
i 

 

Ontology Driven Graphical User Interface 

Development 
 

DISSERTATION 
submitted to the 

Graz University of Technology, 

Faculty of Computer Science,  

for the attainment of the degree of 

Doctor of Engineering Sciences (Dr. techn.) 

by 

Syed Khuram Shahzad 

Institute for Knowledge Management (IWM) 

Graz University of Technology 

 

 

 

Graz University of Technology 

 

 

First Assessor and Advisor: Assoc.Prof. Dipl.-Ing. Dr.techn. Denis HELIC 

Second Assessor: Univ. -Prof. Dr. Michael GRANITZER 

 

 

Graz, 7 February, 2012 

  



ii 

 

  



iii 

 

Ontologie basierte Benutzerschnittstellen 

Entwicklung 
 

DISSERTATION 
vorgelegt an der 

Technische Universität Graz, 

Fakultät für Informatik, 

zur Erlangung des akademischen Grades  

Doktor der Technischen Wissenschaften (Dr.techn.) 
 

by 

Syed Khuram Shahzad 

Institut für Wissensmanagement 

Technische Universität Graz 

 

 

 

Technische Universität Graz 

 

 

Betreuer & Begutachter 1: Assoc.Prof. Dipl.-Ing. Dr.techn. Denis HELIC 

Begutachter 2: Univ. -Prof. Dr. Michael GRANITZER 

 

 

Graz, 7. February, 2012 

  



iv 

 

 

 



v 

 

Statutory Declaration 
 

 

I declare that I have authored this thesis independently, that I have not used other than the declared 

sources/resources, and that I have explicitly marked all material which has been quoted either literally 

or by content from the used sources. 

 

Ich  erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als die 

angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich und 

inhaltlich entnommene Stellen als solche kenntlich gemacht habe. 

 

 

 

 

 

 

 

 

----------------------           ----------------------------- 

     Place, Date             Syed Khuram Shahzad 

 

  



vi 

 

  



vii 

 

Abstract 

Any computer application is a computational model of real world concepts that can be conceived by 

the computer user through its representation at the user interface level. These real world concepts have 

been formalized through semantic and ontological frameworks in the shape of many knowledgebases. 

Such ontological frameworks have been used with increasing success in last decade in the field of 

knowledge management and especially for web applications. Such semantic formalizations ensures 

consistent and standardized concept delivery of intended domain concepts to the computer application 

users independent of its technical properties. Semantic formalizations are mainly used in business 

logic and on the database level. Later on semantics are added using translation of semantic data to 

imperative user interfaces. These translations are made through some added plug-ins and additional 

layers between the business logic and user interfaces. Semantic and ontological frameworks already 

provide complete knowledge on domain properties, their relationships and constraints. However, for 

the development of the user interfaces knowledge is not currently fully used by technologies. Hence, 

there is a need to carry semantic rules directly to the user interfaces during the design and 

development process. In this thesis, the area of semantic and ontological frameworks driven user 

interface development is explored to develop and provide transparent interfaces to the end user.  

This PhD thesis highlights the significance of ontological modeling concepts for knowledge 

representation which are used for graphical user interface development. This research work is to 

investigate rules and user interface ontologies that preserve the domain semantics provided by 

Domain Ontologies (DO) and domain-specific constraints during user interface development. 

Moreover, our research provides the opportunity for maintaining consistency among user interfaces 

independent to the technology used for GUI development. We have adapted a well-known user 

interface layer models to build an ontological user interface base model. The base layer is fetched 

from the domain ontology structure that provides the semantic classification and architecture of 

information at the user interface level. Next layer states the user interaction techniques and flow. The 

third layer of the user interface model specifies the graphical properties for the look and feel of the 

user interface. These multiple layers also provide some context aware properties. These properties are 

dependent to the technology and user profile and user role. This User Interface Model (UIM) is 

quantified and instantiated to develop a Graphical User Interface. Our research has three major 

incremental steps: 

 At the initial stage we adopted functional programming approach using relational algebra and 

Haskell implementation for DO and User interface property mapping. Higher order functions 

to map these concepts to application user interface. This experiment builds a direct mapping 

from DO to graphical user interface. 



viii 

 

 In the second stage, a base model for user interfaces has been introduced by adding user 

interface properties to DO. In an imperative programming approach the base model has been 

used in the context of personal information management.  

 At the final stage we came up with a User Interface Ontology (UIO) providing User Interface 

properties and their semantic relationships. Mapping of DO with UIO properties provide a 

User Interface Mapping (UIM) that is instantiated to develop a GUI. 

Being a novel idea, semantics and ontological frameworks driven GUI development opens many new 

horizons to be explored in this regard. One major trend following this research is to explore usability 

testing for these user interfaces. Moreover, functional ontologies may be extended to join the user 

semantic user interaction methodology and semantic functions.  

  



ix 

 

  



x 

 

Kurzfassung 

Jede Anwendung repräsentiert Berechnungen über Konzepte der realen Welt, deren Ergebnisse über 

meist grafische Benutzerschnittstellen konsumiert werden. Semantische und ontologische 

Technologien bieten dabei einen Rahmen zur Formalisierung solcher Konzepte und wurden im letzten 

Jahrzehnt vermehrt im Bereich des Wissensmanagements und für Web-Anwendungen eingesetzt. 

Solche semantische Formalisierungen ermöglichen die konsistente und standardisierte Bereitstellung 

von Domänen spezifischen Konzepten mittels Anwendungen unabhängig von technischen 

Eigenschaften der verwendeten Systeme. Im Allgemeinen erfolgt der Einsatz semantischer 

Formalisierungen auf Ebene der Business-Logik und Datenbanken. Darauf aufbauend erfolgt die 

Übersetzung der Domänen Semantik in Benutzerschnittstellen unter Berücksichtigung Schnittstellen 

spezifischer Eigenschaften. Diese Übersetzungen werden durch proprietäre Plug-Ins und zusätzliche 

Schichten zwischen Business-Logik und User-Interface erstellt. Die ontologische Formalisierung 

bietet aber bereits vollständiges Wissen über Domänen-Eigenschaften. Wissen, welches derzeit von 

Technologien zur Erstellung von Benutzerschnittstellen nicht berücksichtigt wird. Daraus leitet sich 

der Bedarf ab, Domänen Semantik zur Entwicklung und Gestaltung von Bedienoberflächen zu 

verwenden. 

Die vorliegende Dissertation erforscht daher die Bedeutung ontologischen Modellen zur 

Unterstützung des Entwicklungsprozesses von grafischen Benutzeroberflächen. Die Forschungsarbeit 

untersucht Regeln und Ontologien für Benutzerschnittstellen welche die zugrunde liegenden 

Domänen Semantik während der Entwicklung von Benutzerschnittstellen erhält. Darüber hinaus bietet 

meine Forschung die Möglichkeit, konsistente Benutzerschnittstellen unabhängig von der für die GUI-

Entwicklung verwendeten Technologie zu erstellen. Durch Adaption bekannter Schichtenmodelle für 

Benutzerschnittstellen konnte ein ontologisches Modell für Benutzerschnittstellen entwickelt werden. 

Die Basisschicht besteht aus einer Ontologie welche die Klassifikation und Architektur der 

Informationen, die auf Benutzeroberfläche angezeigt werden, abbildet. Die darauf aufbauende Schicht 

behandelt Benutzer-Interaktionen und Workflows. Die dritte Schicht des Modells spezifiziert die 

grafischen Eigenschaften (e.g. Look-and-Feel). Dieses Schichtenmodell bietet auch einige 

kontextbezogene Eigenschaften welche unabhängig von Technologie, Benutzerprofil und Benutzer 

Rolle sind. Das User Interface Model (UIM) wird instanziiert, um eine Benutzerschnittstelle zu 

entwickeln. Die Forschung wurde dabei in  drei Schritten durchgeführt: 

• In der Anfangsphase erfolgte die Umsetzung der Domänen-Ontologie (DO) und 

Benutzerschnittstelleneigenschaften mittels funktionaler Programmierung und einer in Haskell 

abgebildeten relationalen Algebra. Funktionen höherer Ordnung definieren dabei die 

Zuordnung von Konzepten zur Benutzeroberfläche. Dieses Experiment erstellt eine direkte 

Zuordnung der DO zu bedienende grafische Benutzeroberfläche. 



xi 

 

• In der zweiten Phase, erfolgte die Erstellung eines ontologischen Basis-Modells n zur 

Abbildung Benutzeroberflächen spezifischer Eigenschaften. In einem imperativen Ansatz 

erfolgte die Anwendung dieses Modells im Bereich Personal Information Management. 

• In der letzten Phase erfolgte die Entwicklung der finalen User Interface Ontologie (UIO) zur 

Abbildung von User Interface Eigenschaften und deren semantischen Beziehung. Dies 

beinhaltet auch die Abbildung der  DO mit der UIO. Das daraus entstehende UIM ermöglicht 

die automatische Instanziierung einer Benutzerschnittstelle.  

Als eine neue Idee öffnen semantische und ontologische Formalisierungen neue Horizonte in der 

Entwicklung graphischer Benutzerschnittstellen. Ein wichtiger Trend besteht in der Automatisierung 

von Usability-Tests für Benutzeroberflächen. Darüber hinaus weist die Arbeit in Richtung 

funktionaler Ontologie welche Interaktionen mit dem Benutzer in den bestehenden Ansatz integrieren. 

  



xii 

 

  



xiii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To my loving parents and family. 

Their support, insight, guidance, patience and kind wishes always,  

craft the success for me!  



xiv 

 

  



xv 

 

Acknowledgements 

First of all, I would like to thank the Almighty Allah, for His divine guidance and providence. His 

support, blessings, goodness, and kindness were always with me. He blessed me with motivation, 

passion, and hard work. It was his blessings which made me able to plan, visualize, and execute my 

dreams into the reality. I would like to dedicate this achievement to Him and my inspirational father 

Syed Mashhood Ali and my loving mother Sabira Mashhood, whose prayers, motivations and belief 

in me got me that far. They are always a source of inspiration and driving force behind my studies. I 

would also like to share my achievements and joy with my brothers, my sisters and their families. I 

find no more words to thank them for their continuous support. 

Every PhD student wishes to conduct research under a visionary and inspirational supervisor, as well 

as with a researcher who is intelligent and motivating. I am very lucky to find this ideal supervisor in 

form of Dr. Denis Helic. I am really thankful to him for giving me the exceptional opportunity of 

doing a PhD with him. His constant encouragement, help, and invaluable supervision helped me to 

groom my educational, research and writing capabilities which further excelled me to broaden my 

vision and brought best out of me for this research work. I owe my deepest gratitude to Prof. Dr. 

Michael Granitzer for being part of my dissertation evaluation committee and accepting the role of 

second reader despite his busy schedule. The discussions/comments of Prof. Dr. Michael Granitzer 

were very useful for my research and thesis. I am very obliged to Prof. Dr. Klaus Tochtermann who 

provided me the opportunity to start my PhD work at prestigious Knowledge Management Institute. I 

also want to thank Prof. Dr. Andrew U. Frank who has introduced research work and methodologies 

and many new research areas. His kind and expert reviews were always very helpful for at beginning 

of my research phases. 

Furthermore, my dearest thanks go to my dear friends and colleague Dr. Tanvir Afzal and Dr. Atif 

Latif who indeed acted as a mentor to me. Their kind guidance and motivations always bring me out 

of the difficult patches throughout my research studies. I have learnt a lot from their company and 

discussions, which eventually led me define a path for my PhD writing and publication during my 

PhD wrok. The time we together passed in discussion, sports, travelling and leisurely, with no doubts 

is a precious and golden period of my life. Many thanks to my colleagues at the Knowledge 

Management Institute and Know Center, whose help, support and guidance supported me to achieve 

the success of my PhD studies. I wan tto thanks for the development and testing teams specifically 

Mr. Nauman Jameel from Systematic Bytes Inc. and Mr. Jawad-ul-Husnain from Expertflow Pvt. Ltd 

for their kind efforts and cooperation for development and testing of research methodologies. I also 

want to thank here Mr. Farhan Hyder who helped me in my research work, writings, fruitful 

discussions, in introduction of new technologies and specially proof reading my thesis. I was lucky 

enough to find myself among very loving and caring family of Pakistani scholars in Graz. They 



xvi 

 

always fill in the gap of a family and made me happy while I was sad. They continuously motivated 

me to achieve my goals. Thanks to all who arranged and accompanied me in doing academics and 

non-academic activities in form of sports, parties and travelling. Especially, my gratitude goes out to 

Dr. Anwar us Saeed, Dr. Muhammad Umer Saleem, Dr. Javed Ferzund, Dr. Tanveer Iqbal and Mr. 

Mudassir Abbas. I am unable to mention names of all scholars yet all of you are special to me. At the 

end my heartiest tribute to my country Pakistan and Higher Education Commission (HEC), 

Government of Pakistan, for partially funding my research as without their assistance I would not 

have a chance to pursue my PhD and full fill my dreams. In the same spirit my tribute goes to the 

Austrian Agency for International Cooperation in Education and Research (OeAD-GmbH), Know 

Center, Knowledge Management Institute and Technology University of Graz for the moral and 

financial support to attend the conferences around the world. 

Syed Khuram Shahzad 

Graz, Austria, March 2012 



xvii 

 

Contents 

Introduction ............................................................................................................................................ 1 

1.1. Motivation ............................................................................................................................... 2 

1.1.1. Why Ontology ................................................................................................................. 3 

1.2. Problem formalization ............................................................................................................ 4 

1.2.1. Research Questions ......................................................................................................... 5 

1.3. Scope and research focal point ................................................................................................ 5 

1.4. Scientific experiments and contributions ................................................................................ 6 

1.5. Thesis Organization ................................................................................................................ 8 

Semantic and Ontological Framewor ................................................................................................... 10 

2.1. Ontology ............................................................................................................................... 10 

2.1.1. Definitions ..................................................................................................................... 10 

2.1.2. History ........................................................................................................................... 11 

2.1.3. Metaphysics................................................................................................................... 14 

2.2. Semantics and Ontological framework ................................................................................. 14 

2.2.1. Semantics ...................................................................................................................... 15 

2.2.2. Domain Ontologies and upper Ontologies .................................................................... 15 

2.2.3. Ontology components ................................................................................................... 16 

2.2.4. Vocabulary .................................................................................................................... 18 

2.2.5. Taxonomy and Meretopology ....................................................................................... 18 

2.2.6. Universe of Discourse ................................................................................................... 19 

2.2.7. Descriptive, Formal and Formalized Ontologies ........................................................... 19 

2.3. Ontologies for Knowledge Representation and Sharing ....................................................... 20 

2.3.1. Epistemology and Knowledge ....................................................................................... 20 

2.3.2. Knowledge management ............................................................................................... 20 

2.4. Computer Applications of Ontology ..................................................................................... 23 



xviii 

 

2.4.1. Ontological Concept Modeling ..................................................................................... 24 

2.4.2. Ontology Engineering ................................................................................................... 24 

2.4.3. Cognitive Science and AI .............................................................................................. 24 

2.4.4. Ontology Languages ..................................................................................................... 25 

2.5. RDF /OWL ........................................................................................................................... 26 

2.5.1. Serialization formats...................................................................................................... 26 

2.5.2. Resource identification .................................................................................................. 27 

2.5.3. Statement reification and context .................................................................................. 27 

2.5.4. Query and inference languages ..................................................................................... 27 

2.5.5. RDFS ............................................................................................................................. 28 

2.5.6. OWL ............................................................................................................................. 29 

2.6. Semantic Web ....................................................................................................................... 29 

2.6.1. Standards ....................................................................................................................... 30 

2.6.2. Projects .......................................................................................................................... 31 

2.6.3. Semantic Databases ....................................................................................................... 32 

2.6.4. Semantic web data spaces, linked data, and data portability ......................................... 33 

2.7. Ontology Driven Information System ................................................................................... 35 

Graphical User Interfaces ..................................................................................................................... 36 

3.1. Introduction ........................................................................................................................... 36 

3.1.1. Human-Computer Interaction ........................................................................................ 36 

3.2. History .................................................................................................................................. 36 

3.2.1. Precursors ...................................................................................................................... 36 

3.2.2. PARC user interface ...................................................................................................... 39 

3.3. Structural elements................................................................................................................ 40 

3.3.1. Window ......................................................................................................................... 41 

3.3.2. Tabs ............................................................................................................................... 42 

3.3.3. Menus ............................................................................................................................ 42 

3.3.4. Icons .............................................................................................................................. 42 



xix 

 

3.3.5. Controls (or Widgets) .................................................................................................... 43 

3.4. Interaction elements .............................................................................................................. 46 

3.4.1. Cursor ............................................................................................................................ 46 

3.4.2. Pointer ........................................................................................................................... 46 

3.4.3. Selection ........................................................................................................................ 46 

3.5. Post-WIMP GUI ................................................................................................................... 47 

3.6. User Interface Iceberg Analogy ............................................................................................ 48 

3.7. Element of User Experience ................................................................................................. 49 

3.8. User Interface Design ........................................................................................................... 50 

3.8.1. Research – past and ongoing ......................................................................................... 50 

3.8.2. User Centered Interface design ..................................................................................... 52 

3.8.3. User Interface Designs for Web .................................................................................... 54 

3.8.4. User Interface Design Processes ................................................................................... 55 

3.8.5. User Interface Design Requirements ............................................................................. 57 

3.8.6. Prototyping .................................................................................................................... 58 

3.9. Usability ................................................................................................................................ 58 

3.10. User Interface Modeling.................................................................................................... 58 

3.10.1. Modeling Languages ..................................................................................................... 59 

3.11. Semantics aware Interfaces ............................................................................................... 60 

3.11.1. Data Formats and Semantic Classification .................................................................... 60 

3.11.2. Input / Output Data Validation ...................................................................................... 60 

3.12. Intelligent User Interface ................................................................................................... 61 

3.13. User Interface Development .............................................................................................. 61 

Functional Programming Approach ..................................................................................................... 62 

4.1. Introduction ........................................................................................................................... 62 

4.2. Ontology formalization ......................................................................................................... 64 

4.2.1. Formal Ontology ........................................................................................................... 64 

4.2.2. Relational Algebra ......................................................................................................... 65 



xx 

 

4.2.1. GUI States ..................................................................................................................... 66 

4.3. User Model by Haskell programming ................................................................................... 67 

4.3.1. Why Haskell .................................................................................................................. 67 

4.3.2. Representing Algebra in Haskell ................................................................................... 68 

4.3.3. Manipulating States (State Monads) .............................................................................. 69 

4.3.4. Data types and Typed Classes ....................................................................................... 70 

4.3.5. User Model .................................................................................................................... 70 

4.4. User Model in Haskell .......................................................................................................... 72 

4.4.1. Graph ............................................................................................................................. 72 

4.4.2. Node .............................................................................................................................. 72 

4.4.3. Edge .............................................................................................................................. 72 

4.5. Mapping User Model to GUI ................................................................................................ 73 

4.5.1. GUI construction tools .................................................................................................. 73 

4.5.2. Drawing at Canvas ........................................................................................................ 74 

4.5.3. GUI ............................................................................................................................... 74 

4.5.4. Limitations and constraints............................................................................................ 76 

4.6. Results  and Conclusion ........................................................................................................ 77 

4.7. Future work ........................................................................................................................... 77 

Ontology based User Interface Development: User Experience Elements Pattern............................... 79 

5.1. Introduction ........................................................................................................................... 79 

5.2. User Experience Elements .................................................................................................... 81 

5.2.1. Conceptualization through Ontological Modelling ....................................................... 83 

5.2.2. Personal Information Management (vCard/hCard) ....................................................... 83 

5.3. Ontological Framework for User Interface Development ..................................................... 85 

5.3.1. Ontology Parser ............................................................................................................. 85 

5.3.2. User Interface Properties Mapping: ............................................................................... 87 

5.3.3. GUI Development ......................................................................................................... 89 

5.4. Customized User Interface Control ....................................................................................... 90 



xxi 

 

5.5. User Interface Generation ..................................................................................................... 90 

5.6. Ontology Modelling based on Context ................................................................................. 91 

5.7. Results................................................................................................................................... 91 

5.8. Conclusion ............................................................................................................................ 92 

Ontological Model Driven GUI Development: User Interface Ontology Approach ............................ 93 

6.1. Introduction ........................................................................................................................... 93 

6.1.1. Motivation ..................................................................................................................... 95 

6.2. Ontology Engineering for User Interface Ontology (UIO) ................................................... 95 

6.2.1. Modeling User Interface Aspects .................................................................................. 95 

6.2.2. Ontology Engineering for User Interfaces ..................................................................... 96 

6.3. Mapping Domain Ontology with UIO .................................................................................. 98 

6.3.1. Mapping Visualization Classes ..................................................................................... 99 

6.3.2. Mapping User Interface Properties ................................................................................ 99 

6.3.3. Mapping Graphical Properties ....................................................................................... 99 

6.3.4. Mapping Context aware properties................................................................................ 99 

6.3.5. User InterfaceModel (UIM) .......................................................................................... 99 

6.3.6. vCard Ontology for Personal Information Management ............................................. 100 

6.4. User Interface generation .................................................................................................... 100 

6.4.1. Quantifying Context aware properties ......................................................................... 100 

6.4.2. Instantiating UIM ........................................................................................................ 101 

6.5. Software Engineering Aspects fo UIO ................................................................................ 101 

6.6. Results................................................................................................................................. 102 

6.7. Conclusion .......................................................................................................................... 102 

6.8. Future Work ........................................................................................................................ 103 

Results and Conclusion ...................................................................................................................... 104 

7.1. Introduction ......................................................................................................................... 104 

7.2. Functional programming approach ..................................................................................... 105 

7.3. Impreative Programming Approach .................................................................................... 105 



xxii 

 

7.3.1. Experiment Structure ................................................................................................... 105 

7.4. User Interface Ontology ...................................................................................................... 107 

7.4.1. Ontology Engineering ................................................................................................. 107 

7.4.2. GUI Generation ........................................................................................................... 108 

7.5. Conclusion and Future Work .............................................................................................. 109 

7.5.1. Research Targets ......................................................................................................... 109 

7.5.2. Experiment Results outcomes ..................................................................................... 109 

7.5.3. Future Work ................................................................................................................ 110 

Bibliography ....................................................................................................................................... 111 

 

  



xxiii 

 

List of Figures 

Figure 1.1: Thesis Architecture .............................................................................................................. 8 

Figure 2.1: Table of Contemporary Ontologists ................................................................................... 12 

Figure 2.2: Example Taxonomy of Vehicles ........................................................................................ 18 

Figure 2.3 The Semantic Web Stack .................................................................................................... 30 

Figure 2.4: Class linkages within the Linking Open Data datasets October 2008 ................................ 34 

Figure 2.5: Class linkages within the Linking Open Data datasets September 2011 ............................ 34 

Figure 3.1: IBM 029 card punch .......................................................................................................... 38 

Figure 3.2: Screenshot MS Dos ............................................................................................................ 38 

Figure 3.3: Xerox Star Workstation ..................................................................................................... 39 

Figure 3.4: An Example of GUI structure for Printer Properties for MS Office .................................. 44 

Figure 3.5: The iceberg analogy of usability by Dick Berry ................................................................ 48 

Figure 3.6: Element of user Experience by David Garret (Garrett, 2002) ............................................ 49 

Figure 3.7: A Browser User Interface United States Patent ................................................................. 54 

Figure 4.1: Chapter 4 organization ....................................................................................................... 63 

Figure 4.2: An Example representation of Graph ................................................................................. 65 

Figure 4.3: Node Number as a Functional Types to represent ontology .............................................. 74 

Figure 4.4: Panel and canvas of the graph properties through typed controls ...................................... 75 

Figure 5.1: Chapter 5 organization ....................................................................................................... 80 

Figure 5.2: Adapted User Experience Elements by Garrett .................................................................. 81 

Figure 5.3: Structure of vCard classes .................................................................................................. 84 

Figure 5.4: vCard Object Properties ..................................................................................................... 84 

Figure 5.5: vCard Data Properties ........................................................................................................ 84 

Figure 5.6: User Interface Ontology for vCard (Skeleton) ................................................................... 88 

Figure 5.8: Example UI for a vCard ..................................................................................................... 89 

Figure 5.7: Ontology representation at GUI ......................................................................................... 90 



xxiv 

 

Figure 6.1: Chapter 6 Organization ...................................................................................................... 94 

Figure 6.2: Association: Relating Domain ontology with User Interface Ontology ............................. 96 

Figure 6.3: Portion of mapping application screenshot ........................................................................ 98 

Figure 6.3: Knowledge Experts contribution breakdown and collaboration stages ............................ 101 

Figure 7.1: Major steps for User Interface Design and Development ................................................ 106 

Figure 7.2: User Interface Model Layers ............................................................................................ 106 

 

  



xxv 

 

List of Tables 

Table 4.1: Ontology Description of a Graph ........................................................................................ 65 

Table 4.2: The mapping of User Model to GUI through Data Flow (Haskell programming) .............. 71 

Table 5.1: Adapted User Experience Elements by Garrett (Garrett, 2002) .......................................... 82 

Table 5.2: Structure of vCard properties .............................................................................................. 87 



xxvi 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 



1 

 

 Introduction 

In the decade of the 80’s, many of the researchers lead by Smith (Smith, 1978) (Smith, 2004), Gruber 

(Gruber, 1995) and Guarino (Guarino, 1995) carried out the idea of semantic and ontologies from 

philosophy and cognitive science to formal method of conceptualization in computational models. 

They and many others used the idea in a way to the field of computer science to make up an 

ontologically formalized computational model of any real world’s domain concept in interdisciplinary 

fields (e.g. bioinformatics (Smith, 2008), geoinformation, eBusiness and social cognition 

(Osterwalder, et al., 2002)). Semantically formalized knowledge helped in machine learning and 

understanding of concepts which brought up new fields (Wand, et al., 1990) of Artificial Intelligence, 

Knowledge Management and representation, Semantic Web and semantic databases. Moreover the 

huge list of ontologies 1  and many semantic schemas bring into sights new fields like explore 

standardization and alignments ontologies. 

While research in other interdisciplinary fields were focused on better and standardized ontological 

representation of concepts (semantic cloud), Information science (computer science) research were 

targeting better techniques and methodologies for information modeling, storage, retrieval and 

visualization by exploiting the semantics and came up with Semantic Web and semantic databases. 

By witnessing of ever-increasing research on semantic and ontological framework and its importance 

in Artificial Intelligence, Computational Linguistics, and Database Theory, Nicola Guarino tossed the 

idea of Ontology Driven Information System (ODIS) in FOIS’98 (Guarino, 1998). He detailed ODIS 

in a discussion of using ontologies at run time or development time for different computer application 

components. There were attempts to use ontological conceptualization of objects to improve Object 

Oriented Models for any Information System (IS). Rather than using ontologies and semantics 

additional layers to enhance conceptualization of any computational model, Guarino pointed out the 

need of information system modeling and development based on ontologies and semantic frameworks. 

This concept was adopted in different field of computer application development especially in 

semantic web. Uschold also talked about the same idea to improve conceptual modeling in software 

engineering field by joining model driven software development and ODIS. He also pointed out the 

need for the use of ontological models for development of any software component. This idea has 

been implemented in semantic web and semantic databases for semantic structuring of information. 

There are now many semantic and ontological standards for different domain concept representation 

only Linked-data provides more than 30 trillion triples. That much variety of domains, classes and 

                                                   

1 http://protegewiki.stanford.edu/wiki/Protege_Ontology_Library 

http://protegewiki.stanford.edu/wiki/Protege_Ontology_Library


2 

 

structures in provided shared knowledge bases have semantics and ontological knowledge 

representation in common. This framework defines standards for domain concept representation 

through the computational models. Currently, numerous Knowledge Bases (also known as semantic 

data storage) are available and can be retrieved through semantic query (SPAQL) mechanism. 

However, still there is a need to provide semantic user interface which can be validated through the 

reasoning software. Current knowledge visualization methodologies are based on conventional user 

interface development mechanism with additional layers and translation software (plug-ins or 

hookups) (Paulheim, 2009). There is a requirement to provide a semantic and ontological framework 

driven user interface development methodology that can ensure semantic consistency for information 

architecture and classification at developed user interface. 

The conceptual modeling gap between user interfaces and other semantically driven software 

components has been explored during this research. The need to fill up the gap between user interface 

component and semantic and ontological framework based was considered much earlier in research by 

researchers (Cocchiarella, 1996) (Gruber, 1993) (Guarino, 1995) (Smith, 2004) (Wand, et al., 1990) 

(Uschold, 2008) (Paulheim, 2009). There are also guidelines and standards provided in the form of the 

technical reports, documentation and RFCs from open standards and ontologies provided at Linked 

Data or other knowledge bases e.g. vCard and vCalendar documentation provides “User Interface 

(UI) Support Recommendations”2. Next step explains the motives behind this PhD research thesis and 

next section provides problem formalization and boundary of target areas.  

1.1. Motivation 

The growing use of semantic and ontological framework in information sciences has upgraded 

modeling of any domain concept much abstract. This framework has become the base model to 

develop all components of computer applications, except user interfaces. User interfaces had much 

rapid development in devices and tools in last two decades. At lower level, many new user interaction 

devices are introduced with new interaction mechanism. At implementation level many data retrieval 

and visualization algorithms are implemented for fast and active user interface. All of these 

developments in user interfaces were achieved in technical fields. Some part of research in last thirty 

years reflected user concerns and profiling through mathematical modeling. With so much variety of 

devices and technologies, User Interface development has become too much technology dependent. 

The last change made at the conceptual level in user interface field was in 1981 by Xerox. Xerox 

introduced graphical user interface by introducing office environment concept for visual modeling 

(e.g. files, folder and documents) resulting in windows environment.  

                                                   

2 http://www.imc.org/pdi/pdiproddev.html 

http://www.imc.org/pdi/pdiproddev.html


3 

 

There is big technology shift in other components of computer application at conceptual level from 

object oriented view to semantic and ontological representation of reality world concept in 

information system. This change has been introduced as Semantic Web (Web 3.0) information 

available here is represented, classified and stored according to semantic schema. The reason to use 

semantic and ontological representation of information is to avoid technology bias and limitations. 

The reason for making more generic patterns and classification is providing realistic knowledge 

representation. This aim can be achieved only if the formalized concept is delivered to user with 

semantic and ontological properties and constraints. 

1.1.1. Why Ontology 

Use of semantics and ontological framework as the base for GUI development is the main theme for 

this research. Arguments supporting Ontology Driven Information System (ODIS) are the base 

motivation. These arguments provide the benefits of adopting ODIS in comparison to other software 

engineering models. Uschold (Uschold, 2008) has provided these benefits as follows in his talk about 

past, present and future of the ODIS: 

 Standardization and Consistency: All components and agents are uniformly designed and 

verified  

 No Technology Bias: Information system modeling do not required any technology details or 

skills for specific programming language. 

 Heterogeneous Knowledge Representation through Knowledge-Cloud: Large connect 

knowledgebase like Linked Open Data (LOD) provides different heterogeneous 

knowledgebase and respective semantic agents for data storage, representation and 

visualization. 

 Reusable Semantic Agents: Knowledgebase provides their respective semantic agents for data 

representations, storage and visualization. 

 Transactional Database: Semantic agents are stored in transactional databases with their 

version control systems 

 No Code Generation and Model Translation to programming languages: Graphical 

environment for designing and development of application through linking and reusing pre-

coded various kinds of semantic agents. 

 Runtime Expandability: Any web interface can be extendable to a new semantic data set just 

my linkage to its respective semantic agent. 

Two major motives for this research are outlined as: 

1 First motive is the UI development process modeling providing user interface design rules 

which bind the UI designer and developer more than guidelines do. These proposed UI deigning 

guidelines are flexible and vary according to the domain represented at UI. With other design 

guidelines that domain ontology specifies many constraints and rules for information 



4 

 

classification and architecture that has to be presented at UI, e.g. a data classification and types 

at any concept visualization should be based on the semantic classification rather than any 

graphical library provided data types. 

2 The second motive is to fill the gap between the conceptual designing of knowledge 

representation and its presentation at user interface. Knowledge representation schema is 

designed at very abstract level with formalized ontology, while its visualization designing is still 

technology dependent. There are some attempts to fill the gap by enabling these visualizations 

and user interfaces for handling and carrying these semantic and ontological rules defined at 

knowledge representation. These user interfaces contain additional qualities for translation of 

this ontological schema to conventional graphical library and device dependent user interfaces 

(Paulheim, 2009). This translation process bridges the semantic knowledge representation to the 

user interface for data visualization but cannot ensure the semantic properties and constraints 

delivery at user interfaces. 

Smith (Smith, 2004) and Gruber (Gruber, 1993) states the requirement of domain concept delivery to 

the end user at user interface. Moreover it is also required to define design and development 

methodology for the semantically consistent user interface (Smith, 1989). Thus it provides the idea for 

improving software engineering is to increase the level of formal methods and structure in various 

phases of the software lifecycle. Using ontologies as the base models in model-driven software 

development represents the joining together of these two key ideas and the subject of the talk about 

ODIS (Uschold, 2008). A user interface designing and development methodology was, therefore, 

required that ensures consistent concept delivery from domain ontology. It should keep all the 

ontological properties and constraints defined in domain ontology and should not allow any 

technological (programming language or Graphical library or I/O device) bias to void any semantic or 

ontological rule stated by domain ontology. 

1.2. Problem formalization 

Semantic and ontological framework has provided a base information architecture and classification 

for designing and development process for Semantic Web, Semantic data-storage and retrieval 

strategies except user interfaces. To achieve a semantically consistent concept delivery from these 

components to user interfaces, these user interfaces also need to be designed and developed on the 

basis of the domain concept. The exact issue discussed in this research is the design and development 

methodology for ontology driven GUI development for any domain ontology. To achieve consistency 

of information architecture and semantic at resulting user interface, a logically consistent methodology 

is required that doesn’t allow the developers to void any semantic rules defined in domain ontology or 

semantic user interface model for the domain ontology.  



5 

 

The points to explore in research are the methodologies which can be developed for a user interface 

based on semantic and ontological framework. The two major questions about semantically 

consistency are 1. validation of the product (UI) and 2. process of UI design and development 

methodology through all components and product (e.g. UI components, base model for User Interface 

and completed GUI) at each phase (Sommerville, et al., 1994). The model based software engineering 

methodology has been adopted o ensure that UI and its design are completely based upon through a 

semantic and ontological UI model.  

1.2.1. Research Questions 

In this thesis four main research questions are addressed. The formulated main and sub research 

questions are given below. 

1 How can semantically defined concepts be delivered at GUI? 

2 Can Semantics and Ontological frameworks provide a based model for GUI? 

a. How can a base model for UI contain and Domain Ontology relations and constraints? 

3 How a base model for UI can be semantically consistent? 

4 How a base model for UI can be instantiated to GUI ensuring that all IO Operation preserves 

semantic properties and allow data flow according to the semantic data classification using: 

a. Information Structure (Mereotopology) 

b. Semantic Classification (Taxonomy) including 

i. Semantic data types 

ii. Semantic data ranges and validation rules 

1.3. Scope and research focal point 

This research work mainly focuses on the use of semantics for graphical user interface development. 

The strategies to exploit the properties of semantic and ontological framework to present the domain 

concepts at user interface are discussed in this part of writing. Thus the focal point is the mapping of 

domain ontologies to the user interface either by bijective morphism or through a semantically defined 

user interface model carrying the domain ontology with user interface concerns. 

We explore the methodology for designing and development of user interface as part of ontology 

driven information system development (Ontology Driven software engineering methodology). 

The aim here is to preserve domain concept properties, laid down the semantic and ontological 

framework. Thus we focus not only logical consistency of the information but also provide a process 

that can be validated in contrast to raw, flexible and optional user interface design guidelines. We 

target the area of software engineering thus the user interface designers, HCI expert and user interface 



6 

 

developers are directly concerned to the research, while the end user is indirectly connected to the 

research. 

The study strengthens the argument of using semantic and ontological framework with a history from 

ancient Greeks till today’s revolutionary semantic web. Different subfields of study like Taxonomy, 

epistemology and mereotopology and their properties for defining a knowledge domain. These 

properties are the criteria to testify the consistency of information architecture and ontology concerns 

provided at user interfaces. As a novel approach to user interface development we have testify only 

the information and metadata consistency and completeness at user interface regarding domain 

concept delivery to end user. Detailed usability testing and consequent improvements to the 

methodologies are required to perform in next step and specified as future work. 

1.4. Scientific experiments and contributions 

During the study, benchmarks of the study have been published as follows: 

1 The first publication was done on the results from the experiments made on the developed 

research application for functional programming methodology discussed in 1.4. In these 

experiments an application to model a vector graph was constructed as an example of spatial 

ontology. The bibliographic details for the publication are: 

Shahzad, S., Granitzer, M., Tochtermann K.: Designing User Interfaces through Ontological 

User Model, Proceedings of the Fourth International Conference on Computer Sciences and 

Convergence Information Technology ICCIT 2009, Seoul, Korea, 24-26 November 2009. p 99-

104. 

2 Second publication was made using the imperative programming application results. These 

experiments are described in details in 1.5. Garrets model of user experience is used for 

structuring the user interface development process in four phases. In these experiments vCard 

ontology have been adopted for personal information management system. Bibliographic details 

for this publication are as follows: 

Shahzad S.K., Ontology-based User Interface Development: User Experience Elements Pattern, 

Journal of Universal Computer Science, vol. 17, no. 7 (2011), 1078-1088, submitted: 30/10/10, 

accepted: 15/3/11, appeared: 1/4/11 © J.UCS 

3 Second publication is extended with introduction of User Interface Model (UIM) as a base 

model for the user interface. This extension resulted in third publication that is also discussed in 

1.5. Bibliographic details for the publication are:  

Shahzad, S., Granitzer, M.: Ontological framework Driven GUI Development, Proceedings of 

10th International Conference on Knowledge Management and Knowledge Technologies, 1-3 

September 2010, Graz, Austria. P 198-206. 



7 

 

4 Last publication from the major stream of research is about user interface ontology. Same 

example of vCard has been used for these experiments to gain comparative results with last 

experiments. The bibliographic details for the publication is as: 

Shahzad, S., Granitzer, M., Helic D.: Ontological Model Driven GUI Development: User 

Interface Ontology Approach, 2011 6th International Conference on Computer Sciences and 

Convergence Information Technology (ICCIT), Seogwipo, Korea, Nov-Dec 2011. 

5 Fifth publication is not from the core of the research method but it is done over the risks 

personal information management. It focuses at personal data sharing and publishing over web 

on different official and social portals. The bibliographic details for the publication is as follows: 

Sahito F., Slany W., Shahzad S., Search Engines: The Invader To Our Privacy ? A Survey, 2011 

6th International Conference on Computer Sciences and Convergence Information Technology 

(ICCIT), Seogwipo, Korea, Nov-Dec 2011. 

 

  



8 

 

1.5. Thesis Organization 

This thesis is organized in three major parts other than introduction to the research compilation. 

Literature Review 
Experimental Work –  

Ontology Driven GUI Development 

Research Outcomes  

and Future Task 

 

Figure 1.1: Thesis Architecture 

Literature review provides definitions, the history and major research work of the base concepts used 

for our research. These base concepts are semantic and ontological framework that has roots from 

psychology and graphical user interface that is a technology based study area. 

In experimental work we have explored the methodologies and strategies to structure the overlapping 

area of semantic and ontological framework through semantic mapping between domain ontology and 

its user interface concerns. At start we have adopted functional programming approach so that domain 

ontology (expressed in a mathematical function) can be directly mapped through bijective morphism 

to the user interface (as an IO function) to demonstrate the semantic and ontological set of rules 



9 

 

carriage to GUI. Second experiment methodology we have adopted imperative programming to 

provide a user interface development and designing procedure for the available standards (vCard) with 

imperative programming approach (Jena + RDF/XML) to generate user interface model and its 

instantiation by a graphical library (SWT). The last but not least experiment provides a methodology 

or improvement to the last experiment by introducing User Interface Ontology (UIO) to ensure 

semantic and ontological framework driven User interface properties and constrains and merging two 

the ontology (Domain Ontology and UIO) resulting a semantically consistent User Interface model 

which can be tested by any reasoner application. 

Results and conclusion, the next section of the research compilation, discusses the results from 

experiments and testing of three adopted methodologies for GUI development based on semantic and 

ontological framework. Here we test and verify the semantically consistent knowledge delivery at 

GUI through a restricted design and development procedures. These procedures are restricted only to 

provide direct mapping and using semantic and ontological framework for providing a base model for 

user interface.  

Future research work and research applications will be discussed in the last section of the writing. 



10 

 

 Semantic and Ontological Framework 

Ontologies and semantic frameworks are now being used for specification of any real world concept. 

This part of literature survey discusses the history and the state of the art of semantics and ontological 

frameworks. Moreover the properties of this framework that has to be provided at GUI that to ensure a 

consistent knowledge delivery to user. 

2.1. Ontology 

Computer science always based on a documented formal specification of the concepts and their 

combination (their relationship and possible behavior), which have to be represented in a computer 

model. Ontology is base concept for this research that provides a base specification of concepts to 

present at any Graphical user interface (GUI). There is no such specified definition of ontology.  

2.1.1. Definitions 

2.1.1.1. Philosophical definition 

Ontology is a study and analysis of a logical description about “What exists” and its details stating the 

relationship of extents. Whatever is around us or proves its existence in many ways, either by its 

properties, actions or effects that can be conceived through the environment by human beings. These 

observations create a concept about any existent in human mind that can be written down in a logical 

fashion through ontology. Ontology is also defined as "formal, explicit specification of a shared 

conceptualization” by Tom Gruber (Gruber, 1995). Barry Smith defines ontology as the science which 

deals with the nature and the organization of reality (Smith, 1996). 

2.1.1.2. Historical Definition 

Ontology, by history3, is a new name of metaphysics and/or a sub domain of philosophy, that talks 

about the reality and what exists in it. The base of ontology is concerned about the study and analysis 

of a similar and different existence modes and types with certain properties and relationships between 

one with whole and one with one. Here, whole means complete natural environment that identifies the 

relationships and associations in the reality to discover object and their categories. 

                                                   

3 http://www.ontology.co/idx03.htm 

http://www.ontology.co/idx03.htm


11 

 

2.1.1.3. Modern / Working Definition 

Modern ontology is not exactly about finding the exact definition of what exist but about description 

of what is commonly conceived by human from nature. It is a way or study of expressions and 

defining the concepts as an image of reality in human brain. These concept are perceived from nature 

but contrary to the Greek philosophers (Parmenides, Plato, Aristotle etc.) rather than calling it an 

absolute truth but modern era name of things existent as concept (conceived from reality) or 

knowledge (proven facts). It defines ontology, a way of expression about concepts and knowledge. 

These concepts are directly dependent to the domain of knowledge. Same concepts can have different 

properties and behavior in different domains. These behaviors and relationships are also used for 

reasoning about the entities within that domain and may be used to describe the knowledge of the 

domain. 

Thus it also introduces many different sub-domains of knowledge talking about the properties and 

their relationships and their representation like shared vocabulary, Formal Ontology, Mereology, 

taxonomy, Mereotopology, meta-ontology, physicalontology and some new fields like quantum 

ontology (Brey, 2005 ). These representations of relationships and study areas for concept description 

and analysis help us in our research to logically validate the consistency of information structure and 

limitations in a computational model. Here epistemology validate the process of information 

collection and verification, taxonomy works for classification, meretopology  provides the hierarchical 

relationship of parts and complete set with the boundaries of set.  

2.1.2. History 

The question of being or “what exists” presents in human mind since the existence of human beings. 

While digging the history of ontology in literature we managed to attain the science of philosophy that 

answer the questions of what things exist in the world. The philosophy of anything starts with the 

question of what exists, what is reality, truth, properties, relationship and it counter effects that posits 

which objects exist in the world. Later this thought helps to validate the quality of information to the 

fields of knowledge discovery, knowledge sharing and representation in computational models for 

data. 

2.1.2.1. Greek Thought 

The discussion about existence of human and nature has been started much earlier. In history and 

literature the earliest evidence of these discussions have found in Greek times. Parmenides4 (founder 

of the Eleatic school of philosophy), pre-Socratic philosophers at Elea and Plato (427-347 BC) 

(Platonic realism) started working at philosophy and metaphysic in this era. They also analyzed the 

                                                   

4 http://www.uni-leipzig.de/~philos/stekeler/aufsaetze/twot-p.pdf 

http://www.uni-leipzig.de/~philos/stekeler/aufsaetze/twot-p.pdf


12 

 

truth, nature and argumentation about what exists and what not exists. This period also introduced the 

work on semantics and predication by Eleatic school in 500BC. This period is also famous for 

Aristotle work which is very modest attempt in the field of logic by categories, interpretation, prior 

Analytics, posterior Analytics and sophistical Refutations and also the relationship of universal and 

individual. 

2.1.2.2. Modern Era 

In 17th and 18th century the major work was done in central Europe on philosophy. Europeans 

described ontology as a field of study understanding and intelligible ideas and concept of the real 

world as individuals and complete (ChristianWolff, Gottfried Liebniz, Alexander Baumgarten, 

Immanual Kant, Salomon Maimon, Bernard Bolzano, Franz Berntano, Alexius Meinong, Kazimierz 

Twardowski and Edmund Husserl). Since mid1970s, researchers in the field of Artificial Intelligence 

(AI) have recognized that capturing knowledge is the key to building large and powerful AI systems.  

 

Figure 2.1: Table of Contemporary Ontologists
5
 

                                                   

5 http://www.ontology-2.com/essays/table-ontologists.pdf 

http://en.wikipedia.org/wiki/Artificial_intelligence
http://www.ontology-2.com/essays/table-ontologists.pdf


13 

 

AI researchers argued that they could create new Ontologies as computational models that enable 

certain kinds of automated reasoning. In the 1980s, the AI community began to use the term Ontology 

referred to theory of a modeled world and a component of knowledge systems. Some researchers draw 

inspiration from philosophical Ontologies and viewed computational ontology as a kind of applied 

philosophy. 

2.1.2.3. Ontologies for computations 

The second half of the twentieth century was centered on the philosopher’s debates on Ontologies 

building through possible and achievable methods without constructing any elaborated Ontologies 

themselves. Computer scientists on the other hand were aiming for robust Ontology, for instance, Cyc 

and WordNet. In the beginning of 90s, Tom Gruber’s paper "Toward Principles for the Design of 

Ontologies Used for Knowledge Sharing" (Gruber, 1995) raised the eyebrows of the research agencies 

when it was recognized with the authentic definition of Ontology in computer science circle. Later on,  

Gruber introduced specification of a conceptualization that enumerate Ontology as a narration or 

description of the concepts and relationships exist for an agent, as an individual or a community of 

agents. By contrast, this term has a different meaning of the word as it is described by the 

philosophers.  

Gruber has stated ontologies class definitions, their hierarchies and the subsumption relation, but 

studies argue that ontologies need not be limited to these forms. Ontologies are also not limited to 

conservative definitions in the traditional logic sense that only introduce terminology without 

providing any knowledge about the world. To specify a conceptualization, one needs to state axioms 

that do constrain the possible interpretations for the defined terms. (Gruber, 1993) 

In current times, Barry Smith6 has a big role in introduction and use of ontologies in information 

science and many interdisciplinary fields like Bioinformatics and Geographic Information System 

(GIS). He has done much work on ontology formalism, framework and for knowledge representation 

arguing logic, common sense and cognitive sciences. He has also discussed the problems of 

mereotopolgy and relationship between parts, as whole and among boundaries. (Smith, 1978) (Smith, 

2004) (Smith, 1995) (Smith, 1989) (Smith, 1996) (Smith, 2008) (Smith, et al., 2001) 

Ontologies are essential part of the W3C standards family of the Semantic Web that identifies 

standard conceptual vocabularies. To attain enhanced searching of the desired information from the 

bulk data, semantic web has drawn these Ontologies and semantic framework to classify and organize 

data as technical or implementation criterion. This shift has brought information science to the 

implementation level for computer user or a lay man (Najar, et al., 2009).  This direct connection is 

also used to classify information and make machine understand to exchange information among 

                                                   

6 http://ontology.buffalo.edu/smith/ 

http://en.wikipedia.org/wiki/Computational_model
http://en.wikipedia.org/wiki/Automated_reasoning
http://ontology.buffalo.edu/smith/


14 

 

systems. The aim is also to recommend services to assist interoperability across multiple, publish 

reusable knowledge bases to provide services to heterogeneous systems and databases as well as for 

respond queries. Furthermore, identification of data modeling representation at abstraction level above 

database design (logical or physical) is also the major role of Ontologies to specify that information or 

data can be queried, translated, unified and explored independent based systems and services, that 

leads to integration of web services and database interoperability. 

2.1.3. Metaphysics 

Metaphysics is a very broad field and according to metaphysicians it is a science that studies qua 

being. In other words, it determines the real nature of things or it considers reality that determines the 

meaning, structure and existing of actual objects. Meinong argue7 that the theory of objects is a priori 

science. According to him, this principle concerns with the existent or nonexistent and whole of what 

is given. In the science of reality, existent entities must be distinguished from ideal objects or 

subsistent, for instance, diversity, identity or number. He further explains that the 'pure object' 

considered in the theory of objects is beyond being and nonbeing, whereas, existence and subsistence 

objects are the two forms of being by Alexius Meinong and Ernst Mally from the Graz 

School of experimental psychology and object theory  in 1904.7 

Mostly ontology is considered as a sub domain of metaphysics. Although the term "ontology" and 

"metaphysics" are far from being univocal and determinate in philosophical jargon, an important 

distinction seems often enough to be marked by them. What we may call ontology is the attempt to 

say what entities exist proven by logic. Metaphysics, by contrast, is the attempt to say, of those entities 

and what they are. In contrast, one’s ontology is one’s list of entities, while one’s metaphysics is an 

explanatory theory about the nature of those entities. 

2.2. Semantics and Ontological framework 

A conceptual model is a representation (typically graphical) constructed by Information Systems 

professionals of a specific sub domain (any individual or a class) perception of a real-world domain. It 

might be used to facilitate the design and implementation of an information system. It might be used 

to evaluate the balance between an organization’s needs and the business models embedded within an 

enterprise application software package (Shanks, et al., 2003). 

                                                   

7 http://www.ontology.co/meinonga.htm 

http://www.ontology.co/meinonga.htm


15 

 

2.2.1. Semantics 

Semantics is the term, adopted from linguistics, which talks about the words and their formation in a 

sentence to express some ideas. It is a study of syntax and vocabulary of the language. Thus a concept 

can be represented in a combination of semantics and ontologies. Ontology defines what it is, and 

semantics provide a way of expression for share the ontologically defined concepts. 

Though there is a huge history of work on semantics and natural language evolutions, still it is not 

completely formalized due to complex human nature. With all of difficulties in natural languages, 

there are also many achievements in Natural language processing and now machines can perform 

natural conversation with human (Zaihrayeu, et al., 2007). In the field of computer science, machine 

to machine communication is comparatively easier than human-computer communication due to 

translation process, thus Semantics and Ontology were formalized much earlier by simple logical 

grammar and constructing precise mathematical models. 

Semantical properties of the web processes are expressed in form of ontologies. Ontology is a 

document or a file that formally defines relations among terms. In the web service model, ontologies 

consist of hierarchical definitions of important concepts and description of the properties of each 

concept. The ontologies can be defined in DAML-OIL or OWL (Georgiev, 2005). 

2.2.2. Domain Ontologies and upper Ontologies 

A domain ontology (or domain-specific ontology) models a specific domain which represents part of 

the world. Particular meanings of terms applied to that domain are provided by domain ontology. For 

example, the word card has many different meanings. An ontology about the domain of poker would 

model the "playing card" meaning of the word, while an ontology about the domain of computer 

hardware would model the "punched card" and "video card" meanings. 

An upper ontology (or foundation ontology) is a model of the common objects that are generally 

applicable across a wide range of domain ontologies. It employs a core glossary that contains the 

terms and associated object descriptions as they are used in various relevant domain sets (Navigli, et 

al., 2004). There are several standardized upper ontologies available for use including Dublin Core8, 

GFO9 , OpenCyc/ResearchCyc10 , SUMO11  and DOLCE12  (Gangemi, et al., 2002). The WordNet, 

                                                   

8 http://dublincore.org/ 

9 http://www.onto-med.de/ontologies/gfo/ 

10 http://research.cyc.com/ 

11 http://www.ontologyportal.org/ 

12 http://www.loa.istc.cnr.it/DOLCE.html 

http://en.wiktionary.org/wiki/card
http://en.wikipedia.org/wiki/Poker
http://en.wikipedia.org/wiki/Playing_card
http://en.wikipedia.org/wiki/Computer_hardware
http://en.wikipedia.org/wiki/Computer_hardware
http://en.wikipedia.org/wiki/Punched_card
http://en.wikipedia.org/wiki/Video_card
http://en.wikipedia.org/wiki/Upper_ontology_(computer_science)
http://en.wikipedia.org/wiki/Dublin_Core
http://en.wikipedia.org/wiki/General_Formal_Ontology
http://en.wikipedia.org/wiki/Cyc#OpenCyc
http://en.wikipedia.org/wiki/Cyc#ResearchCyc
http://en.wikipedia.org/wiki/Suggested_Upper_Merged_Ontology
http://en.wikipedia.org/w/index.php?title=Descriptive_Ontology_for_Linguistic_and_Cognitive_Engineering&action=edit&redlink=1
http://en.wikipedia.org/wiki/WordNet
http://dublincore.org/
http://www.onto-med.de/ontologies/gfo/
http://research.cyc.com/
http://www.ontologyportal.org/
http://www.loa.istc.cnr.it/DOLCE.html


16 

 

while considered an upper ontology by some, is not strictly an ontology. However, it has been 

employed as a linguistic tool for learning domain ontologies. In philosophy, the term formal ontology 

is used to refer to an ontology defined by axioms in a formal language with the goal to provide an 

unbiased (domain- and application-independent) view on reality, which can help the modeler of 

domain- or application-specific ontologies (information science) to avoid possibly erroneous 

ontological assumptions encountered in modeling large-scale ontologies. By maintaining an 

independent view on reality formal (upper level) ontology gains the following properties: indefinite 

expandability: the ontology remains consistent with increasing content. The Gellish13 ontology is an 

example of a combination of an upper and domain ontology. 

Since domain ontologies represent concepts in very specific and often eclectic ways, they are often 

incompatible. As systems that rely on domain ontologies expand, they often need to merge domain 

ontologies into a more general representation. This presents a challenge to the ontology designer. 

Different ontologies in the same domain can also arise due to different perceptions of the domain 

based on cultural background, education, ideology and due to different languages. 

At present, merging ontologies that are not developed from common foundation ontology is a largely 

manual process and therefore is time-consuming and expensive. Domain ontologies that use the same 

foundation ontology to provide a set of basic elements with which to specify the meanings of the 

domain ontology elements can be merged automatically. There are studies on generalized techniques 

for merging ontologies, but this area of research is still largely theoretical (Guarino, et al., 1995). 

2.2.3. Ontology components 

Ontologies are commonly encoded using ontology languages. An ontological definition of a domain 

can include following common components provided by majority of ontology engineering languages 

and packages like Protégé (OWL)14.  

2.2.3.1. Individuals 

Individuals or instances are the ground level elements of an ontology that may embrace objects like 

people, animals, planets, chairs, vehicles and particles. Abstract individuals, on the other side, include 

numbers and words. Ontology is not limited to any individuals but the aim is to provide means of 

classify different individuals. However, only the utterances of numbers and words are believed as 

individuals in formal extensional Ontologies where names and numbers are themselves considered as 

classes such as ISO 15926 and the IDEAS Group model. 

                                                   

13 http://www.gellish.net/ 

14 http://owl.cs.manchester.ac.uk/tutorials/protegeowltutorial/ 

http://en.wikipedia.org/wiki/Gellish
http://www.gellish.net/
http://owl.cs.manchester.ac.uk/tutorials/protegeowltutorial/


17 

 

2.2.3.2. Classes 

Classes can be defined as a subclass of collection that may classify individuals, classes, or a 

combination of both, for instance: Person, animal, automobile, car, class or Thing. The classes of 

ontology may be extensional or intensional in nature and always vary on different classes, such as, 

whether a class can belong to itself or as a universal class. A class is extensional if and only if it is 

exemplify by its membership. However, the class is intensional if a class does not satisfy this 

condition. Intensionally classes often have necessary conditions associated with membership in each 

class where classes with sufficient conditions considered as a fully defined class (Guarino, et al., 

1995). A class can subsume or be subsumed by other classes as well. In this regard, if a class 

subsumed by a different class is called a subtype or subclass of the supertype class or subsuming class. 

In most ontologies, classes are permitted to have any number of parents (multiple inheritance), but in 

some ontologies examples, a class is only permitted to have one parent (single inheritance). Though, 

all essential properties of each parent are inherited by the subsumed child class.  

Importantly, a partition is a set of related classes and associated rules that authorize objects to be 

classified by the proper subclass that distinguish the subclasses from the superclasses. If the one 

partition rule(s) guarantee that a single object cannot be in both classes, then the partition is 

considered to be a disjoint partition. However, if these rules claim that every concrete object in the 

super-class is an example of any one of the partition classes, then it will be considered as an 

exhaustive partition. 

2.2.3.3. Attributes 

Attributes are basically concepts in ontology that can be explained by relating them to other concepts 

things or parts and this relation can be described as attributes. However attributes may be independent 

concepts or things or attributes can themselves considered as an individual or a class. The type of 

object or the types of attribute establish the kind of relation between them to state a fact that is specific 

to that particular object which it is related.  

2.2.3.4. Relationships 

Relationships specify how and what sense objects are related to other objects in Ontology. For 

instance, the concept Ford Bronco and concept Ford Explorer might be related by type <is defined as a 

successor of> and can be expressed as Ford Explorer is defined as a successor of: Ford Bronco. This 

example elaborate that how the Explorer has replaced the Bronco and also illustrates that relation has 

a direction of expression. On the other side, the inverse expression will state the same fact with a 

reverse phrase. 

The list of relations explains the semantics of the domain that also demonstrates the power of 

Ontologies, such as, the subsumption relation defines which objects are classified by different classes. 

The examples are: is-a-subclass-of, is-a-superclass-of and the converse of is-a, is-a-subtype-of. These 

http://en.wikipedia.org/wiki/Ford_Bronco


18 

 

relationships create taxonomy such as tree-like structure to define how objects are relates to other 

objects. The mereology relation is also another example that represent composite objects such as 

Steering Wheel ("Steering Wheel is-by-definition-a-part-of-a Ford Explorer"). 

2.2.4. Vocabulary  

Ontology renders shared vocabulary and taxonomy which models a domain with the definition of 

objects and/or concepts and their properties and relations.15 This vocabulary consists of all the entities 

taking part in the formation of an ontology. It is a set of individuals independent of its classification 

and relationship. In formal ontology, a domain ontology’s vocabulary is the set of entities (concepts) 

participating in ontology without its relationship details. Vocabulary specifies participating concept 

and its type like class, concept, literal, attribute etc.  

2.2.5. Taxonomy and Meretopology 

Taxonomy (from Greek taxis meaning arrangement or division and nomos meaning law) is the science 

of classification according to a pre-determined logical criterion. In formal science it is mostly define 

as a classification tree of specific domain ontology that results as a catalog used to provide a 

conceptual framework for discussion, analysis, or information retrieval.  

 

Figure 2.2: Example Taxonomy of Vehicles 

                                                   

15 http://www.ida.liu.se/~janma/SemWeb/Slides/ontologies1.pdf 

Vehicle 

Wheeled 

Motor Vehicle 

Signle Track Multipel Track 

Human-
powered 

Railed Tracked 

Construction 
Vehicle 

Armed  Vehicle 
unmanned 

ground 
vehicles 

Skied 

http://www.ida.liu.se/~janma/SemWeb/Slides/ontologies1.pdf


19 

 

Development of a taxonomy is a part of ontology engineering process that takes into account the 

criterion of the importance of separating elements of a group (taxon) into subgroups (taxa) that are 

mutually exclusive, unambiguous, and taken together, include all possibilities. In practice, a good 

taxonomy should be simple, easy to remember, and easy to use. 

Barry Smith defines mereotopology as a theory of parts and boundaries. It is a combination of 

mereology and topology that provides the topological notions of boundaries and connections married 

to mereology. (Smith, 1996) 

These taxonomy and mereotopology correspond to the concepts of inheritance and aggregation 

respectively from computer science field of object oriented modeling of reality. The rigidness and 

technology bias have motivated concepts based entities and structures to provide more realistic 

modeling of the reality. 

2.2.6. Universe of Discourse  

The term universe of discourse generally refers to the collection of objects being discussed in a 

specific discourse. In model-theoretical semantics, a universe of discourse is the set of entities that a 

model is based on. In formal logic, ontologies are mostly defined for specific domain rather than 

complete universe (Gruber, 1995). These domain ontologies anyhow belongs to a specific range of 

values called Universe of discourse (also called the domain of discourse). It is the set of complete 

range of objects, events, attributes, relations, ideas, etc., that are expressed, assumed, or implied in a 

discussion. Ontological specification and ontology engineering also allows people to specify the 

bounds of the universe of discourse (restricting it arbitrarily) allows them to pass subtle fallacies 

unnoticed. The domain of discourse is usually identified in the preliminaries, so that there is no need 

in the further treatment to specify each time the range of the relevant variables.  A database is a model 

of some aspect of the reality of an organization. It is conventional to call this reality the "universe of 

discourse" or "domain of discourse". 

2.2.7. Descriptive, Formal and Formalized Ontologies 

Robet Poli has classified three forms of ontologies as descriptive formal and formalized ontology. 

Descriptive ontology concerns the collection of such prima facie information either in some specific 

domain of analysis or in general. Formal ontology distills, filters, codifies and organizes the results of 

descriptive ontology (in either its local or global setting). According to this interpretation, formal 

ontology is formal in the sense used by Husserl in his Logical Investigations. Being ‘formal’ in such a 

sense therefore means dealing with categories like thing, process, matter, whole, part, and number. 

These are pure categories that characterize aspects or types of reality and still have nothing to do with 

the use of any specific formalism. Formal codification in the strict sense is undertaken at the third 

level of theory construction: namely that of formalized ontology. The task here is to find the proper 

formal codification for the constructs descriptively acquired and formally purified in the way just 



20 

 

indicated. The level of formalized constructions also relates to evaluation of content and context 

independence: any kind of 'concept' can find its place (Poli, 2003). 

2.3. Ontologies for Knowledge Representation 

and Sharing 

A body of formally represented knowledge is based on a conceptualization: the objects, concepts, and 

other entities that are assumed to exist in some area of interest and the relationships that hold among 

them. A conceptualization is an abstract, simplified view of the world that we wish to represent for 

some purpose. Every knowledge base, knowledge-based system, or knowledge-level agent is 

committed to some conceptualization, explicitly or implicitly 

At the end of 20th century, formal ontologies are widely supported for content specification for variety 

of knowledge-based software and knowledge sharing agreement (on information systems) (Gruber, 

1995) (Guarino, 1995) (Guarino, 1998)  (Cocchiarella, 1996) (Pirlein, et al., 1995) (Wand, et al., 

1990) . Gruber also mentioned many individual business agreements of different information systems 

where ontological specifications are used or argued for knowledge representation and sharing. 

Problems in earlier knowledgebase software and services were the motivation behind adopting formal 

ontological specification for knowledge representation, sharing and building reusable knowledge 

components.  

2.3.1. Epistemology and Knowledge 

In philosophy, epistemology is the study of the nature, origin, and limits of human knowledge. This 

field discusses knowledge, and methods to acquire and prove knowledge as theory of knowledge. 

Epistemology in combination with ontology forms another branch of philosophy known as 

metaphysics. 

Epistemology has a long history, starting from ancient Greeks till today in many different sub 

branches like knowledge discovery, management, representation and visualization in information 

systems. 

2.3.2. Knowledge management 

Knowledge management (KM) emerged as a new field of study at start of 21st century. It provides a 

set of procedures for identification, creation, representation and distribution of knowledge. This 

knowledge as a strategic asset of the organization resides in various forms in organization personnel, 

roles, documentations, procedures, or strategies formed through experience. This study of creation and 

compilation in standard representation of knowledge is required for knowledge sharing, integration 

and continuous improvement of the organization. KM efforts overlap with organizational learning, 

http://en.wikipedia.org/wiki/Concept


21 

 

and may be distinguished from that by a greater focus on the management of knowledge as a strategic 

asset and a focus on encouraging the sharing of knowledge. 

KM was introduced as an established discipline since 199116 by Ikujirō Nonaka. Later on it was 

included as a subjects taught in the fields of business administration, information systems, 

management, and library and information sciences (Alavi, et al., 1999). For last two decades, 

electronic media and information systems have become the main actor in knowledge sharing for 

internal or external communication of knowledge (e.g. Digital Libraries). Thus, KM research area has 

gained much contribution from information science and mass communications as well. Web 2.0 has 

widened the thought by introducing publicly presented information like wiki and feedbacks like blogs. 

Still, the focal point of Knowledge management efforts is organizational objectives either this 

knowledge sharing is between in Organization and individual or organization to organization. 

In our research we need to explore the study of knowledge that presented through ontologies and need 

to be visualised through GUI. 

2.3.2.1. Knowledge Discovery 

Knowledge discovery was introduced as sub domain of data mining, an information search in large 

volume patterns through a database. It talks about search mechanism and the resulting knowledge 

discovery. This complex topic can be categorized according to 1) what kind of data is searched; and 2) 

in what form is the result of the search represented. There are many concerns regarding knowledge 

discovery like context of the search and data ranges. Same query can result in different fashion while 

activated from different context or roles. It focuses more on methodologies to improve quality of 

search in data availability and consistency. (Frawley, et al., 1992) (Fayyad, et al., 1996) 

Software mining is another artistic application of knowledge discovery in the area of software 

modernization that analyzes existing software artifacts. It is implementation of reverse engineering 

concepts. Knowledge Discovery Metamodel (KDM) from Object Management Group (OMG) is a 

well known implementation of software mining resulting in an ontology (a set of definitions) for 

system knowledge extraction and analysis.17 

Semantic Web has changed the scope of knowledge discovery in two major aspects; first a large and 

heterogeneous data source secondly semantic search. There is a huge revolution in knowledge 

discovery through search engines semantic search and semantic databases.  

                                                   

16 http://hbr.org/2007/07/the-knowledge-creating-company/es 

17 http://www.omg.org/technology/kdm/index.htm 

http://hbr.org/2007/07/the-knowledge-creating-company/es
http://www.omg.org/technology/kdm/index.htm


22 

 

2.3.2.2. Knowledge Representation 

Knowledge Representation (KR) is a study of construction and analysis of formal and logical axioms 

by specific symbol vocabulary that can describe the knowledge as a set of facts. This is an analysis of 

the quality of reasoning in terms of accuracy, effectiveness and use of symbols for a knowledge 

domain representation. It is a combination of symbols, operators and interpretation theory. KR 

provides a logical sequence that can best represent the knowledge. In the KR system, logic is used to 

deliver the formal semantics for reasoning procedure, operator functions and KR refinement 

procedures. These operators and operations can include negation, conjunction, adverbs, adjectives, 

quantifiers and modal operators. The logic works as the interpretation theory. 

The quality parameter of a KR is its expressivity. An expressive a KR, is the best fit representation of 

the domain. However, expressivity is a trade off by complexity, completeness and consistency. The 

more expressive language used for KR will contain more complex logic and algorithms to construct 

equivalent inferences. Less expressive KRs may be complete and consistent. Autoepistemic temporal 

modal logic is an example of highly expressive KR system while Propositional logic is much less 

expressive but highly consistent and complete with minimal algorithm complexity.  

Semantic Web has brought many recent developments in KR systems through XML-based knowledge 

representation languages and standards development. Resource Description Framework (RDF), RDF 

Schema, Topic Maps, DARPA Agent Markup Language (DAML), Ontology Inference Layer (OIL), 

and Web Ontology Language (OWL) are the major examples of XML based KR languages. Several 

KR techniques like frames, rules, tagging, and semantic networks are fetched from Cognitive Science. 

The objective of KR is to facilitate reasoning, inferencing and drawing conclusions. A good KR must 

be both declarative and procedural knowledge.  

A suitable choice of knowledge representation simplifies the problem solving task for the field of 

artificial intelligence. KR makes many problems easier to solve for any represented knowledge 

domain especially for analytical problems.  

Martin (Martin, 2002) has devised five distinct characteristics of KR: 

1 Substitute of Knowledge domain 

2 Ontological Commitments 

3 Set of three components 

4 Fundamental concept 

5 Constraints 

6 Recommendations 

7 Pragmatic Efficiency 

8 Formal language 



23 

 

2.3.2.3. Knowledge Sharing 

Knowledge sharing provides the procedure to exchange knowledge (i.e. information, skills, or 

expertise). This knowledge exchange can be done among people or organizations. 

Knowledge comprises a valuable intangible asset for any organization to create and maintain 

competitive advantages (Fayyad, et al., 1996). Knowledge Sharing is a part of knowledge 

management system. However, technology is one of the many factors that can affect the sharing of 

knowledge within organizations like organizational mores, trust levels and provided incentives. 

Human factor, if exists, is a big obstacle in knowledge sharing in organization. Another obstruction 

can be the ownership of knowledge thus very important.  

That human factor problem doesn’t exist in that sense on web or publically available open databases 

like it is for any commercial or classified information. Publically published data on web (wiki) have 

other problems of knowledge discovery, copy right issues or integrating different semantically related 

knowledge shares. 

Formal ontology provides standards for creating a shareable KR of the specific domain. Smith 

Gaurino and Gruber has support the idea of using formal ontology for knowledge representation and 

sharing (Gruber, 1993) (Gruber, 1995) (Guarino, 1995) (Smith, 2004). There are many open database 

and knowledge shares defined using Ontology and semantic framework like Linked Open Data 

(LOD)18.  

2.4. Computer Applications of Ontology 

Ontologies provide a definition common vocabulary of a specified domain and define, with different 

levels of formality, the meaning of the terms and the relationships between them. During the last 

decade, increasing attention has been focused on ontologies. Ontologies are now widely used in 

knowledge engineering, artificial intelligence and computer science; in applications related to areas 

such as knowledge management, natural language processing, e-commerce, intelligent information 

integration, bio-informatics, education; and in new emerging fields like the semantic web. Ontological 

engineering is a new field of study concerning the ontology development process, the ontology life 

cycle, the methods and methodologies for building ontologies, and the tool suites and languages that 

support them. 

                                                   

18 http://linkeddata.org/ 

http://linkeddata.org/


24 

 

2.4.1. Ontological Concept Modeling 

Gruber’s definition of ontology “formal, explicit specification of a shared conceptualization” and 

many writings from other researchers have argues using ontology for specification of concepts and 

reality representation (Guarino, 1995) (Smith, 2004). These concepts are the human brain model of 

any other concept of real world. The concept can be modeled as Knowledge Representation of the 

specific domain by ontology and semantic framework. 

2.4.2. Ontology Engineering 

Ontology engineering is a sequence of tasks for the development of ontological definition of a 

particular domain. This process also referred to ontology designing for the domain concept. Resulting 

domain ontology is a KR of the concept. It states the axioms stating the fundamental concept, its 

properties and relationships. It is a metadata design for a database semantically defined and 

categorized by taxonomy. Thus it is more conceptual representation, with logically specified rules and 

constraints. 

Ontology engineering assists solution to the inter-operability problems brought about by semantic 

obstacles, i.e. the barriers regarding the definitions and sharing of business terminology and software 

classes. 

2.4.2.1. Design criteria for ontologies 

Design decisions are required to make for building and ontological representation of any domain 

concept. This ontological design need to be verified at some objective criteria that are founded on the 

purpose of the resulting artifact, rather than based on a priori notions of naturalness or truth. Gruber 

has defined the objectives to use semantic and ontological framework as design criteria of ontology 

engineering for any domain concept (Gruber, 1995). 

1 Clarity 

2 Coherence 

3 Extendibility 

4 Minimal encoding bias 

5 Minimal ontological commitment 

2.4.3. Cognitive Science and AI 

Christopher Longuet-Higgins coined the term of cognitive science in his 1973 commentary on the 

Lighthill report19. Cognitive science is a scientific study of mind and its processes. It defines cognition 

                                                   

19 http://www.chilton-computing.org.uk/inf/literature/reports/lighthill_report/overview.htm 



25 

 

and its functions. It analyzes the processes of information observation, storing, understanding, 

processing, representation, and transformation in actions through nervous system in human animal or 

machine. Cognitive science contains multiple research disciplines like psychology, artificial 

intelligence, philosophy, neuroscience, linguistics, anthropology, sociology, learning and education. It 

is expanded to many levels of analysis, from low-level learning and decision making mechanisms to 

high-level logic and planning, while on physical level from neural circuitry to modular brain 

organization.  AI is a computerized application and inspiration of human or animal cognition to make 

machines enable for decision making and responding to the nature in the same fashion. AI has 

introduced formal ontology for understanding the nature with natural cognition procedures and image 

common sense (Smith, 1995). 

2.4.4. Ontology Languages 

Ontology languages are formal languages defined for ontologies construction. It permits the building 

of knowledge about specific domains and often includes reasoning rules that support the processing 

and evaluation of that knowledge. These languages are mostly declarative, generalizations of frame 

and based on either first-order logic or description logic. Here are some common  

1 Common Logic - and its dialects 

2 CycL 

3 DAML+OIL 

4 DOGMA (Developing Ontology-Grounded Methods and Applications) 

5 F-Logic (Frame Logic) 

6 KIF (Knowledge Interchange Format)  and Ontolingua based on KIF 

7 KL-ONE 

8 KM programming language 

9 LOOM (ontology) 

10  OCML (Operational Conceptual Modelling Language) 

11  OKBC (Open Knowledge Base Connectivity) 

12  Ontology Inference Layer (OIL) 

13  Web Ontology Language (OWL) 

14  PLIB (Parts LIBrary) 

15  RACER  

16  Resource Description Framework (RDF) 

17  RDF Schema 

18  SHOE 



26 

 

2.5. RDF /OWL 

The Resource Description Framework (RDF) is an open format framework to define knowledge20. It 

belongs to the family of World Wide Web Consortium (W3C) specifications originally designed as a 

metadata data model21. It facilitates building a structure with RDF statements called RDF triples these 

statements are formed as subject-predicate-object expressions. It is similar to classic conceptual 

modeling approaches like relational modeling or Object Oriented Modeling. The subject denotes the 

resource, and the predicate denotes traits or aspects of the resource and expresses a relationship 

between the subject and the object. In an example “Sebastian Lives in Graz”; “Sebastian” is stated as 

subject while “Lives in” and “Graz” are examples of predicate and object respectively. The RDF 

defines a specific set of vocabulary defined by the RDF specification is as follows consists of classes 

and properties.  

W3C's Semantic Web has a major component is resource description that allows automated software 

to store, exchange, and use machine-readable information distributed throughout the Web. Thus, it 

enables users to deal with the information with greater efficiency and certainty. RDF's simple data 

model and ability to model disparate, abstract concepts has also led to its increasing use in knowledge 

management applications unrelated to Semantic Web activity. 

A combination of RDF statements fundamentally represents a labeled, directed multi-graph. As such, 

an RDF-based data model is more naturally suited to specific kind of KR than the relational model 

and other ontological models. However, RDF data is usually stored in relational database or native 

representations also like Triplestores, or Quad stores if context is also persevered for each RDF triple. 

As RDFS and OWL demonstrate, additional ontology languages can be built upon RDF.  

2.5.1. Serialization formats 

RDF has two common serialization formats in use:  

XML format: This format is often called RDF/XML because it was introduced among the W3C 

specifications while defining RDF. However, it is important to distinguish the XML format from the 

abstract RDF model itself. Its MIME media type, application/rdf+xml, was registered by RFC 3870. It 

recommends RDF documents to follow the new 2004 specifications. 

Notation 3 (or N3): It is introduced as a non-XML serialization of RDF models by W3C, for an 

easier understanding and updates by human. It is based on a tabular notation, with a sequences of rows 

                                                   

20 http://www.w3.org/TR/PR-rdf-syntax/ 

21 http://www.w3.org/RDF/ 

http://www.w3.org/TR/PR-rdf-syntax/
http://www.w3.org/RDF/


27 

 

of triples [Sub, Pred, Object]. N3 is more close to the Turtle and N-Triples formats than RDF/XML. 

These triples can be stored in a triplestore. 

2.5.2. Resource identification 

The subject, object or predicate are defined as a resource; these resource can be a link to the original 

resource called Uniform Resource Identifier (URI). Subject or object resources can be a blank node as 

well, is called anonymous resources. While object resources can also be a Unicode string literal. URI 

is a link to the original recourse. Predicate URI indicates to a resource, representing a relationship. 

The URI looks like URL and it can be a URL but not necessarily. In popular Semantic Web 

applications of RDF like RSS, Linked Data and FOAF resources tend to be represented by URIs that 

intentionally denote, and can be used to access, actual data on the World Wide Web. 

2.5.3. Statement reification and context 

Reification is defined as use of whole statement in a knowledge modeling is used as a resource 

through a URI. For example a statement like “X saw that Y is going to place-P” here Subject X is 

linked by predicate “saw” with complete statement “Y is going to place-P” as object of the statement. 

Reification can be required in modeling knowledge to create a relationship between a resources and a 

statement. Reification is sometimes important in order to deduce a level of confidence or degree of 

usefulness for each statement. In a reified RDF description, each original statement, being a resource, 

itself, most likely has at least three additional statements made about it: one to assert that its subject is 

some resource, one to assert that its predicate is some resource, and one to assert that its object is some 

resource or literal. More statements about the original statement may also exist, depending on the 

application's needs. 

2.5.4. Query and inference languages 

SPARQL (SPARQL Protocol and RDF Query Language) is RDF query language made a standard by 

the RDF Data Access Working Group (DAWG) of the W3C22. It is predominant SQL-like query 

language for RDF graphs. SPARQL is a recommendation of the W3C as of January 15, 200823. 

Other query languages to query RDF graphs include: 

RDQL (RDF Data Query Language) ia a SQL-like query language. It is the predecessor to SPARQL. 

Versa is compact syntax (non–SQL-like) query language that is solely implemented in 4Suite 

(Python). RQL is one of the first declarative, semi-structured query languages for uniformly querying 

                                                   

22 http://www.w3.org/2009/sparql/wiki/Main_Page 

23 http://www.w3.org/TR/rdf-sparql-query/ 

http://www.w3.org/2009/sparql/wiki/Main_Page
http://www.w3.org/TR/rdf-sparql-query/


28 

 

RDF schemas and resource descriptions, implemented in RDFSuite. SeRQL (Sesame RDF Query 

Language) is part of Sesame 

XUL has a template element in which to declare rules for matching data in RDF. XUL uses RDF 

extensively for data binding with user interfaces. 

2.5.5. RDFS 

RDF Schema provides the framework to build an RDF model with application-specific classes and 

properties. Classes in RDF Schema are much like classes in object oriented programming languages. 

This allows resources to be defined as instances of classes, and subclasses of classes. It is a schema 

language to develop RDF/XML specification through the set of schema classes with specific 

properties using the RDF language rules and grammar. It provides basic elements for the description 

of ontologies as RDF vocabularies, which has to be structured to present RDF resources. These 

structured elements with RDFS in a triplestore can be accessible using any semantic query language 

like SPARQL. 

The first version was published by the World-Wide Web Consortium (W3C) in April 1998, and the 

final W3C recommendation was released in February 200424. Many RDFS components are also part 

of a more expressive Web Ontology Language (OWL). 

2.5.5.1. Main RDFS constructs 

RDFS constructs of RDFS classes, their associated properties and the utility properties to develop the 

limited vocabulary of RDF for a specific domain. 

CLASSES 

RDFS provides following classes: 

rdfs:Resource – rdfs:Class – rdfs:Literal – rdfs:Datatype – rdf:XMLLiteral – rdf:Property  

PROPERTIES 

Following belong to RDFS as rdf:Property. 

rdfs:domain – rdfs:range – rdf:type – rdfs:subClassOf  – rdfs:subPropertyOf – rdfs:label – 

rdfs:comment 

Utility Properties 

rdfs:seeAlso – rdfs:isDefinedBy 

                                                   

24 http://www.w3.org/2001/sw/wiki/RDFS 

http://www.w3.org/2001/sw/wiki/RDFS


29 

 

2.5.6. OWL 

The Web Ontology Language (OWL) is a set of RDF/XML-based serialized KR languages for 

ontologies publishing. These languages are characterized by formal semantics for the Semantic Web. 

World Wide Web Consortium (W3C) has endorsed OWL. It got much attention from academics, 

medical and commercial purpose. 

In October 2007, a new W3C working group was started to extend OWL with several new features as 

proposed in the OWL 1.1 member submission. W3C announced the new version of OWL on 27 

October 2009. This new version, called OWL 2, soon found its way into semantic editors such as 

Protégé and semantic reasoners such as Pellet, RacerPro, FaCT++ and HermiT.  

The OWL family contains many species, serializations, syntaxes and specifications with similar 

names. OWL and OWL2 are used to refer to the 2004 and 2009 specifications, respectively. Full 

species names will be used, including specification version (for example, OWL2 EL). When referring 

more generally, OWL family will be used. 

2.6. Semantic Web 

Tim Berners-Lee, the inventor of the World Wide Web and director of the World Wide Web 

Consortium ("W3C"), coined the term of the “Semantic web”. He defines it as "a web of data that can 

be processed directly and indirectly by machines"25 by combining data with data description details at 

web. 

The Semantic Web is a collaborative work led by the W3C that promotes common formats for data on 

the World Wide Web. According to the W3C, "The Semantic Web provides a common framework that 

allows data to be shared and reused across application, enterprise, and community boundaries"26. 

This aim of portability and sharing is achieved by introducing semantic content in web pages. It builds 

on the W3C's Resource Description Framework (RDF) in mostly RDF/XML format. 

Semantic Web had lot of challenges regarding many properties of data available at web like vastness, 

vagueness, uncertainty, inconsistency, and deceit. Any automated reasoning and analysis systems 

have to deal with all of these issues to make this huge heterogonous data-ware portable and shareable 

through the Semantic Web.  

The World Wide Web Consortium (W3C) Incubator Group for Uncertainty Reasoning for the World 

Wide Web (URW3-XG) final report lumps the problems together regarding "uncertainty" stating 

                                                   

25 http://www.scientificamerican.com/article.cfm?id=the-semantic-web 

26 http://www.w3.org/2001/sw/ 

http://www.scientificamerican.com/article.cfm?id=the-semantic-web
http://www.w3.org/2001/sw/


30 

 

“better defining the challenge of reasoning with and representing uncertain information available 

through the World Wide Web and related WWW technologies.” 27  

2.6.1. Standards 

W3C provides Semantic Web standards in the context of Web 3.0. 

2.6.1.1. Components 

The Semantic Web Stack demonstrates the architecture of the Semantic Web. The functions and 

relationships of the components are summarized in Figure 2.3: 

 

Figure 2.3 The Semantic Web Stack 

The term "Semantic Web" is most of the times referred precisely to the adopted formats and 

technologies. The technologies and format used to increase utility of the available knowledge by 

enabling advanced searching browsing and evaluation (Hitzler, et al., 2009).  It provides formal 

                                                   

27 http://www.w3.org/2005/Incubator/urw3/XGR-urw3-20080331/ 

http://www.w3.org/2005/Incubator/urw3/XGR-urw3-20080331/


31 

 

description of concepts, terms, and relationships within a given knowledge domain in linked data. 

These technologies are specified as W3C standards and include: 

1 Resource Description Framework (RDF) 

2 RDF Schema (RDFS) 

3 Simple Knowledge Organization System (SKOS) 

4 SPARQL, an RDF query language 

5 Notation3 (N3), designed with human-readability in mind 

6 N-Triples, a format for storing and transmitting data 

7 Turtle (Terse RDF Triple Language)  

8 Web Ontology Language (OWL), a family of knowledge representation languages 

2.6.2. Projects 

Here is a list of some mostly adopted, used and well known of the many projects and tools that 

exist to create Semantic Web solutions. 

2.6.2.1. DBpedia 

DBpedia is published structured data fetched from Wikipedia in RDF. It is available on the Web under 

the GNU Free Documentation License. Thus is also allows other Semantic Web agents to provide 

inferencing and advanced querying for the knowledge sharing. 

2.6.2.2. FOAF 

Friend of a Friend (or FoaF) provides a view and opportunity to analyze social relationships in the 

Semantic Web. It also uses RDF to describe the relationships people have to other people and the 

"things" around them. FOAF permits intelligent agents to make sense of the thousands of connections 

people have with each other, their jobs and the items important to their lives. 

2.6.2.3. GoodRelations for e-commerce 

The GoodRelations ontology is a popular vocabulary for expressing product information, prices, 

payment options, etc. It also allows expressing demand in a straightforward fashion. GoodRelations 

has been adopted by Google, BestBuy, Overstock, Yahoo, OpenLink Software, O'Reilly Media, the 

Book Mashup, and many others. 

2.6.2.4. SIOC 

The Semantically-Interlinked Online Communities project (SIOC, pronounced "shock") provides a 

vocabulary of terms and relationships that model web data spaces. Examples of such data spaces 

include, among others: discussion forums, blogs, blogrolls/ feed subscriptions, mailing lists, shared 

bookmarks and image galleries. 



32 

 

2.6.2.5. SIMILE 

Semantic Interoperability of Metadata and Information in unLike Environments 

SIMILE was a joint project, conducted by the MIT Libraries and MIT CSAIL and funded by the 

Mellon Foundation, which sought to enhance interoperability among digital assets, 

schemata/vocabularies/ontologies, meta data, and services. With completion of the project, many of its 

tools were open sourced and spun out to simile-widgets, a community-managed site. 

2.6.2.6. NextBio 

A database consolidating high-throughput life sciences experimental data tagged and connected via 

biomedical ontologies. Nextbio is accessible via a search engine interface. Researchers can contribute 

their findings for incorporation to the database. The database currently supports gene or protein 

expression data and sequence centric data and is steadily expanding to support other biological data 

types. 

2.6.2.7. ANTOM 

ANTOM automates the categorization of text documents, and enables the retrieval of information by 

semantic search. Its name is an acronym derived from "Automated Ontology Manager". 

2.6.2.8. Linking Open Data 

The Linking Open Data project is a W3C-led effort to create openly accessible, and interlinked, RDF 

Data on the Web. The data in question takes the form of RDF Data Sets drawn from a broad collection 

of data sources. There is a focus on the Linked Data style of publishing RDF on the Web. It will be 

discusses in detailed in later section in this chapter. 

2.6.3. Semantic Databases 

Chen explicitly contrasts Entity-Relationship diagrams with record modeling techniques of software 

engineering. He described ER Diagram is the more natural view in a way that describes the real world 

entities and relationships with some of the important semantic information while structure diagram is 

a representation only of the organization of records without representation of entities and relationships 

(Chen, 1975). Many other famous research publication support this argument of concept based data 

structuring and relations like Kent in “Data and Reality” 199828, “Data Semantics” by Abrial (Abrial, 

1974), Ronald Stamper (Stamper, et al., 1994) , Elmasri, Navathe (Elmasri, 1989), and Michael 

Jackson (Jackson, 1980). A semantic model is a model based on concepts thus considered as a 

“platform independent model”. Semantic model provide semantic structures and relationships of 

                                                   

28 http://www.bkent.net/Doc/darxrp.htm 

http://www.bkent.net/Doc/darxrp.htm


33 

 

entities. A semantic web data space contains domain specific portable data provided in human and/or 

machine friendly structures. Data in a data space can be referenced by an identifier, and is linked with 

other data across spaces and domains, and thus can be viewed in an object-Oriented fashion. This 

approach is applicable to Web based systems and also to desktop-based systems.  

There is also a not only storing but more important part is data retrieval in semantic fashion. There are 

some very effective query languages like SPARQL which can provide facility to fetch semantic data 

securing semantic information about data.  

2.6.4. Semantic web data spaces, linked data, and data portability 

Semantic Web was required to enhance the data portability, sharing and most important better 

understanding of available data for human and machine to search in a huge data space of web. Linked 

data project has done core task for data sharing and availability with its semantic details from different 

linked knowledgebase. This has the benefit of being a useful point for querying about information 

across domains, and assists the development of a Web of Data. Any data-space on web should support 

for data portability by providing an object in a data space should be movable and should also have the 

ability to be referenced using a standard identifier such as a Uniform Resource Identifier (URI). 

2.6.4.1. Linked Data 

Linked data (also called Linked Open Data - LoD)29 provide a mechanism to publish data which can 

be licked to the Link data cloud for sharing. At early stages of LoD was like Figure 2.4 with a very 

few nodes in the in LoD with few nodes which have grown too rapidly to Figure 2.5 with more than 

31 billion triples according to the statistics of September 201130. 

 

                                                   

29 http://linkeddata.org/ 

30 http://www4.wiwiss.fu-berlin.de/lodcloud/state/ 

http://linkeddata.org/
http://www4.wiwiss.fu-berlin.de/lodcloud/state/


34 

 

  

Figure 2.4: Class linkages within the Linking Open Data datasets October 2008 

 

Figure 2.5: Class linkages within the Linking Open Data datasets September 2011 

Like many other achievement in W3C this terminology was also discovered by Sir Tim Berners-Lee, 

in a design note discussing issues around the Semantic Web project. However, the idea behind that 



35 

 

was quite old and was based on the concept of the network model database, citations between 

scholarly articles, and authority control in libraries. Two major concepts of Linked Data are URI’s to 

identify any resource available at data and second in RDF can be called the language of Linked Data 

for communication and understanding among nodes about nodes and data. Tim Berners-Lee outlined 

four principles of linked data in his Design Issues. Linked Data note, paraphrased along the following 

lines: 

1 Use URIs to identify things. 

2 Use HTTP URIs so that these things can be referred to and looked up ("dereferenced") by 

people and user agents. 

3 Provide useful information about the thing when it’s URI is dereferenced, using standard 

formats such as RDF/XML. 

4 Include links to other, related URIs in the exposed data to improve discovery of other related 

information on the Web. 

2.7. Ontology Driven Information System 

Ontology and Semantic Framework has change a lot on the Web. Still there is much research work to 

do in the favour of adopting the same idea in Software Engineering. At the introduction to the Second 

International Conference on Formal Ontology and Information Systems (FOIS) Smith presents a brief 

history of ontology as a discipline spanning the boundaries of philosophy and information science 

(Smith, et al., 2001). He predicted the future collaboration between philosophical ontologists and 

information scientists for making computational model of real world based on philosophical model 

specified in ontologies.  

Later on, from the same platform in 2008 Uschold also supported the idea and provide support 

Ontology Driven Information System with ontological presentation and modeling of concept as a base 

model for software development (Uschold, 2008). Thus central idea for improving software 

engineering is to increase the level of formal methods and structure in various phases of the software 

lifecycle. Using formal ontologies to the models the concepts and areal world facts, in a model-driven 

software development represents the joining together of these two field with their original cores and 

functions, like Formal Ontology for reality representation in formalized way that can be directly 

instantiated at computer for an equivalent computational model.  



36 

 

 Graphical User Interfaces 

3.1. Introduction 

A User Interface is a term used for a technical solution providing a space for Human machine 

interaction. In computer science, It refers to the software that enables the computer machine interact 

with the user though some specific User Interface devices. These computer user interfaces can be a 

command based user interface or a graphical user interface. 

A command base user interface interacts with the user in text messages: takes a command for some 

computation in text stream and/or show results in text if required. 

A graphical user interface (GUI) is a type of user interface that allows users to interact with electronic 

devices graphical representation of entities represented at interface. GUIs can be used in computers, 

hand-held devices like mobile-phones, portable media players or gaming devices, digital household 

appliances and office equipment. A GUI symbolizes the information and user’s possible actions to a 

user through graphical icons and visual indicators such as menus. It provides direct manipulation of 

the actions, which is usually performed at the graphical elements presented at user interface. 

3.1.1. Human-Computer Interaction 

ACM SIGCHI has defined Human-Computer Interaction (HCI) as “Human-computer interaction is a 

discipline concerned with the design, evaluation and implementation of interactive computing systems 

for human use and with the study of major phenomena surrounding them”. A User Interface (UI) can 

have very diverse applications like mechanical devices user interface. As a domain of research we will 

discuss UI or GUI in the domain of HCI.  

3.2. History 

Historically, the term GUI is refers to the scope of two-dimensional display screens with display 

resolutions able to visualize generic information, in the tradition of the computer science research in 

late 70’s at the PARC (Palo Alto Research Center). We keep the boundaries of User Interface scope 

only to the computing field. 

3.2.1. Precursors 

User Interface as a mandatory component of any electronic device especially with computer will 

always be required and available in different forms to make use of the machine by human. In our 



37 

 

research we consider about the computer user interfaces precisely. Computer User Interface was made 

with the first computation machine to communicate by human (to take commands and data and give 

back calculated results). Earliest ages of computer, all of human computer communication was done 

in Batch systems, which later on improved to a command lines interface and the last major change in 

base model of computer user interface is GUI. There are many changes and no doubt improvements 

and technological level but not in the base concept of user interface. Many fast and highly 

sophisticated devices are invented to get the images of natural quality in a GUI. With so much 

changes and rapid work in the field of User Interface devices and implementation methodology that 

even GUI design decisions got totally dependent to the technology. 

3.2.1.1. Batch Computing 

The starting decades of computer history in known as the batch era, when computing power was 

extremely inadequate and expensive. The human machine communication used to be done in batches, 

where a computational sequences (software programs) and data has to be loaded and executed in 

batches. Due to very slow manipulation for different phases to make use of computers like prom 

loading, inking and execution, it was not feasible to perform these tasks separately for each computer 

program. Programs written in one language were loaded and linked in a batch for processing. Users 

had to accommodate computers rather than the other way around; user interfaces were considered 

overhead, and software was designed to keep the processor at maximum utilization with as little 

overhead as possible. (Raymond, et al., 2004) 

 



38 

 

Figure 3.1: IBM 029 card punch
31

 

As programs were written through tapes and later through punch cards, these inputs were prepared 

separately to work in batch process on punched cards or equivalent media like paper tape. The output 

side added line printers to these media. Thus there was no direct interaction of computers with the 

machines in real time. There was not any option to make any changes in input programs and data once 

it is loaded at computer. 

3.2.1.2.  Command Line Interface 

Command-line interfaces (CLIs) introduced direct interaction of users to the computers. It provides 

and environment with batch monitors connected to the system console. Real time request-response 

transactions were modeled in CLI, where requests are expressed as textual commands from a 

specialized vocabulary and syntax. Computer from this ages were far efficient than of batch systems, 

increasing from days or hours to seconds. Computation costs were also much decreased in comparison 

to the batch systems. Command-line systems also allowed the user to alter the later stages of the 

transactions which are not executed yet in response to real-time or somewhat-real-time feedback 

according to the initial results. Investigative and interactive software execution made real-time 

interaction also debugging possible. But these interfaces still require a serious investment of effort and 

learning time to master over the commands and their syntax. 

  

Figure 3.2: Screenshot MS Dos 

                                                   

31 http://www.columbia.edu/cu/computinghistory/129.html 

http://www.columbia.edu/cu/computinghistory/129.html


39 

 

Command-line interfaces were closely associated with the rise of timesharing computers, the concept 

introduced in the 1950s. The most significant early experiment was the MULTICS operating system 

after 1965 and by far the most influential of present-day command-line interfaces is that of UNIX 

systems that was introduced in 1969. The earliest command-line systems were a combination of 

teletypes with computers, adapting a mature technology that had proven effective for mediating the 

transfer of information over wires between human beings. Using of teletypes reuses the typing pattern 

introduced for normal typing machines. 

3.2.1.3. Precursor to GUI 

Douglas Engelbart, as a lead of researchers at the Stanford Research Institute, designed a precursor to 

GUIs that uses text-based hyperlinks manipulated with a mouse for an On-Line System and got it 

patent (Engelbart, 1970). The concept of hyperlinks was further refined and extended to graphics by 

researchers at Xerox PARC 32 , who are considered as the first Graphical-based hyperlinks and 

inventers of first GUI.  

3.2.2. PARC user interface 

 

Figure 3.3: Xerox Star Workstation 

The PARC user interfaces are considered as the most influential achievement in the history of User 

Interfaces by invention of a graphical user interface. This user interface was consisted of graphical 

                                                   

32 http://www.parc.com 

http://www.parc.com/


40 

 

elements like windows, menus, radio buttons, check boxes and icons with a a pointing device in 

addition to a keyboard for user interaction with the computer.  

Computer as part of business and official processing tool, these graphical objects were and inspiration 

of the office objects like files, folders, documents etc. These aspects can be emphasized by using the 

alternative acronym WIMP, which stands for windows, icons, menus and pointing device. (Raymond, 

et al., 2004) 

3.2.2.1. Evolution 

As a result of PARC efforts in the field of Computer User Interface in 1981, the Xerox 8010 Star 

Information System was invented as the first GUI-centric computer operating model. Apple get in 

competition soon with the Apple Lisa (which presented the concept of menu bar as well as window 

controls) in 1983 and the Apple Macintosh 128K in 1984, followed by the Atari ST and Commodore 

Amiga in 1985 (Johnson, et al., 1989). 

Today, the most familiar GUIs to people can be list Microsoft Windows, Mac OS X, and X Window 

System interfaces for desktop and laptop computers, and Symbian, BlackBerry OS, Android and 

Apple's iOS for handheld ("smartphone") devices. 

Xerox's successfully experimented idea for GUI has been widely used by many other companies like 

Apple, IBM and Microsoft to develop their products. Later on, IBM's Common User Access 

specifications (Berry, 1988) produced the basis for the graphical user interface that guided the 

construction of Microsoft Windows, IBM OS/2Presentation Manager, and the UNIX Motif window 

manager and toolkit. These ideas evolved to create the interface found in current versions of GUI for 

many operating systems and various desktop environments. Thus majority of the current GUIs are 

based on same principles and share largely common idioms. 

3.3. Structural elements 

Different visual conventions mostly from daily office environment are used and integrated to form a 

GUI for the generic information representation. These images of daily conventions work as elements 

of graphical user interfaces that build the structure of the static elements on which the user can 

interact, and define the appearance of the interface. Our research is using the same conventional 

models to represent the ontological and semantic structures for a specific knowledge domain. Here is a 

list of common graphical elements used in different graphical libraries like OpenGL (Woo, et al., 

1999), QT (Eng, 1996), wxWidgets (Leijen, 2004), Java Swing (Walrath, et al., 2004)  etc. Figure 3.4 

shows an example GUI structuring some of the elements in a printer properties display dialogue 

window. 



41 

 

3.3.1. Window 

A window is an area on the display screen that represents information as complete structure of GUI or 

complete GUI. Mostly it refers to a representation of specific part of GUI with its contents 

independent from the rest of the screen. An example of a windows environment, it is what appears on 

the screen when the "My Documents" icon is clicked in the Windows Operating System. It is an easy 

to manipulate window for a users with some conventional behavior of dragging, minimize, maximize 

and cascading with some special common elements like title bar for showing the title of windows and 

also work as a holder for dragging the window, status bar shows the current status of window like any 

selected element or proceeding and a set of three buttons to minimize maximize and closing the 

window.  

3.3.1.1. Container Window 

A Container Window specifically used to visualize the directory structure and data files and 

executable programs available in the specific locations. These are container windows are invoked 

through the icon of root or any element of directory structure which can contain other elements like 

dick storage, directory (folder). It provides an ordered list of other icons that could be again some 

other icons of new container windows or data in files or links to some other place even executable 

programs. All modern container windows could present their content on screen either acting as 

browser windows or text windows discussed later. Their behavior can be personalized in visualizing 

the automatically according to the choices of the users and their preferred approach to the graphical 

user interface. 

3.3.1.2. Browser Window 

A browser window allows the user to move forward and backwards through a sequence of documents 

or web pages. Web browsers are an example of these types of windows invented by Sir Tim Berners-

Lee33. 

3.3.1.3. Text Terminals 

Text terminal windows are designed for embedding command line interface to the GUI. MS-DOS and 

UNIX consoles are examples of these types of windows. 

3.3.1.4. Parent Child Window 

A child window opens automatically or as a result of a user activity in a parent window. Pop-up 

windows on the web browsers can be considered as an example of specific kind of child windows. 

                                                   

33 http://www.w3.org/People/Berners-Lee/WorldWideWeb.html 

http://www.w3.org/People/Berners-Lee/WorldWideWeb.html


42 

 

3.3.1.5. Message Window 

A message window, or dialog box, is a type of child window. These are usually small and basic 

windows that are opened by a program or another window to communicate with the user by 

displaying information to the user and/or getting information from the user. These windows usually 

contain at least one push button to resume the parent program or window. 

3.3.2. Tabs 

A tab group is also a list of container that contains other graphical elements. It is typically use to 

classify the data in different tabs (also called tab-pages) visualized mostly as rectangular small box in 

a tab group.  Many of the dialogue windows showing multiple data options and input from user are 

group in some categories use tab groups e.g. of  When activated the view pane, or window, displays 

widgets associated with that tab; groups of tabs allow the user to switch quickly between different 

widgets. This is used in the web browsers Firefox, Internet Explorer, Konqueror, Opera, Safari and 

chrome. With these browsers, you can have multiple web pages open at once in one window, and 

quickly navigate between them by clicking on the tabs associated with the pages. Tabs are usually 

placed in groups at the top of a window, but may also be grouped on the side or bottom of a window. 

Tabs are also present in the settings panes of many applications. Windows for example uses tabs in 

most of its control panel dialogues. 

3.3.3. Menus 

To reduce the learning load for users, menus are introduced that allow the user to execute commands 

by selecting from a list of choices. Options can be selected using a mouse or any other pointing device 

within a GUI. A keyboard may also be used by provided shortcuts for expert users. Menus are 

convenient because they show what commands are available within the software. 

Conventionally a parent menu bar is displayed horizontally across the top of the screen and/or along 

the tops of some or all windows. This menu bar is like list of categories of available commands. Sub 

menu can be pull down by clicking any category to see list of commands or a sub category of the 

menu. These menus are named as pull down menus. 

A popup menu is usually associated with right click button of the mouse that can also provide some 

other context dependent action where ever on the screen it is called, thus also called context menu. 

This menu is invisible until the user activate it by right clock or if available keyboard button according 

to current position of pointer/cursor. 

3.3.4. Icons 

An icon is a small graphical representation of available objects such as a file, program, web page, or 

command. These are also a quick way to execute commands, open documents, and run available 



43 

 

programs. Icons are also very useful when searching for an object in a browser list, because in many 

operating systems all documents using the same extension will have the same icon. 

3.3.5. Controls (or Widgets) 

A computer user interacts through different controls available in GUI usually refers to Widget. These 

interface elements have their specific behavior (functionality) and interaction method (use actions e.g. 

click, double click, drag and move etc.) 

3.3.5.1. Window 

A paper-like rectangle that represents a "window" into a document, form, or design area. 

3.3.5.2. Button 

A button or a push button is a control to perfume some command that can be triggered by user. It is a 

convention of a mechanical or electronic instrument’s push-button. 

3.3.5.3. Pointer (or mouse cursor) 

The spot indicating the current referred position of the pointing device is called the pointer like mouse 

pointer or cursor. Conventional graphics are used to provide not only information but current status of 

the system like showing an hourglass for the busy (or wait) state or blinking cursor at any document 

editor showing ready state. 

3.3.5.4. Single Element Text Data Control  

TEXT BOX 

A text box is a text editing control to add/get textual box information from/to the user. 

HYPERLINK 

Text with some kind of indicator (usually underlining and/or color) that indicates that clicking it will 

take one to another screen or page. URL is a hyperlink for a web page or web content. 

LABEL 

Label is a non-editable text control only to show some textual data to the user 

3.3.5.5. List Items 

 List items are used to present a list of elements or data items. It can also be used to get some 

selection(s) by the user from a given list of elements.  

 



44 

 

 

Figure 3.4: An Example of GUI structure for Printer Properties for MS Office 

Tab Group 

Check Box 

Radio 

Button 

Combo Box 

List Box 

Push 

Button 

Push Button 

with  

Small Icons 

Tab Page 

for  

Quality 

Properties 



45 

 

LIST BOX 

A list box provides an option to the user of selection from the given list of elements. User can select 

more than one item from the list. Some of the dialogue windows also work as list boxes with a list of 

files and folder to select to perform a specified operation using this GUI control. 

DROP-DOWN LIST 

A drop down list provides a list of items for a user selection. The list normally only displays items 

when a special button or indicator is clicked. A Drop down or popup menu is also an example of drop 

down list. 

COMBO BOX 

A combo box is a combination of a drop-down list and a single-line textbox usually for single element 

selection from the list. It also allows user to type a value directly into the control from the list of 

available options. 

3.3.5.6. Datagrid 

A spreadsheet-like grid, called Datagrid, allows numbers or text to be entered in rows and columns. It 

is used to visualize any tabular form. It can also be considered as a list of data or records where 

conventionally each row grid present a record/like a tuple of relational database.  

3.3.5.7. Option Buttons 

Option buttons are use for a binary input to present the state of “on” or “off” of available options. It is 

mostly triggered by clicking available option  

RADIO BUTTON 

A radio button is an option button that allows user to select one of the available options. It is named 

over the mechanical push-button group on a car radio receiver. Selecting a new item from the group's 

buttons also deselects the previously selected button. 

CHECK BOX 

Check boxes are used to facilitate user for multiple selection form the given options. Conventionally, 

it is visualized through check mark ☑ or a cross ☒ or empty box thus called check box. 

 



46 

 

3.4. Interaction elements 

Data structuring elements of GUI are used to receive and send information from or to user. There are 

still necessary elements used for indications about the current state and position of GUI. While Human 

Computer Interaction at GUI the currently focused of element must be known or indicated to the user. 

In contrast to the command line interface, GUI provides and assists users by providing only possible 

actions at specific location at screen at some specific focused, selected or pointed element of GUI. 

3.4.1. Cursor 

A cursor is a visual indicator about the current position on a computer monitor or other display device. 

Cursor was also used in command line interface to show the current position within the text to edit by 

a blinking “_” (called underscore). Cursor in GUI refers to indicator in the both environments whether 

it input from a text input like keyboard or a pointing device like mouse. At GUI, current position of 

the cursor is mostly different from the mouse pointer at desktop or text editing environment, where 

cursor can be shown at some focused graphical element or an I-beam in a text editor. 

3.4.2. Pointer 

One of the most common indicators provided at GUI on the any personal computer is a pointer. It a 

graphical image indicates the current position of the pointing device. There are many user interaction 

operations associated with the pointing device through the pointer as a combination a click and move 

like click, double click, select, drag and drop etc. A pointer commonly visualized as an angled arrow, 

but it can vary within different programs or operating systems. As an example it can be an I-beam 

pointer within text-processing applications, or a gloved hand with outstretched index finger at any 

hyperlink mostly in web browsers. Thus it also provides an indication about the currently selected or 

pointed data element. It also provides an indication of the busy state of the machine showing some 

hourglass or a wristwatch. 

3.4.3. Selection 

A selection is a list of items on which user operations will take place. The user typically adds items to 

the list manually, although the computer may create a selection automatically. The selected items are 

usually grayed in convention of the grayscale displays. 

 



47 

 

3.5. Post-WIMP GUI 

The reason WIMP environment was a big breakthrough that was very much visible at user interface 

screen comparative to command line interface. They also make use of an analogous paradigm of 

documents as paper sheets or folders from the a normal office environment than a computational 

model by abstracting workspaces, documents, and their actions, thus had easy to introduction to 

novice users and  much attraction from the end users. Moreover, the basic representations as 

rectangular regions on a 2D screen make them a good fit for system programmers, thus support the 

profusion of commercial widget toolkits in this style.  

However, early WIMP interfaces were not at their best to provide most favorable capacity for working 

with complex tasks such as computer-aided design, working on large amounts of data simultaneously, 

or interactive games. Applications for which WIMP is not well suited include those requiring 

continuous input signals, showing3D models, or simply portraying an interaction for which there is no 

defined standard widget. It was required to make necessary improvements in WIMP environment by 

development of customized interface according to the application requirements. Interfaces based on 

these considerations, now called "post-WIMP", have made their way to the general public. Examples 

include the interface of the classic MP3 player iPod and a bank's automated teller machine screen. 

Jakob Nielsen (Nielsen, 1999) proposed post-WIMP interfaces in "Non Command User Interfaces" 

followed by "The Anti-Mac Interface" in 1993. In 1997, Andries van Dam (Van Dam, 1997) argued 

about updated proposals that are discussed in "Post-WIMP user interfaces". Later on a framework 

proposed by Michel Beaudouin-Lafon (Beaudouin-Lafon, 2000) in 2000 called instrumental 

interaction. This framework proposed a design a design space for Post-WIMP interaction techniques 

and a set of properties for comparing them, such as reality-based interaction and 3D interaction. 

 



48 

 

3.6. User Interface Iceberg Analogy 

 

Figure 3.5: The iceberg analogy of usability by Dick Berry  

Dick Berry has argued about the important hidden part of a user interface through the iceberg analogy 

of user experience of a computer application through a user interface34. He defined user interface as an 

iceberg with a smaller visible part of 40% of look and feel and 60% is of user model presenting the 

information including information architecture. This model also argues about the importance of 

usability and user understanding depending more on the user model that consists of interaction objects 

and their structure at presented GUI. We have used this model to identify the three layers of user 

interface and their weights and consideration. Current approaches and research area for rapid user 

interface development tools and methodologies are mostly focusing on the technical details and 

improvements at look and feel of the GUI while ignoring the larger part that need to be considered for 

information architecture and presentation tools. Many of the critics at modern development have 

pointed out the challenge to make GUI using conceptual model to make a user model (Puerta, 1996) 

(Szekely, 1996) (Alexander, et al., 2003) . We have adopted the analogy to show the importance of 

semantic representation of the domain concept at user model that can truly reflect the domain concept 

                                                   

34 http://www.ibm.com/developerworks/library/w-berry/ 

User Interface 

Aspects 
 

 

Visuals – Look 

10% 

 

 

Interaction 

Techniques – Feel 

30%  

 

 

 

User Model – 

Information 

Presented and 

Information 

Architecture 

 

60% 

http://www.ibm.com/developerworks/library/w-berry/


49 

 

at user interface. Any Post WIMP software development tool that allows automatic GUI generation 

must carry the properties and constraints defined at the concept level to the user model. Moreover for 

any model driven software development also require a conceptual model mapping to the use model to 

ensure the concept delivery at user interface.  

3.7. Element of User Experience 

 

Figure 3.6: Element of user Experience by David Garret (Garrett, 2002) 

We have used arguments from another famous analogy of user experience model by David Garret. 

Garrett has mentioned five elements of user experience of information from abstract level to concrete 

structure represented at computer through a software interface or a website. These elements 

collectively build an image of the concept presented at computer (Garrett, 2002). With the reference of 

Garrett’s model, we argue that representation and direct mapping of ontology from the base layer (i.e. 

strategy) to the presentation layer (i.e. surface) can help user to perceive the targeted concept.  These 

elements can also be considered as layers of UI design and implementation. User perceives following 

elements: 



50 

 

1. Strategy is and abstract and non-formalized picture of concept needed to represent at computer 

model. This computer model can be software or website for providing and/or processing 

information to achieve specific goals. 

2. Scope provides the feature and functions included. It provides the boundary of the software or 

website. The question of whether a feature is within the boundaries or not. 

3. Structure talks about the way in which these features fit together.  

4. Skeleton gives the representation of structured function and features. It provides the placement 

and use of buttons, tabs, textboxes labels etc. at UI. 

5. Surface provides the concrete GUI through a structure of Web pages or widgets representing 

the structured contents to the user. 

3.8. User Interface Design 

Graphical User Interface design or Graphical User Interface engineering refers to the process of 

designing an interface element presenting information and communication function with visual tool 

for a software application represented at computer or any other electronic device. It needs a complex 

translation to cater the differences in languages and behavior of human and machine. User Interface 

designing is the core part of our research for designing user interface model through domain 

ontologies. 

3.8.1. Research – past and ongoing 

Graphical User interface design has been a topic of substantial research, including its aesthetics. In the 

past standards have been developed, as far back as the eighties for defining the usability of software 

products. There are many heuristics based experiments provided many user interface designing 

guidelines like Gnome35, KDE36, android   developers37, Apple Mac OS X38 and Java Look & Feel 

Design Guidelines (Sun Microsystems, Inc., 2011) and many research publications like Mayhew 

(Mayhew, 1992). One of the structural basis has become the IFIP reference model by IFIP Working 

                                                   

35 http://developer.gnome.org/hig-book/stable/ 

36 http://techbase.kde.org/Projects/Usability/HIG 

37 http://developer.android.com/guide/practices/ui_guidelines/index.html 

38  

http://developer.apple.com/library/mac/#documentation/UserExperience/Conceptual/AppleHIGuideli

nes/Intro/Intro.html 

http://developer.gnome.org/hig-book/stable/
http://techbase.kde.org/Projects/Usability/HIG
http://developer.android.com/guide/practices/ui_guidelines/index.html
http://developer.apple.com/library/mac/#documentation/UserExperience/Conceptual/AppleHIGuidelines/Intro/Intro.html
http://developer.apple.com/library/mac/#documentation/UserExperience/Conceptual/AppleHIGuidelines/Intro/Intro.html


51 

 

Group (2.7 / 13.4) for user Interface engineering39. The ifip model proposes four dimensions to 

structure the user interface: 

1 The input/output dimension (the look) 

2 The dialogue dimension (the feel) 

3 The technical or functional dimension (the access to tools and services) 

4 The organizational dimension (the communication and co-operation support) 

This model has appreciably influenced the development of the international standard (ISO 9241) 

stating the interface design requirements including “ISO 9241-210:2010 provides requirements and 

recommendations for human-centred design principles and activities throughout the life cycle of 

computer-based interactive systems”40. In early 80’s, majority of user interface design guidelines had 

objective to provide a generic solution for all knowledge domain related computer application and 

users, thus were not very clearly defined in details for every kind of application and information 

representation. 

With all efforts from researchers and technology development, User Interface design process became 

much independent to the technology. Many researchers and critics to the user interface standards and 

guidelines have pointed out the issue of technology dependence of user interface designing and 

especially development due to financial, technical feasibility  (Bastien, et al., 1995) (Reeda, et al., 

1999) (Dzida, 1995). The diversity in knowledge domain, data formats and user requirements with 

some commercial bindings bring many constraints to the environment which makes many user 

interface guidelines impractical in use. These requirements led to domain specific user interface 

design approaches. 

3.8.1.1. Domain Specific GUI Designing 

To achieve better usability, the context knowledge, including the domain of the software application 

and targeted user, based user interface designing got much attention (Bauersfeld, et al., 1991) 

(Carlsen, 1992). Context analysis became an unavoidable part of system analysis for designing and 

development of a user interface (Thomas, et al., 1996). 

The aim to understand domain-specific GUI concerns during software development process, 

introduced the requirement to explore GUI rapid prototyping tools that might present some convincing 

simulations to the user of how an actual application might behave in production use. Some of the 

research work has shown that a wide variety of programming tasks for GUI-based software can, in 

fact, be specified through means other than writing program code. There are also some adaptive and 

                                                   

39 http://www.se-hci.org/index.html 

40 http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=52075 

http://www.se-hci.org/index.html
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=52075


52 

 

multimodal interfaces that allows user to switch to different modes according to their needs. There is 

also research on generating user interfaces automatically, to match a user's level of ability for different 

kinds of interaction (Mayhew, 1999).  

Domain Specific GUI designing process include a detailed context analysis which can be divided into 

three subtasks as Task analysis and User analysis and Environment detail Analysis. (Thomas, et al., 

1996) 

TASK ANALYSIS 

Task analysis refers to the data collection and analysis about the functions needed to be performed by 

the computer system. 

USER ANALYSIS 

It the analysis about the user abilities, job description, authorities and organizational role to design the 

most suitable interface according to the user’s context 

ENVIRONMENT ANALYSIS 

In process of user interface development, an environment analysis refers to the study of the facilities, 

abilities and constraints of following: 

1 Organizational Environment 

2 Technical Environment 

3 Physical Environment 

4 Control options 

3.8.2. User Centered Interface design 

User-centered design (UCD) or pervasive usability41 is a design a process and a philosophy that is 

based on the requirements, desires, and limitations of end users of the information system. These 

elements are given attention across-the-board at each stage of the application specifically user 

interface design process.  

Norman (Norman, 1988) defined user-centered design as "a philosophy based on the needs and 

interests of the user, with an emphasis on making products usable and understandable" (p. 188). He 

defined usability and understanding measures of the software in user understanding with two aspects 

1 The user can figure out what to do 

2 The user can tell what is going on. 

                                                   

41 http://www.sitepoint.com/planning-uncertain-future/ 

http://www.sitepoint.com/planning-uncertain-future/


53 

 

Rubin (Rubin, 1994) described user-centered design as techniques and procedures for designing 

usable systems keeping the user as the focal point of the designing process. Many other researchers 

agree that principles of user-centered design philosophy or methodology to create more usable and 

useful products by focusing on the user throughout the design process (Dumas, et al., 1993) (Eason, 

1988) (Gould, et al., 1985) (Shackel, 1991). Gould and Lewis (Gould, et al., 1985) described three 

principles which were extended to four by Gould (Gould, 1995) as stated: 

1 EARLY - CONTINUAL - FOCUS ON USERS 

2 Direct contact: through interviews, observations, surveys, participative 

3 Design: To understand cognitive, behavioral, attitudinal, Anthropometric characteristics of users 

and their jobs. 

4 EARLY - CONTINUAL - USER TESTING 

5 Early on, intended users do real work with simulations and prototypes; their performance and 

reactions arc measured qualitatively and quantitatively. 

6 ITERATIVE DESIGN 

7 System (functions, user interface, help system, reading material and training approach) is 

modified based upon results of user testing. 

8 Testing cycle is repeated. 

9 INTEGRATED DESIGN 

10  All aspects of usability evolve in parallel 

11  All aspects of usability under one focus 

User-centered design methodology is defined as a multi-stage process iterative process that not only 

requires designers to analyze and anticipate usage of the product by user, but also to validated of their 

assumptions according to the user behavior in real world tests with actual users. This iterative design 

methodology is also refers to the Spiral model for software engineering (Boehm, 1986). 

3.8.2.1. Cognitive Dimensions  

Cognitive dimensions or Cognitive dimensions of notations  are design principles for notations, user 

interfaces and programming language design, described by researchers Thomas R.G. Green and 

Marian Petre (Green, et al., 1996). The dimensions can be used to evaluate the usability of an existing 

information artifact, or as heuristics to guide the design of a new one. Cognitive dimensions are 

designed to provide a lightweight approach to analysis of a design quality, rather than an in-depth, 

detailed description. They provide a common vocabulary for discussing many factors in notation, UI 

or programming language design. Also, cognitive dimensions help in exploring the space of possible 

designs through design maneuvers. 



54 

 

3.8.3. User Interface Designs for Web  

A web browser is a software application for retrieving, presenting, and traversing information 

resources on the World Wide Web. An information resource is identified by a Uniform Resource 

Identifier (URI) and may be a web page, image, video, or other piece of content. Thus, it enables users 

to access, retrieve and view documents and other resources on the Internet. Hyperlinks present in 

resources enable users easily to navigate their browsers to related resources. Although browsers are 

primarily intended to access the World Wide Web but they can access any data source from specified 

location e.g. Physical disk storage, data-store or a knowledgebase. In 1990, Sir Tim Berners-Lee 

invented the first web browser42 . It was named first as worldwideweb later changed to NexusA. 

Firefox, Google Chrome, Internet Explorer, Opera, and Safari are most commonly used web browsers.  

 

Figure 3.7: A Browser User Interface United States Patent 

                                                   

42 http://www.w3.org/People/Berners-Lee/WorldWideWeb.html 

http://www.w3.org/People/Berners-Lee/WorldWideWeb.html


55 

 

These browsers have a specific environment for information visualization and interaction mechanism 

for any online or web application (Judson, 1996). Judson suggested standard user interface as the 

patent specific for a web browser for a dynamic display of information objects shown in Figure 

3.1Figure 3.7. 

These buttons for back, forward, reload and home and address bar (Document URL) are clearly 

visible nearly at same location of the user interface in all of the known web browsers.  

Similar to other design guidelines for a user interface development, researchers have also specified 

some designing guideline for User Interface for web applications and web pages. Still these are not 

must rules due to diversity of information ad contents representation at web for a vast range of users 

(Corry, et al., 1997)  or online search interface guidelines (Bates, 1989).  Nielsen has identified five of 

the major issues regarding online application in 1999 (Nielsen, 1999). Two of the identified problems, 

data download speed and scrolling at web pages, are dependent at technologies which are very much 

resolved. Three important issues are presented content and its structure and searching methods. Last 

three are purely representation design issues that can be catered by an intensive context analysis and 

design procedure. 

3.8.4. User Interface Design Processes 

User Interface Design is a multiphase process including planning and data gathering and designing – 

testing iterations. This process also involves user analysis, system prototyping and prototype 

evaluation (Sommerville, et al., 1994).  

3.8.4.1. Task Analysis 

Task analysis is a process of assembling the list of the required system functionality to accomplish the 

developing system objectives and fulfilling the potential user needs. This analysis also attempt to 

answer following questions: 

1 What goals do users want to achieve by using the application and what set of user tasks is the 

application intended to support? 

2 Which tasks are most important, and which ones are least important? and Which tasks are 

common, and which ones are rare? 

3 What are the steps of each task and what are the result and output of each task? 

4 What problems do users have performing each task? What sorts of mistakes are common? What 

causes them and how damaging are mistakes?   (Sommerville, et al., 1994) (Kieffer, et al., 

2010). 

3.8.4.2. User and Context analysis 

User and Context analysis consist of information gathering and study about the potential users, their 

need and their technical abilities and facilities of the physical and organizational environment. system 



56 

 

either through discussion with people who work with the users and/or the potential users themselves. 

Typical questions involve: 

1 What would the user want the system to do? 

2 How would the system fit in with the user's normal workflow or daily activities? 

3 How technically savvy is the user and what similar systems does the user already use? 

4 What interface look & feel styles appeal to the user? 

Information architecture – development of the process and/or information flow of the system (i.e. for 

phone tree systems, this would be an option tree flowchart and for web sites this would be a site flow 

that shows the hierarchy of the pages). 

3.8.4.3. Prototyping 

In other words, prototyping is a core activity in design across different domains as Moggridge 

(Moggridge, 2007) regards a prototype as “a representation of a design made before the final solution 

exists.”  Lichter et al. (Lichter, et al., 1994) argued that Prototyping involves producing early working 

versions in the user interface design process of the future application system and experimenting with 

them. These prototypes are stripped of all look & feel elements and most content in order to 

concentrate on the interface.  

3.8.4.4. Usability testing 

While conducting usability testing, two major considerations have to be taken in to account. First 

thing to ensure is that the best possible method is used when participants interact with representative 

scenarios, such as quantitative data and qualitative observations information are provided. Secondly, 

to ensure that iterative approach is used. Usability testing is performed mostly at working prototypes. 

Testing of the prototypes on an actual user often using a technique called think aloud protocol where 

you ask the user to talk about their thoughts during the experience. 

3.8.4.5. Graphic Interface design 

 Actual look & feel design of the final graphical user interface (GUI). It may be based on the findings 

developed during the usability testing if usability is unpredictable, or based on communication 

objectives and styles that would appeal to the user. In rare cases, the graphics may drive the 

prototyping, depending on the importance of visual form versus function. If the interface requires 

multiple skins, there may be multiple interface designs for one control panel, functional feature or 

widget. This phase is often a collaborative effort between a graphic designer and a user interface 

designer, or handled by one who is proficient in both disciplines. 

User interface design requires a good understanding of user needs. 



57 

 

3.8.5. User Interface Design Requirements 

The dynamic uniqueness or characteristics of a system are explained in terms of dialogue prerequisites 

that restrained in 7 principles of part 10 of the ergonomics standard - the ISO 9241. This system setup 

a framework of ergonomic "principles" for the dialogue methods, such as, illustrative applications, 

examples of the principles and high-level definitions. Hence, the principles of the dialogue signify the 

dynamic aspects of the required interface and considered as the "feel" of the interface. The 7 dialogue 

principles can be defined as follows (Sommerville, et al., 1994): 

1 Suitability for learning 

2 Suitability for individualization 

3 Self-descriptiveness 

4 Suitability for the task 

5 Conformity with user expectations 

6 Controllability 

7 Error tolerance 

The ISO 9241 defines the concept of usability in Part 11 of standard by efficiency, effectiveness and 

satisfaction of the human user. These three standards can be measured as quality factors of usability. 

These standards can be evaluated by decomposing them into sub-factors, and finally, into usability 

measures. 

On the other hand, Part 12 of the ISO 9241 defines the information presentation in standard for the 

organization of information such as: location, grouping, arrangement, labels and alignment. This 

information display graphical objects and coding of information by seven attributes, for instance, 

color, shape, size, abbreviation and visual cues. These attributes are defined in the recommendations 

mentioned in the standard to supports one or more of the 7 attributes. These attributes are: 

1 Detectability 

2 Discriminability 

3 Clarity 

4 Consistency 

5 Legibility 

6 Conciseness 

7 Comprehensibility 

The Part 13 of the ISO 9241 standard defines that the user guidance information should be specific for 

the current context of use and should be distinguishable from other displayed information by the 

following means: 

1 Prompts indication 

2 Feedback 

3 Status information 



58 

 

4 Error management 

5 On-line help 

3.8.6. Prototyping 

Software prototyping refers to the activity of creating dummy, partially functional or fully functional 

sample of software applications, i.e., incomplete versions of the software program being developed. 

These prototypes are built to verify the designing and development process and getting feedback 

specifically from the end users. A prototype typically simulates only a few aspects of the final 

solution, and may be completely different from the final product but we refer here to software 

prototypes only (Myers, et al., 2000). 

Prototypes have been used for not only for product and process evaluation but also for estimation of 

cost and effort spent and required to complete the application. Thus these prototypes work as 

millstones like any other deliverable for project management in software engineer paradigm. A 

prototype is more trusted milestone where the semi-finished application can be measure easily than 

any process. (Landay, et al., 1995) 

3.9. Usability 

Usability is a key question in the field of UI design and development and the big part of its answers 

lies in the content and structure of the computer application or webpage presented to user. Majority 

guidelines provided by research work are mainly focused on the usability of the system (Gould, et al., 

1985). These user interface guidelines are mostly based on logic and reasoning called as common 

sense (Goodwin, 1987). In our research we have spotlight on logical representation of information 

structure and representation, though usability and it usability measures will not be the main focus of 

the research. 

3.10. User Interface Modeling 

User interface modeling is a design and development methodology in a model driven software 

engineering paradigm that enables user interface designers and computer programmers can design and 

implement a UI in a professional and systematic way (Da Silva, 2001). Today's user interfaces (UIs) 

are multifaceted software components, which play a vital role in the usability qualification of an 

application. The development of UIs requires therefore, not only guidelines and best practice reports, 

but also a precisely defined development process including the elaboration of visual models and a 

standardized notation for this visualization. Many other researchers have argues in favour of model 

driven information system development process have given much importance of using models for 



59 

 

User Interface development (Frank, et al., 1993)  (Uschold, 2008) (Petrasch, 2010) . User Interface 

models are defined through the user-centered design iterations to refine and match users requirements 

and achieve maximum usability of the application (Viswanathan, et al., 2010). There user interfaces 

are design and developed through an intense analysis of users and their feedback. This analysis 

involved not only interaction with users by development team but also their behaviour and working 

efficacy at semi functional user interface models (Frank, et al., 1993).  These user model also work for 

context aware models that can enable UI designers to design models and reuse them with some 

alteration acceding to the use context (Van den Bergh, et al., 2004) . These user Interface model when 

verified by user can be converted or extended to fully functional GUI through automated GUI 

generation procedures (Puerta, 1996). 

Model Based User Interface Development Environment (MB-UIDE) is an environment that facilitates 

the UI a designer to design a UI model and extend it to a complete GUI according to the designed 

model.  

3.10.1. Modeling Languages 

3.10.1.1. UML 

Unified Modeling Language (UML) is mainly design to make models for business logic and data 

storage components of software engineering process. Still some aspects of user interface modeling can 

be realized using UML.. Due to extensive use of UML in other components of software development 

Majority of researcher and attempts are made to make is usable for UI modeling as well (Brockmans, 

et al., 2004) (Cranefield, et al.) . The language is not mainly intended for this kind of modeling, thus 

may render the models somewhat synthetic.  

3.10.1.2. UMLi 

UMLi is an extension of UML, with added features for representation commonly occurring in user 

interfaces. UMLi aims to address this problem of designing and implementing user interfaces using a 

combination of UML and MB-UIDE (Da Silva, et al., 2003).  

3.10.1.3. DiaMODL 

DiaMODL combines a dataflow-oriented language (Pisa interactor abstraction) with UML Statecharts 

that has focus on behaviour. This combination provides a capability of modeling the dataflow as well 

as the behavior of interaction objects. It can also be used for documentation of the UI design including 

the structure and functions of user interfaces. 



60 

 

3.11. Semantics aware Interfaces 

Since semantic and ontological framework has changes the software industry and related work 

especially web applications and converted online data-stores to knowledgebase. This semantic 

application and data contains information about data like semantic categories, relations and constraints 

of data. These semantic and ontological models have given a new information system development 

base as discussed in earlier chapter Ontology Driven Information System (ODIS) (Wand, et al., 1990)  

(Uschold, 2008). Osterwalder have used ontological modeling approach for modeling e-economics 

with socioeconomic metaphors modeling (Osterwalder, et al., 2002) . Thus, it requires these semantic 

and ontological rules reflection at user interfaces too. There are some attempts to translate semantic 

web content to the user interface of web applications (Alexander, et al., 2003). They have also 

exploited the consequences requires to reflect at user interfaces from semantic search (Garcia, et al., 

2003) (Latif, et al., 2009). Ontological model not only provide data classification and structuring but 

also validation measures for data and model itself (Aljawarneh, et al., 2009) (Shanks, et al., 2003). 

ODIS specifically states the requirement of ontology and semantic relationship and constraints 

delivery at user interface in Knowledge representation and sharing rule to the user through user 

interface (Guarino, 1995) (Guarino, 1997) (Georgiev, 2005) (Uschold, 2008). Ontology can be a base 

to provide development of adaptive interface in Knowledge based User Interface environment 

(Sukaviriya, et al., 1993). 

Till now there are developments of semantic aware user interfaces carrying semantics in parallel to 

conventional user interface development approach or adding semantic concerns to user interfaces (e.g. 

semantic tags at web-interface) (Paulheim, 2009). There is still need to use these semantic and 

ontological information structure and data classification constraints as a base information model for 

user interface in addition to user, context and device properties at upper layers to the base concept. 

3.11.1. Data Formats and Semantic Classification 

In this research exercise, we have adopted ontology base user concept modeling to define a 

computational and logical prototype that can be validated and verified not only specified data ranges 

of represented knowledge but also the relationships among them. 

3.11.2. Input / Output Data Validation 

These ontological classes and constraints are also proposed to provide data validation services based 

on semantic classification of data (Aljawarneh, et al., 2009). 

The motivation behind semantic aware user interface designing is a base line for our current research. 

The aim to make semantic and ontological contribution at user interface design and development is to 



61 

 

get the targeted concept delivery at user interface through their semantic meanings, structure and 

classification. 

3.12. Intelligent User Interface  

Advanced applications are characterized by large amounts of information to be conveyed 

knowledgebase with trillions of records and millions of data structures like linked data and additive 

understanding and reasoning abilities, complex task structures, real-time performance characteristics, 

and incorporation of autonomous or semiautonomous agents. A user interface is required to address 

all these complexities as well as exploit the additional metadata and semantic information with data. 

Intelligent user interfaces are defined as a human-machine interfaces that aim to improve the 

efficiency, effectiveness, and naturalness of human-machine interaction by representing, reasoning, 

and acting on models of the user, domain, task, discourse, and media (Woods, 1991) .The area of 

intelligent user interfaces covers a variety of topics concerned with the application of Artificial 

Intelligence and knowledge-based techniques to issues of human-computer interaction. 

3.13. User Interface Development  

The thought base for User Interface Development in our research focus is the user interface model of a 

domain ontology that can be directly mapped to the GUI. ODIS has mentioned the same idea to 

explore to make a 60% of user interface (according to the iceberg model) then develop or introduce 

the user interaction and graphical representation concerns to the user interface model driven by 

ontology (Uschold, 2008) (Kristiansen, et al., 2007). 



62 

 

 Functional Programming Approach 

As discussed in earlier chapters we made some base lines to our experiments regarding concept 

representation. Semantics and Ontological framework can define standards for concepts presented 

through computational models. This framework can also provide standards for the concept 

representation at User Interface level. A user model as the base of user interface can be built using 

formal ontologies. Language supporting Higher Order Functions can be used to build Graphical User 

Interfaces by mapping the user defined model with typed graphical user interface controls. This part of 

the work discusses a logical way using mathematical functions implemented using Haskell to present 

the standard concepts of computational model to user interface through ontological user model. 

4.1. Introduction 

As initial experiment of the research we explore the answer for the feasibility and possibilities to 

generate a GUI that preserves ontological essence at user output devices. We have explored the 

answer for the first research question “How semantically defined concepts can be delivered at GUI?”. 

Mathematical illustration of ontological rules can be directly represented to the computational model 

in Haskell, thus we adopted functional programming approach. 

A computer application is a computational model of a real world concept. The concepts conceived by 

the user depend on the computational model. The computational model is built by human and 

represented concepts are based on the human understanding. These concepts are delivered to the user 

through the user interface of the computer application (Smith, 2004).  

With reference to the “The iceberg analogy of usability” discussed earlier, the major part of GUI (user 

model) provides the concepts of computer application to the user discussed in section 3.6. This 

underwater (hidden) part of iceberg includes the objects, properties and relations between them. The 

majority of recent work in user interfaces is focused on improving only the look and feel. Although 

many guidelines to improve the look and feel of a user interface have already been devised (Smith, et 

al., 1998) yet no specific rules exist for modeling a user interface (Alexander, et al., 2003). 

On the other hand semantics and ontological frameworks are being used by many knowledge based 

systems to formalize the semantics of a domain via concepts and relationships. But in current 

computer applications, the same concepts are represented in many different forms on the visual 

component of a user interface and provide much displaced picture of the same concept. Hence, 

semantically similar concepts are perceived differently depending on the actual implementation of the 

user interface. 



63 

 

In order to consistently harmonize domain semantics with its visual representation requires 

standardization of the domain semantics, i.e. concepts and relationships, as well as their mapping onto 

standard visual components, so called widgets. Such an Ontological User Model (OUM) provides a 

direct mapping of the user model, component 3 of the iceberg, to the look and feel. Ontological user 

modeling can lower the cost of not only user interface development and maintenance but also for 

application testing (Alexander, et al., 2003). 

This chapter discusses a strategy for representing and mapping ontological user model to a Graphical 

User Interface in the domain of spatial information systems. We will experiment some strategies to 

exploit the self-explanation of ontologically specified domain to map directly to user interface. 

Ontology and semantic framework here provide us a user model with semantic and ontological 

structure of data with ontological funtions. We have used, as an example, spatial data domain to be 

presented at GUI as a 2D graph. 

 

Figure 4.1: 1.4 organization 

Hence a 2D graph is discussed as an example implementation of GUI based on spatial ontology and 

its standardized visual representation. Based on related work, we formalize ontology for 2D graph and 

define a relational algebra in order to define manipulations and axioms. We implement the relational 

algebra; using the functional programming language (Haskell) to create a user model, as in terms of 

the so called user model of domain ontology. This functional programming language also provides us 

a facility to incorporate functional ontology that provides the ontological functions. In a last step, 

shown in Section IV, we discuss the mapping of the Haskell implemented base ontology (presented to 

user model) to GUI with a 2D graph example.  



64 

 

Next section talk about ontology formalization where we have formalized semantic data and 

ontological function for a graph as an example of spatial ontology. Third section provides a user 

interface base model for the using Haskell (functional programming language). In the last stage of 

experiment we developed a GUI through (one to one) mapping of Haskell to wxWidget GUI 

component to build a GUI. At the end we have discussed the outcomes of the experiment though 

detailed results in comparison to other experiments will be provided in 1.7 for the results and 

conclusion. 

4.2. Ontology formalization 

Specification and prototyping is essential for standardization of data and process modeling (Frank, et 

al., 1995). Ontology is an explicit specification of a conceptualization. Current research is exploring 

the use of formal ontologies for specifying content specific agreements for a variety of knowledge-

sharing activities (Gruber, 1995). In our example ontological formalization specifies the conceptual 

model for a 2D graph as an example of ontology. Spatial ontology formalization is needed to get the 

specification of the conceptual model. The formal ontology can be then represented in relational 

algebra. 

4.2.1. Formal Ontology 

Good ontology and good modeling can be achieved in a specific domain through a precise 

representation of entities that exist in reality (Smith, 2004).  Here this domain is narrowed down to the 

discipline of spatial ontology for a 2D Graph model. 

Formal Ontology can be intended as a theory of priori distinction among the entities of the world and 

among the meta-level categories (Guarino, 1995). Entities represented here are a 2D Graph, and Node 

and Edges as a part of graph. Every entity has an identity function as the identification for that entity. 

Formal ontology deals with the categories and relations which appear in all domains and which are in 

principle applicable to reality under any perspective (Grenon, et al., 2004).  We state the entities and 

relation among them. 

Our domain model is given as follows: Graph is called by a Title here referred as Graph name. The 

graph consists of some points and connection between them referred as Node and Edges respectively. 

Each node represents a location in 2D space and Edge represents the connection between two nodes. It 

is a straightforward definition of a graph to formalize entities and relationship among these entities. 

These specifications are stated using algebraic specification. 

 

 



65 

 

An example of simple 2D Graph: 

 Table 4.1 present the properties and structure of a graph 

 This is an example of 2D graph just to describe how axioms and categories can be formalized 

using relational algebra and functional programming language. It is not any standard ontology 

for a graph.  

 Figure 4.2 present an example instance of graph representation. 

4.2.2. Relational Algebra 

The term "algebraic specification" originally referred to the use of algebras to model programs, and to 

use equatorial axioms to write specifications (Car, et al., 1995). Here spatial ontology is formalized 

using formal ontology and relational algebra. Algebra represents spatial categories and relations in 

space dimension. Relations also defined potential functions of any object from a specific category. 

Axioms can be specified as property functions for any object of a category X like: 

class X 

p1(x) -> q1 

p2(x) -> q2 

.. 

pn(x) -> qn 

where  

p = property 

Graph Properties and Structure An example graph visual prototype 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2: An Example representation of Graph 

Graph 

Graph ID 

Graph Name 

Node 

Node ID 

Number 

Position 
 

Edge 

Edge ID 

First Node 

Second Node 
 

Table 4.1: Ontology Description of a Graph 

 5 

3 

2 

4 

1 

Example2 D Graph 

 

 

 

 

 

 

 

 

 

 7 

6 



66 

 

q = property value 

x = Object of Class X 

Relations for 2DGraph graph examples are: 

Graph contains a Name, List of Node and List of Edges. Graph is identified by GraphID 

id :: Graph → GraphID 

graphName :: Graph → Name 

graphEdges :: Graph → [Edge] 

graphNodes :: Graph → [Node] 

Here Node contains a 2D location and a Number. Node identified by NodeID 

id :: Node → NodeID 

nodeNumber :: Node →  Number 

nodePostition :: Node → Position 

and Edge is a connections between two nodes. Each Edge contains a pair of Node referred by their 

NodeID while Edge is identified by EdgeID 

id :: Edge → EdgeID 

startNode :: Edge → ID 

endNode  ::Edge → ID 

Potential Operations on Graphs also provide relations in the entities for the graph. Relational algebra 

can also define potential processes.  

class X 

f1(x) -> s1 

f2(x) -> s2 

.. 

fn(x) -> sn 

where  

f = Function 

s = Behavior of function 

x = Object of Class X 

4.2.1. GUI States 

A concept is presented to a user interface through the meta-data including information components 

and their structure, while the data and quantities provided by data provided by user or and other data 

source at user interface provides the current state of user interface. A user interface is a continuous 

process that provides the current state through loaded quantities at user interface. With same concept 

representation, these states are changed with data updates by user events or some software code. Here 

we will discuss different functions that update or change states of Graphical User Interface. Any 

potential process can update the measurement/values of the properties resulting in state update. 



67 

 

Initiation of any potential process of the concept reads the current state of the user interface and 

responds accordingly by updating the state. Potential processes for this example provide following 

relations: 

newGraph ::Name → [Node] → [Edge] → S(GUI) 

deleteGraph ::GraphID  → Database → S(GUI) 

updateName ::GraphID → Name → Database → S(GUI)  

updateGraph :: (GraphID → Graph ) → S(GUI) 

Any node and Edge function can update a state of Graph being a part of Graph. Graph object will 

propagate the signal of change of state to GUI. 

addNode :: Number → Postion → S(Graph) 

deleteNode :: NodeID → S(Graph) 

updateNodeNumber :: NodeID → Number → S(Graph) 

updateNodePosition :: NodeID → Position → S(Graph) 

addEdge :: NodeID → NodeID → Graph → S(Graph) 

deleteEdge :: EdgeID → S(Graph) 

updateStartNode :: EdgeID → NodeID → S(Graph) 

updateEndNode :: EdgeID → NodeID → S(Graph)  

The algebraic specification is implemented using functional programming language. Here Haskell is 

used for implementation for this relational algebra. 

4.3. User Model by Haskell programming 

4.3.1. Why Haskell 

Haskell is an advanced purely functional programming language. It provides features like higher-order 

functions, lazy evaluation, equations and pattern matching, strong static typing and type inference, and 

data abstraction (Hudak, 1989). Haskell allows types (inferred and functional types) through axioms 

to form classes and category as a domain concept. 

wxHaskell with a powerful second order language can be used to generate a user interface based on 

ontologies. A functional programming language allows the designer to examine whether the model is 

a correct representation of reality with respect to the ontology, and if the objectives and expectations 

are fulfilled (Cardelli, et al., 1985). Algebraic representation of ontology can be written down directly 

to Haskell. Representation of these relations can be done with a mapping function which can map 

functions (ontological functions) to a function (I/O function). In this experiment Haskell (functional 

programming language) is used for representation of relation algebra for a basic vector graph 

representation (function graph (node, edge)) as an example of a Spatial Ontology. Haskell represent 

relational algebra by its typed structure. Moreover State Monads facilitate for representation of states. 



68 

 

4.3.2. Representing Algebra in Haskell 

Graph consists of nodes and connection between nodes referred as edge. Representation of Algebra is 

achieved in Haskell through 

Simple types t 

First order function types  f::t → t' 

Higher order functions g :: f → f' 

 

Here is data-structure implementation in Haskell for: 

Node 

Nodes are defined as some points attached with an number. nodeNumber is an identity for the node 

and  nodePosition defines the position of node in 2D space. 

data Node = Node { 

          nodeNumber :: Number 

        , nodePosition :: Position 

        } deriving (Eq, Ord, Show) 

where 

newtype NodeNumber = NodeNumber Int| NodeNumber unknown 

type Position = Point 

Edge 

Edges are defined with two nodes startNode and endNode 

data Edge = Edge { 

                   startNode :: Number 

                 , endNode :: Number   

                 } deriving (Eq, Ord, Show) 

Graph 

Graph is container or aggregate for lists of nodes and edges with a name.  graphName is an identity 

for the graph. 

data Graph = Graph { 

                     graphName :: Name 

                   , nodeList :: [Node] 

                   , edgeList :: [Edge] 

                   } 

where 

type Name = String 



69 

 

4.3.3. Manipulating States (State Monads) 

Business logic of software provides a flow of information and a structure to process and manipulate 

the values base on the concepts. The GUI provides information in measurements of properties to the 

user and operations for the user. Operations available at the user interface allow user to see and update 

the current measurements. Current values of instances of any concept form a picture a state at User 

use interface. Querying and updating operations thus result in reading and update the current state. 

Haskell represents states using state monads43.     

newtype State s a = State { runState :: (s → (a, s)) } 

where ‘s’ is a state type and ‘a’ is an observation from the state as a simple type or a data structure of 

an object. 

All observations are used to read any measurement at resulting state of state monad. The state is stored 

in shape of measurements in quantity or quality to data storage. State monads are used here to read 

and write the current state of Data Store to get and change state of Graph through ontological 

processes. The ontological processes are stated as relations in user model. 

Here states are used as a computer model of reality. 

class classX a where 

 f → State a objectX 

Data Storage is instantiated for any class CategoryX. f is the function to update the current state or 

read an objectX  as shown in Table 4.2. 

e.g. manipulating DB states 

f → State DB object 

The same way ontology is instantiated for UI Model 

f → State userModel object 

Here any function can read or update the state of the database model or the user interface model. For 

2D graph examples, categories are defined on the base of behavior. All potential processes (for Nodes, 

Edges and Graphs classes) result in the reading or the update in current state of graph. Haskell defines 

manipulation of state ‘a’ for mentioned graph processes as following: 

class a 

newGraph :: Name → State a GraphID 

deleteGraph :: GraphID → State a Bool 

graphbyName :: Name → State a (Maybe Graph) 

                                                   

43 http://cvs.haskell.org/Hugs/pages/libraries/mtl/Control-Monad-State.html 

http://cvs.haskell.org/Hugs/pages/libraries/mtl/Control-Monad-State.html


70 

 

setGraphName :: GraphID → Name → State a Bool 

newNode :: Number → Position → Name → State a NodeID 

deleteNode :: NodeID → Position → State a NodeID 

updateNumber :: NodeID → Number → State a Bool 

updatePosition :: NodeID → Position → State a Bool 

getNumber :: NodeID → State a Number 

getPosition :: NodeID → State a Position 

addEdge :: NodeID → NodeID → Name → State a EdgeID 

deleteEdge :: EdgeID → State a EdgeID 

setStartNode :: EdgeID → Number → State a Bool 

setEndNode :: EdgeID → Nr → State a Bool 

edgebyNode :: NodeID → State a [Edge] 

Type of an object to some state either changes in state or observation of current state.  

4.3.4. Data types and Typed Classes 

Objects keep properties and potential process collectively called behaviour of an object. Categories 

are made of the base of commonalities in behaviour as criteria of the class. 

Using Haskell, a type is not only a simple type, there are also types defines using axioms. Ontological 

axioms can be used to specify the exact domain concept as a type of any object. Also functional type 

can be defined as a class to represent behavior of an object or category.  

In our example of 2D Graph,  

NodeNumber is a type which is associated with positive integers but is it neither an integer type nor a 

positive integer. NodeNumber cannot be added, subtracted or manipulated like integers. It have only 

two functions = or ≠. Haskell define these types with scales as functors. 

NodeNumber = f (x) 

where x  Z+ 

Haskell wrap these types to manipulate it different from simple integer types. 

4.3.5. User Model  

The core of this experiment is building a base user model that can represent formalized domain 

ontology in software programming language directly without any translation. User model is a 

representation of ontological structure of conceptual model which can be directly mapped to User 

interface. This user model works as the base layer of user interface as provided in ice berg analogy 

discussed in section 3.6. Here User model provide information architecture, classification through 

domain ontology. In short, the user model defines an ontological structure from an application and 

maps it to the GUI elements. 



71 

 

Here user model also works as the middle layer between the business logic of software and GUI. It 

represents ontological model that presents user interface as a GUI state at upper layer and at lower 

layer it is connected to business logic and database communicating through the read and write 

functions.  

As described in earlier section these functions are triggered automatically by software to update the 

current state of GUI or User model works using the formalized ontology to represent the behavior of a 

computer application. It is then directly mapped to a GUI and forms the base model for a user 

interface. It is based on ontological definition in axioms defining properties and relations. It ensures 

the data values from or to the user interface are values fulfilling the ontological constraints.  

GUI 
Populate GUI 

(Drawing Canvas and Panel) 

User Interface Events (f) 

 

 

 

Read Graph State 

Update Graph State 

User Model Ontological Model (Graph) Potential Processes (f') (Graph State) 

 

 

 

Read Graph 

 

 

Update Graph 

Business Logic 

DBMS 

Table 4.2: The mapping of User Model to GUI through Data Flow (Haskell programming) 

 

 



72 

 

4.4. User Model in Haskell 

We got following declaration details from the implementation of user model in Haskell 

implementation: 

4.4.1. Graph 

data Graph = Graph { graphID :: GraphID 

                   , graphName :: Name 

                   , nodeList :: [Node] 

                   , edgeList :: [Edge] 

                   } deriving (Eq, Ord, Show) 

 

newGraph :: Name -> State NameGraphDB Bool 

deleteGraph :: GraphID -> State NameGraphDB Bool 

graphbyID :: GraphID -> State NameGraphDB (Maybe Graph) 

graphbyName name = State $ \db -> if isGraph db (identifyName db name) 

setGraphName :: GraphID -> Name -> State NameGraphDB Bool 

4.4.2. Node 

The Haskell programming declaration of node data type and functions defined in mathematical model: 

data Node = Node { nodeID :: NodeID 

                 , nodeNumber :: Nr 

                 , nodePosition :: Location 

                 } deriving (Eq, Ord) 

                  

Here “a” is the User Model “UM” that called of these functions: 

class Nodes a where 

newNode :: Nr -> Int -> Int -> IntScale -> a -> State NameGraphDB Bool 

deleteNode :: NodeID -> a -> State NameGraphDB Bool 

setNodePos :: NodeID -> Int -> Int -> IntScale -> a -> State 

NameGraphDB Bool 

setNodeNr :: NodeID -> Nr -> a -> State NameGraphDB Bool 

 

4.4.3. Edge 

data Graph = Graph { graphName :: Name  

                 , graphSelected :: Bool 

                 } deriving (Eq, Ord, Show) 

Here “a” is the User Model “UM” that called of these functions: 



73 

 

class GraphOps a where 

    addGraph :: Graph -> State a Graph 

    graphbyName :: Name -> State a Graph 

    deleteGraph :: GraphID -> State a GraphID 

Here “UM” defines user model that contain either a Graph with list of Nodes and Edges or an empty 

model: 

data UM = UM Graph [Node] [Edge] | UMempty 

“NodeID” is different from “EdgeID” or “GraphID”. Thus that ensures there will not be any element 

which is processing any data without semantic representation. 

newtype GraphID = GraphID ID 

        deriving (Eq, Ord, Show) 

 

newtype EdgeID = EdgeID ID 

        deriving (Eq, Ord, Show) 

 

newtype NodeID = NodeID ID  

        deriving (Eq, Ord, Show) 

4.5. Mapping User Model to GUI 

Mapping the domain ontology of graph presented in User model to GUI provides the concept of 

representation of meta-data and possible operations. These relations were stated in user model. A 

transparent interface is the best interface where User interacts directly to the conceptual model entities 

and performs potential processes. GUI can have a bijective mapping to the formalized conceptual 

model. The bijective mapping create real picture of direct interaction to the conceptual model. 

Here GUI shows the current state of Graph at drawing canvas and provides controls to initiate any 

potential process. Graph data structure provides meta-data of Graph. Haskell provides higher order 

functions to map ontology to GUI. We have used simple graph example, this graph can be any 

weighted or directed graph, or a more sophisticated applications like Shortest Path. For every different 

application, there are different concepts presented in axioms and different categories. The user model 

provides the framework for any application and can be mapped to the GUI.  

4.5.1. GUI construction tools 

Different graphical libraries like Wxwidgets, OpenGL, QT and GTK available to plug with Haskell. 

Different GUI development libraries are also available based on above mentioned graphical libraries 

available. Here wxHaskell and wxGeneric is used for construction of GUI based on formalized 

ontology. WxGeneric allows building customised controls based on the data type. 



74 

 

4.5.1.1. Composability and Typed User Interface 

 

Figure 4.3: Node Number as a Functional Types to represent ontology  

Mapping a semantic data types to GUI requires semantic data typed user interface controls. 

WxGeneric provide facility to make specific typed controls. Typed controls by wxGeneric represent 

the conceptual structure of categories to GUI. Panels can group simple type objects and these simple 

type objects can be represented with typed controls. These are composite controls like text box for 

Number type44. For 2D Graph example typed controls are used through composability  

type IntEntry = Composite (TextCtrl ()) (IO Int, Int → IO ()) 

type NodeIDEntry = Composite (TextCtrl())(IO NodeID, NodeID → IO ()) 

type NodeNumberEntry = Composite(IntEntry())(IO NodeNumber, 

                                                NodeNumber → IO ()) 

4.5.2. Drawing at Canvas 

 Current state of reality for a 2D graph can be shown to user as 2D picture. It is the ontological show 

method or the representation of vector values. This picture can be mapped to GUI by draw function. 

Draw function draw graph to a display screen. The graph structure represents user model. Drawing 

can visualize all objects from user model at a specific scale. For example of 2D graph, the drawing is a 

graphical representation of 2D graph at specific scale. 

4.5.3. GUI 

GUI reads the current graph values from “NameGraphDB” a binary file containing graphs 

mainGui :: NameGraphDB -> IO() 

A typed panel can be created to manipulate a structured data type. Typed panel is composed of typed 

controls. Each simple type can be mapped to GUI through typed text boxes, list boxes, radio buttons, 

                                                   

44 http://lindstroem.wordpress.com/2008/03/16/proposal-adding-composability-to-wxhaskell/ 

Integer (Z) 

Node 

Number 

f 

Positive 

Integer  

(Z+) 

http://lindstroem.wordpress.com/2008/03/16/proposal-adding-composability-to-wxhaskell/


75 

 

check boxes etc. The mapping function have domain of types and data structure in user model and co-

domain is the set of GUI data controls. Current example creates a very simple interface panel, which 

is based on a user model. It ensures the consistency and standardization. 

Here GUI has two major parts: 

Graph 

           ID :    G12 

 

           Name: 

 
 

Node 

 

ID :    N2 

 

Number:  

 

Node Position  

 

X-Position: 

 

Y-Position: 

Edge 

 

ID :    E3 

 

Start Node: 

 

End Node: 

 

Figure 4.4: Panel and canvas of the graph properties through typed controls 

1 Panel 

Panel consist of the customized controls that can read and write Haskell defined types associated 

to the GUI controls. wxGeneric provide facility to create a customized user interface control. 

$(derive [''Graph, ''Edge, ''Node]) 

instance WxGen Graph 

instance WxGen Edge 

instance WxGen Node 

We have used customized controls as “Panel()”, “Text()” ,“List()” and “Combo()” 

2 Canvas  

Canvas draw vector graph on the canvas it is also customized to read and write a “Graph”: 

 drawNode :: (DC a) -> Scale -> Graph -> IO() 

  drawNode :: (DC a) -> Scale -> Node -> IO() 

  drawEdge :: (DC a) -> Scale -> Edge -> IO() 

ConnectionsAlpha 

 

 

 

 1 

6 
1 

7 

1 

1 

1 

3 

1 

5 

1 

2 

1 

4 

2 



76 

 

here we have define many types which are similar in implementation but tagged or wrapped for 

making difference in semantic meanings like ID all of the IDs are numeric integers but semantically 

Mapping Processes to GUI 

Mapping of processes to GUI is more complex than mapping of data structure to panel or drawing. 

Processes results in Change of graph state. So it is a function type which needed to be mapped. 

Comparative to imperative programming styles, Haskell can provide a higher order mapping functions 

to map these processes. Still it is bijective morphism though mapping function is a higher order 

functions. 

The mapping function has the domain of User Interface events and the co-domain is the set of 

processes in user model.  The processes can be mapped to the events of GUI controls. Implementation 

details of these mapping using different controls and clipping initiation of processes at the specific 

event was not supported with many of the graphical libraries especially the graphical libraries or their 

components compatible to functional programming. The majority of GUI designing guidelines and 

aim of transparent GUI can be achieved by these mapping functions. 

Here the issue is with mapping processes having parameters and modes (specific GUI State); the GUI 

needs to provide some control to select objects to initiate any processes on them. Specific processes 

can be done to objects of specific category. In graph example the setGraphName can change name of 

a graph, and parameter here is the GraphID. 

At any operation which requires a user input can be represented as a panel or dialogbox for getting 

input parameters. Graph example use notebooks for each class containing buttons for operation at 

each tab. At button click event panels appears for input data form user. This process input panel 

contains typed objects for every simple type or identity type for a data structure like node which is 

identified by the nodeID. Each process panel has an Ok button to run process in the user model which 

is further mapped to Data Storage using Haskell State monads for the data store. 

4.5.4. Limitations and constraints 

There are many issues related to GUIs which are not discussed here like 

3 Synchronization of sequence of user actions with ontological processes. 

4 Data storage and buffering at user model level. 

5 Database error handling. 

6 Handling GUI Modes; like selection of objects bounding domain of objects to perform few 

operations on selected component e.g.  deleteNode process can be done only visible nodes at 

user model. These constraints are not on category but at the set of values. 

7 Semantic data transfer; data input and output through User Dialogues also have semantic types 

controls 



77 

 

4.6. Results  and Conclusion 

As a result for the experiment we got a user interface for the vector graph containing edges, nodes and 

their relationship in graph. Spatial Ontologies have been mapped to GUI by a function using an 

intermediate layer of user model containing all ontological vocabulary and structure of the graph with 

additive information of user interface elements. This layer works as a user model for a user interface. 

It provides the application semantics in form of an ontological framework of the concepts to be 

represented at the GUI. It provides relations to specify meta-data and potential processes for different 

categories mapped to GUI elements. This mapping from domain ontology to GUI is bijective to 

present an exact view of conceptual model at the GUI.  

Higher order mapping functions can clip ontological processes to the GUI controls. Typed control can 

be used to read or provide objects of specific category for any potential process of the category. Any 

graphical control and its behavior can be mapped with the ontological definition of objects which 

includes the processes as a typed control. This bijective mapping using typed user interface elements 

carry all semantic and ontological constraints with the vocabulary and relationship provided in domain 

concept. Thus, this structure presented as GUI through typed controls (mapped to the semantic 

classification) provides true picture as presented in the base concept at user interface level. 

Here we got answer to our first research question (“How can semantically defined concepts be 

delivered at GUI?”) that a bijective or one to one mapping of all domain entities along with semantic 

structure and constraints of domain concept can give. Still there are semantic data driven graphical 

library is required which allows semantic typed data flow. Secondly it is needed to implement the 

methodology using some proper standard domain ontology from the big list of standard ontolgies 

(discussed in section 2.2) and semantic programming library like Jena (from java) 

4.7. Future work 

In imperative style languages much translation and complex systems are involved to map from the 

business logic to the GUI. There is a need to implement the idea using standard onologies provided by 

many knowledge bases. 

This experiment gives WxGeneric works on the data structure to construct an automated GUI. Where 

potential processes need to be implemented separately from data structure. There is still need of an 

abstract level GUI construction tool which can implement the typed controls with the classes. Where 

processes in classes can be handled as events handlers for events of UI ontology to update GUI state.  

Mapping of Temporal ontology with GUI is also needed to be discussed in future. This mapping will 

require synchronizing user generated event through IO devices with temporal ontological processes. 



78 

 

In this experiment user action or sequence of actions are not discussed but for the next layer of 

ontological process is ontological definition of user action to perform certain tasks like clicking at 

canvas for selection of nodes or edges. The meta-data or ontology at User Interface should include 

ontological description to access and activate the possible process at any object (User-Interface 

Ontology). 



79 

 

 Ontology based User Interface 

Development: User Experience Elements 

Pattern 

The user experience of any software or website consists of elements from the conceptual to the 

concrete level.  These elements of user experience assist in the design and development of user 

interfaces. On the other hand, ontologies provide a framework for computable representation of user 

interface elements and underlying data. Last chapter discussed the logically defined methodology for 

introduction of ontological framework driven user interface. In this chapter, a strategy introduced for 

introducing ontologies at different user interface layers with a standard ontology of vCard given in 

RDFs/XML. These layers are adapted from Garret’s model of user experience elements (Garrett, 

2002). These layers range from abstract levels (e.g. User needs/Application Objectives) to concrete 

levels (e.g. Application User Interface) in terms of data representation. The proposed ontological 

framework enables device independent, semi-automated GUI construction which we will demonstrate 

at a personal information management research application. 

5.1. Introduction  

Guarino, Smith and Gruber introduced the formalization of abstract domain concepts by using 

ontologies (Guarino, 1995) (Smith, 2004) (Gruber, 1993). By combining ontologies with logical 

theory, machines can be enabled to compute formalized conceptual models using shareable, domain 

specific ontologies as results showed from previous experiment results in 4.6. Moreover, formal 

ontologies ensure the meaning and consistency of the presented concepts and allow to unambiguously 

sharing domain specific concepts across decentralized information systems. 

Ontologies have been used in information systems on several levels, for example for integrating 

databases, as business logic or for constructing Graphical User Interfaces (GUI). Additionally, 

ontologies have been exploited in software development processes. Uschold for example combined 

formal ontologies with model driven software development (Uschold, 2008). Uschold outlined that 

ontological model driven software development improves the development of complex software 

systems. Ontology based modelling carries the domain concept to the entire software development 

process. 

In our work we present an approach for mapping formal ontologies to GUI automatically, so that the 

GUI preserves the domain specific properties of the underlying domain ontology. Such a mapping 



80 

 

supports device independent GUI construction as well as semi automatic GUI modeling. We discuss 

our approach along a Personal Information Management (PIM) example. We used vCard/hCard as a 

standard ontological model for PIM. We also employed Jena and SWT for mapping vCard ontologies 

to GUI. 

 

Figure 5.1: 1.5 organization 

However, the use of ontologies within the GUI development process also provides technology 

independent modeling. Moreover, it allows adding context-aware properties at the development level 

depending on the targeted devices and user roles. 

The next section discusses elements of user experience providing the layers of user’s perception. In 

section 3, we outline the properties of the formal ontology which should be presented at the GUI level 

and conclude our work by combining User Interface Ontology (UIO) and Personal Information 

Management. 

 

 

 



81 

 

5.2. User Experience Elements 

Garrett  introduces five elements of user experience by concepts underlying software or a website 

(Garrett, 2002).  

 

Figure 5.2: Adapted User Experience Elements by Garrett  

These application concepts summarize the goals a software system should pursue. Garret’s elements 

collectively introduce different levels of such application concepts represented in an information 

system and will be described in the Table 5.1. 

By referring to Garrett’s model, we argue that representation and direct mapping of ontology from the 

base layer (i.e. strategy) to the presentation layer (i.e. surface) can help users to perceive the targeted 

domain concept. These elements can also be considered as layers of UI design and development. We 

adapted Garret’s layered approach to GUI development to follow through the elements of user 

perception. The ontological framework provides the capability for a formal specification of the 

concepts. It also enables the designer and developer of the website to implement ontologically 

specified domain concepts. Following user psychology also enables the designer to make a user 



82 

 

centred design. Separating the different roles in GUI construction on the different levels of user 

experience reduces development time and allows for independent optimization of each level. 

 

Ontologies can be introduced to each layer for integrating the different user experience levels as 

follows (Table 5.1): 

Garret represented the strategy as an abstract concept which the user abstractly defines. It specifies the 

user needs and objectives of the targeted GUI. At this level, there is no explicit ontological 

formulation in order to represent this abstract strategy. 

1 Scope talks about what exists within the boundary of the domain. In this work, it refers to the 

details of the concepts and sub-concepts within the domain. It merely addresses the vocabulary 

used, but not its structure, which is part of the next level. 

2 Structure defines the logical structure of the user interface. Domain ontologies specify this via 

relationships among concepts and sub-concepts forming the logical structure of the user 

interface. It provides a hierarchical structure of whole and part, but also associated concepts. 

Level of User 

Experience 
Ontological Implementation 

Example Application using 

Ontological Framework 

Surface Graphics Look and Feel 

UIO Implementation at Graphical 

Library 

SWT, OpenGL, GTK, wxWidgets, 

QT 

Skeleton User Interface Ontology 

Customized Textbox, List box, 

Selection Box, Date/Time tool, 

Containers, Buttons 

Structure Domain Ontology vCard, hCard 

Scope 

Vocabulary (for Entities and 

Relations) 

Relations also represent Functions 

Name, Address, Date of Birth, Email, 

Phone Number, Family Name, Zip 

Code 

Strategy  Personal Information Management 

Table 5.1: Adapted User Experience Elements by Garrett (Garrett, 2002) 



83 

 

This ontological structure makes a map of information arrangement and navigation in related 

concepts.  

3 The skeleton level provides the representation and interaction methods of an user interface. 

Ontologically formalized structures represented as User Interface Ontology allows specification 

of such a skeleton and translates the logical domain structure of step 3 into a user interface 

layout which is rendered in the next step.  

4 Surface is the concrete implementation of the skeleton. It is the User Interface Ontology 

implemented through any computer graphical library. 

In the following example of mapping vCard onto GUIs via those 5 steps, we have dealt with 

visualization of vCard to the GUI only. Interaction methods, update functions and initiation with UI 

events will be discussed in future research through mapping functional ontology to User Events. 

5.2.1. Conceptualization through Ontological Modelling 

Gruber suggested the properties of formal ontologies for conceptualization (Gruber, 1993). Uschold 

introduced ontological modeling for model driven software development to use the properties of 

conceptualization (Uschold, 2008). We use formal ontologies as a base structure for GUI 

development. 

Formal ontology specifies the structure. UI Ontology will use the vocabulary of each entity concept 

and sub-concept, specified by formal ontology. These concepts and sub-concepts can be carried to the 

structured layer using ontological relations. Automatic mapping functions from formal ontology to 

GUI can maintain properties of conceptualization at GUI. 

5.2.2. Personal Information Management (vCard/hCard) 

Internet Mail Consortium (IMC)45 has defined a standard for Personal Data Interchange as vCard 

(RFC2426). This standard has been broadly implemented (e.g. Apple's "Address Book", Microsoft 

Outlook) ensuring interoperability. vCard provide an ontological structure for personal information 

storage and representation. We use vCard as example ontology for personal Information. 

                                                   

45 http://www.imc.org/pdi/ 

http://microformats.org/wiki/rfc-2426


84 

 

 

Figure 5.3: Structure of vCard classes 

 

 

Figure 5.4: vCard Object Properties 

 

Figure 5.5: vCard Data Properties 



85 

 

The Internet Mail Consortium states that vCard can be used to forward personal data to an electronic 

mail message. While integrating vCard support into an application, an implementer must consider a 

number of UI implications. Most applications provide some levels of support for interacting with 

other applications. RFC2426 mentioned three ways to use vCard the File System, the Clipboard, and 

Drag/Drop techniques. It also provides two kinds of grouping: first grouping multiple vCard and 

second grouping related properties within the same vCard. The IMC White paper also argues that full 

potential of the vCard technology can be better utilized by an application that supports the vCard 

specification in each of these UI forms. 

 The grouping of vCard elements provides an ontological structure forming domain ontology. As 

outlined above, such domain ontology can be used at the structure level to form the logical structure of 

the GUI. There are also some implicit relations within vCards realized as different groups or sets of 

attributes.  

vCard properties can be grouped and prioritized according to the context and relationships. The values 

of grouped properties can be represented as one value but with different joining structures and 

delimiters. 

5.3. Ontological Framework for User Interface 

Development 

The ontological framework includes three major sections (i.e. vocabulary, Domain Ontology and User 

Interface Ontology). These sections are the layers of development procedure. First two layers of 

development procedure are combined in ontology parser which make a vocabulary table as scope and 

associated ontology structure. Third layer is the skeleton layer that introduces user interface properties 

to the elements in vocabulary table and with the arrangement provided in structure layer.  

5.3.1. Ontology Parser 

This section of our research application parses the ontology in resulting vocabulary table and its 

structure. This layer read the ontology in any RDF or N3 tripple. Jena is used to read the ontology.  

5.3.1.1. Vocabulary (Scope) 

The section Vocabulary contains the concepts and sub-concepts that exist in the domain without 

stating relationships. It is list of attributes of the domain ontology. vCard standard (RFC2426) 

provides the list of attributes being used for PIM. 

Thought Jena can read and provide the ontology graph and class structure, still it was needed to parse 

it further to create a vocabulary table 

http://microformats.org/wiki/rfc-2426
http://microformats.org/wiki/rfc-2426


86 

 

1. Simplify the compound classes and intermediate (anonymous classes) made by the relations like 

  if (class.isUnionClass()){ 

   s = "unionOf"; 

  } 

  if (class.isIntersectionClass()){ 

   s = "intersectionOf"; 

  } 

  if (class.isEnumeratedClass()){ 

   s = "oneOf "; 

  } 

  if (class.isComplementClass()){ 

   s = "complementOf"; 

  } 

2. Specification od associated RDFs: Types with the specified property. These types are defined as 

the range of the property. These types define the visualization methodology of an OntProperty 

provided in vCard 

vCard, as research example is parsed into a table specifying the elements in a table entry specifying 

as: 

ElementTable is as follows: 

Element ID Element URI Type Comments 

0 http://www.w3.org/2006/vcard/ns# vCard OntClass BaseClass 

1 http://www.w3.org/2006/vcard/ns# Name OntClass  

3 http://www.w3.org/2006/vcard/ns# family-name OntProperty  

4 http://www.w3.org/2006/vcard/ns# given-name OntProperty  

Properties Table 

Element ID Element URI Type DomainID RangeID 

3 http://www.w3.org/2006/vcard/ns# family-name DataType 

Property 

1  

4 http://www.w3.org/2006/vcard/ns# given-name DataType 

Property 

  

 



87 

 

ClassTable 

Element 

ID 

Element 

URI 

Type List 

6 Date Unionof [7,7,7] 

vCard has specified date as a combination of three floats. 

5.3.1.2. Domain Ontology (Structure) 

The section Domain Ontology specifies the relationship of the attributes. It provides a structure for 

arranging attributes at GUI. In our example vCard provides taxonomy of information (Table 5.2). It 

provides the way personal information should be arranged and grouped, e.g. first name and last name 

should be together, city and country information will be in address group. Though it is most of the 

time arranged in the same way, it is not a rule by the base model in designing and development of the 

user interface. 

Identification 

Properties 
Name 

Given 

Family 
 

Address Properties 

Street Address 

City 

Country 

Zip Code 

Telephone Number 

Country Code 

Network Code 

Phone Number 

.... 

Table 5.2: Structure of vCard properties 

This structure defines the taxonomy as a rule which cannot be avoided in GUI development. 

5.3.2. User Interface Properties Mapping: 

Next part of user interface designing application facilitates user interface properties association with 

the domain ontology. These user interface properties are associated to the listed elements filtered 

through the ontology parser. 

This process provides a base skeleton of user interface called here User Interface Model (UIM). UIM 

is then directly instantiated to a concrete GUI. 



88 

 

5.3.2.1. User Interface Model (Skeleton) 

Uschold encourages automated code generation for UI from ontological models (Uschold, 2008). But 

most of the research talks and presents automation and translation of ontologies to GUI (Alexander, et 

al., 2003) (Furtado, et al., 2002) . Paulheim provides a method to implement ontologies to UI through 

plug-ins (Paulheim, 2009) 

We used the User Interface Ontology (UIO) as one part of the core development process and a base 

for designing UI, rather than introducing ontologies separately or in parallel to the main design 

procedure. UIO describes concepts and relationship of GUI objects and interaction methodology. UIO 

considers that the domain ontology also specifies the representation of each entity in the vocabulary 

depending on the type of entity, the relationship provided in the domain ontology and the role of the 

user. UIO considers the role of users to generate GUI according to the context.  

UIO contains domain ontology user interface concepts and their properties at the user interface level. 

Domain ontology defines a vocabulary and a structure. At UIO level, vocabulary is associated with 

conceptual visualization according to its type (textual, image, multi-media, map or a group) and 

structure provides arrangements of the visualization at User Interface. 

 

Figure 5.6: User Interface Ontology for vCard (Skeleton) 

User Interface properties were added to the Domain Ontology classes carried out in the ontology. 

These properties specify the visualization mechanism based on the class and type of the instance. 

Literals, groups, sets and lists can be presented accordingly (Figure 5.6). 

In our example of PIM, vocabulary and taxonomy can be read from vCard provided as RDFS. In 

vCard, Name is a group of two items, “Given and Family”. These sub-parts of names are literals 

(textual data). So visualization properties can be associated at this small part and class and sub-class. 

Additional UI properties based on context, like font, colour or size, can also be added later on at 

skeleton level via the UIO.  

Classes from 

Domain Ontology 

(Adding UI 

properties 

according to 

type of class) 

Taxonomy of 

vCard 

vCard classes with 

visualization properties 

Domain 

Ontology 

(Structure

) 

vCard 

Vocabulary  

(Scope) 

UI properties 

for vCard 

classes 

User Interface Ontology  

for vCard (Skeleton) 

 as vCard Schema 

(RDFs/OWL) 

 



89 

 

UI is two-way communication “from and to the user”. The concepts discussed in UIO are the 

presentation of a domain concept, sub-concept and the relation to the user as to the user 

communication; it also discusses the interaction methodology and user actions and ontological 

responses. Functional Ontology is part of future work and conceptual user actions to concrete event 

handling will also be part of future work. 

5.3.3. GUI Development 

This is the final process GUI design and development which results in a concrete GUI. This process 

follows three major steps: 

1 Take UIM as input 

2 Instantiate all the UIM elements according to the specified user interface properties through 

customized user interface controls 

3 Arrange all the GUI controls according to the structure in one GUI 

5.3.3.1. User Interface (surface) 

Here we get a simple GUI for vCard where we used Tab pages for groups for a desktop interface. 

Here we can have choice to select one of the containers to visualize the groups like tab-pages, frames 

widgets or web-pages depending at the user context 

 

Figure 5.7: Example UI for a vCard 

 



90 

 

5.4. Customized User Interface Control 

GUI controls can be customised and associated with the domain concepts which are going to be 

represented at GUI. So, text box, list box, combo box, radio button or even a frame are associated with 

a domain concept presented in vocabulary according to their UI properties. IBM Semantic Layered 

Research Platform46  has also worked on RDF-driven application development using JFace/SWT 

components. It provides examples of RDF-driven JFace widget, tooltip window and viewers. Each 

item within the scope level can be assigned a viewer, widget or container (like frames or tabs for 

representing a relationship of part and whole). 

5.5. User Interface Generation 

Customized UI controls are then joined together according to the provided skeleton. We did direct 

mapping from skeleton to graphical objects. 

 

Figure 5.8: Ontology representation at GUI 

GUI development is an instantiation of UIO provided as skeleton. Vocabulary (with user interface 

properties) is instantiated as customized controls. These controls for literals (e.g. textboxes, labels, list 

box etc.) are arranged in group and provided to containers (e.g. Frame, widget, tab pages, web pages 

                                                   

46 http://ibm-slrp.sourceforge.net/wiki/index.php/Com.ibm.adtech.telar.ui.swt 

User Interface 

Ontology 

(Skeleton) 

Domain Ontology 

(Structure) 

Graphical User Interface (Surface) 

Graphical Library  

(Customized Controls from Scope + UI Properties 

Arranged as Domain Ontology Structure) 

Concept and sub-concepts within 

the main Domain Boundaries 

Ontological Relation 

Driven Structure 

Vocabulary  

(Scope) 



91 

 

etc.) This structure of UI objects belonging together provides a complete GUI instance based on 

Domain ontology. Taking the Garret’s model in consideration, the mapping process follows the steps 

scope (vocabulary), structure (Domain Ontology) and skeleton (User Interface Ontology) (Figure 5.8). 

Skeleton provides a base design for user interfaces that can be instantiated by any graphical library for 

any platform. 

As an example application of PIM we created a dictionary for vocabulary through reading RDF. 

 

5.6. Ontology Modelling based on Context 

Domain ontologies structuring and arrangement is based on relationships. In our example of vCard, 

properties groups and vCard groups are made on the basis of criteria provided by the whole system. 

vCard is based on the concept of business cards. Thus the arrangement and groups of properties will 

be different from personal data ontology in social network. Individual properties (like name, address, 

date of birth etc.) represent the same domain ontology. These domain ontologies are arranged by 

different rules in an organization than in a social network. 

DOLCE ontology has discussed the calculus of individuals in an organization based on their roles. 

The organizational structure does provide structure for grouping properties and persons. 

In a network of friends, level of trust is not dependent on the official designation or department. Social 

networks provide different criteria to arrange and group properties and persons. All of these structures 

are discussed and available in relationships, axioms and calculus in current research [ (Bottazzi, et al., 

2009) (Gangemi, et al., 2002) (Clarke, 1981) (Gruber, 1993). These structures assist us to develop UI 

accordingly. 

5.7. Results 

This research experiment resulted nearly similar to the last research experiment in very simple user 

interface for a vCard, ensuring the structure and semantic classification of each entity of domain 

ontology presented at user interface. This experiment was more focused on the process and 

methodology of UI development. There are many alternatives to represent the same concept at surface 

level. A group of concepts can be aggregated by a group, tab or frame. In this example we group 

different vCard properties by tabs as containers to show groups. The vCard can be shown in a business 

card view or as personal data page. Microformats also provide two views at hCard creator; the first 



92 

 

view is a web form for data entry and the second is a preview of a vCard47. It is an example for an UI 

based on modes (i.e. read mode and edit mode). Microsoft Outlook also creates the same kind of UI, 

but with a more complex structure for vCard edit mode. 

Here we get not only a methodology of GUI development through ontology, but it also provides 

semantically consistent testified, reusable and flexible parts of ontologies at each level of abstraction 

in the whole process. These parts like vocabulary, structure and skeleton can be verified through logic 

to ensure a consistent process of GUI designing and development.  

5.8. Conclusion 

Ontological modeling and formalization used in model driven software engineering can make concept 

specification and representation more consistent. It helps in ensuring proper concept delivery at user 

interface. A proper layered approach being based on layers of user perception can make the process of 

GUI design and development more user-centered. User Interface Ontology is a conjunction of the 

domain ontology, context and look and feel. Website designs and models can also be tested at any 

stage through formalized concepts, as they carry the concept throughout the development process. In 

our approach, representation methods were specified as default for textual data. In general, knowledge 

representation depends on the knowledge domain specified. User interaction and response methods 

are based on the use and affordances of the knowledge domain. These interaction methods can be 

specified through ontological functions. In comparison to other methodologies to GUI development 

for a web-based application, mobile device application or desktop application different approaches are 

defined and adopted. That makes these development approaches application context dependent rather 

than concept dependent. Here in this research experiment, the technology or device context is not 

required till building a skeleton (User Interface model) device. This makes this UIM reusable, flexible 

and consistent concept delivery at any device. Though context properties can be further added to UIM 

still these properties are not the base for user interface modeling.  

Future work will consider axiomatic constraints or validation functions that can be attached to a model 

as a part of the ontology rather than through implementation at the GUI level. Further, user Interface 

properties can form a generic ontology with the UI control vocabulary and relations among them. This 

UIO can be fused with any domain ontology to introduce UI properties of the domain ontology. 

 

                                                   

47 http://microformats.org/code/hcard/creator 



93 

 

 Ontological Model Driven GUI 

Development: User Interface Ontology 

Approach  

Ontology and Semantic Framework has become pervasive in computer science. It has huge impact at 

database, business logic and user interface for a range of computer applications. This framework is 

also being introduced, presented or plugged at user interfaces for various software and websites. 

However, establishment of structured and standardized ontological model based user interface 

development environment is still a challenge. In previous experiments added raw user interface 

aspects to domain ontology but without making a proper ontology for user interfaces. This chapter 

talks about the necessity of such an environment based on User Interface Ontology (UIO). To explore 

this phenomenon, this research focuses at the User Interface entities, their semantics, uses and 

relationships among them. The first part focuses on the development of User Interface Ontology. In 

the second step, this ontology is mapped to the domain ontology to construct a User Interface Model. 

Finally, the resulting model is quantified and instantiated for a user interface development to support 

our framework. This UIO is an extendable framework that allows defining new sub-concepts with 

their ontological relationships and constraints.  

6.1. Introduction  

Semantics and ontological framework defines computational model for concepts (Guarino, 1995) 

(Gruber, 1995). This framework can provide a base for modeling concepts representation at user 

interface to the end users. Uschold (Uschold, 2008), Schlungbaum (Schlungbaum, 1996), Lui (Liu, et 

al., 2005), IBM48, Shahzad (Shahzad, et al., 2010) argued in their research for the model driven user 

interface development. This research experiment also argues for model based user interface 

development using semantics and ontological framework. Here, we construct ontology defining some 

basic user interface classes, properties and their relationships in extendable framework as User 

Interface Ontology (UIO). In an incremental process, UIO and targeted domain mapping presents the 

base user interface model. This model is quantified and instantiated to develop a Graphical User 

Interface (GUI).  

                                                   

48 http://www.ibm.com/developerworks/library/w-berry/ 



94 

 

 

Figure 6.1: 1.6 Organization 

Next section focuses at the motivation behind this research to support our arguments and our work. 

Third part discusses the UIO development process. Forth section provides the association of UIO with 

domain ontology. Final section of the chapter describes one of the methods for instantiation and 

development of the Graphical User Interface (GUI), followed by conclusion and future work.  

In this research, an example of vCard as a domain ontology for personal information management 

system has been used to be represent at GUI. The impetus of this experiment targets the area of 

modeling and development of a consistent graphical user interface that ensures the semantic properties 

and constraints defined in the domain ontology.  



95 

 

6.1.1. Motivation 

Since last decade, Semantic and ontological framework has been widely used for information retrieval 

and knowledge representation (e.g. Linked Open Data49 and Web3.050). Various GUI facilitate the 

representation and visualization of the information retrieved from semantic web at heterogeneous 

platforms. These GUI have been built in variety of flexible development environments, which allow 

interface for developers to provide visualization and user interaction mechanism that is disjoint to the 

semantic relationship and constraints. This phenomenon results in many inconsistent representations 

of the concepts at similar or different platforms.  

Thus, there is a need to explore a methodology that ensures the semantic rules (relationships and 

constraints) at user interface level for a consistent GUI development in various environments. There is 

also a need to use these rules for defining data validators, information visualization and user 

interaction techniques at user interfaces level.  

6.2. Ontology Engineering for User Interface 

Ontology (UIO) 

Here we discuss in detail about ontology engineering for UIO. In our previous work (Shahzad, et al., 

2009) (Shahzad, et al., 2010), we introduced the term of UIO as user interface aspects of computer 

applications and their mapping to domain ontology. In this work, we build UIO as UI specification to 

maintain the qualities of UI specification and to ensure proper concepts of user interfaces and targeted 

domain in GUI development process.  

6.2.1. Modeling User Interface Aspects  

DaSilva (Da Silva, 2001) defines model-based user interface development technology to provide an 

environment where developers can design and implement user interfaces (UIs) in a systematic way. 

He also stated three qualities of UI specifications, such as:  

1. To model user interfaces using different levels of abstraction;  

2. To incrementally refine the models;  

3. To re-use UI Specifications  

                                                   

49 http://linkeddata.org/ 

50 http://www.w3.org/2001/sw/ 



96 

 

In UIO, User Interface will be the domain concept to be presented through ontology. All of the user 

interfaces are composed of same GUI controls. End User Interfaces are much more dependent on the 

targeted domain ontology of the software.  

 

Figure 6.2: Association: Relating Domain ontology with User Interface Ontology 

6.2.2. Ontology Engineering for User Interfaces  

In this stage, we have defined UIO at different level of abstractions to deal with the first property 

defined by DaSilva (Da Silva, 2001). The Xerox Palo Alto Research Center (Alexander, et al., 2003) 

and IBM’s51 “The iceberg analogy of usability” discuss three levels of abstraction of user interfaces. 

Moreover, nearly similar but detailed levels of abstraction for user interfaces have been defined in 

Garrett’s (Garrett, 2002)“The elements of user experience”. Garrett’s research has been used as level 

of abstraction for user interface in our previous research. In our approach, we have defined nearly 

same levels of abstraction for user interface modeling. We have added context dependent properties 

which can be quantified at the GUI development process. These levels are:  

1. Data Modeling  

 a. Data Formats  

 b. Data Structures (Information Architecture)  

2. User Interaction Properties  

3. Graphical Properties  

                                                   

51 http://www.ibm.com/developerworks/library/w-berry/ 

User Interface Ontology 

 

 

 

 

Domain Ontology 

 

GUI Model for Domain Ontology 

Association: UI Properties added to 

Domain Ontology  



97 

 

4. Context aware properties  

Data Modeling: Data modeling classes are defined as purely abstract to the implementation details. It 

specifies only the data domain and its hierarchy. For the research purpose we deliver a paradigm 

based on ontological classes for data formats from the set controls and user events applied in java 

(SWT52). It provides a base data model which has to be represented at user interface with specific user 

interaction methods and graphics detail.  

Classes and sub classes made for data format and data structures criterion:  

1. Visualization Classes:  

a. Group  

i. Widget  

i. Frames  

ii. Tabs/Pages  

b. Textual  

c. Temporal  

d. Multimedia  

i. Picture  

ii. Audio  

iii. Video  

2. Data Structure based Classification:  

a. Single Entity  

b. List  

c. Tuple  

d. Table-Grid  

Visualization classes characterize the representation methodology of a concept, depending of its 

semantic class and in our example RDF/XML data type. Data Structure based Classification specify 

the information architecture at user interfaces. Mereo-toplogy also helps user interface designing by 

providing the relations to give a consistent representation of concept in their semantic groups.  

User Interaction Properties: At lower level of abstraction to data modeling classes, we have defined 

user interaction properties. These properties are dependent to the data modeling classes which specify 

the user interaction methodology for a specific data model in general or in specific architecture.  

Graphical Properties: At next level of abstraction to user interaction properties, we have defined 

graphical properties. These properties are also dependent at data modeling classes.  

                                                   

52 http://www.eclipse.org/swt/docs.php 



98 

 

Context aware Properties: At the lowest level of abstraction, we defined context aware properties. 

These properties are also dependent at data modeling properties and user environment specification. 

This specification consists of technological details and user information.  

This ontology was made in OWL-DL and RDF as meta-data for the GUI. There were also some rules 

defined as basic user interface rules that specify relationships. For instance, a Group is a container that 

is a set of other classes like textual-data, lists and/or other groups. UIO also provides constraints that 

ensure consistency at user interface, for instance e.g. duration property (property of audio/video 

format) cannot be associated to textual data. This ontology is extendable to add more features and 

aspects related to UI.  

6.3. Mapping Domain Ontology with UIO  

UIO mapping to domain ontology is performed in two major steps. Firstly, data modeling classes from 

UIO are associated with the domain ontology properties to provide a structure for information 

visualization and architecture. Secondly, user interaction and graphical properties from UIO are added 

to the mapping. Any user interface concept specified in UIO is linked to the domain ontology 

properties in three ways:  

1. Link to all properties having same range  

2. Link to all properties having same domain  

3. Link to the specific relation (Reification)  

 

Figure 6.3: Portion of mapping application screenshot 

 



99 

 

This mapping proceeds through the UIO levels of abstraction from top to bottom.  

6.3.1. Mapping Visualization Classes  

At the first step of mapping process, representation based classes are mapped to the properties of 

target domain ontology to specify the visualization method. It is mostly dependent on the range class 

of the entity that specifies the data format, but the procedure also allows mapping based on domain or 

to the specific relation of the domain and range.  

All next level properties are mapped according to the representation specified in visualization class 

mapping to any domain ontology property.  

6.3.2. Mapping User Interface Properties  

User interface properties are mapped to domain ontology properties depending on their visualization 

classes, e.g. Editable is a user Interface property for Textual data, while multi-selection can be a 

property of list or a Table-Grid. UIO provided rules ensure semantic association of user interface 

properties to every data type. UIO also ensure data consistency at quantifying these properties e.g. if a 

container is disabled for user interaction and performing any operation all entities within the container 

will be disabled as well. Rather than depending at graphical libraries, semantic rules are defined in 

UIO and carried to GUI for consistent representation.  

6.3.3. Mapping Graphical Properties  

Graphical properties are mapped to domain ontology for providing a structure of interface entities. It 

can also map properties which can be quantified at the time of GUI development. These properties has 

to provide relative scaling of user interface entities in mapping process e.g. font sizes for title, 

headings and body text. These relative scaling collectively provide a theme or representation styles.  

6.3.4. Mapping Context aware properties  

These properties are mapped to the domain ontology properties but can be quantified only at GUI 

development process.  

6.3.5. User InterfaceModel (UIM)  

This mapping of DO and UIO results in a User Interface Model (UIM). This Model is base for the 

user interface generation. Similarly, the main target of this research is also to create such a technology 

and context independent model for any given domain concept representation.  

Semantic knowledge representation model contains a combination of semantic rules (relationship and 

constrains) from UIO and domain ontology that ensure:  



100 

 

1 Proper concept representation at GUI  

2 Consistent concept representation  

a. By GUI developed with different technologies  

b. At heterogeneous platforms  

6.3.6. vCard Ontology for Personal Information Management  

In this stage, we continued working on the same Personal Information Management case 

study/example 5.2.2. vCard is a standard and widely adapted (Apple’s Address book, MS Outlook, 

TUGraz Staff and Student53, Mobile Phones) ontology. It is defined by Internet Mail Consortium 

(IMC)54 and Personal Data Interchange as vCard (RFC2426). This experiment focuses on factors and 

issues in mapping of vCard to GUI. vCard namespace55 provides a vocabulary and schema of a vCard. 

This schema can be associated with UIO according to the RDF/XML data type entities. 

Apparently, the presented model for semantic description of associations looks complex, however, the 

ontology engineering software will not allow making any inconsistency in ontology. Introducing new 

relations and adding new relations can only be done by HCI expert and Ontology engineer. We have 

done manual association in this study, such as associating First name with a textual class. It is like 

making a relations or RDF statement for each relations. We have added UI aspects as objects like  

[http://www.w3.org/2006/vcard/ns#Name, Displayby, “UIO/ns#Textual”]  

Futhermore, some UI aspects were added as to be quantified at later stage such as:  

[http://www.w3.org/2006/vcard/ns#Name, Font, “0”]  

6.4. User Interface generation 

6.4.1. Quantifying Context aware properties  

Before proceeding to the instantiation we need to quantify the UI aspects which are dependent on the 

context or technology. Introduction of context also make the user interface sketch more detailed and 

concrete. These context variables depend at the device for which GUI is going to be made e.g. iPhone, 

                                                   

53  

https://online.tugraz.at/tug_online/visitenkarte.show_vcard?pPersonenId=73A4CED7D8FE1923&pPe

rsonenGruppe=3  

54 http://www.imc.org/pdi/ 

55 http://www.w3.org/2006/vcard/ns# 



101 

 

desktop or web application. Information architecture, and navigation remains same for this device but 

size and wrapping can be different depending on the context.  

6.4.2. Instantiating UIM  

All Domain ontology associated with UIO that come up with a complete sketch of user interfaces in 

RDF/XML format (UIM). Any graphical library can be used to instantiate the UIM. We have used 

SWT (Java) for UIM instantiation of vCard. By using RDF/XML, UIM facilitates to represent the data 

in a simple text format without making any GUI.  

6.5. Software Engineering Aspects fo UIO  

 

Figure 6.4: Knowledge Experts contribution breakdown and collaboration stages 

 

This model also separates the individual and collaborative work knowledge experts. It is also an 

economical solution for software development firms. However, every firm cannot bear the cost of HCI 

consultants for each of the software development. There are mostly reusable libraries are made for 

some specific domain. That does not fit or get associated with every domain. Secondly, all HCI 

concerns are done only for customized or specific software.  

1 In Figure 6.4 HCI expert build at B. UIO experts and Domain expert can work at A. These 

ontology are  

A: Domain Ontology 

By Domain Experts 

Ontology Engineers 

B: User Interface 

Ontology 

By HCI Experts 

Ontology Engineers 

 

Collaborative work in 

Association 

GUI Developer 

Graphics Designer 

Iterative process GUI 

Development 

Reusable base User Interface 

model for DO 



102 

 

a. Independent of context details  

b. Independent to any technical and implementation details  

c. Reusable for association with any domain  

d. Extendable with new vocabulary  

e. Shared, Standardized also extendable by other skilled resources  

2. At association level a sketch can be made for a user interface  

a. Independent to the technology details  

b. Context can be introduced  

c. Association is done at this layer considering basic requirement of each knowledge domain. 

d. Provide reusable User Interface Model (UIM) as a base for GUI development for the 

associated domain ontology  

3. At GUI generation level GUI developer and graphics complete sketch of the picture which they 

can colour with any graphical library, themes style-sheets etc. At the end a GUI is instantiated 

from this level which  

a. All Technical aspects are considered rather than design aspects  

b. Multiple GUI can be created with the same sketch for different devices which keeps a 

consistency.  

6.6. Results  

This research focused at process of user GUI and consistent concept delivery to the end user through 

GUI. The end result of the process is just a normal GUI for a vCard, but main targeted result is UIM - 

stated as RDF/XML files containing the tags of domain ontology and UIO. It is like a complete ready 

recipe just to put in machine to start working. Further results show that UIO mapping process read 

vCard schema from RDF file. The intelligence of this research was UIO engineering and mapping of 

UIO that can be applied to any domain ontology.  

6.7. Conclusion 

Rather than using raw user interface development guideline, it was evident from our work that user 

interfaces properties and their relationships can be defined through semantic and ontological 

framework as UIO. We also illustrated that UIO mapping with any domain ontology gives an abstract 

base model for user interfaces for the domain ontology. The long term goal of this experiment is to 

demonstrate a model guide and to restrict user Interface developer to develop any semantically 

consistent GUI for heterogeneous development and execution environment.  



103 

 

6.8. Future Work 

It is increasingly observed that research results usually come up with new questions. Similarly, this 

work attempted to recommend some approaches and model to the development of ontological model 

based user interface, however, many questions still have to be explore in this domain. We are still 

working on to use UIO for different standard domain ontology which is extending UIO for many new 

formats of data and properties and their relationships e.g. multimedia properties, vector data. There are 

more areas to explore in this regard such as:  

 There is a big question of usability for resulting GUI which will explored in future research.  

 There is also need to discuss functional ontology for domain ontology and UIO (user actions 

and events) 

 There is also a need to make some base UIO and browser which can read and display UIM.  

 AI and Interactive learning from end users can make a mechanism for auto extend and align 

UIO. 

 



104 

 

 Results and Conclusion 

7.1. Introduction 

This part presents the experiments done for GUI development based on ontology and semantic 

framework. Our research work consisted of three different major methodologies to achieve GUI 

development based on semantic and ontological framework. 

We made some baseline logical principals for GUI designing and development process to ensure a 

consistent delivery of semantics and ontology concern at user interface:  

1 Semantic and Ontology framework provides concept representation with following properties 

a. GUI will be developed on the technology independent base user interface model (skeleton) 

deduced from domain  

b. Domain ontology will  without adding new rules to domain ontology except additive 

constraints depending on context before development of GUI 

c. At base model, Represented knowledge classification and structure at GUI should contain 

the semantic and ontological properties and relationships to keep it complete. 

2 There should not be any information structure at user interface model that contradicts any 

domain ontology relationship and constrains to keep it consistent 

3 A reasoning engine should validate the structure and classification of entities represented at user 

interface to ensure (i) and (ii) 

4 There should be direct mapping of domain ontology driven User Interface model to the GUI to 

make an exact visual image of domain ontology  

5 Ontology Driven GUI development will be done in following three phases 

6 Adding semantically defined GUI properties and constraints according to semantic data formats 

and classification 

7 Adding semantically defined GUI properties and constraints without according to the user and 

context without voiding any domain ontology rule, thus verified by reasoning engine 

8 Instantiation of base model (merger of domain ontology with visualization semantics) to 

concrete GUI by direct and one to one mapping of base model components to Graphical library 

objects. 

9 Data formats, ranges and information structure of the mapped graphical components at GUI. 

Other than these specified rules the data validation should be possible according to the ontology and 

semantic classification. 



105 

 

7.2. Functional programming approach 

With our first experiment discussed in 1.4, we have used a functional programming approach to 

directly code mathematical model to software programming language. We made up example ontology 

of vector graph as a graph (id, node, edge) function containing other functions like node and edge 

stating their relationships and data ranges. 

We used an example of a Graph (Node, Edge) a function of Nodes and Edges. We have used high 

order functions on abstract level seems as 

gui (graph)  IO() 

gui is the main function take graph functions as input and produce gui as IO()function. These 

experiments results in a simple gui consists of a panel for data input output and canvas for graph 

visualization. 

As the first experiment of the research stream it was aimed to for this experiment is to construct a 

methodology that provides a consistent delivery of ontologically define concepts to user interfaces. 

Here bijective morphisms and higher order functions ease the task to develop a gui directly from 

mathematically defined ontological functions. 

7.3. Impreative Programming Approach 

In our second experiments discussed in 1.5, standard vCard ontology is used to develop GUI. Java as 

an imperative programming language with a semantic application development library Jena and SWT 

graphical library are used in this experiment. As an extension to previous research experiments a more 

detailed layered structure for GUI modeling and development have been used with reference to the on 

iceberg analogy and Garret’s user experience elements model shown in Table 5.1: Adapted User 

Experience Elements by Garrett . Here we also ensure semantic and ontological constraints delivery to 

user interface from abstract layer to concrete GUI. This experiment ensures semantic consistency at 

each layer of process and user interface design and model. 

7.3.1. Experiment Structure 

This experiment consists of three important phases for GUI design and development. First two phases 

are ontology parsing and user interface model generation are part of GUI designing process that is 

independent of context and technology details. While the third process of GUI development requires 

context and technology details for GUI development. 

 



106 

 

 

Figure 7.1: Major steps for User Interface Design and Development 

7.3.1.1. Ontology Parsing 

At the first part of the experiment the ontology parser parse the domain ontology to buildup an entities 

table as vocabulary dataset and ontology structure as taxonomy of the ontology. This parser use Jena 

API for parsing domain ontology. 

7.3.1.2. Mapping UI properties to Domain Ontology 

Second step is associating visualization properties with the entities vocabulary accordingly. These 

properties specify the visualization method for all of the properties that has to be displayed at user 

interface it is always assisted by semantic data types “RDFS:Datatype” defined in domain ontology. 

User Interface properties are added according to the following steps to in the fashion of adding layers

 

Figure 7.2: User Interface Model Layers 

Context Properties 
(User/Device) 

Graphics Details properties 

User Interaction Properties 

Visulisation Properties 

Domain Ontology 

Ontology Parsing 
Mapping UI Properties 

to Domain Ontology 

GUI Generation 

vCard.rdf 

vCardUIM.rdf 



107 

 

These additional user interface properties to the vocabulary are added to the domain ontology 

according to the taxonomy. This mapping results in a “User Interface Model (UIM)” for the domain 

ontology which carries the relationship and constrains from domain ontology. All of these properties 

are quantifies at user interface generation phase. 

7.3.1.3. GUI generation 

User Interface generation also use the ontology parser. It builds a user interface with specified user 

interface properties in user interface model. Properties, which are part to the same class, 

(mereotopology) are presented in one container. Here UI developer makes choices of using one 

container type (we used Tab groups) to group visualize these classes. Editable text entries are mapped 

to text boxes while non-editable text entries are mapped to labels. 

7.4. User Interface Ontology 

In this experiment we have used nearly the same design and development methodology as we have 

used in previous experiment except introduction of User Interface Ontology (UIO). Here we have 

worked to develop a UIO considering same layers approach. We have user OWL DL to specify these 

classes and properties. We have used the common WIMP environment elements and behavior to 

introduce them in ontology. This structure is in three major classes 

7.4.1. Ontology Engineering 

7.4.1.1. Visualization Properties 

 These classes and properties provide ontological structure of data visualization according to the 

RDFS data types there are two views for classification of data visualization based on: 

1 Data Structure 

2 Data Types 

7.4.1.2. User Interaction 

User Interaction classes and properties are user context dependent properties that can associated to the 

domain ontology but quantified at GUI generation phase. In our example we have used some user 

interaction methods like Editable, Movable and Drag-Drop. 

These properties are dependent to data types (or Visualization classes). 



108 

 

7.4.1.3. Graphical Properties 

Graphical properties are also dependent to the data type and device context. These properties can be 

associated in mapping procedure. User Interface developer can quantify these properties at GUI 

generation phase according to the device context. 

7.4.2. GUI Generation 

The companies SystemeticBytes56 and Experflow Pvt Ltd57. testing the methodology have developed 

GUI using JFace/SWT for GUI development. The Expert Flow team has made a Contacts 

Management tool (Telephone Directory) for as a part of their client’s web interface of 

telecommunication solution. They have added some other audio properties for providing voice dialing 

facility. Systematicbytes have tested this methodology for developing a Contact Directory for desktop, 

web and mobile application. 

They have introduced some common GUI features  

7.4.2.1. Mandatory Field 

vCard ontology doesn’t provide or specify any mandatory or identity fields. At UIM development 

phase the testing teams has introduced the identity field and some compulsory fields added like Name 

and any one of the contact information. For the phone directory it was the phone number as 

compulsory to have data 

7.4.2.2. Edit Mode 

They also have introduced an edit mode to add new vCard entries or edit current vCard data. 

7.4.2.3. User Dialogues  

User Dialogues are provided to upload or download vCard as vCard file 

7.4.2.4. List View  and Thumbnails of vCard 

In a directory with a list of vCard there were two mode of view one is detailed view showing the 

vCard data details and other is a thumbnail view of all listed vCard entries in the directory. 

The testing teams have made multiple GUI solution with some of their commercial GUI development 

libraries that allows customization and association to the RDFS data type much easier. 

Systematicbytes.com team has reused the UIM to develop three interfaces for different platforms. 

                                                   

56 http://systematicbytes.com/index.html 

57 http://www.expertflow.com/index.php 

http://systematicbytes.com/index.html
http://www.expertflow.com/index.php


109 

 

7.5. Conclusion and Future Work 

7.5.1. Research Targets 

In our research work we have targets to explore the methodologies for user interface development that 

can ensure semantic and ontological concerns at user interface. There we have started with logical 

solutions and promote that solution for standard ontologies provided as shared standard. 

We used ontology as based model of the process of designing and development of user interface and 

user interface itself. Building user interface over the domain ontology ensures the process and product 

dependency at ontology rather than technology (development tools or devices). Moreover these can be 

validated by any reasoning software at any stage of designing and development. These themes and 

validation procedures provide us the grounds to experiment and explore the methodologies. We have 

also formalized research questions in 1.2.1 on the same grounds. 

7.5.2. Experiment Results outcomes 

In our experiments we started with to build a GUI based on domain ontology. Gradually we 

introduced semantic and ontological consistency in depth to each step of the procedure (designing and 

development) and product (GUI). 

1 First experiment was aimed to provide a mathematical modeling based GUI development to 

verify the ontology based GUI development. Though it doesn’t use any standard ontology, but it 

provides mathematically defined example of graph containing nodes and edges. Haskell 

programming language is used that can directly code the mathematical equations to the 

programming language without any additional translations or any intermediate layers. 

Domain Ontology  Domain OntologyHaskell   IO (Domain OntologyHaskell) 

This experiment provides the result of our first research question that “How can semantically 

defined concepts be delivered at GUI?” 

2. Still there was need to apply this solution to the standard ontology. That we have experiments in 

our second experiment using vCard as standard ontology we also introduced a base model as 

User Interface Model to develop a GUI over it. This base model is specified in RDF/XML that 

can be validated for any semantic and ontological consistency. Here we introduced user 

interface aspects to the domain ontology with a semantic relationship using RDFS. We explored 

the second and forth research question in this experiment i.e. “Can Semantics and Ontological 

frameworks provide a based model for GUI?” 

Instantiation of UIM to the GUI using customized user interface controls provide answer for the 

fourth research “How a base model for UI can be instantiated to GUI ensuring that all IO 

Operation preserves semantic properties and allow data flow according to the semantic data 

classification using:” 



110 

 

3. Still we need to explore the methodology to make it consistent at all the levels, in second 

experiment we added some classes and properties according to the RDFS data types but there 

was no specific semantic introduction to these classes and properties. These UI concerns are 

properly introduced in our fourth experiment that introduced User Interface Ontology. This 

ontology ensures semantic consistency to both areas that forms UIM. Here get answers to the 

question regarding consistency of the process and product i.e. “How can a base model for UI 

contain and Domain Ontology relations and constraints?” and “How a base model for UI can 

be semantically consistent?” 

7.5.3. Future Work 

As the introduction to a new methodology regarding user interface development, our research opens 

many new questions about the methodology and related fields. Some of the fields which need to be 

explored are directly connected to our field of research are as: 

1. This research explored the area of semantically consistent process of user interface design and 

development without discussing issues of usability. The most important issue is to discuss 

usability issues regarding ontology driven GUI development. 

2. There is a need to build some smaller parts of the computational libraries that we have 

developed on a small scale for experimentation like 

a. Graphical Library associated to semantic data types that can enable communication from 

user to machine in semantically defined and validated data values. 

b. More generic and big UIO need to be established that can be used to make a UIM for more 

standard ontologies. 

c. Recommended UIM attached with the standard ontologies should be provided by the 

knowledgebase as recommendations for the visualization of the specific ontology. 

d. The universal browsers are needed which have ability to provide a user interface for 

standard ontology and their specified UIM. 

3. There is also a need to explore ontologies of the functions that can be mapped to the 

recommended user actions (GUI events) in UIM as well as at GUI. 

4. In addition, there is a need to evolve a proper methodology for ODIS design and development life 

cycle. 



111 

 

 Bibliography 

Abrial Jean-Raymond Data Semantics [Conference] // IFIP Working Conference Data Base 

Management. - 1974. - pp. 1 - 60. 

Alavi Maryam and Leidner Dorothy E. Knowledge management systems: issues, challenges, and 

benefits [Journal] // Commun. AIS. - [s.l.] : {Association for Information Systems, 1999. - 2 : Vol. 1. 

Alexander Kleshchev and Valeriya Gribova From an ontology-oriented approach conception to 

user interface development [Journal] // Information Theories & Applications. - [s.l.] : Institute of 

Information Theories and Applications FOI ITHEA, 2003. - 1 : Vol. 10. - pp. 87 - 93. - ISSN: 1313-

0463. 

Aljawarneh Shadi and Alkhateeb Faisal Design and Implementation of New Data Validation 

Service (NDVS) Using Semantic Web Technologies in Web Applications [Conference] // World 

Congress on Engineering 2009. - London : [s.n.], 2009. - ISBN: 978-988-17012-5-1. 

Almeida Mauricio, Souza Renato and Fonseca Fred Semantics in the Semantic Web: A Critical 

Evaluation [Journal] // Knowledge Organization Journal. - 2011. - 3 : Vol. 38. - pp. 187 - 203. 

Bastien J. M. C. and Scapin D. L. How usable are usability principles, criteria and standards ? 

[Journal] // Advances in Human Factors/Ergonomics, Volume , , Pages . - [s.l.] : Elsevier, 1995. - Vol. 

20. - pp. 343-348. 

Bates Marcia J. The Design of Browsing and Berrypicking Techniques for the Online Search 

Interface [Journal] // Online Review. - Los Angeles, CA : Graduate School of Library and Information 

Science, 1989. - 5 : Vol. 13. - pp. 407 - 424. - 

http://pages.gseis.ucla.edu/faculty/bates/berrypicking.html. 

Bauersfeld Penny F. and Slater Jodi L. User-oriented color interface design: direct manipulation of 

color in context [Conference] // Proceedings of the SIGCHI conference on Human factors in 

computing systems: Reaching through technology. - New Orleans, Louisiana : ACM, 1991. - pp. 417 - 

418. - doi: http://doi.acm.org/10.1145/108844.108981. 

Beaudouin-Lafon Michel Instrumental Interaction: An Interaction Model for Designing Post-WIMP 

User Interfaces [Conference] // Proceedings of the SIGCHI conference on Human factors in 

computing systems. - The Hague : ACM, 2000. - pp. 446 - 453. - doi: 10.1145/332040.332473. 

Berry Richard E. Common User Access—A consistent and usable human-computer interface for the 

SAA environments [Journal] // IBM Systems Journal. - [s.l.] : IBM, 1988. - 3 : Vol. 27. - pp. 281 - 

300. - doi: 10.1147/sj.273.0281. 



112 

 

Boehm Barry W. A spiral model of software development and enhancement [Journal] // ACM 

SIGSOFT Software Engineering Notes. - [s.l.] : ACM, August 1986. - 4 : Vol. 11. - pp. 14 - 24. - doi: 

http://doi.acm.org/10.1145/12944.12948. 

Bonatti P., Deng Y. and Subrahmanian V.S. An ontology-extended relational algebra 

[Conference] // Proceedings of IEEE Internation Conference on Information Reuse and Integration, 

2003. IRI 2003.. - Las Vegas : IEEE Systems, Man, and Cybernetics Society, 2003. - pp. 192 - 199. - 

10.1109/IRI.2003.1251413 . 

Bottazzi E. and Ferrario R. Preliminaries to a DOLCE: Ontology of Organizations [Journal] // 

International Journal of Business Process Integration and Management (IJBPIM). - [s.l.] : 

Inderscience Enterprises Ltd, 2009. - 4 : Vol. 4 . - pp. 225 - 238. - doi: 10.1504/IJBPIM.2009.032280. 

Brey Philip The Epistemology and Ontology of Human-Computer Interaction [Journal] // Minds and 

MAchines. - [s.l.] : Springer Netherlands, November 2005 . - 3 - 4 : Vol. 15. - pp. 383-398. - doi: 

10.1007/s11023-005-9003-1. 

Brockmans Saartje [et al.] Visual Modeling of OWL DL Ontologies Using UML [Conference] // 

Proceedings of International Semantic Web Conference. - [s.l.] : Springer, 2004. - pp. 198 - 213. - doi: 

10.1007/978-3-540-30475-3_15. 

Buxton W. [et al.] Towards a comprehensive user interface management system [Conference] // 

Proceedings of the 10th annual conference on Computer graphics and interactive techniques, 

SIGGRAPH '83. - Detroit : ACM New York, NY, USA ©1983, 1983. - doi: 10.1145/964967.801130. 

Car Adrijana and Frank Andrew U. Formalization of conceptual models for GIS using Gofer 

[Journal] // Computers Environment and Urban Systems. - [s.l.] : Elsevier, 1995. - 2 : Vol. 19. - pp. 89 

- 98. - doi: 10.1016/0198-9715(95)00013-X. 

Cardelli Luca and Wegner Peter On Understanding Types, Data Abstraction and Polymorphism 

[Journal] // Computing Survey. - December 1985. - 4 : Vol. 17. - pp. 471 - 522. - doi: 

10.1145/6041.6042. 

Carlsen Niels Vejrup Towards a Common Context for User Interface Management System Design 

[Conference] // Proceedings of the IFIP TC2/WG2.7 Working Conference on Engineering for Human-

Computer Interaction. - Amsterdam : North-Holland Publishing Co., 1992. - pp. 13 - 34. - ISBN: 0-

444-89904-9. 

Carroll Jeremy J. [et al.] Jena: Implementing the Semantic Web Recommendations [Conference] // 

Proceedings of the 13th international conference on World Wide Web - Alternate Track Papers. - New 

York : ACM, 2004. - pp. 74 - 83. - doi: 10.1145/1013367.1013381. 

Carroll Jeremy J. [et al.] Named graphs, provenance and trust [Conference] // Proceedings of the 

14th international conference on World Wide Web. - Chiba : ACM, NY, USA, 2005. - pp. 613 - 622. - 

doi: 10.1145/1060745.1060835. 



113 

 

Chen Peter Pin-Shan The entity-relationship model—toward a unified view of data [Conference] // 

Special issue: papers from the international conference on very large data bases. - Framingham : 

ACM, New York, NY, USA, 1975. - pp. 9 - 36. - doi: http://doi.acm.org/10.1145/320434.320440. 

Clarke Bowman L. A calculus of individuals based on connection [Journal] // Notre Dame Journal of 

Formal Logic. - [s.l.] : Project Euclid, 1981. - 3 : Vol. 22. - pp. 204 - 218. - doi: 

10.1305/ndjfl/1093883455. 

Cocchiarella Nino B. Conceptual Realism as Formal Ontology [Book Section] // Formal ontology / 

book auth. Roberto Poli Peter M. Simons. - [s.l.] : Kluwer Academic Publishers, 1996. 

Corry Michael D., Frick Theodore W. and Hansen Lisa User-Centered Design and Usability 

Testing of a Web Site: An Illustrative Case Study [Journal] // Educational Technology Research and 

Development, . - 1997. - 4 : Vol. 45. - pp. 65 - 76. 

Cranefield Stephen and Purvis Martin UML as an ontology modelling language [Report]. - [s.l.] : 

University of Otago. 

Da Silva Paulo Pinheiro and Paton Norman W. User interface modeling in UMLi [Journal] // IEEE 

Software. - [s.l.] : IEEE Computer Society, July-Aug 2003. - 4 : Vol. 20. - pp. 62 - 69. - doi: 

10.1109/MS.2003.1207457. 

Da Silva Paulo Pinheiro User interface declarative models and development environments: a survey 

[Conference] // DSV-IS'00 Proceedings of the 7th international conference on Design, specification, 

and verification of interactive systems. - Limerick : Springer-Verlag, 2001. - pp. 207 - 226. - ISBN: 3-

540-41663-3. 

Decker Stefan [et al.] Ontobroker: Ontology Based Access to Distributed and Semi-Structured 

Information [Conference] // Proceedings of the IFIP TC2/WG2.6 Eighth Working Conference on 

Database Semantics- Semantic Issues in Multimedia Systems. - Deventer : Kluwer, B.V., 1998. - pp. 

351 - 369. - ISBN: 0-7923-8405-9. 

Dotsika Fefie Semantic APIs: Scaling up towards the Semantic Web [Journal] // International Journal 

of Information Management. - August 2010. - 4 : Vol. 30. - pp. 335-342. - 

doi:10.1016/j.ijinfomgt.2009.12.003. 

Dumas Joseph S. and Redish Janice A practical guide to usability testing [Book]. - Norwood : 

Ablex Publishing Corporation, 1993. - ISBN: 9781841500201. 

Dzida Wolfgang Standards for user-interfaces [Journal] // Computer Standards & Interfaces. - [s.l.] : 

Elsevier, 1995. - 1 : Vol. 17. - pp. 89-97. 

Eason K. D. Information Technology And Organisational Change [Book]. - London : Taylor & 

Francis., 1988. - ISBN: 978-0850663914. 



114 

 

Elmasri Navathe A theory of attributed equivalence in databases with application to schema 

integration [Journal] // IEEE Transactions on Software Engineering. - [s.l.] : IEEE Computer Society, 

1989. - 4 : Vol. 15. - pp. 449 - 463. - doi: 10.1109/32.16605. 

Eng Eirik Qt GUI Toolkit: Porting graphics to multiple platforms using a GUI toolkit [Journal] // 

Linux Journal. - Houston, TX : Belltown Media, 1996. - 31. - ISSN: 1075-3583. 

Engelbart Douglas C. X-Y Position Indicator For a Dislpay System [Patent] : 3541541. - USA, 

November 17, 1970. - Categories: 345/164; 33/775; 178/18.01; 340/870.07; 340/870.44. 

Fayyad Usama, Piatetsky-Shapiro Gregory and Smyth Padhraic From Data Mining to Knowledge 

Discovery in Databases [Journal] // AI Magazine. - [s.l.] : Association for the Advancement of 

Artificial Intelligence (www.aaai.org), 1996. - 3 : Vol. 17. 

Flores Francesc Campoy, Quint Vincent and Vatton Irene Templates, Microformats and 

Structured Editing [Conference] // Proceedings of the 2006 ACM symposium on Document 

engineering. - Amsterdam : ACM, NY, USA, 2006. - pp. 188 - 197. - doi: 10.1145/1166160.1166211. 

Frank Andrew U. and Kuhn Werner Specifying Open GIS with Functional Languages 

[Conference] // Advances in Database (4th International Symposium) / ed. Egenhofer Max J. and 

Herring John R.. - Portland : Springer-Verlag, 1995. - pp. 184 - 195. - doi: 10.1007/3-540-60159-7.. 

Frank Martin R. and Foley James D. Model-based user interface design by example and by 

interview [Conference] // Proceedings of the 6th annual ACM symposium on User interface software 

and technology. - Atlanta, Georgia : ACM, 1993. - pp. 129 - 137. - doi: 10.1145/168642.168655. 

Frawley William J., Piatetsky-Shapiro Gregory and Matheus Christopher J. Knowledge 

Discovery in Databases: An Overview [Journal]. - [s.l.] : Association for the Advancement of 

Artificial Intelligence (www.aaai.org), 1992. - 3 : Vol. 13. 

Furtado Elizabeth [et al.] An Ontology-Based Method for Universal Design of User Interfaces 

[Conference] // Task Models and Diagrams For User Interface Design (TAMODIA 2002). 

:INFOREC. - Bucharest : CiteSeerX, 2002. - CiteSeerX doi=10.1.1.13.4086. 

Furtado Elizabeth [et al.] An Ontology-Based Method for Universal Design of User Interfaces 

[Conference] // Task Models and Diagrams For User Interface Design (TAMODIA 2002). 

:INFOREC. - Bucharest : CiteSeerX, Bucharest. - CiteSeerX doi=10.1.1.13.4086. 

Gangemi Aldo [et al.] Sweetening Ontologies with DOLCE [Conference] // Proceedings of the 13th 

International Conference on Knowledge Engineering and Knowledge Management. Ontologies and 

the Semantic Web. - Siguenza : Springer-Verlag, 2002. - pp. 166 -181. 

Gangemi Aldo Ontology Design Patterns for Semantic Web Content [Conference] // Proceedings of 

the Fourth International Semantic Web Conference. - [s.l.] : Springer-Verlag Berlin Heidelberg, 

2005. - pp. 262 - 276. - doi: 10.1007/11574620_21. 



115 

 

Garcia Elena and Sicilia Miguel-Angel User Interface Tactics in Onotlogy-Based Information 

Seeking [Journal]. - Madrid : PsyNology Journal, 2003. - 3 : Vol. 1. - pp. 242-255. 

Garrett Jesse James Element of User Experience: User-Centered Design for the Web [Book]. - 

[s.l.] : Peachpit Press, 2002. - ISBN: 978-0735712027. 

Georgiev Iliya Ontology Modelling for Semantic Web-driven Application [Conference] // 

Proceedings of International Conference on Computer Systems and Technologies. - 2005. - pp. II.8-1 -

- II.8-6. 

Goodwin Nancy C Functionality and Usability [Journal] // Communications of the ACM. - [s.l.] : 

ACM, 1987. - 3 : Vol. 30. - pp. 229 - 233. - doi: 10.1145/214748.214758. 

Gould John D. and Lewis Clayton Designing for usability: key principles and what designers think 

[Journal] // Communications of the ACM. - New York, NY : ACM, 1985. - 3 : Vol. 8. - pp. 300 - 

311. - doi: http://doi.acm.org/10.1145/3166.3170. 

Gould John D. How to design usable systems [Book Section] // Human-Computer Interaction: : 

toward the year 2000 / book auth. Baecker Ronald M. [et al.]. - San Francisco : Morgan Kaufmann 

Publishers Inc., 1995. - ISBN:1-55860-246-1. 

Green Thomas R. G. and Petre Marian Usability Analysis of Visual Programming Environments: 

A 'Cognitive Dimensions' Framework [Journal] // Journal of Visual Languages and Computing. - 

1996. - 2 : Vol. 7. - pp. 131-174. 

Grenon Pierre and Smith Barry SNAP and SPAN: Towards Dynamic Spatial Ontology [Journal] // 

Spatial Cognition and Computation. - [s.l.] : Lawrence Erlbaum Associates, Inc, 2004. - 1 : Vol. 4. - 

pp. 69 - 103. - doi: 0.1207/s15427633scc0401_5. 

Gruber Thomas R. A Translation Approach to Portable Ontology Specifications [Journal] // 

Knowledge Acquisition - Special issue: Current issues in knowledge modeling. - Palo Alto : [s.n.], 

June 1993. - 2 : Vol. 5. - pp. 199 - 220. - doi: 10.1006/knac.1993.1008. 

Gruber Thomas R. Toward Principles for the Design of Ontologies Used for Knowledge Sharing 

[Journal] // International Journal Human-Computer Studies. - [s.l.] : Elsevier Ltd., November 1995. - 

5-6 : Vol. 43. - pp. 907-928. - doi:10.1006/ijhc.1995.1081. 

Guarino Nicola and Giaretta Pierdaniele Ontologies and Knowledge Bases: Towards a 

Terminological Clarification [Book Section] // Towards Very Large Knowledge Bases / book auth. 

Mars N. J. I.. - Amsterdam : Ios Pr Inc., 1995. - ISBN: 978-9051992175. 

Guarino Nicola Formal Ontology and Information Systems [Conference] // Formal Ontology in 

Information Systems.. - Trento : IOS Press, Amsterdam, 1998. - Vol. N. Guarino (ed.). - pp. 3 - 15. - 

citeulike:4148125. 



116 

 

Guarino Nicola Formal ontology, conceptual analysis and knowledge representation [Journal] // 

International Journal of Human-Computer Studies. - [s.l.] : Academic Press, 1995. - 5 - 6 : Vol. 43. - 

pp. 625 - 640. - doi:10.1006/ijhc.1995.1066. 

Guarino Nicola Semantic Matching: Formal Ontological Distinctions for Information Organization, 

Extraction, and Integration [Conference] // Summer School on Information Extraction. - Frascati, : 

Springer, 1997. 

Hitzler Pascal, Krötzsch Markus and Rodolph Sebestian Foundations of Sematic Web 

Technologies [Book]. - Dayton, Ohio : CRC Press T & F Group, 2009. - ISBN: 978-1-4200-9050-5. 

Horridge Matthew [et al.] A Practical Guide To Building OWL Ontologies Using The Protégé-OWL 

Plugin and CO-ODE Tools [Report] / The University Of Manchester. - Manchester : The University 

Of Manchester, 2004. - pp. 0 - 117. 

Hudak Paul Conception, evolution, and application of functional programming languages [Journal] // 

ACM Computing Surveys. - [s.l.] : ACM, September 1989. - 3 : Vol. 21. - doi: 10.1145/72551.72554. 

Jackson Michael The design and use of conventional programming languages [Book Section] // 

Human Interaction With Computers / book auth. Smith H. T.. - [s.l.] : Academic Press, 1980. - Vol. H 

T Smith & T R Green eds. - ISBN: 978-0126528503. 

Johnson Jeff [et al.] The Xerox Star: A Retrospective [Journal] // Computer. - [s.l.] : IEEE Computer 

Society , 1989. - 9 : Vol. 22. - pp. 11 - 26. - doi: 10.1109/2.35211 . 

Johnson Jeff Selectors: Going Beyond User-Interface Widgets [Report] : Technical Report / Human-

Computer Interaction Depatment ; Hewlett-Packard Laboratories. - Palo Alto, CA 94304 : ACM, 

1992. - pp. 273-279. - ACM 0-89791 -513-5 /92/0005-0273. 

Judson David H. Web browser with dynamic display of information objects during linking [Patent] : 

5572643. - USA, November 5, 1996. 

Kalinichenko Leonid [et al.] Ontological Modeling [Conference] // Proceedings of the 5th Russian 

Conference on Digital Libraries RCDL2003. - St.-Petersburg : [s.n.], 2003. 

Kieffer Suzanne, Coyette Adrien and Vanderdonckt Jean User interface design by sketching: a 

complexity analysis of widget representations [Conference] // Proceedings of the 2nd ACM SIGCHI 

symposium on Engineering interactive computing systems. - Berlin : ACM, 2010. - pp. 57 - 66. - 

10.1145/1822018.1822029. 

Klieber Werner [et al.] Using Ontologies For Software Documentation [Conference] // Proc 

Malaysian Joint Conference on Artificial Intelligence MJCAI2009. - Kuala Lumpur : [s.n.], 2009. 

Kristiansen Renate and Trætteberg Hallvard Model-based user interface design in the context of 

workflow models [Conference] // Proceedings of the 6th international conference on Task models and 



117 

 

diagrams for user interface design. - Toulouse : Springer-Verlag, 2007. - pp. 227 - 239. - ISBN: 978-

3-540-77221-7. 

Kuhn Werner An Image-Schematic Account of Spatial Categories [Conference] // Lecture Notes in 

Computer Science: Spaitial Information Theory (COSIT'07). - Melbourne : Springer-Verlag, 2007. - 

pp. 152 - 168. - doi: 10.1007/978-3-540-74788-8_10. 

Landay James A. and Myers Brad A. Interactive sketching for the early stages of user interface 

design [Conference] // Proceedings of the SIGCHI conference on Human factors in computing 

systems. - Denver, Colorado : ACM Press/Addison-Wesley Publishing Co., 1995. - pp. 43 - 50. - doi: 

10.1145/223904.223910. 

Latif Atif [et al.] Turning keywords into URIs: simplified user interfaces for exploring linked data 

[Conference] // Proceedings of the 2nd International Conference on Interaction Sciences: Information 

Technology, Culture and Human. - Seol : ACM, 2009. - pp. 76 - 81. - doi: 10.1145/1655925.1655939. 

Leijen Daan wxHaskell: a portable and concise GUI library for haskell [Conference] // Proceedings 

of the 2004 ACM SIGPLAN workshop on Haskell. - Snowbird, Utah : ACM, 2004. - pp. 57 - 68. - 

doi: 10.1145/1017472.1017483. 

Lichter Horst, Schneider-Hufschmidt Matthias and Zullighoven Heinz Prototyping in industrial 

software projects-bridging the gap between theory and practice [Journal] // IEEE Transactions on 

Software Engineering. - [s.l.] : IEEE Computer Society, November 1994. - 11 : Vol. 20. - pp. 825 - 

832. - doi: 10.1109/32.368126 . 

Liu Ben, Chen Hejie and He Wei Deriving user interface from ontologies: a model-based approach 

[Conference] // Proceedings of the 17th IEEE International Conference on Tools with Artificial 

Intelligence. - Hong Kong : IEEE Computer Society, 2005. - pp. 259 - 264. - doi: 

10.1109/ICTAI.2005.55 . 

Loebe Frank and Herre Heinrich Formal Semantics and Ontologies: Towards an Ontological 

Account of Formal Semantics [Conference] // Proceedings for International Conference on Formal 

Ontology in Information Systems (FOIS). - Saarbrücken : IOS Press, 2008. - pp. 49 - 62. - 

doi:10.3233/978-1-58603-923-3-49. 

Lyon Douglas A. Semantic Annotation for Java [Journal] // Journal of Object Technology. - Zurich : 

[s.n.], 2010. - 3 : Vol. 9. - pp. 19 - 29. 

Martin Philippe Knowledge representation in RDF/XML, KIF, Frame-CG and Formalized-English 

[Conference] // Conceptual Structures: Integration and Interfaces, 10th nternational Conference on 

Conceptual Structures, ICCS. - [s.l.] : Springer, 2002. - Vol. 2393. - pp. 77 - 91. - ISBN: 3-540-43901-

3. 

Mayhew Deborah J. Principles and guidelines in software user interface design [Book]. - Englewood 

Cliffs, N.J. : Prentice Hall, 1992. 



118 

 

Mayhew Deborah J. The usability engineering lifecycle [Conference] // CHI '99 extended abstracts 

on Human factors in computing systems. - Pittsburgh, Pennsylvania : ACM, 1999. - pp. 147 - 148. - 

doi: http://doi.acm.org/10.1145/632716.632805. 

Moggridge Bill Designing Interactions [Book]. - New York : The MIT Press, 2007. - ISBN: 978-

0262134743. 

Montero Susana, Díaz Paloma and Aedo Ignacio Formalization of web design patterns using 

ontologies [Conference] // Proceedings of the 1st international Atlantic web intelligence conference on 

Advances in web intelligence. - Madrid : Springer-Verlag, 2003. - pp. 179 - 188. - ISBN: 3-540-

40124-5. 

Myers Brad, Hudson Scott E. and Pausch Randy Past, present, and future of user interface 

software tools [Journal] // ACM Transactions on Computer-Human Interaction (TOCHI) - Special 

issue on human-computer interaction in the new millennium. - [s.l.] : ACM, 2000. - 1 : Vol. 7. - pp. 3 

- 28. - doi: 10.1145/344949.344959. 

Najar Salma [et al.] Semantic representation of context models: a framework for analyzing and 

understanding [Conference] // Proceedings of the 1st Workshop on Context, Information and 

Ontologies. - Heraklion : ACM New York, NY, USA ©2009, 2009. - pp. 6:1- 6:10. - doi: 

10.1145/1552262.1552268. 

Namgoong Hyun. [et al.] An Adaptive User Interface in Smart Environment [Conference] // IEEE 

Tenth International Symposium on Consumer Electronics ISCE '06. - St. Petersburg : IEEE Explore, 

2006. - pp. 1 - 6. - doi: 10.1109/ISCE.2006.1689450 . 

Navigli Roberto and Velardi Paola Learning Domain Ontologies from Document Warehouses and 

Dedicated Web Sites [Journal] // Computational Linguistics. - [s.l.] : MIT Press, June 2004. - 2 : Vol. 

30. - pp. 151 - 179. - doi: 10.1162/089120104323093276. 

Neto Renato F. Bulcão, Kudo Taciana Novo and Pimentel Maria da Graça Using a software 

process for ontology-based context-aware computing: a case study [Conference] // Proceedings of the 

12th Brazilian Symposium on Multimedia and the web. - Natal, Rio Grande do Norte : ACM, NY, 

USA, 2006. - pp. 61 - 70. - doi: 10.1145/1186595.1186604. 

Newell Alan The Knowledge Level [Journal] // Artificial Intelligence. - 1982. - 1 : Vol. 18. - pp. 87 - 

127. 

Nielsen Jakob User interface directions for the Web [Article] // Magazine Communications of the 

ACM. - New York : ACM, January 1999. - 1 : Vol. 42. - pp. 65 - 72. - doi: 10.1145/291469.291470. 

Nirenburg Sergei and Raskin Victor Ontological semantics, formal ontology, and ambiguity 

[Conference] // Proceedings of the international conference on Formal Ontology in Information 

Systems - Volume 2001. - Ogunquit, Maine : ACM, NY, USA, 2001. - pp. 151 - 161. - doi: 

10.1145/505168.505183. 



119 

 

Norman Donald A. The Design of Everyday Things [Book]. - New York : Basic Books, 1988. - 

ISBN: 9780465067107. 

Ontology-based User Interface Development: User Experience Elements Pattern [Journal] // Journal 

of Universal Computer Science. - April 1, 2011. - 7 : Vol. 17. - pp. 1078 - 1088. - doi: 10.3217/jucs-

017-07-1078. 

Osterwalder Alexander and Pigneur Yves An e-Business Model Ontology for Modeling e-

Business, e-Reality: Constructing the e-Economy [Conference] // 15th Bled Electronic Commerce 

Conference. - Bled : EconWPA, 2002. 

Parkin Simon E., Moorsel Aad van and Coles Robert An information security ontology 

incorporating human-behavioural implications [Conference] // Proceedings of the 2nd international 

conference on Security of information and networks. - Famagusta : ACM, NY, USA, 2009. - pp. 46 - 

55. - doi: 10.1145/1626195.1626209. 

Patil Lalit, Dutta Debasish and Sriram Ram Ontology-Based Exchange of Product Data Semantics 

[Journal] // IEEE Transactions on Automation Science and Engineering. - July 2005. - 3 : Vol. 2. - pp. 

213 - 225. - doi: 10.1109/TASE.2005.849087. 

Paulheim Heiko Ontologies for User Interface Integration [Conference] // Proceedings of 

International Semantic Web Conference. - Chantilly, VA : Springer, 2009. - pp. 973 - 981. - doi: 

10.1007/978-3-642-04930-9_63. 

Petrasch Roland Model based user interface development with HCI patterns: variatio delectat 

[Conference] // Proceedings of the 1st International Workshop on Pattern-Driven Engineering of 

Interactive Computing Systems. - Berlin : ACM, 2010. - pp. 10 - 11. - doi: 10.1145/1824749.1824752. 

Pirlein Thomas and Studer Rudi An environment for reusing ontologies within a knowledge 

engineering approach [Journal] // International Journal of Human-Computer Studies. - [s.l.] : 

Academic Press, November 1995. - 5 - 6 : Vol. 43. - doi:10.1006/ijhc.1995.1083. 

Poli Roberto Descriptive, Formal and Formalized Ontologies [Book Section] // Husserl's Logical 

Investigations Reconsidered / book auth. Fisette D.. - [s.l.] : Kluwer Academic Publishers, 2003. - 

Vol. 48. 

Puerta Angel R. Issues in Automatic Generation of User Interfaces in Model-Based Systems 

[Conference] // Proceedings of the Second International Workshop on Computer-Aided Design of 

User Interface. - Belgium : Universitaires de Namur, Namur, 1996. - pp. 323 - 326. - ISBN: 2-87037-

232-9. 

Raymond Eric Steven and Landley Rob W. The Art of Unix Usability [Online] / prod. Raymond 

Eric S.. - April 18, 2004. - 0.1. - http://catb.org/~esr/writings/taouu/html/index.html. 



120 

 

Reeda P. [et al.] User interface guidelines and standards: progress, issues, and prospects [Journal] // 

Interacting with Computers. - [s.l.] : Elsevier, 1999. - 2 : Vol. 12. - pp. 119 – 142. - doi: 

http://dx.doi.org/10.1016/S0953-5438(99)00008-9. 

Rubin Jeffrey Handbook of Usability Testing: How to Plan, Design, and Conduct Effective Tests 

[Book]. - New York : John Wiley & Sons, Inc., 1994. - ISBN: 978-0471594031. 

Schlungbaum Egbert Model-based User Interface Software Tools Current state of declarative 

models [Report] : Technical Report / Graphics , Visulisation and Usability Center ; Georgia Institute 

of Technology. - Atlanta, Georgia : Georgia Institute of Technology, 1996. 

Shackel Brian Usability— context, framework, definition, design and evaluation [Book Section] // 

Human factors for informatics usability. - [s.l.] : Cambridge University Press, 1991. - ISBN: 0-521-

36570-8. 

Shahzad Syed Khuram and Granitzer Michael Ontological Framework Driven GUI Development 

[Conference] // Proceedings of 10th International Conference on Knowledge Management and 

Knowledge Technologies. - Graz : [s.n.], 2010. - pp. 198 - 206. 

Shahzad Syed Khuram, Granitzer Michael and Helic Denis Ontological Model Driven GUI 

Development: User Interface Ontology Approach [Conference] // 6th International Conference on 

Computer Sciences and Convergence Information Technology (ICCIT). - Seogwipo : [s.n.], 2011. 

Shahzad Syed Khuram, Granitzer Michael and Klaus Tochtermann Designing User Interfaces 

through Ontological User Model: Functional Programming Approach [Conference] // Proceedings of 

the Fourth International Conference on Computer Sciences and Convergence Information Technology 

ICCIT 2009. - Seoul : IEEE Explore, 2009. - pp. 99 - 104. - doi:10.1109/ICCIT.2009.330. 

Shankar Natarajan Automated Deduction for Verification [Journal] // ACM Computing Surveys. - 

[s.l.] : ACM New York, NY, USA , October 2009. - Vol. 41, No. 4. - pp. 20:1-20:56. - 

http://doi.acm.org/10.1145/1592434.1592437. 

Shanks Graeme, Tansley Elizabeth and Weber Ron Using ontology to validate conceptual models 

[Article] // Communications of the ACM - Service-oriented computing CACM. - [s.l.] : ACM, NY, 

USA., October 2003. - 10 : Vol. 46. - pp. 85 - 89. - doi: 10.1145/944217.944244. 

Smith Barry An Essay in Formal Ontology [Journal] // Grazer Philosophische Studien. - Graz : [s.n.], 

1978. - pp. 39–62. 

Smith Barry and Welty Christopher Ontology: Towards a new synthesis [Conference] // 

Proceedings of the international conference on Formal Ontology in Information Systems 

(FOIS2001). - Ogunquit, Maine : ACM Press, 2001. - pp. 3-9. - doi: 10.1145/505168.505201. 



121 

 

Smith Barry Beyond Concepts: Ontology as Reality Representation [Conference] // International 

Conference on Formal Ontology and Information Systems. - Turin : IOS Press, 2004. - pp. 73 - 84. - 

doi: 10.1.1.58.5118. 

Smith Barry Formal ontology, common sense and cognitive science [Journal] // International Journal 

of Human-Computer Studies. - [s.l.] : Academic Press, 1995. - 5 - 6 : Vol. 43. - pp. 641 - 667. - 

doi:10.1006/ijhc.1995.1067. 

Smith Barry Logic and Formal Ontology [Book Section] // Husserl's Phenomenology: A Textbook 

(Current Continental Research) / book auth. Mohanty J. N. / ed. McKenna William R.. - Lanham : 

University Press of America, 1989. - ISBN-13: 978-0819175311. 

Smith Barry Mereotopology: A theory of parts and boundaries [Journal] // Data & Knowledge 

Engineering. - [s.l.] : Elsevier Science, 1996. - 3 : Vol. 20. - pp. 287-303. - doi:10.1016/S0169-

023X(96)00015-8. 

Smith Barry Ontology (Science) [Online] // Nature Proceedings. - Nature Proceedings, July 15, 

2008. - http://hdl.handle.net/10101/npre.2008.2027.2. - doi:10.3233/978-1-58603-923-3-21. 

Smith Sidney L. and Mosier Jane N. Guidelines for designing User Interface Software [Report] = 

ESD-TR-86-278 : Technical / The MITRE Corporation Bedford ; United States Air Force, Hanscom 

Air Force Base. - Massachusetts : Userlab Inc., 1998. 

Sommerville Ian [et al.] Cooperative Systems Design [Journal] // The Computer Journal. - [s.l.] : 

Oxford University Press, 1994. - 5 : Vol. 37. - doi: 10.1093/comjnl/37.5.357. 

Spyns Peter, Meersman Robert and Jarrar Mustafa Data modelling versus Ontology engineering 

[Journal] // Newsletter ACM SIGMOD Record. - [s.l.] : ACM New York, NY, USA, December 

2002. - 4 : Vol. 31. - pp. 12-17. - doi: 10.1145/637411.637413. 

Stamper Ronald and Liu Kecheng Organisational dynamics, social norms and information systems 

[Conference] // Proceedings of Twenty-Seventh Hawaii International Conference on System 

Sciences. - Hawaii : IEEE, 1994. - pp. 645 - 654. 

Sukaviriya Piyawadee Noi and Foley James D. Supporting adaptive interfaces in a knowledge-

based user interface environment [Conference] // 1st international conference on Intelligent user 

interfaces. - Orlando, Florida, United States : ACM New York, NY, USA ©1993, 1993. - doi: 

10.1145/169891.169922. 

Sun Microsystems, Inc. Java Look and Feel Design Guidelines [Online] // Sun Developers 

Network. - Sun Microsystems, Inc., February 2011. - 

http://java.sun.com/products/jlf/ed2/book/index.html. 



122 

 

Szekely Pedro Retrospective and Challenges for Model-Based Interface [Conference] // Proceedings 

of the Third International Eurographics Workshop. - Namur : Springer-Verlag, 1996. - pp. 1 - 27. - 

ISBN : 3-211-82900-8. 

Thomas Cathy and Bevan Nigel Usability context analysis: a practical guide [Report] / National 

Physical Laboratory. - Teddington, Middlesex : HMSO National Physical Laboratory, 1996. 

Uschold Michael Ontology-Driven Information Systems: Past, Present and Future [Conference] // 

Proceedings of Fifth Internation Conference of Formal Ontology in Information Systems. - Karlsruhe : 

IOS Press, 2008. - pp. 3 - 18. 

Van Dam Andries Post-WIMP user interfaces [Article] // Communications of the ACM. - [s.l.] : 

ACM, 1997. - 2 : Vol. 40. - pp. 63 - 67. - doi: 10.1145/253671.253708. 

Van den Bergh Jan and Coninx Karin notations, Model-based design of context-sensitive 

interactive applications: a discussion of [Conference] // Proceedings of the 3rd annual conference on 

Task models and diagrams. - Prague : ACM, 2004. - pp. 43 - 50. - doi: 10.1145/1045446.1045456. 

Vanderhulst Geert, Luyten Kris and Coninx Karin Put the User in Control: Ontology-driven 

Meta-level Interaction for Pervasive Environments [Conference] // First International Workshop on 

Ontologies in Interactive Systems, 2008. ONTORACT '08.. - Liverpool : IEEE Computer Society, 

2008. - pp. 51 - 56. - doi: 10.1109/ONTORACT.2008.15 . 

Varzi Achille C. Basic Problems of Mereotopology [Conference] // Published in N. Guarino (ed.), 

Formal Ontology in Information Systems, . - Amsterdam : IOS Press, 1998. - pp. 29 - 38. - doi: 

10.1.1.6.9025. 

Vet Paul E. van der and Mars Nicolaas J.I. Bottom-up construction of ontologies [Journal] // IEEE 

TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING. - Enschede : IEEE Computer 

Society, July/August 1998. - 4 : Vol. 10. - doi: 10.1109/69.706054. 

Viswanathan Satya and Peters Johan Christiaan development, Automating UI guidelines 

verification by leveraging pattern based UI and model based [Conference] // Proceedings of the 28th 

of the international conference extended abstracts on Human factors in computing systems. - Atlanta, 

Georgia : ACM, 2010. - pp. 4733 - 4742. - doi: 10.1145/1753846.1754222. 

Wache H. [et al.] Ontology-Based Integration of Information — A Survey of Existing Approaches 

[Conference] // Proceedings of IJCAI-01 Workshop: Ontologies and Information Sharing,. - Seattle, 

WA : CEUR-Workshop Proceedings, 2001. - pp. 108-117. 

Walrath Kathy [et al.] The JFC Swing Tutorial: A Guide to Constructing GUIs, Second Edition 

[Book]. - Redwood City, CA : Addison Wesley Longman Publishing Co., Inc., 2004. - ISBN: 

0201914670. 



123 

 

Wand Y. and Weber R. An ontological model of an information system [Journal] // IEEE 

Transactions on Software Engineering. - [s.l.] : IEEE Computer Society, 1990. - 11 : Vol. 16. - pp. 

1282 - 1292. - doi: 10.1109/32.60316. 

Woo Mason [et al.] OpenGL Programming Guide: The Official Guide to Learning OpenGL, Version 

1.2 [Book]. - Boston, MA : Addison-Wesley Longman Publishing Co., Inc., 1999. - ISBN: 

0201604582. 

Woods David D. and Johannesen, Leila and Potter, Scott S. Human interaction with intelligent 

systems: an overview and bibliography [Journal] // ACM SIGART Bull. - [s.l.] : ACM, 1991. - 5 : 

Vol. 2. - pp. 39 - 50. - doi: 10.1145/122570.122571. 

Zaihrayeu Ilya [et al.] From web directories to ontologies: natural language processing challenges 

[Conference] // Proceedings of the 6th international The semantic web and 2nd Asian conference on 

Asian semantic web conference. - Busan : Springer-Verlag, 2007. - pp. 623 - 636. - ISBN: 978-3-540-

76297-3. 

Zimmermann Antoine [et al.] Formalizing Ontology Alignment and its Operations with Category 

Theory [Conference] // Proceedings of the 2006 conference on Formal Ontology in Information 

Systems: Proceedings of the Fourth International Conference (FOIS 2006). - Amsterdam : ACM, NY, 

USA, 2006. - pp. 277 - 288. - ISBN: 1-58603-685-8. 

 

 


