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Introduction

Partial differential equations and corresponding boundary value problems appear
in the modeling of numerous processes in science and engineering. Many mathe-
matical models such as, e.g., the Schrödinger equation with electric or magnetic
potentials, lead to second order, formally symmetric, uniformly elliptic differential
expressions of the form

L = −
n∑

j,k=1

∂

∂xj
ajk

∂

∂xk
+

n∑
j=1

(
aj

∂

∂xj
− ∂

∂xj
aj

)
+ a (0.1)

with variable coefficients on bounded or unbounded Lipschitz domains Ω ⊂ Rn,
n ≥ 2. To such a differential expression L one relates the Dirichlet-to-Neumann
map, which acts on the boundary ∂Ω and is defined by

M(λ)uλ|∂Ω = −∂uλ
∂νL

∣∣
∂Ω
.

Here uλ is a solution of the differential equation Luλ = λuλ, uλ|∂Ω is the trace of
uλ at ∂Ω, and ∂uλ

∂νL
|∂Ω is the trace of the conormal derivative with respect to L;

cf. Chapter 1 for further details. The mappingM(λ) is well-defined for all λ ∈ C\R
and can be regarded as a bounded linear operator between appropriate Sobolev
spaces on ∂Ω. The Dirichlet-to-Neumann map plays a major role in, e.g., electrical
impedance tomography. It can be interpreted as an operator which assigns to a
given voltage on the surface of an inhomogeneous body the corresponding current
flux.

The main objective of the present thesis is to investigate the connection be-
tween the selfadjoint operators associated with L in the Hilbert space L2(Ω) and
the Dirichlet-to-Neumann map M(λ). On the one hand we solve a Calderón type
inverse problem. We prove that the selfadjoint Dirichlet operator

ADu = Lu, domAD =
{
u ∈ H1(Ω) : Lu ∈ L2(Ω), u|∂Ω = 0

}
, (0.2)

in L2(Ω) is uniquely determined up to unitary equivalence by the knowledge of
M(λ) on any nonempty, open subset of ∂Ω for a proper set of points λ; here
H1(Ω) is the L2-based Sobolev space of order one. On the other hand, we give a
complete characterization of the eigenvalues and corresponding eigenfunctions as
well as the continuous and absolutely continuous spectrum of AD in terms of the
limiting behavior of the operator function λ 7→ M(λ). In addition, we provide
analogous results for the operator realizations of L with Neumann and generalized
Robin boundary conditions. Our results require comparatively weak regularity
conditions on the differential expression L. We assume that the coefficients ajk
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and aj, 1 ≤ j, k ≤ n, are bounded, Lipschitz continuous functions, and that a is
bounded and measurable.

In the following we discuss the objectives of this thesis in more detail. The
first main objective is the solution of an inverse problem. We show that the par-
tial knowledge of the Dirichlet-to-Neumann map M(λ) determines the Dirichlet
operator AD in (0.2) on the (possibly unbounded) Lipschitz domain Ω uniquely
up to unitary equivalence. The result is the following; cf. Theorem 3.7 below.

Theorem 0.1. Let Ω be a connected, bounded or unbounded Lipschitz domain
and let ω ⊂ ∂Ω be a nonempty, open set. Let L1,L2 be two formally symmetric,
uniformly elliptic differential expressions of the form (0.1), and let AD,1, AD,2 and
M1(λ), M2(λ) be the corresponding Dirichlet operators and Dirichlet-to-Neumann
maps, respectively. If

M1(λ)g = M2(λ)g on ω

holds for all g with support in ω and all λ in a set with an accumulation point
outside the spectra of AD,1 and AD,2 then AD,1 and AD,2 are unitarily equivalent.

The result of Theorem 0.1 is closely related to Calderón’s inverse conductivity
problem in electrical impedance tomography: In the special case of the elliptic
differential expression L = −

∑n
j=1

∂
∂xj
γ ∂
∂xj

on a bounded, sufficiently smooth

domain Ω the coefficient γ : Ω → R corresponds to an isotropic conductivity
and it is known that the knowledge of M(λ) for, e.g., λ = 0 on all of ∂Ω does
even determine the coefficient γ itself uniquely, see [40,101,104,118] for the space
dimension n ≥ 3 and [16,102] for the two-dimensional case; in recent publications
this was also shown for the case of partial data, that is, M(0) is known only
on certain, special subsets of ∂Ω, see [39, 77, 82, 83, 103] and [53] for a magnetic
Schrödinger operator. For unbounded Ω such results exist, to the best of our
knowledge, only under the much more restrictive assumption that the coefficient
γ is constant outside some compact subset of Ω; cf. [76, 87, 94]. For general
L of the form (0.1) the single coefficients are not uniquely determined by the
knowledge of M(λ); cf. [80]. In the anisotropic case L = −

∑n
j,k=1

∂
∂xj
ajk

∂
∂xk

on a bounded domain Ω uniqueness up to diffeomorphisms by the knowledge of
M(0) was shown for smooth coefficients in [93,117,119]; more general cases were
treated in [15,52,116], see also [78,91,92] for results with partial boundary data.
For closely related problems such as, e.g., the multidimensional Gelfand inverse
spectral problem and inverse problems for the wave equation we refer the reader
to [28–30, 79, 80, 88]. For a detailed review on Calderón’s problem and further
references see also [122].
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In addition to Theorem 0.1 we show how the Dirichlet operator can be recov-
ered from the knowledge of M(λ) on ω under the assumption that Ω is bounded.
In this case the spectrum of AD consists of isolated eigenvalues with finite multi-
plicities and, hence, AD is completely determined by its eigenvalues and the cor-
responding eigenfunctions. We indicate how the eigenvalues and eigenfunctions
can be recovered from the poles and the corresponding residues of the operator-
valued meromorphic function λ 7→M(λ). The results of this part of the thesis are
complemented by an additional section which treats the case of selfadjoint elliptic
differential operators AΘ in L2(Ω) of the form

AΘu = Lu, domAΘ =

{
u ∈ H1(Ω) : Lu ∈ L2(Ω),

∂u

∂νL

∣∣
∂Ω

+ Θu|∂Ω = 0

}
,

(0.3)

where the parameter Θ in the boundary condition can be chosen as a (nonlocal)
bounded operator between certain Sobolev spaces on ∂Ω; see Chapter 2 for further
details. We show that the operator AΘ is uniquely determined up to unitary
equivalence by the knowledge of the operator Θ in the boundary condition and
of the Dirichlet-to-Neumann map on ∂Ω. Moreover, we show that uniqueness can
even be guaranteed when the boundary data is only known on an open part ω
of ∂Ω in case Θ gives rise to a local (classical Robin) boundary condition, that
is, Θ is the operator of multiplication with a bounded, real-valued function on
the boundary. For further information and recent results on elliptic differential
operators with (generalized) Robin boundary conditions we refer the reader to [10,
11,43,57,58,90,105,124] and the references therein.

The second main objective of the present thesis is a complete description of
the spectrum σ(AD) of the Dirichlet operator AD in terms of the limiting behavior
of the analytic operator function λ 7→M(λ) when λ approaches the real axis. One
of the main results is the following theorem, which characterizes all eigenvalues
and the complete continuous spectrum of AD; cf. Theorem 4.2 below. Here s-lim
denotes the strong limit of an operator-valued function.

Theorem 0.2. Let Ω be a bounded or unbounded Lipschitz domain and let AD be
the selfadjoint Dirichlet operator in (0.2). Then for λ ∈ R the following assertions
hold.

(i) λ /∈ σ(AD) if and only if M(·) can be continued analytically into λ.

(ii) λ is an eigenvalue of AD if and only if s-limη↘0 ηM(λ+ iη) 6= 0.

(iii) λ is an isolated eigenvalue of AD if and only if λ is a pole of M(·).
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(iv) λ belongs to the continuous spectrum of AD if and only if M(·) cannot be
continued analytically into λ and s-limη↘0 ηM(λ+ iη) = 0.

We remark that in the case of a bounded domain Ω the spectrum of AD consists
only of isolated eigenvalues, see Chapter 3. Thus in this case only item (iii) in the
above theorem is of interest.

In addition to Theorem 0.2, we provide a characterization of all eigenspaces of
AD. Moreover, we prove that the absolutely continuous spectrum of the Dirichlet
operator AD can also be detected with the help of the function M(·). In the
following theorem clac(χ) = {x ∈ R : |(x− ε, x + ε) ∩ χ| > 0 for all ε > 0} is the
absolutely continuous closure (or essential closure) of a Borel set χ and (·, ·) is an
extension of the inner product in L2(∂Ω); for the details see Theorem 4.4 below.

Theorem 0.3. The absolutely continuous spectrum of AD is given by

σac(AD) =
⋃
g

clac

({
x ∈ R : 0 < Im(M(x+ i0)g, g) < +∞

})
.

We complement these spectral characterizations for the Dirichlet operator by a
sufficient condition for the absence of singular continuous spectrum and sufficient
conditions for the spectrum of AD to be purely absolutely continuous or purely
singular continuous, respectively, in some interval.

Theorem 0.2 and Theorem 0.3 are multidimensional analogs of well-known
facts from the Titchmarsh–Weyl theory for ordinary differential operators. The
classical Titchmarsh–Weyl m-function associated with a singular Sturm–Liouville
differential expression goes back to the work [125] by H. Weyl and plays a funda-
mental role in the direct and inverse spectral theory of the corresponding ordinary
differential operators. For, e.g., a one-dimensional Schrödinger differential expres-
sion − d2

dx2 + q on the half-axis (0,∞) with a bounded, real-valued potential q the
corresponding Titchmarsh–Weyl coefficient m(λ) ∈ C may be defined as

m(λ)fλ(0) = f ′λ(0), λ ∈ C \ R,

where fλ is the unique solution in L2(0,∞) of the equation −f ′′ + qf = λf . It
is due to E. C. Titchmarsh that the function λ 7→ m(λ) is analytic and is closely
related to the spectrum. The limiting behavior of the function m(·) towards
the real axis is in one-to-one correspondence to the spectra of the selfadjoint
realizations of − d2

dx2 + q in L2(0,∞) in the same way as in the multidimensional
theorems Theorem 0.2 and Theorem 0.3 above. For instance, λ is an eigenvalue of
the selfadjoint realization TD subject to a Dirichlet boundary condition f(0) = 0
if and only if limη↘0 ηm(λ + iη) 6= 0, and the absolutely continuous spectrum of
TD can be represented as

σac(TD) = clac {λ ∈ R : 0 < Imm(λ+ i0) < +∞} .
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Analogously the spectra of realizations with other boundary conditions can be
characterized in terms of the function m(·) and the boundary condition; cf. [41,
121]. Because of this one-to-one correspondence the Titchmarsh–Weyl m-function
became an indispensable tool in the spectral analysis of Sturm–Liouville differ-
ential operators as well as more general Hamiltonian and canonical systems; for
a small selection from the vast number of contributions during the last decades
see, e.g., [13,20,35,45,60,64,73,85,113,114] for direct spectral problems and [31,
33, 38, 61–63, 89, 99, 115] for inverse problems. We point out that in the recent
past various attempts were made to carry over several elements of the classi-
cal Titchmarsh–Weyl theory to partial differential operators; for contributions to
this field we refer the reader to [4, 5, 21, 36, 37, 58, 111]. However, to the best of
our knowledge no generalizations of the classical spectral characterization via the
Titshmarsh–Weyl m-function to partial differential operators were obtained so
far.

Besides Theorem 0.2 and Theorem 0.3 we provide extensions and generaliza-
tions of these results. We show that the spectrum of AD can even be recovered
from the partial knowledge of M(λ) on any nonempty, open subset of ∂Ω. Fur-
thermore, we provide characterizations of the spectra of the operators AΘ in (0.3)
in terms of the Dirichlet-to-Neumann map M(λ) and the boundary operator Θ.

The methods which serve us to prove the main results of the present thesis
are strongly inspired by modern approaches to the extension theory of symmetric
operators. In the abstract framework of a boundary triple for the adjoint S∗ of
a closed, densely defined, symmetric operator S with equal defect numbers in a
Hilbert space H one fixes two boundary mappings Γ0,Γ1 : domS∗ → G, where
G is an auxiliary Hilbert space. It is assumed that the pair {Γ0,Γ1} is surjective
onto G × G and satisfies the abstract Green identity

(S∗u, v)− (u, S∗v) = (Γ1u,Γ0v)− (Γ0u,Γ1v), u, v ∈ domS∗, (0.4)

where (·, ·) stands for both the inner products in H and in G. One defines an
abstract Weyl function via the relation

M(λ)Γ0uλ = Γ1uλ, λ ∈ C \ R, (0.5)

where uλ is the unique solution in domS∗ of the equation S∗uλ = λuλ. The
restriction of S∗ to the kernel of Γ0 defines a selfadjoint operator A0 inH. It can be
shown that the function M(·) in this abstract setting determines the operator A0

uniquely up to unitary equivalence and contains the complete spectral information
of A0—if and only if the underlying symmetric operator S is simple or completely
non-selfadjoint, that is, S does not possess any nontrivial reducing subspace in
which it defines a selfadjoint operator; cf. Appendix A.2 for more details. In order
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to treat elliptic differential operators on Lipschitz domains in a similar way it is
natural to consider the symmetric operator

Su = Lu, domS =
{
u ∈ H1(Ω) : Lu ∈ L2(Ω), u|∂Ω =

∂u

∂νL

∣∣
∂Ω

= 0
}
, (0.6)

in L2(Ω) and the boundary mappings

Γ0u = u|∂Ω and Γ1u =
∂u

∂νL

∣∣
∂Ω
.

The mappings Γ0 and Γ1 are well-defined on the space {u ∈ H1(Ω) : Lu ∈ L2(Ω)},
which is not the domain of S∗ but is dense in domS∗ with respect to the graph
norm of S∗. Furthermore, Γ0 and Γ1 are not surjective onto a joint Hilbert space
G but their ranges coincide with the Sobolev spaces H1/2(∂Ω) and H−1/2(∂Ω).
Nevertheless, many of their properties are similar to those of the boundary map-
pings in an abstract boundary triple. For instance, the relation (0.4) is satisfied
due to the classical second Green identity and the Dirichlet-to-Neumann map
M(λ) satisfies the identity (0.5). In particular, the relation between the operator
AD = L � ker Γ0 and the Dirichlet-to-Neumann map is similar to that between
A0 and M(λ) in the framework of a boundary triple; cf., e.g., the formulas in
Lemma 3.1 below. However, in order to obtain a complete picture of the Dirichlet
operator and its spectrum from the knowledge of the Dirichlet-to-Neumann map
it is necessary to ensure the simplicity of the symmetric operator S in (0.6). This
problem is solved in the present thesis for a large class of domains and elliptic
differential expressions; cf. Proposition 3.4 and Appendix A.2. This generalizes
results on the simplicity of symmetric ordinary differential operators from [65].

A more detailed discussion of modern methods in the extension theory of
symmetric operators as boundary triples and their generalizations can be found
in [21, 46–50, 66, 84, 107, 108, 111]. The treatment of elliptic differential operators
with the help of extension theory goes back to the fundamental works [18,32,67,
68,95,123]. More recent results on this topic can be found in, e.g., [1,21,36,37,59,
96,106]. For further recent publications in the field of direct and inverse spectral
theory for elliptic differential operators see [6, 9, 14,22–24,58,70–72,98].

Let us give a brief outline of the thesis. In the first chapter we shortly provide
some basic facts on bounded and unbounded linear operators and, especially, on
the spectra of selfadjoint operators in Hilbert spaces. Moreover, we recall the
definitions and some of the most important facts concerning Sobolev spaces on
Lipschitz domains and on their boundaries. In Chapter 2 we introduce operator
realizations of elliptic differential expressions with Dirichlet, Neumann, and gener-
alized Robin boundary conditions. We prove their selfadjointness and investigate
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the solvability of related boundary value problems, which finally allows us to define
Dirichlet-to-Neumann and Robin-to-Dirichlet maps. The remaining two chapters
contain the main results of this thesis. Chapter 3 is devoted to the uniqueness
and reconstruction results of Calderón type and in Chapter 4 we develop spectral
theory for selfadjoint elliptic differential operators via the Dirichlet-to-Neumann
map as a multidimensional Titchmarsh–Weyl m-function. The thesis closes with
two appendices. The first one provides facts on the spectra of finite Borel mea-
sures that are used in Chapter 4 for the description of the absolutely continuous
and singular continuous spectrum. In the second one we discuss the notion of
simplicity of a symmetric operator and point out its connection to the present
work.
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1 Preliminaries

In this preliminary chapter we provide basic facts and definitions which play a
role in the main part of the present thesis. We are concerned with linear oper-
ators in Banach spaces, particularly with selfadjoint operators in Hilbert spaces
and with their spectra. Moreover, we recall some elements of the representation
theory for semibounded sesquilinear forms and discuss some of the most impor-
tant statements concerning Sobolev spaces on Lipschitz domains and on their
boundaries.

1.1 Linear operators and analytic operator functions

In this section we discuss basics on bounded and unbounded linear operators in Ba-
nach spaces and on analytic functions whose values are bounded linear operators.
For a more detailed exposition we refer the reader to the standard works [3,54,109].

Let X and Y be complex Banach spaces. For a linear operator T from X to Y
we denote by domT , kerT , and ranT the domain, kernel, and range, respectively,
of T . The restriction of T to a subspace D of domT is denoted by T � D. For a
closed operator T from X to X we denote by

ρ(T ) =
{
λ ∈ C : (T − λ)−1 is bounded and everywhere defined in X

}
the resolvent set of T and by σ(T ) = C \ ρ(T ) the spectrum of T . Recall that
ρ(T ) is an open subset of C and that, hence, σ(T ) is closed.

A conjugation on a complex Banach space X is a continuous, antilinear map-
ping X 3 u 7→ u ∈ X with (u) = u; the reader may think of the complex
conjugation on a function space. Assume that X is equipped with a conjuga-
tion and let X ′ denote the dual space of X, which consists of all bounded, linear
functionals v : X → C. We define the dual pairings between X and X ′ by

(v, u)X′,X := (u, v)X,X′ := v(u), u ∈ X, v ∈ X ′.

Note that each of the mappings (·, ·)X′,X : X ′×X → C and (·, ·)X,X′ : X×X ′ → C
is linear in the first and antilinear in the second entry.

Assume that the Banach spaces X and Y are equipped with conjugations and
let T : X → Y be a bounded, everywhere defined linear operator. The adjoint
operator T ∗ : Y ′ → X ′ of T is defined by the identity

(Tu, v)Y,Y ′ = (u, T ∗v)X,X′ , u ∈ X, v ∈ Y ′.

It follows from the closed graph theorem that T ∗ is bounded. Moreover, it is clear
from the definition that (T ∗)∗ = T holds.
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Let G ⊂ C be an open, nonempty set and let M(z) : X → Y be a bounded
linear operator for each z ∈ G. The operator function z 7→ M(z) is called holo-
morphic on G if for each z0 ∈ G the limit

lim
z→z0

M(z)−M(z0)

z − z0

exists in the space of bounded linear operators from X to Y with respect to the
usual operator topology. Recall that the operator function M(·) is holomorphic
on G if and only if it is analytic on G, that is, M(·) can be represented locally by
a power series which converges with respect to the operator topology.

Let the operator function z 7→M(z) be analytic on G and assume that λ ∈ C
is a pole of M(·) of order n, that is, there exists an open ball B centered at λ
such that B \ {λ} ⊂ G,

lim
z→λ

(z − λ)nM(z) exists and is nontrivial, and lim
z→λ

(z − λ)n+1M(z) = 0

in the operator topology. Then the residue ResλM of M(·) at λ is given by

ResλM =
1

2πi

∫
Γ

M(z)dz, (1.1)

where Γ is the boundary of the ball B. If the order of the pole is one then the
relation

ResλM = lim
z→λ

(z − λ)M(z)

holds.

1.2 Selfadjoint linear operators and their spectra

In this section we shortly recall some well-known facts on (unbounded) selfadjoint
operators and on their spectra. In particular, we discuss the notions of the abso-
lutely continuous and the singular continuous spectrum. This and more can be
found in the text books [3, 81,109].

Let H be a complex Hilbert space with scalar product (·, ·) and corresponding
norm ‖ · ‖, where we comply with the convention that the scalar product (·, ·) is
linear in the first and antilinear in the second entry. Let A be a densely defined
linear operator in H. Then the adjoint A∗ of A in H is defined by A∗v = w,
v ∈ domA∗, where

domA∗ =
{
v ∈ H : exists w ∈ H such that (Au, v) = (u,w) for all u ∈ domA

}
.
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Note that in the case domA = H this coincides with the above definition of A∗.
Furthermore, note that A∗ always is a closed operator in H. The operator A is
called symmetric if (Au, v) = (u,Av) holds for all u, v ∈ domA or, equivalently,
if (Au, u) is real for all u ∈ domA. Moreover, A is called selfadjoint if A = A∗

holds. Clearly each selfadjoint operator is symmetric, but the converse does not
hold.

Let A be a selfadjoint linear operator in H. Then its spectrum σ(A) is con-
tained in R and it is the union of the disjoint sets σp(A) and σc(A), where the set
of eigenvalues

σp(A) =
{
λ ∈ R : ker(A− λ) 6= {0}

}
of A is called the point spectrum and

σc(A) =
{
λ ∈ R : (A− λ)−1 exists and is unbounded

}
is called the continuous spectrum of A. Recall that the spectrum of A is said to
be purely discrete if σ(A) consists of isolated eigenvalues with finite multiplicities.
For instance, σ(A) is purely discrete if the operator (A− λ)−1 is compact for one
(and, hence, all) λ ∈ ρ(A).

A selfadjoint operator A is called semibounded from below by µ ∈ R if and
only if

(Au, u) ≥ µ‖u‖2, u ∈ domA.

In this case the spectrum of A is bounded from below by µ, i.e., σ(A) ⊂ [µ,+∞).
Each selfadjoint operator A gives rise to an operator-valued measure E(·) on

the Borel σ-algebra in R, whose values are orthogonal projections in H, such that

A =

∫
σ(A)

tdE(t)

holds, where the integral on the right-hand side converges in the strong sense. The
measure E(·) is called the spectral measure of A. For each measurable function
f : σ(A)→ R the operator f(A) is defined as

f(A) =

∫
σ(A)

f(t)dE(t), dom f(A) =
{
u ∈ H :

∫
σ(A)

|f(t)|2d(E(t)u, u) <∞
}
.

Recall that λ ∈ σp(A) if and only if E({λ}) 6= 0 and that in this case ranE({λ}) =
ker(A − λ) holds, that is, E({λ}) is the orthogonal projection in H onto the
eigenspace of A corresponding to λ. If the eigenvalue λ is isolated in σ(A) then λ is
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a pole of order one of the analytic operator function ρ(A) 3 λ 7→ R(λ) = (A−λ)−1

and the formula

E({λ}) = −ResλR = − 1

2πi

∫
Γ

(A− z)−1dz (1.2)

holds, where Γ is the boundary of an open ball B centered at λ with B \ {λ} ⊂
ρ(A); cf. (1.1). Moreover, λ ∈ σ(A) if and only if E((λ− ε, λ + ε)) 6= 0 holds for
each ε > 0. Note that, in particular, each isolated point in σ(A) is an eigenvalue.
For a, b /∈ σp(A) the spectral projection E((a, b)) of the interval (a, b) with respect
to A can be expressed via the Stone formula

E((a, b))u = lim
ε↘0

1

2πi

∫ b

a

((
A− (t+ iε)

)−1
u−

(
A− (t− iε)

)−1
u
)
dt, u ∈ H,

(1.3)

where the integral and the limit have to be taken with respect to the topology
in H.

With the help of the spectral measure the continuous spectrum of a selfadjoint
operator A can be decomposed into an absolutely continuous and a singular con-
tinuous part. For each u ∈ H let us introduce the scalar measure µu = (E(·)u, u)
on the Borel σ-algebra of R. Recall that the measure µu is called absolutely con-
tinuous (with respect to the Lebesgue measure | · |) if µu(χ) = 0 for each Borel
set χ ⊂ R with |χ| = 0 and singular if there exists a Borel set χ with |χ| = 0 and
µu(R \ χ) = 0. We define the absolutely continuous part and the singular part of
H with respect to A by

Hac = Hac(A) = {u ∈ H : µu is absolutely continuous}

and

Hs = Hs(A) = {u ∈ H : µu is singular} ,

respectively. Recall that H = Hac ⊕ Hs holds. Furthermore, let us denote by
Hp = Hp(A) the closed span of all eigenvectors of A. Then Hp ⊂ Hs and we call
Hsc = Hsc(A) = Hs 	Hp the singular continuous part of H with respect to A. It
turns out that the Hilbert spaces Hp,Hac,Hsc, and Hs are reducing subspaces for
the operator A. Let

Aiu = Au, domAi = domA ∩Hi

in Hi denote the restriction of A to Hi, i = ac, sc. Then the absolutely continuous
spectrum σac(A) and the singular continuous spectrum σsc(A) of A are defined by

σac(A) = σ(Aac) and σsc(A) = σ(Asc),

respectively.
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1.3 Sesquilinear forms and representation theorems

In this section we shortly recall some basic facts on semibounded sesquilinear
forms and their representations via selfadjoint operators, as they will be used in
Chapter 2 below. The text of this section is based on [81, Chapter VI].

Let us first introduce the basic notions. In this section H is a complex Hilbert
space with scalar product (·, ·) and corresponding norm ‖ · ‖.

Definition 1.1. Let D ⊂ H be a linear subspace of H. A mapping a = a[·, ·] :
D ×D → C is called a sesquilinear form (in short: a form) in H if a[·, ·] is linear
in the first and antilinear in the second entry. For the domain D of a we usually
write dom a. The form a is called densely defined if dom a is dense in H. It is
called symmetric if

a[u, v] = a[v, u], u, v ∈ dom a.

Moreover, we say that a is semibounded from below if there exists µ ∈ R with

a[u, u] ≥ µ‖u‖2, u ∈ dom a;

in this case we shortly write a ≥ µ.

Note that a form a in H is symmetric if and only if a[u, u] is real for all
u ∈ dom a. In particular, if a ≥ µ for some µ ∈ R then a is symmetric and
generates a scalar product (·, ·)a on the linear space dom a via

(u, v)a = a[u, v] + (1− µ)(u, v), u, v ∈ dom a; (1.4)

the norm which is induced by (·, ·)a on dom a we denote by ‖ · ‖a. Obviously the
choice of µ is not unique, since a ≥ µ implies a ≥ µ̃ for each µ̃ < µ. Nevertheless,
if we replace µ in (1.4) by µ̃, we obtain a norm on dom a which is equivalent to
‖ · ‖a. Therefore in the following we do not care about the precise choice of µ.

Furthermore we need the important notion of a closed semibounded form.

Definition 1.2. A semibounded sesquilinear form a in H is called closed if
(dom a, (·, ·)a) is a Hilbert space. Moreover, we say that a subspace D′ of dom a
is a core of a if D′ is dense in (dom a, (·, ·)a).

Alternatively, the notions of a closed form and of a core can be defined via
form convergence, see [81, Section VI.1.3], but we will not make use of this concept
in the following.

One of the main statements on closed semibounded forms is the following
famous representation theorem. We remark that it is provided in [81, Chapter VI,
Theorem 2.1] in the more general framework of sectorial forms.
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Theorem 1.3. Let a be a densely defined, closed, symmetric sesquilinear form
which is semibounded from below by some µ ∈ R. Then there exists a unique
selfadjoint operator A in H with domA ⊂ dom a and

a[u, v] = (Au, v), u ∈ domA, v ∈ dom a.

The operator A is semibounded from below by µ. Moreover, if u ∈ dom a and
w ∈ H satisfy

a[u, v] = (w, v)

for all v belonging to a core of a then u ∈ domA and Au = w.

1.4 Sobolev spaces and trace maps

In this section we define Sobolev spaces on Lipschitz domains and on their bound-
aries and provide some basic facts which are connected with them. We mainly
follow the account in [100]; see also [2, 55,56,95] for more details.

Let Ω ⊂ Rn, n ≥ 1, be an open set. As usual, we denote by L2(Ω) the Hilbert
space of (equivalence classes of) square-integrable, complex-valued functions on
Ω, equipped with the scalar product

(u, v)L2(Ω) =

∫
Ω

uvdx, u, v ∈ L2(Ω),

and the associated norm ‖ · ‖L2(Ω). In the following we will usually just write
(·, ·) and ‖ · ‖ instead of (·, ·)L2(Ω) and ‖ · ‖L2(Ω), respectively, when no confusion
can arise. By C∞0 (Ω) we denote the space of all functions from Ω to C which
are arbitrarily often differentiable and have a compact support in Ω. Recall that
C∞0 (Ω) is dense in L2(Ω). For α = (α1, . . . , αn) ∈ Nn

0 and ϕ ∈ C∞0 (Ω) we set

Dαϕ =
∂α1

∂xα1
1

. . .
∂αn

∂xαn1

ϕ.

Moreover, we write suppϕ for the support of ϕ ∈ C∞0 (Ω). We say that a sequence
(ϕk)k∈N ⊂ C∞0 (Ω) converges to ϕ ∈ C∞0 (Ω) in C∞0 (Ω) if there exists a compact
set K ⊂ Ω such that suppϕk, suppϕ ⊂ K for all k ∈ N and Dαϕk converges to
Dαϕ uniformly on K for each α ∈ Nn

0 . A distribution is a linear mapping from
C∞0 (Ω) to C which is sequentially continuous with respect to this convergence in
C∞0 (Ω). We say that a distribution T belongs to L2(Ω) and write T ∈ L2(Ω) if
there exists u ∈ L2(Ω) with

Tϕ =

∫
Ω

uϕdx, ϕ ∈ C∞0 (Ω). (1.5)
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In this sense we can identify each element of L2(Ω) with a distribution. Moreover,
we define the derivative DαT of a distribution T by (DαT )(ϕ) = (−1)|α|T (Dαϕ),
where |α| =

∑n
i=1 αi. Clearly, DαT is again a distribution.

We are now able to introduce the Sobolev spaces of integer order. For every
integer k ≥ 0 we set

Hk(Ω) =
{
u ∈ L2(Ω) : Dαu ∈ L2(Ω) for all α ∈ Nn

0 with |α| ≤ k
}
.

Equipped with the scalar product

(u, v)Hk(Ω) =
∑

0≤|α|≤k

(Dαu,Dαv)L2(Ω), u, v ∈ Hk(Ω),

Hk(Ω) is a separable Hilbert space; the corresponding norm is denoted by
‖ · ‖Hk(Ω). We write Hk

0 (Ω) for the closure of C∞0 (Ω) in the Hilbert space Hk(Ω).
Moreover, we denote by (·, ·)−k,k the sesquilinear duality between Hk

0 (Ω) and its
dual H−k(Ω) = (Hk

0 (Ω))′ (with respect to the usual complex conjugation; cf. Sec-
tion 1.1). It satisfies

(u, v)−k,k =

∫
Ω

uvdx = (u, v)L2(Ω), u ∈ L2(Ω), v ∈ Hk
0 (Ω).

Additionally, we define the local Sobolev space Hk
loc(Ω) by

Hk
loc(Ω) =

{
u ∈ L2

loc(Ω) : ϕu ∈ Hk(Ω) for all ϕ ∈ C∞0 (Rn) with suppϕ ⊂ Ω
}
,

k ≥ 1, where we write u ∈ L2
loc(Ω) if and only if u|O ∈ L2(O) holds for each open,

bounded set O with O ⊂ Ω.
Recall that the Fourier transformation F : L2(Rn) → L2(Rn) is the unique

unitary operator in L2(Rn) which satisfies

(Fu)(x) =
1

(2π)
n
2

∫
Rn
eix·yu(y)dy, x ∈ Rn, u ∈ L2(Rn) ∩ L1(Rn),

where x · y denotes the scalar product of x and y in Rn. We define the Sobolev
space Hs(Rn) of real order s ≥ 0 on Rn by

Hs(Rn) =
{
u ∈ L2(Rn) : (1 + | · |2)

s
2Fu ∈ L2(Rn)

}
and equip it with the scalar product

(u, v)Hs(Rn) =

∫
Rn

(1 + |x|2)su(x)v(x)dx, u, v ∈ Hs(Rn). (1.6)
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Then Hs(Rn) is a separable Hilbert space. We denote the norm associated
with (1.6) by ‖ · ‖Hs(Rn). For each positive integer s = k this new definition
of Hs(Rn) coincides with the above one for Ω = Rn with equivalent norms so that
we will not distinguish them.

In order to define Sobolev spaces on the boundary of an open set we need
additional assumptions. Following the lines of [100, Chapter 3] we say that Ω ⊂
Rn, n ≥ 2, is a Lipschitz hypograph if there exists a Lipschitz continuous function
ζ : Rn−1 → R such that

Ω =
{

(x1, . . . , xn)T ∈ Rn : xn < ζ(x1, . . . , xn−1)
}
. (1.7)

Using this notion a Lipschitz domain is defined in the following way.

Definition 1.4. An open set Ω ⊂ Rn is called a Lipschitz domain if its boundary
∂Ω is compact and there exist sets W1, . . . ,Wk,Ω1, . . . ,Ωk ⊂ Rn with the following
properties.

(i) Wj is open, 1 ≤ j ≤ k, and ∂Ω ⊂
⋃

1≤j≤kWj.

(ii) Ωj can be transformed by a rotation and a translation into a Lipschitz
hypograph, 1 ≤ j ≤ k.

(iii) Wj ∩ Ω = Wj ∩ Ωj for 1 ≤ j ≤ k.

We remark that a Lipschitz domain does not have to be bounded; only its
boundary is compact. For instance, if Ω is a bounded Lipschitz domain then also
Rn \ Ω is a Lipschitz domain. Moreover, we remark that with this definition a
Lipschitz domain does not need to be connected.

On the boundary of a Lipschitz domain a surface measure and an outer unit
normal field can be defined in the following way. Let first Ω be a Lipschitz hypo-
graph and let the Lipschitz continuous function ζ be as above. By Rademacher’s
theorem ζ is differentiable almost everywhere on Rn−1 and its gradient ∇ζ is
bounded. Thus the integral of a function g : ∂Ω→ C with respect to the surface
measure σ may be defined as∫

∂Ω

gdσ :=

∫
Rn−1

g(x, ζ(x))
√

1 + |∇ζ(x)|2dx

(if the integral on the right-hand side exists). Moreover, the outer unit normal
vector field is given by

ν(s) = (ν1(s), . . . , νn(s))T :=
(−∇ζ(x), 1)T√

1 + |∇ζ(x)|2
, s = (x, ζ(x))T , x ∈ Rn−1.
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If Ω is a Lipschitz domain as in Definition 1.4 we can choose a partition of unity
with respect to the open cover {Wj} of ∂Ω, that is, functions ϕj ∈ C∞0 (Wj),

1 ≤ j ≤ k, with
∑k

j=1 ϕj(x) = 1 for all x ∈ ∂Ω. Then we define

∫
∂Ω

gdσ :=
k∑
j=1

∫
Rn−1

ϕj(x, ζj(x))g(x, ζj(x))
√

1 + |∇ζj(x)|2dx,

where the ζj correspond to the Ωj as in (1.7). As usual we denote by L2(∂Ω)
the space of (equivalence classes of) complex-valued functions on ∂Ω which are
square-integrable with respect to σ.

In order to define Sobolev spaces on ∂Ω let us first assume that Ω is a Lipschitz
hypograph with ζ as above. For each g ∈ L2(∂Ω) we define a function gζ : Rn−1 →
C by

gζ(x) = g(x, ζ(x)), x ∈ Rn−1.

With this notation for real s ≥ 0 we put

Hs(∂Ω) =
{
g ∈ L2(∂Ω) : gζ ∈ Hs(Rn−1)

}
and

(g, h)Hs(∂Ω) = (gζ , hζ)Hs(Rn−1), g, h ∈ Hs(∂Ω).

With this scalar product Hs(∂Ω) is a Hilbert space.
Let now Ω be a Lipschitz domain as in Definition 1.4 and let ϕj, 1 ≤ j ≤ k,

form a partition of unity as above. For real s ≥ 0 we define

Hs(∂Ω) =
{
g ∈ L2(∂Ω) : ϕjg ∈ Hs(∂Ωj), 1 ≤ j ≤ k

}
and

(g, h)Hs(∂Ω) =
k∑
j=1

(ϕjg, ϕjh)Hs(∂Ωj), g, h ∈ Hs(∂Ω),

so that Hs(∂Ω) becomes a Hilbert space. Finally we denote by H−s(∂Ω) the dual
of Hs(∂Ω). The sesquilinear duality between Hs(∂Ω) and H−s(∂Ω) is denoted by
(·, ·)−s,s and the norm on H−s(∂Ω) is given by

‖g‖H−s(∂Ω) = sup
h∈Hs(∂Ω)
‖h‖Hs(∂Ω)=1

|(g, h)−s,s|, g ∈ H−s(∂Ω).
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In the present thesis we will mainly deal with the case s = 1
2
. We will write (·, ·)∂Ω

for both (·, ·)−1/2,1/2 and (·, ·)1/2,−1/2 when no confusion can arise.
In our further considerations trace maps will play an important role. We use

the notation
C∞0 (Ω) = {u|Ω : u ∈ C∞0 (Rn)} .

The following proposition allows us to consider boundary values of functions in
H1(Ω), see, e.g., [100, Theorem 3.37].

Proposition 1.5. Let Ω be a Lipschitz domain. Then the trace map C∞0 (Ω) 3
u 7→ u|∂Ω has a unique extension to a bounded linear operator γ : H1(Ω) →
H1/2(∂Ω) and the operator γ has a bounded right inverse. In particular, γ is
surjective.

In the following we will always write u|∂Ω instead of γu also for u ∈ H1(Ω). We
remark that on each Lipschitz domain the space H1

0 (Ω) defined as above coincides
with the kernel of the trace operator γ, that is,

H1
0 (Ω) =

{
u ∈ H1(Ω) : u|∂Ω = 0

}
. (1.8)

This fact we will use extensively.
Besides the trace we will also make use of the trace of the conormal derivative

of u ∈ H1(Ω) with respect to the differential expression

L = −
n∑

j,k=1

∂

∂xj
ajk

∂

∂xk
+

n∑
j=1

(
aj

∂

∂xj
− ∂

∂xj
aj

)
+ a

on Ω, where ajk, aj : Ω → C are bounded Lipschitz functions and a : Ω → R is
measurable and bounded. In order to make L formally symmetric we additionally
assume ajk = akj, 1 ≤ j, k ≤ n. Note that under these assumptions for each u ∈
H1(Ω) one can calculate Lu in the sense of distributional derivatives, see above,
and the distribution Lu is always bounded with respect to the norm ‖ · ‖H1(Ω).
Indeed, if M denotes a joint upper bound of all the functions |ajk|, |aj|, and |a|,
1 ≤ j, k ≤ n, then for v ∈ C∞0 (Ω) we have

|(Lu)v| =
∣∣∣∣ ∫

Ω

( n∑
j,k=1

ajk
∂u

∂xk
· ∂v
∂xj

+
n∑
j=1

(
aj
∂u

∂xj
· v + aju ·

∂v

∂xj

)
+ auv

)
dx

∣∣∣∣
≤M

n∑
j,k=1

∫
Ω

∣∣∣ ∂u
∂xk

∣∣∣∣∣∣ ∂v
∂xj

∣∣∣dx+M

n∑
j=1

∫
Ω

∣∣∣ ∂u
∂xj

∣∣∣|v|dx
+M

n∑
j=1

∫
Ω

∣∣∣ ∂v
∂xj

∣∣∣|u|dx+M

∫
Ω

|u||v|dx
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≤M

n∑
j,k=1

∥∥∥ ∂u
∂xk

∥∥∥
L2(Ω)

∥∥∥ ∂v
∂xj

∥∥∥
L2(Ω)

+M‖v‖L2(Ω)

n∑
j=1

∥∥∥ ∂u
∂xj

∥∥∥
L2(Ω)

+M‖u‖L2(Ω)

n∑
j=1

∥∥∥ ∂v
∂xj

∥∥∥
L2(Ω)

+M‖u‖L2(Ω)‖v‖L2(Ω);

cf. (1.5). Thus Lu can be regarded as an element of H−1(Ω) and we will just
write Lu ∈ H−1(Ω). Corresponding to the differential expression L we consider
the sesquilinear form which is given by

a[u, v] =

∫
Ω

( n∑
j,k=1

ajk
∂u

∂xk
· ∂v
∂xj

+
n∑
j=1

(
aj
∂u

∂xj
· v + aju ·

∂v

∂xj

)
+ auv

)
dx (1.9)

for u, v ∈ H1(Ω). We will study the properties of this form later on; cf. Lemma 2.2
below. It can be verified that the following definition makes sense, see, e.g., [100,
Lemma 4.3].

Definition 1.6. Let u ∈ H1(Ω) with Lu ∈ L2(Ω). Then the unique g ∈
H−1/2(∂Ω) with

a[u, v] = (Lu, v) + (g, v|∂Ω)∂Ω, v ∈ H1(Ω), (1.10)

is called the conormal derivative of u with respect to L; we write g = ∂u
∂νL
|∂Ω.

Note that for u, v ∈ C∞0 (Ω) the duality on the right-hand side of (1.10) turns
into an integral and (1.10) then is simply the first Green identity with

g =
n∑

j,k=1

ajkνj
∂u

∂xk

∣∣
∂Ω

+
n∑
j=1

ajνju|∂Ω.

Moreover, from (1.10) we immediately conclude the second Green identity

(Lu, v)− (u,Lv) =
(
u|∂Ω,

∂v

∂νL

∣∣
∂Ω

)
∂Ω
−
( ∂u
∂νL

∣∣
∂Ω
, v|∂Ω

)
∂Ω

(1.11)

for u, v ∈ H1(Ω) with Lu,Lv ∈ L2(Ω).
We conclude this section with a collection of embedding statements; the first

of them is known as the criterion of Rellich. For proofs we refer the reader to,
e.g., [55, 100].

Theorem 1.7. Let Ω ⊂ Rn be an open set. Then the following assertions hold.

(i) If Ω is bounded then the embedding of H1
0 (Ω) into L2(Ω) is compact.

(ii) If Ω is a bounded Lipschitz domain then the embedding of H1(Ω) into L2(Ω)
is compact.

(iii) If Ω is a Lipschitz domain then the embedding of H1/2(∂Ω) into H−1/2(∂Ω)
is compact.
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2 Selfadjoint elliptic differential operators and

boundary mappings

The aim of the present chapter is to introduce the central objects which appear
in the main results of this thesis and to provide some of their basic properties.
We consider a second order, formally symmetric, uniformly elliptic differential ex-
pression L on a (bounded or unbounded) Lipschitz domain Ω ⊂ Rn. We establish
a wide class of selfadjoint realizations of L in the Hilbert space L2(Ω) subject to
Dirichlet and nonlocal generalized Robin boundary conditions; this will be done
with the help of the classical theory of representing operators for semibounded
sesquilinear forms in Hilbert spaces; cf. Section 1.3. Moreover, we introduce the
Dirichlet-to-Neumann map and Robin-to-Dirichlet maps on the boundary ∂Ω cor-
responding to the differential expression L − λ with a spectral parameter λ ∈ C.

For more details on selfadjoint elliptic differential operators on bounded and
unbounded domains we refer the reader to the classical works [55, 67, 95, 123]
and to the recent publications [19, 21, 24, 57, 59, 69, 70, 98]. For recent studies
of the corresponding boundary operators and related questions the reader may
consult [4, 7, 8, 36,58].

In this and in the following chapters we will make the following assumptions.

Assumption 2.1. The set Ω ⊂ Rn, n ≥ 2, is a Lipschitz domain, see Defini-
tion 1.4. Moreover, L is a second order partial differential expression on Ω of the
form

L = −
n∑

j,k=1

∂

∂xj
ajk

∂

∂xk
+

n∑
j=1

(
aj

∂

∂xj
− ∂

∂xj
aj

)
+ a

with bounded Lipschitz coefficients ajk = akj, aj : Ω → C, 1 ≤ j, k ≤ n, and a
bounded, measurable coefficient a : Ω→ R. The expression L is uniformly elliptic
on Ω, that is, there exists E > 0 such that

n∑
j,k=1

ajk(x)ξjξk ≥ E
n∑
k=1

ξ2
k, x ∈ Ω, ξ = (ξ1, . . . , ξn)T ∈ Rn. (2.1)

We remark that the condition (2.1) already implies

n∑
j,k=1

ajk(x)ξjξk ≥ E
n∑
k=1

|ξk|2, x ∈ Ω, ξ = (ξ1, . . . , ξn)T ∈ Cn. (2.2)

We first focus on the selfadjoint realization of L with a Dirichlet boundary
condition.
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2.1 The Dirichlet operator and the Dirichlet-to-Neumann
map

In this section we define the selfadjoint Dirichlet operator corresponding to the
differential expression L in L2(Ω) and the Dirichlet-to-Neumann map associated
with L−λ for λ outside the spectrum of the Dirichlet operator. The results of this
section are essentially known but it is difficult to find references under our precise
assumptions. Therefore, for the convenience of the reader we provide proofs. We
make use of the following lemma.

Lemma 2.2. Let Assumption 2.1 be satisfied and let the sesquilinear form a in
L2(Ω) be defined by

a[u, v] =

∫
Ω

( n∑
j,k=1

ajk
∂u

∂xk
· ∂v
∂xj

+
n∑
j=1

(
aj
∂u

∂xj
· v + aju ·

∂v

∂xj

)
+ auv

)
dx,

dom a = H1(Ω). (2.3)

Then a is densely defined, symmetric, and semibounded from below by some µ ∈ R.
Moreover, a is bounded in H1(Ω), that is, there exists C > 0 such that

|a[u, v]| ≤ C‖u‖H1(Ω)‖v‖H1(Ω), u, v ∈ H1(Ω).

The expression ‖u‖2
a = (a − µ + 1)[u, u], u ∈ H1(Ω), defines a norm on H1(Ω)

which is equivalent to ‖ · ‖H1(Ω); in particular, a is closed.

Proof. Clearly, a is densely defined in L2(Ω). For u, v ∈ H1(Ω) we have

a[v, u] =

∫
Ω

( n∑
j,k=1

ajk
∂u

∂xj
· ∂v
∂xk

+
n∑
j=1

(
aj
∂u

∂xj
· v + aju ·

∂v

∂xj

)
+ auv

)
dx

= a[u, v],

see Assumption 2.1; hence a is symmetric. Let us observe next that a is semi-
bounded from below. Indeed, for u ∈ dom a = H1(Ω) we obtain with the help
of (2.2)

a[u, u] ≥
∫

Ω

( n∑
j=1

(
E
∣∣∣ ∂u
∂xj

∣∣∣2 − 2‖aj‖∞|u|
∣∣∣ ∂u
∂xj

∣∣∣)+ (inf a)|u|2
)
dx

=
E

2

∫
Ω

|∇u|2dx

+

∫
Ω

( n∑
j=1

((√
E/2

∣∣∣ ∂u
∂xj

∣∣∣− ‖aj‖∞√
E/2
|u|
)2

− 2‖aj‖2
∞

E
|u|2
)

+ (inf a)|u|2
)
dx
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≥ E

2

∫
Ω

|∇u|2dx+
(
− 2

E

n∑
j=1

‖aj‖2
∞ + inf a

)
‖u‖2

L2(Ω) ≥ µ‖u‖2
L2(Ω)

with µ := − 2
E

∑n
j=1 ‖aj‖2

∞ + inf a, where ‖aj‖∞ = supx∈Ω |aj(x)|. Hence a is

semibounded from below. Note that for each u ∈ H1(Ω) the above estimate also
yields

‖u‖2
a = (a− µ+ 1)[u, u] ≥ E

2

∫
Ω

|∇u|2dx+

∫
Ω

|u|2dx ≥ min
{E

2
, 1
}
‖u‖2

H1(Ω).

(2.4)

Moreover, for u, v ∈ H1(Ω) we have

|a[u, v]| ≤M

n∑
j,k=1

∫
Ω

∣∣∣ ∂u
∂xk

∣∣∣∣∣∣ ∂v
∂xj

∣∣∣dx+M
n∑
j=1

∫
Ω

∣∣∣ ∂u
∂xj

∣∣∣|v|dx
+M

n∑
j=1

∫
Ω

∣∣∣ ∂v
∂xj

∣∣∣|u|dx+M

∫
Ω

|u||v|dx

≤M
n∑

j,k=1

∥∥∥ ∂u
∂xk

∥∥∥
L2(Ω)

∥∥∥ ∂v
∂xj

∥∥∥
L2(Ω)

+M‖v‖L2(Ω)

n∑
j=1

∥∥∥ ∂u
∂xj

∥∥∥
L2(Ω)

+M‖u‖L2(Ω)

n∑
j=1

∥∥∥ ∂v
∂xj

∥∥∥
L2(Ω)

+M‖u‖L2(Ω)‖v‖L2(Ω),

where M denotes a joint upper bound of all the functions |ajk|, |aj|, and |a|,
1 ≤ j, k ≤ n. Hence there exists C > 0 such that

|a[u, v]| ≤ C‖u‖H1(Ω)‖v‖H1(Ω), u, v ∈ H1(Ω).

Hence it follows together with (2.4) that the norms ‖·‖a and ‖·‖H1(Ω) are equivalent
on H1(Ω). In particular, (H1(Ω), ‖·‖a) is complete, i.e., a is closed. This completes
the proof of the lemma.

The Dirichlet operator associated with L in L2(Ω) is defined by

ADu = Lu, domAD =
{
u ∈ H1(Ω) : Lu ∈ L2(Ω), u|∂Ω = 0

}
. (2.5)

We prove that it is selfadjoint and summarize some of its properties in the following
theorem; cf. also the monographs [44,55].

Theorem 2.3. Let Assumption 2.1 be satisfied. Then the Dirichlet operator AD

in (2.5) is selfadjoint and semibounded from below in L2(Ω). Moreover, if Ω is
bounded then the spectrum of AD is purely discrete and accumulates to +∞.
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Proof. Let us define a sesquilinear form aD in L2(Ω) by

aD[u, v] := a[u, v], dom aD = H1
0 (Ω),

where a is given by (2.3). Clearly, aD is densely defined, and it follows from
Lemma 2.2 that aD is symmetric and semibounded from below by some µ ∈ R
and that the norm induced by ‖ · ‖2

aD
:= (aD − µ + 1)[·, ·] on H1

0 (Ω) is equivalent
to the H1-norm on H1

0 (Ω). In particular, (dom aD, ‖ · ‖aD
) is a Hilbert space, that

is, aD is closed. By Theorem 1.3 there exists a unique selfadjoint operator A in
L2(Ω) with domA ⊂ dom aD = H1

0 (Ω) and

aD[u, v] = (Au, v), u ∈ domA, v ∈ dom aD.

We will prove next that A = AD. Let u ∈ domA. Then for each v ∈ C∞0 (Ω) ⊂
dom aD we have

(Au, v) = aD[u, v]

=

∫
Ω

( n∑
j,k=1

ajk
∂u

∂xk
· ∂v
∂xj

+
n∑
j=1

(
aj
∂u

∂xj
· v + aju ·

∂v

∂xj

)
+ auv

)
dx

=

∫
Ω

(
−

n∑
j,k=1

∂

∂xj

(
ajk

∂u

∂xk

)
v +

n∑
j=1

(
aj
∂u

∂xj
· v − ∂

∂xj

(
aju
)
· v
)

+ auv

)
dx

= (Lu, v)−1,1 (2.6)

by the definition of the distributional derivative. In particular, Au = Lu in the
distributional sense. Since A is an operator in L2(Ω), it turns out that Lu ∈ L2(Ω),
that is, u ∈ H1

0 (Ω) with Lu ∈ L2(Ω). Hence u belongs to domAD, see (1.8), and
satisfies ADu = Lu = Au. Let, conversely, u belong to domAD, that is, u ∈ H1

0 (Ω)
with Lu ∈ L2(Ω). Then for each v ∈ C∞0 (Ω) we obtain

(ADu, v) = (Lu, v) = aD[u, v] (2.7)

by the definition of the distributional derivative; cf. (2.6). Note that it follows
from the equivalence of the norms ‖ · ‖a and ‖ · ‖H1(Ω), see Lemma 2.2, that
C∞0 (Ω) is a core of aD. From (2.7) and Theorem 1.3 we obtain u ∈ domA and
Au = ADu. Thus AD coincides with A. In particular, AD is selfadjoint. Moreover,
from Theorem 1.3 we obtain that AD is semibounded from below.

Let now Ω be bounded. Clearly, for each λ ∈ ρ(AD) the operator (AD − λ)−1

is bounded and everywhere defined in L2(Ω) with ran(AD − λ)−1 = domAD ⊂
H1

0 (Ω), see (1.8). By the closed graph theorem the operator Rλ : L2(Ω) →
H1

0 (Ω), u 7→ (AD−λ)−1u, is also bounded. Moreover, by Theorem 1.7 the embed-
ding ι of H1

0 (Ω) into L2(Ω) is compact. Consequently, also (AD − λ)−1 = ιRλ is



2.1 The Dirichlet operator and the Dirichlet-to-Neumann map 31

compact in L2(Ω). Therefore the spectrum of AD only consists of isolated eigen-
values with finite multiplicities. Since, as a selfadjoint operator which is only
densely defined, AD is unbounded, the eigenvalues accumulate to +∞.

In order to define the Dirichlet-to-Neumann map corresponding to the differ-
ential expression L−λ for λ in the resolvent set ρ(AD) of AD we need the following
lemma.

Lemma 2.4. Let Assumption 2.1 be satisfied and let AD be the selfadjoint Dirich-
let operator in (2.5). Then for each λ ∈ ρ(AD) and each g ∈ H1/2(∂Ω) the
boundary value problem

Lu = λu, u|∂Ω = g (2.8)

has a unique solution uλ ∈ H1(Ω).

Proof. Let g ∈ H1/2(∂Ω) and λ ∈ ρ(AD). By Proposition 1.5 there exists u ∈
H1(Ω) with u|∂Ω = g. Let a be the sesquilinear form in (2.3) with dom a = H1(Ω).
By Lemma 2.2 a is bounded in H1(Ω); in particular, the mapping

Fζ : H1
0 (Ω)→ C, v 7→ −(a− ζ + 1)[u, v]

is bounded in H1(Ω) and antilinear for each ζ ∈ R; hence Fζ belongs to the
antidual of H1

0 (Ω). Moreover, it follows from Lemma 2.2 that the sesquilinear
form

aD[u, v] = a[u, v], dom aD = H1
0 (Ω),

is semibounded by some µ ∈ R and closed; cf. the proof of Theorem 2.3. In
particular, H1

0 (Ω) is a Hilbert space when it is equipped with the scalar product
aD− µ+ 1. By the Fréchet–Riesz theorem there exists a unique u0 ∈ H1

0 (Ω) with

(aD − µ+ 1)[u0, v] = Fµ(v) = −(a− µ+ 1)[u, v], v ∈ H1
0 (Ω).

Consequently, (a−µ+ 1)[u0 +u, v] = 0 for all v ∈ H1
0 (Ω), which implies (L−µ+

1)(u0 + u) = 0; in particular, (L− λ)(u0 + u) = (µ− 1− λ)(u0 + u) ∈ L2(Ω). Let
us set

uλ = u0 + u− (AD − λ)−1(L − λ)(u0 + u) ∈ H1(Ω).

Then uλ|∂Ω = u|∂Ω = g and (L − λ)uλ = 0. Thus uλ is a solution of (2.8).
In order to prove the uniqueness let vλ ∈ H1(Ω) be a further solution of (2.8).

Then we have

L(uλ − vλ) = λ(uλ − vλ) and (uλ − vλ)|∂Ω = 0,

that is, (uλ − vλ) ∈ ker(AD − λ). Since λ ∈ ρ(AD), it follows uλ = vλ.
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We use the observation of Lemma 2.4 in order to define the Dirichlet-to-
Neumann map.

Definition 2.5. Let Assumption 2.1 be satisfied and let AD be the selfadjoint
Dirichlet operator in (2.5). Then for each λ ∈ ρ(AD) the Dirichlet-to-Neumann
map is defined by

M(λ) : H1/2(∂Ω)→ H−1/2(∂Ω), g = uλ|∂Ω 7→ −
∂uλ
∂νL

∣∣
∂Ω
, (2.9)

where uλ is the unique solution in H1(Ω) of (2.8).

We remark that the minus sign in the definition of M(λ) is not essential for the
validity of our main results. The sign was chosen in order to obtain an operator-
valued Nevanlinna function in analogy to the Titchmarsh–Weyl m-function for
ordinary differential equations; cf. Remark 3.2 below.

2.2 Generalized Robin operators and Robin-to-Dirichlet
maps

In this section we introduce a class of selfadjoint realizations of the differential
expression L with nonlocal boundary conditions of Robin type. We consider the
operators AΘ in L2(Ω) given by

AΘu = Lu, domAΘ =
{
u ∈ H1(Ω) : Lu ∈ L2(Ω),

∂u

∂νL

∣∣
∂Ω

+ Θu|∂Ω = 0
}
,

(2.10)

where we make the following assumption on the operator Θ; cf. [57].

Assumption 2.6. The operator Θ : H1/2(∂Ω) → H−1/2(∂Ω) is bounded and
satisfies the symmetry condition

(Θg, h)∂Ω = (g,Θh)∂Ω, g, h ∈ H1/2(∂Ω).

Moreover, Θ = Θ1 + Θ2 holds, where Θi : H1/2(∂Ω) → H−1/2(∂Ω) are bounded
operators, i = 1, 2, Θ1 is L2-semibounded from below, i.e., there exists cΘ1 ∈ R
with

(Θ1g, g)∂Ω ≥ cΘ1‖g‖2
L2(∂Ω), g ∈ H1/2(∂Ω), (2.11)

and Θ2 is compact.
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Note that, as a special case, Θ may be chosen to be the operator of multiplica-
tion with a bounded, measurable function ϑ : ∂Ω→ R. In this case the functions
in the domain of AΘ satisfy the classical Robin boundary condition

∂u

∂νL
|∂Ω + ϑu|∂Ω = 0.

Moreover, for Θ = 0 we obtain the well-known Neumann operator. We are going
to prove that AΘ is selfadjoint. We remark that Assumption 2.6 on Θ is inspired
by the recent publication [57], where selfadjointness of AΘ is shown for L = −∆
on a bounded Lipschitz domain. Our assumptions on Θ may be slightly weakened
when one follows the ideas of [57]. In order to keep the situation simple we restrict
ourselves to the above conditions.

We use the following lemma which can basically be found in [8, Lemma 2.3]
and [57, Lemma 4.2–Lemma 4.3] in more general versions. We give a short proof
in our precise setting. Recall that (H1(Ω))′ denotes the dual space of H1(Ω).

Lemma 2.7. Let K : H1(Ω)→ (H1(Ω))′ be a compact linear operator. Then for
each ε > 0 there exists Cε > 0 with

|(Ku, u)1′,1| ≤ ε‖u‖2
H1(Ω) + Cε‖u‖2

L2(Ω), u ∈ H1(Ω),

where (·, ·)1′,1 denotes the duality between H1(Ω) and (H1(Ω))′.

Proof. Assume the converse, that is, there exist ε > 0 and (uj)j∈N ⊂ H1(Ω) with
‖uj‖H1(Ω) = 1, j ∈ N, and

|(Kuj, uj)1′,1| ≥ ε+ j‖uj‖2
L2(Ω), j ∈ N. (2.12)

Since H1(Ω) is reflexive, it is no restriction to assume that there exists u ∈ H1(Ω)
with uj → u weakly in H1(Ω). Moreover, since K is compact, it follows Kuj →
Ku (strongly) in (H1(Ω))′ and, hence,

(Kuj, uj)1′,1 → (Ku, u)1′,1 as j →∞. (2.13)

Thus (2.12) yields ‖uj‖2
L2(Ω) → 0 as j → ∞, hence u = 0. Then (2.13) yields

(Kuj, uj)1′,1 → 0 as j →∞ and (2.12) leads to the contradiction ε ≤ 0.

We are now able to prove the selfadjointness of AΘ; we remark that for an
arbitrary bounded, symmetric operator Θ : H1/2(∂Ω)→ H−1/2(∂Ω) the operator
AΘ in (2.10) in general is not selfadjoint, cf. [21,57,67]. Nevertheless, if Θ satisfies
the above assumption then selfadjointness can be guaranteed.

Theorem 2.8. Let Assumption 2.1 and Assumption 2.6 be satisfied. Then AΘ

in (2.10) is selfadjoint and semibounded from below in L2(Ω). Moreover, if Ω is
bounded then the spectrum of AΘ is purely discrete and accumulates to +∞.
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Proof. Let us define a sesquilinear form aΘ in L2(Ω) by

aΘ[u, v] = a[u, v] + (Θu|∂Ω, v|∂Ω)∂Ω, dom aΘ = H1(Ω),

where a is given in (2.3). It is clear that aΘ is symmetric and densely defined
in L2(Ω); cf. Lemma 2.2. Let us show that aΘ is closed and semibounded from
below. For this let us observe two consequences of Lemma 2.7. On the one hand,
if γ : H1(Ω)→ H1/2(∂Ω) is the trace operator in Proposition 1.5, we may choose
K = γ∗ιγ in Lemma 2.7, where ι is the compact embedding of H1/2(∂Ω) into
H−1/2(∂Ω); cf. Theorem 1.7 (iii). Then K is compact and we obtain that for each
ε > 0 there exists Cε > 0 with

‖u|∂Ω‖2
L2(∂Ω) = (ιγu, γu)∂Ω = (Ku, u)1′,1

≤ ε‖u‖2
H1(Ω) + Cε‖u‖2

L2(Ω), u ∈ H1(Ω). (2.14)

On the other hand we may choose K = γ∗Θ2γ. Then by Lemma 2.7 for each
ε > 0 there exists a number C̃ε > 0 with

|(Θ2u|∂Ω, u|∂Ω)∂Ω| = |(γ∗Θ2γu, u)1′,1| = |(Ku, u)1′,1|
≤ ε‖u‖2

H1(Ω) + C̃ε‖u‖2
L2(Ω), u ∈ H1(Ω). (2.15)

Recall from Lemma 2.2 that the norm ‖·‖a induced by the scalar product a−µ+1
on H1(Ω) for appropriate µ ∈ R is equivalent to ‖ · ‖H1(Ω), that is, there exist
c, C > 0 with

c‖u‖2
H1(Ω) ≤ ‖u‖2

a ≤ C‖u‖2
H1(Ω), u ∈ H1(Ω). (2.16)

It is no restriction to assume that cΘ1 in (2.11) is negative. Let ε > 0 be such
that c+ cΘ1ε− ε > 0. Then we obtain from (2.14), (2.15), and (2.16)

aΘ[u, u] = (a− µ+ 1)[u, u] + (µ− 1)‖u‖2
L2(Ω)

+ (Θ1u|∂Ω, u|∂Ω)∂Ω + (Θ2u|∂Ω, u|∂Ω)∂Ω

≥ c‖u‖2
H1(Ω) + (µ− 1)‖u‖2

L2(Ω) + cΘ1ε‖u‖2
H1(Ω) + cΘ1Cε‖u‖2

L2(Ω)

− ε‖u‖2
H1(Ω) − C̃ε‖u‖2

L2(Ω)

= (c+ cΘ1ε− ε)‖u‖2
H1(Ω) + µ̃‖u‖2

L2(Ω), u ∈ H1(Ω),

with µ̃ = µ− 1 + cΘ1Cε − C̃ε. It follows

aΘ[u, u] ≥ µ̃‖u‖2
L2(Ω), u ∈ H1(Ω),

that is, aΘ is bounded from below, and

(aΘ − µ̃+ 1)[u, u] ≥ (c+ cΘ1ε− ε)‖u‖2
H1(Ω), u ∈ H1(Ω). (2.17)
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On the other hand, since Θ : H1/2(∂Ω) → H−1/2(∂Ω) as well as the trace map
γ : H1(Ω)→ H1/2(∂Ω) are bounded, there exists M > 0 such that

(aΘ − µ̃+ 1)[u, u] ≤ C‖u‖2
H1(Ω) +M‖u‖2

H1(Ω) + |cΘ1Cε − C̃ε − 1|‖u‖2
L2(Ω) (2.18)

holds for all u ∈ H1(Ω). From (2.17) and (2.18) it follows that aΘ − µ̃ + 1
induces a norm on H1(Ω) which is equivalent to ‖ · ‖H1(Ω). In particular, aΘ

is closed. By Theorem 1.3 there exists a selfadjoint operator A in L2(Ω) with
domA ⊂ dom aΘ = H1(Ω) and

(Au, v) = aΘ[u, v], u ∈ domA, v ∈ dom aΘ.

We are going to show A = AΘ. Let first u ∈ domA. Then for each v ∈ C∞0 (Ω)
we have

(Au, v) = aΘ[u, v] = a[u, v] = (Lu, v)−1,1;

cf. the proof of Theorem 2.3. Hence Lu = Au and, in particular, Lu ∈ L2(Ω).
Moreover, for arbitrary v ∈ H1(Ω) we have( ∂u

∂νL

∣∣
∂Ω

+ Θu|∂Ω, v|∂Ω

)
∂Ω

= a[u, v]− (Lu, v) + (Θu|∂Ω, v|∂Ω)∂Ω

= aΘ[u, v]− (Au, v) = 0

by the first Green identity (1.10). Since v|∂Ω runs through all of H1/2(∂Ω) as
v runs through H1(Ω), it follows ∂u

∂νL
|∂Ω + Θu|∂Ω = 0, hence u ∈ domAΘ and

AΘu = Lu = Au. Conversely, if u ∈ domAΘ then

(AΘu, v) = (Lu, v) = aΘ[u, v]−
( ∂u
∂νL

∣∣
∂Ω

+ Θu|∂Ω, v|∂Ω

)
∂Ω

= aΘ[u, v]

holds for all v ∈ H1(Ω) and Theorem 1.3 implies u ∈ domA; thus AΘ = A. In
particular, AΘ is selfadjoint. Since aΘ is semibounded from below, by Theorem 1.3
the same holds for AΘ.

Let now Ω be bounded. Then the embedding ι of H1(Ω) into L2(Ω) is compact,
see Theorem 1.7. Moreover, by the closed graph theorem the operator Rλ :
L2(Ω) → H1(Ω), u 7→ (AΘ − λ)−1u is bounded for all λ ∈ ρ(AΘ). Therefore
(AΘ − λ)−1 = ιRλ is compact. From this it follows that the spectrum of AΘ

is purely discrete. Since AΘ is selfadjoint but not everywhere defined, AΘ is
unbounded. Thus the eigenvalues accumulate to +∞.

In order to define a Robin-to-Dirichlet map we make use of the following
lemma.
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Lemma 2.9. Let Assumption 2.1 and Assumption 2.6 hold. Then for each λ ∈
ρ(AΘ) and each g ∈ H−1/2(∂Ω) the boundary value problem

Lu = λu,
∂u

∂νL

∣∣
∂Ω

+ Θu|∂Ω = g (2.19)

has a unique solution uλ ∈ H1(Ω).

Proof. As we have seen in the proof of Theorem 2.8 the form

aΘ[u, v] = a[u, v] + (Θu|∂Ω, v|∂Ω)∂Ω, dom aΘ ∈ H1(Ω),

in L2(Ω) is semibounded from below by some µ ∈ R and (H1(Ω), aΘ− µ+ 1) is a
Hilbert space. Let us first prove that for each g ∈ H−1/2(∂Ω) the boundary value
problem

(L − µ+ 1)u = 0,
∂u

∂νL

∣∣
∂Ω

+ Θu|∂Ω = g

has a solution u in H1(Ω). Let g ∈ H−1/2(∂Ω). Indeed, by the continuity of
the trace H1(Ω) 3 u 7→ u|∂Ω ∈ H1/2(∂Ω) the mapping H1(Ω) 3 v 7→ (g, v|∂Ω)∂Ω

is bounded and, hence, belongs to the antidual of H1(Ω). By the Fréchet–Riesz
theorem there exists a unique u ∈ H1(Ω) with

(aΘ − µ+ 1)[u, v] = (g, v|∂Ω)∂Ω, v ∈ H1(Ω). (2.20)

In particular, (a−µ+1)[u, v] = 0 for all v ∈ C∞0 (Ω), which implies (L−µ+1)u = 0;
in particular, Lu = (µ− 1)u ∈ L2(Ω). Then (2.20) yields

a[u, v]− (Lu, v) = (g −Θu|∂Ω, v|∂Ω)∂Ω, v ∈ H1(Ω),

hence ∂u
∂νL
|∂Ω + Θu|∂Ω = g; cf. Definition 1.6.

Let now λ ∈ ρ(AΘ) and u as above. Then (L−λ)u = (µ−1−λ)u ∈ L2(Ω) and
there exists uΘ ∈ domAΘ with (AΘ − λ)uΘ = (L − λ)u. Let us set uλ = u− uΘ.
Then

∂uλ
∂νL

∣∣
∂Ω

+ Θuλ|∂Ω =
∂u

∂νL

∣∣
∂Ω

+ Θu|∂Ω = g

and, clearly, (L − λ)uλ = 0, that is, uλ ∈ H1(Ω) solves (2.19).
In order to prove uniqueness, let vλ ∈ H1(Ω) be a further solution of (2.19).

Then uλ − vλ satisfies

L(uλ − vλ) = λ(uλ − vλ),
∂(uλ − vλ)

∂νL

∣∣
∂Ω

+ Θ(uλ − vλ)|∂Ω = 0,

in particular, uλ − vλ ∈ domAΘ and (AΘ − λ)(uλ − vλ) = 0. From λ ∈ ρ(AΘ) it
follows uλ − vλ = 0. Thus we have proved the uniqueness of the solution.
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Lemma 2.9 allows us to make the following definition.

Definition 2.10. Let Assumption 2.1 and Assumption 2.6 hold. For λ ∈ ρ(AΘ)
we define the Robin-to-Dirichlet map

MΘ(λ) : H−1/2(∂Ω)→ H1/2(∂Ω), g =
∂uλ
∂νL

∣∣
∂Ω

+ Θuλ|∂Ω 7→ uλ|∂Ω (2.21)

where uλ ∈ H1(Ω) is the unique solution of (2.19).

We remark that for λ ∈ ρ(AΘ) ∩ ρ(AD) the Robin-to-Dirichlet map can be
written more explicitly as

MΘ(λ) = (Θ−M(λ))−1, (2.22)

where M(λ) is the Dirichlet-to-Neumann map in (2.9). Indeed, let λ ∈ ρ(AΘ) ∩
ρ(AD) and let g ∈ H1/2(∂Ω) with (Θ −M(λ))g = 0. By Lemma 2.4 there exists
a unique uλ ∈ H1(Ω) with Luλ = λuλ and uλ|∂Ω = g. Then Θuλ|∂Ω + ∂uλ

∂νL
|∂Ω = 0,

thus uλ ∈ domAΘ and AΘuλ − λuλ = 0. Now λ ∈ ρ(AΘ) implies uλ = 0 and,
hence, g = uλ|∂Ω = 0. Therefore Θ−M(λ) is injective. Moreover, if uλ ∈ H1(Ω)
satisfies Luλ = λuλ, then

(Θ−M(λ))uλ|∂Ω = Θuλ|∂Ω +
∂uλ
∂νL

∣∣
∂Ω
,

which leads to the representation (2.22).
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3 Inverse problems of Calderón type

The present chapter contains some of the main results of this thesis. We are
concerned with inverse problems of Calderón type with partial data for a uniformly
elliptic differential expression

L = −
n∑

j,k=1

∂

∂xj
ajk

∂

∂xk
+

n∑
j=1

(
aj

∂

∂xj
− ∂

∂xj
aj

)
+ a

on a connected (not necessarily bounded) Lipschitz domain Ω. We prove that the
knowledge of the Dirichlet-to-Neumann map

M(λ)uλ|∂Ω = −∂uλ
∂νL

∣∣
∂Ω
, Luλ = λuλ,

see (2.9), on an arbitrarily small nonempty, open subset ω of the boundary ∂Ω
for a certain collection of points λ determines the selfadjoint Dirichlet operator

ADu = Lu, domAD =
{
u ∈ H1(Ω) : Lu ∈ L2(Ω), u|∂Ω = 0

}
associated with L in L2(Ω), see (2.5), uniquely up to unitary equivalence. In addi-
tion, we prove a reconstruction formula for AD from the knowledge of M(λ) on ω
in the case that the domain Ω is bounded. Moreover, we provide analogous results
for selfadjoint elliptic differential operators with Robin boundary conditions. The
results of this chapter were partly published in [26].

In the whole chapter we assume that the domain Ω and the differential expres-
sion L on Ω satisfy Assumption 2.1 above, that is, Ω is a Lipschitz domain and
the differential expression L is uniformly elliptic on Ω with bounded Lipschitz
coefficients ajk = akj, aj : Ω → C, 1 ≤ j, k ≤ n, and a bounded, measurable
coefficient a : Ω→ R. Moreover, ω ⊂ ∂Ω is assumed to be a nonempty, relatively
open set.

3.1 Preliminaries

In this section we provide some preliminary material. As an important tool in the
proofs of our main results we introduce the Poisson operator

γ(λ) : H1/2(∂Ω)→ L2(Ω), g 7→ uλ (3.1)

for λ ∈ ρ(AD), where uλ ∈ H1(Ω) is the unique solution of the boundary value
problem

Lu = λu, u|∂Ω = g
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for a given g ∈ H1/2(∂Ω); cf. Lemma 2.4 in Chapter 2 above. We will make use of
a couple of statements and formulas for the Poisson operator and the Dirichlet-
to-Neumann map, which are collected in the following lemma. Its proof is based
on the second Green identity (1.11). Similar statements in an abstract setting of
extension theory of symmetric operators in Hilbert spaces and associated Weyl
functions were proved in, e.g., [21, 49].

Lemma 3.1. Let Ω and L be as in Assumption 2.1 and let AD be the Dirichlet op-
erator associated with L in L2(Ω) in (2.5). Then for λ, µ ∈ ρ(AD) the Dirichlet-to-
Neumann maps M(λ),M(µ) in (2.9) and the Poisson operators γ(λ), γ(µ) in (3.1)
satisfy the following assertions.

(i) γ(λ) is a bounded operator and its adjoint γ(λ)∗ : L2(Ω) → H−1/2(∂Ω) is
given by

γ(λ)∗u = − ∂

∂νL

(
(AD − λ)−1u

)∣∣
∂Ω
, u ∈ L2(Ω).

(ii) The identity

γ(λ) =
(
I + (λ− µ)(AD − λ)−1

)
γ(µ)

holds.

(iii) The Poisson operators and the Dirichlet-to-Neumann maps satisfy

(λ− µ)γ(µ)∗γ(λ) = M(λ)−M(µ),

and (M(λ)g, h)∂Ω = (g,M(λ)h)∂Ω holds for all g, h ∈ H1/2(∂Ω).

(iv) M(λ) is a bounded operator from H1/2(∂Ω) to H−1/2(∂Ω), which satisfies

M(λ) = M(µ) + (λ− µ)γ(µ)∗
(
I + (λ− µ)(AD − λ)−1

)
γ(µ). (3.2)

In particular, λ 7→M(λ) is analytic on ρ(AD).

Proof. (i) Let us fix λ ∈ ρ(AD). In order to calculate γ(λ)∗ we choose g ∈
H1/2(∂Ω) and u ∈ L2(Ω). Moreover, we set v = (AD − λ)−1u and uλ = γ(λ)g,
that is, Luλ = λuλ and uλ|∂Ω = g. Then the second Green identity (1.11) yields

(γ(λ)g, u) =
(
uλ, (AD − λ)v

)
= (uλ,Lv)− (Luλ, v)

=
(
uλ|∂Ω,−

∂v

∂νL

∣∣
∂Ω

)
∂Ω
−
(
− ∂uλ
∂νL

∣∣
∂Ω
, v|∂Ω

)
∂Ω
.
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Since v = (AD − λ)−1u ∈ domAD implies v|∂Ω = 0, it follows

(γ(λ)g, u) =
(
g,− ∂

∂νL

(
(AD − λ)−1u

)∣∣
∂Ω

)
∂Ω
,

from which we conclude with the help of the closed graph theorem that γ(λ) is
bounded and that γ(λ)∗u = − ∂

∂νL
((AD − λ)−1u)|∂Ω holds.

(ii) For λ, µ ∈ ρ(AD), g ∈ H1/2(∂Ω), and u ∈ L2(Ω) we obtain from (i)

(γ(λ)g, u)− (γ(µ)g, u)

=
(
g,− ∂

∂νL

(
(AD − λ)−1u

)
|∂Ω

)
∂Ω
−
(
g,− ∂

∂νL

(
(AD − µ)−1u

)
|∂Ω

)
∂Ω

=
(
g,− ∂

∂νL

(
(AD − µ)−1(λ− µ)(AD − λ)−1u

)∣∣
∂Ω

)
∂Ω

=
(
γ(µ)g, (λ− µ)(AD − λ)−1u

)
= (λ− µ)

(
(AD − λ)−1γ(µ)g, u

)
,

which implies γ(λ)− γ(µ) = (λ− µ)(AD − λ)−1γ(µ) and leads to the assertion.
(iii) Let λ, µ ∈ ρ(AD) and choose g, h ∈ H1/2(∂Ω). Moreover, define uλ =

γ(λ)g and vµ = γ(µ)h. Then the second Green identity (1.11) yields

(λ− µ) (γ(λ)g, γ(µ)h) = (Luλ, vµ)− (uλ,Lvµ)

= (M(λ)g, h)∂Ω − (g,M(µ)h)∂Ω (3.3)

and the special choice µ = λ implies the second statement in (iii). The first
statement now follows immediately from (3.3).

(iv) From (M(λ)g, h)∂Ω = (g,M(λ)h)∂Ω for λ ∈ ρ(AD) and g, h ∈ H1/2(∂Ω)
it follows with the closed graph theorem that M(λ) : H1/2(∂Ω) → H−1/2(∂Ω) is
bounded. Furthermore, by (ii) and (iii) we have

M(λ) = M(µ) + (λ− µ)γ(µ)∗γ(λ)

= M(µ) + (λ− µ)γ(µ)∗
(
I + (λ− µ)(AD − λ)−1

)
γ(µ).

Since λ 7→ (AD−λ)−1 is an analytic mapping on ρ(AD), it follows from (3.2) that
λ 7→M(λ) is also analytic.

Remark 3.2. It follows from Lemma 3.1 (iii) and (iv) that the mapping λ 7→
M(λ) can be viewed as an operator-valued Nevanlinna function since M(·) is
analytic on C \ R, M(λ)∗ = M(λ) holds for all λ ∈ C \ R (after an identification
of H1/2(∂Ω) with the dual space of H−1/2(∂Ω)), and

Im(M(λ)g, g)∂Ω

Imλ
= (γ(λ)g, γ(λ)g) ≥ 0, λ ∈ C \ R, g ∈ H1/2(∂Ω).
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Recall that ω is an open, nonempty subset of ∂Ω. For λ ∈ ρ(AD) we define

Nλ =
{
u ∈ H1(Ω) : Lu = λu, supp(u|∂Ω) ⊂ ω

}
=
{
γ(λ)g : g ∈ H1/2(∂Ω), supp g ⊂ ω

}
, (3.4)

the space of solutions of the differential equation Lu = λu whose trace is supported
in ω, where we define supp g to be the smallest closed set such that g vanishes
almost everywhere on its complement.

The following proposition serves as a further preparation and will be crucial for
the proofs of our main results. Its proof is partially inspired by an idea from [17]:
We extend a certain L2-function on Ω ⊂ Rn to a function in n + 1 variables via
introducing a semigroup and, afterwards, apply a unique continuation theorem to
this function. Unique continuation theorems for second order elliptic differential
operators are due to [12, 42, 74, 75] and others. In the following formulation such
a theorem can be found in [126].

Theorem 3.3. Let G ⊂ RN , N ≥ 2, be an open, connected set and let αjk : G→
C be bounded Lipschitz functions, 1 ≤ j, k ≤ N , such that

N∑
j,k=1

αjk(x)ξjξk ≥ E
N∑
k=1

ξ2
k, x ∈ G, ξ = (ξ1, . . . , ξN)T ∈ RN ,

for some E > 0. Let f ∈ H2
loc(G) and assume that there exist A,B ∈ R with∣∣∣ N∑

j,k=1

αjk
∂2f

∂xj∂xk

∣∣∣ ≤ A|f |+B
N∑
j=1

∣∣∣ ∂f
∂xj

∣∣∣
almost everywhere on G. If f vanishes almost everywhere in an open, nonempty
subset of G then f = 0 identically on G.

Proposition 3.4. Let Assumption 2.1 be satisfied, let Ω be connected, and let
ω ⊂ ∂Ω be open and nonempty. Then

span {Nλ : λ ∈ C \ R}

is dense in L2(Ω).

Proof. Let Ω̃ be a Lipschitz domain such that Ω̃ ⊃ Ω, ∂Ω \ ω ⊂ ∂Ω̃, and there

exists an open ball O ⊂ Ω̃ \ Ω. Let ãjk, ãj be bounded Lipschitz functions on

Ω̃ which extend ajk and aj, respectively, 1 ≤ j, k ≤ n, and let ã : Ω̃ → R be a

bounded, measurable extension of a to Ω̃ such that the differential expression

L̃ = −
n∑

j,k=1

∂

∂xj
ãjk

∂

∂xk
+

n∑
j=1

(
ãj

∂

∂xj
− ∂

∂xj
ãj

)
+ ã
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is uniformly elliptic on Ω̃; cf. Assumption 2.1. Let ÃD denote the selfadjoint
Dirichlet operator associated with L̃ in L2(Ω̃), i.e.,

ÃDũ = L̃ũ, dom ÃD =
{
ũ ∈ H1(Ω̃) : L̃ũ ∈ L2(Ω̃), ũ|∂Ω̃ = 0

}
.

Since ÃD is semibounded from below, see Theorem 2.3, it is no restriction to
assume that this operator has a lower bound µ > 0. Let ṽ ∈ L2(Ω̃) be such that
ṽ vanishes on Ω, and define

ũλ,ṽ = (ÃD − λ)−1ṽ, λ ∈ C \ R.

Moreover, denote by uλ,ṽ the restriction of ũλ,ṽ to Ω. Then Luλ,ṽ = λuλ,ṽ and

supp(uλ,ṽ|∂Ω) ⊂ ω, since ∂Ω \ ω ⊂ ∂Ω̃ and ũλ,ṽ|∂Ω̃ = 0. Hence uλ,ṽ ∈ Nλ for all

λ ∈ C \ R and all ṽ ∈ L2(Ω̃) with ṽ|Ω = 0.
Let us choose u ∈ L2(Ω) such that u is orthogonal to Nλ for each λ ∈ C \ R.

Then, in particular,

0 = (u, uλ,ṽ) =
(
ũ, (ÃD − λ)−1ṽ

)
L2(Ω̃)

=
(

(ÃD − λ)−1ũ, ṽ
)
L2(Ω̃)

for all λ ∈ C\R, where ũ denotes the extension of u by zero to Ω̃. Since ṽ ∈ L2(Ω̃)
was chosen arbitrarily such that ṽ|Ω = 0, it follows(

(ÃD − λ)−1ũ
) ∣∣∣

Ω̃\Ω
= 0, λ ∈ C \ R. (3.5)

Following an idea from [17, Section 3] we consider the semigroup T (t) = e−t
√
ÃD ,

t ≥ 0, which is generated by the square root of the uniformly positive operator
ÃD. Then t 7→ T (t)ũ ∈ L2(Ω̃) is twice differentiable with

d2

dt2
T (t)ũ = ÃDT (t)ũ, t > 0,

which implies (
− ∂2

∂t2
+ L

)
T (t)ũ(x) = 0, x ∈ Ω̃, t > 0, (3.6)

in the distributional sense. Indeed, if we choose η1 ∈ C∞0 (Ω̃) and η2 ∈ C∞0 ((0,∞))

and denote by η the tensor product of both, i.e., η(x, t) = η1(x)η2(t) for x ∈ Ω̃,

t ∈ (0,∞), then η ∈ C∞0 (Ω̃× (0,∞)) and(
∂2

∂t2
e−t
√
ÃDũ

)
(η) =

∫ ∞
0

(
e−t
√
ÃDũ, η1

)
L2(Ω̃)

∂2

∂t2
η2(t)dt
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=

∫ ∞
0

∂2

∂t2

(
e−t
√
ÃDũ, η1

)
L2(Ω̃)

η2(t)dt

=

∫ ∞
0

(
ÃDe

−t
√
ÃDũ, η1

)
L2(Ω̃)

η2(t)dt

=
(
L̃e−t
√
ÃDũ

)
(η).

Now the density of the tensor product space C∞0 (Ω̃) ⊗ C∞0 ((0,∞)) in C∞0 (Ω̃ ×
(0,∞)) with respect to the convergence in C∞0 (Ω̃ × (0,∞)) introduced in Sec-
tion 1.4 implies (3.6). Furthermore, from (3.6) it follows

(
− ∂2

∂t2
−

n∑
j,k=1

ãjk
∂2

∂xj∂xk

)
T (t)ũ(x) =

( n∑
j=1

∂

∂xj
ãj − ã

)
T (t)ũ(x)

+
n∑
k=1

( n∑
j=1

∂

∂xj
ãjk − ãk + ãk

)( ∂

∂xk
T (t)ũ(x)

)
.

Since the functions ãjk and ãj and their derivatives of first order as well as ã are
bounded, there exist A,B ∈ R with

∣∣∣(− ∂2

∂t2
−

n∑
j,k=1

ãjk
∂2

∂xj∂xk

)
T (t)ũ(x)

∣∣∣
≤ A|T (t)ũ(x)|+B

(∣∣∣ ∂
∂t
T (t)ũ(x)

∣∣∣+
n∑
j=1

∣∣∣ ∂
∂xj

T (t)ũ(x)
∣∣∣). (3.7)

Note that (x, t) 7→ T (t)ũ(x) belongs to L2(Ω̃× (0,∞)), since∫ ∞
0

∫
Ω̃

∣∣∣∣(e−t√ÃDũ

)
(x)

∣∣∣∣2 dxdt =

∫ ∞
0

∥∥∥∥e−t√ÃDũ

∥∥∥∥2

dt

=

∫ ∞
0

∫ ∞
µ

∣∣∣e−t√λ∣∣∣2 d(Eλũ, ũ)dt =

∫ ∞
µ

1

2
√
λ
d(Eλũ, ũ) <∞.

Now the uniform ellipticity of the differential expression − ∂2

∂t2
+ L̃ and standard

regularity theory imply that (x, t) 7→ T (t)ũ(x) is locally in H2 on Ω̃× (0,∞), see,

e.g., [100, Theorem 4.16]. Moreover, for any real numbers a, b /∈ σp(ÃD), a < b,
the Stone formula

E((a, b))ũ = lim
ε↘0

1

2πi

∫ b

a

((
ÃD − (y + iε)

)−1
ũ−

(
ÃD − (y − iε)

)−1
ũ
)
dy
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for the spectral measure E(·) of ÃD together with (3.5) implies (E((a, b))ũ)|Ω̃\Ω =
0. Thus, in particular, for each t ≥ 0 we have(

T (t)ũ
)∣∣

Ω̃\Ω =
(∫ ∞

µ

e−t
√
λdE(λ)ũ

)∣∣∣
Ω̃\Ω

= 0,

that is, (x, t) 7→ T (t)ũ(x) vanishes on the nonempty, open subset O × (0,∞)

of Ω̃ × (0,∞). Now (3.7) and Theorem 3.3 yield T (t)ũ(x) = 0 for all x ∈ Ω̃,

t ∈ (0,∞), i.e., T (t)ũ vanishes identically on Ω̃ for all t > 0. Thus, taking the
limit t↘ 0, we find ũ = 0 and, hence, u = 0. This completes the proof.

Remark 3.5. We point out that the statement of Proposition 3.4 can be improved
in the following way. With the help of the identity theorem for holomorphic
functions one can deduce that

span {Nλ : λ ∈ D}

is dense in L2(Ω) for any subset D of ρ(AD) which has both an accumulation
point in the upper and the lower open complex half-plane. We do not elaborate
on the details, since we will not make use of this fact in the following.

Remark 3.6. The statement of Proposition 3.4 is equivalent to the fact that the
symmetric restriction

Su = Lu, domS =
{
u ∈ domAD,

∂u

∂νL

∣∣
ω

= 0
}
,

of the Dirichlet operator in L2(Ω) is simple or completely non-selfadjoint; cf. [3,
Chapter VII-81] and [86]. A more detailed discussion of this can be found in
Appendix A.2.

3.2 An inverse problem for the Dirichlet operator with
partial data

Let us now turn to the main results of this chapter. In order to consider the
Dirichlet-to-Neumann map only on an arbitrary open, nonempty subset ω of ∂Ω
we set

H1/2
ω =

{
g ∈ H1/2(∂Ω) : supp g ⊂ ω

}
.

We first prove that the partial knowledge of the Dirichlet-to-Neumann map on
ω determines the Dirichlet operator AD associated with the elliptic differential
expression L in (2.5) on a bounded or unbounded Lipschitz domain Ω uniquely
up to unitary equivalence.
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Theorem 3.7. Let Ω be a connected Lipschitz domain, let ω ⊂ ∂Ω be open and
nonempty, and let L1,L2 be two differential expressions as in Assumption 2.1.
Moreover, let M1(λ),M2(λ) be the corresponding Dirichlet-to-Neumann maps and
let A1

D, A
2
D be the corresponding Dirichlet operators as in (2.5). Assume that

D ⊂ ρ(A1
D) ∩ ρ(A2

D) is a set with an accumulation point in ρ(A1
D) ∩ ρ(A2

D) and
that

(M1(λ)g, h)∂Ω = (M2(λ)g, h)∂Ω, g, h ∈ H1/2
ω ,

holds for all λ ∈ D. Then A1
D and A2

D are unitarily equivalent.

Proof. Note first that by Lemma 3.1 (iv) the functions

ρ(AiD) 3 λ 7→ (Mi(λ)g, h)∂Ω, i = 1, 2,

are holomorphic for all g, h ∈ H1/2
ω . Thus, it follows from the assumption of the

theorem, that these functions do not only coincide on the set D but on the whole
set ρ(A1

D) ∩ ρ(A2
D), i.e.,

(M1(λ)g, h)∂Ω = (M2(λ)g, h)∂Ω, g, h ∈ H1/2
ω ,

holds for all λ ∈ ρ(A1
D) ∩ ρ(A2

D) and, in particular, for all λ ∈ C \ R. Let γ1(λ)
and γ2(λ) be the Poisson operators associated with L1 and L2, respectively, as
in (3.1). For λ, µ ∈ C \ R, λ 6= µ, it follows from Lemma 3.1 (iii) that

(γ1(λ)g, γ1(µ)h) =
(M1(λ)g, h)∂Ω − (M1(µ)g, h)∂Ω

λ− µ

=
(M2(λ)g, h)∂Ω − (M2(µ)g, h)∂Ω

λ− µ
= (γ2(λ)g, γ2(µ)h) (3.8)

holds for all g, h ∈ H1/2
ω . Let us define a linear mapping V in L2(Ω) on

domV = span
{
γ1(λ)g : g ∈ H1/2

ω , λ ∈ C \ R
}

by

V
( k∑
j=1

γ1(λj)gj

)
:=

k∑
j=1

γ2(λj)gj, λj ∈ C \ R, gj ∈ H1/2
ω , 1 ≤ j ≤ k.

It follows from the identity (3.8) that V is a well-defined, isometric operator in
L2(Ω). Moreover, by Proposition 3.4 the set

span
{
γi(λ)g : λ ∈ C \ R, g ∈ H1/2

ω

}
(3.9)
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is dense in L2(Ω), i = 1, 2, that is, V is densely defined and has a dense range in
L2(Ω). Hence V extends by continuity to a unitary operator U in L2(Ω), which,

clearly, satisfies Uγ1(λ)g = γ2(λ)g for all g ∈ H
1/2
ω and all λ ∈ C \ R. Let

µ ∈ R ∩ ρ(A1
D) ∩ ρ(A2

D). Then Lemma 3.1 (ii) yields

U(A1
D − µ)−1γ1(λ)g =

Uγ1(µ)g − Uγ1(λ)g

µ− λ

=
γ2(µ)g − γ2(λ)g

µ− λ
= (A2

D − µ)−1Uγ1(λ)g

for all λ ∈ C \ R and all g ∈ H1/2
ω . Using again (3.9) we conclude

U(A1
D − µ)−1 = (A2

D − µ)−1U,

thus U(domA1
D) = domA2

D and UA1
Du = A2

DUu for all u ∈ domA1
D. Therefore

A1
D and A2

D are unitarily equivalent.

Let us now discuss how the Dirichlet operator AD can be recovered from the
knowledge of the corresponding Dirichlet-to-Neumann map M(λ) on ω ⊂ ∂Ω.
Here we will assume that Ω is bounded. Recall that in this case the spectrum of AD

consists of isolated eigenvalues with finite multiplicities only, see Theorem 2.3; in
particular, the resolvent of AD is a meromorphic operator-valued function, whose
poles are of order one, and it follows from Lemma 3.1 (iv) that the same holds for

the function M(·). We define the residue ResωλM : H
1/2
ω → (H

1/2
ω )′ of M(·) on ω

at some λ ∈ R by

(ResωλMg, h)ω := (ResλMg, h)∂Ω, g, h ∈ H1/2
ω ,

where ResλM : H1/2(∂Ω) → H−1/2(∂Ω) is the usual residue of the operator-

valued function M(·) at λ and (·, ·)ω denotes the duality between H
1/2
ω and its

dual space (H
1/2
ω )′; for more details on the residue of a meromorphic operator

function see Section 1.1. Moreover, we say that M(·) has a pole on ω at λ if
the operator ResωλM is nontrivial. Let us finally define the restriction of some

h ∈ H−1/2(∂Ω) to ω as an element of (H
1/2
ω )′ by

(h|ω, g)ω := (h, g)∂Ω, g ∈ H1/2
ω .

The Dirichlet operator AD can be recovered from the partial knowledge of
M(λ) on ω as follows.
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Theorem 3.8. Let Assumption 2.1 be satisfied, let Ω be bounded and connected,
and let ω ⊂ ∂Ω be an open, nonempty set. Moreover, let AD be the Dirichlet
operator in (2.5) and let M(λ) be the Dirichlet-to-Neumann map in (2.9), λ ∈
ρ(AD). Then the eigenvalues of AD coincide with the poles of M(·) on ω. For
each eigenvalue λk of AD the mapping

τk : ker(AD − λk)→ ran ResωλkM, u 7→ ∂u

∂νL

∣∣
ω

is an isomorphism. In particular, there exist g
(k)
1 , . . . , g

(k)
n(k) ∈ H

1/2
ω such that

e
(k)
i := τ−1

k

(
ResωλkM

)
g

(k)
i , i = 1, . . . , n(k),

form an orthonormal basis of ker(AD − λk) and the identity

ADu =
∞∑
k=1

λk

n(k)∑
i=1

(u, e
(k)
i )e

(k)
i , u ∈ domAD,

holds.

Proof. Step 1. Let λk, k ∈ N, be the distinct eigenvalues of AD as in the theorem.
In this first step of the proof we show that for each k ∈ N the mapping

τk : ker(AD − λk)→ ran ResωλkM, u 7→ ∂u

∂νL

∣∣
ω
,

is an isomorphism. First we observe that τk is injective. Indeed, assume u ∈
ker(AD− λk) satisfies τku = 0, that is ∂u

∂νL
|ω = 0. Moreover, let µ ∈ C \R, and let

vµ ∈ Nµ, i.e., Lvµ = µvµ and supp(vµ|∂Ω) ⊂ ω; cf. (3.4). Then the second Green
identity (1.11) yields

(λk − µ)(u, vµ) = (ADu, vµ)− (u,Lvµ)

=
(
u|∂Ω,

∂vµ
∂νL

∣∣
∂Ω

)
∂Ω
−
( ∂u
∂νL

∣∣
∂Ω
, vµ|∂Ω

)
∂Ω

= 0,

since u|∂Ω = 0, supp(vµ|∂Ω) ⊂ ω, and ∂u
∂νL
|ω = 0. Thus with the help of Proposi-

tion 3.4 it follows u = 0, that is, τk is injective.
In order to prove the surjectivity let us fix some µ ∈ R∩ ρ(AD) and note that

for u ∈ ker(AD − λk) Lemma 3.1 (i) yields

τku = τk
(
(AD − µ)−1ADu− (AD − µ)−1µu

)
= (λk − µ)

∂

∂νL

(
(AD − µ)−1u

)∣∣
ω

= (µ− λk)(γ(µ)∗u)|ω,
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where γ(µ) is the Poisson operator in (3.1). Consequently, for the surjectivity of
τk it is sufficient to ensure

ran ResωλkM =
{(
γ(µ)∗u

)
|ω : u ∈ ker(AD − λk)

}
. (3.10)

For the inclusion ⊂ in (3.10) denote by P the orthogonal projection in L2(Ω) onto
ker(AD − λk). Let us choose η ∈ C \ R and an open ball O centered in λk such
that η and µ do not belong to O and such that σ(AD) ∩ O = {λk}. If Γ denotes
the boundary of O then with the help of the identity (1.2) and of Lemma 3.1 (ii)
and (iii) we obtain

(Pγ(η)g, γ(µ)h) = − 1

2πi

∫
Γ

(
(AD − ζ)−1γ(η)g, γ(µ)h

)
dζ

= − 1

2πi

∫
Γ

(
1

ζ − η
(γ(ζ)g, γ(µ)h)− 1

ζ − η
(γ(η)g, γ(µ)h)

)
dζ

=
1

2πi

∫
Γ

(
(M(ζ)g, h)∂Ω

(η − ζ)(ζ − µ)
+

(g,M(µ)h)∂Ω

(µ− ζ)(η − µ)
+

(M(η)g, h)∂Ω

(ζ − η)(η − µ)

)
dζ

for g, h ∈ H1/2
ω ; cf. the formulas in [51, §I.1]. The second and third fraction under

the integral on the right-hand side are holomorphic in a neighborhood of O as
functions of ζ and, hence, their integrals vanish. Note that by Lemma 3.1 (iv) the
function M(·) is either analytic in O or has a pole of order one at λk. Together
with the fact that ζ 7→ 1

(η−ζ)(ζ−µ)
is holomorphic in O we obtain

(Pγ(η)g, γ(µ)h) =
(ResλkMg, h)∂Ω

(η − λk)(λk − µ)
;

cf. (1.1). It follows

(ResλkMg, h)∂Ω = (η − λk)(λk − µ)(Pγ(η)g, γ(µ)h), g, h ∈ H1/2
ω ,

and, in particular,

ResωλkMg = (η − λk)(λk − µ)
(
γ(µ)∗Pγ(η)g

)
|ω, g ∈ H1/2

ω . (3.11)

This implies the inclusion ⊂ in (3.10).
For the proof of the second inclusion in (3.10) let u ∈ ker(AD − λk) and let

ε > 0. Since γ(µ)∗P is a bounded operator from L2(Ω) to H−1/2(∂Ω), there exists
δ > 0 such that ‖u − v‖L2(Ω) < δ implies ‖γ(µ)∗Pu − γ(µ)∗Pv‖H−1/2(∂Ω) < ε.
According to Proposition 3.4 the set

span
{
γ(η)g : η ∈ C \ R, g ∈ H1/2

ω

}
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is dense in L2(Ω), hence there exist l ∈ N, ηj ∈ C \ R and gj ∈ H1/2
ω , 1 ≤ j ≤ l,

such that ∥∥∥u− l∑
j=1

γ(ηj)gj

∥∥∥
L2(Ω)

< δ

and, consequently,∥∥∥γ(µ)∗Pu− γ(µ)∗P
l∑

j=1

γ(ηj)gj

∥∥∥
H−1/2(∂Ω)

< ε.

Since u ∈ ker(AD − λk), we have Pu = u. Moreover, the mapping H−1/2(∂Ω) 3
h 7→ h|ω ∈ (H

1/2
ω )′ is continuous with norm less than one, and with the help of

the identity (3.11) it follows∥∥∥∥(γ(µ)∗u
)
|ω −

l∑
j=1

ResωλkMgj

(ηj − λk)(λk − µ)

∥∥∥∥
(H

1/2
ω )′

< ε,

hence, (γ(µ)∗u)|ω belongs to the closure of ran ResωλkM . Since ker(AD − λk) is
finite-dimensional, the inclusion ⊂ in (3.10) implies that also the dimension of
ran ResωλkM is finite. Thus

(γ(µ)∗u)|ω ∈ ran ResωλkM

and we have proved the equality (3.10). Therefore τk is a bijective linear mapping
between finite-dimensional spaces, and, hence, an isomorphism. From this it
follows immediately that each eigenvalue of AD is a pole of M(·) on ω. On the
other hand it follows from Lemma 3.1 (iv) that M(·) is holomorphic on ρ(AD).
Hence σ(AD) coincides with the set of poles of M(·) on ω.

Step 2. In this step we prove the statement on the representation of AD.
Since τk is an isomorphism for each k ∈ N, there exist g

(k)
1 , . . . , g

(k)
n(k) ∈ H

1/2
ω ,

n(k) = dim ker(AD − λk) < ∞, such that the functions e
(k)
i , i = 1, . . . , n(k),

defined as in the theorem, form an orthonormal basis of ker(AD − λk). Since the
spectrum of AD consist only of the isolated eigenvalues λk, it follows that

ADu =
∞∑
k=1

λk

n(k)∑
i=1

(u, e
(k)
i )e

(k)
i , u ∈ domAD,

holds. This completes the proof of the theorem.

Remark 3.9. The connectedness assumption on Ω in the theorems of this section
can be slightly relaxed. The same proof shows that it suffices to require that ω∩∂O
is nonempty for each connected component O of Ω.



3.3 Inverse problems for generalized Robin operators 51

3.3 Inverse problems for generalized Robin operators

In this section we carry over the results of the previous section to realizations AΘ

in L2(Ω) of the uniformly elliptic differential expression L subject to generalized
Robin boundary conditions,

AΘu = Lu, domAΘ =

{
u ∈ H1(Ω),Lu ∈ L2(Ω),

∂u

∂νL

∣∣
∂Ω

+ Θu|∂Ω = 0

}
,

see (2.10). Here Θ : H1/2(∂Ω) → H−1/2(∂Ω) is an operator which satisfies As-
sumption 2.6 from Chapter 2 above, that is, Θ = Θ1 +Θ2, where Θi : H1/2(∂Ω)→
H−1/2(∂Ω) are bounded operators with

(Θig, h)∂Ω = (g,Θih)∂Ω, g, h ∈ H1/2(∂Ω),

i = 1, 2, such that Θ1 is L2-semibounded, i.e.,

(Θ1g, g)∂Ω ≥ cΘ1‖g‖2
L2(∂Ω), g ∈ H1/2(∂Ω),

for some cΘ1 ∈ R, and Θ2 is compact. It follows from Theorem 2.8 that AΘ is a
selfadjoint operator in L2(Ω). By Lemma 2.9 the Robin-to-Dirichlet map

MΘ

(
∂uλ
∂νL

∣∣
∂Ω

+ Θuλ|∂Ω

)
= uλ|∂Ω, Luλ = λuλ,

is well-defined for each λ ∈ ρ(AΘ), and it can alternatively be expressed as

MΘ(λ) = (Θ−M(λ))−1, λ ∈ ρ(AΘ) ∩ ρ(AD),

see (2.22). In this section we show that the knowledge of the mapping MΘ(λ)
for an appropriate set of points λ determines the operator AΘ uniquely up to
unitary equivalence. Additionally we provide a reconstruction result in the case
that the domain Ω is bounded. We first restrict ourselves to the case that the
Robin-to-Dirichlet map MΘ(λ) is given on the whole boundary ∂Ω. Afterwards we
show that under additional conditions on Θ this assumption can be relaxed. We
provide a uniqueness result under local knowledge of the Robin-to-Dirichlet map
in the case that Θ is a multiplication operator, i.e., the functions in the domain
of AΘ satisfy a local, classical Robin boundary condition.

In order to develop an analog of Lemma 3.1 for AΘ and MΘ(λ) instead of AD

and M(λ), respectively, we introduce the Poisson operator for the Robin problem

γΘ(λ) : H−1/2(∂Ω)→ L2(Ω), g 7→ uλ, (3.12)

where uλ is the unique solution of the boundary value problem

Lu = λu,
∂u

∂νL

∣∣
∂Ω

+ Θu|∂Ω = g

for a given g ∈ H−1/2(∂Ω); cf. Lemma 2.9. Then the following holds.
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Lemma 3.10. Let Assumption 2.1 and Assumption 2.6 be satisfied. Moreover,
let λ, µ ∈ ρ(AΘ), let MΘ(λ),MΘ(µ) be the Robin-to-Dirichlet maps in (2.21) and
let γΘ(λ), γΘ(µ) be given in (3.12). Then the following assertions hold.

(i) γΘ(λ) is a bounded operator and its adjoint γΘ(λ)∗ : L2(Ω) → H1/2(∂Ω) is
given by

γΘ(λ)∗u =
(
(AΘ − λ)−1u

)
|∂Ω, u ∈ L2(Ω).

(ii) The identity

γΘ(λ) =
(
I + (λ− µ)(AΘ − λ)−1

)
γΘ(µ)

holds.

(iii) We have

(λ− µ)γΘ(µ)∗γΘ(λ) = MΘ(λ)−MΘ(µ),

and (MΘ(λ)g, h)∂Ω = (g,MΘ(λ)h)∂Ω holds for all g, h ∈ H−1/2(∂Ω).

(iv) MΘ(λ) is a bounded operator from H−1/2(∂Ω) to H1/2(∂Ω), which satisfies

MΘ(λ) = MΘ(µ) + (λ− µ)γΘ(µ)∗
(
I + (λ− µ)(AΘ − λ)−1

)
γΘ(µ). (3.13)

In particular, λ 7→MΘ(λ) is analytic on ρ(AΘ).

Proof. (i) Let λ ∈ ρ(AΘ), let g ∈ H−1/2(∂Ω), and let u ∈ L2(Ω). Moreover, let
uλ = γΘ(λ)g, that is, Luλ = λuλ and ∂uλ

∂νL
|∂Ω+Θuλ|∂Ω = g, and let v = (AΘ−λ)−1u.

Then the second Green identity (1.11) yields

(γΘ(λ)g, u) = (uλ, (AΘ − λ)v) = (uλ,Lv)− (Luλ, v)

=
(∂uλ
∂νL

∣∣
∂Ω
, v|∂Ω

)
∂Ω
−
(
uλ|∂Ω,

∂v

∂νL

∣∣
∂Ω

)
∂Ω

=
(∂uλ
∂νL

∣∣
∂Ω

+ Θuλ|∂Ω, v|∂Ω

)
∂Ω
−
(
uλ|∂Ω,

∂v

∂νL

∣∣
∂Ω

+ Θv|∂Ω

)
∂Ω

= (g, v|∂Ω)∂Ω =
(
g,
(
(AΘ − λ)−1u

)
|∂Ω

)
∂Ω
.

From this it follows with the closed graph theorem that γΘ(λ) is bounded and
satisfies γΘ(λ)∗u = ((AΘ − λ)−1u)|∂Ω.

The proof of item (ii) is analogous to the proof of Lemma 3.1 (ii) and will be
omitted.
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(iii) Let λ, µ ∈ ρ(AΘ), let g, h ∈ H−1/2(∂Ω), and let uλ = γΘ(λ)g and vµ =
γΘ(µ)h. Then we have

(λ− µ)(γΘ(λ)g,γΘ(µ)h) = (Luλ, vµ)− (uλ,Lvµ)

=
(
uλ|∂Ω,

∂vµ
∂νL

∣∣
∂Ω

)
∂Ω
−
(∂uλ
∂νL

∣∣
∂Ω
, vµ|∂Ω

)
∂Ω

=
(
uλ|∂Ω,

∂vµ
∂νL

∣∣
∂Ω

+ Θvµ|∂Ω

)
∂Ω
−
(∂uλ
∂νL

∣∣
∂Ω

+ Θuλ|∂Ω, vµ|∂Ω

)
∂Ω

= (uλ|∂Ω, h)∂Ω − (g, vµ|∂Ω)∂Ω

= (MΘ(λ)g, h)∂Ω − (g,MΘ(µ)h)∂Ω. (3.14)

With µ = λ it follows (MΘ(λ)g, h)∂Ω = (g,MΘ(λ)h)∂Ω. From this and (3.14) we
obtain the remaining statement of (iii).

The assertions of item (iv) follow from (ii) and (iii) analogously to the proof
of Lemma 3.1 (iv).

The following two theorems show that the knowledge of the Robin-to-Dirichlet
map determines the operator AΘ in (2.10) uniquely up to unitary equivalence and
that AΘ can be recovered from the knowledge of MΘ(λ) in the case that Ω is
bounded. We do not carry out the proofs of these theorems. They are analogous
to the proofs of Theorem 3.7 and Theorem 3.8 in the previous section in the case
ω = ∂Ω, where one has to replace the use of Lemma 3.1 by the application of
Lemma 3.10. Moreover, in order to admit Lipschitz domains Ω which are not
necessarily connected we replace Proposition 3.4 (with ω = ∂Ω) by the following
slightly generalized variant.

Proposition 3.11. Let Assumption 2.1 be satisfied and let

Nλ =
{
u ∈ H1(Ω) : Lu = λu

}
, λ ∈ ρ(AD). (3.15)

Then the space

span {Nλ : λ ∈ C \ R}

is dense in L2(Ω).

Proof. Let u ∈ L2(Ω) be orthogonal to Nλ for all λ ∈ C \ R and let O be a
connected component of Ω. Let λ ∈ C \ R and set

NOλ =
{
v ∈ H1(O) : Lv = λv

}
.

For each vλ ∈ NOλ we define

ṽλ =

{
vλ on O,
0 on Ω \ O.
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Then ṽλ belongs to H1(Ω) and satisfies Lṽλ = λṽλ, that is, ṽλ ∈ Nλ. In particular,

0 = (u, ṽλ) = (u|O, vλ)L2(O),

hence u|O is orthogonal to NOλ for all λ ∈ C\R and Proposition 3.4 yields u|O = 0.
Since the connected component O was chosen arbitrarily, it follows u = 0.

The uniqueness result for AΘ is the following.

Theorem 3.12. Let Ω be a Lipschitz domain, let L1,L2 be two differential ex-
pressions as in Assumption 2.1, and let Θ satisfy Assumption 2.6. Moreover,
let M1

Θ(λ),M2
Θ(λ) be the corresponding Robin-to-Dirichlet maps as in (2.21) and

let A1
Θ, A

2
Θ be the corresponding Robin operators as in (2.10). Assume that D ⊂

ρ(A1
Θ) ∩ ρ(A2

Θ) is a set with an accumulation point in ρ(A1
Θ) ∩ ρ(A2

Θ) and that

(M1
Θ(λ)g, h)∂Ω = (M2

Θ(λ)g, h)∂Ω, g, h ∈ H−1/2(∂Ω),

holds for all λ ∈ D. Then A1
Θ and A2

Θ are unitarily equivalent.

In case Ω is bounded, AΘ can be recovered from the knowledge of MΘ(λ) as
follows.

Theorem 3.13. Let Ω and L be as in Assumption 2.1 and let, additionally, Ω
be bounded. Moreover, let Θ satisfy Assumption 2.6, let AΘ be the selfadjoint
operator in (2.5), and let MΘ(λ) be the Robin-to-Dirichlet map in (2.21), λ ∈
ρ(AΘ). Then the eigenvalues of AΘ coincide with the poles of MΘ(·). For each
eigenvalue λk of AΘ the mapping

τk : ker(AΘ − λk)→ ran ResλkMΘ, u 7→ u|∂Ω

is an isomorphism. In particular, there exist g
(k)
1 , . . . , g

(k)
n(k) ∈ H−1/2(∂Ω) such that

e
(k)
i := τ−1

k (ResλkMΘ) g
(k)
i , i = 1, . . . , n(k),

form an orthonormal basis of ker(AΘ − λk) and the identity

AΘu =
∞∑
k=1

λk

n(k)∑
i=1

(u, e
(k)
i )e

(k)
i , u ∈ domAΘ,

holds.
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Let us finally come to the case of partial data. We now assume additionally
that the operator Θ in the boundary condition has the form

Θg = ϑg, g ∈ H1/2(∂Ω), (3.16)

where ϑ : ∂Ω → R is a bounded, measurable function. Then Θ : H1/2(∂Ω) →
H−1/2(∂Ω) is a bounded operator with

(Θg, g)∂Ω ≥ inf ϑ‖g‖2
L2(∂Ω), g ∈ H1/2(∂Ω),

and, hence, satisfies Assumption 2.6. Therefore AΘ in (2.10) is selfadjoint by
Theorem 2.8, the Robin-to-Dirichlet-map MΘ(λ) in (2.21) is well-defined, and
Lemma 3.10 is applicable. In order to prove that AΘ is determined uniquely by
the partial knowledge of MΘ(λ) we need the following analog of Proposition 3.4.

Let again ω ⊂ ∂Ω be a nonempty, relatively open set. For λ ∈ ρ(AΘ) let

NΘ
λ =

{
u ∈ H1(Ω) : Lu = λu, supp

( ∂u
∂νL

∣∣
∂Ω

+ Θu|∂Ω

)
⊂ ω

}
,

where the support of some h ∈ H−1/2(∂Ω) is the smallest closed set ω̃ such that
(h, g)∂Ω = 0 for all g ∈ H1/2(∂Ω) with supp g ⊂ ∂Ω \ ω̃.

Proposition 3.14. Let Assumption 2.1 be satisfied and let Θ be given in (3.16).
Then

span
{
NΘ
λ : λ ∈ C \ R

}
is dense in L2(Ω).

Proof. Let Ω̃ and L̃ be defined as in the proof of Proposition 3.4 above. Let us
define a function ϑ̃ : ∂Ω̃→ R by

ϑ̃ =

{
ϑ on ∂Ω \ ω,
0 otherwise.

Then ϑ̃ is measurable and bounded. If we set Θ̃g = ϑ̃g, g ∈ H1/2(∂Ω̃) then by
Theorem 2.8 the operator

ÃΘ̃ũ = L̃ũ, dom ÃΘ̃ =

{
ũ ∈ H1(Ω̃) : L̃ũ ∈ L2(Ω̃),

∂ũ

∂νL̃

∣∣
∂Ω̃

+ Θ̃ũ|∂Ω̃ = 0

}
,

in L2(Ω̃) is selfadjoint and semibounded from below. Let ṽ ∈ L2(Ω̃) be such that
ṽ vanishes on Ω, and define

ũλ,ṽ = (ÃΘ̃ − λ)−1ṽ, λ ∈ C \ R.
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Moreover, denote by uλ,ṽ the restriction of ũλ,ṽ to Ω. Then, clearly, Luλ,ṽ = λuλ,ṽ.

We check that the distribution
∂uλ,ṽ
∂νL

∣∣
∂Ω

+ Θuλ,ṽ|∂Ω vanishes on ∂Ω \ω. Indeed, let

g ∈ H1/2(∂Ω) with supp g ⊂ ∂Ω \ ω. By Proposition 1.5 there exists v ∈ H1(Ω)

with v|∂Ω = g. Let ṽ denote the extension of v by zero to Ω̃. Since v|∂Ω is

identically zero on ω, we have ṽ ∈ H1(Ω̃) and supp(ṽ|∂Ω̃) ⊂ ∂Ω \ω. Moreover, by
the definition (1.10) of the conormal derivative we have(∂uλ,ṽ

∂νL

∣∣
∂Ω

+ Θuλ,ṽ|∂Ω, g
)
∂Ω

= −(Luλ,ṽ, v)L2(Ω) + a[uλ,ṽ, v] + (ϑuλ,ṽ|∂Ω, v|∂Ω)L2(∂Ω)

= −(L̃ũλ,ṽ, ṽ)L2(Ω̃) + ã[ũλ,ṽ, ṽ] +

∫
∂Ω\ω

ϑuλ,ṽ|∂Ωv|∂Ωdσ

=
(∂ũλ,ṽ
∂νL̃

∣∣
∂Ω̃

+ Θ̃ũλ,ṽ|∂Ω̃, ṽ|∂Ω̃

)
∂Ω̃

= 0,

where we denoted by ã the sesquilinear form corresponding to the differential
expression L̃ on Ω̃ as in (1.9); hence supp(

∂uλ,ṽ
∂νL

∣∣
∂Ω

+ Θuλ,ṽ|∂Ω) ⊂ ω, that is,

uλ,ṽ ∈ NΘ
λ for all λ ∈ C \ R and all ṽ ∈ L2(Ω̃) with ṽ|Ω = 0.

If we choose u ∈ L2(Ω) being orthogonal to NΘ
λ for all λ ∈ C \ R and denote

by ũ the extension of u by zero to Ω̃ then we obtain

0 = (u, uλ,ṽ)L2(Ω) =
(
ũ, (ÃΘ̃ − λ)−1ṽ

)
L2(Ω̃)

=
(
(ÃΘ̃ − λ)−1ũ, ṽ

)
L2(Ω̃)

for all λ ∈ C \ R and all ṽ ∈ L2(Ω̃) which vanish on Ω, that is,(
(ÃΘ̃ − λ)−1ũ

)
|Ω̃\Ω = 0

for all λ ∈ C\R. Proceeding further as in the proof of Proposition 3.4 we conclude
u = 0, which leads to the statement of the proposition.

The following theorem can be proved analogously to the proof of Theorem 3.7
with Proposition 3.14 and Lemma 3.10 instead of Proposition 3.4 and Lemma 3.1,
respectively.

Theorem 3.15. Let Ω be a connected Lipschitz domain, let ω ⊂ ∂Ω be an open,
nonempty set, let L1,L2 be two differential expressions as in Assumption 2.1,
and let Θ be given in (3.16). Moreover, let M1

Θ(λ),M2
Θ(λ) be the corresponding

Robin-to-Dirichlet maps and let A1
Θ, A

2
Θ be the corresponding Robin operators as

in (2.10). Assume that D ⊂ ρ(A1
Θ) ∩ ρ(A2

Θ) is a set with an accumulation point
in ρ(A1

Θ) ∩ ρ(A2
Θ) and that

(M1
Θ(λ)g, h)∂Ω = (M2

Θ(λ)g, h)∂Ω, g, h ∈ H−1/2(∂Ω), supp g, h ⊂ ω,

holds for all λ ∈ D. Then A1
Θ and A2

Θ are unitarily equivalent.

Note that Remark 3.9 also applies to Theorem 3.15.



57

4 Titchmarsh–Weyl theory for elliptic differen-

tial operators

In this chapter we turn to the second main objective of the present thesis. We
develop an approach to the spectral theory of selfadjoint elliptic differential op-
erators which generalizes results of the classical Titchmarsh–Weyl theory for self-
adjoint ordinary differential operators. It is a well-known fact, see [41, 121], that
the spectra of the selfadjoint realizations of singular Sturm–Liouville differential
expressions can be recovered from the limiting behavior of the Titchmarsh–Weyl
m-function towards the real axis. In the present chapter we generalize these re-
sults to selfadjoint partial, elliptic differential operators. We consider a uniformly
elliptic, formally symmetric differential expression

L = −
n∑

j,k=1

∂

∂xj
ajk

∂

∂xk
+

n∑
j=1

(
aj

∂

∂xj
− ∂

∂xj
aj

)
+ a

on a (bounded or unbounded) Lipschitz domain Ω as in Assumption 2.1. The
function λ 7→M(λ), where M(λ) is the Dirichlet-to-Neumann map

M(λ)uλ|∂Ω = −∂uλ
∂νL

∣∣
∂Ω
, Luλ = λuλ,

in (2.9), is the natural multidimensional analog of the Titchmarsh–Weyl m-
function. In the main theorems of this section we prove that the whole spectral
data of the selfadjoint Dirichlet operator

ADu = Lu, domAD =
{
u ∈ H1(Ω) : Lu ∈ L2(Ω), u|∂Ω = 0

}
,

in L2(Ω), see (2.5), is encoded in the function M(·). Particularly, we give a com-
plete description of all isolated and embedded eigenvalues and of the absolutely
continuous spectrum of AD in terms of the limiting behavior of M(·) towards the
real line and we prove a sufficient criterion for the absence of singular continuous
spectrum. In the second part of this chapter we provide generalizations of these
results to the case of a partial knowledge of the Dirichlet-to-Neumann map and
to further selfadjoint realizations of L with (in general) nonlocal boundary con-
ditions of Robin type. Parts of the results of the present chapter were published
in [27].

4.1 A characterization of the Dirichlet spectrum

In this section we describe the complete spectrum of the Dirichlet operator AD by
means of the behavior of the Dirichlet-to-Neumann map M(λ) for λ close to the
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real axis. In particular, we characterize the isolated and embedded eigenvalues
of AD together with the corresponding eigenspaces and the absolutely continuous
spectrum and give a sufficient condition for the absence of singular continuous
spectrum within some interval. In order to keep the results and proofs simple we
first consider the case that the Dirichlet-to-Neumann map M(λ) is known on the
whole boundary ∂Ω.

In view of the characterization of the eigenvalues of the Dirichlet operator in
the first theorem of this section we state the following simple lemma.

Lemma 4.1. Let Assumption 2.1 be satisfied and let M(λ+ iη) be the Dirichlet-
to-Neumann map in (2.9). Then for all λ ∈ R the strong limit

s-lim
η↘0

ηM(λ+ iη) (4.1)

exists, that is, limη↘0 ηM(λ+ iη)g exists in H−1/2(∂Ω) for all g ∈ H1/2(∂Ω).

Proof. Let λ ∈ R and g ∈ H1/2(∂Ω). For an arbitrary µ ∈ ρ(AD) Lemma 3.1 (iii)
and (iv) lead to

M(λ+iη)g = M(µ)g

+ (λ+ iη − µ)γ(µ)∗
(
I + (λ+ iη − µ)(AD − (λ+ iη))−1

)
γ(µ)g (4.2)

for all η > 0. Moreover, when E(·) denotes the spectral measure of AD, we have∥∥η(AD−(λ+ iη))−1γ(µ)g − iE({λ})γ(µ)g
∥∥2

=

∫
R

∣∣∣∣ η

t− λ− iη
− i1{λ}

∣∣∣∣2 d (E(t)γ(µ)g, γ(µ)g)→ 0 as η ↘ 0 (4.3)

by the dominated convergence theorem, that is, η(AD−(λ+iη))−1γ(µ)g converges
to iE({λ})γ(µ)g as η ↘ 0. From this and (4.2) we obtain

lim
η↘0

ηM(λ+ iη)g = lim
η↘0

η(λ+ iη − µ)γ(µ)∗(λ+ iη − µ)(AD − (λ+ iη))−1γ(µ)g

= (λ− µ)γ(µ)∗(λ− µ)iE({λ})γ(µ)g;

in particular, the strong limit (4.1) exists.

The following theorem is one of the main results of this thesis. It shows that
the whole spectral data of AD can be recovered from the knowledge of the function
M(·). Particularly, we provide a complete characterization of all eigenvalues and
the corresponding eigenspaces. We point out that this result is the multidimen-
sional analog of the main theorem in [41], where the spectra of selfadjoint singular
Sturm–Liouville operators were characterized by means of the limiting behavior
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of the associated Titchmarsh–Weyl m-function; cf. also [73] for analogous state-
ments for Hamiltonian systems. For similar results in the abstract framework of
Q-functions associated with selfadjoint operators in Hilbert spaces see [25,97]. For
the idea of the proof of item (i) we refer the reader to [51]. Recall that σp(AD)
and σc(AD) denote the point spectrum and the continuous spectrum, respectively,
of AD and that ResλM is the residue of the function M(·) at λ.

Theorem 4.2. Let Assumption 2.1 be satisfied, let AD be the selfadjoint Dirichlet
operator in (2.5) and let M(λ) be the Dirichlet-to-Neumann map in (2.9). For
λ ∈ R the following assertions hold.

(i) λ ∈ ρ(AD) if and only if M(·) can be continued analytically to λ.

(ii) λ ∈ σp(AD) if and only if s-limη↘0 ηM(λ + iη) 6= 0. If λ is an eigenvalue
with finite multiplicity then the mapping

τ : ker(AD − λ)→
{

lim
η↘0

ηM(λ+ iη)g : g ∈ H1/2(∂Ω)
}
,

u 7→ ∂u

∂νL

∣∣
∂Ω
, (4.4)

is bijective; if λ is an eigenvalue with infinite multiplicity then the mapping

τ : ker(AD − λ)→ clτ

{
lim
η↘0

ηM(λ+ iη)g : g ∈ H1/2(∂Ω)
}
,

u 7→ ∂u

∂νL

∣∣
∂Ω
, (4.5)

is bijective, where clτ denotes the closure in the normed space ran τ .

(iii) λ is an isolated eigenvalue of AD if and only if λ is a pole of M(·). If λ is
an isolated eigenvalue with finite multiplicity then the mapping

τ : ker(AD − λ)→ ran ResλM, u 7→ ∂u

∂νL

∣∣
∂Ω
, (4.6)

is bijective; if λ is an isolated eigenvalue with infinite multiplicity then the
mapping

τ : ker(AD − λ)→ clτ (ran ResλM), u 7→ ∂u

∂νL

∣∣
∂Ω
, (4.7)

is bijective with clτ as in (ii).

(iv) λ ∈ σc(AD) if and only if s-limη↘0 ηM(λ + iη) = 0 and M(·) cannot be
continued analytically to λ.
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Proof. (i) It follows from Lemma 3.1 (iv) that M(·) is analytic on ρ(AD). In
order to verify the other implication, let us assume that M(·) can be continued
analytically to some λ ∈ R. Let us choose a, b ∈ R \ σp(AD) with a < b such that
λ ∈ (a, b) and such that [a, b] is contained in the maximal domain of analyticity
of the function M(·). The spectral projection E((a, b)) of AD corresponding to
the interval (a, b) is given by Stone’s formula

E((a, b)) = lim
δ↘0

1

2πi

∫ b

a

(
(AD − (t+ iδ))−1 − (AD − (t− iδ))−1

)
dt, (4.8)

see (1.3), where the integral on the right-hand side converges in the strong sense.
Let γ(µ) denote the Poisson operator in (3.1). Combining (4.8) with the iden-
tity (3.2) in Lemma 3.1 we obtain

γ(µ)∗E((a, b))γ(µ) = lim
δ↘0

1

2πi

∫ b

a

(
M(t+ iδ)−M(µ)

(t+ iδ − µ)(t+ iδ − µ)
− γ(µ)∗γ(µ)

t+ iδ − µ

+
γ(µ)∗γ(µ)

t− iδ − µ
− M(t− iδ)−M(µ)

(t− iδ − µ)(t− iδ − µ)

)
dt = 0

for each µ ∈ C \ R, since M(·) is holomorphic in an open neighborhood of the
interval [a, b] in C. In particular,(

E((a, b))γ(µ)g, γ(µ)g
)

= 0, g ∈ H1/2(∂Ω), µ ∈ C \ R. (4.9)

Recall next that by Proposition 3.11

span
{
γ(µ)g : µ ∈ C \ R, g ∈ H1/2(∂Ω)

}
is dense in L2(Ω). Hence (4.9) yields E((a, b)) = 0. Now λ ∈ (a, b) implies
λ ∈ ρ(AD).

(ii) We prove that the operator τ in (4.5) is bijective for all λ ∈ R; from this it
follows immediately that λ is an eigenvalue of AD if and only if s-limη↘0 ηM(λ+
iη) 6= 0. Let λ ∈ R. We verify first that the operator τ is injective. Indeed, assume
u ∈ ker(AD − λ) satisfies τu = 0, let µ ∈ C \ R, and let vµ ∈ Nµ, see (3.15), that
is, vµ ∈ H1(Ω) and Lvµ = µvµ. Then the second Green identity (1.11) yields

(λ− µ)(u, vµ) = (ADu, vµ)− (u,Lvµ)

=
(
u|∂Ω,

∂vµ
∂νL

∣∣
∂Ω

)
∂Ω
−
( ∂u
∂νL

∣∣
∂Ω
, vµ|∂Ω

)
∂Ω

= 0,

since u|∂Ω = 0 and ∂u
∂νL
|∂Ω = τu = 0. Since

span {Nλ : λ ∈ C \ R}
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is dense in L2(Ω) by Proposition 3.11, it follows u = 0, that is, τ is injective.
Let us set

Fλ =
{

lim
η↘0

ηM(λ+ iη)g : g ∈ H1/2(∂Ω)
}
.

In order to prove the surjectivity of τ we will verify the identity

Fλ ⊂ ran τ ⊂ Fλ. (4.10)

Since AD is semibounded from below, see Theorem 2.3, we can fix some µ ∈
R ∩ ρ(AD). Note that for each u ∈ ker(AD − λ) the identity

τu =
∂u

∂νL

∣∣
∂Ω

=
∂

∂νL

(
(AD − µ)−1(AD − µ)u

)∣∣
∂Ω

= (λ− µ)
∂

∂νL

(
(AD − µ)−1u

)∣∣
∂Ω

= (µ− λ)γ(µ)∗u

holds by Lemma 3.1 (i), where γ(µ) is the Poisson operator in (3.1); in particular,

ran τ = ran (γ(µ)∗ � ker(AD − λ)) .

Thus, in order to verify (4.10) it is sufficient to show

Fλ ⊂ ran
(
γ(µ)∗ � ker(AD − λ)

)
⊂ Fλ. (4.11)

Indeed, if we denote by E(·) the spectral measure of AD and by P = E({λ}) the
orthogonal projection in L2(Ω) onto ker(AD − λ) then

lim
η↘0

η(AD − (λ+ iη))−1γ(ν)g = iPγ(ν)g (4.12)

holds for all g ∈ H1/2(∂Ω) and all ν ∈ C \ R, see (4.3). Furthermore, note that
the identity

γ(µ)∗(AD−z)−1γ(ν)

=
M(z)

(z − ν)(z − µ)
+

M(µ)

(z − µ)(ν − µ)
− M(ν)

(z − ν)(ν − µ)
(4.13)

holds for ν, z ∈ C \ R satisfying z 6= ν. Indeed, by Lemma 3.1 (ii) and the first
statement in Lemma 3.1 (iii) we have

γ(µ)∗(AD − z)−1γ(ν) = γ(µ)∗
(
γ(z)− γ(ν)

z − ν

)
=

1

z − ν

(
M(z)−M(µ)

z − µ
− M(ν)−M(µ)

ν − µ

)
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and an easy computation yields (4.13). The formulas (4.12) and (4.13) and the
continuity of γ(µ)∗ imply

limη↘0 ηM(λ+ iη)g

(λ− ν)(λ− µ)
= lim

η↘0
ηγ(µ)∗(AD − (λ+ iη))−1γ(ν)g

= iγ(µ)∗Pγ(ν)g (4.14)

for all g ∈ H1/2(∂Ω) and all ν ∈ C \ R. From this we obtain the first inclusion
in (4.11). Moreover, it follows from Proposition 3.11 that

span
{
Pγ(ν)g : ν ∈ C \ R, g ∈ H1/2(∂Ω)

}
is dense in ker(A − λ). Thus (4.14) also leads to the second inclusion in (4.11)
and, consequently, we obtain (4.10). In particular, we have Fλ ⊂ ran τ and
clτ (Fλ) = Fλ ∩ ran τ = ran τ . Therefore τ in (4.5) is surjective and, hence,
bijective. Clearly, if dim ker(AD − λ) is finite then equality holds in (4.10), which
leads to the bijectivity of (4.4) and completes the proof of (ii).

(iii) Let λ be an isolated eigenvalue of AD. Then there exists an open neigh-
borhood O of λ such that z 7→ (AD−z)−1 is holomorphic on O\{λ}. Thus, by (i),
M(·) is holomorphic on O \ {λ}. Moreover, by (ii), there exists g ∈ H1/2(∂Ω)
such that limη↘0 iηM(λ+ iη)g 6= 0. Hence λ is a pole of M(·) and it follows from
the formula (3.2) in Lemma 3.1 that the order of the pole is one. Moreover, the
limit

lim
z→λ

(z − λ)M(z)g = ResλM(·)g

exists for all g ∈ H1/2(∂Ω) and, clearly, it coincides with limη↘0 iηM(λ + iη)g.
Therefore (4.7) is a consequence of (4.5). Analogously, the identity (4.6) follows
immediately from (4.4). If, conversely, λ is a pole of M(·) then clearly there exists
g ∈ H1/2(∂Ω) such that limη↘0 ηM(λ+ iη)g 6= 0 and it follows from (ii) that λ is
an eigenvalue of AD. Since M(·) is holomorphic on a punctured neighborhood of
λ, by (i) the same holds for the function z 7→ (AD − z)−1. Therefore λ is isolated
in σ(AD) and, hence, λ is an isolated eigenvalue of AD.

(iv) Since σc(AD) = R \ (ρ(AD)∪σp(AD)), the statement of (iv) follows imme-
diately from (i) and (ii).

In the special case that Ω is bounded the spectrum of AD is purely discrete,
see Theorem 2.3 above, that is, σ(AD) consists of isolated eigenvalues with finite
multiplicities. In this case Theorem 4.2 can be regarded as a special case of
Theorem 3.8 in Chapter 3 above with ω = ∂Ω.

In our next main result we characterize the absolutely continuous spectrum of
AD by means of the limits of M(λ) when λ approaches the real axis. In order to
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do so we define the absolutely continuous closure of a Borel set χ ⊂ R by

clac(χ) :=
{
x ∈ R : |(x− ε, x+ ε) ∩ χ| > 0 for all ε > 0

}
, (4.15)

where | · | denotes the Lebesgue measure on R; sometimes clac(χ) is also called
the essential closure of χ. The proofs of the next two theorems require the fol-
lowing lemma from measure theory. For a proof of the lemma see Lemma A.1 in
Appendix A.1. Recall that each σ-finite Borel measure µ on R admits a unique
decomposition µ = µac + µs, where µac is absolutely continuous (with respect to
the Lebesgue measure) and µs is singular, and that the singular part µs can be
decomposed further into the singular continuous part µsc and the pure point part;
cf. Appendix A.1. For a Borel measure µ on R we define

suppµ := {x ∈ R : µ((x− ε, x+ ε)) > 0 for all ε > 0} ,

the set of all growth points of µ.

Lemma 4.3. Let µ be a finite Borel measure on R and denote by F (·) its Borel
transform, i.e.,

F (λ) =

∫
R

1

t− λ
dµ(t), λ ∈ C \ R.

Then the limit ImF (x+ i0) = limy↘0 ImF (x+ iy) exists and is finite for Lebesgue
almost all x ∈ R. Moreover, for the absolutely continuous part µac and the singular
continuous part µsc of µ the following assertions hold.

(i) suppµac = clac({x ∈ R : 0 < ImF (x+ i0) < +∞}).

(ii) The set Msc = {x ∈ R : ImF (x + i0) = +∞, limy↘0 yF (x + iy) = 0} is a
support for µsc, that is, µsc(R \Msc) = 0.

The following result is the multidimensional analog of a well-known and widely
used statement from singular Sturm–Liouville theory; cf., e.g., [13, 64, 121]. It
states that the absolutely continuous spectrum of AD can be detected by the
limits of the imaginary part of the Dirichlet-to-Neumann map towards the real
line. For similar results in an abstract framework see, e.g., [34].

Theorem 4.4. Let Assumption 2.1 be satisfied, let AD be the selfadjoint Dirichlet
operator in (2.5), and let M(λ) be the Dirichlet-to-Neumann map in (2.9). Then
the absolutely continuous spectrum of AD is given by

σac(AD) =
⋃

g∈H1/2(∂Ω)

clac

({
x ∈ R : 0 < Im(M(x+ i0)g, g)∂Ω < +∞

})
. (4.16)

In particular, if a, b ∈ R with a < b then (a, b) ∩ σac(AD) = ∅ if and only if
Im(M(x+ i0)g, g)∂Ω = 0 holds for all g ∈ H1/2(∂Ω) and for almost all x ∈ (a, b).
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Proof. Step 1. Recall that γ(ζ) denotes the Poisson operator for ζ ∈ ρ(AD),
see (3.1). In this first step our aim is to verify that the absolutely continuous
spectrum of AD is given by

σac(AD) =
⋃

ζ∈C\R,
g∈H1/2(∂Ω)

suppµγ(ζ)g,ac, (4.17)

where µu = (E(·)u, u), u ∈ L2(Ω), and E(·) denotes the spectral measure of AD.
Let Hac denote the absolutely continuous subspace of L2(Ω) with respect to AD

and letAD,ac be the absolutely continuous part ofAD. Let λ /∈ σac(AD) = σ(AD,ac).
Then there exists ε > 0 such that E((λ − ε, λ + ε)) � Hac = 0, in particular,
µu((λ− ε, λ+ ε)) = 0 for all u ∈ Hac. For arbitrary ζ ∈ C \ R and g ∈ H1/2(∂Ω)
we have

µγ(ζ)g,ac((λ− ε, λ+ ε)) = µPacγ(ζ)g((λ− ε, λ+ ε)) = 0,

where Pac denotes the orthogonal projection in L2(Ω) onto Hac. Hence we have

λ /∈
⋃

ζ∈C\R,
g∈H1/2(∂Ω)

suppµγ(ζ)g,ac.

Since σac(AD) is closed, we have proved the inclusion ⊃ in (4.17). In order to
verify the converse inclusion assume that λ does not belong to the right-hand side
of (4.17). Then there exists ε > 0 such that (λ − ε, λ + ε) ⊂ R \ suppµγ(ζ)g,ac =
R \ suppµPacγ(ζ)g for all ζ ∈ C \ R, g ∈ H1/2(∂Ω), that is,

‖E((λ− ε, λ+ ε))Pacγ(ζ)g‖2 = (E((λ− ε, λ+ ε))Pacγ(ζ)g, Pacγ(ζ)g) = 0

for all ζ ∈ C \ R, g ∈ H1/2(∂Ω). Since it follows from Proposition 3.11 that

span
{
Pacγ(ζ)g : ζ ∈ C \ R, g ∈ H1/2(∂Ω)

}
is dense in Hac, we obtain E((λ − ε, λ + ε)) � Hac = 0, that is, λ /∈ σ(AD,ac) =
σac(AD). Thus we have proved (4.17).

Step 2. In this step we observe that for each ζ ∈ C\R and each g ∈ H1/2(∂Ω)
we have

suppµγ(ζ)g,ac

= clac

({
x ∈ R : 0 < Im

(
(AD − (x+ i0))−1γ(ζ)g, γ(ζ)g

)
< +∞

})
. (4.18)
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Indeed, for each ζ ∈ C \ R and each g ∈ H1/2(∂Ω) the Borel transform of the
finite Borel measure µγ(ζ)g = (E(·)γ(ζ)g, γ(ζ)g) is given by

Fγ(ζ)g(x+ iy) =

∫
R

1

t− (x+ iy)
d(E(t)γ(ζ)g, γ(ζ)g)

=
(
(AD − (x+ iy))−1γ(ζ)g, γ(ζ)g

)
, x ∈ R, y > 0.

Hence Lemma 4.3 (i) implies (4.18).
Step 3. In this third step we verify that

0 < Im
(
(AD − (x+ i0))−1γ(ζ)g, γ(ζ)g

)
< +∞

⇐⇒ 0 < Im(M(x+ i0)g, g)∂Ω < +∞ (4.19)

is true for all x ∈ R, all g ∈ H1/2(∂Ω), and all ζ ∈ C \ R. We make use of the
formula (3.2) and obtain for y > 0, ζ ∈ C \ R, and g ∈ H1/2(∂Ω)

Im(M(x+ iy)g, g)∂Ω

= y‖γ(ζ)g‖2
L2(Ω) +

(
|x− ζ|2 − y2

)
Im
(
(AD − (x+ iy))−1γ(ζ)g, γ(ζ)g

)
+ 2(x− Re ζ)yRe

(
(AD − (x+ iy))−1γ(ζ)g, γ(ζ)g

)
.

Moreover, for y > 0 we have

yRe
(
(AD − (x+ iy))−1γ(ζ)g, γ(ζ)g

)
=

∫
R

y(t− x)

(t− x)2 + y2
d(E(t)γ(ζ)g, γ(ζ)g),

which converges to zero for y ↘ 0 by the dominated convergence theorem as the
integrand is bounded by 1/2. Hence

Im(M(x+ i0)g, g)∂Ω = |x− ζ|2 Im
(
(AD − (x+ i0))−1γ(ζ)g, γ(ζ)g

)
. (4.20)

Since |x− ζ|2 > 0, (4.20) yields (4.19).
From Step 1–Step 3 the representation (4.16) follows.
Step 4. In this last step we prove the remaining assertion of the theorem. Let

a < b and assume (a, b) ∩ σac(AD) = ∅. Then (4.16) implies

∅ = clac ({x ∈ R : 0 < Im(M(x+ i0)g, g)∂Ω < +∞}) ∩ (a, b)

for each g ∈ H1/2(∂Ω). Consequently, for each g ∈ H1/2(∂Ω) and each x ∈ (a, b)
there exists ε > 0 with∣∣(x− ε, x+ ε) ∩ {x ∈ R : 0 < Im(M(x+ i0)g, g)∂Ω < +∞}

∣∣ = 0. (4.21)



66 4 Titchmarsh–Weyl theory for elliptic differential operators

Since by (4.20) and Lemma 4.3

Im(M(x+ i0)g, g)∂Ω = |x− ζ| ImFγ(ζ)g(x+ i0), ζ ∈ C \ R,

exists and is finite for Lebesgue almost all x ∈ R, it follows from (4.21) that
Im(M(x + i0)g, g)∂Ω = 0 for all g ∈ H1/2(∂Ω) and almost all x ∈ (a, b). If,
conversely, Im(M(x + i0)g, g)∂Ω = 0 holds for all g ∈ H1/2(∂Ω) and almost all
x ∈ (a, b), then clearly the intersection of (a, b) with the right-hand side in (4.16)
is empty and, hence, we obtain σac(AD) ∩ (a, b) = ∅.

In the next theorem a sufficient criterion for the absence of singular continuous
spectrum of AD within some interval by means of the limiting behavior of M(·)
is given; cf. [34] for an abstract approach.

Theorem 4.5. Let Assumption 2.1 be satisfied, let AD be the Dirichlet operator
in (2.5), and let M(λ) be the Dirichlet-to-Neumann map in (2.9). Moreover, let
a, b ∈ R with a < b. If for each g ∈ H1/2(∂Ω) there exist at most countably many
x ∈ (a, b) such that

Im(M(x+ iy)g, g)∂Ω → +∞ and y(M(x+ iy)g, g)∂Ω → 0, y ↘ 0, (4.22)

then (a, b) ∩ σsc(AD) = ∅.

Proof. Analogously to Step 1 in the proof of Theorem 4.4 it can be seen that the
singular continuous spectrum of AD is given by

σsc(AD) =
⋃

ζ∈C\R,
g∈H1/2(∂Ω)

suppµγ(ζ)g,sc. (4.23)

From (4.22) it follows with the help of (4.20) and (4.14) that for each g ∈ H1/2(∂Ω)
and each fixed ζ ∈ C \R there exist at most countably many x ∈ (a, b) such that

Im
(
(AD − (x+ iy))−1γ(ζ)g, γ(ζ)g

)
→ +∞

and

y
(
(AD − (x+ iy))−1γ(ζ)g, γ(ζ)g

)
→ 0

as y ↘ 0. With Lemma 4.3 (ii) it follows that µγ(ζ)g,sc has a countable support
within the interval (a, b) for each g ∈ H1/2(∂Ω) and each ζ ∈ C \ R. Since
a singular continuous measure does not possess any point masses, we conclude
that µγ(ζ)g,sc is trivial on (a, b) for all ζ ∈ C \ R and all g ∈ H1/2(∂Ω). Finally,
from (4.23) it follows σsc(AD) ∩ (a, b) = ∅.



4.2 Generalizations and extensions 67

Finally, we state the following corollary of the theorems of this section. It pro-
vides sufficient criteria for the spectrum of AD to be purely absolutely continuous
or purely singular continuous, respectively, in some interval.

Corollary 4.6. Assume that Assumption 2.1 is satisfied. Let AD be the Dirichlet
operator in (2.5), let M(λ) be the Dirichlet-to-Neumann map in (2.9), and let
a, b ∈ R with a < b. Moreover, for all g ∈ H1/2(∂Ω) and all x ∈ (a, b) let

lim
y↘0

yM(x+ iy)g = 0.

Then the following assertions hold.

(i) If Im(M(x + i0)g, g)∂Ω = 0 holds for all g ∈ H1/2(∂Ω) and almost all x ∈
(a, b) then σ(AD) ∩ (a, b) = σsc(AD) ∩ (a, b).

(ii) If for each g ∈ H1/2(∂Ω) there exist at most countably many x ∈ (a, b) such
that Im(M(x+ i0)g, g)∂Ω = +∞ then σ(AD) ∩ (a, b) = σac(AD) ∩ (a, b).

4.2 Generalizations and extensions

In this section we provide extensions and generalizations of the results of the
previous section. On the one hand we show that the spectrum of the selfadjoint
Dirichlet operator can be described completely from knowledge of the function
M(·) on an open subset ω of ∂Ω instead of the whole boundary; this complements
the results of Chapter 3 with partial boundary data. On the other hand we
provide a spectral characterization for operators with generalized Robin boundary
conditions as in (2.10). We show that the results of the previous section remain
valid for such generalized Robin operators when the Dirichlet-to-Neumann map
is replaced by an associated Robin-to-Dirichlet map.

4.2.1 A characterization of the Dirichlet spectrum from partial data

Our aim in this subsection is to characterize the spectrum of the Dirichlet operator
AD by the partial knowledge of the Dirichlet-to-Neumann map. The following
theorem can be considered to be a local variant of Theorem 4.2. For the sake of
completeness we provide a short proof, which is of a similar nature as the proof
of Theorem 4.2. Let ω ⊂ ∂Ω be a nonempty, relatively open set. Recall from
Chapter 3 that the space of functions in H1/2(∂Ω) with support in ω is called

H
1/2
ω , that is,

H1/2
ω =

{
g ∈ H1/2(∂Ω) : supp g ⊂ ω

}
.
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We say that M(·) can be continued analytically to λ ∈ R on ω if there exists
an open neighborhood O of λ in C such that the function (M(·)g, g)∂Ω can be

continued analytically to O for all g ∈ H1/2
ω .

Theorem 4.7. Let Assumption 2.1 be satisfied, let Ω be connected, and let ω ⊂ ∂Ω
be open and nonempty. Moreover, let AD be the selfadjoint Dirichlet operator
in (2.5) and let M(λ) be the Dirichlet-to-Neumann map in (2.9). Then for λ ∈ R
the following assertions hold.

(i) λ ∈ ρ(AD) if and only if M(·) can be continued analytically to λ on ω.

(ii) λ ∈ σp(AD) if and only if limη↘0 η(M(λ+ iη)g, g)∂Ω 6= 0 for some g ∈ H1/2
ω .

(iii) λ is an isolated eigenvalue of AD if and only if λ is a pole of (M(·)g, g)∂Ω

for some g ∈ H1/2
ω .

(iv) λ ∈ σc(AD) if and only if M(·) cannot be continued analytically to λ on ω

and limη↘0 η(M(λ+ iη)g, g)∂Ω = 0 for all g ∈ H1/2
ω .

Proof. (i) The proof of (i) follows precisely the lines of the proof of Theorem 4.2 (i),

where one has to replace H1/2(∂Ω) by H
1/2
ω and use Proposition 3.4 instead of

Proposition 3.11.
(ii) Let E(·) denote the spectral measure of AD. Making use of Lemma 3.1 (iv)

and the calculation (4.3) we obtain

lim
η↘0

η(M(λ+ iη)g, g)∂Ω

= lim
η↘0

η(λ+ iη − µ)(λ+ iη − µ)
(
(AD − (λ+ iη))−1γ(µ)g, γ(µ)g

)
= (λ− µ)(λ− µ)‖E({λ})γ(µ)g‖2 (4.24)

for all µ ∈ C \ R and all g ∈ H
1/2
ω . If limη↘0 η(M(λ + iη)g, g)∂Ω 6= 0 for some

g ∈ H1/2
ω then (4.24) implies E({λ})γ(µ)g 6= 0, that is, λ is an eigenvalue of AD.

For the converse implication note that, as a consequence of Proposition 3.4, the
linear space

span
{
E({λ})γ(µ)g : µ ∈ C \ R, g ∈ H1/2

ω

}
is dense in ker(AD − λ). Thus, if λ belongs to σp(AD) then there exist µ ∈
C \ R and g ∈ H

1/2
ω with E({λ})γ(µ)g 6= 0. From this and (4.24) we conclude

limη↘0 η(M(λ+ iη)g, g)∂Ω 6= 0.
(iii) This statement is an easy consequence of (i) and (ii); cf. the proof of

Theorem 4.2 (iii).
(iv) Since σc(AD) = C \ (ρ(AD) ∪ σp(AD)), the claim follows immediately

from (i) and (ii).
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In the following two theorems we indicate how the absolutely continuous and
singular continuous spectrum of the selfadjoint Dirichlet operator can be detected
from the partial knowledge of the Dirichlet-to-Neumann map. Their proofs follow
the lines of Theorem 4.4 and Theorem 4.5 with H

1/2
ω instead of H1/2(∂Ω) and

Proposition 3.4 instead of Proposition 3.11.

A characterization of the absolutely continuous spectrum of AD by means of
the limits of the partial Dirichlet-to-Neumann map on ω looks as follows. This is
a local version of Theorem 4.4 above.

Theorem 4.8. Let Assumption 2.1 be satisfied, let Ω be connected, and let ω ⊂ ∂Ω
be open and nonempty. Moreover, let AD be the selfadjoint Dirichlet operator
in (2.5), and let M(λ) be the Dirichlet-to-Neumann map in (2.9). Then the
absolutely continuous spectrum of AD is given by

σac(AD) =
⋃

g∈H1/2
ω

clac

({
x ∈ R : 0 < Im(M(x+ i0)g, g)∂Ω < +∞

})
.

In particular, if a, b ∈ R with a < b then (a, b) ∩ σac(AD) = ∅ if and only if

Im(M(x+ i0)g, g)∂Ω = 0 holds for all g ∈ H1/2
ω and for almost all x ∈ (a, b).

Furthermore, the following criterion for the absence of singular continuous
spectrum of AD in some interval can be proved. It is the local variant of Theo-
rem 4.5 above.

Theorem 4.9. Let Assumption 2.1 be satisfied, let Ω be connected, and let ω ⊂ ∂Ω
be open and nonempty. Moreover, let AD be the selfadjoint Dirichlet operator
in (2.5), let M(λ) be the Dirichlet-to-Neumann map in (2.9), and let a, b ∈ R
with a < b. If for each g ∈ H

1/2
ω there exist at most countably many x ∈ (a, b)

such that

Im(M(x+ iy)g, g)∂Ω →∞ and y(M(x+ iy)g, g)∂Ω → 0, y ↘ 0,

then (a, b) ∩ σsc(AD) = ∅.

As an immediate consequence of the theorems of this section we obtain the
following corollary. It contains sufficient criteria for the spectrum of AD to be
purely absolutely continuous or purely singular continuous, respectively, in some
interval, and is the counterpart of Corollary 4.6 for partial boundary data.
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Corollary 4.10. Assume that Assumption 2.1 is satisfied, that Ω is connected,
and that ω is an open, nonempty subset of ∂Ω. Let AD be the selfadjoint Dirichlet
operator in (2.5), let M(λ) be the Dirichlet-to-Neumann map in (2.9), and let

a, b ∈ R with a < b. Moreover, for all g ∈ H1/2
ω and all x ∈ (a, b) let

lim
y↘0

y(M(x+ iy)g, g)∂Ω = 0.

Then the following assertions hold.

(i) If Im(M(x + i0)g, g)∂Ω = 0 holds for all g ∈ H1/2
ω and almost all x ∈ (a, b)

then σ(AD) ∩ (a, b) = σsc(AD) ∩ (a, b).

(ii) If for each g ∈ H1/2
ω there exist at most countably many x ∈ (a, b) such that

Im(M(x+ i0)g, g)∂Ω = +∞ then σ(AD) ∩ (a, b) = σac(AD) ∩ (a, b).

Remark 4.11. In all results of this subsection the assumption that Ω is connected
can be weakened. It suffices to require that ω∩∂O is nonempty for each connected
component O of Ω, and the proofs remain the same.

4.2.2 A characterization of the spectra of generalized Robin operators

In this section we focus on the operator

AΘu = Lu, domAΘ =
{
u ∈ H1(Ω) : Lu ∈ L2(Ω),

∂u

∂νL

∣∣
∂Ω

+ Θu|∂Ω = 0
}
,

in L2(Ω), cf. (2.10), where Θ : H1/2(∂Ω) → H−1/2(∂Ω) is an operator which
satisfies Assumption 2.6 from Chapter 2 above, that is, Θ = Θ1 + Θ2, where
Θi : H1/2(∂Ω)→ H−1/2(∂Ω) are bounded operators with

(Θig, h)∂Ω = (g,Θih)∂Ω, g, h ∈ H1/2(∂Ω),

i = 1, 2, such that Θ1 is L2-semibounded, i.e.,

(Θ1g, g)∂Ω ≥ cΘ1‖g‖2
L2(∂Ω), g ∈ H1/2(∂Ω),

for some cΘ1 ∈ R, and Θ2 is compact. We provide analogs of the theorems in the
previous section, where the Dirichlet operator AD is replaced by the operator AΘ

and the Dirichlet-to-Neumann map M(λ) is replaced by the Robin-to-Dirichlet
map MΘ(λ) which is given by

MΘ(λ) = (Θ−M(λ))−1, λ ∈ ρ(AΘ) ∩ ρ(AD),

see (2.21) and (2.22).
The following lemma is a consequence of the formula (3.13) in Lemma 3.10;

cf. the proof of Lemma 4.1.
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Lemma 4.12. Let Assumption 2.1 and Assumption 2.6 be satisfied and let
MΘ(λ + iη) be the Robin-to-Dirichlet map in (2.21). Then for all λ ∈ R the
strong limit

s-lim
η↘0

ηMΘ(λ+ iη)

exists, that is, limη↘0 ηMΘ(λ+ iη)g exists in H1/2(∂Ω) for all g ∈ H−1/2(∂Ω).

The following theorem is an analog of Theorem 4.2 for the operator AΘ instead
of the Dirichlet operator. We denote by ResλMΘ the residue of the analytic
function MΘ(·) at some pole λ.

Theorem 4.13. Let Assumption 2.1 hold and let Θ satisfy Assumption 2.6. More-
over, let AΘ be the selfadjoint operator given in (2.10) and let MΘ(λ) be the
Robin-to-Dirichlet map in (2.21). For λ ∈ R the following assertions hold.

(i) λ ∈ ρ(AΘ) if and only if MΘ(·) can be continued analytically to λ.

(ii) λ ∈ σp(AΘ) if and only if s-limη↘0 ηMΘ(λ + iη) 6= 0. If λ is an eigenvalue
with finite multiplicity then the mapping

τ : ker(AΘ − λ)→
{

lim
η↘0

ηMΘ(λ+ iη)g : g ∈ H−1/2(∂Ω)
}
, u 7→ u|∂Ω

is bijective; if λ is an eigenvalue with infinite multiplicity then the mapping

τ : ker(AΘ − λ)→ clτ

{
lim
η↘0

ηMΘ(λ+ iη)g : g ∈ H−1/2(∂Ω)
}
, u 7→ u|∂Ω

is bijective, where clτ denotes the closure in the normed space ran τ .

(iii) λ is an isolated eigenvalue of AΘ if and only if λ is a pole of MΘ(·). If λ is
an isolated eigenvalue with finite multiplicity then the mapping

τ : ker(AΘ − λ)→ ran ResλMΘ, u 7→ u|∂Ω

is bijective; if λ is an isolated eigenvalue with infinite multiplicity then the
mapping

τ : ker(AΘ − λ)→ clτ (ran ResλMΘ), u 7→ u|∂Ω

is bijective with clτ as in (ii).

(iv) λ ∈ σc(AΘ) if and only if MΘ(·) cannot be continued analytically to λ and
s-limη↘0 ηMΘ(λ+ iη) = 0.
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The proof of Theorem 4.13 will not be carried out. It is analogous to the proof
of Theorem 4.2, where Lemma 3.1 must be replaced by Lemma 3.10.

If Ω is bounded then the spectrum of AΘ is purely discrete, see Chapter 2,
that is, σ(AΘ) consists of isolated eigenvalues with finite multiplicities. In this
case Theorem 4.13 reduces to Theorem 3.13.

The next theorem shows how the absolutely continuous spectrum of the oper-
ator AΘ in (2.10) can be expressed in terms of the limits of the Robin-to-Dirichlet
map at real points. Recall the definition of the absolutely continuous closure clac

in (4.15).

Theorem 4.14. Let Assumption 2.1 hold and let Θ satisfy Assumption 2.6. More-
over, let AΘ be the selfadjoint operator given in (2.10) and let MΘ(λ) be the
Robin-to-Dirichlet map in (2.21). Then the absolutely continuous spectrum of AΘ

is given by

σac(AΘ) =
⋃

g∈H−1/2(∂Ω)

clac

({
x ∈ R : 0 < Im(MΘ(x+ i0)g, g)∂Ω < +∞

})
.

In particular, if a, b ∈ R with a < b then (a, b) ∩ σac(AΘ) = ∅ if and only if
Im(MΘ(x+i0)g, g)∂Ω = 0 holds for all g ∈ H−1/2(∂Ω) and for almost all x ∈ (a, b).

A sufficient criterion for the absence of singular continuous spectrum within
some interval in terms of the limiting behavior of the function MΘ(·) can be
formulated as follows.

Theorem 4.15. Let Assumption 2.1 hold and let Θ satisfy Assumption 2.6. More-
over, let AΘ be the selfadjoint operator given in (2.10), let MΘ(λ) be the Robin-
to-Dirichlet map in (2.21), and let a, b ∈ R with a < b. If for each g ∈ H−1/2(∂Ω)
there exist at most countably many x ∈ (a, b) such that

Im(MΘ(x+ iy)g, g)∂Ω → +∞ and y(MΘ(x+ iy)g, g)∂Ω → 0, y ↘ 0,

then (a, b) ∩ σsc(AΘ) = ∅.

The proofs of Theorem 4.14 and Theorem 4.15 will be omitted. They are
analogs of the proofs of Theorem 4.4 and Theorem 4.5, respectively, with a use of
Lemma 3.10 instead of Lemma 3.1.

We conclude this chapter with the following immediate corollary of the theo-
rems of this section. It provides sufficient criteria for the spectrum of AΘ to be
purely absolutely continuous or purely singular continuous in terms of the limiting
behavior of the Robin-to-Dirichlet map MΘ(λ) when λ approaches the real line.
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Corollary 4.16. Let Assumption 2.1 be satisfied, let Θ satisfy Assumption 2.6, let
AΘ be the selfadjoint operator in (2.10), and let MΘ(λ) be the Robin-to-Dirichlet
map in (2.21). Let a, b ∈ R with a < b. Moreover, for all g ∈ H−1/2(∂Ω) and all
x ∈ (a, b) let

lim
y↘0

yMΘ(x+ iy)g = 0.

Then the following assertions hold.

(i) If Im(MΘ(x + i0)g, g)∂Ω = 0 holds for all g ∈ H−1/2(∂Ω) and almost all
x ∈ (a, b) then σ(AΘ) ∩ (a, b) = σsc(AΘ) ∩ (a, b).

(ii) If for each g ∈ H−1/2(∂Ω) there exist at most countably many x ∈ (a, b) such
that Im(MΘ(x+ i0)g, g)∂Ω = +∞ then σ(AΘ) ∩ (a, b) = σac(AΘ) ∩ (a, b).
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A Appendix

A.1 Spectral properties of Borel measures

In this appendix we provide some basic statements on the Borel transform of a
finite Borel measure. We point out its connection to the absolutely continuous
and singular continuous parts of the measure as they are used in the main part of
this thesis in order to describe the spectral parts of selfadjoint elliptic differential
operators. The results presented in this appendix are known; our presentation
is mainly based on [120, Chapter 3 and Appendix A.8] and [110, Chapter 8]; cf.
also [112, Chapter IV] for the derivatives of measures.

Let µ be a finite Borel measure on R. Recall that µ admits a unique decom-
position µ = µac + µs, where µac is absolutely continuous and µs is singular (both
with respect to the Lebesgue measure), and that, moreover, the singular part µs

of µ can be decomposed uniquely into µs = µpp + µsc, where µpp is supported on
a countable set and µsc does not possess any point masses, that is, µsc({x}) = 0
for all x ∈ R. Let us denote the set of all growth points of µ by suppµ, that is,

suppµ = {x ∈ R : µ((x− ε, x+ ε)) > 0 for all ε > 0} ;

sometimes this set is also called the spectrum of µ. Note that suppµ is a support
of µ, that is, µ(R \ suppµ) = 0. In order to characterize suppµac we define the
absolutely continuous closure (or essential closure) of a Borel set χ ⊂ R by

clac(χ) =
{
x ∈ R : |(x− ε, x+ ε) ∩ χ| > 0 for all ε > 0

}
,

where | · | denotes the Lebesgue measure on R. It is the aim of this appendix to
provide a proof of the following lemma.

Lemma A.1. Let µ be a finite Borel measure on R and denote by F (·) its Borel
transform, i.e.,

F (λ) =

∫
R

1

t− λ
dµ(t), λ ∈ C \ R.

Then the limit ImF (x+ i0) = limy↘0 ImF (x+ iy) exists and is finite for Lebesgue
almost all x ∈ R. Moreover, for the absolutely continuous part µac and the singular
continuous part µsc of µ the following assertions hold.

(i) suppµac = clac({x ∈ R : 0 < ImF (x+ i0) < +∞}).

(ii) The set Msc = {x ∈ R : ImF (x + i0) = +∞, limy↘0 yF (x + iy) = 0} is a
support for µsc, that is, µsc(R \Msc) = 0.
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Proof. Let us introduce the derivative

(Dµ)(x) := lim
ε↘0

µ((x− ε, x+ ε))

2ε

of µ at x for all x ∈ R where the limit exists in R ∪ {+∞}. It is well known
that (Dµ)(x) exists in R ∪ {+∞} for Lebesgue almost all x ∈ R and coincides
Lebesgue almost everywhere with the Radon–Nikodym derivative of µac, i.e., for
each Borel set χ ⊂ R we have

µac(χ) =

∫
χ

(Dµ)(x)dx, (A.1)

see, e.g., [120, Theorem A.37]. In particular, (Dµ)(x) is finite for almost all x ∈ R.
In order to prove the items (i) and (ii) we will verify the following

Claim. If (Dµ)(x) exists in R ∪ {+∞} then the limit ImF (x + i0) exists in
R ∪ {+∞} and coincides with π(Dµ)(x).

Proof of the claim. Assume first that x ∈ R is chosen such that (Dµ)(x) exists
in R. We observe that

ImF (x+ iy) =

∫
R
Ky(t− x)dµ(t)

holds for y > 0 with Ky(s) := y
s2+y2 , s ∈ R. We have to show that limy↘0 ImF (x+

iy) exists and equals π(Dµ)(x). Let us choose c, C ∈ R with c < (Dµ)(x) < C.
Then there exists δ > 0 such that

c ≤ µ((x− s, x+ s))

2s
≤ C (A.2)

holds for all s ∈ (0, δ]. As an abbreviation we write Iδ := (x − δ, x + δ). Then,
clearly,

ImF (x+ iy) =

∫
Iδ

Ky(t− x)dµ(t) +

∫
R\Iδ

Ky(t− x)dµ(t) (A.3)

for all y > 0 and the second integral on the right-hand side satisfies

0 ≤
∫
R\Iδ

Ky(t− x)dµ(t) ≤ Ky(δ)µ(R)→ 0, y ↘ 0. (A.4)

In order to estimate the first integral in (A.3) we integrate K ′y(s) with respect to
dsdµ(t) over the triangle

{(s, t) : x− s < t < x+ s, 0 < s < δ}
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= {(s, t) : x− δ < t < x,−t+ x < s < δ}
∪ {(s, t) : x ≤ t < x+ δ, t− x < s < δ} .

This yields ∫ δ

0

∫ x+s

x−s
K ′y(s)dµ(t)ds =

∫ δ

0

K ′y(s)µ(Is)ds

and∫ x

x−δ

∫ δ

−t+x
K ′y(s)dsdµ(t) +

∫ x+δ

x

∫ δ

t−x
K ′y(s)dsdµ(t)

=

∫ x

x−δ

(
Ky(δ)−Ky(−t+ x)

)
dµ(t) +

∫ x+δ

x

(
Ky(δ)−Ky(t− x)

)
dµ(t)

= µ(Iδ)Ky(δ)−
∫ x+δ

x−δ
Ky(t− x)dµ(t),

hence ∫ δ

0

K ′y(s)µ(Is)ds = µ(Iδ)Ky(δ)−
∫
Iδ

Ky(t− x)dµ(t). (A.5)

Note further that

δKy(δ) +

∫ δ

0

(−sK ′y(s))ds = arctan(δ/y).

From this together with (A.2) and (A.5) it follows

2c arctan δ/y = 2cδKy(δ) + 2c

∫ δ

0

s(−K ′y(s))ds

≤ µ(Iδ)Ky(δ)−
∫ δ

0

µ(Is)K
′
y(s)ds

=

∫
Iδ

Ky(t− x)dµ(t)

and analogously ∫
Iδ

Ky(t− x)dµ(t) ≤ 2C arctan(δ/y).

Thus we have proved

2c arctan(δ/y) ≤
∫
Iδ

Ky(t− x)dµ(t) ≤ 2C arctan(δ/y);
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passing over to the limit y ↘ 0 and taking (A.3) and (A.4) into account we obtain

πc ≤ lim inf
y↘0

ImF (x+ iy) ≤ lim sup
y↘0

ImF (x+ iy) ≤ πC. (A.6)

Since c and C were chosen arbitrarily with c < (Dµ)(x) < C, it follows that
limy↘0 ImF (x + iy) exists and equals π(Dµ)(x). If (Dµ)(x) = +∞ then for an
arbitrary c ∈ R the above reasoning yields

πc ≤ lim inf
y↘0

ImF (x+ iy)

instead of (A.6), which implies limy↘0 ImF (x + iy) = +∞ and completes the
proof of the claim. �

Now we are able to verify the assertions (i) and (ii) of the lemma.
(i) With the definition

Mac := {x ∈ R : 0 < ImF (x+ i0) < +∞}

we have to prove

suppµac = clac(Mac). (A.7)

Assume first that x /∈ clac(Mac), that is, there exists ε > 0 such that we have
|(x− ε, x+ ε) ∩Mac| = 0 and thus µac((x− ε, x+ ε) ∩Mac) = 0. With

M̃ac := {x ∈ R : 0 < (Dµ)(x) < +∞}

we have M̃ac ⊂Mac by the above claim and it follows

µac((x− ε, x+ ε)) = µac((x− ε, x+ ε) \Mac) ≤ µac

(
(x− ε, x+ ε) \ M̃ac

)
=

∫
(x−ε,x+ε)\M̃ac

(Dµ)(x)dx = 0,

see (A.1); hence x /∈ suppµac. Let now x /∈ suppµac. Then there exists ε > 0
with

0 = µac((x− ε, x+ ε)) =

∫
(x−ε,x+ε)

(Dµ)(x)dx

=
1

π

∫
(x−ε,x+ε)

ImF (x+ i0)dx =
1

π

∫
(x−ε,x+ε)∩Mac

ImF (x+ i0)dx

by the claim. This implies |(x− ε, x+ ε)∩Mac| = 0, that is, x /∈ clac(Mac). Thus
we have shown (A.7).
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(ii) In order to verify the statement of item (ii) we first prove that the singular
part µs of µ does not act on the set of points x with (Dµ)(x) < +∞, that is,

µs

(
{x ∈ R : (Dµ)(x) < +∞}

)
= 0. (A.8)

Let us assume the converse; then there exists a Borel set E with (Dµ)(x) < +∞
for all x ∈ E, |E| = 0, and µ(E) > 0. Let us set

En = {x ∈ E : (Dµ)(x) < n} , n ∈ N.

Then, clearly, E =
⋃
n∈NEn; in particular, there exists n ∈ N, which we fix, with

µ(En) > 0. Let us further define

Aj =
{
x ∈ En : µ((x− δ, x+ δ)) < n2δ for all δ <

1

j

}
, j ∈ N. (A.9)

We have En =
⋃
j∈NAj, hence there exists some j ∈ N with µ(Aj) > 0. By the

regularity of µ there exists a compact set K ⊂ Aj with µ(K) > 0. Moreover, as
a subset of E, K satisfies |K| = 0. Thus for each ε > 0 there exists an open set
V ⊃ K with |V | < ε

3n
. With r := dist(∂V,K) > 0 we choose a sequence of disjoint,

non-degenerate intervals Il ⊂ V , l = 1, . . . , N ≤ ∞, with |Il| < min{ r
3
, 2

3j
} for

all l and
⋃
l Il = V . Let Ilm be precisely those of these intervals which have

a nonempty intersection with K. Moreover, let us extend each Ilm to an open
interval Ĩlm centered in K with |Ĩlm | ≤ 3|Ilm|. Then the Ĩlm satisfy

Ĩlm = (xm − δm, xm + δm)

for appropriate xm ∈ K and δm > 0 with δm < 1
j
. In particular, µ(Ĩlm) < n2δm =

n|Ĩlm| for all m by (A.9). From K ⊂
⋃
m Ĩlm we obtain

µ(K) ≤
∑
m

µ(Ĩlm) < n
∑
m

|Ĩlm| ≤ 3n
∑
m

|Ilm| ≤ 3n|V | < ε.

Since ε > 0 was chosen arbitrarily, it follows µ(K) = 0, a contradiction. Thus we
have proved (A.8). From this and the fact that (Dµ)(x) exists in R ∪ {+∞} for
µ-almost every x ∈ R, see [112, Chapter IV-(9.6)], it follows that

{x ∈ R : (Dµ)(x) = +∞}

is a support for µs. Moreover, (Dµ)(x) = +∞ implies ImF (x + i0) = +∞, see
the above claim. Thus also {x ∈ R : ImF (x + i0) = +∞} is a support for µs.
Furthermore,

|yF (x+ iy)− iµ({x})| ≤
∫
R

∣∣∣∣ y

t− (x+ iy)
− χ{x}(t)

∣∣∣∣ dµ(t)→ 0, y ↘ 0,
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by the dominated convergence theorem; in particular, µ({x}) = 0 if and only if
limy↘0 yF (x+ iy) = 0. This yields that

Msc =
{
x ∈ R : ImF (x+ i0) = +∞, lim

y↘0
yF (x+ iy) = 0

}
is a support for µsc, which completes the proof of the lemma.

A.2 Simplicity of symmetric elliptic differential
operators

In this short appendix we point out that the result of Proposition 3.4 in the main
part of this thesis is equivalent to the fact that the symmetric differential operator

Su = Lu, domS =

{
u ∈ H1(Ω) : Lu ∈ L2(Ω), u|∂Ω = 0,

∂u

∂νL

∣∣
ω

= 0

}
, (A.10)

in L2(Ω) is simple (or completely non-selfadjoint), see Definition A.2 below. Here
L is a uniformly elliptic differential expression as in Assumption 2.1 on a connected
(bounded or unbounded) Lipschitz domain Ω and ω ⊂ ∂Ω is a nonempty, relatively
open set. Theorem A.3 below generalizes the main result in [65], where R. Gilbert
proved the simplicity of certain symmetric ordinary differential operators which
are in the limit-point case at one endpoint. We remark that in the special case
ω = ∂Ω the operator S is called the minimal symmetric operator associated with
L in L2(Ω).

Let us first recall the definition of a simple symmetric operator as it can be
found in, e.g., [3, Chapter VII].

Definition A.2. Let S be a closed, densely defined, symmetric operator in a
Hilbert space H. Assume that there does not exists a nontrivial, S-invariant,
closed subspace H1 of H such that the restriction of S to H1 defines a selfadjoint
operator in H1. Then S is called simple.

Sometimes such an operator is also called completely non-selfadjoint.
The proof of the following theorem uses arguments similar to the proof of [26,

Lemma 2.6]. The idea of Step 2 is due to M. G. Krein, see [86].

Theorem A.3. Let the differential expression L satisfy Assumption 2.1, let Ω be
a connected Lipschitz domain, and let ω be a nonempty, open subset of ∂Ω. Then
the operator S in (A.10) is closed, densely defined, symmetric, and simple.

Proof. Step 1. As a restriction of the selfadjoint Dirichlet operator the operator
S is symmetric. Moreover, domS contains C∞0 (Ω), hence S is densely defined
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in L2(Ω). We verify next that S coincides with the adjoint of the operator T in
L2(Ω) which is defined as

Tu = Lu, domT =
{
u ∈ H1(Ω) : Lu ∈ L2(Ω), supp(u|∂Ω) ⊂ ω

}
.

Let first u ∈ domS. Then for all v ∈ domT the second Green identity (1.11)
yields

(Tv, u) = (v,Lu) +
(
v|∂Ω,

∂u

∂νL

∣∣
∂Ω

)
∂Ω
−
( ∂v
∂νL

∣∣
∂Ω
, u|∂Ω

)
∂Ω

= (v, Su),

since u|∂Ω = 0, ∂u
∂νL
|ω = 0, and supp(v|∂Ω) ⊂ ω. Hence u ∈ domT ∗ and T ∗u = Su.

Let, conversely, u ∈ domT ∗. Since the Dirichlet operator AD is a restriction of
T , we have T ∗ ⊂ AD, hence u ∈ domAD and T ∗u = ADu = Lu. It remains
to show ∂u

∂νL
|ω = 0. Indeed, let g ∈ H1/2(∂Ω) with supp g ⊂ ω. It follows from

Lemma 2.9 that there exists v ∈ H1(Ω) with Lv ∈ L2(Ω) and v|∂Ω = g; in
particular, v ∈ domT . From the second Green identity (1.11) we obtain( ∂u

∂νL

∣∣
∂Ω
, g
)
∂Ω

=
( ∂u
∂νL

∣∣
∂Ω
, v|∂Ω

)
∂Ω

= (u, Tv)− (T ∗u, v) +
(
u|∂Ω,

∂v

∂νL

∣∣
∂Ω

)
∂Ω

= 0,

since u|∂Ω = 0. Hence ∂u
∂νL
|ω = 0, that is, u ∈ domS. Therefore we have T ∗ = S

and, in particular, S is closed.
Step 2. Let us prove that the subspace

M :=
⋂

ν∈C\R

ran(S − ν)

is S-invariant and that the restriction SM of S toM is selfadjoint inM. Indeed,
let u ∈ domS ∩ M. Then for each ν ∈ C \ R there exist uν ∈ domS with
(S − ν)uν = u. Hence, for each ν ∈ C \ R we have

Su = S(S − ν)uν = (S − ν)Suν ∈ ran(S − ν),

that is, Su belongs to M. As a restriction of S, the operator SM is symmetric.
In order to show that SM is selfadjoint, we fix λ ∈ C \ R and prove that

ran(SM − λ) =M (A.11)

holds. Let u ∈ M and define v := (S − λ)−1u. Then, clearly, v ∈ domS, and we
will verify that even v ∈ M holds, that is, v ∈ ran(S − ν) for all ν ∈ C \ R. For
ν 6= λ one can see immediately that the element

vν :=
1

ν − λ
(
(S − ν)−1 − (S − λ)−1

)
u
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in domS satisfies (S − ν)vν = v. It remains to show v ∈ ran(S − λ). Let us
choose a sequence (λk)k∈N ⊂ O, λk 6= λ, with λk → λ, k →∞. As above one gets
(S − λk)−1u ∈ ran(S − λ) for all k ∈ N. Since S is a closed, symmetric operator,
the estimates ‖(S − λ)−1‖ ≤ | Imλ|−1 and ‖(S − λk)−1‖ ≤ | Imλk|−1 hold, which
together with

v − (S − λk)−1u = (S − λ)−1u− (S − λk)−1u = (λ− λk)(S − λ)−1(S − λk)−1u

imply (S−λk)−1u→ v, k →∞. Since (S−λk)−1u belongs to the closed subspace
ran(S−λ), it follows v ∈ ran(S−λ). This proves (A.11) and thus we have shown
that SM is a selfadjoint operator in the Hilbert space M.

Assume now that S is not simple. Then there exists a nontrivial, S-invariant
subspace M′ of L2(Ω) such that the restriction SM′ of S to M′ is selfadjoint
in M′. It follows that for each ν ∈ C \ R we have ran(SM′ − ν) = M′, in
particular, M′ ⊂ M, so that M is nontrivial. On the other hand, since T ∗ = S
the orthogonal complement M⊥ of M in L2(Ω) coincides with the closure of

span {ker(T − ν) : ν ∈ C \ R} ,

and it follows from Proposition 3.4 thatM⊥ = L2(Ω), so thatM must be trivial,
which is a contradiction. Thus S is simple.
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[60] F. Gesztesy, R. Nowell, and W. Pötz, One-dimensional scattering theory for
quantum systems with nontrivial spatial asymptotics, Differential Integral
Equations 10 (1997), 521–546.

[61] F. Gesztesy and B. Simon, Uniqueness theorems in inverse spectral theory
for one-dimensional Schrödinger operators, Trans. Amer. Math. Soc. 348
(1996), 349–373.

[62] F. Gesztesy and B. Simon, A new approach to inverse spectral theory. II.
General real potentials and the connection to the spectral measure, Ann. of
Math. 152 (2000), 593–643.



90 References

[63] F. Gesztesy and B. Simon, On local Borg–Marchenko uniqueness results,
Comm. Math. Phys. 211 (2000), 273–287.

[64] D. J. Gilbert and D. B. Pearson, On subordinacy and analysis of the spec-
trum of one-dimensional Schrödinger operators, J. Math. Anal. Appl. 128
(1987), 30–56.

[65] R. Gilbert, Simplicity of linear ordinary differential operators, J. Differential
Equations 11 (1972), 672–681.

[66] V. I. Gorbachuk and M. L. Gorbachuk, Boundary Value Problems for Oper-
ator Differential Equations, Kluwer Academic Publ., Dordrecht, 1991.

[67] G. Grubb, A characterization of the non-local boundary value problems as-
sociated with an elliptic operator, Ann. Scuola Norm. Sup. Pisa 22 (1968),
425–513.

[68] G. Grubb, On coerciveness and semiboundedness of general boundary prob-
lems, Israel J. Math. 10 (1971), 32–95.

[69] G. Grubb, Krein resolvent formulas for elliptic boundary problems in non-
smooth domains, Rend. Semin. Mat. Univ. Politec. Torino 66 (2008), 271–
297.

[70] G. Grubb, Perturbation of essential spectra of exterior elliptic problems,
Appl. Anal. 90 (2011), 103–123.

[71] G. Grubb, Spectral asymptotics for Robin problems with a discontinuous
coefficient, J. Spectral Theory 1 (2011), 155–177.

[72] G. Grubb, Krein-like extensions and the lower boundedness problem for el-
liptic operators on exterior domains, J. Differential Equations 252 (2012),
852–885.

[73] D. Hinton and K. Shaw, Titchmarsh-Weyl theory for Hamiltonian systems,
Spectral Theory and Differential Operators, 219–231, North-Holland Pub-
lishing Company, 1981.
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