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Abstract (English) 
 

Platinum and copper along with their alloys have been used in a broad range of 

applications like jewellery, coinage, electrical and electronic devices and many others. 

Their thermophysical properties such as density, heat capacity, thermal conductivity and 

surface tension play an important role in casting processes and are required as input data 

for casting simulation. The goal of this work is to investigate these properties by different 

methods and to simulate and predict these properties through modeling. Platinum, copper 

and six platinum alloys namely: Pt95Co05, Pt95Ru05, Pt96Cu04, Pt68Cu32, Pt50Cu50 

and Pt25Cu75 were investigated within this work by pulse heating technique and 

compared with the results of fem Schwaebisch Gmuend, Germany by DSC and 

dilatometry, respectively. 

The pulse heating technique delivers thermophysical properties of electrically conducting 

materials in the solid and the liquid phase. Samples are resistively volume heated as part 

of a fast capacitor discharge circuit, heating rates up to 10
8

 K∙s
-1

 are achieved and the 

samples reach the liquid phase about 30 μs after starting the experiment. Time resolved 

electrical measurements with sub-μs resolution allow the calculation of specific heat 

capacity and temperature dependencies of electrical resistivity, enthalpy, and density of 

these alloys in the solid and liquid phases. Thermal conductivity and thermal diffusivity 

as a function of temperature are estimated from resistivity data using the Wiedemann-

Franz-law for temperature regions between several hundreds of degrees below and above 

the corresponding solidus and liquidus temperatures. 

Model calculations for specific heat and thermal conductivities of three alloy series 

(PtCu, FeNi and CuNi) in the solid (up to melting point) and liquid region have been 

performed respectively to get a deeper insight of their thermodynamical behavior based 

on temperature-dependent experimental data obtained by an ohmic pulse heating 

technique. For such calculations it is of special importance to choose model functions 

which are both physically relevant and numerically robust. 

The specific heat at constant volume is calculated for the alloy series including both 

lattice and electronic contribution to it. The lattice contribution is done at high 



temperature using Dulong- Petit law whereas electronic contribution is calculated using 

band structure calculation or Sommerfeld approximation.  

Three different models namely: To, q and η model, are proposed for the prediction of 

effective thermal conductivities of alloy series taking into account the thermal 

conductivities of the constituents, the temperature, and a fit parameter. It is observed that 

the values of the effective thermal conductivity predicted by the models are in agreement 

with the experimentally determined thermal conductivities by the pulse heating technique 

within maximum deviations of 10%. 

 
 

 

 

 

 

 

 



Abstract (Deutsch) 

Platin und Kupfer sowie deren Legierungen werden in einem weiten Anwendungsgebiet 

z.B. in der Schmuckindustrie, für Münzen und für elektronische Bauteile verwendet. 

Thermophysikalische Eigenschaften wie Dichte, spezifische Wärmekapazität, 

Temperaturleitfähigkeit und Oberflächenspannung haben einen wesentlichen Einfluss auf 

Gießprozesse und werden als Eingangsparameter für Gusssimulationen benötigt. Das Ziel 

dieser Arbeit ist es diese thermophysikalischen Eigenschaften experimentell zu 

untersuchen und darüber hinaus mit verschiedenen Modellen diese Eigenschaften auch 

vorherzusagen. Platin, Kupfer und sechs Platin Kupfer Legierungen: Pt95Cu05, 

Pt95Co05, Pt96Cu4, Pt68Cu32, Pt50Cu50 und Pt25Cu75 wurden in dieser Arbeit mit 

Hilfe der Ohm´schen Pulsheiztechnik untersucht und die Ergebnisse mit DSC und 

Dilatometriemessungen, durchgeführt am fem in Schwäbisch Gmünd, Deutschland, 

verglichen. 

Die Pulsheiztechnik liefert thermophysikalische Eigenschaften von elektrisch leitenden 

Materialien in fester und flüssiger Phase. Die Proben werden durch den elektrischen 

Widerstand volumsgeheizt und sind ein Teil eines schnellen 

Kondensatorentladungskreises. Mit Heizraten von 10
8
 K/s werden die Drahtproben 

innerhalb von 30 µs nach dem Start des Experiments bis in die flüssige Phase geheizt. 

Zeitaufgelöste elektrische Messungen mit sub-µs Zeitauflösung von Strom und Spannung 

erlauben die Ermittlung spezifischer Wärmekapazität, elektrischem Widerstand, 

Enthalpie und Dichte der obengenannten Proben ab Funktion der Temperatur in der 

festen und der flüssigen Phase. Wärmeleitfähigkeit und Temperaturleitfähigkeit als 

Funktion der Temperatur werden mit Hilfe des Wiedemann-Franz Gesetzes aus den 

elektrischen Daten in einem Temperaturbereich unterhalb und oberhalb des Schmelzens 

abgeschätzt.  

Modellrechnungen für spezifische Wärmekapazität und Temperaturleitfähigkeit für 3 

Serien von Legierungen (PtCu, FeNi und CuNi) im festen bis zum Schmelzen und in der 

flüssigen Phase basierend auf den experimentellen Daten wurden durchgeführt. Für 

solche Berechnungen ist es besonders wichtig Modellfunktionen zu wählen die einerseits 

physikalisch relevant und andererseits numerisch robust sind. 



Die spezifische Wärmekapazität bei konstanten Volumen wird für diese Legierungen 

berechnet wobei sowohl Gitter als auch elektronische Beiträge berechnet werden. Der 

Gitterbeitrag wird bei hohen Temperaturen abgeschätzt unter Verwendung des Dulong-

Petit Gesetzes, die elektronischen Beiträge werden abgeschätzt über 

Bandstrukturrechnungen einerseits und andererseits über die Sommerfeldnäherung. Der 

Unterschied zwischen den experimentell erhaltenen cp Werten und den theoretisch 

erhaltenen cv Werten rührt eventuell von anharmonischen Gittereffekten her. 

Drei verschiedene Modelle und zwar das To, dass q und das η Modell wurden für die 

Vorhersage der thermischen Leitfähigkeiten von Legierungsserien vorgeschlagen, wobei 

dafür die thermischen Leitfähigkeiten der Konstituenten, die Temperatur und ein Fit-

Parameter berücksichtigt wurden. Es wird beobachtet, dass die Werte der durch die 

Modelle vorhergesagten thermischen Leitfähigkeiten in Übereinstimmung mit dem 

experimentell durch die Pulsheizung ermittelten Daten innerhalb von 10% liegt. 



 

Declaration 

This dissertation is submitted to the Institute of Experimental Physics, Graz University of 

Technology, Graz Austria, in partial fulfillment of the requirement for the degree of 

Doctor of Technical Sciences. 

The thesis is entitled: 

Experimental and Theoretical Investigation of Thermophysical 

Properties of Platinum Alloys in the Solid and the Liquid Regions 

written by Shahid Mehmood and has been approved by the Institute of Experimental 

Physics, Graz University of Technology, Graz Austria. 

The final copy of this thesis has been examined by the under signed authority, and find 

that both the content and the form meet acceptable presentation standards of scholarly 

work in the above mentioned discipline. 

 

_________________________________________ 

 

Univ. Prof. Dip.-Ing. Dr. tech. Gernot Pottlacher 

 

Date _______________________ 

 



i 
 

Contents 

 

CHAPTER 1 

Introduction 

Introduction        1 

1.1.  Introduction to Samples      2 

1.2.  Common Properties of the Investigated Alloyed Metals   5 

1.3. Employed Thermophysical Parameters    6 

1.4. Aim of the Present Work       10 

References         11 

CHAPTER 2 

Thermal Conductivity  

Thermal Conductivity       13 

2.1.  Mechanisms of Heat Transfer      13 

2.1.1.  Conduction        14 

2.1.2.  Convection         15 

2.1.3.  Radiation         17 

2.2.  Theory of Thermal Conductivity      19 

2.2.1.  Thermal Conductivity in Insulators     19   

2.2.2.  Thermal Conductivity in Metals and Alloys    21 

2.3.  Heat Conduction Equations       23 

2.4. Prediction of Thermal Conductivity     25 

2.5.  Mixing Law Models       26

 2.5.1.  Weighted Arithmetic Mean Model     26 

2.5.2.  Weighted Harmonic Mean Model     27 

2.5.3.  Weighted Geometric Mean Model     28 

2.5.4.  Extended Maxwell Model      28 

2.6.  Empirical Models       30 



ii 
 

2.6.1.  Asaad’s Model       30 

References         31 

CHAPTER 3 

Specific Heat 

Specific Heat        33 

3.1.  Theoretical background of Specific Heat    34 

3.2.  Sources of the Specific Heat      36 

3.2.1.  Specific Heat from Degree of Freedom    36 

3.2.2.  The Einstein Model       38 

3.2.3.  The Debye Model       39 

3.2.4.  Dulong and Petit law       40 

3.2.5.  Specific Heat from the Density of States    42 

3.2.6.  Lattice cp / cV Corrections      43 

3.2.7.  Heat Capacity of the Valence Electrons    43 

3.3.  Mathematical Derivation      44 

References         47 

CHAPTER 4 

Experimental Method and Technique 

Experimental Method and Technique     48 

4.1. Ohmic Pulse Heating Technique     48 

4.2.  Sample Chamber       49 

4.3.  Pyrometer and Temperature Measurement    52 

4.4.  Pearson Probe and Current Measurement    56 

4.5.  The Voltage Probes and Voltage Drop Measurement  56 

4.6.  CCD Camera and Expansion Measurement    56 

4.7.  Experimental Procedure      59 

4.7.1.  Pre-Experimental Settings/Stages     59 

4.7.2.  Sample Preparation and Measurement Arrangements  59 



iii 
 

4.7.3.  Start of Heating Process      61 

References         64 

CHAPTER 5 

Thermophysical Properties and Data Evaluation 

 Thermophysical Properties and Data Evaluation   65  

5.1.  Hotwire program       65 

5.1.1.  Voltage Correction       66 

5.1.2.  Temperature Determination via Melting Plateau   68 

5.2.  Data Evaluation       69 

5.2.1.  Specific Enthalpy       70 

5.2.2.  Heat of Fusion/ Latent Heat of Fusion    72 

5.2.3  Specific Heat Capacity      72 

5.2.4.  Density        73 

5.2.5.  Expansion/Temperature Coefficient of Expansion   74 

5.2.6.  Electrical Resistivity       74 

5.2.7.  Temperature Coefficient of Resistance    75 

5.2.8.  Thermal Conductivity       76  

5.2.9.  Thermal Diffusivity       77  

References         78 

CHAPTER 6 

Experimental Results and Discussions 

 Experimental Results and Discussions    80 

6.1.  Enthalpy, Isobaric Heat Capacity and Heat of Fusion  80 

6.2. Electrical Resistivity and Temperature Coefficient of Resistance 81 

6.3.  Density and Coefficient of Thermal Expansion   81 

6.4.  Thermal Conductivity and Thermal Diffusivity   83 

6.5.  Specific Heat at Constant Volume     83 



iv 
 

References         99 

CHAPTER 7 

Prediction of Effective Thermal Conductivity λ, as a Function of Temperature 

 Prediction of Effective Thermal Conductivity λ, as a Function of 

Temperature        100 

7.1.  Proposed Models       100 

 7.2. T0-Model        105 

7.3. q-Model        112 

7.4. η-Model        120 

 Conclusion        123 

References         124 

CHAPTER 8 

Specific Heat Modeling at High Temperature 

 Specific Heat Modeling At High Temperature   125 

8.1.  Platinum-Copper Alloys      125 

8.2.  Copper-Nickel Alloys       135 

8.3.  Iron-Nickel Alloys       140 

Conclusion        148 

References         149 

CHAPTER 9 

Derived Relation of Bulk Modulus 

9.  Derived Relation of Bulk Modulus     150 

References         157 

 



v 
 

CHAPTER 10 

Uncertainty Analysis 

10.  Uncertainty Analysis        158 

References         161 

Conclusion           162 

Acknowledgement          164 



1 
 

Chapter 1 

Introduction 

In the last few decades, metal and alloy industry has enhanced its effort to improve 

product quality and raise production processes. In particular, casting and moulding 

processes have been improved tremendously. Fast computers and finite-element casting 

simulations are commonly used for better understanding and control of the solidification 

process of metals. The success of these numerical simulations is dependent on the precise 

knowledge of thermophysical properties of metals and alloys. Thermophysical properties, 

such as thermal conductivity, thermal diffusivity, specific heat or density change in the 

solid, liquid, or mushy zones, are important parameters for the accuracy of casting 

simulations. These properties are well known for many pure metals, but not for the 

innumerable different alloys. For most alloys, thermophysical properties cannot be found 

in literature. Therefore, measurements have to be carried out in order to achieve the 

highest possible accuracy of numerical simulations.  

Two different techniques have been used to measure thermophysical properties of Pt 

alloys to support and develop models for the casting industry. The first one is a 

conventional steady state technique at fem, Schwaebisch Gemünd Germany and other is a 

pulse heating technique at TUG Graz, Austria. At fem DTA and dilatometric 

measurements were performed with a Netzsch STA 449C and Netzsch DIL 402C with a 

heating rate of 20 K/min and 5 K/min respectively from room temperature to a maximum 

temperature of about 1600 K. The results are extended by both techniques and compared. 

The electrical pulse heating technique has been used to measure thermophysical 

properties of a wide range of electrically conducting elements in the solid and liquid 

states. With this technique, better results have been obtained for both pure metals as well 

as for alloys of technical interest.  

The dynamic technique was used because static techniques, which are capable of greater 

precision, fail at high temperatures. Compared to steady-state or quasi-steady-state 

techniques, the dynamic technique has a number of advantages to offer, particularly at 

higher temperatures and in the liquid state. This is where problems such as increased heat 

transfer, chemical reactions, evaporation, loss of mechanical strength, etc. may have a 
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significant impact on the quality of the acquired data. These limitations can be overcome 

by making the experimental measurement duration short enough. Despite the high 

heating rate (on the order of 10
8
 K·s

-1
), the measured results agree well with data obtained 

by static and quasistatic methods.  

The data obtained by our measurements are of great interest for the metalworking 

industry, i.e. as input data for computer simulations to model liquid metal processing 

operations such as casting or welding. The data are used to understand and design 

processing equipment and facilities such as the growth of single crystals from the melt, to 

obtain more accurate phase diagrams, for better assessment of potential accidents in the 

design of safer nuclear reactors, for aerospace techniques, or just for fundamental 

materials research reasons and in jewellery industry.  

Platinum is a precious element and its alloys are commonly used in jewellery. Platinum-

jewellery is usually produced by investment casting starting from wax models. Platinum 

is much more difficult to cast than other jewellery alloys like  silver or gold because of its 

high melting temperature, large shrinkage during freezing, low thermal conductivity, high 

surface tension and high viscosity. As a result, casters are confronted with relatively high 

reject rates. Hence to resolve these difficulties, a detailed study of thermophysical 

properties of solid and liquid platinum and its alloys is done within the present work. 

These thermophysical properties, mainly of the melting transition and the subsequent 

liquid phase will be used as input data for casting simulations. The investigated materials 

are pure platinum, pure copper, PtCu series, PtCo and PtRu, their compositions with the 

corresponding solidus and liquidus temperatures along with their densities are shown in 

Table 1.1. The compositions are given in weight percent as shown in the binary phase 

diagrams of Figure 1.1, Figure 1.2 and Figure 1.3 which are actually redrawn from 

Hansen and calculated by ThermoCalc SNOB1 database [1, 2].  

1.1. Introduction to Samples 

The platinum alloy samples were prepared by vacuum induction melting and casting into 

copper molds. Rods of 3 mm in diameter and a length of 80 mm were prepared and 

drawn to wires of 0.5 mm in diameter. 
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Table 1.1. Properties of investigated alloys. Ts and Tl are solidus and liquidus temperatures and d 

is density at room temperature [3]. 

Metal / Alloy Ts  / K Tl  / K d / kg.m
-3

 

Pt 2042  21450 [4] 

Pt96Cu04 1976 1986 20350 

Pt68Cu32 1639 1686 14742 

Pt50Cu50 1519 1540 12519 

Pt25Cu75 1415 1460 10406 

Pt95Co05 1949 1964 19869 

Pt95Ru05 2013 2025 20720 

Cu 1356 8960 [5] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1. Binary phase diagram (weight percent) of investigated alloys, Pt96Cu04, Pt68Cu32, Pt50Cu50 

and Pt25Cu75 redrawn from Hansen [1]. The vertical dashed lines indicate the compositions and 

corresponding solidus and liquidus values of investigated alloys. 

 
 



4 
 

 

 
 

 

 

 

 

 

 

 

 

 

Figure 1.2. Binary phase diagram (weight percent) of investigated alloy, Pt95Co05 [2]. The vertical dashed 

lines indicate the compositions and corresponding solidus and liquidus values of investigated alloys. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3. Binary phase diagram (weight percent) of investigated alloy, Pt95Ru05 [2]. The vertical dashed 

lines indicate the compositions and corresponding solidus and liquidus values of investigated alloys. 

Weight Percent Cobalt  
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Ru 

Pt 
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1.2. Common Properties of Investigated Alloyed Metals  

Copper, platinum, ruthenium and cobalt have distinct characteristics. Some of the 

prominent properties of these metals are given in the following paragraphs: 

Copper is a versatile metal of reddish-brown colour and a well known transition metal. 

The intrinsic properties of copper such as excellent electrical and thermal conductivity, 

high reflectivity, malleability and ductility make it a good material choice for a wide 

range of industrial applications like jewellery, coinage, decorative elements in 

architecture, electrical and electronic devices, contact paths on electrical circuit boards, 

capacitor components and plating among many others. It can easily be formed into a 

variety of shapes, from ingots to wire, coins, sheets, or rods. It is resistant to weak acids, 

but will dissolve in strong acids. Copper resists better to atmospheric corrosion than iron 

does. Copper, after silver, is an excellent conductor of electricity [6].  

On the other hand platinum is a precious metal and belongs to the group of platinum 

metals. Pure platinum is a high density silvery-whitish lustrous ductile metal with low 

electrical resistivity and comparatively low thermal conductivity. Its crystal structure is 

face-centered cubic (f.c.c.). It is shiny, forge and workable and founds in the crust of the 

earth with a frequency of approximately 0.001 part per million (ppm). Platinum is 

attacked neither by oxygen nor by water and is insoluble in all acids with the exception of 

aqua regia or melted alkalis. Platinum is employed as material in large areas of the 

thermodynamic temperature scale ITS-90 in platinum resistance thermometers. Platinum 

is used in many fields such as in weights and standard measures, in the electronic 

industry it is used for electric contacts which can be exposed to high temperatures and its 

alloys are commonly used in jewellery [7]. 

Ruthenium is a hard transition metal belonging to the platinum group and has a silvery 

white colour with seven isotopes. The most common use of it is to improve certain 

properties of the alloys. When alloyed with gold it increases the stability of gold in the 

jewelry. Ruthenium is very effective in hardening platinum and palladium for making 

electrical contacts which are highly wear resistant. Ruthenium is utilized in the 

production of turbine blades in jet engines. Ruthenium as a catalyst can be used to 

remove hydrogen sulfide from oil refineries. In research on solar energy, ruthenium 

complexes are used because they can absorb light in the entire visible spectrum. One of 

http://en.wikipedia.org/wiki/Jewelry
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the recent important usages of ruthenium is its anti-cancer property. It is more effective 

on certain tumors than the complexes of platinum. It is a very toxic metal and can affect 

human skin very strongly [8].  

Cobalt is a bluish steel-gray coloured brittle metal with many uses in science and 

industry. Pure cobalt is not found in nature, but compounds of cobalt are common. It is 

only malleable when alloyed with other metals. Cobalt possesses natural magnetic 

properties. When alloyed with aluminum, iron and nickel it shows a high coercive force 

(‘‘alnico” metal). Whereas when alloyed with iron it acts as soft magnet, in which cobalt 

increases the Curie temperature and the saturation magnetization of iron. Cobalt is also 

alloyed with 95% platinum for jewelry purposes, producing an alloy that is suitable for 

fine detailed casting which is weakly magnetic.  

Addition of cobalt in an alloy increases the solidus temperature and enhances hot 

hardness and temperature resistance. Alloys of cobalt are offering exceptional hardness 

hence exhibit corrosion and wear resistance and find applications in cutting and 

machining tools. Cobalt alloys are also used for dental prosthetics because of its light 

weight and resistance to corrosion. Its high temperature resistance also makes it a suitable 

material for components of turbochargers. Glass with 0.5% Co is very suitable for camera 

lenses. Alloys of cobalt are well established in high-temperature gas turbine industry, Co-

60 is used as an agent against cancer in radiotherapy (‘‘cobalt therapy”). Longtime 

exposure to cobalt powder may cause allergic reaction and chronic bronchitis. Cobalt is 

an essential element for life on earth, and is important for both humans and animals       

[9, 10]. 

1.3. Employed Thermophysical Parameters 

Thermal Conductivity and Heat Capacity 

There are many situations in design or in process modeling where it would be useful to 

know thermal conductivity and specific heat of the material being used, and how these 

would change as a function of temperature. Despite the broad scientific and technological 

interest, heat capacity and thermal conductivity at very high temperatures are very 

difficult to measure because of experimental problems.  

http://en.wikipedia.org/wiki/Platinum
http://en.wikipedia.org/wiki/Corrosion


7 
 

Thermal conductivity controls the magnitude of the temperature gradients which occur in 

components during manufacturing. In structural components which are subjected to 

thermal cycling, these temperature gradients produce thermal stresses. Thermal 

conductivity controls the size of the desired microstructure, since transformation depends 

on cooling rate and temperature.  

Thermal conductivity depends upon many factors such as the thermal conductivities of 

constituent phases, their corresponding volume fractions, the contact areas, distribution 

within the medium, the shape of particles and the type of packing.  

Thermal conductivity of alloys is modeled in this research work in terms of easily 

measureable parameters. Three different models namely: T0-model, q-model and            

η-model are proposed for the prediction of effective thermal conductivities of binary 

alloy series as a function of temperature, while taking into account the thermal 

conductivities of the constituents and a fit parameter. 

A suitable model of thermal conductivity should help to improve the design of material 

and the understanding of heat treatment, solidification and welding processes, design of 

material structures and components, and prediction of thermo-mechanical fatigue. Some 

models are primarily intended to reproduce known data. In other cases the purpose is to 

make a prediction outside the range of knowledge or to establish details in a physical 

mechanism. Whatever the purpose may be, we would like to know how accurately the 

model can account for the real situation. The original motivation of the author was to 

estimate thermal conductivity of a range of alloys in the liquid region of the material. The 

models presented here are developed using a previously developed model that was used 

for non conducting materials but here it has been modified for conducting materials like 

metals and alloys. 

An exact theoretical estimation of the high temperature heat capacity of transition metals 

has largely been lacking. It has been called into question recently whether such 

estimation in terms of existing theories of electrons and lattice vibrations is at all 

adequate. In fact, the analysis is difficult because simple analytic models give a linear 

temperature dependence of the electronic heat capacity and the low-order anharmonic 

effects, which are insufficient at high temperatures. Furthermore, experimental data are 

uncertain near the melting temperature, and are sometimes not sufficient. Despite all of 
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this, experiments have improved considerably during the last decade. For example, the 

uncertainty in the experimentally determined cp values of many transition metals in the 

liquid region is less than 5%, and also data on the bulk modulus and the thermal 

expansion are available accurately enough to use for a meaningful analysis.  

Theoretical models are usually concerned with a fixed volume Vo (volume at 298 K), thus 

nullify the effects due to the thermal expansion. The quantity cv is generally evaluated by 

subtracting a term from cp that accounts for the expansion of the solid. In this work we 

shall specifically be concerned with specific heat at fixed volume Vo of some transition 

metals, up to their melting temperature. We selected PtCu, FeNi and CuNi series, shown 

in Table 1.1, Table 1.2 and Table 1.3 for model calculation and compared them with their 

experimentally evaluated cp values. To estimate lattice contribution in the high temperate 

range, Dulong-Petit law is applied. Whereas electronic contribution is done by electron 

density of states (DOS) determination applying band structure calculations. The shape of 

the electron density of states of the solid (bcc) phase, with a deep and broad minimum 

around the Fermi level, stabilizes the solid relative to the liquid and pushes up the 

melting temperature.  

Speed of Sound and Bulk Modulus 

The speed of sound is an important thermodynamic parameters and accurate 

measurements of the speed of sound c can be used to study the equation of state of a 

fluid. Conventionally, knowledge of the equation-of-state is obtained from (p, V, T) 

measurements which inherently have a number of significant systematic errors, some but 

not all of which may be reduced by more sophisticated experimental techniques [11]. The 

speed of sound information may be utilized to evaluate any proposed form of equation of 

state or assist in the optimization of an existing (p, V, T) surface for a particular 

application. Several different techniques for measurement of c in the fluid phase have 

been evolved. In this work, speed of sound measurements from Hixson et al has been 

exploited to evaluate many additional thermodynamics properties such as: adiabatic bulk 

modulus, adiabatic compressibility, specific heats ratio, isothermal bulk modulus, 

isothermal compressibility, Grüneisen gamma and specific heat at constant volume [12].  

It is well known that adequate knowledge of the temperature dependence of the bulk 

modulus BT(T) is necessary for understanding the thermodynamic and anharmonic 
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properties of the crystal. Recently, many researchers have made various efforts to exploit 

thermodynamic properties of materials under the effect of high temperatures [13-15]. In 

these studies, thermodynamic properties such as the temperature dependence of the 

volume thermal expansivity and bulk modulus of materials from room temperature to the 

melting temperature with different approximations are considered. In the present work, a 

relation is derived for the bulk modulus which can be obtained from pulse heating data 

and that relation can also be used to estimate internal energy and work done on / by the 

sample material if the bulk modulus is known. 

Table 1.2. Properties of the investigated alloys, mass-fraction of iron (other constituent is nickel) 

determined by means of EDAX 111, sum of impurities (P, S, Si, C etc.) less than 0.5%. Ts and Tl 

are solidus and liquidus temperatures and d is density at room temperature [16]. 

No.  Mass % Fe  Ts  / K  Tl  / K d / kg∙m
-3

 

1  0   1726   8900  

2  18.6  1712   17I5  8734  

3  41.7  1707   1710  8583  

4  48.5  1709   1715  8328  

5  62.7  1717   1727  8000  

6  79.9  1740   1755  8038  

7  89.0  1763   1777  8150  

8  100   1808   7850  
 

Table 1.3. Properties of investigated alloys, mass fraction of copper (other is Ni). Ts and Tl are 

solidus and liquidus temperatures and d is density at room temperature [17]. 

No. Mass % Cu Ts  / K  Tl  / K d / kg∙m
-3

 

1 0  1726  8900 

2 85 1417  1447 8913 

3 70 1472  1520 8965 

4 55 1528  1576 8902 

5 45 1599  1638 8945 

6 20 1656  1678 8953 

7 100  1356  8960 
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1.4. Aim of the Present Work  

The primary aim of this work is to investigate and compare the thermophysical properties 

of Pt alloys by different techniques and support casting industry by delivering them input 

data for casting simulations. The secondary aim is to perform model calculations, such as 

determination of thermal conductivity in terms of easily measurable parameters for 

example temperature, thermal conductivity of constituents of binary alloy in liquid phase 

with the addition of some empirical coefficient, exponent or adjustable parameter; whose 

value can be determined through the application of regression analysis to laboratory data. 

To determine theoretically the heat capacity of experimentally investigated alloys in high 

temperature region close to the solidus points using existing theories and models is 

another aim of this work. 
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Chapter 2 

Thermal Conductivity 

The knowledge of thermophysical properties of metals as a function of temperature has 

become important with the widespread interest in thermal processes. Precise 

measurements of the thermal conductivity of alloys are difficult to make and are very 

time-consuming. To make laboratory measurements into a useful, simple mathematical 

form of interest which can be used under all environmental conditions of temperature and 

pressure would be prohibitive in terms of time and expense. Consequently, a lot of effort 

has been made to formulate a simple physical model for the prediction of thermal 

conductivities of binary alloys. The objective of this work is to develop a model for the 

determination of the thermal conductivity of alloys as a function of temperature and in 

terms of simple parameters. Before going into elaborative discussion, it is quite 

reasonable to discuss the heat transfer mechanism and different factors involved in the 

thermal conductivity process. 

2.1. Mechanisms of Heat Transfer  

Thermodynamics defines heat as a transfer of energy across the boundary of a system as 

a result of a temperature difference. According to this definition, heat by itself is an 

energy transfer process and it is therefore redundant to use the expression „heat transfer‟. 

Heat has no option but to transfer and the expression „heat transfer‟ reinforces the 

incorrect concept that heat is a property of a system that can be „transferred‟ to another 

system. Heat is the transfer of energy due to a temperature gradient; mechanisms of heat 

transfer are possible under certain circumstances and can be divided into three categories: 

conduction, convection and radiation [1]. In many cases, these three modes of heat 

transfer happen in the same time but it is important to differentiate them for better 

understanding. A brief description of each mechanism is given below [2]. 
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2.1.1. Conduction 

In a conduction process heat transfers by direct contact at the molecular level from the 

more energetic particles of a substance to the adjacent less energetic ones as a result of 

interactions between the particles. Conduction can take place in solids, liquids or gases 

but in gases and liquids conduction is due to the collisions and diffusion of the molecules 

during their random motion. When a fast molecule hits a slow molecule, the energy is 

transferred from the former to the latter. In case of solids, it is due to the combination of 

vibrations of the molecules in a lattice and the energy transport by free electrons. In 

metals, at high temperature, lattice vibrations are much less efficient than electrons. 

Regardless of these details, the rate of heat conduction obeys a mathematical law that is 

not hard to guess [3].  

According to this law, the rate of heat conduction 
dQ

dt
 through a material is proportional 

to the temperature difference dT across the material and the heat transfer area A, but is 

inversely proportional to the thickness dx of the material. That is:  

                 
dQ dT

A
dt dx

                                               (2.1)   

The constant of proportionality  is called thermal conductivity of the material and is 

defined as, “The rate of heat transfer through a unit thickness of material per unit area per 

unit temperature difference‟‟. The equation (2.1) is called, “Fourier‟s law of heat 

conduction” after J. Fourier, who expressed it for the first time in his heat transfer text in 

1822. The thermal conductivity λ, is characterized as an ability of a substance to conduct 

heat, which in turn is dependent on the atomic structure of the substance. Thermal 

conduction can involve electrons, ions, and/or phonons. Electrons and ions move from a 

point of higher temperature to a point of lower temperature, thereby transporting heat. 

Due to the lighter weight of electron than ions, electrons move much more easily. In 

crystals, the thermal agitation of atoms creates spontaneously vibrational waves and the 

amplitude of these waves increases as the temperature rises, these elastic waves are called 

phonons in the Einstein model. Einstein postulated the creation and existence of phonons 

at a large amount in the hot part of a solid, these phonon are partially eliminated in the 
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cold part. He also postulated their wave-particle duality. For a lattice such as one defined 

by a metal or a crystal, the vibration waves at a certain frequency υ and at temperature T 

give the energy state of the phonon: E = h υ, where h is the Planck constant. Energy 

transport can be thought as a consequence of a series of phonon collisions, in these 

collisions, energy is transferred between phonons by changes in the vibration frequency. 

Between two successive collisions of a phonon, the phonon traverses some random 

distances and the algebraic mean of these distances is thus defined as the mean free path 

l. The longer the mean free path, the faster the energy can be transmitted and hence the 

greater the thermal conductivity would be. Metals conduct heat and electricity by 

electrons because they have plenty of free electrons. A nonmetal like diamond conducts 

heat by phonons because it does not have free electrons and its low atomic weight 

intensifies the lattice vibrations. Usually, electrons provide the best heat transfer via 

conduction and therefore normally good thermal conductors are also good electrical 

conductors. For example, typical λ(T) values in metals are hundreds times higher than in 

that of nonmetals like solids, liquids and gases [4].  

2.1.2. Convection  

In a fluid (liquid and gas), the transfer of heat occurs due to the bulk motion of a fluid and 

this leads to a more complex situation which is called convection. Convection is the 

mechanism of heat transfer between a solid surface and the adjacent liquid or gas which 

is in motion. The whole process has combined effects of conduction and convection.  

The rate of convection depends on the heat capacity of the fluid and some possible forces 

acting on it. Newton‟s law of cooling describes the rate of heat transfer by convection  as 

follows: 

 

                     ( )convec
s

dQ
pA T T

dt
                                                      (2.2)  

 

Where p is the convection heat transfer coefficient in W∙m
-2

∙K
-1

, A is the surface area, 

through which convection heat transfer takes place,  is the surface temperature and  

is the temperature of the fluid which is sufficiently far from the surface. Due to close 
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proximity the fluid temperature on its surface equals the surface temperature of the solid 

at which convection process is being done. The convection heat transfer coefficient p 

does not depend on the fluid but is an experimentally determined parameter whose value 

depends on all the factors influencing convection such as surface geometry, the nature of 

fluid motion, properties of the fluid and the bulk fluid velocity [5]. It is important to note 

here that when  thermal  conductivity  measurements are carried out on liquids,  the  heat  

flux Δ Q  can  have significant  contributions  from  convection  and  gives erroneously  

high  values  for  thermal conductivity (and also for thermal diffusivity). Consequently, it 

is important to control those factors of errors and usually it is done by minimizing 

convection through:   

(i)  Precise control of the sample temperature 

(ii)  Ensuing that the surface temperature of the liquid is marginally higher than the 

base of the sample. 

On the other hand,  most metals  melt  at  very  high  temperatures  and  in  practice  it is 

very difficult  to provide the  necessary precise control of temperature under these 

conditions.  Therefore, new techniques have been developed and used in recent years like 

transient and non-steady state methods to carry out measurements on liquid metals and 

alloys. In these techniques the measurements are carried out so rapidly that the entire 

experiment is done before the onset of convection [6].  

Many different types of convection occur in our daily life,, e.g. if the fluid is forced to 

move by a pump or a blower, then this type of convection is known as forced convection. 

The simplest illustration of this case is the use of the fan: the fan increases the motion of 

air and as a result the convection process increases. If the fluid motion is due to 

difference in density, the convection is known as natural or free convection. An example 

of free convection could be the use of a heater in a room [7]. 
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2.1.3. Radiation  

The emission of energy as electromagnetic waves due to changes in the interatomic 

configuration of a body or system is known as radiation. All surfaces/bodies (solids, 

liquids and gases) emit or absorb radiant heat due to the difference in temperature from 

their surroundings. If the bodies are separated by empty space then the only possible heat 

transfer mechanism is radiation/electromagnetic waves. Unlike conduction and 

convection, the transfer of energy by radiation does not require the presence of an 

intervening medium. In fact, energy transfer by radiation is fastest (at the speed of light) 

and it suffers no attenuation in a vacuum [3]. For these emitted radiation the dominant 

wavelength decreases with increasing temperature of the body. The higher the 

temperature is, the greater the rate of emission of radiant energy per unit area of the 

surface. Radiation is a volumetric phenomenon and all solids, liquids and gases emit, 

absorb or transmit radiation to varying degrees. However, in solids, radiation is usually 

considered to be a surface phenomenon because the radiation emitted by the interior 

regions of solid materials can never reach the surface and are absorbed internally, 

whereas  the radiations incident on such bodies are usually absorbed within a few 

microns from the surface. The maximum rate of radiation that can be emitted from a 

surface at an absolute temperature is given by Stefan-Boltzmann law as:  

 

                    4max
s

dQ
AT

dt
                                                                     (2.3)  

Where σ = 5.67×10
-8

 

W∙m
-2

∙K
-4

, is the Stefan-Boltzmann constant. The ideal surface that 

emits radiation at this maximum rate is called a black body, and the radiation emitted by 

a black body is called black body radiation. The radiations emitted by all real 

surfaces/bodies are less than the radiations emitted by a black body at the same 

temperature and the modified relation for them can be expressed as:  

 

                    4max
s

dQ
AT

dt
                                                              (2.4)  
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Where ε, is the emissivity of the real surface and the ratio of the actual emissive power E 

of a body to the emissive power of a blackbody E
blackbody

 is defined as the surface 

emissivity ε = E / E
blackbody

. The emissive property, whose value is in the range 0 ≤ ε ≤ 1 

is a measure of how close the real surface is to a black body whereas for a black body      

ε = 1 [5]. The following Table 2.1 presents some values of emissivity for different 

materials in a different range of temperature. It is seen experimentally that the blacker a 

material is, the closer its emissivity to 1. The emissivity also depends on roughness and 

the oxidation state of the material.  

The prevention and control of radiation is more difficult than that of convection and 

conduction. The most effective way, in general, against radiation is to set a radiation 

shield mirror around the sample. A radiation shield is a material of high thermal 

conductivity which is in thermal contact with the fixture. This shield cannot, however, be 

perfect and the heat loss by radiation must be taken into account.  

Table 2.1. Emissivity data for material in different states [4].  

MATERIAL °C EMISSIVITY 

G-10 Epoxy Resin --- 0.95 

Glass 20-100 0.94-0.91 

Carbon:   

Filament 1000-1400 0.53 

Graphite 0-3600 0.7-0.8 

Lamp Black 20-400 0.96 

Soot Applied to Solid 50-1000 0.96 

Soot with Water Glass 20-200 0.96 

Aluminum:   

Polished 50-500 0.04-0.06 

Rough Surfaces 20-50 0.06-0.07 

Strongly Oxidized 55-500 0.2-0.3 

Oxidized 200 0.11 
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2.2. Theory of Thermal Conductivity  

A flow of heat occurs wherever there is a thermal gradient in a crystal in a direction 

opposite to that of the gradient. So if there is a thermal gradient 
dT

dx
  along the x-direction 

and Jx is the resulting heat flux density then: 

            
x

dQ dT
J

Adt dx
                                                            (2.5) 

Equation (2.5) shows that the process of thermal energy transfer is a random process [8]. 

The energy transfer process is not so simple like the entrance of heat energy from one end 

of the specimen and proceed directly in a straight path to the other end, instead, the 

energy diffuses through the specimen, suffering frequent collisions. If energy would be 

transmitted directly through the specimen without deflection, then the expression for 

energy transfer would only dependent on difference in temperature ΔT  between the two 

ends of the specimen regardless of the length of the specimen. But the actual expression, 

due to the random nature of the conductivity process, for the thermal flow includes 

temperature gradient and mean free path. The heat, as discussed earlier, may be 

propagated in the materials by several independent agents in metal, for example, the heat 

is carried both by electrons and by lattice waves (phonons). These electrons provide an 

additional contribution to the thermal conductivity, which can therefore be much greater 

than in non–metals in which only phonons contribute [9]. However, in poor metals such 

as bismuth or in metals containing large amount of impurities (alloys), the lattice 

conductivity may be important. Since there are no mobile electrons in insulators, so heat 

is transmitted entirely by phonons.   

2.2.1 Thermal Conductivity in Insulators   

A theory of thermal conductivity by phonons in insulators was developed in 1914 by 

Debye. Debye argued that the thermal conductivity by phonon can be expressed as:  

  
1

3
v phc l v                                                               (2.6) 
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Where λ is the thermal conductivity, vph
 
is the mean thermal speed of phonon cv

 
is the 

heat capacity at constant volume l is the mean free path between randomized collisions. 

This expression is derived though for an ideal Maxwell-Boltzmann gas, but it is also 

good for a gas of phonons by providing that the velocity vph
 
is referred to an average 

phonon velocity in the crystal. The problem of determining the lattice thermal 

conductivity is essentially the determination of the mean free path l of phonon in the 

crystal because the sound velocity and the specific heat are comparatively easily 

measurable. It has been seen that thermal conductivity depends strongly on temperature 

because the mean free path l depends strongly on temperature, whereas the phonon 

velocity vph
 
is found to be essentially insensitive to temperature. 

The mean free path l is determined by three important collision processes in solids;  

(a) The collision of phonons with other phonons.  

(b) The collision of phonons with imperfections in crystal such as impurities and   

dislocations.  

(c) The collision of phonons with the external boundaries of the sample.  

By considering the collision of type (a) where the phonon scatters from each other due to 

anharmonic interaction; this collision becomes particularly important because at high 

temperature the atomic displacements are quite large. In that particular range of 

temperature, the mean free path is inversely proportional to temperature that is l ≈ 1/T. 

Since the larger the temperature is, the greater the number of phonon collisions with the 

other phonons would be. Defects, impurities and crystal imperfections also scatter 

phonons because they partly demolish the ideal periodicity and affect on the free 

propagation of lattice wave. For example, a substitutional point impurity, having a mass 

and a density greater than that of the host atom, causes scattering of the phonon wave at 

the impurity site that results in a shorter mean free path and hence less thermal 

conductivity.  

Both phonon-phonon and phonon-imperfection collisions become ineffective at very low 

temperatures, because in the former case, there are only a few phonons available, and in 

the latter case, the few phonons which are roused at this temperature are associated with 

long wavelength. So these are not effectively scattered by impurities, which are much 

small in size than the wavelength. In the low temperature regime, the main scattering is 
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the external boundary of the specimen; which is commonly called size or geometrical 

effects. This mechanism becomes effective because the wavelengths of the excited 

phonons are very long comparable, in fact, to the size of specimen. The mean free path 

here is: l ≈ D, where D is approximately equal to the diameter of the specimen; and hence 

independent of temperature.  

The only temperature dependant term on the right of the above equation is cv, the 

volumetric heat capacity, which varies as 3T
 

at low temperatures. We may therefore 

expect the thermal conductivity to vary as  3T , at low temperature [3].  

2.2.2. Thermal Conductivity in Metals and Alloys  

As mentioned earlier, lattice waves and electrons play a fundamental role for thermal 

conduction in metals and alloys. Also it has been proved experimentally  that electronic  

conduction  is  dominant  around  the  melting  point  although  the mechanism  of  

phonon  or  lattice  conduction  can  make  a contribution at  lower temperatures. In  

many practical cases, electrical  conductivity  e  or  electrical  resistivity 1/e    

measurements  are  much  easier to measure  than  the  determination  of  the  thermal  

conductivity λ  itself. Therefore a relationship is required which correlates these two 

quantities properly. The  main  advantage  of  expressing  λ   in  terms  of  e   is that both 

quantities  are  directly  proportional  to  the  electron  mean  free  path l and hence  the  

ratio λ /e   is independent  of the mean  free  path l.  The mean free path l is assumed to 

be the same for electrical and for thermal conduction, although, this is definitely not 

always true, difference in these two is important mainly at low temperatures where 

electron scattering is inelastic and anisotropic. Interactions between phonons and 

electrons determine the thermal conductivity in a pure metal. In alloys additional lattice 

distortions by alloying elements cause similar disturbances. Both thermal and electrical 

conductivity rely on electron transport and behave analogously, and in the ideal case 

these two are related by the well known equation, Wiedemann–Franz law: 

                   
e

L
T




                                                           (2.7) 
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where  L  is  the  Lorentz  number,  λ  is  thermal  conductivity,  e  is  electrical  

conductivity  and  T is temperature. Table 2.2 shows the validity of the WFL for higher  

(> 273 K) temperatures, although the electrical conductivity values are differing in the 

range of 10
2
. Unfortunately, values of Lorentz number for different materials and 

theoretical estimated values are not exact the same, which leads to an uncertainty while 

using the WFL because WFL does not include the lattice contribution in conduction. 

(which is dominant at low temperatures). Commonly used value of Lorentz number L is 

2.45•10
8
. Table 2.2 shows the failure of the WFL in the low temperature range [6]. 

 

Table 2.2.  Electrical conductivities e and Lorentz numbers L for different metals at different 

temperatures [10]. 

 
Electrical conductivity , e•10

-5
 / 

-1 

∙cm
-1

 

Lorentz  number  L•10
8
 / V

2 
∙K

-

2
 

Temperature / K 80 273 373 573 80 273 373 573 

Silver 32.5 6.70 4.76 2.97 1.77 2.28 2.36 2.41 

Copper 43.6 6.45 4.50 2.79 1.56 2.24 2.35 2.37 

Gold 20.6 4.90 3.51 2.20 2.03 2.35 2.36 2.42 

Aluminum 28,8 4.15 2.86 1.80 1.11 2.03 2.11 2.13 

Zinc 9.90 2.08 1.47 0.890 1.70 1.90 1.92 1.96 

Nickel 9.30 1.65 0.990 0.452 1.68 1.95 2.28 2.43 

Platinum 4.95 1.02 0.733 0.476 2.00 2.55 2.60 2.75 

Lead 2.02 0.532 0.375 0.224 2.33 2.31 2.40 2.62 
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To testify  the validity of the WFL relation, ratios of the experimental to theoretical 

values for the Lorenz function (L/L
0
),  were evaluate for temperatures close to the melting 

point and it was found close to unity for most metals and the small deviations seen may 

be due to uncertainties of measurement. For some metals fairly large disagreement from 

the theoretical Lorenz number were found and attempts to modify the WFL relation were 

made at lower temperatures. Even larger discrepancies have been observed when using 

the WFL relation for alloys, because electron-electron interactions, electron-phonon 

interactions, as well as lattice contributions, need to be considered. These effects 

disappear at melting due to destruction of crystal structure and the WFL becomes a 

reasonable tool for determining thermal conductivities for liquid metals and alloys [11]. 

2.3. Heat Conduction Equations  

In the case of an isotropic medium the heat flux, J


 (dQ/Adt), through an unit area is given 

as: 

  TJ 


  (2.8) 

where T


 is the temperature gradient. Here J


 and T


 are collinear, but in the case of 

an anisotropic medium J


 and T


 are not collinear. We consider an arbitrary volume V of 

a homogeneous isotropic solid within which no heat is being generated. If the temperature at 

any point (x, y, z) at the time t is T (x,y,z) then the total flux of heat, or quantity of heat 

leaving a surface S enclosing the volume V, per unit time is: 

 

   ds T  


    (2.9) 

Using the divergence theorem, we can change the surface integral into a volume integral: 

 

     
v

S

ds T T        
  

   (2.10) 

The amount of heat entering the surface per unit time will be equal to: 
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v

T dv 
 

  (2.11) 

If cp is the specific heat of the solid at constant pressure and d is the mass density then heat 

contained in a volume V is: 

 

 
p

v

c dTdv   (2.12) 

and the increase in specific heat per unit time is: 

 

 
p

v

c dTdv
t



 
= p

v

T
c d dv

t



   (2.13) 

 

Comparing equations. (2.11) and (2.13), we get:    

      

 
 p

v v

T
c d dv T dv

t



  

 
 

  (2.14) 

 

 
  0p

v

T
c d dv T dv

t


 
    


 

  (2.15) 

  

 

Since volume V is arbitrary, the integrand in the last equation is zero; resulting in the general 

equation of heat conduction: 

 
  p

T
T c d

t



  



 
  (2.16) 

If  temperature variations are small and   is almost independent of temperature, then:  

 

 
 2

p

T
T c d

t



 




  (2.17) 
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Which may be written as: 

 

 2 1 T
T

a t


 




  (2.18) 

Where a  is thermal diffusivity.  This is the basic equation of heat conduction for non-steady 

state or transient type measurements. But in steady state, 
T

t




 reduces to zero and, therefore, 

the above equation reduces to the Laplace equation: 

 2

0T 


  (2.19) 

There are numerous methods for the determination of the thermal transport properties of the 

materials. Broadly, we can categorize them into two groups, namely steady state methods 

and non-steady state or transient methods. Both of these methods are based on the solutions 

of the equations (2.18) and (2.19), under proper boundary conditions. Steady state methods 

make use of equation (2.19), whereas non-steady state or transient methods use equation (2.18). 

The steady state methods require time-consuming procedures to set up the experiment as well 

as to establish the steady state temperature gradient, especially in the case of insulating 

materials. Also, it is not possible to determine simultaneously the two thermal properties 

namely thermal conductivity and thermal diffusivity of the material using the steady state 

methods. To overcome these difficulties non steady state methods are utilized to measure 

the thermal transport properties [8].  

2.4. Prediction of Effective Thermal Conductivity  

In general, three basic types of models for the prediction of effective thermal conductivity 

of multi-component systems have been used. The first type connects the application of 

the mixing laws for aggregates containing various fluids. These models have limited 

applicability because these models do not take into consideration the structural features of 

the fluid material. A second type is the empirical model in which more easily 

measureable physical quantities are related to thermal conductivity by regression analysis 

to laboratory data with the addition of certain adjustable parameters, exponents and 

coefficients. This method has its inadequacy in such a way that the resulting model may 
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only be applicable to a particular material being investigated. For example, in two 

separate papers, Sugawara and Yoshizawa have used different exponents for essentially 

two identical sets of experiments on similar materials [12, 13]. The third type is the 

theoretical model based on the mechanism of heat transfer; these models also have 

limited applicability and cannot be used for all types of systems, especially when the 

difference in the thermal conductivities of the constituent phases is very large [14]. A 

universal formulation to predict the effective thermal conductivity is still required.  

2.5. Mixing Law Models 

These laws or models combine values of the thermal conductivities of the one material of 

the alloy solid λA with the thermal conductivity λB of the other constituent [14]. Examples 

of mixing law models are given in the following sections. 

2.5.1. Weighted Arithmetic Mean Model  

When there are two constituents in an alloy with two different thermal conductivity 

values then there is an equal probability for them to be in series or in parallel. Weighted 

arithmetic mean is the equivalent of parallel arrangement of the components relative to 

the direction of heat flow, as shown in Figure 2.1.  

For such an arrangement, the effective thermal conductivity of the sample is given by:  

 

                     (1 )e A B                                                  (2.20) 

 

Where Ф is the weighted percentage of one of the alloy constituent and (1- Ф) is the 

weighted percentage of the second constituent alloy. This form gives the highest values 

of thermal conductivity of the fluid system of all the mixing law models.  

 

 

 

 

 

 



27 
 

    Q (Parallel) 

 

 

 

 

 

 

 

         

 

 

Figure 2.1.  Parallel arrangement of components relative to the direction of heat flow Q. 

       

2.5.2 Weighted Harmonic Mean Model  

The harmonic mean model would imply a series arrangement of the components, as 

shown in Figure 2.2  

 

 

 

 

 

Q (Series) 

 

 

 

 

 

Figure 2.2.  Series arrangement of components relative to the direction of heat flow Q. 
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For such an arrangement, the effective thermal conductivity of the sample is given by: 

 1

1
e

A B


 


  

  
 

 (2.21) 

This equation gives the lowest value of thermal conductivity. The problem with these 

models is that they are physically unrealistic, because it seems unrealistic that a material 

has alternating portions of first and second type of material. But these model give 

estimate values of thermal conductivities and these values  are called Wiener‟s upper and 

lower bounds, respectively [15]. 

2.5.3 Weighted Geometric Mean Model  

One of the mixing law models is the weighted geometric mean model given as [16]:  
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 (2.22) 

Turian et al found that the weighted geometric mean model provides as good or even a 

better prediction of thermal conductivity than any of the theoretical models [17]. 

2.6.4. Extended Maxwell Model  

The extended Maxwell model, which is the direct analogue of the electrical case of 

Maxwell‟s model, is the best example of mixing-law models which have firm physical 

basis is given by [18, 19]:  

 2
1 2 1

2
1 1

A A

B B

e A

A A

B B

 

 
 

 

 

    
       

    
    

       
    

 (2.23) 

 

This model is based on two important assumptions. First, based on Fourier‟s law, that the 

thermal diffusion is the main mechanism of heat flow, second, there is thermal continuity 

at the interface. Under these assumptions, the model predicts that the effective thermal 
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conductivity  depends on the volume concentration of the constituent B,  , and the 

thermal conductivities of the constituent B, , and the  media with thermal conductivity 

 (Figure 2.3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3. Dispersive arrangement of components relative to the direction of heat flow.  

Maxwell considered a very dilute suspension of spherical particles embedded into a 

continuous solid phase. The separation between spheres is assumed to be sufficiently 

large so that their disturbance to the thermal field is not seen by the neighboring spheres. 

This model is based on the physically real situation where spheres of conductivity λB are 

dispersed in a medium of conductivity λA (Figure 2.3) 

In the case of a two-component system, the distance between neighboring particles of 

dispersed material will require modification to equation (2.23) and will depend upon the 

conductivity ratio of the two materials as well as the fraction of the total volume occupied 

by the dispersed material. The same factors will determine the extent to which the 

particles can depart from a spherical shape before the equation must be modified. It is 

obvious from equation (2.23) that in the limit where λA = λB  the dispersed particles may 

be of any shape and may touch each other.    
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The weighted geometric mean model has no physical basis, but since it is easier to use 

than the Maxwell model and gives similar results over the limited range of conductivity 

ratio, some authors prefer to use it [20].  

2.6. Empirical Models  

In case of empirical models, some easily measured physical parameters are correlated to 

thermal conductivity with the addition of some empirical coefficient, exponent or 

adjustable parameter; whose value can be evaluated by regression analysis to laboratory 

data. An example is given in the following sections, whereas a comprehensive detail is 

coming in chapter 7. 

2.6.1. Asaad’s Model  

Asaad‟s model is quite similar to the weighted geometric mean model and is given as:  

 
 c
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 (2.24) 

Where c is the empirical exponent, when c=1, this equation becomes identical to equation 

(2.22) [21]. 
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Chapter 3 

Specific Heat 

Specific heat measurements have been a helping means for studying and understanding 

the physical and thermodynamic properties of materials since the start of the twentieth 

century. In spite of the fact that specific heat and other thermodynamic properties of 

many compounds are well known, measurements of specific heat render a new look into 

the properties of matter, which helps us to take into consideration new ways about the 

thermodynamic properties of materials. A specific heat measurement makes no 

differentiation between vibrational energies and is different from some techniques like 

Raman or infrared spectroscopy which provide vibrational information of molecules, 

where this molecular vibrational information provides discrete lines in a spectrum. Hence 

to obtain these vibrational energies one must use some other indirect ways or methods, 

often with the use of other physical properties, to get full detail about them. 

The specific heat originates right from the vibrational modes of a body, and it is a sum of 

all possible energies available in the body, whether they are vibrational, magnetic, or of 

any other sort. Moreover, the specific heat concedes the enthalpy and entropy of a body, 

which can be utilized in connection with other data to calculate the free energy scenario. 

At high temperature the specific heat is only weakly affected by crystal defects because it 

is a bulk property, except so called substitutional defects (impurities) which influence the 

specific heat very sensitively. 

The quantum theory and thermodynamics provide ways to correlate specific heat to free 

electrons, phonons and a variety of other phenomena, therefore, specific heat 

measurements are a helping tool in characterizing the properties of a body or system on a 

microscopic level [1, 2]. As we are concerned here, in this research work, with theoretical 

and experimental investigation of specific heat so it seems logical to discuss some factors 

which influence or can affect values of specific heat. 

In the first place we shall discuss precisely some fundamental relations of specific heat 

with other thermodynamic quantities and then we shall have elaborate descriptions of the 

various microscopic phenomena which contribute to total specific heat.   
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3.1. Theoretical Background of Specific Heat 

Mainly, in this work, we are interested in the measurement and evaluation of both 

manifestations of the specific heat, normally the specific heat at constant pressure cp and 

the specific heat at constant volume cv, thermodynamically, these quantities are obtained: 
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where H is the enthalpy and U is the internal energy [2]. In most of the experimental 

investigations specific heat at constant pressure cp is being measured, however, both 

values cp and cv are related to each other by the relation: 
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This above equation is specifically beneficial when the equation of state for a body is 

known.  

In general, specific heat is described by the molar heat capacity Cmol in units J·mol
-1

·K
-1

, 

the specific heat capacity cp in units kJ·kg
-1·

K
-1

, and the volume-specific heat 

capacity cvol in units kJ·m
-3·

K
-1

. The connections between these quantities are as 

follows: 
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where ma means the atomic (molecular) mass of the substance in gram, and d is the 

density of the substance in kg·m
-3

. Measurement of the specific heat yield direct 

information on the absolute entropy and relative changes to the enthalpy and Gibbs free 
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energy. The molar entropy Sm is related to the specific heat at constant pressure by the 

expression: 
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In the above expression the lower limit of the integral is set to absolute zero temperature, 

then by the third law of thermodynamics the lower limit of the entropy is also zero. Quite 

different from entropy, the enthalpy and the Gibbs free energy do not have absolute 

values; however, it cannot be concluded that relations derived for the specific heat from 

theses quantities are not helpful. The equation which shows the relation between enthalpy 

and specific heat at constant pressure is: 
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After rearranging we have:  
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Where Hm,0 is the enthalpy at 0 K. The Gibbs free energy can be expressed in terms of 

the entropy using the equation: 
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By integration and taking functions at standard state where		��,�
� � ��,�

� , we get: 
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where, like as above, Gm,0 is the enthalpy at 0 K. Up to this point, we have established 

some direct or indirect relationships of the specific heat to the entropy, enthalpy and 
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Gibbs free energy. These expressions permit us to make calculations of thermodynamic 

data at any temperatures that we have, not just at the standard reference temperature 

(298.15 K).  

3.2. Sources of the Specific Heat 

Besides providing contribution to many thermodynamic properties, specific heat offers us 

an insight into the microscopic behavior of a body. As considered before, the specific 

heat originates from a combination of several different types of atomic interactions; 

hence it gives discrete information about each of these phenomena. 

The specific heat arises from lattice displacement, the electrons in metals, splitting of 

electronic and nuclear energy levels (Schottky specific heat), magnetic alignment phase 

transitions, structural and superconducting transitions: each of these making distinct 

contributions to specific heat. Some of these are discussed precisely hereafter. 

3.2.1 Specific Heat and Degree of Freedom 

The atomic and molecular displacements (degrees of freedom) are the main source of 

contribution to the specific heat and from thermodynamical laws one can evaluate how 

these modes contribute to the heat capacity at constant volume cv. As described earlier, cv 

can easily be converted to cp by equation (3.3). All three modes, translational, rotational, 

and vibrational, of motions of atoms and molecules contribute to the specific heat for 

gases.  

According to the equipartition theorem every degree of freedom contributes 
	



�� per 

mole to the internal energy or 
	



� to the specific heat of the gas. Hence, the translational 

motion of gas particles contribution to cv is 




�� because it has three degrees of freedom, 

one for each dimension [1]. Similarly rotations and vibrations of molecules also 

contribute to cv depending on configuration and number of atoms per molecule n. 

Nevertheless, the equipartition theorem is not enough to estimate specific heat 

contributions because it does not take into consideration the quantization of rotational and 

vibrational modes. Therefore, quantum mechanics, taking into account these modes, is 
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preferable to describe the specific heat of a body. Quantum mechanics gives vibrational 

contribution to the specific heat cv,vib, as: 
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where θν = hν/k with h being Plank’s constant, k is Boltzmann’s constant, and ν is a 

fundamental vibrational frequency. The rotational specific heat can also be calculated by 

solving the Schrödinger equation, which is usually done numerically [1].  

In general, the specific heat at constant pressure for gases is calculated by the equation:  

cp = cv + R considering the gases as ideal gases. The molecules of gases are totally free to 

move with almost no interaction with neighboring molecules, whereas in liquids 

translational, vibrational, and rotational energies are more often interchanged because of 

the increased number of collisions with neighboring molecules, hence it is difficult to 

model their behavior.   

On the other hand solids, which are quite well ordered and the atomic interactions are 

very small, are easier to model. Due to the problems described above, there is very little 

information about the liquid phase than the other two phases, therefore, models which 

describe liquids and their specific heat contributions have varying degrees of success. 

There is an exact relation between the heat capacity cv at constant volume, and cp at high 

temperature [3]: 

cv(T) = cp(T) – VTβ
2
/BT                                   (3.11) 

where β is the volume expansion coefficient, V is the specimen volume and BT is the 

isothermal bulk modulus [4]. In simple solids such as non-magnetic insulators, the 

vibrational motion of the atoms alone contributes to the specific heat which is also known 

as lattice specific heat. By using the classical picture, of the equipartition theorem, each 

atom is considered as a three dimensional oscillator having six degrees of freedom and 

adds 3nR or n·24.9 J·K
−1

·mol
−1

 where n is the number of atoms per molecule. 
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This outcome is in good agreement with the experiment for most solids at room 

temperature,  but at high temperatures there are still many materials for which specific 

heat just begins to approach 3nR as  can be seen in Dulong-Petit law. The specific heat of 

all materials comparatively decreases fast in value at low temperatures and approaches 

zero as the temperature approaches 0 K. This phenomenon can be explained by quantum 

mechanics combined with Maxwell-Boltzmann statistics that only certain small numbers 

of permissible vibrational energy states are populated at low temperature and hence the 

specific heat is relatively small. Specific heat increases sharply as the thermal energy, 

kbT, comes close to the energy of the vibrational modes. When the thermal energy 

increases more than vibrational energy, most of the energy levels begin filling completely 

and at that stage the specific heat approaches the Dulong-Petit limit. According to the 

quantum mechanical point of view, there are three significant way to model the lattice 

specific heat: The Einstein model, the Debye model, and direct calculation from known 

density of states. 

3.2.2. The Einstein Model 

The Einstein model describes qualitatively by the characteristics of a specific heat curve 

and is based on two assumptions. Firstly, each atom in the lattice is an independent three 

dimensional quantum harmonic oscillator  and secondly, all atoms oscillate with the same 

frequency [1]. One can find by Maxwell-Boltzmann statistics, that the contribution of 

the optic phonons to the (molar) heat capacity of a crystal lattice can be theoretically 

approximated: 
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Where NA = 6.02257·10
23

 is the Avogadro's number, kB = 1.38054·10
-23 

J·K
-1

 is 

Boltzmann's constant, and θE the Einstein temperature of the material. The parameter  r in 

equation (3.12) means the number of atoms within the unit cell of the crystal.  

The Einstein function which is often expressed in terms of the Einstein temperature,      

θE = hνE/kB, allows to understand the vibrational frequency in terms of the thermal energy 

which is necessary to populate the vibrational modes. Unfortunately, a severe drawback 
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of Einstein function is that it cannot be applied on simple materials like Al or Cu, because 

it (Einstein function) is only applicable to optical phonons which do not appear in only 

atomic system. But even for more atomic system the Einstein function is an 

oversimplification because it includes one frequency for all vibrating atoms. In fact, 

different atoms will vibrate with different frequencies and the vibrations are influenced 

by all atoms around it: However, such effects are neglected in this model. 

3.2.3. The Debye Model 

The Debye model is different from the Einstein model by using a frequency dispersion 

rather than same frequency for all oscillators. The range of these frequencies is expressed 

in terms of the vibrational density of phononic states g(ν). The number of states (modes) 

between any two frequencies can be evaluated by integrating g(ν) over the range of the 

frequencies [5, 6]. 

In the Debye model it is assumed that the density of states follows a quadratic 

distribution up to a characteristic frequency, νD, (Debye frequency). Above that 

frequency density of states drops to zero (see Figure 3.1) [1]. The Debye frequency, 

similar to the Einstein frequency, can be expressed in terms of temperature called Debye 

temperature, θD = hνD/kB. This relation is very useful because evaluating the Debye 

temperature for various materials gives an opportunity to measure and compare the 

strength and type of bonds between atoms of the materials.  

By applying statistical mechanics, specific heat can be derived in terms of Debye 

temperature and given by [1]: 
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At low temperatures, when T ≪ θD, the specific heat should obey a T
3
-law and the 

integral in equation (3.5) can be simplified into: 
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Figure 3.1. The vibrational density of states of copper as represented by the Debye model (dashed line) and 

from experimentally derived values (solid line) taken from [5, 6]. 

 

The Debye model is much better than the Einstein model to calculate specific heat, but it 

cannot be used as an exact and accurate model for real systems. This model does not 

work well for very small temperature (T < θ/50) where the electronic part of the specific 

heat plays the main role and also in the high temperature (T > θ/2) because it neglects 

completely all anharmonic effects.  

3.2.4. Dulong and Petit law 

Dulong and Petit in 1819 found that all metals, except the very light ones, have an 

average molar specific heat that is roughly equal to 25 J·mol
-1

·K
-1

 or 3R (where R is the 

universal gas constant for 1 mole). This law is an approximation but gives an important 

perception about the metals that the specific heat of a metal sample depends only on the 

number of molecules the sample has and not on the mass of an individual molecule [5].  

Furthermore, experimental results conducted at various temperatures reveal that specific 

heat values changes with the change of temperature and depend upon the nature of the 

material. A graphical representation of the change of molar specific heat with the change 
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of temperature is shown in the Figure 3.2. From classical theory molar specific heat 

should have a fixed value no matter what the temperature of the system is but 

experimental results are different to what was predicted by classical theory. Einstein and 

Debye tried to explain thermal behavior of metals and non-metals by using Planck’s 

quantum theory. It is very satisfying that, in the limit of high temperature, the sum of 

Einstein and Debye expression exactly leads to  Dulong- Petit law: 

           
( ) ( ) 3lim
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mol mol mol A B
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 + ≡ =                       (3.15) 

 

Figure 3.2. The variation of specific heat Cv, of solids with temperature, where θD is Debye                

temperature [5]. 

For a proper comparison of the Dulong-Petit values for the different materials, one has to 

transform the molar heat capacity (units J·mol
-1

·K
-1

) into the experimentally used units   

kJ·kg
-1

·K
-1

 by using the relations in (3.4).  

After transforming the above equation we get the expression: 
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where DP

vc  in equation in units of kJ·kg
-1

·K
-1

. The above equation is used for quite a well-

ordered structure of the alloy or for a strictly periodical system of unit cells with r is 

number of atoms per cell. This atomic system (throughout this work, we call it molecule) 

consists of r atoms and has the total molar mass M. It has been seen that the alloys which 

have been measured for the present investigation are often far away from this ideal 

situation. Only for that, we perform our theoretical studies for binary alloys AB for their 

simplest ordered structures A, A3B, AB, AB3 and B, generally for 

            βα BA  with 0, N∈βα                      

  

It is easy to calculate the relative mass contribution of the corresponding constituent B by 

                 AB
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(3.17) 

with mA and mB as the atomic masses of the pure metals A and B. 

3.2.5. Specific Heat from the Density of States  

Lattice specific heat can be calculated more accurately from already known phonon 

density of states for a material (see Figure 3.1). Applying the rules of statistical 

mechanics, the specific heat can be determined by integrating the density of states over 

all vibrational energies, ν, that gives the relation as: 
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where g0(ν) is the density of states of phonon at 0 K [5]. Even though this technique gives 

an accurate value for lattice specific heat but it is much more difficult to get exact values 

for the density of states. The phonon density of states in equation (3.18) can either be 

obtained by using high-energy inelastic neutron scattering data or from theoretical 
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investigations based on specially designed software programs, e.g. FP-LAPW WIEN2k 

or similar programs [7]. 

 

3.3.6. Lattice cp/cV Corrections 

Experimental data for the heat capacity usually refer to cP, i.e., the heat capacity at 

constant pressure, on the other hand, theoretical models are often performed under the 

condition of constant volume, cv. At low temperatures, typically T < 20 K, the difference 

between cp and cV is almost insignificant and usually ignored, and more importantly cp 

can be modeled with the functions used to describe cv. Contrary to this, at high 

temperatures this difference becomes increasingly larger and significant. Therefore, 

equation (3.11) is an exact relation between cv at and cp at high temperature.      

Anharmonic effects can make cp(T) larger than the classical result, 3kB/atom, at high 

temperature [2, 5]. Nevertheless, the actual specific heat credited to the free electrons is 

much smaller than what is predicted by classical mechanics; it is only by applying 

quantum mechanics to the system that one can accurately find the electronic specific heat. 

3.2.7. Heat Capacity of the Valence Electrons 

High thermal and electrical conductivity in metals is due to the conduction electrons 

which can move almost freely throughout the lattice. For getting specific heat capacity 

from these free electrons it is considered that these electrons act as ideal gas particles. 

From the equipartition theorem, each mole of conduction electrons contributes 




� to the 

entire specific heat of the metal which is quite higher than the actual specific heat of 

metals. According to quantum mechanics, Pauli Exclusion Principle, no two electrons can 

exist in the same energy state, so there must be a broad range of distribution of the 

energies up to some maximum energy state. Possibility of electrons to excite to higher 

states is very small at low temperatures only high energy electrons are able to move to 

energy states close to the Fermi energy, εF [6]. These are the electrons which are able to 

change energy states and contribute to the specific heat and, at lower energies, there is 

zero probability of the electron transitioning to a higher state. Probability of transitioning 
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to a higher state is 50 % pertained to Fermi energy. Applying Fermi-Dirac statistics one 

can express electronic specific heat as: 
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where N0 means the electronic density of states with respect to 0Ω , the volume of the unit 

cell of crystal. At low temperatures, the electronic contribution is the major portion to 

specific heat and is directly proportional to the change of temperature. Conversely, in the 

high- temperature region, the electronic specific heat is only a small fraction of the total 

specific heat. The specific heat is observed as C = γT + βT
3
 in the low-temperature range, 

where γT is the electronic and βT
3
 is the lattice contribution to the specific heat [6]. 

3.3. Mathematical Derivation 

Valence electrons contribution to specific heat from the energy density of an electron gas 

within a crystal of volume Ω at a certain temperature T is given by: 

);()(
1

)( TfNdTu εεε∫Ω
=                        (3.20) 

where N (ε) is the total (for both spin directions)
 
electron density of states (DOS) and       

f (ε; T) is the Fermi-Dirac probability function. For practical reasons, in the following we 

prefer to use the quantity  
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with Ω0 as the volume of the unit cell of the crystal. N0 (ε) is normalized as 

00 )( ZNd
F

=∫
ε

εε                                   (3.22)  

where Z0 is the number of valence electrons per unit cell. Then one gets for the electronic 

part of the volume-specific heat capacity 
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Including the chemical potential of the electron gas, µ (T), this is defined by 

   lim�→� ���� � ��  

Where �� is the Fermi energy, and by the relation 
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If the chemical potential µ (T) is known, one can start the evaluation of Equation (3.23), 

namely 
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one obtains the final result. 
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In many practical cases – (as It will be demonstrated in this work) - it is sufficient to 

evaluate Equation (3.23) approximately by using the so-called Sommerfeld formula [2] 

which gives the result 
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As we already expressed that the contribution of the valence electrons to the heat capacity 

requires the numerical evaluation of the Equations (3.24, 3.25) or the evaluation of the 

Sommerfeld approximation (3.26). The following expressions differ from the 

Equations. (3.23, 3.24) in two points: (i) the volume-specific heat capacities are changed 

into the mass-specific ones - a division by the density � (equation 3.4), and (ii) all 

physical constants in the formulas are reset by their numbers: By doing so, the following 

expressions are ready for computer.  

With c
el 

given in kJ·kg
-1

·K
-1

, T in K, d in kg· m
-3

, ε and µ in eV, N0 in 1/eV, and Ω0 

in Bohr
3
, the exact formulas read as 
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The corresponding Sommerfeld approximation (in units of kJ·kg
-1

·K
-1

) reads as: 
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Chapter 4 

Experimental Method and Technique  
 

It is well known that thermophysical properties of solids vary extensively depending on 

the structure, density, porosity, electrical conductivity, etc., of different materials. 

Frequently these properties exhibit a strong dependence on temperature and pressure. 

Because of these large variations a number of experimental techniques have been 

developed and these are [1]:  

  ohmic pulse heating technique    laser pulse heating technique  

electromagnetic levitation      electrostatic levitation 

sessile drop technique    chemical flame technique 

  shock wave technique    solar heating technique 

fission/fusion Technique    electron/neutron heating  

All others are considered to be non-calorimetric and have lack of information about the 

exact energy input to the test specimen except ohmic pulse heating technique.  

 

4.1. Ohmic Pulse Heating Technique 

Conventional high-temperature techniques to investigate thermophysical properties create 

many difficulties like chemical interaction of the liquid specimen with the container and 

the loss of mechanical strength, problems with heat transfer, evaporation, and electric 

insulation. A pulse heating technique has been developed to cope with these difficulties 

and enable the measurements to extremely high temperature. During the last two decades 

ohmic pulse heating technique have matured because of improved, fast and reliable 

electronic data-acquisition devices, which are commercially available. This technique 

uses resistive self-heating of an electrical conductor typically wire-shaped samples (the 

diameters ranging from a few hundred micrometers up to a few millimeters), rectangular 

shaped samples, foils, or tubes by passing a large current pulse over the sample. Because 

of its resistivity, the test specimen can be heated to its boiling point in a fraction of a 

second. Heating rates up to 10
8
 K∙s

-1
 are achieved and the sample is heated from room 

temperature up to the end of stable liquid phase in about 30 µs, where it is being 
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destroyed when crossing the spinodal  line (‘‘exploding wire’’). Despite of high heating 

rates, the measured results agree well with data obtained by static and quasi-static 

methods. Within this short time, the geometry of the sample is neither destroyed through 

force of gravity, instabilities nor other effects, so short-time measurements are possible 

on "standing” liquid columns. The measurements are performed in an inert environment 

e.g., nitrogen or argon at ambient pressure and using water at high pressure. The energy 

storage fitted in this circuit is 500-µF capacitor bank, which could be charged up to 10 

kV using a high voltage power supply [2]. Therefore, different precautions have been 

made to avoid electromagnetic interferences and all signal wires are constructed in a 

double-coaxial fashion with a coaxial cable shielded by an additional copper tube. All 

measurement devices (amplifiers, voltage dividers, pyrometers, etc.) are isolated so that 

electrically active pick-up loops can be avoided and the data acquisition equipments are 

kept in an electrically shielded room (Faraday room). Personal computers with A/D 

conversion-based data acquisition cards are used to record all transient measurement 

signals. Great care has been taken when it comes to the starting and terminating of an 

experiment because accurate knowledge of the timescale (experimental duration) during 

all dynamic pulse-techniques is essential. Different switches are used and operated by a 

common trigger signal. A schematic diagram of the discharge circuit and a picture of the 

setup used in our laboratory are shown in Figure 4.1 and Figure 4.2 respectively. 

The major parts in pulse heating experiments are the energy storage (500 μF, max) with a 

charging unit (variable voltage from 0-10 kV), a main switching unit (i.e., high-voltage 

mercury vapour ignition tubes), the sample chamber with windows for optical diagnostics 

and the ability to maintain and control ambient atmosphere, the data recording equipment 

and a fast CCD-camera system for expansion measurements.  

4.2. Sample chamber 

Figure 4.2 shows the cross section of a sample chamber, in which the experiments are 

performed.  It is a cylindrical container with the outer diameter of Ø = 18 cm and an 

effective internal diameter of Ø = 15 cm. The sample chamber is made of aluminum 

and is anodized black. This is done to prevent stray light during the experiment and acts 
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as insulation.  In an experiment, the current runs through the sample and is then 

discharged through the exterior wall of vessel. The actual sample holder is designed to 

insert in the sample chamber. All parts in the circuit are made of brass while the rest are 

made from insulator to isolate the chamber from any electrical signal. The electrical 

terminals are designed so that there is no short circuit of electric current. 

For the optical measurement, three windows are made in the walls of the sample 

chamber. Two out of these three windows are used for expansion measurements using a 

fast CCD camera while flash on one side and camera on other side whereas one window 

is for temperature measurement using the pyrometer. These windows contain ordinary 

float glass with a thickness of 5 mm. All windows are sealed using an O-ring and with a 

bracket attached outside of the chamber window. 

 

 

 
Figure. 4.1. Schematic diagram of discharge circuit 

Key: HVPS; High voltage power supply, C; Capacitor bank, S; Switch, Rcrow; Crowbar resistor; Rv; 

Variable  resistor, IG1,2; Ignitron, PG;  Pulse  generator, A; Amplifier, PP;  Pearson  probe, DC; Discharge 

chamber, KE1,2; Knife-edges, R1-R2; Ohmic voltage divider resister; PY; Pyrometer, L; Lens; IF; 

Interference filter, F; Light-fiber, D; Photodiode [3]. 
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Figure 4.2. A view of the central components of the experimental set up is shown with its components.     

1. Sample chamber, 2. Pyrometer, 3. CCD Camera, 4. Voltage drop Probes, 5. Pearson probe, 6. Flash,      

7. Aperture, 8. Infrared filter, 9. Focusing lens, 10. Inert gas pipes.  

 

The chamber has two gas connecting pipes for inlet and outlet of inert gas (pressure = 

1.3 bar) with a mechanical lockable valve so that gas supply and removal can be 

controlled. Inert gas environment is necessary for some materials to suppress discharges 

between wire and sample and to prevent burning of the liquid metal. Inert gases like 

argon or nitrogen are generally used. This chamber does not need too 

much cleaning; only it should be rinsed well after each experiment with inert gas and 

organic detergent. The experiment chamber is fastened from its base using a large banded 

clamp with ground connection. 
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4.3. Pyrometer and Temperature Measurement  

Temperature is an important quantity to be measured when investigating thermophysical 

properties of metals using pulse-heating techniques. The temperature measurement is 

based on the detection of the thermal radiation emitted by the sample by a fast pyrometer. 

A pyrometer is a non-contacting device that can be used to determine the temperature of 

an object's surface by its emitted thermal radiation. A pyrometer consists of a lens system 

for optical imaging of the sample surface, a wavelength selective element such as an 

interference filter, aperture for an area limitation and a photodiode detector. Furthermore, 

a pyrometer has an alignment system by which the surface of the sample can be selected 

or adjusted for the pyrometric measurement and a wave guide that lead the light signal to 

the photodiode detector. A schematic diagram of the pyrometer is shown in the following 

Figure 4.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.3. A schematic diagram of pyrometer with optical design: 1. Achromatic lens, 2. Folding mirrors, 

3. Measurement microscope, 4. Interference filter, 5. Aperture, 6. Optical waveguide [4]. 

 

In the pyrometer wire intensity is focused on the rectangular area of 0.2 mm x 10 mm of 

the pulse-heated sample surface (sample dimensions: 50 mm length, 0.5 mm diameter) 

with a 1:1 magnification onto the rectangular entry slit of an optical waveguide. The 

interference filter is in front of the entry slit of the waveguide. The optical waveguide 

leads the radiation to a metal housing where it is detected by a Si-photodiode and 

http://en.wikipedia.org/wiki/Temperature
http://en.wikipedia.org/wiki/Thermal_radiation
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amplified with a fast amplifier (bandwidth 1 MHz). An amplified intensity signal (J) of 

the sample radiation is sent to a shielded room by means of coaxial cable inside of a 

copper tube and then recorded by data acquisition card of a computer.  

Pyrometry measures thermal radiation, emitted from any heated body or substance and 

their  temperature is determined using the Planck’s radiation law.  

 

                            (4.1) 

 

Whereas c2 is 2
nd

 Plank’s constant (c2 = 1.43879.10
-2

)  is the wavelength selected by the 

interference filter (in this work   = 1570 nm), ε is the emissivity; J is the radiance 

intensity detected by the pyrometer; the subscript m denotes the temperature at the 

melting point [5]. The output signal of pyrometer along with two voltages (hot and cold) 

and current and shown in Figure 4.4. 

Since the emissivity ε (T) of most liquid metals is unknown, an assumption has to be 

made for the ratio ε (T) / ε (Tm) in the liquid phase of the metal. The ε (Tm) is the value of 

the emissivity of the sample at the melting temperature Tm, where temperatures are 

calculated by forming ratios of radiance J(T) at a temperature T to the radiance Jm(Tm) at 

Tm. The melting temperature Tm is taken from literature data [3]. Up to now a constant 

emissivity
( )

1
( )m

T

T




  was assumed for the liquid phase for pulse-heating experiments. 

Simulations showed that a change of emissivity during the liquid phase does not affect 

the temperature results too much [6]. 

A black body for the calibrations of the pyrometer is shown in the Figure 4.5b. The most 

accurate temperature can be achieved for pulse-heated liquid samples if the emittance is 

known in the temperature range of interest. Four different pyrometers are being used at 

TU Graz which operate depending on the investigated material and centre wavelength 

selected by interference filters. Details of the pyrometers with corresponding temperature 

ranges are given in the Table 4.1 below,  
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Table 4.1. General classification of the four pyrometers according to their interference filters (IF) and 

estimated temperature range. The filter data are from the supplied data sheets. 

λ0 = Central wavelength  

Δλ = Full width half maximum  

 

λ0 Δλ Temperature range 

649.7 37.2 2100 < T < 5500 

902.0 18.2 2000 < T < 5000 

1569.5 83.6 1100 < T < 2500 

2106.7 94.0   800 < T < 2000 

 

 

 

 

Figure 4.4. Four input signals from pulse heating set-up to ‘‘insight’’ software, red curve; current signal, 

purple curve; hot voltage, blue curve; cold voltage, brow curve; pyrometer signal (inverted temperature 

signal). 
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(a) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

        (b)                             (c) 

 
Figure 4.5. Parts of pulse heating set up. Figure (a) 1. Capacitor bank, 2. Ignitrons,  3. Krytrons, 

Figure (b) A black body source, Figure (c) 1. High voltage power supply, 2. Actual voltage display meter, 

3. Multimeter (displays 1/276
th

 of actual voltage).  
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4.4. Pearson Probe and Current Measurement 

The current is measured with an annular flow probe (type 3025 made by Pearson 

Electronics, USA) using the induction principle. It produces a proportional voltage signal 

of the direct current flowing through its measurement aperture (see Figure 4.5). The 

calibration factor of the probe is 79.6 A/V, the accuracy is reported to   0.5 %.  During a 

measurement, very high currents (about 10
4 

A) can occur, depending on the specimen 

and the charging voltage. Therefore the probe is double shielded to protect against 

interference of any external unwanted signals.  

4.5. The Voltage Probes and Voltage Drop Measurement 

The voltage drop across the resistive sample inside the discharge chamber is measured by 

two knife edges placed on two places of the wire sample. The desired voltage is obtained 

by subtracting the two voltage signals (high voltage or hot voltage and low voltage or 

cold voltage). The high voltage comes from start of the sample and low voltage comes 

after or ends of the sample. This method of getting voltage signals helps to cancel out 

arbitrary resistance at the contact points of the knife-edges, which could be nearly 

impossible to determine otherwise. The Knife-edges collect voltages through coaxial 

cables inside a copper pipe. The measured voltage terminates at digital oscilloscope 

through voltage divider by ratio 1000:1 for high voltage and 300:1 for low voltage. The 

values of the resistances used in divider are 50 k Ω and 5 Ω for hot and cold signals 

respectively, (see Figure 4.4). 

4.6. CCD Camera and Expansion Measurement 

The thermal expansion of the sample during pulse-heating experiment is performed by a 

fast CCD-camera system. The camera system consists of a multi-channel plate (electron 

multiplier), a lens with a 1:1 imaging, a CCD - chip combination and a controller. The 

camera can be operated in two modes, one is the normal camera mode, which is used in 

the pulse heating experiment, and the other one is the live-screen mode. The live-screen 

mode provides a real-time image of the sample. In both modes, the image is transferred to 

the image processing program Winsis by Theta System Elektronik GmbH. 
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A schematic of the CCD camera is shown in Figure 4.6 and the display system is shown 

in Figure 4.8a. During the pulse heating experiment a magnified image of a small section 

of the specimen is focused onto a multichannel-plate (MCP) - CCD - chip combination 

by using a focusing lens. Light reaches on the MCP, which acts as a shutter and amplifier 

and sets the pre-defined exposure time while the CCD- chip records and stores the 

images. In order to obtain a high frame rate, which should enable more than one picture 

per experiment, only a small part of the chip is exposed to light for example 32, 16, or 8 

out of total 576 lines while the rest area is masked for quick succession of pictures and 

memory. Figure 4.7 shows CCD- pictures after shifting of 32, 16 and 8 lines. The camera 

system takes images of radial expansion of the sample about every 5 µs or 2.5 µs, which 

depends on the preset exposure time.  

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4.6. Schematic of the experimental setup for measuring expansion. l. Background light source 

(flashlight); 2. Sample; 3. Lens, 4. CCD- Camera, 5. Camera control; 6. Computer [7]. 

 

After a successful experiment the captured images can be saved and further used  through 

a 12-bit analog - digital converter in a personal computer using a  software package  

Winsis (developed by Theta - system company, Munich). These obtained CCD pictures 

are used for the evaluation of thermal expansion of the sample. For that purpose two 

sequences of pictures are taken one before the heating process as  cold picture and the 

second sequence is taken during heating  as ‘‘hot picture’’. Consequently, the pictures are 

converted into intensity profiles and the diameter is evaluated using a software named 

‘‘Wiredia’’ which gives the wire diameter by calculating full-width-half-maximum 

(FWHM) from the intensity profiles of the pictures. Then, each hot picture diameter is 
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divided by its corresponding cold picture diameter for expansion calculation. The 

intensity profile of a picture is given in the Figure 4.8b. The controller of the camera 

system manages amplification factor, frame rate and working of multi- channel plate. The 

existing image acquisition system was first described, designed and built by Nussbaumer 

[8]. 

This CCD camera technique does not image the entire specimen during an experiment, 

but is limited to a small spatial portion of the sample radius/diameter and yielding only 

the time propagation of that part. This method can be used as an experimental evidence of 

stability of the sample during expansion. It is assumed that expansion in the solid state 

occurs in both radial and axial directions but only in radial direction in liquid state. It has 

been proofed experimentally that samples only expand radially and do not show any 

longitudinal expansion above a sufficiently high heating rate, which is the case of pulse 

heating technique. Different systems and techniques developed for expansion are briefly 

discussed in [9]. 

 

 

 

 

Figure 4.7. CCD-camera pictures, time axis from top to bottom, left: 32 lines shifted, middle: 16 lines 

shifted, right: 8 lines shifted [9]. 
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4.7. Experimental procedure 

 Ohmic Pulse heating experiment include the following steps.  

i) Pre-experimental settings/stages ii) Sample preparation iii) Pulse heating process 

4.7.1. Pre-Experimental Settings/Stages 

Procedure of an experiment starts with turning on equipments,  two computers one for 

electrical data and other for expansion measurement along with their softwares ‘‘Insight’’ 

and  ‘‘Winsis’’, pulse generator, infrared lamps for ignitron heating, camera control, flash 

lamp and opening valve of inert gas cylinder to allow gas to reach pressure gauge.   

Removing lids from the camera, pyrometer and illuminating torch are also being done. 

Setting parameters values on the pulse generator, these values depend on the material 

properties. The pyrometer is being selected according to the properties of sample 

investigated.  Appropriate range for the four measurement channels on computer in the 

Faraday’s room for the Insight program are adjusted with a range of 100 mV to 5 V so 

that final traces of output signals should be within the range of the graph of the software, 

see traces of graph in Figure 4.4. 

4.7.2. Sample Preparation and Measurement Arrangements 

To prepare the sample for experiment include cutting of required length of wire (usually 

7 cm), fix it in the sample holder (Figure 4.9 b) and clean its  surface by an  abrasive  

paper (grad/grain size 1200) and subsequent defatting of the wire surface  with  acetone. 

The initial wire diameter D0 is measured using a laser micrometer (Keyence LS-7001 see 

Figure 4.9a) by measuring at several wire positions and taking average of all those values 

this value will be use later by relative radial expansion measurements. After clamping the 

wire in the sample holder two molybdenum notches are attached for voltages drop 

measurement (U HOT, U COLD). The distance between these two notches is measured by a 

cathetometer (scales divider 2 / 100 mm, see Figure 4.9c) and it is the effective length of 

the heated sample. Sometimes plasticine is attached to isolate the sample holder from 

discharges. After doing that, non-conductive sample holder is inserted into the sample 

chamber and connections of UHOT, UCOLD and inert gas pipes are attached respectively. 

Then inert gas is allowed to flow in the sample chamber about 8 seconds to prevent 
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possible chemical reactions and possible discharges between sample and sample holder 

during the measurement. A check valve makes sure that the chamber remains under 1.3 

bar pressure.  

The pyrometer is being focused by folding/tilting mirror and irradiating the wire with a 

torch through a glass window in the sample chamber. The optimal position is at 1.1 on 

the eyepiece scale when viewing through the microscope of pyrometer, this ensured best 

possible intensity results. By folding back of the mirror, the pyrometer is ready for 

measurement. If necessary, we attach another filter from the gray filters set (Figure 4.9d 

details are given in Table 4.2) in front of the window of the sample chamber to reduce the 

intensity of light. The pyrometer measurements are performed at right angle to the 

expansion measurement. The flash is set at optimum position on one side of the chamber. 

An aperture is placed in front of the flash to ensure a parallel beam through the entrance 

window on the wire. An I.R filter is also used to suppress unwanted portions of light 

from the flash to the pyrometer measurement. The image of the wire is formed through 

the lens on the camera. A fine image is adjusted using micrometer screws on the lens 

system. Each view of the sample on display system is done by activating the recording on 

attached computer but without the charging the capacitor bank. Extra lights are switched 

off to minimize stray light effect.  After proper adjustment, we can save the resulting 

image as a cold image of the sample.  

Table 4.2. Details listed grey filter; 
  

IT = Transmitted intensity, I0 = Incident intensity, D = Optical density 

 

D 
IT / I0  in % 

 

0.1 79.43 

0.2 63.09 

0.3 50.11 

0.4 39.81 

0.5 31.62 

0.6 25.12 

0.7 19.95 

0.8 15.85 

0.9 12.59 

1.0 10.00 

1.3   5.01 

2.0   1.00 
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4.7.3. Start of Heating Process 

At the beginning of an experiment the capacitor bank with a total capacity of 500 µF is 

charged by a high-voltage transformer by closing the switch S (see Figure 4.1) while the 

digital voltmeter continuously measures and displays 1/276
th

 part of the charging voltage 

(Figure 4.5c). The required charging voltage varies from a minimum of 3 kV up to a 

maximum of 10 kV and is dependent on the resistance, the thickness and of length of 

the wire samples. 

Experiment starts by pressing the input push button (yellow coloured button see Figure 

4.8c). It initiates the electronic data collection at PC in the shielded room and starts the 

flash (Figure 4.2). After time shift of (T 1-2) the CCD camera begins recording the 

images. Only after this time flash reaches its maximum brightness plateau and stays there 

at about 100 microseconds. After the shift of T 2-3 activation signal arrives at Krytron 1 

and Krytron  generates a high voltage pulse (in this case 3 kV charged capacitor with the 

capacitance of 0.25 μF). The generated galvanically isolated trigger pulse turns on the 

ignitron IG1. At this stage discharges of the capacitor bank starts over the wire sample. 

The final value T 3-4 indicates how long the wire is heated and it is used to end the 

heating process at the activation of the second ignitron (IG2) that short-circuit the 

capacitor through the crow bar. At the end of experiment, residual voltage is grounded 

whereas T 4-5 is unused in this design. The advantage of the second ignitron is to 

minimize contamination of the sample chamber, prevent plasma discharges and 

protection of the circuit components. Furthermore, there is an option of a series resistor 

with adjustable values, 1/2 Ω and 1/4 Ω, to regulate the speed of heating process.  

At the end of the experiment the Krytrons are switch off and the sample chamber is 

rinsed for about 8 seconds with fresh inert gas in order to purify and clear it from 

produced suspended particles. The measurement results are stored on both PCs. Sample 

chamber and sample holder are cleaned with organic detergent whereas metal residues 

are removed by using sandpaper (grain size 240). All part and pieces are dismantled in 

reverse order. 
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         (a) 

 

        (b)             (c) 

Figure 4.8. Expansion system along with timing generator. In Figure (a) 1. Control system, 2. Display 

unit, (b) Intensity profile of expanding wire during heating process,  (c) Pulse generator, where T 1-2. Flash 

start time, T 2-3. Time shift for image recording and the start of pulse heating experiment, T 3-4.  End of 

the experiment, T 4-5 Unused.  
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(a)      (b) 

 

 

(c)           (d) 

 
Figure 4.9. Sample holder with other measuring instruments (a) Laser micrometer (b) Sample holder (c) 

Cathetometer (d) Grey filters. 

 

 

 

 

 



 

 

64 

 

References 

 

[1]  Gustafsson SE, 1991 Transient plane source techniques for thermal conductivity 

and thermal diffusivity measurements of solid materials. Review of Scientific 

Instruments, 62(3): pp 797-804. 

[2]  Mehmood S, Klotz U E and Pottlacher G, 2011 Thermophysical Properties of 

Platinum-Copper System EPD Congress pp167. 

[3]   Cagran C, Diploma thesis (Technical University Graz, 2000). 

[4]   Sonnberger A, Diploma thesis (Technical University Graz, 2004). 

[5]  Bergmann L and Schaefer C, 1990 Lehrbuch der Experimentalphysik Band L 

IO.Auflage, Walter de Gruyter, New York. 

[6]   Seifter A, Diploma thesis (Technical University Graz, 1996). 

[7]   Boboridis K, Diploma thesis (Technical University Graz, 1999). 

[8]  Nussbaumer G, Diploma thesis (Technical University Graz,1993).   

[9]  Hüpf T, PhD thesis (Technical University Graz, 2010). 

 



65 
 

Chapter 5 

Thermophysical Properties and Data Evaluation 

Thermophysical properties are material properties that vary with temperature 

without altering the chemical identity of the material. 

According to the above definition there are many thermophysical quantities, of which 

some are enthalpy, resistivity, thermal conductivity, thermal diffusivity, heat capacity, 

thermal expansion, density, speed of sound, viscosity, surface tension, interfacial tension 

and thermal radiative properties etc. A few from these are described in this chapter 

precisely. Before going into detail about those thermophysical quantities it seems 

reasonable to discuss about „Hotwire‟ program incisively which is used to process the 

data gained by the pulse heating technique into convenient data for graphical 

representation.  

5.1. Hotwire Program 

The Hotwire Software Program is designed for the evaluation of pulse heating data. Data 

acquisition is done by the software package INSIGHT (developed by Dewetron) which 

delivers raw data in ASCII-format. The data consists of two voltages (voltage hot, 

voltage cold) and intensity of surface radiation of sample every 0.1 µs with a capacity of 

4096 data points. The imported raw data are processed within Hotwire in the following 

manner: 

• Offset correction 

The trigger pulse for data acquisition is typical 200 µs before the start of the 

experiment. This period is used to correct the offset by averaging the data during 

this time and subtracting the mean value from the entire signal. 

• Scaling of signals 

Two voltages (voltage hot, voltage cold) and current signal are scaled using the 

experimentally determined factors. 
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• Smoothing of data 

An averaging filter algorithm is  used to smooth the input data if  necessary.  

In general Hotwire offers two kinds of graphical representations: 

• Overview of graphs 

Four graphs on the screen give an overview of thematically grouped data, for instance 

the graphs of raw data, voltage hot, voltage cold, current and intensity are shown in 

Figure. 5.1. 

• Single graph 

A single graph for a closer view and the possibility to zoom in is also used, for an 

example see Figure 5.2; this shows the typical intensity signal profile during the 

experiment. 

5.1.1. Voltage Correction 

This is the main part of HOTWIRE program along with temperature 

determination, which is done by either manual voltage correction or automatic 

voltage correction. 

Manual Voltage Correction 

This task is divided into several steps as determination of beginning time  and current  

gradient, first  derivative  of current, determination of voltage step and wire inductance.  

Finally the corrected voltage drop is evaluated which is used for determining other 

quantities. The value gained within the steps as well as the parameters for fitting are 

saved in a file and are further used for automatic voltage correction. 

Automatic Voltage Correction  

After performing the  manual voltage correction, t h e  inductance per unit length 

Ls/l and all the necessary parameters for fitting are saved in a file.  Assuming Ls/l   

doesn‟t change between different experiments; the wire inductance is simply gained  
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Figure 5.1. Graphical presentation of the input data:  voltage hot, voltage cold, current and intensity 

versus time in overview-mode [1]. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2. Graphical presentation of the input data: intensity versus time in single mode, magnified 

part shows the melting plateau [1]. 
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by multiplication with the wire length l. This is the principle of the automatic 

voltage correction. 

5.1.2. Temperature Determination via Melting Plateau 

The theoretical part of temperature determination using the melting plateau is 

divided into two steps: 

1.  Determination of melting plateau 

The intensity signal shows a more or less marked melting plateau as shown in 

Figure 5.2. In its middle a horizontal marker line must be positioned, which indicates 

the intensity signal at melting Jm.  From this the calibration factor K is computed by 

 (5.1) 

where c2 is Planck's second constant, λ is the wavelength selected by the interference 

filter (λ = 1570 nm) and Tm  is the melting temperature of the sample.  

2.  Temperature 

Using the calibration factor K with Jm, temperature of the sample is calculated. The result 

is directly the true temperature of the wire sample. After performing voltage correction 

and determination of temperature,   the following data are stored by HOTWIRE. 

• time in µs 

• current in A 

• corrected vol tage drop across the wire in V 

• radiance temperature in K  

• temperature in K  

• specific enthalpy in kJ∙kg
-1

∙K
-1

  

• specific resistivity in  µΩ∙m 
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Additionally, a log-file is saved which describes different parameters used 

during the data evaluation [1]. 

5.2. Data Evaluation 

Data obtained by the pulse heating technique are in the form of time-resolved measured 

quantities which include the current through the specimen by means of a Pearson-current 

monitor, the voltage drop along the specimen by means of two knife-edge probes. The 

surface radiance is determined with a high-speed pyrometer by an interference filter. 

Initial radius/diameter of the specimen is measured by a high accuracy laser micrometer 

(KEYENCE LS-7001). The volume expansion of the wire is recorded with a fast CCD 

camera, which takes pictures of the diameter of the specimen during the experiment. 

Measured data of voltage, current, and surface radiance were recorded by fast digital data 

acquisition. After processing these quantities in the “Hotwire” Program their graphical 

form can be shown in displaying software like Origin.  

 The enthalpy, electrical resistivity, and density as a function of temperature are obtained 

from the parameters directly measured by pulse heating setup.  From these quantities we 

can drive some more quantities like, thermal conductivity, thermal diffusivity, thermal 

coefficient of resistance and thermal coefficient of expansion. The mathematical form of 

these relations with description is given in coming sections and their derivations are 

shown in Figure 5.3 [2]: 
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Figure 5.3. Illustration of the measured and the derived thermophysical parameters [3]. 

5.2.1 Specific Enthalpy 

The total internal and external energy content of a system is called enthalpy [4]. Its SI 

based unit is J∙kg
-1 

or J∙mol
-1

. The enthalpy is a measure for the energy of a system. It is 

symbolized by the letter H. It is the sum of two terms, the internal energy U and the 

quantity of work.    

             (5.2) 

Where, Uint is the internal energy, p the pressure, and V the volume. Like the internal 

energy, the enthalpy only depends on the state and not on the previous history of the 

system. Therefore, we have the exact differential 

             (5.3) 

At constant pressure (dp = 0) we have, 
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W 

             (5.4) 

Similarly we can write from the first law of thermodynamics  

            dU = dQ - p dV  (5.5) 

where Q is an infinitesimal quantity of heat then we can write the above equation as 

            dH = Qp    (5.6) 

where Qp  is the heat change at constant pressure. Subsequently the heat delivered to the 

sample by the electric energy leads entirely to an increase of enthalpy. With  the  detected  

electrical  signals,  voltage drop U  and  current I,  it  is  possible  to  determine  the  enthalpy 

induced into the wire by Joulean heating. The specific energy absorbed by the specimen 

during heating, as a function of time, was obtained from the integral of imparted 

electrical power over time, divided by mass (m) of the „effective‟ specimen: The enthalpy 

is calculated with: 

            

0

1
( ) ( ') ( ') dt'

t

H t I t U t
m

 (5.7) 

Enthalpy is calculated by time-integration of the voltage and current assuming that the 

experiment is almost isobaric also fixing a reference point where the enthalpy of an 

element is set to zero. This is called the standard state of the material and is defined at 

room temperature (298 K) and normal pressure (1 atm). In equation (5.8) m is mass of the 

sample which does not change  during the experiment and it can be calculated using 

density values d0  at room temperature, taken from literature, its diameter D and its length  

l  between the knife-edge probes. Therefore the mass is given by: 

            2

0
4

D
m d l  (5.8) 

In the present work, the only significant heat loss from the specimen can be that due to 

thermal radiation. Using the Stefan-Boltzmann law, this heat loss can be estimated. But at 
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high temperatures, the heat losses due to thermal radiation are very low compared to the 

imparted power so it can be neglected without significant effect [5].  

The  enthalpy  determination  is  one  of  the  biggest  advantage  of  the  pulse-heating  

method, because  the  enthalpy  in  pulse-heating  experiments  equal to  the  energy  

absorbed  by  the wire. Therefore, we can calculate directly the total absorbed energy of 

the wire at any given time [6].  

5.2.2. Heat of Fusion/ Latent Heat of Fusion 

The latent heat of fusion or heat of solidification, from the opposite side, describes the 

amount of energy necessary for melting a material or is the amount of energy deposited 

into a coolant during solidification [7].  

To obtain the heat of fusion/latent heat of fusion, the temperature was plotted as a 

function of enthalpy or time.  A plateau in that plot indicates melting of the specimen. In 

solid-phase linear or a quadratic function is fitted to the data and linear functions to the 

melting plateau as well as to the data in the liquid phase. The intersections of these three 

fits were used to define the beginning and the end of melting. The heat of fusion ΔH was 

then computed as the increase in specific enthalpy between the beginning and the end of 

the melting plateau. Whereas it is obtained as the difference of H between Tsol and Tliq 

(subscript sol refers solidus, liq to liquidus temperature) for alloys. During phase change, 

the heat capacity is technically infinite [8].  

5.2.3 Specific Heat Capacity  

 The amount of heat required to raise the temperature by one degree per unit mass of a 

system is the specific heat, if pressure of the system is kept constant then it is called 

isobaric heat capacity, cp, and if volume of body is kept constant then it is isochoric heat 

capacity cv [9]. SI based unit: J∙kg
-1

∙K
-1 

or J∙mol
-1

∙K
-1

. Both of these heat capacities can 

mathematically be evaluated by the following equations: 

            ( )
( )p

p

H T
c T

T
 (5.9) 

 



73 
 

            ( )
( )v

v

H T
c T

T
 (5.10) 

The Isobaric heat capacity values measured by pulse heating technique differ somewhat 

with the values measured by other techniques such as differential-scanning-calorimetry 

(DSC), but have been proved to be correct for the liquid state. As a result, pulse-heating 

data for cp in the solid may only be considered as an estimate which is taken at the very 

end of the solid state before the melting transition.  

Isochoric heat capacity is somewhat more complicated to calculate than cp by pulse-

heating experiments; cv may be obtained if cp, the isobaric expansion coefficient and the 

speed of sound of the test material are known. Isobaric heat capacity, cp, is higher than 

isochoric heat capacity, cv because objects often expand as they are heated and lose some 

energy on their surroundings if the pressure is kept constant. So there is a need to add 

additional heat to compensate for the energy lost plus the energy for further temperature 

rise. While there is no such loss of energy in isochoric heat capacity, cv [8, 10-12].  

5.2.4. Density 

Density is the mass of a unit volume of the material [4]. Its SI based unit is kg∙m
-3

. 

Density is an important parameter in material science. For instance, it is used as input 

parameter for numerical simulations of casting processes. Classical measurement 

methods like Archimede‟s principle or measurement of geometry and weighing are not 

applicable for hot samples. Pulse-heating technique inherently creates a big advantage 

regarding density measurement, as the mass of the sample usually does not change during 

the heating process. Therefore, only the geometric expansion has to be recorded. The 

mass can be measured prior to the experiment. Moreover, only the thermal expansion is 

stated as a function of temperature and density can be calculated on the basis of known 

room temperature densities, which can be obtained with higher precision by other 

techniques [13]. With the known room temperature density d0 of the material under 

investigation and the volume expansion we obtain density as a function of temperature by 

the following relation [14]. 
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2

2

0

)( D
 )(

T

D
dTd o  (5.11) 

5.2.5. Expansion/Temperature Coefficient of Expansion 

The characteristic of most metals to increase their dimensions while heating is called 

thermal expansion, generally it is described by a parameter called temperature coefficient 

of expansion [4]. Its SI based unit is K
-1

. If we consider expansion only along one 

dimension then it is linear and if expansion is taken along three dimensions then it is 

volume expansion. Whereas second is three times more than the first one. For liquids, 

volume expansion is the only meaningful expansion parameter [15].  

The temperature coefficient of expansion depends on the material. Although it varies 

somewhat with temperature but for most practical purposes it can be taken as constant for 

a particular material.  

During the pulse heating experiment expansion occurs, which is considered only in radial 

direction because of fixation of the sample along the longitudinal direction. 

Mathematically temperature co-efficient of expansion can be calculated from density by 

the following relation, 

            1 ( )

( ) P

d T

d T T
 (5.12) 

The expansion of the sample is an important component in the measurement of 

thermophysical properties. Besides being an important property itself, it is also needed 

for calculating compensated electrical resistivity, thermal conductivity and thermal 

diffusivity [8].  

5.2.6. Electrical Resistivity  

Definition: Resistance to the passage of electricity by a material [4]. It‟s SI based unit is     

Ω m. The specimen resistance at each instant is determined using the Ohm‟s law from the 

measured voltage drop U across the effective specimen length „„l‟‟ and the measured 

current I through the specimen. Electrical resistivity comes in two different outcomes: 



75 
 

resistivity at initial geometry ρIG (subscript IG,), and ρcom resistivity including thermal 

volume compensation (subscript com,). The former can be directly determined from the 

electric signals by taking the ratio of the voltage and the current, whereas information 

about the volume expansion is needed to obtain the latter, by multiplying D
2
/D

2
0 and ρIG. 

Physically, electrical resistivity with volume expansion is considered of greater interest 

because it can be directly compared with data from other measurement techniques, e.g., 

4-point measurements [8].  

For each experiment the thermodynamic temperature was plotted against resistivity. A 

plateau indicated melting of the specimen. Linear functions were fitted to the data in the 

solid phase and in the liquid phase. The intersections of the melting-plateau fit with the 

solid-phase fit and with the liquid-phase fit provided the resistivity values at the start and 

at the end of melting, respectively. Electrical resistivity corresponding to the initial 

geometry at room temperature ρIG and resistivity including volume expansion are 

calculated using following equations 

   

          ltI

tU
t

 )(

r  )(
)(

2
0

IG  (5.13) 

            2

IG 2
0

( )
( ) ( ) 

D
com

D T
T T  (5.14) 

5.2.7. Temperature Coefficient of Resistance 

Temperature coefficient of resistivity can be defined as the fractional change in the 

original resistance of the material per degree rise in temperature. Its unit is Κ
-1

[16]. The 

value of resistivity like most physical properties varies with temperature. The relation 

between temperature and resistivity for most metals in general is fairly linear over a 

broad temperature range. For such linear relations we can write an empirical 

approximation that is good enough for most engineering purposes [15].  

            

T
T

R

0

0
 (5.15) 
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where ρT ,is the resistivity at the higher limit of temperature and ρ0 , resistivity at the lower 

limit of temperature range and T  is the temperature range. 

5.2.8. Thermal Conductivity  

The thermal conductivity λ of a material is the quantity of heat transmitted due to unit 

temperature gradient in unit time, under steady state conditions in a direction normal to 

the surface of unit area of cross-section. It is the coefficient λ in Fourier law of heat 

conduction:  

            ( )J T  (5.16) 

Where J is the heat flux, λ the thermal conductivity T  is the temperature gradient 

across the sample material. The standard unit of thermal conductivity is W∙m
-1

∙K
-1

[16]. 

The principal mechanism for thermal conduction in pure metals is through electrons. 

Although lattice conduction can make a significant contribution at lower temperatures, 

electronic conduction is dominant at temperatures around the melting point [17]. Under 

these conditions, thermal conductivity, λ, can be derived from electrical resistivity using 

the Wiedemann-Franz-Lorenz law: 

            
( )

( )com

L T
T

T
 (5.17) 

Where T is the thermodynamic temperature, ρel,com is the „compensated‟ electrical 

resistivity, and L is Lorenz number. The  published  values  for  the  Lorenz number at  the  

melting  temperature  differ  in  the  range between  (  2.25  -  2.60∙10
-8

 as shown in Table 2.2)
  
 

W∙Ω∙K
-2

 for  different metals. The commonly used value of Lorenz number is 

2.45∙10
-8 

W∙Ω∙K
-2

, see Table 2.2 [18]. However, data computed using equation (5.17) 

should be regarded as estimated values because the Lorenz number used in equation 

(5.17) varies with temperature and have different values for different material.  
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5.2.9 Thermal diffusivity  

Another material property that appears in the heat conduction analysis is the thermal 

diffusivity, which represents how fast heat diffuses through a material and 

mathematically written as [19]:  

            

)()(

)(
)(

TdTc

T
Ta

dp

 (5.18) 

Where )(Ta is thermal diffusivity )(T  is the thermal conductivity, cp(T) is the specific heat  

and  d(T) the density of the sample wire. Thermal diffusivity is expressed in m
2
∙s

-1
.  

Note that the thermal conductivity λ represents how well a material conducts heat and the 

heat capacity of unit volume 0d c  determines how much energy a material stores per 

unit volume. Therefore, the thermal diffusivity, )(Ta  of a material can be viewed as the 

ratio of the heat conducted through the material to the heat stored per unit volume. The 

above equation shows that thermal diffusivity varies in a manner similar to that of 

thermal conductivity. Thermal diffusivity is generally a strong function of temperature 

and it decreases with the increase in temperature.  
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Chapter 6 

Experimental Results and Discussions 

Experimental results of platinum, copper and six platinum alloys namely, Pt95Co05, 

Pt95Ru05, Pt96Cu04, Pt68Cu32, Pt50Cu50 and Pt25Cu75 have been compared and 

discussed with different techniques and literature here. The phase diagram with 

corresponding solidus and liquidus lines of platinum-copper alloys are shown in          

Figure 6.1. The experimental data of fem DTA measurement are shown by solid black 

lines and compared with the data from Doetrinkel and Thermocalc SNOB1 database 

which are shown by dotted and dashed lines respectively [1, 2]. The data taken from 

SNOB1 is an extrapolation by unary data assuming ideal mixing behaviour. By 

comparing experimental data with other data sets, it can be confirmed that all alloys show 

ideal mixing behavior. In the case of PtCu alloys our presented data are approximately       

50–100 K lower to older data sets in this intermediate temperature range. For the two Pt 

rich technical alloys, Pt95Ru05 and Pt95Co05, Pt95Ru05 has an increase of the melting 

range while Pt95Co05 has a decrease of the melting range about 100 Kelvin as compared 

to pure platinum. 

6.1. Enthalpy, Isobaric Heat Capacity and Heat of Fusion 

Figure 6.2 and Figure 6.3 compare enthalpies H given in kJ·kg
-1

 of the four PtCu alloys 

and Pt rich alloys with pure copper and pure platinum as a function of temperature in 

solid and liquid regions using Equation (5.8) [3, 4]. For all six alloys and the pure 

elements, we determined isobaric heat capacity cp from the slopes of the curves closest to 

melting and in the liquid state; values are shown in the Table 6.1 and Table 6.2. Isobaric 

heat capacity cp values of pure platinum and pure copper are compared with literature, 

which give quite a good agreement. For the alloys no literature data are available. Heat of 

fusion ∆H was obtained as the difference of H between Tsol and Tliq (subscript sol refers 

solidus, liq to liquidus temperature). The least square fits for all enthalpies in both solid 

and liquid phases along with heat of fusion are given in Table 6.1 for PtCu alloy and in 

Table 6.2 for Pt rich alloys with pure elements. 
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6.2. Electrical Resistivity and Temperature Coefficient of Resistance 

Figure 6.4 and Figure 6.5 show the results of the electrical resistivity with volume 

compensation as a function of temperature for the range of platinum-copper binary alloy 

system and Pt rich alloys. The resistivity of pure copper is significantly lower than the 

alloyed materials. Resistivity increases rapidly with the amount of alloyed platinum and 

reaches a maximum at approximately 68 mass % platinum in the solid and 96 mass % 

platinum in the liquid region for PtCu alloys. In case of Pt rich alloys, Pt95Co05 has 

shown higher resistivity both in solid and liquid regions. There are no data available in 

literature to compare with data of the investigated alloys. Resistivity measured by the 

pulse heating technique of pure platinum is compared with literature data and shows a 

good match [3-5]. By applying Equation (5.15) we can determine temperature coefficient 

of resistances αR for all measured alloys along with the pure metals. The least square fits 

for resistivities and temperature coefficients of resistance values are summarized in    

Table 6.1-6.4. 

6.3. Density and Coefficient of Thermal Expansion 

In Figure 6.6, density is plotted as function of composition at three different 

temperatures: at room temperature, in the solid and liquid range for the alloys. There is a 

very good correlation between experimental data and literature data for higher copper 

contents [5]. For high platinum contents, there is a discrepancy which is attributed to the 

difference in the data for pure platinum, therefore further measurements in this 

composition range are required. The temperature coefficient of expansion β is calculated 

according to Equation (5.12), plotted in Figures 6.7 and 6.8 and relevant polynomials are 

given in Table 6.3 and Table 6.4. It is interesting to note that β is strongly increasing with 

platinum contents, reaches a maximum at 50 % Pt and then decreases again for PtCu 

alloys, whereas Pt95Co05 has higher values both in solid and liquid regions than all other 

Pt rich alloys. 

In Figure 6.9, the density of pure platinum determined by both techniques, namely pulse 

heating technique and dilatometry, is compared with literature values. Within the solid 

region all data match very well, but volume change during melting differs by a factor of 
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two. The slopes given by two sets of literature data show some discrepancies in the liquid 

range. The values of Savistkii match good to the platinum values obtained by the pulse 

heating technique, while the values of CRC handbook report significant lower values for 

the melting range [6, 7]. In the liquid phase, the match of the two literature values to the 

pulse heating values is not satisfactory. An explanation of that behaviour is not yet found. 

Normalized densities of PtCu alloys and Platinum rich alloys are compared with both 

techniques and with pure platinum in Figure 6.10a and Figure 6.11a, whereas parts of 

Figure 6.10a   and Figure 6.11a are magnified in 6.10b and in 6.11b for better resolution. 

Solid lines are pulse heating results with solid symbols, the dashed lines are dilatometric 

with open symbols and the thick solid line is for pure platinum. In the solid region one 

finds that the values of Pt95Ru05, Pt96Cu04 and Pt95Co05 lie close to that of pure 

platinum. The values of Pt95Ru05 alloy and pure Pt have practically the same 

temperature dependence of density whereas Pt96Cu04 and Pt95Co05 have somewhat 

higher dependence of density on temperature but all are in the same temperature range. 

The rest of series of the PtCu alloys with higher copper contents show a significant 

difference to the pure platinum values. Some order/disorder transitions can be seen in 

Pt68Cu32 and Pt50Cu50, which are shown in the phase diagram for this temperature 

range [8]. In the case of Pt96Cu04 alloy and Pt25Cu75 slopes of data set in the solid 

range have a very good matching to the dilatometric results but have some offsets. 

Pt68Cu32 has comparatively less offset and a relatively similar slope.  An offset with 

different slope for Pt50Cu50 in the solid range is observed. The Pt25Cu75 alloy, where 

data are available by both techniques, show that the pulse-heating data deliver a smaller 

volume change during melting and a different slope in the liquid range compared to 

dilatometric results. Up to now there is no explanation found for this behaviour.  

Now in the solid region, the comparison of densities of high platinum containing alloys 

with pulse heating data show that there are offsets in the values of Pt96Cu04 and 

Pt95Ru05 but the slope of the curve of Pt96Cu04 a quite similar. Whereas, in case of 

Pt95Ru05 and Pt95Co05 we observe much larger slopes. If we observe the volume 

changes during melting, Pt96Cu04 and Pt95Ru05 are quite similar but Pt95Co05 has a 

much smaller volume change. In the liquid region Pt95Ru05 has almost the same slope as 

the pure platinum curve, while other two platinum rich alloys show somewhat large 
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slopes. Some polynomial of density and temperature coefficient of expansion are given in 

Table 6.5 along with temperature range which starts from room temperature to the upper 

accessible temperature.  

6.4. Thermal Conductivity and Thermal Diffusivity 

In Figures 6.12 to 6.15 thermal conductivities and thermal diffusivities as a function of 

temperature are shown both for PtCu and Pt rich alloy in sequence. These are estimated 

by using Equations (5.17) and (5.18) assuming that these two quantities can be 

determined by using the Wiedman-Franz law. In the liquid phase, where direct 

measurements of thermal conductivity are almost impossible, calculation from electrical 

resistivity is one of the rare methods of an indirect approximation. In Table 6.3 and   

Table 6.4 least square fits are given for thermal conductivity and thermal diffusivity for 

all alloys. 

6.5. Specific Heat at Constant Volume 

An accurate knowledge of isochoric heat capacity at sufficient high temperature and 

related thermodynamical properties of metals has largely been lacking. However, the 

situation in regard to experiment has improved considerably during the past few decades. 

Taking into account the experimental advantages and limitations, specific heat at constant 

volume is measured by electric pulse heating technique of wire sample inside a capillary 

tube. Copper wires with diameter ≈ 0.5 mm are placed inside the glass capillary tubes 

with inner diameter 0.500  ± 0.010  mm and outer diameter 8 mm ± 1 mm. The diameter 

of sample wire was preselected to a value, using already known values of expansion of 

copper sample, so that it fills the gap between wall of capillary tube and copper sample 

completely, while reaching a desired temperature. The sample with glass capillary tube 

has been shown in the Figure 4.9 (b). Copper samples, with a purity of 99.99 %, are used 

because of their low melting point (1357 K). Under fast heating, the wire expands and 

fills the inner cavity of the capillary, after which there is no further increase of volume. It 

is assumed that expansion of glass tube is negligible during this fast heating process, the 

values of isochoric heat capacity cv are determined by the slope of enthalpy vs. 

temperature curves. A graph in Figure 6.16  is plotted between enthalpy vs. temperature 



84 

 

and the slope of that plot gives us the cv value which is 464.76 J·kg
-1

·K
-1

 and found to be 

close to literature value 412.62 J·kg
-1

·K
-1

 which is at 1250 K [9]. The experimental values 

shown in this research are based on an average of six independent measurements. It has 

been noticed that melting and explosion of the samples occurs much earlier in isochoric 

process as compared to the isobaric process, but values of melting point remains same as 

that of constant pressure. This is because the heating process is much quicker during 

constant volume than it is at constant pressure and most of the heat given to the system is 

being utilized to increase the temperature of the sample wire. It is assumed in the 

procedure of determining specific heat that there is no loss of mass and volume in the 

internal space of the capillary tube until destruction. There is also no electric discharge 

inside the space of the capillary tube. The later assumption is important; if it is not valid, 

non uniform heating of expanded metal is possible [10, 11]. 
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Figure 6.1. Solidus and liquidus temperatures versus copper composition of platinum alloy. Solid lines: 

values from the present work, dotted lines and dashed lines: values from [1, 2]. 
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Figure 6.2. Specific enthalpy of PtCu alloys, pure platinum and pure copper versus temperature. Pt96Cu04, 

Pt68Cu32, Pt50Cu50 and Pt25Cu75: values from present work. Pt and Cu: values from [3, 4]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.3. Specific enthalpies of Pt rich alloys. Pure Pt, Pt96Cu04, Pt95Co05 and Pt95Ru05 versus 

temperature [3].  
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Figure 6.4. Electrical resistivity of four PtCu alloys, pure platinum and pure copper as a function of 

temperature. Pt96Cu04, Pt68Cu32, Pt50Cu50 and Pt25Cu75: values from present work. Cu, Pt and filled 

rectangles: values from [3-5].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.5. Electrical resistivities of Pt rich alloys. Pt96Cu04, Pt95Co05 and Pt95Ru05 versus temperature 

Pt and filled rectangles: values from [3].  
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Figure 6.6. Density is plotted as function of composition at three different temperatures. Solid line: at    

293 K, dashed line: at 1273 K, dotted line: at 2073 K, dashed-dotted line: literature values at 2073 K [5]. 
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Figure 6.7. Coefficient of thermal expansion of PtCu alloys, pure platinum and pure copper versus 

temperature. Pt96Cu04, Pt68Cu32, Pt50Cu50 and Pt25Cu75: values from present work. Pt and Cu: values 

from [3, 4]. 
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Figure 6.8. Coefficient of thermal expansion of Pt rich alloys, pure platinum, Pt96Cu04, Pt95Co05 and 

Pt95Ru05 versus temperature [3]. 
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Figure 6.9. Normalized density comparison of pure platinum values. Filled circles line: Dilatometry values, 

filled rectangle line:  Pulse heating values, dashed line and Dash-dotted lines: from [7, 8].  
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Figure 6.10(a). Comparison of normalized density values of platinum-copper alloys. Open symbols 

represent dilatometric results, solid symbols pulse heating results. Solid line: pure platinum, stared line: 

Pt96Cu04, up-triangled line: Pt68Cu32, filled-circled line: Pt50Cu50 and filled rectangled line: Pt25Cu75. 
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Figure 6.10(b). Magnified diagram of Figure 6.10(a), ‘‘Comparison of normalized density values of 

platinum-copper alloys’’. 
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Figure 6.11(a). Comparison of normalized density values of platinum rich alloys. Open symbols represent 

dilatometric results, solid symbols pulse heating results. Solid line: pure platinum, stared line: Pt96Cu04, 

up-triangled line: Pt95Co05, filled-circled line: Pt95Ru05.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.11(b). Magnified diagram of Figure 6.11(a), ‘‘Comparison of normalized density values of 

platinum rich alloys’’. 
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Figure 6.12. Thermal conductivity of four PtCu alloys and pure platinum versus temperature. Pt96Cu04, 

Pt68Cu32, Pt50Cu50 and Pt25Cu75: values from present work. Pt: literature value, Cu has values from 154 

to 331 [3]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.13. Thermal conductivity of Pt rich alloys, Pure Pt, Pt96Cu04, Pt95Co05 and Pt95Ru05 

versus temperature [3]. 
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Figure 6.14. Thermal diffusivity of PtCu alloys and platinum versus temperature. Pt96Cu04, Pt68Cu32, 

Pt50Cu50 and Pt25Cu75: values from present work. Pt: literature value, Cu has values from 7 x 10 
-5

 to    

23 x 10 
-5

 [3]. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.15. Thermal diffusivity of Pt rich alloys, pure Pt, Pt96Cu04, Pt95Co05 and Pt95Ru05 versus 

temperature [3]. 
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Figure 6.16. Specific enthalpies of pure copper, solid line: at constant volume and dashed line: at constant 

pressure [9].  
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Table 6.1. Electrical resistivity ρcom, change of resistivity ∆ρ at melting, specific enthalpies H, heat of fusion ∆H, isobaric heat capacity cp of four  

PtCu alloys; subindex IG: with initial geometry and comp: compensated. 

 

Alloy/ 

element 
Temperature Range ρρρρIG / µΩΩΩΩ·m ρρρρcom / µΩΩΩΩ·m) ∆∆∆∆ρρρρ  / µΩΩΩΩ·m) H  / kJ·kg-1 ∆∆∆∆H / kJ·kg

-1
 

cp /  

J·kg-1·K 

 

Pt94Cu04 

1200 K < T < 1976 K 0.416 + 1.599 x 10-4· T 0.391 + 1.881 x 10-4· T 

0.304 

- 89.357 + 0.196 · T 

145.5 

196 

1986 K < T < 3100 K 0.922 + 3.270 x 10-5· T 0.807 + 1.306 x 10-4· T 10.500 + 0.218 · T 218 

 

Pt68Cu32 

 

1180 K < T < 1639 K 

 

0.738 + 6.045 x 10-5· T 0.679 + 1.291 x 10-4· T  

0.175 

 

-135.982 + 0.295 · T 

154.9 

295 

 

1686 K < T < 2581 K 
1.061 – 4.773 x 10-5· T 0.954 + 6.678 x 10-5· T -67.457 + 0.338 · T 338 

 

Pt50Cu50 

1200 K < T < 1519 K 0.437 + 1.003 x 10-4· T 0.362 + 1.723 x 10-4· T  

0.129 

 

-149.243 + 0.349· T 

169.9 

349 

1562 K < T < 2200 K 0.652 + 3.006 x 10-5 · T 0.562 + 1.231 x 10-4· T -35.595 + 0.376 · T 376 

 

Pt25Cu75 

1053 K < T < 1415 K 

 
0.185 + 7.673 x 10-5· T 0.163 + 1.025 x 10-4· T 

0.103 

 

-96.4951 + 0.370 · T 

202.8 

370 

1460 K < T < 2080 K 0.307 +  4.684 x 10-5 · T 0.277 + 9.149 x 10-5· T 47.681 + 0.399 · T 399 
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Table 6.2. Electrical resistivity� ρcom, change of resistivity ∆ρ at melting, specific enthalpies H, heat of fusion ∆H, isobaric heat capacity cp of four  

Pt rich alloys as well as pure platinum and copper; sub index IG: with initial geometry and comp: compensated. 

 

Alloy/ 

element 
Temperature Range ρρρρIG / µΩΩΩΩ·m ρρρρcomp / µΩΩΩΩ·m ∆∆∆∆ρρρρ  / µΩΩΩΩ·m H  / kJ·kg-1 ∆∆∆∆H / kJ·kg

-1
 cp / J·kg-1·K 

 

Pt 

1700 K < T < 2042 K 0.155 + 2.229 x 10-4· T 
0.161 + 2.132 x 10-4· T + 

1.219 x 10-8· T2 0.365 

 

-96.075 + 0.180 · T 

112.4 

180, 177 [5, 9] 

2042 K < T < 2830 K 0.854 + 2.271 x 10-5· T 
0.842 + 5.926 x 10-5· T + 

1.154 x 10-8· T2 
1.636 + 0.187 · T 

187 , 178 [5, 9] 

 

Pt95Co05 

1200 K < T < 1949 K 0.432 + 1.656 x 10
-4

·T 0.368 + 2.864 x 10
-4

 · T 

    0.2642 

-73.783 + 0.1967 ·T 

137.341 

196.7 

 

1964 K < T < 3000 K 
0.935 + 2.539 x 10

-5
·T 0.773 + 1.565 x 10

-4
·T -5.658+ 0.230 ·T 230 

 

Pt95Ru05 

1100 K < T < 2013K 0.344 + 1.903 x 10
-4

·T 0.296 + 2.362 x 10
-4

·T 

0.233 

-95.766 + 0.207 · T 

136.968 

206.7 

2025 K < T < 3100 K 0.888 +  3.845 x 10
-5

·T 0.825 + 1.203 x 10
-4

·T -27.941 + 0.239 · T 239.6 

 

Cu 

1100 K < T < 1356 K -0.021 + 9.154 x 10-5 · T -0.029 + 9.989 x 10-5 · T 

0.110 

-207.894 + 0.481· T 

231 

481, 509.182 

[4, 9] 

1356 K < T < 2000 K 0.109 + 6.501 x 10-5 · T 0.110 + 7.831 x 10-5 · T -45.463 + 0.532 · T 
532, 519.685 

[4, 12] 
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Table 6.3. Polynomials and other parameters of thermal conductivityλ , thermal diffusivity a , density d, temperature coefficient of expansion β  and resistance Rα . 

 

Alloy/ element Temperature Range λ / W·m
-1

·K
-1

 a / 10
-5

 m
2
·s

-1
 d / kg·m

-3
 β  / K

-1
 

Rα  / K
-1

 

 

Pt96Cu04 

1200 K < T < 1976 K 

7.445 + 0.042 ·  T  - 6.719 

x 10-6 · T2 

1 .983 x 10-6 + 1.009 x 10-8· T 

- 1.378 x 10-12  · T2 

20890.597 - 0.688 · T 3.281 x 10-5 + 1.205 x 10-9 · T 3.050 x 10-4 

1986 K < T < 3100 K 
3.700 + 0.025 · T - 1.882 x  

10-6 · T2 

9.274  x 10-8 + 5.871 x 10-9· T 

- 1.640 x 10-13· T2 
21706.992 - 1.470 · T 6.510 x 10-5 + 6.750 x 10-9 · T 1.225 x 10-4 

 

Pt68Cu32 

1180 K < T < 1639 K 

 

-1.616 + 0.037 · T - 5.093 

x 10-6 ·  T2 

9 .873 x 10-8 + 7.408 x 10-9 · T 

- 4.517 x 10-13 · T2 
15632.241 - 1.079 · T 6.750 x 10-5 + 5.792 x 10-9 · T 1.553 x 10-4 

1686 K < T < 2581 K 
1.938 + 0.023 · T - 9.229 x 

10-7 ·  T2 

1 .200 x 10-7 + 4.469 x 10-9 · T 

+ 2.826 x 10-13 ·T2 
15920.120 - 1.419 · T 8.417 x 10-5 + 1.219 x 10-8 · T 6.261 x 10-5 

 

Pt50Cu50 

1200 K < T < 1519 K 

-1.287 + 0.059 · T - 1.258 

x 10-5 · T2 

7 .268 x 10-7 + 1.103 x 10-8·  T 

- 1.315 x 10-12  · T2 
13909.237 - 1.372 · T 9.627 x 10-5 + 1.300 x 10-8 · T 3.029 x 10-4 

1562 K < T < 2200 K 
3.921+ 0.036 · T - 3.673 x 

10-6 · T2 

8 .756 x 10-8 + 7.855 x 10-9· T 

- 2.874  x 10-13 ·  T2 
13562.302 - 1.264 · T 8.917 x 10-5 + 1.277 x 10-8 · T 1.632 x 10-4 

 

Pt25Cu75 

1053 K < T < 1415 K 

 

9.259 + 0.106 · T - 2.375 x 

10-5 · T2 

3 .098 x 10-6 + 2.537 x 10-8 · T 

- 4.180 x 10-12 · T2 
11024.582 - 0.795 · T 7.153 x 10-5 + 6.207 x 10-9 · T 3.784 x 10-4 

1460 K < T < 2080 K 
7.157 + 0.068 ·  T - 9.320 x 

10-6 · T2 

4 .069 x 10-7 + 1.782 x 10-8 · T 

- 1.659 x 10-12 · T2 
10736.545 - 0.831 · T 7.547 x10-5 + 8.059 x 10-9· T 2.228 x 10-4 
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Table 6.4. Polynomials and other parameters of thermal conductivityλ , thermal diffusivity a , density d, temperature coefficient of expansion β  and resistance Rα . 

 

Alloy/ 

element 
Temperature Range λ / W·m

-1
·K

-1
 a / 10

-5
 m

2
·s

-1
 d / kg·m

-3
 β  / K

-1
 

Rα  / K
-1

 

Pt 
1740 K < T < 2042 K 

44.054 + 2.624 x 10-2·T - 

4.872 x 10-6 · T2 

1 .112 x 10-5 + 7.305 x 10-9 · T 

- 1.148 10-12· T2 

21580.145 - 0.605 · T 2.797 x 10-5 + 8.755 x 10-10·T 4.558 x 10-4 

2042 K < T < 2830 K 
0.344 + 2.912 x 10-2· T - 

2.480 x 10-6 ·  T2 

8.291 x 10-8 + 7.041 x 10-9 · T 

- 1.814 x 10-13 · T2 
21242.245 - 1.117 · T 5.147 x 10-5 + 3.645 x 10-9· T 1.157 x 10-4 

 

Pt95Co05 

1200 K < T < 1949 K 

6.251 + 0.042 · T – 7.977 

x 10-6 · T2 

1.922 x 10-6 + 9.979 x 10-9 · T 

- 1.368 x 10-12· T2 
21275.79-1.483 · T 6.519 x 10-5 + 5.45 x 10--9· T 3.534 x 10-4 

1964 K < T < 3000 K 
4.853 + 0.024 · T – 2.039 

x 10-6 ·  T2 

5.204 x 10-8 + 5.656 x 10-9 · T 

- 1.277 x 10-13 · T2 
21807-1.87719 ·T 7.935 x 10-5 + 1.189 x 10-8· T 1.46 x 10-4 

Pt95Ru05 

1100 K < T < 2013K 
12.277 + 0.041 · T – 7.864 

x 10-6 · T2 

2.990 x 10-6 + 9.193 x 10-9 · T 

- 1.397 x 10-12 · T2 
21767.379 – 1.134 · T 5.168 x 10-5 + 3.237 x 10-9· T 4.07 x 10-4 

2025 K < T < 3100 K 
3.078 + 0.025 ·  T – 1.814 

x 10-6 · T2 

1-252 x 10-7 +5.403 x 10-9 · T 

- 1.753 x 10-13 · T2 
21154.875 – 1.211 · T 5.555 x10-5 + 4.505 x 10-9· T 1.124 x 10-4 

Cu 

1100 K < T <1356 K 418.778 - 0.075 · T 9.740 x 10-5 - 1.554 x 10-8 · T 9133.864 - 0.376 · T 4.109 x 10-5+ 1.884 x 10-9 · T 1.23 x 10-3 

1356 K < T < 2000 K 89.407 + 0.050 · T 1 .731 x 10-5 + 1.390 x 10-8 · T 8803.735 - 0.460 · T 5.180 x 10-5 + 3.284 x 10-9· T 3.622 x 10-4 

 



98 

 

Table 6.5. Polynomials and other parameters of density d, and temperature coefficient of expansionγ . 

Alloys/ 

element 
Temperature Range d / kg·m

-3
 β  / K-1 

Pt 293 K < T <  1586 K 21637.146 - 0.643 · T 2.970 x 10-5 + 9.262 x 10-10 · T 

Pt96Cu04 
 

293 K < T < 1586 K 20543.752 - 0.649 · T 3.157 x 10-5 + 1.063 x 10-9 · T 

Pt68Cu32 
 

293 K < T < 1586 K 

 

14900.619 – 0.564 · T 3.778 x 10-5 + 1.583 x 10-9 · T 

Pt50Cu50 293 K < T < 1519 K 12673.059 – 0.521 · T 4.107 x 10-5 + 1.808 x 10-9 · T 

Pt25Cu75 

293 K < T < 1415 K 10594 - 0.602 · T 5.667 x 10-5 + 3.603 x 10-9 · T 

1460 K < T < 1586 K 11923.398 – 1.953 · T 1.466 x 10-4 + 4.709 x 10-9 · T 

Pt95Co05 293 K < T <  1586 K 20073.891 - 0.672 · T 3.343 x 10-5 + 1.195 x 10-9 · T 

Pt95Ru05 293 K < T < 1519 K 20901.631 – 0.627 · T 3 x 10-5 + 9.549 x 10-10 · T 
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Chapter 7 

Prediction of Effective Thermal Conductivity λe as a Function 

of Temperature 

In this chapter thermophysical properties of binary alloys as a function of temperature 

will be discussed in the temperature range from the liquidus points of the alloys up to 

several hundreds of Kelvin in the liquid region. The measurement of thermal properties 

for such a wide range of temperatures is very difficult and time consuming. Therefore, to 

predict these values, some model calculations have been done in terms of easily 

measurable parameters. 

7.1. Proposed Models 

Three different empirical models called the T0-model, the q-model, and the η-model are 

proposed in this research work for the prediction of effective thermal conductivities of 

series of binary alloys as a function of temperature, while taking into account the thermal 

conductivities of the constituents and one fit parameter. For such calculations, it is of 

special importance to choose model functions that are both physically relevant and 

numerically robust. The models presented here are developed using the previously 

developed model by the author and a colleague that was used for non conducting 

materials, but here it is modified for conducting materials like metals and alloys [1]. The 

proposed T0- model and the q-model are given as:  

 

 
        (T0-model)                                (7. 1) 

                  

                             (7.2)        

          

     

(q-model)                          (7.3)  
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In Equations (7.1-7.3) λe and λexp mean the effective and experimental thermal 

conductivities whereas λA and  λB  represent the thermal conductivities of the constituents 

A and B of alloy respectively. T0 means the reference temperature (room temperature), 

and T is the varying temperature in K. The value of q in T0 - model is determined using 

equation (7.2), whereas in the q-model, the factors T/T0 and q value of T0-model are 

combined into a single, temperature-independent value of q, which makes it more simple 

and efficient than the earlier one. This new value of m in Equation (7.3) is a fit parameter, 

which can be found either by a least-squares process or by a simple iteration. 

In models 7.1-7.3 the second term B are originally due to small addition to dominating 

first term A, for example in reference 1 term B meant an amount of air in the solid phase. 

For the system investigated in this work, the two constituents of the alloys are completely 

comparable; consequently the constituent B may have percentage of 0 – 100 %. Under 

such circumstances the parameter q may get unphysical negative values, in such cases the 

order of the two constitutes of alloys has to be switched.   

The third model, called η-model, has the following physical background: based on the 

fact that, for a binary alloy AB, the heat capacity of constant volume in units kJ·kg
-1

·K
-1

 

approximately fulfills the Neumann-Kopp relation 

                                   

                     (7.4)  

Where x means the mass fraction of the constituent B. Unlike this situation, transport 

properties like the electrical or thermal conductivity (or the correspondent inverse 

quantities, the specific electrical or thermal resistivity), are bounded as [2].  

     

                    (7.5) 

Where f means the volume fraction of the constituent B. Surprisingly, for all examples of 

binary alloy AB discussed in this thesis, the above relation was in many cases not 

fulfilled. For this reason, it has been decided to use for a transport property like the 

thermal resistivity also a model of Neumann-Kopp style, but including a parameter η 

which describes the dominance of the constituent A over B with respect to the transport 

mechanism. This η-model reads as                 

(1 ) ( ) ( )v v vc x c A xc B= − +

( )
1

1
1AB A B

A B

f f
f fλ λ λ

λ λ

−
 −

+ ≤ ≤ − + 
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(η - model)                                        (7.6) 

                 

                      (7.7)   

 

The parameter x is the mass contribution of B and x' is called the effective mass 

contribution. It is to be noted that in equations (7.1), (7.3), and (7.6), all the parameters 

affecting thermal conductivity such as material phases, material structure, convection and 

density, etc. play a vital role in predicting thermal conductivity. So, while discussing the 

dependence of thermal conductivity upon temperature, these factors should not be 

ignored. In fact, it is very difficult to take into account the variations of these parameters 

with temperature. For this reason, some adjustable parameters are introduced in 

developing such empirical formulae which compensate for all those effects. In other 

words, we can say that all these variations are dumped into the adjustable parameters, q 

and η, which may vary from material to material. In T0 model, λA has been selected as the 

constituent alloy whose thermal conductivity is higher than other and in q-model both 

alloy constituents are consider as λA and λB, whereas in η- model either can be selected as 

λA, in either situation we reach the same results after simple modification.  

From equation (7.1), it is obvious that when T = To, this formula resembles with proposal 

at room temperature [3]. The thermal conductivities of all the samples are predicted by 

the proposed models are plotted in Figures 7.1 to 7.37.  

These proposed models are applied on the alloy series, shown in Table 7.1, it can be seen 

that the samples of alloys have been arranged / named on the basis of increasing alloying 

of copper, iron and nickel in the three modeling series namely: PtCu, FeNi and CuNi 

respectively. The predicted thermal conductivities of all the investigated materials, 

plotted in the Figures, have deviations which are shown in Table 7.2. Our predict 

effective thermal conductivities as a function of temperatures are in close agreement with 

the experimental values. The two values of q in q-model are because of the change of 

order in alloy constituent, some values of η are not given in Table 7.2 because in those  

alloy system experimental values are out of range of either of the two alloy constituent 

value which is logically not suitable for η- model.  

( )

1 ' (1 ')

( ) ( ) ( )e A B

x x

T T Tλ λ λ
−

= +

.
'

1 ( 1)

x
x

x

η
η

=
− −
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It has been noticed that in most of the cases all predicted thermal conductivity values lie 

in the uncertainty region of experimentally determined values (8.5 % for PtCu, 8 % for 

CuNi and 15 % for FeNi system) which is quite promising. Also it can be seen very 

clearly in all alloys systems that one of the alloy constituent is more dominantly playing 

its role in thermal conductivity than the other one. This phenomenon can easily be 

observed in all graphical representation of thermal conductivity curves, especially when 

the mass percentage is equal or nearly equal (50Pt50Cu, 50Fe50Ni and Ni45Fe65 Pt) of 

the two constituent of alloy. Platinum, iron and Ni are dominant constituent in PtCu, 

FeNi and CuNi system respectively. For example in Fe30Ni70 alloy, the results are 

significantly closer to the pure iron despite the high concentration of nickel. 

Two models T0 - model and q - model are applicable in all available data sets but              

η – model is only applicable if experimentally determined thermal conductivity lies 

within the thermal conductivity values of pure constituent of binary alloy. Nevertheless, it 

gives much better results than the other two models from the perspective of percentage 

deviation with the experimental values.  

 

Table 7.1. Three alloy series PtCu, CuNi and FeNi applied for modeling, whereas PtCu are 

investigated experimentally in the present work  while other are taken from Hüpf and Seifter 

respectively [4, 5]. 

Pt-Cu   Cu-Ni Fe-Ni 

Pt96Cu04 Cu85Ni15 Fe20Ni80 

Pt68 Cu32 Cu70Ni30 Fe40Ni60 

Pt50 Cu50 Cu55Ni45 Fe50Ni50 

Pt25 Cu75 Cu35Ni65 Fe64Ni36 

 Cu20Ni80 Fe80Ni20 

    Fe90Ni10 
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Table 7.2: Parameters used in three models with percentage errors from experimental values. 

Alloy 
% deviation in 

T0 model 
q- values 

% deviation 

in q-model 
 (η- values) 

% deviation 

η-model 

Pt96Cu04 1.5 0.77 1, 2   

Pt68Cu32 15 0.79 3, 5   

Pt50Cu50 7.5 0.53 3, 1 2.4 1 

Pt25Cu75 8 0.19 10, 1 1 1 

Cu85Ni15 5 0.28 1, 5 3.7 2 

Cu70Ni30 10 0.55 1, 1 8 1 

Cu55Ni45 10 0.6  1, 1 7 1 

Cu35Ni65 1 0.72  1, 1   

Cu20Ni80 2 0.75  2, 1 10 2 

Fe20Ni80 7 0.28 3, 2   

Fe40Ni60 6 0.38 3, 1 18 1 

Fe50Ni50 5 0.42 2, 1   

Fe64Ni36 3 0.465 2, 2   

Fe80Ni20 1 044 2, 2   

Fe90Ni10 1 0.415 1, 1   

       

 

 

 

 

 

 

 

 



105 

 

 

To - model 

        Pt-Cu System 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.1. Comparison of measured and predicted thermal conductivity values of Pt96Cu04 as a 

function of temperature along with pure Pt and pure Cu [6, 7].  

 

 

 

 

 

 

 

 

 
 

 

Figure 7.2. Comparison of measured and predicted thermal conductivity values of Pt68Cu32 as a 

function of temperature along with pure Pt and pure Cu [6, 7]. 
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Figure 7.3. Comparison of measured and predicted thermal conductivity values of Pt50Cu50 as a 

function of temperature along with pure Pt and pure Cu [6, 7]. 

 

 

 

 

 

 

 

 

 

 

Figure 7.4. Comparison of measured and predicted thermal conductivity values of Pt25Cu75 as a 

function of temperature along with pure Pt and pure Cu [6, 7]. 
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   Cu-Ni System 

 

 

 

 

 

 

 

 

 

 

Figure 7.5. Comparison of measured and predicted thermal conductivity values of Cu20Ni80 as a 

function of temperature along with pure Cu and pure Ni [5-7]. 
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Figure 7.6. Comparison of measured and predicted thermal conductivity values of Cu35Ni65 as a 

function of temperature along with pure Cu and pure Ni [5-7]. 
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Figure 7.7. Comparison of measured and predicted thermal conductivity values of Cu55Ni45 as a 

function of temperature along with pure Cu and pure Ni [5-7]. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.8. Comparison of measured and predicted thermal conductivity values of Cu70Ni30 as a 

function of temperature along with pure Cu and pure Ni [5-7]. 
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Figure 7.9. Comparison of measured and predicted thermal conductivity values of Cu85Ni15 as a 

function of temperature along with pure Cu and pure Ni [5-7]. 
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Figure 7.10. Comparison of measured and predicted thermal conductivity values of Fe20Ni80 as a 

function of temperature along with pure Fe and pure Ni [4, 6]. 
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Figure 7.11. Comparison of measured and predicted thermal conductivity values of Fe40Ni60 as a 

function of temperature along with pure Fe and pure Ni [4, 6]. 

 

 

 

 

 

 

 

 

 

 

 
Figure 7.12. Comparison of measured and predicted thermal conductivity values of Fe50Ni50 as a 

function of temperature along with pure Fe and pure Ni [4, 6]. 
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Figure 7.13. Comparison of measured and predicted thermal conductivity values of Fe64Ni36 as a 

function of temperature along with pure Fe and pure Ni [4, 6]. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.14. Comparison of measured and predicted thermal conductivity values of Fe80Ni20 as a 

function of temperature along with pure Fe and pure Ni [4, 6]. 
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Figure 7.15. Comparison of measured and predicted thermal conductivity values of Fe90Ni10 as a 

function of temperature along with pure Fe and pure Ni [4, 6]. 
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Figure 7.16. Comparison of measured and predicted thermal conductivity values of Cu04Pt96 as a 

function of temperature along with pure Cu and pure Pt [6, 7]. 
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Figure 7.17. Comparison of measured and predicted thermal conductivity values of Cu32Pt68 as a 

function of temperature along with pure Cu and pure Pt [6, 7]. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.18. Comparison of measured and predicted thermal conductivity values of Cu50Pt50 as a 

function of temperature along with pure Cu and pure Pt [6, 7]. 
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Figure 7.19. Comparison of measured and predicted thermal conductivity values of Cu75Pt25 as a 

function of temperature along with pure Cu and pure Pt [6, 7]. 
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Figure 7.20. Comparison of measured and predicted thermal conductivity values of Cu20Ni80 as 

a function of temperature along with pure Cu and pure Ni [5-7]. 
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Figure 7.21. Comparison of measured and predicted thermal conductivity values of Cu35Ni65 as 

a function of temperature along with pure Cu and pure Ni [5-7]. 

 

 

 

 

 

 

 

 

Figure 7.22. Comparison of measured and predicted thermal conductivity values of Cu55Ni45 as 

a function of temperature along with pure Cu and pure Ni [5-7]. 
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Figure 7.23. Comparison of measured and predicted thermal conductivity values of Cu70Ni30 as 

a function of temperature along with pure Cu and pure Ni [5-7]. 

 

 

 

 

 

 

 

 

Figure 7.24. Comparison of measured and predicted thermal conductivity values of Cu85Ni15 as 

a function of temperature along with pure Cu and pure Ni [5-7]. 
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Ni-Fe System 

 

 

 

 

 

 

 

 

 

 

Figure 7.25. Comparison of measured and predicted thermal conductivity values of  Ni80Fe20 as 

a function of temperature along with pure Ni and pure Fe [4, 6]. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.26. Comparison of measured and predicted thermal conductivity values of  Ni40Fe60 as 

a function of temperature along with pure Ni and pure Fe [4, 6]. 

1600 1800 2000 2200 2400

0.015

0.020

0.025

0.030

0.035

0.040
λ−1
 /
 m
·K
·W

-1
 Experimental

 Pure Fe

 Pure Ni

 q model

Temperature / K

1600 1800 2000 2200 2400

0.015

0.020

0.025

0.030

0.035

0.040

 Experimental

 Pure Fe

 Pure Ni

 q model

λ−1
 /
 m
·K
·W

-1

Temperature / K



118 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.27. Comparison of measured and predicted thermal conductivity values of  Ni50Fe50 as 

a function of temperature along with pure Ni and pure Fe [4, 6]. 

 

 

 

 

 

 

 

 

 

Figure 7.28. Comparison of measured and predicted thermal conductivity values of  Ni36Fe64 as 

a function of temperature along with pure Ni and pure Fe [4, 6]. 
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Figure 7.29. Comparison of measured and predicted thermal conductivity values of  Ni20Fe80 as 

a function of temperature along with pure Ni and pure Fe [4, 6]. 

 

 

 

 

 

 

 

 

 

Figure 7.30. Comparison of measured and predicted thermal conductivity values of  Ni11Fe89 as 

a function of temperature along with pure Ni and pure Fe [4, 6]. 
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Figure 7.31. Comparison of measured and predicted thermal conductivity values of  Pt50Cu50 as a 

function of temperature along with pure Pt and pure Cu [6, 7]. 

 

 

 

 

 

 

 

 

 
 

 

Figure 7.32. Comparison of measured and predicted thermal conductivity values of  Pt25Cu75 as a 

function of temperature along with pure Pt and pure Cu [6, 7]. 
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Ni - Cu System 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.33. Comparison of measured and predicted thermal conductivity values of  Ni15Cu85 as a 

function of temperature along with pure Ni and pure Cu [5-7]. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.34. Comparison of measured and predicted thermal conductivity values of  Ni30Cu70 as a 

function of temperature along with pure Ni and pure Cu [5-7]. 
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Figure 7.35. Comparison of measured and predicted thermal conductivity values of  Ni45Cu55 as a 

function of temperature along with pure Ni and pure Cu [5-7]. 
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Figure 7.36. Comparison of measured and predicted thermal conductivity values of  Fe20Ni80 as a 

function of temperature along with pure Fe and pure Ni [4, 6]. 
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Figure 7.37. Comparison of measured and predicted thermal conductivity values of  Fe40Ni60 as 

a function of temperature along with pure Fe and pure Ni [4, 6]. 
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Chapter 8 

Specific Heat Modeling at High Temperature 

In this chapter, specific heat values of the three different series of PtCu, CuNi, and FeNi 

alloys will be discussed from the theoretical point of view. Because we are mainly 

interested in an ab initio approach to the problem, we concentrate our intentions (i) on the 

phononic contribution to the specific heat in the harmonic approximation, and (ii) on the 

contribution of the valence electrons. In both cases, the theoretical quantity to be 

investigated is usually the specific heat at constant volume cv, in opposite to the 

experimental situation where the specific heat at constant pressure is at the center of 

interest.  

For this reason, we cannot expect to achieve a quantitative agreement between our 

experimental and theoretical results, but we are able to investigate whether or not the 

tendency of the specific heat of an alloy as a function of the mass contributions of its 

constituents. 

8.1. Platinum-Copper Alloys 

The experimental measurements of various alloys of the Pt 1-xCux system are investigated 

theoretically in this section. Experimentally, thermodynamical properties of copper alloys 

with mass percentage of copper x = 0.04, 0.32, 0.50, and 0.75 for the high-temperature 

region around the melting points are investigated. In the following Figure 8.1, the least 

squares (LSQ) evaluation of these data are summarized with respect to the specific heat at 

constant pressure cp(T) close below the corresponding solidus points: 

For comparison, this figure also contains the values for pure Pt and for pure Cu [1, 2]. 

The following Table 8.1 shows the temperature regions of the LSQ analysis and the 

melting temperatures (both in K) of the materials investigated, where x ∈ [0, 1] indicates 

the mass percentage of copper, divided by 100:  
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Figure 8.1. Specific heat at constant pressure cp(T) of copper alloys close below the corresponding solidus 

points vs. copper mass percentage. Open circle: Experimental values, dashed line: Least square fit, solid 

circle: Pure platinum, solid triangle: Pure copper [1, 2]. 

 

Table 8.1. The temperature regions of the LSQ analysis, the melting temperatures TM (both in K) 

of investigated material; x is mass percentage of copper in alloy and cp specific heat values. 

material x LSQ region (K) TM (K) 

 

cp  / kJ·kg 
-1

·K
-1 

(accord. line) 

Pt 0.00 - 2041 0.180 

Pt96Cu04 00.04 1450-1950 1953 01.92 

Pt68Cu32 00.32 1250-1600 1650 0.276 

Pt50Cu50 00.50 1250-1500 1530 0.330 

Pt25Cu75 0.75 1150-1400 1450 0.405 

Cu 1.00 - 1358 0.480 

 

The experimental values for the alloys PtCu lie in good approximation on the straight 

line: 

0.180 0.300pc x= + ∗   0  ≤  x  ≤  1         (8.1) 
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Where x is mass percent of copper in the composition of alloy. Also in reasonable 

accordance with Neuman-kopp’s rule [3]. As discussed earlier, we can theoretically 

evaluate the heat capacity at constant volume by using equations (3.16) and (3.19). It has 

to be noted that all calculations of heat capacities of alloy systems presented in this work 

are in the high-temperature region far above the Debye and the Einstein temperatures and 

in case of ferromagnetic constituents, also far above the Curie temperature.  

 

Table 8.2. The melting temperature TM and Debye temperatures θD of pure Pt and pure Cu. 

Material TM (K) θD (K) [4] 

Pt 2041 240 

Cu 1358 343.5 

Under these circumstances, the heat capacity of the crystal lattices can be theoretically 

described by Dulong and Petit’s formula using equation (3.16) 

( ) 24.9432
DP

v

r
C T

M
=  (8.2) 

For binary alloy consisting of ‘molecules’ with alpha (Pt atoms) and beta (Cu atoms), the 

above equation changes to  

             

( ) 24.9432DP

v

Pt Cu

r
C T

m mα β
=

+
 (8.3) 

where, r = α + β, means the number of atoms per unit cell and mP t and mCu  are the atomic 

masses of the two constituents. According to equation (3.17), a relation between these 

quantities and mass percentage of Cu is given by 

Cu
Cu

Pt Cu

m
x

m m

β
α β

=
+

 (8.4) 

For typical theoretical models of ordered PtCu alloys, one gets: 
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Table 8.3. Some parameters representing typical theoretical models. α, β are number of 

atoms in a molecule, r is sum of α and β and  x is value given by equation (8.4).  

Molecule α β r x x  for  mA = mB 

A 1 0 1 0 00.00 

A3B 3 1 4 mB / (mB +3 mA) 00.25 

AB 1 1 2 mB / (mA + mB) 00.50 

AB3 1 3 4 3mB / (3mB + mA) 0.75 

B 0 1 1 1 1.00 

 

 

It is clear that the difference between the mass percentage and the particle percentage 

will be significant for alloys with a great difference between mA and mB.  In this research 

work, this will especially be the case for the PtCu alloys where mPt and mCu  amount to 

195.08 and 63.546 g, respectively. For this special case, we have the following situation 

as in Table 8.4 and plotted in Figure 8.2: 
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Figure 8.2. Specific heat of PtCu alloys vs. mass percentage of copper, Open circle: Experimental values, 

dashed line: Least square fit of experimental cp values, open rectangle: cv values by using equation (8.2), 

solid line: Line through open rectangles, solid circle: Pure platinum, solid triangle: Pure copper [1, 2]. 
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Table 8.4. Some parameters representing PtCu alloys. α, β are number of atoms in a molecule, r 

is sum of α and β,  x is value given by equation (8.4) and cv  is specific heat at constant volume  

Molecule α β r x CuPt mm βα + /g 
cv / 

kJ·kg
-1

·K
-1

 

Pt 1 0 1 0 195.080 0.1279 

Pt3Cu 3 1 4 0.098 648.786 0.1538 

PtCu 1 1 2 0.246 258.626 0.1929 

PtCu3 1 3 4 0.494 385.718 0.2587 

Cu 0 1 1 1 63.546 0.3925 

 

  

As we already expressed in section 3.2.7, the contribution of the valence electrons to the 

heat capacity requires the numerical evaluation of the Equations (3.24, 3.25) or the 

evaluation of the Sommerfeld approximation (3.26).  

In order to get the electronic density of states (DOS) of the valence electrons, one has to 

perform the corresponding band structure calculations. To make this task less  

complicated, we describe the binary system, PtCu, by its easy-to-handle ordered alloys 

Pt3Cu, PtCu, and PtCu3 [5]. The DOS curves, calculated using the FP-LAPW band 

structure program, are shown in Figure 8.3 [6]. The estimated values of electronic 

specific heat obtained by the numerical integration of Equation (3.25) and Sommerfeld 

approximation (3.26) are plotted in Figures 8.4 to Figure 8.8.  In the following Table 8.5, 

n means the space group number of the corresponding crystal lattice: 

Table 8.5. The ordered PtCu alloys along with mass percentage of copper, lattices, space group n, 

Bohr a, density d and estimated electronic contribution c
elec 

to specific heat. 

Molecule x lattice n a / Bohr  d / kg·m
-3

  cc
elec

 / kJ·kg
-1

·K
-1

 

Pt 0.000 fcc 225 7.5952 21450 0.0216 

Pt3Cu  0098 sc (L12) 221 7.4028 18916 0.0237 

PtCu  0.246  stetra (L10) 123 7.2406 15890 0.0218 

PtCu3 0.494 sc (L12) 221 7.0575 12560 0.0167 

Cu 1.000 fcc 225 6.8585 8960 0.0138 
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Figure 8.3. Density of state curves (a) Pt (b) Pt3Cu (c) PtCu (d) PtCu3 (e) Cu. 
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Figure 8.4: Heat capacity of Pt by valence electron using equation (3.25), red curves, and by Sommerfeld 

approximation equation (3.26), blue curve.  

 

 

 

 

 

 

 

 

 

Figure 8.5. Heat capacity of valence electron in Pt3Cu using equation (3.25), red curve, and by Sommerfeld 

approximation equation (3.26), blue curve.  
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Figure 8.6. Heat capacity of valence electron in PtCu using equation (3.25), red curve, and by Sommerfeld 

approximation equation (3.26), blue curve.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.7. Heat capacity of valence electron in PtCu3 using equation (3.25), red curve, and by Sommerfeld 

approximation equation (3.26), blue curve.  
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Figure 8.8. Heat capacity of valence electron in Cu using equation (3.25), red curve, and by Sommerfeld 

approximation equation (3.26), blue curve.  

For almost all materials under investigation - for temperatures close to the melting points, 

the simple Sommerfeld formula (3.26) that only includes the DOS value at the Fermi 

energy is a rather good approximation for the heat capacity due to the valence electrons.  

The only exception is pure platinum where (at the melting temperature of 2041 K) the 

Sommerfeld formula gives an electron contribution to the heat capacity                          

(≈ 0.05kJ·kg
-1 

·K
-1

) which is more than twice as big as the corresponding value obtained 

by a numerical evaluation of the integral (3.25) (≈ 0.02 kJ·kg
-1

·K
-1

).The values of c
el 

at    

T = TM, taken from the exact integral (3.25), can be found in the last column of the    

Table 8.5. 

The following Figure 8.9 summarizes the experimentally determined cp results, the 

theoretically obtained cv values of the lattice contribution, solid line, and the sum of 

lattice contribution and the corresponding valence electrons contribution, dotted line.  As 

one can see, the electronic term goes into the right direction, i.e., it reduces the gap 

between the theoretical and the measured values of the specific heat. Nevertheless, the 

difference between theory and experiment remains rather large. It is clear that a great part 

Temperature / K 
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of disagreement between experiment and theory comes from the fact that the measured 

data are cp values (= constant pressure), and the theoretical results are cv values               

(= constant volume). As already discussed by equation (3.11), this difference is mainly 

dedicated to anharmonic lattice vibrations which play a great role in our investigation and 

will be studied carefully in the immediate future. 
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Figure 8.9. Specific heat of PtCu alloys vs. mass percentage of copper, open circle: Experimental cp values, 

dashed line: Least square fit of experimental cp values, open rectangle:  Theoretically obtained cv values of 

the lattice contribution, solid line: Least square fit of the lattice contribution, open triangle: Sum of lattice 

and the corresponding valence electrons contribution, dotted line: Least square fit of lattice and the 

corresponding valence electrons contribution. 
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8.2. Copper-Nickel Alloys 

 

In this section, a series of alloys of the Cu1-x Nix system is investigated. From the 

experimental side, we use enthalpy data of alloys with x = 0.15, 0.30, 0.45, 0.65, and 

0.80, measured within the temperature region close to the melting points [7].In the 

following Figure, the LSQ evaluation  are summarized of these data with respect to the 

specific heat at constant pressure cp (T) for T ≈ TM. 
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Figure 8.10. Specific heat at constant pressure cp(T) of CuNi alloys close below their corresponding 

solidus points vs. mass percentage of nickel.  Open circle: Experimental cp values, dashed line: Least 

square fit of experimental values, solid circle: Pure copper, solid triangle: Pure nickel. 
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The open circles in the above Figure show the cp values, obtained by least-squares 

evaluations of the given enthalpy data [7]. Their mean values are given by the dashed 

line with the corresponding cp values of pure copper and nickel.  

Taking into account the relatively large uncertainties of the experimental data, one can 

say that the Neumann-Kopp rule is at least approximately fulfilled. 
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Figure 8.11. Specific heat at constant pressure cp(T) of CuNi alloys close below the corresponding melting 

points vs. Nickel mass percentage in same scale as that of PtCu system. 

In order to allow a direct comparison of the CuNi alloys with the results PtCu of the 

previous section, the Figure 8.11 above shows the results for CuNi the at the same scale 

as in the case PtCu. The following Table 8.6 shows the temperature region of the LSQ 

analysis, the melting temperature (in K), average values of cp by LSQ and their literature 

values of the investigated materials: 
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Table 8.6.  The temperature region of the LSQ analysis, melting temperature Tm and cp values of 

the investigated materials [7]. 

 

Material LSQ region (K) TM (K) 
cp / kJ·kg

-1
·K

-1
 

(dashed line) 

Cu - 1358  

Cu85Ni15 1100-1417 1432 0.515 

Cu70Ni30 1100-1472 1496 0.542 

Cu55Ni45 1100-1528 1552 0.556 

Cu35Ni64 1100-1599 1619 0.564 

Cu20Ni80 1100-1656 1667 0.616 

Ni - 1728  

 

In order to properly compare the Dulong-Petit values for the materials, one has to 

evaluate a formula equivalent to Equation (8.5) but with mCu = 63.55 g and mNi = 58.69 g: 
 

[ ]1

1
24.9432DP

v x x

Cu Ni

x x
C Cu Ni

m m
−

 −
= + 

                       

(8.5) 

What concerns the contribution of the valence electrons to the specific heat for the PtCu 

alloys, the situation is in contrary to the PtCu alloys somewhat more complicated. The 

CuNi alloys do not build ordered crystalline structures but realize so-called disordered 

alloys [8]. Consequently, the corresponding density of states cannot be yielded by 

conventional band-structure calculations. For such systems, it would be necessary to use 

the so called coherent potential approximation. For this reason, we discuss the electronic 

part of the specific heat of CuNi alloys by assuming a linear connection between the 

values of c
el
(TM) for pure Cu and pure Ni. The DOS profiles of Ni, calculated by 

WIEN2k are shown in Figures 8.12 [6]. The corresponding functions of c
el
(T), both 

obtained by evaluations of the integral (3.25) (red curves) and of the Sommerfeld formula 

(3.26) (blue curves), are shown in the following Figures 8.13. 
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Figure 8.12. Density of state curve for pure Ni.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.13. Heat capacity of valence electron in Ni using equation (3.25), red curve, and by Sommerfeld 

approximation equation (3.26), blue curve.  
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As it has been already discussed, Cu is an example where the Sommerfeld formula gives 

for TM almost perfect result for the heat capacity of the valence electrons:                 

c
el
(TM) = 0.0140 kJ·kg

-1
·K

-1
. This is by no means the case for the typical (3d) transition 

metal Ni where the Sommerfeld formula exaggerate the heat capacity at TM = 1728 K by 

nearly a factor of 3. A numerical evaluation of the integral (3.25) obtains                  

c
el
(T

M
) = 0.085 kJ·kg

-1
·K

-1
. In the next Figure 8.14, the results of this section are 

summarized: the experimental cp data are the same discussed before, the solid line means 

the Dulong-Petit curve of the CuNi system, and the dotted line marks the sum over the 

harmonic lattice contribution and the valence electron contribution to cv: 
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Figure 8.14. Specific heat at constant pressure cp vs. Nickel mass percentage. Open circle: Experimental cp 

values, dashed line: Least square fit of experimental values. Solid line: Theoretically obtained cv values of 

the lattice contribution, dotted line: Sum of lattice contribution and the corresponding valence electrons 

contribution.   

Here it is obvious that the inclusion of the electron contribution significantly improves 

the performance of the theoretical results. There is a relatively good agreement of the 

slopes of the dotted line and of the black dashed line, which connect the cp and cv values 

of pure Cu and pure Ni and this agreement quite convincingly describes the tendency of 
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the alloys. The absolute difference between the experimental values cp and the theoretical 

results cv is, probably, due to anharmonic lattice effects. 

8.3. Iron -Nickel Alloys  

From the theoretical point of view, the experimental results concerning the specific heat 

of a series of NixFe1-x alloys is quite strange, especially if one looks at the cp values of 

pure Ni and Fe and their relation to FeNi alloys [9, 10]: 

 

 

0.0 0.2 0.4 0.6 0.8 1.0

0.32

0.40

0.48

0.56

0.64

0.72

0.80

c
  
/ 
k
J
·k
g
 -
1
·K

-1

mass percentage of iron
 

Figure 8.15. Specific heat at constant pressure cp(T) of FeNi alloys close below the corresponding solidus 

points vs. iron mass percentage. 

 

For the two examples of binary alloys (PtCu and CuNi) discussed in the previous 

sections, we observed an almost perfect (PtCu, see Figure 8.1) or at least approximately   

(CuNi, see Figure 8.10) fulfillment of the Neumann-Kopp rule [3]. This is by no means 

the case for FeNi alloys, as it can be seen in the Figure 8.15 where the dashed-dotted line 

corresponds to Neumann-Kopp rule:  

 

      cp(x) = (1-x)cp (Ni) + xcp(Fe)  0  ≤  x  ≤  1                              (8.6) 



141 

 

 

Where x is mass percent of iron in the composition of alloy. The experimentally 

determined cp values of the alloys are rather well described by an almost constant 

behavior (if the large experimental error bars are taken into account) around roughly     

0.5 kJ·kg
-1

·K
-1

. However, for x → 0 and x → 100, this line-up switches to the 

corresponding values of the pure metals Ni and Fe. This effect stays so efficient that if 

one takes into account the experimental errors of the cp which are reported to be 8 percent 

for the pure metals and 15 percent for the alloys [9, 10]. 

 

Table 8.7.  The temperature region of the LSQ analysis, d density, x is mass percent of iron and 

cp is specific heat capacity at constant pressure [9, 10]. 

Material x(Fe) LSQ region / K d /kg·m
 -3

 cp / kJ·kg
-1

·K
-1

 

Ni 0.000 1200 - 1715 8902 0.6344 

FeNi alloy 0.186 1200 - 1712 8734 0.480 

FeNi alloy 0.417 1200 - 1707 8583 0.483 

FeNi alloy 0.485 1200 - 1709 8328 0.486 

FeNi alloy 0.627 1200 - 1717 8000 0.519 

FeNi alloy 0.799 1200 - 1740 8038 0.513 

FeNi alloy 0.890 1200 - 1763 8150 0.459 

Fe 1.000 1420 - 1790 7874 0.732 

 

 

The calculations of the cv
DP 

values for the (theoretical) test crystals of FeNi3, FeNi, Fe3Ni 

and Fe, have been done using the following relation: 

              

( ) 24.9432DP

v

Ni Fe

C T
m m

α β
α β

+
=

+                   

(8.7)  

with mNi = 58.6934 g and mF e = 55 847 g, respectively, gives the results as shown in 

Table 8.8. The values  then obtained by Dulong-Petit presented in the Figure 8.21. Now 

for the part of electronic specific heat of the FeNi series which again starts with band 

structure and DOS calculations: 
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. Table 8.8. Some parameters representing FeNi alloys. α, β are number of atoms in a molecule, r 

is sum of α and β,  x is value by equation (8.4) and 
DP

vc   is specific heat at constant volume by 

equation (8.7) 

Molecule α β r x (Fe) FeNi mm βα +  (g) 
DP

vc  / 

kJ·kg
-1

·K
-1

 

Ni 1 0 1 0 58.6934 0.4250 

Ni3Fe 3 1 4 0.2408 231.9272 0.4302 

NiFe 1 1 2 0.4876 114.5404 0.4355 

NiFe3 1 3 4 0.7406 226.2344 0.4410 

Fe 0 1 1 1 55.8470 0.4466 

 

 

Table 8.9. The ordered FeNi alloys along with mass percentage of copper, lattices, space group n, 

Bohr a, density d and estimated electronic contribution c
elec 

to specific heat. 

 

Alloy x(Fe) lattice n a / Bohr d /kg·m
-3

 
c

el 
, /  

kJ·kg
-1

·K
-1

 

Ni 0 fcc 225 6.7000 8902 0.0847 

Ni3Fe 0.2408 sc (L12) 221 6.6012 8700 0.1198 

NiFe 0.4876 (L10)* 123 6.6357 8327 0.1347 

NiFe3 0.7406 sc (L12) 221 6.6101 8025 0.1477 

Fe 1 bcc 225 5.4200 7874 0.1795 

 

The DOS curves, calculated using the FP-LAPW band structure program WIEN2k [6], 

are shown in Figure 8.16. It is, of course, no surprise that the DOS of all materials 

investigated in this section are dominated by the 3d electrons of Ni and Fe. It is 

interesting to observe that the pure metals show a somewhat narrower distribution than 

the three alloys FeNi3, FeNi and Fe3Ni.Using the DOS curves, there is no problem to 

calculate the electronic part of the specific heat (at constant volume) of all members of 

the NiFe series by using the equation (3.25) and (3.26). It is clearly to be seen that, in all 

cases, the Sommerfeld result significantly over estimates c
el

v. The results obtained by 

numerical evaluations of the integral in equation (3.25) are given in the last column of the 

Table 8.9. 

The following Figures 8.17 to 8.20 are showing c
el
(T) for Ni, Ni3Fe, NiFe, NiFe3, and 

Fe. The red curves are the results obtained by the numerical integration of 
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equation (3.25), and the blue ones belong to the Sommerfeld approximation 

equation (3.26).    

In fact, we observe a strong contradiction to our results shown in Figs. 8.4 to 8.8 for the 

PtCu series: for all those materials (except pure Pt), the Sommerfeld formula (3.26) did a 

remarkable good job. However, the Figs. 8.17 to 8.20 show very significant deviations of 

the Sommerfeld result in comparison to the exact numerical integration (3.25) for all 

members of the FeNi family. These strong differences are shown in the following table: 

 

Table 8.10. Comparison of the electronic contribution to the specific heat, calculated by using the exact 

integration (3.25) or the Sommerfeld formula (3.26). 

Alloy 

c / kJ·kg
-1
·K

-1
 

 

Exact integral Eq. (3.25) Sommerfeld  formula (3.26) 

Ni 0.085 0.267 

FeNi3 0.120 0.186 

FeNi 0.135 0.206 

Fe3Ni 0.148 0.168 

Fe 0.180 0.276 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



144 

 

 

 

                           (a)                                                (b)                                                  (c) 

 

 

 

 

 

 

 

 

 

                             

  

  (d)                                                           (e) 

 

Figure 8.16. Density of state curves (a) Ni (b) FeNi3 (c) NiFe (d) Fe3Ni (e) Fe. 
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Figure 8.17.Heat capacity of valence electron in Ni3Fe using equation (3.25), red curve, and by 

Sommerfeld approximation equation (3.26), blue curve.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.18. Heat capacity of valence electron in NiFe using equation (3.25), red curve, and by 

Sommerfeld approximation equation (3.26), blue curve.  
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Figure 8.19. Heat capacity of valence electron in NiFe3 using equation (3.25), red curve, and by 

Sommerfeld approximation equation (3.26), blue curve.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.20. Heat capacity of valence electron in Fe using equation (3.25), red curve, and by 

Sommerfeld approximation equation (3.26), blue curve.  
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The following Figure shows a summary of the experimental and theoretical results of 

FeNi. As we argued at the beginning of this section of the NiFe series, the theory is not 

able to properly describe the relatively complicated profile of the measured cp values. In 

fact, the sum of the Dulong-Petit and the electron parts of cv give a kind of mean value 

through the experimental points. 
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Figure 8.21. Specific heat at constant pressure cp of FeNi vs. iron mass percentage. Dashed line 

Solid line: Experimental cp values, solid line: Theoretically obtained cv values of the lattice 

contribution, dotted line: Sum of lattice contribution and the corresponding valence electrons 

contribution. 
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Conclusions 

Summarizing the discussions in the previous subsections on series of PtCu, CuNi, and 

FeNi alloys, we found a significantly different behaviour of the PtCu and the FeNi series: 

In the PtCu case, both the experimentally and theoretically obtained values of the heat 

capacity show a more or less convincing linear relation between cp (experiment) and cv 

(theory) and the mass percentage of one of the constituents, i.e., the Neumann-Kopp rule 

is reasonable fulfilled. Apart from the difference cp - cv which is mainly due to 

anharmonic lattice effects, the (qualitative) agreement between the experimental and 

theoretical curves is satisfying. Theoretically, one observes a dominant "harmonic-

lattice" contribution to cv, much larger than the relatively small contribution of the 

valence electrons.    

The FeNi case shows a completely different and somewhat irritating behaviour (see    

Figures. 8.15 and 8.20): The experiments show more or less (note the relatively large 

uncertainty bars) constant cp values (around 0.50 kJ·kg
-1

·K
-1

) for the alloys, in very strong 

contradiction to the two pure metals Ni (0.64 kJ·kg
-1

·K
-1

) and Fe (0.73 kJ·kg
-1

·K
-1

). That 

means, for this series, the Neumann-Kopp rule is completely out of the game. This 

behaviour is, however, not at all reflected by our theoretical results which appear quite 

Neumann-Kopp-like. It is also interesting to observe that - for FeNi - the contribution due 

to the valence electrons is much larger than it was the case for PtCu. 

What concerns the series of CuNi alloys discussed in Section 8.2, these materials show, 

from the experimental point of view, a similar behaviour as PtCu, namely, an 

approximate Neumann-Kopp characteristic (compare Figures 8.10, 8.11). Due to the non-

existence of ordered CuNi crystals, we were not able to do cv calculations for these 

alloys, but our results for pure Cu and pure Ni lead to the rather satisfying theoretical 

results shown in Figure 8.14: The harmonic-lattice contribution to cv is far away from the 

experimental curve. However, an inclusion of our band-structure based results for the 

valence electrons leads (i) to a significant reduction of the difference between the cp and 

cv curve and (ii) to a steeper theoretical curve which is (almost) parallel to the 

experimental result. 
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Chapter 9 

Derived Relation of Bulk Modulus 

Experimental investigations have shown that the ratio of stress b to strain εb is a constant 

for a given material, provided the external applied force is not too high. This constant is 

called modulus of elasticity and mathematically can be written as:  

                  

b

b

Stress

Strain




                         (9.1) 

Since strain εb is a dimensionless quantity, the units of modulus of elasticity are same as 

that of stress N∙m
-2 

or Pa. For three dimensional deformations or strain, where volume is 

considered, the ratio of stress to strain is called Bulk modulus which is measure of how a 

substance changes its volume by a uniform compression or expansion, it is denoted by 

the symbol K and its relation is [1]: 

        

V

V
A

F

K


                                                   (9.2) 

Where V  is the change in original volumeV . The elastic constants for some materials 

are given in Table 9.1 [2]. In this work, a modified relationship of bulk modulus has been 

derived, while using some of the available parameters from pulse heating setup.  To 

derive this relationship, let us consider a wire of length l (our sample wire) with diameter    

D0 (2r0=D0, where r0 is radius) and cross sectional area A clamped from both ends and 

stretched to the point where there are no kinks in the wire. This wire expands as time 

passes, the cause of its expansion is the electrical energy 2I R t given to it, where I is 

current passing through it, R is the resistance of the sample wire and t is the time for 

which the expansion occurs. It is important to note that the expansion occurs only 

laterally not longitudinally (length is constant Δl = 0) because its ends are properly 

clamped and fixed. The sketch of sample wire has been shown in the Figure 9.1. The 

energy supplied to the sample wire work as the main agent to do any kind of stress which 
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result changes in volume V  and hence strain εb. In our case, bulk modulus is being 

measured because of volumetric effects and its relation as mentioned before is: 

                     b

b

F
Stress AK

VStrain

V




  


                                    (9.3) 

 

(a) 

 

 

 

 

 

                                                                                                                   

                                                                                                                  

 

 

(b) 

 

Figure 9.1. (a) A sample wire of length l and cross- section area A (b) cross- sectional view of wire sample 

with initial radius r0, Δr change of radius and circumferential increase in cross- sectional area 2π r0 Δrl. 

 

 

Let us take the denominator 
V

V
 for further evaluation or conversion of Equation (9.3), 

where original volume   and change of volume is , here r0 and Δr 

A A 

 

        r0 

  

    Δr 
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are initial radius and change in radius of the sample wire. Substituting these values in 

above relation we have, 

 

                

0
2

0

2 r rV l

V r l





 
                                               (9.4) 

Simplification of above equation (9.4) leads us,  

        0

2V r

V r

 
  or  

0

2V D

V D

 
                        (9.5) 

 

Where D0 = 2 r0 and ΔD = 2Δr. Here r  and D  are changes in the radius and diameter 

and 0r , 0D  are original or initial radius and diameter respectively. Simplifying Equation 

(9.3) we have,  

 

           

D

D

A

F

D

D
A

F

K






22

0

0

                                                                (9.6) 

Since we know dxF W  where F is the force acting on the sample wire which causes 

the expansion and dx is lateral displacement, then we can rewrite it as 
dx

 W 
F   using 

this value in Equation (9.6) we have  

 

              
D

D

Adx
K







2

W 0                        (9.7) 

 

In our cylindrical shaped sample wire, dx 2 2dr r     and area is, lrrA 0

2

0 22    

using these values  
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                                                     (9.9) 

 

If we take RtI W 2 , where I is current passing through the sample during the 

experimental duration time t and R is the resistance of the sample being investigated.  
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              (9.10) 

or    

 

               

2

2 2
0

I Rt

( 2 )
K

D l D


  
             

(9.11) 

 

or      
2I Rt

K
G F




                 (9.12) 

where G.F is geometrical factor which is equal to 2 2

0( 2 )G F D l D     . Based on 

this Formula (9.11) and by using 2 W I R t  corresponding changes in diameter 

measured experimentally from our pulse heating experiments, one gets the solid lines in 

Figures 9.2 for Platinum and Figure 9.3 for niobium respectively. Compared to results in 

the literature, dashed lines in Figures 9.2 and Figure 9.3, the values based on Equation 

(9.11) are much high and their temperature dependence is very high too. The major 

reason for these higher values is the assumption that the Formula (9.11) includes the 

whole invested energy, coming from the current ( 2 H I Rt ), into an increase of the 

volume. But this is not the case: only a part of this energy is utilized to increase the 

volume, another part is used to increase the internal energy ΔUint of the sample. 

Therefore, the real or actual bulk modulus is given by the formula  
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int(I Rt- U )

( )K actual
G F





          (9.13) 

Comparing results of Equation (9.12) and Equation (9.13), one obtains the percentage of 

real or actual work done as: 

Percentage of real work of the metal under investigation  *100%actual

estimated

K

K
    (9.14) 

 

Similarly percentage of internal energy is  1 *100%actual

estimated

K

K

 
 

 
     (9.15) 

 

It is concluded that if it is possible to subtract from the above derived Relation (9.11) part 

of internal energy ΔUint and have only some value of work done W then there is more 

likely to get the accurate value of bulk modulus.  

Despite the higher results of the above derivation, this relation is still useful in the sense 

that if we take some known (experimental or real) value of bulk modulus in Equation 

(9.14) then we are able to get percentage of work done by or on the sample. Similarly by 

using Equation (9.15) one can obtain percentage of internal energy being stored in the 

sample during expansion and heating. 

It has been seen from these evaluations that, in comparatively low temperature, internal 

energy has much higher values and these values decrease with the rise of temperature, 

which seems logical, contrary to work done which increase with the increase of 

temperature. The estimated values of work and internal energies, at different 

temperatures, for platinum and niobium are shown in Table 9.2 by using experimental 

values of bulk modulus [3, 4]. The wire explosion after certain time can be understood 

from the explanation that most of the energy would be utilized to expand the wire at 

higher temperature which finally results in an explosion of the sample wire.  
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Figure 9.2. Comparison of experimental and estimated Bulk moduli of platinum, dashed line 

shows literature value and solid line shows estimated value using equation (9.11) [4].  
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Figure 9.3. Comparison of experimental and estimated Bulk moduli of niobium, dashed line 

shows literature value and solid line shows estimated value using equation (9.11) [5]. 
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Table. 9.1. Elastic constants for some materials [2]. 

Elastic constants for some materials  

Materials Young’s Modulus 

10
9
 N∙m

-2
 

Bulk Modulus 

10
9
 N∙m

-2
 

Shear Modulus 

10
9
 N∙m

-2 
 

Aluminum 70 70 30 

Bone 15 - 80 

Brass 91 61 36 

concrete 25 - - 

Copper  110 140 44 

Diamond 1120 540 450 

Glass 55 31 23 

Ice 14 8 3 

Lead 15 7.7 5.6 

Mercury 0 27 0 

Steel 200 160 84 

Tungsten 390 200 150 

Water 0 2.2 0 

 

 

Table. 9.2. Estimated values of work and internal energies, at different temperatures, for 

platinum and niobium. 

Platinum Niobium 

Temperature/ 

K 

Work done 

in % 

Internal 

energy in % 

Temperature 

/K 

Work done 

in % 

Internal 

energy in % 

2200 12.28 87.72 3000 19.76 80.24 

2400 16.57 83.43 3300 35.83 64.17 

2800 20.72 79.28 3800 67.86  32.14 

3700 30.53 69.47 4000 95.22 4.78 
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Chapter 10 

Uncertainty Analysis 

In this section the problem of determining the accuracy of our results and the related 

uncertainty will be discussed. Most of the known systematic errors have been taken into 

consideration during data evaluation and they are properly compensated. On the other 

hand, unknown systematic errors of our measurements are not included within the given 

uncertainty ranges. Systematic errors can be estimated from the deviation of our result 

from proven literature data. As our results match very well with literature data and 

recommended values, most of these errors seem to be corrected. The indicated 

uncertainties either come directly from the measurements or from the evaluation 

processes. 

There are generally two approaches to estimate uncertainties in measurements: GUM 

method and (traditional) statistical method [1]. In the former case, the uncertainty is 

estimated by considering the propagation of the respective uncertainty of each input 

parameter and in later case the uncertainties are estimated by looking at the distribution 

of results. The selection of, either of the above mentioned, method for better estimation 

of uncertainty depends on the experimental setup and data acquisition system.  

The uncertainty calculated in this work is according to GUM and a comprehensive detail 

of the uncertainty analysis of the measurement is discussed in the thesis of Wilthan [2]. A 

detailed description is omitted here because it is beyond the scope of this work; However, 

the final estimated maximum uncertainties with a coverage factor of k = 2 for each 

quantity will be stated instead. 

As an elaboration, the results of the temperature-dependent uncertainty analysis for the 

uncompensated resistivity IG of Pt32Cu68 are shown in Figures 10.1 and 10.2.       

Figure 10.1 shows the expanded (k = 2) and relative expanded uncertainties vs. 

temperature, whereas Figure 10.2 gives an overview of individual contributions of 

different factors to the total uncertainty in uncompensated resistivity IG. It can be seen in 

Figure 10.2 that uncertainty in temperature and accuracy of the diameter are the main 

contributors to total uncertainty. The uncertainty in temperature is due to the fact that at 

the 
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Figure 10.1 Expanded (k = 2) uncertainty estimation for uncompensated resistivity of Pt32Cu68 

according to GUM. Red: Expanded uncertainty; Blue: Relative expanded uncertainty. 
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Figure 10.2 Individual contributions to the total uncertainty. Black and red : A/D interface cards  

in the PC (U, I measurements); Blue: Length of wire; Magenta: Diameter of wire; Green: 

Temperature. 
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low temperatures there is a weaker signal-to-noise ratio of the pyrometer signal which is 

much better at higher temperatures. This uncertainty tends to infinity in the neighborhood 

of the melting transition which is due to temperature-derivative. This outcome is very 

sensitivity to the actual uncertainty in temperature although the uncertainty in the 

temperature signal is constant at melting. Accordingly, the uncertainty analysis for 

platinum alloys yields the following uncertainties which are shown in Table 10.1 and 

Table 10.2.  The calculated uncertainties which are shown in the Tables are valid for 

individual measurement values, a reduction of such uncertainties are due to the fact that 

the mean values were reported as the measured values.  

 

Table 10.1. Relative expanded uncertainties (%) for expansion D0
2
/D

2
(T), specific enthalpy H (T), heat 

capacity cp(T), uncompensated and compensated resistivity IG (T), com (T), thermal conductivity  (T) 

and thermal diffusivity a (T) in the solid phase by a coverage factor k = 2.  

 

Solid Phase 

Alloy D0
2 
/D

2
(T) H (T) cp(T) IG (T) com (T)  (T) a (T) 

Pt96Co5 3.2 4.2 5 4.1 5.5 6.2 10 

Pt68Ru5 3.1 4.8 7.2 3.8 4.6 8.4 11.6 

Pt96Cu4 2.1 4.3 7.5 4.1 5.2 8.1 10.2 

Pt68Cu32 3.5 6.2 4.3 3.2 7.9 8.6 11 

Pt50Cu50 2.2 8 8.6 3.4 4.6 8.2 11.1 

Pt25Cu75 2.5 7 7.4 3 3.6 7.6 9.2 

 

 
Table 10.2. Relative expanded uncertainties (%)  for expansion D0

2
/D

2
(T), specific enthalpy H (T), heat 

capacity cp(T), uncompensated and compensated resistivity IG (T), com (T), thermal conductivity  (T) 

and thermal diffusivity a (T) in the liquid phase by a coverage factor k = 2.  

 

Liquid Phase 

Alloy D0
2 
/D

2
(T) H (T) cp(T) IG (T) com (T)  (T) a (T) 

Pt96Co5 5 4.6 4 3.6 4.2 7.8 10.5 

Pt68Ru5 3.2 4.4 4.2 4.2 6 9.2 11 

Pt96Cu4 6.8 3 6 3.1 5.6 8 10.6 

Pt68Cu32 6.3 4 4.4 2.9 8.1 8.5 8 

Pt50Cu50 6 6 6.8 3 4.2 8.8 11.2 

Pt25Cu75 5.9 6.4 8.1 2.8 3.8 8 10 
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Chapter 11 

Conclusion  

Platinum containing simple binary alloys with different compositions were chosen for 

this work to investigate and compare the results to the properties of both pure constituent 

elements of binary alloys, which have been extensively investigated by different authors.  

According to our knowledge, the data presented for PtCu alloys are new and will be used 

to solve different problems being faced in jewellery and casting industry. Ideal mixing 

behavior is confirmed in the investigated PtCu alloys by differential thermal analysis. 

It has been observed that the thermophysical properties of binary alloys are greatly 

influenced by the pure constituent elements. Comparison of experimental results with the 

literature values shows a quite good match of some of the quantities while for others 

there are some discrepancies. The measurements of specific heat at constant volume 

using insulating capillary tubes have been done for the first time for pure copper which 

gives close agreement to literature values. It seems more appropriate to use sapphire 

capillary tubes rather than glass capillary tubes due to their higher melting point and less 

reactivity.  

Theoretical investigations have been done for the calculation of specific heat at constant 

volume and thermal conductivity in the solid and liquid regions respectively for the 

deeper insight of thermodynamical behaviour of investigated alloys. Theoretically 

estimated specific heat at constant volume includes both lattice and electronic 

contribution and gives quite convincing outcome. Anharmonic lattice effects are most 

likely the cause of the absolute difference between the experimental values of cp and the 

theoretical results of cv.  Whereas the model proposals given for the prediction of effective 

thermal conductivity of three different alloy series namely: PtCu, FeNi and CuNi are 

suitable in the liquid region. It is noted that the experimentally obtained thermal 

conductivities λexp and predicted thermal conductivities λe by the proposed empirical 

model are in agreement within 10%.  

Future work involving this μs pulse-heating technique will be undoubtedly to focus on 

more pure metals and alloys. On one hand, thermophysical properties of industrially 

significant alloys in their liquid phase are of great interest in many applications related to 
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high temperature technologies, particularly in the casting industry. On the other hand, 

such measurements on complicated systems can provide important insight into the 

physics of high speed melting of alloys.  
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