ABSTRACT

Large cam structures arbuilt as water storage faciligs in mountainous regiont use the
potential difference for energy production. Geotechnical faults in these zones are not
uncommon, which is why earthquakes are a potential hazard to dams. Due to an expected
lifetime of more than 100 years the seismic assessment is mandatory to retain the integrity of
such stuctures. The most important part is to ensure the stability ofldahe body itself. The
dynamic assessmeis mostly done by means of finite elemefds linear assumptions, which

allows for the use of response spectrum methods or modal superpositionelliogimulations

are not common and primary used in research, because of the elaborateness and the requirement
of a solid theoretical knowledge. They also require time histories with specific time steps of the
seismic loading to account for nonlinearitiesplied to the model, and hence increase the
computation timeln case of seismic excitations of dams the reservoir must be taken into
account properly. Therefore, this thesis discusses two typical added mass approaches and a
newly developed one for incked surfaces, as well as the more sophisticated acoustic fluid
continuum approach.

In this thesigwo concretedam models, a gravity dam and a high arch daith, different levels

in detail areevaluatedregarding their nonlinear responsesatsmic loadig. Nonlinearities by
means of contactliscretizationof the base of the gravity dam modale investigated for
different friction anglesreservoir models, scaling effectésd pre- and posiseismic cases
Furthermore, a comparisasf cumulative displacenms with a simplified limit equilibrium
method is also doné&or the arch danmodelthe focus is on to discretization of the blocks and
the base contact. Influences of different modelling methods of thevesigtt loading and its
impact on subsequersteps in nonlinear simulations are discussed. In additioear and
nonlinear seismic simulations are compared as well as three reservoir filling levels.
Nonlinearities arising from the material due to cracks from seismic excitations are simulated by
means of theExtendedFinite ElementMethod (XFEM).

In conclusion, the applicability of nonlinear simulations and its restrictions and differences of
the simplified or linear methods are pointed out. Evaluation of displacements and stresses show
thatthelinar approach doesndt necessarily desad to
might influence the ponsesignificantly. Hence, nonlinear simulations should be treated with
caution and need comprehensive evaluation of experiestaffavith a theoetical and practical
knowledge






KURZFASSUNG

GroRRe Talsperren werden im Gebirge zum Aufstau eines Reservoirs gebaut, um aus dem
erzeugten Potential Energie zu gewinnen. Geologische Stérzonen sind meist Teil dieser
Regionen und somit von Erdbeben betroffen. AufgrdedLebensdauer von Talsperren von
mehr als 100 Jahren ist es unbedimgitig, dass die Standfestigkeit solcher Strukturen
gewabhrleistet wird. Dabei steht die Stabilitat der Sperre selbst im Vordergrund. Zur
dynamischenvorbemessung wird dabeift die Finite Elemente Methodeiit der Annahme

eines linearen Verhaltens herangezogen, was die Anwendung esrfspektrenmethode oder
Modale Superposition erlaubt. Nichtlineare Simulationen sind meist nicht tblichufgdind

ihrer Komplexitdt und der Voraussetzung eines soliden theoretischerergfimtdes
hauptsachlich in der Forschung prasent. Zusatzlich werden fur Berechnungen Zeitverlaufe mit
bestimmtenzeitschritten bendtigt um die nichtlineare Antwort der Struktur richtig abzubilden,
was zuséatzlich di®echeneit erhdhtIm Falle von Erdbebdrelastungen von Talsperren muss
auch die dynamische Anregung des Reservoirs bericksichtigt werden. Dafir werden in dieser
Arbeit neben zwei der meist verwendete Methoden der addierten Massen zusatzlich eine neu
entwickelte, zur die Berlcksichtigung von gaien Flachen, prasentieWeiterswird auch die
Anwendung von direkt modellieme/oluminaals Acoustic Fluid Kontinuum diskutiert.

In dieser Arbeit werdeawei Talsperren aus Beton mit unterschiedlichen Detailierungsgraden
auf ihr nichtlineares Verhtn bei seismischer Beanspruchung untersucht. Der Einfluss von
Nichtlinearitaten beziglich Kontaktdiskretisierung in der Aufstandsfléatmer Gewichtsmauer

wird fur unterschiedliche Reibungswinkel, Resemmwidelle, Skalierungseffekte ummte- und
postseismische Félle Uberprift. Des Weiteren wird ein Vergleich der Endverschiebung mit
vereinfachten Grenzgleichgewichtsmethoden durchgefi#rt. Bogenstaurauermodell liegt

der Fd&us auf der Diskretisierung der @ke und der Basisfuge. Neben der Auswidkwon
unterschiedlichen Simulationstechniken des Eigengewichtszustandes wird auch deren Einfluss
auf nachfolgende nichtlineare Berechnungsschritte diskutiert. Zusatzlich werden die Ergebnisse
mit denen eines linearen Berechnungsansatzes und drei unidisbkie Wasserstanden im
Speicher verglicherNichtlineares Materialverhaltegufgrund von Rissen durch die seismische
Belastung wd mit derExtended Finite Element Method (XFEM) simuliert und ausgewertet.

Schlussendlich wird die Anwendbarkeit von nichtlinearen Simulationen, ihre Grenzen und
Unterschiedezu vereinfachten oder linearen Methoden aufgezeidje Auswertung von
Verformungen und Spannungen zeigen, dass ein linearer Ansatz nicht notwendigemweise z
konservativen Ergebnissen fuhrt und spezielle Parameter das Ergebnis signifikant beeinflussen
konnen Somit sollten Ergebnisse von nichtlinearen Berechnungen mit Vorsicht behandelt
werden und bedirfen einer ausfuhrlichen Evaluierung von erfahrenen dfxpenit
theoretischem und praktischem Wissen.
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INTRODUCTION

1 INTRODUCTION

Concrete dam structures are mostly built in maunaus regions where active geologitallt
zoneswith high seismicityare not uncommorComparedo buildings construction whetarge
towers, for instanceare asigned and built to beamainly vertical loads, damare designed to
primarily withstand substantial horizontal loads (hydrostatic water load). This fact makes
concrete dams more resistant to seismic loads than other buildings. Nevertheleksn for
strudures, which have an economical lifetime of more than 100 y#ersissessmehy means

of seismic safety is mandatory, regardless of existing or newly built strudBurieielines of the
ICOLD (2013)7 Committee onComputational Aspects of Analysis and Design of Dames
published with recommendations on the role and use of numerical models for static and
dynamic dam desigrDam structures undergoing an Operating or Design Basis Earthquake
(OBE or DBE)alinear-elastc analysis with higher safety margiisssufficient. Dams which are
effected by a Maximum Credible Earthquake (MCE) with a return period ofB00Q0 years

might suffer severe damage, but without collapsing. In case of such a scenario nonlinear
simulatians can be done to evaluate and ensure the structures integrity.

Apart from the assessment to retain the integritthefstructure itself Wielan@2012) pointed
out that earthquakes are miitaizardswvhich can affect lye dam projects in many ways. Some
of thoseare:

1 Damage of appurtenant structures and equipment

T Rockfall on structures or in the reservoir causing damage or waves
1 Fault or mass movements

{ Etc.

Furthermore, he mentioned the possibility of large reservoirs triggering seismicity during
impoundingin the first years of operatiohese secondary effects cannot be entirely forecast
and can only be accounted for with simplified and conservapipeoaches.

Nevertheless, in the first place in the seismic assessment of concrete dams stands the stability of
the structure itselBy means of finite element analyses many possibilities exist for taking into
account the dynamic load from a seismic evéfast standards for earthquake assessment are
based on design response spectra for peak ground acceleration at spesifisrasther method

would bemodal superposition, where preceding frequency/mode analyses are performed and
afterwards superposed gt dynamic response of the system. These methods work well for
linear problems, but are not applicable to nonlinear systémsase of large concrete dam
structures nonlinear effects like bas@d block joint openings or cracks in the structure might

not be negligible.

For nonlinear assessments of structures-timtories of the grounthotionare needegdbecause

the stiffness might change over time and is generally reddteéslchange also influences its
natural frequencies and therefore the dynangalviour.Due to the fact thaseismic events

cannot be forecast, site records or artificially generated time histories areSushdground
motions are then applied to the model to evaluate the dynamic behaviour and hence design a
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dam that withstands tee loadsFor dynamic simulatins different time integratiomethods in

implicit and explicit formulation are availabigith their specific advantages and disadvantages

In the implicit family he two most commonly usednd described as part of this ttsesn
dynamic analysis nowadays are the one by Newrfi®¥%9)and the one by Hber, Hughes and

Taylor (1977) One explicit method is alsdiscussedDamping in time domain analyses of
discretized systems is mostly introduced by means of Rayleigh damping coefficients, because
damping matrices for even simple problems are normally not knbwrd Rayleigh(1877)
invented this massnd stiffness proptional method based on modal analysis already in 1877.
For calculating the damping coefficients two specific natural frequencies one has to choose.
Since the choice of these modes is an approach mostly based on the effective mass Spears and
Jensen(2012) published a method to define these coefficients by fulfilling the dynamic
equilibrium between the modal and Rayleigh damped response. Problems accompanying
nonlinear simulations by using Rayleigh damping are discusskidlb{2006)

Dynamically excited structures in general develiogrtia forces, but in case of dams
additionally the reservoir water must be taken into account. A still well established approach is
to use added masses mtwodel the dynamically excited water. The most popular one was
developed by Westergaafd933) during the earthquake assessment of the Hoover dam to
evaluate the water pressures. Later, Zargaal. (1952) performed physical model tests to
investigate effects on inclined surfaces. Among many others these two are still the most
commonly used by consulting companies due to their convenient implementation and
conservate r esul ts. Neverthel ess, al so with Zangar 6s
by applying them on inclined surfaces, especially near the bottom of the dam. A new empirical
eguation is developed to overcome the overestimation of the added masatiisttilased on
numerical results for surfaces with a tip from 0° to 30° degrees

Apart from added mass approaches a much better way to simulate the constitutive behaviour of
the water is to model the water directly as an acoustic flthe. knowledge of th basics of
continuum mechanics is obligatory for theactice of fluidstructure interactions by means of
dynamic darrreservoirproblems, where the principles of a Lagrangian and Eulerian description
are the basisThe underlying acoustic wave equatiors tihe advantage that it has only one
degree of freedom which is the pressure. Commonly used in sound wave analyses this approach
offers also a good assumption for modelling dynamically excited reservoirs, where the most
interesting factor for the assessmesthe additional pressure acting on the structure. Muto et al.
(2012) evaluated the applicability of elements based on the acoustic fluid equation. This
approach has been used more and more for manyearvoir inteactions nowadays. Effects

of compressibility can also be accounted for directly, whackording to Chopré2008) can be

an important parameter in dameservoir interactona nd s houl d n OFurthdsmorenegl ect ed
the use of lmundary conditions regardingeflections can be defined easily. The impact of
different reflection coefficients at the baekd boundary (reservoir length effects) have been
studied by Baumbgi1992) Different eflection coefficients on the sides of the reservoir in the
near field of the dam and their affects were investigated by Hall and C{i®&@)and Fenves

and Choprg1984)
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Differenaes betweerthe addedmass approach by Westergaard (simplified and rigorand)

acoustic fluidelements are figured out by applying these methods to a concrete gravity dam
structure, whichOos geomet ry Additonbly e éwhdatom t he B
structure interaction by means of contact modelling with finite elements is investigated and
compared with Newmarkoés Sliding Block Anal ysi
and later modified by Chopra and H§ll982) for the application of gravity dam structures.

Results of empiricdlormulas by Jibson (1993), Jibson, Harp and Michael (1998) and Ambrasey

and Menu (1988) are also depicted. For the finite element model two scenarios are simulated, a

pre andpostseismic case. In the first case the grout curtain is still intact (reduced uplift
pressure) and in the second case itbdés rupture
all results are figuredutfor a two times scaled moddkato evaliate possible scaling effects.

The effects of different reservoir modelling techniques on the performance of a high Arch Dam
(220m) was st uYlintemtoraBeandhinark Workshiop BriN2imerical Analysis

of Damso in Graz, Austria in October 2013. T
Anal ysis and Design of D &ssios @n Liarge Darhse(ICAOLD)t er na't
organizesthese workshops every second ye@ne of the three topics in this benchmark
workshop was titled fAFIlI ui-dReSterrwotiur eatl nSteersantit
formulated by the Institute of Hydraulic Engineering and Water Resources Management from

Graz University of Technology. Bhproceedings with a comprehensive representation of all

results can be found in Zenz and Goldgru{2814) Overall 13 participants presented results

for the predefined problem. For comparison reasons the whole prolkésmkept linear.

Goldgruber et al(2013) performed a benchmark test on the same model for differing damping

ratios varying from 0% to 10% of the critical damping.

However, it should be obvious that arch dams undergtinear behaviour of different kinds.

One is that due the massive amount of concrete and therefore the building phases, such
structures are divided into almost independent verkittatks acting like cantilevers until they

are fully grouted and the reseivs impounded. The impact of separated blocks compared to a
continuous body is investigated and effects on the stress level are evaluated. A second
discontinuity is implied due to the structdfmindation interaction in the base of the arch dam.
Possibleopening might occur due to the increasing water pressure from impounding and
seismic vibrations. Different reservoir levels as well as different mefoodsodelling the dead

weight case and its influence on following simulation steps are investigated.

Additionally to nonlinearities occurring from contact modelling between blocks and in the base
nonlinear material behaviour by means of discrete cracks is also accounfBuidas.primary

caused by exceedance of the tensile strength of the concrgtecidly arch dams are
susceptible to cracks triggered by seismic eveditaulations and modelling of discontinuities

are often done with so called smeared models where cracks are enforced on the integration point
of the finite element without discretizan. A method developed by Belytschko and Black

(1999) called Extended Finite Element Method (XFEM) allows for modelling discrete cracks
which arenét dependent on the mesh topology.
through elements. The method is based on so called enriched methods, which are in this case the
partition of unity method (PUM) and the generalized finite elemeethad (GFEM). The
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terminology fAenrichedo refers to the added ter
di spl acement, whi ch i s al so @aekehrehdopidi same i c hme nt ¢
commerciale.g. Abaqusand open source codes have alrdaghfemented this technique.

Crack development in the arch dam is modelled itk appliedXFEM and evaluated fdive
di fferent scales of the same"l@anatedalBenaimarbo ns t i me

Workshop on Numerical Analysis of Danmd  aenrebults are pointing out the possibilities and
borders of suclsomplex nonlinear simulations.
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2 DYNAMIC MODELLING IN THE FINITE
ELEMENT METHOD

This sectiongives a brief introduction and a rough overview of commonly used methods for
solving the equation of motion stepwisEhe following sectionsabout time integration are
mostly based on the books by Chogg@11) and Bathe(2007) The discussedime history
methodscan be split up into two main procedures, the direct timegration and modal
superpositionQuasiStatic methods, response spectrum methods for earthquake analysis and
methods in the frequency domairearot dscussedn this section becausehose are restricted

to linearproblems.

In direct time integratiomethods, the underlyingjnetic equationsare solved step by step and
equilibrium is fulfilled for each time step separatezcording to which instant of time or

o Yo is used for the equilibrium of the equation of motion, the schemes can beddivide
explicit andimplicit integration methodsl'hese methods allow for solving nonlinear problems
too.

On thecontrary to the direct time integration methods, modal superposition can be used for
linear poblemswith much more numerical efficiency. Theea in this method is tivansform

the coupled system of equations into a set of uncoupled ones which can later mepsgeer

to get the systems answer.

From an engineering point of view damping is always hamkefine due to the complexity of
the structures, foundations, etc. and the ofsdifferent structural elementtlsually, damping in
mechanical systems is introduced as viscous (velgeitportional) force in the equation of
motion.Hence, a damping factor has to be defined for the stryatdmieh is done by means of

a critical (modal) damping ratidn literature typicalmodal dampingratios can be foundor
specific structures anchaterials These values are based measuremennd influenced by
many factors, including temperature, whgréncreasing temperature softens the material and
therefore leads to higher damping ratios

A lot of further damping models exist. One is the hysteretic damping, where a hysteretic
damping coefficient is introduced. This model describes the behavioudaped vibrating
system better, but with the drawback of the requirement of complex an&lgsextheless, the
damping model discussed in thihapterand applied on the structures later in this thesis is
introduced by means of viscous damping.

In numeical simulatiors a damping matrix has to be defined and therefatamapingvalue for

each degree of freedom (position in the matrix). Since this is almost impo&sildeen simple
structures simplificationsare made. Usually oneodal dampingratio is used for the whole
structure. Varying factors for different regions in the model are also possible. For finite element
simulations the Rayleigh damping approaathich is a stiffness and magsoportional
damping,is well-established. For the use of this approach additionally to the critical damping
factor two natural frequencies have to be knowfhe determination of these R2atural
frequencies is normally based on experience, the effective mass under consideration and
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conmpromises in the dangg frequency range®A method developed bgpears and Jensen

(2012)is introduced in thisectionwhich allows determininghesenaturalfrequencies teed on
a mechanicagquilibrium

2.1 Direct Time Integration Methods

For problems with an arbitrary varying force, ground accelerations or nonlinearitied s
possible to get aanalytical solution.Hence,direct time integratioror time-steppingmethods
divide the equation of motion itime steg Yo. In this casehte equilibrium is fulfilled atiscrete
time intervals but not continuouslyThe equation of motion at time instanin matrix notation
is

Io LA (2-1)

with 4 as the mass matrixz as the damping matrixt as the stiffness matrix anfl as the
varying force over time. The displacement, velocity ¢ and acceleratio® vectors are
assumed to be known at the tiee.g. ifo 1 they are called initial condition®irect time

integration procedures allgwased on th&nowledge of thesenotion quantities at timé, to

calculated the systems response at tmeYowith the equation of motion written as

To g oy Ly qy (2-2)

Figure 2-1 depicts a schematic representation of direct time integration orstepeing
schemes

o ]

N
Y, Y

o o Yo
Y0

Figure2-1: Schematic representation of direct time integration or-8tapping methods

Depending orthe chosentime integration scheme different assumptions are madstdpping

fromoto® Yo. Three of the most commonly used schemes in finite element simulations are

presented in thisection two implicit direct time integration methods and one explicit method.

2.1.1 Implicit Time Integration

2.1.1.1 Time Integration according to Newmark

If the equilibrium egation (equation of motion) at time Yo is used to solve the dynamic

problem the procedure is call@ahplicit time integration or implicit integration methodhe
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most famous time integration scheme of the family of implicit methods is the one developed by
Newmark(1959) He derived his equations based on two different assumptions, which are that

the acceleration between two ingtsof time is constant or linear.

O

~

ol + [0 YO
-
Yo

Figure2-2: Constant acceleration distribution betweentiime step

By assuming a constariaverage)istribution of acceleration, like t dimcted inFigure 2-2,

the motion quantities at time  Yoare

ot go o (2-3)
oy otar ¢ gm oy (2-4)
y
o otar o ot Pto oy (2-5)
T

Figure 2-3 shows a linear distribution between the acceleration at timed the unknown

acceleration at timé  Yo.

O/
C‘)_l'(‘)}’(‘)
Yo

Figure2-3: Linear acceleration distribution between timee step

A linear distribution of acceleration yields following motion quantities

o v 0
ot 0 - (2-6)
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3 , p 5 (2-7)
o v OtTaor ¢ o f —v—cbe o vy 0
. ' p P y (2-8)
Oy OtTar ¢ O fF ¢ c”r (pyo”r y ¢

Combining the equations from the constant and the linear distribution appredtihds Yo
and adding two constait andf gives the basic Newmark equations for the velocity and
displacemenas follows

O vy O  p YOO YO0 v (2-9)
Oy O OYo ™ T YOO (YOO y (2-10)
The two parameterfs and! are influencing the stability and accuracy of the Newmark time
stepping method. With -andf  -theconstant acceleration is used.
Keepingf - constant and usirig - will yield the linear acceleration equatidnis worth
mentioning that these egtions are satisfied for -and- | -, but only unconditionally
stable for4 - (constant acceleration) with the drawback of less acciisaebection2.1.3.

On the contrary, using a linear distribution is only stable if the ratio betwegiminatepand
the natural time period of the system is less than 0.551.
Yo
~ T®Up (2-11)

Figure 2-4 shows the response af 3 storey building(3 degrees of freedomyith natural
frequentes of ' Q ™8 01,"Q ¢& Y, 'Q o &. Thereforethe stableime step which

hasto be used, for covering the highest frequency is
o p ,
YO T@® UL g ™ 1 (2-12)

This figure easily illustrates that the constant approach gives a results evem®stepof 1.0

seconds but with a significan loss in accuracy compared to the results With @i . In

contrast to the linear approach where the miniminre stepof m@® tis not adhered and
instability is triggered. For an increment of 0.1 seconds both approaches lead to the same results
regarding the displacement respon3ée accuracy and stability of different methods is
discussed irsection2.1.3
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Constant approaci  -f - Linearapproachf -H -

Yo pati | 7 | )"’lc‘J TR i |
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Figure2-4: lllustration of thestability of the Newmark algorithm fasimple three storelyuilding for
differenttime steg and approaches

The equation of motioand the Newmark equationan also bevritten in incremental form by

Iyo o v ¥ (2-13)
With
Y 0o g 0 (2-14)
Yo 0 vy 0 (2-19)
Yo 0y 0 (2-16)
H o4y A (2-17)

Combining and substituting these equations with the Newmark equations yields the incremental
acceleration and velocity as

o0 =0 (2-18)
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Yo %o Tr—o Y p c;—o (2-19)

Finally, for the Newmark method the equation of motion for linear and nonlinear systems

1P P o Po —8—<>r—<>>"/c‘) r—<>
I Yo L) q BB g (2-20)

Lyo 4

The motion quantitieg ,¢ and¢ are known values from theurrenttime oand¥Yo  with the
displacemen¢ y attimed Yoas the only unknown quantityoling this equation in terms
of ¥ for linear systems is trivial, because stiffnesslt is constant. In this casthe whole
eguation carbe rearranged and expressed as

Yo ¥ (2-21)
with T a's the so call edor i diyenfafneicct asatdi fsf hneefsfBndef f sedc t |
for °>L§|e 0
. p p
T 1 _2 o 3
® iy e (2-22)
o r p o T 3
A o 12w 5o (2-23)
1 % g g P

In nonlinear material problems the stiffndsshanges witt¢ regardles®f dynamic or static
problemsand thereforalifferent at eactime instant Due to the factth&t ¢y i s no6t, kinto@s
not possible to use the secant stiffnésg y between to time instantsandd Yo. So, the
tangential stiffnesé f at the current timéis used insteadnd

Cry ¥ (2-24)

A

is solved iterativelyl t 6 s | mpor t ant tinmestepusednin nordimear sirhudation t h e
has big influences on the result, because the introduced error in each iteration step propagates
furtherin eachtime step Hence, the influence of thane stepshould be investigated and the

use of a smaller orie mandatory for most of the problems.

2.1.1.2 Time Integration according to Hilber, Hughes and Taylor

Besides the fact that the Newmark method is onehefrhost used algorithms for solving
dynamic problems, it also delivers some drawbacks. Hilber, Hughes and TagIor)
introduced a new algorithm, which has some improvements regarding stability and numerical
damping conpared to Newmark. For dynamic problems sometithese is no need fothe
systems high frequency responses. Therefore, numerical damping can be adudasyng

thel value.According to the publication by Hilber, Hughes and Taylor the Newmark méthod

too dissipative fofow frequenciedor a fixedtime stepand/ ™. Decreasing théime step

helps to get rid of the dissipatiobut therefore increases the numerical effbhtey stated the
following requirements in their papewxhich are fulfilledby their algorithm:

10
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1. It should be unconditionally stablehen applied to linear problems

2. It should possess numerical dissipation which can be controlled by a parameter other
than thetime step In particular, no numericalissipation should be possible

3. The numerical dissipation should not @ffé¢he lower modes too strongly

The HilberHughesTaylor method uses the sarhasic Newmark equations for the velocity and
displacementequation(2-9) and(2-10), but introduesa parameter to the equation of motion,
which controls the numerical dampg. That is why this method or algorithm is also referred to
as| -Method.

The equation of motion is now defined as

oy p I v I =lpl'LOyl'LO 225
p y 1499 ]

The two parameters andf of the Newmark method are consequently also modified by the
parameter .

p (
I 2-26
c (2-26)
T p I (2-27)
T
The value| can vary in the range of - | . A zero value leads to the constant

acceleration approach according to Newmark, which is unconditiosillyle, second order
accurateand results in zero numerical dissipati@n the other hand, - accounts for

sigrificant numerical damping. The advantage of this method is that introducing numerical
damping by adjusting the parameted o e sn6t affect the | ower freoc
method is preferably used fimite element simulations to neglect high fuegcy noise which is

not contributing to the final solution.

One major drawback of implicit time integration is that the stiffness matrix must be inverted in
eachtime stepagain to solve equatiof2-21) to get the solution fo¢ ¢ . This procedure is
numerically very costly due to the baasbtructure of the matrix.

2.1.2 Explicit Time Integration

In contrast to implicit time integration methods (equilibrium at témeY®o) in so calledexplicit
time integration or explicit integration methods, the equation of m¢&d at timeois used.
To o L A (2-1)
Such methods are al so c a,lbécaude the cirrerderivativie ofthe f f e r €
displacement is based on the finite difference approximation.

For a specifictime stepY®, as n Section2.1.1 the velocity and accelerationith central
difference approximations determined as

11
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p
P N
Loy oy (2-29)

These two equations indicate that the velocity and acceleratidariiged just based on the
displacementdrigure2-5illustrates the idea behind these assumptions.

0
o vy
0
5 S0 o o S0 "
Yo| Yo

Figure2-5: lllustration of the central differences approach

Combining the equation of motion at tinieand the two motion quantities of theentral
difference approacbives

Py, P

O P, P (230
1 Pt st eho
In a shorter form, similar to equati¢2-21),
By 9 (2-31)

Withtheidynami ¢ st i f f nes sE@anddhei efifeffef cetft\vaev ef osrtciefof nes s o

T Pau P .
Yo o oo (2-32)
q p p . i
i 1 Yo Yo Yo Y

At the very beginning of a simulatich y is not known but can becalculatedby using
equatiors (2-28) and(2-29) together with the motion quantitigs ,¢ and¢ at timeo .

- Yo X
0y 0 Y = (2-34)

The initial acceleratiof can be calculated with equati¢®1) at timeo by

12
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1o 4 o Lo (2-35)

A closer look atthefid y n a mi ¢ Tsrteivfefanl ess stoh a t i t 6s ssjands t dep
dampingmatrix, which can be reduced to B&gonal matrices. This means that calculating the
inverse is muchfaster compared to aandd matrix, like the stiffness inmplicit time
integration method<On one hand this is an advantage of the explicit time irtiegrenethods,
but on the other hanalower time step dependent on the highest madef interest,has to be
used to beonditionallystable The criticaltime stepneeded for simple dynamic problems is
3/—5 E (2-36)

Typically a much lowetime stepis required, dependent on the highest mbas interest.

2.1.3 Stability and Accuracy of Time Integration Methods

The stability criteria for the methods mentioned indbetiors before are summiaed inTable

221 To adhere to these criteria doesnoét necessa
unconditionally stable procedure even a highe stepwill lead to a result, but with loss in

accuracy. For conditionally stable algorithms satisfying the stability atitestil s o doesnoH
ensure the right response of the system, because the accuracy is also affected.

Table2-1: Stability criteria for different time integration methods

Stability criteria

Newmark constant Unconditionally stable

Yo
Newmark linear ~ ™ L p

Implicit Time
Integration
Methods

Dependent oh (e.g.| A Newmarlés constani

Hilber -Hughes Taylor approach)

Yo p
Central differences N

Integration
Methods

Explicit Time

The accuracy or error of such methods is mostly compared and measured by means of
amplitude decay (AD) and period elongation (FEyure 2-6 by Chopra(2011)illustrates the
responsef a single degree of freedom mass oscillator without dampindifferent methods

and atime stepcriteria of YOF'YN 1. In this figure the period elongation is easily visible for

all time integration methods compared to the analytical solution.

13
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Linear acceleration

Theoretical / Average acceleration

~

t/T,

Figure2-6: Free vibration solution by four numerical methods and the theoretical solution by Chopra
(2011)

Figure 2-7 by Chopra(2011)the diagrams of AD and PE as a functionYoF'Y. Figure 2-7a
shows that all methodead to zero ADaccept for the one by Wilsowhich is attributable to
the induced numerical damping of this method.

(@ (©

05 0.1 05
0.4 Wilson’s method 0.08 04 Wilson’s method
@=14) ®=14)
0.3 0.06 0.3
2 q
0.2 004 & 0.2 acceleration
&
0.1 {oo2 'S onf .
— Central difference n Linear
/~ Linear acceleration g acceleration
Average acceleration
0 . — 0 0.0
0.0 0.1 0.2 03 0.4
At/ T,
u () 01}
1 AD
Numerical -l T‘E
0 < LA B
d T, T 02 |
Exact N3~ — i
41 L L L L L L
0 0.1 02 0.3 04
AT,
Figure2-7: a) Amplitude decayersusYoT'Y; b) Definition of AD and PE; c) Period elongation; by
Chopra(2011)

Figure2-7b depicts the PE for these four methods. It can be observed that the central differences

method yields a period contraction with the highest exven for lowY&r'Y ratios compared to

the other methods. A steep increase can be seen at agpfoX. T, which is almost the

stability criteria of this method of6¥'YN p#*. On the ot her hand, Newmar |
the linear approach gives the most accuratelteesthe accuracy of the HilbétughesTaylor

method |( -Method is not explicitly mentioned in thisection because ités rather

14
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Newmar kés | inear approach, but wiSecton2sd.d.tlhe addi
AD and PE diagrams of this method compared to others can be foudithémn, Hughes and
Taylor (1977)

Chopra(201l)al so menti oned that the accuracy of t he
time step (as long as the stability criterion is fulfilled for specific methods) in multi degree of
freedom systems. In finite element analysis the degrees of freedohearg] the number of

natural frequencies might reach very large numbers. Therefore, using the highest frequency for
fulfilling the criterion would lead to a very small time step. Nevertheless, dependent on the time
integration method the chosen natural fregpyecan be much smaller, but still giving accurate

and stable solutions, as long as the criterion is satisfied.

2.2 Modal Superposition

This sectiongives a short introduction to the concept of modal superposition and points out the
major differences comparedo direct time integration methods. Beforehand, modal
superposition only allows foanalysinglinear systems, but with remarkable advantages in
computation speedis already mentioned in theectiors before, implicit and explicit time
integration have the drawbacks of inverting the stiffness matrix (band structure) or very low
time steg, respectively. So, the idea is to reduce the band width of the governing matrices
and L (Note: Massmatri¥ can bediagonaized for most problemspr evenallow for the use

of diagonal matges.With theassurption that there exists a transformation matfxand a time
dependent vector , called generalized displacemethie displacemenrt can be expressets

o ||-o (2-37)

Combining this expression with the equation of moti@i) and multiplying from the left side
by | yields

4o Ik rle I e IF A (2-39

Note that |} can be any arbitrary nonsingular transformation matrix, but performing an
eigenvalue analysis of the undamped equation of motion leads to a convenient definition.

The undamped equation miotion for eigenoscillations is

1o Lo (2-39)
It is assumedhat the solution of the system will be a function of

O vi Q8O (2-40)

with ¥ as the eigenvector of the systamas the naturdtequencyandoas time.

Combing equationf2-39) and(2-40) yields the following eigenvalugroblem

L ol ¢ (2-41)

15



DYNAMIC MODELLING IN THE FINITE ELEMENT METHOD

Solving this eigenproblem will yield the circulaaturalfrequencieso and the eigenvectors
of the system for eachatural mode This procedure is also called modal analy3ibese
eigenvectors have thgropertyof orthogonality, which implies

vdy m v ke n forQ Q

~ (2-42)
v ¥ p for'Q Q
Theeigenvectors can be written as a set of vectors in matrix form as
o v B (2-43)
and thesquaredctircular natural frequencies in matrix form as
1 Eom
€ E €& (2-44)
mn E ]
With these two matrices equati¢®41) yields
La 1o (2-45)
Of t en i t 6te noanalinevthe rigervactors for each mode so that
o Lo (2-46)
In this case, equatigi2-45) gives
o La (2-47)

Hence we can rewrite the modal equation of mot{@+88) by using the normalized eigenvector
matrix (2-43) as

o 4 o o 4 4 (2-49)

For undamped problems this equation is completely uncoupled, which means that the matrices

are diagonal. In practice damping is present in every structure. Due to the effect that damping

describes the enerdglissipation of the whole structuend is hard to defing for a whole

system these effects are not uncoupldde ver t hel es s, maartpmfdriabteitoonal |y i
havea diagonal damping mattiXhe easiest way is to define a damping factor for each mode

separately so that

o @ (2-49)

This expression is based on the derivation of damped single mass oscillatorsheiveidon
contains thdraction of the critical dampinfactors for each mode.

Finally, the fully uncoupled and damped modal equation of m¢#8) is

16
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O P (2:50)

Note that ande are matrices with the natural frequencies and natural modes of the order of
the degree of freedom of the system. Thus, equéBdit) is just the summation of all these

modes and their answers to a varying force over ti{me This is why itds
superposition. Solving this system of equations yields the gezettatisplacement vecter

which must be transformed back to the actual displacement vector by

o a0 (2-51)

As already mentioned this method is restricted to linear systems. Nevertheless, ssjdtana

of linear equations analogous to single mass oscillators of a finite number and summing up their
answers to a specific acceleration time history, for instance, is much fasteruf toa factor

of 100) than @ect time integration methods.

Consideing a structure discretized by means of finite elements can easily reach degrees of
freedom of 100000 and even much more. It should be clear that computing all natural
frequencies and modes of such structures and using them for modal superposition is not
necessary, due to the fact that for most problems the first frequencies (e.g. 10 to 20 modes for
earthquake simulations) are the most important dnegeneral the number of modes which
should be used for modal superposition is defined by the frequamge rof theapplied
dynamicforce and the mass distribution of the structure. In sumnitacgn be stated that the
number of modesased for the simulatioare influencing the accuracy of the resulit for most

cases the considerationjabt a few modeare quitesufficient and yieldalmost identicatesuls

as direct time integration methods with the advantage of being computationally much faster.
This factalsoallows for simulating stress and pressymglse propagatiain structuresvhere

very smalltime steg have to be used to show such effects.

2.3 Structural Damping

Damping in mechanical systemsspecially in the equation of motids,defined asa velocity
dependent guantityviscous damping)which describes the dissipation efergy during a
dynamic oscillationDamping factors are hard to define for even simple structures. In case of
civil engineering structures, where each structure is more or less a prototype, the damping is not
known in the design phasBue to the compley of some structures and their interaction with
the soil or water and the use of di fferent
damping effects separatel@onsequently one may use values measured at similar structures,
which can be foundhirelevantliterature.These values are mostly stated in terms of the fraction

of the critical dampingr modal damping factor for specific materials, buildings or soils

modal superpositionSection2.2) the fraction of critical damping can beapplied directly on

each natural mode separatélpeeded On the contrary, in direct time integration methods, the
damping matrix f has to becal cul at ed, because the equatio
anymore. Defining damping valuder each degree of freedom (position in the magjixs
practically not possible, therefose calledRayleigh dampings a weltestablished approach in

17
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finite element analyses. Additionally to the classical Rayleigh damping approach a new method
for determination of the Rayleigh constabysSpears and Jens€f012)is introduced.

2.3.1 Rayleigh Damping

Rayleigh damping was origirgl introduced in accordance with modal analysis by Lord
Rayleigh(1877)and later revisited bjxdhikari and Srikantha Pha(2007) The idea was to use

the damped equation of motionrfmodal analysis instead of the undamped one, see equation
(2-39), but with the advantage of diagonal matriéesn 4 4 4 and4 La . Therefore, the
dampingmatrix is assumed to be a linear combination of the mass and stiffness matrix

Pt (252

with | and! as Rayleigh constants or masmd stiffnesgproportional damping factors,
respectively, which are dependent onitiedal damping- and two specific natural frequencies
1 and] . This assumption is a special case of the Caugkees or Caugheydamping

developed by Caughey and O'Ke{li965)which describes proportional damping in a general
form.

TheCaughey Series is defined as
F Y4 ool LE (253

with ¢ as the order of modes taken into account éndor ‘Q tipf8 ¢ p as damping
constants (e.g andf for Rayleighdamping).For ¢ ¢ this equation reduces to Rayleigh
Damping.If ¢ ¢ the damping matrixs a full matrix. For systems with a high numbef
degrees of freedom full matrices increase the computational effort significantly in caatrast
matrices with a band structutdence, Rayleigh Damping is mainly used in numerical analyses
and sufficient for a wide range of problems.

Combining equatiof2-52) with (2-46), (2-47) and(2-49) yields

|1 ¢ 4 (2-54)
or in scalar formulation

T q - (2-55)

Out of this equationhe massgproportional factor for two specific natural frequencies
calculated by

a i

(2-56)

and the stiffnesproportionalfactorby
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T 1 (2-57)

Figure 2-8 showsthe Rayleigh dampingnd the massand stiffnesgproportional dampingln

this figure one can also see that the specified damping valhseonly complied at the two
frequencies of and] for which the Rayleigh damping factors have been calculated. The
frequency rangdetweenthese two values 1 1 has less dampingnd frequencies
lower thann  or higherthan] account for higher dampinghan specifiedThis fact describes
one of the drawbacks &ayleigh damping, which is the choice of the two natural frequencies
for calculating the Rayleigh constantandf .

T T T T
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Ta} Rayleighdamping
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- - I d_arl]plng

Natural frequency

Figure2-8: lllustration of Rayleigh damping

The two modes which should be used are dependent on the frequency range of the applied
dynamic force and the sum of the effective mass in the specified frequency range. If the chosen

natural frequencies are too close to each other too much damping caydgdliee to theentire

system. On the other hand, if they are too far apart too less damping for a wide range of
frequencies may be accounted for, leading to too conservative results. A new method for

determining these constants and natural frequenciesr wathsideration by $ars and Jensen
(2012)is introduced in the nesection
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2.3.2 Modified Rayleigh Damping

For nonlinear simulations direct time integration methods have to behesglise the stiffness

of the system changes over time and superimposing results is not possibiready
mentioned inSection2.31, for Raylegh dampingthe Rayleigh constants andf have to be
calculated, based on two natural frequencies and the modal damping-faletgure 2-8 shows

that the damping value varies with thigequency. So, determining those frequencies which
should be applied to the final model is mostly based on assumptions and compiortiges
damped frequency rang€he optimum case would be to use one damping value for ibew
range, l' i ke in modal superposition. eassiamdce t hi s i
Jensen(2012) proposed a method which allows for selecting those frequencies based on the
difference in the response thfie modal and Rayleigh damped systémfirst, a modal analysis

of the model has to be done, to find its naturafjflencies and effective masses. With these
frequencies together with tlwenstanimodal damping factor and an acceleration time history,
which is the dynamic load of the model, acceleration response spectrum is created.
Afterwards, two naturafrequenciesare chosen to calculate the Rayleigh constants and the
corresponding modal damping facter, — F8 — for each modérequencyby

Yal el

|

. (l (2-58)
Again, like for the constant modal damping, an acceleration response spectrum is created, but
now under consideration of different damping factors for each frequéfitythe acelerations

out of the spectra theesponsalifferenceis calculated byhe sum of all acceleration responses
differences withthe followingequation

Y'Y Wp QOpa f T (2-59)

where®  and® f, arethe response accelerations of the Rayleigh and modal damped systems
anda j is the effective massat modéfrequency@nd¢ is the maximum number of modes
under considerationmportant to mention, the amount obnsidered modésequenciescan
influence the resulsignificantly, therefore the percentage of the sum of the effeniagsto
overall mass shouldiot undergo a specific valu®ependent on the finite element model,
normally a value of 100% is not readile withoutanincreased computational effptiut 70%

at leastis advisablelf Y'Y T the Rayleigh constants have to be recalculated for two different
frequencies as often as necessamjil Y'Y 1t The two frequencies R and r and
corresponding constants from the last iteration are the ones which gsantkglobalresponse

of the systemas if modal damping is applieBigure2-9 illustrates both damping curves before
and after modification of the Rayleigh damping

Spears and Jensen have used this appmaely for seismic analysis of structurdsut stated
thati $réasonable for a wide range of problems.
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Figure2-9: Damping curve before and after modification of Regyleigh damping

Hellgren(2014)used this approach in his masterthésisn f | uence of Fl ui d Str

on a Concrete Dam duandsipwe®d a pregmin dlow Ehat whicat i o n o
described the procedure for calculating the modified Rayleigh conskagise 2-10 shows a
similar flow chart based on the obg Hellgren(2014)

21



DYNAMIC MODELLING IN THE FINITE ELEMENT METHOD

Modal Analysis of the System
Extraction of natural frequenciesand effective mass
a for &€ modes

Modal Response Spectrum
Generate a modal response spectrum for the extragjed
natural frequencigs i B A , a constant modal
damping factor and the acceleration time history

Rayleigh Constants
Choose two natural frequenciesand] and
calculate Rayleigh Damping constantsnd .

Calculate corresponding damping fastéor each
frequency by

p |
Gl M

Rayleigh Damped Rayleigh Response Spectrum Rayleigh Damped

Response too Low Generate a Rayleigh response spectrum for the Response too ngh

Choose lower natural frequencie extractfad naturgl frequenciesh 8 h . the Choose higher natural frequencie
and recalculate andf . Rayleigh damping facto_rsh— fﬁ h- and the and recalculate andf .
acceleration time history

Differences of the Systems
Responses

Calculate the differences in response accelerationsjof

the modal and Rayleigh damped systems for eacl

mode/frequency and multiply them by the effective]
mass and sum it up.

Y b GOF @ i
YY m - YY m ~
Y'Y >

YY m

Modified Rayleigh Constants
The two frequencies  andj i andcorresponding Rayleigh
constants ands are now optimized to give the same overall
response as the modal damped system with the constant damping-facto|

Figure2-10: Program fow chart for calculating the modified Rayleigh constants
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2.3.3 Problemsregarding theUse of RayleighDamping in Nonlinear Systems

By means of Rayleigh damping tlamping matrices are formed by using the initial linear
mass and stiffness matrices of the system. The mass of the system should remain constant over
time, even for nonlinear systems if no parts/elements of the structure are excluded during
simulation. Incontrast to the mass, the stiffnésseducedn nonlinear systems due to softening
effects like cracks. Hal(2006) investigated this problenfor different civil engineering
structuresOne of them was a 100 meterghhnigravity danfor whathe evaluated the damping
effects due to sliding and crackiag the baséor smeared methods (enforcement at integration
points withoutcontact discretization). Therefore, he came to the conclusion that the mass
proportional dampindorces canmply moderate resistance stiding. On the othehand the
stiffnessproportional term can obviously inhibit sliding, because of using the initial stiffness
matrix for calculation of the damping force. It should be clear that the stiffnélse ef/stem is
significantly lower ifa crack exists. Hence, in such cases a limited value is suggested by Hall
(2006) Furthermore, if so called penalty elements (nonlinear axial and shear springs) are used
for the contact he stated an additional problem which results out of this discretization method,
where springs with very high axi al stiffnessdé
high values should be omitted in the computation of the stifpegsational damping force.

In the end Hall(2006) concluded that Rayleigh damping can, in certain cagefs] too large

and unrealist damping forces and hence be +womservative. The magsoportional term has

no directphysical meaning and acts as a linear viscous damper on the degrees of freedom of the
nodes as external supports, whereas the stiffmegsortional term can be understood as
connection between degrees of freed&ior. high velocity gradients and a hightiai stiffness
compared d the nonlinear stiffness theslamping forces might be significant and further
research is necessary on this topic.
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3 FLUID MODELLING METHODS OF DAM -
RESERVOIR INTERACTIONS

Damreservoir interactions can be categorized tagcgire excited interactisnin hydraulic
engineering which are defined as fluidtructure interaction where the wates to react to a
slightly moving structure. This implies that the displacement of the water stays as small as the
one of the structuré typical example for such problems is an earthquake induced vibration of

a structure which is fully or partially suunded by water, e.g. dam structurélse design loads

can increase significantljn seismic active areadeading toa reducedsliding stability,
dependent on the dead weight and fracture criteria, which assumes friction and cohesion as
resistanceThe addtionally excited water (reservoir) is an important factor in the assessment
and simulationThe easiest way to take the water into account is to use an added mass approach.
Upon others the ones mostly used by engineers are the added masses accordserdaakih

and ZangarAmong these approachesnew empirical approachy Goldgruber and Feldbacher
(2013) based on numerical simulat®iis also introduced in thigection Simplifying the water

as mass mostly lead® an overestimation of the results, dependent on the geometry and
dimensions of the structurédditionally to the added mass techniques, the fluid structure
interaction of structure excited simulations c@so be modelledas acoustic fluid, which is

baed ont he AConservation of Momentumo and #@ACon:
AppendixA.2.2 and A.3, respectively Such fluidsare commonly used in pressure and sound
wave simulations, but give some major advantages for problems where a volume of water is
excited moderately. For such protne the pressure distribution and its effect on the structure
are from interest. Muteet al. (2012) have compared simulations with structural elements
(Lagrangian finite elementsacoustidluid elements and the closeorifn solutions according to
Housner(1954) Therefore, they simulated a rectangular reservoir interacting with a rigid wall,

by applying a sinusoidal ground motion for 6 seconds. The conclusion was that structural
elemens are not appropriate for such a case, because of their transieriscitdting
behaviourif no artificial damping is introduced T h e sy s se@ntibesacoustdhig o n

el ements simulation was instead whkighjustiftel ose t C
the use of these elements for structegervoir interactionsn Section5.2, a similar problems
investigated but applied on a nengid 220 meters high arch dartt. revealsthe commonly

known factthat an added mass technique yields higher stresses, deformations, etc. compared to
acousticfluid elementsaandadditionallyt h at iindependeat lbfshe dampgjrdactors used.
Furthermore, the conclusiois that the additional mass caaffect the structures dynamic
behaviour significantly, especially for slender structures over 100 meters. The use of acoustic
elements, due to their better constitutive descriptimmmpressibility)of the water, is also
recommended in th work. Nevertheless, the added mass technique is still wideéd,
especially for preliminary designdue to its convenient way of applicability and conservative
resultsand hences discussedn this chapter Structural odagrangian finite elements are not
describeddue to their disadvantages fmodelling the water o$tructure excitedluid-structure
interactionproblems, which have been mentioned above.
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3.1 Added Massaccording to Westergaard

Westergaard1933) derived his equation on an analytical basis wihee water pressure is
described as an added mass, acting on the upstream surdatanwstructure andhe rest of the

water is assumed to be inactivde developedraequation forthe mass as a function of the
depth of the reservoiMoreover the idealized two dimensional dam is assumed to be rigid and
vertical. The reservoir is infinite in length and has a rectangular shape. The added water mass
per squaremeteat the interacting surface a specific depthix of the dam surfacwith these
assumptionss calculated by

a6 ¢ ¥ 2 P ¢
S Es % 3D
hiB
with
- po Q
© P EFuY (3-2)
the natural frequencyf the reservoir
I B A
QN T T 132 (33

the compressibility , the water deptiQ the density of the watér and the wave propagation
speedb . Figure3-1 shows the added mass distribution according to the Westergaard equation
It also indicates that the tangent at the bottom of the water reservoir is dependent on the order
of the sum of equatiorf3-1). A higher order increases the aamy of the added mass
distribution.

Added mass distribution according to Westergaard

\

Simplified gravity
dam structure

TN

Inclination of the tangent on the bottom
dependent on the order

Figure3-1: Westergaar@dded mass distribution
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Worth mentioning is that the more commonly knoguationfor calculating the added mass
per squaremeterccording to Westergaard is

r oz 1] x,,
a*a =
g

This simplifiedequationneglects the effects of compressibilitytbé water and the influence of

the natural frequency of the reservoir and therefore over estimates the mass at the top and
bottom part of the interacting surface betweedy and water of approximately 10%. This fact

is illustrated inFigure3-2. This figure also shows that taking into account an order ofp pof
equation(3-1) is sufficient Higher orders influence the mass distribution just slightly.

WGl (3-4)
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Normalized added mass per squaremeter
Figure3-2: Comparison between the rigorous and simplifiéelstergaareéquation

The popularity of the simplified equation is basedlmnfact that its conservative and it can be
easily applied in quasi static analyses, where mass points instead of continua ate used
calculate the global equilibrium. The overall mass of the water per meter acting on the upstream
surface is computed by integrating equati@dd) over the height of the water by

or X g X

. _
v bC (39

This resulaintmass is acting in theentreof the integrated area, whichdpprox.

QR -0 (36)
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Figure3-3illustrates the point of origin of the resultant mass.

Figure3-3: Point of origin of the resultant water mass

3.2 Added Mass according to Zangar

In contrast to Westergaard, Zanggtr al. (1952) published a paper calleBE|l ect r i ¢
indicates effect of horizontal earthquake shocksl an m svfiere he derived an equation for the
pressure distribution over the height of the dam experimenktidymodel test consists of a tray
representing the reservoi r Theelectrotyth ke used forghé

anal

rigid

reservoir is tapvater. Instead of using a shake table and measuring the pressure directly, a linear

varying potential boundarfanalog to the potential of water in each depth)the upstream
surface and a cstant potential on the bottoiw installed Figure 3-4 illustrates the electrical
analog model test setup by Zangar for measuring the dynamic pressure in a reservoir.

Figure3-4: Model setup for measuring the dynamic water pressure in a reservoir according toefangar
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al. (1952)

TO POWER SUPPLY

The coherence between theessurancrease due to a seismic event and the magnitude of the
acceleration for a rigidtructure is described as
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n o60” Q (37
or in terms of the mass per squaremeter
a 0" Q (3-8)

with 6 as the pressure coefficient as the horizontal earthquake intensity d@ds the
reservoir depth.

The measured electric potential in the reservoir is analog to the streamlines of thanaater
therefore, the pressum pressure coefficier(perpendicular to the streamlinegurthermore,
this analog and model setupdsly valid underthe assumption of incompressible waaed a
rigid structure Figure 3-5 shows a general plot of the stndines and corresponding pressure
coefficientso.

Figure3-5: Streamlines and pressuwreefficientin the reservoiby Zangaret al.(1952)

In the case of a constant inclined upstream surface Zdrgaed a parabolic shape of the mass
or pressure distribution based on the experimental results for different, amigiels is

T a
C 9% o (3-9)

5|.Q.

. 0 «
0 <0
The constant factod is defined as the maximum occurring pressure coefficient for one
inclination and ¢ is the depth variableThe relationship between the angles and the pressure
coefficient on the bottom and the maximum pressure coefficient is depickeguire 3-6. This
figure also indicates that the maximum pressure coefficient & ois only occurring at zero
inclination. For higher inclinations the coefficient reduces. The pressoefficients between
the experiment and equati¢®9) are shown irFigure3-7. In this figure it can also be seen that
the maximum is moving upward in the reservoir with the increase in inclination.
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