed really well across all three labora-
tory experiments/datasets. These results suggested that these features and feature combinations
would also work well in other domains with other tasks and users. Among these features was
also the well-known and well-performing window title feature already identified in previous re-
search [Granitzer et al., 2008; Lokaiczyk et al., 2007; Oliver et al., 2006; Shen & Dietterich, 2007].
A comparison of the classifier performances across the laboratory experiments showed that the
J48 decision tree learner and the Näıve Bayes algorithm performed best. Lokaiczyk et al. [2007]
also reported good performances for the Näıve Bayes algorithm on a single domain dataset with
1 user and 5 tasks.

8.1.3.3 Generalizability to Other Ontologies

The user interaction context ontology (UICO) proposed in this research (i) for automatic user
interaction context detection and (ii) as a base for engineering features in order to enhance au-
tomatic task detection was built as a bottom up approach starting on the sensor data level. It
stores very fine-granular information, like e.g., data and metadata about resources, applications
and user interactions. Using another ontology would mean that the mapping mechanisms have to
be adapted in order to fit the new ontology from the user interaction context observation perspec-
tive. From the automatic task detection perspective a new ontology would have an impact to the
task detection performance because it would not be possible to construct some features based on
the new ontology. The structure of the ontology would also have an influence. An interesting case
would be to combine the UICO with a higher level ontology, e.g., the PIMO [Sauermann et al.,
2007] or the LIP ontology [Schmidt, 2007]. In that case it would be possible to develop further
abstraction and aggregation algorithms that automatically populate the upper ontology based on
the populated UICO. Based on the resulting combination it would then be possible to construct
further features. However, the generalizability to other ontologies is not that straightforward
because of (i) the underlying conceptual model which is specific to this research’s approach and
(ii) the fine-granular information encapsulated in the UICO and its relations.

Assessment 247

8.1.3.4 Finding the Best Feature Combination

Evaluating all possible feature combinations for the UICO approach is not reasonable. The
method for finding the best feature combination of the UICO approach for detecting tasks com-
prised the evaluation of the feature categories, single performing features and the Top k best
performing single features is limited such that not all combinations of the 50 features were stud-
ied. From a theoretical point of view this seems to be a limitation because there could be special
feature combinations which might have outperformed the studied combinations. From a practical
point of view it is not reasonable to compute all possible feature combinations of 50 features be-
cause suppose n indicates the number of different features and k the maximal number of different
features to combine then the total number of possible combinations is

n∑
k=1

n!
k! ∗ (n− k!)

. (8.1)

The number of all combinations of 50 features (n=50) results in

50∑
k=1

50!
k! ∗ (50− k)!

≈ 1.13 ∗ 1015 (8.2)

feature combinations. Suppose one can evaluate a single feature combination in 1 second, it
would take one approximately 2.14 ∗ 109 years to evaluate all combinations for a single classifier
configuration. Hence evaluating all possible 50 feature combinations is not reasonable with the
computing power available for this research work. This means that the evaluation method chosen
for the evaluation of the UICO approach might not have discovered the best feature combination
possible for the task classification problems. However, the achieved results suggested that, even
without exploring all feature combinations, high accuracy values can be reached.

As evidence that a higher accuracy can be reached by calculating multiple feature combina-
tions, extended evaluations of feature combinations for single expert and multiple expert training
were presented in Section 7.4.7 and in Section 7.4.8 respectively. In these evaluations all combi-
nations of up to 6 features (k=2. . . 6) among the best 10 single performing UICO features (n=10)
were computed. The number of feature combinations in this case was

6∑
k=2

10!
k! ∗ (10− k)!

= 837. (8.3)

The evaluation of the feature combinations took between 6 and 80 minutes per feature combina-
tion for evaluating the UICO pipeline with different numbers of selected attributes and different
combinations of classifiers on a 64-bit quad core server machine with 2.5 GHz CPUs and with
6 gigabytes of memory. The duration was for example dependent on the number of combined
features, and the type of features including the corresponding applied preprocessing steps. The
best result of the extended evaluation was 98.53% accuracy and hence 5.88% better in terms of
accuracy than the standard evaluation method employed.

The goal of this dissertation was to find features that work well in different situations.
Focusing on optimizing task detection for a special domain, i.e., finding “the” best feature and
classifier configuration, is considered as fine-tuning and hence was not in focus of this dissertation
research.

248 Conclusion and Future Work

8.1.4 Discussion about Value and Effort

The utilization of an ontology for user context detection and task detection has several advantages
and disadvantages as discussed in Section 3.6 and in Section 7.7.1 respectively. This section
elaborates on the value and the effort associated with the use of the UICO for task detection.

The UICO is valuable for task detection because (i) it enables the engineering of novel
and different types of features for the machine learning problem “task detection” and (ii) it eases
and speeds up the fine-tuning process of task detection for tasks of other domains. First, in the
feature engineering process all the concepts, concept instances and properties of the UICO can
be utilized to construct features. These can be structure-based, text-based or sequence-based
features as shown in Section 5.3. Kröll et al. [2007] suggested to use graph-based features for
detecting tasks. Since the UICO can be seen as a graph, this type of features can also be
constructed from the UICO. Second, the UICO allows an easy and fast adaption to new task
detection settings because the amount of data stored in the UICO can be configured in a flexible
way. This means that it is not necessary to deploy all the context sensor and user interaction
context analysis algorithms in order to be able to do task detection with the UICO. Since the
ontology is a flexible data schema it is possible to choose a sub-set of the user interaction context
that is stored in the UICO. An example here is to only store the features with the highest
discriminative power for detecting tasks of a certain domain. This would reduce the overall
memory and storage consumption as well as CPU requirements. On the other hand the UICO
is easily extendable for new context information which allows an easy adaption to new context
sensors required for specific domains, e.g., task detection for graphical designers.

Furthermore, the UICO approach has 50 different features that can be tested for their
applicability for distinguishing tasks of a certain domain. This speeds-up the fine-tuning process
since a pool of features is already available and does not have to be engineered from scratch.
Hence this reduces the effort of fine-tuning to selecting the appropriate combination of features
for a specific domain.

The efforts for utilizing the UICO are (i) the modeling of the UICO as well as the de-
sign and implementation of the automatic population mechanisms, (ii) the demanding CPU
and memory requirements for populating and querying the UICO and (iii) the data overhead of
utilizing semantic technologies for the data representation and for the data storage.

When should the UICO be used for task detection?

50 features were engineered based on the UICO and tested for their discriminative power for
detecting different kind of tasks. Six of the features showed a good and stable performance
across three datasets. These were the acc. obj. name feature, the window title feature, the used
res. metadata feature, the acc. obj. value feature, the datatype properties feature and the acc.
obj. role feature. All except the datatype properties feature are text-based features that would
also work without the UICO. When focusing only on task detection then it is not suggested to
use the UICO in case the achievable task detection accuracy with these five text-based features
is satisfiable for the requirements of the domain. If this is not the case, using the UICO approach

Future Work 249

with its pool of 50 features is suggested for adjusting task detection to a certain domain.
However, feature engineering is a key aspect in a machine learning task and data dependent.

Hence the features and feature combinations achieving the highest accuracy for task detection can
vary for different tasks and domains. The best discriminating features and feature combinations
identified based on three independent datasets in the course of this dissertation research should be
considered as a starting point for building an appropriate feature combination for a certain domain
and not as the perfect ones for all tasks and all domains. Especially the feature combination should
be fine-tuned for each domain separately since sometimes the combination of good and bad single
performing features is better than the combination of just the best ones.

8.2 Future Work

This section highlights future research challenges and directions in the areas of task detection,
work-integrated learning, personal information management, information retrieval and computer-
supported collaborative work that are inspired by this research work.

8.2.1 Scaling of the Ontology-based Task Detection Approach

The ontology-based task detection approach proposed in this dissertation was evaluated on three
independent datasets originating from three laboratory experiments in two different domains.
These datasets consisted of task instances belonging to 2 to 8 task models/task categories. The
ontology-based task detection approach achieved good accuracy values on these datasets. On an
organizational level there are many more tasks to be handled by task detection algorithms. Part
of future work will be to evaluate if the ontology-based task detection approach scales up to a
higher number of tasks in order to answer the question “What about detecting 2000 tasks in an
organization?”. So far, there is no evidence in the literature that task detection can handle such
a high number of different tasks.

8.2.2 Real-Time Task Detection on the Computer Desktop

Task detection belongs to the field of activity recognition [Andrews et al., 2004; Horvitz et al.,
1998, 1999; Philipose et al., 2004]. In activity recognition the system observes a sequence of events,
tries to determine and to understand the goals of the user, and responds to it. The topic online
task detection belongs to this research field and is also part of user interaction context detection.
The ontology-based user context observation approach proposed in this research work can capture
parts of the task execution that involve interactions with the user’s computer desktop. Based
on these observations the task performed by the user should be automatically detected after the
execution of the task (task classification). Detecting the task a user is performing in real-time is
another challenge because (i) the user can utilize multiple resources at a time in different tasks
or (ii) can switch between various tasks (multi-tasking). This real-time task detection is similar
to task classification because detecting boundaries between tasks is also based on automatically
sensed context features that discriminate tasks very well.

When looking at the features proposed and studied during this research the best ones do not
include “time”, e.g. task length, which could limit their applicability to real-time task detection.

250 Conclusion and Future Work

Lokaiczyk et al. [2007] studied the influence of the window size to classify parts of tasks and
found out that the size of about 30 seconds work well. A similar interval was also proposed by
Shen [2009]. In the Dyonipos task detection approach [Granitzer et al., 2008] of this research the
classification of event block was investigated with four text-based context features based on a real
world settings dataset. Some drawbacks were found by using the boundaries introduced by event
blocks for studying feature and classifier performance (see Section 7.2.2). Now there is a clearer
picture about the discriminative power of features for classifying tasks. Future research will be
to study their applicability to real-time task detection and task switch detection.

8.2.3 Better Support for Work-Integrated Learning

Work-integrated learning (WIL) [Lindstaedt et al., 2008a,b, 2009b; Smith, 2003] strives to en-
hance task performance by fostering learning at the workplace. For supporting the learner well
in her current situation her user profile (characteristics [Fischer, 2001; Ulbrich et al., 2006], her
interests [Goecks & Shavlik, 2000], her competencies [Ley et al., 2008] etc.) as well as her user
context [Lindstaedt et al., 2008a; Schmidt, 2007; Wolpers et al., 2007]) represent valuable infor-
mation in order to improves the quality and accuracy of the support mechanisms. The outcomes
of this dissertation research, more specifically the automatically observed user interaction context
available trough the UICO, (i) allow the construction of detailed user profiles and (ii) provide an
in depth description of the user’s current situation.

User profiles can also be computed with the help of data mining techniques. These can
be enriched further based on the detailed user interaction context information available in the
UICO. Examples are the utilization of the user interaction context to identify the user’s social
network, the recognition of the favored (work and learn) resources, discovering information flows
or unveiling the topics/resources of interest.

The user’s current situation is also described in great detail such as, i.e., the current task, email
or instant messaging communications as well as a list of recently utilized documents, files, folder,
web pages, calendar entries, contacts, etc. for providing context-aware work-integrated learn
support. Enhancing context-aware information retrieval [Fuhr, 2005] in general and for learning
objects [Duval & Hodgins, 2003; Ochoa & Duval, 2006] specifically as well as utilizing this detailed
information to characterize and automatically detect “learning situations” are envisioned.

8.2.4 Better Support for Personal Information Management

Information management is one of the great challenges of today’s information society in which
everyone has access to and stores a massive amount of data of various forms. Organizing this
amount of data takes a long time and requires a lot of effort on the user side. Personal information
management (PIM) is the research area that deals with finding, keeping, organizing, maintaining
and evaluating personal information and making sense of the information [Jones, 2007]. Although
several PIM tools [Bernstein et al., 2008; Dumais et al., 2003; Teevan et al., 2008] were created
to study and improve PIM, the user still has to do a lot of things manually. PIM sometimes fails
because of this additionally introduced user effort to add relations between PIM objects [Sauer-
mann et al., 2007]. In order to overcome this additionally introduced user workload an automated
relation creation mechanism would be beneficial. The automatic user interaction context obser-

Future Work 251

vation mechanisms as developed and studied in this research would not only benefit the user in
saving a lot of time in building these relations but would also enable PIM researchers to add the
observed user interaction context as a new dimension to existing PIM tools. What kind of ways
of leveraging real-time and long-term user interaction context information for PIM tools will be
part of future research work.

8.2.5 Better Support for Information Retrieval

In the ACM SIGIR4 workshop report [Allan et al., 2003] contextual retrieval was defined as “com-
bining search technologies and knowledge about query and user context into a single framework in
order to provide the most appropriate answer for a user’s information needs”. In a recent ACM
SIGIR Forum meeting an information retrieval research agenda was elaborated, it mentioned
three important elements regarding context [Callan et al., 2007]: (i) understanding the user who
is asking questions (search), (ii) the underlying information domain which represents the rela-
tionships between documents as well as other rich entities within them, and (iii) the larger task
the user tries to accomplish. This thesis research effort contributes to these three elements by
providing a up-to-date representation of the current user interaction context in real-time in form
of an ontology-based user interaction context model as well as insights about how to recognize
a user’s task with a high accuracy. The design and development of information need detection
algorithms and context-aware information delivery mechanisms were not in focus of this research
but seemed to have a great potential as explored in [Rath et al., 2008, 2007]. One of the future re-
search directions will be the utilization of the rich user interaction context information in order to
personalize search, disambiguate search queries, as well as improve ranking algorithms. A further
interesting research direction is to explore automatic task detection in order to do activity-based
desktop search [Chernov, 2008].

8.2.6 Better Support for Computer-Supported Collaborative Work

The computer supported collaborative work area has recognized the concept of “awareness” as
a critical issue to focus on [Schmidt, 2002] since “users who work together require adequate in-
formation about their environment” [Gross & Prinz, 2003]. The environment of an individual
encompasses her connections with other people, as well as with digital resources and actions
(tasks or processes). If connections are not clear or hidden to the individual or to the group, the
cost is a lack of awareness in the organization [McArthur & Bruza, 2003], which not only leads
to inefficient cooperation but can even prevent it from being started. Unveiling the connections
between persons, topics, tasks and processes to computer workers facilitates cooperative work by
increasing the awareness of the personal social networks and the role of an individual in the orga-
nization, a project, or a group. These connections can be created and modeled manually but since
“organizations create, store, transfer and use more and more data within their boundaries” [Maier
& Sametinger, 2007], a better approach is to develop semi-automatic or even automatic tools to
create and share them [McArthur & Bruza, 2003]. Based on emails, McArthur & Bruza [2003]

4ACM SIGIR: Special Interest Group on Information Retrieval, http://www.sigir.org

http://www.sigir.org

252 Conclusion and Future Work

computed such kind of connections, and suggested using more global corpora as well as taking
into account dynamic ones.

The proposed ontology-based user interaction context detection approach in this research work
can support awareness by [Rath et al., 2009c]: (i) detecting the user interaction context of a single
user (i.e. the connections between her tasks, her used digital resources and her social network)
and (ii) combining multiple user interaction contexts from several users for global awareness.
Two advantages for increasing awareness can be gained: (i) representing the relations between
the user and her close environment (individual view) and (ii) merging multiple individual user
interaction context models into a global one (organizational view). Coming up with creative
ideas, applications and services in order to enhance the awareness as well as computer supported
collaborative work will be part of future work.

8.3 Summary

This chapter compared in form of a self-assessment the set goals of answering the research ques-
tions asked in Section 1.2 to the achieved goals of this research work. Finally, interesting future
research challenges and directions suggested by this research work were presented in this chapter.
Ultimately, the goal of this research work was to get to know the user and her tasks better for
enabling a task-specific support in today’s knowledge economy. The outcomes and results of
this dissertation research allows the development of new applications and services to exploit the
automatically and unobtrusively detected user interaction context including the user’s task for
various purposes (e.g., context-aware information retrieval, task detection, annotation of learn-
ing resources and user interruptions) as well as for various domains (e.g., technology-oriented
knowledge management, technology enhanced learning and work-integrated learning, computer
supported collaborative work, personal information management and semantic desktop systems).

Bibliography

Aalst, W. M. P. v. d., & Weijters, A. J. M. M. 2004. Process mining: a research agenda. Computers
in Industry, 53(3), 231–244. Elsevier Science B.V.

Aalst, W. M. P. v. d., Weijters, A. J. M. M., & Maruster, L. 2004. Workflow Mining: Discovering
Process Models from Event Logs. IEEE Transactions on Knowledge and Data Engineering,
16(9), 1128–1142. IEEE Educational Activities Department.

Aalst, W. M. P. v. d., Weske, M., & Grünbauer, D. 2005. Case handling: a new paradigm for
business process support. Data & Knowledge Engineering, 53(2), 129–162. Elsevier Science
B.V.

Allan, J., Aslam, J., Belkin, N., Buckley, C., Callan, J., Croft, B., Dumais, S., Fuhr, N., Harman,
D., Harper, D. J., Hiemstra, D., Hofmann, T., Hovy, E., Kraaij, W., Lafferty, J., Lavrenko,
V., Lewis, D., Liddy, L., Manmatha, R., McCallum, A., Ponte, J., Prager, J., Radev, D.,
Resnik, P., Robertson, S., Rosenfeld, R., Roukos, S., Sanderson, M., Schwartz, R., Singhal, A.,
Smeaton, A., Turtle, H., Voorhees, E., Weischedel, R., Xu, J., & Zhai, C. 2003. Challenges
in information retrieval and language modeling: report of a workshop held at the center for
intelligent information retrieval at University of Massachusetts Amherst in September 2002.
SIGIR Forum, 37(1), 31–47. ACM.

Anderson, J. R. 1983. The Architecture of Cognition. Cambridge, MA, USA: Harvard University
Press.

Ando, R. K., & Lee, L. 2001. Iterative residual rescaling. Pages 154–162 of: SIGIR ’01: Proceed-
ings of the 24th Annual International ACM SIGIR Conference on Research and Development
in Information Retrieval. New York, NY, USA: ACM.

Andrews, S., Cai, L., Gondek, D., Greenwald, A., Grollman, D., Jonsson, A. M., Hall, K., Lease,
M., Ng, B., Raiti, J., Sweetser, V., & Turner, J. 2004. Astrology: the study of astro teller.
In: Physiological Data Modeling Workshop at ICML ’04: International Conference on Machine
Learning.

253

254 Conclusion and Future Work

APOSDLE. 2006. APOSDLE - Advanced Process-Oriented Self-Directed Learning Environment.
Website: http: // www. aposdle. org .

Balamurugan, S. A., & Rajaram, R. 2008. Learning to Classify Threaten E-mail. Pages 522–527
of: AMS ’08: Proceedings of the 2008 Second Asia International Conference on Modelling &
Simulation (AMS). Washington, DC, USA: IEEE Computer Society.

Baldauf, M., Dustdar, S., & Rosenberg, F. 2007. A survey on context-aware systems. International
Journal of Ad Hoc and Ubiquitous Computing, 2(4), 263–277. Inderscience Publishers.

Bardram, J. E. 2005. The Java Context Awareness Framework (JCAF)- A Service Infrastructure
and Programming Framework for Context-Aware Applications. Lecture Notes in Computer
Science, vol. 3468. Springer. Pages 98–115.

Belizki, J., Costache, S., & Nejdl, W. 2006. Application independent metadata generation. Pages
33–36 of: CAMA ’06: Proceedings of the 1st international Workshop on Contextualized Atten-
tion Metadata: Collecting, Managing and Exploiting of Rich Usage Information. New York,
NY, USA: ACM.

Bellotti, V., & Smith, I. 2000. Informing the design of an information management system with
iterative fieldwork. Pages 227–237 of: DIS ’00: Proceedings of the 3rd Conference on Designing
interactive systems. New York, NY, USA: ACM.

Bernstein, M., Van Kleek, M., Karger, D., & Schraefel, M. C. 2008. Information scraps: how
and why information eludes our personal information management tools. ACM Transactions
on Information Systems, 26(4), 1–46. ACM.

Biedert, R., Schwarz, S., & Roth-Berghofer, T. R. 2008. Designing a Context-Sensitive Dashbord
for an Apaptive Knowledge Worker Assistant. Pages 51–62 of: HCP ’08 Proceedings, Part II,
MRC ’08: Fifth International Workshop on Modelling and Reasoning in Context. TELECOM
Bretagne.

Boardman, R., & Sasse, M. A. 2004. ”Stuff goes into the computer and doesn’t come out”: a
cross-tool study of personal information management. Pages 583–590 of: CHI ’04: Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems. New York, NY, USA:
ACM.

Boone, G. 1998. Concept features in Re:Agent, an intelligent email agent. Pages 141–148 of:
AGENTS ’98: Proceedings of the Second International Conference on Autonomous Agents.
New York, NY, USA: ACM.

Bortz, J., & Döring, N. 2006. Forschungsmethoden und Evaluation für Human- und Sozialwis-
senschaftler. 4 edn. Springer.

Braun, S., Schmidt, A., & Hentschel, C. 2007. Semantic Desktop Systems for Context Awareness
- Requirements and Architectural Implications. Pages 1–12 of: SemDesk: 1st Workshop on
Architecture, Design, and Implementation of the Semantic Desktop held at ESWC ’07: 4th
European Semantic Web Conference.

http://www.aposdle.org

Summary 255

Bron, C., & Kerbosch, J. 1973. Algorithm 457: finding all cliques of an undirected graph.
Communications ACM, 16(9), 575–577. ACM.

Budzik, J., Hammond, K. J., & Birnbaum, L. 2001. Information access in context. Knowledge-
Based Systems, 14(1-2), 37–53. Elsevier Science B.V.

Bush, V. 1996. As we may think. interactions, 3(2), 35–46. ACM.

Callan, J., Allan, J., Clarke, C. L. A., Dumais, S., Evans, D. A., Sanderson, M., & Zhai, C. 2007.
Meeting of the MINDS: an information retrieval research agenda. SIGIR Forum, 41(2), 25–34.
ACM.

Catarci, T., Dix, A. J., Katifori, A., Lepouras, G., & Poggi, A. 2007. Task-Centred Information
Management. Lecture Notes in Computer Science, vol. 4877. Springer. Pages 197–206.

Chang, C.-C., & Lin, C.-J. 2001. LIBSVM: a library for support vector machines. Software
available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

Chernov, S., Demartini, G., Herder, E., Kopycki, M., & Nejdl, W. 2008. Evaluating Personal
Information Management Using an Activity Logs Enriched Desktop Dataset. Pages 1–8 of:
PIM ’08: Workshop on Personal Information Management Workshop held at CHI ’08: SIGCHI
Conference on Human Factors in Computing Systems.

Chernov, S. 2008. Task detection for activity-based desktop search. Pages 894–894 of: SIGIR
’08: Proceedings of the 31st Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval. New York, NY, USA: ACM.

Chirita, P. A., Costache, S., Gaugaz, J., & Nejdl, W. 2006. Desktop Context Detection Using
Implicit Feedback. In: PIM ’06: Workshop on Personal Information Management held at
SIGIR ’06: ACM SIGIR Conference on Research and Development in Information Retrieval.

Choudhury, T., Borriello, G., Consolvo, S., Haehnel, D., Harrison, B., Hemingway, B., Hightower,
J., Klasnja, P., Koscher, K., LaMarca, A., Landay, J. A., LeGrand, L., Lester, J., Rahimi, A.,
Rea, A., & Wyatt, D. 2008. The Mobile Sensing Platform: An Embedded Activity Recognition
System. Pervasive Computing, 7(2), 32–41. IEEE Computer Society.

Coutaz, J., Crowley, J. L., Dobson, S., & Garlan, D. 2005. Context is key. Communications
ACM, 48(3), 49–53. ACM.

Cselle, G., Albrecht, K., & Wattenhofer, R. 2007. BuzzTrack: topic detection and tracking
in email. Pages 190–197 of: IUI ’07: Proceedings of the 12th International Conference on
Intelligent User Interfaces. New York, NY, USA: ACM.

Czerwinski, M., Horvitz, E., & Wilhite, S. 2004. A diary study of task switching and interruptions.
Pages 175–182 of: CHI ’04: Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems. New York, NY, USA: ACM.

Dengel, A., Abecker, A., Bähr, J., Bernardi, A., Dannenmann, P., Elst, L. V., Klink, S., Maus,
H., Schwarz, S., & Sintek, M. 2002. Evolving Personal to Organizational Knowledge Spaces.
Project Proposal, DFKI GmbH Kaiserslautern, http://www.dfki.de/epos/.

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.dfki.de/epos/

256 Conclusion and Future Work

Dey, A. K. 2000. Providing architectural support for building context-aware applications. Ph.D.
thesis, Georgia Institute of Technology, Atlanta, GA, USA.

Dey, A. K., Abowd, G. D., & Salber, D. 2001. A conceptual framework and a toolkit for supporting
the rapid prototyping of context-aware applications. Human-Computer Interaction, 16(2), 97–
166. L. Erlbaum Associates Inc.

Dourish, P. 2004. What we talk about when we talk about context. Personal and Ubiquitous
Computing, 8(1), 19–30. Springer.

Dragunov, A. N., Dietterich, T. G., Johnsrude, K., McLaughlin, M., Li, L., & Herlocker, J. L.
2005. TaskTracer: a desktop environment to support multi-tasking knowledge workers. Pages
75–82 of: IUI ’05: Proceedings of the 10th International Conference on Intelligent User Inter-
faces. New York, NY, USA: ACM.

Dredze, M., Lau, T., & Kushmerick, N. 2006. Automatically classifying emails into activities.
Pages 70–77 of: IUI ’06: Proceedings of the 11th International Conference on Intelligent User
Interfaces. New York, NY, USA: ACM.

Drucker, P. F. 1999. Knowledge-Worker Productivity: The Biggest Challenge. California Man-
agement Review, 41(2), 79–94.

Dumais, S., Cutrell, E., Cadiz, J., Jancke, G., Sarin, R., & Robbins, D. C. 2003. Stuff I’ve seen: a
system for personal information retrieval and re-use. Pages 72–79 of: SIGIR ’03: Proceedings
of the 26th Annual International ACM SIGIR Conference on Research and development in
informaion retrieval. New York, NY, USA: ACM.

Duval, E., & Hodgins, W. 2003. A LOM research agenda. Pages 1–9 of: WWW ’03: In Proceed-
ings of the 12th International Conference on World Wide Web. ACM.

DYONIPOS. 2006. DYONIPOS - DYnamic ONtology based Integrated Process OPtimiSation.
Website: http: // www. dyonipos. at .

Edmunds, A., & Morris, A. 2000. The problem of information overload in business organisations:
a review of the literature. International Journal of Information Management, 20(1), 17–28.

EL-Manzalawy, Y., & Honavar, V. 2005. WLSVM: Integrating LibSVM into Weka Environment.
http://www.cs.iastate.edu/~yasser/wlsvm.

Elst, L. 2006. Mymory - Situated Documents in Personal Information Spaces, http: // www.

dfki. uni-kl. de/ mymory/ .

Elst, L., Aschoff, F.-R., Bernardi, A., Maus, H., & Schwarz, S. 2003. Weakly-structured Workflows
for Knowledge-intensive Tasks: An Experimental Evaluation. Pages 340–345 of: KMDAP
’03: Proceedings of the Workshop Knowledge Management for Distributed Agile Processes:
Models, Techniques, and Infrastructure held at 12th IEEE International Workshops on Enabling
Technologies. IEEE Computer Society.

Eraut, M. 2004. Informal learning in the workplace. Studies in Continuing Education, 26(2),
247–273. Carfax Publishing.

http://www.dyonipos.at
http://www.cs.iastate.edu/~yasser/wlsvm
http://www.dfki.uni-kl.de/mymory/
http://www.dfki.uni-kl.de/mymory/

Summary 257

Favela, J., Tentori, M., Castro, L. A., Gonzalez, V. M., Moran, E. B., & Mart́ınez-Garćıa, A. I.
2007. Activity recognition for context-aware hospital applications: issues and opportunities for
the deployment of pervasive networks. Mobile Networks and Applications, 12(2-3), 155–171.
Kluwer Academic Publishers.

Feldman, S. 2004. The high cost of not finding information. KMWorld Magazine, 13(3). Available
at: http://www.kmworld.com/articles/readarticle.aspx?articleid=9534.

Fenstermacher, K. D. 2005. Revealed Processes in Knowledge Management. Lecture Notes in
Computer Science, vol. 3782. Springer. Pages 443–454.

Fenstermacher, K. D., & Ginsburg, M. 2002. A Lightweight Framework for Cross-Application
User Monitoring. Computer, 35(3), 51–59. IEEE Computer Society.

Fernandez-Garcia, N., Sauermann, L., Sanchez, L., & Bernardi, A. 2006. PIMO Population
and Semantic Annotation for the Gnowsis Semantic Desktop. Pages 1–12 of: CEUR-WS ’06:
Proceedings of the Semantic Desktop and Social Semantic Collaboration Workshop held at the
ISWC ’06: International Semantic Web Conference, vol. 202.

Fischer, G. 2001. User Modeling in Human-Computer Interaction. User Modeling and User-
Adapted Interaction, 11(1-2), 65–86. Kluwer Academic Publishers.

Fuhr, N. 2005. Information Retrieval - From Information Access to Contextual Retrieval. Pages
47–57 of: Designing Information Systems. Festschrift für Jürgen Krause. UVK Verlagsge-
sellschaft.

Fürnkranz, J., & Widmer, G. 1994. Incremental Reduced Error Pruning. Pages 70–77 of: ICML
’04: Proceedings of International Conference on Machine Learning. Morgan Kaufmann.

Gievska, S., & Sibert, J. L. 2004. A Framework for Context-Sensitive Coordination of Human
Interruptions in Human-Computer Interaction. Pages 418–425 of: User Interfaces for All.
Lecture Notes in Computer Science, vol. 3196. Springer.

Goecks, J., & Shavlik, J. 2000. Learning users’ interests by unobtrusively observing their normal
behavior. Pages 129–132 of: IUI ’00: Proceedings of the 5th International Conference on
Intelligent User Interfaces. New York, NY, USA: ACM.

Granitzer, M., Rath, A. S., Kroell, M., Seifert, C., Ipsmiller, D., Devaurs, D., N., W., & Lind-
staedt, S. 2009a. Machine Learning based Work Task Classification. Journal of Digital Infor-
mation Management, 7(5), 306–314. Digital Information Research Foundation.

Granitzer, M. 2008. KnowMiner - Konzeption & Entwicklung eines generischen Wissenser-
schließungsframeworks. VDM Verlag Dr. Müller.

Granitzer, M., Kröll, M., Seifert, C., Rath, A. S., Weber, N., Dietzel, O., & Lindstaedt, S. N.
2008. Analysis of machine learning techniques for context extraction. Pages 233–240 of: ICDIM
’08: Proceedings of International Conference on Digital Information Management.

Granitzer, M., Granitzer, G., Tochtermann, K., Lindstaedt, S. N., Rath, A. S., & Groiß, W.
2009b. Automating Knowledge Transfer and Creation in Knowledge Intensive Business Pro-

http://www.kmworld.com/articles/readarticle.aspx?articleid=9534

258 Conclusion and Future Work

cesses. Pages 678–686 of: Business Process Management Workshops. Lecture Notes in Business
Information Processing, vol. 17. Springer.

Grebner, O., Ong, E., Riss, U., Brunzel, M., Bernardi, A., & Roth-Berghofer, T. 2007. NEPO-
MUK deliverable D3.1: task management model, http: // nepomuk. semanticdesktop. org/
xwiki/ bin/ view/ Main1/ D3-1 .

Gross, T., & Prinz, W. 2003. Awareness in context: a light-weight approach. Pages 295–314
of: ECSCW’03: Proceedings of the Eighth Conference on European Conference on Computer
Supported Cooperative Work. Norwell, MA, USA: Kluwer Academic Publishers.

Groza, T., Handschuh, S., Moeller, K., Grimnes, G., Sauermann, L., Minack, E., Mesnage, C.,
Jazayeri, M., Reif, G., & Gudjónsdóttir, R. 2007. The NEPOMUK Project - On the way
to the Social Semantic Desktop. Pages 201–211 of: I-SEMANTICS ’07 and I-MEDIA ’07:
Proceedings of International Conferences on new Media Technology and Semantic Systems.
JUCS.

Gruber, T. R. 1993. A translation approach to portable ontology specifications. Knowledge
Acquisition., 5(2), 199–220. Academic Press Ltd.

Gutschmidt, A., Cap, C. H., & Nerdinger, F. W. 2008. Paving the Path to Automatic User Task
Identification. Pages 1–7 of: CSKGOI ’08: Proceedings of the Workshop on Common Sense
Knowledge and Goal-Oriented Interfaces, vol. 323. CEUR-WS.org.

Herman, I., Swick, R., & Brickley, D. 2008. Resource Description Framework (RDF), http:

// www. w3. org/ RDF/ .

Horvitz, E., Breese, J., Heckerman, D., Hovel, D., & Rommelse, K. 1998. The lumiere project:
bayesian user modeling for inferring the goals and needs of software users. Pages 256–265 of:
Proceedings of 14th Conference on Uncertainty in Artificial Intelligence. San Francisco, USA:
Morgan Kaufmann.

Horvitz, E., Jacobs, A., & Hovel, D. 1999. Attention-Sensitive Alerting. Pages 305–313 of: UAI
’99: Proceedings of the 15th Conference on Uncertainty in Artificial Intelligence. San Francisco,
USA: Morgan Kaufmann.

Horvitz, E., Koch, P., & Apacible, J. 2004. BusyBody: creating and fielding personalized models
of the cost of interruption. Pages 507–510 of: CSCW ’04: Proceedings of the 2004 ACM
Conference on Computer Supported Cooperative Work. New York, NY, USA: ACM.

Huynh, D., Karger, D. R., Quan, D., & Sinha, V. 2003. Haystack: a platform for creating,
organizing and visualizing semistructured information. Pages 323–323 of: IUI ’03: Proceedings
of the 8th International Conference on Intelligent User Interfaces. New York, NY, USA: ACM.

Huynh, T., & Schiele, B. 2005. Analyzing features for activity recognition. Pages 159–163 of:
sOc-EUSAI ’05: Proceedings of the 2005 Joint Conference on Smart Objects and Ambient
Intelligence. New York, NY, USA: ACM.

INTELLEXT Inc. 2007. Watson project website, http: // www. intellext. com .

http://nepomuk.semanticdesktop.org/xwiki/bin/view/Main1/D3-1
http://nepomuk.semanticdesktop.org/xwiki/bin/view/Main1/D3-1
http://www.w3.org/RDF/
http://www.w3.org/RDF/
http://www.intellext.com

Summary 259

Joachims, T., Cristianini, N., & Shawe-Taylor, J. 2001. Composite Kernels for Hypertext Cate-
gorisation. Pages 250–257 of: ICML ’01: Proceedings of the 18th International Conference on
Machine Learning. San Francisco, CA, USA: Morgan Kaufmann.

Jones, W. 2007. Keeping Found Things Found: The Study and Practice of Personal Information
Management. Academic Press.

Jones, W., Klasnja, P., Civan, A., & Adcock, M. L. 2008. The personal project planner: planning
to organize personal information. Pages 681–684 of: CHI ’08: Proceeding of the SIGCHI
Conference on Human Factors in Computing Systems. New York, NY, USA: ACM.

Kellar, M., & Watters, C. 2006. Using web browser interactions to predict task. Pages 843–844
of: WWW ’06: Proceedings of the 15th International Conference on World Wide Web. New
York, NY, USA: ACM.

Kellar, M., Watters, C., & Shepherd, M. 2007. A field study characterizing web-based information-
seeking tasks. Journal of the American Society for Information Science and Technology, 58(7),
999–1018. John Wiley & Sons, Inc.

Kersten, M., & Murphy, G. C. 2006. Using task context to improve programmer productivity.
Pages 1–11 of: SIGSOFT ’06/FSE-14: Proceedings of the 14th ACM SIGSOFT International
Symposium on Foundations of Software Engineering. New York, NY, USA: ACM.

Kiritchenko, S., & Matwin, S. 2001. Email classification with co-training. Pages 1–10 of: CAS-
CON ’01: Proceedings of the 2001 Conference of the Centre for Advanced Studies on Collabo-
rative Research. IBM Press.

Kleek, M., & Shrobe, H. E. 2007. A Practical Activity Capture Framework for Personal, Lifetime
User Modeling. Pages 298–302 of: UM ’07: Proceedings of the 11th International Conference
on User Modeling. Springer.

Kleek, M., Bernstein, M., Karger, D. R., & schraefel, m. 2007. Gui – phooey!: the case for text
input. Pages 193–202 of: UIST ’07: Proceedings of the 20th Annual ACM Symposium on User
Interface Software and Technology. New York, NY, USA: ACM.

KnowSe. 2009. KnowSe - Knowledge Services Framework. Know-Center GmbH.. Website: http:

// en. know-center. at/ forschung/ knowledge_ services .

Kompacher, G. 2008. Erstellung von graphischen Benutzeroberflächen für ein Work-Integrated
Learning Environment basierend auf Eclipse RCP. Master Project. Knowledge Management
Institute, Graz University of Technology, Austria.

Kompacher, G. 2010. Identifikation von relevanten Konzepten in einem Ontologie-basierten Kon-
textmodel. Master Thesis. Knowledge Management Institute, Graz University of Technology,
Austria (in progress).

Kröll, M., Rath, A. S., Weber, N., Lindstaedt, S. N., & Granitzer, M. 2007. Task Instance
Classification via Graph Kernels. Pages 1–4 of: MLG ’07: The 5th International Workshop on
Mining and Learning with Graphs.

http://en.know-center.at/forschung/knowledge_services
http://en.know-center.at/forschung/knowledge_services

260 Conclusion and Future Work

Kröll, M., Rath, A. S., Granitzer, M., Lindstaedt, S. N., & Tochtermann, K. 2006. Contextual
Retrieval in Knowledge Intensive Business Environments. Pages 115–119 of: LWA ’06: Lernen
- Wissensentdeckung - Adaptivität. Hildesheimer Informatik-Berichte, vol. 1. University of
Hildesheim, Institute of Computer Science.

Kushmerick, N., & Lau, T. 2005. Automated email activity management: an unsupervised
learning approach. Pages 67–74 of: IUI ’05: Proceedings of the 10th International Conference
on Intelligent User Interfaces. New York, NY, USA: ACM.

Lansdale, M. W. 1988. The psychology of personal information management. Applied Ergonomics,
19(1), 55–66. Elsevier Science B.V.

Leitner, M. 2007. Analyse und Vergleich von Werkzeugen zur Kontext-Erkennung. Bachelor
Thesis. Knowledge Management Institute, Graz University of Technology, Austria.

Leont’ev, A. N. 1978. Activity, Consciousness, and Personality. Prentice Hall.

Ley, T., Ulbrich, A., Scheir, P., Lindstaedt, S. N., Kump, B., & Albert, D. 2008. Modelling Com-
petencies for Supporting Work-integrated Learning in Knowledge Work. Journal of Knowledge
Management, 12(6), 31–47. Graz University of Technology.

Lindstaedt, S. N., Ley, T., & Mayer, H. 2005. Integrating Working and Learning with APOSDLE.
Pages 1–5 of: Proceedings of the 11th Business Meeting of Forum Neue Medien. Forum Neue
Medien.

Lindstaedt, S. N., Ley, T., Scheir, P., & Ulbrich, A. 2008a. Applying Scruffy Methods to Enable
Work-integrated Learning. Upgrade: The European Journal of the Informatics Professional,
9(3), 44–50. Novática.

Lindstaedt, S. N., Scheir, P., Lokaiczyk, R., Kump, B., Beham, G., & Pammer, V. 2008b. Knowl-
edge Services for Work-Integrated Learning. Pages 234–244 of: EC-TEL ’08: Proceedings of
the 3rd European Conference on Technology Enhanced Learning. Springer.

Lindstaedt, S. N., Beham, G., Kump, B., & Ley, T. 2009a. Getting to Know Your User -
Unobtrusive User Model Maintenance within Work-Integrated Learning Environments. Pages
73–87 of: EC-TEL ’09: Proceedings of the 4th European Conference on Technology Enhanced
Learning. Lecture Notes in Computer Science, vol. 5794. Springer.

Lindstaedt, S. N., Aehnelt, M., & de Hoog, R. 2009b. Supporting the Learning Dimension of
Knowledge Work. Pages 639–644 of: EC-TEL ’09: Proceedings of the 4th European Conference
on Technology Enhanced Learning. Lecture Notes in Computer Science, vol. 5794. Springer.

Lokaiczyk, R., & Goertz, M. 2009. Extending Low Level Context Events by Data Aggregation.
Pages 118–125 of: I-KNOW ’09: Proceedings of the 9th International Conference on Knowledge
Management.

Lokaiczyk, R. 2008. On Resource Acquisition in Adaptive Workplace-Embedded E-Learning
Environments. International Journal Advanced Corporate Learning, 1(1), 23–26. International
Association of Online Engineering.

Summary 261

Lokaiczyk, R., Faatz, A., Beckhaus, A., & Görtz, M. 2007. Enhancing Just-in-Time E-Learning
Through Machine Learning on Desktop Context Sensors. Pages 330–341 of: CONTEXT ’07:
Proceedings of the 6th International and Interdisciplinary Conference on Modeling and Using
Context. Lecture Notes in Computer Science, vol. 4635. Springer.

Lowd, D., & Kushmerick, N. 2009. Using salience to segment desktop activity into projects.
Pages 463–468 of: IUI ’09: Proceedings of the 14th International Conference on Intelligent
User Interfaces. ACM.

Maier, R. 2005. Modeling Knowledge Work for the Design of Knowledge Infrastructures. Journal
of Universal Computer Science, 11(4), 429–451.

Maier, R., & Sametinger, J. 2007. A Top-Level Ontology for Smart Document Access. Pages 153–
164 of: ICKM ’07, Proceedings of the 4th International Conference on Knowledge Management.
Singapore: World Scientific.

Maier, R., & Schmidt, A. 2007. Characterizing Knowledge Maturing: A Conceptual Process
Model for Integrating E-Learning and Knowledge Management. Pages 325–334 of: WM ’07:
Proceedings of the 4th Conference Professional Knowledge Management - Experiences and Vi-
sions, vol. 1. GITO GmbH.

Manning, C. D., & Schutze, H. 1999. Foundations of Statistical Natural Language Processing.
MIT Press.

Maruster, L., Weijters, A. J. M. M., Aalst, W. M. P. v. d., & Bosch, A. v. d. 2002. Process
Mining: Discovering Direct Successors in Process Logs. Pages 364–373 of: DS ’02: Proceedings
of the 5th International Conference on Discovery Science. Lecture Notes in Computer Science,
vol. 2534. Springer.

Maurer, H., & Tochtermann, K. 2002. On a New Powerful Model for Knowledge Management
and its Applications. Journal of Universal Computer Science, 8(1), 85–96. JUCS.

McArthur, R., & Bruza, P. 2003. Discovery of implicit and explicit connections between people
using email utterance. Pages 21–40 of: ECSCW’03: Proceedings of the 8th Conference on
European Conference on Computer Supported Cooperative Work. Norwell, MA, USA: Kluwer
Academic Publishers.

McFarlane, D. 2002. Comparison of four primary methods for coordinating the interruption
of people in human-computer interaction. Human-Computer Interaction, 17(1), 63–139. L.
Erlbaum Associates Inc.

Medeiros, A. d., Aalst, W. M. P. v. d., & Weijters, A. J. M. M. 2003. Workflow Mining: Current
Status and Future Directions. Pages 389–406 of: On The Move to Meaningful Internet Systems.
Lecture Notes in Computer Science, vol. 2888. Springer.

Microsoft. 2009. Microsoft Active Accessibility, http: // msdn. microsoft. com/ en-us/

accessibility .

MIT. 2009. SIMILE Widgets, Massachusetts Institute of Technology, http: // www.

http://msdn.microsoft.com/en-us/accessibility
http://msdn.microsoft.com/en-us/accessibility
http://www.simile-widgets.org
http://www.simile-widgets.org

262 Conclusion and Future Work

simile-widgets. org .

Mitchell, T. M., Wang, S. H., Huang, Y., & Cheyer, A. 2006. Extracting knowledge about users’
activities from raw workstation contents. Pages 181–186 of: AAAI ’06: Proceedings of the 21st
National Conference on Artificial Intelligence. AAAI Press.

Mock, K. 2001. An experimental framework for email categorization and management. Pages
392–393 of: SIGIR ’01: Proceedings of the 24th Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval. New York, NY, USA: ACM.

Nair, R., Voida, S., & Mynatt, E. D. 2005. Frequency-based detection of task switches. Pages
94–99 of: HCI ’05: Proceedings of the Human Computer Interaction Conference, vol. 2.

Najjar, J., Wolpers, M., & Duval, E. 2006. Attention Metadata: Collection and Management.
Pages 1–4 of: Proceedings of Workshop on Logging Traces of Web Activity: The Mechanics of
Data Collection held at WWW ’06: World Wide Web Conference.

Ochoa, X., & Duval, E. 2006. Use of contextualized attention metadata for ranking and recom-
mending learning objects. Pages 9–16 of: CAMA ’06: Proceedings of the 1st International
Workshop on Contextualized Attention Metadata: Collecting, Managing and Exploiting of Rich
Usage Information. New York, NY, USA: ACM.

Oliver, N., Smith, G., Thakkar, C., & Surendran, A. C. 2006. SWISH: semantic analysis of window
titles and switching history. Pages 194–201 of: IUI ’06: Proceedings of the 11th International
Conference on Intelligent User Interfaces. New York, NY, USA: ACM.

OpenAnzo.org. 2008. Open Anzo - an open source RDF store, query engine and related middleware
for the development of semantic applications., http: // www. openanzo. org .

OSGI2008. 2008. Open Service Gateway Initiative, http: // www. osgi. org .

Ötztürck, P., & Amodt, A. 1997. Towards a model of context for case-based diagnostic problem
solving. Pages 198–208 of: inContext ’97: Proceedings of the Interdisciplinary Conference on
Modeling and Using Context.

OWL. 2007. Web Ontology Language (OWL), http: // www. w3. org/ 2004/ OWL/ .

Pedersen, E. R., & McDonald, D. W. 2008. Relating documents via user activity: the missing
link. Pages 389–392 of: IUI ’08: Proceedings of the 13th International Conference on Intelligent
User Interfaces. New York, NY, USA: ACM.

Philipose, M., Fishkin, K. P., Perkowitz, M., Patterson, D. J., Fox, D., Kautz, H., & Hahnel, D.
2004. Inferring Activities from Interactions with Objects. IEEE Pervasive Computing, 3(4),
50–57. IEEE Computer Society.

Pichler, T. 2007. Automatische Aufbereitung von E-Mail Verkehr zur Wissenskonservierung.
Bachelor Thesis. Knowledge Management Institute, Graz University of Technology, Austria.

Pichler, T. 2010. Visualisierung von User-Kontext-Daten. Master Thesis. Knowledge Management
Institute, Graz University of Technology, Austria (in progress).

http://www.simile-widgets.org
http://www.simile-widgets.org
http://www.openanzo.org
http://www.osgi.org
http://www.w3.org/2004/OWL/

Summary 263

Porter, M. F. 1997. An algorithm for suffix stripping. Readings in information retrieval, 313–316.
Morgan Kaufmann.

Porter, M. 2009. Snowball project website, http: // snowball. tartarus. org .

ProM Framework. 2007. The ProM Framework, http: // prom. sf. net/ .

Protégé. 2009. The Protégé Ontology Editor and Knowledge Acquisition System, http: //

protege. stanford. edu .

Prud’Hommeaux, E., & Seaborne, A. 2008. SPARQL Query Language for RDF, http: // www.
w3. org/ TR/ rdf-sparql-query/ . World Wide Web Consortium.

Rath, A. S., Kröll, M., Andrews, K., Lindstaedt, S., Granitzer, M., & Tochtermann, K. 2006.
Synergizing Standard and Ad-Hoc Processes. Pages 267–278 of: Practical Aspects of Knowledge
Management. Lecture Notes in Computer Science, vol. 4333. Springer.

Rath, A. S., Weber, N., Kröll, M., Granitzer, M., Dietzel, O., & Lindstaedt, S. 2008. Context-
Aware Knowledge Services. In: PIM ’08: Workshop on Personal Information Management
Workshop held at CHI ’08: SIGCHI Conference on Human Factors in Computing Systems.

Rath, A. S., Devaurs, D., & Lindstaedt, S. N. 2009a. Detecting Real User Tasks by Training on
Laboratory Contextual Attention Metadata. Pages 1–9 of: EUAM ’09: Exploitation of Usage
and Attention Metadata held at Informatik ’09.

Rath, A. S. 2007. A Low-Level Based Task and Process Support Approach For Knowledge-
Intensive Business Environments. Pages 35–42 of: DECIS ’07: Doctoral Consortium held at
ICEIS’ 07: 5th International Conference on Enterprise Information System. INSTICC Press.

Rath, A. S., Kröll, M., Lindstaedt, S., & Granitzer, M. 2007. Low-Level Event Relationship
Discovery for Knowledge Work Support. In: ProKW ’07: Proceedings of the 4th Conference
on Professional Knowledge Management. Productive Knowledge Work - Management and
Technological Challenges. GITO GmbH.

Rath, A. S., Devaurs, D., & Lindstaedt, S. N. 2009b. Contextualized Knowledge Services for
Personalized Learner Support. In: EC-TEL ’09: Fourth European Conference on Technology
Enhanced Learning. Lecture Notes in Computer Science. Springer.

Rath, A. S., Devaurs, D., & Lindstaedt, S. N. 2009c. KnowSe: Fostering User Interaction Context
Awareness. Pages 9–10 of: ECSCW ’09: Supplementary Proceedings of the 11th European
Conference on Computer Supported Cooperative Work.

Rath, A. S., Devaurs, D., & Lindstaedt, S. N. 2009d. UICO: an ontology-based user interaction
context model for automatic task detection on the computer desktop. Pages 1–10 of: CIAO
’09: Proceedings of the 1st Workshop on Context, Information and Ontologies. New York, NY,
USA: ACM.

RaVis. 2009. RaVis Relational Analysis Components, http://code.google.com/p/birdeye/wiki/RaVis.

Rechberger, A. 2007. Sensoren zur Kontexerkennung - Sensoren für Mozilla Thunderbird und

http://snowball.tartarus.org
http://prom.sf.net/
http://protege.stanford.edu
http://protege.stanford.edu
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-sparql-query/

264 Conclusion and Future Work

Novell Groupwise. Bachelor Thesis. Knowledge Management Institute, Graz University of
Technology, Austria.

Resanovic, D. 2008. Service Integration Layer für Aposdle und Dyonipos Services im Rahmen
des KnowSe Projektes. Master Project. Knowledge Management Institute, Graz University of
Technology, Austria.

Rhodes, B. J. 2000. Just-In-Time Information Retrieval. Ph.D. thesis, MIT Media Laboratory,
Cambridge, MA.

Rijsbergen, C. 1979. Information retrieval. 2 edn. London: Butterworths.

Riss, U., Rickayzen, A., Maus, H., & Aalst, W. M. P. v. d. 2005. Challenges for Business Process
and Task Management. Journal of Universal Knowledge Management, 0(2), 77–100.

Riss, U. V., & Grebner, O. 2006. Service-Oriented Task Management. Pages 354–358 of: I-
KNOW ’06: Proceedings the 6th International Conference on Knowledge Management. JUCS.

Sachs, L., & Hedderich, J. 2006. Angewandte Statistik. Methodensammlung mit R. 12 edn.
Springer.

Sahami, M., Dumais, S., Heckerman, D., & Horvitz, E. 1998. A Bayesian Approach to Filtering
Junk E-Mail. In: Learning for Text Categorization: Papers from the 1998 Workshop. Madison,
Wisconsin: AAAI Technical Report WS-98-05.

Salton, G., & McGill, M. J. 1986. Introduction to Modern Information Retrieval. New York, NY,
USA: McGraw-Hill, Inc.

Sauermann, L. 2003. The Gnowsis - Using Semantic Web Technologies to build a Semantic
Desktop. Diploma thesis, Technical University of Vienna.

Sauermann, L., Bernardi, A., & Dengel, A. 2005. Overview and Outlook on the Semantic Desktop.
Pages 1–18 of: Proceedings of the 1st Workshop on The Semantic Desktop - Next Generation
Personal Information Management and Collaboration Infrastructure held at ISWC ’05: Inter-
national Semantic Web Conference.

Sauermann, L., Dengel, A., v. Elst, L., Lauer, A., Maus, H., & Schwarz, S. 2006a. Personaliza-
tion in the EPOS project. Pages 42–52 of: Proceedings of the Semantic Web Personalization
Workshop held at ESWC ’06: European Semantic Web Conference.

Sauermann, L., Grimnes, G. A., Kiesel, M., Fluit, C., Maus, H., Heim, D., Nadeem, D., Horak,
B., & Dengel, A. 2006b. Semantic Desktop 2.0: The Gnowsis Experience. Pages 887–900 of:
ISWC ’06: Proceedings of the 5th International Semantic Web Conference. Lecture Notes in
Computer Science, vol. 4273. Springer.

Sauermann, L. 2005. The Gnowsis Semantic Desktop for Information Integration. Pages 39–42 of:
IOA ’05: Workshop on Intelligent Office Appliances held at WM ’05: Professional Knowledge
Management Conference. Lecture Notes in Computer Science. Springer.

Sauermann, L., Elst, L., & Dengel, A. 2007. PIMO - A Framework for Representing Personal

Summary 265

Information Models. Pages 270–277 of: Proceedings of I-MEDIA ’07 and I-SEMANTICS ’07
International Conferenceson New Media Technology and Semantic Systems as part of TRIPLE-
I 2007. JUCS.

Schilit, B., Adams, N., & Want, R. 1994. Context-Aware Computing Applications. Pages 85–90
of: Proceedings of the Workshop on Mobile Computing Systems and Applications. Santa Cruz,
CA, US: IEEE Computer Society.

Schmidt, A. 2005a. Bridging the Gap Between Knowledge Management and E-Learning with
Context-Aware Corporate Learning. Pages 203–213 of: LOKMOL ’05: Proceedings of Learner-
Oriented Knowledge Management and KM-Oriented E-Learning Workshop held at WM ’05:
Professional Knowledge Management Conference. Lecture Notes in Computer Science, vol.
3782. Springer.

Schmidt, A. 2005b. Knowledge Maturing and the Continuity of Context as a Unifying Concept
for Knowledge Management and E-Learning. Pages 424–431 of: I-KNOW ’05: Proceedings of
the International Conference on Knowledge Management. JUCS.

Schmidt, A. 2007. Impact of Context-Awareness on the Architecture of E-Learning Solutions.
Pages 306–319 of: Architecture Solutions for E-Learning Systems. IGI Publishing.

Schmidt, K. 2002. The Problem with ’Awareness’: Introductory Remarks on ’Awareness in
CSCW’. Computer Supported Cooperative Work, 11(3), 285–298. Kluwer Academic Publishers.

Schreiber, G., Akkermans, H., Anjewierden, A., Dehoog, R., Shadbolt, N., Vandevelde, W., &
Wielinga, B. 1999. Knowledge Engineering and Management: The CommonKADS Methodol-
ogy. The MIT Press.

Schwarz, S., Abecker, A., Maus, H., & Sintek, M. 2001. Anforderungen an die Workflow-
Unterstützung für wissensintensive Geschäftsprozesse. Pages 11–30 of: Proceedings of Geschäft-
sprozessorientiertes Wissensmanagement Workshop held at WM ’01: Professional Knowledge
Management Conference. Baden-Baden, Germany: DFKI GmbH.

Schwarz, S. 2006. A Context Model for Personal Knowledge Management Applications. Pages
18–33 of: MRC ’05: Proceedings of Modeling and Retrieval of Context. Lecture Notes in
Computer Science, vol. 3946. Springer.

Segal, R., Crawford, J., Kephart, J. O., & Leiba, B. 2004. SpamGuru: An Enterprise Anti-Spam
Filtering System. Pages 1–7 of: CEAS ’04: Proceedings of the First Conference on E-mail and
Anti-Spam.

Shen, J. 2009. Activity Recognition in Desktop Environments. Ph.D. thesis, Oregon State Uni-
versity.

Shen, J., & Dietterich, T. G. 2007. Active EM to reduce noise in activity recognition. Pages
132–140 of: IUI ’07: Proceedings of the 12th International Conference on Intelligent User
Interfaces. New York, NY, USA: ACM.

Shen, J., Li, L., Dietterich, T. G., & Herlocker, J. L. 2006. A hybrid learning system for recognizing

266 Conclusion and Future Work

user tasks from desktop activities and email messages. Pages 86–92 of: IUI ’06: Proceedings of
the 11th International Conference on Intelligent User Interfaces. New York, NY, USA: ACM.

Shen, J., Li, L., & Dietterich, T. G. 2007. Real-Time Detection of Task Switches of Desktop Users.
Pages 2868–2873 of: IJCAI ’07: Proceedings of International Joint Conference on Artificial
Intelligence.

Shen, J., Irvine, J., Bao, X., Goodman, M., Kolibaba, S., Tran, A., Carl, F., Kirschner, B.,
Stumpf, S., & Dietterich, T. G. 2009. Detecting and correcting user activity switches: al-
gorithms and interfaces. Pages 117–126 of: IUI ’09: Proceedings of the 13th International
Conference on Intelligent User Interfaces. New York, NY, USA: ACM.

Sifry, D., Marks, K., & Celik, T. 2007. AttentionXML specifications, http: // developers.

technorati. com/ wiki/ attentionxml .

Sintek, M., v. Elst, L., Grimnes, G., Scerri, S., & Handschuh, S. 2007. Knowledge Representation
for the Distributed, Social Semantic Web: Named Graphs, Graph Roles and Views in NRL.
Pages 1–14 of: WoMO ’07: Proceedings of Workshop on Modular Ontologies held at K-CAP
’07: Fourth International Conference on Knowledge Capture.

Sirin, E., Parsia, B., Grau, B. C., Kalyanpur, A., & Katz, Y. 2007. Pellet: A practical OWL-DL
reasoner. Web Semantics: Science, Services and Agents on the World Wide Web, 5(2), 51–53.
Elsevier Science B.V.

Smith, P. J. 2003. Workplace Learning and Flexible Delivery. Review of Educational Research,
73(1), 53–88.

Strang, T., & Linnhoff-Popien, C. 2004. A Context Modeling Survey. Pages 1–8 of: Proceedings
of Workshop on Advanced Context Modelling, Reasoning and Management as part of UbiComp
’04: International Conference on Ubiquitous Computing.

Teevan, J. 2008. How people recall, recognize, and reuse search results. ACM Transactions on
Information Systems, 26(4), 1–27. ACM.

Teevan, J., Jones, W., & Capra, R. 2008. Personal information management (PIM) 2008. SIGIR
Forum, 42(2), 96–103. ACM.

The Apache Software Foundation. 2009 (08). The Apache Commons Mathematics Library, Ver-
sion 2.1, http://commons.apache.org/math/.

Tochtermann, K., Reisinger, D., Granitzer, M., & Lindstaedt, S. 2006. Integrating Ad Hoc
Processes and Standard Processes in Public Administrations. In: eGov ’06: Proceedings of the
OCG eGovernment Conference. OCG, vol. 203.

Tochtermann, K. 2003. Personalization in Knowledge Management. Pages 29–41 of: Metainfor-
matics. Lecture Notes in Computer Science, vol. 2641. Springer.

Truong, H.-L., & Dustdar, S. 2009. A Survey on Context-aware Web Service Systems. Interna-
tional Journal of Web Information Systems, 5(1), 5–31. Emerald Group Publishing Limited.

http://developers.technorati.com/wiki/attentionxml
http://developers.technorati.com/wiki/attentionxml

Summary 267

Tuffield, M. M., Loizou, A., & Dupplaw, D. 2006. The semantic logger: supporting service
building from personal context. Pages 55–64 of: CARPE ’06: Proceedings of the 3rd ACM
Workshop on Continuous Archival and Retrival of Personal Experiences. New York, NY, USA:
ACM.

Ulbrich, A., Scheir, P., Lindstaedt, S. N., & Görtz, M. 2006. A Context-Model for Support-
ing Work-Integrated Learning. Pages 525–530 of: Innovative Approaches for Learning and
Knowledge Sharing. Springer.

Wechtitsch, S. 2008. Handling User Interruption and Notification in KnowSe. Master Project.
Knowledge Management Institute, Graz University of Technology, Austria.

Weijters, A. J. M. M., & Aalst, W. M. P. v. d. 2001. Process Mining: Discovering Workflow
Models from Event-Based Data. Pages 283–290 of: BNAIC ’01: Proceedings 13th Belgium-
Netherlands Conference on Artificial Intelligence.

Wen, L., Wang, J., Aalst, W. M. P. v. d., Huang, B., & Sun, J. 2008. A novel approach for
process mining based on event types. Journal of Intelligent Information Systems, 32(2), 163–
190. Springer.

Whittaker, S., & Sidner, C. 1996. Email overload: exploring personal information management of
email. Pages 276–283 of: CHI ’96: Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems. New York, NY, USA: ACM.

Witten, I. H., & Frank, E. 2005. Data Mining: Practical machine learning tools and techniques.
2 edn. San Francisco, USA: Morgan Kaufmann.

Wolpers, M., Najjar, J., Verbert, K., & Duval, E. 2007. Tracking Actual Usage: the Attention
Metadata Approach. Educational Technology & Society, 10(3), 106–121.

Xiao, H., & Cruz, I. F. 2005. A multi-ontology approach for personal information management.
In: Proceedings of The Semantic Desktop Workshop - Next Generation Personal Information
Management and Collaboration Infrastructure held at ISWC ’05: International Semantic Web
Conference.

Yang, Y., & Liu, X. 1999. A re-examination of text categorization methods. Pages 42–49 of:
SIGIR ’99: Proceedings of the 22nd Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval. New York, NY, USA: ACM.

Yang, Y., & Pedersen, J. O. 1997. A Comparative Study on Feature Selection in Text Catego-
rization. Pages 412–420 of: ICML ’97: Proceedings of the Fourteenth International Conference
on Machine Learning. San Francisco, CA, USA: Morgan Kaufmann.

Zhao, Y., Karypis, G., & Fayyad, U. 2005. Hierarchical Clustering Algorithms for Document
Datasets. Data Mining and Knowledge Discovery, 10(2), 141–168. Kluwer Academic Publish-
ers.

Zimmermann, A., Lorenz, A., & Oppermann, R. 2007. An Operational Definition of Context.
Pages 558–571 of: CONTEXT ’07: 6th International and Interdisciplinary Conference on

268 Conclusion and Future Work

Modeling and Using Context. Lecture Notes in Computer Science, vol. 4635. Springer.

Zimmermann, A., Specht, M., & Lorenz, A. 2005. Personalization and Context Management.
User Modeling and User-Adapted Interaction, 15(3-4), 275–302. Springer.

Appendix

8.4 Task Models of the Laboratory Experiment 1

8.4.1 [Task 1] Filling in the official journey form

Task Model (Description):
The employee fills in the details about the planned journey in the official journey form, prints it
and gives it to her division manager.

Task Instance (Task Example):
Suppose you are a researcher named Bill Adams, who is working in the Knowledge Services
division on the KnowSe project. You are traveling to the Computer Human interaction (CHI
2009) conference in Boston, USA, with a colleague of yours. The conference starts at the 4th
April 2009 and ends at the 9th April. Your secretary has already compiled some information
about your trip. Here are the details:

� Project KnowSe

� Your division: Knowledge Services

� Your name: Bill Adams

� Your colleague’s name: Mary Jones

� Flight 3rd April from Graz (Austria) to Frankfurt (Germany) at 06:00

� Flight 3rd April from Frankfurt (Germany) to Boston (USA) at 12:25

� Flight 10th April from Boston (USA) to Frankfurt (Germany) at 21:40

� Flight 11th April from Frankfurt (Germany) to Graz (Austria) at 09:15

� CHI 2009 conference fees are 1000 Euros per person

� Hotel costs are 500 Euros

� Traveling costs are 950 Euros per person (flight and bus)

� All expenses will have to be payed in advance by yourself and will be refunded after the journey.

8.4.2 [Task 2] Filling in the cost recompense form for the official journal

Task Model (Description):
The employee fills in the details about the journey and its expenses in the official journey form,

269

270 Bibliography

prints it and gives it to her division manager.

Task Instance (Task Example):
Suppose you are a researcher named Bill Adams, who is working in the Knowledge Services
division on the KnowSe project. You were traveling to the EC-TEL 2007 - Second European
Conference on Technology Enhanced Learning conference with a colleague of yours, named Mary
Jones. The conference was located in Crete (Greece) and started at the 17th September 2007
and ended at the 20th September 2007. Your secretary has already compiled some information
about your trip. Here are the details:

� Project KnowSe

� Your division: Knowledge Services

� Your name: Bill Adams

� Your colleague’s name: Mary Jones

� Flight 16th September from Graz (Austria) to Vienna (Austria) from 06:00 to 06:50

� Flight 16th September from Vienna (Austria) to Crete (Greece) from 11:00 to 13:30

� Flight 20th September from Crete (Greece) to Vienna (Austria) from 15:00 to 17:30

� Flight 20th September from Vienna (Austria) to Graz (Austria) from 18:15 to 19:05

� EC-TEL 2007 conference fees were 500 Euros per person

� Traveling costs are 700 Euros (flight and bus)

� Hotel costs were 500 Euros

� All expenses have been payed in advance by yourself and will be refunded.

8.4.3 [Task 3] Creating and handing in an application for leave

Task Model (Description):
The employee fills in the details about the planned vacation, prints it and gives it to the leader
of the employee’s division.

Task Instance (Task Example):
Suppose you are a researcher named Bill Adams, who is working in the Knowledge Services
division on the KnowSe project. You would like to take some time off and hence apply for
a vacation from the 10.11.2008 until the 18.11.2008. For this you have to fill in the official
application for leave form, print it and hand it to your supervisor.

8.4.4 [Task 4] Planning an official journey

Task Model (Description):
The employee organizes an official journey. This means to plan for transportation, accommo-
dation and organizational things at the location if applicable. At the end the employee fills in
the details and expenses of the journey in the official journey form, prints it and gives it to the
supervisor of the employee’s division.

Task Instance (Task Example):
Suppose you are a researcher named Bill Adams, who is working in the Knowledge Services
division on the KnowSe project. Your plan is to participate in the annual project steering

Task Models of the Laboratory Experiment 2 271

committee meeting in Bern, Switzerland. The meeting takes place from the 25.11.2008 until the
27.11.2008 and is located in the HOTEL AMBASSADOR SPA (http://www.ambassadorbern.ch),
Seftigenstrasse 99, 3007, Bern, Switzerland. Unfortunately the hotel has no room available
any more because of a big congress at the same time such that you have to find your own
accommodation. The accommodation expenses should be not more than 800 Euros for the whole
stay.

8.4.5 [Task 5] Organization of a project meeting

Task Model (Description):
The employee organizes a project meeting including the creation of the agenda, sending emails to
the meeting participants, the reservation of the room and the projector, creating the presentation
and so on.

Task Instance (Task Example):
Suppose you are a researcher named Bill Adams, who is working in the Knowledge Services
division on the KnowSe project. You are planning to introduce a new idea for the KnowSe project
and hence organizing a project meeting in which you would like to present your ideas. The
organization of the project meeting involves finding an appropriate date for the KnowSe project
members and a suitable place for the project meeting. You also need to place a reservation for
the project meeting room and the projector. Furthermore you have to compile an agenda and
distribute it to the project members before the meeting. For presenting your ideas create a short
Microsoft PowerPoint presentation.

8.5 Task Models of the Laboratory Experiment 2

8.5.1 [Task 1] Register for an examination

Task Model (Description):
The registration for an exam is a task in which the student has to sign in to the TUGonline
system and to register himself to a particular examination. Registration is required for doing
and passing an exam at the university.

Task Instance (Task Standard):
Suppose you are a student named Georg Kompacher studying Software Development and
Business Management at Graz University of Technology in Austria. You want to register for
a specific examination named “Verifikation und Testen” taking place on the 15th May 2009.
To register you have to use the TUGonline system. Use the Microsoft Internet Explorer and
visit the web site http://online.tugraz.at and sign in with the following account: user
name: <wttestaccountuser> and password: <wttestpassword>. Search for the examination
for “Verifikation und Testen” and register for that exam.

Task Instance (Task Personal):
Open the browser of your choice. Search for an examination at the Graz University of Technology

http://online.tugraz.at

272 Bibliography

you want to participate and register for that exam using the TUGonline system.

8.5.2 [Task 2] Finding course dates

Task Model (Description):
Find the dates of a lecture and copy them to the clipboard.

Task Instance (Task Standard):
Open the Microsoft Internet Explorer and visit the web site http://online.tugraz.at. Find
out when the classes of the course “Wissenstechnologie” of Graz University of Technology are
held in this term. Mark and copy the timetable to the clipboard.

Task Instance (Task Personal):
Open the Internet Explorer and find out, when the classes of a lecture of your choice are held.
Mark and copy the timetable to the clipboard.

8.5.3 [Task 3] Reserve a book in the university’s library

Task Model (Description):
Finding a book in the university’s library is mandatory for most students to broad their horizon.
A reservation is necessary if the searched book has already been lent.

Task Instance (Task Standard):
Suppose you are a student named Georg Kompacher studying Software Development and
Business Management at Graz University of Technology. You are interested in the domain
of XML and you want to get some further readings to that topic. Use the Microsoft Internet
Explorer and visit the web site http://castor.tugraz.at and search for the book “XML
Bible” written by Elliotte Rusty Harold and reserve that book for you. If the book is already
lent, prebook the book for you. If you get asked for a user account, sign in with the following:
user name: <wttestaccountuser> and password: <wttestpassword>.

Task Instance (Task Personal):
Open the browser of your choice. Search for a book to a topic of a course you are currently
taking and reserve it at your university’s library. Prebook the book for loan.

8.5.4 [Task 4] Course Registration

Task Model (Description):
The registration to a course is one of the most used tasks for students. They have to be registered
to get the permission to make an exam. For registration the authentication of a student to
TUGonline is necessary.

Task Instance (Task Standard):
Suppose you are a student named Georg Kompacher studying Software Development and
Business Management at Graz University of Technology. You want to register for a specific

http://online.tugraz.at
http://castor.tugraz.at

Task Models of the Laboratory Experiment 2 273

course named “Softwaretechnologie Tools”. To register to that course you have to use the
TUGonline system. Use the Internet Explorer and visit the web site http://online.tugraz.at

and sign in with the following account: user name: <wttestaccountuser> and password:
<wttestpassword>. Search for the course “Softwaretechnologie Tools” and register for that
course.

Task Instance (Task Personal):
Use the Microsoft Internet Explorer and visit the web site http://online.tugraz.at. Search
for a course of this semester you are interested in and register for that course.

8.5.5 [Task 5] Algorithm programming

Task Model (Description):
Solve a given computational problem programmatically. You can use your favorite development
tools.

Task Instance (Task Standard):
Open your favorite Java IDE/editor and write a small program which takes an integer and
calculates the factorial of this number. Test your program with the input and print out the
result in the console.

Task Instance (Task Personal):
Choose a program language of your choice and write a small program which calculates the
factorial of a given number. Test your program with a number of your choice and display the
result on the display.

8.5.6 [Task 6] Prepare a scientific talk

Task Model (Description):
Presenting a presentation about a scientific paper has to be done by all students. In this task a
presentation about a scientific topic has to be prepared.

Task Instance (Task Standard):
Go to the web site http://kmi.tugraz.at/blogs/wissenstechnologie/ and search for the
slides of the lecture 2008/09. Search for the lecture where the topic “Semantic Web” was covered.
Create a Microsoft Power Point presentation about this with at least 5 slides.

Task Instance (Task Personal):
Prepare a scientific presentation about a topic of your choice regarding a lecture you are visiting
this year. The presentation shall have at least 5 slides.

8.5.7 [Task 7] Plan a study trip

Task Model (Description):
Before visiting a conference a student has to plan the trip very carefully. This means to plan

http://online.tugraz.at
http://online.tugraz.at
http://kmi.tugraz.at/blogs/wissenstechnologie/

274 Bibliography

transportation, accommodation and organizational things at the location if applicable.

Task Instance (Task Standard):
Suppose you are a student named Max Mustermann studying Software Development and Business
Management at Graz University of Technology. Your plan is to participate in the annual European
Students Conference in Berlin, Germany. The conference takes place from the 07.04.2009 until
the 09.04.2009 and is located in the Berliner Congress Center (http://www.bcc-berlin.de),
Alexanderstr. 11, 10178 Berlin, Germany. For your accommodation choose a hotel that costs
less than e 60 per day. Choose the aircraft as means of transportation. Plan the complete trip
for less than e 400.

Task Instance (Task Personal):
You are participating in a 2 day lasting congress in Vienna (7th and 8th of April 2009). Plan
a study trip including the outward and the return trip as well as an accommodation that is as
cheap as possible.

8.6 Task Models of the Laboratory Experiment 3

This section gives details about the studied tasks and the descriptions that were handed to
the experiment’s participants. Only the Task Instances descriptions that are described bellow
were given to the participants. The Task Model descriptions, which were taken from the Com-
monKADS book [Schreiber et al., 1999], are also listed bellow to allow the reader to understand
the category of the types of analytic and synthetic tasks better. For a detailed description and
further discussions about the CommonKADS task classification scheme it is referred here to the
CommonKADS book [Schreiber et al., 1999].

8.6.1 [Task Analytic 1] Task Classify

Duration: max. 5 min.

Task Model (Description):
In classification, an object needs to be characterized in terms of the class to which it belongs.

Task Instance:
The following list contains 10 well-known computer specific terms. Please classify them into the
following categorization schema: Hardware (with the sub-categories input device and non-input
device) and Software (with the sub-categories game, office application and operating system)
Your classification schema shall be stored on the computer. Choose a program of your choice
and save the result on the computer.

Terms to categorize: Ahead Nero 9.0, Adobe Acrobat 9.0 Professional, Adobe Photoshop
CS4, Call of Duty 5 - World at War, Intel Core 2 Duo E8400 (C0), 2x 3.0GHz, Logitech
Classic Keyboard 200, Logitech MX 518 Optical Gaming Mouse Refresh, Microsoft Office 2007

http://www.bcc-berlin.de

Task Models of the Laboratory Experiment 3 275

Professional, Microsoft Windows Vista Business 32Bit, Seagate Barracuda 7200.11 1500GB,
SATA II

8.6.2 [Task Analytic 2] Task Diagnose

Duration: max. 15 min.

Task Model (Description):
Diagnosis differs from classification in the sense that the desired output is a malfunction of the
system.

Task Instance:
Finding the origin/origins of the malfunction in a program: Where is/are the malfunc-
tion/s in the program. Freely choose and use the tools you require to find it/them. You
find the source code of the program in the ”task diagnose program file shop.doc”
file, the ”task diagnose program file customer.doc” file and the
”task diagnose program file item.doc” file on your desktop. Save your diagnosis re-
sult on the computer. You do not have to fix the malfunction/s. You just have to find them.
Save your results on the computer.

8.6.2.1 Experiment Material for Task A2 Diagnose

8.6.2.1.1 class Customer

public class Customer {

private static int COUNTER = 0;

private final int id;

private String firstName;

private String lastName;

Customer(String firstName, String lastName) {

this.id = ++COUNTER;

this.firstName = firstName;

this.lastName = lastName;

}

public int getId() {

return id;

}

public String getFirstName() {

return firstName;

}

public void setFirstName(String firstName) {

this.firstName = firstName;

}

276 Bibliography

public String getLastName() {

return lastName;

}

public void setLastName(String lastName) {

this.lastName = lastName;

}

8.6.2.1.2 class Item

public class Item {

private String name;

private double price;

private int quantity;

Item(String name, double price, int quantity) {

this.name = name;

this.price = price;

this.quantity = quantity;

}

public double getPrice() {

return price;

}

public void setPrice(double price) {

this.price = price;

}

public String getName() {

return name;

}

public int getQuantity() {

return quantity;

}

public int decreaseQuantity(int quantity) {

this.quantity -= quantity;

return this.quantity;

}

public int increaseQuantity(int quantity) {

this.quantity += quantity;

return this.quantity;

}

Task Models of the Laboratory Experiment 3 277

}

8.6.2.1.3 class Shop

public class Shop {

List<Customer> customers;

List<Item> items;

Shop() {

customers = new ArrayList<Customer>();

items = new ArrayList<Item>();

}

public Customer addCustomer(String firstName, String lastName) {

Customer customer;

if ((customer = getCustomer(firstName, lastName)) == null) {

customer = new Customer(firstName, lastName);

customers.add(customer);

System.out.println("Customer " + firstName +

" " + lastName + " added to customers.");

}

return customer;

}

public Customer getCustomer(String firstName, String lastName) {

for (Customer currentCustomer : customers) {

String currentFirstName = currentCustomer.getFirstName();

String currentLastName = currentCustomer.getLastName();

if (currentFirstName.equals(firstName)

&& currentLastName.equals(lastName)) {

return currentCustomer;

}

}

return null;

}

public Item addItem(String itemName, double itemPrice, int itemQuantity) {

Item item;

if ((item = getItem(itemName)) == null) {

item = new Item(itemName, itemPrice, itemQuantity);

items.add(item);

System.out.println("Item " + itemName + " added " +

itemQuantity + " times to itemlist.");

}

return item;

278 Bibliography

}

public Item getItem(String name) {

for (Item currentItem : items) {

String currentItemName = currentItem.getName();

if (currentItemName.equals(name)) {

return currentItem;

}

}

return null;

}

public boolean buyItem(Customer customer, Item item, int quantity) {

String customerFirstName = customer.getFirstName();

String customerLastName = customer.getLastName();

Customer currentCustomer = getCustomer(customerFirstName, customerLastName);

String itemName = item.getName();

Item currentItem = getItem(itemName);

if (currentCustomer != null && currentItem != null) {

System.out

.println("Customer \"" + customerFirstName + " " +

customerLastName + "\" buys " + quantity +

" \"" + itemName + "\"");

return true;

} else {

return false;

}

}

public static void main(String[] args) {

Shop shop = new Shop();

shop.addCustomer("John", "Miller");

shop.addCustomer("Franc", "Magnamera");

shop.addCustomer("Doris", "Francini");

shop.addCustomer("Sophie", "Whatson");

shop.addCustomer("Michael", "Foster");

shop.addItem("Samsung LE-40A656", 211.86, 3);

shop.addItem("Sony KDL-40W4500", 1158.66, 34);

shop.addItem("Apple iPhone 3G 8GB", 589, 13);

shop.addItem("Nokia 5800 XpressMusic blue", 329, 2);

shop.addItem("Nintendo Wii Fit inkl. Wii Balance Board", 79.37, 17);

Customer customer = shop.getCustomer("Michael", "Foster");

Item item1 = shop.getItem("Samsung LE-40A656");

Item item2 = shop.getItem("Sony KDL-40W4500");

Task Models of the Laboratory Experiment 3 279

shop.buyItem(customer, item1, 3);

shop.buyItem(customer, item2, 30);

}

}

8.6.3 [Task Analytic 3] Task Assess

Duration: max. 10 min.

Task Model (Description):
The goal of assessment is to characterize a case in terms of a decision class. The underlying
knowledge typically consists of a set of norms or criteria that are used for the assessment.

Task Instance:
Tuition Fees: Suppose you are the student ”Franz Maier” from Styria, Austria with the stated
profile below. Assess if you have to pay tuition fees for the summer term 2009 or not. Save your
decision and the evidence for your decision on the computer. Student profile: He is studying
since 2004 summer term only Bacc. Software Development and Economics, he was working since
2 years as at a company as an IT administrator and at which he earns 300 euros per month, has
done 25 (week) hours lectures in winter term 2008/2009, he has already finished his first part (in
German “1. Abschnitt”) of his Bacc. curriculum in the summer term of 2005. Useful links to
start: http://studienbeitrag.htu.tugraz.at, http://www.tugraz.at/studienbeitrag.

8.6.4 [Task Analytic 4] Task Predict

Duration: max. 15 min.

Task Model (Description):
In prediction, one analyzes current system behavior to construct a description of the system state
at some future point in time. A prediction task is often found in knowledge-intensive modules of
teaching systems. The inverse of prediction also exists and is called retrodiction.

Task Instance:
Suppose you take the exam for the course “Economics (BWL)” next month. Based
on historical exam questions available at http://pbs.htu.tugraz.at/wiki/index.php/

Betriebswirtschaftslehre your task is to predict 3 questions which will probably be asked
at the next exam. Save your results on the computer.

8.6.5 [Task Synthetic 1] Task Design

Duration: max. 12 min.

Task Model (Description):
Design is a synthetic task in which the system to be constructed is some physical artifact. Design

http://studienbeitrag.htu.tugraz.at
http://www.tugraz.at/studienbeitrag
http://pbs.htu.tugraz.at/wiki/index.php/Betriebswirtschaftslehre
http://pbs.htu.tugraz.at/wiki/index.php/Betriebswirtschaftslehre

280 Bibliography

tasks in general can include creative design of components. In order for system construction to
be feasible, we generally have to assume that all components of the artifact are predefined. This
subtype of design is called configuration design. Building a boat from a set of Lego blocks is a
well-known example of a configuration-design task. Another example is the configuration of a
computer system.

Task Instance:
Create a simple conceptual design of the software for an elevator system. The software should
be able to handle standard elevator control commands and movements. Do not implement the
program, just design it. Save your results on the computer.

8.6.6 [Task Synthetic 2] Task Assign

Duration: max. 10 min.

Task Model (Description):
Assignment is a relatively simple synthetic task, in which we have two sets of objects between
which we have to create a (partial) mapping. The assignment has to be consistent with constraints

Task Instance:
A professor has 8 tutors (study assistants) that support him/her to assists students in a pro-
gramming course. 160 students are registered for this course. 6 tutors (T1,...,T6) can support at
most 25 students each. Tutor T7 can only take care of 10 students because of time-constraints.
Student S1 and S5 would like to join the group of tutor T1. Student S81 is not allowed to join
the group of tutor T5 or T6. Save your results on the computer.

8.6.7 [Task Synthetic 3] Task Plan

Duration: max. 13 min.

Task Model (Description):
Planning shares many features with design, the main difference being the type of system being
constructed. Whereas design is concerned with physical object construction, planning is concerned
with activities and their time dependencies. Again, automation of planning tasks is usually only
feasible if the basic plan elements are predefined. Because of their similarity, design models can
sometimes be used for planning and vice versa.

Task Instance:
Plan a software project for the development of a document management system. Plan the activi-
ties you have to do and generate a sequence in which they have to be executed. Save your results
on the computer.

Task Models of the Laboratory Experiment 3 281

8.6.8 [Task Synthetic 4] Task Schedule

Duration: max. 10 min.

Task Model (Description):
Scheduling often follows planning. Planning delivers a sequence of activities; in scheduling, such
sequences of activities (”jobs”) need to be allocated to resources during a certain time inter-
val. The output is a mapping between activities and time slots, while obeying constraints (”A
should be before B”) and conforming as much as possible with the preferences (”lectures by C
should preferably be on Friday”). Scheduling is therefore closely related to assignment, the major
distinction being the time-oriented character of scheduling.

Task Instance:
Scheduling a software project: Suppose you are responsible for the design and development of an
electronic library book lending system this term together with four student colleagues of yours.
The software project starts on the 9th of March and must be finished at the 20th of June. Gener-
ate a schedule in which you state on which activities you and your colleagues will work on. You do
not have to do the activities. You should just schedule them. Save your schedule on the computer.

Following deadlines have to be taken into account:

� Register the group for the course (Deadline 30th March)

� Hand in the design document (Deadline 30th May)

� Hand in the completed project (Deadline 20th June)

Following activities have to be scheduled in the given order:

1. Find group members

2. Read about known technologies and similar projects and choose the most appropriate

3. Define the requirements of the system

4. Design the system

5. Split the tasks and assign them to particular course members

6. Implement the system

7. System testing

8. Bug fixing

282 Bibliography

	Preface and Acknowledgments
	1 Introduction
	1.1 Motivation
	1.1.1 Automatic User Context Detection
	1.1.2 Automatic Task Detection

	1.2 Research Question and Approach
	1.2.1 Automatic User Context Detection
	1.2.2 Automatic Task Detection
	1.2.3 Realization

	1.3 Focus and Non-Focus
	1.4 Contributions
	1.5 Thesis Outline

	2 Related Work: User Context Detection
	2.1 Introduction
	2.2 Context Modeling
	2.2.1 Personal Information Ontologies
	2.2.2 Connection to this research…

	2.3 Context Observation
	2.3.1 APOSDLE
	2.3.2 Contextual Attention Metadata Framework
	2.3.3 Mylar/Mylyn
	2.3.4 Plum
	2.3.5 TaskTracer
	2.3.6 The Semantic Logger
	2.3.7 Connection to this research…

	2.4 Context Utilization and Exploitation
	2.4.1 Connection to this research…

	2.5 Application Areas of Context
	2.5.1 Task- and Process Mining and Management
	2.5.2 Work-Integrated Learning
	2.5.3 Semantic Desktop & Personal Information Management
	2.5.4 Information Retrieval

	2.6 Summary

	3 User Interaction Context Approach
	3.1 Introduction
	3.2 Conceptual Model - The Semantic Pyramid
	3.3 User Interaction Context Ontology (UICO)
	3.3.1 Action Dimension
	3.3.2 Resource Dimension
	3.3.3 Information Need Dimension
	3.3.4 User Dimension
	3.3.5 Application Dimension
	3.3.6 Comparison with existing Personal Information Ontologies

	3.4 Context Sensors and Context Observation
	3.4.1 Context Observers

	3.5 Sensor Data Abstraction and Aggregation
	3.5.1 Event Creation
	3.5.2 Resource Discovery and Resource Building
	3.5.3 Event to Event Block Mapping Rules
	3.5.4 Tasks

	3.6 Discussion about Ontology-based User Interaction Context Observation
	3.6.1 Advantages
	3.6.2 Disadvantages

	3.7 Lessons Learned
	3.8 Open Questions
	3.9 Summary

	4 Related Work: Task Detection
	4.1 Introduction
	4.2 Task Detection in Emails
	4.3 Task Detection in Web Browsers
	4.4 Task Detection on the Computer Desktop
	4.4.1 ActivityExtractor
	4.4.2 APOSDLE Task Predictor
	4.4.3 Dyonipos Task Recognizer
	4.4.4 Smart Desktop
	4.4.5 SWISH
	4.4.6 TaskPredictor1
	4.4.7 TaskPredictor2
	4.4.8 Task Switch Detection Approach by Nair et al. in 2005

	4.5 Discussion about existing Task Detection Approaches
	4.6 Summary

	5 Ontology-Based Task Detection Approach
	5.1 Introduction
	5.2 Training Instance Construction
	5.3 Feature Engineering
	5.3.1 Standard Text Preprocessing Steps
	5.3.2 Action Feature Category
	5.3.3 Application Feature Category
	5.3.4 Content Feature Category
	5.3.5 Ontology Feature Category
	5.3.6 Resource Feature Category
	5.3.7 Switching Sequence Feature Category

	5.4 Summary

	6 Prototyping
	6.1 Introduction
	6.2 First Prototype - Dyonipos
	6.3 Second Prototype - KnowSe
	6.3.1 Architecture

	6.4 Context OBservation Evaluation Toolkit (COBET)
	6.4.1 Architecture

	6.5 UICO-based Applications
	6.5.1 User Interaction Context Visualization
	6.5.2 User Interruptibility
	6.5.3 Context-Aware Proactive Information Delivery

	6.6 Summary

	7 Evaluation of the Ontology-Based Task Detection Approach
	7.1 Introduction
	7.2 Evaluation Methodology
	7.2.1 Experiment Design and Dataset Collection
	7.2.2 Level of Training/Class Instance Construction
	7.2.3 Performance Measurements

	7.3 Performance Evaluations
	7.3.1 Learning Algorithms
	7.3.2 Attribute Selection
	7.3.3 Algorithm Evaluation Methods
	7.3.4 Algorithm Performance
	7.3.5 Dominance Matrices and Significance Tests

	7.4 Laboratory Experiment 1 - Know-Center GmbH.
	7.4.1 Experiment Design
	7.4.2 Research Question: Can the task model of the task instances be automatically detected?
	7.4.3 Research Question: Can task models of task instances from personal workstations be detected based on laboratory task executions for training the classifier?
	7.4.4 Research Question: Can task models of task instances from personal task executions be detected based on predefined standard task executions for training the classifier?
	7.4.5 Research Question: Is there a difference in automatically detecting tasks on a laboratory computer or on a personal workstation?
	7.4.6 Research Question: Can the type of task be automatically detected when distinguishing routine and knowledge-intensive tasks?
	7.4.7 Research Question: Can the task model of a task instance be automatically detected based on task instances from only one expert user?
	7.4.8 Research Question: Can the task model of a task instance of a single user be automatically detected based on task instances from multiple expert users?
	7.4.9 Finding the Best Features/Feature Categories
	7.4.10 Finding the Best Learning Algorithms
	7.4.11 Concluding Remarks

	7.5 Laboratory Experiment 2 - Computer Science Students
	7.5.1 Experiment Design
	7.5.2 Research Question: Can the task model of the task instances be automatically detected?
	7.5.3 Research Question: Can the task models of the task instances from personal task executions be detected based on predefined standard task executions for training the classifier?
	7.5.4 Research Question: Can the task model of the task instances be automatically detected when evaluating routine and knowledge-intensive tasks separately?
	7.5.5 Research Question: Can the type of task be automatically detected when distinguishing routine and knowledge-intensive tasks?
	7.5.6 Finding the Best Features/Feature Categories
	7.5.7 Finding the Best Learning Algorithms
	7.5.8 Concluding Remarks

	7.6 Laboratory Experiment 3 - Computer Science Students
	7.6.1 Experiment Design
	7.6.2 Research Question: Can the task model of a task instances be automatically detected?
	7.6.3 Research Question: Can the task models of analytic task instances be automatically detected?
	7.6.4 Research Question: Can the task models of synthetic task instances be automatically detected?
	7.6.5 Research Question: Can the analytic and the synthetic knowledge-intensive task models of the task instances be automatically detected?
	7.6.6 Finding the Best Features/Feature Categories
	7.6.7 Finding the Best Learning Algorithms
	7.6.8 Concluding Remarks

	7.7 Concluding Remarks and Open Questions
	7.7.1 Discussion about the Proposed Ontology-based Task Detection Approach
	7.7.2 Best Generalizing Context Features
	7.7.3 Best Generalizing Classifiers
	7.7.4 Detectability of Types of Tasks
	7.7.5 Comparison with Related Work
	7.7.6 Open Questions

	7.8 Summary

	8 Conclusion and Future Work
	8.1 Assessment
	8.1.1 Automatic User Context Detection
	8.1.2 Automatic Task Detection
	8.1.3 Generalizability
	8.1.4 Discussion about Value and Effort

	8.2 Future Work
	8.2.1 Scaling of the Ontology-based Task Detection Approach
	8.2.2 Real-Time Task Detection on the Computer Desktop
	8.2.3 Better Support for Work-Integrated Learning
	8.2.4 Better Support for Personal Information Management
	8.2.5 Better Support for Information Retrieval
	8.2.6 Better Support for Computer-Supported Collaborative Work

	8.3 Summary
	Bibliography
	8.4 Task Models of the Laboratory Experiment 1
	8.4.1 [Task 1] Filling in the official journey form
	8.4.2 [Task 2] Filling in the cost recompense form for the official journal
	8.4.3 [Task 3] Creating and handing in an application for leave
	8.4.4 [Task 4] Planning an official journey
	8.4.5 [Task 5] Organization of a project meeting

	8.5 Task Models of the Laboratory Experiment 2
	8.5.1 [Task 1] Register for an examination
	8.5.2 [Task 2] Finding course dates
	8.5.3 [Task 3] Reserve a book in the university's library
	8.5.4 [Task 4] Course Registration
	8.5.5 [Task 5] Algorithm programming
	8.5.6 [Task 6] Prepare a scientific talk
	8.5.7 [Task 7] Plan a study trip

	8.6 Task Models of the Laboratory Experiment 3
	8.6.1 [Task Analytic 1] Task Classify
	8.6.2 [Task Analytic 2] Task Diagnose
	8.6.3 [Task Analytic 3] Task Assess
	8.6.4 [Task Analytic 4] Task Predict
	8.6.5 [Task Synthetic 1] Task Design
	8.6.6 [Task Synthetic 2] Task Assign
	8.6.7 [Task Synthetic 3] Task Plan
	8.6.8 [Task Synthetic 4] Task Schedule

