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Abstract (English)

Constraint-based applications can efficiently support customers in finding suitable items (products or ser-
vices). The main applications areas of constraint programming comprise scheduling and planning as well
as recommendation and configuration. Most of these applications are interactive ones, meaning that cus-
tomers explicitly specify their requirements or needs. Based on these requirements or needs the system tries
to find relevant items. If the system cannot determine any item that satisfies all specified requirements, then
an inconsistent situation occurred. In such a situation, intelligent consistency management techniques are
needed to support the customer in finding a way to a consistent state. State-of-the-art approaches focus
mainly on minimal diagnoses to show a minimal set of faulty requirements that need to be adapted in order
to restore consistency. Although the available approaches help the customers, they show big deficits in the
integration of different personalization methods. Additionally, the hard real-time requirement of interactive
constraint-based systems is often not addressed. For this reason, even small-sized problems soon become
computationally intractable.

This thesis introduces different approaches and techniques to support customers in restoring consistency
when interacting with constraint-based systems, especially with recommender and configuration systems.
In order to solve the challenge of personalizing the presented set of faulty requirements, a similarity-based,
a utility-based, a probability-based as well as a hybrid approach are presented. Empirical studies clearly
show the improvements in terms of prediction quality of the developed personalization approaches. Ad-
ditionally, this thesis presents approaches which help to significantly improve the runtime of consistency
management. Finally, algorithms are introduced which are addressing both challenges, namely the im-
provements of the prediction quality as well as run time improvements.
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Zusammenfassung / Abstract (German)

Constraint-basierte Systeme bieten Kunden eine effiziente Hilfe bei der Suche nach geeigneten Produkten
und Dienstleistungen. Die wichtigsten Anwendungsgebiete sind Scheduling, Planung, Empfehlung und
Konfiguration. Die meisten dieser Anwendungen haben eine interaktive Benutzeroberfläche, in der die
Kunden ihre Anforderungen und Bedürfnisse eingeben können. Das System versucht ein Produkt oder
eine Dienstleistung zu finden, welches diesen Anforderungen und Bedürfnissen entspricht. Sollte es nicht
möglich sein, ein Produkt zu finden, das den gestellten Anforderungen genügt, dann entsteht eine Inkon-
sistenz zwischen den Kundenanforderungen und dem Produktsortiment. Um dem Kunden bei der Produkt-
suche zu unterstützen, können Verfahren und Techniken der Künstlichen Intelligenz eingesetzt werden. Ein
verbreiteter Ansatz zum Umgang mit den erwähnten Inkonsistenzen ist die Berechnung von minimalen Di-
agnosen, d.h., einer minimalen Menge von fehlerhaften Anforderungen, die vom Kunden zur Beseitigung
der Inkonsistenz angepaßt werden müssen. Obwohl diese Methode den Kunden hilft, gibt es dennoch große
Defizite im Bereich der Integration von Personalisierungskonzepten. Darüber hinaus gibt es harte Laufzei-
tanforderungen von interaktiven Anwendungen, die von konventionellen Berechnungsverfahren selbst bei
einfachen Diagnoseaufgaben nicht erfüllt werden können.

In dieser Arbeit werden verschiedene Ansätze dargestellt, die dazu verwendet werden können, Inkon-
sistenzen aufzulösen. Zur Verbesserung der Verwendbarkeit existierender Diagnoseansätze, werden un-
terschiedliche Ansätze zur Individualisierung (unter anderem basierend Ähnlichkeitswerten, Wahrschein-
lichkeitswerten oder Nutzwerten) präsentiert. Weiters wird ein hybrider Ansatz vorgestellt, welcher die
individuellen Personalisierungsansätze kombiniert. Mit Hilfe von empirischen Studien werden die Ansätze
bezüglich ihrer Vorhersagequalität evaluiert. Darber hinaus werden Ansätze präsentiert, die eine Laufzeit-
verbesserung bringen. Letztendlich werden Algorithmen eingefhrt, die sich mit beiden Herausforderungen
befassen, nämlich der Verbesserung der Vorhersagequalität und der Laufzeitverbesserung.
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Chapter 1
Introduction

Constraint-based systems are applied for solving problems that comprehend a set of conditions (constraints)
which restrict the set of possible solutions. In order to solve such problems, constraint-based systems com-
prehend a wide range of techniques coming especially from Artificial Intelligence and Databases. Main
application fields of constraint programming include scheduling and planning (Catillo, 2005) as well as
recommendation (Jannach, 2008; Felfernig et al., 2009c) and configuration (Mittal and Frayman, 1989;
Fleischanderl et al., 1998; Felfernig et al., 2004; Sinz and Haag, 2007). Most of these applications are
interactive ones, meaning that a customer interacts with the system. Depending on the customers pref-
erences, needs, and knowledge, the problem to be solved by the constraint-based system may become
over-constrained (i.e. no available solution satisfies all customer requirements). In this situation intelligent
techniques are needed to support the customer in finding a way to a consistent state (possible solution). For
this reason, there is a need for a consistency management.

Consistency management can be applied in various types of constraint-based systems. For example, a
recommender system, which is a system that guides a user in a personalized way to interesting or useful
items, can be designed as a constraint-based system. Configuration system is another type of constraint-
based systems. The aim of configuration systems is to aid customers in a special case of design activity
to configure an item (product or service) which is assembled from instances of a fixed set of well-defined
component types (Sabin and Weigel, 1998).

This chapter motivates the importance of consistency management in constraint-based systems. Further-
more, the research objectives and the contributions are pointed out in the field of recommender systems,
configuration systems, as well as model-based diagnosis. An outline of the thesis closes this chapter.

1.1. Motivation

This thesis focuses on techniques and algorithms to aid customers in the conflict management process in
constraint-based systems. While interacting with such systems, customers specify their preferences, re-
quirements or needs in the form of constraints (called requirements in this work). In this context, situations
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may occur where the specified requirements are too narrow, so that no solution can be found. Such a
situation is also denoted as the no solution could be found dilemma (Pu and Chen, 2008).

In the following, a working example is introduced to show how a recommendation and a configuration
task can be designed. A recommendation task is to find the best match between the customer requirements
and the available items. Compared to this, a configuration task, is a design activity where the item that is
configured, is created from a set of well-defined components (configuration knowledge base). The first step
in such a configuration task is that the customer specifies the requirements. Afterwards these requirements
are combined with the configuration knowledge base to retrieve at least one possible configuration.

For example, a customer wants to buy a bike and uses a constraint-based system to retrieve possible
products. Let us assume, that the customer specifies the requirements a blue, small-sized bike with 18 gears.
Furthermore, it is assumed, that only the colours blue and green are available for the bikes. Moreover, the
bikes can be small, medium or large-sized. The gears shift is available with 3, 10, 12 and 18 gears.
Additionally to these domain definitions, the following three constraints are introduced:

• c1 : size = small⇒ gear < 12,

• c2 : colour = blue⇒ size = medium,

• c3 : size = large⇒ gear ≥ 12,

Although this example is simple it characterizes a typical configuration task. This task consists of the
constraints c1, c2 and c3. As already mentioned, the requirements of the current customer are the following:

• r1 : colour = blue

• r2 : size = small

• r3 : gear = 18

In comparison to a configuration task, which can be modelled as a constraint satisfaction problem (CSP)
(Tsang, 1993), a recommendation task operates on a table-based product data representation. A config-
uration task can be transformed into a corresponding recommendation task. For the example described,
a table may be set up which holds all possible configurations as product data (see Table 1.1). This table
contains every possible instantiation of a bike which can be derived from the constraints (c1, c2 and c3) and
the domains (colour: blue, green; size: small, medium, large; gears: 3, 10, 12, 18). Each configuration in
this table can be seen as a product with a corresponding identifier (see the column id in Table 1.1). Note
that the number of products is also highly dependent on the domains. If, for example, one more colour is
added, this results in 8 more products.

The aim of the customer, while interacting with a constraint-based system, is to identify products that
satisfy all his requirements (r1, r2 and r3). Considering the introduced example, it is not possible for the
system to derive any bike that satisfies the requirements (r1, r2 and r3). Taking a look at, for example, the
requirements r1 (colour = blue) and r2 (size = small), it can be seen that they are conflicting with constraint
c2 (colour = blue⇒ size = medium). At the same time, it can be observed that there does not exist any
product in Table 1.1 that satisfies the requirements r1 and r2.
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Table 1.1.: Table-based product data representation of all possible bikes that can be derived from the con-
straints (c1, c2, c3)

id colour size gear

p1 green small 3
p2 green small 10
p3 green medium 3
p4 green medium 10
p5 green medium 12
p6 green medium 18
p7 green large 12
p8 green large 18
p9 blue medium 3
p10 blue medium 10
p11 blue medium 12
p12 blue medium 18

One approach to tackle this impasse, is to present an empty list of products to the customer. This is
not convenient as the customer does not understand why no solution could have been found. Another
approach is to inform the customer that there does not exist any product that satisfies their needs. Although
this is slightly better than the first approach, it does not satisfy the customer. Therefore, applications are
in need of techniques that support the identification of minimal sets of faulty requirements, which have
to be deleted or adapted in order to restore consistency. This can be done by applying approaches and
techniques from the field of model-based diagnoses (Reiter, 1987). An obvious approach is to focus on
minimal cardinality diagnoses (Felfernig et al., 2004). A diagnosis can be defined as a set of requirements
that need to be relaxed (or deleted) in order to retrieve at least one product (restoring consistency). The
approach introduced by (Felfernig et al., 2004) focuses on minimal cardinality diagnoses, i.e. a set with a
minimal number of requirement changes (relaxations) that can be used to restore the consistency.

Revisiting the working example, it has been already identified that the requirements r1 and r2 are con-
flicting with constraint c2. This set of requirements {r1, r2} is a minimal conflict set, because it is not
possible to delete any element of it, in a way that a conflict is still induced. Another minimal conflict
set of the example contains the requirements r2 (size = small) and r3 (gear = 18). These requirements
are conflicting with the constraint c1 (size = small⇒ gear < 12). (Reiter, 1987) introduced an approach
to identify minimal diagnoses based on minimal conflict sets by building a Hitting Set Directed Acyclic
Graph (HSDAG). This algorithm adds every minimal conflict set to the graph in an iterative way. The first
minimal conflict set (r1, r2) is added to the root node (see Figure 1.1). The second minimal conflict set (r2,
r3) is added to every leaf, if the path to this leaf does not contain any element of the minimal conflict set.
In the working example, this holds for the left leaf (resulting from r1), but it does not hold for the right leaf
(resulting from r2), because r2 is also part of the second minimal conflict set. On the basis of this graph,
all minimal diagnoses can be derived. For the working example the minimal diagnoses are d1 = {r2} and
d2 = {r1,r3}. A minimal diagnoses is a relaxation of each minimal conflict set. Taking a look at the two
conflict sets of the example, it can be seen that both sets include the requirement r2. Thus, adapting the re-
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quirement r2 can resolve all minimal conflicts. Similar to this, if the requirements r1 and r3 are resolved, all
minimal conflicts are resolved as well. Note that {r1,r2} is also a diagnosis, nevertheless it is not minimal
because {r2} is already a minimal diagnosis.

CS1 = {r1, r2}

CS2 = {r2, r3}

r2

d2 = {r1,r3}

r3

r1

d1 = {r2}

r2

Figure 1.1.: Directed acyclic graph (as introduced by (Reiter, 1987) built of minimal conflict sets ({r1,r2},
{r2,r3}) to identify minimal diagnoses ({r2},{r1,r3}).

In the working example, the conflict sets have been identified without using a specific algorithm. Nev-
ertheless, in a complex knowledge base it can be hard to identify minimal conflict sets. Therefore, Junker
(Junker, 2004) introduced the algorithm QuickXplain to identify minimal preferred conflict sets. A pre-

ferred conflict set is more likely to be accepted by the user and thus, it is more valuable to the user com-
pared to other conflict sets. The QuickXplain algorithm (Junker, 2004) uses a lexicographical ordering
to define a preferred conflict set (also called explanation in (Junker, 2004)). Another approach (called
CorrectiveRelax), that calculates corrective explanations was introduced by (O’Callaghan et al., 2005).
Compared to (Junker, 2004) (where explanations are conflict sets), these corrective explanations intro-
duced in (O’Callaghan et al., 2005) are similar to diagnoses. An example showing the mechanism of the
CorrectiveRelax algorithm is given in Section 3.8.

It is already a valuable improvement to aid customers in the conflict management process using diag-
noses. Nevertheless, this can still be improved by suggesting repair actions to the customers. A repair

action is an action that can be performed by the customer in order to restore consistency. For the example
introduced, the diagnoses d1 = {r2} and d2 = {r1,r3} have been identified. Based on the diagnosis d1, the
system can suggest the customer to change the attribute size to medium in order to restore consistency. The
suggested action (to change the attribute size to medium) is called repair action. A repair action for the
diagnosis d2 = {r1,r3} is for example to change the colour to green and the gear to 10. The number of
alternatives could potentially become very large, which turns the identification of acceptable repair actions
into a very frustrating task for the customer (Felfernig, 2007). One possibility to tackle this problem is
to present only representative explanations to the customer. This representativeness ensures that the com-
puted set of explanations is representative of all possible solutions (O’Sullivan et al., 2007). This can be
achieved by reducing the number of explanations presented, and at the same time increase their diversity
(see, for example, (O’Sullivan et al., 2007)). Another possibility is to decrease the number of explanations
or repair actions by using personalization strategies. One possibility for a personalization strategy is to
use similarities between different users or items. The similarity strategy tries to find the item that is most
similar to the user requirements (Felfernig et al., 2009c). Another strategy is to introduce probabilities,
and recommend the diagnosis or repair action with the highest probability of being accepted (Felfernig and
Schubert, 2011a).
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1.2. Research Objectives

Current research in constraint-based systems raises new challenges. The main challenges are performance,
usability, personalization and conflict management. Among these issues, the improvement of run time
performance, personalization and consistency management are especially relevant in the context of this
work. In this context the following challenges have been tackled:

1. Improving the run time performance for identifying minimal conflict sets by exploiting the
structural properties of knowledge-based recommender systems: As already described in Sec-
tion 1.1 a recommender system operates on a table-based product assortment. The structural proper-
ties of such a table-based representation can be used to improve the run time performance of conflict
detection algorithms.
For interactive systems, it is important that the algorithms respond fast. According to (Miller, 1968;
Card et al., 1991) the limits for a system to react should be: A system responding in less then 0.1
seconds makes the user feel that the system reacts instantaneously. The upper limit to not interrupt
the users flow of thought is 1 second. Although the user will notice the delay of the system, there
is no need for a special feedback if the response time of a system is between 0.1 and 1 second. If
the system takes longer then 1 second, the user loses the feeling of operating on the data. Therefore,
a fast response of interactive systems is crucial for user acceptance. For this reason, the approaches
used for consistency management need to calculate the alternatives efficiently in order to not over-
come the limit. Based on this time-bound and the possible high number of products, the following
questions are addressed:
(Q1) How can structural properties of knowledge-based recommender systems be used to improve
the run time performance of conflict detection algorithms?
(Q2) How can customers be supported in restoring consistency between the requirements and the
corresponding product assortment?

2. Improving the run time performance for calculating diagnoses in configuration scenarios. For
configuration systems with an interactive user interface, it is important that the algorithms respond
fast (see Challenge 1).
Compared to recommender systems, which use a table-based representation of the products or items,
a configuration task can be modelled as a constraint satisfaction problem (CSP). As shown in Sec-
tion 1.1, a configuration task can be transformed into a recommendation task. Nevertheless, this is in
most cases not feasible, because the number of possible configurations is too large. For this reason,
configuration systems are in the need of techniques and algorithms that aid customers in consistency
management. Although there exists a couple of approaches to resolve conflicts that perform quite
well (see for example (Junker, 2004; O’Callaghan et al., 2005)), there is still space for improvements.
Therefore, this work focuses on the development of techniques and algorithms to calculate minimal
diagnoses faster compared to existing approaches. This is the reason for raising the following ques-
tion:
(Q3) What are the possible run time improvements for diagnosis algorithms to support customers,
who are interacting with a constraint-based system?

3. Personalization strategies to improve the prediction accuracy: A study performed by (Joachims
et al., 2005) found out that 42% of the users clicked the top search hit, and 8% of the users clicked

5



Chapter 1. Introduction

the second hit. Similar results have been identified by other studies, but what is a valuable outcome
of this study is that they performed a second test in which they secretly fed the search results through
a script before displaying them to users. The script swapped the two top results so that what was
originally the number two entry was displayed as the number one entry and vice versa. In this
swapped display, 34% of the users still clicked on the top entry and 12% of the users clicked the
second hit.
As the number of possible diagnoses resulting from an over-constrained situation gets potentially
large, there is a need to intelligently rank the diagnoses. This leads to the following research question:
(Q4) How can diagnoses be personalized in order to achieve a high prediction accuracy?

The research questions raised in this section indicate the basis for the objectives of this thesis. The
following section provides an overview of the major contributions that have been developed within the
scope of this thesis.

1.3. Contributions

The presented work focuses on consistency management principles in constraint-based systems, especially
on knowledge-based recommender systems, as well as configuration systems. These systems are used to
grasp the idea behind each algorithm. Nevertheless, the techniques and algorithms can also be applied to
other over-constrained problems.

Figure 1.2.: This thesis focuses on consistency management techniques and algorithms for recommender
and configuration systems, which also influence the research in the field of Model-Based Di-
agnosis (MBD)

This thesis covers algorithms and techniques from three fields: model based diagnosis (Reiter, 1987;
de Kleer, 1990), recommender systems (Burke, 2000), and configuration (Soininen and Stumptner, 2003)
(see Figure 1.2). Based on the needs of knowledge-based recommendation and constraint-based config-
uration systems, different algorithms have been developed to manage the consistency during the interac-
tion with these systems. In the field of recommender systems we developed the algorithms GraphXplain,
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FastXplain, Boosted FastXplain and Personalized FastXplain, which exploit the structural properties of
predefined product catalogues. In addition, we developed the algorithms PersRepair and ReAction that
strongly depend on concepts used in Model-Based Diagnosis (MBD). These two algorithms focus on dif-
ferent personalization strategies and are more independent from the underlying problem representation. In
the field of constraint-based configuration systems we developed the algorithms FastDiag, FlexDiag and
PersDiag. All three algorithms improve the consistency management and have an impact in the field of
model-based diagnosis.

An overview of the achievements of this thesis, is given in Table 1.2. A more detailed discussion of the
contributions obtained in the field of recommender systems are presented in Section 1.3.1. The achieve-
ments in the field of configuration systems are described in Section Section 1.3.2. The third field we
contributed to is the field of model-based diagnosis. The influence of the presented work to the current
research on model-based diagnosis is presented in Section 1.3.3.

1.3.1. Contributions to the Field of Recommender Systems

The contributions in the context of recommender systems focus on algorithms that exploit the structural
properties of the table-based product data representation, as well as on algorithms that are more flexible
regarding the underlying type of knowledge representation. The main contributions to the field of recom-
mender systems are:

• Application of concepts coming from network analysis to identify minimal conflict sets: In
(Schubert et al., 2009) the GraphXplain algorithm has been introduced to identify all minimal conflict
sets based on common techniques used in network analysis (Wasserman and Faust, 1994). Starting
from a table-based representation of the product assortment and the customer requirements a graph
is generated. Afterwards, this graph structure is used to derive all minimal conflict sets.

• Usage of heuristics to exploit the table-based product data representation: In (Schubert et al.,
2010) the FastXplain algorithm has been introduced, which is a heuristic to identify all minimal
conflict sets from a given set of minimal diagnoses. A further improved algorithm is the Boosted

FastXplain (BFX) which was introduced in (Schubert and Felfernig, 2011). This algorithm uses
weights to optimize the selection of diagnoses used to calculate minimal conflict sets. Considering
the fact that not only it is important to calculate minimal conflict sets efficiently, but also to person-
alize them. For this reason the Personalized FastXplain (PFX) is introduced. This algorithm uses
utility values to identify relevant conflict sets for the user.

• Improvement of the acceptance probability (precision): Due to the primacy effect (Marshall and
Werder, 1972; Glenberg et al., 1980) (the first few results are recalled more frequently) it is important
to rank interesting diagnoses or repair actions at the top. Therefore, several algorithms have been
developed within the scope of this research. First of all, the Personalized FastXplain (PFX), which
uses utility values to identify the most interesting results (conflict sets) for the customer. The Per-

sRepair algorithm introduced in (Felfernig et al., 2009c) is an approach, that calculates personalized
(plausible) repair actions for inconsistent requirements based on similarity measures. Moreover, the
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Table 1.2.: Overview of the research questions and the corresponding contributions

Research Questions Contributions

(Q1) How can structural properties
of knowledge-based recommender
systems be used to improve the run
time performance of conflict detec-
tion algorithms?

The algorithms GraphXplain (Schubert et al., 2009), FastXplain

(Schubert et al., 2010), Boosted FastXplain (BFX) (Schubert and
Felfernig, 2011) and Personalized FastXplain (PFX) have been
developed within this work. All algorithms use a table-based
representation generated from the product assortment and the
customer requirements.

(Q2) How can customers be sup-
ported in restoring consistency be-
tween the requirements and the cor-
responding product assortment?

Customers can be supported by an iterative presentation of
minimal conflict sets (explicitly calculated by the algorithms
GraphXplain (Schubert et al., 2009), FastXplain (Schubert et al.,
2010), BFX (Schubert and Felfernig, 2011) and PFX), by the
presentation of minimal diagnoses (explicitly calculated by the
algorithm PersDiag (Felfernig and Schubert, 2011a)) or by the
presentation of repair actions (explicitly calculated by the algo-
rithms PersRepair (Felfernig et al., 2009c) and ReAction (Schu-
bert et al., 2011)).

(Q3) What are the possible run time
improvements for diagnosis algo-
rithms to support customers, who
are interacting with a constraint-
based system?

There are several possibilities to improve state-of-the-art algo-
rithms in terms of run time performance. The algorithms ReAc-

tion (Schubert et al., 2011) and FastDiag (Felfernig et al., 2011)
are especially interesting, due to their general applicability. An-
other approach is the FlexDiag (Felfernig and Schubert, 2010b)
which is a fast approach for calculating a small number of diag-
noses. Nevertheless, it is not guaranteed that the algorithm finds
minimal diagnoses.

(Q4) How can diagnoses be person-
alized in order to achieve a high
prediction accuracy?

This work focuses on the application of different personalization
strategies. The algorithm PFX uses utility values, whereas the al-
gorithm PersRepair (Felfernig et al., 2009c) uses different sim-
ilarity measures. Moreover, the algorithm PersDiag (Felfernig
and Schubert, 2011a) is used to compare a utility, a similarity,
a probability and a hybrid approach. A lexicographical order-
ing based on utility values is used by the algorithms ReAction

(Schubert et al., 2011) and FastDiag (Felfernig et al., 2011).

ReAction algorithm (Schubert et al., 2011) was developed, which uses a lexicographical ordering
based on utility values to identify the most suitable repair action for the customer.

1.3.2. Contributions to the Field of Configuration Systems

The contributions to the field of configuration systems address of the run time efficiency of algorithms
to support users during the consistency management. On the other hand, the introduced concepts and
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algorithms focus on personalization strategies to rank diagnoses. The main contributions to the field of
configuration systems are:

• Raising efficiency through personalization: A customer selects higher ranked diagnoses or repair
actions more often compared to others (primacy effect). If relevant diagnoses are ranked higher, then
less evaluation effort is required from the customer. For this reason it is important to personalize
the ranking of the presented diagnoses. In order to tackle this problem, the PersDiag algorithm
(Felfernig and Schubert, 2010a, 2011a) has been developed to calculate personalized diagnoses. With
this approach a comparison between different personalization strategies such as utility, similarity,
probability and hybrids has been performed. Moreover, the FastDiag algorithm (Felfernig et al.,
2010c, 2011) has been developed to identify personalized diagnoses using a lexicographical ordering.

• Calculation of a limited set of minimal diagnoses: Due to the primacy effect, there is no need to
calculate all minimal diagnoses, just a few are enough. Therefore, the algorithm FastDiag (Felfernig
et al., 2010c, 2011) is introduced, which allows an efficient calculation of one diagnosis at a time
with logarithmic complexity in terms of the number of consistency checks.

• Run time improvements: For interactive systems, it is important that they can respond fast, because
otherwise the customer loses the attention. For this reason, a detailed evaluation of the algorithms
FastDiag (Felfernig et al., 2010c, 2011) and PersRepair (Felfernig and Schubert, 2010a, 2011a) has
been performed and compared the results to state-of-the-art approaches such as QuickXplain (Junker,
2004) and CorrectivRelax (O’Callaghan et al., 2005).

1.3.3. Contributions to the Field of Model-Based Diagnosis

Model-Based Diagnosis (MBD) covers techniques and algorithms to explain faulty behaviour of a system.
Based on the description of a system combined with an observation of the behaviour, the system can be
identified to perform correctly (as it is meant to behave) or not (Reiter, 1987). If the description conflicts
with the intended behaviour this results in a conflict situation. Then, the diagnosis task is to identify those
components which explain the discrepancy between the observed and the intended system behaviour (Re-
iter, 1987). A diagnosis is a minimal set of faulty components whose adaptation will allow the identification
of a recommendation or configuration.

Model-Based Diagnosis starts with a description of the system which is the predefined product assort-
ment in recommender systems and the product knowledge base in configuration systems. The intended
behaviour of the system is that it provides a recommendation or configuration for a given set of customer
requirements. In cases where the system behaviour deviates (no solution can be found), one or more diag-
noses can be calculated. The main contributions to the field of model-based diagnosis are the following:

• Deriving minimal conflict sets based on minimal diagnoses: Based on the table-based data struc-
ture which is used by recommender systems, diagnoses can be easily derived. These diagnoses are
used by the algorithms FastXplain (Schubert et al., 2010), Boosted FastXplain (BFX) (Schubert and
Felfernig, 2011) as well as Personalized FastXplain (PFX) to calculate minimal conflict sets. In order
to derive these minimal conflict sets, an adaptation of the Hitting Set Directed Acyclic Graph (HS-
DAG) (Reiter, 1987) has been performed. Originally minimal conflict sets are added to this graph
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with the aim to identify minimal diagnoses. This approach has been adapted in a way that minimal
diagnoses are added to the graph with the aim to derive minimal conflict sets.

• Usage of the divide-and-conquer principle for calculating minimal diagnoses: The divide-and-
conquer principle has already been applied to identify minimal conflict sets (see QuickXplain (Junker,
2004)). Within this work two algorithms (ReAction (Schubert et al., 2011) and FastDiag (Felfernig
et al., 2010c, 2011)) have been developed that use the divide-and-conquer principle for calculating
minimal diagnoses. The focus on minimal diagnoses improves the run time behaviour considerably
if only one or few diagnoses are needed.

• Identification of diagnosis clusters: A diagnosis cluster is a set of constraints of which at least one
subset constitutes a minimal diagnosis. Nevertheless, the set (diagnosis cluster) itself does not need
to be a minimal diagnosis itself. A diagnosis cluster allows us to quickly narrow the space where at
least one minimal diagnosis is located without actually calculating the minimal diagnoses. In order
to calculate such diagnosis clusters, the FlexDiag algorithm (Felfernig and Schubert, 2010b) has
been developed. This algorithm takes one parameter which impacts the number of constraints that
are part of the diagnosis cluster, but which are not part of the minimal diagnosis.
The FlexDiag algorithm allows us to narrow the space where the minimal diagnosis is located without
calculating the minimal diagnosis. For this reason, the algorithm can be applied in the model-based
diagnosis community to identify rough clusters. This is especially useful in situations where no
minimal diagnosis is needed or a further refinement is done by another approach.

1.4. Thesis Outline

This PhD thesis is partitioned into 6 chapters. First, an introduction to the field of research is given.
Then the focus is put on consistency management techniques and algorithms, which can be applied in
knowledge-based recommender and constraint-based configuration systems. Moreover, an overview of
the D-fame: Diagnosis FrAMEwork is given that comprehends all techniques and approaches introduced.
Finally, a conclusion and outlook on possible future work is provided. This thesis is organized as follows:

Chapter 1 outlines the motivation and research objectives for this work. It raises different research
questions regarding consistency management in constraint-based systems such as recommender and con-
figuration systems. An overview on the structure of this thesis completes this chapter.

Chapter 2 provides an overview on related work. Different constraint-based systems are introduced.
This thesis concentrates on recommender systems as well as configuration systems. Section 2.1 gives an
overview of different recommendation approaches such as collaborative filtering, content-based filtering
and knowledge-based recommendation as well as hybrids thereof. Furthermore, the implementation of
a recommendation system as a constraint-based system is sketched. Section 2.2 gives an overview of
configuration systems. Finally, the concepts of inconsistency, consistency management and how to restore
consistency are described in more detail (see Section 2.3). Additionally, basic definitions of terms such as
conflict and diagnosis are introduced.

Chapter 3 presents the concepts of consistency management in the context of recommender systems.
The discussions in Chapter 3 focus on specific algorithms to restore consistency in knowledge-based rec-
ommender systems. The discussed algorithms are GraphXplain in Section 3.2, FastXplain in Section 3.3,
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BFX in Section 3.4, PFX in Section 3.5, PersRepair in Section 3.6 and ReAction in Section 3.7. All algo-
rithms are evaluated against alternative state of the art approaches (Junker, 2004; O’Callaghan et al., 2005;
Jannach, 2008) according to run time performance as well as prediction quality (acceptance probability).
Section 3.9 further discusses related work from the field of consistency management in knowledge-based
recommender systems. A short summary of the algorithms and a selection guide for certain situations
concludes the chapter.

Chapter 4 presents the concepts of consistency management the context of configuration systems. The
discussion focuses on algorithms to restore consistency in configuration systems. This chapter highlights
three different algorithms, FastDiag in Section 4.2, FlexDiag in Section 4.3, and PersDiag in Section 4.4
to identify diagnoses or diagnosis clusters. All algorithms are evaluated against state-of-the-art approaches
(Junker, 2004; O’Callaghan et al., 2005) according to run time performance as well as prediction quality
(acceptance probability). An evaluation focusing on the relevance of the identified diagnosis clusters is
included as well. A tentative summary of the algorithms completes the chapter. An evaluation focusing on
the relevance of the identified diagnosis clusters is included as well. A tentative summary of the algorithms
completes the chapter.

Chapter 5 provides an overview on the D-fame: Diagnosis FrAMEwork. This framework was designed
to support the scientific community especially in the field of model-based diagnosis. Its aim is to provide
a framework for evaluation, study and analysis of different algorithms for calculating minimal conflict sets
and diagnoses. An overview on the architecture of the implementation is given. This chapter is concluded
with a guideline on how to use the framework.

Chapter 6 concludes this thesis and reflects on the goals and contributions. In addition, an outlook on
several possibilities for future research is given.
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Chapter 2
Preliminaries

Today, people are constantly exposed to constraint-based systems in their everyday life. They appear in
many different applications, spanning from time tabling, production scheduling (Catillo, 2005), and rec-
ommendation (Jannach, 2008; Felfernig et al., 2009c; Burke et al., 2011) to product and service configu-
ration (Mittal and Frayman, 1989; Fleischanderl et al., 1998; Felfernig et al., 2004; Sinz and Haag, 2007).
When interacting with constrainted-based systems, customers are asked to specify their requirements via
constraints. These constraints can be combined with ones from other sources, for example, a knowledge
base. All together, the constraints state the problem (a CSP, Constraint Satisfaction Problem) which can be
solved by a constraint solver. Definition 1 defines a constraint satisfaction problem according to the work
of (Tsang, 1993).

Definition 1 A Constraint Satisfaction Problem (CSP) can be defined as a tuple 〈V,D,C〉, where V is a

finite set of variables. Each of these variables is associated with a finite domain D and a set of constraints

C. These constraints restrict the possible variable assignments.

The task of a constraint solver is to assign a value to each variable while satisfying all constraints. A well
known example of a constraint satisfaction problem is the N-queens problem. The task is to place N queens
on a N×N chess board. The criteria is that any two queens are not allowed to threaten each other (i.e. both
are on the same row, column, or diagonal line of squares). This example shows, how a constraint can be
used to restrict the number of alternatives. Without the constraint, the queens could be placed anywhere on
the board. If the constraint is added, there exists only a small number of placement alternatives, in which
the N queens could be placed.

”Constraint programming represents one of the closest approaches computer science has yet made to

the Holy Grail of programming: the user states the problem, the computer solves it.” (Freuder, 1997). This
is the reason why constraint technologies are applied in many applications (Tsang, 1993), such as planning
and scheduling (Catillo, 2005), recommendation (Felfernig et al., 2009c) and configuration (Mittal and
Frayman, 1989; Fleischanderl et al., 1998; Sinz and Haag, 2007). The field of applications for planning
and scheduling, for example, cover resource planning as well as production scheduling. Further exam-
ple applications are software feature selection (Raatikainen et al., 2005), software release planning and
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requirements engineering (Goknil et al., 2008; Felfernig et al., 2010d). The application domains for rec-
ommendation and configuration technologies are, for example, automotive industry, aviation and financial
services. Constraint technologies can also be applied in groupware systems as shown in (Felfernig et al.,
2010e).

The main advantage of constraint-based systems is their ability to reduce errors and lower response
times. To illustrate the advantage, consider solving a Sudoku puzzle. Depending on the skills the person
has, an error may be made, because it is hard to keep track of all restrictions to number placement. The
constraint solver, on the other hand, keeps all constraints in the memory and reliably finds a correct so-
lution. Additionally, if a Sudoku puzzle is solved on the computer, it can helpfully inform the user about
erroneous placements before he realizes the conflict, avoiding (mentally) costly backtracking steps. In ap-
plications that use constraint technologies, many scenarios may occur where the constraint set can become
inconsistent.

An inconsistent situation may emerge, when a customer interacts with a configurator application. While
the customer refines her requirements (represented as constraints), they can become inconsistent with the
underlying configuration knowledge base (O’Sullivan et al., 2007). Another application field of consistency
management is the development and maintenance of knowledge bases. There are several possibilities that
cause inconsistencies in knowledge bases. First, an inconsistency can be based on contradicting constraints.
Another possibility is that the the knowledge base becomes inconsistent with respect to a set of test cases
(Felfernig et al., 2004). Moreover, utility constraints (also called scoring rules) which determine the order in
which configurations or products are presented, may get inconsistent with ranking examples coming from
an expert (Felfernig et al., 2010a). These examples show, that there exists a need of intelligent assistance
to actively support users and knowledge engineers.

This thesis is based on three pillars: model-based diagnosis (Reiter, 1987; de Kleer, 1990), recommender
systems (Burke, 2000) and configuration systems (Soininen and Stumptner, 2003). The focus is to restore
consistency by extending and adapting concepts of model-based diagnosis to calculate minimal conflict
sets and preferred (plausible) minimal diagnoses (including repairs). The algorithms described can be used
to improve the run time performance and prediction quality of constraint-based systems.

The remainder of this chapter is organized as follows. Section 2.1 gives an overview of different recom-
mendation approaches. They are divided into three main categories which comprise collaborative recom-
mender systems (Section 2.1.1), content-based recommender systems (Section 2.1.2) and knowledge-based
recommender systems (Section 2.1.3). Section 2.2 introduces configuration systems and highlights their
main challenges. The importance of consistency management is elaborated on in Section 2.3. Additionally,
that section discusses different aspects of model-based diagnosis. A summary given in Section 2.4 closes
this chapter.

2.1. Recommender Systems

Which book should I read? What mobile phone should I buy? What music should I listen to? In every-
day life situations we trust recommendations from friends, random people and reviewers, but also from
applications (for example recommendation web services). In the last years recommender systems have
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experienced a significant upturn and can be found in many applications. The roots of recommender sys-
tems trace back to different fields comprehending cognitive science (Rich, 1979), information retrieval
(Salton, 1988) as well as management science (Murthi and Sarkar, 2003). Especially the personalization
issues were studied in these areas. In the mid-1990s recommender systems, an independent research area
emerged. The break-through happened, when researchers started to focus on recommendation problems
that explicitly rely on rating structures (Adomavicius and Tuzhilin, 2005).

The aim of recommender systems is to present new or desired items and information to the user. Present-
ing the right item at the right time is increasingly playing a key role in achieving a good usability. Different
characteristics of products and services (for example, frequency of purchase, customizability, cost) are the
reason why different types of recommender systems emerged. Nevertheless, all types of recommender
systems try to find items that are of interest for the user. In order to achieve this goal, they apply different
information filtering techniques. In order to grab the interest of the user, the recommender system has
to build a user model using any kind of information it can retrieve, such as interactions of the user with
the system (for example, ratings or purchases) or the similarities between users. For the recommendation
the user profile is compared to some reference criteria. The possible criteria may be the description of an
item (the content-based approach) or the user’s social environment (the collaborative filtering approach)
(Konstan et al., 1997).

In the context of this work a recommender system is defined as in (Felfernig and Burke, 2008):

Definition 2 A recommender system is a system that guides the user in a personalized way to interesting

or useful objects in a large space of possible options or that produces such objects as output.

The main challenge of recommender systems is that, if there exists U users and I items, then the system
has a state space of potential recommendations of U × I. This state space is potentially too large for the
user and therefore, we are in need of intelligent methods to rank and personalize the result. One approach
for personalization is to identify user preferences. These preferences can be either retrieved implicitly by
observing the users and their interactions with the system, or explicitly through a dialogue with the user.
After having a model of the users preferences it can be used for different personalization strategies.

Recommender systems can be categorized into three main types (see also Figure 2.1): collaborative,
content-based and knowledge-based recommender systems. Section 2.1.1 introduces the collaborative fil-

tering approach which can be further divided into user-based and item-based ones. These subcategories
express whether the focus is on the similarity between users or between items. In Section 2.1.2, an intro-
duction to content-based recommender systems is given. These systems focus on the content of items that
should be recommended. This content can be either knowledge about the items or contextual knowledge
(context, for example, a web page in which the item occurs). Section 2.1.3 introduces knowledge-based

recommenders which exploit deep knowledge about customer requirements and the underlying set of prod-
ucts. Knowledge-based recommenders can be further categorized into constraint-based and case-based

(see Section 2.1.3 for a more detailed description).

2.1.1. Collaborative Recommender Systems

Collaborative recommender systems (also called collaborative filtering recommender systems) are based
on the idea that a similar interest of users in the past is an indicator that these users will be interested in
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Figure 2.1.: Taxonomy of recommender systems based on the work of (Jannach et al., 2011) and (Ricci
et al., 2011)

the same or similar items in the future. Collaborative filtering was the first type of recommender systems.
The first papers describing methods and techniques of collaborative filtering emerged in the mid-1990s
(Resnick et al., 1994; Hill et al., 1995; Shardanand and Maes, 1995). The first systems that emerged were
Tapestry, a mail filtering system developed from Xerox Parc (Goldberg et al., 1992), and GroupLens∗ a
text filtering system (for example, for news articles) (Resnick et al., 1994). One of the first applied music
recommenders using Pearson Correlation was presented by (Shardanand and Maes, 1995).

user1 user2 user3 user4

item1 item2 item3 item4 item5

Figure 2.2.: Graphical relationship between users and items in a collaborative recommender system

The key idea of collaborative recommender systems is to use the social environment of users as a basis
for recommendations. The focus is on a user model which is based on user interests. The user model can
be generated by observing the user and accumulating the items they are buying or visiting frequently. On
the other hand, interests can be explicitly stated by the user, for example, by providing a rating for each
item. The interest vector from the user model can be used to relate items and users. A simple model that
connects users and items is presented in Figure 2.2. This figure includes 4 users and 5 items. Note that this

∗The homepage of the GroupLens research group is still active and can be found at http:\www.grouplens.org
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figure does not include any information regarding a user’s item preferences. For example user1 rated the
items item1, item2 and item3 and user3 rated the items item1, item2, item3 and item4. These two users can
be considered to be similar to each other due to the fact that they rated similar item sets (3 out of 4 are the
same). In this example, item4 can be recommended to user1 because the similar user (user3) has already
shown interest in this item. Note that in this simple example, the actual rating value is neglected.

The relation between users and items can also be presented in a table (see, for example, Table 2.1). The
values in this table indicate item ratings. For example, user1 rated item1 with a value of 3, item2 with a
value of 4 and item3 with a value of 3. User1 did not provide any rating for item4 and item5. If a user did
not provide any rating for an item this field is empty.

Table 2.1.: Table representation of the relationship between users and items in a collaborative recommender
system. The values in this table are ratings from 5 (very good) to 1 (very bad). Based on these
ratings, user1 and user3 are similar, as well as item1 and item3.

item1 item2 item3 item4 item5

user1 3 4 3
�� ��

user2 5

user3 3 3 3 5
�� ��

user4

�

�

�

�

�

�

�

� 2 3

In collaborative recommender systems two techniques are used for recommendation (see also Figure
2.1). One way is to exploit the user similarity. This is called the user-based approach. In user-based
collaborative filtering, the k-nearest neighbours of the active user are identified. The ratings of these users
are exploited to predict the rating of the active user for a specific item. Let us consider user1 (see Figure
2.2 and Table 2.1) as a current user. Considering the rating of this user (see Table 2.1), it can be observed
that user1 rated item1 and item3 with a value of 3 and item2 with a value of 4. Similar to this, user3 rated
item1, item2 and item3 with a value of 3 and item4 with a value of 5. Based on the ratings in Table 2.1,
user1 and user3 can be considered as similar. As user3 rated item4 very well and the two users (user1 and
user3) are similar, item4 may be recommended to the current user user1. Additionally to this user-based
approach, a second collaborative filtering approach emerged, the item-based approach. This approach takes
the similarity between items into account (Sarwar et al., 2001). If the items in Table 2.1 is compared with
each other, it can be observed that item1 got twice the rating 3 (from user1 and user3). Moreover, item3

got the same ratings from the same users and additionally the rating 5 from user2. Based on these ratings,
item1 and item3 can be considered as similar. This similarity can now be used for the recommendation.
Due to the knowledge that user2 was interested in item3, and that item1 and item3 are similar, item1 should
be recommended to user2.

Additionally to the type of data used for recommendation, collaborative recommender systems can also
be differentiated into memory based systems and model-based systems. Memory based systems process
all user ratings online and incorporate them into the recommendation algorithm. Model-based systems use
an additional abstraction mechanism, such as clustering or singular value decomposition (SVD) (Sarwar
et al., 2002).

17



Chapter 2. Preliminaries

Collaborative recommender systems are very well suited for recommending items that are frequently
used, such as music, movies†, and books. The main advantage of this kind of recommender systems is, that
there is no specific information about the items required, though the history of user interactions and user
data (i.e. demographic data), has to be stored. Additionally, collaborative recommender systems require
user ratings, which indicate the users interest.

Summarizing, collaborative recommender systems are the most wide spread type of recommender sys-
tems. Their advantages and limitations are well understood. Excellent overview papers on collaborative
filtering are (Herlocker et al., 2004; Adomavicius and Tuzhilin, 2005; Anand and Mobasher, 2005; Smyth
et al., 2005) and (Schafer et al., 2007).

2.1.2. Content-Based Recommender Systems

Content-based recommender systems aim to help users to deal with information overload. Therefore,
content-based systems focus on the characteristics of the items. Compared to this, collaborative filtering
recommender systems rely on user ratings. One advantage of collaborative filtering is that it does not need
to provide up-to-date information about the items, which is costly. Nevertheless, collaborative filtering
lacks an intuitive way of recommending items. For example, it would be obvious to recommend the new
Jamie Oliver book to the user U1, if the system knows that (1) the book is a cooking book and that (2) the
user U1 likes cooking and is interested in new books within this genre. Even though such a recommendation
is straight forward, it is not supported by collaborative filtering techniques. For such a recommendation
two types of knowledge are necessary: first, a description of the item and second, a user profile. If this
knowledge about the item and the user is available, the recommendation task is to find the best match
between items and a user profile (Pazzani, 1999). This approach is called content-based recommendation.
The main advantage of content-based recommendation is that it does not require large user communities.
Nevertheless, it needs information about the items and their characteristics. This knowledge about the
item is often seen as content. For this reason this type of recommender systems is called content-based

recommender systems.

Content-based recommender systems emerged from information retrieval. The recommendation meth-
ods and techniques are based on the ones that are used in the field of information retrieval and information
filtering. The best known concepts and techniques are: TF-IDF (term frequency and inverse document
frequency), vector space document model, feature selection, neural networks, k-nearest neighbour, naive
Bayes text classification, as well as other classification techniques (for further descriptions see (Salton
and Buckley, 1988; Baeza-Yates and Ribeiro-Neto, 1999; Adomavicius and Tuzhilin, 2005; Pazzani and
Billsus, 2007)). Feature selection is another method that is used in content-based recommender systems.
This feature selection is also known as variable selection or attribute selection and can be applied to select
a subset of relevant features for building a robust learning model. Most methods using feature selection
emerged from the system WordNet‡, see especially (Pazzani and Billsus, 1997). (Manning et al., 2008) and
(Chakrabarti, 2002) give an overview of different techniques. A comparison of which learning-based tech-

†The Netflix Price is the best known challenge that aims at the improvement of algorithms for recommending movies. See also
http://www.netflixprize.com

‡WordNet is a research system developed at the Princeton University. It provides a semantic taxonomy for English vocabulary. More
information can be found at http://wordnet.princeton.edu/
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niques are suited especially for content-based recommender systems is presented by (Pazzani and Billsus,
1997).

The advantage of content-based recommender systems is that they can deal with a large amount of
text-based information. For this reason, they are well suited for sites with a large amount of texts (for
example, portals, emails) as well as domains with items which are content-rich (for example, news or
books). The main drawback of content-based recommendation is that it depends on the underlying text
quality. Similar texts written in the same language using the same keywords can be of good but also of
bad quality. In addition, content-based approaches are not effective in small specific sites incorporating
only small amounts of text. In contrast to collaborative filtering, content-based approaches cannot establish
novel connections. It may happen, that in certain problem domains, too similar items are presented which
are not of interest to the customer. For example, the aggregations of news articles, because the same story
is published in several articles.

In the literature there is often no exact distinction between content-based and knowledge-based recom-
mender systems. However, this work follows the classification where content-based recommender systems
focus on the description of items. Compared to this knowledge-based recommender systems exploit some
additional information, such as means-end knowledge (Felfernig and Burke, 2008; Ricci et al., 2011; Jan-
nach et al., 2011).

2.1.3. Knowledge-Based Recommender Systems

Collaborative (see Section 2.1.1) and content-based (see Section 2.1.2) recommender systems have their
advantages and strengths. Nevertheless, there are situations where these technologies are not applicable.
Typically, customers do not buy a car, a house or a washing machine very frequently. Especially for these
high-involvement products (for example, car or house) collaborative and content-based recommender ap-
proaches are less applicable. Due to the low number of available ratings a pure collaborative approach
would fail at successfully recommending one of the items (Burke, 2000). This is based on the fact that,
the sparse number of co-occurring ratings does not allow for a statistically sound calculation of neigh-
bourhoods. (Bell and Koren, 2007) propose to use at least 100-nearest neighbours in their collaborative
approach. It would also take a rather long time to gather the ratings, which is also a drawback of these
approaches. Additionally, the time-span between two sessions of the user is important. A rating that is 3 or
5 years old is not valuable because user preferences evolve over time. Another point that cannot be handled
by collaborative and content-based recommender systems, is that for more complex (and more expensive)
products, customers often want to specify their preferences explicitly. A typical customer requirement
from the domain of cars would be for example: ”the car should be a combi” or ”the colour of the car

should be blue”. An explicit formulation of such preferences is not possible in purely collaborative and
content-based recommender systems. Especially in these domains where traditional recommenders are not
really suitable, knowledge-based recommenders emerged (Burke, 2000; Ricci et al., 2003; Felfernig and
Burke, 2008). Knowledge-based recommenders allow users to explicitly specify their requirements. They
also incorporate a deep knowledge about the underlying product assortment.

Knowledge-based recommender systems can be categorised into the following two types (Jannach et al.,
2011): constraint-based (Thompson et al., 2004; Felfernig and Burke, 2008; Zanker et al., 2010) and case-

based (Burke, 2000; Bridge et al., 2005). The interactions of both types are similar. The customers are

19



Chapter 2. Preliminaries

specifying their requirements and the system tries to find a recommendation for the given preferences. The
system may provide explanations for the recommended items. The main difference between the two types
of knowledge-based recommender systems is the way they use the knowledge about the product items.
Constraint-based recommender systems rely on explicitly defined recommendation rules (constraints) to
identify a recommendation. In comparison, case-based recommender systems recommend items that are
similar. Various similarity measures (see, for example (Konstan et al., 1997; Wilson and Martinez, 1997;
McSherry, 2004)) are used for the recommendation. Another characteristic of traditional case-based rec-
ommender systems is that users (re-)specify their requirements in a query-based form until the target item,
which satisfies the customer is found. If the customer is not an expert of the domain, this can lead to numer-
ous interactions, until he finally finds a feasible item (Burke, 2002b). This drawback was the reason for the
development of critiquing systems (Hammond et al., 1995). These critiquing systems are also case-based
recommender systems, and what makes them special is that the navigation is supported by critiques. An
example system is sketched in Figure 2.3. This system aids customers in find a digital camera. In each step
one camera is presented to the customer. This camera can be critiqued using one of the attributes (price,
mega pixel, display size, weight or optical zoom). In this critique the customer can either choose more of
the attribute (for example, a larger display) or less of the attribute (for example, a lower price). In this way
customers specify their requests in form of goals that are not satisfied yet (Burke et al., 1997).

Figure 2.3.: Critiquing recommender systems. For finding a suitable camera the customer can critique the
current product. In the system displayed, the following attributes can be critiqued: price, mpix,
display, weight and optical zoom

One main advantage of knowledge-based recommender systems is that there does not exist a cold start

problem (also called ramp-up problem) (Burke, 2000; Felfernig and Burke, 2008) as this type of rec-
ommender systems use deep knowledge about the product assortment and the customer requirements.
Knowledge-based recommender systems may achieve a great precision and good transparency; for exam-
ple, by explaining the recommendation to the customer. Especially the transparency improves the trust of
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the customer. On the other hand, for such systems it is required to create and maintain the knowledge.
To deal with this challenge, domain experts and knowledge engineers have to invest considerable time ef-
forts in order to develop and maintain the knowledge bases and keep them up-to-date. This is called the
knowledge acquisition bottleneck. Additionally to these technical challenges, it is important to consider
consumer decision making strategies in the design to improve the quality of the recommendation process
and to increase customer satisfaction (Mandl et al., 2011). Research in this field has shown that the for-
mat of the information presented influences the behaviour of the customers. The way of presenting the
recommendation highly influences the decision making strategy of the customers (see, for example, (Asch,
1949; Payne, 1976; Bettman and Kakkar, 1977; Lussier and Olshavsky, 1979; Tversky and Kahneman,
1981)). Thus it is important to focus not only on the algorithms, but additionally incorporate a suitable user
interface and information presentation.

In order to retrieve a recommendation from a knowledge-based recommender system the customers have
to specify their requirements. In a typical interaction, the recommender guides the customer (repeatedly)
through the following phases (see also Figure 2.4):

• (Phase 1) Requirement elicitation phase: In the first phase of the interaction the customers identify
and specify their preferences and requirements. Examples for requirements from the financial service
domain are: ”I want to invest my money for 3 years” or ”I want to invest my money for my children”.
The requirement elicitation phase is often realized through a set of predefined questions that the
customers are supposed to answer. In this phase the system can include different methods to support
or influence the customer by using for example default values (Huffman and Kahn, 1998).

• (Phase 2) Suitability check: In this phase the recommender application checks whether there exists a
product that satisfies all requirements of the customer. If the application is not able to find a solution,
there are different possibilities to fail gracefully. For aiding the customer in dealing with this incon-
sistency (no solution could be found), different techniques have been developed. One opportunity
is to present a set of changes to the customer and if these changes are accepted a recommendation
can be guaranteed. This changes can be, for example, ”Change the investment period to 5 years” or
”Lower the interest rate to 3 %”.

• (Phase 3) Result presentation: In the third phase the application presents the recommendation of
product(s) if all requirements of the customer can be fulfilled. The alternative products are typically
ranked using, for example, some kind of utility or similarity measures.

• (Phase 4) Explanations: For each recommended product the customer can ask the system to provide
an explanation why this product was recommended. An explanation typically consists of an argu-
mentation that relates the properties of the product to the specified requirements of the customer.

When customers specify their requirements, situations can occur where no product of the assortment
fulfils all of these requirements. This situation is called the no solution could be found dilemma (Pu and
Chen, 2008). It is rather disappointing for the customer if no adequate support is available to get out of
this situation. In order to aid customers with restoring the consistency, existing approaches focus on low-
cardinality diagnoses (Junker, 2004; Felfernig et al., 2004; Jannach and Liegl, 2006). These approaches
identify sets with a low number of requirement changes (called diagnoses) that can be used to restore
consistency. Similar to this, (O’Sullivan et al., 2007) introduced an approach to identify representative
explanations to aid customers. The representativeness introduced in (O’Sullivan et al., 2007) ensures that
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Figure 2.4.: Four step process in a knowledge based recommender system: Phase 1: requirement elicita-
tion, Phase 2: suitability check, Phase 3: result presentation and Phase 4: explanations

the computed set of explanations is representative of all possible maximal relaxations and exclusion sets. In
other words, a set of explanations is representative if it contains a relaxation (an exclusion set) containing
each constraint that appears in a relaxation. The explanations contain a set of constraints that can be
satisfied (relaxation) and a set of constraints that must be excluded (exclusion set) according to (O’Sullivan
et al., 2007). Other approaches focus on the identification of maximally successfully sub-queries (Godfrey,
1997; McSherry, 2004; Jannach, 2008). A maximally successfully sub-query is based on the original query
and keeps as many requirements as possible in order to still find a feasible item. In Chapter 3 different
consistency management principles in recommender systems are introduced and discussed in detail.

Summarizing, knowledge-based recommender systems are very well suited for one time buyers. Most
people buy products such as dish washers, washing machines, digital cameras, computers, cars, houses,
... only once in years and thus do not have a deep knowledge about such items. In addition, there is no
possibility to construct user profiles for each user due to the few interactions over time. Nevertheless, user
profiles should be established in order to enable a personalization of the recommendation. Constraint based
recommender systems become important when there are specific requirements of the user that the solution
has to meet (Felfernig and Burke, 2008). This thesis focuses on inconsistent requirements and discusses
ways about how consistency between customer requirements and the product assortment can be attained.

2.1.4. Hybrid Recommender Systems

The most prominent types of recommender systems are: collaborative (see Section 2.1.1), content-based
(see Section 2.1.2) and knowledge-based (see Section 2.1.3) ones. All approaches have advantages and
disadvantages. The aim of hybrid recommender systems, is to combine different approaches in order
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to overcome some of the drawbacks. The Netflix Price Competition§ encouraged many researchers and
students to combine different collaborative filtering techniques in order to improve accuracy. For example,
the winner team of this competition used a weighted hybridization strategy.

A hybrid approach combines different base approaches for identifying a recommendation (see Figure
2.5). The input of a hybrid approach are various recommendation methods that focus on different knowl-
edge sources. The hybrid approach combines the strengths of the base methods in order to overcome their
shortcomings and problems. Similar to the base methods, the output of a hybrid approach is a ranked list
of items - the recommendation list.

Figure 2.5.: A hybrid recommender system takes different recommendation methods (i.e. recommenda-
tions based on user profile, community data and product features) and combines them for
calculating one list of recommendations

(Burke, 2002a) classified hybrids into seven different categories, to be specific: weighted, switching,
mixed, feature combination, feature augmentation, cascade, and meta-level. The weighted approach, for
example, combines scores from each individual recommendation algorithm using a linear formula. Let us
assume, that two different recommendation techniques (A and B) should be combined. Due to the expert
knowledge, it is known that the technique B normally performs better compared to A. For this reason, score
weights are introduced. The scores for technique A are 0.4 for the top ranked item, 0.25 for the second
ranked item and 0.1 for the third ranked item. Similar to this, the scores for technique B are 0.8, 0.5 and
0.2 (see also Table 2.2). Note that there are several possibilities to estimate these score weights. (Zanker
and Jessenitschnig, 2009), for example, conducted a sensitivity analysis to identify the optimal weighting
schema. Another approach was introduced by (Claypool et al., 1999) which uses a dynamic weighting
schema, based on the mean absolute error.

§http://www.netflixprize.com
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For the recommendation of an item, both techniques (A and B) calculate their results separately. The
result for technique A is item1 (first rank), item4 (second) and item3 (third). And the one for technique B is
item2 (first rank), item1 (second) and item3 (third). These ranks are also shown in Table 2.2. Based on the
calculated ranks, the scores which have been specified before, are arranged. Now the final score of each
item can be calculated. This is done by summing up all scores for this item and dividing the result by the
number of techniques which have been used. For example, the score of item1 is 0.4 and 0.5. The sum of
these two values is 0.9. This value is divided by 2 (as two techniques were used) which results in the final
score of 0.45. After determining the final score for each item, the weighted hybrid approach recommends
the items in the following order: item1, item2, and item3.

Although there exist several hybridization strategies, none of them is applicable in all circumstances.
Nevertheless, most of the base algorithms can be improved by using a hybrid approach. Several algorithm
variants are presented in (Zanker et al., 2007). Many studies on hybrids have been performed (see for
example (Balabanović and Shoham, 1997; Pazzani, 1999; Sarwar et al., 2000)).

Table 2.2.: Calculation of a weighted hybrid recommendation based the on ranks of the techniques A and
B. According to the ranks, the scores are arranged. Finally the scores are combined by sum-
marizing the scores of each item and dividing them by the number of techniques (2). The final
score (Score Hybrid) leads to the final ranks (Rank Hybrid).

Rank A Score A Rank B Score B Score Hybrid Rank Hybrid

item1 1 0.4 2 0.5 0.45 1
item2 0 1 0.8 0.4 2
item3 3 0.1 3 0.2 0.15 3
item4 2 0.25 0 0.125

2.2. Configuration Systems

Configuration is a sub-field of Artificial Intelligence with a lot of successful applications. One of the first
configuration systems was the R1/XCON in the early 1980s (McDermott, 1982). After the introduction
of this system the experiences and benefits have been widely studied (Barker et al., 1989; McDermott,
1994). Other successful applications of configuration systems that emerged in industry cover challenging
products, such as telecommunication switches at Siemens (Fleischanderl et al., 1998) and other kinds of
telecommunications products at AT&T (Wright et al., 1993; McGuinness and Wright, 1998). Moreover,
configuration systems also became part of Enterprise Resource Planning systems, such as Baan (Yu and
Skovgaard, 1998) and SAP (Haag, 1998, 2005). The description of configurable products (Soininen et al.,
1998) have been studied and deployed in companies (Fleischanderl et al., 1998). Furthermore, a lot of
other systems have emerged from research groups (for example COSSACK (Frayman and Mittal, 1987),
PLAKON (Cunis et al., 1989, 1991), COCOS (Stumpner et al., 1994) and WECOTIN (Tiihonen et al.,
2003)). In addition, a number of commercial configuration systems have been developed, for example
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Trilogy SalesBUILDER (Hales, 1992) and ILOG Configurator (Mailharro, 1998; Junker and Mailharro,
2003).

This thesis also focuses on knowledge-based configuration systems. These knowledge-based configu-
ration systems aim to build a complex system from simpler components. This system can be a complex
product or a service (for example, telecommunication systems, computers, railways or financial services).
Informally, configuration can be seen as a special case of design activity, where the artefact being config-

ured is assembled from instances of a fixed set of well-defined component types which can be composed

conforming to a set of constraints (Sabin and Weigel, 1998). The main characteristic of knowledge-based
configuration systems is that they incorporate a deep knowledge of the products or services. These products
or services can be configured using this knowledge. The knowledge can be formulated using constraints.

Configuration systems aid customers in configuring a product or service in a reasonable time which
satisfies the specific needs of an individual customer. In order to combine an efficient production with
satisfying individual needs, configurable products emerged (Sabin and Weigel, 1998). Product and service
configuration systems are applied in mass customization (Davis, 1989; Pine, 1999; Tseng and Jiao, 2001)
for addressing this challenge. Configuration systems are not limited to products such as cars, computers or
washing machines, but also help with, for example, the configuration of feature models in software systems
(Beuche et al., 2004; von der Maen and Lichter, 2004). Additionally to the correct behaviour and the hard
real-time constraint (see Section 1.2), a well designed user interface helps the customers to deal with the
complexity of alternatives (Felfernig et al., 2010b).

A configuration system typically has a configuration model. This model (also called configuration
knowledge base) may contain rules about technical restrictions, the production processes and economic
factors. Based on this model customers may configure products or services during an interactive session.
A typical interactive configuration session consists of 3 main steps:

• (1) The requirement specification step: In this phase customers specify their requirements that
should be satisfied by the configuration.

• (2) The requirement adaptation step: If there is no configuration possible that satisfies all specified
requirements, then the customer has to adapt these requirements. The configuration system may aid
the customer in this process using a consistency management technique.

• (3) The result presentation step: In this step all possible configurations that can be determined from
the configuration knowledge base and the customer requirements are presented.

After the customers have specified their requirements (step 1), it may happen that no valid configuration
can be found that satisfies all specified requirements. In such an over-constrained situation (step 2) it is
difficult for the customer to choose successful modifications for the requirements (Felfernig et al., 2004).
Due to the complexity of the configuration task, it is often not obvious which requirements are conflicting
with the configuration model.

If an inconsistent situation occurs, the configuration system has to notify the customer that no solution
exists. Such a situation is rather disappointing for the customer, especially if no further support is available
to get out of this situation. In order to aid customers with restoring the consistency, existing approaches
focus on low-cardinality diagnoses (Junker, 2004; Felfernig et al., 2004; Jannach and Liegl, 2006). These
approaches identify sets with a low number of requirement changes (called diagnoses) that can be used to
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restore consistency. Other approaches focus on the identification of maximally successfully sub-queries
(Godfrey, 1997; McSherry, 2004). A maximally successfully sub-query keeps as many original customer
requirements as possible in order to still find a feasible configuration (see Section 2.3 for a more detailed
discussion). Chapter 4 introduces additional approaches.

2.3. Consistency Management

Constraint-based technologies (Tsang, 1993) are applied in different areas, such as recommendation (Felfer-
nig et al., 2009c), configuration (Mittal and Frayman, 1989; Fleischanderl et al., 1998; Sinz and Haag,
2007) and scheduling (Catillo, 2005). There are many scenarios in which a constraint set may turn in-
consistent. For example, when multiple actors with different opinions, views and interpretations try to
find one common result. In this scenario, an inconsistent situation emerges, if the opinions or views are
contradicting. Furthermore, an inconsistent situation may occur, if customers specify their requirements
in a way that they are over-constrained (O’Sullivan et al., 2007). The system that tries to find a feasible
product is not able to fulfil the task due to the inconsistency between the customer requirements and the
product assortment. Moreover, an inconsistent situation may occur while implementing or maintaining a
configuration knowledge base (Nguyen et al., 1987). In this scenario the configuration knowledge base
may become inconsistent with a set of test cases (Felfernig et al., 2004). These examples demonstrate,
that there exist several possibilities where an inconsistency can emerge. In order to actively support the
customer in consistency management, intelligent techniques are needed.

An ideal tool for helping customers with consistency management, should help to establish, express
and reason about the relationships between constraints (Finkelstein, 2000). Moreover, an ideal tool should
check the consistency between these relations and detect the inconsistencies immediately. Additional in-
formation to help users to deal with an inconsistency as well as visualizations, can support consistency
management. Beyond that, a functionality to track emerging inconsistencies is desirable.

Model-Based Diagnosis

Model-based diagnosis (MBD) (Reiter, 1987; de Kleer and Williams, 1987; Hamscher et al., 1992) aims to
determine whether a system behaves correctly according to its predefined model. The field of model-based
diagnosis emerged in the mid-1980s. The applications are diverse (see for example (Struss, 2002; Yongli
et al., 2006)). This thesis applies and develops techniques for diagnosing faulty customer requirements in
interactive constraint-based systems.

The aim of model-based diagnosis is to figure out, if a system behaves correctly according to its model.
This model is a description of the system. Let us go back to the example introduced in Section 1.1. In
this example, the configuration model consists of the product constraints (c1, c2, c3), the domain of the
variables, and the customer requirements (r1, r2, r3). The recommendation model consists of the product
assortment (see Table 1.1), and the customer requirements (r1, r2, r3). Additionally to these models, a
description of the correct behaviour is needed. Therefore, it is defined, that the behaviour is correct, if
the system can find at least one configuration or recommendation that satisfies all customer requirements.
In the case of the system behaving abnormally (no solution can be found), one or more diagnoses can be
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calculated. A diagnosis consists of a minimal set of faulty components whose adaptation will allow the
identification of a recommendation or configuration.

Several approaches have already been developed that aid customers in an inconsistent situation. State-
of-the-art approaches calculate minimal diagnoses (McSherry, 2004; Felfernig et al., 2009c, 2011), max-
imally successful sub queries (Godfrey, 1997; McSherry, 2005), representative or corrective explanations
(O’Sullivan et al., 2007; O’Callaghan et al., 2005), minimal conflict sets (Junker, 2004) or minimal unsat-
isfyable subsets of constraints (Liffiton and Sakallah, 2008). The different approaches are described in the
following.

Customers can be aided with a minimal set of requirements (diagnosis) that need to be adapted or deleted
in order to restore the consistency. In Section 1.1 an example has been introduced in which the minimal
diagnoses have been derived from minimal conflict sets (using a HSDAG, Hitting Set Direct Acyclic Graph
(Reiter, 1987)). The performance of this HSDAG technique heavily depends on the identification of min-
imal conflict sets. (Junker, 2004), for example, introduced an approach (QuickXplain) to identify such
minimal conflict sets efficiently. The QuickXplain approach uses a divide-and-conquer strategy in order to
map a given problem to a simpler ones (dividing principle). These simpler problems are then evaluated
until a conflict has been identified (conquer-principle).

Another possibility to aid customers in an inconsistent situation is to present them product items or con-
figurations that fulfil as many requirements (constraints) as possible. This can be achieved by identifying
maximal successful sub-query (XSS). A possible maximal successful sub query for the example given in
Section 1.1 is XSS1: colour = blue, gear = 18 (r1, r3). This is a maximal successful sub query, since it
leads to at least one bike. Additionally, no requirement can be added to the sub query in a way, that the
sub query still leads to a product (r1, r2, r3 does not lead to any bike). Note that maximal successful sub
queries are the complement of diagnoses. For example, XSS1 (r1, r3) is the complement of diagnosis d1

= {r2}. (Jannach, 2008) presented an approach (MinRelax) to identify maximal successful sub queries by
incrementally eliminating one or more constraints from the query of the customer (query relaxation). For
the example, the query including all requirements does not lead to a solution. Thus the MinRelax algorithm
eliminates the first requirement (r1) and checks if the sub query including r2 and r3 leads to a bike. Due
to the fact, that it is not possible to have a small-sized (r2) bike with 18 gear (r3), the second requirement
(r2) is eliminated from the original set of requirements. For this reason, MinRelax checks if it is possible to
retrieve a blue (r1) bike with 18 gears (r3). This is possible and therefore, a maximal successful sub query
has been found (XSS1 = {r1, r3}). Similar to maximal successful sub queries, (McSherry, 2004) proposes
the computation of minimal failing sub queries (MFS). A minimal failing sub query is, for example, MFS1:
size = small (r2). This sub query correlates with diagnosis d1 = {r2}. If a minimal failing sub query or di-
agnosis is shown to the customer, the customer knows, that all requirements of this sub query or diagnosis
need to be adapted or deleted. Compared to the minimal failing sub queries where all requirements have to
be adapted, only one requirement of each conflict set has to be adapted.

This thesis focuses on the identification of minimal conflict sets and minimal diagnoses, which are the
result of a customer requirements diagnosis problem. A formal definition of a customer requirements
diagnosis problem is given in Definition 3 and it is compatible with (Felfernig et al., 2004).

Definition 3 A Customer Requirements Diagnosis Problem is defined as a tuple (CKB, CR) where CR is

the set of customer requirements and CKB represents the configuration knowledge base or products which
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can be either a product table or a set of product constraints.

Based on this Customer Requirements Diagnosis Problem, minimal conflict sets can be defined (based
on the work of (Reiter, 1987) and (Felfernig et al., 2004)). These minimal conflict sets are defined as:

Definition 4 A conflict set for a customer requirement diagnosis problem (CKB, CR) is a set CS ⊆ CR, s.t.,

CKB ∪ CS is inconsistent. CS is minimal iff there does not exist a conflict set CS′ ⊂CS s.t. CKB ∪ CS’ is

inconsistent.

In other words, a conflict set is a subset of the given requirements of the customer in a way that none
of the items in product assortment or no configuration emerging from the knowledge base satisfies all
constraints in CS. Customers can be supported in the consistency management by minimal conflict sets.
In each step of a continuous interaction the customers are confronted with one minimal conflict set. The
customers have to adapt or delete one of the elements of the conflict set until they find a consistent situation.
Another possibility is to suggest diagnoses to the customers. The definition of a Customer Requirements
Diagnosis is given in Definition 5 and it is compatible with the work of (Reiter, 1987) and (Felfernig et al.,
2004).

Definition 5 A diagnosis for a customer requirement diagnosis problem (CKB, CR) is a set D ⊆ CR, s.t.,

CKB ∪ (CR - D) is consistent. D is minimal iff there does not exist a diagnosis D′ ⊂ D s.t. CKB ∪ (CR - D’)

is consistent.

A diagnosis is a set of requirements that need to be adapted or deleted in order to restore consistency.
Furthermore, it is the complement of a maximal successful sub-query. In general, the problem to find a
maximal succeeding sub-query or a minimal diagnosis (relaxation) has been shown to be NP-hard (God-
frey, 1997). Considering the hard real-time requirement of interactive constraint-based systems (see Sec-
tion 1.2), even small-sized problems soon become computationally intractable. Therefore, this thesis intro-
duces algorithms that use heuristics in order to achieve an acceptable run time performance.

Aiding the Customer in Consistency Management

The consistency management techniques that emerge from the field of model-based diagnosis can be used
to aid customers in interactive systems. Figure 2.6 and Figure 2.7 exemplify an interaction between a
customer and a constraint-based system. In the step (1), the customer specifies his requirements. If these
requirements are over-constrained, then the system can not directly derive a solution to the stated problem.
In this case (2), two different techniques can be applied to aid the customer in consistency management.
The first option is to present one minimal conflict set to the customer in each interaction step. Through
several interactions the customer chooses which requirements should be adapted. This is continued until
the consistency has been restored (see Figure 2.6).

A second possibility is to aid the customer is to use repair actions (see Figure 2.7). A repair action
contains a set of adaptations, that - if accepted - leads to at least one product or configuration. Such a
repair action can be calculated on the basis of a diagnosis. A minimal diagnosis incorporates only those
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requirements that need to be changed by the customer in order to restore consistency. One possibility
would be to suggest these requirements (repairs) directly to the customer so that he can adapt them. The big
drawback of this approach (to present diagnoses) is that it may result in another over-constrained situation.
This drawback can be avoided by identifying possible assignments of all requirements of one minimal
diagnosis (Felfernig et al., 2009c). By accepting these values the consistency can be restored. The set of
adaptations is denoted as repair action. At least one repair action can be identified for each diagnosis, but in
general numerous repair actions are available. If there are more repair actions available for one diagnosis,
the most suitable approach is to suggest the ones which are most similar to the original requirements.
After the customer has restored the consistency (either by using the minimal conflict technique presented
in Figure 2.6 or by using repair actions presented in Figure 2.7) the system can present the result (3). Note,
that there exist also other possibilities to ensure the derivation of an item. For example, if in the requirement
specification phase (1) only values can be selected, that lead to at least one product.

2.4. Summary

This chapter gives an overview of recommender and configuration systems. The goal of these systems is, to
take the requirements specified by the customer and to find a respective recommendation or configuration.
If the system fails to find a solution, a procedure to aid the customer in restoring consistency needs to be
invoked. Two different techniques can be used for the interaction during an inconsistent situation. The
first one uses minimal conflict sets which are resolved by the customer in an interactive way. The other
approach is to provide a list of repair actions to the customer.

This work focuses on recommender and configuration systems. The main difference between them is,
that the former operates on the product assortment with explicit instantiations of the alternatives, whereas
the latter operates on a product model, which describes the properties of all allowed instances. In the
following chapters different algorithms are presented that can be used in constraint-based systems to aid
customers in consistency management.
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1. Requirement Speci�cation

2. Iterative Resolution

3. Result Presentation
(adapt the size of the harddisk)

iterative resolution of
individual minimal con�icts
(one requirement at a time)

until at least one product
can be retrieved

Figure 2.6.: Interaction with a constraint-based system using minimal conflict sets to restore the consis-
tency. Step 1: the customer specifies the requirements. Step 2: the customer adapts one faulty
requirement at a time. Step 3: the result is presented.
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1. Requirement Speci�cation

2. List of Repair Actions

3. Result Presentation
one or more requirements can be 

adapted at the same time 
(in a way that at least one 
product can be retrieved)

Figure 2.7.: Interaction with a constraint-based system using repair actions to restore the consistency. Step

1: the customer specifies the requirements. Step 2: the customer selects one repair action. Step

3: the result is presented.
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Chapter 3
Consistency Management in

Recommender Systems
Parts of the contents of this chapter have been published in

(Schubert, 2009; Schubert et al., 2009; Felfernig et al., 2009c,b)

(Schubert et al., 2010; Schubert and Felfernig, 2011; Schubert et al., 2011).

This chapter introduces different algorithms that can be applied to support the customer in consistency
management in knowledge-based recommendation scenarios. Knowledge-based recommenders guide cus-
tomers to identify interesting items from large and potentially complex assortments. Although there are
different methods for eliciting customer requirements as well as for finding and ranking products, all sys-
tems commonly treat - at least in the beginning - some or all customer requirements as constraints products
have to satisfy (McSherry, 2004). During the process of preference construction, customers incrementally
define and revise their requirements. Situations may occur where none of the product items completely
fulfils the current set of requirements. Such situations are called the no solution could be found dilemma

(Pu and Chen, 2008). If such a situation occurs, there are different strategies for the system to deal with it
in order to restore the consistency.

One strategy to deal with the no solution could be found dilemma is to only notify the customer of the
fact. This is not customer-friendly, because the customer can not reach her goal and thus gets emotionally
frustrated by the interaction. For this reason, there exist a need for intelligent techniques to aid customers.
Another strategy is to propose a small (ideally minimal) set of requirements that have to be changed or
given up in order to find a recommendation. The identification of such minimal sets relies heavily on the
identification of minimal conflict sets (Reiter, 1987). Existing conflict detection algorithms (like QuickX-

plain introduced by (Junker, 2004)) can be applied, but they do not exploit the basic structural properties
of constraint-based recommendation problems. In order to improve the run time efficiency the follow-
ing algorithms are introduced in this Chapter: GraphXplain, FastXplain, Boosted FastXplain (BFX) and
Personalized FastXplain (PFX). All these algorithms aim to exploit the structural properties of knowledge-
based recommendation problems and improve the run time behaviour for identifying minimal conflict sets.
Such algorithms are extremely useful for interactive recommendation sessions. The computed minimal
conflicts can be instantly presented to the customer who decides which requirements should remain the
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same and which requirements should be changed (interactive repair scenario) (Schubert, 2009).

Another strategy to handle inconsistent situations is to search for product items that fulfil as many in-
dividual requirements (constraints) as possible. The aim is to identify a maximal successfully sub-query

which can be denoted as the complement of a diagnosis. (McSherry, 2004) proposed an algorithm that
incrementally searches for minimal exclusion sets based on results in the field of cooperative query an-

swering (Godfrey, 1997). The complement of such a minimal exclusion set is a maximally successful
sub-query (Jannach, 2008). (O’Sullivan et al., 2007) introduced an approach to identify representative

explanations which makes the identification of acceptable diagnoses for the customer easier. In a represen-
tative set of explanations, each specified customer requirement is included in at least one explanation. The
aim of representativeness (diversity) ensures that the offered set of explanations does not get too large but
still has a lot of variety in it. This is accomplished by the fact that in the worst-case, the number of repre-
sentative explanations scales linearly with the number of customer requirements (O’Sullivan et al., 2007).
(O’Callaghan et al., 2005) introduced the approach CorrectiveRelax, which aims to calculate corrective

explanations to aid customers in their consistency management (see Section 3.8 for a detailed example).

In general, the problem to find a maximal succeeding sub-query or a minimal diagnosis (relaxation) has
been shown to be NP-hard (Godfrey, 1997). If the hard real-time requirement of interactive recommender
systems (see Section 1.2) are considered, even small-sized problems become soon intractable. Therefore,
different techniques to use better heuristics with acceptable run times were developed.

This chapter introduces techniques and algorithms to aid customers in restoring the consistency between
requirements and the recommendation knowledge base. All approaches rely on detailed knowledge about
the underlying products and their properties as well as explicit knowledge about the customers require-
ments.

The remainder of this chapter is organized as follows: Section 3.1 introduces an example from the do-
main of digital cameras that is used throughout the chapter to illustrate the different approaches. Sections
3.2-3.5 introduce approaches that aim to support customers with the identification of minimal conflict sets.
In Sections 3.6 and 3.7 algorithms for identifying minimal diagnoses as well as their respective repair
sets are illustrated. All these technologies remedy the no solution could be found dilemma (Pu and Chen,
2008) and thus help the customer with consistency management. Section 3.8 presents an evaluation which
addresses the run time performance as well as the acceptance probability (precision). This evaluation
compares the introduced algorithms with state-of-the-art approaches (QuickXplain (Junker, 2004), Correc-

tiveRelax (O’Callaghan et al., 2005) and MinRelax (Jannach, 2008)). Section 3.9 discusses related work.
The chapter concludes with a decision guide for selecting the algorithms (see Section 3.10).

3.1. Example: Recommending Digital Cameras

A simplified example from the domain of compact camera sales is introduced in this section. The example
will serve as a representative problem throughout this chapter to explain the principles of the different
algorithms. It describes a recommendation task (see Definition 6 according to the work of (Felfernig et al.,
2005)), which is defined as a Constraint Satisfaction Problem (CSP (Tsang, 1993)).
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Definition 6 A recommendation task can be defined as a Constraint Satisfaction Problem (VC, VP, CC ∪
CF ∪ R ∪CP), where VC is a set of variables representing possible customer requirements and VP is a set of

variables describing product properties. Moreover, CP is a set of constraints describing available product

instances, R is a set of constraints describing customer requirements and CF is a set of constraints (filter

conditions) describing the relationship between customer requirements and available products. Finally, CC

is a set of concrete customer requirements.

The product assortment of the working example consists of 15 digital cameras. These items P =
{p1, p2, ..., p15} are stored in the product table (see Table 3.1). The table also specifies attributes VP =
{v1,v2, ...,v9} for each product where v1 : mpix specifies the image sensor size (in Megapixel); v2 : dis-

play enumerates backside diagonal display size in inches; v3 : opt-zoom describes the optical zoom factor;
v4 : sound specifies whether the camera can record audio; v5 : waterproof specifies whether the camera is
waterproof or not; v6 : movies indicates that the camera is able to take movies; v7 : colour indicates the
main colour of the camera; the v8 : weight is given in pounds and v9 : price specifies the purchase price
of the camera in Euro. Customers may specify all or just some of these attributes. In the example, the
customer only specified her preferences on some of the attributes. The preferences of the customer are
shown in Section 3.1.1. These preferences are interpreted as constraints on the product in constraint-based
recommender systems.

Table 3.1.: Example product assortment of digital cameras P = {p1, p2, ..., p15}. For each camera the id,
the mega pixels (mpix), the optical zoom (opt-zoom), the ability to recording sound, the ability
to be waterproof, the ability to record movies, the colour, the weight and the price are specified.

id mpix display opt-zoom sound waterproof movies colour weight price

p1 12.0 2.9 6.6x yes yes yes red 1.4 229
p2 8.3 4.0 8.0x yes no no pink 2.0 155
p3 9.5 3.7 3.2x no yes no blue 2.3 207
p4 7.5 3.5 5.0x no no no silver 1.2 89
p5 13.0 2.7 5.5x yes no yes silver 4.7 270
p6 12.0 2.8 5.8x no yes yes blue 0.7 249
p7 5.5 3.2 12.0x yes no no green 0.63 145
p8 9.0 3.7 3.0x no no no black 2.95 79
p9 7.5 2.8 5.8x yes no no red 1.7 99
p10 8.0 4.0 3.7x no yes yes green 2.1 221
p11 11.0 3.5 6.2x yes yes no black 1.3 240
p12 7.5 3.1 3.5x yes no yes yellow 0.8 329
p13 12.0 2.5 7.0x no yes yes pink 1.9 179
p14 9.3 3.9 4.5x yes yes no black 2.3 299
p15 15.0 2.7 3.8x no yes yes silver 1.2 199
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3.1.1. Requirements of the Customer

Let us assume that the following requirements are specified by the current customer: R = { r1: mpix >

10.0, r2: display ≥ 3.0, r3: opt-zoom ≥ 4x, r4: waterproof = yes, r5: movies = yes, r6: price < 150 }.
Based on the recommendation task (see Definition 7) a recommendation can be defined according to the
work of (Felfernig et al., 2005; Felfernig and Burke, 2008) as follows:

Definition 7 A recommendation for a recommendation task is an assignment of the variables in VC and

VP. A recommendation is denoted as consistent iff each variable in VC, VP has an assigned value and this

assignment is consistent with CC ∪CF ∪ R ∪CP.

The feasibility or consistency of the customer requirements can easily be checked by a relational query
σ[R]P where σ[R] represents the selection criteria of the query on P. A corresponding SQL query would look
like this: σ[R]P = SELECT * FROM P WHERE P.mpix > 10.0 AND P.display ≥ 3.0 AND P.opt-zoom ≥ 4x

AND P.waterproof = yes AND P.movies = yes AND P.price < 150. In the working example, σ[mpix>10.0]P

would result in {p1, p5, p6, p11, p13, p15}. For the current customer requirements R the query results in an
empty set (σ[r1, r2, r3, r4, r5, r6]P = /0). This means that no solution could be found for these requirements.
In such situations, customers are in need of repair actions to help them restore consistency between their
request R and the underlying product assortment P.

3.1.2. Intermediate Representation

In situations where no element in the catalogue satisfies all customer requirements, the system can support
the customer with minimal relaxations (Jannach, 2008), maximal succeeding sub queries (McSherry, 2004)
or repair actions (Felfernig et al., 2009c). (Jannach, 2008) introduced a data representation (see Table 3.2).
This representation stores a 1 if an attribute of the product satisfies the specification of the customer. If
an attribute does not satisfy the specification of the customer, the value 0 is stored in the data structure.
Based on this data structure a so called product-specific relaxation can be retrieved for each product. This
product-specific relaxation (PSX) for product p1 is PSX(R, p1) = {r2,r6}, for product p2 it is PSX(R, p2) =
{r1,r4,r5,r6} and so forth (see Table 3.1). The drawback of this approach is the amount of diagnoses. The
amount of diagnoses equals the amount of products, which is usually a lot. Additionally, most of these
diagnoses are not minimal. Minimal diagnoses are especially relevant as they propose a minimal set of
changes of the customers original requirements.

(Jannach, 2008) introduced an approach (MinRelax) to identify a minimal query relaxation for situations
where the given set of customer requirements is inconsistent with the set of available products (similar to
the situation described in Section 3.1.1). The main idea of this algorithm is the following: For each product
pi, the algorithm identifies the product-specific relaxation (PSX). Iterating over all possible relaxations, the
algorithm checks if the current PSX(R, pi) is a superset of an already found relaxation. If the PSX(R, pi)
is not a super set, it is stored and all relaxations that are super sets of PSX(R, pi) are removed. When all
minimal relaxations are retrieved, the most promising for the customer is selected via a cost function.
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Table 3.2.: Intermediate representation of the customer requirements R = {r1 : mpix > 10.0,r2 : display≥
3.0,r3 : opt− zoom > 4.0,r4 : waterproo f = yes,r5 : movies = yes,r6 : price < 150} and the
product assortment of digital cameras P = {p1, p2, ..., p15}

id r1 r2 r3 r4 r5 r6

p1 1 0 1 1 1 0
p2 0 1 1 0 0 0
p3 0 1 0 1 0 0
p4 0 1 1 0 0 1
p5 1 0 1 0 1 0
p6 1 0 1 1 1 0
p7 0 1 1 0 0 1
p8 0 1 0 0 0 1
p9 0 0 1 0 0 1
p10 0 1 1 1 1 0
p11 1 1 1 1 0 0
p12 0 1 0 0 1 0
p13 1 0 1 1 1 0
p14 0 1 1 1 0 0
p15 1 0 0 1 1 0

Each product-specific relaxation (PSX) can be seen as a diagnosis which - similar to a relaxation -
need not to be minimal. This implies, that all diagnoses can be directly calculated from the intermediate

representation. This determination of diagnoses is used in the algorithms FastXplain (see Section 3.3),
BFX (see Section 3.4 and PFX (see Section 3.5). In addition to this method of retrieving diagnoses, the
algorithms use a consistency check based on a set of requirements R and a set of products P. Such a
consistency check evaluates to true if any product pi ∈ P satisfies all requirements in R. If no product can
be found satisfying all requirements of R, the consistency check fails.

In summary, the introduced intermediate data representation is convenient for identifying diagnoses as
well as for performing consistency checks. However, the table must be recalculated every time the require-
ments change. The computational power needed for this recalculation depends on how many requirements
are specified.

3.2. Algorithm: GraphXplain

This section describes the algorithm GraphXplain which was published in (Schubert et al., 2009). The key
idea behind the GraphXplain algorithm is to analyse the network of customer requirements and products.
While analysing the structure of that network, more knowledge can be gained about which requirements
should change in order to retrieve a product. The intermediate data structure described in Section 3.1.2 can
be understood as an adjacency matrix. This adjacency matrix relates the set of products P to the customer
requirements R. This structure can be interpreted as a two-mode network (also referred as bipartite net-
work). Two-mode networks are widely used in the field of social network analysis (Wasserman and Faust,
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1994). Such a network can either be represented as a matrix (see Table 3.2) or in a graph (see Figure 3.1).

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15

r1 r2 r3 r4 r5 r6

Figure 3.1.: Two-mode network of the customer requirements R = {r1,r2, ...,r6} and the digital cameras
P = {p1, p2, ..., p15}. An edge in this network is drawn, if the product satisfies the requirement.

In a two-mode network there are only edges between the two groups of items. In the working example,
the set of products P is one group and the set of requirements R is the other one. One way to analyse such
a two-mode network is to project (or fold) (Wasserman and Faust, 1994) it into a one-mode network of
one of the two possible amplitudes. In order to analyse the structure of requirements, the adjacency matrix
M is projected to a network of requirements NR∗ = MT M. Figure 3.2 shows this network for the working
example. The nodes in this network represent the requirements R = {r1,r2, ...,r6}. An edge between two
nodes is drawn, if they share at least one product in the two-mode network. The products connecting edges
are:

• r1-r2: p11

• r1-r3: p1, p5, p6, p11, p13

• r1-r4: p1, p6, p11, p13, p15

• r1-r5: p1, p5, p6, p13, p15

• r2-r3: p2, p4, p7, p10, p11, p14

• r2-r4: p3, p10, p11, p14

• r2-r5: p10

• r2-r6: p4, p7, p8

• r3-r4: p1, p6, p10, p11, p13, p14

• r3-r5: p1, p5, p6, p10, p13

• r3-r6: p4, p7, p9

• r4-r5: p1, p6, p10, p13, p15

Taking a closer look at the edge {r1-r2}, the algorithm knows from the one-mode network that the prod-
uct p11 satisfies both requirements. If only these two requirements are considered to be satisfied the product
p11 can be recommended. Another example is the edge {r1,r3} which results in the recommendation of
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{p1, p5, p6, p11, p13}. In comparison to this, there is no edge between r1 and r6, because no product satis-
fies both requirements. Therefore, one of these two requirements needs to be adapted or relaxed in order to
retrieve a solution that satisfies all requirements. The goal of the GraphXplain algorithm is to identify these
requirements that need to be adapted (or relaxed) in order to find a solution that satisfies all requirements.
In terms of the graphical representation, this means that the goal is achieved, when a fully connected graph
is given, i.e. all edges sharing at least one common product.

r1 r2

r3

r4r5

r6

Figure 3.2.: One-mode network of the customer requirements R = {r1,r2, ...,r6} based on the two-mode
network of Figure 3.1

Identification of Minimal Conflict Sets

When identifying minimal conflict sets by using a graph, two cases have to be distinguished. First, minimal
conflict sets with the cardinality c = 1 have to be calculated, and second, calculating minimal conflict sets
with a higher cardinality (c ≥ 2). For the calculation of minimal conflict sets of the cardinality c = 1,
the algorithm needs to analyse the two-mode network. If there exists at least one requirement that is not
satisfied by any product, this is a minimal conflict set. This requirement is then a single node in the graph,
that is not connected to any other requirement. In other words, this requirement has to be changed to restore
consistency. Note that possibly more than just one requirement needs to be adapted. If this is the case, the
conflict set with cardinality one is definitely part of the set of requirements that have to be adapted. Note
that for the example introduced in Section 3.1, there is no any minimal conflict set with the cardinality one.

For identifying minimal conflict sets with a higher cardinality we first look at a simple example with the
cardinality c = 2. In order to identify conflict sets containing two elements, the algorithm simply looks for
missing edges. Such a missing edge means that there exists no product that satisfies these two requirements
and thus at least one of them has to be altered in order to restore consistency. When applying this step to
the example, it can be seen that there are 3 edges missing - one between r1 and r6 another one between r4

and r6 and the last one between r5 and r6. Therefore, the algorithm has found three minimal conflict sets:
{{r1,r6}, {r4,r6}, {r5,r6}}. Between all other nodes there is at least one product that the requirements
have in common.

This idea can be expanded to the cardinality of three. Therefore, the edge between two nodes can be seen
as a fully connected sub-graph of these nodes. For the identification of minimal conflict sets the algorithm
analyses all fully connected sub-graphs with 3 nodes. If the edges of these fully connected sub-graphs do
not share any product, there is no product that satisfies this subset of requirements and therefore, a conflict
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set has been found. The GraphXplain algorithm retrieves the conflict sets of the lowest cardinality first.
For the algorithm it is important, that it starts with the cardinality of 1 and increases the cardinality. Note
that the cardinality of the minimal conflict set is the same as the number of nodes in the sub-graph. For
each conflict set the algorithm checks whether a subset has already been found that is a minimal conflict
set. If this is the case, there is no need to store the conflict set, because it is not minimal.

Applying the next step (identifying minimal conflict sets with cardinality 3) to the working example
introduced in Section 3.1, the sub-graph {r1− r2− r3} is considered. It can be seen that all edges in this
sub-graph (which are: {r1− r2}, {r2− r3} and {r3− r1}) have at least one product in common. This is
the product {p11}. Therefore, the set {r1,r2,r3} is not a conflict set. Considering all fully connected sub-
graphs with three nodes, the algorithm comes across the sub-graph {r1− r2− r5}. For all edges of this
sub-graph ({r1− r2}, {r2− r5} and {r5− r1}) the algorithm cannot find any product that is shared by all
edges. Therefore, all nodes of this sub-graph are part of a conflict set. Now it is interesting, whether this
conflict set ({r1, r2, r5}) is minimal. For this reason, the set is compared with all other minimal conflict
sets that have been retrieved so far. As no one of the retrieved conflict sets is ruled out to be a superset of
the current conflict set ({r1, r2, r5}), it can be ensured, that it is a minimal one.

In the next step the algorithm iterates over all fully connected sub-graphs with 4 nodes (requirements).
The sub-graph is {r1− r2− r3− r4}. The edges of this sub-graph share the product p11. Therefore, it is not
a conflict set. The sub-graph {r1− r2− r3− r5} does not share any product and is therefore a conflict set.
Nevertheless, it can be identified not to be minimal, because {r1,r2,r5} was already identified as a minimal
conflict set. Similarly, the sub-graph {r1− r2− r4− r5} as well as the only fully connected sub-graph
containing 5 nodes (sub-graph {r1− r2− r3− r4− r5}) are conflict sets, but not minimal ones. Another
possibility is to eliminate all super sets of already identified conflict sets before continuing. Depending on
implementation, this can be faster. Finally, the algorithm has found all minimal conflict sets of the example
introduced in Section 3.1 which are: MCS = {{r1,r6},{r4,r6},{r5,r6},{r1,r2,r5}}.

Algorithm 1 GraphXplain (M)
{Input: M - adjacency matrix of constraints and items}
MCS← retrieveSingleNodes(M)
G←MT M

MCS←MCS∪ retrieveMissingEdges(G)
for all subgraphs do

SG← subgraphs.next

if notHasCommonEdge(SG) then
set← nodes(SG)
if isNoSuperSet(set,MCS) then

MCS←MCS∪ set

end if
end if

end for
return MCS
{Output: return MCS including all minimal conflict sets}
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Description of the GraphXplain Algorithm

The idea behind the algorithm GraphXplain (see also Algorithm 1) was just described. Here is a more
formal explanation of the algorithm. As shown in Algorithm 1, the input to the algorithm is an adjacency
matrix M. This matrix is similar to the one in Table 3.2. Moreover, in this matrix there is a 1 if the product
satisfies the requirement and a 0 otherwise. This matrix can be seen as a two-mode network from which the
algorithm retrieves all nodes that are not satisfied by any product (retrieveSingleNodes(M)). If any of these
single nodes exist, these are minimal conflict sets and thus the algorithm stores them in the variable MCS.
In the next step the algorithm projects the two-mode adjacency matrix into a requirement-mode graph G.
This is done by calculating MT M. Note that the matrix references the requirements in the columns and
the products in the rows. If this graph G is not fully connected, the algorithm retrieves the missing edges
(retrieveMissingEdges(G)) and stores the minimal conflict sets in the variable MCS.

Furthermore, the algorithm iterates over all fully connected sub-graphs. The method notHasCom-
monEdge(SG) checks if all edges within this graph have at least one such product in common (notHasCom-
monEdge(SG)). If there exists at least one product in all edges, then the set of requirements (nodes) is no
conflict set and the algorithm can continue with the next sub-graph. If the edges do not share any product,
then a conflict set has been found. The goal of the algorithm is to identify only minimal conflict sets and
the algorithm needs to check if it has found a subset of the current set that is already a minimal conflict
set. If the set is not a super set of any minimal conflict set (isNoSuperSet(set, MCS)), then the algorithm
can add it to the set of minimal conflict sets MCS. If there are no more fully connected sub-graphs, the
algorithm terminates.

3.3. Algorithm: FastXplain

This section presents the algorithm FastXplain which was published in (Schubert et al., 2010). The goal
of the algorithm is to identify minimal conflict sets in constraint-based recommender systems in a fast
way. In order to achieve this goal, the algorithm evaluates the situation (requirements of the customer as
well as products) and takes the structural properties into account. This structural property is a data table
similar to the one in Table 3.2. Based on this data representation all diagnoses can be directly extracted:
for every column (product) take every requirement where the product does not satisfy the requirement (a
zero is in the table). This set of requirements (diagnosis) provides a relaxation to the query containing all
requirements of the customer (see also Section 3.1.2 and (Jannach, 2008)).

Identification of Minimal Conflict Sets

In order to support a customer in interactive settings, FastXplain calculates minimal conflict sets based on
minimal diagnoses. As already described in Section 2.3 a diagnosis is a set of requirements that need to
be adapted or deleted in order to restore the consistency (meaning that at least one product can be recom-
mended). A diagnosis is based on a set of conflicts. Each conflict between the customer requirements and
the product assortment has to be resolved to achieve a consistent state. Therefore a diagnosis contains one
element of each conflict set. Based on this (Reiter, 1987) introduced the hitting set directed acyclic graph
to determine all minimal diagnoses based on minimal conflict sets (also called hitting sets). FastXplain
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takes the same property between diagnoses and conflict sets to identify all minimal conflict sets based on
minimal diagnoses.

For identifying the minimal conflict sets, FastXplain iterates over all products and retrieves the diagnoses
of the lowest cardinality (lowest number of requirements in the diagnosis). In the working example from
Section 3.1 there are three diagnoses with the cardinality 2, i.e. {r2,r6}, {r1,r6} and {r5,r6}. The diagnosis
{r2,r6} is retrieved first. The algorithm can start building a directed acyclic graph (similar to the concepts
in (Reiter, 1987)). This original graph is adapted in a way that diagnoses are added instead of conflict
sets as in the original. The root node of the graph represents the current situation (R, P) with R being a
set of requirements to relax and P the set of products obtainable by this relaxation. The edges represent
single requirements that need to be relaxed. All edges leaving one particular node are the elements of one
diagnosis. For example, in Figure 3.3 (which shows the directed acyclic graph of the working example),
the requirements leaving the root node (r2 and r6) are the first diagnosis.

R = {r1,r2, ...r6}, P = {p1, p2, ..., p15}

R = {r1,r3,r4,r5,r6},
P = {p2, p3, p4, p7, p8, p10, p11, p12, p14}

R = {r3,r4,r5,r6},
P = {p11}

ok

r5

closed

r6

r1

R = {r1,r3,r4,r5},
P = {p4, p7, p8}

closed

r1

closed

r4

closed

r5

r6

r2

R = {r1,r2,r3,r4,r5},
P = {p4, p7, p8, p9}

ok

r1

ok

r4

ok

r5

r6

Figure 3.3.: Directed acyclic graph built from diagnoses to identify minimal conflict sets. The graph is
constructed by the algorithm FastXplain from the example of Section 3.1

The root node of the graph holds all customer requirements R = {r1,r2,r3,r4,r5,r6} and all products
P = {p1, p2, ..., p15}. Based on this input the algorithm FastXplain is called and retrieves the first diagnosis
(d1 = {r2,r6}) from the intermediate data table (see Table 3.2). Each element of the diagnosis d1 is added
as edge to the root node with the label of the requirement. After adding all labelled edges, the algorithm
calculates the product set for the children. Let us take a closer look at the edge {r2}. For analysing the
situation of the child at the end of the edge, the algorithm excludes the requirement r2 from the set of
requirements R. In addition, the algorithm needs to adapt the set of products. This is done by deleting
all products from the assortment which do not satisfy the requirement r2. The reason for this elimination
is that r2 is part of the conflict set and in order to find another element of the conflict set the algorithm
searches in these products that satisfy r2. For the working example the set of remaining products is P =
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{p2, p3, p4, p7, p8, p10, p11, p12, p14}. Similarly, the algorithm identifies requirements and products for the
second branch in the graph.

In the next iteration the algorithm is applied to the leafs, first using the smaller set of requirements
and products of the left leaf (following the left edge {r2} in Figure 3.3). The diagnosis with the lowest
cardinality of the left node (R\{r2}= {r1,r3,r4,r5,r6} and P[¬r2] = {p2, p3, p4, p7, p8, p10, p11, p12, p14})
is d2 = {r1,r6}. If all products have been eliminated from the current product set which do not satisfy r1,
there is still a product (p11) left in the set. There are also products left for the requirement r6 (i.e. p4,
p7, p8). As there are still products left, the algorithm has not found a minimal conflict set yet. This is
based on the fact, that a conflict set is a set of requirements where the product query gives an empty result
(see Definition 4). Therefore, the algorithm needs to expand the tree further in a breadth first manner.
The next node the algorithm expands is the one with the requirements R\{r6}= {r1,r2,r3,r4,r5} and the
product set P[¬r6] = {p4, p7, p8, p9} (see the right branch of the tree in Figure 3.3). The lowest cardinality
diagnosis for this set of products is d3 = {r1,r4,r5}. Checking the node with the path {r6 − r1}, the
algorithm can eliminate from the current set of products all products that do not satisfy the requirement r1

(P[¬r6,¬r1] = {}). This set of products is empty and therefore, the algorithm has found a minimal conflict
set, mcs1 = {r1,r6}. Breadth-first expansion ensures, that all possible sets of cardinality c are evaluated
before any sets of cardinality c+1 are. This fact ensures the minimalism property of the conflict sets. To
gather all minimal conflict sets, this method is iterated until each leaf has either an empty set of remaining
products or the path to the leaf is not minimal (the set of requirements of the path is a superset of another
minimal conflict set). Following this procedure for the introduced example (see Section 3.1), the algorithm
ends up with the set of minimal conflict sets MCS = {{r1,r6},{r4,r6},{r5,r6},{r1,r2,r5}}.

Description of the FastXplain Algorithm

This section dives into a more formal description of FastXplain which can be seen in Algorithm 2. The
FastXplain algorithm was inspired by the hitting set directed acyclic graph (HSDAG) (Reiter, 1987) as well
as by (Jannach, 2008), thus we take over the same kind of description. The input values for FastXplain are
a root node for the graph as well as a set of relaxed requirements R and a set of obtainable products P.
Note that it is enough to store only the indexes of the requirements and the products in the sets, because the
algorithm operates on the intermediate data representation (see Table 3.2). The root node is the reference
to the resulting graph which contains the diagnoses as well as the minimal conflict sets. The result of the
FastXplain algorithm is a directed acyclic graph (tree similar to Figure 3.3) as well as a set of minimal
conflict sets stored in the global variable MCS. This variable is initialized to an empty set.

During the first step, FastXplain retrieves the diagnosis with the lowest cardinality from the intermediate
data representation (see Table 3.2). This is done by the function getMinCardinalityDiagnosis. This
function operates on the current set of requirements R and the current set of products P, which are provided
as parameters. The result is the lowest cardinality diagnosis - the one consisting of the lowest number of
requirements. If there are more diagnoses with the same number of requirements, the algorithm takes the
first one. For each requirement of the diagnosis D a set of products P’ containing all products that satisfy
this requirement is calculated (reduce(P,r)) - i.e. all products that do not satisfy the requirement are deleted
from the original set of products P. Based on this reduced set of products P’ combined with the remaining
set of requirements (R’=R \ {r}, where r is deleted from R) as well as the current requirement r as label
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Algorithm 2 FastXplain(root, R, P)
{Input: root - the root node of the current subtree}
{Input: R - set of user requirements}
{Input: P - set of products}
{Global: MCS - set of all minimal conflict sets}
D← getMinCardinalityDiagnosis(R,P)
for all requirements r f rom D do

P′← reduce(P,r)
child← addChild(r,R\{r},P′)
if P′ = {} then

if path(child) /∈MCS then
MCS← path(child)
child← ok

return
end if
child← closed

end if
if ∃ cs ∈MCS : cs⊆ path(child) then

child← closed

end if
if child 6= closed then

FastX plain(child,R\{r},P′)
end if

end for

for the edge a node in the graph is created and added to the current root node (addChild). This node is
stored in the variable child. If the set of products P’ is empty, a conflict set (path from the root node of the
graph to the child) has been found. The path to the child is a minimal conflict set, if there is no element in
MCS (set of all minimal conflict sets) which is a subset of the current path. If the current path is a minimal
conflict set, it is added to the variable MCS and the node is marked as ok. If it is not a minimal conflict
set, the node is marked as closed. If a node is marked (either with ok or closed), there is no need to further
investigate into this node.

If the set of products P’ is not empty, the algorithm checks if there exists a minimal conflict set cs in
MCS, that is a subset of the current path. If this is the case, the current path cannot be a minimal conflict
set any more and thus the algorithm does not need to further investigate into it. As a consequence the
status of the node is set to closed. In all other cases the tree is constructed further. When calculating all
minimal conflicts sets, a tree is created where all paths to the leafs marked with ok are minimal conflict
sets. Otherwise (for non-minimal conflict sets) the leafs are marked with closed.
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3.4. Algorithm: Boosted FastXplain (BFX)

This section explains the BFX (Boosted FastXplain) algorithm which was published in (Schubert and
Felfernig, 2011). This algorithm is an extension of the FastXplain algorithm that has been introduced
in Section 3.3. The goal of this algorithm is to improve the run time performance of the FastXplain al-
gorithm which is important to improve the usability of the system. The BFX algorithm uses the same
underlying data structure as FastXplain (see Table 3.2). The main difference between the two algorithms
is that the BFX algorithm uses a weighting criteria to identify the sequence of the diagnoses. This effects
the appearance of the hitting set directed acyclic graph (HSDAG) (Reiter, 1987).

Identification of Minimal Conflict Sets

The BFX algorithm operates on the data structure based on the customer requirements and the products
(see Table 3.2) to identify all minimal conflict sets. A simple approach how to identify all diagnoses
is introduced in (Jannach, 2008). A more advanced approach is the FastXplain algorithm described in
Section 3.3 and (Schubert et al., 2010). This algorithm can be improved by introducing a weight to identify
the ’best’ diagnoses. This weight takes into account how often each requirement is satisfied. Therefore it
calculates the sum of each column (see Table 3.3) in a first step. In Table 3.3 (which is an extension of Table
3.2) the last row shows the sum of each column. The requirement r1 is satisfied by 6 products (w(r1) = 6),
requirement r2 is satisfied by 9 products (w(r2) = 9), and so on. Based on this sum the total weight of each
diagnosis can be calculated. This is done by summing up the sum value of each requirement which is part
of the diagnosis of this product. Considering the product p1, the diagnosis that can be retrieved from this
product is {r2,r6}. For each element of the diagnosis the values of the requirements r j are summed up. For
the requirement r2 this value is 9 and for the requirement r6 it is 4. The sum of these values is 13. This is
the weight for the diagnosis {r2,r6}. On a more formal level:

weight(di) = ∑(1− v j)∗w(r j) (3.1)

Note that for each requirement that is part of the diagnosis, the value (v j) is 0 in the table representation.
For all other requirements the value (v j) is 1. w(r j) is the number of products that satisfy the requirement
r j. The weights of diagnoses derived from all products are shown in Table 3.3.

After the calculation of all weights, the diagnosis with the lowest weight is selected. The weight of a
diagnosis indicates how many products can be recommended when all requirements of this diagnosis are
adapted or deleted. For the example this is the diagnosis d1 = {r1,r6} with the weight 10 resulting from
product p10. Based on this selected diagnosis d1 the algorithm can build a directed acyclic graph similar to
the hitting set directed acyclic graph (Reiter, 1987). This graph is built of nodes which hold information
about the current set of requirements as well as the current set of products. The edges are labelled with
requirements. All outgoing edges are part of one diagnosis and all paths from the root node to the leafs are
conflict sets (see also Section 3.3). The graph constructed by the BFX algorithm can be seen in Figure 3.4.
Similar to the FastXplain algorithm the root node consists of the customer requirements R = {r1,r2, ...,r6}
and all products P = {p1, p2, ..., p15} from the product table.
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Table 3.3.: Intermediate representation for the BFX algorithm of the customer requirements R and the prod-
uct assortment P of digital cameras. In the last row the weight of each requirement is given.
The weight (weight(di) = ∑(1− v j)∗w(r j)) of each diagnosis is given in the last column.

id r1 r2 r3 r4 r5 r6 weight(di)

p1 1 j0 1 1 1 j0 13
p2 0 1 1 0 0 0 25
p3 0 1 0 1 0 0 28
p4 0 1 1 0 0 1 21
p5 1 0 1 0 1 0 21
p6 1 0 1 1 1 0 13
p7 0 1 1 0 0 1 21
p8 0 1 0 0 0 1 32
p9 0 0 1 0 0 1 30
p10 0 1 1 1 1 0 10
p11 1 1 1 1 0 0 11
p12 0 1 0 0 1 0 29
p13 1 0 1 1 1 0 13
p14 0 1 1 1 0 0 17
p15 1 0 0 1 1 0 24

∑ 6 j9 11 8 7 j4
The first diagnosis retrieved is d1 = {r1,r6}. For each element of this diagnosis an edge is added to

the root node. Afterwards the algorithm calculates the remaining set of requirements and the remain-
ing set of products similar to FastXplain. For the edge {r1} the set of remaining products is P[¬r1] =
{p1, p5, p6, p11, p13, p15} and the set of remaining requirements (eliminating r1 from R) is R \ {r1} =
{r2,r3,r4,r5,r6}. And for the edge {r6} the set of remaining products is P[¬r6] = {p4, p7, p8, p9} and the
set of remaining requirements is R\{r6}= {r1,r2,r3,r4,r5}. Continuing with the node at the end of edge
{r1} the diagnosis d2 = {r5,r6} is the one with the lowest weight which can be derived from the remaining
set of products P[¬r1]. For each requirement of the diagnosis, an edge is added to the current node as well
as the remaining set of products. For the edge {r1− r5} this set is P[¬r1,¬r5] = {p1, p5, p6, p13, p15} and for
the edge {r1− r6} the set of products is empty. A minimal conflict set has been found. The node can be
marked with ok and the algorithm continues in a breath first manner.

For calculating all minimal conflict sets, this method has to be continued until each leaf has either
an empty set of remaining products or the path to the leaf is not minimal (the set of constraints of the
path is a superset of a minimal conflict set). The full graph is shown in Figure 3.4. From this graph all
minimal conflict sets of the example can be easily identified. These minimal conflict sets are: MCS =
{{r1,r6},{r4,r6},{r5,r6},{r1,r2,r5}}.

Comparing the graph constructed by the FastXplain algorithm (see Figure 3.3) with the one built by the
BFX algorithm (see Figure 3.4) it can be observed that the second graph constructed by the BFX is smaller.
The size of the tree is reflected in an improvement of the run time as well as in the memory needed. The
improvement of the BFX algorithm is based on weights. The weight of a requirement is an indicator of
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R = {r1,r2, ...r6}, P = {p1, p2, ..., p15}

R = {r2,r3,r4,r5,r6},
P = {p1, p5, p6, p11, p13, p15}

R = {r2,r3,r4,r6},
P = {p1, p5, p6, p13, p15}

ok

r2

closed

r6

r5

ok

r6

r1

R = {r1,r2,r3,r4,r5},
P = {p4, p7, p8, p9}

closed

r1

ok

r4

ok

r5

r6

Figure 3.4.: Directed acyclic graph built of diagnoses to identify minimal conflict sets. The graph is con-
structed by the algorithm BFX (Boosted FastXplain) from the example of Section 3.1

how valuable it is to adapt this requirement. A high weight of a requirement indicates that it is satisfied by
a lot of products. Therefore, if the customer relaxes a high weighted requirement, only few more products
are satisfied. Nevertheless, the aim of the algorithm is to leave the inconsistent state as fast as possible.
For this reason, the algorithm is interested in low weighted requirements because they lead to more useful
products (for the customer).

Description of the BFX Algorithm

After describing the ideas behind the BFX algorithm, this section focuses on a more formal description of it
(see Algorithm 3). The algorithm was inspired by FastXplain (see Section 3.3 and (Schubert et al., 2010))
thus the same level of description is kept. The input values of the BFX algorithm are the root node for
the graph, a set of customer requirements R and a set of products P. The root node is the reference of the
resulting graph which holds all information about the diagnoses and the minimal conflict sets. The result
of the algorithm are all minimal conflict sets which are stored in the global variable MCS. This variable
is empty in the beginning. As a side product the algorithm generates a directed acyclic graph that holds
all minimal diagnoses. For example, the root node holds the diagnosis d1 = {r1, r6}. Similarly, the other
diagnoses of the nodes of the left side for the graph are: d2 = {r5, r6}, d4 = {r2, r6} and the diagnosis of
the node of the right side is d3 = {r1, r4, r5}.

In a first step BFX retrieves the diagnosis with the lowest weight (getMinWeightDiagnosis(R,P)) based
on the set of requirements R and the set of products P. The weight of a diagnosis di based on the product
pi is given by weight(di) = ∑(1−v j)∗w(r j). v j is the value for each attribute for the product pi in the data
structure (see Table 3.3). And w(r j) indicates how often the requirement is satisfied (see the sum in the last
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Algorithm 3 BFX(root, R, P)
{Input: root - the root node of the current subtree}
{Input: R - set of user requirements}
{Input: P - set of products}
{Global: MCS - set of all minimal conflict sets}
D← getMinWeightDiagnosis(R,P)
for all requirements r f rom D do

P′← reduce(P,r)
child← addChild(r,R\{r},P′)
if P′ = {} then

if path(child) /∈MCS then
MCS← path(child)
child← ok

return
end if
child← closed

end if
if ∃ cs ∈MCS : cs⊆ path(child) then

child← closed

end if
if child 6= closed then

BFX(child,R\{r},P′)
end if

end for

row of Table 3.3). If there exists more than one diagnosis with the same weight the first one is chosen. For
each requirement r from the diagnosis the set of products is adapted. This is done by removing all products
from the current set P which do not satisfy the requirement r. The result is stored in the variable P’. For the
next node the algorithm has to adapt the set of requirements by deleting the requirement r from R. Finally
the algorithm can create a new node at the end of the edge r with the label of the edge (r), the set of adapted
requirements R’ = R\{r} and the set of adapted products P’. This node is added to the current root node
using the method addChild.

If the set of adapted products P’ gets empty, a conflict set has been found. This conflict set is the path
from the root node of the graph to the leaf. If this conflict set is not a superset of any minimal conflict set
retrieved so far, then it is a minimal conflict set. In addition, the minimalism of the conflict sets is ensured
by a breadth first search of the algorithm. If the algorithm identifies a minimal conflict set, the node can be
marked with ok. Furthermore, the algorithm closes this node. This means that no further investigation is
needed for this leaf. If this path to the node is not an element of MCS (set of all minimal conflict sets) yet,
then it is added. If the path or a subset of it is already an element of the minimal conflict sets retrieved so
far, then there is no need to expand the node any more. This is based on the fact that the conflict set would
not be minimal. In this situation the algorithm can mark the node as closed.

In all other cases the graph is constructed further in breadth-first manner. If the BFX algorithm is not
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Table 3.4.: Utility values specified by the customer for each requirement (in percentage)

mpix display zoom waterproof movie price

utility 21.0 9.0 30.0 7.0 8.0 25.0

stopped after a certain number of minimal conflict sets, it calculates all minimal conflict sets. This results
in a tree where all paths to the leafs are either marked with ok or closed. All paths from the root node to
a leaf marked with ok are minimal conflict sets. All other leafs are marked with closed are non-minimal
conflict sets.

The performance improvements of the algorithm BFX compared to the FastXplain (see Section 3.3) can
be explained by the way minimal diagnoses are selected.

3.5. Algorithm: Personalized FastXplain (PFX)

This section explains the PFX (Personalized FastXplain) algorithm which is an adaptation of the FastXplain

algorithm (see Section 3.3) with the aim to personalize the calculation of minimal conflict sets. The PFX

algorithm uses a similar data structure as FastXplain (see Table 3.2). The main difference between the two
algorithms is that the PFX takes a utility value into account. The usage of the utility affects the ordering in
which minimal conflict sets are retrieved.

In interactive settings there is no need to calculate all minimal conflict sets. In most settings it is enough
to come up with a couple of alternatives. In this context a personalized ranking of the alternatives is
important for the usability of the system. The PFX algorithm follows the idea that customers will more
probably change requirements of low importance for them compared to requirements with a high utility
(Mobasher, 2007). This results in the need for personalized conflict sets.

Identification of Personalized Conflict Sets

The PFX algorithm personalizes the calculation of conflict sets by using utility values i.e. values that
indicate the importance for the customer. These utility values can be either entered by the customer or
retrieved from the user profile. Table 3.4 shows the utility values (in percentage) for the example introduced
in Section 3.1. Based on these utility values of a customer, the products can be ranked. The utility weight
(see Definition 3.2) of a product pi is the sum of all utility values from those attributes which are not
satisfied by the product. In this formula v j indicates the satisfaction value of the product pi (also shown
in Table 3.2) and the attribute a j in the data structure. For example, let us take a look at product p1. The
product p1 does not satisfy the requirements r2 and r6 (see Table 3.2). The satisfaction value v of these
two requirements is 0 whereas the value of the other requirements is 1. Using these values and the utility
values of Table 3.4 the utility weight of product p1 can be calculated by: (1-1)∗21 + (1-0)∗9 + (1-1)∗30 +
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(1-1)∗7 + (1-1)∗8 + (1-0)∗25 = 34. The utility weights of all products are shown in Table 3.5.

utilityweight(pi) = ∑(1− v j)∗utility(a j) (3.2)

Based on this, the utility for each product can be calculated. For all products of the working example the
utility weights are shown in Table 3.5. This table shows that the product with the lowest utility weight is
p11 and the derived diagnosis is d1 = {r5,r6}. Similar to the FastXplain algorithm a directed acyclic graph
(based on (Reiter, 1987)) can be built up using d1. This graph is shown in Figure 3.5. For each element
of the diagnosis, the algorithm can draw an edge starting from the root node. Following the edge {r5},
the algorithm has to reconsider the set of requirements R (exclude {r5}) and the set of products P (only
products that do not satisfy r5 are needed, i.e. P[¬r5] ). In addition, the weight for this node is calculated.
This weight is the sum of all requirements of the path to this node (r5 in this case). The weight of a
requirement is based on the utility value (see Table 3.4). For example, the requirement r5 concerns the
attribute movie. This attribute has a utility weight of 8 (see Table 3.4). For this reason the utility of the
requirement r5 is w = 8. If the path consists of more requirements, the utility values of all requirements are
summed up.

Table 3.5.: Utility values for each product (based on the Formula 3.2)

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15

utility-weight 34 61 84 36 41 34 36 66 45 46 33 83 34 54 64

After adding the diagnosis to the root node, there are two possibilities to expand the directed acyclic
graph. The first one is to expand the node which has currently the lowest weight. This is highly dependent
on the utility for the customer, because this type of search will not retrieve nodes with a minimal cardinality,
but with a minimal utility weight. The second possibility is to perform a breath-first search where all nodes
of the same level are expanded before going into a deeper level. Within one level the node with the lowest
weight can be expanded first in order to improve the ranking of the resulting minimal conflict sets. In this
thesis the second method is used because this enables us to ensure that all conflict sets that are calculated are
minimal ones due to the characteristics of the breadth first search. This allows us to compare the approach
with other algorithms (state of the art approaches as well as approaches introduced in this chapter).

For building up the directed acyclic graph, the algorithm uses the breadth-first search with the extension
to expand the nodes with a lower weight first. Therefore the algorithm needs to calculate the weights for
each node. For the node resulting from r5 the weight is w = 8 and for the one resulting from r6 the weight
is w = 25. The algorithm starts expanding the node from r5 first (see left part of the tree in Figure 3.5).
The next diagnosis with the lowest utility weight is d2 = {r2,r6}. After adding this diagnosis to the graph
and adapting the set of requirements and the set of products it can be observed that the set of products is
empty. This means that a minimal conflict set has been found, which is {r5,r6}. For the path {r5− r2} one
product (p10) is still left. Due to the breadth-first search, the algorithm continues with the node with the
path {r6} (see right branch of Figure 3.5). The diagnosis with the lowest weight resulting from the product
set P[¬r6] = {p4, p7, p8, p9} is d3 = {r1,r4,r5}. This diagnosis is added to the graph and when calculating
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R = {r1,r2, ...r6}, P =
{p1, p2, ..., p15}, w = 0

R = {r1,r2,r3,r4,r6},
P = {p1, p5, p6, p10, p12, p13, p15}, w = 8

R = {r1,r3,r4,r6},
P = {p10}, w = 17

ok, w=38

r1

closed, w=42

r6

r2

ok, w=33

r6

r5

R = {r1,r2,r3,r4,r5},
P = {p4, p7, p8, p9}, w = 25

ok, w=46

r1

ok, w=32

r4

closed, w=33

r5

r6

Figure 3.5.: Directed acyclic graph built of diagnoses to identify personalized conflict sets. The graph is
constructed by the algorithm PFX (Personalized FastXplain) from the example of Section 3.1

the remaining set of products it can be observed that the algorithm identified two more minimal conflict
sets ({r6,r1} and {r6,r4}). The set {r6,r5} would also be a minimal conflict set, but the algorithm has
already found it. Therefore, the status of the path can be set to closed. Afterwards, the algorithm expands
the last node with the diagnosis d4 = {r1,r6} which leads to the minimal conflict set {r5,r2,r1}. Finally,
all minimal conflict sets have been identified in a personalized ordering based on the utility values of Table
3.5: MCS = {{r5,r6},{r1,r6},{r4,r6},{r1,r2,r5}}.

Description of the PFX Algorithm

After describing the ideas behind the PFX (Personalized FastXplain) algorithm (see Algorithm 4), a more
formal description is given now. The algorithm was inspired by FastXplain (see Section 3.3 and Schubert
et al. (2010)). This section describes the main differences between the FastXplain algorithm and the PFX

algorithm. The input values of the PFX algorithm are the root node for the graph, a set of customer
requirements R and a set of products P. Compared to the FastXplain algorithm there is a fourth input
value namely the utility value of each requirement. These values can be either specified by asking the user
directly or retrieved from the user profile. Similar to the FastXplain algorithm the algorithm has a global
variable MCS which holds all minimal conflict sets, but in a sorted (personalized) way. This variable is
empty in the beginning.

The first step of the PFX algorithm is to retrieve the diagnosis with the lowest utility weight (for the
calculation of the weight see Formula 3.2). Similar to the FastXplain algorithm, the PFX iterates over all
requirements of the diagnosis and adds it to the graph. For each new node the set of requirements and
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Algorithm 4 PFX(root, R, P, u)
{Input: root - the root node of the current subtree}
{Input: R - set of user requirements}
{Input: P - set of products}
{Global: MCS - set of all minimal conflict sets}
D← getMinWeightDiagnosis(R,P)
for all requirements r f rom D do

P′← reduce(P,r)
child← addChild(r,R\{r},P′)
if P′ = {} then

if path(child) /∈MCS then
MCS← path(child)
child← ok

return
end if
child← closed

return
end if
if ∃ cs ∈MCS : cs⊆ path(child) then

child← closed

else
children← sortInsert(child,u)

end if
PFX(children.nextChild(),R\{r},P′)

end for

the set of products are adapted (similar to the FastXplain algorithm). Furthermore, it is checked if the
path is a minimal conflict set (no products are left in the product set) or if the path is already a superset
of any minimal conflict set found so far. If this is not the case the algorithm performs a sorted insert
(sortInsert(child, u)) in the list of children in order to expand them in a personalized way. This list of
children is always sorted according to the path length (length from the root node to the actual node) and
the utility value u. The recursive call of the PFX algorithm is performed with the next child in the list (see
PFX(children.nextChild(),R\{r},P′)).

The main improvement of the algorithm PFX compared to the FastXplain (see Section 3.3) is that the
minimal conflict sets are determined in a personalized way. In interactive settings it is often sufficient to
propose only a few alternatives to the customer, but then these alternatives should be personalized in order
to support the customer as good as possible.

3.6. Algorithm: PersRepair

This section explains the PersRepair algorithm which was published in (Felfernig et al., 2009b,c). Com-
pared to the algorithms so far (GraphXplain, FastXplain, BFX and PFX) which are meant to calculate
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minimal conflict sets, the goal of this algorithm is to calculate repair actions. A repair action is an action
that is proposed to the customer in order to restore consistency of the given requirements. If the customer
accepts a repair action, there is at least one item in the product assortment that satisfies the adapted require-
ments of the customer. This adaptation is called repair action. Due to the fact that repair actions ignore
the original customer requirements at least partially, there is no information if a repair alternative is of rel-
evance to the customer. Furthermore, as there exists a repair action for each item, the set of repair actions
gets potentially very large. Consequently, there exists a need for a personalization of repair alternatives.

Compared to the algorithms (GraphXplain, FastXplain, BFX and PFX) described in this chapter so
far, the PersRepair algorithm does not take the structural properties of a knowledge-based recommender
into account (the algorithm can also be applied to general Constraint Satisfaction Problems, CSP). The
PersRepair algorithm applies concepts of model-based diagnosis (Reiter, 1987; de Kleer et al., 1992) for
the automated identification of minimal sets of faulty requirements. If no recommendation can be identified
(as it is the case in the example given), the diagnosis task is to determine those requirements that need to
be relaxed or deleted in order to find a recommendation. The possible adaptations or relaxations of the
customer requirements are denoted as repair actions. These repair actions are based on diagnoses which
have to be calculated beforehand.

Identifying Repair Actions

The goal of the PersRepair algorithm is to systematically reduce the number of repair actions. The re-
duction of the repair actions is based on the idea of taking into account only the set of nearest neighbors
(already completed recommendations that are similar to the requirements of the current user). A special
interest lies on those repair actions which resemble the original requirements of the customer the most. For
deriving such repair actions, the existing product definitions (see Table 3.1) are exploited and the n-nearest
neighbours are identified. The determination of the similarity values is based on attribute-level similarity
measures (Konstan et al., 1997; Wilson and Martinez, 1997; McSherry, 2004). The similarity is calculated
for each pair of attribute ai of the product assortment P and the corresponding customer requirement ri.
Depending on the characteristics of the attribute, one of the following three measures is taken: More-Is-

Better (MIB) see Formula 3.3, Less-Is-Better (LIB) see Formula 3.4 or Nearer-Is-Better (NIB) see Formula
3.5 (McSherry, 2004). In these formulas val(ri) represents the value of the requirement ri; max(ai) is the
maximum value of the attribute ai in the product assortment and min(ai) is the minimal value.

MIB : sim(ri,ai) =
val(ri)−min(ai)

max(ai)−min(ai)
(3.3)

LIB : sim(ri,ai) =
max(ai)− val(ri)
max(ai)−min(ai)

(3.4)

NIB : sim(ri,ai) =

{
1 i f val(ri) = val(ai)
0 else

(3.5)

For the working example the MIB similarity is used for the attributes mpix, display, opt-zoom and weight.
The NIB similarity is used for the attributes sound, waterproof, movies and colour. For the attribute price
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the LIB similarity is used. Calculating the similarity between the attribute mpix of the product p1 and the
customer requirement r1 (mpix > 10), the maximum max(mpix) = 15 and the minimum min(mpix) = 5.5
are taken as a basis. Based on the characteristics of the attribute mpix the MIB similarity is applied. There-
fore, the similarity of this attribute is sim(r1,mpix) = 10−5.5

15−5.5 = 0.47. The idea behind the MIB similarity
is the higher the value the better it is for the customer. In comparison to this the attribute price holds the
following: the lower the value the better it is for the customer (LIB). For a detailed discussion of different
types of similarity measures see, for example, (Wilson and Martinez, 1997; McSherry, 2004).

Based on these individual similarity values for each attribute, the similarity between the customer re-
quirements and the product under consideration can be defined. Formula 3.6 calculates the overall sim-
ilarity value. In this formula, weight(ri) denotes the importance of requirement ri for the current user.
For the working example, it is assumed that all requirements are equally important to the customer. The
weight for each requirement ri is weight(ri) = 1

6 (w(mpix) = 1
6 , w(display) = 1

6 , w(opt − zoom) = 1
6 ,

w(waterproo f ) = 1
6 , w(movies) = 1

6 and w(price) = 1
6 ). For the working example introduced in Section

3.1 the similarities between the customer requirements and all products are shown Table 3.6. Based on
these similarity values, the n-nearest neighbours can be determined. For the working example n = 5 has
been chosen, which results in the following 5-nearest neighbours (the ones with the highest similarity):
NN = {p2, p6, p10, p13, p15}.

similarity(R, p j) = ∑
ri∈R

sim(ri,ai)∗weight(ri) (3.6)

The PersRepair algorithm (see Algorithm 5 and 6) identifies personalized repair actions based on a set of
nearest neighbours NE. The initial situation is similar to algorithms already described. The set of require-
ments R is inconsistent with the set of products. Therefore the customer requirements are also inconsistent
with the set of nearest neighbours NN = {p6, p7, p10, p13, p15} (σ[R]NN = /0). In order to help the customer
in consistency management, the PersRepair algorithm activates a conflict detection component which re-
turns one conflict set per activation. For the implementation of this algorithm, the algorithm QuickXplain

(Junker, 2004) was used. Other algorithms can be used as well, for example, the ones described earlier in
this chapter. For all products in NN and the requirements in R the following conflict sets can be derived:
CS = {{r1,r6}, {r4,r6}, {r5,r6}, {r1,r2,r5}}.

Table 3.6.: Similarity values for each product (based on the Formula 3.6)

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15

similarity .46 .59 .46 .34 .41 .59 .53 .53 .44 .63 .49 .11 .62 .44 .62

The conflict set CS1 = {r1,r6} is the first one retrieved. Using this conflict set, the construction of the
Hitting Set Directed Acyclic Graph (HSDAG) (Reiter, 1987) can be started (see Figure 3.6 for the whole
graph). The first conflict set that is retrieved is added to the root node. The conflict set is represented by
two outgoing paths, namely {r1} and {r6}. Following the edge of the graph indicates the relaxation of
this requirement (label of the edge). Based on the situation after adding the first conflict set, it is analysed
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which repair actions are possible after eliminating one element from this conflict set. If, for example, the
requirement r1 is eliminated this would result in repair actions supported by NN[¬r1] = {p2, p10}. The
algorithm continues with expanding the tree in a best first manner that follows the highest similarity value
of the first i products (for this example i = 3 is used). The best first search leads to repair actions that are
most similar to the original customer requirements. In the example introduced, the path {r6} is the most
promising one. Therefore the second conflict set CS2 = {r1,r2,r5} is added to this branch. After adding
this conflict set to the graph three diagnoses can be found: d1 = {r6,r2}, d2 = {r6,r1} and d3 = {r6,r5}.
The ordering of these diagnoses is determined on the basis of the similarity values determined for the set of
nearest neighbours. For example, for the path {r6− r2} the system can suggest repair actions on the basis
of the products σ[¬r6,¬r2]NN = {p2, p6, p10}.

NN =
{p2(.59), p6(.59), p10(.63), p13(.62), p15(.62)},

CS1 = {r1,r6}

σ[¬r1]NN = {p2(.59), p10(.63)},
CS3 = {r4,r6}

σ[¬r1,¬r4]NN = {p2(.59)},
CS4 = {r5,r6}

d4 = {r1,r4,r5}

r5

closed

r6

r4

closed

r6

r1

σ[¬r6]NN =
{p2(.59), p6(.59), p10(.63), p13(.62), p15(.62)},

CS2 = {r1,r2,r5}

d2 = {r6,r1}

r1

d1 = {r6,r2}

r2

d3 = {r6,r5}

r5

r6

Figure 3.6.: Directed acyclic graph built of conflict sets to identify personalized diagnoses by the algorithm
PersRepair. The algorithm operates on the 5 nearest neighbour products (NN). The value close
to the product id indicates the similarity between the product and the customer requirements
(see Table 3.6).

The key idea behind this approach is that the most promising paths are leading to those diagnoses that are
most similar to the original set of requirements. In order to follow the most promising path the algorithm
expands the graph in a best-first manner. The complete graph is shown in Figure 3.6. In order to calculate
the repair actions the algorithm takes the diagnosis d1. This is the one that is most similar to the original
requirements. Based on the diagnoses the repair actions can be directly derived from the product assort-
ment. For each attribute of a diagnosis the algorithm needs to identify a possible adaptation that leads to at
least one product. The repair actions for diagnosis d1 are based on σ[R−d1]NN = {p6, p13}. The calculation
is the following:

π[attributes(d1)](σ[R−d1]NN) = π[attributes({r2,r6)}](σ[{r1,r3,r4,r5}]NN) = π[attributes({r2,r6})]({p6, p13})
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The set of possible repair actions for the diagnosis d1 = {r2,r6} are {{display = 2.8, price = 249},{display =
2.5, price = 179}}.

Description of the PersRepair Algorithm

The algorithm PersRepair is shown in Algorithm 5. This algorithm highly depends on the PersDiagnosis

algorithm (see Algorithm 6). After showing how both algorithms work using the working example, a more
formal description follows. The PersRepair algorithm takes the following parameters as input: R which
is the set of requirements specified by the customer, P the description of the product assortment (this can
be a product table similar to Table 3.1), with n one can specify how many nearest neighbours should be
used and with k one can specify how many similar items should be considered for the best-first search
criteria. Based on the requirements R and the products P, the algorithm calculates n nearest neighbours by
the function getNearestNeighbours(R,P,n). The result is stored in the variable NN and the PersDiagnosis

algorithm (see Algorithm 6) is called for calculating one personalized diagnosis. Based on the diagnosis of
the PersDiagnosis algorithm, different repair actions may be retrieved from the set of nearest neighbours.
These repair actions are returned and can be presented to the user.

Algorithm 5 PersRepair(R, P, n, c)
{Input: R - set of user requirements}
{Input: P - set of products}
{Input: n - number of nearest neighbours}
{Input: k - k most similar items to be used by SimilaritySort(H,k)}
{Output: repairs - sorted list of repair actions}
NN← getNearestNeighbours(R,P,n)
d← PersDiagnosis(R,NN, /0,k)
return πattributes(d)(σ[R−d]NN)

The algorithm PersDiagnosis is shown in Algorithm 6. This algorithm takes the set of customer re-
quirements R and the nearest neighbours NN. The parameter H is a bag structure which is initiated with
/0. This structure holds all paths of the search tree in a best-first fashion. The last parameter k specifies
how many products should be taken into account by the best-first search. The algorithm starts to retrieve
the current best path d. This is the one with the most promising repair alternatives, meaning the one
with the highest probability to be adopted by the customer. The goal is to find those repair alternatives
which are most similar to the original requirements in R. Based on the current requirements (all require-
ments except the path R-d) and the nearest neighbours the algorithm calls a conflict detection algorithm
(ConflictDetectionAlgorithm(R-d,NN)). The role of this algorithm is to check whether there exists a
product for the current set of reduced requirements (R-d). If there exists at least one product that satisfies
the reduced set of requirements, then the call of the conflict detection approach returns an empty set. This
means that the algorithm has found a diagnosis (d). If the conflict detection algorithm identifies a conflict
set (ConflictDetectionAlgorithm(R-d,NN) returns a non-empty set CS), then the algorithm needs to ex-
pand the node resulting from the current path d. For each element r from the conflict set the algorithm adds
a new path {d ∪{r}} to the bag structure H. Finally, after adding the new elements to H, the algorithm
has to make sure that it is sorted according to the sorting criteria k (SimilaritySort(H,k)). The algorithm
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continues to expand the paths further until one diagnosis has been found. It can also be adapted to calculate
m or all diagnoses. If all diagnoses for the working example have been calculated, the graph would look
like the one in Figure 3.6.

Algorithm 6 PersDiagnosis(R, NN, H, k)
d← f irst(H)
CS←Con f lictDetectionAlgorithm(R−d,NN)
if CS = /0 then

return d

end if
for all requirements r f rom CS do

H← H ∪{d∪{r}}
end for
H← SimilaritySort(H,k)
PersDiagnosis(R,NN,H,k)

3.7. Algorithm: ReAction

This section introduces the algorithm ReAction which was published in (Schubert et al., 2011). The task
of the algorithm is to support customers with preferred repair actions efficiently. This results in two main
goals: First, the repair actions should be personalized and second, these repair actions should be calculated
fast, because a suitable run time performance is important for interactive settings (see Section 1.2).

Identifying Preferred Repair Actions

First, the term preferred repair actions will be clarified. Preferred repair actions result from preferred
diagnoses. In order to define a preferred diagnosis, this work relies on the definition of a total ordering of
the given set of requirements in R. This ordering of the requirements can be retrieved by asking customers
directly regarding their preferences. Another option is to apply multi attribute utility theory (MAUT) (von
Winterfeldt and Edwards, 1986). Moreover, (Belanger, 2005) introduced a conjoint analysis which can be
used to determine a ranking between the requirements. The preference values specified by the customer in
the working example introduced in Section 3.1, are shown in Table 3.4.

For this work the following definition of a lexicographical ordering (Definition 8) is used. This definition
is based on the total ordering for constraints that has been applied in (Junker, 2004) for the determination
of preferred conflict sets.

Definition 8 Total Lexicographical Ordering: Given a total order < on R, we enumerate the requirements

in R in increasing < order r1, ...,rn starting with the least important requirement (i.e., ri < r j⇒ i < j). We

compare two subsets X and Y of R lexicographically:

X >lex Y iff
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∃k : rk ∈ Y −X and

X ∩ rk+1, ...,rt = Y rk+1, ...,rt .

This definition of the total lexicographical ordering is based on the work of (Junker, 2004). (Junker,
2004) uses this definition for the determination of preferred conflict sets. This definition can be adapted in
order to define a preferred diagnosis (see Definition 9):

Definition 9 A minimal diagnosis d is a preferred diagnosis iff there does not exist another minimal diag-

nosis d′ with d′ >lex d.

The first step of the algorithm ReAction is to rank the requirements of the customer in a lexicographical
order. For the working example (see Section 3.1), the utility values from Table 3.4 are applied which
results in the lexicographical ordering (r4 < r5 < r2 < r1 < r6 < r3). The least important requirement of
the customer is r4 (attribute stabilization) and the most important requirement is r3 (attribute zoom). If
all customer requirements are considered, then a conflict situation emerges (no product can be found for
the requirements in R). The algorithm ReDiagnosis is called with the sorted set of requirements. This
algorithm returns the preferred diagnosis, meaning the one including the attributes with the lowest overall
utility. The underlying assumption is that this diagnosis is the one that will most probably to be changed
by the user (Junker, 2004).

ReDiagnosis( /0,{r4,r5,r2,r1,r6,r3},{r4,r5,r2,r1,r6,r3},P)

ReDiagnosis({r4,r5,r2},
{r1,r6,r3},{r1,r6,r3},P)

σ[r1,r6,r3]P = /0

ReDiagnosis({r1,r6},
{r3},{r3},P)

σ[r3]P 6= /0

ReDiagnosis( /0,

{r1,r6},{r1,r6,r3},P)

σ[r1,r6,r3]P = /0

ReDiagnosis({r1},
{r6},{r6,r3},P)

σ[r6]P 6= /0

ReDiagnosis( /0,

{r1},{r1,r6,r3},P)

ReDiagnosis({r1},{r4,r5,r2},
{r4,r5,r2,r6,r3},P)

σ[r4,r5,r2,r6,r3]P = /0

ReDiagnosis({r4,r5},
{r2},{r2,r6,r3},P)

σ[r2,r6,r3]P 6= /0

ReDiagnosis( /0,{r4,r5},
{r4,r5,r2,r6,r3},P)

σ[r4,r5,r2,r6,r3]P = /0

ReDiagnosis({r4},
{r5},{r5,r2,r6,r3},P)

σ[r5,r2,r6,r3]P = /0

ReDiagnosis({r5},
{r4},{r4,r2,r6,r3},P)

σ[r4,r2,r6,r3]P = /0

r1 r5,r4

/0 r1

/0 r1

/0 r5,r4

r5 r4

Figure 3.7.: Execution tree of the ReDiagnosis algorithm to determine one preferred diagnosis. The algo-
rithm is called with a sorted set of requirements R = {r4,r5,r2,r1,r6,r3} and the product table
P

The ReDiagnosis algorithm was inspired by the FastDiag algorithm which is described in Section 4.2
in the context of configuration systems. The ReDiagnosis algorithm is called with a delta D which is
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empty in the beginning (D = /0). This delta is needed to store the requirements that split from the current
set of requirements. The next input parameter of the algorithm is a set of requirements that should be
diagnosed R = {r4,r5,r2,r1,r6,r3}. Finally a set of all requirements (AR = {r4,r5,r2,r1,r6,r3}) which
can be larger compared to R is needed as well as the product assortment P. The whole execution tree is
shown in Figure 3.7. As the algorithm continues, the original set of requirements R = {r4,r5,r2,r1,r6,r3}
is split into two parts R1 = {r4,r5,r2} and R2 = {r1,r6,r3}. In a recursive way the algorithm exploits
the customer requirements. In the next step the algorithm is again called with the subsets R1 and R2

(ReDiagnosis({r4,r5,r2},{r1,r6,r3},{r1,r6,r3},P)). Then it is checked whether the query σ[r1,r6,r3]P re-
turns any product. This is not the case as σ[r1,r6,r3]P = /0. Therefore, the algorithm has to split up the
current set (R′1 = {r6,r1} and R′2 = {r3}) and calls itself again. σ[r3]P = {p1, p2, p4, ...} 6= /0 returns more
than one product. This retrieved set of products ({p1, p2, p4, ...}) indicates, that there is not any conflict in
this set of requirements (see also Definition 4). For this reason, the algorithm does not need to further in-
vestigate in this direction, i.e. an empty set can be returned. The next step is to look into the set R = {r1,r6}
and AR = {r1,r6,r3}. The query with AR (σ[r1,r6,r3]P = /0) does not return any product so the algorithm
need to split the query up again into {r1} and {r6,r3}. The call with R = {r1} returns r1 which means that
at least r1 is an element of the diagnosis. This element of the diagnosis is returned and we can follow the
right branch of the execution tree (see Figure 3.7). This execution trace follows the same principle and
finally returns the set {r5,r4}. This means that a diagnosis d1 = {r1,r5,r4} has been calculated, which is
the one that is most likely to be changed by the customer.

Description of the ReAction Algorithm

This section gives a more formal description of the algorithms ReAction and ReDiagnosis. The algorithm
ReAction is shown in Algorithm 7. This algorithm uses the algorithm ReDiagnosis (see Algorithm 8) to
calculate minimal diagnoses. The algorithm ReAction takes the customer requirements R = {r1,r2, ...,rn},
the product assortment P = {p1, p2, ..., pm} as well as a sorting criteria c as inputs.

Algorithm 7 ReAction(R, P, c)
{Input: R - customer request (requirements)}
{Input: P - table of all products}
{Input: c - sort criteria (i.e. utility)}
{Output: repairs - sorted list of repair actions}
if σ[R]P 6= /0 then

return /0

end if
R← sort(R,c)
d← ReDiagnosis( /0,R,R,P)
repairs←Π[attributes(d)](σ[R−d]P)
return repairs

The first step of the algorithm is to check whether there exists a conflict situation. A conflict situation
appears if no product from the assortment satisfies all customer requirements. This check is done by a
query to the product assortment that includes all requirements in R (σ[R]P 6= /0). If there exists at least
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one product of the assortment, the algorithm ReAction returns an empty set, because no repair action can
be calculated. The next step the algorithm takes, is to sort the requirements of the customer according to
the sorting criteria (sort(R,c)). As sorting criteria c, different personalization strategies can be used (i.e.
similarity, utility, probability, and hybrids). This sorting criteria incorporates also the weights comming
from the customer, from the multi attribute theory, or the conjoint analysis. This work focuses on the utility
values that are assigned by the customer. Sample utility values for the example are shown in Table 3.5. If
there exists a conflicting situation (no product can be found in the product assortment P for the customer
request R), the algorithm ReDiagnosis (see Algorithm 8) is called with the ordered set of requirements.
The ReDiagnosis algorithm returns one preferred minimal diagnosis. This is the diagnosis including the
attributes with the lowest overall utility as these are the most probable ones to be changed by the customer
(Junker, 2004). Based on such a diagnosis are calculated and returned.

Algorithm 8 ReDiagnosis(D, R, AR, P)
{Input: D - delta set, initially empty}
{Input: R - customer request (requirements) {r1,r2, ...,rn}}
{Input: AR - all customer requirements (initial same as R)}
{Input: P - table of all products}
{Output: diagnosis - set of faulty requirements}
if D 6= /0 and σ[AR]P 6= /0 then

return /0

end if
if singleton(R) then

return R

end if
k← d n

2e
R1←{r1, ...,rk}
R2←{rk+1, ...,rn}
δ1← ReDiagnosis(R1,R2,AR−R1,P)
δ2← ReDiagnosis(δ1,R1,AR−δ1,P)
return (δ1∪δ2)

The algorithm ReDiagnosis follows a divide and conquer strategy. It takes a delta D, which is empty
in the beginning, a sorted set of requirements R as well as a set of all requirements AR. This set (AR)
can be larger than the set of requirements (R), if there are some additional constraints that should be
considered (coming, for example, from a knowledge base). The last parameter of the algorithm is the
product assortment P. When the delta D is not empty and a query with all elements of the current set of
all requirements AR returns at least one product, then we know that there cannot be a diagnosis in this
set and, for this reason, the algorithm returns an empty set /0. Moreover, the set of requirements R need
to be split up for finding the minimal diagnosis. If the set of requirements R contains only one single
element (singleton(R)), it cannot be split up any more. If only one element is left (after the consistency
check), then this requirement is part of the diagnosis and must be returned (return R). An example for
this is the call of ReDiagnosis( /0, {r1}, {r1,r6,r3}, P). In this call the current set of requirements (R =
{r1}) is part of the diagnosis, because the query with AC (σ[r1,r6,r3]P) returns an empty set. If the set
of requirements R contains more than one element, then it is split in the middle (R1 ← {r1, ...,rk} and
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R2← {rk+1, ...,rn}). With these two adapted sets the ReDiagnosis algorithm can call itself in a recursive
way. Both recursive calls of the algorithm can lead to parts of the diagnosis. Moreover, the algorithm has
to return the aggregation of both (return (δ1 ∪ δ2)). Based on this diagnosis, the algorithm ReAction can
retrieve possible repair actions that are valuable to the customer.

R = {r4,r5,r2,r1,r6,r3},
d1 = {r1,r4,r5}

R = {r4,r5,r2,r6,r3},
d2 = {r5,r6}

R = {r4,r2,r6,r3},
d3 = {r2,r6}

CS4 = {r1,r5,r2}
X

r2

closed

×

r6

r5

CS1 = {r1,r6}
X

r6

r1

R = {r5,r2,r1,r6,r3},
d2 = {r5,r6}

R = {r5,r2,r1,r6,r3},
d3 = {r2,r6}

R = {r1,r6,r3},
d4 = {r1,r6}

closed

×

r1

closed

×

r6

r2
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×

r6

r5

CS2 = {r4,r6}
X
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R = {r4,r2,r1,r6,r3},
d3 = {r2,r6}

R = {r4,r1,r6,r3},
d4 = {r1,r6}

closed

×

r1

closed

×

r6
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CS3 = {r5,r6}
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Figure 3.8.: Directed acyclic graph constructed by the algorithm ReDiagnosis for calculating more than
one diagnosis. Similar to the FastXplain algorithm, the minimal conflict sets can be retrieved
from the graph (CS1 = {r1,r6}, CS2 = {r4,r6}, CS3 = {r5,r6}, CS4 = {r1,r5,r2})

Calculating More Repair Sets

The ReDiagnosis algorithm (Algorithm 8) can be adapted in order to calculate more than one diagno-
sis. Inspired by the hitting set directed acyclic graph (HSDAG) (Reiter, 1987), the adapted algorithm
ReDiagnoses-Tree builds up a tree based on diagnoses. Basically, in each step of the algorithm one di-
agnosis can be identified using ReDiagnosis. For this diagnosis, the edges may be added to the current
node. Figure 3.8 shows the tree for the working example. The first diagnosis retrieved from ReDiagnosis

is d1(R) = {r1,r4,r5}. This diagnosis is added to the root node and for each element of the diagnosis
one edge is added to the root node. In the next step, the next diagnosis is calculated for the left path -
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namely for the requirements except the path (R− r1). The call of the ReDiagnosis algorithm with D = /0,
R = {r4,r5,r2,r6,r3}, AR = {r4,r5,r2,r1,r6,r3} and P returns the next diagnosis d2 = {r5,r6}. This strat-
egy is continued in a breadth-first manner. If the algorithm cannot find a diagnosis for a leaf any more
(R− path is consistent), this leaf is closed. The whole algorithm continues until all leafs are closed or a
given number of diagnoses is reached.

3.8. Evaluation

This section presents the outcomes of the evaluation. In this evaluation the techniques and algorithms
introduced in this chapter are compared with other state-of-the-art approaches. The evaluation section is
divided into two parts, namely the performance evaluation and the quality evaluation. In the performance

evaluation, the run time performance of the different approaches is evaluated. The run time is mainly influ-
enced by the number of customer requirements and number of products in the assortment. Additionally, the
satisfaction rate (relation between the number of fulfilled requirements to the number of requirements, see
also Formula 3.7) has an impact on the run time. In the quality evaluation, the evaluation results regarding
the acceptance probability (precision) for the customer, are presented.

The aim of the evaluation is to relate the performance of the different introduced approaches to each
other as well as to state-of-the-art approaches. Besides the algorithms introduced, three state-of-the-art
algorithms have been implemented. The first one is a combination of the QuickXplain (Junker, 2004) and
the hitting set directed acyclic graph (HSDAG) (Reiter, 1987). This combination was also described in
Section 1.1 and 3.6 and from now on it will be referred as QuickXplain. This algorithm performs a breadth-
first search in the HSDAG and uses the QuickXplain as a theorem prover. Note that also the pruning
functionality (Greiner et al., 1989) has been implemented into our HSDAG. The second approach used as
comparison for the introduced algorithms is the CorrectiveRelax algorithm by (O’Callaghan et al., 2005).
This algorithm aims to calculate corrective explanations. A corrective explanation is the complement of a
diagnosis (relaxation). The algorithm CorrectiveRelax (O’Callaghan et al., 2005) was inspired by the al-
gorithm QuickXplain (Junker, 2004). Compared to the QuickXplain which calculates minimal conflict sets
using the divide-and-conquer principle, the CorrectiveRelax algorithm calculates corrective explanations
(similar to diagnoses) based on a binary search. These relaxations are found by removing, one-by-one,
constraints that cause inconsistency. Initially the maximal relaxation is empty. In each step the Correc-

tiveRelax algorithm adds constraints for which the consistency is ensured (i.e. at least one solution exists).
The constraints that are responsible for the inconsistency are continuously removed. In the following the
execution of the CorrectiveRelax is shown for the example given in Section 3.1:

• CorrectiveRelax( /0, {r1,r2,r3,r4,r5,r6}, /0, P)
note that the product table P is used for the consistency check (evaluating if a product can be retrieved
from the assortment)
as the empty set ( /0) is consistent with P, the requirements are split up to {r1,r2,r3} and {r4,r5,r6}

• CorrectiveRelax({r1,r2,r3}, {r4,r5,r6}, {r1,r2,r3}, P)
as the set {r1,r2,r3} is consistent with P, the requirements ({r4,r5,r6}) are split up to {r4,r5} and
{r6}

62



3.8. Evaluation

• CorrectiveRelax({r1,r2,r3,r4,r5}, {r6}, {r4,r5}, P)
as the set {r1,r2,r3,r4,r5} is not consistent with P, the set storing the last changes ({r4,r5}) needs
to be split up to {r4} and {r5}

• CorrectiveRelax({r1,r2,r3,r4}, {r5,r6}, {r4}, P)
as the set {r1,r2,r3,r4} is consistent with P, the requirements ({r5,r6}) are split up to {r5} and {r6}

• CorrectiveRelax({r1,r2,r3,r4,r5}, {r6}, {r5}, P)
as the set {r1,r2,r3,r4,r5} is not consistent with P, and the set of current requirements contains only
one element, the algorithm splits up the set requirements that yet to be tested ({r6}) to {r6} and /0

• CorrectiveRelax({r1,r2,r3,r4,r6}, /0, {r6}, P)
as the set to be tested is empty, the algorithm returns {r1,r2,r3,r4} as a maximal relaxation

As shown the CorrectiveRelax algorithm identifies one minimal relaxation {r1,r2,r3,r4}. This relaxation
the complement of the corresponding diagnosis {r5,r6}. Another important issue is that the prediction
accuracy of CorrectiveRelax depends on the ordering of the requirements. Note that in this example, we did
not apply any intelligent ordering to the requirements, except the index. The basic algorithm just identifies
one corrective explanation. Nevertheless, it can be combined with the HSDAG approach by (Reiter, 1987)
(similar to the ReAction algorithm, see also the description in (O’Callaghan et al., 2005)) . This allows us
to calculate all corrective explanations and/or the corresponding diagnoses.

The third approach used for comparison, is the MinRelax introduced by (Jannach, 2008). This algorithm
aims to find maximal succeeding sub queries (XSS). This is done by evaluating the individual sub queries
of the original query independently in advance. The set of all XSS is generated by combining these partial
results. This algorithm can only calculate all maximal succeeding sub queries at a time, which is not
explicitly needed in interactive systems. Note that the complement of a maximal succeeding sub query is a
minimal diagnosis. For a better understanding, MinRelax is applied to the first five products (p1, p2, p3, p4,
and p5) and all requirements of the example introduced in Section 3.1. For each product of the assortment
MinRelax calculates a product specific relaxation, which is then checked if it is minimal.

• Product p1: the relaxation is PSX1 = {r2,r6};
as it is the first one, there does not exist a super set of it

• Product p2: the relaxation is PSX2 = {r1,r4,r5,r6};
this set is not a superset of PSX1, nor is PSX1 a superset of PSX2 i.e. PSX2 can be stored as a
relaxation

• Product p3: the relaxation is PSX3 = {r1,r3,r5,r6};
this set is not a superset of any relaxation derived so far, additionally is neither PSX1 nor PSX2 a
superset of PSX3 i.e. it can be stored as a relaxation

• Product p4: the relaxation is PSX4 = {r1,r4,r5};
this is a subset of PSX2, for this reason PSX2 needs to be deleted from the set of minimal relaxations

• Product p5: the relaxation is PSX5 = {r2,r4,r6};
this is a superset of PSX1, i.e. PSX5 is not minimal

The minimal relaxations derived from the first five products of the assortment are PSX ={r2,r6}, {r1,r3,
r5,r6}, and {r1,r4,r5} as calculated above.
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Some of the introduced approaches, aim to calculate minimal conflict sets and others aim to calculate
minimal diagnoses. The dualities between conflicts, relaxations and diagnoses have already been pointed
out by the example given in Section 1.1 as well as in Section 2.3. A further discussion regarding the
interrelation of conflicts, diagnoses and relaxations can be found in (Junker, 2004). The fact that diagnoses
can be derived from conflicts sets and vice versa, helps us make the approaches comparable. Nevertheless,
in the performance evaluation, the focus lies on the identification of minimal conflict sets as well as on
the calculation of minimal diagnoses. If an algorithm does not calculate minimal conflict sets such as the
algorithms ReAction, MinRelax and CorrectiveRelax, the concepts of model based diagnoses (Reiter, 1987)
are used to identify the minimal conflict sets based on diagnoses (for a detailed explanation see Section
3.3). The algorithm MinRelax is only dedicated to calculate all maximal succeeding sub queries. Therefore
the MinRelax is not included in the evaluation where only few diagnoses or conflict sets are calculated.

In the following sections all approaches are evaluated according to their run time performance (see
Section 3.8.1) and to their prediction quality (see Section 3.8.2).

3.8.1. Performance Evaluation

All algorithms described in this chapter can be applied in interactive recommender systems. As the cus-
tomer interacts with the system, a crucial point is a good run time performance due to the time-bound.
According to (Miller, 1968; Card et al., 1991) the limits for a system to react are the following: If a system
responds in less then 0.1 second the user feels that the system is reacting instantaneously. The limit for
the user’s flow of thought to stay uninterrupted is 1.0 second. Although the user will notice the delay of
the system, there is no need for a special feedback, if the response time of a system lies between 0.1 and
1.0 second. If the system takes longer then 1.0 second, the user loses the feeling on operating on the data.
Therefore, it is really crucial that the algorithms can respond fast.

A performance analysis was conducted to show the applicability of the different approaches. First, the
approaches are analysed using different settings. In this analysis it is discussed which algorithm is suited for
which setting. Afterwards the results of the performance analysis with different test settings are presented.
All algorithms∗ are implemented in Java 1.6 and all experiments have been executed on a desktop PC
(Intel®Core™2 Quad CPU Q9400 CPU with 2.66GHz and 2GB RAM).

Characteristics of Recommendation Settings

The performance of the algorithms is highly dependent on the recommendation problem. In this part differ-
ent recommendation settings are presented as well as a discussion which algorithm performs well in these
settings (an overview is given in Table 3.7). The first recommendation problem is visualized in Table 3.8.
This table shows the intermediate representation (for further details on this representation see Section 3.1.2)
with n customer requirements and m products. Each product does not satisfy one customer requirement.
Therefore, there exists one minimal conflict set in the recommendation problem. This minimal conflict set
incorporates all customer requirements. For the algorithms GraphXplain, FastXplain, BFX and PFX this

∗All algorithms (GraphXplain, FastXplain, Boosted FastXplain, Personalized FastXplain, PersRepair, ReAction, QuickXplain, Min-
Relax and CorrectiveRelax) are implemented in the D-fame: Diagnosis Framework which is described in Chapter 5 and can be
downloaded from www.ist.tugraz.at/staff/mschuber
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Table 3.7.: Overview of the performance issues of the introduced algorithms

Recommendation Setting Applicability of the Algorithms

low number of minimal conflict sets each
with a high number of constraints

suited for PersRepair

not suited for the algorithm GraphXplain,
FastXplain, BFX, PFX, and ReAction

low number of minimal conflict sets each
with a low number of constraints

well suited for all algorithms (GraphX-

plain, FastXplain, BFX, PFX, PersRepair,
and ReAction)

high number of minimal conflict sets each
with a low number of constraints

well suited for GraphXplain and ReAction

neutral to FastXplain, BFX, PFX, and Per-

sRepair

is worst case scenario. The algorithm GraphXplain builds up a fully connected graph and needs to check
all fully connected sub-graphs before it finally identifies the minimal conflict set. In this recommendation
problem the algorithms FastXplain, BFX and PFX perform equally. All of them need n iterations (n is the
number of customer requirements) in order to identify the minimal conflict set. The ReAction algorithm
also needs to build up a whole tree with the depth of n, which makes the identification of the minimal
conflict set really slow. Compared to this, the PersRepair algorithm just needs to call the theorem prover
(implemented as QuickXplain (Junker, 2004)) one time. The algorithm PersRepair is very well suited for
this problem, if the theorem prover performs well.

Table 3.8.: Intermediate representation of a recommendation task with one minimal conflict set containing
a high number of constraints (MCS = {r1,r2,r3, ...,rn})

r1 r2 r3 ... rn

p1 0 1 1 ... 1
p2 1 0 1 ... 1
p3 1 1 0 ... 1
... ... ... ... 0 ...
pm 1 1 1 1 0

Table 3.9 shows the intermediate representation of another extreme recommendation setting. This setting
contains of n customer requirements and m products and one minimal conflict set. This minimal conflict
set consists of only one element (MCS = {r1}). This situation occurs if the customer has n-1 weak re-
quirements and one really hard one. This recommendation setting reflects the best case for the algorithms
GraphXplain, FastXplain, BFX and PFX. The GraphXplain algorithm instantly identifies that the node r1

is not connected to any other node and thus knows that it must be a minimal conflict set. The algorithms
FastXplain, BFX and PFX need one iteration to identify the minimal conflict set, which makes them well
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applicable in such a setting. The algorithms PersRepair and ReAction are also very well suited for this
setting. For both algorithms there is no need to build up more than one level on the tree and this makes it
fast.

Another recommendation setting includes only zeros in the intermediate representation. This happens
when all customer requirements are over-specified. In this situation, every requirement would be a minimal
conflict set. The GraphXplain algorithm would identify them in the first step as they are all single nodes.
This is fast, which makes it applicable for this setting. The algorithms FastXplain, BFX and PFX build
up one level of the tree in order to identify all minimal conflict sets. Compared to this, the algorithm
PersRepair has to call the theorem prover for n times and then expand the tree with each minimal conflict
set returned. On the other hand, the ReAction algorithm identifies the only diagnosis and builds up this one
level on the tree. Based on this, it identifies that each element is a minimal conflict set. As only one call of
the ReDiagnosis algorithm is needed, the ReAction algorithm is very well suited for this recommendation
setting.

Table 3.9.: Intermediate representation of a recommendation problem with one minimal conflict set con-
taining only one element (MCS = {r1})

r1 r2 r3 ... rn

p1 0 1 1 ... 1
p2 0 1 1 ... 1
p3 0 1 1 ... 1
... 0 ... ... ... ...
pm 0 1 1 ... 1

The recommendation settings described are all extreme settings. It is improbable that one of these set-
tings occurs during a typical interactive recommender session. Moreover, an evaluation of the performance
of the algorithms on a wider scale has been performed. Nevertheless, an understanding of the structure of
the underlying problem is useful. Therefore, the satisfaction rate measure (see Formula 3.7) is introduced.

satis f actionrate(R = {r1, ...,rn},P = {p1, ..., pm}) =
1

m∗n
∗

m

∑
k=1

n

∑
i=1

satis f ies(rk, pi) (3.7)

The satisfaction rate represents the probability of a requirement being satisfied by a product (Schubert
et al., 2009). A requirement is satisfied by a product if it fulfils the given customer requirement (satisfies(rk,
pi)). The satisfaction rate is the normalized sum over all n requirements and m products. Using the
satisfaction rate, an insight into the structure of the recommendation setting can be provided.

Although the recommendation settings presented in Table 3.8 and 3.9 have the same satisfaction rate
( m∗(n−1)

m∗n = (n−1)
n ), the structure of these settings is different. The minimal conflict set that can be derived

from Table 3.8 incorporates many requirements, whereas the conflict set calculated from the situation pre-
sented in Table 3.9 incorporates only one requirement. Moreover, the settings shown in Table 3.8 and 3.9
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are completely different from the intermediate representation containing only zero values (also the satisfac-
tion rate is different). In a recommendation setting where the intermediate data structure contains only zero
values the satisfaction rate is 0%. A recommendation problem with a high satisfaction rate has only few
minimal conflict sets and diagnoses on average. On the other hand, a recommendation problem with a low
satisfaction rate has more minimal conflict sets and minimal diagnoses. Nevertheless, all problem settings
used, have to be inconsistent in order to apply the different algorithms for consistency management. The
satisfaction rate for the product p1 of the example introduced in Section 3.1 is: satis f actionrate(R, p1) = 4

6 .
In intermediate representation of the example (see Table 3.2) it is shown that the product p1 satisfies 4 out
of 6 customer requirements (R). Therefore, the satisfaction rate of p1 and all six requirements in R is 4

6 .
Similar to this, the satisfaction rate for the product p2 can be calculated (satis f actionrate(R, p2) = 2

6 ). The
overall satisfaction rate for the example is satis f actionrate(R,P) = 46

6∗15 ≈ 0.51 = 51%.

Different Number of Product Items

A major question when dealing with recommendation problems is: ”Does the algorithm scale well on a

large set of items?”. In order to answer this question, different settings were generated that reflect typical
recommendation situations. In these situations customers had to specify 15 requirements (modelled as
constraints). In addition, a set of product tables with an increasing number of items (1000, 2000, ..., 10000)
has been created. Finally, two datasets one with the satisfaction rate of approximately 35% and one with the
satisfaction rate of approximately 50% have been created. The satisfaction rates are used to ensure that the
problem is complex enough to compare the different algorithms. Moreover, two different satisfaction rates
have been chosen to be able to evaluate the performance of the developed algorithms in different settings.
For each evaluation setting (each algorithm, each number of product items) 100 runs have been performed
to solve the over-constrained problem.

Figure 3.9.: Evaluation of all algorithms calculating one and all minimal conflict sets. The dataset contains
an increasing number of items (1000, 2000, ..., 10000), 15 constraints and a satisfaction rate of
35%
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Table 3.10.: Overview: how do the introduced algorithms determine one minimal conflict set?

Algorithm How one minimal conflict set is calculated

GraphXplain The algorithm is dedicated to calculate few or all minimal conflict sets.
To calculate one minimal conflict set, the graph (one-mode network of
requirements) is created and all fully connected sub-graphs are checked
until one minimal conflict set has been found.

FastXplain First, the algorithm constructs the intermediate data structure (based on
the customer requirements and product assortment). Using this data
structure, diagnoses are derived. A Hitting Set Directed Acyclic Graph
(HSDAG) (Reiter, 1987) is constructed using these diagnoses. This is
continued in a breadth-first manner, until one minimal conflict set has
been identified.

Boosted FastXplain (BFX) The algorithm calculates one minimal conflict set similar to FastXplain.
The difference between these two algorithms is the way they derive the
diagnoses, that are needed for the construction of the HSDAG.

Personalized FastXplain

(PFX)

The algorithm calculates one minimal conflict set similar to FastX-

plain and Boosted FastXplain (BFX). The difference between these al-
gorithms is the way they derive the diagnoses, that are needed for the
construction of the HSDAG.

PersRepair The algorithm is dedicated to calculate few or all minimal diagnoses.
These diagnoses are derived from a HSDAG constructed by minimal
conflict sets (MCS). The algorithm needs to call the MCS algorithm
(QuickXplain is used in this work) once, to calculate one minimal con-
flict set.

ReAction The algorithm is dedicated to calculate few or all minimal diagnoses. In
order to calculate minimal conflict sets, the algorithm calculates mini-
mal diagnoses and builds up a HSDAG using these diagnoses. This is
continued until one minimal conflict set is found.

For evaluation purposes, it has been measured how long each approach takes to calculate one minimal
conflict set and all minimal conflict sets. An overview of how the introduced algorithms calculate one and
all minimal conflict sets is presented in Table 3.10 (one minimal conflict set) and Table 3.11 (all minimal
conflict sets). The evaluation of the algorithms calculating one and all minimal conflict sets of the dataset
with a satisfaction rate of 35% is plotted in 3.9. As this figure shows, the performance of the algorithms
QuickXplain, PersRepair, FastXplain, BFX and PFX is about the same, especially if settings with more
than 5000 items are considered. The algorithm GraphXplain takes about the same run time for all sizes of
the product sets. The run time for calculating one minimal conflict set with the GraphXplain is mainly used
to set up the graph. The number of nodes in this graph is the same as the number of customer requirements
in the recommendation problem. As for this evaluation setting the number of customer requirements is 15,
the graph consists always of 15 nodes. For calculating one minimal conflict set the ReAction algorithm
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is quite slow compared to the other algorithms. This is caused by the fact that this algorithm has to build
up the whole tree. Especially, if it is compared with the PersRepair algorithm which can directly identify
the minimal conflict set in the first iteration. Nevertheless, the ReAction is still competitive against the
CorrectiveRelax algorithm (and for all diagnoses also with the algorithm MinRelax). Considering the right
part of Figure 3.9 we see a similar picture. This is caused first by the fact, that the number of minimal
conflict sets is low. And secondly by the observation that each approach needs some time to set up the data
structure and this takes time. The performance of the determination of the minimal conflict sets is high, if
the data structure is already instantiated. If the overall run time of all approaches is considered, then all of
them are applicable for this setting (increasing number of items (1000, 2000, ..., 10000), 15 constraints and
a satisfaction rate of 35% as presented in Figure 3.9) due to the fact that the highest run time (for 10000
product items) does not exceed 0.7 seconds.

Figure 3.10.: Evaluation of all algorithms calculating one and all minimal conflict sets. The dataset contains
an increasing number of items (1000, 2000, ..., 10000), 15 constraints and a satisfaction rate
of 50%

Figure 3.10 shows the results of the calculation of minimal conflict sets using datasets with a satisfaction
rate of 50%. The recommendation problems of this evaluation were easier to solve compared to the ones
with the satisfaction rate of 35%. This is also reflected in the run time evaluation. Considering the re-
sults, the algorithms FastXplain, BFX and PFX need about the same time for solving the recommendation
problems. In comparison, the ReAction algorithm performs better for less than 5000 product items, but
worse for more. Nevertheless, the run times are below 0.1 second. For identifying all minimal conflict sets
the algorithms PersRepair and QuickXplain have a good run time performance for less than 5000 product
items. Nevertheless, these two algorithms are outperformed by the FastXplain, BFX and PFX. From the
observations in Figure 3.9 and Figure 3.10 it can be seen that all approaches are suited for this type of
settings. Nevertheless, the algorithms PersRepair, FastXplain, GraphXplain, BFX and PFX scale better
(especially when calculating minimal conflict sets with an increasing number of items).
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Table 3.11.: Overview: how do the introduced algorithms determine all minimal conflict sets?

Algorithm How all minimal conflict sets are calculated

GraphXplain The algorithm is dedicated to calculate few or all minimal conflict sets.
To calculate minimal conflict sets, the graph (one-mode network of re-
quirements) is created and all fully connected sub-graphs are checked
to derive all minimal conflict sets.

FastXplain First, the algorithm constructs the intermediate data structure (based on
the customer requirements and product assortment). Using this data
structure, diagnoses are derived. A Hitting Set Directed Acyclic Graph
(HSDAG) (Reiter, 1987) is constructed using these diagnoses. This is
continued until no more products are left in the leafs, because this is the
indication, that all minimal conflict sets have been identified.

Boosted FastXplain (BFX) The algorithm calculates all minimal conflict sets similar to FastXplain.
The difference between these two algorithms is the strategy they use to
derive diagnoses from the intermediate data structure. These diagnoses
are needed for the construction of the HSDAG. Compared to FastX-

plain, which uses the minimality property, BFX uses a weight function.
This difference is reflected in a different order of the diagnoses and
minimal conflict sets.

Personalized FastXplain

(PFX)

The algorithm calculates the minimal conflict sets similar to FastXplain

and Boosted FastXplain (BFX). Compared to FastXplain, which uses
the minimality property, PFX uses a utility weight function to deter-
mine diagnoses from the intermediate data structure. This difference is
reflected in a different order of the diagnoses and minimal conflict sets.
The ordering of the diagnoses and conflict sets calculated by the PFX is
strongly influenced by the utility weights.

PersRepair The algorithm is dedicated to calculate few or all minimal diagnoses.
These diagnoses are derived from a HSDAG constructed by minimal
conflict sets (MCS). In order to calculate all minimal conflict sets, the
algorithm needs to build a full HSDAG.

ReAction The algorithm is dedicated to calculate few or all minimal diagnoses.
For calculating all minimal conflict sets, the algorithm identifies all min-
imal diagnoses and builds up a HSDAG using these diagnoses.

In the following, minimal diagnoses have been calculated with all algorithms. For each algorithm 100
runs have been performed to solve the over-constrained problem. Figure 3.11 shows the run time of the
algorithms for 15 customer requirements and an increasing number of product items with a satisfaction
rate of 35%. Each algorithm has been stopped after it calculated one and all diagnoses (see Figure 3.11),
except for the algorithm GraphXplain. The GraphXplain algorithm is dedicated to calculate minimal con-
flict sets. In order to calculate a diagnosis with this algorithm, the Hitting Set Directed Acyclic Graph

(HSDAG) (Reiter, 1987) can be applied. This can be done for the calculation of one diagnosis as well as
for all diagnoses. Nevertheless, the most time consuming part of the GraphXplain is the construction of the
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Figure 3.11.: Evaluation of all algorithms calculating one and all minimal diagnoses. The dataset contains
an increasing number of items (1000, 2000, ..., 10000), 15 constraints and a satisfaction rate
of 35%

one-mode network. If we would now use the HSDAG for calculating for one minimal diagnosis, we would
have to instantiate the GraphXplain several times (this includes a construction of the one mode network for
several times). For this reason, we decided to first calculate all minimal conflict sets with the GraphXplain

algorithm and then build the HSDAG. This prevents us from several constructions of the one mode network
and makes GraphXplain better comparable to the other algorithms. Moreover, a consequence of this deci-
sion is that the GraphXplain is not plotted for any settings calculating one diagnosis. An overview of how
all introduced algorithms calculate one and all diagnoses is presented in Table 3.12 and 3.13.

From Figure 3.11 it can be seen that for calculating one minimal diagnosis the algorithms PersRepair and
ReAction perform best over a wide range of a different number of items. The algorithms FastXplain, BFX

and PFX have a similar run time for calculating one minimal diagnosis. When calculating more diagnoses
(see for example the result of all diagnoses), the BFX algorithm performs slightly better compared to the
algorithms FastXplain and BFX. The algorithms PersRepair and QuickXplain have similar run times. This
is based on the fact that the PersRepair algorithm also uses the QuickXplain algorithm to identify minimal
conflict sets. Nevertheless, the difference between these two algorithms is that PersRepair performs a
best-first search in the hitting set directed acyclic graph (HSDAG) (Reiter, 1987) whereas our version of
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QuickXplain (note that this is a combination of the HSDAG and the original QuickXplain (Junker, 2004))
expands the HSDAG in a breadth-first manner. The GraphXplain algorithm is only plotted for calculating
all minimal diagnoses, for the reasons described in the last paragraph. Figure 3.11 shows that the algorithm
is not the best one for calculating all diagnoses, but it is in the centre span. The MinRelax algorithm
has been plotted only for calculating all diagnoses, because the algorithm is not dedicated to calculate
only one or few diagnoses. When calculating all diagnoses, the performance of the MinRelax is similar
to the ReAction algorithm. Comparing these two algorithms, it can be observed, that it is better to use the
ReAction algorithm, because it is also suited for calculating a limited number of diagnoses. Taking a look at
the CorrectiveRelax algorithm, it can be seen that this algorithm works well for calculating one diagnosis
with settings containing less than 5000 product items. If more diagnoses are calculated, the algorithm
scales badly (no matter if the number of products or the number of diagnoses is increased).

Table 3.12.: Overview: approaches to determine one minimal diagnosis

Algorithm How one diagnosis is calculated

GraphXplain The algorithm is dedicated to calculate few or all minimal conflict sets.
The algorithm is not suited for calculating one minimal diagnosis. For
this reason, GraphXplain was excluded from evaluations that aim to
calculate one minimal diagnosis.

FastXplain The algorithm operates on an intermediate data structure (constructed
from the customer requirements and the product assortment). This data
structure is used to derive diagnoses. For identifying one diagnosis, the
algorithm can be stopped after deriving the first one from the interme-
diate data structure.

Boosted FastXplain (BFX) Similar to FastXplain, the intermediate data structure is constructed and
the first diagnosis is derived from this data structure. Compared to
FastXplain a weight is used to determine the first diagnosis.

Personalized FastXplain

(PFX)

See Boosted FastXplain.

PersRepair The algorithm is dedicated to calculate few or all minimal diagnoses.
These diagnoses are derived from a HSDAG constructed using minimal
conflict sets (MCS). For calculating one minimal diagnosis, the algo-
rithm expands the HSDAG in a best-first manner.

ReAction The algorithm is dedicated to calculate few or all minimal diagnoses.
For calculating one minimal diagnosis, the algorithm needs to be called
once.

The same evaluation as described, was performed for settings with a satisfaction rate of 50%. The
results can be seen in Figure 3.12. For calculating one minimal diagnosis the PersRepair algorithm and
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Table 3.13.: Overview: approaches to determine the complete set of minimal diagnoses

Algorithm How all diagnoses are calculated

GraphXplain The algorithm is dedicated to calculate few or all minimal conflict sets.
For calculating all minimal diagnoses, GraphXplain calculates all min-
imal conflict sets first. Using these conflict sets, a Hitting Set Directed
Acyclic Graph (HSDAG) (Reiter, 1987) is constructed. From this HS-
DAG all minimal diagnoses can be derived.

FastXplain The algorithm operates on an intermediate data structure (constructed
from the customer requirements and the product assortment). This data
structure is used to derive diagnoses. For deriving all minimal diagnoses
in an intelligent way, a HSDAG is constructed. A full HSDAG indicates,
that all minimal diagnoses have been found.

Boosted FastXplain (BFX) Similar to FastXplain, the intermediate data structure is constructed and
the diagnoses are derived from this data structure. Compared to FastX-

plain a weight is used to determine the diagnoses.
Personalized FastXplain

(PFX)

Similar to Boosted FastXplain.

PersRepair The algorithm is dedicated to calculate few or all minimal diagnoses.
These diagnoses are derived from a HSDAG constructed using minimal
conflict sets. For calculating all minimal diagnoses the algorithm needs
to build up a full HSDAG.

ReAction The algorithm is dedicated to calculate few or all minimal diagnoses.
For calculating all minimal diagnoses in an intelligent way, a HSDAG
is constructed. A full HSDAG indicates, that all minimal diagnoses
have been found.

the QuickXplain perform well on the dataset. FastXplain, BFX and PFX scale well regarding an increasing
number of product items. Although all of these algorithms need to set up the intermediate data structure
before starting the calculation, they are among the better ones regarding a large amount product items. The
run time performance of the algorithm ReAction is also acceptable for calculating one diagnosis. Figure
3.12 shows that the run time of the algorithm CorrectiveRelax constantly grows with an increasing number
of product items. The right part of Figure 3.12 shows again, that the GraphXplain algorithm is among the
slower ones when the dataset incorporates a low number of product items. This is caused by the fact that
the algorithm needs some time to build up the graph of constraints.

Different Number of Customer Requirements

Due to the fact that the number of customer requirements may vary, the influence of the number of cus-
tomer requirements on the algorithm performance must be evaluated. For a run time evaluation, several
recommendation problems with 5000 product items and up to 20 customer requirements have been gener-
ated. This generation was based on a given product assortment, for which different sets of requirements
have been generated in a randomized way. Two datasets have been generated, one with a satisfaction rate
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Figure 3.12.: Evaluation of all algorithms calculating one and all minimal diagnoses. The dataset contains
an increasing number of items (1000, 2000, ..., 10000), 15 constraints and a satisfaction rate
of 50%

of 35% and one with a satisfaction rate of 50%. These satisfaction rates have been used to ensure a realistic
complexity of the problem settings. Additionally, it has been ensured that the customer requirements are
inconsistent with the underlying product data. For each evaluation setting (each algorithm, each number
of customer requirements) 100 runs have been performed to solve the over-constrained recommendation
problem. The run times that are shown in the figures are the average values of these 100 evaluation runs.

Figure 3.13.: Evaluation of all algorithms calculating one and all minimal conflict sets. The dataset contains
an increasing number of constraints (2, 4, 6, ..., 20), 5000 items and a satisfaction rate of 35%

In order to compare the different approaches, it has been measured how long each approach takes to cal-
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culate one and all minimal conflict sets. Figure 3.13 shows the run times in milliseconds of each algorithm
for the dataset with a satisfaction rate of 35%. Comparing Figure 3.13 with another evaluation focusing on
an increasing number of product items (for example, Figure 3.9), it can be observed that in the evaluations
(done with an increasing number of product items) the run time increases in a linear fashion. Neverthe-
less, this linear progression can not be observed in the evaluations that focus on an increasing number of
customer requirements.

Taking a closer look at Figure 3.13, it can be seen that up to 10 customer requirements (constraints) all
algorithms are quite fast. When it comes to calculate one minimal conflict set the CorrectiveRelax algo-
rithm is rather slow. Nevertheless, the situation improves when calculating all minimal conflict sets. The
runtime of GraphXplain significantly increases with an increasing number of constraints. This is based on
the fact that with an increasing number of the constraints the size of the graph increases correspondingly.
Therefore, the algorithm has to elaborate on more sub-graphs which raises the run time. The algorithms
FastXplain, BFX and PFX are all well suited for the defined recommendation problems. With these al-
gorithms an increasing size of the intermediate data structure has a negligible impact on the runtime (see
Section 3.1.2). The algorithm PersRepair provides the best support of one’s goal is to calculate one minimal
conflict set. Also, for the settings to calculate all minimal conflict sets PersRepair is highly recommended.
The ReAction algorithm is again slower for calculating one minimal conflict set compared to several other
algorithms. This is based on the fact that it is designed to calculate a limited set of preferred minimal
diagnoses and not for calculating minimal conflict sets.

Figure 3.14.: Evaluation of all algorithms calculating one and all minimal conflict sets. The dataset contains
an increasing number of constraints (2, 4, 6, ..., 20), 5000 items and a satisfaction rate of 50%

The same evaluation has been performed on the dataset with a satisfaction rate of 50%. The results of this
evaluation are shown in Figure 3.14. This figure shows that the run time of the GraphXplain rises again
very high with a higher number of customer requirements (more than 12 constraints). Considering the
calculation of all minimal conflict sets (right part of Figure 3.14), it can be seen that the GraphXplain and
the MinRelax algorithm have similar run times. Among the other algorithms, the BFX algorithm performs
slightly better compared to the FastXplain. The PersRepair algorithm is again the best one to identify one
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minimal conflict set for 16 to 20 customer requirements. Both Figures (Figure 3.13 and Figure 3.14) show
that all algorithms stay under a run time of 0.5 seconds for calculating all minimal conflict sets.

Figure 3.15.: Evaluation of all algorithms calculating one and all minimal diagnoses. The dataset contains
an increasing number of constraints (2, 4, 6, ..., 20), 5000 items and a satisfaction rate of 35%

For bringing further insights into the performance of the algorithms, all of them have been evaluated
with the task to calculate one and all minimal diagnoses. Figure 3.15 shows the run time of the algorithms
for the dataset with a satisfaction rate of 35%. This Figure shows that the algorithms FastXplain, BFX

and PFX perform badly when it comes to the calculation of one minimal diagnosis for a higher number
of customer requirements (settings with more than 14 customer requirements). Figure 3.15 shows that the
ReAction algorithm performs similar to the PersRepair algorithm for calculating one minimal diagnosis.
When it comes to identifying all minimal diagnosis, the algorithms FastXplain, BFX, PFX and PersRepair

perform really well for a high number of customer requirements. For a lower number of requirements (up
to 14), the GraphXplain algorithm is also among the fastest algorithms.

The same evaluation has been performed for the dataset with a satisfaction rate of 50%. The results are
shown in Figure 3.16. The evolution of the run times is similar to the ones in Figure 3.15. Nevertheless,
it can be seen that the ReAction algorithm performs better on this dataset. It is the algorithm with the best
performance when it comes to the calculation of one minimal diagnosis and it is among the best ones when
it comes to the calculation of all minimal diagnoses.

Summarizing, if the run time is crucial for the recommender application there is a need to analyse the
characteristics of the application before choosing an algorithm. Furthermore, issues of prediction quality
play a major role in algorithm selection - this aspect will be discussed in the next section.

3.8.2. Evaluation of the Acceptance Probability (Precision)

This section aims to evaluate the algorithms regarding their acceptance probability (precision). A study
performed by (Joachims et al., 2005) found out that 42% of the users clicked the top search hit, and 8% of
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Figure 3.16.: Evaluation of all algorithms calculating one and all minimal diagnoses. The dataset contains
an increasing number of constraints (2, 4, 6, ..., 20), 5000 items and a satisfaction rate of 50%

users clicked the second hit. Similar results have been identified by other studies. An important detail of
this study is that the authors performed a second test in which they secretly fed the search results through a
script before displaying them to users. The script swapped the two top results so that what was originally
the number two entry was displayed as the number one entry and vice versa. In this situation, 34% of the
users still clicked on the top entry and 12% of the users clicked the second one.

Consequently, an evaluation focusing on the acceptance probability (prediction quality) in terms of pre-
cision of the different algorithms has been performed. If the algorithm predicts the selected diagnosis on
the first position then the distance is 0. The way in which such a precision is measured is defined with
Formula 3.8. In this formula, d is the selected diagnosis and it is distinguished if this diagnosis d is among
the top n (n can be chosen) items in the recommended list (i.e. precision is 1) or not (i.e. precision is 0).

precision(d,n) =

1, iff d is among the top n,

0, elsewise.
(3.8)

For comparing the different approaches a user study - the PC user study - has been performed.

Case Study: PC User Study

For evaluating the prediction quality (precision) of the different algorithms a computer recommendation
dataset has been exploited. This dataset has been composed on the basis of an online user experiment (a
screen-shot of the corresponding application is shown in Figure 3.17). This experiment was conducted at
Graz University of Technology. 415 subjects participated in the study (82,4% male and 17,6% female).
In this study the participants had to define their requirements (R) regarding a computer. The application
asked for 12 different properties of a computer. Besides the specification of their requirements, the task
of the participants was to provide a ranking regarding the importance of their requirements. After the
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requirement specification phase each participant was informed about the fact that no solution could be
found. The system presented a list of maximal 50 different products. For each product at least one property
was inconsistent with the set of requirements in R. The underlying product assortment was extracted from
the Dell online store†. The ranking of the presented products was randomized. The system provided the
possibility to navigate through the set using the ranking criteria price, harddisk size or number of fulfilled

requirements. The participants had to select one computer that appeared to be the most acceptable one
for them. Since no solution has been made available (only products inconsistent with R were shown),
the system determined minimal conflict sets and corresponding diagnoses. The selected diagnosis is then
interpreted as the set of requirements that are not satisfied by the product finally selected by the participant.
The average number of diagnoses per participant was: 5.32 (std.dev. 1.67).

Figure 3.17.: Screen-shot of the application used for the PC User Study

Table 3.14 shows the results of the case study. Generally speaking, it can be observed that the precision
is high in this dataset for all approaches. This is based on the fact that the average number of possible
diagnoses is quite low (5.32). Another observation is that the ReAction and the CorrectiveRelax have the
same precision values. The reason is that the same lexicographical ordering is used for both algorithms.
The algorithms GraphXplain, QuickXplain and MinRelax also have similar precision values due to the
fact that these algorithms sort the resulting diagnoses according to their cardinality. Among the other
algorithms, the PFX algorithm is the best one for the first ranked diagnosis. This algorithm uses the

†www.dell.at
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utility values specified by the user for the personalization. These utility values are also used by ReAction.
Comparing the algorithms PFX and ReAction, it can be seen in Table 3.14 that the PFX has a 4% better
prediction quality compared to the ReAction algorithm. Although both algorithms use utility values, the
different usage is responsible for this difference. Our hypothesis regarding the similarity of ReAction and
PersRepair in terms of prediction quality is that this is a coincidence of the dataset.

When taking a look at the precision values for n=2 (precision = 1 if the selected diagnosis is among
the first 2 diagnoses determined by the algorithm), it can be observed that the algorithms ReAction, Cor-

rectiveRelax (O’Callaghan et al., 2005) and PersRepair perform well. The PFX algorithm is the best one
regarding the top ranked diagnosis (n=1). Regarding the precision of the top two ranked diagnoses (n=2)
it only has an average prediction quality. The results of the evaluation show that the algorithm BFX has a
better performance compared to the FastXplain.

Table 3.14.: Average precision values of the diagnosis algorithms in the context of the PC User Case Study

n=1 n=2 n=3 n=4 n=5

GraphXplain 0.51 0.75 0.87 0.92 0.98
FastXplain 0.66 0.67 0.69 0.74 0.92

Boosted FastXplain (BFX) 0.68 0.78 0.87 0.93 0.96
Personalized FastXplain (PFX) 0.74 0.82 0.87 0.95 0.99

PersRepair (similarity) 0.70 0.87 0.97 1.0 1.0
ReAction 0.70 0.88 0.97 1.0 1.0

Breadth-First (QuickXplain+HSDAG) 0.51 0.75 0.87 0.92 0.98
CorrectiveRelax 0.70 0.88 0.97 1.0 1.0

MinRelax 0.50 0.74 0.88 0.92 0.98

3.9. Related Work

The conflict detection and diagnosis approaches introduced by (Junker, 2004), (O’Callaghan et al., 2005)
and (Jannach, 2008) have already been discussed. (Felfernig et al., 2004) have developed concepts to
identify inconsistent customer requirements in the context of configuration problems. The idea described
is to determine minimal diagnoses by applying the concepts of model-based diagnoses (Reiter, 1987).
In (O’Sullivan et al., 2007) these minimal diagnoses are denoted as minimal exclusion sets. (Godfrey,
1997; McSherry, 2004) introduced approaches to identify maximally successfully sub queries which are
the complement of minimal diagnoses. In order to identify minimal diagnoses, most approaches rely on
the existence of minimal conflict sets. Such conflict sets can be determined, for example, on the basis
of QuickXplain (Junker, 2004), a divide-and-conquer algorithm. The approach presented in (Felfernig
et al., 2004) follows the standard breadth-first search regime for the calculation of diagnoses (Reiter, 1987).
(Jannach, 2008) introduced the concept of preferred relaxations for conjunctive queries to help the customer
to select a diagnosis based on a utility function.
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Existing conflict detection algorithms (for example (Junker, 2004)) include an explicit consistency check-
ing step. In general settings consistency checking is very costly and therefore should be avoided. This was
our motivation for introducing the algorithms GraphXplain, FastXplain, BFX and PFX. Compared to exist-
ing conflict detection approaches (Mauss and Tatar, 2002; Junker, 2004) the introduced approaches exploit
the structural properties of recommendation problems in order to avoid the consistency checks. In addition
to the above mentioned ones, we developed the algorithms PersRepair and ReAction which do not rely
on any structural properties of the recommendation problem and thus, can be applied for a wider range of
problems.

(Schlobach et al., 2007) introduced an approach that calculates minimal incoherent preserving diagnoses.
This work is based on the framework introduced in the earlier work (Schlobach and Cornet, 2003). The
algorithm is based on a top-down method which divides the actual problem into smaller sub problems with
a reduced complexity. This is followed by an informed bottom-up approach which enumerates possible
solutions. In order to identify the diagnoses (Schlobach et al., 2007) uses pinpointing. These pinpoints
are used to reduce a logically incorrect terminology to a smaller one. From this smaller set an error can
be more easily detected by a human expert. The pinpoints prevent the algorithm from calculating minimal
hitting sets by using the supersets to approximate minimal diagnoses. To compute the pinpoints themselves,
all minimal conflict sets are needed, which is costly. Compared to this, the minimal conflict sets used in
model-based diagnoses (Reiter, 1987) are computed on demand.

3.10. Discussion

In this chapter different algorithms for consistency management in knowledge-based recommender systems
have been introduced. Knowledge-based recommender systems support customers in the identification of
interesting products from large and potentially complex assortments. During the preference elicitation
phase customers are repeatedly defining and revising their requirements. During this refinement, situations
may occur where none of the products completely fulfils the set of requirements (Pu and Chen, 2008). In
such situations the introduced algorithms can be applied.

Figure 3.18 shows a decision tree that helps to choose a consistency management algorithm. The first
question asked is ”Should the algorithm be personalized?”. Several algorithms (PFX, ReAction, PersRe-

pair, CorrectiveRelax) have been presented that take personalisation strategies into account. The PFX

algorithm needs a product table and utility values for the calculation. In comparison to this, the algorithms
ReAction, PersRepair and CorrectiveRelax can operate on a product table, but they can also operate on a
model representing more complex products. If a personalized algorithm is preferred, the following question
is asked ”Is a product table available?”. Depending on the answer, the algorithm PFX (if a table represen-
tation of the product items is available) or if it is intended to apply algorithms that rely on a lexicographical
ordering of the customer requirements, the algorithms ReAction and CorrectiveRelax (O’Callaghan et al.,
2005) are suggested. Otherwise, the PersRepair algorithm is recommended.

If there is no data available from which personalization strategies can be derived, the answer to the
question ”Should the algorithm be personalized?” is no. As there are more alternatives available in this
context, the following question is asked: ”Is a product table available?”. If there is no product table avail-
able, but a model of the products, it can be recommended to use a combination of the QuickXplain (Junker,
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Figure 3.18.: Decision tree to decide what algorithm is suited for consistency management for constraint-
based recommendation scenarios.

2004) with the hitting set directed acyclic graph (HSDAG) (Reiter, 1987). This combination performs a
breadth-first search in the HSDAG. Note that the QuickXplain+HSDAG combination can also be applied
in settings where a product table is available. If there is a product table available other algorithms can be
applied as well. As there are too many algorithms that can be applied, another question is asked ”Should

the algorithm focus on calculating minimal conflict sets or on minimal diagnoses?”. Depending on the
answer to the question, one of the following algorithms can be suggested: the algorithms GraphXplain,
FastXplain and BFX (if the answer is minimal conflict sets) or the algorithm MinRelax (Jannach, 2008).
Note that although most algorithms can calculate both (minimal conflict sets and minimal diagnoses), this
distinction is made because some algorithms are more suited to calculate minimal conflict sets compared to
others. Additionally, there are exceptions, for example GraphXplain only calculates minimal conflict sets.
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Chapter 4
Consistency Management in

Configuration Systems
Parts of the contents of this chapter have been published in

(Felfernig and Schubert, 2010b; Felfernig et al., 2010c)

(Felfernig and Schubert, 2011a; Felfernig et al., 2011).

Configuration systems have a long and successful tradition as a sub field of Artificial Intelligence (Barker
et al., 1989; Mittal and Falkenhainer, 1990; Stumptner, 1997; Fleischanderl et al., 1998). On an informal
level, configuration can be defined as a special case of design activity, where the artefact being configured is

assembled from instances of a fixed set of well-defined component types which can be composed conforming

to a set of constraints (Sabin and Weigel, 1998). This chapter focuses on product configuration systems.
Nowadays, these systems become more and more important due to their role as a key technology of mass
customization (Tiihonen et al., 2003). The goal of mass customization is to support individual customer
preferences and at the same time exploit the advantages of mass production (Pine, 1999; Silveira and
Fogliatto, 2001).

Configuration systems typically exploit two different types of knowledge sources: on the one hand
the explicit knowledge about the user requirements, on the other hand a configuration knowledge base.
Configuration knowledge bases are represented in form of a product structure and different additional
types of constraints (Felfernig et al., 2004) such as compatibility constraints (which component types
can or cannot be combined with each other), requirements constraints (how user requirements are related
to the underlying product properties), or resource constraints (how many and which components have
to be provided such that needed and provided resources are balanced). Knowledge-based recommender
systems - in contrast to knowledge-based configuration systems - operate on a table-based product data
representation. The products in a knowledge-based recommender system are explicitly represented (see
example given in Section 1.1).

While interacting with a knowledge-based configuration system customers typically specify a set of re-
quirements. These requirements are evaluated. The configurator tries to find at least one configuration
which is consistent with the customer requirements and the underlying configuration knowledge base. In
situations where the configurator is not able to find a solution customers are in the need of consistency
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management support. The configurator can aid customers in consistency management using various ap-
proaches such as FastDiag (see Section 4.2), PersDiag (see Section 4.4), CorrectiveRelax (O’Callaghan
et al., 2005), or QuickXplain (Junker, 2004). With the support of these algorithms customers are enabled
to adapt inconsistent requirements and evaluate (new) alternative configurations (solutions).

This chapter is organized as follows: in Section 4.1 a working example from the domain of bike con-
figuration is introduced. This simplified example is used throughout the chapter to illustrate the different
approaches to restore consistency in configuration systems. Section 4.2 presents an approach to support
customers in the consistency management (on the basis of the identification of minimal diagnoses). In the
Section 4.3 this approach is adapted to identify diagnosis clusters. Each diagnosis cluster includes at least
one minimal diagnosis, but does not need to be minimal itself. In Section 4.4 the PersDiag algorithm is
introduced. This algorithm uses different personalization strategies in order to find diagnoses of relevance
for the customer (user). In this context, the used personalization strategies are discussed and compared
to each other. All technologies (introduced in Sections 4.2-4.4) help customers to solve the no solution

could be found dilemma (Pu and Chen, 2008) in interactive configuration. A performance evaluation of
the algorithms is presented in Section 4.5. Finally, the presented approaches are evaluated with regard to
their prediction quality (precision). Related work is discussed in Section 4.6. In Section 4.7, this chapter is
concluded with a recommendation when to use which algorithm.

4.1. Example: Configurable Bike

A simplified example of a configuration task from the domain of bike sales is introduced in this section.
The example will serve as a representative problem throughout this chapter to explain the principles of
the introduced consistency management algorithms. This example describes a configuration task (see
Definition 10), which is defined as a Constraint Satisfaction Problem (CSP (Tsang, 1993)) following the
work of (Felfernig et al., 2010c).

Definition 10 A configuration task can be defined as a constraint satisfaction problem CSP (V, D,C) where

V = {v1,v2, ...,vn} represents a set of domain variables, D = {dom(v1),dom(v2), ...,dom(vn)} is a set of

domains. C is a set of constraints which can be split into C = CKB ∪CR. CKB = {c1,c2, ...,ck} is a set

of constraints that restrict the possible assignments of the variables in V . CR = {r1,r2, ...,ri} is a set of

constraints that represent the requirements of the customer.

Relevant variables of the working example are colour, size, gender, gear, rear, type and price. The
variable colour represents the colour of the bike, size is the size of the frame, gender is the gender type
of the frame, gear specifies how many gears the bike has, rear is the brand of the rear, type represents the
type of the bike and the price can be specified as well. In order to retrieve a configuration the customer
can specify a value for each variable. The set of possible configurations is restricted by the constraints of
the configuration knowledge base CKB = {c1,c2, ...,c10}. In this example the customer specifies that the
type of the bike should be city (r1), the frame should for females (r2), the colour should be yellow (r3),
the bike should have more than 25 gears (r4), the size of the bike should be M (r5), a mohawk rear should
be included (r6) and the price should be lower than 400 (r7). On a more formal level, the corresponding
configuration task can be defined as follows:
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• V = { colour, size, gender, gear, rear, type, price }

• D = {

– dom(colour) = {green, blue, yellow, pink},

– dom(size) = {XS, S, M, L, XL},

– dom(gender) = {male, female},

– dom(gear) = {1, ..., 30},

– dom (rear) = {shimano, mohawk, GT alloy},

– dom(type) = {mtb, city, trekking, race},

– dom(price) = {100, ..., 2000}}

• CKB = {

– c1 = {type = race⇒ gender = male},

– c2 = {type = city⇒ gear ≤ 12},

– c3 = {gender = female⇒ size < L},

– c4 = {gear > 22⇒ type = mtb ∨ type = race},

– c5 = {colour = blue⇒ type = mtb ∨ type = trekking},

– c6 = {gender = female⇒ colour = pink ∨ colour = green},

– c7 = {type = mtb⇒ rear = GT alloy},

– c8 = {type = race⇒ size ≥M}

– c9 = {size = M⇒ colour = blue ∨ colour = green}

– c10 = {gear > 20⇒ rear = GT alloy ∨ rear = shimano }}

• CR = {

– r1 = {type = city},

– r2 = {gender = female},

– r3 = {colour = yellow},

– r4 = {gear > 25},

– r5 = {size = M},

– r6 = {rear = mohawk},

– r7 = {price < 400}}

Based on this description of the configuration task we can introduce the definition (see Definition 11) of
a concrete configuration (solution for a configuration task) based on (Felfernig et al., 2011).

Definition 11 A configuration for a configuration task (V,D,C) is an instantiation I = {v1 = in1,v2 =
in2, ...,vn = inv} where ink ∈ dom(vk).
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A configuration is consistent if the assignments in I are consistent with ci ∈ C. A configuration can be
denoted as complete if all variables in V are instantiated. Furthermore, a configuration is valid, if it is
consistent and complete.

For the specified configuration task it is not possible to find a solution. For example, the customer
specifies that the bike should be of type city and should have more than 25 gears. Taking a look at the
knowledge base CKB it can be observed that the constraint c2 specifies, that a city bike can have at most
12 gears. Furthermore, the constraint c6 specifies, that female bikes are only available in the colours pink

and green. Nevertheless, the customer wants to have a yellow and female bike. Therefore, the customer
requirements are inconsistent with the configuration knowledge base.

Table 4.1.: Log of the past configurations. Each log entry represents one configuration that has been de-
signed by a user.

colour size gender gear rear type price

log1 pink XS female 1 shimano city 300
log2 green L male 25 GT alloy race 800
log3 green M female 10 mohawk trekking 500
log4 blue M male 12 GT alloy mtb 400
log5 yellow XL male 20 shimano race 1100
log6 green S female 16 GT alloy mtb 500
log7 blue M male 21 shimano trekking 300
log8 yellow L male 30 shimano race 1900
log9 green XS female 8 mohawk city 800
log10 pink S female 28 GT alloy mtb 200

In order to identify minimal sets of requirements that have to be adapted or relaxed, the concepts of
Model-Based Diagnosis (MBD) (de Kleer et al., 1992; Reiter, 1987) may be exploited. Model-Based
Diagnosis starts with a description of the system. In our case this description covers the configuration
knowledge base CKB. The intended behaviour of the system is that it can suggest a configuration that
satisfies the set of customer requirements CR. If the actual behaviour of the system conflicts with its
intended behaviour, the diagnosis component is activated. The task of this component is to identify those
elements which, when assumed to be functioning abnormally, sufficiently explain the discrepancy between
the actual and the intended behaviour of the system. Note that in our configuration systems it is assumed
that the configuration knowledge base always functions correctly (for more information about how to debug
knowledge bases see, for example, (Bakker et al., 1993; Felfernig et al., 2004; Friedrich and Shchekotykhin,
2005)). The desired diagnoses include only elements of the set of customer requirements CR. On a more
technical level a diagnosis can be seen as a minimal set of faulty components (in our case requirements)
that need to be relaxed or adapted in order to be able to identify a configuration.

For our example, it is assumed that the system has already been used by customers. These customers
have already successfully completed bike configurations which are stored as log entries Log = {log1, log2,
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Table 4.2.: Utility values specified by the customer (in %) during a configuration session

type gender colour gear size rear price

utility 15.0 23.0 5.0 25.0 7.0 6.0 19.0

..., log10}. These log entries are representing complete configurations. Table 4.1 shows a list of log entries
of our example. The information stored in the log can be exploited and used for personalization strategies
(see also Section 4.4). For some personalization strategies it is important that the customer specifies a
utility value for each attribute or requirement. For our example the utility values defined by the customer
are shown in Table 4.2. A utility value indicates how important the attribute is for the customer. In our
example these values are specified in % (sum of all utility values is 100%).

4.2. Algorithm: FastDiag

This section describes the algorithm FastDiag, which was published by (Felfernig and Schubert, 2010b;
Felfernig et al., 2010c, 2011). During an interactive session with a configuration system customers specify
their requirements. The FastDiag algorithm determines one minimal diagnosis with the same computa-
tional effort related to the calculation of one conflict set at a time. Some of the specified requirements
are more important to the customer compared to others. If there exists a conflict situation, the customers
usually prefer to keep the important requirements and to change or delete the less important ones (Junker,
2004). Therefore, the FastDiag algorithm supports the identification of preferred (leading) diagnoses based
on predefined preferences. The algorithm can be applied in different scenarios such as online configuration
(Felfernig et al., 2004) and recommendation (Schubert et al., 2011) as well as in scenarios where the effi-
cient calculation of preferred diagnoses is crucial (de Kleer, 1990). In addition to constraint-based systems,
the algorithm can be applied for example, in the context of SAT solving (Silva and Sakallah, 1996) and
description logics reasoning (Friedrich and Shchekotykhin, 2005).

FastDiag is based the definition of a total (lexicographical) ordering as preference criteria. Using such a
total ordering the customer requirements in C (especially CR) can be sorted. This ordering can be achieved,
for example, by directly asking the customer regarding the preferences. Another possibility to retrieve
the utility values is that they are added by an expert. An expert (i.e. marketing or sales expert) specifies,
for example, scoring rules or item utilities. These utility values can be used by applying multi attribute
utility theory (MAUT) (von Winterfeldt and Edwards, 1986; Ardissono et al., 2003). Another possibility is
to apply rankings determined by a conjoint analysis (Belanger, 2005). For the following discussions, the
definition of a total lexicographical ordering is used (see Definition 8). For this work, the requirements are
sorted according to the utilities given in Table 4.2. This results in a total lexicographical ordering of the
requirements following Definition 8. The sorted requirements are CR = {r3,r6,r5,r1,r7,r2,r4}, because
r3 < r6 < r5 < r1 < r7 < r2 < r4. The most important requirement for the customer is r4, meaning that
the bike has more than 25 gears. If we assume that X = {r3,r4,r5} and Y = {r2,r4,r5} then Y -X = {r2}
and X ∩{r4,r5} = Y ∩{r4,r5}. Intuitively, {r3,r4,r5} is a preferred diagnosis compared to {r2,r4,r5} since
both diagnoses include r4 and r5 but r3 is less important compared to r2. If we change the ordering to
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(r4 < r2 < r7 < r1 < r5 < r6 < r3), FastDiag would determine {r2,r4,r5} as a preferred minimal diagnosis
compared to {r3,r4,r5}. Note that in this situation we used two diagnoses that are similar. The preferred
diagnosis of the example is d1 = {r3,r1,r5,r6} (see also Figure 4.1).

Identification of Preferred Diagnoses

The main purpose of the FastDiag algorithm (see Algorithm 9) is to check, whether a diagnosis for a set
of customer requirements can be calculated. The precondition for calculating a diagnosis, is that the set
of customer requirements (CR) is not empty and the knowledge base is consistent. If the whole problem is
consistent the algorithm returns /0. The check of the precondition is done by the FastDiag algorithm. In
order to calculate a diagnosis, FastDiag calls the FD algorithm (see Algorithm 10).

The FD algorithm calculates a preferred diagnosis for a given set of customer requirements which are
lexicographically ordered. In the last paragraph it has already been shown how the utility values of Table
4.2 (defined preferences) can be used to sort the customer requirements in a lexicographical order. The
FD algorithm uses this sorted set (CR = {r3,r6,r5,r1,r7,r2,r4}) to calculate a preferred diagnosis. Another
input parameter of the FD algorithm is the variable AC. AC is a set of constraints, containing the configu-
ration knowledge base and a set of customer requirements. In the beginning this set is AC = CKB∪CR, in
other words it is the union of of customer requirements (CR) and the configuration knowledge base (CKB).
In the working example (see Section 4.1) the customer requirements CR are inconsistent with CKB (no solu-
tion can be found that satisfies CR and CKB at the same time). This means that CR = {r3,r6,r5,r1,r7,r2,r4}
includes at least one minimal diagnosis. In the worst case the diagnosis incorporates all customer require-
ments CR (i.e., each ci ∈CR represents a single conflict). This is not the case in the working example (the set
of all diagnoses is D = {d1 = {r3,r6,r5,r1},d2 = {r6,r5,r1,r2},d3 = {r3,r5,r4},d4 = {r3,r6,r1,r2},d5 =
{r5,r2,r4},d6 = {r3,r1,r2,r4}}).

For calculating a preferred diagnosis, the FD algorithm operates on a sorted set of customer requirements
(C = CR = {r3,r6,r5,r1,r7,r2,r4}). Additionally, a set of all constraints AC including the knowledge base
(i.e., AC = CKB ∪ CR) is given to the algorithm as parameter. Moreover, the FD algorithm takes a delta D,
which stores the recent changes and is emtpy in the beginning. The key idea behind the FD algorithm is,
that a set of requirements is divided into smaller parts to narrow down the location of the minimal diagnosis.

Before calculating the diagnosis, the FD algorithm checks, if the set of all current constraints (AC) is
consistent. In case of an inconsistency, the algorithm searches for these constraints that are part of the
diagnosis. In the running example, the set of requirements that should be diagnosed is CR = {r3, r6, r5,
r1, r7, r2, r4}. These requirements are sorted from less important requirements to more important ones.
Due to the fact, that this set of requirements is inconsistent with the configuration knowledge base, it
needs to be divided. Therefore, CR = {r3,r6,r5,r1,r7,r2,r4} is split up to C1 = {r3,r6,r5,r1} and C2 =
{r7,r2,r4}. With respect to the lexicographical ordering, it can be observed that the requirements in C1 are
less important to the customer. For this reason, a diagnosis consisting of (some of) these requirements may
be better accepted by the customer compared to another one that includes more important requirements.
Therefore, the FD algorithm tries to eliminate the important requirements from the diagnosis process. This
is done by checking the consistency of AC = CKB ∪ {r7,r2,r4}. Due to the fact that this AC is consistent
with the configuration knowledge base, there exists at least one diagnosis in the set C1 = {r3,r6,r5,r1}.
For identifying a diagnosis in this set, the FD algorithm is called again. In this activation, the FD algorithm
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FD( /0,CR = {r3,r6,r5,r1,r7,r2,r4},CKB ∪CR)

FD({r3,r6,r5,r1},
{r7,r2,r4},CKB ∪ {r7,r2,r4})

consistent(AC) X

FD( /0,{r3,r6,r5,r1},
CKB ∪ {r3,r6,r5,r1,r7,r2,r4})

consistent(AC) ×

FD({r3,r6},{r5,r1},
CKB ∪ {r5,r1,r7,r2,r4})

consistent(AC) ×

FD({r5},{r1},
CKB ∪ {r7,r1,r2,r4})

consistent(AC) ×

FD({r1},{r5},
CKB ∪ {r5,r7,r2,r4})

consistent(AC) ×

FD({r1,r5},{r3,r6},CKB

∪{r3,r6,r7,r2,r4})
consistent(AC) ×

FD({r3},{r6},CKB

∪{r6,r7,r2,r4})
consistent(AC) ×

FD({r6},{r3},CKB

∪{r3,r7,r2,r4})
consistent(AC) ×

/0 r3,r6,r5,r1

r5,r1 r3,r6

r1 r5 r6 r3

Figure 4.1.: Execution tree of the algorithm FD to determine one preferred diagnosis. The algorithm is
called with the sorted requirements CR = {r3,r6,r5,r1,r7,r2,r4} and the knowledge base CKB.

checks again if the current set of requirements (AC = CKB ∪ {r3,r6,r5,r1,r7,r2,r4}) is consistent. This is
not the case and for this reason, the set CR = {r3,r6,r5,r1} needs to be further divided. The FD algorithm
continues in the way described until either a consistent set (AC) is found or current set of requirements CR

cannot be further divided (i.e. it contains only one element). This can be observed in the right lower part
of Figure 4.1 which shows the whole execution tree for the working example.

Description of the FastDiag Algorithm

The FastDiag algorithm is shown in Algorithm 9 and the FD algorithm is shown in Algorithm 10. In this
section these two algorithms are described on a more formal level. The main purpose of the FastDiag

algorithm (see Algorithm 9) is to check, whether a diagnosis (for all constraints in C) can be calculated.
This is the case, if the set of constraints in C is not empty and the knowledge base is consistent. Otherwise
(isEmpty(C) or inconsistent(AC-C)) the algorithm returns an empty set (return /0). Note that C (instead
of CR) is used as a parameter for the FastDiag algorithm. This can be explained by the fact that the
application of the algorithm is not restricted to inconsistent sets of customer requirements.

The actual calculation of a diagnosis is done by the FD algorithm (see Algorithm 10). This algorithm
is called with similar parameters as the FastDiag algorithm, namely C: a sorted set of constraints that
should be diagnosed; and AC: a set of all constraints that should be considered (i.e. all constraints of C
and some background knowledge, for example a configuration knowledge base). Additionally to these two
parameters, the FD algorithm takes a delta D. In this delta the last set of changes are stored. As no changes
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Algorithm 9 FastDiag(C ⊆ AC, AC)
{Input: C - set of constraints that should be diagnosed (i.e. CR)}
{Input: AC - set of all constraints (i.e. CKB∪CR)}
{Output: minimal diagnosis - minimal set of faulty requirements}
if isEmpty(C) or inconsistent(AC−C) then

return /0

else
return FD( /0,C,AC)

end if

have been performed yet, the delta is empty in the beginning. Based on these parameters, the FD algorithm
follows a divide-and-conquer strategy. This means, that the algorithm calls itself in a recursive way and in
each iteration the algorithm divides the set of constraints C into two subsets C1 and C2.

Summarizing, the FD algorithm is activated with a set of constraints that should be diagnosed (C) and a
set of all constraints that should be considered (AC). First, the FD algorithm checks, whether any change
has been performed in the last iteration (i.e. the delta D is not empty, D 6= /0). Additionally, it is checked, if
the set of all constraints AC is consistent (consistent(AC)). If this is the case, the execution of the current
iteration is finished, because a diagnosis can only be calculated from an inconsistent set.

Algorithm 10 FD(D, C, AC)
{Input: D - delta set, initially empty}
{Input: C - set of constraints that should be diagnosed (i.e. C = CR = {c1,c2, ...,cn})}
{Input: AC - set of all constraints (i.e. CKB∪CR)}
{Output: minimal diagnosis - set of faulty requirements}
if D 6= /0 and consistent(AC) then

return /0

end if
if singleton(C) then

return C

end if
k← d n

2e
C1←{c1, ...,ck}
C2←{ck+1, ...,cn}
δ1← FD(C1,C2,AC−C1)
δ2← FD(δ1,C1,AC−δ1)
return (δ1∪δ2)

The next check in the FD algorithm is, whether there is only one element in the set C (singleton(C)).
As already mentioned, the FD algorithm performs a divide-and-conquer strategy. If a set contains only one
element, then it cannot be further divided. For this reason (and because AC is consistent), this element is
part of the diagnosis.

After the consistency and the singleton check, the set of constraints (C) is divided in two sets C1 and C2.
The constraints in C1 are less important to the customer compared to the ones in C2 (this is based on the
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lexicographical order of the constraints). The FD algorithm is first called with C = C2, in order to keep as
much important requirements the same as possible. The delta D in this first call is C1, because C1 is the
complement of C2. The result of this call is δ1 which can be either empty, or a set of requirements that are
part of the diagnosis. Independent of the amount of elements in δ1, this set is considered as last change (set
of requirments that has been changed recently by the algorithm), that need to be taken into consideration
when calling the FD algorithm with C = C1. This (FD(δ1,C1,AC− δ1)) is the second recursive call of
the FD algorithm. The result of this call is again a set of constraints that are part of the diagnosis. After
the subsets of C are considered seperatly, the FD algorithm needs to summarize the results. Therefore, the
conjunction of δ1 and δ2 is returned.

Calculating More Diagnoses

Typically, a diagnosis problem has more than one diagnosis. In order to calculate more or all diagnoses the
FD algorithm can be combined with an adapted version of the hitting set directed acyclic graph (HSDAG)
(Reiter, 1987). Figure 4.2 shows the adapted graph. In this adapted HSDAG, a path is closed, if no further
diagnoses can be identified or if the elements of the current path are a superset of an already closed path.
The graph is expanded in a breadth-first manner similar to the original HSDAG in (Reiter, 1987). Applying
these concepts to our working example, {r1} (one element of the first diagnosis (d1 = {r1,r5,r6,r3}) from
the set CR can be deleted. Then the algorithm is restarted with CR−{r1} as the set of elements that should be
diagnosed. For this adapted set, another minimal diagnosis can be found. Since AC−{r1} is inconsistent,
we can conclude that CR = {r3,r6,r5,r7,r2,r4} includes another minimal diagnosis (d2 = {r4,r5,r3}). This
diagnosis is determined by the call FD( /0, CR = {r3,r6,r5,r7,r2,r4}, CKB ∪CR = {r3,r6,r5,r7,r2,r4}). In
order to determine all diagnoses, the algorithm has to expand all paths until each leaf is either closed
or the adapted set of requirements is consistent with the knowledge base CKB (i.e., a diagnosis has been
identified). The adapted HSDAG for all diagnoses in our working example on the basis of FastDiag and
FD is depicted in Figure 4.2.

Note that for any set of requirements (constraints in C) the algorithm FD always calculates the preferred
minimal diagnosis in terms of Definition 8. If the diagnosis d1 is the preferred diagnosis returned by the
algorithm FD and one element from this diagnosis is deleted (for example {r1}), then the next call of
FD returns the preferred diagnosis for CR−{r1}. This diagnosis d2 is less preferred compared to d1 i.e.
d1 >lex d2. Consequently, diagnoses part of one path in the search tree (such as d1 and d2 in Figure 4.2) are
in a strict preference ordering. However, there is only a partial order between individual diagnoses in the
search tree in the sense that a diagnosis at level k is not necessarily preferable to a diagnosis at level k+1.

4.3. Algorithm: FlexDiag

Based on the algorithm FastDiag described in Section 4.2, the algorithm FlexDiag (Felfernig and Schu-
bert, 2010b) can be exploited for identifying diagnosis clusters. A diagnosis cluster is a set of constraints
that includes at least one minimal diagnosis. The FlexDiag algorithm allows to narrow down the diag-
nosis search space without the need to calculate a minimal diagnosis. This is achieved by changing the
singleton property check of the FastDiag algorithm (see Algorithm 9). This is reflected by the statement if
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FastDiag(C = CR,AC = CKB ∪CR)
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Figure 4.2.: Calculating the complete set of preferred minimal diagnoses - for this purpose, the FastDiag al-
gorithm is combined with the Hitting Set Directed Acyclic Graph (HSDAG) algorithm (Reiter,
1987).

singleton(C) then (see Line 4 of Algorithm 10). This check has to be adapted to if size(C) ≤ m, i.e., the
algorithm checks, whether the current set of constraints has m or less elements. In this way, the algorithm
identifies a cluster of constraints which includes the minimal diagnosis, but often also contains elements
that are not part of the minimal diagnosis. In the worst case the algorithm returns all elements of C. If m is
increased in order to improve the algorithm run time, the number of consistency checks decreases.

FlexDiag leads to a set of constraints CD = D∪Co f f set where D is the minimal diagnosis and Co f f set is a
set of constraints which are not part of the minimal diagnosis. Note that Co f f set can only contain constraints
which are part of the requirements CR. More precisely, Co f f set can only contain elements that are part of C.
An important aspect to be investigated in the FlexDiag algorithm is relevance. Relevance (see also Formula
4.4) is the relation between the number of relevant constraints in D and all constraints of the cluster (all
constraints in CD). For a detailed evaluation of FlexDiag see Section 4.5.3.

4.4. Algorithm: PersDiag

The PersDiag algorithm was developed to identify personalized diagnoses of inconsistent requirements

in configuration scenarios. PersDiag is based on ideas of the algorithm PersRepair (see Section 3.6 and
(Felfernig et al., 2009c)). The PersDiag algorithm was published in (Felfernig and Schubert, 2010a) and
(Felfernig and Schubert, 2011a). This section gives insights into the algorithm and the underlying person-
alization strategies.

For the example described in Section 4.1 the configuration system is not able to find a solution. In order
to support the customer, the approach needs to identify the minimal set of requirements ri ∈CR which have
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to be adapted or relaxed so that the configuration system is able to identify at least one solution. The set
of minimal conflict sets in the working example is CS = {CS1 = {r1,r4}, CS2 = {r2,r3}, CS3 = {r3,r5},
CS4 = {r4,r6}, CS5 = {r1,r5}, CS6 = {r2,r5}}. These conflict sets are minimal, i.e. there does not exist
any conflict set CS′i with CS′i ⊂CSi.

The standard approach for determining minimal diagnoses, is the hitting set directed acyclic graph (HS-

DAG) algorithm (Reiter, 1987). This algorithm relies on a method for determining minimal conflict sets.
By resolving minimal conflicts, minimal diagnoses can be identified. Due to its minimality property, one
conflict can be resolved by deleting exactly one of the elements from the conflict set. After deleting at least
one element from each identified conflict set we are able to present a diagnosis. The standard HSDAG algo-
rithm (Reiter, 1987) exploits the set of conflict sets in a breadth-first manner. The resolution of all minimal
conflict sets leads to the identification of all minimal diagnoses. Based on the conflict sets of the working
example (see Section 4.1) the following minimal diagnoses can be determined:: Diags = {D1 = {r2,r4,r5},
D2 = {r3,r4,r5}, D3 = {r1,r2,r3,r4}, D4 = {r1,r2,r3,r6}, D5 = {r1,r2,r5,r6}, D6 = {r1,r3,r5,r6}}.

CKB = {c1, ...,c10},CR = {r1, ...,r7},
CS1 = {r1,r4}

CS2 = {r2,r3}

CS3 = {r3,r5}
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×

r2

×

r5

r1

X
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Figure 4.3.: Calculating all minimal diagnoses with the HSDAG algorithm of (Reiter, 1987)

The construction of a HSDAG for the example diagnosis problem is shown in Figure 4.3. The overall
performance of the HSDAG algorithm depends on the performance of the underlying conflict detection
algorithm. Conflict sets can be either calculated beforehand or during the HSDAG construction process.
For our purposes, the algorithm QuickXplain (Junker, 2004) is used for the detection of minimal conflict
sets. The HSDAG algorithm calls the QuickXplain algorithm to identify the first minimal conflict set
CS1 = {r1,r4}. All elements of this minimal conflict set are added as branches to the tree. Thus, for
each branch it is checked, whether it already represents a diagnosis. For our example it is checked whether
r1 or r4 is already a diagnosis. This is not the case as since (CR - {r1}) ∪ CKB as well as (CR - {r4})
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∪ CKB are still inconsistent. Since both alternatives to resolve the conflict do not lead to a diagnosis, the
algorithm has to further expand the tree. The HSDAG does this in a breadth-first manner. First, the node r1

is expanded with the minimal conflict set CS2 = {r2,r3}. This does not lead to a minimal diagnosis either
and thus this conflict set can also be added to the other branch (conflict detection reuse). Note that this
only works if no element of the branch is an element of the minimal conflict set. Now we can switch to
the next level of the tree. The HSDAG algorithm inspects all nodes at level n first and moves forward to
the level n+1. After expanding the tree with the minimal conflict sets CS3 = {r3,r5} and CS4 = {r4,r6}, a
minimal diagnosis d1 = {r4,r2,r5} can be identified. This is a diagnosis because (CR - {r4,r2,r5}) ∪ CKB

does not trigger further conflicts. The HSDAG tree can be further expanded in order to identify all minimal
diagnoses. The complete tree for our example is shown in Figure 4.3. Further details on the standard
HSDAG (Hitting Set Directed Acyclic Graph) algorithm can be found in (Reiter, 1987; Greiner et al., 1989;
Wotawa, 2001).

4.4.1. Personalization Strategies

As the number of possible diagnoses may become very large, it is important to find a way to select only
the ”best” (relevant) ones. A relevant diagnosis is a diagnosis that is selected by the customer, in other
words, a relevant diagnosis leads the customer to an acceptable set of changes of the original requirements.
One simple heuristic is to rank the diagnoses according to their cardinality. This approach has already
been introduced in Section 4.4. In our example, d1 = {r4,r2,r5} has been identified as first minimal
diagnosis. Note that there exists another diagnosis (d2 = {r4,r3,r5}) as well of cardinality 3. All other
minimal diagnoses have a higher cardinality. An alternative to the ranking of diagnoses based on their
cardinality is to apply different types of recommendation approaches. The recommendation approaches
that are investigated in this work are exploiting utility, similarity, and probability measures to guide the
search for preferred diagnoses. Diagnoses with a high probability of being accepted by the customer
should be ranked higher. In the following, it will be shown how the mentioned recommendation techniques
can be applied to predict relevant diagnoses. First, we describe the different recommendation techniques.
Afterwards, we show how to exploit these techniques in the diagnosis selection process.

Utility-based Recommendation

The utility-based approach is based on the multi attribute utility theory (MAUT) (von Winterfeldt and Ed-
wards, 1986). This theory allows to rank different solution alternatives on the basis of a utility function. In
the context of diagnosis selection the idea is to prefer diagnoses which predominantly include requirements
of low importance for the customer. Following the utility-based approach of (von Winterfeldt and Edwards,
1986) we are summing up the requirement-specific importance values for each diagnosis. Based on these
values we can generate a corresponding ranking.

utility(d ⊆CR) = ∑
ri∈d

1
w(ri)

∗ 1
number of elements in d

(4.1)

For our example we use the utility weights introduced in Table 4.2. Based on these weights, we can
calculate the utility of each diagnosis in CR using the Formula 4.1. For the diagnosis {r4,r2,r5} the utility
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value is (1/25 + 1/23 + 1/7)∗1/3 = 0.075. The utility of the diagnosis {r1,r2,r3,r4} is (1/15 + 1/23 +
1/5+1/25)∗1/4 = 0.087. We finally end up with an individual importance value for each diagnosis. The
utility function for a specific set d which is a subset of CR is shown in Formula 4.1. In this formula, the
sum of the inverted weights is multiplied by the inverted number of elements in d. The reason, why the
number of elements in d is taken into account, is that we target not only the utility, but also the number of
requirements that need to be changed.

Similarity-based Recommendation

The key idea of a similiarity-based diagnosis selection approach is to prefer those diagnoses which lead to
configurations that resemble the original requirements most. Following this approach, the information of
already existing configurations (stored, for example, in a configuration log) is exploited. It is assumed that
the system has already been used by customers and that we have a log that holds all past configurations. A
simplified log for our example is shown in Table 4.1. For each configuration in the log, it’s similarity with
the actual customer requirements can be calculated.

The determination of the similarity values is based on three attribute level similarity measures (Konstan
et al., 1997; Wilson and Martinez, 1997; McSherry, 2004). The similarity is calculated for each pair of
attribute ai of the configuration logi and the corresponding customer requirement ci. Depending on the
characteristics of the attribute one of the following three measures is taken (see also Section 3.6): More-Is-

Better (MIB) see Formula 3.3, Less-Is-Better (LIB) see Formula 3.4 or Nearer-Is-Better (NIB) see Formula
3.5 (McSherry, 2004)

For our example we use the MIB similarity for the attribute gear and the NIB similarity for the attributes
colour, size, gender, rear and type. For the attribute price we use the LIB similarity. Calculating the
similarity between the attribute gear and the configuration log1 (the value of gear is 1 in this log entry)
and the customer requirement r4 (gear > 25) we take the maximum max(gear) = 30 and the minimum
min(gear) = 1 as a basis. Based on the characteristics of the attribute gear, we apply the MIB similarity.
Therefore, the similarity of this attribute is sim(r4,gear) = val(ri)−min(ai)

max(ai)−min(ai)
= 1−1

30−1 = 0. For the MIB simi-
larity, that is used for the attribute gear, applies the following: the higher the value the better it is for the
customer. In comparison to this for the LIB similarity (used, for example, for the attribute price) applies
the following: the lower the value the better it is for the customer. For a detailed discussion of different
types of similarity measures see, for example, (Wilson and Martinez, 1997; McSherry, 2004).

Based on individual similarity values for each attribute we define the similarity for the whole log entry.
Formula 3.6 calculates the overall similarity value between a set of customer requirements (d) and a log
entry. In this context, w(ri) denotes the importance of requirement ri for our example user. For our example,
we assume that all requirements are equally important to the customer. Therefore, and because, the sum of
all weights should be 1, the weight for each requirement ri is weight(ri) = 1

7 .

The similarity values for our working example (the customer requirements CR = {r1, ...,r7} and the log
entries log1, ..., log10) are shown in Table 4.3. In this table we can already see that the log3 has the highest
similarity to the customer requirments.
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Table 4.3.: Similarity between customer requirements and configuration log entries

log1 log2 log3 log4 log5 log6 log7 log8 log9 log10

similarity 0.43 0.22 0.55 0.33 0.31 0.34 0.38 0.29 0.56 0.41

Probability-based Recommendation

The probability-based approach focuses on selection probabilities. The key idea is to suggest diagnoses
to the customer that have a high probability of being selected. In order to determine the probabilities we
rely on joint probabilities. For this approach, we exploit the information of already accepted diagnoses.
A simplified log of accepted diagnoses for our example is shown in Table 4.4. Based on this log, we can
calculate a probability value for each requirement.

Table 4.4.: Example diagnoses selected by customers. The individual probabilities are: p(¬r2) = 3
5 ,

p(¬r3) = 1
5 , p(¬r4) = 2

5 and p(¬r5) = 3
5

colour size gender gear rear type price

log−diag1 - 6= M 6= female ≤ 25 - - -
log−diag2 6= green - 6= female - 6= GT alloy 6= race -
log−diag3 6= pink 6= M - - 6= shimano 6= mtb -
log−diag4 6= yellow - 6= female ≤ 25 - 6= race -
log−diag5 6= blue 6= M 6= male - - 6= mtb -

The determination of the probability p(¬r1) (r1 : type = city) denotes the probability of r1 being part
of a diagnosis. In order to calculate this probability, we are identifying the number those elements in
the log (Table 4.4), where the customer selected a diagnosis containing ¬r1. The probability then, is the
number of such entries divided by the number of all entries in the log. Therefore, the probabilities for our
example are: p(¬r2) = 3

5 , p(¬r3) = 1
5 , p(¬r4) = 2

5 and p(¬r5) = 3
5 . If there is a requirement that is not

in the log (for example r7), we assign a small threshold to this value in order to not screw things up by a
multiplication with zero. During the evaluations we observed, that a good rule of thumb to identify this
value is to calculate the lowest probability in the set (in our example this is 1

5 ) and divide it by 2. This
ensures that the value is not zero, but also lower compared to the other probabilities. Note that in our
example, we have three requirements that are affected by this.

Based on individual probability values for each requirement we define the probability for a set of re-
quirements. The overall probability of a set of requirements is a joint probability. Formula 4.2 is used
for determining this joint probability for a given set of customer requirements being part of a diagnosis
(C′R ⊆CR). In this formula we made the assumption of independence of failure which is widely applied in
model-based diagnosis (de Kleer, 1990).

p(C′R ⊆CR) = ∏
ri∈CR

p(ri) (4.2)
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Hybrid Recommendation

The main drawback of individual diagnosis prediction strategies is that they rely on one single hypothesis.
The idea of hybrid diagnosis prediction strategies is to evaluate a set of hypotheses determined by individual
prediction strategies for selecting the relevant diagnoses. The hybrid approach implemented within the
scope of this thesis uses a simple majority voting. Note that there are many ways to combine algorithms
to hybrids (see, for example, 2.1.4). Majority voting assumes that the errors that are made by individual
predictions are not the same. Thus combining prediction strategies can be very useful for improving the
prediction quality (see Section 4.5.3). A detailed study that compares different hybrid approaches is an
issue for future work.

4.4.2. Identifying Personalized Diagnoses

After introducing different personalisation strategies, this section focuses on how to apply them to identify
preferred (personalized) diagnoses. We use the hitting set directed acyclic graph (HSDAG) (Reiter, 1987)
in an adapted way. Compared to the original algorithm (see Figure 4.3) we no longer use a breadth-first

search, but a best-first search. The definition of ’best’ depends on the personalisation strategy.

Applying the Utility-based Strategy

Applying the utility-based selection strategy, we first call the algorithm QuickXplain to identify the first
minimal conflict set which is CS1 = {r1,r4}. The directed acyclic graph resulting from the minimal conflict
sets can be seen Figure 4.4. The utility value for deleting requirement r1 is 1

15 and for deleting requirement
r4 is 1

25 . We are resolving this conflict set CS1 = {r1,r4} by deleting the requirement with the higher utility
(r1 in our example). The search in the tree is now continued with CR− r1. This results in the second
conflict set CS2 = {r2,r3}. Again we add the conflict set to the tree and calculate the utility values for
the new paths (r1− r2 and r1− r3). We come to the conclusion that expanding the path r1− r3 is the best
choice (the utility of about 0,13 is the highest). Following this path the tree is further expanded with the
conflict set CS3 = {r4,r6} and then in the same way with CS4 = {r2,r5}. After calculating the utility values
we see that the path r1− r3− r6− r5 is the best choice. It would now be the turn to further expand this
node. But since CR−{r1,r3,r6,r5}∪CKB is already consistent we found our first personalized diagnosis:
D1 = {r1,r3,r6,r5}.

Applying the Similarity-based Strategy

The idea behind the similarity-based strategy is that the customer prefers those diagnoses which lead to
configurations that resemble the original requirements (configurations that are most similar to the origi-
nal requirements). For the similarity-based selection of diagnoses we again assume that the QuickXplain

algorithm (Junker, 2004) returns as first conflict set CS1 = {r1,r4}. There are two possibilities of resolv-
ing this conflict set. We can either delete the requirement r1 or the requirement r4 from CR. If we delete
r1, the following configurations from the log are consistent with ¬r1: Con f ig(¬r1) = {log2,...,8,10}. We
are interested in these configurations, because they are all inconsistent with the requirement r1. We can
do the same for the requirement r4 which results in the configurations Con f ig(¬r4) = {log1,...,7,9}. The
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Figure 4.4.: Calculating the preferred diagnosis with the algorithm PersDiag using utility values. The pre-
ferred diagnosis is {r1,r3,r6,r5}

configuration with the highest similarity of the log is log9 (see Table 4.3). This log entry is contained in
Con f ig(¬r4) = {log1,...,7,9}. As we are performing a best-first search in the tree, we are expanding the
tree into the direction with the configuration that has the highest similarity compared to the original re-
quirements CR. Since CR− r4 is still inconsistent with CKB, we are expanding the tree into the direction
of r4 (see also Figure 4.5). The next conflict set that is returned by the QuickXplain algorithm (Junker,
2004) is CS2 = {r2,r3}. We are again resolving this conflict set and calculating all configurations of the
log that are not satisfying the requirements of the path. This results in Con f ig(¬r4,¬r2) = {log2,4,5,7} and
Con f ig(¬r4,¬r3) = {log1,2,3,4,6,7,9}. We are again expanding the tree into the direction of the configura-
tion with the highest similarity, namely into the direction of r3. This leads us to the next minimal conflict
set: CS3 = {r1,r5}. After another identification of the configurations from the log we further check the
path r4− r3− r5. As CR−{r4,r3,r5} is consistent with the configuration knowledge base CKB, we have
finally found a diagnosis. This preferred diagnosis is D1 = {r4,r3,r5}.

If the system is used over a longer period of time, the number of configurations in the log may become
very large. In order to reduce the set of configurations that need to be considered, a nearest neighbour
approach may be used (similar to the approach introduced in Section 3.6). Another problem that occurs
in many configuration scenarios is the ramp-up problem (Burke, 2000). If it is a configuration system that
can configure a lot of diverse configurations, there is no configuration data available that is similar to the
customer requirements. An approach to deal with this, is to define a threshold value which specifies an
upper similarity limit for configurations to be accepted as similar to the original set of requirements. If no
configuration exists that lies above this threshold, a fall-back solution is to present diagnoses resulting from
breadth-first search or to apply the utility strategy.
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CKB = {c1, ...,c10},CR = {r1, ...,r7},
CS1 = {r1,r4}
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Figure 4.5.: Calculating the preferred diagnosis with the algorithm PersDiag using similarity values. The
preferred diagnosis is {r4,r3,r5}

Applying the Probability-based Strategy

For the probability-based selection of diagnoses, we again assume that the QuickXplain algorithm (Junker,
2004) returns as first conflict set CS1 = {r1,r4}. There are two possibilities of resolving this conflict set. We
can either delete the requirement r1, or the requirement r4 from CR. Thus, we are identifying the probability
values for p(¬r1) and p(¬r4). Based on the diagnoses log (see Table 4.4) we can easily calculate the
probability for r4: p(¬r4) = 2

5 . For the requirement r1 there is no entry in the log. Consequently, we are
applying the threshold value of p(¬r1) = 0.1. If we would not apply this threshold, the probability value
would be p(¬r1) = 0. In this case it would be infeasible to expand the tree into the direction of r1.

Based on the probabilities of r1 and r4 we can see that it is more likely that the customer will change
r4 compared to r1. Thus we are expanding the tree into the direction of r4. The complete tree to identify
the preferred diagnosis is shown in Figure 4.6. The next minimal conflict set that is returned is CS2 =
{r2,r3}. We have again two possibilities to resolve this conflict. For the paths r4− r2 the probability is:
p(¬r4,¬r2) = 2

5 ∗
3
5 = 0.24 and for the path r4− r3 it is: p(¬r4,¬r3) = 2

5 ∗
1
5 = 0.08. The node resulting

from the path r4 − r2 is the one with the highest probability, thus we are expanding the graph in this
direction. For the current situation (CR−{r4,r2}) we are still able to find a minimal conflict set, namely
CS3 = {r3,r5}. Again we update the probabilities of the new nodes and try to further expand the path
r4 − r2 − r5. As CR −{r4,r2,r5} is already consistent with the configuration knowledge base CKB, we
finally found a diagnosis. This preferred diagnosis is D1 = {r4,r2,r5} with an acceptance probability
(precision) of 14,4%.

If the system is used over a longer period of time, it is more likely that all requirements are part of the
diagnoses log. Therefore, the need for the threshold is reduced.
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Figure 4.6.: Calculating the preferred diagnosis with the algorithm PersDiag using probability values. The
preferred diagnosis is {r4,r2,r5}

Description of the PersDiag Algorithm

The number of possible diagnoses can become very large. Confronting the customer with such a large num-
ber of alternatives is inappropriate. Moreover, we want to systematically reduce the number of alternatives.
The goal is to identify relevant diagnoses for the customer and to keep the diagnosis evaluation process
as simple as possible. We already introduced different personalisation strategies that can be used for this
purpose. Now the focus lies on a more formal description of how to identify personalized diagnoses.

Algorithm 11 PersDiag(CR, CKB, H, k)
{Input: CR - set of user requirements}
{Input: CKB - the configuration knowledge base}
{Input: H - collection of all paths in the search tree (initially empty)}
{Input: k - k most similar items to be used by PersonalisedSort(H,k)}
{Output: d - preferred diagnosis}
d← f irst(H)
CS← T P((CR−d)∪CKB)
if CS = /0 then

return d

end if
for all requirements r f rom CS do

H← H ∪{d∪{r}}
end for
H← PersonalisedSort(H,k)
PersDiag(CR,CKB,H,k)

The idea is to apply a best-first search strategy using the concepts of the hitting set directed acyclic graph
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(HSDAG) (Reiter, 1987). PersDiag is outlined in Algorithm 11. As the algorithm is based on the HSDAG
(Reiter, 1987), we keep the same level of description for this algorithm. The PersDiag algorithm takes the
customer requirements CR, the configuration knowledge base CKB, an empty collection (H) for all paths
in the search tree and the sorting criteria k as input values. The collection H stores all paths of the search
tree in a best-first fashion. The currently best path d is the one with the most promising (partial) diagnosis.
The theorem prover (TP((CR-d) ∪ CKB)) is called with the set of current requirements (depending on the
path d) and the configuration knowledge base CKB). The task of the theorem prover is to calculate the
next minimal conflict set. If the current set of requirements CR-d is consistent with the knowledge base,
the theorem prover returns an empty conflict set. In this case (CS = /0) we found a diagnosis. In the case
that the theorem prover found a minimal conflict set, all elements of this set are added to the collection H.
After the new elements have been inserted, we finally sort all paths according to the personalization criteria
k. In this context, k represents the criteria used for selecting the next node to be expanded in the search
tree which could be breadth-first, similarity-based, utility-based or probability-based. In order to calculate
more then one diagnosis, the PersDiag algorithm is called in a recursive way, starting again with the most
promising path.

4.5. Evaluation

In this section we present an evaluation and comparison of the introduced algorithms with state-of-the-art
approaches. The evaluation is divided into three parts, namely the performance analysis (Section 4.5.1),
performance evaluation (Section 4.5.2) and the prediction accuracy evaluation (Section 4.5.3). In the per-

formance analysis we are analysing the different techniques according to their run time behaviour. The
focus lies especially on the discussion of the worst case and the best case. In the performance evaluation

we are evaluating the run time performance of the different approaches by executing them on real prob-
lems. For the performance evaluation we used the CLib: Configuration Benchmarks Library∗ as well as
an industrial dataset. Our experiments have shown that the run time is mainly influenced by the number
of customer requirements as well as by the number and structure of the constraints in the configuration
knowledge base. Therefore, this thesis focuses on presenting the evaluation outcome of problems with
an increasing number of customer requirements (constraints). In the prediction accuracy evaluation, the
prediction quality in terms of precision is evaluated.

In order to compare our algorithms with state-of-the-art approaches, we implemented the following two
additional algorithms. The first one is a combination of the QuickXplain (Junker, 2004) and the hitting set
directed acyclic graph (HSDAG) (Reiter, 1987). This combination was also described in Section 4.4 and
from now on is referred to as QuickXplain. This algorithm performs a breadth-first search in the HSDAG

and uses the QuickXplain as a theorem prover. Note that we also implemented the pruning functionality
(Greiner et al., 1989; Wotawa, 2001) into our HSDAG. The second approach we used for comparison
purposes is the CorrectiveRelax algorithm by (O’Callaghan et al., 2005). This algorithm aims to calculate
corrective explanations. A corrective explanation is the complement of a diagnosis (relaxation). The basic
algorithm just identifies one corrective explanation (and the corresponding diagnosis), but we can integrate
this basic approach with the HSDAG approach (Reiter, 1987) calculating all corrective explanations.

∗www.itu.dk/research/cla/externals/clib
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4.5.1. Performance Analysis

This section aims to compare the algorithms FastDiag (introduced in Section 4.2) and PersDiag (intro-
duced in Section 4.4) with the QuickXplain algorithm (see above) and the CorrectiveRelax algorithm
(O’Callaghan et al., 2005).

The worst case complexity of FastDiag in terms of number of consistency checks needed for the calcu-
lation of one minimal diagnosis is 2d·log2( n

d )+2d, where d is the set size of the minimal diagnosis and n
represents the number of constraints (in C). The best case complexity is log2( n

d )+2d. In the worst case,
each element of the diagnosis is contained in a different path of the search tree: log2( n

d ) is the depth of the
path, 2d represents the branching factor and the number of leaf-node consistency checks. In the best case,
all elements of the diagnosis are contained in one path of the search tree.

The worst case complexity of QuickXplain in terms of consistency checks needed for calculating one
minimal conflict set is 2k·log2( n

k )+2k, where k is the minimal conflict set size and n is again the number
of constraints (in C) (Junker, 2004). The best case complexity of QuickXplain in terms of the number of
consistency checks needed is log2( n

k )+2k (Junker, 2004). The algorithm PersDiag uses the QuickXplain

algorithm to determine the minimal conflict sets.

Consequently, the number of consistency checks per conflict set (QuickXplain) and the number of consis-
tency checks per diagnosis (FastDiag) have similar complexity. Let ncs be the number of minimal conflict
sets in C (CR) and ndiag be the number of minimal diagnoses, then the FastDiag algorithm needs ndiag calls
and ncs additional consistency checks to determine all minimal diagnoses. Furthermore, ncs activations of
QuickXplain with ndiag additional consistency checks are needed for determining all minimal diagnoses

with the standard HSDAG-based approach (Reiter, 1987). The PersDiag algorithm also needs ncs activa-
tions of QuickXplain with ndiag additional consistency checks to determine all minimal diagnoses.

In addition we compare the introduced approaches to the CorrectiveRelax algorithm (O’Callaghan et al.,
2005), which allows to calculate minimal preferred diagnoses by constructing the complement of a maximal
relaxation. The difference between FastDiag and CorrectiveRelax is the following: We first generate a
minimal diagnosis D1 in the set of constraints C1 for the set of constraints AC−C2. Next a minimal
diagnosis D2 in the set C2 is generated taking the constraints in AC−D1 into account. Both minimal
diagnoses are combined with the final minimal diagnosis. Broadly speaking, CorrectiveRelax (O’Callaghan
et al., 2005) would search in the whole set AC−D1 for generating a minimal diagnosis D2, which leads
to unnecessary consistency checks. For a more detailed discussion of CorrectiveRelax we want to refer to
(O’Callaghan et al., 2005).

4.5.2. Performance Evaluation

In this Section the performance evaluation is presented. All algorithms† are implemented in Java 1.6 and all
experiments have been executed on an desktop PC (Intel®Core™2 Quad CPU Q9400 CPU with 2.66GHz

and 2GB RAM).

For the run time performance evaluation we randomly generated constraints that customer requirements
which are inconsistent with the underlying configuration knowledge base. The Table 4.6 we give an

†All algorithms (FastDiag, FlexDiag, PersDiag as well as the algorithms QuickXplain and CorrectiveRelax) used for the evaluation,
are implemented in the D-fame - Diagnoses Framework which is described in Chapter 5
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overview of the different evaluation settings. For the evaluation we calculated one (n = 1 diagnosis),
few (n = 5 and n = 10 diagnoses) or all diagnoses.

Table 4.5.: Overview: how to determine the complete set of minimal diagnoses?

Algorithm How all diagnoses are calculated

FastDiag The algorithm is dedicated to calculate minimal diagnoses. One mini-
mal diagnosis is calculated by activating the algorithm once. For cal-
culating all minimal diagnoses in an intelligent way, a HSDAG is con-
structed.

FlexDiag Similar to FastDiag, but the calculated diagnoses are not necessarily
minimal

PersDiag The algorithm is dedicated to calculate minimal diagnoses. Diagnoses
are derived on the basis of a HSDAG. For calculating one minimal di-
agnosis, one or more minimal conflict sets are needed.

Table 4.6.: Overview of the configuration knowledge bases that are used for the run time performance tests

source #Variables #Rules

FS www.itu.dk (CLib Benchmark) 23 16
PC2 (referred as PC) www.itu.dk (CLib Benchmark) 40 19

Bike2 (referred as Bike) www.itu.dk (CLib Benchmark) 34 32
Renault www.itu.dk (CLib Benchmark) 101 113

Financial Service www.hypo-alpe-adria.at 25 15
Broadband www.variantum.com (WeCoTin tool) 242 84

CLib Configuration Benchmarks

For the first case study the CLib: Configuration Benchmarks Library‡ has been used. Out of this benchmark
library four different settings with different complexity have been selected. The financial service (FS)
setting (see Table 4.6) is the smallest one with 23 variables and 16 rules (see also the overview in Table
4.6). Compared to this the Renault is the biggest setting from this benchmark library with 101 variables
and 113 rules. The results of the run time performance evaluation can be seen in Figures 4.7-4.10. We
decided the evaluate the number of consistency checks (not the run time in milliseconds). The reason for
this is that the run time can be influenced by other applications or processes running on the same computer,
whereas the consistency checks are independent from other processes.

‡www.itu.dk/research/cla/externals/clib
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The consistency checks are performed with CLab (Jensen, 2004). CLab§ is an open source C++ library
for building fast backtrack-free interactive product configurators (Hadzic et al., 2004). The product con-
figuration is realized in two phases. In the first phase a Binary Decision Diagram (BDD) (Bryant, 1986) is
constructed that holds the information of valid configurations. We decided to keep this process offline. In
the second phase, this BDD is accessed by the online interactive product configurator (Hadzic et al., 2004).
For the evaluation all knowledge bases have been compiled into the BDDs.

Figure 4.7.: Performance evaluation of the CLib Benchmark FS to calculate 1, 5, 10 and all minimal diag-
noses with an increasing number of constraints

The first setting analysed, is the CLib Benchmark FS dataset. The dataset incorporates only 16 rules.
Figure 4.7 shows the results of the evaluation. For the evaluation, settings with an increasing number of
requirements have been generated. For each setting, each approach calculated 1, 5, 10 and all diagnoses.
For each number of constraints 100 settings have been generated (100 times a different set of requirements
that is inconsistent with the configuration knowledge base). For calculating one diagnosis the FlexDiag

(m=3) is the approach with the best run time performance. Nevertheless, it only calculates a cluster which
contains at least one diagnosis. The PersDiag algorithm is the slowest one for calculating one minimal
diagnosis because it needs to build up a hitting set graph with the minimal conflict sets. The approach
with the best run time performance (on average over all settings) that calculates minimal diagnoses, is
the FastDiag. The number of consistency checks that are needed for the calculation of five diagnoses are
similar for all approaches. In order to calculate ten diagnoses, the algorithms PersDiag and FastDiag need
a similar amount of consistency checks similar to the combination of the QuickXplain (Junker, 2004) and

§www.itu.dk/people/rmj/clab/

104



4.5. Evaluation

the HSDAG (Reiter, 1987). For calculating all minimal diagnoses, it can be observed that FlexDiag needs
more consistency checks. This is based on the fact that FlexDiag does not calculate minimal diagnoses and
thus has to check more nodes in the tree in order to identify all diagnoses clusters.

Figure 4.8.: Performance evaluation of the CLib Benchmark PC to calculate 1, 5, 10 and all minimal diag-
noses with an increasing number of constraints

The next setting is the CLib Benchmark PC dataset. The dataset incorporates only 19 rules and 40 vari-
ables. Figure 4.8 shows the results of the evaluation. For the evaluation, constellations with an increasing
number of requirements have been generated. For each setting, each approach was called with the task to
calculate 1, 5, 10 and all diagnoses. For each evaluation (containing from 2 up to 30 requirements) 100
settings (100 times a different set of requirements that is inconsistent with the configuration knowledge
base) have been generated. The QuickXplain is the slowest one for calculating one diagnosis (n=1), be-
cause it needs most steps to identify one diagnosis with breadth-first search in the HSDAG. The algorithm
FlexDiag (m=3) needs the lowest number of consistency checks. Nevertheless, that approach does not
calculate a minimal diagnosis. What can be seen in the left upper part of Figure 4.8 is that the algorithms
FastDiag, FlexDiag (m=2) and FlexDiag (m=3) have a similar performance. Summarizing, when we are
looking for an approach to determine only one diagnosis, the following question has to be answered: is it
enough to just calculate a diagnosis cluster or is a minimal diagnosis needed? This cannot be answered on
a general basis, but is dependent on the domain and the application. For calculating 5 diagnoses FlexDiag

(m=3) is still the one that needs the lowest number of consistency checks. This changes when calculating
10 diagnoses. In this setting the FastDiag is the one that performs best. Moreover, it can be observed
that for calculating 5 and 10 diagnoses the algorithms PersDiag and QuickXplain perform similarly. For
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calculating all diagnoses the FlexDiag (m=3) is better compared to the CorrectiveRelax.

Figure 4.9.: Performance evaluation of the CLib Benchmark Bike to calculate 1, 5, 10 and all minimal
diagnoses with an increasing number of constraints

The introduced approaches have also been evaluated on the CLib Benchmark Bike dataset. This dataset
has twice as many rules as the CLib Benchmark FS dataset. Nevertheless, the results are similar as shown
in Figure 4.9. When comparing the algorithms PersDiag and QuickXplain, it can be observed that for
calculating one diagnosis the PersDiag needs less consistency checks due to the best-first search strategy.
For calculating 10 diagnoses the tendency of all approaches is similar. The results for the determination of
all diagnoses are similar to the ones of the CLib Benchmark PC dataset.

The CLib Benchmark Renault dataset is the most complex setting of the benchmark library. It consists of
113 rules and 101 variables. The result of the evaluation is shown in Figure 4.10. Using a high number of
constraints (requirements) the algorithms FastDiag, FlexDiag (m=2), FlexDiag (m=3) and CorrectiveRe-

lax scale much better compared to the algorithms PersDiag and QuickXplain. The results for determining
five diagnoses are similar to the results of the calculation of one diagnosis. Another observation of the
evaluation is that the algorithms FastDiag and CorrectiveRelax have a similar performance. Compared
to this in the settings where one diagnosis and ten diagnoses are calculated, the FastDiag performs better
compared to the CorrectiveRelax algorithm. For determining all diagnoses, the FastDiag is the approach
that needs the lowest number of consistency checks. QuickXplain performs better for calculating all diag-
noses compared to PersDiag. This is based on the fact that QuickXplain uses a breadth-first search strategy.
Nevertheless, the diagnoses calculated by PersDiag are personalized and can be seen as more valuable to
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Figure 4.10.: Performance evaluation of the CLib Benchmark Renault to calculate 1, 5, 10 and all minimal
diagnoses with an increasing number of constraints

the customer.

WeCoTin Models

This section presents the results of the evaluation performed with SModels inference engine. This engine
consists of a front-end (lparse) and inference procedure SModels (see (Tiihonen et al., 2003) for a detailed
description). The settings of this evaluation were modelled within the WeCoTin project (Tiihonen et al.,
2003). This project established a platform for web configuration technology. The WeCoTin system (Tiiho-
nen et al., 2003) is available through a standard browser and configuration knowledge bases are available
on a configuration server. The evaluations presented here were performed directly with the configuration
server. One interesting finding of the evaluation is, that the evaluation results of the WeCoTin Models are
similar to the ones performed with the CLib Configuration Library. The result of the evaluation performed
with the biggest WeCoTin model can be seen 4.11. The domain of this setting is the telecommunication
domain. Figure 4.11 shows the number of consistency checks that were needed for calculating 1, 5, 10 and
all diagnoses for an increasing number of constraints.

Figure 4.11 shows that the algorithms PersDiag and QuickXplain (Junker, 2004) scale badly for a high
number of constraints when determining one diagnosis. The reason for this is that both approaches need
to build the HSDAG (Reiter, 1987) with the minimal conflict sets. This needs more time compared to
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Figure 4.11.: Performance evaluation of the broadband model to calculate 1, 5, 10 and all minimal diag-
noses with an increasing number of constraints (from 2 to 40 constraints)

a direct calculation of the diagnoses. Figure 4.12 shows the same evaluation but with a lower number
of constraints. In this figure it can be seen that for calculating all diagnoses for less than 12 constraints
FlexDiag (m=3) is the one that needs the lowest number of consistency checks. For a higher number of
constraints FastDiag is the one that needs the lowest number of consistency checks. Moreover, it can be
observed that for identifying all diagnoses - especially minimal diagnoses - FastDiag is suited best for more
than 12 constraints.

As shown in Figure 4.11, the algorithms PersDiag and QuickXplain need a similar number of consistency
checks for calculating 1 and 3 diagnoses. For calculating more diagnoses (10 or all) the PersDiag needs
more consistency checks due to the best-first search strategy.

In the Appendix of this thesis more evaluation results with models of the WeCoTin project are provided.
These tables show the number of needed solver calls for calculating one and all diagnoses for 10 and 20
customer requirements. The results are similar to the ones just described.

4.5.3. Evaluation of the Acceptance Probability (Precision)

This section aims to evaluate the different diagnosis approaches with regard to their acceptance probability
(precision). For evaluating the acceptance probability, two case studies have been used. In each case study
the difference between the position predicted by the algorithm and the expected position (position 1), was
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Figure 4.12.: Performance evaluation of the broadband model to calculate 1, 3, 10 and all minimal diag-
noses with an increasing number of constraints

analysed. If the diagnosis algorithm predicts the selected diagnosis on the first position this distance is 0.
The precision measure is shown in Formula 3.8 (see page 77). Precision describes how often a diagnosis
that corresponds to a diagnosis selected by the customer is among the top-n ranked diagnoses. One case
study (PC User Study) was performed at the Graz University of Technology. For the second case study a
dataset of one of the largest financial service providers in Austria was used.

Case Study: PC User Study

In one case study we used a computer configuration dataset (the dataset introduced in Chapter 3) for eval-
uating the prediction quality of the presented diagnosis algorithms. In this study we used a configuration
knowledge base (CSP-based representation) in contrast to the product table based representation used in
Chapter 3.

Table 4.7 shows the results from the PC User Study. The precision is high due to the low number of
diagnoses (see also Chapter 3). Another observation is that FastDiag and CorrectiveRelax (O’Callaghan
et al., 2005) have the same precision. The reason is that both algorithms are using the same lexicographical
ordering.

The algorithm with the best prediction quality (precision) for n = 1 is PersDiag (utility). This algorithm
uses the utility values specified by the user. These utility values are also used by FastDiag, although in
a slightly different way. Compared toFastDiag, it can be seen that PersDiag (utility) has a 4% better
performance. This performance gap is caused by the different usage. As described in Section 4.2 the
FastDiag algorithm uses the utility values to sort the requirements before starting the calculation of the
diagnosis. Compared to this, the PersDiag (utility) (see Section 4.4) retrieves one minimal conflict set at
a time. After a minimal conflict set has been added to the Hitting Set Directed Acyclic Graph (HSDAG)
(Reiter, 1987), the utility values of all leafs are re-evaluated. Taking a look at the precision for the first two
rankings, it can be seen that the precision is approximately the same (0.88 for the FastDiag and 0.89 for
the PersDiag (utility)).
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Table 4.7.: Precision values of the algorithms for the PC User Case Study

n=1 n=2 n=3 n=4 n=5

FastDiag 0.70 0.88 0.97 1.0 1.0
PersDiag using Utility 0.74 0.89 0.96 1.0 1.0

PersDiag using Similarity 0.70 0.87 0.97 1.0 1.0
PersDiag using Probability 0.65 0.78 0.87 0.94 0.97

PersDiag using Hybrid-Approach 0.72 0.85 0.90 0.96 1.0
Breadth-First (QuickXplain+HSDAG) 0.51 0.75 0.87 0.92 0.98

CorrectiveRelax 0.70 0.88 0.97 1.0 1.0

PersDiag (Hybrid) is a combination of PersDiag (utility), PersDiag (similarity) and PersDiag (probabil-

ity). The performance of this algorithm lies between the best algorithm (PersDiag (utility)) of these three
and the worst (PersDiag (probability)). The hybrid approach aims to combine different strategies to over-
come the drawbacks of individual strategies. However, with the Computer dataset no further improvements
compared to the individual approaches in terms of prediction quality could be observed.

Case Study: Financial Services

Another case study that has been conducted for evaluating the acceptance probability (precision) of the
presented diagnosis algorithms, is based on a dataset of a financial service configuration system. This
system was developed for one of the largest financial service providers in Austria. The interaction log
incorporates 1703 sessions and includes information about which attributes values have been specified by
the customer (including the order of the requirements). In 418 sessions the specified requirements became
inconsistent with the underlying knowledge base. For those sessions the dataset also holds the information
about which diagnosis has been selected by the customer in order to restore consistency. The average
number of diagnoses presented to the customer was 20.42 (std.dev. 4.51).

In order to show the prediction quality of different approaches introduced in this chapter, the interaction
log of a financial service configurator application has been used. For this case study, precision quality (see
Formula 3.8) of the different approaches has been measured. Table 4.8 shows the result of the evaluation.
The Breadth-First approach - a combination of the algorithms QuickXplain (Junker, 2004) and the HSDAG

(Reiter, 1987) - has the lowest precision. This approach ranks the diagnoses according to their cardinality
and can be used as a base line. The algorithms FastDiag and Corrective Relax (O’Callaghan et al., 2005)
have the same precision due to the same requirements ordering strategy. In Table 4.8, it can be seen that
FastDiag performs better compared to PersDiag (utility). Although both algorithms use utility values, the
different usage is responsible for this performance gap. An important point when comparing the results of
the PC user study (see Table 4.7) and the Financial Service (see Table 4.8) case study is that the overall
precision of the second case study is much lower. The reason for this is, that the precision depends not
only on the approaches used, but also on the dataset. Especially the average number of diagnoses (PC user

study: 5.32, Financial Service: 20.42) affects the overall precision of the approaches.
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Table 4.8.: Precision values of the algorithms for the Financial Service Case Study

n=1 n=2 n=3 n=4 n=5 n=7 n=10

FastDiag 0.179 0.368 0.534 0.640 0.700 0.820 0.935
PersDiag using Utility 0.175 0.361 0.500 0.569 0.625 0.745 0.893

PersDiag using Similarity 0.166 0.370 0.481 0.583 0.648 0.740 0.865
PersDiag using Probability 0.148 0.328 0.467 0.564 0.634 0.768 0.879

PersDiag using Hybrid-Approach 0.172 0.331 0.499 0.582 0.631 0.753 0.895
Breadth-First (QuickXplain+HSDAG) 0.133 0.290 0.391 0.529 0.626 0.691 0.870

CorrectiveRelax 0.179 0.368 0.534 0.640 0.700 0.820 0.935

In order to gain further insights into the prediction quality of the presented diagnosis algorithms a two-
sample T-test has been performed. The aim was to figure out whether there exists a significant difference
between the diagnosis methods in terms of their mean absolute error (MAE).

MAE(n) =
1
n

n

∑
i=1
|1− position(i)| (4.3)

The position(i) denotes the position of the diagnosis in the ranking of the algorithm that was then selected
by the customer. We take the sum over all n sessions. The results of the two-sample T-test show that there
exists a significant difference between breadth-first search and all other diagnosis methods (p<0.05). The
other algorithms have been tested as well, but we did not detect any significant differences in terms of
prediction quality.

Relevance of Clusters

The FlexDiag algorithm is the only one introduced that does not calculate minimal diagnoses, but diagnoses
clusters. Such a cluster contains at least one minimal diagnosis. Nevertheless, it is probable that it also
includes other constraints that are not part of the minimal diagnosis. FlexDiag leads to a set of constraints
CD where CD = D∪Co f f set where D is the minimal diagnosis and Co f f set is a set of constraints which are
not part of the minimal diagnosis.

This section aims to analyse the quality of FlexDiag (m=2) and FlexDiag (m=3) in terms of relevance
compared to the minimal diagnosis approaches. In order to get an impression of the quality of the FlexDiag,
the average size of the diagnoses has been calculated for the different settings of the CLib Benchmark
introduced in Section 4.5.2. From the results shown in Figure 4.13, it can be seen that the average number
of constraints in a diagnosis is between 1.5 and 4.5. Taking a look at the results of the CLib Benchmark

FS (see Figure 4.13(a)) setting it can be seen that the average size of diagnoses calculated by the FlexDiag

(m=2) and FlexDiag (m=3) is decreasing when the number of diagnoses is increased. For calculating one
diagnosis, the average size of a diagnosis calculated by FlexDiag (m=2) is about 2.8 and calculated by
FlexDiag (m=3) it is about 3.8. The average size of the minimal diagnosis for these settings is about 1.8.
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Minimal diagnoses

FlexDiag (m=2)

FlexDiag (m=3)

(a) CLib Benchmark FS (b) CLib Benchmark PC

(c) CLib Benchmark Bike (d) CLib Benchmark Renault

Figure 4.13.: Average size of the diagnoses in different CLib Benchmarks calculated by approaches calcu-
lating minimal diagnoses (first bar) as well as by FlexDiag (m=2) (second bar) and FlexDiag

(m=3) (third bar)

This means, that the offset of the the algorithm FlexDiag (m=2) consists one constraint on average, whereas
offset the algorithm FlexDiag (m=3) contains of two constraints on average.

Taking a look at a dataset with larger diagnoses (see, for example, the PC dataset in Figure 4.13(b)) it
can be seen that the average number of elements in a diagnosis is again higher for the FlexDiag (m=2) and
FlexDiag (m=3) algorithms. The average size of a minimal diagnosis for this setting is 4.5. For calculating
one diagnosis the average size of a diagnosis calculated by the FlexDiag (m=2) is 5.8 and for the FlexDiag

(m=3) it is 6.6. Thus the offset of the FlexDiag (m=2) is about 1.3 and of the FlexDiag (m=3) it is 2.3.
Based on this data, the relevance can be evaluated. This relevance is defined as:

relevance(D,CD) =
size(D)
size(CD)

(4.4)

where size describes the size of the constraint set, D is the minimal diagnosis and CD is the diagnosis

112



4.6. Related Work

calculated by the FlexDiag. The relevance for the FlexDiag (m=2) algorithm is 64.3% for the PC dataset
and 77.6% for the Bike dataset. For the FlexDiag (m=3) algorithm the relevance is 47.4% for the PC

dataset and 68.2% for the Bike dataset. Generally speaking, the relevance is higher if there are more
elements in the diagnoses. For example, if the set of minimal diagnoses incorporates 4 elements on average,
then the diagnoses cluster incorporates between 5 (m=2) and 6 (m=3) elements on average. This results in a
relevance of about 72%. If the minimal diagnosis incorporates 10 elements and the diagnoses clusters 11.5
on average, then the relevance of this setting is about 87%. The relevance of the second setting (diagnosis
with 10 elements) is about 15% higher compared to the first example with 5 elements. The results for the
datasets Bike (see Figure 4.13(c)) and Renault (see Figure 4.13(d)) of the CLib Benchmark Library are
similar to the PC and Bike datasets.

4.6. Related Work

In this chapter different approaches that focus on the identification of (minimal) diagnoses have been in-
troduced. In contrast to calculate diagnoses directly, existing approaches typically rely on the existence of
(minimal) conflict sets (Felfernig et al., 2010c).

(O’Sullivan et al., 2007) introduce an approach to identify minimal exclusion sets which correspond to
the concept of minimal diagnoses (Reiter, 1987). Based on these minimal exclusion sets, the authors of
(O’Sullivan et al., 2007) identify representative explanations. The representativeness ensures that the set
of explanations presented to the customer does not get too large and still has a lot of variety in it. This is
achieved by the fact that each constraint that causes a conflict is shown in at least one explanation to the
customer. For example, if the following explanations are retrieved: e1 = {c1,c2}, e2 = {c1,c3} and e3 =
{c2,c3,c4}, then the explanations e1 and e3 constitute a set of representative explanations since each con-
straint (c1,c2,c3,c4) appears in at least one of the two explanations. The worst-case size of representative
explanations is linear in the number of customer requirements (O’Sullivan et al., 2007).

In the field of model-based diagnosis there exist a couple of algorithms (for example, (Greiner et al.,
1989; Wotawa, 2001)) that further developed the original algorithm introduced by (Reiter, 1987) for iden-
tifying a diagnosis. These approaches focus on the construction of the Hitting Set Directed Acyclic Graph
(Reiter, 1987). (Greiner et al., 1989) introduced a correction to the original algorithm to identify all min-
imal diagnoses. This correction addresses the lack of the original algorithm (Reiter, 1987) which misses
some diagnoses under certain conditions. (Fijany and Vatan, 2004) presents an approach to determine all
diagnoses on the basis of an integer programming problem. Consequently, the problem is mapped onto a
boolean satisfiability and a 0/1 integer problem. An overview of the approaches to improve the identifica-
tion of diagnoses can be found in (Lin and Jiang, 2003).

(Feldman et al., 2008) introduced a stochastic fault diagnosis approach that uses a greedy stochastic
search. This work is similar to the one introduced in (Lin and Jiang, 2002) which determines hitting
sets based on genetic algorithms. These approaches improve the performance significantly; nevertheless,
there is neither guarantee of identifying only minimal diagnoses, nor a guarantee of completeness. Any-
how, there are approaches to improve the performance through exploiting the structural properties of the
problem. (Jannach and Liegl, 2006) exploit the knowledge of database tables in order to identify minimal
diagnoses. (Siddiqi and Huang, 2007) take a look at the system models that can be compiled into a tractable
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representation (such as DNNF) for the determination of diagnoses. The key idea behind the algorithm in-
troduced by (Siddiqi and Huang, 2007), is to use the abstraction of circuits and diagnoses pretending that
only gates in the set of circuits could be faulty. This abstraction reduces the number of variables in the
system.

This chapter focused on the calculation of personalized diagnoses. (de Kleer, 1990) introduced a general
approach to use probability values to calculate leading diagnoses. A characterization of preferences is
given in (Froehlich et al., 1994). The characterization in this work is expressed using preference relations
on single diagnoses and logical formulas on groups of diagnoses. Nevertheless, the work of (Froehlich
et al., 1994) misses an algorithm to efficiently calculate preferred diagnoses.

4.7. Discussion

This chapter introduced different algorithms for consistency management in configuration systems. Con-
figuration systems assist customers in configuring potentially complex products or services. During the
preference elicitation phase customers are repeatedly defining and revising their requirements. During this
refinement, situations may occur where no solution exists that completely fulfills the set of requirements
(Pu and Chen, 2008). There exist several possibilities to aid customers in inconsistent situations (see Sec-
tion 2.3). These situations have to be analysed, in order to choose the right algorithm.

minimal diagnoses?

personalized?

lexicographical ordering?

FastDiag

CorrectiveRelax

yes

PersDiag

no

yes

QuickXplain

no

yes

FlexDiag

no

Figure 4.14.: Decision tree to decide what algorithm is suited for the consistency management in configu-
ration systems

In Figure 4.14 a decision tree is presented. This decision tree helps to choose the most suitable algorithm
for consistency management when using a configuration system. The first question in the decision tree is
”Should the algorithm calculate minimal diagnoses?”. If the answer to this question is negative, the Flex-

Diag algorithm is recommended. This recommendation is based on the fact, that the FlexDiag algorithm
calculates clusters of diagnoses (i.e. non minimal diagnoses). Otherwise (question is answered positively),
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another question is asked: ”Should the algorithm be personalized?”. There exist several algorithms (for
example, FastDiag, PersDiag, CorrectiveRelax (O’Callaghan et al., 2005)) that focus on different person-
alisation strategies. If there is no need for a personalized approach, but it is more important to determine
diagnoses ranked by their cardinality, then a combination of QuickXplain (Junker, 2004) with the hitting
set directed acyclic graph (HSDAG) (Reiter, 1987)) is the best choice. This combination of algorithms uses
a breadth-first approach and is referred as QuickXplain in Figure 4.14.

If one is interested in a personalized algorithm to calculate minimal diagnoses then another question is
asked: ”Should a lexicographical ordering be used?”. In the case that there is no lexicographical ordering
available, the algorithm PersDiag can be suggested, because different personalisation strategies can be
used in this algorithm. Otherwise, it can be suggested to use the algorithm FastDiag or CorrectiveRelax

(O’Callaghan et al., 2005) that can take advantage of the lexicographical ordering.
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Chapter 5
D-fame: The Diagnosis Framework

This chapter gives an overview of D-fame: Diagnosis FrAMEwork. All algorithms introduced so far have
been implemented in D-fame. This framework has been developed with the goal to compare the algorithms
presented in this thesis with the existing state-of-the-art approaches (QuickXplain (Junker, 2004), Correc-
tiveRelax (O’Callaghan et al., 2005), MinRelax (Jannach, 2008)) in terms of performance and prediction
accuracy. The D-fame framework may serve as a library that offers a set of algorithms that can be ap-
plied for consistency management in interactive constraint based systems. The aim was to create an object
oriented framework that is easy to extend. The framework is implemented in Java 1.6∗.

This chapter is organised as follows: In Section 5.1 an overview of the high-level architecture of the
framework is provided. In Section 5.2 more details are provided in order to give the reader an impression
of how to use the framework. A summary in Section 5.3 concludes this chapter.

5.1. System Architecture

This section shows the high-level architecture and the main functionality of the D-fame framework. The
basic architecture consists of four components: (i) the Input-component, (ii) the Algorithm-component,
(iii) the Datastructure-component and the (iv) the Output-component. The structure of the framework is
shown in Figure 5.1. An overview of the different components is given in the following paragraphs.

5.1.1. Input-Component

The Input-component is responsible for managing the input for the different conflict detection and diag-
nosis algorithms. An important input is, for example, the set of constraints which represent customer
requirements. Another one is the reasoning engine, which is used for the consistency checks. And last,
but not least for some algorithms different personalization strategies can be applied. Therefore, one of the
implemented personalization strategies (utility-based, similarity-based, probability-based or hybrid) can be
selected. The different packages are described in the following paragraphs:
∗http://java.sun.com/

117



Chapter 5. D-fame: The Diagnosis Framework

Figure 5.1.: Architecture of the D-fame framework. The framework consists of the Input component, the
Datastructure component, the Output component and the Algorithms component.

Constraints

In order to represent the constraints, we used the abstract class AbstractConstraint. This class holds the
basic information about a constraint, namely the name, a weight and the actual constraint as an object.
From the class AbstractConstraint, the classes HsdagConstraint and MdsConstraint have been derived.
The HsdagConstraint can be used for every algorithm that can be combined with the hitting set directed
acyclic graph (HSDAG) (Reiter, 1987). The MdsConstraint is used for the algorithms that operate on
the MatrixDatastructure (also referred as Intermediate Representation see Section 3.1.2). This type of
constraints (MdsConstraint) is also used for GraphXplain.

Reasoning Engines

Reasoning engines are used for consistency checking. Each reasoning engine has to implement the abstract
class AbstractReasoningEngine. This AbstractReasoningEngine incorporates the method isCoherent that
takes a collection of constraints and returns true, if the set of constraints is consistent, otherwise it returns
false. In addition, the reasoning engine stores the number of calls (= consistency checks) in a corresponding
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log file. This information was used for the performance evaluation of the algorithms introduced in Chapter
4.

For the consistency check different technologies can be used. The D-fame framework currently includes
the following reasoning components:

• the constraint solvers Choco† and Jacop‡ for constraint satisfaction problems

• for recommendation problems database queries on the MySQL§ and H2¶

• for configuration problems reasoning engines for the CLab (Jensen, 2004) and SModels (Tiihonen
et al., 2003) systems

• the MatrixDatastructure (also called intermediate data structure) can also be used for checking the
consistency

Depending on the problem and the available data structures different reasoning engines can be applied.
For recommendation problems SQL engines or the matrix data structure are used. Configuration problems
are often solved on the basis of constraint satisfaction algorithms. The D-fame framework also includes a
configurator for the CLab models as well as a configurator for SModels which are used for the evaluation
with the WeCoTin models (Tiihonen et al., 2003). The SModels system is an answer set programming
(ASP) (Balduccini et al., 2006; Gelfond, 2007) implementation. If a new technology for the consistency
checks should be used, it is just needed to override the AbstractReasoningEngine.

Personalisation Strategy

Different strategies for personalizing the diagnosis selection process have be introduced in Section 4.4.1.
These strategies (utility, probability, and similarity) are operating on the basis of weights. Different ways
to calculate the weight of a path are offered. One of the following alternatives can be used (see also Figure
5.2):

• SingleConstraintWeight: the weight of the path is the same as the weight of the constraint which is
the last element of the path

• PathWeight: the weight is the sum of all elements (constraints) of the path

• NormalizedPathWeight: this weight is similar to the PathWeight, but it is normalized to the length of
the path. Thus the PathWeight is divided by the number of elements of the path.

• DenominatorPathWeight: this weight is the sum of the inverse weight of each constraint of the path
(∑ 1

w ). This calculation can be used for weights, where the higher weights lead to less relevant
alternatives.

All these weights implement the abstract class AbstractWeight which provides an abstract method to
calculate the weight for a set of constraints. Additionally to the specification of how the weight of a path
is calculated, two ways of sorting the weights are offered. The weights can be either sorted according to

†http://www.emn.fr/z-info/choco-solver/
‡http://jacop.osolpro.com/
§http://www.mysql.com/
¶http://www.h2database.com
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highest weight first or lowest weight first. If, for example, the PathWeight type of calculation is applied, the
algorithm prefers paths with a low utility, because these include the constraints a customer is more likely
to adapt. On the other hand, if the algorithm is interested in requirements with a high probability of being
changed by the customer, paths that include the corresponding requirements should be returned first.

SingleConstraintWeight = 0.3

PathWeight = 0.5 + 0.4 + 0.3 = 1.2

NormalizedPathWeight = (0.5 + 0.4 + 0.3) / 3 = 0.4

DenominatorPathWeight = 1/0.5 + 1/0.4 + 1/0.3 = 7.38

Figure 5.2.: Overview of different weight calculations (SingleConstraintWeight, PathWeight, Normalized-

PathWeight and DenominatorPathWeight) based on a path with three constraint weights (0.5,
0.4, and 0.3).

5.1.2. Algorithms-Component

The following algorithms are provided by D-fame to aid customers in the consistency management when
interacting with recommender systems:

• GraphXplain, an algorithm with the aim of calculating minimal conflict sets using a one-mode net-
work (see Section 3.2)

• FastXplain, an algorithm with the aim of calculating minimal conflict sets. At the same time it
identifies diagnoses (see Section 3.3)

• BFX, an improved version of the FastXplain (see Section 3.4)

• PFX, a personalized version of the BFX (see Section 3.5)

• PersRepair, an algorithm with the aim of calculating minimal diagnoses in a personalized fashion
(see Section 3.6)

• ReAction, an algorithm with the aim to calculate repair actions based on a sorted set of diagnoses
(see Section 3.7)

In addition, D-fame contains a set of algorithms to support customers in the consistency management
when interacting with configuration systems:

• FastDiag, an algorithm with the aim of calculating minimal diagnoses in a personalized fashion (see
Section 4.2)
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• FlexDiag, an algorithm to identify clusters which include at least one diagnosis (see Section 4.3)

• PersDiag, an algorithm with the aim to calculate diagnoses in a personalized fashion (see Section
4.4)

In addition to the listed approaches, the D-fame framework offers a set of further state-of-the-art diag-
nosis and conflict detection algorithms.

• MinRelax, an algorithm to calculate minimal relaxations similar to diagnoses (Jannach, 2008)

• CorrectiveRelax, an algorithm to calculate corrective explanations similar to diagnoses (O’Callaghan
et al., 2005)

• QuickXplain, an algorithm to identify minimal conflict sets (Junker, 2004)

Furthermore, we implemented the hitting set directed acyclic graph (HSDAG) (Reiter, 1987) which can
be combined with the mentioned algorithms.

5.1.3. Datastructure-Component

The algorithms included in D-fame operate on different data structures. FastXplain, BFX, PFX and Min-

Relax use the intermediate data structure (see Sections 3.3-3.5), whereas other algorithms can be combined
with the hitting set directed acyclic directed graph (HSDAG) (Reiter, 1987). GraphXplain builds up a graph
from the package Graph Datastructure. Major elements of the data structure component are discussed in
more detail in the following.

HSDAG

The hitting set directed acyclic graph (HSDAG) (Reiter, 1987) is an approach to derive minimal diagnoses
based a on minimal conflict sets (see also Section 3.6). With the same approach, it is possible to derive
minimal conflict sets based on minimal diagnoses (see Section 3.3). Note that we also implemented the
pruning functionality (Greiner et al., 1989; Wotawa, 2001). In the D-fame framework every algorithm that
can identify one conflict set or one diagnosis, can be used in combination with the HSDAG. ReAction, Per-

sRepair, FastDiag, FlexDiag, PersDiag, QuickXplain and CorrectiveRelax are combined with the HSDAG
in the framework. If an algorithm uses the HSDAG, the constraints must be of the type HsdagConstraint.

Intermediate Data Structure

The intermediate data structure (also called matrix data structure) as described in Section 3.1.2 represents
consistency relationships between customer requirements and products. This data structure can only be
applied in the context of recommendation problems, where the set of possible products is defined in an
explicit fashion.

The intermediate data structure can also be used for consistency checking (on the basis of the Matrix-

Datastructure reasoning engine). In order to check the consistency, the MatrixDatastructure reasoning
engine needs to check whether there exists at least one product that satisfies all the given requirements.
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Graph Data Structure

The graph data structure builds a graph based on the information of the intermediate data structure. The
intermediate data structure can be interpreted as a two-mode network. This two-mode network can be
folded into a one-mode network (for a further description see Section 3.2). The one-mode network is used
by the GraphXplain algorithm to identify minimal conflict sets.

5.1.4. Output-Component

The main output of the different algorithms are constraint set(s). These constraint set(s) can be either
conflict sets or diagnoses. In addition to these constraints sets, meta information is provided (e.g., algorithm
run time and number of solver calls) which can be exploited for evaluation purposes.

Constraint Set(s)

Each algorithm provides a method to retrieve the calculated sets of constraints. These sets can either be
minimal conflict sets or minimal diagnoses. For identifying repair actions, the RepairComponent needs to
be activated. This component requires a diagnosis and knowledge about the product assortment as inputs.
The output of this component is a set of repair assignments to all attributes.

Evaluation Values

The evaluation values can be used for performance evaluation. The most important ones are the run time
and number of theorem prover calls. Additionally to the determination of the evaluation values, the D-

fame framework provides the possibility to store these values either in a file or in a database. This is very
practical for later evaluations and plots.

5.2. Using the framework

With the goal to provide insights in how to apply the D-fame framework, this section presents some key
code snippets. Generally speaking, the framework is easy to use and implemented in an object-oriented
fashion, such that it can be easily extended.

Constraints

As the constraints are the central objects, we first show how to create them. An important class is the
abstract class, AbstractConstraint, from which the classes MdsConstraint and HsdagConstraint are derived.
Both constraint types require three parameters, namely the name, a weight and an object that represents the
constraint in a form applicable for the reasoning engine. The MdsConstraint can be created as follows:

AbstractConstraint c_mds = new MdsConstraint(name, weight, object);
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A set of MdsConstraint must be created when the matrix data structure (intermediate data structure) is
used. When the HSDAG is used, the constraints are of type HsdagConstraint. HsdagConstraints can be
created as follows:

AbstractConstraint c_hsdag = new HsdagConstraint(name, weight, object);

Reasoning Engines

Various reasoning engines are provided by D-fame. Most of these reasoning engines do not require pa-
rameters. An exception is the MatrixReasoningEngine, which creates an intermediate data structure and
performs the consistency checks on this. The MatrixReasoningEngine can be created as follows:

engine = MatrixReasoningEngine(requirements, products)

The SQLReasoningEngine requires a connection to the database as parameter. This connection must be
configured with all values that are needed to connect to the database. In addition, it needs to be configured
with the name of the database as well as with the user name and the password in order to actually connect
to the database. The SQLReasoningEngine can be created as follows:

engine = new SQLReasoningEngine(connection);

Algorithms

All algorithms implemented in the D-fame framework are derived from the class AbstractAlgorithm. The
FastXplain algorithm can be instantiated as follows:

AbstractAlgorithm algorithm = new FastXplain(requirements, products);

FastXplain requires two parameters: the requirements of the customer and a list of products (stored in the
class Products). Based on this information the algorithm can be activated as follows:

algorithm.run();

In a default configuration, the algorithm calculates all minimal conflict sets and all minimal diagnoses.
If the number of minimal conflict sets or minimal diagnoses should be restricted, this can be achieved as
follows:

algorithm.configure(target_diagnoses, target_mcs);

This can be applied to any algorithm. Nevertheless, it needs to be done before the algorithm is activated.

The algorithm GraphXplain (see Section 3.2) is initialized in a similar way as the algorithm FastXplain.

AbstractAlgorithm algorithm = new GraphXplain(requirements, products);

Compared to this, the FastDiag requires only one parameter - the reasoning engine. Additionally to the
instantiation of the algorithm, FastDiag needs to be configured with the parameters c (all constraints in-
cluding the configuration knowledge base and customer requirements) and c r (customer requirements).
Based on these parameters the diagnoses are determined.

The instantiation of the FastDiag is done as follows:
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AbstractAlgorithm algorithm = new FastDiag(engine);

algorithm.configure(c, c_r);

Similar to the instantiation of the FastDiag algorithm, the PersDiag algorithm can be created. PersDiag

requires three parameters: the reasoning engine, the personalization criteria and the sorting. With the
criteria it can be specified which personalization strategy (for example, utility, probability) should be used.
The sorting parameter indicates if the path with the highest weight first or with the lowest weight should
be considered. Additionally to the instantiation of the algorithm, PersDiag needs to be configured with the
parameters c kb (constraints of configuration knowledge base) and c r (customer requirements). Based on
these parameters the diagnoses are determined.

The instantiation of the PersDiag is done as follows:

AbstractAlgorithm algorithm = new PersDiag(engine, criteria, sorting);

algorithm.configure(c_kb, c_r);

5.3. Summary

This chapter introduced the D-fame: Diagnoses FrAMEwork. The framework was built to compare dif-
ferent diagnoses detection algorithms and can be used either as a framework for research purposes or as a
library that provides algorithms for the consistency management in constraint-based systems. The frame-
work has been developed in an object-oriented way and it is easy to extend. In this chapter, an overview
(D-fame framework architecture) has been provided.
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Chapter 6
Conclusion and Future Work

For a constraint-based system that aims to satisfy all constraints or requirements of the customer, it is
important to include technologies and algorithms for the consistency management. This thesis introduces
and evaluates approaches that can be applied in constraint-based recommender systems and in knowledge-
based configuration systems. The final chapter reflects on important research questions. Furthermore,
a decision tree is included that helps to identify the algorithm that is suited best for a specific problem.
Finally, this chapter highlights further research directions.

6.1. Conclusion

This thesis has addressed the following research questions (for a more detailed explanation see Section
1.2). In the following paragraphs, it is outlined how these questions have been answered:

Research Question Q1:

How can structural properties of knowledge-based recommender systems be used to improve the run
time performance of conflict detection algorithms?
For addressing this research question a couple of algorithms that explore the structural properties of
knowledge-based recommender systems have been introduced. First, the GraphXplain (see Section 3.2)
algorithm was presented. This approach creates a one-mode network of customer requirements in order
to determine minimal conflict sets from this. Another approach is the FastXplain algorithm which uses
the intermediate data structure (Jannach, 2008) constructed from the product assortment and the customer
requirements to derive minimal diagnoses. Using the concepts introduced by (Reiter, 1987) the FastX-

plain algorithm derives minimal conflict sets. This approach was further developed which resulted in BFX

(Boosted FastXplain). In another extension of the FastXplain algorithm a personalization strategy was
added (PFX (Personalized FastXplain)).
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Research Question Q2:

How can customers be supported in restoring consistency between the requirements and the corre-
sponding product assortment?
Customers can be aided by an iterative presentation of minimal conflict sets (explicitly calculated by the
algorithms GraphXplain, FastXplain, BFX and PFX). Another approach is to present a list of diagnoses
to the customer (explicitly calculated by, for example, PersDiag). Furthermore, customers can be aided
in an inconsistent situation with a list of repair actions (explicitly calculated by the algorithms PersRepair

and ReAction). A repair action is an action that can be performed by the customer in order to restore
consistency. For more details see Section 2.3.

Research Question Q3:

What are the possible run time improvements for diagnosis algorithms to support customers, who
are interacting with a constraint-based system?
There are several possibilities to improve the current state-of-the-art algorithms in terms of run time per-
formance. All algorithms presented in this work perform better compared to existing approaches at least in
some situations. The algorithms ReAction (see Section 3.7) and FastDiag (see Section 4.2) are especially
interesting, due to their general applicability. Another approach is the FlexDiag (see Section 4.3) which
is a fast approach for calculating a small number of diagnoses. Nevertheless, it is not guaranteed that the
algorithm finds minimal diagnoses. A detailed evaluation of the improvements is presented in Section 3.8.1
and Section 4.5.2.

Research Question Q4:

How can diagnoses be personalized in order to achieve a high prediction accuracy?
This work focuses on the application of different personalization strategies. The algorithm PFX uses utility
values, whereas the algorithm PersRepair (see Section 3.6) uses different similarity measures. Moreover,
the algorithm PersDiag (see Section 4.4) uses different strategies such as a utility-based, a similarity-based,
a probability-based, and a hybrid strategy. A lexicographical ordering based on utility values is used by
the algorithms ReAction (see Section 3.7) and FastDiag (see Section 4.2). A detailed evaluation of the
improvements is presented in Sections 3.8.2 and 4.5.3.

6.2. Overview of the Algorithms

This thesis introduces different technologies and approaches for the consistency management in constraint-
based systems. In order to get a better overview, Figure 6.1 shows a decision tree to help to decide which
algorithm to apply in which situation. The first question that is asked in this decision tree is ”Should the

algorithm be personalized?”. The D-fame framework integrates several algorithms that focus on differ-
ent personalisation strategies. If the algorithm should have a personalization strategy included, another
question is asked, namely ”Is a product table available?”. Depending on the answer to this question, the
algorithm PFX (see Section 3.5) is suggested (if a table representation of the items is available). In the case
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QuickXplain
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Figure 6.1.: Decision tree to decide what algorithm is suited for the consistency management

that there is no table representation available, other introduced algorithms can be applied. Note that these
algorithms can also be applied on a product table, but they are also suited for other representations.

Algorithms for applications that should include a personalization strategy can be derived from the left
branch of Figure 6.1). If there is no a product table available, the following question is asked: ”Is the

problem a recommendation problem or a configuration problem?”. If the application is a recommender
application, the following algorithms are suggested: PersRepair (see Section 3.6), ReAction (see Section
3.7), and CorrectiveRelax (O’Callaghan et al., 2005). If a set of sorted constraints is available and a few
diagnoses should be calculated, the algorithms ReAction and CorrectiveRelax are recommended to be use.
Otherwise, it is suggested to use the algorithm PersRepair, where different personalization strategies can
be used. If the problem is a configuration problem, the following question is asked ”Is an approach

wanted that calculates minimal diagnoses/repair actions?”. If there is no need for minimal diagnoses, the
algorithm FlexDiag (see Section 4.3) is suggested, especially when a small number of diagnoses should
be determined. In the case that minimal diagnoses are needed, it is suggested to use the FastDiag (see
Section 4.2) or CorrectiveRelax (O’Callaghan et al., 2005) if the constraints are available in a sorted order.
Otherwise, using the algorithm PersDiag (see Section 4.4) in which different personalization strategies can
be included, is feasible.

The algorithms for applications, with no need or no possibility for a personalization approach, can be
derived from the right branch of the decision tree shown in Figure 6.1. The question asked, is ”Is a product
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table available?”. If there is no product table available, but a model of the products, the QuickXplain

algorithm can be recommended. This algorithm is a combination of the QuickXplain (Junker, 2004) and
the Hitting Set Directed Acyclic Graph (HSDAG) (Reiter, 1987). This combination performs a breadth-first
search in the HSDAG. Note that the QuickXplain can also be applied in settings where a product table is
available. If there is a product table available, other algorithms can also be applied. In order to find a
feasible algorithm of the remaining settings, the following question is asked: ”Should the algorithm focus

on the calculation of minimal conflict sets or on minimal diagnoses?”. Depending on the answer to this
question, the following algorithms can be suggested: GraphXplain, FastXplain and BFX (if the answer is
minimal conflict sets) and the algorithm MinRelax (Jannach, 2008) otherwise.

6.3. Future Work

This thesis comprises a set of concepts that address the objectives of consistency management in constraint-
based systems. Beneath that, some new and challenging questions emerged from the introduced concepts
that might stimulate further research.

Further Algorithms

In this thesis and in the D-fame framework different approaches for consistency management in constraint-
based systems have been successfully introduced and evaluated. These approaches can be further developed
in order to be applied on a wider range of problems and to aid customers in a better way. An approach that
would be nice to have, is to extend the approaches in a way that they can run on a distributed computing
system. This would allow the handling of more complex situations in less time, due to the increased
processing power.

Another improvement that lies within future work, is the development of algorithms to cluster constraints
in a way that they most probably incorporate a diagnosis. Such approaches can be used to preselect a set
of constraints that should be diagnosed. A similar approach would be to select a constraint that should be
in the diagnosis, before the algorithm calculates the diagnosis. The goal of this approach is to find one
or all diagnoses that contain the selected constraint without calculating other diagnoses. For solving this
challenge, the introduced approaches need to be further developed.

Another further development, especially of the intermediate representation (see Section 3.1.2), is to find
a method to create (binary) decision diagrams. Extensions to our algorithms can help derive diagnoses
from these decision diagrams.

Improving Personalization Strategies

The current version of the D-fame Framework integrates an initial version of personalization strategies. In
a further extension, an evaluation of additional personalization strategies should be performed. This may
include, for example, an extension of the algorithms PersRepair and PersDiag with an adapted probability-
based approach. This approach would calculate the probability values on a reduced set of log entries. This
reduction of all log entries may be performed using similarity measures.
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Another possible improvement lies in an extensive evaluation of different hybrid approaches. The evalu-
ation may compare the prediction quality of the different hybrid approaches based on the different person-
alization strategies.

Moreover, learning the weights which are used for the different personalization strategies (especially
for the algorithms ReAction and FastDiag) may also lead to a better prediction quality. An evaluation
comparing the original approaches (as described in Section 3.7 and 4.2) and the ones using learned weights
should be performed. Furthermore, for learning the weights different learning strategies, for example,
reinforcement learning, bayesian networks, or neuronal networks, may be used. The D-fame framework
provides a sound base for these future evaluations, since the algorithms are already implemented and can
easily be extended with additional personalization strategies.

Psychological Aspects

This thesis left out the psychological aspects of influencing customers in constraint-based systems. These
psychological aspects cover, for example, the decision bias, decision making, design of user interfaces,
cognitive aspects, decoy effects and defaults (see, for example, (Asch, 1949; Payne, 1976; Bettman and
Kakkar, 1977; Lussier and Olshavsky, 1979; Tversky and Kahneman, 1981; Samuelson and Zeckhauser,
1988; Mandl et al., 2011)). An evaluation that coveres the acceptence of the introduced approaches with
regard to different psychological aspects lies within future work.

Further Applications

The introduced approaches have been evaluated on a wide range of different settings. Nevertheless, an
evaluation studying the applicability in the context of an industrial system over a longer period of time is
still missing. For this evaluation the D-fame framework should be used as all introduced algorithms are
already implemented.

The approaches for identifying consistent configurations can also be applied in collaborative systems
(i.e. requirements engineering, software development (Felfernig et al., 2010e,d)). In these systems incon-
sistencies can emerge, when different users have different opinions, but need to select the best option. In
such inconsistent situations, the approaches introduced in this thesis can be applied.
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Appendix

Further WeCoTin Evaluation Results

This section presents further evaluation results for the algorithms presented in Chapter 4 using WeCoTin

Models. The WeCoTin Models have already been described in Section 4.5.2. In this Section the evaluation
results of different models are presented. Although the evaluation results are similar to the ones described
in Section 4.5.2, the presented results can give a further insight to the performance of the algorithms. The
models that have been used for the evaluation presented in this section differ in terms of number of rules
and number of variables. An overview of the models used is given in Table 7.1.

Table 7.1.: Overview of the WeCoTin configuration knowledge bases that are used for the run time perfor-
mance tests

Number of Rules Number of Variables

Test Case 1 10 34
Test Case 2 13 28
Test Case 3 17 31
Test Case 4 14 24
Test Case 5 23 20
Test Case 6 14 23
Test Case 7 13 28
Test Case 8 5 144
Test Case 9 4 11

Test Case 10 84 242

For the evaluations presented in this section, all algorithms have been applied to different models with
10 and 20 generated requirements. These requirements have been generated 100 times for each model in
a way that they are inconsistent with the tested model. For each of the 200 settings (100 settings for 10
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requirements and 100 settings for 20 requirements), the number of needed solver calls (consistency checks)
to calculate one and all diagnoses has been measured.

Table 7.2.: Run time performance evaluation (number of needed solver calls) of the WeCoTin - Test Case 1

dataset to calculate one and all minimal diagnoses with 10 and 20 requirements using different
algorithms for the consistency management

10 requirements 20 requirements
1 Diagnosis All Diagnoses 1 Diagnosis All Diagnoses

QuickXplain 20 53 16 38
FastDiag 11 33 9 28
PersDiag 20 53 16 38

CorrectiveRelax 8 32 9 27
FlexDiag (m=2) 5 62 8 256
FlexDiag (m=3) 5 70 6 751

Table 7.2 shows that the algorithms FlexDiag (m=2) and FlexDiag (m=3) scale badly when calculating
all diagnoses. This can especially seen from the results with 20 requirements. Nevertheless, both algo-
rithms (FlexDiag (m=2) and FlexDiag (m=3)) perform very well when only one diagnosis is calculated.
This is based on the fact that both algorithms aim to calculate diagnoses. Compared to the FlexDiag al-
gorithms (m = 2 and m = 3), the FastDiag algorithm performs a bit worse for calculating one diagnosis.
This can be explained by the fact, that the FlexDiag algorithms (m = 2 and m = 3) calculate only diagnosis
clusters, whereas the FastDiag algorithm calculates minimal diagnoses.

Table 7.3.: Run time performance evaluation (number of needed solver calls) of the WeCoTin - Test Case 2

dataset to calculate one and all minimal diagnoses with 10 and 20 requirements using different
algorithms for the consistency management

10 requirements 20 requirements
1 Diagnosis All Diagnoses 1 Diagnosis All Diagnoses

QuickXplain 19 31 50 117
FastDiag 9 26 14 155
PersDiag 19 31 46 127

CorrectiveRelax 16 35 21 207
FlexDiag (m=2) 5 89 10 517
FlexDiag (m=3) 3 154 6 674

Another evaluation result is presented in Table 7.3. From this table, it can be seen that QuickXplain al-
gorithm and the PersDiag algorithm have a similar performance. The reason for this is that both algorithms
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use the same approach to calculate minimal conflict sets. The main difference of these two approaches is
that the PersDiag algorithm integrates personalisation strategies to identify personalized diagnoses. Nev-
ertheless, this integration has not much effect on the number of consistency checks (see Table 7.3). Only
for the settings with 20 requirements, the results differ. The QuickXplain algorithm, for example, needs
more consistency checks for calculating one minimal diagnosis due to the breadth-first search in the Hit-
ting Set Directed Acyclic Graph (HSDAG) (Reiter, 1987). Compared to this, the PersDiag algorithm uses
a best-first search in the HSDAG (the criteria for the best node comes from the personalisation strategy).
This best-first search criteria can also result in more consistency checks, if all diagnoses are calculated.

Table 7.4.: Run time performance evaluation (number of needed solver calls) of the WeCoTin - Test Case 3

dataset to calculate one and all minimal diagnoses with 10 and 20 requirements using different
algorithms for the consistency management

10 requirements 20 requirements
1 Diagnosis All Diagnoses 1 Diagnosis All Diagnoses

QuickXplain 35 48 77 111
FastDiag 11 58 16 65
PersDiag 35 48 73 119

CorrectiveRelax 16 71 19 77
FlexDiag (m=2) 8 76 11 123
FlexDiag (m=3) 6 77 7 272

Table 7.5.: Run time performance evaluation (number of needed solver calls) of the WeCoTin - Test Case 4

dataset to calculate one and all minimal diagnoses with 10 and 20 requirements using different
algorithms for the consistency management

10 requirements 20 requirements
1 Diagnosis All Diagnoses 1 Diagnosis All Diagnoses

QuickXplain 15 16 6 6
FastDiag 4 12 5 6
PersDiag 15 16 6 6

CorrectiveRelax 8 19 9 10
FlexDiag (m=2) 5 57 4 35
FlexDiag (m=3) 4 76 3 65

Table 7.4 presents the outcomes of the evaluation performed with another model. The size of this model
is similar to the ones presented in Table 7.2 and 7.3. Nevertheless, the run time performance varies es-
pecially when calculating all diagnoses for 20 customer requirements. This fact can be seen very well,
when the number of consistency checks is compared for the FlexDiag algorithms. In Table 7.2 the number
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of consistency checks is about 10 times (for FlexDiag (m=2)) larger compared to the ones needed by the
other algorithms. This is not the case in Table 7.3 nor in Table 7.4. The reason for this behaviour is that the
performance of the FlexDiag algorithms (m = 2 and m = 3) is highly dependent on the size and the number
of diagnoses (for a detailed discussion see Section 4.5.3).

The interesting point about the results presented in Table 7.5, is that the number of consistency checks
is lower for the settings with 20 requirements compared to the settings with 10 requirements. This happens
when the configuration rules (constraints in the knowledge base) affect only few requirements. As a matter
of fact, if such a requirement is included in the total set of requirements, it is responsible for the number of
consistency check.

Table 7.6.: Run time performance evaluation (number of needed solver calls) of the WeCoTin - Test Case 5

dataset to calculate one and all minimal diagnoses with 10 and 20 requirements using different
algorithms for the consistency management

10 requirements 20 requirements
1 Diagnosis All Diagnoses 1 Diagnosis All Diagnoses

QuickXplain 11 12 12 13
FastDiag 6 13 4 12
PersDiag 11 12 12 13

CorrectiveRelax 9 22 8 22
FlexDiag (m=2) 5 31 6 43
FlexDiag (m=3) 3 71 4 106

Table 7.7.: Run time performance evaluation (number of needed solver calls) of the WeCoTin - Test Case 6

dataset to calculate one and all minimal diagnoses with 10 and 20 requirements using different
algorithms for the consistency management

10 requirements 20 requirements
1 Diagnosis All Diagnoses 1 Diagnosis All Diagnoses

QuickXplain 15 16 16 27
FastDiag 5 12 9 18
PersDiag 15 16 16 27

CorrectiveRelax 5 13 13 37
FlexDiag (m=2) 5 37 5 116
FlexDiag (m=3) 5 77 4 178

The outcomes of another evaluation is presented in Table 7.6. Comparing the results of the FastDiag al-
gorithm and the CorrectiveRelax algorithm, it can be seen that FastDiag needs less consistency checks. For
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explaining this observation, the idea of the two algorithms is pointed out again. The CorrectiveRelax algo-
rithm (O’Callaghan et al., 2005) calculates corrective explanations based on a binary search. During this
search the algorithm removes, one-by-one, constraints that cause inconsistency (for a detailed explanation
see, for example, Section 3.8). Compared to this, the FastDiag algorithm performs a divide-and-conquer
principle to strategically eliminate consistent constraints in order to identify the diagnosis. Using this
divide-and-conquer principle, double checks on the same set of requirements are avoided. Nevertheless,
these double checks may occur when using the binary search (as the CorrectiveRelax algorithm does).

The difference in the run time behaviour between the PersDiag algorithm and the CorrectiveRelax algo-
rithm (O’Callaghan et al., 2005) for calculating one minimal diagnosis (see, for example, Table 7.7), can
be explained by the different approaches to calculate this diagnosis. The PersDiag algorithm uses minimal
conflict sets and the Hitting Set Directed Acyclic Graph (HSDAG) (Reiter, 1987) to determine a personal-
ized diagnosis. This causes the higher number of consistency checks, because it is more costly to calculate
minimal conflict sets first and then add them to the HSDAG to determine a diagnosis, compared to the
possibility to directly calculate a diagnosis. Nevertheless, this different approach to identify diagnoses is
not essential when calculating all minimal diagnoses. For example, when calculating all minimal diagnoses
for 10 requirements, the CorrectiveRelax algorithm performs better, whereas for calculating all minimal
diagnoses for 20 requirements, the PersDiag algorithm performs better (see, for example, Table 7.7 and
7.8).

Table 7.8.: Run time performance evaluation (number of needed solver calls) of the WeCoTin - Test Case 7

dataset to calculate one and all minimal diagnoses with 10 and 20 requirements using different
algorithms for the consistency management

10 requirements 20 requirements
1 Diagnosis All Diagnoses 1 Diagnosis All Diagnoses

QuickXplain 13 15 29 31
FastDiag 9 11 16 25
PersDiag 13 15 28 29

CorrectiveRelax 12 14 21 31
FlexDiag (m=2) 8 89 10 169
FlexDiag (m=3) 5 197 7 172

The setting used for the evaluation presented in Table 7.9 is especially interesting, because it includes
a high number of variables (144) compared to a low number of rules (5). This fact and a higher struc-
tural complexity of the settings increased the number of consistency checks needed by each algorithm.
For example, the FlexDiag (m=3) needs nearly 600 consistency checks to determine all diagnoses for 20
requirements. Nevertheless, it calculates the first diagnosis with 13 consistency checks on an average.
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Table 7.9.: Run time performance evaluation (number of needed solver calls) of the WeCoTin - Test Case 8

dataset to calculate one and all minimal diagnoses with 10 and 20 requirements using different
algorithms for the consistency management

10 requirements 20 requirements
1 Diagnosis All Diagnoses 1 Diagnosis All Diagnoses

QuickXplain 83 92 57 287
FastDiag 17 49 26 124
PersDiag 59 109 38 428

CorrectiveRelax 24 62 32 170
FlexDiag (m=2) 10 71 14 240
FlexDiag (m=3) 6 60 13 567

Table 7.10.: Run time performance evaluation (number of needed solver calls) of the WeCoTin - Test Case

9 dataset to calculate one and all minimal diagnoses with 10 requirements using different
algorithms for the consistency management

10 requirements
1 Diagnosis All Diagnoses

QuickXplain 24 33
FastDiag 10 30
PersDiag 23 33

CorrectiveRelax 18 40
FlexDiag (m=2) 5 41
FlexDiag (m=3) 4 44

Table 7.10 (Test Case 9) presents the evaluation results of the setting with the lowest number of variables
(11) and 4 configuration rules (constraints in the knowledge base). Compared to this, Table 7.11 (Test

Case 10) shows the evaluation results of the setting with the highest number of variables (242) and 84
configuration rules. As the test setting of Test Case 9 incorporates only 11 variables, it is only possible to
generate (at most) 11 requirements, due to the restriction that each variable can be assigned only once in
the set of requirements. For this reason, only settings with 10 requirements have been generated. What can
be seen from Table 7.10 is that the FlexDiag algorithms (m = 2 and m = 3) perform well when calculating
one diagnosis. Moreover, the algorithms QuickXplain and PersDiag have a similar performance. Another
observation is that the FastDiag algorithm needs less consistency checks for calculating one minimal diag-
nosis compared to the other algorithms (note that the diagnoses calculated by the FlexDiag algorithms are
not minimal). The results of the setting with the largest configuration knowledge base (presented in Table
7.11) lead to the same observations.
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Table 7.11.: Run time performance evaluation (number of needed solver calls) of the WeCoTin - Test Case

10 dataset to calculate one and all minimal diagnoses with 10 and 20 requirements using
different algorithms for the consistency management

10 requirements 20 requirements
1 Diagnosis All Diagnoses 1 Diagnosis All Diagnoses

QuickXplain 14 16 26 40
FastDiag 8 10 13 33
PersDiag 13 16 25 40

CorrectiveRelax 12 14 27 54
FlexDiag (m=2) 4 6 8 89
FlexDiag (m=3) 4 6 8 205
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