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Abstract

Random forests are a well known machine learning technique that finds many practical

applications in various fields of computer science. They show good generalization capabil-

ities and low computational costs during both training and inference. Moreover, random

forests are very flexible and can be applied to many tasks, including classification, regres-

sion, or density estimation. This machine learning model consists of an ensemble of binary

trees, where each of them can make predictions individually. The final output is given

as the average over the ensemble, though. In contrast to other learning algorithms like

support vector machines, boosting, or neural networks, however, random forests optimize

the training objective only locally. The objective is minimized for each tree individually

rather than for the ensemble of trees, which ultimately makes the predictions. While this

aspect allows for exploiting parallel computing architectures and, therefore, fast training,

there is no control of the training procedure via a common loss function.

In this thesis, we address this problem and present a novel training scheme for random

forests that explicitly minimizes a global loss function over the full ensemble. While a

simple solution is to employ gradient boosting as a meta-learning algorithm, the attractive

benefit of a fast training procedure would be lost. Even though we are inspired by gradient

boosting, our approach of loss minimization is an inherent part of the tree growing process,

which still allows for parallel training of the trees. Our loss minimization approach can

be formulated as gradient descent in function space. Each gradient step grows the trees

by one level of depth by finding splitting functions for all nodes in that level, which can

still be done in parallel. Learning these splitting functions is influenced by the gradients

that are computed for the given loss function. In this way, our formulation enables a

proper minimization of any differentiable loss function for random forests. We present a

formulation for classification and regression tasks and also provide some empirical analysis

of the model on a set of basic machine learning benchmarks. We can observe better

prediction accuracy compared to standard random forests while still having the advantage

of a fast training time.
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Furthermore, we present several computer vision applications where our novel formu-

lation for training random forests could be applied successfully. We use our algorithm for

two different object detection approaches, human head pose estimation from depth data,

as well as single image super-resolution. These applications include both classification and

regression tasks. Our results indicate that optimizing a common loss function over the

full ensemble of trees instead of training them independently pays off. Our random forest

formulation can be readily replaced with standard random forests while, at the same time,

improving the results for both regression and classification tasks.



Kurzfassung

Random Forests sind eine weitbekannte Technik des Maschinellen Lernens und finden viele

praktische Anwendungen in unterschiedlichen Disziplinen der Computerwissenschaften.

Sie zeigen gute Generalisierungseigenschaften und geringen Rechenaufwand sowohl

während des Trainings als auch während des Testens. Darüber hinaus sind Random

Forests sehr flexibel und können für viele Aufgaben, einschließlich Klassifikation,

Regression, oder auch Dichteschätzung, verwendet werden. Dieses Lernmodell besteht

aus einer Menge von binären Bäumen, wobei jeder von ihnen einzeln ausgewertet werden

kann um Vorhersagen zu treffen. Die finale Vorhersage wird jedoch als Mittelwert aus

allen Bäumen errechnet. Im Gegensatz zu anderen Lernalgorithmen wie Support Vector

Machines, Boosting oder neuronalen Netzen, optimieren Random Forests die Zielfunktion

nur lokal, da jeder Baum unabhängig vom Rest und nicht gemeinsam trainiert wird.

Während diese Eigenschaft es ermöglicht parallele Rechenarchitekturen auszunutzen,

verhindert sie gleichzeitig die genaue Kontrolle über eine gemeinsame Zielfunktion und

somit auch über das Training von Random Forests.

In dieser Arbeit beschäftigen wir uns mit diesem Problem und präsentieren einen

neuartigen Trainingsalgorithmus für Random Forests, welcher explizit eine globale Ziel-

funktion über die gesamte Menge von Bäumen optimiert. Die triviale Lösung wäre es

Gradient Boosting als Meta-Lernalgorithmus zu verwenden, wodurch aber der Vorteil des

effizienten Trainings, also die Parallelisierung der Bäume, verloren gehen würde. Ob-

wohl unser Ansatz auch von Gradient Boosting inspiriert ist, wird die Optimierung der

gemeinsamen Zielfunktion direkt in das Wachsen der Bäume integriert, was ein paralle-

les Training von Random Forests wieder ermöglicht. Ähnlich zu Gradient Boosting kann

unser Optimierungsansatz als Gradientenabstieg im Funktionenraum formuliert werden.

Jeder Gradientenschritt lässt die Bäume um eine Ebene wachsen, was durch die Suche

nach Splitting-Funktionen für alle Knoten in dieser Ebene geschieht. Dieser Prozess kann

parallel ausgeführt werden. Die berechneten Gradienten, die von der gewählten Zielfunk-

tion abhängen, beeinflussen das Lernen der Splitting-Funktionen in den Bäumen. Auf
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diese Weise kann jegliche differenzierbare Zielfunktion für das Trainieren von Random

Forests verwendet werden. Wir präsentieren in dieser Arbeit eine Formulierung für das

Klassifikations- und Regressionsproblem, sowie eine empirische Analyse des Lernmodelles

auf einer Reihe von grundlegenden Benchmarks des Maschinellen Lernens. Unsere Ex-

perimente zeigen, dass bei ähnlicher Trainingslaufzeit, der vorgestellte Lernalgorithmus

bessere Vorhersagen treffen kann als normale Random Forests.

Darüber hinaus stellen wir verschiedene Computer Vision Anwendungen vor, wo unsere

neue Formulierung für das Trainieren von Random Forests erfolgreich angewandt wurde.

Wir verwenden den Algorithmus für zwei verschiedene Ansätze der Objekterkennung, für

die Schätzung der Pose des menschlichen Kopfes von Tiefendaten, sowie für das Vergrößern

von Einzelbildern. Diese Anwendungen beinhalten sowohl Klassifikations- als auch Regres-

sionsprobleme. Unsere Ergebnisse zeigen, dass sich die Optimierung einer gemeinsamen

Zielfunktion über alle Bäume hinweg, im Vergleich zum unabhängigen Trainieren einzel-

ner Bäume, klar auszahlt. Unsere Formulierung des Trainings von Random Forests kann

einfach in bereits existierende Anwendungen, die Random Forests verwenden, integriert

werden und verbessert die Ergebnisse für Klassifikations- und Regressionsaufgaben.
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CHAPTER 1

Introduction

The ability to see is arguably a highly valuable sense of human beings. It enables us to

perceive the three-dimensional world around us in a unique and effective way. The human

eye captures incoming light and forwards the information to the brain, which processes

the huge amount of constantly arriving data. Together with inputs from the other human

senses, a long- and short-term memory (experience), the human brain can process and

understand this huge amount of incoming data effectively. Giving a detailed description

of the scene depicted in Figure 1.1a is no problem at all for human beings. Even children of

early ages can easily describe the main concepts of the illustrated scene in their own words.

Being able to describe this scene demonstrates the power of the human visual system (in

combination with lots of experience) independently from other human senses like hearing

or touching. Figure 1.1b gives another example of a natural scene. Even though the

objects are captured in rather unusual poses, our visual system has no problem to identify

and outline the main objects in the two-dimensional image.

The ability of humans to understand and interpret the visual input is not inborn. It

can be learned. The inspiring and peerless ‘Project Prakäsh’ [165] was initiated by Prof.

Pawan Sinha in 2003 and has the goal to treat curably blind children. As a side effect,

the researchers could conduct several studies with children that gained sight late in their

lives. These studies underpin that perceiving and understanding the visual world around

us can be learned [20, 125, 165]. Humans have the ability to recognize a huge range of

different objects at different levels of abstraction. This ranges from general shapes like

circles or triangles to very specific instances like a tennis ball or traffic signs.

Humans build and train their visual system based on loads of images seen during their

lives. Assuming the human eye captures around 15 frames per second, a typical person

that is awake for 16 hours observes 8.64 · 106 images per day on average. Thus, at the age

1
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2 Chapter 1. Introduction

(a) (b)

Figure 1.1: Two examples of a real world scene captured with a standard consumer camera. The
scenes can be easily described by humans with a few sentences. While many different descriptions
of the image are valid, one simple description for (a) could be ‘A beautiful scenery with a snow-
covered mountain in the back and green trees in the front’. For (b), a description might be ‘Two
low-rider cars in a weired pose at an exhibition’.

of 10, a person already observed around 3.15 · 109 images. Annotation for all these images

is very sparse, though. Only a few of the perceived images are annotated in the sense

that a description of objects, actions, attributes, etc. is given. Many of these annotated

images are typically observed by humans during their early childhood. This is the time

when children often get asked to name the objects they see, e.g., in a storybook. It is kind

of natural to ask children these sort of questions and congratulate them if they know the

correct answer. In case they do not know it, the ‘teacher’ provides the correct answer,

i.e., the annotation. Children learn these associations very effectively and are able to

distinguish many object categories early in their lives. Another example for annotations

of images could be books, magazines, or newspapers, which illustrate pictures with a

specific caption that describes the given scene.

The field of computer vision aims at building computational systems with similar or

even better abilities than humans to automatically understand, interpret, and transform

images without any human interaction. Examples of specific problems in the field include

localizing faces, estimating the pose of objects, or understanding interactions between

humans in an image. Beside these high-level examples, computer vision also deals with

low-level problems like removing noise from images (e.g., camera sensor noise), estimating

motion between two consecutive video frames, or super-resolving images (e.g., for print

media). For almost all of these tasks, building models and algorithms that can automat-

ically learn from data plays a critical role. Teaching computers to learn from data is the

field of Machine Learning (ML), which is obviously an inherent part of computer vision.



1.1. Machine Learning in Computer Vision 3

1.1 Machine Learning in Computer Vision

The task of ML algorithms in computer vision is to learn a function f(·) that maps the rep-

resentation of an input image to the desired output, which totally depends on the specific

task at hand. When we consider high-level computer vision tasks like image classifica-

tion, object detection and tracking, semantic image segmentation, or action recognition,

ML techniques can be considered as one of its core building blocks to associate the given

image with the desired output.

One example is image classification, where the main object in a given image has to be

determined, see Figure 1.2a. The current state-of-the-art employs Neural Networks (NN)

to learn the mapping f . NN are able to distinguish between 1000 different object categories

on 10000 test images with misclassification rates of below 10% [172]. Another example is

face detection, which is illustrated in Figure 1.2b. To localize each face in a given image,

one approach is to evaluate the image content of a window at each location and scale. The

learned function f can be designed with a Boosting (Boosting) algorithm [185] and aims

at predicting a probability of whether the current window captures a face or not. The 2D

coordinates with high probability define the final detections.

On the other hand, ML has been employed more and more for low-level vision tasks

in recent years, which include image denoising [51, 84, 121], image deblurring [149, 150],

or 3D reconstruction [74]. To give one particular example of a low-level vision application

that builds upon ML techniques, we consider Single Image Super-Resolution (SISR), see

Figure 1.2c. Given a low-resolution image the desired output is a visually pleasing high-

resolution image that preserves sharp edges and thus high contrast. So-called dictionary

learning methods have extensively been applied for this problem [177, 204] to learn a

mapping f(·) from the low- to the high-resolution domain.

These are only three examples of ML techniques successfully employed in computer

vision applications. While NN , Boosting , and dictionary learning are employed for these

examples, many other ML algorithms exist and are used for computer vision tasks. Other

prominent representatives are nearest neighbors, decision trees, or Support Vector Machine

(SVM). In this thesis, however, we focus on Random Forests (RF), a highly flexible and

effective learning algorithm that builds on decision trees and was extensively used in the

computer vision community.

1.2 Random Forests for Computer Vision Applications

RF have been introduced in the late 1990’s by several researchers [3, 4, 23, 78, 79]. Since

then on, RF have been employed successfully in many different applications ranging from

object detection [62] to human pose estimation [163]. RF mainly owe its popularity and

success to its generalization power and its beneficial properties that are attractive for

many computer vision applications [28]: First, this learning algorithm can deal with high-

dimensional data spaces as it inherently performs feature selection. Each node in the

Reference:

 ()


Reference:

 ()


Reference:

 ()


Reference:

 ()


Reference:

 ()


Reference:

 ()


Reference:

 ()


Reference:

 ()


Reference:

 ()


Reference:

 ()




4 Chapter 1. Introduction

Golden
Retriever

f(·)

Sailboat

f(·)

(a)

f(·)f(·) = 0.01

f(·)f(·) = 0.99

f(·)f(·) = 0.05

(b)

f(·)f(·)

(c)

Figure 1.2: Three examples of classical computer vision tasks which all have ML algorithms at
its core. (a) Current image classification methods can handle huge data sets like ImageNet [40]
and achieve almost equal or even lower error rates than humans [92, 172]. (b) Face detection
systems already achieved a level of performance in order to be successfully deployed in consumer
cameras [185]. (c) In single image super-resolution a visually pleasing high-resolution image is
produced given a low-resolution one by relying on a learned mapping between those domains.

trees of the RF operates only on a discriminative subset of the whole feature space. This

property is very important for computer vision where data dimensionality often exceeds

thousands or even hundred thousands of dimensions.

Another important advantage of using RF is the low computational cost for training

and testing the model. RF consist of several trees that operate independently, allowing

for straight-forward parallel training and inference on multi-core machines. Moreover, the

recursive splitting of the data space turns a large prediction problem into a set of small

ones, because the predictions made by the trees are always conditioned on previously

evaluated splitting functions. Also testing in RF is fast as only a small fraction of the

learned model has to be evaluated. In fact, only a single path from the root to the leaf

node is considered for each tree and data sample, which is logarithmic in the model size.

Finally, RF can also deal with any kind of output space [43]. It can handle classifica-

tion problems with multiple classes within the same model and even output probabilistic

predictions. Other ML algorithms like SVM have to increase the model size and typically

rely on some heuristics to deal with more than two classes. Also joint classification and

regression problems can be naturally attacked with RF [50, 62]. RF can even be used for

predicting structured outputs [43, 89].

To highlight the practical importance and the success of RF in the computer vision

community, we briefly mention the human pose estimation system of Shotton et al. [163],

which is implemented in the Microsoft R© Kinect
TM

sensor. Given a depth image from this

sensor, the task is to accurately infer the pose of a human being, see Figure 1.3. In the
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Figure 1.3: The famous human pose estimation system proposed by Shotton et al. [163], inte-

grated into the Microsoft R© Kinect
TM

sensor. Given a depth image that captures a human body,
this method infers a full skeleton in real-time. The image is taken from [163] and illustrates eight
different depth images with the corresponding inferred human pose. Each color defines a different
part of the human body.

original work, each pixel in the depth image is classified as one of several parts of the hu-

man body (e.g., head, torso, left arm, etc.) with a RF model. Based on this classification,

a skeleton model is inferred and used to control computer games and other applications on

the Microsoft R© Xbox. Beside the human body pose estimation, RF have also been suc-

cessfully employed for other applications, including facial fiducial detection [32, 37], head

pose estimation [48–50], human pose estimation from RGB images [7, 38, 128], articu-

lated hand pose estimation [173, 175], semantic segmentation [88, 89, 141, 164], or image

denoising [51]. Figure 1.4 gives illustrative examples for each of these tasks. Note that

this list of applications relying on RF is far from being complete. A good overview and a

more thorough list can be found in [34].

1.3 Contribution and Outline

The content of this thesis is mainly based on the work presented in [152, 156–158]. These

publications and this thesis is the result of a long-lasting and strong collaboration with

my colleagues Christian Leistner, Paul Wohlhart, Peter M. Roth, and Horst Bischof.

The main part of the thesis starts in Chapter 2 with a review of the basic concepts

of ML. We summarize the main learning paradigms, including supervised, unsupervised,

and weakly-supervised learning. Popular ML algorithms for each of these concepts are

also included. Then, in Section 2.2 we give an overview of ensemble methods, one specific

group of ML algorithms. We start this overview with a detailed description of boosting

algorithms in Section 2.2.2 and also present the famous AdaBoost algorithm [59]. Finally,

we give a more thorough description of Gradient Boosting (GB) and RF in Sections 2.2.3

and 2.2.4, respectively, which build the basis for the main contribution of this thesis.
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6 Chapter 1. Introduction

(a) (b)

(c) (d)

(e) (f)

Figure 1.4: Some examples of successful applications building upon the RF algorithm: (a)
facial landmark detection [37], (b) head pose estimation from depth images [49], (c) human pose
estimation from RGB images [38], (d) articulated hand pose estimation [173], (e) semantic image
segmentation [89], and (f) image denoising [51]. The images are taken and adapted from the
corresponding citations.
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RF are ensembles of binary trees that can be trained for various tasks, including

classification and regression. While a single tree often gives poor results and tends to

over-fit the data, combining several randomly or weakly trained trees via averaging into a

single model performs significantly better [23]. In order for the averaging to make sense,

it is essential that individual trees in the ensemble make different predictions, which is

achieved by training the trees individually and injecting randomness into the training

process. Individually training trees also comes with computational benefits as multiple

cores in modern CPUs can be readily exploited. However, from a risk minimization point

of view, there is no loss function that controls the training of the final model, i.e., the

ensemble of all trees. Thus, the loss function optimized by plain RF only operates locally

and for each tree individually, which can lead to suboptimal predictions.

In Chapter 3 we propose Alternating Decision and Regression Forests

(ADRF) [156, 158], a novel training scheme for RF that optimizes a well-defined loss

function over the full ensemble of trees and alleviates the above-mentioned problem.

ADRF unites the loss minimization approach of GB with the flexibility and the

computational benefits of RF . This training scheme incorporates the loss minimization

directly into the tree growing process and enables to still train the trees in parallel. By

doing so, we can incorporate any differentiable loss function into the training procedure

of RF . As the name already suggests, we present formulations for both classification

(Alternating Decision Forests (ADF) [158]) and regression tasks (Alternating Regression

Forests (ARF) [156]). In the second part of Chapter 3, we also evaluate the proposed

algorithm densely on standard ML benchmarks. We empirically investigate the properties

of the algorithm and show that it compares favorably to both RF and GB .

In the remaining chapters of the thesis we show how to successfully apply ADRF for

several computer vision applications. In Chapter 4, we use ADRF for object detection

and integrate the proposed algorithm into two different frameworks. The first one is

Hough Forests (HF) [62], which is used for object detection based on local evidence, see

Section 4.1. We review the basic concepts of HF , show how to integrate ADRF , investigate

related work, and present our experiments on standard object detection benchmarks. The

second framework we are dealing with builds on a holistic object model [41]. These models

typically rely on Boosting algorithms in a sliding window scheme in order to localize objects

in unseen images and are restricted to a fixed-size bounding box that is predicted. We

first show how ADRF (and thus also standard RF ) can be readily integrated into this

framework and, moreover, how the flexibility of RF and ADRF can be exploited in order

to make more accurate bounding box predictions [157]. In Chapter 5, we use the concept

of HF [62] and follow the work of [49, 50] to infer the pose (i.e., location and orientation)

of a human head in 3D from depth images. Moreover, we present a novel holistic model

to accurately infer the pose from a single depth patch capturing the human head. Again,

we show how ADRF can be incorporated into both frameworks and that the prediction

accuracy is improved over standard RF [156]. Chapter 6 deals with SISR and shows

how RF and also ARF can be employed to achieve state-of-the-art results. Finally, we
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8 Chapter 1. Introduction

conclude the thesis in Chapter 7, where we summarize and discuss the work and give an

outlook of potential future work on this topic.



CHAPTER 2

Preliminaries and Related Work

Before we get to the main contribution of this thesis, we first define the notation and re-

view the basic concepts of machine learning that we require for the later chapters. In the

following section we start with a brief introduction to different aspects of machine learning,

including different levels of supervision, e.g., fully-, weakly-, or unsupervised learning, as

well as a review of popular learning algorithms. Then, we go into more detail on ensemble

methods, a specific group of learning algorithms that combines several weaker models to a

single stronger one. These methods have been shown to give extraordinary predictive ac-

curacy and generalization capabilities and build the foundation of the algorithms proposed

in this thesis.

2.1 Machine Learning

The field of Machine Learning (ML) is concerned with building computer algorithms that

are able to learn from experience. According to Tom Mitchell [115], a general definition

of ML can be stated as follows: A computer program is said to learn from experience E

with respect to some class of tasks T and performance measure P , if its performance at

tasks in T , as measured by P , improves with experience E.

This definition can be best illustrated with an example. Assuming the task T is to

recognize and classify handwritten digits in images, a natural performance measure P is

the percentage of correctly classified digits. In this context, the experience E is defined as

a large corpus of training images alongside with their correct classifications.

ML is a large field finding applications in many other scientific disciplines, e.g., nat-

ural language processing, medical diagnosis, stock market analysis, software engineering,

recommender systems, and computer vision. While the current advances in this field are

9
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still far away from the capabilities of how human beings can learn from experience, there

already exist many success stories of ML algorithms that found their way into commercial

products. A small excerpt of this list includes speech-recognition in mobile phones, face

recognition in consumer cameras, or recommender systems in huge online stores.

In the following subsections, we provide a more formal definition of various ML prob-

lems, which are differentiated by the level of supervision, i.e., experience E, that is provided

to the algorithm. As we deal with supervised learning algorithms in this thesis, we put

more emphasis on this learning principle, which is explained in the following section.

Notation: Before we start with technical details and mathematical formulations in this

thesis, we briefly outline the general style of notation. While scalars are not highlighted,

we mark vectors bold-face, e.g., x or y. Matrices and sets are marked bold-face and upper-

case, e.g., W. Running variables, indices, and counters (like the number of elements in a

set) are marked typewriter, e.g., j or N.

2.1.1 Supervised Learning

In a supervised ML problem we want to find a mapping function f : X → Y, where X = RD

is the D dimensional input or data space and Y is the output or label space that depends on

the task at hand. Most ML problems can be formulated as classification or regression. For

classification, Y = {1, . . . , C}, where C is the number of classes. For regression, Y = RK,

where K defines the dimensionality of the output space. Please note that we want to keep

the label space general and thus denote a single label y ∈ Y as vector, i.e., bold-face, but

it can also be a scalar, e.g., for classification.

In general, learning the mapping function f requires the definition of a loss function

L(y, ŷ = f(x)), which measures the discrepancy between a ground truth label y and

a prediction ŷ. For classification, a common loss function that is used in theory is the

0-1 loss L01 = I [y 6= ŷ]. However, due to the discontinuity, approximations are used

in practice. For binary classification, where C = 2 and the label space is defined as

Y = {−1,+1} for easier optimization, the exponential loss Lexp = exp(−y · f(x)) or the

hinge loss Lhinge = max(0, 1 − y · f(x)) are often used. For regression, the squared loss

L`22 = ‖y − f(x)‖22 is commonly employed.

The goal in supervised ML is to find f such that the expected loss, which is also called

the risk,

R(f) = E [L(y, ŷ)] =

∫
L(y, ŷ) dp(x,y) (2.1)

is minimized, i.e., arg minf R(f). Unfortunately, the probability distribution p(x,y) is

typically unknown, making sampling from it impossible. Hence, one has to rely on a finite

training set

X = {{xn,yn} ∈ X × Y | n = 1, . . . , N} (2.2)

consisting of N input-output pairs, where we call x a data sample and y a label. The data
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is typically a specific feature representation of some other entity like text, audio, medical

data, physical measurements, etc. For the computer vision applications we are addressing

in this thesis, we extract features from images I such that x = Φ(I), which we describe

later in more detail. The ground-truth label y for each x typically has to be provided by

a human annotator who evaluates x or the underlying entity, e.g., I.

Due to the unknown probability distribution p(x,y) and the finite training set X, one

has to approximate (2.1) with the empirical risk

Remp(f) =
1

N

N∑
n=1

L(yn, ŷn = f(xn)) , (2.3)

which again should be minimized, i.e., arg minf Remp(f). While this approximation might

seem negligible in the first place, it can have a drastic impact on the final prediction

performance on the learned function f(·). The reason is over-fitting. This phenomenon

describes the situation when the learned function f over-fits the training data and performs

poorly on unseen test data Xnew. Over-fitting typically occurs if the complexity of the

chosen function f is too high. In this case, the learning algorithm often has no problems

adjusting the parameters of f to achieve low empirical risk. At the same time, though, it is

very likely that the learned function performs poorly on Xnew, i.e., the generalization error

is high. There also exists the opposite of this phenomenon, namely under-fitting, which

means that the chosen model is too simple to handle the given learning problem. The

actual goal of supervised learning is to minimize the generalization error (or the expected

error in general), i.e., how well does the model perform on data that is not seen during

training. Thus, one has to select a suitable class of functions with a reasonable complexity

for the problem at hand. Some basic strategies for this process are given in [46, 75]. It is

also common practice to include a regularization term Γ(f) on the model parameters of f ,

which also penalizes the complexity. In this case, learning f can be defined as minimizing

Remp(f) =
1

N

N∑
n=1

L(yn, ŷn = f(xn)) + Γ(f) . (2.4)

This principle follows the intuition of Occam’s Razor, which advocates to prefer simpler

explanations over needlessly complicated ones [18, 115]. Computational learning theory

provides different formulations to assess the generalization error (or the expected error).

Examples include the Akaike information criterion (AIC), Bayesian information criterion

(BIC), minimum description length (MDL), or the Vapnik-Chervonenkis (VC) dimensions.

A good overview of these formulations can be found in [75]. However, all of them have

some limitations, either that they are only valid for a restricted class of prediction and

loss functions, or that they are simply hard to apply for certain classes of functions and

only provide a rough upper bound on the generalization error. VC dimensions are the

most general ones and Vapnik also proposed a structural risk minimization [182] approach
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12 Chapter 2. Preliminaries and Related Work

for Support Vector Machine (SVM), which considers the model complexity during the

learning process. A more practical way to do model selection is cross-validation, which is

well described in [75].

The problem of the generalization performance is also addressed in the bias-variance

decomposition. One can define the expected prediction error Ē on a high-level as

Ē = σ2 + bias2 + variance (2.5)

The first term on the right hand side of Equation (2.5) defines the irreproducible error

that stems from noise in the data generation process, i.e., in the unknown distribution

p(x,y). The second term, the squared bias, describes the average difference between the

predictions of a trained model and the true label y. The last term is the variance of the

trained model. Please note that the expectation (or the average) is defined over several

randomly sampled training sets. One speaks about the bias-variance dilemma because

when we make the model more complex, one typically can observe a lower bias but, at

the same time, a higher variance of the model. Hastie et al. [75] provide an intuitive

example with a k-Nearest Neighbor regression fit. A detailed description of this topic is

given in [75] (Chapter 7). We will use this argumentation of bias and variance later for

ensemble methods in Section 2.2 to describe some of their beneficial properties.

Supervised ML also differentiates between generative and discriminative models. As

the name might already suggest, a generative model tries to directly learn the data gen-

erating probability distribution p(x,y) or p(x|y). This approach has the advantage that

new data can be directly sampled from the model, which is a natural task. Consider

the human brain, for instance: one can easily imagine a picture of a car or a train, i.e.,

we sample from this probability distribution. Dreaming is another example where the

human brain generates new data. Discriminative models, on the other hand, only learn

the discriminating function f(x) between different classes or different target values, not

the underlying data distribution. In most practical benchmarks and tasks, discriminative

models typically outperform generative ones. A reason for this might be that quantitative

evaluation is only concerned with the final predictions ŷ = f(x) and neglects how well

new data can be generated from the model. While learning a generative model typically

renders a harder task, discriminative models solely focus on learning f , giving them a

crucial benefit on standard benchmarks. Here, we also focus on discriminative algorithms.

The ML literature presents an almost endless list of algorithms for all kinds of tasks.

Reviewing all of them is far beyond the scope of this thesis and we refer the interested

reader to [18, 46, 115]. Popular and effective ML algorithms include Fisher (or linear)

discriminate analysis [54, 134], linear regression, logistic regression, SVM [182], classi-

fication and regression trees (CART) [24], neural networks [140], convolutional neural

networks [95–97], or nearest neighbor. Another strand of ML algorithms are ensemble

methods like Boosting (Boosting) and Random Forests (RF), which are the basis for this

thesis and are devoted a separate section (see Section 2.2).
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(a) (b)

Figure 2.1: Two examples of typical supervised ML tasks. (a) Handwritten digit classification on
the popular MNIST data set. For each of the 10 classes (columns), the figure illustrates 7 training
images (rows). (b) Object detection on a typical street-scene image. The figure illustrates the
ground-truth annotation of objects that have to be detected, cars in blue and pedestrians in red.
The annotation is given as bounding boxes around the objects. Please note that not all objects in
the scene are annotated.

To conclude this section on supervised ML, we provide a set of example applications

in order to better illustrate the problem. A very popular task is that of handwritten digit

recognition. It is a classification problem with X ∈ R28×28 and Y = {1, . . . , 10}. Examples

for the given data can be seen in Figure 2.1a. Obviously, the task is to recognize the

handwritten digit in an unseen 28 × 28 image. The task is relatively easy as the input

data is clean and pre-processed. The current state-of-the-art already achieves recognition

rates above 99.7% [189]. Another, more evolved problem is object detection in still images,

which involves localizing and classifying semantic objects like pedestrians, cars, or animals.

A typical object detection system requires more than just a learning algorithm but also

other components like a localization scheme (e.g., a sliding window over a scale space

pyramid) to find objects. An example is given in Figure 2.1b.

2.1.2 Unsupervised Learning

Contrary to supervised ML, the unsupervised learning paradigm has no access to any

training signal y ∈ Y. Thus, as the name already suggests, no supervision is available,

which immediately raises the question of the task to optimize for. As we have a strong

focus on supervised algorithms in this thesis, we only provide a brief overview of different

subtasks of unsupervised learning here. The goals can be diverse and the most popular

tasks can summarized as follows.

Clustering: Given a set of data samples XX = {xn} with n = 1, . . . , N, the task is

to find coherent groups of data within XX according to some similarity measure. Each
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14 Chapter 2. Preliminaries and Related Work

resulting group is also called a cluster. Each data sample x belongs to at least one cluster,

either via hard assignment (one sample belongs to exactly one cluster) or via soft assign-

ment (one sample belongs to all clusters with a certain weight or probability). Popular

clustering algorithms are k-means [105], graph-based methods [60, 162], or discriminative

clustering [39, 198].

Density estimation: Another example of unsupervised learning is density estimation.

The task is to find an estimate of the density of X , i.e., to find the underlying data-

generating probability distribution p(x) with the given data set XX . Fitting a Gaussian

mixture model with expectation-maximization [18] on a set of data is one algorithm that

can be used to estimate the density of a given data set. RF [4, 23, 78] can also be used

for density estimation [34]. One can already observe the close relation between density

estimation and clustering as it can be understood as a softer version of the latter.

Dimensionality reduction: The task of dimensionality reduction is to find a function

that maps high-dimensional data xH ∈ RDH to low-dimensional data xL ∈ RDL in such a

way that most information about the data is preserved. The most popular algorithm is

the principal component analysis (PCA) [80, 86]. While being a simple linear algorithm,

it has shown to be very effective in practice. However, also non-linear alternatives exist,

like the kernelized version of PCA (kPCA) [151] or autoencoders [77] (a special form of

neural networks). Dimensionality reduction is often important for practical reasons as a

pre-processing step for large systems that have to handle high-dimensional data.

Manifold learning: This task is highly related to dimensionality reduction but with

the explicit goal of finding a lower dimensional manifold of the data. The term manifold

learning is often interchangeably used with non-linear dimensionality reduction, although

the latter one is only concerned with reducing the dimensionality and not with the explicit

goal of finding the underlying structure. However, dimensionality reduction also often

implicitly defines a low-dimensional manifold of high-dimensional data. Thus, these two

disciplines are highly related and overlap in many works. Popular algorithms for manifold

learning include self-organizing maps [87], autoencoders [77], kPCA [151], isomaps [176],

or locally-linear embedding [143].

2.1.3 Weakly Supervised Learning

Weakly-supervised learning can be seen as a mixture between supervised and unsupervised

ML. Many different formulations have been proposed and discussed in the ML literature

in recent years. Most of them typically stem from some practical applications and prob-

lems that can be readily formulated in a weakly-supervised form. The two most popular

examples of weak supervision are semi-supervised and multiple-instance learning, which

we discuss in the following.
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Semi-Supervised Learning: This concept assumes that a set of fully labeled samples

XL = {xn,yn}NLn=1 as well as a set of unlabeled samples XU = {xn}NUn=1 are given. The

unlabeled set is typically much larger than the supervised one, i.e., NL � NU. The motiva-

tion for such a learning concept is clear: The often tedious and expensive task of manually

labeling the data is reduced compared to supervised ML, while the learning task becomes

much easier than in a fully unsupervised setup. However, one has to effectively make use

of the unlabeled data set XU. Many ML algorithms have been introduced or extended for

semi-supervised learning, including SVM [15], Boosting [102, 109], and RF [103], among

many others. A more detailed discussion of this topic can be found in [30, 205]. Ap-

plications making use of semi-supervised learning include text classification [169], image

classification [102], or visual object tracking [72].

Multiple-Instance Learning: The multiple-instance learning scenario introduces the

concept of bags of samples. A bag Bn contains a set of samples x and has a (binary) label

y ∈ {−1,+1}, i.e., Bn = {{xj
n},yn} with n = 1, . . . , N and j = 1, . . . , Nn. Multiple-instance

learning is typically considered as a binary classification problem. Nevertheless, samples

within the bags are only constrained on the label of its bags. Positive bags, i.e., y = +1,

contain at least one positive sample but the label of the remaining samples is unknown. For

negative bags all samples within the bag can be assumed negative. This concept describes

a different form of weak supervision than semi-supervised learning. Again, many learning

algorithms have been proposed or extended for multiple-instance learning. These include

SVM [6], Boosting [187], and RF [104]. Multiple-instance learning has been applied

to different applications in computer vision like visual object tracking [104] or image

classification [111].

Besides these two popular examples, other forms of weak supervision exist as well.

This is especially true for the field of computer vision, where label information is often

ambiguous and expensive to obtain. One example is an image-level annotation that only

defines the existence of an object within the image, but not its exact location. A task could

be to learn an object model or a mid-level representation from such ambiguous supervision,

e.g., [116, 131, 154]. Another example concerns video data, where supervision can be given

in the form of a video-level annotation. Again, only the existence of a certain object in

a video is provided, but the exact temporal and spatial location is missing. Typical

applications include action recognition [166, 167].

2.1.4 Online Learning

Up to now, we always assumed that all training data is readily available at all times during

training a model. However, in many real-world scenarios only a single training example

is given at a time. It can be used to update the prediction model, but is not available

anymore after the update. We also mention that there exist slightly other forms than
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16 Chapter 2. Preliminaries and Related Work

strict online learning where, for instance, a small buffer of samples can be kept in memory.

A larger deviation from the standard model is incremental learning where old samples can

be stored but new ones are arriving one at a time.

Many algorithms can be considered online per se, because they build on an online

optimization technique like stochastic gradient descent (e.g., Neural Networks (NN) or

special formulations of SVM [160]). However, other learning algorithms have also been

extended for the online scenario, like Boosting [71] and RF [145, 155].

The importance of such online applications becomes obvious when considering plat-

forms with limited memory, closed systems with privacy issues, e.g., smart cameras, or the

access to a huge amount of data that cannot be processed at once. Other examples include

real-time systems that steadily have to adapt to the scene, e.g., in surveillance [130]. A

popular example in the field of computer vision is object tracking: Given a video sequence

capturing any kind of object and a bounding box annotation in the first frame, the task is

to track the object throughout the whole sequence [71, 101, 145, 155]. Obviously, a model

can be learned with the annotation of the first frame. However, the appearance of the

object will change over time due to different illuminations, viewpoints, occlusions, etc.,

making the online adaptation of the object model necessary.

2.1.5 Transfer Learning

All ML principles discussed so far shared the fundamental assumption that training and

testing data stem from the same probability distribution. In many cases, this assumption

is valid. For instance, when collecting a data set for some computer vision task, one

typically first collects images alongside with the ground-truth annotations and, then, splits

the data into training and testing sets. In this case, one can assume the assumption on

the underlying probability distribution of the data to be fulfilled.

On the other hand, there are many interesting scenarios where this basic assumption

might be invalid. On a high level, consider the task of learning to speak Spanish. It is

often said to be easier if you already know how to speak Italian. In this example, the

task of transfer learning would be to transfer knowledge from one task (learning Italian)

to another task (learning Spanish). In computer vision, transfer learning can also be seen

as learning some predictor that can generalize from one data set to another for the same

task, as each data set (or benchmark) has its own bias [179].

There are many different sub-categories in the field of transfer learning, which often

vary in the amount of supervision that is given for each of the domains. A detailed review

is out of scope of this thesis and we refer the interested reader to an excellent summary

from Pan and Yang [126].
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2.2 Ensemble Methods

Ensemble methods are a family of machine learning algorithms that combine several weaker

models into a single stronger prediction function [75]. In order for ensemble methods to

work, each weak model is required to perform better than random guessing and to be

different to other weak models in terms of their predictions. Thus, the diversity of the

weak models has to be given. Prominent examples of ensemble methods are Boosting and

RF , which both build the basis for the algorithms presented in this thesis. In the following

sections, we give a detailed description of both algorithms, Boosting in Sections 2.2.2 and

2.2.3 and RF in Section 2.2.4. Before that, we start with a more simple ensemble method

named bootstrap aggregation. A good overview and a detailed summary of ensemble

methods can be found in [46, 75].

2.2.1 Bootstrap Aggregation

Bootstrap aggregation can be considered one of the first ensemble methods [21] and as

predecessor of RF . This method actually stems from a sampling technique called bootstrap

that is used to compute the accuracy of a statistical parameter estimate. It is also often

called ‘bagging’, and we will also use this abbreviation in the following.

The general procedure of bagging is as follows. Assume we have a data set of N

samples. Then we draw N samples with replacement and equal probability from the data.

This process is repeated B times resulting in B samples of size N from the original data,

each one slightly different. Then, B predictors (may it be a classifier or a regressor) are

trained on the corresponding B samples of the data set. The final prediction for a new

data point x of a bagging model is the unweighted average of the predictions of the B

individual models.

Bagging typically improves the results in scenarios where the individual predictors

have low bias but high variance, as it is the case for regression trees, for instance. In

this case, averaging can drastically reduce the variance while keeping the low bias [75],

resulting in a better overall prediction. This effect can become more prominent when

the individual prediction models make uncorrelated predictions. This idea follows the

‘Wisdom of Crowds’ principle [171], which states that the collection of knowledge from an

independent and diverse set of people is typically better than the knowledge of a single one.

However, in a standard bagging setup, the individual models are often not independent,

as they are trained in the same way with the single difference of a slightly altered training

set [75]. As we will see later, RF overcome this problem by using randomized decision

or regression trees as their individual prediction models. The randomization of the tree

growing procedures is beneficial to keep the correlation between individual models low.
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2.2.2 Boosting

The general Boosting algorithm builds a prediction model by iteratively adding weak

learners. Each weak learner is trained in a way to make up for the errors of the current

state of the model, i.e., the sum of all weak learners added so far. While there exist an

almost endless list of different Boosting variants, we first describe in Section 2.2.2.1 the

most basic and most popular one, AdaBoost [59]. In Section 2.2.2.2, we describe some

important properties of Boosting and review some interesting variants. Later, we will

devote a more detailed section on Gradient Boosting (GB) (Section 2.2.3), which is a

more generic variant of Boosting and also builds the basis for the main contribution of

this thesis.

2.2.2.1 The AdaBoost Algorithm

AdaBoost is the most popular Boosting algorithm, which is the reason we want to briefly

review the algorithm and some of its properties. Many works by both Freund and Schapire

can be considered to contribute to this popular algorithm [58, 59, 147]. A very recent and

broad summary of Boosting , including AdaBoost, can be found in [148].

AdaBoost is a supervised learning algorithm for binary classification tasks and requires

a training set X = {xn,yn}Nn=1, where y = {−1,+1}. The basic idea is to build a strong

classifier F (x) as a weighted sum of T weak learners f(x), i.e.,

F (x) =
T∑

t=1

αtft(x) . (2.6)

The final binary decision is then computed as sign [F (x)], where sign [·] is the sign oper-

ator. Learning the weighted sum of weak learners is an iterative process. Each training

sample xn is assigned a weight wn, which corresponds to the current ‘importance’ and is

initialized with wn = 1
N

for all samples. The influence and meaning of this weight be-

comes clear later in this section. An overview of the whole learning process is given in

Algorithm 1. As can be seen, each iteration t first finds a new weak learner ft(x) that

minimizes the weighted classification error in Equation (2.8). Leo Breiman observed in [22]

that AdaBoost can also be formulated in a loss minimization framework and showed that

the exponential loss

L(F ) =
N∑

n=1

e−yn·F (xn) (2.7)

is minimized. This interpretation decouples the algorithm from its objective and proved

to be useful when developing new boosting variants.

Many different choices for ft(x) are possible, as long as it makes predictions better

than random guessing. A popular weak learner is a decision stump, i.e., a tree with a single

splitting function and two leaf nodes. Having fixed a weak learner ft, the corresponding
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error εft is used to compute the influence αt of the weak learner in Equation (2.9). Finally,

the weights of each data sample are updated via (2.10). The weight of samples that are

correctly classified by the current weak learner, i.e., yft(x) > 0, will be decreased and

vice versa. This can be seen by noting that, by definition, εft <
1
2 , because we assumed

each weak learner to be better than random guessing (otherwise ft would be discarded).

This implies αt > 0. Hence, exp(−αtynft(xn)) < 1 if xn is correctly classified. Obviously,

the intuition of this update rule is that misclassified samples become more important (the

weights become larger) for later iterations of the training process.

Algorithm 1: The training process of AdaBoost.

input : Labeled training set {xn,yn}Nn=1 ∈ X × Y
input : Number of iterations T

output: The set of weak learners ft(x) with corresponding weights αt
Initialize wn = 1

N
for n = 1, . . . , N ;

for t from 1 to T do
Find a weak learner

ft = arg min
f

εf =

∑N
n=1wnI [yn 6= f(xn)]∑N

n=1wn

(2.8)

minimizing the weighted miss-classification error ;
Compute the influence of the current weak learner via

αt = ln

(
1− εft
εft

)
. (2.9)

where εft is the error on the training set of the current weak learner ;
Update weights of each data sample

wn =
wn exp(−αtynft(xn))

Zt
, (2.10)

where Zt is a normalization constant ;

2.2.2.2 Properties and Variants of Boosting

Boosting in general is a very strong and flexible classifier and has been studied extensively

in recent years. It is beyond the scope of this thesis to give a broad review of all these

Boosting variants and investigations. While the interested reader is referred to [148] for

more details, we briefly mention the most important properties, variants, and applications

of this learning principle.

The most obvious flaw of plain Boosting is the danger of over-fitting in the presence of

noisy data. Consider, for instance, a mislabeled data point xw in the training set X, i.e.,
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the annotation yw is wrong. In general, the weak learners are found as to minimize the

weighted misclassification error. Obviously, the larger portion of correctly labeled samples

in X overrule xw and a reasonable weak learner f(x) will be found. This is because the

weights w of all sample in the beginning of the learning process are more or less equal. If

f(x) is a good weak learner, it will also classify xw correctly. However, as the annotation

is wrong, its weight ww starts to increase instead of decrease throughout the iterations. At

some point of the training process, this weight will be so high that it strongly influences

the search for the next weak learner. Hence, label noise can bias Boosting and lead to

over-fitting. Nevertheless, also this issue is already addressed in the literature, see e.g.,

[103, 112, 113].

Another shortcoming of plain Boosting is that it is only formulated for the binary clas-

sification task. Fortunately, many different extensions for the multi-class case [58] as well

as for regression [75] exist. Boosting has also been extended to weakly-supervised scenar-

ios like semi-supervised learning [102, 109] or multiple-instance learning [187]. An online

version of Boosting exists [71] as well as a version for structured output learning [161].

Also, the list of applications building upon Boosting is almost endless, even if only

the field of computer vision is considered. One of the most popular examples is the face

detection system of Viola and Jones [185]. They use Boosting in combination with Haar

features for highly robust face detection. This work is the basis for the current state-of-

the-art pedestrian detection systems [13, 41, 42]. Boosting also has a long and successful

history in visual object tracking applications [10, 71, 72, 203].

2.2.3 Gradient Boosting

In this section, we review a generalization of Boosting that is called gradient boosting.

In contrast to AdaBoost, which optimizes the exponential loss, GB can incorporate any

differentiable loss function. This algorithm, together with RF (described later in this

chapter), builds the basis for the main contribution of this thesis.

In [61], Friedman showed that Boosting can also be understood as performing gradient

descent in function space, paving the way for GB . The training procedure of GB runs in

T iterations, where in each of them a new weak classifier ft(x) is trained, its contribution

rate νt determined, and both added to the strong model F . In more detail, given a labeled

training set X with N samples, training the parameters of a single weak learner can be

written as

Θt = arg min
Θ

N∑
n=1

L(yn;F
t−1
0 (xn) + ft(xn; Θ)) . (2.11)

Here, L(·) is a differentiable loss function, F t−1
0 (x) =

∑t−1
j=0 νt · fj(x; Θj) describes the

already trained classifier and ft(x; Θt) is the classifier in the current iteration t; νt is

often set constant and called the shrinkage factor [75].

As shown by Friedman [61], solving (2.11) can be understood as steepest descent in
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the N-dimensional input data space. Thus, one can compute the negative gradient

− gt(xn) =

[
∂L(yn, F (x))

∂F (x)

]
F (x)=F t−1

0 (xn)

(2.12)

for each data sample xn. While the gradients in (2.12) are only defined on the data

samples xn and cannot be generalized to any x ∈ X , one can still find a weak learner

ft(x,Θ
t) that gives correlated predictions to −gt(xn). In other words, one has to train a

new weak learner with an adapted training set Xgt = {xn,−gt(xn)}Nn=1. While this can

be easily done for regression or binary classification tasks (with continuous output values),

for a multi-class problem with multi-class capable weak learners (e.g., classification trees),

there exists an alternative way to train ft(x,Θ
t).

Obviously, one can also interpret the norm of −gt(xn) as an importance factor for data

sample xn. As is done in ordinary Boosting [58, 59, 147], each data sample gets assigned a

weight wt
n indicating how well this particular sample is already classified for each iteration

t. Low values indicate a good classification and vice versa, which allows the model to

subsequently put its emphasis on hard samples (i.e., those that have been misclassified).

These weights get updated in each iteration t of the training based on the norm of the

gradients, i.e.,

wt
n = | − gt(xn)| . (2.13)

During training the weak learner ft(x,Θ
t), these weights have to be taken into account.

Algorithm 2: Training procedure of GB for the regression case.

input : Labeled training set {xn,yn}Nn=1 ∈ X × Y
input : Number of iterations T

input : Shrinkage factor ν
output: The set of weak learners ft(x) with corresponding parameters Θt

Initialize F 0
0 = const ;

for t from 1 to T do

Compute all gradients gt(xn) with F t−1
0 (x) according to Equation (2.12) ;

Generate adapted data set Xgt ;
Train weak learner ft(x; Θt) with data set Xgt ;
Set

F t
0 (x) = F t−1

0 (x) + ν · ft(x; Θt) (2.14)

to add new weak learner to the model ;

GB has the advantage that any differentiable loss function can be used. This even

allows for incorporating non-convex loss functions, which have been shown to be more

robust to label noise [113]. Algorithm 2 summarizes the training procedure of GB for

the regression case. For more details we refer the interested reader to [75, 148] and the

references therein. In Chapter 3, we show how to combine the ideas and benefits of GB
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and RF (described in the following) into a common framework for both, classification and

regression tasks.

2.2.4 Random Forests

Before we delve into the training and inference procedures of RF , we briefly recapitulate

the history and the origination process of this popular ML algorithm, which is also nicely

summarized in [34].

The fundamental base of RF are decision trees. The seminal book of Leo Breiman [24]

on classification and regression trees (CART) initiated high interest in solving ML prob-

lems with trees. Ross Quinlan presented extensions to CART and introduced ID3 [132]

and C4.5 [133]. During that time, researchers found how several weak learners can be

combined into a stronger model. The work of Schapire [147] was one of the first and paved

the way for many successful Boosting algorithms (already discussed above) and also for

RF .

Amit and Geman soon discovered the effectiveness of combining randomized decision

trees via ensemble methods for handwritten digit recognition [3, 4]. At the same time,

Tin Kam Ho independently presented another form of combining randomized decision

trees for the task of handwritten digit recognition [78, 79]. Finally, Breiman [23] formally

introduced the term ‘random forests’ in 2001, including several variants of the algorithm

for both classification and regression and a thorough analysis. One can find a very pleasing

text on the history of RF in the foreword of [34] written by Yali Amit and Donald Geman.

Since then on, RF became highly popular and an almost endless list of works relying

on this ML technique was presented. RF find applications in many disciplines in the

computer vision community, e.g., object detection [62, 110, 157, 195, 197], semantic seg-

mentation [26, 88, 89, 141, 164], pose estimation [38, 49, 50, 67, 163], tracking [70, 155],

image denoising [51], etc. RF also led to one of the biggest success stories in computer vi-

sion, namely, the human pose estimation system implemented in the Microsoft R© Kinect
TM

sensor based on randomized trees [163]. An excellent survey on RF including many ex-

amples of successful applications in the computer vision community can be found in [34].

In the following, we describe the technical details of RF . We start with the structure

of the trees in Section 2.2.4.1. Then, we review the training procedure in Section 2.2.4.2

and describe the inference process in Section 2.2.4.3. Finally, we discuss some properties

of RF in Section 2.2.4.4, which concludes the chapter on preliminaries.

2.2.4.1 The Model Structure of Random Forests

A RF consists of a set of T binary trees Tt, where each of them is typically trained

independently from each other and their predictions are averaged. A binary tree T is a

graph where each node j has a single parent node Par (j) and exactly two child nodes,

a left one, ChildL (j), and a right one, ChildR (j). Exceptions are the root node, which

has no parent, and all leaf nodes, which do not have any children. The leaf nodes in the
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tree are also called terminal nodes in the literature. All remaining nodes are often called

internal or splitting nodes.

p(y|x)

j

ChildL (j)

σ(x; Θj) = 0

ChildR (j)

σ(x; Θj) = 1

Par (j)

Figure 2.2: This figure gives an example of the structure of a binary tree Tt in a random forest
model. For a node j, we illustrate the parent and two children alongside with the corresponding
splitting function σ(·; Θj). Leaf nodes are highlighted in gray.

Each internal node j stores a splitting function σ(x; Θj) that routes a data sample x

to the left (σ(x; Θj) = 0) or right subtree (σ(x; Θj) = 1). The parameters Θj that define

σ(·; Θj) have to be learned during the training phase that is described later. Thus, the

collection of all splitting functions in the internal nodes defines the paths from the root

node to a single leaf node. Formally, the process of routing sample x from any node j

through the tree to a leaf node can be written as the recursive function

f(x, j) =


j if j is a child

f(x,ChildL (j)) else if σ(x; Θj) = 0

f(x,ChildR (j)) otherwise

. (2.15)

Each leaf node stores a prediction model p(y|x) for label y given data x. The prediction

model has to be defined for the task at hand, e.g., classification or regression. We will

define both, the splitting functions and the prediction models, in the following section

in more detail and give some examples for different applications. Figure 2.2 depicts an

example of such a tree including splitting functions and prediction models.

We conclude this section with some properties and definitions of binary trees that

will be used throughout this thesis. We can define the depth δ (j) of a node j as the

length of the path from the node to the root of the tree. The path includes the node j

itself. Thus, the root node has depth δ (j = root) = 1 and any direct child of the root

has depth 2. The depth of the whole tree is defined as the maximum depth of any node,

i.e., δ (T ) = maxj∈T δ (j). An important hyper-parameter (i.e., defined by the user) is the

maximum tree depth Dmax, which constrains the tree T via δ (T ) ≤ Dmax. We also define

a fully-balanced tree as a tree where all leaf nodes have the same depth δ (·). Assuming

a fully balanced tree of depth δ (T ) = Dmax, the number of total nodes is 2Dmax − 1.
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Then, the number of leaf nodes is 2Dmax−1 and, hence, the number of internal nodes is

2Dmax−1−2Dmax−1 = 2Dmax−1−1. For this special case of a fully-balanced tree, the number

of nodes doubles with each level of depth. Finally, we define the cardinality card (j) of a

node j as the number of samples passing this node during the training time of the tree.

For instance, the root node of tree t obviously has cardinality card (j = root) = Nt, where

Nt is the number of training examples for this particular tree.

2.2.4.2 Training Random Forests

While RF is an ensemble method, the training procedure is quite different compared to

the Boosting algorithm described earlier. Instead of training the weak learners (random-

ized trees in the case of RF ) iteratively with the goal to correct mistakes of the current

ensemble, RF treat each weak learner independently. This allows for training (and test-

ing) the trees in parallel, which is a major benefit over Boosting regarding computational

costs. Moreover, this training procedure yields decorrelated trees which is essential for

the generalization performance of RF . For fully correlated or even identical trees, the en-

semble cannot improve the prediction over a single weak learner, as we will also see later.

The independence of the trees also eases the description of RF as we can reduce it to the

training procedure of a single tree Tt ∈ F , where t = 1, . . . , T. In the following, we present

a formulation for both classification and regression tasks.

Given is a set of training data X = {xn,yn}Nn=1, where x ∈ X and y ∈ Y. The

data space X can almost always be written as a D-dimensional feature vector (X = RD).

While for some cases, e.g., computer vision applications, a different form might be more

convenient to use, here, we stick to the vectorized form. The feature vector is typically

a representation computed from some other entity like a text, an audio sequence, or an

image, as already mentioned before. The goal is to build a tree that represents a mapping

from X to Y such that some error is minimized and good prediction about Y can be done.

In the following, we first describe the training of the tree structure and then show how

the leaf node models are computed.

Training the Tree Structure Training the tree structure involves recursively splitting

the data into disjoint sets by finding splitting functions

σ(x; Θj) =

{
0 if ξ(x; Θj) < 0

1 otherwise
, (2.16)

for all internal nodes j, where ξ(·; Θ) is the data response function and Θj are the param-

eters that define it. These parameters have to be learned. Each of these splitting functions

separate the data in node j into two disjoint sets with the goal that the labels in these

sets become more compact and better predictions can be made. In the following, we drop

the subscript j that indicates the node index wherever it is clear from the context for a

better readability.
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The response function ξ(·; ·) totally depends on the form of the data space X for the

particular application, e.g., unstructured machine learning data or structured image or

text data. Here, we only give a few typically employed examples of response functions.

Later chapters define specifically designed response functions. Given a standard feature

vector x ∈ X = RD, the most popular choice is to apply a thresholding operation on a

single feature dimension. This is defined as

ξsingle(x; Θ) = x[Θ1]−Θth , (2.17)

where x[Θ1] returns the value of x at dimension Θ1 ∈ {1, . . . , D} ⊂ Z, and Θth ∈ R is

a threshold. Another option that is also often employed for image data is a thresholding

function on the difference of two dimensions. We thus define a ‘pair-difference’ response

function as

ξpair(x; Θ) = x[Θ1]− x[Θ2]−Θth , (2.18)

where we additionally have Θ2 ∈ {1, . . . , D} ⊂ Z and Θ1 6= Θ2.

The typical procedure for finding good parameters Θ for the splitting function σ(·; Θ)

is to sample a random set of parameter values Θk and choosing the best one Θ∗ according

to a quality measure. The parameters Θ∗ are thus found via a randomized grid search on

the parameter space. In general, the quality measure for a splitting function σ(x; Θ) has

the form

Q(σ(·; Θ),X) = E(X)−
∑

c∈{Le,Ri}

|Xc| · E(Xc) , (2.19)

where Le and Ri define the left and right child nodes, and | · | is the cardinality operator.

We define XLe = {x ∈ X : σ(x; Θ) = 0}, XRe = {x ∈ X : σ(x; Θ) = 1}. Please note

the implicit dependency of the second term in Equation (2.19) on the splitting function

σ(·; Θ). Also note that the first term in (2.19) is independent from σ(·; Θ). The function

E(X) aims at measuring the compactness or the purity of the given data X. In the

following, we thus denote this function as compactness measure. The intuition is to have

similar data samples falling into the same leaf nodes, thus, giving coherent predictions.

Equation (2.19) resembles the information gain if E(X) is the Shannon entropy. However,

for finding Θ∗, maximizing (2.19) is equivalent to minimizing the cost function

C(σ(·; Θ),X) =
∑

c∈{Le,Ri}

|Xc| · E(Xc) , (2.20)

as the first term in (2.19) is independent from Θ and can be dropped.

The compactness measure E(X) (and thus also Q(·) and C(·)) typically operates only

on the label space Y, e.g., for classification or regression tasks. However, one can also

imagine to include the data space into E(·) for clustering tasks or as an additional regres-

sion (see Chapter 6). As with the response function, modeling the compactness measure

is task-dependent. Here, we review the basic measures for the classification and regression
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Figure 2.3: The figure illustrates the shape of two different compactness measures used to evaluate
the quality of splitting functions in RF for the classification task. We illustrate the negative entropy,
EEntr(X), and the Gini index, EGini(X), for a 2-class problem.

tasks. The two most employed measures for classification tasks are the entropy

EEntr(X) = −
C∑

c=1

p(y = c|X) · log(p(y = c|X)) , (2.21)

where C is the number of classes, and the Gini index

EGini(X) =
C∑

c=1

p(y = c|X) · (1− p(y = c|X)) = 1−
C∑

c=1

p(y = c|X)2 . (2.22)

For both cases, the conditioned class probabilities are defined as

p(y = c|X) =

∑|X|
n=1 I [yn = c]

|X|
, (2.23)

where I [·] is the indicator function. The shapes of the entropy and Gini-based measures

are illustrated in Figure 2.3 for 2 classes. The Gini index is an approximation of the

entropy that avoids computing the logarithm. For regression, many different measures

can be defined. One of the most basic ones is the ‘reduction in variance’

E(X) =

|X|∑
n=1

‖yn − ȳ‖2 , (2.24)

where

ȳ =
1

|X|

|X|∑
n=1

yn (2.25)

is the empirical mean of the labels in X. Another option is the differential entropy, i.e.,
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the continuous pendant to the discrete Shannon entropy,

E(X) = −
∫
Y
p(y|X) · log (p(y|X)) dy . (2.26)

For classification, the probability density p(y|X) can be easily computed as the empirical

distribution of labels in X. For regression, parametric but also non-parametric mod-

els exist [120] to compute (2.26). For the case of a Gaussian model, i.e., p(y|X) =

N (µ(X), σ2(X)) with mean µ(X) and variance σ2(X) of the labels in X, the integral

can be solved in closed-form. This results in

E(X) =
K

2
(1− log(2π)) +

1

2
log (det (ΣX)) (2.27)

making the computation tractable. Algorithm 3 summarizes the process of finding a

splitting function via randomized grid search.

Algorithm 3: Finding a splitting function σ(·; Θ) via randomized grid search in
RF .

input : Labeled training set X = {xn,yn}Nn=1

input : Number k of splitting functions to sample
output: Parameters Θ∗ for a splitting function σ(·; Θ)
Initialize C∗ =∞ ;
for ki from 1 to k do

Randomly sample split function parameters Θki ;
Compute the splitting costs Cki of the sampled split parameters Θki via
Equation (2.20) ;
if Cki < C∗ then

Set C∗ = Cki ;
Set Θ∗ = Θki ;

When the randomized grid search found good parameters Θ∗ for the splitting function,

we fix them, split the data into two halves, and send it to the two newly created leaf nodes.

Tree growing continues by finding splitting functions for these newly created leaf nodes.

There exist different schemes of selecting the next node for further splitting in the tree.

The two most popular ones are ‘depth-first’ and ‘breadth-first’, which are illustrated in

Figure 2.4. The depth-first variant can be seen as a recursive function that splits nodes

until a stopping criterion is reached and then continues with the next subtree. The breadth-

first variant finds splitting functions for all nodes with the same depth before continuing

with nodes deeper in the tree. Other options also exist where nodes are selected based on

the current training error or training loss in decreasing order [90]. All these procedures

start with the root node of a tree and continue in a greedy manner down the tree until

one of the defined stopping criteria is reached.
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(a) (b)

Figure 2.4: This figure illustrates two different tree growing schemes, (a) depth- and (b) breadth-
first. For both cases, the tree growing process is in iteration 6, i.e., the sixth node (marked dashed)
is under consideration for splitting. While already two final leaf nodes exist in (a) because some
stopping criteria was already met (Dmax = 4), there are no final leafs created yet in (b).

The stopping criteria for tree growing are typically the following: (i) a node reaches

a maximum tree depth Dmax; (ii) the cardinality of a node card (j) becomes smaller than

some pre-defined threshold Nmin; (iii) the set of labels XY = {yn}|XY |n=1 in node j becomes

pure. While this is easy to define for classification tasks (all samples are from the same

class), one would have to define a specific measure for regression tasks. In any of these

cases, tree growing stops and a leaf node is instantiated. The whole tree growing process

is summarized in Algorithm 4.

Algorithm 4: The tree growing process in RF .

input : Labeled training set X = {xn,yn}Nn=1

input : Parameters for stopping criteria (Dmax and Nmin)
output: A trained tree T
Initialize tree T with a single root node j = root ;
while Nodes j are left for splitting do

Select a node j to be considered for splitting (depends on depth- or
breadth-first scheme) ;
if δ (j) ≥ Dmax OR card (j) < Nmin then

Create a leaf node and prediction model p(y|x) ;
else

Create a splitting node and find parameters Θ∗ for the splitting function
σ(·; Θ∗)) via Algorithm 3 ;
Split data of current node Xj according to σ(·; Θ∗) into XLe

j and XRe
j ;

Create two children and assign the corresponding data samples.
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Prediction Models in the Leaf Nodes As soon as the tree structure is fixed, i.e.,

tree growing stopped, we are left with a set of nodes that all fulfill any of the stopping

criteria. These are the leaf nodes and we have to compute a prediction model with the

data falling into these nodes.

We now describe how to compute a prediction model for a leaf node j given a set

of data Xj ⊆ X (in the rare and unreasonable case that the root node is the single leaf

node, Xj = X). The goal is to find a function predicting the correct label y for a given

x. The leaf model has to be simple in order to keep the computational costs low and to

avoid over-fitting the data. Thus, constant models are often used. Sometimes, also linear

models are employed (see [51] or Chapter 6).

Different tasks, e.g., classification or regression, obviously require different prediction

models. For classification, the standard constant model is a multinomial distribution with

support given by the class histogram of Xj, i.e.,

p(y = c|x) =
1∣∣Xj

∣∣ |Xj|∑
n=1

I [yn = c] . (2.28)

Also for regression one can employ a constant prediction model by computing the empirical

mean ȳ of the continuous target variables y, i.e.,

p(y|x) =
1∣∣Xj

∣∣ |Xj|∑
n=1

yn . (2.29)

One can also employ a parametric approach and fit a probability distribution like a Gaus-

sian by computing mean and variance of the data. Another possibility is a non-parametric

approach (e.g., [62, 121]). Yet another option is a linear regression model

p(y|x) = W · x , (2.30)

where W is the solution of a least squares problem. Such a linear prediction model in the

leaf nodes has recently also been used for image denoising [51] and single image super-

resolution (see Chapter 6).

2.2.4.3 Making Predictions with Random Forests

After the training phase of RF , the tree structure as well as the prediction models in the

leaf nodes are fixed. Computing a prediction for a newly arriving data sample x involves

evaluating each tree in the forest independently and averaging the results. As with the

training of the trees, evaluating them can also be done in parallel, which again contributes

to the computational efficiency of RF .

Nevertheless, the main contribution to computational efficiency is the fast tree evalua-

tion process. Computing a prediction p(y|x) of sample x for a single tree Tt only requires
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to route the sample from the root node to one leaf node by evaluating the corresponding

splitting functions σ(·; ·) along this path, which is defined by the recursive function (2.15).

The data sample x thus arrives at a single leaf node in tree Tt which stores a prediction

pt(y|x). As already described before, this prediction model is mostly constant, but also

other forms (like a linear prediction model) exist.

Having computed the prediction from each individual tree, i.e., pt(y|x), one can easily

compute the final prediction via averaging as

p(y|x) =
1

T

T∑
t=1

pt(y|x) . (2.31)

Please note that this operation requires the definition of summation and division on the

label space Y. There can be special instances of Y that do not fulfill these requirements,

especially for structured prediction tasks like semantic segmentation [89] or contour de-

tection [43]. For these cases, only a similarity is defined on instances of Y. While one

solution to make predictions is to relax Y in order to fulfill the above mentioned require-

ments, another one could be to select only a single instance from all predictions of the tree

based on the similarity measure, cf. [43].

The computational costs of inference in a single tree are only logarithmic in the number

of nodes of the tree (assuming a balanced tree). In particular, routing a single sample x to

the corresponding leaf node costs at most Dmax−1 times the costs of evaluating a splitting

function σ(·; ·). The computational costs of the full prediction also includes the costs for

evaluating the leaf nodes, which is often a constant factor.

2.2.4.4 Discussion and Properties of Random Forests

In this last section on RF , we briefly summarize some properties of this learning algorithm.

We start with the basic benefit (among others) that makes RF a popular choice for

many applications in the ML and computer vision communities: the efficient training and

inference procedures. The efficiency stems from the independent training and evaluation

of the trees, where parallel computing on multiple CPU cores can be easily exploited.

Also the randomized grid search used for finding splitting functions in the training phase

of RF (see Section 2.2.4.2) is efficient. Tuning the parameters of this grid search (e.g.,

the number of splitting functions to be evaluated) has a direct influence on the training

time but often little effect on the accuracy of the resulting prediction model. As the

diversity of the trees in RF is required for a good generalization, inducing a larger factor

of randomization via a smaller search space in the grid search (and thus faster training)

can even be beneficial [155]. Moreover, the tree structure of the model allows for a quick

prediction of a new data sample x. Only a small fraction of the learned splitting functions

(those that define the way from the root to the leaf node) have to be evaluated. Evaluation

of a splitting function is always conditioned on the outcome of previous splitting functions

(except for the root node obviously). When assuming a balanced tree, one only needs to
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compute as many splitting functions as levels of depth in the tree. Thus, the costs for

accessing the prediction model in RF is only logarithmic in the number of nodes of a tree.

Obviously, the leaf node prediction model itself also has to be evaluated. In most cases,

though, this is a simply constant or linear (cf., Chapter 6) model.

Another interesting property of RF is the easy and effective handling of multi-class

problems. The training algorithm separates the data space and learns local prediction

models in all leaf nodes, which correspond to multinomial probability distributions. Thus,

computing the probability of a test sample x for a certain class c only requires routing x

to the corresponding leaf nodes and a look-up in the distribution. This stands in contrast

to many other ML algorithms (Boosting , SVM ) that either need a separate and often

complicated formulation for the multi-class case [33, 207] or have to rely on heuristics like

one-vs-one or one-vs-all. A notable exception is NN , which also builds upon a natural

multi-class formulation. Nevertheless, all of the above approaches except RF have a linear

dependence on the number of classes C regarding the inference costs.

As already mentioned in the beginning of this chapter, generalizing to unseen data is

the ultimate goal of an ML algorithm. We can generally define the generalization error εG
as the expectation of misclassification

εG = EX×Y

[
I

[
max

ŷ
p(ŷ|x) 6= y

]]
. (2.32)

Interestingly, RF do not over-fit on the training data with an increasing number of trees

(and thus a more complex model) but saturate at some point. Breiman provides a proof

based on the strong law of large numbers in [23]. However, in practice one can observe

over-fitting either due to too deep trees or high correlation between the prediction of the

trees. While the tree depth is a hyper-parameter set by the user (typically based on

experience and/or properties of the task at hand and the given training data), correlation

between trees is a property of the randomized grid search and the training of RF (see

Section 2.2.4.2). Breiman [23] also gives an upper bound on the generalization error as

εG ≤ ρ̄ ·
1− s2

s2
, (2.33)

where s is the strength of the trees and ρ̄ the average correlation between them. Defining

these two quantities requires the margin function of RF

mrf(x,y) = EΘtree [p(y|x,Θtree)]−max
ŷ 6=y

EΘtree [p(ŷ|x,Θtree)] , (2.34)

where Θtree is a random variable defining all parameters of a tree (splitting functions,

etc.). Then, the strength and the average correlation can be defined as

s = EX×Y [mrf(x,y)] (2.35)
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and

ρ̄ =
EΘtree×Θ′tree

[ρ(Θtree,Θ
′
tree) · std(Θtree) · std(Θ′tree)]

EΘtree×Θ′tree
[std(Θtree) · std(Θ′tree)]

, (2.36)

respectively, where std(·) is the standard deviation [23]. While an exact derivation of the

upper bound εG in Equation (2.33) can be found in [23], the basic intuition behind it is

the following: Minimizing the generalization error requires strong but uncorrelated trees.

The good generalization property of RF can also be argued from another point of

view, namely the bias-variance dilemma already discussed in Section 2.1.1. We already

discussed and explained the beneficial properties on the generalization performance of av-

eraging weaker models for bagging in Section 2.2.1. The consensus of individual models

with low bias but high variance can reduce the variance while keeping also the bias low.

If the individual models are independent, the averaging typically pays off most. While

bagging only achieved different individual models by using slightly different training data,

RF additionally introduce randomization into the training process leading to more uncor-

related trees.

2.3 Summary

In Section 2.1 of this chapter, we first introduced important ML concepts that are required

throughout the thesis. We described supervised learning for different tasks like classifica-

tion or regression and define the basic tools like a loss function, the data space and the

label space. We also briefly outlined other forms of ML that work with less supervision,

e.g., semi-supervised learning.

We then recapitulated ensemble methods in Section 2.2, which builds the basis for the

main contribution of this thesis as presented in the next chapter. Ensemble methods are

a special case of ML algorithms that combine several weak learners into a single strong

model. Boosting is a popular representative and is described in Section 2.2.2. While

Boosting is limited in the loss function that is optimized during the training phase, GB can

handle any differentiable loss. This learning algorithm interprets Boosting as functional

gradient descent. Another ensemble method we need for our novel training algorithm,

which is presented in the next chapter, is RF . This algorithm uses randomized trees as

weak learners that are trained independently from each other, in contrast to Boosting

approaches. In Section 2.2.4 we describe this learning algorithm and provide the required

details for later chapters.

Reference:

 ()


Reference:

 ()




CHAPTER 3

Alternating Decision and Regression Forests

In the previous chapter we introduced Random Forests (RF) as a very flexible Machine

Learning (ML) technique for different tasks like classification or regression. We also pre-

sented several computer vision applications that successfully employ RF and show its

importance in this field. In this chapter, we propose a novel training scheme for RF that

is able to optimize a global loss function over all trees, instead of training them indepen-

dently. We denote this algorithm Alternating Decision and Regression Forests (ADRF),

which was originally presented in [156] and [158]. After having motivated the novel train-

ing scheme in Section 3.1, we describe ADRF in detail and discuss its properties as well

as related work in Sections 3.2 and 3.3. Finally, this chapter also contains a thorough

evaluation of the proposed training scheme on several classification and regression bench-

marks from the ML community (see Section 3.4). We also conduct several experiments

to get a better understanding of the intrinsic properties of ADRF . Beside the ML bench-

marks, ADRF can also be applied to different computer vision applications, which we

demonstrate in the remaining chapters of this theses (Chapters 4 to 6). These applica-

tions include object detection, human head pose estimation from depth data, as well as

single image super-resolution.

3.1 Introduction

Typical machine learning algorithms like logistic regression, Support Vector Machine

(SVM), Boosting (Boosting), or Neural Networks (NN) optimize a well-defined objective

function for the task at hand. As described in Chapter 2, the objective function measures

how well the training examples are already predicted by the current model and typically

also includes some form of regularization on the model complexity. Multi-class logistic

33
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regression (or softmax regression), for instance, minimizes the negative log likelihood

Θ∗ = arg min
Θ

1

N

N∑
n=1

L(yn, fLR) + λ · Γ(Θ) , (3.1)

with

L(yn, fLR) = −
C∑
c=1

[yn = c] · log (fLR(c; xn,Θ)) (3.2)

and

Γ(Θ) =

C∑
c

‖Θc‖2 . (3.3)

The operator [·] in Equation (3.2) is the Iverson bracket, Θc ∈ RD are the model parameters

for class c, and the prediction of the logistic regression model for class c and data sample

x ∈ RD is defined as

fLR(c; x,Θ) =
eΘ>c x∑C
ĉ=1 e

Θ>ĉ x
. (3.4)

Another example is the binary SVM that also optimizes Equation (3.1) to learn the

model parameters. In contrast to logistic regression, though, the SVM employs the hinge

loss

L(yn, fSVM) = max [0, 1− yn · fSVM(xn,Θ)] , (3.5)

where fSVM = Θ>x, and y ∈ {−1,+1}. NN , Boosting , and other learning algorithms

have similar objective functions. Importantly, all of them include the prediction of the

current state of the full model during the training phase in order to minimize a given loss.

For RF the training scheme is different. RF consist of a set of binary trees, where

each of them is trained independently from each other. One benefit of independently

training the trees is clearly the easy parallelization and thus efficient training on modern

machines with many CPU cores. Independent training of the trees also leads to diversity

in the ensemble, which is essential for the success of random forests [23]. As described in

Section 2.2.4.4, independence between the trees and the amount of randomization induced

in each single tree control the diversity. However, the right amount of diversity is typically

unknown and depends on several, task-dependent factors including the choice of splitting

functions, the type of bagging, etc. On one side of the spectrum, we find extremely

randomized forests [65], where randomization in the splitting functions is relatively high.

The formulations of Rota Bulò and Kontschieder [141] or Yao et al. [202] operate on the

other side of this spectrum. These works incorporate NN or SVM as splitting functions,

however, both include a form of regularization to keep randomization and, thus, diversity

between the trees.

Still, while the trees in RF are trained independently, the predictions on new test data

are made based on the combination of all trees, e.g., via averaging the results. Thus,
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the prediction of the final model is not considered during training, which stands in clear

contrast to the above mentioned learning algorithms. One obvious solution to incorporate

a well-defined loss function into RF is to use Boosting to train all trees. As described

in Section 2.2.2, Boosting can be seen as a meta-learning algorithm for an ensemble of

learners, where each single (weak) learner is trained after the other and the objective

function is updated intermediately. However, by doing so, RF lose their attractive property

of parallel, and thus efficient, training.

In this chapter, we tackle this issue and present ADRF that optimizes a well-defined

loss function over all trees in the ensemble, while keeping the computational benefits of

RF (see Section 3.2). The weak learners, i.e., the trees, are not trained one after the other

as in Boosting , but the optimization of the loss function is directly integrated into the tree

growing process. The trees are trained in a breadth-first manner, enabling the ensemble

to make reasonable predictions on the training data after growing each level of depth.

This, in turn, allows for using a well-defined loss function that takes the predictions of

all the trees into account, as in other learning algorithms. The proposed algorithm thus

alternates between optimizing the loss function and growing the trees by one level of depth,

which is inspired by Gradient Boosting (GB). We discuss the relation of ADRF and GB in

Section 3.2.4. The incorporation of a global loss function over all the trees also bears the

potential risk of inducing dependence between the trees and, thus, lowering their diversity.

However, we empirically show in Sections 3.4.1.5 and 3.4.2.5 that actually the opposite is

true for ADRF .

Also note that the presented approach only affects the training of RF and does not

touch the inference, thus inheriting all the beneficial properties of RF during inference.

ADRF can be applied for classification as well as regression tasks, which we describe

in Sections 3.2.3 and 3.2.2, respectively. The novel training scheme can thus be easily

employed in many applications relying on RF , which we will see in the later chapters of

this thesis.

3.2 Alternating Decision and Regression Forests

We now present the main contribution of this thesis, which we originally proposed in [156]

and [158]. After having described the general training scheme of ADRF in the following

section, we present the specializations for regression and classification in Sections 3.2.2

and 3.2.3, respectively. Finally, in Section 3.2.4 we discuss the proposed learning scheme

in more detail.

3.2.1 A Stage-Wise Random Forest Model

In order to optimize a global loss L(·) over all trees, we could easily train boosted trees

as mentioned before. However, the goal of ADRF is to explicitly integrate the global loss

into the tree growing scheme, thus preserving the parallel training of standard RF . For
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(a) Training scheme of ADRF
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(b) Training scheme of GB

Figure 3.1: Comparison between the training schemes of ADRF and GB . In both cases, (a) and
(b), we illustrate the iterative training process vertically. Each stage is marked with a colored bar
on the left (red, blue, and green). This example has only three training iterations, d = 1, . . . , 3 =
Dmax. For ADRF (a), this corresponds to the level of depths that are trained. For GB (b), this
corresponds to the number of trees in the model. In both cases, the light orange area indicates that
part of the model that is currently learned. To end up with a model having the same complexity, we
use three trees for ADRF and the same tree depth for GB as in ADRF . The difference between the
training schemes is how the ensemble of trees is build up: (a) In ADRF , the gradient computation
is directly integrated into the tree growing process. All trees are initialized with their root nodes.
After finding splitting functions for the current level of depth, the gradients are updated and the
trees continue to grow. (b) In GB , the trees are added sequentially into the model. Each iteration
consists of gradient computation based on the existing set of trees in the model and full training
of a new tree.

that purpose, we need a stage-wise tree growing scheme during which we can evaluate the

loss L(·) of the current model and update the training set correspondingly, akin to GB

(see Section 2.2.3).
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To get a stage-wise classifier, we let our trees Tt grow in an iterative, breadth-first

manner, contrary to a typical depth-first scheme in standard RF . We start with an initial

model F0(x), which consists of the T root nodes, and let the trees grow stage by stage.

Each stage in ADRF corresponds to a single depth of the forest, i.e., all nodes j having the

same depth δ (j) = d. The iterations are thus indexed with d = 1, . . . , Dmax, where Dmax

is the maximum depth of the trees. Note that we can also use other stage-wise training

schemes, e.g., a fixed number of nodes to be grown iteratively in a breadth-first manner.

In any case, after training a single iteration d, we always have a ready-to-use prediction

model Fd(xn) = 1
T

∑T
t=1 p

d
t(yn|xn), which is also true for F0(x). Here, pdt(yn|xn) is the

estimated label prediction of sample xn returned by tree T d
t , which denotes tree Tt grown

up to iteration d.

We can now use this strong classifier Fd(x) and a given loss function L(·) to compute

the negative gradients −gd+1(xn), cf., Equation (2.12), which are used for training the

next stage d + 1. This is done by converting all leaf nodes in the current iteration into

split nodes and finding appropriate parameters Θ for each of them by using the computed

negative gradients. This process of alternating between training a single stage d of the

forest and updating the negative gradients −g(x) for the next stage is repeated until the

same stopping criteria as in standard RF are reached (see Section 2.2.4). Hence, we name

this learning method Alternating Decision and Regression Forests. We give an illustrative

overview of this scheme in Figure 3.1, which also includes a comparison to GB . We detail

the algorithm for classification and regression in the following two sections, respectively.

Finally, we note that inference in ADRF is exactly the same as in RF , i.e., ADRF also

inherits the properties of low computational costs during the testing phase. Thus, ADRF

can incorporate well-defined losses into the training of RF , however, without violating

their most important benefits and characteristics.

3.2.2 The Regression Case

For regression, the label space Y is continuous and K-dimensional. As described in

Sec. 2.2.4, the prediction in the leafs of RF can take different forms, e.g., constant, linear,

etc. We can thus directly use the same formulation as in GB and compute the intermedi-

ate training data set Xgd = {xn,−gd(xn)}Nn=1 for training stage d of the trees. We call the

labels of this intermediate training set, i.e., −gd(xn), ‘pseudo targets’. Figure 3.2 gives

an illustration of the intermediate training set. Please note that newly created leaf nodes

(after splitting) will give predictions about these ‘pseudo targets’ and already existing

internal nodes also give predictions.

Unlike in Boosting (with trees or decision stumps as weak learners), where the path

of any sample x is unknown beforehand, in ADRF , this path is always fixed as we have

a hierarchical classifier structure. Thus, we can immediately add the target distribution

ppa(y|x) of the parent node, i.e., the new split node in depth d− 1, to the current target
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Stage d− 1

Training samples

(x1,y1 = 3)

(x2,y2 = 5)

Predictions of forest

Fd−1(x1) = 1

Fd−1(x2) = 6

Pseudo targets

(x1,y1 = 3)→ −g1 = 3− 1 = 2

(x2,y2 = 5)→ −g2 = 5− 6 = −1

Stage d

Intermediate training samples

(x1,−g1 = 2)

(x2,−g2 = −1)

blue: prediction, green: groundtruth, red: pseudo targets

Figure 3.2: Exemplary illustration of the ‘pseudo targets’ in Alternating Regression Forests
(ARF) used to train the intermediate stages. Here, we have a 1-dimensional regression problem
and we inspect two training examples, (x1,y1 = 3) and (x2,y2 = 5). Green values indicate the
ground truth values of these examples. In stage d−1, the forest predicts 1 and 6 for these examples,
respectively (indicated in blue). Assuming a squared loss, whose derivative is simply the difference
between ground truth and prediction, we compute the ‘pseudo targets’ marked in red. This results
in −g1 = 2 and −g2 = −1. In stage d, these ‘pseudo targets’ are used in an intermediate training
set to search for new splitting functions.

distributions pch(y|x) of the new child nodes in stage d as

pch(y|x) = ν · pch(y|x) + ppa(y|x) , (3.6)

where ν is again the shrinkage factor as already described for GB in Section 2.2.3. This

update equation above can be seen as an equivalent to Equation (2.14) in GB . The shrink-

age factor ν corresponds to a learning rate that weights the gradients −g. Please note that

we also could have created the intermediate training set as Xgd = {xn, ν · −gd(xn)}Nn=1

instead of applying ν in Equation (3.6). While the shrinkage factor for GB is often set

ν = 0.1, for ADRF the default setting is ν = 1. The reason is the small number of training

iterations in ADRF compared to GB , which is limited by the maximum tree depth Dmax.

In any case, after having updated the prediction in the new child nodes as defined above,

we set ppa = 0 and continue the training of ADRF with iteration d + 1. The interme-

diate classifier Fd(x) can thus be used like a standard RF for making predictions, see

Figure 3.3. We call this instance of our approach Alternating Regression Forests (ARF)

and summarize the complete training procedure in Algorithm 5.

Typical loss functions for the regression case include the squared (LR
`2

(r) = ‖r‖2), the

absolute (LR
`1

(r) = |r|), and the Huber loss (well known from robust statistics [75])

LR
Huber,δ(r) =

{
1
2r2 for |r| ≤ δ
δ(|r| − 1

2δ) otherwise
, (3.7)

where r = y − F(x) defines the residual. The squared loss is the most restrictive one,

giving relatively high penalty to samples that are incorrectly regressed, compared to, e.g.,
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Figure 3.3: Transforming the stage-wise additive model used in ADRF to minimize a common
loss function over all trees into a standard RF model. The original additive model stores predictions
in each node, also in internal nodes. This is indicated with the two dimensional regression targets
(arrows) below each node in the left part of the figure. As the path from the root to each single leaf
node is fixed after training, the predictions can be propagated from the root node to the leaf nodes
by adding them. This is done by adding the predictions from the previous level to the current ones
until the leaf nodes are reached (left to right in the figure). Predictions from different levels are
highlighted with different colors. The final predictions (right) are black.

the absolute loss. The Huber loss [75] can be adapted with the parameter δ, resulting

in different shapes of the loss. It behaves like a squared loss for residuals below δ and

like an absolute loss for residuals above δ. We visualize these loss functions for the one-

dimensional regression case in Figure 3.4a. However, note that any differentiable function

could be employed in theory.

Algorithm 5: Training of Alternating Regression Forests

input : Labeled training set {xn,yn}Nn=1 ∈ X × Y
output: Trained forest FDmax

Init F0 as T root nodes with p0
t(y|x) ;

for d from 1 to Dmax do
Check stopping criteria for all nodes in depth d ;
Calculate predictions Fd−1(xn,Θ) of all samples ;
Calculate ‘pseudo targets’ −gd(xn), Equation (2.12) ;
Find splitting functions for stage d with Xgd ;
Calculate pch(y|x) in all (intermediate) leaf nodes ;
Add ppa(y|x) to corresponding pch(y|x), Equation (3.6) ;
Set ppa(y|x) = 0 ;
Set Fd(x) = Fd−1(x) + fd(x) ;

3.2.3 The Classification Case

For the classification case, where we term our method Alternating Decision Forests

(ADF), one cannot directly use the gradients from (2.12) because of the discrete label

space Y. As already described in Sec. 2.2.3 and also employed by other boosting
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Figure 3.4: (a) Different loss functions for regression problems. The squared loss gives the
highest penalty to data samples with high (absolute) residuals. The absolute loss has a linear
relation between residuals and penalty and results in a constant gradient. The Huber loss can
be adapted with the parameter δ and shows a squared form near 0 and becomes linear for larger
(absolute) residuals. (b) Different loss functions for classification problems. The logit, hinge, and
exponential loss are convex functions and thus give high penalty for misclassified data samples.
On the other hand, the savage and tangent losses are non-convex and flatten with increasingly
negative margin. This property makes them more robust to label noise than other loss functions.

approaches [58, 59, 147], we interpret the norm of the gradient as importance weight for

each training sample, see Equation (2.13).

For ADF , we can also easily compute the weights wd
n with the classifier from the pre-

vious stage Fd−1(x). However, to find splitting functions for all nodes in stage d, we have

to take these weights into account. To do so, we need to adapt the compactness measure

E(X), which is either the Shannon entropy (Equation (2.21)) or the Gini index (Equa-

tion (2.22)) for the classification case. For both cases, the weights need to be integrated

into the computation of the class distributions p(c|XY) for the set XY . This can easily be

done as

p(c|XY) =

∑|XY |
n=1 I [yn = c] · wd

n∑|XY |
n=1 wd

n

. (3.8)

Here, I [yn = c] is the indicator function returning 1 if the label yn ∈ XY is equal to c,

and 0 otherwise. Note that we never create an intermediate training set for ADF , which

means that adding up predictions from previous stages is not required as in ARF , cf.,

Equation (3.6). Thus, also the shrinkage factor ν is irrelevant for ADF .

Typical loss functions for the classification case include the log, the hinge, or the

exponential loss. While these loss functions are typically less robust to noise, the Sav-

age [113] and Tangent [112] losses define two robust, non-convex functions. We illustrate

these choices in Figure 3.4b. Please note that all these loss functions are defined over the
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classification margin

m(yGT,x) = F(yGT|x)− max
y 6=yGT

F(y|x) , (3.9)

which is the difference between the prediction of the model for the ground-truth label yGT

and the highest prediction for any other class. Thus, the loss can be written as

L(yGT,F(x)) = L(m(yGT,x)) (3.10)

and the corresponding derivative with respect to the classifier output F(x) can be com-

puted via the chain rule

∂L(yGT,F(x))

∂F(x)
=
∂L(m(yGT,x))

∂m(yGT,x)
· ∂m(yGT,x)

∂F(x)
. (3.11)

as described in [144] (Appendix A). Algorithm 6 summarizes the classification case.

Algorithm 6: Training of Alternating Decision Forests

input : Labeled training set {xn,yn}Nn=1 ∈ X × Y
input : Maximum tree depth Dmax

Init F0 as T root nodes with p0
t(y|x) ;

Init weights w1
n = 1

N
;

for d from 1 to Dmax do
Check stopping criteria for all nodes in depth d ;
Split nodes in depth d by considering wd

n, Equation (3.8) ;
Update weights wd+1

n , Equation (2.13) ;

3.2.4 Discussion

In the following, we briefly discuss the properties of the proposed ADRF and compare it

with related approaches like boosted trees [75] and regular random forests [4, 23].

The alternating tree growing scheme in ADRF can be interpreted as a guided training

of each single tree, but also as an explicit collaboration between all trees in the model. All

nodes in the trees concentrate on hard-to-predict training samples having high gradients

gd(xn) and, thus, do not waste effort on samples that are already learned relatively well

by the entire model. This property is obvious for the classification case with the explicit

computation of weights depending on the gradients. It is also clear for the regression

case as larger ‘pseudo targets’, i.e., gradients, will have more influence on the objective

for finding splitting functions. However, unlike boosted trees, this global loss is now an

inherent part of RF . As we show in our experimental evaluations, this property of ADRF

typically leads to more compact models in terms of tree depth.

When interrelating the training process of the individual trees in RF , one has to take
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care of the generalization error εG, which we defined in Equation (2.32). It can also be

upper bounded based on the strength of the trees s and the average correlation between

the trees ρ̄, see [23] and Equation 2.33. A low generalization error requires strong but

uncorrelated trees. While ADRF explicitly enforces the collaboration of all trees in the

forest, the correlation ρ can be kept low as in standard RF , because (i) the splitting

functions σ(x; Θ) are still drawn completely random and (ii) the set of samples falling in

common nodes is different for each tree. In fact, our experimental evaluations on strength

and correlation of trees in Sections 3.4.1.5 and 3.4.2.5 for classification and regression,

respectively, show an interesting and probably unexpected behavior. Trees in ADRF are

even less correlated than standard RF , while, at the same time, individual trees in ADRF

perform worse than those of RF . Giving more thoughts on this aspect, we realize that

this behavior is actually encouraged by the common loss function over the ensemble. The

performance of individual trees in the ensemble becomes less important when the training

objective is evaluated on the average of all trees. The full ensembles gains center stage.

Continuing the thought about strength and correlation of trees in RF and ADRF , the

effect of the degree of randomization and the number of trees in the ensemble becomes

interesting. In Section 3.4.2.6, we conduct such an experiment on regression benchmarks

and compare the behavior of RF and ADRF . As expected, it turns out that ADRF

better handles the interplay between the amount of randomization and the model size

(i.e., number of trees T).

We further want to discuss the relations between ADRF and boosting with

stumps/trees as weak learners, i.e., boosted trees. Alternating between training a full

tree and updating the gradients would correspond to boosted trees. Although ADRF can

be equivalently formulated, there are two main differences. First, boosted trees define a

weak learner as a full tree, i.e., all splitting functions in the tree, which is a hierarchical

model and hard to parallelize. In contrast, ADRF regards the weak learners as one

level of nodes over a set of trees, i.e., a subset of the splitting functions, which can be

better parallelized. Thus, boosting pools from the same space of weak learners in all

iterations, i.e., the number of splitting functions is the same. In contrast, for ADRF ,

this space increases over time as the number of split functions to be optimized typically

increases in each iteration. Second, boosted trees train a weak learner from scratch in

each iteration, e.g., a new classification or regression tree. Contrary, in ADRF , a weak

learner corresponds to all splitting functions in a single iteration d. This implies that

for d > 0 the training samples are conditioned on the structure of the trees up to depth

d− 1, which eases the task for the weak learner in the current iteration.

Finally, we also discuss the computational costs of training ADRF , boosting, and RF .

In boosting, the overall classifier corresponds to a flat additive combination of the weak

learners, e.g., decision or regression stumps/trees. Thus, each weak learner has to be

trained consecutively, which may take a long time to get a desired model complexity for

the task at hand. In contrast, ADRF regard each depth of the forest as a single weak

leaner, i.e., several different splitting functions σ(x; Θ), thus being able to parallelize them.
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Standard RF can also be trained easily in parallel, which also makes them fast during both

training and testing, however, without optimizing a global loss.

3.3 Related Work on ADRF

Freund and Mason [57] presented an algorithm to represent AdaBoost [59] as a single

decision tree, which is one of the works inspiring ADRF . Although the method is termed

Alternating Decision Tree or AD Tree, it is quite different to the algorithm presented in

this work. In more detail, an AD Tree consists of two different types of nodes, a split node

and a predictor node, which are alternated during training. Several split nodes can be

attached to a single predictor node, thus allowing for multiple paths of a single example

to traverse down the tree. This entity makes both training and inference rather slow. In

contrast, ADRF sticks with the basic binary tree structure as in standard decision trees

and RF , but still defines the loss over the full ensemble of trees.

In ADRF , the individual trees become interdependent or entangled during training,

contrary to RF , where the trees are trained independently. This is similar to the works

like [117] and [90] that train decision trees breadth-first or according to a priority queue, in

order to incorporate contextual features into the learning process. However, both works

only consider the predictions within a single decision tree and use those predictions as

additional features for the splitting functions in the subsequent stages. In contrast, ADRF

collects the information from the whole classifier, i.e., all trees, and uses the predictions in

order to minimize a global loss function. Extending ADRF to incorporate such contextual

information as features for splitting functions is straightforward.

Another work that integrates a differentiable loss function into the tree growing process

is that of Jancsary et al. [83], where the leaves of the trees store parameters for a Gaussian

conditional random field with different interaction types. Each factor type is only associ-

ated with a single tree but they are connected implicitly via the random field. In contrast,

ADRF trains a set of trees, which are connected via averaging over the predictions, i.e., a

generic RF .

We also would like to point out the differences of ADRF to boosted trees [75], i.e.,

standard boosting with trees as weak learners. As mentioned before, in boosted trees,

the weak learners are trained sequentially and the gradients are updated after training

each single tree. This makes the whole training phase much slower than ADRF , as no

parallelization is possible. Furthermore, during training a single weak learner in boosted

trees, the gradients −gd(xn) are not updated. Contrary, in ADRF , it is exactly this

property that allows for learning more compact models as the growing of each tree is

guided by the gradient updates from the previous stage in the trees.

Reference:

 ()


Reference:

 ()


Reference:

 ()


Reference:

 ()


Reference:

 ()


Reference:

 ()




44 Chapter 3. Alternating Decision and Regression Forests

3.4 Experimental Evaluation on Machine Learning Data

In this section, we start with our experimental evaluation of ADRF for both classification

and regression tasks on standard machine learning benchmarks. We also analyze various

parameters of ADRF on these benchmarks and investigate some properties compared to

regular RF and GB .

3.4.1 Classification Experiments

Our experiments on classification benchmarks give a detailed analysis of the proposed

classifier, i.e., ADF . After outlining the experimental setup in Section 3.4.1.1, we first

compare ADF with the most related competing methods, i.e., RF and GB on 7 different

data sets (see Section 3.4.1.2). We also investigate different choices of the loss function.

Then, we evaluate the influence of several important parameters common to ADF , RF ,

and GB on the overall classification performance in Section 3.4.1.3. Finally, we analyze

the proposed algorithm in more detail. We investigate the evolution of the gradients in

Section 3.4.1.4 and the strength and correlation of the trees in Section 3.4.1.5.

3.4.1.1 Experimental Setup and Data Sets

For a fair comparison between all three classifiers we set the common parameters to the

same values. We set the number of trees T = 100 (for GB , this is equivalent to the

number of weak learners), the maximum tree depth Dmax = 15, the number of random

splits evaluated per node to
√
D [23], the number of random thresholds per split function

to 10, and, finally, the minimum number of samples for further splitting to 5. These are

standard settings that yield good overall results on all data sets. Keep in mind that tuning

these parameters can boost the performance on a single data set, but, at the same time,

also worsen it on another one.

For all results, we report the mean and standard deviation of the classification er-

ror over 5 independent runs as all classifiers are non-deterministic. In order to evaluate

the statistical significance of our results, we perform a t-test with a significance level of

α = 0.1% on the classification error. In particular, we apply a Welch’s t-test [193] as we

assume unequal variances for the different methods evaluated. For each method under

investigation, our null hypothesis is that the classification error of this method is equal

or worse than RF . For both, ADF and GB , we expect the null hypothesis to be rejected.

Even though the t-test assumes a Gaussian distributed measured variable (the classifica-

tion error), which is not necessarily the case here, we empirically find that it is a good

approximation. We successfully applied an Anderson-Darling test [5] and also show a

normal probability plot for both RF and ADF for one data set in Figure 3.5.

To compare ADF with related approaches and to investigate different parameter set-

tings, we use 7 standard machine learning data sets. These are the data sets Letter (Let),

Mnist, PenDigits (PD), and Protein (Pt) from [55], the USPS data set [82], the Char74k
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Figure 3.5: Normal probability plots for the classification error of (a) RF and (b) ADF . We
used 100 independent runs on the USPS data set. The more the blue pluses build a linear shape
(red dash-dotted line), the more their underlying probability distribution gets closer to a normal
distribution. For both cases, the distribution of the classification error is almost normal distributed
and the data also passes an Anderson-Darling test [5] (see text for more details).

Properties Let USPS Mnist C74k OF PD Pt

#Train 16k 7291 60k 66.7k 320 7494 14.9k

#Test 4000 2007 10k 7400 80 3498 6621

#Features 16 256 784 64 4096 16 357

#Classes 26 10 10 62 40 10 3

Table 3.1: Properties of the 7 machine learning data sets (columns) used in our evaluation for
the classification task. Each row defines a different quantity: (i) number of training examples, (ii)
number of test examples, (iii) feature dimensionality D, and (iv) number of classes C.

(C74k) data set [27], and the OlivettiFaces (OF) data set [146]. The properties of these

benchmarks are summarized in Table 3.1.

3.4.1.2 Comparison of ADF with Other Classifiers

In this section, we compare all methods against each other on all 7 data sets. As the

common parameters of ADF , RF , and GB are set equally, as mentioned before, we directly

compare the way the tree structure is built. For ADF and GB we evaluate 5 different

loss functions: Logit, Hinge, Exponential, Savage [113] and Tangent [112], see Figure 3.4b.

Table 3.2 depicts our results. One can observe that ADF and GB with the two robust loss

functions (Savage or Tangent) share the top performing ranks. ADF wins on 4 and GB

on 3 data sets (highlighted in green). Second and third ranks (highlighted in blue and red,

respectively) are also typically shared by ADF and GB with one of these loss functions.
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Method Loss Let USPS Mnist C74k OF PD Pt

RF - 3.41± 0.13 5.81± 0.18 2.84± 0.05 17.81± 0.22 3.70± 0.84 3.11± 0.10 30.76± 0.33

GB Hinge 3.27± 0.13 5.79± 0.19 2.82± 0.04 17.62± 0.10 3.65± 0.88 3.02± 0.12 30.90± 0.22

Logit 3.28± 0.15 5.75± 0.16 2.81± 0.04 17.45± 0.19 2.95± 0.80 3.11± 0.11 30.73± 0.33

Exp 3.22± 0.11 5.73± 0.19 2.77± 0.04 17.10± 0.10 3.00± 0.72 3.15± 0.13 30.77± 0.37

Savage 3.02± 0.11 5.67± 0.19 2.68± 0.09 16.67± 0.17 2.90± 0.70 3.06± 0.09 30.66± 0.37

Tangent 2.90± 0.14 5.64± 0.14 2.66± 0.08 16.27± 0.32 2.80± 0.54 2.86± 0.12 30.82± 0.36

ADF Hinge 3.45± 0.15 5.77± 0.14 2.82± 0.04 17.75± 0.28 3.65± 1.14 3.14± 0.10 30.86± 0.34

Logit 3.24± 0.14 5.69± 0.16 2.75± 0.05 17.44± 0.12 3.45± 0.83 3.03± 0.11 30.68± 0.34

Exp 3.16± 0.14 5.68± 0.14 2.61± 0.06 17.22± 0.26 3.25± 0.81 2.99± 0.14 30.61± 0.39

Savage 3.03± 0.09 5.61± 0.18 2.57± 0.06 17.06± 0.10 3.30± 0.95 2.91± 0.15 30.72± 0.34

Tangent 2.95± 0.12 5.55± 0.17 2.52± 0.09 16.78± 0.09 3.10± 0.89 2.87± 0.12 30.87± 0.29

Table 3.2: ADF compared with the two main competitors, RF and GB , on 7 data sets. The best performing methods are marked green, 2nd
best blue, and 3rd best red. We indicate statistical significance of the results bold-face. As can be seen, ADF and GB clearly outperform
the standard RF algorithm on all data sets. Note that each method has the same model complexity in terms of number of trees T and
maximum tree depth Dmax.
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Method Let USPS Mnist C74k OF PD Pt Average

ADF 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

RF 0.9 0.8 0.7 0.8 0.9 0.6 1.1 0.8

GB 2.9 5.2 6.7 3.7 3.8 3.1 9.1 4.9

Table 3.3: Comparison of the training time between the three main competitors on 7 data sets.
All values are relative to GB . One can clearly see that GB is slower to train than both ADF and
RF . On Mnist, GB even takes 6 times longer to train compared to ADF . RF is slightly faster to
train than ADF (on average over the data sets) as no synchronization between the trees is required.

While the classification error of both ADF and GB are more or less equal, Table 3.3

reveals one of the main advantages of ADF over GB , namely the training time. We provide

a relative comparison of RF and GB to ADF in Table 3.3. As expected, GB is much slower

to train (up to 8 times), while ADF and RF have similar training time. ADF is typically

slightly slower to train, which is obviously due to the additional synchronization of the

trees in order to compute the intermediate gradients, as well as the gradient computation

itself. However, for some data sets, ADF is even faster to train, which can be explained by

a faster convergence of the trees, i.e., the creation of pure leaf nodes earlier in the tree due

to the guided training. Thus, ADF in combination with a robust loss function inherits

the beneficial computational costs from RF , while consistently outperforming RF on all

data sets.

As mentioned before, we also include a statistical significance test in our results. In

Table 3.2, we thus mark those results that are better than RF with statistical significance

as bold-face. For all but one data set (USPS ), ADF and GB achieve this goal and reject

the null hypothesis.

It is also worthwhile to investigate the influence of the different loss functions. The

Logit, Hinge and Exponential losses are typically outperformed by the Savage and Tangent

losses for both methods, ADF and GB . This indicates that the non-convexity of the loss,

and thus the robustness to outliers (see Section 3.2.3 and Figure 3.4b), plays a crucial role

for the weight updates and thus the tree growing. For our further experiments, we fix the

loss function to be the Tangent loss, as we can expect the best overall performance.

3.4.1.3 Parameter Evaluation

In this section, we analyze several parameters that influence the behavior of the three

learning algorithms, RF , GB , and ADF .

First, we evaluate the influence of two important parameters common to all evaluated

classifiers on the Letter and Pendigits data sets. We investigate the number of trees

T and the maximum tree depth Dmax, which we vary in the ranges [1, 500] and [5, 25],

respectively. As mentioned before, we choose the Tangent loss for both ADF and GB due

to the good overall performance in the previous experiment.
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It is obvious that ADF and GB only improve over RF for larger number of trees (see

Figures 3.6a and 3.6b). If the number of trees is small, both ADF and GB do not have the

chance to extract reliable information about the current state of the classifier. Thus, the

performance is more or less the same as RF in this regime. However, as soon as the number

of trees increases, also the performance of ADF and GB increases and outperforms RF .

The behavior of the second parameter, i.e., the maximum tree depth Dmax, is different.

Here, ADF and GB consistently outperform RF (see Figures 3.6c and 3.6d). This can

be explained by the fact that the weight updates can rely on more stable predictions, as

a larger number of trees is available, regardless of the current depth of the trees. This

experiment also reflects the guidance of the tree growing mentioned in Sec. 3.2.4, as RF

need deeper trees to reach the performance of ADF and GB . When using deeper trees,

the performance of RF closely approaches ADF and GB on these two data sets.

Finally, we investigate a scaling of the margin defined in Equation (3.9) that is used to

evaluate the loss function. We define the margin scaling as α ·mrf(x), where we let α vary

in [0.2, 1.8]. The reason to explore α is that the loss functions are defined in [−∞,+∞] but

the margin m(x) can only take values in [−1,+1] because RF and GB only predict values

in [0, 1]. We present the result in Figures 3.6e and 3.6f, again for 2 data sets. Obviously,

this parameter only influences ADF and GB . We get best results with α = 1.4 for ADF

and α = 1 for GB on the Letter data set. For PenDigits, the best results are achieved

with α = 0.6 for ADF and α = 1.0 for GB .

3.4.1.4 Progress of the Gradients

In this section, we analyze the progress of the norm of the gradients | − gd(xn)| (see

Equation (2.13)) throughout the training stages d = 1, . . . , Dmax of ADF . The intuition is

to get a better understanding of the internals of ADF .

In Figure 3.7, we visualize this progress of the norm (on the y-axis) for a randomly

selected subset of the training examples (x-axis) from the MNIST data set. The initial

norms of the gradients are proportional to the class weights of the data set, i.e., lower

norm for samples from more frequent classes. While these initial norms of the samples

take different values, the variation is too small to be visible in the figure. The reason is

that the norms either converge to a low final value (for easy to classify samples) or diverge

(for hard to classify samples), making the variation of the gradient norms higher during

the final training iterations.

We analyze this behavior in more detail with some examples in Figure 3.8. We select

the top 6 samples from the data set that have high and low weights after training, respec-

tively. To be more robust, we average over the last 3 iterations and choose the highest

and lowest values. The first two rows in Figure 3.8 illustrate some converging progresses

of the gradient norm. These samples are easy to classify and typically belong to the same

class. Only for a better variation in the visualization, we include the first 6 samples with

low final gradient norm out of the first 600 with equal distance. The second two rows in
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Figure 3.6: Three different parameters are evaluated for three different methods (RF , GB , and
ADF ) on two data sets. Each row shows the result of one particular parameter on two different
data sets, Letter (left) and PenDigits (right). The parameters under consideration are: (a-b) the
number of trees T, (c-d) the maximum tree depth Dmax, and (e-f) the scaling factor of the margin
(which has no influence on RF ).
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Figure 3.7: Progress of the gradient norm on the Mnist data set for a randomly selected subset
of training examples. Each pixel on the x-axis corresponds to one out of 1000 different training
examples. The y-axis shows the corresponding evolution of the gradient norm during the training
phase. Please note that we scaled the y-axis for better visualization. The original scale would be
15 pixel as we used a maximum tree depth of Dmax = 15 for this experiment. Dark values indicate
high norm and vice versa (excluding the border). See text for more details.

Figure 3.8 illustrate some hard to classify examples along with their progress of |−gt(xn)|.
One can observe that these samples are indeed hard to classify, as their appearance can

easily be confused with other classes.

3.4.1.5 Strength and Correlation of Trees

The strength and correlation of trees in RF are important factors for achieving a low

generalization error, as discussed in Section 2.2.4.4 (see Equation (2.33)). When training

a RF model, one aims at a good trade-off between high strength of the trees and low

correlation between them. Obviously, if there would exist a single tree that gives perfect

predictions, the correlation between several trees is irrelevant and can be at a maximum.

In fact, one would then only need this single tree, but this is an unrealistic scenario. Low

correlation means that all the trees should be different and provide different predictions,

which, when averaged, give good overall results. Roughly speaking, this is the case when

the errors made by a single tree are corrected by other trees.

In RF , each tree is trained independently from each other, which helps to provide low

correlation. On the other hand, the proposed learning scheme, ADF , exploits knowledge

from the full model, i.e., the ensemble, to train the trees. The trees are thus interrelated

in some form, which might increase correlation as already discussed before. We argue in

Section 3.2.4 that our model still randomly samples splitting functions and minimizing

a common loss does not increase the correlation. In this section, we thus provide an

empirical analysis of this issue and compare strength and correlation of trees for RF and

ADF . In fact and contrary to our prior belief, the outcome of the experiments in this

section show an interesting behavior, namely, that the correlation actually becomes lower

when training with the ADF scheme.

We used Equation (2.35) to compute the strength of the trees, where we replaced the

expectation over the data- and labelspace with the empirical mean over a test set of a given

data set. Computing the strength also requires the margin from Equation (2.34), where

we again replaced the expectation with the empirical mean over the trees. To compute

the average correlation as suggested by Breiman [23] (and defined in Equation (2.36)), the

learned parameters of the RF are directly compared. However, this might be complicated

Reference:

 ()
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Figure 3.8: These figures illustrate the evolution of the gradient norms in ADF for different
training examples. The first two rows, (a) to (f), show easy to classify training examples. The
norm of the gradients decreases with increasing number of training iterations. The second two
rows, (g) to (l), show hard training examples. In this case, the gradient norm increases, i.e., the
loss is high for these examples. Each figure also visualizes the corresponding training examples
x from the Mnist data set alongside with its ground truth label y. Some of the hard to classify
training samples are also visually ambiguous.

to compute as we do not require the trees to have the same size. Moreover, directly

comparing the learned parameters can be suboptimal as different models can still yield

the exact same predictions for all data points. Consider for instance two copies of the

same tree, where we add an additional dummy split function on top of the root node
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which forwards all data points to one side. Beside the fact that the tree models now have

different size, this little change has no effect on the predictions but would yield a lower

correlation between the trees. Here, we thus evaluate the correlation of the predictions of

the individual trees. In particular, we compute the correlation of the predictions between

each of the single trees, which results in a T × T matrix, where T is the number of trees.

To get a final estimate of the correlation, we average the upper triangle of this symmetric

matrix.

We compute these two quantities, i.e., strength and correlation for ADF and RF on

three different data sets (Letter, USPS, and Mnist). Moreover, we include the classification

error of the full ensemble as well as the mean classification error of each single tree in

the ensemble. The latter quantity can be considered an alternative way to measure the

strength of each individual tree. The results are depicted in Figure 3.9. First of all, we

can again see in Figure 3.9a that ADF achieves lower classification error than RF on

all three data sets. Then, we can make several interesting observations in Figures 3.9b,

3.9c, and 3.9d, which show the strength, the correlation, and the mean classification error

of the individual trees, respectively. ADF seems to have slightly lower strength than

RF (Figure 3.9b) but also less correlation between the trees (Figure 3.9c). Moreover,

Figure 3.9d shows that the individual trees of ADF yield poorer performance than those

of RF . Interestingly, it seems that the ADF training scheme builds a set of trees that give

good performance when averaged. However, when evaluated individually, they perform

worse than individually trained trees in RF . Actually, this is the behavior we want to

achieve. We do not care about the performance of single trees, but rather about the

combination of all of them. In Section 3.4.2.5, we perform the same experiments for the

regression case with a similar outcome.

3.4.2 Regression Experiments

Similar to the experiments for classification, we also analyze the performance and prop-

erties of ARF for the regression task. After a detailed description of the experimental

setup and the data sets, we compare ARF with RF and GB on 22 standard regression

benchmarks. Furthermore, we also investigate the influence of different parameters of

ARF .

3.4.2.1 Experimental Setup and Data Sets

We use a set of 22 machine learning benchmarks from different sources (UCI, StatLib,

Delve)1 to evaluate the difference between RF , GB , and ARF . For GB and ARF , we

evaluate the loss functions presented in Section 3.2.2 (Squared, Absolute, and Huber).

As most benchmarks do not provide specific train-test splits, we split the given data

into 60% training and 40% testing data. To provide statistically fair results, we repeat the

1A collection of the data sets can be found at http://www.dcc.fc.up.pt/~ltorgo/Regression/

DataSets.html

http://www.dcc.fc.up.pt/~ltorgo/Regression/DataSets.html
http://www.dcc.fc.up.pt/~ltorgo/Regression/DataSets.html
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Figure 3.9: This figure shows in (a) the classification error, in (b) the strength, in (c) the
correlation, and in (d) the mean performance of single trees of the ADF and RF models. Each
figure depicts these quantities for three different data sets: Let, USPS, and Mnist. It can be
observed in (a) that ADF outperforms RF in terms of classification error. One can also see in
(b) and (c) that ADF has slightly less strong trees but also shows less correlation between them,
which makes the overall ensemble stronger. Finally, (d) shows that the average performance of the
single trees is worse for ADF than for RF . Please see the text for more details.

following procedure 5 times and average the results: We first build a random train-test

split (unless an explicit split is given) with the above defined ratio. Then, for each split,

we train and test all methods 4 times in order to further decrease statistical uncertainties

due to the random tree growing scheme involved in all methods. This procedure results

in a total of 20 averaging runs per method and data set. As for classification, we apply a

Welch’s t-test to gain insight into the statistical significance of our results. We measure

the performance as the Root Mean Squared Error (RMSE).

The parameters of all trees for the different methods (RF , GB , and ARF ) are set

equally: We used 50 trees with a maximum depth of 15. Tree growing also stops if the

sample size in a node becomes lower than 10. As for classification, we use
√
D random

tests [23] (D being the input feature dimensionality) and 20 randomly chosen thresholds.

For GB , the number of trees again corresponds to the number of iterations/weak learners,

thus having the same model complexity as the other methods.

Reference:

 ()
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3.4.2.2 Comparison of ARF with Other Regressors

In Table 3.4, we compare ARF with RF and GB and present our results as mean and

standard deviation of RMSE values. Again, we mark the top three performing methods

with different colors (green, blue, and red, respectively). Bold-faced values indicate sta-

tistically significant better results compared to RF according to the same Welch’s t-test

as it was used for the classification case.

As can be seen from the table, ARF and GB win in all but 1 data set, in most cases

with statistical significance. ARF wins 14 and GB 7 data sets. The performance difference

between the loss functions for both ARF and GB is, however, rather minor. Throughout

all experiments we fix the parameter δ for the Huber loss to 1.0. Furthermore, we also

evaluate the overall training and testing time. Averaged over all data sets, ARF and RF

have more or less the same computational costs, while GB takes approximately 5 times

longer, which is similar to the classification case. Please note that these values correspond

to 50 weak learners and could be even more distinctive if the number of weak learners is

increased.

3.4.2.3 Comparison of Common Parameters

While the goal in the previous experiment was to evaluate all methods with the same

model complexity (i.e., same number of trees and maximum depth), we further compare

the performance for different complexities in this second experiment. We choose the Pol

data set, fixed the loss for GB and ARF to be the squared loss, and varied the number of

trees, i.e., weak learners, between 10 and 500 for two fixed maximum depth values, 5 and

15. Again, we averaged the results for each parameter combination over several train-test

splits. The results are illustrated in Figure 3.10. We make three observations: First, a

larger amount of weak learners is important for GB (both plots), which, however, also

implicates a longer training time compared to RF and ARF , as no parallelization is pos-

sible. Note that we used a fixed shrinkage value for GB for all values of T. Increasing this

parameter for less trees in the model would yield better results for GB . Second, GB can

handle shallow trees as weak learners much better than RF or ARF (see Figure 3.10a).

Finally, the performance of both GB and ARF is similar with the appropriate param-

eter settings, while RF , which do not optimize a global loss function, lags behind (see

Figure 3.10b).
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Data set Scale RF GB ARF

Absolute Squared Huber Absolute Squared Huber

Abalone 1.92± 0.02 1.96± 0.04 1.96± 0.02 1.94± 0.04 1.90± 0.02 1.90± 0.02 1.90± 0.02

Ailerons 10−4 1.51± 0.01 1.32± 0.01 1.32± 0.01 1.32± 0.01 1.26± 0.01 1.26± 0.01 1.26± 0.01

AutoMPG 1.99± 0.03 1.98± 0.06 1.94± 0.04 1.96± 0.05 1.96± 0.03 1.96± 0.04 1.97± 0.03

AutoPrice 1596± 60 1550± 71 1530± 74 1569± 63 1518± 62 1500± 49 1535± 33

BreastCancer 30.2± 0.2 31.4± 0.5 31.5± 0.4 31.5± 0.5 30.1± 0.1 30.1± 0.2 30.0± 0.2

CalifornaHousing 102 428.9± 4.1 365.7± 3.2 365.7± 3.3 365.5± 2.3 352.0± 2.6 350.5± 2.3 351.7± 3.0

CartDelve .892± .009 .863± .001 .863± .002 .863± .002 .818± .001 .819± .001 .819± .001
CPUAct 1.99± 0.01 1.79± 0.02 1.79± 0.02 1.79± 0.02 1.80± 0.02 1.80± 0.02 1.80± 0.02

CPUSmall 2.27± 0.01 2.09± 0.01 2.09± 0.01 2.09± 0.02 2.09± 0.02 2.07± 0.01 2.08± 0.02

DeltaAilerons 10−4 1.15± 0.00 1.17± 0.01 1.17± 0.00 1.17± 0.01 1.14± 0.00 1.14± 0.00 1.14± 0.00

DeltaElevators 10−3 1.11± 0.00 1.12± 0.00 1.12± 0.00 1.12± 0.00 1.12± 0.00 1.12± 0.00 1.12± 0.00

Diabetes .569± .013 .593± .027 .593± .022 .605± .031 .558± .013 .560± .011 .556± .012

Elevators 10−3 2.43± 0.01 2.06± 0.02 2.06± 0.02 2.07± 0.02 1.98± 0.02 1.98± 0.01 1.99± 0.02

FriedmanDelve 1.27± 0.01 0.98± 0.00 0.98± 0.01 0.98± 0.00 0.87± 0.00 0.87± 0.00 0.87± 0.00

Housing 2.40± 0.05 2.24± 0.05 2.23± 0.06 2.24± 0.07 2.27± 0.07 2.24± 0.05 2.26± 0.05

Kinematics .126± .001 .108± .001 .109± .002 .108± .001 .092± .001 .092± .001 .092± .001
Machine 33.5± 0.8 33.6± 1.2 32.9± 1.0 33.7± 1.1 33.1± 1.1 33.2± 0.9 32.7± 1.2

Pol 11.8± 0.8 5.8± 0.2 5.8± 0.2 5.8± 0.2 6.2± 0.2 6.2± 0.1 6.2± 0.1

Pyrimidinis .067± .002 .063± .002 .061± .003 .061± .004 .060± .002 .060± .002 .060± .002

Servo .427± .022 .281± .016 .289± .014 .285± .016 .357± .017 .359± .020 .361± .016
StockAirplane .708± .014 .597± .023 .610± .015 .594± .011 .715± .017 .720± .021 .709± .027

Triazines .100± .001 .097± .002 .096± .004 .096± .003 .098± .002 .098± .002 .098± .002

Table 3.4: ARF compared with the two main competitors, RF and GB , on 22 data sets. Best performing methods are marked green, 2nd
best blue, and 3rd best red. Statistical significance is indicated bold-face. The results are presented as RMSE values averaged over several
runs (mean and standard deviation is given).
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Figure 3.10: Parameter evaluation of RF , GB and ARF conducted on the Pol data set. We vary
the number of trees T for two choices of the maximum tree depth, (a) Dmax = 5 and (b) Dmax = 15.
In (a), one can observe that GB can best handle a limited tree depth. However, deeper trees yield
better results (b) and, in this setup, GB and ARF achieve similar performance. Note that GB
takes much longer to train. Overall, both GB and ARF outperform standard RF .

3.4.2.4 Influence of the Learning Rate on ARF

Further, we examine the influence of the learning rate (or shrinkage factor) in ARF , which

is defined in Equation (3.6). As in GB , the learning rate is directly related to the size

of the gradient descent step in the training procedure. The shrinkage factor is typically

set relatively low (e.g., 0.1) for GB because many gradient descent steps are performed.

However, this is different for ARF where the number of gradient descent steps is limited

by the maximum tree depth Dmax. We thus investigate the influence of this parameter on

ARF for different data sets and vary the parameter in the range [0.1, 2.0]. The results

for 6 randomly selected data sets are shown in Figure 3.11. We can observe very different

behavior for the different data sets. This indicates that the performance of ARF could

be further improved with a separate choice of the learning rate for each data set (e.g., via

cross validation). For future work, it could be interesting to make this parameter adaptive

in each gradient descent step, i.e., perform a line search, instead of using a fixed constant

value.

3.4.2.5 Strength and Correlation of Trees

As for the classification case (see Section 3.4.1.5), we perform an analysis on the trade-off

between strength and correlation of the trees in the proposed ARF model and plain RF .

We investigate the regression performance as RMSE, the strength of the trees, the correla-

tion between individual trees, and the mean performance of single trees on three different

data sets (CaliforniaHousing, Kinematics, and Pol). The correlation is computed in

the same way as described in Section 3.4.1.5 with the difference that the output of the

trees is not a probability distribution but raw regression values. One difference to the
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Figure 3.11: Influence of the learning rate of ARF on the regression performance for 6 different
data sets. We vary the parameter in the range [0.1, 2.0] and can observe different behavior for each
data set.

classification case is the computation of the strength as we cannot compute a margin here.

We thus, use the inverse of the regression performance, which is not optimal but reason-

able in this case. Nevertheless, we still have the mean performance of individual trees as

an alternative measure of the strength, which is more meaningful for the regression case.
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Figure 3.12: This figure shows in (a) the regression error (RMSE), in (b) the strength, in (c)
the correlation, and in (d) the mean performance of single trees of the ARF and RF models.
Each figure depicts these quantities for three different data sets, CaliforniaHousing (abbreviated
with CalHou), Kinematics (abbreviated with Kin), and Pol. It can be observed in (a) that
ARF outperforms RF in terms of regression error. One can also see in (c) that ARF shows less
correlation between the trees, which makes the overall ensemble stronger. Finally, (d) shows that
the average performance of the single trees is worse for ARF than for RF . Please see the text for
more details.

Please note that we normalize all the data (i.e., the target values) to be within the range

[0, 1] in order to compare values across different data sets.

Figure 3.12 provides the results on three different data sets. The outcome indicates a

similar interpretation as for the classification case. We see in Figure 3.12a that the overall

regression error is smaller for ARF compared to plain RF . The strength of ARF is higher

than that of RF (see Figure 3.12b), which is different to the classification case, but is

most likely attributed to the suboptimal measure. However, when looking at the mean

regression error of the individual trees in Figure 3.12d, we observe that individual trees

trained via ARF are significantly worse compared with those from RF . The correlation

between the trees, on the other hand, is significantly less for ARF . This leads to the same

conclusion as for the classification case in Section 3.4.1.5. The proposed training scheme

improves the overall ensemble, i.e., the actual model that is used to make predictions,

instead of individual trees.
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3.4.2.6 The Effect of Randomization and Model Size

The strength and correlation investigated in the previous experiment motivate an in-

teresting analysis of the internal behavior of RF and ADRF . The upper bound on the

generalization error (Equation (2.33)) tells us that a good trade-off between strength and

correlation is essential for achieving good performance with RF . Although other param-

eters are also involved, there is one specific combination of two aspects of RF that well

reflects this trade-off: the amount of randomization of single trees and the number of trees

to average (i.e., the model size). The more randomization is injected into the individual

trees, the worse their individual performance. This, on the other hand, leads to lower

correlation between the trees, which can be exploited to compensate the performance loss

by using a larger ensemble. In this experiment, we want to analyze this trade-off and its

effect on the predictive power of both RF and ARF .

To simulate the randomization of individual trees, we varied the number of splitting

functions that are evaluated per node. As already stated in Section 3.4.1.1, a good rule

of thumb is to evaluate
√
D randomly sampled splitting functions, where D is the dimen-

sionality of the input data X [23]. We modify this value with a multiplier and round to

the next integer value to fix the number of splitting functions evaluated per node. We use

5 values for the multiplier, [0.1, 0.5, 1, 1.5, 2]. The model size is easily simulated with the

number of trees in the ensemble, where we evaluate T = [1, 5, 10, 25, 50]. We use three data

sets, CaliforniaHousing, Kinematics, and Pol and measured the overall performance of

the ensemble as RMSE, the correlation between the trees, and the average performance

of individual trees (again as RMSE). The outcome of these experiments can be seen in

Figures 3.13, 3.14, and 3.15 for the three data sets, respectively.

All three data sets show a similar outcome of the experiment, where the effect of

randomization is most clearly seen for the Pol data set. One can clearly see that the

overall error decreases with less randomization, i.e., more splitting functions evaluated.

Interestingly, one would expect that the error actually starts to increase again if the

randomization gets too low of individual trees. However, this effect cannot be observed

for these experiments, which indicates that there is still enough randomness in the trees.

The correlation between trees steadily increases as the randomization gets less. It can

be noted in Figure 3.15b that the correlation increases much stronger for RF than ARF ,

which also might explain the better overall performance in terms of RMSE, cf., Figure 3.15a

(not clearly seen due to scaling) and Table 3.4. As in the previous section, we also show

the average performance of individual trees, which is another indicator for the strength of

the trees. Obviously, the strength of individual trees increases (i.e., lower RMSE) as soon

as the randomization during split function optimization gets less, which can be observed

in Figure 3.15c. Interestingly, though, one can also see that this measure of strength

does not vary too much for ADRF , which is an effect of the global loss optimization as

already discussed in the previous section. Finally, we want to note the special case when

the model consists of only a single tree. In this case, we set the correlation to 0 for a
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Figure 3.13: We evaluate the effect of the trade-off between randomization (the multiplier of the
number of splitting functions) and model size in the ensemble of trees. We measure in (a) the overall
performance as RMSE, in (b) the correlation between trees, and in (c) the average performance of
individual trees on the CaliforniaHousing data set for RF (blue) and ARF (green). See text for
more details.

better visualization. Also, observe the different behavior of the average performance of

individual trees for ARF when a single or multiple trees are used. For a single tree, the

average performance also increases (i.e., lower RMSE) similar to RF . On the other hand,

when multiple trees are used in the ensemble, the behavior of RF and ARF is different.

3.5 Summary

In this chapter, we presented a novel training scheme for RF , Alternating Decision and

Regression Forests, which is the main contribution of this thesis. In contrast to standard

RF , ADRF enable the minimization of a global loss function defined over the full model,

i.e., all trees in the ensemble. We formulate the learning algorithm as a loss minimization

problem and borrow ideas from GB to do gradient descent in functional space, see Sec-

tion 3.2. While plain GB can also be used to minimize a loss over a set of randomized

trees, such a formulation has the clear drawback of a long training time as the trees have

to be trained iteratively. In contrast, ADRF directly integrates the loss minimization into
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Figure 3.14: We evaluate the effect of the trade-off between randomization (the multiplier of
the number of splitting functions) and model size in the ensemble of trees. We measure in (a)
the overall performance as RMSE, in (b) the correlation between trees, and in (c) the average
performance of individual trees on the Kinematics data set for RF (blue) and ARF (green). See
text for more details.

the tree growing process and allows for parallelizing the training over the trees. Thus, our

proposed formulation inherits the computational benefits of standard RF , which made

this learning algorithm popular for so many computer vision applications. In order to

tackle a wide spectrum of ML problems, we present both, a regression and classification

formulation in Sections 3.2.2 and 3.2.3, respectively.

The main outcome of the proposed learning scheme is a RF variant that optimizes a

global loss over the full ensemble, which results in clearly better predictions and general-

ization capabilities compared with standard RF . The results of ADRF are similar to GB

(with decision or regression trees as weak learners) while, at the same time, being much

faster during training. The last part of this chapter underlines the effectiveness of the

proposed formulation with empirical evaluations on a set of standard classification and

regression benchmarks in Section 3.4. We also provide some empirical analysis of ADRF

in order to better understand the intrinsic behavior of this learning algorithm. ADRF can

also be effectively employed for a large set of computer vision applications, which will be

demonstrated in the following chapters.
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Figure 3.15: We evaluate the effect of the trade-off between randomization (the multiplier of
the number of splitting functions) and model size in the ensemble of trees. We measure in (a)
the overall performance as RMSE, in (b) the correlation between trees, and in (c) the average
performance of individual trees on the Pol data set for RF (blue) and ARF (green). See text for
more details.



CHAPTER 4

Object Detection with Alternating Decision and Regression Forests

Object detection is one of the most important tasks in computer vision. The goal is to

accurately localize all instances of a semantic category, e.g., a person or a car, in an unseen

image and to outline their boundaries. The outline is typically a bounding box around

the object. Modern object detectors have to be both accurate and fast as they are often

employed for time-critical tasks in the automotive or robotic industry. Moreover, they also

act as a building block in various other applications like semantic segmentation [93, 184]

or scene recognition [127].

In recent years, the progress in this field has been tremendous. Popular detection

approaches can be roughly subdivided into four different strands: First, the works based

on the rigid template detector of Dalal and Triggs [36] using HOG features and SVMs.

In particular, the Deformable Parts Model [53] extends the rigid detector with a part-

based multi-component model and held the state-of-the-art in standard object detection

benchmarks over many years. Second, object detectors building on the work of Viola and

Jones [186] using Boosting and various feature channels [14, 41, 42]. These rigid detectors

are less flexible in terms of object outlines, but achieve state-of-the-art results on pedestrian

detection benchmarks and typically run in real-time, e.g., [41]. Third, detection models

operating over small patches that vote for object centers with the generalized Hough

transform [62, 100]. These detectors are very flexible and powerful in detecting body

parts [163] or fiducial points in faces [37] but are less successful on common object detection

benchmarks. Finally, a very recent trend in object detection builds on the combination

of category-independent object proposals [2, 31, 180, 206], strong image representations

and powerful machine learning methods. Girshick et al. [66] currently holds the state-

of-the-art in this field. The method uses generic object proposals from [180] and a deep

convolutional neural network pre-trained on ImageNet [92].
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In this chapter, we show how Alternating Decision and Regression Forests (ADRF)

can be employed for two different object detection approaches that rely on Random

Forests (RF) as their base learning algorithm. We start with a method based on lo-

cal evidence [62, 100] in Section 4.1, which belongs to the third group mentioned above.

We present the details of this object detection approach, show how ADRF can be eas-

ily integrated into this framework, and review related work on this particular topic. In

Section 4.2, we show how ADRF can also be successfully employed for the second of the

above summarized groups. Moreover, we illustrate how the general RF concept can be

utilized in order to predict flexible aspect ratios of the bounding boxes in order to outline

objects more accurately.

4.1 Object Detection based on Local Evidence

The main idea behind object detection based on local evidence is that an object is described

by a large set of small parts (not necessarily with semantic meaning) that are connected in

a star-shaped model. These small parts of an object are often called patches. The seminal

work on the Implicit Shape Model (ISM) presented by Leibe et al. [100] popularized this

form of object detection.

The benefits of this approach are clear: The highly local model allows for a much

richer representation of the object compared to a single template (e.g., [36]) or a multi-

component model (e.g., [53]). Furthermore, the local patches that are only connected by

by a star-shaped model can also handle articulations better than a rigid template. Finally,

occlusions are also naturally handled.

Five years after the ISM was presented, Gall and Lempitsky [62] revived the research

of patch-based object detection with the introduction of the popular Hough Forests (HF)

framework. HF is a special instance of the ISM that yields more accurate results and

is considerably faster during both training and inference. We will review these object

detection principles in the following section in more detail. An exhaustive investigation of

this topic can be found in [195].

4.1.1 The Implicit Shape Model and Hough Forests

In this section, we give a detailed description of the HF object detection framework and

show how the idea of ADRF can be easily incorporated. We will focus on a general review

of HF as it can be considered a modern version of ISM . Nevertheless, we still point out

the explicit differences between these two models when appropriate.

4.1.1.1 The Object Model

As in standard object detection tasks, we are given a set of images I with bounding

box annotation. We always consider detecting a single object category at once. Multiple

categories would simply require multiple detection models, although other possibilities
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exist as well [135]. Thus, each instance of an object category is annotated with a bounding

box B = [t, l, h, w] in the training set, where t and l define the top-left corner of B and h

and w the height and width, respectively, cf., Figure 4.1. These bounding boxes capturing

instances of the desired object category are often called positive training examples.

Figure 4.1: This figure illustrates the star-shaped model of HF . Patches within the green ground
truth bounding box of the object define the object model. These patches are colored blue and
are connected to a common reference point, which is the center of the bounding box in this case.
Together with patches extracted from the background (red), they forms the training data of HF .
Foreground patches store the offset vector from the patch to the reference point. Note that negative
patches do not have any additional information.

To acquire a training set, all positive instances are extracted from the training images

with the given bounding boxes. The training samples are all resized to a common width

or height in order to ensure a fixed-size model. For pedestrian detection, the height of the

training samples is typically fixed to h = 100 pixel. As the aspect ratio of the bounding

boxes, i.e., w
h , is typically kept constant, the width varies for each training instance.

Additionally, a negative training set that does not contain the desired object category is

collected from the images.

At this point, the locality of the patch-based detection paradigm comes into play. From

each of the training instances a set of small patches are extracted alongside with an offset

vector to a reference point of the object (only for positive instances), e.g., the center of

the bounding box B. Thus, all patches are connected to a single reference point, which

defines the star-shaped object model of ISM and HF , see Figure 4.1. For patches from

negative training instances, no offset vector is defined. The size of the patches depends on

the model size as they should capture a reasonable amount of information from the object.

Thus, for a model height of h = 100 pixel the size of the patches is often set around 16×16

pixel [62]. Formally, we define a training patch as Pn = {x,y, t}, where j = 1, . . . , N and

N is the total number of patches extracted from the training images. The appearance,

i.e., the feature representation, of P is denoted x ∈ Rph×pw×c, where ph, pw, and c denote

Reference:

 ()


Reference:

 ()




66 Chapter 4. Object Detection with Alternating Decision and Regression Forests

the height, the width, and the number of computed feature channels, respectively. These

feature channels include the LUV color channels, first and second order derivatives of the

gray-scale image and oriented gradients (similar to HOG [36]). Each patch is extracted

from either the positive (y = 1) or the negative (y = 0) training instances, i.e., y ∈ {0, 1}.
Finally, all positive patches are equipped with an offset vector t ∈ Z2 pointing from the

center of the patch to the reference point of the object category. As mentioned before, t is

undefined for negative patches. While for ISM the patches are extracted at sparse keypoint

locations (e.g., keypoints returned by the Harris detector [73]), for HF the patches are

extracted randomly with a uniform distribution. The process of generating the training

data for this object detection model is illustrated in Figure 4.1.

This set of patches can already be used as an object detection model. Given an

unseen test image I, all patches are extracted and matched to all training patches to

find the nearest neighbors. Then, each patch can ‘vote’ for an object reference point

with the offset vector associated with the matched patch from the training set. However,

this set of training patches is typically too large for efficient nearest neighbor matching.

Therefore, a compact codebook of patch-prototypes is learned, similar to a bag-of-words

representation [168], which then defines the final object model.

4.1.1.2 Learning the Codebook

Learning the codebook is one of the main differences between ISM [100] and HF [62]. ISM

learns a flat codebook via k-means clustering, which only considers the appearance x of the

patches P. HF on the other hand builds the codebook with a discriminatively trained RF ,

which considers both the appearance x and the offset vectors t, i.e., the structure of the

star-shaped model. In general, HF employ the standard RF framework to discriminatively

train the codebook, where each leaf node then corresponds to a codebook entry. However,

HF shows a few subtle differences compared with the standard training protocol of RF

described in Section 2.2.4.2.

First and most importantly, HF deals with a classification problem (positive and neg-

ative patches) as well as a regression problem (offset vectors t for positive patches). Thus,

the quality function for finding good splits in the trees is formulated accordingly as a joint

classification and regression task via

QHF (σ(P; Θ),X) = λ(γ) ·QC(σ(P; Θ),X) + (1− λ(γ)) ·QR(σ(P; Θ),X) . (4.1)

The classification objective QC employs the Shannon entropy from Equation (2.21) as

compactness measure. For the regression objective QR, Gall and Lempitsky [62] employ

the reduction-in-variance compactness measure from Equation (2.24). The variable λ(γ)

controls the influence of the different tasks and depends on a user-specified parameter

γ. In [62], λ(γ) is defined as a binary random variable that is sampled from a uniform

distribution for each single node separately. That is, each node randomly selects either

the classification or the regression objective, which has computational benefits as only a
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single objective has to be evaluated per node. The last few levels of the trees are treated

in a special way because λ(γ) is fixed to 0, thus focusing solely on the regression part. For

a node j in HF [62], this steering parameter can thus be formally defined as

λ(γ) =

{
0 if δ (j) ≥ γ
U{0, 1} otherwise

, (4.2)

where γ defines a certain depth of the tree, δ (j) is the depth of node j, and U{0, 1} defines

the discrete uniform distribution for the two values 0 and 1. At this point, we also mention

the work of Okada [122] that appeared simultaneously with [62] and presents an almost

identical approach compared to HF . One difference is the variable λ(γ) that is allowed

to take values between 0 and 1 and is made dependent on the class purity of the current

node.

In contrast to standard RF , HF also differs in the response function ξ(·; Θ) (see Section

2.2.4.2) that is adapted to the specific feature representation used for object detection.

Gall and Lempitsky [62] employ pixel pair differences on a single feature channel. The

response function is thus defined as

ξHF (x; Θ) = xΘc [Θ1]− xΘc [Θ2]−Θth , (4.3)

where Θc ∈ {1, . . . , c} selects a single feature channel and Θ{1,2} ∈ Z2 are two pixel

locations.

The last main difference to standard RF are the leaf node models, i.e., the codebook

entries. The ratio of positive examples as well as all offset vectors t that fall into this leaf

during training are stored. This can be seen as a non-parametric regression model in the

leaf nodes.

4.1.1.3 Incorporating Alternating Random Forests into Hough Forests

As in standard RF , also HF optimize the trees independently from each other. That is,

the entropy (for classification) and the reduction in variance (for regression) are optimized

only on the node level, i.e., locally, without regarding a global loss function. This results

in the same disadvantages as for standard RF mentioned in Chapter 3. We thus apply

the learning principle of ADRF to HF .

HF optimizes two objectives, classification and regression. Each node randomly selects

one of the two objective functions that should be optimized to find a good splitting function

for this particular node in the tree. Thus, only a fraction of the nodes operate in the

classification mode while the other part optimizes the regression objective. Fortunately,

this fact does not influence the ADRF training principle. We simply combine Alternating

Decision Forests (ADF) and Alternating Regression Forests (ARF) into a single model.

For classification, each patch Pn is thus assigned a weight wn. This weight is always

updated after training a single stage of the classifier according to a given global loss
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function L(·), as described in Sec. 3.2. The possibility that all nodes in one stage do not

optimize the classification but rather the regression objective is not optimal in the sense

that gradients (or weights) do not influence the splitting functions. For the classification

objective, this would somehow be a lost stage during tree growing. However, we can still

evaluate the predictions about the class labels in each single stage of the algorithm and

continue the ADF training.

For regression, we have to take care of the non-parametric leaf node model that is used

in HF , i.e., all voting vectors from the training set are stored in the leafs. In order to

evaluate the loss for the regression and compute the gradients, we have to have a single

prediction for each offset tn from the training set. In each leaf (or intermediate leaf during

training), we have to compute a mode of the offset vectors falling into the corresponding

leaf. A simple way to do this is to compute the mean offset in each leaf node and also

the mean over several trees, as successfully demonstrated by Girshick et al. [67] for pose

estimation. In [156], we followed such an approach and replaced the non-parametric model

with a simple mean. To handle possibly occurring multi-modal distributions in the leaf

nodes, we simply trained the trees a few levels deeper [156]. However, this leads to longer

training times and decreased the performance in some preliminary experiments compared

to a non-parametric distribution of voting vectors. In this thesis, we thus follow a different

approach of integrating ARF into HF . We keep the non-parametric distribution of voting

vectors in the final leaf nodes of the model, but simultaneously compute the mean of this

distribution. This approximation, i.e., the mean, is then used to evaluate the loss function

and to compute gradients. For the regression case, we also found a regularization of the

ARF training scheme to work particularly well. We used a slightly different variant of

Equation (3.6) to sum up the intermediate predictions over the levels of depth, which is

defined as

pHF
ch (y|x) = pch(y|x) + ξ · ppa(y|x) . (4.4)

In contrast to Equation (3.6), we now have included the regularizing factor ξ to the second

term, the prediction of the parent node. Throughout all our experiments, we use ξ = 0.1,

which proved to work well for different data sets. One can regard this regularization

similar to the shrinkage factor in Gradient Boosting (GB) and standard ARF .

The inference process of HF and both of these versions of integrating ARF are equal

and follow the generalized Hough voting scheme. Each patch in a test image votes for ten-

tative object centers in a Hough image, where local maxima indicate detected objects [62].

The only difference can be that leaf nodes only store a single offset vector (the mean of

the training data) instead of having a non-parametric model, which is only the case for

our first variant, cf., [156].

4.1.1.4 Detecting Objects via Generalized Hough Voting

The above described RF model can be used for localizing instances of an object category

by applying the generalized Hough transform. In the following, we describe this process
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for a single object category, i.e., C = 2, and a single image scale. Detecting instances at

multiple scales is easily done by apply the detector in a scale-space pyramid and searching

for maximal scoring detections along this additional scale dimension (beside the spatial

dimensions). A detailed derivation for the multi-class case can be found in [64].

During training, we kept one dimension of the bounding box at a fixed scale for each

of the training image. For testing, we assume the bounding box to be fixed with size W×H.

Many object detection approaches make this assumption of a fixed bounding box size, e.g.,

[36, 41, 42]. Given an image I, a ready-to-use HF , and the above assumption, the goal is

to find the centroids of the bounding boxes B of each object instance. Ultimately, we are

interested in the random event E(p) for each pixel p ∈ I of being the centroid of an object

instance. Patches P(q) = {x(q),y(q), t(q)} extracted at each each location q provide the

local evidence for objects centered at pixel p. Note that y(q) and t(q) are latent variables

and only x(q) is observed during testing. Thus, we define the probability p(E(p)|x(q)),

which models the contribution of the local evidence at pixel q to the existence of an object

E(p) at pixel p based on the star-shaped model underlying HF and ISM .

As in [62], we only consider the contribution from patches P(q) located within the

bounding box B of size W× H centered at location p. This implies y(q) = 1 and results in

p(E(p)|x(q)) = p(E(p),y(q) = 1|x(q)) (4.5)

= p(E(p)|y(q) = 1,x(q)) · p(y(q) = 1|x(q)) (4.6)

= p(t(q) = q− p|y(q) = 1,x(q)) · p(y(q) = 1|x(q)) . (4.7)

As also mentioned in [62], the assumption y(q) = 1 restricts long-term interactions which

could influence the existence of an object instance E(p). For instance, a sidewalk can give

local evidence for the existence of pedestrians in a typical street scene.

Nevertheless, we can now estimate both factors from Equation (4.7) by evaluating the

trained HF , which we denote F = {Tt}Tt=1. Let us assume that the local evidence x(q)

ends up in leaf j of tree Tt of the HF . Then, the latter term in Equation (4.7) is simply the

class probability for the positive class stored in this particular leaf node j. The former term

corresponds to the regression part of HF and depends on the chosen leaf node models. HF

employs a non-parametric prediction model in each leaf node j and store all offset vectors

Tj = {tji } falling into this leaf during training. Thus, [62] employs a Parzen window

estimate with Gaussian kernels based on Tj to compute p(t(q) = q − p|y(q) = 1,x(q)).

We can now write Equation (4.5) for a single tree Tt as

pt(E(p)|x(q)) = p(t(q) = q− p|y(q) = 1,x(q); Tt) · p(y(q) = 1|x(q); Tt) (4.8)

=

 1

|Tj|
∑

t
j
i∈Tj

1

2πσ2
exp

(
−
‖(q− p)− t

j
i ‖2

2σ2

) · p(y(q) = 1|x(q); Tt) ,

(4.9)
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where t
j
i ∈ Tj define the means and σ2 · I the covariance of each 2 dimensional Gaussian

kernel. The parameter σ2 is defined by the user. To compute the final probability of E(p)

for a pixel p based on a single local evidence x(q) at pixel q, we simply average (4.8) over

all trees

p(E(p)|x(q)) =
1

T

T∑
t=1

pt(E(p)|x(q)) . (4.10)

Following [62], we can finally integrate the contribution from all pixels q ∈ B(p) within

the bounding box centered at p to get the final non-probabilistic score

S(p) =
∑

q∈B(p)

p(E(p)|x(q)) (4.11)

at pixel p. The higher the score, the higher the evidence for an object instance to be

located at pixel p ∈ I.

(a) (b)

Figure 4.2: This figure illustrates the inference process of HF to localize objects in a given
image. (a) A sliding window approach is used to evaluate all patches in the image. The green
dots illustrate the location of patches that were already considered for voting. Please note that
this is typically done for each pixel in practice. The blue rectangle shows the current patch under
consideration and the red arrows are returned by the HF and used to vote for object centers. In
this example, a patch of a foot is detected and the HF returns voting vectors that point upwards.
(b) The resulting Hough map has local peaks that should correspond to object detections. In
particular it should correspond to the location of the reference point of an object, i.e., the center
of a bounding box. In this case, the detection is accurate, which is indicated with the green circle
around the highest peak in the image.

Computing the score (4.11) via the above described derivation is quite inefficient be-

cause the local evidence for many pixels q have to be re-computed. A more efficient variant

can be implemented as follows. First, the score map is initialized as: ∀p ∈ I : S(p) = 0.

Then, each tree Tt ∈ F is evaluated for each pixel p ∈ I returning a class probability

p(y(p) = 1|x(p); Tt) and a set of offset vectors T t
j = {tji }. Given this information the
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score map can be updated as

∀p ∈ I, ∀Tt ∈ F , ∀tji ∈ T
t
j : S(p + t

j
i ) = S(p + t

j
i ) +

1

T
p(y(p) = 1|x(p); Tt) . (4.12)

Finally, the score map S(·) is smoothed with a Gaussian. Figure 4.2 illustrates the voting

process of HF .

4.1.2 Related Work

Before evaluating the HF framework and the presented extensions on object detection

benchmarks, we briefly recapitulate the impact of HF in the field of computer vision.

The original paper by Gall and Lempitsky [62] presents HF for the task of object

detection. Many extensions have been presented for this particular task based on HF .

Razavi et al. [135] presents a multi-class detection approach that directly exploits the

inherent multi-class capabilities of RF . This approach scales sublinearly with the number

of classes compared to a standard 1-vs-all or 1-vs-1 approach.

As already mentioned previously, the codebook in HF is trained discriminatively. How-

ever, the score of a single object detection is the sum of all its part detections that vote

to a common point in the 2D image plane. The part detections, i.e., the votes from

the codebook, are obtained independently from each other. Thus, the final score for an

object detection system is not trained discriminatively. Maji and Malik [107] as well as

Wohlhart et al. [197] attack this issue. [107] builds upon the older ISM and learns dis-

criminative weights only for each codebook entry but not for each single voting vector.

Recall that a codebook entry typically contains more than a single voting vector from the

training data. Furthermore, the learned weights are constrained to be positive. On the

other hand, Wohlhart et al. [197] builds upon the HF framework. Discriminative weights

are learned for each voting vector from the training set and can also become negative. The

resulting Hough maps are cleaner and the number of false-positive detections is reduced.

Lehmann et al. [98] also learns discriminative weights for each codebook entry in ISM .

However, the weights are again constrained to be positive. On the other hand, the authors

also show the interesting equivalence of the patch-based voting principles (ISM , HF ) and

linear holistic models, e.g., [36].

Another obvious and interesting application that can also be addressed with HF is

visual object tracking in a tracking-by-detection setting. Gall et al. [63] were the first to

extend HF for the task of tracking. They used an offline pre-trained HF for the general

object category of interest. That is, the object category has to be known a priori. Then,

the HF is online adapted to specific instances of the same object category by updating

the statistics in the leaf nodes.

In contrast, we presented an online tracking approach that is able to track a priori

unknown instances [155]. The target has to be annotated with a bounding box only

in the first frame of the video sequence. We combined the HF framework with online
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random forests [145] for the task of tracking. Godec et al. [70] presented another tracking

method for non-rigid objects based on HF . Although they do not build upon the online

random forest [145], they present an online adaptable tracker that can also be trained

from a single annotation without knowing the object category beforehand. [70] builds the

trees completely random to their full size and just updates the leaf node statistics during

tracking. Furthermore, this extension includes back-projecting the voting elements [136] to

get a rough segmentation of the tracked object based on GrabCut [142]. The segmentation

is then used to improve the sequential updates of the tracking algorithm [70].

In general, HF can also be considered as a joint classification and regression model

that operates on smaller local patches that independently vote for a common prediction.

Realizing this fact enables many other computer vision applications to exploit the general

HF framework. In the following, we review a brief excerpt of recent literature.

A very successful application building upon HF is pose estimation of humans, human

heads, and hands from either RGB or depth images. Girshick et al. [67] extends the seminal

human pose estimation approach of Shotton et al. [163]. Based on the HF principle, an

accurate regression approach for a set of pre-defined human joints (e.g., torso, elbows,

hands, knees, etc.) is employed. While [67] uses depth images as input, Dantone et al. [38]

present a similar pose estimation approach from RGB images. Fanelli et al. [48–50] present

a pose estimation method for the human head. Given a single depth image, the task is to

identify the location of the head in 3D as well as the orientation. This is rendered as a 6

dimensional pose estimation problem again with the HF framework. In this thesis, we also

work on this particular pose estimation problem and delve into this topic in Chapter 5.

All these pose estimation approaches are highly useful for human computer interaction

applications, which become more and more important. The ‘smart home’, i.e., controlling

the lights, the heating, or the television automatically or with some simple gestures, is the

current focus of many companies. These gestures can often be recognized with computer

vision technology. The human hand is the most obvious part of the body to perform

such gestures. Thus, many computer vision approaches for this particular task have been

presented in recent years, with quite some success. For instance, the work of Tang et

al. [175] presents an accurate human hand pose estimation approach that also builds upon

a voting-based approach like HF .

Dantone et al. [37] and Cootes et al. [32] use HF for facial landmark detection. Given

an image capturing a human face from an arbitrary viewpoint (frontal to profile), the task

is to accurately localize a set of pre-defined facial landmark points (e.g., mouth and eye

corners, etc.). In general, both approaches extend the regression part of the HF framework

from a 2 dimensional (vote for a single reference point of the object) to a k · 2 dimensional

one (k is the number of facial landmarks). Furthermore, Dantone et al. [37] condition HF

on the viewpoint of the face in order to make better predictions for the landmarks. On the

other hand, Cootes et al. [32] combine the predictions given by HF with a statistical shape

model, yielding a more accurate and physically valid localization of the facial landmarks.
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TUD-pedestrian TUD-campus TUD-crossing ETHZ-cars

# train images 400 (3200) - - 420
# test images 250 71 201 175

Table 4.1: The number of train and test images for four different data sets we use in our evaluation
of object detectors based on local evidence. TUD-campus and TUD-crossing data sets use the
training images from TUD-pedestrian. For the TUD-pedestrian data set, we augment the training
set with slightly jittered versions, resulting in 3200 images, as done in [195].

4.1.3 Experiments

In this section, we evaluate the influence of our proposed ADF and ARF training schemes

on the HF framework for object detection. We split these evaluations into two separate

parts due to the fact that ARF requires special handling of the HF framework as described

in Section 4.1.1.3. To recap, the non-parametric distribution of voting vectors in the leaf

nodes has to be handled. The first part thus only evaluates different variants of ADF

and compares with HF . These evaluations are similar to the ones presented in [158]. In

the second part, we evaluate ARF , where we adapt the framework accordingly (see Sec-

tion 4.1.1.3). Before we come to the main experiments, we first describe the experimental

setup.

4.1.3.1 Experimental Setup

For both experiments, which we describe in the following two sections, we use four different

data sets: the TUD-pedestrian, TUD-campus, TUD-crossing data sets from [8], and the

ETHZ-cars data set from [99]. These are three pedestrian and one car detection data

sets, respectively. The TUD-campus and TUD-crossing data sets only contain images for

evaluation and the detection models are supposed to be trained with the training images

of the TUD-pedestrian data set. The number of train and test images for each data

set can be seen in Table 4.1. The set of training images is actually doubled as we add

‘negative’ images not containing the target object. All the provided training images from

the respective data set contain the target object. Figure 4.3 gives examples of the test

images from each data set.

We use the same general random forests settings for all our experiments whenever

possible. We employ 10 trees, a maximum tree depth of 15, 20000 randomly sampled

splitting functions (pixel-pair tests) per node, and 5000 randomly selected training samples

per node for split optimization. For the evaluation we plot precision-recall curves and show

the area-under-curve (AUC) values. As we operate with randomly trained detectors as

well as randomly selected training patches (cf., Section 4.1.1.2), we average the results of

several independent runs. We thus average over two independent sets of training patches.

For each training set, we again average over two independent training phases of the RF

models, resulting in four averaging runs in total. As precision-recall curves are complicated

to average, we present our results in two different ways: First, we show the mean and
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Figure 4.3: Examples of test images from the four data sets we use in our experimental evaluation
of object detectors based on local evidence. Each column illustrates three different test images from
the TUD-pedestrian, TUD-campus, TUD-crossing, and ETHZ-cars data sets, respectively.

standard deviation of the AUC values for each data set and evaluated method. Second,

we plot one of the four precision-recall curves for each method and data set that is closest

to the mean AUC value. While the first variant gives more accurate estimates of the

final performance of each method over several independent runs, the second one (the

precision-recall curve) shows the behavior of the learned object detectors in more detail.

In the following experiments we always compare with HF , which serves as our baseline.

In our papers [156, 158], where we conducted similar experiments with slightly different

settings and implementations, we also compared with a boosted HF implementation, which

performs similar to our ADF and ARF variants but takes significantly more time to train.

We omit these results here due to the long training procedure and because preliminary

results indicated the same outcome and interpretation of results as in the papers.

4.1.3.2 Evaluation of Alternating Decision Forests

In this section, we evaluate the performance of the ADF training scheme in the HF frame-

work. While HF solve a joint classification and regression problem, we only investigate

the impact of the modification of the classification part with ADF . As in [62], we evaluate

the regression objective exclusively starting with depth 13. We compare plain HF to ADF

employing three different loss functions: savage, exponential, and tangent.
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The resulting AUC values are depicted as mean and standard deviation in Figure 4.4

for all four data sets. The figure shows that by choosing the right loss function, ADF can

outperform the baseline for all data sets. While the performance difference is not significant

for the TUD-crossing data set, it still is for the other three. The performance boost is most

pronounced for the ETHZ-cars data set, where all loss functions outperform the baseline.

Figure 4.5 shows the corresponding precision-recall curves for all data sets. As mentioned

above, we plot that curve that has the closest AUC value to the corresponding mean value

for each method. These curves still give a more detailed insight into the behavior of the

different methods. For instance, we clearly see in Figure 4.5a that all variants of ADF

achieve higher precision and that HF gets higher recall. For the TUD-campus data set, we

see in Figure 4.5c that the ADF variants achieve higher recall.

4.1.3.3 Evaluation of Alternating Regression Forests

In this section, we investigate the performance of the ARF training scheme in this object

detection setup. As already described in Section 4.1.1.3, ARF requires a different handling

in the HF framework. The reason is that we need a single prediction (i.e., voting vector)

per leaf node in order to be able to evaluate the loss function and compute gradients.

The standard HF framework uses a non-parametric distribution of voting vectors in the

leaf nodes, i.e., all vectors are used for voting. In this thesis, we simultaneously store the

mean voting vector for ARF but still keep the non-parametric distribution in the final

leaf nodes. For this experiment, we compare the HF and ADF baselines with ARF and

ADRF (i.e., ADF and ARF combined).

As in the previous experiment, we show the mean and standard deviation of the AUC

scores from the corresponding precision-recall curves. Recap that we did four independent

runs of these experiments. Figure 4.6 illustrates our results. We can observe that ARF

and ADRF significantly boost the performance for two of the data sets, TUD-crossing

and TUD-campus. Compared with the setup in [156], this variant of integrating ARF

into HF cannot boost the performance on the TUD-pedestrian data set but the overall

performance is higher. We can also see that the combination of ADF and ARF , i.e.,

ADRF does not provide an additional performance boost, except for the ETHZ-cars data

set. Figure 4.7 shows the corresponding precision-recall curves. One can clearly observe

the performance boost that is due to the ARF training scheme.

4.1.4 Discussion

To close the topic on object detection based on local evidence, we briefly want to discuss

the outcome of the experiments from Section 4.1.3. We did two separate experiments in

Sections 4.1.3.2 and 4.1.3.3, respectively, to investigate the integration of ADF and ARF

into HF . In the first setup, it clearly pays off to integrate the ADF training scheme into

the HF framework. For the second setup, special treatment of HF is required to integrate

ARF . None of the two variants proposed in Section 4.1.1.3 is optimal. Both make an
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(d) ETHZ cars

Figure 4.4: This figure illustrates the mean and standard deviation of AUC values (from the
corresponding precision-recall curves) for four different data sets. We compare three variants of
our ADF (different loss functions are employed, savage (Sav), exponential (Exp), and tangent
(Tan)) to the HF baseline.

approximation of the non-parametric voting distribution, one only at the intermediate

nodes and the other one additionally at the final leaf node level. In any case, the full

potential of ARF cannot be exploited. A better way of training would definitely be to

integrate the full Hough voting process into the loss evaluation, which was successfully

done in a very recent work of Redondo-Cabrera and Lopez-Sastre [137].

Compared to template-based [36, 41, 42, 53, 157] or proposal-based [66, 180, 191] de-

tection approaches, one has to challenge the whole object detection paradigm based on

local evidence, anyway. In the second part of this chapter, we already see that a simple
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Figure 4.5: This figure illustrates precision-recall curves of HF and three variants of ADF (dif-
ferent loss functions are employed, savage (Sav), exponential (Exp), and tangent (Tan)) for four
data sets.

template-based approach [157] can easily outperform the HF framework. The concept of

ADF can also be integrated into this template-based detection approach, as we will see in

the following sections. However, HF -like approaches still show their justification in many

other computer vision applications like pose estimation [67, 129, 175].
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Figure 4.6: This figure illustrates the mean and standard deviation of AUC values (from the
corresponding precision-recall curves) for four different data sets. We compare the baseline (HF )
with ADF , ARF , and ADRF . For ADF and ADRF , we use the savage loss. In contrast to [156],
all the models here employ the standard non parametric leaf node model of HF [62].
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Figure 4.7: This figure depicts precision-recall curves of HF , ADF , ARF , and ADRF for four
data sets.
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4.2 Holistic Object Detection with a Rigid Model

The second part of this chapter deals with holistic object detection where the model

describes an instance of the desired object category as a rigid template. The general

detection paradigm is rather simple: During the training phase, the model learns from

positive and negative instances in order to discriminate the desired object category from

background. During the testing phase, a sliding window on the full scale-space of the image

is applied in order to locate object instances. Popular representatives for this category of

object detectors are [14, 36, 41, 42, 185], which are typically designed and evaluated for

pedestrian or face detection. These two semantic categories show a rather rigid shape, can

be well modeled with such template-based approaches, and are two of the most important

categories in many computer vision systems.

Most detection frameworks in this category build upon a gradient-based image rep-

resentation, sometimes in combination with color features. The image representation is

typically structured and takes the form of the object template. On top of this representa-

tion, a learning algorithm tries to discriminate the object from the background. Support

Vector Machine (SVM) and Boosting (Boosting) are the two predominant machine learn-

ing approaches employed in this field. SVM is typically used with a linear kernel in order

to ensure low computational costs during inference. On the other hand, Boosting offers

a non-linear decision boundary and can be more expressive, while being competitive with

SVM regarding computational costs.

In this thesis, we build on the work of Dollár et al. [41], which we review in more detail

in Section 4.2.2. Instead of using Boosting as in [41], we show how RF and also ADF

can be successfully employed. Moreover, we can exploit the flexibility of the general RF

framework to make any kind of structured prediction [43, 62, 89], allowing for addressing

a critical shortcoming common to most holistic object detection approaches: the fixed

aspect ratio of the detections. We present a method capable of predicting more accurate

bounding boxes with a joint classification and regression RF formulation similar to [62, 69].

The label space for object detection gets augmented with the bounding box size, which

we exploit during both training and testing. In this way, we cannot only predict the

foreground probability of a detection but can also regress the extent of the object with a

single model, alleviating the need for learning many mixture models [53]. The detection

pipeline and the models we describe here have already been published in our paper [157].

In our experiments, we demonstrate that this object detection approach yields state-

of-the-art results on several data sets. We compare it with related approaches like HF [62]

(see Section 4.1), the Deformable Parts Model (DPM) [53], and a Boosting-based rigid

template approach [14, 41, 42]. We also evaluate the difference between plain RF and

our ADF training scheme for this task. The superior results of ADF again confirm the

effectiveness of this training algorithm. More importantly, we also show that our approach

can accurately regress the bounding box aspect ratio of objects in unseen test images. To

illustrate this in our experiments, we investigate the typical quantitative evaluation criteria
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of object detection systems, which focus on the amount of true and false positive detections

in a certain data set. True positives are commonly characterized by a predefined overlap

(50% in most benchmarks) of the detection with the ground truth bounding box. However,

the question arises if a criterion based on such an arbitrarily chosen threshold actually

reflects the quality of an object detector. Consider for instance the blue bounding box in

Figure 4.8, a detection given by a template-based detector similar to [14, 41, 42]. It is a

true positive but has an overlap of only 59% with the green ground truth bounding box.

In contrast, the red bounding box is the output of our detection algorithm, which has

a much higher overlap of 89% with the ground truth, thus identifying the extent of the

object more accurately. Our experiments show that the detection performance of most

typical detectors breaks down when increasing this overlap criterion for true positives,

while our approach still gives comparably good results.

Figure 4.8: Illustrative output of the proposed detector (red) and a state-of-the-art method
(blue). The given values show the overlap with the green ground truth bounding box, where our
detector achieves a much higher overlap because it regresses the aspect ratio of the object.

4.2.1 Related Work

The most related approaches to ours are the works of Dollár et al. [41, 42] and Benen-

son et al. [14], who build on a similar detection pipeline and employ the same features.

The influential Integral Channel Features (ICF) [42] compute several feature channels

including color, gradient magnitude, and orientation quantized gradients, which is simi-

lar to [14]. Both works rely on an efficient Boosting framework for learning the object

models. This line of work almost exclusively focuses on pedestrian detection and there

are some extensions that make this framework extremely fast [13] or exploit application-

specific knowledge [12]. However, only fixed size bounding boxes are predicted, which is

reasonable for pedestrians but is a limitation if dealing with other objects.
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The DPM [53] extends the rigid HOG template and SVM approach of [36] and includes

deformable parts and multiple components. This mixture model captures the intra-class

variability by separating the training data according to the aspect ratio (newer versions

also include appearance), thus enabling the prediction of a discrete set of aspect ratios.

Furthermore, a linear regression on the inferred part locations refines the aspect ratio

prediction. Nevertheless, the DPM has some disadvantages because (i) different models

have to be trained for each component and (ii) the aspect ratio prediction per component

is limited on a linear model solely based on the part locations. In particular, the first issue

limits the DPM in two ways: First, the model becomes slower during both training and

testing, and second, the more components are employed, the less training data is available

for each of them. In contrast, we have a single model that can exploit all the training data

and can predict a continuous aspect ratio.

Blaschko and Lampert [19] formulate the detection as a regression problem and train

a structured output SVM for learning. While yielding accurate results, a fast localization

method is necessary to have a reasonable running time during both training and detection.

They employ Efficient Subwindow Search [94], which requires computing an upper bound

on the detection score, thus limiting the choice of features and learning method. Our

approach is more flexible in the choice of features, faster during training and also has a

reasonable runtime within a sliding window scheme.

We also note that RF , in general, have rarely been employed for object detection.

One exception is the HF framework [62], which describes an object as a set of small

patches that are connected to a reference point, typically the center of the object (see

Section 4.1.1). However, this patch-based approach is relatively slow compared to other

detection models. To overcome this issue, [174] proposes a two-level approach for speeding

up the detection process. Nevertheless, it still relies on the Hough voting scheme for the

final prediction, where the non maximum suppression is a delicate task, cf. [196]. While

HF [62] typically predict a fixed bounding box, it can also handle variable aspect ratios:

either via back-projecting the voting elements, which then define the bounding box, or via

voting in a third dimension in Hough space. However, employing the back-projection is

rather slow or memory intensive, while increasing the Hough space dimensionality hampers

the maximum search.

Recently, [110] showed a holistic RF model that trains local experts (SVM ) in each

node. However, this model also builds on a fixed bounding box prediction and was only

evaluated on pedestrian detection benchmarks.

4.2.2 The Object Detection Framework

Our object detection system builds on the framework of [41]. The training data is given as

a set of rigid templates P with size h̄× w̄. This size is the mean of the bounding box sizes

of all the objects in the training set, normalized to 100 pixel width or height, depending on

what is larger. For the purpose of a clean description, we will use the task of car detection
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as an example and always refer to a fixed-width model throughout the rest of the chapter.

As in [41], the size of P also includes a padding of 20% in order to capture some context

around the objects. We center such a template at each of the annotated, properly rescaled

training objects and on randomly sampled bounding boxes from negative images. For each

of the cropped training examples, we calculate 10 different feature channels [41, 42]: We

use the 3 LUV color channels, the gradient magnitude, and 6 gradient channels, quantized

into equally sized orientation bins, similar to [14].

The training data X, i.e., positive and negative samples, is thus given as a set of pairs

{xn,yn)
N
n=1, where xn ∈ Rh̄×w̄×10 and yn ∈ {0, 1}. While [41, 42] employ Boosting , we

train a RF F = {Tt}Tt=1 as described in Section 2.2.4.2 using the training set X. We use

the standard training objective given in Equation (2.20) and employ pixel-pair tests as

splitting functions, given in Equation (4.3). Please note that in the following sections, we

will extend the label space and also provide a different objective function for training the

model.

The training phase also includes three rounds of bootstrapping after the initial training

of the RF . In each round, a set of hard negative windows is identified by applying the

current model on the negative images, which are then added to the pool of negative

data [41]. In each round, we re-train the RF from scratch.

4.2.3 Predicting the Aspect Ratio

We now describe how the flexibility of RF can be utilized in order to make more accurate

bounding box predictions with a joint classification and regression formulation. Before we

present the training procedure in Section 4.2.3.2, we first show how the label space of the

training problem is augmented with a regression target in the following section. Finally,

in Section 4.2.3.3 we present the inference process where the RF is used to localize objects

and to accurately predict their extent.

4.2.3.1 Augmenting the Label Space

As described in the previous section, each training example is cropped and scaled such

that it fits in the template P of size h̄ × w̄. The scaling factor is defined by the fixed

model width. Thus, the actual height of the objects captured in the training images most

likely varies with the viewpoint of the object. See Figure 4.9 for some examples. In order

to give predictions about the correct height, and thus the aspect ratio of an object, we

additionally store the actual height z for each of the training examples.

Therefore, we augment the label space with the ground truth height of each positive

training example, which extends the label space to Y = {0, 1} × R. Our training set now

becomes a set of triplets {xn,yn, zn)
N
n=1, where yn ∈ {0, 1} still corresponds to the positive

and negative label, and zn ∈ R is the correct bounding box height. Please note that zn
corresponds to the object height only for the example of a fixed-width model. It would
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z1 = 46 z2 = 56 z3 = 89

Figure 4.9: Three training examples capturing objects with different height and a common fixed
width. The object representations (features) are computed from the whole template (blue box),
but the regression targets zn are different for each example. The green box indicates the ground
truth annotation and also defines the regression target zn (red arrow).

correspond to the width for a fixed-height model. Also note that for background training

samples, i.e., yn = 0, zn is undefined.

4.2.3.2 Training the Random Forest

For training our joint classification and regression RF formulation, we have two objectives.

First, we want to separate positive and negative classes and, second, we want to regress

the bounding box height for positive samples. Similar to HF [62], we use two separate

split node evaluation criteria that optimize the different objective functions. The first

evaluation criterion targets (binary) classification and the second one regression.

We can directly make use of the HF framework for this joint classification and regres-

sion problem. The reader is thus referred to Section 4.1.1.2 for a detailed review on the

training principle of HF . As described in Section 4.1.1.3, we can also easily integrate the

training principle of ADF into this framework. We will see in the experiments that ADF

outperforms plain RF also in this holistic object detection setup.

In general, a single splitting node decides randomly with equal probability which of

the two objectives are being optimized (see Section 4.1.1.2). As in HF [62], we also

assign certain levels of depth in the tree a fixed type of evaluation objective that has to

be optimized with the variable λ(γ). In this setup, we slightly extend the parameter γ

from Section 4.1.1.2, which now has different interpretations: While setting γ = 0 ignores

the regression objective at all, setting γ > 0 indicates that starting with depth γ, only

regression nodes are evaluated in all trees, similar to [62]. Here, we additionally allow

setting γ < 0, where the first levels up to depth |γ| are fixed to optimize the regression

objective. The remaining levels of the tree are again randomly selected with a discrete

uniform distribution.

Tree growing stops as in standard RF when either the maximum tree depth is reached

or not enough training examples are available for further splitting. In contrast to standard
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RF , where tree growing also stops if a certain node becomes pure in terms of class labels,

in this setting, we continue splitting nodes containing only positives but fix the splitting

objective to be regression. These are the same stopping criteria as for HF described in

Section 4.1.1.2. The resulting leaf nodes then calculate (i) the class histogram based on

the training data falling into that leaf and (ii) the mean of the regression targets z of all

positive training examples. As each tree can thus return two kinds of outputs, we denote

the classification output of tree t as fCt (x) and the regression output as fRt (x).

4.2.3.3 Detection with Aspect Ratio Regression

For detecting objects in unseen test images, we employ a standard sliding window approach

over the scale-space. The score of a window W at location (x, y) in the image is given by

the classification output s = FC(x) = 1
T

∑T
t=1 f

C
t (x) of the RF . As we use an ensemble

method which consists of several independent weak classifiers (randomized trees in this

case), we could parallelize their evaluation to achieve a higher detection speed. However,

given a certain detection threshold τ below which detections are discarded, we can also

iteratively evaluate the trees and employ an early-stopping scheme. We can still benefit

from parallel processing, e.g., at the scale space pyramid or for the simultaneous evaluation

of multiple images.

In our early stopping approach, we examine whether or not the trees in the RF not

evaluated up to now can theoretically achieve such a high foreground probability that

the total score for that window W exceeds the detection threshold τ . Assume that we

already evaluated the trees up to index t < T, the current unnormalized score thus is

si≤t =
∑t

i=1 f
C
i (x). The upper bound of the score of the remaining trees is s̄i>t =∑T

i=t+1 1.0 = T− t. Therefore, if

si≤t + s̄i>t < τ · T (4.13)

we can already stop evaluating the feature vector x in the current windowW. For instance,

having T = 10 and a detection threshold τ = 0.95, the evaluation can already stop if the

first tree has a foreground probability fC1 (x) < 0.5. Using this approach, we can reject clear

negative windows during the evaluation process very quickly without reducing detection

performance.

For each window with s ≥ τ we evaluate fRt (x) for all trees in the RF to return

the prediction of the regression target, i.e., the height of the object captured in the cur-

rent window. The final estimate z of the object height is given as the average over all

independent trees:

z = FR(x) =
1

T

T∑
t=1

fRt (x) . (4.14)

Please note that a mode seeking approach like mean shift could also be employed, but

averaging turned out to be a good choice in our setting. The resulting detection window
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including the detection score in the original scale of the test image is then given by D =

(xκ ,
y
κ ,

w=100
κ , zκ , s), where κ is the scale of the detection.

After having identified a set of potential detections for a test image, we apply a standard

greedy non-maximum suppression approach that removes detections having an overlap

greater than 50% with a higher scoring detection [53].

4.2.4 Experiments

In this section, we demonstrate the performance of our general object detection approach

and evaluate the difference between plain RF and ADF in more detail. First, we compare

with state-of-the-art methods on three different data sets with a standard object detection

evaluation criterion. Second, we investigate the ability of the joint classification and re-

gression RF formulation for making accurate bounding box predictions. We thus evaluate

the detection performance of all methods when the evaluation criterion (i.e., the bounding

box overlap with ground-truth) is tightened. Finally, we analyze our trained model and

the most relevant parameters.

4.2.4.1 Overall Performance Evaluation

We first evaluate the overall detection performance of the proposed approach on three

standard benchmarks. We investigate three different variants of our approach: StdRF

implements a standard RF disregarding the regression information at all. StdRF-Regr

trains a RF and includes the regression information during both training and testing.

ADF-Regr employs the ADF training scheme for classification nodes, see Sections 4.1.1.3

and 3.2.3.

In addition, we give a comparison to state-of-the-art detection approaches. First,

we evaluate Aggregate Channel Features (ACF) [41], a Boosting-based approach similar

to [14, 42] that builds on the same detection pipeline (i.e., the same features and boot-

strapping scheme) as our detector. Second, we compare with HF [62] that also rely on a

RF framework for learning the object model, however, it works on the patch-level and em-

ploys the generalized Hough voting scheme for detection. Please note that both approaches

only predict a single bounding box aspect ratio, which is averaged over the training data.

Finally, we also compare with the DPM [53] (DPMfull), where we additionally evaluate a

version that only uses the root filter (DPMroot) to have a fair comparison with the other

approaches building on a rigid template. However, more important for our scenario are

the multiple components included in DPM , which are defined by clustering the aspect

ratio of the training bounding boxes. To denote the different versions of [53] we add the

number of components (1, 2, or 4) as postfix to DPMroot or DPMfull, respectively. For

all approaches building on randomization steps, i.e., HF [62] and our variants, we average

the results over three independent runs. As the standard deviation is rather small in our

experiments, we only report the average results for a cleaner presentation.
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Data sets: We use three different data sets for evaluation purpose, namely the

ETHZcars [99], the TUDpedestrian [8], and the MITStreetsceneCars [17]. For the

ETHZcars data set, we use 420 training and 175 testing images that capture cars from

different viewing angles. The test set defines a rather easy detection task because it

shows cars prominently with little background. Nevertheless, it exactly fits our needs for

evaluating the quality of the bounding box predictions as the aspect ratio of the ground

truth bounding boxes strongly varies. The TUDpedestrian data set contains 400 training

images and 250 test images. Also in this scenario, the aspect ratio varies due to different

articulations. Finally, the MITStreetsceneCars is a larger data set capturing cars in

different street scene scenarios and under different illumination. We split this data into

2/3 training and 1/3 testing images, resulting in 2909 and 1020 images, respectively.

Evaluation Criterion: The evaluation criterion in this experiment is the commonly

used Pascal overlap [47]. For each detection D it calculates the overlap with a ground

truth bounding box G as the intersection over union:

IoU(D,G) =
D ∩ G
D ∪ G

. (4.15)

The outcome of the function IoU(D,G) separates all detections D into true (IoU ≥ ξ) or

false (IoU < ξ) positives, which are used for drawing precision-recall curves and calculating

the Area Under Curve (AUC) measure. The parameter ξ is the success threshold that is

typically (and also in this experiment) set to 0.5. Note that in the following section we

evaluate the detection results when setting ξ > 0.5.

Results: We depict our results as precision-recall curves for all data sets in Figure 4.10

and report the AUC values in the corresponding legend. As can be seen, the proposed

ADF-Regr is always en par with the best performing approach and clearly wins on one

of the data sets. We also note that ADF-Regr is typically better than ACF , which is

the most related detection approach. One exception is the ETHZcars data set where the

difference between the two methods is insignificant and all results are rather saturated. On

the TUDpedestrian and the MITStreetsceneCars data sets our approach is 11.7% and

7.7% better than ACF , respectively. Furthermore, our approach performs significantly

better than HF , the only other RF based method. Finally, we also note that ADF-Regr

outperforms all versions of DPM except for DPMfull2 and DPMfull4 on the ETHZcars

data set. Moreover, including the parts in the DPM does not always improve the results

on these data sets.

When comparing the different proposed variants, i.e., StdRF, StdRF-Regr and ADF-

Regr, we see that including the regression output typically gives significantly better per-

formance and that the ADF learning scheme (see Section 3.2.3) further improves the

results.
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ACF [41]: auc=77.1
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StdRF-Regr: auc=84.1

ADF-Regr: auc=88.7

HoughForest [62]: auc=84.5
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Figure 4.10: Precision recall curves for all evaluated approaches on three different data sets: (a)
ETHZcars, (b) TUDpedestrian, and (c) MITStreetsceneCars.
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4.2.4.2 Tightening the Pascal Overlap Criterion

In this experiment, we directly evaluate the quality of the bounding box predictions of

the different methods and investigate the performance of our joint classification-regression

prediction in more detail. To do so, we use a different type of evaluation curve. Following

the standard Pascal criterion, we draw precision-recall curves and measure the AUC .

However, we vary the success threshold ξ for a true positive detection, see Equation 4.15.

We then plot the AUC value over ξ in the range between 0.5 to 1.0. Apart from the

evaluation criterion, the experimental setup is the same as in the previous experiment.

Results: We illustrate our results for all three data sets in Figure 4.11. As can be seen,

the proposed ADF-Regr gives the best results on two benchmarks and is en par with DPM

(2 or 4 components) on one benchmark. The performance difference between all methods

is most pronounced on the ETHZcars data set (Figure 4.11a), which shows most aspect

ratio variations. We can see that HF [62], ACF [41], StdRF, DPMroot1 and also DPMfull1

drastically lose performance if the success threshold ξ gets increased. For instance, when

setting ξ = 0.7 none of these approaches achieve higher AUC than 50%. Using DPM [53]

with 2 or 4 components (whether or not parts are included) increases the performance to

62% and 80%, respectively. This result is intuitive as increasing the number of components

also increases the number of aspect ratios that can be predicted. However, further adding

components will likely decrease the performance as less training examples will be available

per component (can be observed on TUDped and MITStreetsceneCars). In contrast, our

RF formulations, StdRF-Regr and ADF-Regr, can predict the bounding boxes even more

accurately, improving over DPMroot4 by 6% for ξ = 0.7 and by 41% for ξ = 0.8. Our best

variant, ADF-Regr achieves an AUC value of 73% at the very tight success threshold of

ξ = 0.8, while all methods predicting a fixed bounding box do not exceed an AUC value

of 20%. We illustrate some qualitative results in Figure 4.12.

4.2.4.3 Analysis of the Random Forest Model

In this section, we analyze the most relevant parameters of our RF framework. We evaluate

the number of trees T, as well as the parameter γ that regulates the amount of regression

nodes evaluated during training (for StdRF-Regr and ADF-Regr). Furthermore, we also

investigate the feature selection process of RF when including the regression objective

during the training phase.

Number of trees: First, we evaluate the number of trees T when fixing the maximum

tree depth to Dmax = 12 on the TUDpedestrian data set. In this setting, the additional

regression is also turned on and the parameter γ is set to −2. The results are depicted in

Figure 4.13a. As expected, we can see a clear trend of increasing performance with the

number of trees T up to a certain limit T = 100. For more trees, the results are saturated.
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Figure 4.11: Area under the Curve (AUC) for increasingly harder Intersection over Union success
thresholds for different data sets: (a) ETHZcars, (b) TUDpedestrian, and (c) MITStreetsceneCars.
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Figure 4.12: Example results when comparing a fixed bounding box prediction and a flexible
one. The green box is the ground truth, the blue one is the fixed size bounding box, i.e., the mean
over the training examples, and the red one is the flexible bounding box predicted with our joint
classification and regression RF . The three right images in the bottom row show bad examples.

Regression-Only Parameter: We further analyze the parameter γ. For this evalua-

tion, we use the ETHZcars data set, which provides the most variation in aspect ratios. In

Figure 4.13b, we see the mean and standard deviation of 3 independent runs for different

values of γ. We can observe that using too many or too few regression nodes is unfavor-

able. Best performance can be observed by setting γ either to −2 or 9 (when using trees

with maximum depth of Dmax = 12).

Feature Selection: We also visualize the spatial feature selection frequency for StdRF-

Regr and StdRF, i.e., with or without including the regression objective, on the car model

of the ETHZcars data set. To do so, we count how often a certain location in the rigid

template was selected for performing a split in the RF , regardless of the feature channel.

Again, we set γ = −2 for StdRF-Regr.

Figure 4.14 illustrates the behavior for both training schemes when summing up all

selected feature locations. In this setting, we used 100 trees with a maximum tree depth

of 12 over 2 independent runs. Interestingly, we can observe that the feature selection

is very different for the two learning schemes. StdRF concentrates on positions on the

left and right side of the cars. This behavior seems clear as the width of the model is
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Figure 4.13: (a) Evaluation of the number of trees T on the TUD-pedestrian data set. (b)
Evaluation of the parameter γ that influences the behavior of the regression objective in the RF .
We plot the accuracy as AUC for different values of γ for the ETHZcars data set.

fixed and, thus, the gradients at these locations are present in all positive training images.

Furthermore, for this training scheme, also the bottom of the templates are frequently

selected. This can be explained by the fact that cars typically stand on the street and also

have gradients on the bottom, which is typically not the case in negative images.

On the other hand, StdRF-Regr evaluates a much more diverse set of locations as it

also tries to separate the different viewing angles, e.g., frontal-view from side-view cars.

Thus, it selects the features at different y-coordinates in the center of the x-dimension.

Of course, this training scheme also evaluates classification nodes. We can thus observe

similarly selected locations as for StdRF.

(a) (b)

Figure 4.14: Spatial feature selection of both training schemes: (a) StdRF, where only the
classification splitting criterion is active and (b) StdRF-Regr, which also includes the regression
objective. Both figures show the spatial distribution of selected features of the car model for the
ETHZcars data set. Red and blue colors indicate high and low frequencies of the feature selection,
respectively.
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Classification model: Finally, we evaluate if the regression objective during training

also improves the classification performance of the RF . That is, we train two models: one

including the regression objective (γ = −2) and one only evaluating classification nodes

(γ = 0). During testing, however, we only use the fixed mean bounding box in order to

turn off the effect of regressing the bounding box height on the final AUC performance.

We observe that including regression during training improves the performance regardless

if the regression output is actually used during detection. On the TUDpedestrian data

set, we get 78.3 ± 1.2% AUC without using the regression objective (γ = 0) and 83.3 ±
3.1% when including it (γ = −2). Including the regression output during the testing

phase for predicting variable bounding box aspect ratios further improves the results, cf.,

Section 4.2.4.1.

4.3 Summary

In this chapter, we applied the proposed RF training scheme from Section 3.2 for the

task of generic object detection. We focused on two different schemes, a local patch-based

framework as well as a holistic template-based approach. For both scenarios, the proposed

ADRF could be successfully integrated.

The first part of this chapter deals with object detection based on local evidence, see

Section 4.1. We review the ideas of ISM [100] and HF [62], where we provide details on

the object detection model and how ADRF can be readily integrated. After describing the

inference process of HF with the generalized Hough transform, we evaluate the effect of the

newly integrated RF training scheme on the object detection performance. We can show

that both the classification (see Section 3.2.3) and regression part (see Section 3.2.2) of

our ADRF training scheme improves the results compared to the original HF formulation

on standard benchmarks data sets.

The second part of this chapter deals with holistic object detection with a rigid tem-

plate, see Section 4.2. Beside the integration of ADF into this framework, we propose a

general RF based object detection model that is capable of predicting variable bounding

box aspect ratios. Compared to the HF framework investigated in the first part of the

chapter and several other state-of-the-art detection approaches, our method handles con-

tinuously varying aspect ratios in a single RF model. We augmented the standard binary

label space accordingly with a regression target for predicting the bounding box aspect

ratio. Our joint classification and regression formulation successfully exploits the addi-

tional label information during both training and testing. Our results on common object

detection benchmarks showed that our proposed model is better or en par with related

state-of-the-art approaches for standard evaluation criteria. Furthermore, our experiments

revealed that most commonly used object detectors that predict a fixed bounding box size

break down as soon as the evaluation criterion becomes tighter in terms of overlap with the

ground truth bounding box. In contrast, our formulation can efficiently deal with variable

aspect ratios in a single model and achieves good results even if the overlap criterion gets
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harder. Finally, the ADF framework provides better scores compared with the plain RF

training scheme also in the holistic object detection setup.



CHAPTER 5

Human Head Pose Estimation from Depth Data

Another computer vision application we address in this thesis is human head pose esti-

mation from depth images. Given a depth image D capturing a human head, the task

is to automatically infer the position in 3D and the orientation. The position is simply

defined by the x, y, and z values (in millimeters) in the world coordinate system, assuming

known intrinsic parameters of the camera. The orientation is modeled via Euler angles

(yaw, pitch, and roll). The full pose of the head is thus defined as a 6 dimensional vector

h = [x, y, z, α, β, γ]> that has to be inferred for a given depth image. An illustration of the

head orientation is illustrated in Figure 5.1 and some example depth images with ground

truth annotation from [50] are shown in Figure 5.2.

yaw

roll
pitch

Figure 5.1: This figure illustrates the 3D annotation of the human head orientation with Euler
angles, i.e., yaw, pitch, and roll. These three angles correspond to the last three values in the pose
vector h. Image taken from [91]
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Figure 5.2: Exemplary depth images with corresponding head poses from the Biwi Kinect Head
Pose Database [50]. Each row corresponds to one sequence capturing a single person. Each column
shows different frames within that sequence. The green dot illustrates the head center location,
which is projected to the 2D image space and overlayed on the depth image. The red lines indicates
the viewing direction of the head.

Human head pose estimation is an essential component for applications like human

behavior analysis or human computer interaction. These applications require an accurate

estimate of the head pose in order to operate reliably. The advent of cheap depth sensors

like the Microsoft R© Kinect
TM

or other Time of Flight (ToF) sensors allow systems to

rely on depth information in practical scenarios. Using 3D information resolves many

ambiguities compared to a standard 2D image sensor. We review related work on human

head pose estimation, including 2D and 3D attempts, in Section 5.1.

In this thesis, we evaluate two different approaches for human head pose estimation.

First, the local patch-based approach of Fanelli et al. [49, 50], which extends the Hough

Forests (HF) framework [62] for this particular task. As this model again builds upon the

basic Random Forests (RF) framework, we can easily integrate the ideas of Alternating

Decision and Regression Forests (ADRF) to learn better models that give more accurate

predictions, as we already showed in [156]. In Section 5.2, we describe this framework

presented by Fanelli et al. [49, 50] in more detail as well as our extensions to integrate

ADRF . Second, we evaluate a new holistic approach for this task. Inspired by the bet-

ter performance of a template-based object detection algorithm compared with HF (see

Chapter 4), we also investigate a similar pipeline for head pose estimation, which we de-

scribe in Section 5.3 in more detail. The experimental evaluation of both approaches is

summarized in Section 5.4.
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5.1 Related Work on Human Head Pose Estimation

An accurate estimation of the human head pose is an important building block for many

high-level applications, for instance, in the field of human-computer interactions. Re-

searchers have worked on this topic for many years, used different sensing techniques, and

applied many different methods. Thus, the body of literature is large for this particular

topic. Murphy and Trivedi provide a thorough survey on head pose estimation in com-

puter vision [119], which summarizes and compares 90 different works up to the year of

2009. Instead of building a functional taxonomy that would distinguish the methods by its

operating domain, e.g., 2D or 3D methods, the authors choose to organize them based on

their underlying fundamental approach, e.g., nonlinear regression, manifold embedding,

or tracking-based approaches.

A lot has changed since 2009 and many new works have been presented. Recent years

showed a strong trend towards 3D methods due to the increasing availability of cheap

consumer 3D sensing technology like the Microsoft R© Kinect
TM

or other ToF cameras. In

this thesis, we give an up-to-date review of related work on human head pose estimation,

which is based on Fanelli et al. [48]. We also build upon a functional taxonomy and separate

related work into 2D and 3D approaches in the following two subsections, respectively.

5.1.1 2D Approaches

Approaches in this category only rely on 2D information from a single, standard camera. In

contrast to 3D approaches, which we summarize in the following section, 2D approaches

typically benefit from a cheap and easy to use sensing device. However, the advent of

consumer depth cameras with acceptable prices and comfortable installation makes this

benefit rather small. Nevertheless, according to [48], we also subdivide this category of 2D

approaches further into appearance-based (holistic) and feature-based (local) approaches.

Appearance-based: Jones and Viola [85] discretize the space of head poses into n sets

and build on a two-stage approach to estimate the head pose. First, a learned decision

tree initially estimates the pose by predicting one of the n discrete poses for each window

in the image. Then, to verify the detection, a pose-specific face detector is applied, which

is based on their famous work on face detection with boosted classifiers [185]. The authors

also try to first apply all pose-specific detectors and then select the best one to estimate

the pose. While this gives slightly better results, the computational costs are obviously

higher.

Other works use manifold learning and rely on the assumption that the head pose

builds a low-dimensional manifold of the high-dimensional face images. Unlike previous

approaches that did not exploit the pose labels for finding the embedding, Balasubrama-

nian et al. [11] use this supervision to bias the embedding. They call this ‘biased manifold

embedding’. Osadchy et al. [124] define a parameterized low-dimensional head pose man-
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98 Chapter 5. Human Head Pose Estimation from Depth Data

ifold by hand. A convolutional neural network is trained to both detect faces and project

the high-dimensional face image onto the manifold, where the head pose can be extracted.

Feature-based: This category of head pose estimation systems rely on the detection

of facial features like the nose tip, eyes, or mouth corners. Whitehill and Movellan [194]

present a head pose estimation system that relies on a fixed set of 4 facial features, the

nose tip, the mouth center, and the two eye centers. After having detected the face and the

facial features, the pose is first roughly classified with a set of detectors that are trained

for certain ranges of the head pose. Finally, a linear regression takes the locations of

the detected features as well as the output of the rough pose classification as input and

computes the final pose estimate.

Instead of relying on a global set of facial features, Vatahska et al. [183] define subsets

of features for different head poses. First, a face image is classified into a rough pose

(frontal, left or right profile), which defines the currently active set of facial features.

Then, AdaBoost [59] is applied to detect the features in the active set. Finally, a neural

network is fed with the positions of the detected features to estimate the final pose.

Compared with appearance-based approaches, systems relying on the detection of facial

features can be more robust to general occlusions and illumination changes, but as soon

as a single feature cannot be recognized the systems easily break down.

5.1.2 3D Approaches

The most often occurring issues with approaches only relying on 2D information are partial

occlusions, change of illumination, and the lack of features in rather textureless regions of

the face. Furthermore, the manual annotation of 2D face images with an accurate pose is

a hard task on its own. The annotation, however, is required for learning and evaluation.

Fortunately, the increasing availability and the decreasing costs of depth sensors make it

easier to include 3D information into the process of human head pose estimation. Most

recent work thus focus on 3D-based approaches, either in combination with 2D information

or with depth alone.

Seemann et al. [159] does not employ a direct 3D sensor, but extract 3D information

from a stereo camera setup. The proposed method first detects and crops the face in

the image. Then, after normalizing the extracted gray-scale and disparity patch, a neural

network estimates the head pose. The system can estimate pan and tilt rotation from

−90◦ to +90◦ and runs at 10 FPS on a 320× 240 pixel image on a standard consumer PC

from that time.

The approach presented by Breitenstein et al. [25] estimates the 3D pose of the hu-

man head from a single range image captured with a stereo-enhanced structured light

method [192]. The system first detects the nose with a newly developed shape signature.

Based on the estimate of the nose, head pose hypotheses are generated and a set of tem-

plates is rendered from a generic face model. The template with the minimal alignment
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error to the observed input data is selected and defines the final pose estimate. This

approach is real-time capable due to parallel computing on the GPU. It is also robust to

large pose variations (±90◦ yaw, ±45◦ pitch, and ±30◦ roll rotations), facial expressions,

and partial occlusions. However, the nose has to be visible in order to make a prediction,

which is also the case for [108].

In contrast, the approach presented by Fanelli et al. [49] does not depend on the

visibility of any facial feature and still can handle large variations of the head pose. The

method employs a random regression forest to learn a mapping from a high-quality depth

image patch to the head pose (6 degrees of freedom) in the spirit of HF [62]. Each patch is

extracted from a depth image and can cast a vote for the 6 pose parameters (3D position

and yaw, pitch, roll rotations). All votes are aggregated to make a final estimate. In

contrast to [25], this approach reaches real-time performance without using a GPU.

Both [25] and [49] assume the head to be the only object present in the depth image.

The follow-up work of Fanelli et al. [50] relaxes this assumption and integrates the face

detection process into the random forest framework of [49] making it even more similar

to [62]. Thus, this approach can handle situations where other parts of the body or even

other objects are present in the captured scene. Furthermore, it does not rely on high-

quality range images, but can deal with rather low-quality depth images from a consumer

sensor like the Microsoft R© Kinect
TM

. In the following section, we review [50] in more detail

as it builds the basis for one of our attempts to human head pose estimation. We show

how to integrate the learning principle of ADRF and that it again gives more accurate

predictions compared to the baseline.

Finally, we mention a very recent work of Riegler et al. [139] that combines ideas of

HF [62] with convolutional neural networks to infer the head pose. Thus, this method

learns the mapping from depth image patches to head pose in an end-to-end fashion. This

also includes a feature representation for depth images, which is typically hard to design

by hand [48–50].

5.2 Head Pose Estimation with the Hough Forests Model

Our first attempt to human head pose estimation follows the framework of Fanelli et al. [50]

that is based on HF [62]. We already described HF for object detection in Section 4.1.1 and

how to extend it with the learning principle of ADRF . In this section, we only review the

modifications of this framework for human head pose estimation from depth data [48, 50].

We briefly described the general task of head pose estimation already in the beginning of

this chapter.

5.2.1 Data Modality and Labelspace

The first notable difference to object detection on 2D images is the underlying data itself,

i.e., the dataspace X and the labelspace Y. The data is given as depth images from a
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100 Chapter 5. Human Head Pose Estimation from Depth Data

Microsoft R© Kinect
TM

sensor. See Figure 5.2 for some example input images of the Biwi

Kinect Head Pose Database [50], which we also use in our experimental evaluation. As

with standard HF , the data is represented with small patches P ∈ R100×100 of the depth

image D, where the size of the patches for this application is fixed to 100 × 100 pixels.

While other works, e.g., [49], compute surface normals as additional features for depth

data, [50] only relies on the raw depth images. The reason is that the depth data from

the Kinect
TM

sensor is relatively noisy and an estimate of the normals is unreliable.

The label space of the HF approach for this application is Y = {0, 1}×R6 because each

patch is attached a discrete class label c and a 6 dimensional pose vector h. The class label

defines whether or not the center of a patch lies within a bounding box B around the human

head (see Figure 5.3 for an example). As already stated before, h = [x, y, z, α, β, γ]>,

where x, y, z define the position of the head center in 3D space and α, β, γ define the

head orientation as yaw, pitch, and roll, i.e., Euler angles.

(a) (b)

Figure 5.3: This figure illustrates the extraction of training data from depth images as well as
the form of the splitting functions used for this application. (a) The green bounding box outlines
the extent of the face of the human head. The blue and red squares illustrate three 100 × 100
training patches used to train the RF . Patches having their center pixel within the green bounding
box belong to the foreground class (blue). All other patches belong to the background class (red).
Only foreground patches are additionally associated with the corresponding pose vector h. (b)
This figure shows a zoomed-in version of the green bounding box including the upper foreground
patch (blue). Here, we illustrate the form of the splitting function defined in Equation (5.1). The
depth values inside the yellow boxes are averaged and subtracted from each other, yielding the
final response for this patch P and splitting function parameters Θ.

5.2.2 Adaptations to the Hough Forest Model

The general learning framework is the same as described in Section 4.1.1. However, some

notable modifications have to be applied in order to make HF work for this particular

task. Due to the different modality of the data, i.e., noisy depth images, the response

function ξ(P; Θ) for a data patch P and parameters Θ has to be adapted [50]. In contrast

to simple pixel-pair tests [62], noisy depth data requires a more robust estimate of the
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local evidence at a certain pixel location. Thus, [50] extends pixel-pair tests to regions in

the depth image as

ξHF-depth(P; Θ) =
1

|Θ1|
∑

p∈Θ1

P[p]− 1

|Θ2|
∑

p∈Θ2

P[p]−Θth , (5.1)

where | · | is the cardinality operator. For this response function, Θ1 and Θ2 define sets

of pixels p from two rectangles. These rectangles are constrained such that their center

location is within the boundaries of the data patch P (see Figure 5.3). One has to take

care of invalid pixels (undefined depth values or background), which should be excluded

from the summations in Equation (5.1) as described in [50]. The summations in (5.1) can

be efficiently evaluated via integral images.

While [50] also employs the general quality function of HF , as defined in Equation (4.1),

the regression part QR(σ(x; Θ),X) is defined differently. Instead of employing reduction-

in-variance for the compactness measure E(X) in (2.20), the differential entropy (2.26)

with probabilities modeled as realizations of a Gaussian distribution N (h; h̄,Σh) is used.

The parameters of the distribution are the mean h̄ and the covariance matrix Σh. The

Gaussian distribution allows for solving (2.26) in closed form, which results in

E(X) = − log(|Σh|) , (5.2)

where we omit constant terms. As presented in [49], also [50] approximates (5.2) with a

block-diagonal covariance matrix

Σ̂h =

[
ΣLoc

h 0

0 ΣRot
h

]
(5.3)

where ΣLoc
h is the covariance matrix of the first three elements in h, which are the location

variables. The second half of h are the Euler angles defining the rotation of the head and

give ΣRot
h . The block-diagonal covariance matrix turns (5.2) into

E(X) = − log(|ΣLoc
h |+ |ΣRot

h |) . (5.4)

Minimizing (5.4) reduces the regression uncertainty. Furthermore, [50] makes the param-

eter γ that steers the influence between the classification and regression objective in (4.1)

continuous and dependent on the current depth of the tree. Finally, the leaf node mod-

els in [50] have a parametric form, in contrast to the non-parametric version in standard

HF [62], where all votes from the training set are stored that fall in a leaf. As during

growing the trees, the leafs store a Gaussian distribution N (h; h̄,Σh) for the pose h.

We can extend the training procedure of [50] with the learning principle of ADRF

in the same way as we did for standard HF (see Section 4.1.1.3), as the modifications

described above do not directly affect the ADRF training scheme.
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102 Chapter 5. Human Head Pose Estimation from Depth Data

Figure 5.4: This figure illustrates the process of estimating the pose of a human head from a
given depth image. (Left) The given depth image overlayed with the sampling grid of patches that
are evaluated by the RF model. Only patches with valid depth information are allowed to vote for
the pose (green dots). All remaining patches on the grid are neglected (red). As can be seen, the
depth image not only contains the human head, but also the torso. (Middle) Thus, the first step in
the inference process is to vote for potential locations of the head (first three dimensions in the pose
vector h). Mean-shift is used to aggregate the votes. The green and red circles indicate potential
detections, where the radius is proportional to the number of supporting votes. Detections with
too little support are discarded (red circles). (Right) Finally, the orientation of the head (green
line) is estimated for all remaining detections.

5.2.3 Inferring the Head Pose with Hough Forests

To localize the head and infer its pose on an unseen test depth image D, patches P are first

extracted on a regular grid. A stride parameter defines the density of sampling patches

and directly influences the trade-off between accuracy and speed.

Each extracted patch P ∈ D is routed through all trees in the forest, resulting in T leaf

nodes giving estimates of the head pose h. In order to make the overall estimate more

robust, [50] only considers leaf nodes that (i) have p(c = head|P) = 1 and (ii) tr (Σh) < κ,

where tr (·) defines the trace of a matrix. In words, leaf nodes having assigned a single

training patch from the background are discarded from voting for the head pose. Moreover,

leaf nodes where the sum of the variances of its prediction is above a certain threshold κ

are discarded as well.

All remaining predictions are considered for voting. Finding the final estimate of the

head pose involves multiple steps. First, only the 3 dimensions of the location of the head,

i.e., x, y, and z, are considered. Then, similar to HF [62], a mode seeking approach (mean-

shift in 3D for this case) is employed to find a set of potential predictions of the head. The

set of predictions are grouped to allow multiple heads to be detected. Groups with a small

number of supporting votes are discarded. In a second step, the head orientation, i.e.,

α, β, and γ, is computed as the mean of the remaining votes for each group separately.

Figure 5.4 illustrates this inference process. A more detailed description can be found in

[48–50].
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5.3 Holistic Head Pose Model

In this section, we present our second attempt to human head pose estimation from depth

images. Motivated by the experimental outcome of the previous chapter on object de-

tection, we also evaluate a holistic approach for this task. The operating pipeline is very

simple: First, a basic face detector identifies the center of the head. While this is typically

simple given this type of data, the detection is not very accurate and the depth of the head

center is still unknown. As a second step, we thus apply a RF to predict the remaining

offset between the 3D location of the head detection (projected from 2D with the given

depth image) and the true head location. Finally, another RF predicts the orientation

from a single patch capturing the full human head. In the following, we briefly describe

each of these steps in more detail.

Detecting the face: Depending on the provided data, one can apply different face

detection algorithms. The Microsoft R© Kinect
TM

sensor, for instance, provides an RGB

image alongside with the depth data. Thus, standard face detection algorithms can be

employed, which already work extraordinary well [114]. Also note that the additional

depth data can constrain the search area significantly, cf., Figure 5.2, which typically

further eases the task. If only depth data is available, one can also train a basic boosting

cascade [41] or again use HF [50].

Estimating the head position: Assuming that the face detection algorithm provides

a 2D location of the face, (x̃, ỹ), one can transform this point into the 3D coordinate

system given the depth estimate of the sensor at that 2D location. Note that this location

typically does not coincide with the center of the head in 3D, which becomes clear when

thinking of the depth value (head center versus the surface of the head). Given the true

3D annotation of a certain training data set and the outcome of a face detector, one can

generate a new training set to learn the offset between these two locations. The training

data are patches capturing the human head cropped from the depth images, i.e., the output

of the detector. This corresponds to a holistic description of the head. The training labels

are the above described offsets between 3D location of the detection and the true center

of the head. We use a standard RF and also evaluate the Alternating Regression Forests

(ARF) training scheme for this task.

Estimating the head orientation: The only thing missing for a full head pose estima-

tion system is the orientation of the head. Given annotation in the form of yaw, pitch, and

roll, as well as the same depth patches described above, we train another RF to estimate

the orientation. Again, we can easily evaluate the ARF training scheme for this task.

After applying the three above-described steps, one ends up with a full estimate of the

head pose h, i.e., the location and the orientation in 3D.
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5.4 Experiments

In this section, we demonstrate the performance of the above described human head pose

estimation approaches. We are mainly interested in the difference between plain HF and

our RF training schemes proposed in Chapter 3 (Alternating Decision Forests (ADF) and

ARF ), which we incorporated into both, a local (see Section 5.2) and a holistic estimation

pipeline (see Section 5.3). Before presenting our main results, we briefly outline the

experimental setup in the following section.

5.4.1 Experimental Setup

For all experiments we use the data set from [50], which is publicly available and contains

more than 15K frames of depth images capturing human faces. The data set itself is split

into 24 sequences, each capturing one person sitting around 1 meter away from the sensor.

The ground truth annotation is given as the head center position in 3D and the pose in

Euler angles for each frame. This ground truth was acquired off-line with a template-

based tracker, which relies on a personalized model of each individual [50]. According to

Fanelli et al. [50], this annotation is not perfect but the error is very low, translational

and rotational errors of around 1mm and 1◦, respectively. The data set covers rotation

angles between ±75◦ for yaw, ±60◦ for pitch, and ±50◦ for roll. Figure 5.2 provides some

examples.

Following [50], we split the data into 22 training sequences and 2 testing sequences.

The separation is done based on individuals. Two persons (with ids 1 and 12) are selected

for the test sequences [48]. All remaining persons (18 individuals in 22 sequences) are used

for training.

The data set shows an uneven distribution of head poses, i.e., most of them are frontal

facing. To counteract this issue, one has to balance the training data by binning the Euler

angles (yaw, pitch, and roll) and balancing the number of frames extracted from each

bin. Among some other details, this process is not well explained in [48, 50], which most

probably is the reason for slightly different accuracy values reported in [48, 50] and this

thesis. Here, we use the following scheme to balance the training data set. We create a

2-dimensional histogram over yaw and pitch, where each dimension is divided into 7 bins.

Then we drop a random selection of training frames per bin such that we have a maximum

of 1000 frames per bin. This reduces the number of training images from 14447 to 12909.

The main focus of the following set of experiments is to compare the plain HF training

scheme (modified for this regression task [50]), ADF , and ARF . We integrate ADF and

ARF into two different pose estimation pipelines (local and holistic), as described before.

For the local approach, we endow all RF variants with the same parameters from [50],

i.e., we use 7 trees, a maximum depth of 15 and 20000 random tests per node. For the

holistic approach, we use 32 trees with a maximum tree depth of 20. The reason for using

a stronger model (i.e., more trees) is simply the fact that the holistic approach makes
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a prediction of the pose based on a single (but larger) input patch. The local approach

operates on small patches that together vote for a final prediction.

5.4.2 Results

Following Fanelli et al. [50], we also present our results as the percentage of correctly

predicted frames over different success thresholds for both, position and orientation of the

head, respectively. The success threshold defines whether a particular frame is correctly

predicted or not. For the position of the head, a ball in 3D is defined around the ground

truth location, where the radius defines the success threshold and varies between 10 and

30 mm. For the rotation of the head, the average difference between ground truth and

predicted angles is thresholded. Figure 5.5 illustrates our results.

For a fair comparison of all HF based approaches, we use our own implementation

of all variants (same code basis). However, as some details of the experimental setup

in [50] (training data generation, etc.) are not fully specified, we get slightly different

results compared to those reported in [50]. We can still see from the plots that both

approaches optimizing a global loss (HF-ADF and HF-ARF ) consistently improve over

the HF baseline. Although this pose estimation problem is evaluated as a regression

task, we can observe that HF-ADF (classification nodes) significantly improve over HF .

A reason for this might be that HF-ADF produces cleaner leaf nodes (i.e., more leafs

having p(y = 1|P)), which leads to more effective voting nodes that improve the overall

result. In this experiment we also evaluate the performance of the combination of ADF

and ARF , i.e., HF-ADRF . We can observe that HF-ADRF gives the best results for the

more important tighter success thresholds (i.e., 10 mm) in the head position regression (see

Figure 5.5a), and also gives good results for the orientation estimation (see Figure 5.5b).

Figure 5.5 also illustrates the results of our holistic pose estimation approach described

in Section 5.3 (Hol-RF and Hol-ARF ). One can see that the general accuracy for both

position and orientation is better than with the local patch-based approach, except for the

head position in the tighter error range. For the estimation of the 3D position, the Hol-

ARF variant also outperforms the Hol-RF baseline, which can also be seen in Table 5.1.

Unfortunately, this is not the case for the orientation. In any case, these results of the

holistic approach have to be taken with a grain of salt. The reason is that we only simulate

the face detection step for these experiments. We use the ground truth 2D location of the

head (defined by the center of a binary segmentation mask provided with the data set) and

randomly added an offset vector, which mimics the uncertainty of the face detection. This

offset is modeled with an isotropic 2D Gaussian having zero mean and a standard deviation

of 10 pixels in both dimensions. However, we again mention that the face detection task

for this data set is not a tough one and such a standard deviation is reasonable.

To get a better insight in the accuracies of all methods, we also give the raw errors for all

6 variables and the aggregated head position and orientation errors in Table 5.1. Again, we

observe that all methods optimizing a global loss consistently outperform their baseline
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([50] for patch-based and Hol-RF for the holistic approaches) in this task. As already

mentioned above, one exception is Hol-ARF, which performs worse than the baseline for

the head orientation.

Again it is interesting to see that the simple holistic approach is highly competitive

with the advanced patch-based approaches. This is especially true for the orientation,

where the holistic approach can significantly outperform the local one. When looking at

Table 5.1, a combination of these paradigms might give even better results on this data

set.

HF HF-ADF HF-ARF HF-ADRF Hol-RF Hol-ARF
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Figure 5.5: Frame accuracy of the competing methods (HF, HF-ADF , HF-ARF , HF-ADRF ,
Hol-RF , and Hol-ARF ) for different success thresholds of (a) the head position in mm and (b) the
head orientation in degree.

5.5 Summary

Human head pose estimation from depth data is an interesting and useful task that finds

many potential applications in human-computer interaction systems. In this chapter, we

first discussed related work in this field and then reviewed a recent framework based on HF

that showed state-of-the-art performance on a standard head pose estimation benchmark.

As we already presented in Chapter 4 for object detection in 2D images, we can again

incorporate our ADRF learning principle into HF in the same way for human head pose

estimation. Moreover, we described and evaluated a novel holistic approach for human

head pose estimation, which also builds upon RF . We thus also investigated our ARF

training scheme for this holistic attempt. The experimental evaluation on the BIWI Kinect

Head Pose Database [50] revealed that our global loss optimization algorithms for RF

improve the results over standard HF for this particular task. The results also show that
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HF [50] HF-ARF HF-ADF HF-ADRF Hol-RF Hol-ARF

X 6.03± 2.20 5.84± 1.67 4.77± 1.34 4.64± 1.36 4.56± 0.00 4.86± 0.00

Y 8.63± 5.32 4.93± 2.31 5.88± 1.96 4.91± 2.02 4.74± 0.00 4.58± 0.00

Z 4.39± 2.71 4.28± 1.48 3.53± 1.16 4.00± 1.27 5.25± 0.00 4.61± 0.00

Position 12.99± 5.33 9.84± 2.26 9.50± 2.09 8.68± 1.92 9.87± 0.00 9.30± 0.00

Yaw 3.79± 0.80 3.67± 0.65 3.54± 0.49 3.52± 0.55 3.18± 0.00 3.41± 0.00

Pitch 9.27± 3.05 9.17± 2.57 7.87± 1.83 8.18± 2.08 5.70± 0.00 6.26± 0.00

Roll 6.62± 3.24 4.83± 1.70 5.39± 1.51 4.77± 1.45 2.64± 0.00 2.83± 0.00

Angle 13.48± 3.46 12.14± 2.23 11.48± 1.70 11.17± 1.77 7.77± 0.00 8.46± 0.00

Table 5.1: Raw regression errors (mean and standard deviation) of the Hough-voting based
approaches HF [50], HF-ARF , HF-ADF , HF-ADRF , as well as the holistic approaches Hol-RF
and Hol-ARF. The values are given in mm for X, Y, Z, and Position and in degree for Yaw, Pitch,
Roll and Angle.

the simple holistic pipeline can be highly competitive and even better than the patch-based

baseline.
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CHAPTER 6

Single Image Super-Resolution with Random Forests

Single Image Super-Resolution (SISR) [56, 68] is a classical and important computer vision

problem with many interesting applications, ranging from medical and astronomical imag-

ing to law enforcement. The task in SISR is to generate a visually pleasing high-resolution

output from a single low-resolution input image. Although the problem is inherently am-

biguous and ill-posed, simple linear, bicubic or Lanzcos interpolations [45] are often used

to reconstruct the high-resolution image. These methods are extremely fast but typically

yield poor results as they rely on simple smoothness assumptions that are rarely fulfilled

in real images.

More powerful methods rely on statistical image priors [52, 56] or use sophisticated

machine learning techniques [44, 200] to learn a mapping from low- to high-resolution

patches. Among the best performing algorithms are sparse-coding or dictionary learn-

ing, which assume that natural patches can be represented using sparse activations of

dictionary atoms. In particular, coupled dictionary learning approaches [190, 201, 204]

achieved state-of-the-art results for SISR. Recently, Timofte et al. [178] highlighted the

computational bottlenecks of these methods and proposed to replace the single dictionary

with many smaller ones, thus avoiding the costly sparse-coding step during inference.

This leads to a vast computational speed-up while keeping the same accuracy as previous

methods.

In this chapter, we show that the efficient formulation from [178] can be naturally

casted as a locally linear multivariate regression problem and that Random Forests (RF)

as described in Section 2.2.4 nicely fit into this framework. We propose a novel regularized

objective function optimized during tree growing that operates not only on the output label

domain, but also on the input data domain. The goal of the objective is to cluster data

samples that have high similarity in both domains. This eases the task for the locally
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110 Chapter 6. Single Image Super-Resolution with Random Forests

(a) Original (b) Bicubic: PSNR = 38.33db, IFC = 4.61

(c) BPJDL [76]: PSNR = 40.79db, IFC = 4.57 (d) RFL: PSNR = 41.55db, IFC = 5.77

Figure 6.1: Exemplary results of our super-resolution approach (RFL) compared with related
work. As can be seen, RFL compares favorably with basic bicubic upsampling and BPJDL [76].
The blue and red rectangles show zoomed-in areas to better underline the differences between the
methods. In contrast to the other approaches, RFL produces much sharper edges without strong
artificial artifacts. These results are computed for an upscaling factor of 3.
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linear regressors that are learned in the leaf nodes of the trees and yields better results for

SISR (see Figure 6.1). Furthermore, we demonstrate that Alternating Regression Forests

(ARF) can be integrated into this low-level computer vision application without great

effort and gives significantly better results than plain RF . Inference with the proposed

model is also fast as patches can be routed to leaf nodes using only a few simple feature

look-ups plus evaluating a linear regressor.

Our experiments demonstrate the effectiveness of our RF based approach on differ-

ent benchmarks, where we present state-of-the-art results. Besides comparing with pre-

vious SISR methods including dictionary-based as well as other direct regression-based

approaches, we investigate different variants of our RF model and validate the benefits of

the novel regularized objective. We also demonstrate the effectiveness of the ARF training

scheme from Section 3.2.2 for this task. Finally, we also evaluate the influence of several

important parameters of our approach.

6.1 Related Work

The task of upscaling images, i.e., image super-resolution, has a long history in the

computer vision community. While many approaches assume to have multiple views

of the scene, either from a stereo setup or via temporal aggregation, this work focuses

on single image super-resolution (SISR). Many different ideas have been explored to

attempt the SISR problem, including dictionary learning [190, 201, 204], direct regres-

sion [44, 152, 177], or exemplar-based methods (either from the same image [68, 81] or

from a large corpus of external data [170]). Here, we limit the related work to recent dictio-

nary learning and regression-based literature as it builds the basis for our super-resolution

approach. The interested reader is referred to a comprehensive survey paper [181].

Dictionary learning approaches for SISR typically build upon sparse coding [123].

Yang et al. [201] were one of the first who used a sparse coding formulation to learn dictio-

naries for the low- and high-resolution domain that are coupled via a common encoding.

Zeyde et al. [204] improved upon [201] by using a stronger image representation. Further-

more, [204] employed kSVD and orthogonal matching pursuit for sparse coding [1], as well

as a direct regression of the high-resolution dictionary for faster training and inference.

While both approaches assume strictly equal encodings in the low- and high-resolution

domains, Wang et al. [190] relaxed this constraint to a linear dependence, which they

term semi-coupled. However, all these approaches are still quite slow during both training

as well as inference because a sparse encoding is required.

Very recently, two different approaches came up to approximate sparse coding, aiming

at much faster inference for different applications [106, 178]. The consent in both works is

to replace the single large dictionary and `1-norm regularization with many smaller sub-

dictionaries with `2-norm regularization. Thus, finding encoding vectors or reconstruction

vectors is a quadratic problem for each sub-dictionary and can be solved in closed-form,

leading to fast inference. The main effort during inference is shifted to finding the best
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112 Chapter 6. Single Image Super-Resolution with Random Forests

sub-dictionary. While [106] looks for a sub-dictionary with a small enough reconstruction

error, Timofte et al. [178] selects the sub-dictionary with highest correlation to the input

signal. We provide more details on [178] in Section 6.3.

As mentioned in the introduction, a different approach to SISR is to directly learn a

mapping from the low- to the high-resolution domain via regression. Yang and Yang [200]

propose to tackle the complex regression problem by splitting the input data space and

learning simple regressors for each data cell. Dai et al. [35] follows a similar approach

but jointly learns the separation into cells and the regressors. While the basic idea is

similar to our work, both approaches have a key problem: One has to manually define

the number of clusters and thus regressors, which directly influences the trade-off between

upscaling quality and inference time. However, finding the appropriate number of clusters

is typically data-dependent. By using RF on the other hand, (i) the granularity of the

data cells in the input space is found automatically and (ii) the effective size of small linear

regressors is typically much larger without increasing inference time.

Another recent work builds on convolutional neural networks to learn the complex

mapping function [44], which is termed SRCNN. Our experiments show that our RF

approach can learn a more accurate mapping and outperforms SRCNN. Moreover, our

models can be trained within minutes on a single CPU core, while SRCNN takes 3 days to

train even with the aid of GPUs. Because we base our approach on RF (see Section 2.2.4),

we also have to mention that the training procedure can be easily parallelized on multiple

CPU cores, which reduces the training time even further. The highly efficient training

(and also inference) is one of the key advantages of this model.

6.2 General Super-Resolution Pipeline

Before we present our locally linear regression approach to SISR in Sections 6.3 and 6.4,

we first outline the general computing pipeline. This pipeline is illustrated in Figure 6.2

and builds the basis for most of the methods we compare with in our experiments and

also for the proposed approach.

Given a low-resolution image Ilow, the task is to recover the original high-resolution

image Ihigh. The first step is to apply bicubic upsampling with the desired scaling factor,

which provides an intermediate image IlowFreq that already has the desired output size but

misses high frequency components. The reason is that the bicubic upsampling is a simple

interpolation method and only assumes a smoothness prior resulting in blurred edges.

At this point, the sophisticated super-resolution method comes into play. The goal is to

recover the missing high frequency image IhighFreq from the low frequency image IlowFreq,

which is illustrated with the formula y = f(x) in Figure 6.2. The high frequency image

is defined as IhighFreq = Ihigh − IlowFreq, which is obviously not available during inference

as Ihigh is unknown. Adding low and high frequency images gives the final output image

Ifinal = IlowFreq + IhighFreq. Please note that this procedure is the same for many of the

recent attempts on SISR, e.g., [152, 177, 178, 201, 204]. Thus, the actual mapping that is
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Input Bicubic 
upsampling

Estimate high-frequencies for 
all overlapping patches

Add mid-resolution 
and high-frequencies

Final output via 
patch averaging

y = f(x)

Figure 6.2: This figure gives a general overview of the SISR pipeline that we employ, which
basically follows [178, 204]. From left to right: The low-resolution image is upsampled with a
bicubic kernel. All patches are extracted and a learned mapping function f(·) is applied to estimate
the high-frequency components that are missing in the bicubic upsampled version. The combination
of these two gives the final output, where overlapping patches are simply averaged. Please note that
we use RGB images here only for illustration. In practice, the pipeline operates on the luminance
channel of the YCbCr color space.

need to be learned is from the low-frequency to the high-frequency domain.

As in many other super-resolution works [29, 68, 178, 204], this framework also applies

regular bicubic upsampling on the color components and the sophisticated upsampling

models only on the luminance component of an image. The reason is the human visual

perception that is much more sensitive to high frequency changes in intensity than in

color. In particular, this framework uses the YCbCr color space and applies the learned

mapping on the Y channel. Note that Figure 6.2 is only an illustration where the RGB

color space is used.

Another important aspect of this super-resolution pipeline is the fact that it operates

on small patches of the image to apply the mapping, which is also roughly indicated in

Figure 6.2. In practice, the low frequency image IlowFreq is divided into a set of overlapping

patches. Then, some basic features are computed (pre-defined linear filters) and a principal

component analysis is applied for having a lower dimensionality. This defines the input

to the mapping function that has to be learned. The output is the corresponding high

frequency patch from IhighFreq. Also note that the size of these patches varies with the

upscaling factor: The larger the upscaling factor, the larger the patches. This consideration

is intuitive as the real or effective image information of Ilow that is available in the low

frequency image IlowFreq (the bicubic upsampled version of Ilow) is more spread out if the

upscaling factor increases.

The final reconstructed image Ifinal is computed as the average of all overlapping

output patches, which are computed with the super-resolution model. While this averaging

approach is rather simple it still produces visually pleasing output images. Other attempts

could integrate some form of image prior. A basic constraint would be that the downscaled

Reference:

 ()


Reference:

 ()




114 Chapter 6. Single Image Super-Resolution with Random Forests

version of the final output image equals the original low resolution input image.

In summary, the super-resolution model has to learn a function that maps patches from

IlowFreq to the corresponding patches from IhighFreq. The training data for learning this

mapping can be automatically created without the need of any manual annotation. One

simply collects a set of images that define the high resolution images and downscales them

to generate the corresponding low resolution images. Thus, a huge number of training

data can be easily generated.

In the following, we will use the terms ‘low resolution’ and ‘low frequency’, as well as

‘high resolution’ and ‘high frequency’ interchangeably in order to avoid any confusion. In

any case, we always mean the input and output data that is used to learn the mapping

function.

6.3 Coupled Dictionary Learning

In recent years, the predominant approaches for dictionary-based SISR were based on

coupled dictionary learning. The first and most generic formulation was proposed by

Yang et al. [201]. We denote the set of N samples from the low-resolution domain as

XL ∈ RDL×N and from the high-resolution domain as XH ∈ RDH×N, where each column

corresponds to one sample xL and xH, respectively. In the following, we use the notation

XL and XH for both sets and data matrices. Then, the coupled dictionary learning

problem is defined as

min
DL,DH,E

=
1

DL
‖XL −DLE‖22 +

1

DH
‖XH −DHE‖22 + Γ(E), (6.1)

where DL ∈ RDL×B and DH ∈ RDH×B are the low- and high-resolution dictionaries, re-

spectively. The common encoding E ∈ RB×N couples both domains. The regularization

Γ(E) is typically a sparsity inducing norm on the columns of E, e.g., the `0 or `1 norm.

As mentioned in Section 6.1, Zeyde et al. [204] improved upon [201] with some tweaks

on the learning scheme. One main difference to [201] is that they first learn the low-

resolution dictionary DL via sparse coding and compute the encoding E. Then, they fix

DL and E in (6.1) and directly learn the high-resolution dictionary DH, which is a simple

least squares problem. This combination of low- and high-resolution dictionaries is the

basis and the first step for anchored neighborhood regression (ANR) [178] and A+ [177].

The key observation in [178] is that one can replace the sparse coding during inference,

which is time-consuming, by pre-selecting so-called anchored points D̄i
L ∈ DL for each

dictionary atom di in DL already during training. During inference, a new data sample

x selects the closest dictionary atom d∗ in DL according to the angular distance and uses

only the pre-defined anchor points D̄∗L for computing the encoding e. Thus, no sparse

coding with `1-norm regularizer is required as the dictionary atoms are pre-selected. The

problem of finding an encoding e for sample x reduces to a least squares problem and can
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be computed in closed-form

e = arg min
e
‖x− D̄∗Le‖22 = (D̄∗>L D̄∗L)−1 D̄∗>L x = P∗x . (6.2)

All matrices Pi for each dictionary atom can be pre-computed in the training phase. Fur-

thermore, using the corresponding high-resolution anchored points D̄∗H, the reconstructed

high-resolution sample x̂H can be computed as

x̂H = D̄∗H · e = D̄∗H ·P∗ · xL = W∗ · xL . (6.3)

As can be seen, the problem reduces to selecting an atom from DL and applying the

pre-computed mapping W∗. While ANR [178] is limited to selecting close anchor points

(angular distance) from the learned dictionary DL, A+ [177] shows that using a much

larger corpus from the full training set yields more accurate predictors and better results.

Both works [177, 178] still make a detour via sparse-coded dictionaries. However, one

can also see this problem more directly as non-linear regression. In this work, we thus

reformulate the problem of learning the mapping from the low- to the high-resolution

domain via locally linear regression. To do so, we realize that the mapping function W in

(6.3) depends on the data xL, which yields

x̂H = W(xL) · xL . (6.4)

Now, training only requires to find the function W(xL). Two recent works [44, 200],

already mentioned in Section 6.1, also attack the super-resolution task with a direct re-

gression formulation to learn W(xL). In the next section, we detail our approach and

show how RF can be used as an effective algorithm to learn this mapping, which has some

critical benefits over previous works.

6.4 Random Forests for Super-Resolution

In this section, we investigate the problem of learning the data-dependent function W(xL)

defined in Equation (6.4). Assuming a regular squared loss, the learning problem can be

formulated as

arg min
W(xL)

N∑
n=1

‖xnH −W(xnL) · xnL‖22 . (6.5)

We can generalize this model with different basis functions φ(x) resulting in

arg min
Wj(xL) ∀j

N∑
n=1

‖xnH −
γ∑
j=0

Wj(x
n
L) · φj(xnL)‖22 , (6.6)
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116 Chapter 6. Single Image Super-Resolution with Random Forests

where the goal is to find the data-dependent regression matrices Wj(xL) for each of the

γ + 1 basis functions. While the standard choice for φj(x) is the linear basis function,

i.e., φj(x) = x, one can also opt for polynomial (φj(x) = x[j], where [·] denotes the point-

wise power operator) or radial basis functions (φj(x) = exp
(
‖x−µj‖2

σj

)
, where µj and σj

are parameters of the basis function) [18]. We evaluate different choices of φj(x) in our

experiments. Either way, the objective stays linear in the parameters to be learned, if the

data-dependence is neglected for a moment. The question remaining is how to define the

data-dependence of W on xL.

Here, we employ RF to create the data dependence. For this task, i.e., multi-variate

regression with DH dimensions, the goal is to learn a mapping from the data input space

X = RDL to the target output space Y = RDH . At this point, we assume that the structure

of each single tree already exists and we postpone the description of the training procedure

for this particular task to Section 6.4.1.

Each tree Tt independently separates the data space into disjoint cells, which corre-

spond to the leaf nodes. Using more than one tree, i.e., forests, leads to overlapping cells.

This separation defines our data dependence for W(xL) and each leaf l can learn a linear

model

ml(xL) =

γ∑
j=0

Wl
j · φj(xL) . (6.7)

Finding all Wl
j requires solving the least squares problem which can be done in closed-form

as Wl> = (Φ(XL)>Φ(XL) + λI)−1Φ(XL)> ·XH, where we stacked all Wl
j and the data

into matrices Wl, Φ(XL), and XH. The regularization parameter λ has to be specified by

the user and avoids singular matrices. Now, we can easily see the relation to the locally

linear regression model from Equation (6.4). Because we average predictions over all T

trees during inference, the data-dependent mapping matrix W(xL) is modeled as

x̂H = m(xL) = W(xL) · xL =
1

T

T∑
t=1

ml(t)(xL) , (6.8)

where l(t) is the leaf in tree t the sample xL is routed to.

We also note that the recently presented filter forests [51] have similar leaf node mod-

els ml(xL). They use the linear basis function and learn the model for a single output

dimension within the context of image denoising. Our leaf node model from (6.7) can be

considered as a more general formulation. Another option for ml(xL), which is typically

used in random regression forests, is a constant model, i.e., ml(xL) = m̂ = const. The con-

stant prediction m̂ is often the empirical mean over the labels xH of the training samples

falling into that leaf. We evaluate different versions of ml(xL) in our experiments.
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6.4.1 Learning the Tree Structure

All trees in our RF are trained independently from each other with a set of N training

samples {xnL,xnH} ∈ X ×Y. To briefly recap Section 2.2.4.2, training a single random tree

involves recursively splitting the training data into disjoint subsets by finding splitting

functions

σ(xL; Θ) =

{
0 if ξ(xL; Θ) < 0

1 otherwise
, (6.9)

for all internal nodes in Tt. Splitting starts at the root node and continues in a greedy

manner down the tree until a maximum depth Dmax is reached and a leaf is created. The

values of Θ define the response function ξ(xL; Θ). For this particular application, we build

on pair-wise differences for the response function, i.e., ξ(xL; Θ) = xL[Θ1]− xL[Θ2]−Θth,

where the operator [·] selects one dimension of xL, Θ1,Θ2 ∈ {1, . . . , DL} ⊂ Z, and Θth ∈ R
is a threshold.

The typical procedure for finding good parameters Θ for the splitting function σ(·; Θ)

is to sample a random set of parameter values Θk and choosing the best one Θ∗ according

to a quality measure. The quality for a specific splitting function σ(xL; Θ) is computed as

Q(σ(·; Θ),XH,XL) = E(XH,XL)−
∑

c∈{Le,Ri}

|Xc| · E(Xc
H,X

c
L) , (6.10)

where Le and Ri define the left and right child nodes and | · | is the cardinality operator.

With a slight abuse of notation, we define for both domains XLe
{H,L} = {x{H,L} : σ(xL; Θ) =

0}, XRe
{H,L} = {x{H,L} : σ(xL; Θ) = 1}. The function E(XH,XL) aims at measuring the

compactness or the purity of the data, cf., Section 2.2.4.2. The intuition is to have similar

data samples falling into the same leaf nodes, thus, giving coherent predictions.

For our task, we define a novel regularized compactness measure E(XH,XL) that not

only operates on the label space Y but also on the input space X . We define it as

E(XH,XL) =
1

|X|

|X|∑
n=1

(
‖xnH −m(xnL)‖22 + κ · ‖xnL − x̄L‖22]

)
, (6.11)

where m(xnL) again is the prediction for the sample xnL, x̄L is the mean over the samples

xnL, and κ is a hyper-parameter.

The first term in (6.11) operates on the label space and we get different variants

depending on the choice of m(xL). If m(xL) is the average over all samples in XH, i.e.,

a constant model, we have the reduction-in-variance objective that is employed in many

works, e.g., in Hough Forests (HF) [62]. Assuming a linear model m(xL), we have a

reconstruction-based objective as in [51], which is typically more time consuming than

the reduction-in-variance option. The model chosen during growing the trees and for the

final leaf nodes can be different. For instance, one could assume a constant model during

growing the trees, but a linear one for the final leaf nodes.
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The second term in (6.11) operates on the data space and can be considered as a

clustering objective that is steered with κ. The intuition of this regularization is that we

not only require to put samples into a common leaf node that have similar labels xH, but

we also want the samples themselves (i.e., xL) to be similar. This potentially eases the

task for the linear regression model ml(xL) in the leaf.

After fixing the best split σ(·) according to (6.10), the data in the current node is split

and forwarded to the left and right children, respectively. As in standard RF , growing

continues until one of the stopping criteria are met and the final leaf nodes are created.

6.4.2 Integrating Alternating Regression Forests

In the previous sections, we showed how RF can be used for learning a locally linear map-

ping function between low- and high-resolution images, alongside with some modifications

of the splitting criterion. While the first contribution of this chapter is the connection

between dictionary-based SISR approaches with locally linear regression and that RF are

well suited for this task, the second contribution is the integration and use of the ARF

training scheme. We already discussed the general framework of ARF in Sections 3.2 and

3.2.2. Again, the integration is straightforward for this particular application.

Fortunately, the generic formulation from Section 3.2.2 does not change. The reason

is that only the predictions of the whole RF are required to compute the gradients, but

not how these predictions are computed. While we always employed a constant leaf node

model for ARF in previous chapters, for this task, we use a multivariate linear model to

compute the predictions of all trees. As already said, this does not change the generic ARF

algorithm, but it has an impact on the training time. While the leaf nodes for standard RF

only have to be computed when any of the stopping criteria is met, the prediction models

have to be computed also for intermediate nodes in ARF in order to evaluate the common

loss function, see Section 3.2.1. Computing a constant prediction model is obviously less

time-consuming than a multivariate linear model as it involves solving a linear system of

equations. Nevertheless, the integration is easy and the increased training time pays off,

which is confirmed in our experimental evaluation in Section 6.5.3.

6.5 Experiments on Single Image Super-Resolution

In this section we assess the performance of our direct regression-based approach for SISR

on different data sets as well as 3 upscaling factors. After outlining our experimental

setup including details on data sets and evaluation metrics, we compare with different RF

variants as well as several state-of-the-art SISR approaches. To provide more insights into

the proposed method, we finally investigate several properties and parameter choices in

more detail.
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6.5.1 Experimental Setup and Benchmarks

The publicly available framework of Timofte et al. [178] is a perfect base for evaluat-

ing SISR approaches. It includes state-of-the-art results of different dictionary learn-

ing [178, 201, 204] as well as neighborhood embedding [16, 29] approaches allowing for a

fair and direct comparison on the same code basis. As in many other super-resolution

works [29, 68, 204], this framework also follows the general procedure described in Sec-

tion 6.2.

For our evaluations, we use three different sets of test images, Set5 from [16], Set14

from [204], and BSDS from [9], consisting of 5, 14, and 200 images, respectively. For Set5

and Set14, the training set consists of 91 images that are provided with the framework of

Timofte et al. [178] and were also used in previous works. For BSDS, we use the provided

200 training images. As described in Section 6.2, the actual input to the super-resolution

method are features computed on patches that are extracted from the bicubic upsampled

low resolution image. We sample patches from those images with a stride that corresponds

to the upscaling factor and use a patch size of 3× 3 multiplied with the upscaling factor.

Regarding the features, the most basic choice is the patch itself. However, better results

can be achieved by using first- and second-order derivatives of the patch followed by a basic

dimensionality reduction (PCA), as was used in [178, 204]. Note that we use the exact

same features as in previous work, allowing for a direct comparison of the upsampling

method itself. Unless otherwise noted, the default settings for our RF model are: T = 15,

Dmax = 15, λ = 0.01, and κ = 1.

6.5.2 Random Regression Forest Variants

Before comparing with state-of-the-art SISR approaches, we evaluate different variants

of our RF based method. In Section 6.4, we formulated our approach as a locally linear

regressor, where locality is defined via a RF . Thus, the RF holds a linear prediction model

in each leaf node, akin to filter forests [51]. For the linear model, we can choose between

different basis functions φ(x). We evaluate the linear (RFL) and the polynomial (RFP)

cases. In contrast, one can also store a constant model (RFC) in each leaf node by finding a

mode in the continuous output space of the incoming data, e.g., by taking the average (see

Section 6.4). Another choice is using structured forests from Dollár and Zitnick [43], which

learn a mapping from input to arbitrary structured outputs. However, this option makes

little sense for this task because the output space is continuous and a quality measure can

be defined easily also for high-dimensional output spaces, see Section 6.4.1.

For the comparison between these different RF choices, we set the number of trees

to T = 8 and keep the remaining standard settings. For the constant leaf node model

(RFC), we fix the minimum number of samples per leaf node to 5. For the two linear

models (RFL and RFP), this parameter is set higher (64) as a linear regression model has

to be learned. We evaluate on Set5 and Set14 for two different magnification factors. All

results are presented in Table 6.1. We report the upscaling quality (PSNR in dB) as well
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Set Set5 Set14

Factor x2 x3 x2 x3

RFC 35.3 0.6 31.3 0.3 31.4 1.2 28.2 0.6
RFL 36.4 0.7 32.1 0.4 32.2 1.5 28.9 0.8
RFP 36.4 0.9 32.2 0.5 32.2 1.7 28.9 1.0

Table 6.1: Comparison of different leaf node prediction models on two data sets and for different
upscaling factors. We compare a constant leaf node model (RFC), a linear one (RFL), and a
polynomial one (RFP). For each setting, the left column presents the PSNR in dB and the right
column the upscaling time in seconds.

as the upscaling time (in seconds), respectively. While the performance gap between RFL

and RFP is almost zero, one can clearly observe the inferior results of the constant leaf

node model.

6.5.3 Comparison with State-of-the-art

We split our comparison with related work into two parts. First, we compare with methods

that build upon the exact same framework as [178, 204] in order to have a dedicated

comparison of our regression model. Besides standard bicubic upsampling, we compare

with a sparse coding approach [204], ANR [178], as well as neighborhood embedding [29].

We use the same 91 training images as in [178] for Set5 and Set14. For BSDS, we use the

provided 200 training images. Second, we compare with state-of-the-art methods in SISR

that eventually build upon a different framework and use different sets of training images.

We compare with A+ [178], SRCNN [44], and BPJDL [76]. Regarding the proposed

approaches, we evaluate the standard RF model (RFL) and also ARF , here denoted as

ARFL. As described in Section 6.4.2, ARFL optimizes the squared loss, which is the

natural choice for this task and the PSNR metric. Additionally, we add two variants

(RFL+ and ARFL+) which use an augmented training set consisting of the union of the

200 BSDS and the 91 images from [178].
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Bicubic Zeyde [204] ANR [178] NE+LLE RFL ARFL
data set factor PSNR/IFC/Time PSNR/IFC/Time PSNR/IFC/Time PSNR/IFC/Time PSNR/IFC/Time PSNR/IFC/Time

Set5 x2 33.66/6.08/0.0 35.77/7.86/3.9 35.82/8.07/0.7 35.76/7.86/5.4 36.55/8.52/1.2 36.70/8.56/1.2
x3 30.39/3.58/0.0 31.91/4.51/1.8 31.91/4.60/0.4 31.84/4.51/2.5 32.46/4.92/0.9 32.58/4.92/1.0
x4 28.42/2.33/0.0 29.73/2.96/1.1 29.73/3.03/0.3 29.62/2.96/1.4 30.15/3.22/0.8 30.21/3.19/0.7

Set14 x2 30.23/6.07/0.0 31.81/7.64/8.0 31.78/7.81/1.3 31.75/7.65/11.1 32.26/8.14/2.2 32.37/8.14/2.1
x3 27.54/3.47/0.0 28.68/4.23/3.6 28.64/4.31/0.7 28.60/4.24/5.2 29.05/4.54/1.7 29.13/4.53/1.7
x4 26.00/2.24/0.0 26.91/2.75/2.3 26.87/2.81/0.5 26.82/2.76/3.0 27.24/2.95/1.3 27.30/2.92/1.3

BSDS x2 29.70/5.68/0.0 30.99/7.10/19.5 30.94/7.24/0.9 30.91/7.08/10.8 31.50/7.58/2.3 31.62/7.56/2.3
x3 27.26/3.21/0.0 28.05/3.87/5.8 27.99/3.91/0.5 27.97/3.85/4.4 28.39/4.15/2.2 28.46/4.14/2.3
x4 25.97/2.04/0.0 26.60/2.50/3.6 26.56/2.53/0.3 26.53/2.49/2.7 26.86/2.67/2.1 26.90/2.64/2.1

Table 6.2: Results of the proposed method compared within the framework of [178] on 3 data sets for 3 upscaling factors. The results
of RFL are averaged over 3 independent runs.We omit the standard deviation in the table as it was negligibly low (0.0059 and 0.0058 on
average for PSNR and IFC, respectively).

A+ [177] SRCNN [44] BPJDL [76] RFL RFL+ ARFL+
data set factor PSNR/IFC/Time PSNR/IFC/Time PSNR/IFC/Time PSNR/IFC/Time PSNR/IFC/Time PSNR/IFC/Time

Set5 x2 36.55/8.47/0.8 36.34/7.52/3.0 36.41/7.77/129.8 36.55/8.52/1.1 36.73/8.66/2.0 36.89/8.66/2.1
x3 32.59/4.93/0.5 32.39/4.31/3.0 32.10/4.50/110.0 32.46/4.92/1.0 32.63/5.00/1.6 32.72/4.99/1.7
x4 30.28/3.25/0.3 30.09/2.84/3.2 - 30.15/3.22/0.8 30.29/3.27/1.5 30.35/3.24/1.5

Set14 x2 32.28/8.10/1.5 32.18/7.23/4.9 32.17/7.60/243.8 32.26/8.14/2.3 32.41/8.28/3.9 32.52/8.25/3.9
x3 29.13/4.53/0.9 29.00/4.03/5.0 28.76/4.17/217.7 29.05/4.54/1.8 29.17/4.60/2.5 29.23/4.57/2.5
x4 27.32/2.96/0.6 27.20/2.61/5.2 - 27.24/2.95/1.3 27.35/2.98/2.1 27.41/2.96/2.1

BSDS x2 31.44/7.46/1.2 31.38/6.77/3.4 31.35/6.92/144.1 31.50/7.58/2.5 31.52/7.61/2.8 31.66/7.60/3.1
x3 28.36/4.09/0.6 28.28/3.69/3.4 28.10/3.72/137.6 28.39/4.15/2.3 28.38/4.15/2.0 28.45/4.13/2.0
x4 26.83/2.63/0.4 26.73/2.38/3.5 - 26.86/2.67/2.1 26.85/2.66/1.7 26.89/2.63/1.7

Table 6.3: Results of the proposed method compared with state-of-the-art works on 3 data sets for 3 upscaling factors.
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Tables 6.2 and 6.3 show the quantitative results for both parts of our evaluation on

different upscaling factors and image sets, respectively. We report both PSNR (in dB) and

the IFC score, which was shown to have higher correlation with the human perception com-

pared to other metrics [199]. As can be seen in Table 6.2, our super-resolution forests with

linear leaf node models, RFL and ARFL, achieve better results than all dictionary-based

and neighborhood embedding approaches. Importantly, ARFL again clearly outperforms

the standard model, i.e., RFL. Furthermore, all our models compare favorably with state-

of-the-art methods, see Table 6.3. We can even outperform the complex CNN, although

our approach can be trained within minutes while [44] takes 3 days on a GPU. Note how-

ever that the training time for the models relying on the ARF scheme, ARFL and ARFL+,

is longer. In this setting, the difference of the training times between standard RF and

ARF becomes larger compared to, e.g., Section 3.4.1. The reason is that the intermediate

predictions, which have to be computed for each node, require more computational costs

as a linear system of equations has to be solved, instead of a simple averaging operation.

The inference times of SRCNN (in the table) differ from the ones reported in [44] as only

the slower Matlab implementation is publicly available. Qualitative results can be found

in Figure 6.1 and Section 6.5.4.

In Figure 6.3 we visualize the trade-off between upscaling quality and inference time for

different methods. We include two additional neighborhood embedding approaches [16, 29]

(NE+LS, NE+NNLS) as well as different variants of our RF (with different number of

trees T = {1, 5, 10, 15}). The figure shows the average results from Set5 for an upscaling

factor of 2. One can see that RFL provides a good trade-off between accuracy and inference

time. Already the variant with a single tree (RFL-1) gives better results than many related

methods. Using 5 trees improves the results significantly with only a slight increase in

inference time. SRCNN [44] is clearly the fastest method because no explicit feature

computation is required (timings directly taken from [44]), which could potentially be

sped-up in the framework of Timofte [178].

Finally, we compare different dictionary sizes for dictionary-based approaches with

our RF in Figure 6.4a. For our model, we again include four variants with different

number of trees T = {1, 5, 10, 15}. As can be seen, our weakest model (T = 1) already

outperforms dictionary based models up to a dictionary size of 2048 while being almost

as fast as GR [178] (Figure 6.4b). When using more trees, RFL outperforms even larger

dictionaries. Figure 6.4c shows that our RF model (trained from 91 images) takes less

time to train than ANR [178], even though we do not train our trees in parallel yet.

6.5.4 Qualitative Results

Beside the quantitative results presented in the previous section, we also provide qual-

itative results comparing the presented RFbased super-resolution approach with many

related methods. Here, we include the results of 4 different images for upscaling factors 3

(Figures 6.8 to 6.11) and 4 (Figures 6.12 to 6.15), respectively. These figures are attached
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Figure 6.3: Visualization of the trade-off between accuracy and inference time for different
methods. The results are the average over the images from Set5.

at the end of this chapter to keep a smooth and easy-to-read layout for the remaining

sections. More qualitative results can be found in [153]. A good example of the qual-

itative differences between the evaluated models can be seen in Figure 6.8. The skiing

stick shows severe artifacts for many upscaling methods like [44, 76, 178, 204]. A+ [177]

and our approaches, which all rely on a locally linear regression, show relatively good

results without artifacts. ARFL+ achieves the best results in terms of both PSNR and

IFC scores. Sharper edges can also be observed at the skiing helmet for these methods.

These differences also become clear when looking at the striped structures in Figures 6.9,

6.10, and 6.11. Similar observations can also be made for an upscaling factor of 4. Please

note that we did not include the qualitative results of [76] as we did not had the model for

this upscaling factor. As can be clearly seen, the proposed RFL produces much sharper

edges with little artifacts.

6.5.5 Influence of the Tree Structure

The main factor influencing the tree structure of RF , beside the inherent randomness

induced, is the objective function used to evaluate potential splitting functions. We inves-

tigate the influence of six different choices. First, a fully random selection of the splitting

function (Ra), i.e., extremely randomized trees [65]. Second, an objective that prefers

balanced trees (Ba), which we define as

Q(σ,Θ,X) = −
(
|XLe| − |XRi|

)2
, (6.12)

where XLe and XRi are the samples falling into left and right child nodes according σ.

The remaining options are reduction-in-variance with κ = 0 (Va) and κ = 1 (VaF) and

the reconstruction-based objective, again with κ = 0 (Re) and κ = 1 (ReF), respectively.
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Bicubic Zeyde [204] GR [178] ANR [178] NE+LS [178] NE+NNLS [16]

NE+LLE [29] RFL-1 RFL-5 RFL-10 RFL-15
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Figure 6.4: Our RFmodel with different number of tress (1, 5, 10, and 15) compared to dictionary
learning based approaches with different sizes of the dictionary D. We present the upscaling quality
(a), the inference time (b), and the training time for ANR [178] (c) compared to our approach.
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Another parameter in our implementation is the number of samples N̂ considered for

finding a splitting function σ in each node. We use reservoir sampling [188] to shrink

the data X to min(|X|, N̂) samples and use those to find a splitting function σ, which

significantly reduces the training time without sacrificing quality, as we also demonstrate

for other applications [155]. After fixing σ, all the data is forwarded to the left and right

children for further growing the tree.

We present our results in Figure 6.5. The upscaling scores (Figure 6.5a) reveal that

Va and Re are similarly good, while VaF and ReF give better results, confirming the

importance of the regularization in the objective function (6.11). While Ba and Ra are

inferior, it is worth mentioning that the simple balanced objective function (Ba) (6.12)

gives relatively good results and being faster during training, cf., Figure 6.5b. On the

other hand, the parameter N̂ (evaluated for 2{8,9,10,11,12,15}) has little effect on the scores.
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Figure 6.5: Influence of two parameters of the training scheme for the tree structure (splitting
objective and subsample size N̂) of our super-resolution forests on (a) the upscaling quality and
(b) the training time of the trees. See text for more details.
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6.5.6 Influence of the Number of Training Examples

The basic framework of Timofte et al. [178] used 91 images to extract the training patches

for all methods, including GR, ANR, Zeyde et al. [204], and the neighborhood embedding

methods. The generation of training data is described in Section 6.2. The number of

patches extracted from the 91 training images is around 1.25 · 106, which is already a

moderately sized training set for RF . However, the very recent follow-up work on ANR,

A+ [177], as well as Dong et al. [44] showed improved results with larger training sets. In

Section 6.5.3, we evaluated our RF methods with more training images, denoted RFL+

and ARFL+, which also yields improved results. Here, we provide an additional experi-

ment that investigates this behavior in more detail.

We augmented the regular training set (91 images) with images from the BSDS500

data set [9], such that the total amount of images is 200, where around 5 · 106 patches are

extracted, similar to [177]. In Section 6.5.3, we actually trained RFL+ with 291 images.

However, here, we investigate the behavior of the training set size with a maximum of 200

images. The resulting scores and training times for RFL on Set5 for a magnification factor

of 2 are depicted in Figure 6.6. We observe that the upscaling quality steadily increases

with the number of training samples, resulting in a final score of 36.68 dB with 5 · 106

training samples. In comparison, the usual setting of [178] has around 1.25 · 106 training

samples, which corresponds to the fraction 0.25 and 36.55 dB in the figure.

0.02 0.1 0.2 0.25 0.5 0.75 1

36.2

36.4

36.6

Fraction of training samples

P
S
N

R
(d

B
)

(a)

0.02 0.1 0.2 0.25 0.5 0.75 1

0

2,000

4,000

Fraction of training samples

T
ra

in
ti

m
e

(s
ec

)

(b)

Figure 6.6: Influence of the number of training samples. For this experiment, the total number
was around 5 · 106. We monitor the behavior of the upscaling quality in (a) and the training time
in (b) for different fractions of the training set size.

6.5.7 Important Random Forest Parameters

Our final set of experiments on SISR investigate several important parameters of our

method (beside those that have already been investigated). These parameters include

the number of trees T in the ensemble, the maximum tree depth Dmax, the regularization

parameter λ for the linear regression in the leaf nodes, and, finally, the regularization
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parameter κ for the splitting objective. Figure 6.7a shows the expected behavior of the

parameter T for the RF approach. The performance steadily increases with increasing T

until saturation, which is at around T = 13 for this particular application. The second

parameter in our evaluation is the maximum tree depth Dmax, which has strong influence

on training and inference times. From Figure 6.7b, we can see a saturation of the accuracy

at depth Dmax = 12 and even a slight drop in performance with too deep trees. Figure 6.7c

indicates to use a rather low regularization parameter λ. In Figure 6.7d we can again see

that the regularization in Equation (6.11) is important and should be activated.
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Figure 6.7: RF parameter evaluation on Set5: (a) number of trees T, (b) maximum tree depth
Dmax, regularization parameters (c) λ, and (d) κ.

6.5.8 Computation Costs

We also investigate the computational costs of our method and of the framework from

Timofte et al. [178] in more detail. In Table 6.4 we list the measured timings (in seconds)

of the different computational stages for inference. These include feature computation,

i.e., first and second order derivatives, (CompFeat), dimensionality reduction (PCA), RF

evaluation (RFL), adding the bicubic upsampled image and the predicted high-frequency

component (Add Low+High), and finally, merging all predicted patches via averaging

(OverlapAdd). The results for RFL with different number of trees (1,5,10, and 15) are

averaged over the images from Set5 for an upscaling factor of 2. We can first observe

that the RF inference (column RFL) scales linearly with the number of trees, when we
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Variant CompFeat PCA RFL Add-Low+High OverlapAdd

RFL-1 0.05± 0.04 0.00± 0.00 0.06± 0.03 0.02± 0.01 0.34± 0.25
RFL-5 0.05± 0.03 0.00± 0.00 0.25± 0.10 0.02± 0.01 0.34± 0.25
RFL-10 0.05± 0.04 0.00± 0.00 0.51± 0.20 0.02± 0.01 0.34± 0.25
RFL-15 0.05± 0.03 0.00± 0.00 0.77± 0.29 0.02± 0.01 0.34± 0.26

Table 6.4: Computational costs for different steps of the inference with the framework of [178]
with a single CPU core measured in seconds.

Variant CompFeat PCA RFL Add-Low+High OverlapAdd

RFL-1 0.05± 0.03 0.00± 0.00 0.06± 0.04 0.02± 0.01 0.34± 0.25
RFL-5 0.05± 0.04 0.00± 0.00 0.17± 0.07 0.02± 0.01 0.34± 0.25
RFL-10 0.05± 0.04 0.01± 0.00 0.31± 0.13 0.02± 0.01 0.34± 0.25
RFL-15 0.05± 0.04 0.01± 0.00 0.44± 0.18 0.01± 0.01 0.34± 0.25

Table 6.5: Computational costs for different steps of the inference with the framework of [178]
with two CPU cores measured in seconds.

use a single CPU core. Further, we can see that feature computation, dimensionality

reduction and summation of bicubic and high-frequency components take relatively little

time. However, the implementation of the patch averaging (column OverlapAdd) seems

to be suboptimal as it takes relatively long. With an optimized implementation of these

parts, one could potentially reach similar efficiency as the SRCNN approach [44].

RF can be easily parallelized on multiple CPU cores. When we also exploit this fact,

which we did not do for all previous experiments, we can decrease the computational costs

of our super-resolution approach. In Table 6.5 we present the same results as above (cf.,

Table 6.4) but with access to two CPU cores. Intuitively, we can observe faster inference

for the RF inference (column RFL). However, one has to be aware of the fact that using too

much cores could also lead to increased inference times due to computational overhead.

This can happen when the images to be upscaled are relatively small and only a few

patches get extracted. Obviously, the larger the images, the more benefit you get by using

more CPU cores.

6.6 Summary

In this chapter, we present a new approach for single image super-resolution via RF .

We show the close relation between recent sparse coding based approaches and locally

linear regression. We exploit this connection and avoid the detour of using a sparse-coded

dictionary to learn the mapping from low- to high-resolution images. Instead, we follow a

more direct approach with a random regression forest formulation. Our RF approach to

SISR builds on linear prediction models in the leaf nodes instead of typically used constant

models. Additionally, it employs a new regularization on the splitting objective function

which operates on the output as well as the input domain of the data.
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The use of RF for this particular application proved to be highly effective and shows

some critical benefits over previous dictionary and direct regression approaches. Beside

the fact that the RF formulation naturally fits into the locally linear regression framework,

the hierarchical structure of this model gives some nice properties. It enables the use of

a much larger effective codebook without decreasing the access time compared to a flat

structure used in previous work. Each leaf node of the trees can be considered as one entry

in a codebook. Accessing the codebook entries happens in logarithmic time complexity,

compared to a linear one for flat codebooks. Moreover, the ensemble of several trees allows

for an even larger codebook when considering all the possible combinations of leaf nodes.

This considerably larger codebook is most probably the reason our approach yields better

performance on the benchmarks.

However, we also have to mention the downside of the large codebook, which obviously

leads to a large model size, in terms of memory usage. This can be become a problem

when deploying such a system to mobile devices, where super-resolution is definitely an

interesting task. Fortunately, there already exists attempts to train the RF in a way to

get more compact models without losing its predictive power [138].

Another benefit of the proposed approach is the relatively fast training time. Compared

with previous works that have to create a dictionary with sparse coding as a building block,

e.g., [177, 178, 204], RF can be trained relatively fast and can be easily parallelized over

multiple CPU cores. Especially when the training size increases, which we showed to be

important for good results, fast training comes in handy.

Finally, we showed that our proposed training scheme, ARF , again improves over

standard RF for this application. We observed a considerable boost in the final super-

resolution quality by only exchanging the RF training scheme with our proposed one.

Our results confirm the effectiveness of this general super-resolution approach with RF

on different benchmarks, where we outperform the current state-of-the-art. The inference

of our RF model is among the fastest methods and the training time is typically one or

several orders of magnitude less than related approaches.
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(a) Original (b) Bicubic: 29.62, 3.43 (c) Zeyde [204]: 30.65, 4.17

(d) GR [178]: 30.27, 4.37 (e) ANR [178]: 30.63, 4.35 (f) A+ [177]: 31.30, 4.49

(g) SRCNN [44]: 31.05, 4.02 (h) BPJDL [76]: 30.69, 3.84 (i) RFL: 31.11, 4.49

(j) ARFL: 31.26, 4.46 (k) RFL+: 31.27, 4.54 (l) ARFL+: 31.42, 4.53

Figure 6.8: Qualitative results of state-of-the-art methods for upscaling factor x3 on image
skiing. The numbers in the subcaptions refer to PSNR and IFC scores, respectively. Best viewed
in color and digital zoom.
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(a) Original (b) Bicubic: 21.79, 3.73(c) Zeyde [204]: 22.75,
4.47

(d) GR [178]: 22.51,
4.60

(e) ANR [178]: 22.73,
4.56

(f) A+ [177]: 23.15,
4.77

(g) SRCNN [44]: 23.36,
4.34

(h) BPJDL [76]: 22.95,
4.63

(i) RFL: 23.19, 4.80 (j) ARFL: 23.32, 4.78 (k) RFL+: 23.34, 4.85 (l) ARFL+: 23.48, 4.81

Figure 6.9: Qualitative results of state-of-the-art methods for upscaling factor x3 on image
striped girl 2. The numbers in the subcaptions refer to PSNR and IFC scores, respectively.
Best viewed in color and digital zoom.
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(a) Original (b) Bicubic: 28.64, 3.82 (c) Zeyde [204]: 30.61, 4.65

(d) GR [178]: 29.39, 4.68 (e) ANR [178]: 30.08, 4.72 (f) A+ [177]: 31.54, 5.04

(g) SRCNN [44]: 31.35, 4.38 (h) BPJDL [76]: 30.53, 4.44 (i) RFL: 31.33, 5.03

(j) ARFL: 31.60, 5.05 (k) RFL+: 31.82, 5.18 (l) ARFL+: 32.02, 5.17

Figure 6.10: Qualitative results of state-of-the-art methods for upscaling factor x3 on image
legs. The numbers in the subcaptions refer to PSNR and IFC scores, respectively. Best viewed
in color and digital zoom.
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(a) Original (b) Bicubic: 27.19, 4.27 (c) Zeyde [204]: 28.26, 5.28

(d) GR [178]: 27.93, 5.32 (e) ANR [178]: 28.24, 5.37 (f) A+ [177]: 28.54, 5.63

(g) SRCNN [44]: 28.44, 4.98 (h) BPJDL [76]: 28.37, 5.23 (i) RFL: 28.56, 5.65

(j) ARFL: 28.60, 5.63 (k) RFL+: 28.63, 5.73 (l) ARFL+: 28.67, 5.68

Figure 6.11: Qualitative results of state-of-the-art methods for upscaling factor x3 on image
zebras. The numbers in the subcaptions refer to PSNR and IFC scores, respectively. Best viewed
in color and digital zoom.
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(a) Original (b) Bicubic: 28.15, 2.16 (c) Zeyde [204]: 29.05, 2.66

(d) GR [178]: 28.76, 2.74 (e) ANR [178]: 29.07, 2.75 (f) A+ [177]: 29.59, 2.84

(g) SRCNN [44]: 29.29, 2.50 (h) RFL: 29.41, 2.81 (i) ARFL: 29.52, 2.77

(j) RFL+: 29.49, 2.84 (k) ARFL+: 29.62, 2.82

Figure 6.12: Qualitative results of state-of-the-art methods for upscaling factor x4 on image
skiing. The numbers in the subcaptions refer to PSNR and IFC scores, respectively. Best viewed
in color and digital zoom.



6.6. Summary 135

(a) Original (b) Bicubic: 20.21, 2.39(c) Zeyde [204]: 21.03,
2.88

(d) GR [178]: 20.93,
2.95

(e) ANR [178]: 21.09,
2.96

(f) A+ [177]: 21.21,
3.03

(g) SRCNN [44]: 21.31,
2.79

(h) RFL: 21.32, 3.06

(i) ARFL: 21.34, 3.02 (j) RFL+: 21.37, 3.07 (k) ARFL+: 21.42, 3.02

Figure 6.13: Qualitative results of state-of-the-art methods for upscaling factor x4 on image
striped girl 2. The numbers in the subcaptions refer to PSNR and IFC scores, respectively.
Best viewed in color and digital zoom.
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(a) Original (b) Bicubic: 26.99, 2.55 (c) Zeyde [204]: 28.61, 3.15

(d) GR [178]: 27.62, 3.12 (e) ANR [178]: 28.22, 3.18 (f) A+ [177]: 29.44, 3.38

(g) SRCNN [44]: 29.17, 2.90 (h) RFL: 29.22, 3.32 (i) ARFL: 29.43, 3.28

(j) RFL+: 29.70, 3.45 (k) ARFL+: 29.86, 3.42

Figure 6.14: Qualitative results of state-of-the-art methods for upscaling factor x4 on image
legs. The numbers in the subcaptions refer to PSNR and IFC scores, respectively. Best viewed
in color and digital zoom.



6.6. Summary 137

(a) Original (b) Bicubic: 25.56, 2.85 (c) Zeyde [204]: 26.50, 3.55

(d) GR [178]: 26.22, 3.56 (e) ANR [178]: 26.49, 3.62 (f) A+ [177]: 26.77, 3.80

(g) SRCNN [44]: 26.61, 3.37 (h) RFL: 26.79, 3.79 (i) ARFL: 26.82, 3.74

(j) RFL+: 26.86, 3.85 (k) ARFL+: 26.90, 3.80

Figure 6.15: Qualitative results of state-of-the-art methods for upscaling factor x4 on image
zebras. The numbers in the subcaptions refer to PSNR and IFC scores, respectively. Best viewed
in color and digital zoom.





CHAPTER 7

Conclusion and Outlook

In this thesis we addressed novel training algorithms for Random Forests (RF) and their

applications to different computer vision problems. We focused on classification and re-

gression tasks for high-level applications like object detection and pose estimation, but

also for low-level applications like Single Image Super-Resolution (SISR). The motivation

for investigating this flexible machine learning algorithm was the great success in the field

of computer vision. As already discussed in Chapter 2, RF possess many benefits in terms

of computational complexity and generalization capabilities compared to other machine

learning algorithms, often making them the first choice for several applications. Arguably,

the most prominent one is the human pose estimation system [163] in the Microsoft R©

Kinect
TM

that enables the estimation of the human skeleton in real-time from a single

depth sensor. Beside the good generalization capabilities and the easy implementation,

RF are also often chosen due to the fast training and inference times. All trees operate

in isolation which allows for exploiting multiple CPU cores in an easy way. Inference in

a tree is also very efficient as only a single path from the root node to a leaf node has

to be processed, i.e., conditional computation. However, the training procedure of RF

is rather uncommon compared to other state-of-the-art machine learning algorithms and

bears some potential drawbacks.

Most other machine learning algorithms like Support Vector Machine (SVM), Neural

Networks (NN), or Boosting (Boosting) minimize a loss (or risk) function in order to find

the parameters of the full model. In RF , however, each tree is trained in isolation without

knowing anything about the rest of the model. While this is often attributed as the main

advantage and essential ingredient of RF , in Chapter 3 we argue that there is still room

for improvement by exploiting information of the full model, i.e., all trees.

139
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7.1 Summary

The main result of this thesis is a novel RF training algorithm that optimizes a global

loss function over all the trees while maintaining the computational benefits during both

training and inference. To do so, we combine ideas from both Gradient Boosting (GB) and

RF and propose Alternating Decision and Regression Forests (ADRF), which thoroughly

describe in Chapter 3. We present a regression and a classification formulation and conduct

a dense evaluation on standard machine learning benchmarks. These experiments include

a comparison with baseline machine learning algorithms, a detailed evaluation of several

parameters, and an analysis of the behavior of some intrinsics of the novel algorithm.

The remaining chapters of the thesis contain several applications in the field of com-

puter vision where the proposed algorithm can be easily applied and yields promising

results. We start with generic object detection in Chapter 4 where we present two differ-

ent strategies of attacking this task. The first one is based on local evidence of an object

(see Section 4.1) where we build on the popular Hough Forests (HF) framework [62] to

integrate our ideas. After reviewing the basic concepts of the object detection model,

we show how to integrate the ADRF learning scheme, followed by a detailed evaluation

on typically used detection benchmarks. The second object detection strategy (see Sec-

tion 4.2) is based on a rigid object template this is often combined with a Boosting learning

algorithm. Here, we not only show that RF can also be employed as learner and that Al-

ternating Decision Forests (ADF) yields better results, but also that the flexibility of the

general RF framework can be exploited to more accurately localize the objects in the

images. RF can be easily used for joint classification and regression tasks, see HF [62].

In Section 4.2, we thus present a way to overcome the problem of predicting a fixed-size

bounding box, an issue of many detection approaches that is inherent by design. Our

formulation can predict the probability for an image window to either belonging to fore-

or background, but also estimate the aspect ratio of the bounding box that enframes the

object.

In Chapter 5, we present results of ADRF on human head pose estimation from depth

images. We tackle this problem from two different views, a local and a holistic one, both

relying on RF . First, we follow Fanelli et al. [50] to adapt the HF framework for this

particular task. Then, we also propose a new holistic pose estimation method, which

estimates the position and orientation of the head from a single image patch capturing

the whole object. We again successfully integrate the ADRF training scheme into both

approaches. The results on the standard benchmark data set confirm the effectiveness

of the proposed algorithm when we compare with state-of-the-art. Finally, in Chapter 6

we switch from high-level to low-level computer vision tasks and propose a RF based

approach to SISR. We present a locally-linear regression formulation with RF that achieves

state-of-the-art performance compared to other dictionary learning and direct regression

methods. Moreover, the use of Alternating Regression Forests (ARF) significantly boosts

the performance.
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7.2 Discussion

A question that naturally arises about a novel extension of an existing algorithm is: Why

and when should it be applied? The obvious answer is that our proposed algorithm seems

to outperform plain RF on several tasks for both classification and regression problems

without significant increase in computational costs. We also want to mention that we

employed ADRF for other tasks as well. While we did not always achieved significantly

better results, we almost never encountered worse performance, which is an important

insight to be considered. Nevertheless, for many applications ADRF outperforms plain

RF as can be seen in Chapters 3 to 6. Another answer to the question above is that the

novel algorithm can be readily replaced with RF in any application, which has several

reasons. First, the resulting model and, thus, also the inference phase is exactly the same

as in RF . Second, the input to the proposed training algorithm is also the same as in

RF , i.e., no additional data has to be provided. One disadvantage that might arise is the

additional training time (often negligible), due to the synchronization between the trees

and the fact that prediction models have to be computed for each node (also intermediate

ones). However, training ADRF is still clearly faster than GB .

Another delicate issue to be discussed is the topic of tree correlation that can de-

teriorate the generalization performance of RF (or ensemble methods in general), see

Section 2.2.4.4. In the extreme case, all trees are exactly the same making the ensemble

and the effect of averaging obsolete. ADRF exploits information from all the trees in

the ensemble to find splitting functions in a single tree, which obviously influences the

training. Nevertheless, only the training labels are changing (either via pseudo targets for

regression or a weighting for classification), which is the same as in GB and puts a bias on

the objective for finding splitting functions. However, the search for splitting functions in

the trees stays the same. It is still a randomized grid search, which loosens the bias. We

empirically investigate this issue for both, the classification and the regression case, with

an interesting outcome. Contrary to our prior belief, the correlation between the trees

becomes even lower compared to plain RF . The reason might be that the integration of

the common loss function makes the model aware of the other trees in the ensemble, which

also make predictions. Given this knowledge, the goal of a single tree is not to make per-

fect predictions on the current task, but to act as a good component in the ensemble such

that the overall results get better. Still, we do not have any theoretical results showing

that the generalization error is not affected by the novel training scheme. However, these

empirical results are encouraging and indicate that ADRF does not hurt generalization

but rather improves it.

7.3 Outlook

When looking at future avenues to continue research on this topic, one definitely has to

investigate different choices of the loss function that can be integrated into the ADRF
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framework. In general, any differentiable loss function (also non-convex) can be used

in the proposed framework. The flexibility to use almost any kind of loss function also

paves the way for integrating semi-supervised or multiple-instance learning loss functions

directly into the tree growing process, which are highly interesting research directions due

to the ever increasing amount of data available. Another, potentially even more interesting

direction is to integrate a model-based inference algorithm into the training of ADRF

which could also be enabled via the loss function, cf. [83, 84, 121]. One example might be

a hand model that is fit to the data for articulated hand pose estimation [173, 175] or a

low-level image model for single image super-resolution. This might find many applications

in the field of computer vision. For object detection with the HF framework, Redondo-

Cabrera and Lopez-Sastre [137] already showed that integrating the full inference process

(including Hough voting and non-maxima suppression) into the loss function of ADRF

significantly boosts the performance.

As we worked on supervised machine learning and proposed a new RF based algo-

rithm, we must not forget about the current trend and success of deep learning [92], i.e.,

(convolutional) NN . NN have a linear model at the very last layer that makes the final

prediction, e.g., a logistic regression or support vector machine layer. However, they build

on a fully trained (end-to-end) representation that is an inherent part of the classifier and

the input to this last classification layer. On the other hand, RF rely on a pre-computed

feature representation and is not concerned with learning this representation, although

there exist attempts to learn it, e.g., [118, 164]. There also exist attempts to introduce

the concept of feature learning via neural networks into RF with good results on semantic

image labeling [141]. Still, a limiting factor with integrating a learned representation into

the RF is that computing gradients with respect to the input representation is almost

impossible without delicate approximations, because of the hierarchical, hard splitting

functions. On the other hand, RF possess computational benefits during both training

and inference phases compared to NN . Of course, NN can benefit from highly tuned imple-

mentations and graphical processing units, but the number of computations is significantly

less with RF . Moreover, besides the obviously easy deployment on parallel architectures,

RF (or trees in general) can rely on conditional computations, i.e., data is processed only

by subparts of the full model which is conditioned on previous computations. A promising

direction for future research definitely is to unify the advantages of both worlds into a

common principled learning algorithm.
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List of Acronyms

ACF Aggregate Channel Features

ADF Alternating Decision Forests

ADRF Alternating Decision and Regression Forests

ARF Alternating Regression Forests

AUC Area Under Curve

Boosting Boosting

DPM Deformable Parts Model

GB Gradient Boosting

HF Hough Forests

ISM Implicit Shape Model

ML Machine Learning

NN Neural Networks

RF Random Forests

SISR Single Image Super-Resolution

SVM Support Vector Machine

ToF Time of Flight

143





APPENDIX B

List of Publications

My work at the Institute for Computer Graphics and Vision led to the following peer-

reviewed publications. For the sake of completeness of this thesis, they are listed in

chronological order.

B.1 2011

Improving Classifiers with Unlabeled Weakly-Related Videos

Christian Leistner, Martin Godec, Samuel Schulter, Amir Saffari, Manuel Werlberger, and

Horst Bischof

In: Proceedings of Conference on Computer Vision and Pattern Recognition (CVPR)

June 2011, Colorado Springs, USA

(Accepted for poster presentation)

On-line Hough Forests

Samuel Schulter, Christian Leistner, Peter M. Roth, Luc Van Gool, and Horst Bischof

In: Proceedings of British Machine Vision Conference (BMVC)

September 2011, Dundee, United Kingdom

(Accepted for poster presentation)
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B.2 2012

Discriminative Hough Forests for Object Detection

Paul Wohlhart, Samuel Schulter, Martin Köstinger, Peter M. Roth, and Horst Bischof

In: Proceedings of British Machine Vision Conference (BMVC)

September 2012, Guildford, United Kingdom

(Accepted for poster presentation)

B.3 2013

Alternating Decision Forests

Samuel Schulter, Paul Wohlhart, Christian Leistner, Amir Saffari, Peter M. Roth, and

Horst Bischof

In: Proceedings of Conference on Computer Vision and Pattern Recognition (CVPR)

June 2013, Portland, USA

(Accepted for poster presentation)

Ordinal Random Forests for Object Detection

Samuel Schulter, Peter M. Roth, and Horst Bischof

In: Proceedings of German Conference on Pattern Recognition (GCPR)

September 2013, Saarbrücken, Germany

(Accepted for oral presentation)

Unsupervised Object Discovery and Segmentation in Videos

Samuel Schulter, Christian Leistner, Peter M. Roth, and Horst Bischof

In: Proceedings of British Machine Vision Conference (BMVC)

September 2013, Bristol, United Kingdom

(Accepted for oral presentation)

Alternating Regression Forests for Object Detection and Pose Estimation

Samuel Schulter, Christian Leistner, Paul Wohlhart, Peter M. Roth, and Horst Bischof

In: Proceedings of International Conference on Computer Vision (ICCV)

December 2013, Sydney, Australia

(Accepted for poster presentation)
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B.4 2014

Accurate Object Detection with Joint Classification-Regression Random

Forests

Samuel Schulter, Christian Leistner, Paul Wohlhart, Peter M. Roth, and Horst Bischof

In: Proceedings of Conference on Computer Vision and Pattern Recognition (CVPR)

June 2014, Columbus, USA

(Accepted for poster presentation)

Hough Forests Revisited: An Approach to Multiple Instance Tracking

from Multiple Cameras

Georg Poier, Samuel Schulter, Sabine Sternig, Peter M. Roth, and Horst Bischof

In: Proceedings of German Conference on Pattern Recognition (GCPR)

September 2014, Münster, Germany

(Accepted for poster presentation)

B.5 2015

Fast and Accurate Image Upscaling with Super-Resolution Forests

Samuel Schulter, Christian Leistner and Horst Bischof

In: Proceedings of Conference on Computer Vision and Pattern Recognition (CVPR)

June 2015, Boston, USA

(Accepted for poster presentation)

Hybrid One-Shot 3D Hand Pose Estimation by Exploiting Uncertainties

Georg Poier, Konstantinos Roditakis, Samuel Schulter, Damien Michel, Horst Bischof and

Antonis A. Argyros

In: Proceedings of British Machine Vision Conference (BMVC)

September 2015, Swansea, United Kingdom

(Accepted for oral presentation)
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[110] Maŕın, J., Vázquez, D., López, A. M., Amores, J., and Leibe, B. (2013). Random

Forests of Local Experts for Pedestrian Detection. In Proc. International Conference

on Computer Vision. (page 22, 82)

[111] Maron, O. and Ratan, A. L. (1998). Multiple-Instance Learning for Natural Scene

Classification. In International Conference on Machine Learning. (page 15)

[112] Masnadi-Shirazi, H., Mahadevan, V., and Vasconcelos, N. (2010). On the design

of robust classifiers for computer vision. In Proc. Conference on Computer Vision and

Pattern Recognition. (page 20, 40, 45)

[113] Masnadi-Shirazi, H. and Vasconcelos, N. (2008). On the Design of Loss Functions for

Classification: theory, robustness to outliers, and SavageBoost. In Advances Conference

on Neural Information Processing Systems. (page 20, 21, 40, 45)



158

[114] Mathias, M., Benenson, R., Pedersoli, M., and Van Gool, L. (2014). Face detec-

tion without bells and whistles. In Proc. European Conference on Computer Vision.

(page 103)

[115] Mitchell, T. (1997). Machine Learning. Mcgraw-Hill Higher Education. (page 9, 11,

12)

[116] Mittelman, R., Lee, H., Kuipers, B., and Savarese, S. (2013). Weakly Supervised

Learning of Mid-Level Features with Beta-Bernoulli Process Restricted Boltzmann Ma-

chines. In Proc. Conference on Computer Vision and Pattern Recognition. (page 15)

[117] Montillo, A., Shotton, J., Winn, J., Iglesias, J. E., Metaxas, D., and Criminisi, A.

(2011). Entangled Decision Forests and their Application for Semantic Segmentation

of CT Images. In Proc. International Conference on Information Processing in Medical

Imaging. (page 43)

[118] Moosmann, F., Triggs, B., and Jurie, F. (2006). Fast Discriminative Visual Code-

books using Randomized Clustering Forests. In Advances Conference on Neural Infor-

mation Processing Systems. (page 142)

[119] Murphy-Chutorian, E. and Trivedi, M. M. (2008). Head Pose Estimation in Com-

puter Vision: A Survey. IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, 31(4):607–626. (page 97)

[120] Nowozin, S. (2012). Improved Information Gain Estimates for Decision Tree Induc-

tion. In International Conference on Machine Learning. (page 27)

[121] Nowozin, S., Rother, C., Bagon, S., Sharp, T., Yao, B., and Kohli, P. (2011). Decision

Tree Fields. In Proc. International Conference on Computer Vision. (page 3, 29, 142)

[122] Okada, R. (2009). Discriminative Generalized Hough Transform for Object Dectec-

tion. In Proc. International Conference on Computer Vision. (page 67)

[123] Olshausen, B. A. and Field, D. J. (1997). Sparse Coding with an Overcomplete Basis

Set: A Strategy Employed by V1? Vision Research, 37(23):3311–3325. (page 111)

[124] Osadchy, M., Miller, M. L., and LeCun, Y. (2004). Synergistic Face Detection

and Pose Estimation with Energy-Based Models. In Advances Conference on Neural

Information Processing Systems. (page 97)

[125] Ostrovsky, Y., Meyers, E., Ganesh, S., Mathur, U., and Sinha, P. (2009). Vi-

sual Parsing After Recovery From Blindness. Psychological Science, 20(12):1484–1491.

(page 1)

[126] Pan, S. J. and Yang, Q. (2010). A Survey on Transfer Learning. IEEE Transactions

on Knowledge and Data Engineering, 22(10):1345–1359. (page 16)



BIBLIOGRAPHY 159

[127] Pandey, M. and Lazebnik, S. (2011). Scene Recognition and Weakly Supervised

Object Localization with Deformable Part-Based Models. In Proc. International Con-

ference on Computer Vision. (page 63)

[128] Pishchulin, L., Andriluka, M., Gehler, P., and Schiele, B. (2013). Strong Appearance

and Expressive Spatial Models for Human Pose Estimation. In Proc. International

Conference on Computer Vision. (page 5)

[129] Poier, G., Roditakis, K., Schulter, S., Michel, D., Bischof, H., and Argyros, A. A.

(2015). Hybrid One-Shot 3D Hand Pose Estimation by Exploiting Uncertainties. In

Proc. British Machine Vision Conference. (page 77)

[130] Poier, G., Schulter, S., Sternig, S., Roth, P. M., and Bischof, H. (2014). Hough

Forests Revisited: An Approach to Multiple Instance Tracking from Multiple Cameras.

In German Conference on Pattern Recognition. (page 16)

[131] Prest, A., Leistner, C., Civera, J., Schmid, C., and Ferrari, V. (2012). Learning Ob-

ject Class Detectors from Weakly Annotated Video. In Proc. Conference on Computer

Vision and Pattern Recognition. (page 15)

[132] Quinlan, J. R. (1986). Induction of Decision Trees. Machine Learning, 1(1):81–106.

(page 22)

[133] Quinlan, J. R. (1993). C4.5: Programs for Machine Learning. Morgan Kaufmann.

(page 22)

[134] Rao, C. R. (1973). Linear Statistical Inference and its Applications. Wiley. (page 12)

[135] Razavi, N., Gall, J., and Gool, L. v. (2011). Scalable Multi-class Object Detection.

In Proc. Conference on Computer Vision and Pattern Recognition. (page 65, 71)

[136] Razavi, N., Gall, J., and Van Gool, L. (2010). Backprojection Revisited: Scalable

Multi-view Object Detection and Similarity Metrics for Detections. In Proc. European

Conference on Computer Vision. (page 72)

[137] Redondo-Cabrera, C. and Lopez-Sastre, R. (2015). Because better detections are

still possible: Multi-aspect object detection with Boosted Hough Forest. In Proc. British

Machine Vision Conference. (page 76, 142)

[138] Ren, S., Cao, X., Wei, Y., and Sun, J. (2015). Global Refinement of Random Forest.

In Proc. Conference on Computer Vision and Pattern Recognition. (page 129)
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