
 

 

 

ABSTRACT 

Large dam structures are built as water storage facilities in mountainous regions to use the 

potential difference for energy production. Geotechnical faults in these zones are not 

uncommon, which is why earthquakes are a potential hazard to dams. Due to an expected 

lifetime of more than 100 years the seismic assessment is mandatory to retain the integrity of 

such structures. The most important part is to ensure the stability of the dam body itself. The 

dynamic assessment is mostly done by means of finite elements for linear assumptions, which 

allows for the use of response spectrum methods or modal superposition. Nonlinear simulations 

are not common and primary used in research, because of the elaborateness and the requirement 

of a solid theoretical knowledge. They also require time histories with specific time steps of the 

seismic loading to account for nonlinearities implied to the model, and hence increase the 

computation time. In case of seismic excitations of dams the reservoir must be taken into 

account properly. Therefore, this thesis discusses two typical added mass approaches and a 

newly developed one for inclined surfaces, as well as the more sophisticated acoustic fluid 

continuum approach.  

In this thesis two concrete dam models, a gravity dam and a high arch dam, with different levels 

in detail are evaluated regarding their nonlinear response at seismic loading. Nonlinearities by 

means of contact discretization of the base of the gravity dam model are investigated for 

different friction angles, reservoir models, scaling effects and pre- and post-seismic cases. 

Furthermore, a comparison of cumulative displacements with a simplified limit equilibrium 

method is also done. For the arch dam model the focus is on to discretization of the blocks and 

the base contact. Influences of different modelling methods of the dead weight loading and its 

impact on subsequent steps in nonlinear simulations are discussed. In addition, linear and 

nonlinear seismic simulations are compared as well as three reservoir filling levels. 

Nonlinearities arising from the material due to cracks from seismic excitations are simulated by 

means of the Extended Finite Element Method (XFEM). 

In conclusion, the applicability of nonlinear simulations and its restrictions and differences of 

the simplified or linear methods are pointed out. Evaluation of displacements and stresses show 

that the linear approach doesnôt necessarily lead to conservative results and specific parameters 

might influence the response significantly. Hence, nonlinear simulations should be treated with 

caution and need comprehensive evaluation of experienced staff with a theoretical and practical 

knowledge. 

 

  



 

 

 

  



 

 

 

KURZFASSUNG 

Große Talsperren werden im Gebirge zum Aufstau eines Reservoirs gebaut, um aus dem 

erzeugten Potential Energie zu gewinnen. Geologische Störzonen sind meist Teil dieser 

Regionen und somit von Erdbeben betroffen. Aufgrund der Lebensdauer von Talsperren von 

mehr als 100 Jahren ist es unbedingt nötig, dass die Standfestigkeit solcher Strukturen 

gewährleistet wird. Dabei steht die Stabilität der Sperre selbst im Vordergrund. Zur 

dynamischen Vorbemessung wird dabei oft die Finite Elemente Methode mit der Annahme 

eines linearen Verhaltens herangezogen, was die Anwendung der Antwortspektrenmethode oder 

Modale Superposition erlaubt. Nichtlineare Simulationen sind meist nicht üblich und aufgrund 

ihrer Komplexität und der Voraussetzung eines soliden theoretischen Hintergrundes 

hauptsächlich in der Forschung präsent. Zusätzlich werden für Berechnungen Zeitverläufe mit 

bestimmten Zeitschritten benötigt um die nichtlineare Antwort der Struktur richtig abzubilden, 

was zusätzlich die Rechenzeit erhöht. Im Falle von Erdbebenbelastungen von Talsperren muss 

auch die dynamische Anregung des Reservoirs berücksichtigt werden. Dafür werden in dieser 

Arbeit neben zwei der meist verwendete Methoden der addierten Massen zusätzlich eine neu 

entwickelte, zur die Berücksichtigung von geneigten Flächen, präsentiert. Weiters wird auch die 

Anwendung von direkt modellierten Volumina als Acoustic Fluid Kontinuum diskutiert.  

In dieser Arbeit werden zwei Talsperren aus Beton mit unterschiedlichen Detailierungsgraden 

auf ihr nichtlineares Verhalten bei seismischer Beanspruchung untersucht. Der Einfluss von 

Nichtlinearitäten bezüglich Kontaktdiskretisierung in der Aufstandsfläche einer Gewichtsmauer 

wird für unterschiedliche Reibungswinkel, Reservoirmodelle, Skalierungseffekte und pre- und 

postseismische Fälle überprüft. Des Weiteren wird ein Vergleich der Endverschiebung mit 

vereinfachten Grenzgleichgewichtsmethoden durchgeführt. Am Bogenstaumauermodell liegt 

der Fokus auf der Diskretisierung der Blöcke und der Basisfuge. Neben der Auswirkung von 

unterschiedlichen Simulationstechniken des Eigengewichtszustandes wird auch deren Einfluss 

auf nachfolgende nichtlineare Berechnungsschritte diskutiert. Zusätzlich werden die Ergebnisse 

mit denen eines linearen Berechnungsansatzes und drei unterschiedlichen Wasserständen im 

Speicher verglichen. Nichtlineares Materialverhalten aufgrund von Rissen durch die seismische 

Belastung wird mit der Extended Finite Element Method (XFEM) simuliert und ausgewertet.  

Schlussendlich wird die Anwendbarkeit von nichtlinearen Simulationen, ihre Grenzen und 

Unterschiede zu vereinfachten oder linearen Methoden aufgezeigt. Die Auswertung von 

Verformungen und Spannungen zeigen, dass ein linearer Ansatz nicht notwendigerweise zu 

konservativen Ergebnissen führt und spezielle Parameter das Ergebnis signifikant beeinflussen 

können. Somit sollten Ergebnisse von nichtlinearen Berechnungen mit Vorsicht behandelt 

werden und bedürfen einer ausführlichen Evaluierung von erfahrenen Experten mit 

theoretischem und praktischem Wissen.  
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1 INTRODUCTION  

Concrete dam structures are mostly built in mountainous regions where active geological fault 

zones with high seismicity are not uncommon. Compared to buildings construction where large 

towers, for instance, are designed and built to bear mainly vertical loads, dams are designed to 

primarily withstand substantial horizontal loads (hydrostatic water load). This fact makes 

concrete dams more resistant to seismic loads than other buildings. Nevertheless, for dam 

structures, which have an economical lifetime of more than 100 years, the assessment by means 

of seismic safety is mandatory, regardless of existing or newly built structures. Guidelines of the 

ICOLD (2013) ï Committee on Computational Aspects of Analysis and Design of Dams are 

published with recommendations on the role and use of numerical models for static and 

dynamic dam design. Dam structures undergoing an Operating or Design Basis Earthquake 

(OBE or DBE) a linear-elastic analysis with higher safety margins is sufficient. Dams which are 

effected by a Maximum Credible Earthquake (MCE) with a return period of 3000-10000 years 

might suffer severe damage, but without collapsing. In case of such a scenario nonlinear 

simulations can be done to evaluate and ensure the structures integrity.  

Apart from the assessment to retain the integrity of the structure itself Wieland (2012) pointed 

out that earthquakes are multi-hazards which can affect large dam projects in many ways. Some 

of those are: 

¶ Damage of appurtenant structures and equipment 

¶ Rockfall on structures or in the reservoir causing damage or waves 

¶ Fault or mass movements 

¶ Etc. 

Furthermore, he mentioned the possibility of large reservoirs triggering seismicity during 

impounding in the first years of operation. These secondary effects cannot be entirely forecast 

and can only be accounted for with simplified and conservative approaches. 

Nevertheless, in the first place in the seismic assessment of concrete dams stands the stability of 

the structure itself. By means of finite element analyses many possibilities exist for taking into 

account the dynamic load from a seismic event. Most standards for earthquake assessment are 

based on design response spectra for peak ground acceleration at specific areas. Another method 

would be modal superposition, where preceding frequency/mode analyses are performed and 

afterwards superposed to get dynamic response of the system. These methods work well for 

linear problems, but are not applicable to nonlinear systems. In case of large concrete dam 

structures nonlinear effects like base- and block joint openings or cracks in the structure might 

not be negligible.  

For nonlinear assessments of structures time-histories of the ground motion are needed, because 

the stiffness might change over time and is generally reduced. This change also influences its 

natural frequencies and therefore the dynamic behaviour. Due to the fact that seismic events 

cannot be forecast, site records or artificially generated time histories are used. Such ground 

motions are then applied to the model to evaluate the dynamic behaviour and hence design a 
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dam that withstands these loads. For dynamic simulations different time integration methods in 

implicit and explicit formulation are available with their specific advantages and disadvantages. 

In the implicit family the two most commonly used, and described as part of this thesis, in 

dynamic analysis nowadays are the one by Newmark (1959) and the one by Hilber, Hughes and 

Taylor (1977). One explicit method is also discussed. Damping in time domain analyses of 

discretized systems is mostly introduced by means of Rayleigh damping coefficients, because 

damping matrices for even simple problems are normally not known. Lord Rayleigh (1877) 

invented this mass- and stiffness proportional method based on modal analysis already in 1877. 

For calculating the damping coefficients two specific natural frequencies one has to choose. 

Since the choice of these modes is an approach mostly based on the effective mass Spears and 

Jensen (2012) published a method to define these coefficients by fulfilling the dynamic 

equilibrium between the modal and Rayleigh damped response. Problems accompanying 

nonlinear simulations by using Rayleigh damping are discussed by Hall (2006). 

Dynamically excited structures in general develop inertia forces, but in case of dams 

additionally the reservoir water must be taken into account. A still well established approach is 

to use added masses to model the dynamically excited water. The most popular one was 

developed by Westergaard (1933) during the earthquake assessment of the Hoover dam to 

evaluate the water pressures. Later, Zangar et al. (1952) performed physical model tests to 

investigate effects on inclined surfaces. Among many others these two are still the most 

commonly used by consulting companies due to their convenient implementation and 

conservative results. Nevertheless, also with Zangarôs equation, rough assumptions are implied 

by applying them on inclined surfaces, especially near the bottom of the dam. A new empirical 

equation is developed to overcome the overestimation of the added mass distribution based on 

numerical results for surfaces with a tip from 0° to 30° degrees. 

Apart from added mass approaches a much better way to simulate the constitutive behaviour of 

the water is to model the water directly as an acoustic fluid. The knowledge of the basics of 

continuum mechanics is obligatory for the practice of fluid-structure interactions by means of 

dynamic dam-reservoir problems, where the principles of a Lagrangian and Eulerian description 

are the basis. The underlying acoustic wave equation has the advantage that it has only one 

degree of freedom which is the pressure. Commonly used in sound wave analyses this approach 

offers also a good assumption for modelling dynamically excited reservoirs, where the most 

interesting factor for the assessment is the additional pressure acting on the structure. Muto et al. 

(2012) evaluated the applicability of elements based on the acoustic fluid equation. This 

approach has been used more and more for many dam-reservoir interactions nowadays. Effects 

of compressibility can also be accounted for directly, which, according to Chopra (2008), can be 

an important parameter in dam-reservoir interactions and shouldnôt be neglected. Furthermore, 

the use of boundary conditions regarding reflections can be defined easily. The impact of 

different reflection coefficients at the back-end boundary (reservoir length effects) have been 

studied by Baumber (1992). Different reflection coefficients on the sides of the reservoir in the 

near field of the dam and their affects were investigated by Hall and Chopra (1980) and Fenves 

and Chopra (1984).  
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Differences between the added mass approach by Westergaard (simplified and rigorous) and 

acoustic fluid elements are figured out by applying these methods to a concrete gravity dam 

structure, whichôs geometry is based on the Birecik dam in Turkey. Additionally, a foundation-

structure interaction by means of contact modelling with finite elements is investigated and 

compared with Newmarkôs Sliding Block Analysis, which was developed by Newmark (1965) 

and later modified by Chopra and Hall (1982) for the application of gravity dam structures. 

Results of empirical formulas by Jibson (1993), Jibson, Harp and Michael (1998) and Ambrasey 

and Menu (1988) are also depicted. For the finite element model two scenarios are simulated, a 

pre and post-seismic case. In the first case the grout curtain is still intact (reduced uplift 

pressure) and in the second case itôs ruptured (linear uplift pressure distribution). Furthermore, 

all results are figured out for a two times scaled model also to evaluate possible scaling effects. 

The effects of different reservoir modelling techniques on the performance of a high Arch Dam 

(220m) was studied within the ñ12
th
 International Benchmark Workshop on Numerical Analysis 

of Damsò in Graz, Austria in October 2013. The ñCommittee on Computational Aspects of 

Analysis and Design of Damsò in the International Commission on Large Dams (ICOLD) 

organizes these workshops every second year. One of the three topics in this benchmark 

workshop was titled ñFluid Structure Interaction, Arch Dam - Reservoir at Seismic Loadingò, 

formulated by the Institute of Hydraulic Engineering and Water Resources Management from 

Graz University of Technology. The proceedings with a comprehensive representation of all 

results can be found in Zenz and Goldgruber (2014). Overall 13 participants presented results 

for the predefined problem. For comparison reasons the whole problem was kept linear. 

Goldgruber et al. (2013) performed a benchmark test on the same model for differing damping 

ratios varying from 0% to 10% of the critical damping. 

However, it should be obvious that arch dams undergo nonlinear behaviour of different kinds. 

One is that due the massive amount of concrete and therefore the building phases, such 

structures are divided into almost independent vertical blocks acting like cantilevers until they 

are fully grouted and the reservoir is impounded. The impact of separated blocks compared to a 

continuous body is investigated and effects on the stress level are evaluated. A second 

discontinuity is implied due to the structure-foundation interaction in the base of the arch dam. 

Possible openings might occur due to the increasing water pressure from impounding and 

seismic vibrations. Different reservoir levels as well as different methods for modelling the dead 

weight case and its influence on following simulation steps are investigated.  

Additionally to nonlinearities occurring from contact modelling between blocks and in the base 

nonlinear material behaviour by means of discrete cracks is also accounted for. This is primary 

caused by exceedance of the tensile strength of the concrete. Especially arch dams are 

susceptible to cracks triggered by seismic events. Simulations and modelling of discontinuities 

are often done with so called smeared models where cracks are enforced on the integration point 

of the finite element without discretization. A method developed by Belytschko and Black 

(1999) called Extended Finite Element Method (XFEM) allows for modelling discrete cracks 

which arenôt dependent on the mesh topology. Cracks are therefore allowed to develop freely 

through elements. The method is based on so called enriched methods, which are in this case the 

partition of unity method (PUM) and the generalized finite element method (GFEM). The 
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terminology ñenrichedò refers to the added term in the finite element approximation of 

displacement, which is also called ñenrichmentò. Although itôs still a research topic, some 

commercial (e.g. Abaqus) and open source codes have already implemented this technique. 

Crack development in the arch dam is modelled with this applied XFEM and evaluated for five 

different scales of the same accelerations time history used in the ñ12
th
 International Benchmark 

Workshop on Numerical Analysis of Damsò and the results are pointing out the possibilities and 

borders of such complex nonlinear simulations. 
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2 DYNAMIC MODELLING IN THE FINITE 

ELEMENT  METHOD  

This section gives a brief introduction and a rough overview of commonly used methods for 

solving the equation of motion stepwise. The following sections about time integration are 

mostly based on the books by Chopra (2011) and Bathe (2007). The discussed time history 

methods can be split up into two main procedures, the direct time integration and modal 

superposition. Quasi-Static methods, response spectrum methods for earthquake analysis and 

methods in the frequency domain are not discussed in this section, because those are restricted 

to linear problems. 

In direct time integration methods, the underlying kinetic equations are solved step by step and 

equilibrium is fulfilled for each time step separately. According to which instant of time, ὸ or 

ὸ Ўὸ, is used for the equilibrium of the equation of motion, the schemes can be divided into 

explicit and implicit integration methods. These methods allow for solving nonlinear problems 

too. 

On the contrary to the direct time integration methods, modal superposition can be used for 

linear problems with much more numerical efficiency. The idea in this method is to transform 

the coupled system of equations into a set of uncoupled ones which can later be superimposed 

to get the systems answer.  

From an engineering point of view damping is always hard to define, due to the complexity of 

the structures, foundations, etc. and the use of different structural elements. Usually, damping in 

mechanical systems is introduced as viscous (velocity proportional) force in the equation of 

motion. Hence, a damping factor has to be defined for the structure, which is done by means of 

a critical (modal) damping ratio. In literature typical modal damping ratios can be found for 

specific structures and materials. These values are based on measurements and influenced by 

many factors, including temperature, whereby increasing temperature softens the material and 

therefore leads to higher damping ratios. 

A lot of further damping models exist. One is the hysteretic damping, where a hysteretic 

damping coefficient is introduced. This model describes the behaviour of a damped vibrating 

system better, but with the drawback of the requirement of complex analysis. Nevertheless, the 

damping model discussed in this chapter and applied on the structures later in this thesis is 

introduced by means of viscous damping.  

In numerical simulations a damping matrix has to be defined and therefore a damping value for 

each degree of freedom (position in the matrix). Since this is almost impossible, for even simple 

structures, simplifications are made. Usually one modal damping ratio is used for the whole 

structure. Varying factors for different regions in the model are also possible. For finite element 

simulations the Rayleigh damping approach, which is a stiffness and mass-proportional 

damping, is well-established. For the use of this approach additionally to the critical damping 

factor two natural frequencies have to be known. The determination of these 2 natural 

frequencies is normally based on experience, the effective mass under consideration and 
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compromises in the damped frequency ranges. A method developed by Spears and Jensen 

(2012) is introduced in this section which allows determining these natural frequencies based on 

a mechanical equilibrium. 

2.1 Direct Time Integration Methods 

For problems with an arbitrary varying force, ground accelerations or nonlinearities itôs not 

possible to get an analytical solution. Hence, direct time integration or time-stepping methods 

divide the equation of motion in time steps Ўὸ. In this case the equilibrium is fulfilled at discrete 

time intervals, but not continuously. The equation of motion at time instant ὸ in matrix notation 

is 

 ╜◊ ╒◊ ╚◊ ╡ (2-1) 

with ╜ as the mass matrix, ╒ as the damping matrix, ╚ as the stiffness matrix and ╡ as the 

varying force over time. The displacement ◊, velocity ◊ and acceleration ◊ vectors are 

assumed to be known at the time ὸ, e.g. if ὸ π they are called initial conditions. Direct time 

integration procedures allow, based on the knowledge of these motion quantities at time ὸ, to 

calculated the systems response at time ὸ Ўὸ with the equation of motion written as 

 ╜◊ Ў ╒◊ Ў ╚◊ Ў ╡ Ў  (2-2) 

Figure 2-1 depicts a schematic representation of direct time integration or time-stepping 

schemes. 

 
Figure 2-1: Schematic representation of direct time integration or time-stepping methods 

Depending on the chosen time integration scheme different assumptions are made for stepping 

from ὸ to ὸ Ўὸ. Three of the most commonly used schemes in finite element simulations are 

presented in this section, two implicit direct time integration methods and one explicit method. 

2.1.1 Implicit Time Integration 

2.1.1.1 Time Integration according to Newmark 

If the equilibrium equation (equation of motion) at time ὸ Ўὸ is used to solve the dynamic 

problem the procedure is called implicit time integration or implicit integration method. The 

ὸ 

◊ 

◊ Ў 

ὸ Ўὸ 

◊  

◊ 

Ὕ 

Ўὸ 
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most famous time integration scheme of the family of implicit methods is the one developed by 

Newmark (1959). He derived his equations based on two different assumptions, which are that 

the acceleration between two instants of time is constant or linear. 

 
Figure 2-2: Constant acceleration distribution between the time step 

By assuming a constant (average) distribution of acceleration, like itôs depicted in Figure 2-2, 

the motion quantities at time ὸ Ўὸ are 

 ◊†
ρ

ς
◊ ◊ Ў  (2-3) 

 ◊ Ў ◊†Ὠ† ◊
ρ

ς
†◊ ◊ Ў  (2-4) 

 
◊ Ў ◊†Ὠ†

Ў

◊ ◊†
ρ

τ
† ◊ ◊ Ў  

(2-5) 

Figure 2-3 shows a linear distribution between the acceleration at time ὸ and the unknown 

acceleration at time ὸ Ўὸ. 

 
Figure 2-3: Linear acceleration distribution between the time step 

A linear distribution of acceleration yields following motion quantities 

 ◊† ◊ †
◊ Ў ◊

Ўὸ
 (2-6) 

ὸ 

◊ 
◊ Ў 

ὸ Ўὸ 

◊ 

† 
Ўὸ 

Ὕ 

ὸ 

◊ 
◊ Ў 

ὸ Ўὸ 

◊ 

† 
Ўὸ 

Ὕ 
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 ◊ Ў ◊†Ὠ† ◊ ◊†
ρ

ςЎὸ
† ◊ Ў ◊  (2-7) 

 ◊ Ў ◊†Ὠ† ◊ ◊† ◊
ρ

ς
†

ρ

φЎὸ
† ◊ Ў ◊  (2-8) 

Combining the equations from the constant and the linear distribution approaches with † Ўὸ 

and adding two constants ‎ and ‍ gives the basic Newmark equations for the velocity and 

displacement as follows 

 ◊ Ў ◊ ρ ‎Ўὸ ◊ ‎Ўὸ ◊ Ў (2-9) 

 ◊ Ў ◊ ◊Ўὸ πȢυ ‍Ўὸ ◊ ‍Ўὸ ◊ Ў (2-10) 

The two parameters ‎ and ‍ are influencing the stability and accuracy of the Newmark time 

stepping method. With ‎  and ‍  the constant acceleration is used. 

Keeping ‎  constant and using ‍  will yield the linear acceleration equation. It is worth 

mentioning that these equations are satisfied for ‎  and ‍ , but only unconditionally 

stable for a ‍  (constant acceleration) with the drawback of less accuracy (see Section 2.1.3). 

On the contrary, using a linear distribution is only stable if the ratio between the time step and 

the natural time period of the system is less than 0.551. 

 
Ўὸ

Ὕ
πȢυυρ (2-11) 

Figure 2-4 shows the response of a 3 storey building (3 degrees of freedom) with natural 

frequencies of Ὢ πȢτστ , Ὢ ςȢςψ,  Ὢ σȢψσ. Therefore, the stable time step, which 

has to be used, for covering the highest frequency is 

 Ўὸ πȢυυρ
ρ

Ὢ
πȢρτί (2-12) 

This figure easily illustrates that the constant approach gives a results even for a time step of 1.0 

seconds, but with a significant loss in accuracy compared to the results with Ўὸ πȢρί. In 

contrast to the linear approach where the minimum time step of πȢρτ is not adhered and 

instability is triggered. For an increment of 0.1 seconds both approaches lead to the same results 

regarding the displacement response. The accuracy and stability of different methods is 

discussed in Section 2.1.3. 
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Constant approach ‎ ȟ‍   

Ўὸ ρȢπ ί

 

Linear approach ‎ ȟ‍   

Ўὸ πȢς ί

 

Ўὸ πȢρ ί

 

Ўὸ πȢρ ί 

 
Figure 2-4: Illustration of the stability of the Newmark algorithm for a simple three storey building for 

different time steps and approaches 

The equation of motion and the Newmark equations can also be written in incremental form by 

 ╜Ў◊ ╒Ў◊ ╚Ў◊ Ў╡ (2-13) 

With 

 Ў◊ ◊ Ў ◊ (2-14) 

 Ў◊ ◊ Ў ◊ (2-15) 

 Ў◊ ◊ Ў ◊ (2-16) 

 Ў╡ ╡ Ў ╡ (2-17) 

Combining and substituting these equations with the Newmark equations yields the incremental 

acceleration and velocity as 

 Ў◊
ρ

‍Ўὸ 
Ў◊

ρ

‍Ўὸ 
◊

ρ

ς‍ 
◊ (2-18) 

Instability! 
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 Ў◊
‎

‍Ўὸ 
Ў◊

‎

‍ 
◊ Ўὸρ

‎

ς‍ 
◊ (2-19) 

Finally, for the Newmark method the equation of motion for linear and nonlinear systems is 

 

╜
ρ

‍Ўὸ 
◊

ρ

‍Ўὸ 
◊

ρ

ς‍ 
◊ ╒

ρ

‍Ўὸ 
◊

‎

‍ 
◊ Ўὸρ

‎

ς‍ 
◊

╚Ў◊ Ў╡ 
(2-20) 

The motion quantities ◊, ◊ and ◊ are known values from the current time ὸ and Ў◊ with the 

displacement ◊ Ў at time ὸ Ўὸ as the only unknown quantity. Solving this equation in terms 

of Ў◊ for linear systems is trivial, because the stiffness ╚ is constant. In this case, the whole 

equation can be rearranged and expressed as 

 ╚Ў◊ Ў╡ (2-21) 

with ╚ as the so called ñdynamic stiffnessò or ñeffective stiffnessò and the ñeffective 

forceò Ў╡. 

 ╚ ἕ ╜
ρ

‍Ўὸ 
╒
ρ

‍Ўὸ 
 (2-22) 

 Ў╡ Ў╡ ╜
ρ

‍Ўὸ 
╒
‎

‍ 
◊ ╜

ρ

ς‍ 
╒Ўὸ

‎

ς‍ 
ρ ◊ (2-23) 

In nonlinear material problems the stiffness ╚ changes with Ў◊ regardless of dynamic or static 

problems and therefore different at each time instant. Due to the fact that ◊ Ў isnôt known, itôs 

not possible to use the secant stiffness ╚ȟ Ў  between to time instants ὸ and ὸ Ўὸ. So, the 

tangential stiffness ╚ ȟ at the current time ὸ is used instead and 

 ╚ ȟ Ў◊ Ў╡ (2-24) 

is solved iteratively. Itôs important to mention that the time step used in nonlinear simulation 

has big influences on the result, because the introduced error in each iteration step propagates 

further in each time step. Hence, the influence of the time step should be investigated and the 

use of a smaller one is mandatory for most of the problems. 

2.1.1.2 Time Integration according to Hilber, Hughes and Taylor 

Besides the fact that the Newmark method is one of the most used algorithms for solving 

dynamic problems, it also delivers some drawbacks. Hilber, Hughes and Taylor (1977) 

introduced a new algorithm, which has some improvements regarding stability and numerical 

damping compared to Newmark. For dynamic problems sometimes there is no need for the 

systems high frequency responses. Therefore, numerical damping can be added by increasing 

the ‎ value. According to the publication by Hilber, Hughes and Taylor the Newmark method is 

too dissipative for low frequencies for a fixed time step and ‎ πȢυ. Decreasing the time step 

helps to get rid of the dissipation, but therefore increases the numerical effort. They stated the 

following requirements in their paper, which are fulfilled by their algorithm: 



DYNAMIC MODELLING IN THE FINITE ELEMENT METHOD 

11 

1. It should be unconditionally stable when applied to linear problems. 

2. It should possess numerical dissipation which can be controlled by a parameter other 

than the time step. In particular, no numerical dissipation should be possible. 

3. The numerical dissipation should not affect the lower modes too strongly. 

The Hilber-Hughes-Taylor method uses the same basic Newmark equations for the velocity and 

displacement, equation (2-9) and (2-10), but introduces a parameter ‌ to the equation of motion, 

which controls the numerical damping. That is why this method or algorithm is also referred to 

as ‌-Method.  

The equation of motion is now defined as 

 
╜◊ Ў ρ ‌╒◊ Ў ‌╒◊ ρ ‌╚◊ Ў ‌╚◊

ρ ‌╡◊ Ў ‌╡◊ 
(2-25) 

The two parameters ‎ and ‍ of the Newmark method are consequently also modified by the 

parameter ‌. 

 ‎
ρ ς‌

ς
 (2-26) 

 
‍

ρ ‌

τ
 

(2-27) 

The value ‌ can vary in the range of ‌ π. A zero value leads to the constant 

acceleration approach according to Newmark, which is unconditionally stable, second order 

accurate and results in zero numerical dissipation. On the other hand, ‌  accounts for 

significant numerical damping. The advantage of this method is that introducing numerical 

damping by adjusting the parameter ‌ doesnôt affect the lower frequencies considerable. This 

method is preferably used in finite element simulations to neglect high frequency noise which is 

not contributing to the final solution. 

One major drawback of implicit time integration is that the stiffness matrix must be inverted in 

each time step again to solve equation (2-21) to get the solution for ◊ Ў. This procedure is 

numerically very costly due to the banded structure of the matrix. 

2.1.2 Explicit Time Integration 

In contrast to implicit time integration methods (equilibrium at time ὸ Ўὸ) in so called explicit 

time integration or explicit integration methods, the equation of motion (2-1) at time ὸ is used.  

 ╜◊ ╒◊ ╚◊ ╡ (2-1) 

Such methods are also called ñcentral difference methodsò, because the time derivative of the 

displacement is based on the finite difference approximation. 

For a specific time step Ўὸ, as in Section 2.1.1, the velocity and acceleration with central 

difference approximations is determined as 
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 ◊
ρ

Ўὸ
◊ Ў ς◊ ◊ Ў  (2-28) 

 ◊
ρ

ςЎὸ
◊ Ў ◊ Ў  (2-29) 

These two equations indicate that the velocity and acceleration is derived just based on the 

displacements. Figure 2-5 illustrates the idea behind these assumptions. 

 
Figure 2-5: Illustration of the central differences approach 

Combining the equation of motion at time ὸ and the two motion quantities of the central 

difference approach gives 

 

ρ

Ўὸ 
╜

ρ

ςЎὸ 
Ἅ◊ Ў

╡ ╚
ς

Ўὸ 
╜ ◊

ρ

Ўὸ 
╜

ρ

ςЎὸ 
Ἅ◊ Ў 

(2-30) 

In a shorter form, similar to equation (2-21), 

 ╚◊ Ў ╡ (2-31) 

With the ñdynamic stiffnessò or ñeffective stiffnessò ἕ and the ñeffective forceò ╡ as 

 ╚
ρ

Ўὸ 
╜

ρ

ςЎὸ 
Ἅ (2-32) 

 ╡ ╡ ╚
ς

Ўὸ 
╜ ◊

ρ

Ўὸ 
╜

ρ

ςЎὸ 
Ἅ◊ Ў (2-33) 

At the very beginning of a simulation ◊ Ў is not known, but can be calculated by using 

equations (2-28) and (2-29) together with the motion quantities  ◊ , ◊  and ◊  at time ὸ.  

 
◊ Ў ◊ Ўὸ◊

Ўὸ

ς
◊  

(2-34) 

The initial acceleration ◊  can be calculated with equation (2-1) at time ὸ by  

ὸ 

◊ Ў 

ὸ Ўὸ 

◊ 

Ўὸ 

Ὕ 
ὸ Ўὸ 

◊ Ў 
◊ 

Ўὸ 
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 ╜◊ ╡ ╒◊ ╚◊  (2-35) 

A closer look at the ñdynamic stiffnessò ╚ reveals that itôs just dependent on the mass and 

damping matrix, which can be reduced to be diagonal matrices. This means that calculating the 

inverse is much faster compared to a banded matrix, like the stiffness in implicit time 

integration methods. On one hand this is an advantage of the explicit time integration methods, 

but on the other hand a lower time step, dependent on the highest mode ὲ of interest, has to be 

used to be conditionally stable. The critical time step needed for simple dynamic problems is 

 
Ўὸ

Ὕ

ρ

“
 (2-36) 

Typically a much lower time step is required, dependent on the highest mode ὲ of interest.  

2.1.3 Stability and Accuracy of Time Integration Methods 

The stability criteria for the methods mentioned in the sections before are summarized in Table 

2-1. To adhere to these criteria doesnôt necessarily lead to the right solution. In the case of an 

unconditionally stable procedure even a high time step will lead to a result, but with loss in 

accuracy. For conditionally stable algorithms satisfying the stability criterion also doesnôt 

ensure the right response of the system, because the accuracy is also affected. 

Table 2-1: Stability criteria for different time integration methods 

  Stability criteria  

Im
p
li
c
it
 T

im
e

 

In
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g
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o
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M
e
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o

d
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Newmark constant Unconditionally stable 

Newmark linear 
Ўὸ

Ὕ
πȢυυρ 

Hilber -Hughes-Taylor  
Dependent on ‌ (e.g. ‌ π Ą Newmarkôs constant 

approach) 

E
x
p
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c
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im
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g
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o

n
 

M
e
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o

d
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Central differences 
Ўὸ

Ὕ

ρ

“
 

 

The accuracy or error of such methods is mostly compared and measured by means of 

amplitude decay (AD) and period elongation (PE). Figure 2-6 by Chopra (2011) illustrates the 

response of a single degree of freedom mass oscillator without damping for different methods 

and a time step criteria of ЎὸȾὝȠ πȢρ. In this figure the period elongation is easily visible for 

all time integration methods compared to the analytical solution.  
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Figure 2-6: Free vibration solution by four numerical methods and the theoretical solution by Chopra 

(2011) 

Figure 2-7 by Chopra (2011) the diagrams of AD and PE as a function of ЎὸȾὝ. Figure 2-7a 

shows that all methods lead to zero AD, accept for the one by Wilson, which is attributable to 

the induced numerical damping of this method. 

 
Figure 2-7: a) Amplitude decay versus ЎὸȾὝ; b) Definition of AD and PE; c) Period elongation; by 

Chopra (2011) 

Figure 2-7b depicts the PE for these four methods. It can be observed that the central differences 

method yields a period contraction with the highest error even for low ЎὸȾὝ ratios compared to 

the other methods. A steep increase can be seen at approx. ЎὸȾὝ πȢσ, which is almost the 

stability criteria of this method of ЎὸȾὝȠ ρȾ“. On the other hand, Newmarkôs method with 

the linear approach gives the most accurate results. The accuracy of the Hilber-Hughes-Taylor 

method (‌-Method) is not explicitly mentioned in this section, because itôs rather similar to 
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Newmarkôs linear approach, but with some additional advantages mentioned in Section 2.1.1.2. 

AD and PE diagrams of this method compared to others can be found in Hilber, Hughes and 

Taylor (1977). 

Chopra (2011) also mentioned that the accuracy of the method isnôt that much affected by the 

time step (as long as the stability criterion is fulfilled for specific methods) in multi degree of 

freedom systems. In finite element analysis the degrees of freedom and hence, the number of 

natural frequencies might reach very large numbers. Therefore, using the highest frequency for 

fulfilling the criterion would lead to a very small time step. Nevertheless, dependent on the time 

integration method the chosen natural frequency can be much smaller, but still giving accurate 

and stable solutions, as long as the criterion is satisfied. 

2.2 Modal Superposition 

This section gives a short introduction to the concept of modal superposition and points out the 

major differences compared to direct time integration methods. Beforehand, modal 

superposition only allows for analysing linear systems, but with remarkable advantages in 

computation speed. As already mentioned in the sections before, implicit and explicit time 

integration have the drawbacks of inverting the stiffness matrix (band structure) or very low 

time steps, respectively. So, the idea is to reduce the band width of the governing matrices ╒ 

and ╚ (Note: Massmatrix ╜ can be diagonalized for most problems) or even allow for the use 

of diagonal matrices. With the assumption that there exists a transformation matrix ╟ and a time 

dependent vector ●, called generalized displacement, the displacement ◊ can be expressed as 

 ◊ ╟● (2-37) 

Combining this expression with the equation of motion (2-1) and multiplying from the left side 

by ╟  yields 

 ╟╜╟ ● ╟╒╟ ● ╟╚╟ ● ╟╡ (2-38) 

Note that ╟ can be any arbitrary nonsingular transformation matrix, but performing an 

eigenvalue analysis of the undamped equation of motion leads to a convenient definition. 

The undamped equation of motion for eigenoscillations is 

 ╜◊ ╚◊  (2-39) 

It is assumed that the solution of the system will be a function of  

 ◊◄ ⱴίὭὲⱷὸ (2-40) 

with ⱴ as the eigenvector of the system, ⱷ as the natural frequency and ὸ as time. 

Combing equations (2-39) and (2-40) yields the following eigenvalue problem 

 ╚ ⱷ╜ ⱴ  (2-41) 
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Solving this eigenproblem will yield the circular natural frequencies ⱷ and the eigenvectors ⱴ 

of the system for each natural mode. This procedure is also called modal analysis. These 

eigenvectors have the property of orthogonality, which implies 

 

ⱴ╜ⱴ πȠ     ⱴ╚ⱴ π     for Ὥ Ὦ 

ⱴⱴ ρ     for Ὥ Ὦ 
(2-42) 

The eigenvectors can be written as a set of vectors in matrix form as 

 ♠ ⱴȟȣȟⱴ  (2-43) 

and the squared circular natural frequencies ⱷ  in matrix form as 

 

‫ Ễ π
ể Ệ ể
π Ễ ‫

 (2-44) 

With these two matrices equation (2-41) yields 

 ╚♠ ╜♠  (2-45) 

Often itôs convenient to normalize the eigenvectors for each mode so that 

 ♠ ╜♠  (2-46) 

In this case, equation (2-45) gives 

 ♠ ╚♠  (2-47) 

Hence, we can rewrite the modal equation of motion (2-38) by using the normalized eigenvector 

matrix (2-43) as 

  ● ♠ ╒♠ ● ● ♠ ╡ (2-48) 

For undamped problems this equation is completely uncoupled, which means that the matrices 

are diagonal. In practice damping is present in every structure. Due to the effect that damping 

describes the energy dissipation of the whole structure and is hard to define it for a whole 

system, these effects are not uncoupled. Nevertheless, computationally itôs more comfortable to 

have a diagonal damping matrix. The easiest way is to define a damping factor for each mode 

separately so that  

  ♠ ╒♠ ς ⱡ (2-49) 

This expression is based on the derivation of damped single mass oscillators, where the vector ⱡ 

contains the fraction of the critical damping factors for each mode. 

Finally, the fully uncoupled and damped modal equation of motion (2-38) is 
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  ● ς ⱡ ● ● ♠ ╡ (2-50) 

Note that  and ♠  are matrices with the natural frequencies and natural modes of the order of 

the degree of freedom of the system. Thus, equation (2-50) is just the summation of all these 

modes and their answers to a varying force over time ╡. This is why itôs called modal 

superposition. Solving this system of equations yields the generalized displacement vector ● 

which must be transformed back to the actual displacement vector by  

 ◊ ♠● (2-51) 

As already mentioned this method is restricted to linear systems. Nevertheless, solving a system 

of linear equations analogous to single mass oscillators of a finite number and summing up their 

answers to a specific acceleration time history, for instance, is much faster (even up to a factor 

of 100) than direct time integration methods. 

Considering a structure discretized by means of finite elements can easily reach degrees of 

freedom of 100000 and even much more. It should be clear that computing all natural 

frequencies and modes of such structures and using them for modal superposition is not 

necessary, due to the fact that for most problems the first frequencies (e.g. 10 to 20 modes for 

earthquake simulations) are the most important ones. In general, the number of modes which 

should be used for modal superposition is defined by the frequency range of the applied 

dynamic force and the mass distribution of the structure. In summary, it can be stated that the 

number of modes used for the simulation are influencing the accuracy of the result, but for most 

cases the consideration of just a few modes are quite sufficient and yield almost identical results 

as direct time integration methods with the advantage of being computationally much faster. 

This fact also allows for simulating stress and pressure pulse propagations in structures where 

very small time steps have to be used to show such effects.  

2.3 Structural Damping 

Damping in mechanical systems, especially in the equation of motion, is defined as a velocity 

dependent quantity (viscous damping), which describes the dissipation of energy during a 

dynamic oscillation. Damping factors are hard to define for even simple structures. In case of 

civil engineering structures, where each structure is more or less a prototype, the damping is not 

known in the design phase. Due to the complexity of some structures and their interaction with 

the soil or water and the use of different materials itôs almost impossible to account for all 

damping effects separately. Consequently one may use values measured at similar structures, 

which can be found in relevant literature. These values are mostly stated in terms of the fraction 

of the critical damping or modal damping factor ‒ for specific materials, buildings or soils. In 

modal superposition (Section 2.2) the fraction of critical damping ‒ can be applied directly on 

each natural mode separately if needed. On the contrary, in direct time integration methods, the 

damping matrix ╒ has to be calculated, because the equation of motion isnôt uncoupled 

anymore. Defining damping values for each degree of freedom (position in the matrix ╒) is 

practically not possible, therefore so called Rayleigh damping is a well-established approach in 
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finite element analyses. Additionally to the classical Rayleigh damping approach a new method 

for determination of the Rayleigh constants by Spears and Jensen (2012) is introduced. 

2.3.1 Rayleigh Damping 

Rayleigh damping was originally introduced in accordance with modal analysis by Lord 

Rayleigh (1877) and later revisited by Adhikari and Srikantha Phani (2007). The idea was to use 

the damped equation of motion for modal analysis instead of the undamped one, see equation 

(2-39), but with the advantage of diagonal matrices from ♠ ╜♠ and ♠ ╚♠. Therefore, the 

damping matrix is assumed to be a linear combination of the mass and stiffness matrix 

  ╒ ‌╜ ‍╚ (2-52) 

with ‌ and ‍ as Rayleigh constants or mass- and stiffness-proportional damping factors, 

respectively, which are dependent on the modal damping ‒ and two specific natural frequencies 

This assumption is a special case of the Caughey series or Caughey damping .‫ and ‫ 

developed by Caughey and O'Kelly (1965) which describes proportional damping in a general 

form. 

The Caughey Series is defined as 

  ╒ ╜ ὥ ╜ ╚▓ (2-53) 

with ὲ as the order of modes taken into account and ὥ for Ὧ πȟρȟȣὲ ρ as damping 

constants (e.g ‌ and ‍ for Rayleigh damping). For ὲ ς this equation reduces to Rayleigh 

Damping. If ὲ ς the damping matrix is a full matrix. For systems with a high number of 

degrees of freedom full matrices increase the computational effort significantly in contrast to 

matrices with a band structure. Hence, Rayleigh Damping is mainly used in numerical analyses 

and sufficient for a wide range of problems. 

Combining equation (2-52) with (2-46), (2-47) and (2-49) yields 

 ‌ ‍  ς ⱡ (2-54) 

or in scalar formulation 

 ‌ ‍‫  ς(2-55) ‒‫ 

Out of this equation the mass-proportional factor for two specific natural frequencies is 

calculated by 

  ‌ ‒
ς‫‫

‫ ‫
 (2-56) 

and the stiffness-proportional factor by 
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 ‍ ‒
ς

‫ ‫
  (2-57) 

Figure 2-8 shows the Rayleigh damping and the mass- and stiffness-proportional damping. In 

this figure one can also see that the specified damping value ‒ is only complied at the two 

frequencies of for which the Rayleigh damping factors have been calculated. The ‫ and ‫ 

frequency range between these two values ‫  ‫ has less damping and frequencies ‫ 

lower than account for higher damping, than specified. This fact describes ‫ or higher than ‫ 

one of the drawbacks of Rayleigh damping, which is the choice of the two natural frequencies 

for calculating the Rayleigh constants ‌ and ‍.  

 
Figure 2-8: Illustration of Rayleigh damping 

The two modes which should be used are dependent on the frequency range of the applied 

dynamic force and the sum of the effective mass in the specified frequency range. If the chosen 

natural frequencies are too close to each other too much damping could be applied to the entire 

system. On the other hand, if they are too far apart too less damping for a wide range of 

frequencies may be accounted for, leading to too conservative results. A new method for 

determining these constants and natural frequencies under consideration by Spears and Jensen 

(2012) is introduced in the next section. 

Stiffness-proportional 

damping 

Rayleigh damping 

Mass-proportional 

damping 

‫ ‫ 

‒ 
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2.3.2 Modified Rayleigh Damping 

For nonlinear simulations direct time integration methods have to be used, because the stiffness 

of the system changes over time and superimposing results is not possible. As already 

mentioned in Section 2.3.1, for Rayleigh damping the Rayleigh constants ‌ and ‍ have to be 

calculated, based on two natural frequencies and the modal damping factor ‒. Figure 2-8 shows 

that the damping value varies with the frequency. So, determining those frequencies which 

should be applied to the final model is mostly based on assumptions and compromises in the 

damped frequency range. The optimum case would be to use one damping value for the whole 

range, like in modal superposition. Since this isnôt possible with Rayleigh damping, Spears and 

Jensen (2012) proposed a method which allows for selecting those frequencies based on the 

difference in the response of the modal and Rayleigh damped system. At first, a modal analysis 

of the model has to be done, to find its natural frequencies and effective masses. With these 

frequencies together with the constant modal damping factor ‒ and an acceleration time history, 

which is the dynamic load of the model, an acceleration response spectrum is created. 

Afterwards, two natural frequencies are chosen to calculate the Rayleigh constants and the 

corresponding modal damping factors ‒, ‒ȟȣ‒ for each mode/frequency Ὥ by 

 ‒
ρ

ς

‌

‫
(2-58)  ‫‍ 

Again, like for the constant modal damping, an acceleration response spectrum is created, but 

now under consideration of different damping factors for each frequency. With the accelerations 

out of the spectra the response difference is calculated by the sum of all acceleration responses 

differences with the following equation 

 ЎὛ ὥȟ ὥ ȟ ά ȟ π (2-59) 

where ὥȟ and ὥ ȟ are the response accelerations of the Rayleigh and modal damped systems 

and ά ȟ is the effective mass, at mode/frequency Ὥ and ὲ is the maximum number of modes 

under consideration. Important to mention, the amount of considered modes/frequencies can 

influence the result significantly, therefore the percentage of the sum of the effective mass to 

overall mass should not undergo a specific value. Dependent on the finite element model, 

normally a value of 100% is not reachable without an increased computational effort, but 70% 

at least is advisable. If ЎὛ π the Rayleigh constants have to be recalculated for two different 

frequencies as often as necessary until ЎὛ π. The two frequencies ‫ ȟ and ‫ ȟ and 

corresponding constants from the last iteration are the ones which give the same global response 

of the system as if modal damping is applied. Figure 2-9 illustrates both damping curves before 

and after modification of the Rayleigh damping. 

Spears and Jensen have used this approach solely for seismic analysis of structures, but stated 

that itôs reasonable for a wide range of problems. 
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Figure 2-9: Damping curve before and after modification of the Rayleigh damping 

Hellgren (2014) used this approach in his master thesis ñInfluence of Fluid Structure Interaction 

on a Concrete Dam during Seismic Excitationò and showed a program flow chart which 

described the procedure for calculating the modified Rayleigh constants. Figure 2-10 shows a 

similar flow chart based on the one by Hellgren (2014).  

Rayleigh damping 

‫ ‫ 

‒ 

Modified 

Rayleigh damping 

‫ ȟ ‫ ȟ 
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Figure 2-10: Program flow chart for calculating the modified Rayleigh constants 

  

Modal Response Spectrum 
Generate a modal response spectrum for the extracted 

natural frequencies ‫ȟ‫ȟȣȟ‫ , a constant modal 

damping factor ‒ and the acceleration time history 

Modal Analysis of the System 
Extraction of natural frequencies and effective mass ‫ 

ά  for ὲ modes 

‒
ρ

ς

‌

‫
‍‫  

Rayleigh Constants 
Choose two natural frequencies and ‫ and ‫ 

calculate Rayleigh Damping constants ‌ and ‍. 

Calculate corresponding damping factors for each 

frequency by 

Rayleigh Response Spectrum  
Generate a Rayleigh response spectrum for the 

extracted natural frequencies ‫ȟ‫ȟȣȟ‫ , the 

Rayleigh damping factors ‒ȟ‒ȟȣȟ‒ and the 

acceleration time history 

ЎὛ ὥȟ  ὥ ȟ  ά ȟ   

Differences of the Systems 

Responses 
Calculate the differences in response accelerations of 

the modal and Rayleigh damped systems for each 

mode/frequency and multiply them by the effective 

mass and sum it up. 

ЎὛ 
ЎὛ π ЎὛ π 

ЎὛ π 

Rayleigh Damped 

Response too Low 
Choose lower natural frequencies 

and recalculate ‌ and ‍. 

Rayleigh Damped 

Response too High 
Choose higher natural frequencies 

and recalculate ‌ and ‍. 

Modified Rayleigh Constants 
The two frequencies ‫ ȟ and ‫ ȟ and corresponding Rayleigh 

constants ‌  and ‍  are now optimized to give the same overall 

response as the modal damped system with the constant damping factor ‒. 
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2.3.3 Problems regarding the Use of Rayleigh Damping in Nonlinear Systems 

By means of Rayleigh damping the damping matrices are formed by using the initial linear 

mass- and stiffness matrices of the system. The mass of the system should remain constant over 

time, even for nonlinear systems if no parts/elements of the structure are excluded during 

simulation. In contrast to the mass, the stiffness is reduced in nonlinear systems due to softening 

effects like cracks. Hall (2006) investigated this problem for different civil engineering 

structures. One of them was a 100 meters high gravity dam for what he evaluated the damping 

effects due to sliding and cracking at the base for smeared methods (enforcement at integration 

points without contact discretization). Therefore, he came to the conclusion that the mass-

proportional damping forces can imply moderate resistance to sliding. On the other hand, the 

stiffness-proportional term can obviously inhibit sliding, because of using the initial stiffness 

matrix for calculation of the damping force. It should be clear that the stiffness of the system is 

significantly lower if a crack exists. Hence, in such cases a limited value is suggested by Hall 

(2006). Furthermore, if so called penalty elements (nonlinear axial and shear springs) are used 

for the contact he stated an additional problem which results out of this discretization method, 

where springs with very high axial stiffnessôs are used to prevent surfaces to penetrate. These 

high values should be omitted in the computation of the stiffness-proportional damping force. 

In the end Hall (2006) concluded that Rayleigh damping can, in certain cases, yield too large 

and unrealistic damping forces and hence be non-conservative. The mass-proportional term has 

no direct physical meaning and acts as a linear viscous damper on the degrees of freedom of the 

nodes as external supports, whereas the stiffness-proportional term can be understood as 

connection between degrees of freedom. For high velocity gradients and a high initial stiffness 

compared to the nonlinear stiffness these damping forces might be significant and further 

research is necessary on this topic.  
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3 FLUID  MODELLING METHODS OF DAM -

RESERVOIR INTERACTIONS  

Dam-reservoir interactions can be categorized as structure excited interactions in hydraulic 

engineering, which are defined as fluid-structure interaction where the water has to react to a 

slightly moving structure. This implies that the displacement of the water stays as small as the 

one of the structure. A typical example for such problems is an earthquake induced vibration of 

a structure which is fully or partially surrounded by water, e.g. dam structures. The design loads 

can increase significantly in seismic active areas, leading to a reduced sliding stability, 

dependent on the dead weight and fracture criteria, which assumes friction and cohesion as 

resistance. The additionally excited water (reservoir) is an important factor in the assessment 

and simulation. The easiest way to take the water into account is to use an added mass approach. 

Upon others the ones mostly used by engineers are the added masses according to Westergaard 

and Zangar. Among these approaches, a new empirical approach, by Goldgruber and Feldbacher 

(2013), based on numerical simulations is also introduced in this section. Simplifying the water 

as mass mostly leads to an overestimation of the results, dependent on the geometry and 

dimensions of the structure. Additionally to the added mass techniques, the fluid structure 

interaction of structure excited simulations can also be modelled as acoustic fluid, which is 

based on the ñConservation of Momentumò and ñConservation of Massò equations from 

Appendix A.2.2 and A.3, respectively. Such fluids are commonly used in pressure and sound 

wave simulations, but give some major advantages for problems where a volume of water is 

excited moderately. For such problems the pressure distribution and its effect on the structure 

are from interest. Muto et al. (2012) have compared simulations with structural elements 

(Lagrangian finite elements), acoustic fluid elements and the closed form solutions according to 

Housner (1954). Therefore, they simulated a rectangular reservoir interacting with a rigid wall, 

by applying a sinusoidal ground motion for 6 seconds. The conclusion was that structural 

elements are not appropriate for such a case, because of their transient, self-oscillating 

behaviour if no artificial damping is introduced. The systemôs response for the acoustic fluid 

elements simulation was instead very close to Housnerôs closed form solution, which justified 

the use of these elements for structure-reservoir interactions. In Section 5.2, a similar problem is 

investigated, but applied on a non-rigid 220 meters high arch dam. It reveals the commonly 

known fact, that an added mass technique yields higher stresses, deformations, etc. compared to 

acoustic fluid elements and additionally that itôs also independent of the damping factors used. 

Furthermore, the conclusion is that the additional mass can affect the structures dynamic 

behaviour significantly, especially for slender structures over 100 meters. The use of acoustic 

elements, due to their better constitutive description (compressibility) of the water, is also 

recommended in this work. Nevertheless, the added mass technique is still widely used, 

especially for preliminary designs, due to its convenient way of applicability and conservative 

results and hence is discussed in this chapter. Structural or lagrangian finite elements are not 

described due to their disadvantages for modelling the water of structure excited fluid-structure 

interaction problems, which have been mentioned above. 
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3.1 Added Mass according to Westergaard 

Westergaard (1933) derived his equation on an analytical basis where the water pressure is 

described as an added mass, acting on the upstream surface of a dam structure and the rest of the 

water is assumed to be inactive. He developed an equation for the mass as a function of the 

depth of the reservoir. Moreover, the idealized two dimensional dam is assumed to be rigid and 

vertical. The reservoir is infinite in length and has a rectangular shape. The added water mass 

per squaremeter at the interacting surface in a specific depth ᾀ of the dam surface with these 

assumptions is calculated by 

 ά ᾀ
ψ”Ὤ

“

ρ

ὲὧ
ίὭὲ

ὲ“ᾀ

ςὬ
ȟȟȣ

 (3-1) 

with 

 ὧ ρ
ρφ”Ὤ

ὲὑὝ
 (3-2) 

the natural frequency of the reservoir 

 Ὢ
ρ

Ὕ

ρ

τὬ

ὑ

”

ὧ

τὬ
ȟ (3-3) 

the compressibility ὑ , the water depth Ὤ, the density of the water ”  and the wave propagation 

speed ὧ . Figure 3-1 shows the added mass distribution according to the Westergaard equation. 

It also indicates that the tangent at the bottom of the water reservoir is dependent on the order ὲ 

of the sum of equation (3-1). A higher order increases the accuracy of the added mass 

distribution. 

 
Figure 3-1: Westergaard added mass distribution 

Inclination of the tangent on the bottom is 

dependent on the order ὲ  

ᾀ 

Ὤ 

Simplified gravity 

dam structure 

Added mass distribution according to Westergaard 
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Worth mentioning is that the more commonly known equation for calculating the added mass 

per squaremeter according to Westergaard is 

 άᶻ ᾀ
χ

ψ
”ЍὬᾀ (3-4) 

This simplified equation neglects the effects of compressibility of the water and the influence of 

the natural frequency of the reservoir and therefore over estimates the mass at the top and 

bottom part of the interacting surface between body and water of approximately 10%. This fact 

is illustrated in Figure 3-2. This figure also shows that taking into account an order of ὲ ρρ of 

equation (3-1) is sufficient. Higher orders influence the mass distribution just slightly. 

 
Figure 3-2: Comparison between the rigorous and simplified Westergaard equation 

The popularity of the simplified equation is based on the fact that its conservative and it can be 

easily applied in quasi static analyses, where mass points instead of continua are used to 

calculate the global equilibrium. The overall mass of the water per meter acting on the upstream 

surface is computed by integrating equation (3-4) over the height of the water by 

 ὓᶻ
χ

ψ
”ЍὬᾀὨᾀ

χ

ρς
”Ὤ (3-5) 

This resultant mass is acting in the centre of the integrated area, which is approx. 

 Ὤȟ

ς

υ
Ὤ (3-6) 
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Figure 3-3 illustrates the point of origin of the resultant mass ὓᶻ. 

 
Figure 3-3: Point of origin of the resultant water mass 

3.2 Added Mass according to Zangar 

In contrast to Westergaard, Zangar et al. (1952) published a paper called ĂElectric analog 

indicates effect of horizontal earthquake shocks on damsñ, where he derived an equation for the 

pressure distribution over the height of the dam experimentally. His model test consists of a tray 

representing the reservoir and the damsô rigid upstream surface. The electrolyte he used for the 

reservoir is tap water. Instead of using a shake table and measuring the pressure directly, a linear 

varying potential boundary (analog to the potential of water in each depth) on the upstream 

surface and a constant potential on the bottom is installed. Figure 3-4 illustrates the electrical 

analog model test setup by Zangar for measuring the dynamic pressure in a reservoir.  

 
Figure 3-4: Model setup for measuring the dynamic water pressure in a reservoir according to Zangar et 

al. (1952) 

The coherence between the pressure increase due to a seismic event and the magnitude of the 

acceleration for a rigid structure is described as 

ᾀ 

Ὤ 

Ὤȟ 

ὓᶻ 
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 ὴ ὅὥ” Ὤ (3-7) 

or in terms of the mass per squaremeter 

 ά ὅ” Ὤ (3-8) 

with ὅ as the pressure coefficient, ‌ as the horizontal earthquake intensity and Ὤ as the 

reservoir depth. 

The measured electric potential in the reservoir is analog to the streamlines of the water and 

therefore, the pressure or pressure coefficient (perpendicular to the streamlines). Furthermore, 

this analog and model setup is only valid under the assumption of incompressible water and a 

rigid structure. Figure 3-5 shows a general plot of the streamlines and corresponding pressure 

coefficients ὅ.  

 
Figure 3-5: Streamlines and pressure coefficient in the reservoir by Zangar et al. (1952) 

In the case of a constant inclined upstream surface Zangar derived a parabolic shape of the mass 

or pressure distribution based on the experimental results for different angles, which is 

 ὅ
ὅ

ς

ᾀ

Ὤ
ς
ᾀ

Ὤ

ᾀ

Ὤ
ς
ᾀ

Ὤ
 (3-9) 

The constant factor ὅ  is defined as the maximum occurring pressure coefficient for one 

inclination and ᾀ is the depth variable. The relationship between the angles and the pressure 

coefficient on the bottom and the maximum pressure coefficient is depicted in Figure 3-6. This 

figure also indicates that the maximum pressure coefficient ὅ πȢχσ is only occurring at zero 

inclination. For higher inclinations the coefficient reduces. The pressure coefficients between 

the experiment and equation (3-9) are shown in Figure 3-7. In this figure it can also be seen that 

the maximum is moving upward in the reservoir with the increase in inclination.  










































































































































































































































































