
GRAZ UNIVERSITY OF TECHNOLOGYDISSERTATIONto obtain the title ofDotor of Tehnial Sienesof Graz University of Tehnology
Defended byDejan Aleksandar Peevski

Modelling Inferene and Learningin Biologial Networks of Neurons
Thesis Advisor: O.Univ. Prof. DI Dr.rer.nat. Wolfgang Maassdefended on Otober, 7th, 2011Jury:Advisor: O.Univ. Prof. DI Dr.rer.nat. Wolfgang Maass - TU GrazReviewer: Univ. Prof. Dr.rer.nat. Gordon Pipa - Osnabrük Univ.Dean of Studies: Asso. Prof. DI Dr.teh. Oswin Aihholzer - TU Graz





Eidesstattlihe ErklärungIh erkläre an Eides statt, dass ih die vorliegende Arbeit selbständig verfasst, andereals die angegebenen Quellen / Hilfsmittel niht benutzt, und die den benutztenQuellen wörtlih und inhaltlih entnommene Stellen als solhe kenntlih gemahthabe.
Statutory DelarationI delare that I have authored this thesis independently, that I have not used otherthan the delared soures / resoures, and that I have expliitly marked all materialwhih has been quoted either literally or by ontent from the used soures.

Graz, May 2011 ...........................(signature)





iiiAbstratIn this thesis top-down and bottom-up methods are applied in the study of twoentral questions regarding the funtion of neural iruits in the brain: what typeof omputations they implement and how learning on a synapti level yields usefulomputational funtions on a iruit and behavioral level. Motivated by the needto best support the neural modelling and simulation requirements of the researhdone in this thesis and other related work, a novel software framework for neuralsimulations named PCSIM was developed, whih is another additional ontributionof this thesis.Probabilisti inferene in graphial models has been often proposed as a suitableandidate framework for explaining the omputations that the brain arries out, butthe neural basis of these omputations remains unlear. In hapter 2 this problem isapproahed, and several di�erent possible implementations of probabilisti inferenein graphial models with networks of spiking neurons are presented. The developedneural implementations perform probabilisti inferene through Markov hain MonteCarlo sampling and use spei� network strutures or dendriti omputations inbiologially realisti neurons as basi building bloks to realize the required nonlinearomputational operations. Hene, they propose that the omputational funtion ofloal network motifs as well as the dendriti omputations in single neurons is tosupport the probabilisti inferene operations on a larger network level.In hapter 3 it is analysed theoretially and through omputer simulations whatomputations an be learned with reward-modulated spike-timing-dependent plas-tiity, a synapti plastiity learning rule based on experimental �ndings about long-term synapti e�ay hanges. In partiular, it is shown that this plastiity ruleenables spiking neurons to learn lassi�ation of temporal spike patterns. It is alsoshown that neurons an learn with this rule a spei� mapping from input spike pat-terns to output spike patterns. Moreover, it is analysed under whih onditions andparameters values for the learning rule and the neuron model the learning in theselearning tasks is suessful. Finally, it is also demonstrated that reward-modulatedSTDP an explain experimental results on biofeedbak learning in monkeys.Chapter 4 gives an overview of the Parallel neural C iruit SIMulator (PCSIM)with a fous on its integration with the Python programming language. PCSIM is aneural simulation environment intended for simulation of spiking and analog neuralnetworks with a support for distributed simulation of large-sale neural networks onmultiple mahines. In this hapter key features of PCSIM's modular and extensibleobjet-oriented framework and user interfae are outlined and it is desribed howthese features enable the user to develop and onstrut neural models easier andfaster, to speed up the simulations of the models, and to add easily ustom extensionsto the PCSIM framework. Further, bene�ts from the integration of PCSIM withPython are eluidated.Keywords: probabilisti inferene, sampling, graphial models, spikingneurons, network motifs, dendriti proessing, reward-modulated spike-



ivtiming-dependent plastiity, STDP, reward-based learning, biofeedbak,PCSIM, neural simulator, parallel simulation, Python



vZusammenfassungIn dieser Dissertation werden top-down und bottom-up Methoden zur Untersuhungvon zwei zentralen Fragen herangezogen, die die Funktion von neuralen Shaltkreisenim Gehirn betre�en: welhe Art von Berehnungen sie implementieren und wie Ler-nen auf synaptisher Ebene zu sinnvollen Berehnungsfunktionen auf Shaltkreis-und Verhaltensebene führt. Motiviert durh den Bedarf einer bestmöglihen Unter-stützung der Anforderungen hinsihtlih neuronaler Modellierung und Simulationan die Forshung, die in dieser Dissertation und verwandten Arbeiten durhge-führt wurde, wurde ein neues Software-Framework für neuronale Simulationen na-mens PCSIM entwikelt, das einen weiteren zusätzlihen Betrag dieser Dissertationdarstellt.Probabilistishe Inferenz in graphishen Modellen ist oft als ein geeigneter Kan-didat für ein Framework zur Erklärung der Berehnungen vorgeshlagen worden, diedas Gehirn ausführt, die neurale Basis dieser Berehnungen blieb jedoh unklar. InKapitel 2 wird an dieses Problem herangegangen, und eine Reihe von vershiedenenmöglihen Implementationen von probabilistisher Inferenz in graphishen Mod-ellen in Netzwerken von spikenden Neuronen werden präsentiert. Die entwikel-ten neuronalen Implementationen führen probabilistishe Inferenz mittels MarkovChain Monte Carlo-Sampling aus und verwenden spezi�she Netzwerkstrukturenoder dendritishe Berehnungen in biologish realistishen Neuronen als elementareBausteine zur Realisierung der notwendigen nihtlinearen Berehnungsoperationen.Das deutet darauf hin, dass die Berehnungsfunktionalität von lokalen Netzwerk-motiven sowie die dendritishen Berehnungen in einzelnen Neuronen Operationenfür probabilistishe Inferenz auf einer höheren Netzwerkebene unterstützen sollen.In Kapitel 3 wird theoretish und durh Computersimulationen analysiert,welhe Berehnungen mit belohnungsmodulierter Spike-Timing-Dependent Plasti-ity gelernt werden können, einer Lernregel für synaptishe Plastizität, die auf experi-mentellen Erkenntnissen über langfristige änderungen der synaptishen Wirksamkeitberuht. Insbesondere wird gezeigt, dass diese Plastizitätsregel es spikenden Neuro-nen erlaubt, Klassi�kationen von temporalen Spike-Mustern zu lernen. Es wirdebenfalls gezeigt, dass Neuronen mit dieser Regel eine spezi�she Abbildung vonInput- auf Output-Spike-Mustern lernen können. Darüberhinaus wird analysiert,unter welhen Bedingungen und Parametern für die Lernregel und das Neuronen-modell das Lernen in diesen Aufgabenstellungen erfolgreih ist. Abshlieÿend wirddemonstriert, dass belohnungsmodulierte STDP experimentelle Resultate des Ler-nens von Biofeedbak in A�en erklären kann.Kapitel 4 bietet einen überblik über den parallelen neuralen Shaltkreissimula-tor PCSIM (Parallel neural C iruit SIMulator) mit dem Shwerpunkt auf dessenIntegration mit der Python Programmiersprahe. PCSIM ist eine neuronale Sim-ulationsumgebung, die für die Simulation von spikenden und analogen neuronalenNetzwerken vorgesehen ist, und die verteilte Simulationen von groÿen neuronalenNetzwerken auf mehreren Mashinen unterstützt. In diesem Kapitel werden dieHauptmerkmale des modularen und erweiterbaren objektorientierten Frameworks



viund User-Interfaes vorgestellt, und es wird beshrieben, wie diese Merkmale esdem Benutzer ermöglihen, neuronale Modelle einfaher und shneller zu entwikelnund zu konstruieren sowie maÿgeshneiderte Erweiterungen des PCSIM-Frameworkseinfah hinzuzufügen. Des weiteren werden die Vorzüge der Integration von PCSIMin Python erläutert.Shlüsselwörter: Probabilistishe Inferenz, graphishe Modelle, spikendeNeuronen, Netzwerkmotive, dendritishe Verarbeitung, belohnungsmod-uliertes Lernen, STDP, Biofeedbak, PCSIM, neuronaler Simulator, par-allele Simulation, Python



viiAknowledgementsFirst of all I would like to thank my supervisor Prof. Wolfgang Maass for givingme the opportunity to work on very exiting researh topis and providing valuableguidane and ontinuous support throughout my PhD studies. His broad expertise,inspiring ideas and demand for exellene have greatly in�uened my work. I alsowant to express my gratitude to Thomas Natshläger for the fruitful ollaborationwe had during the development of the PCSIM simulator, making it a suessful andenjoyable projet. Also I am very thankful to my o-authors and olleagues RobertLegenstein and Lars Büsing for ontributing worthwhile ideas and doing valuablework within the researh that lead to our joint publiations. I would also like tothank Prof. Gordon Pipa for aepting to be the seond reviewer of my thesis.Many thanks also go to my olleagues at the Institute of Theoretial ComputerSiene (IGI), who with their enthusiasm for siene, opennes to enroll in interestingdisussions and willingness to provide me with assistane when needed, made IGI anexiting, motivating and friendly working environment. I am also grateful to DanielaPotzinger and Oliver Friedl for their assistane and support regarding administrativeand hardware/software matters.Apart from my olleagues, during my stay in Graz I got to know many exep-tional people outside of work, whom I beame good friends with. Thank you guysfor making these years in Graz a great experiene.Finally, I would like to express my deepest gratitude to my parents Aleksandarand Ljubia for their enouragement and support in many ways throughout my life.I would also like to deeply thank my sister Ivana, for being above all always a greatfriend and for her enormous support during my PhD studies.





Contents1 Introdution 12 Probabilisti Inferene in General Graphial Models through Sam-pling in Stohasti Networks of Spiking Neurons 72.1 Introdution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142.2.1 Seond Order Boltzmann Distributions with Auxiliary Ran-dom Variables (Implementation 1) . . . . . . . . . . . . . . . 162.2.2 Using the Markov Blanket Expansion of the Log-odd Ratio . 182.2.2.1 Implementation with Auxiliary Neurons (Implemen-tation 2) . . . . . . . . . . . . . . . . . . . . . . . . 182.2.2.2 Computer Simulation I: Comparison of two Meth-ods for Emulating �Explaining Away� in Networksof Spiking Neurons . . . . . . . . . . . . . . . . . . . 202.2.2.3 Implementation with Dendriti Computation (Im-plementation 3) . . . . . . . . . . . . . . . . . . . . 202.2.3 Using the Fatorized Expansion of the Log-odd Ratio . . . . 222.2.3.1 Implementation with Auxiliary Neurons and Den-driti Branhes (Implementation 4) . . . . . . . . . 232.2.3.2 Implementation with Dendriti Computation (Im-plementation 5) . . . . . . . . . . . . . . . . . . . . 252.2.4 Probabilisti Inferene through Neural Sampling in Larger andMore Complex Bayesian Networks . . . . . . . . . . . . . . . 252.2.4.1 Computer Simulation II: ASIA Bayesian Network . 262.2.4.2 Computer Simulation III: Randomly GeneratedBayesian Network . . . . . . . . . . . . . . . . . . . 292.3 Disussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312.3.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 342.3.2 Experimentally Testable Preditions of our Models . . . . . . 362.3.3 Conlusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382.4.1 Markov Chains . . . . . . . . . . . . . . . . . . . . . . . . . . 382.4.2 Neuron Models . . . . . . . . . . . . . . . . . . . . . . . . . . 382.4.3 Details to Seond Order Boltzmann Distributions with Aux-iliary Variables (Implementation 1) . . . . . . . . . . . . . . . 402.4.4 Details to Implementation 2 . . . . . . . . . . . . . . . . . . . 442.4.5 Details to Implementation 3 . . . . . . . . . . . . . . . . . . . 452.4.6 Details to the Implementation 4 . . . . . . . . . . . . . . . . . 472.4.7 Details to the Implementation 5 . . . . . . . . . . . . . . . . . 48



x Contents2.4.8 Details to Computer Simulations . . . . . . . . . . . . . . . . 482.5 Aknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 533 A Learning Theory for Reward-Modulated Spike-Time-DependentPlastiity with Appliation to Biofeedbak 553.1 Introdution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 563.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 583.2.1 Theoretial analysis of the resulting weight hanges . . . . . . 593.2.2 Appliation to models for biofeedbak experiments . . . . . . 623.2.2.1 Computer simulation 1: Model for biofeedbak ex-periment . . . . . . . . . . . . . . . . . . . . . . . . 643.2.3 Rewarding spike-times . . . . . . . . . . . . . . . . . . . . . . 663.2.3.1 Computer simulation 2: Learning spike times . . . . 723.2.3.2 Computer simulation 3: Testing the analytially de-rived onditions . . . . . . . . . . . . . . . . . . . . 723.2.4 Pattern disrimination with reward-modulated STDP . . . . 743.2.4.1 Computer simulation 4: Learning pattern lassi�ation 763.2.4.2 Computer simulation 5: Training a readout neuronwith reward-modulated STDP to reognize isolatedspoken digits . . . . . . . . . . . . . . . . . . . . . . 773.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 793.3.1 Linear Poisson Neuron Model . . . . . . . . . . . . . . . . . . 793.3.2 Learning equations . . . . . . . . . . . . . . . . . . . . . . . . 803.3.3 Derivations for the biofeedbak experiment . . . . . . . . . . 833.3.4 Analysis of spike-timing dependent rewards (derivation of theonditions (3.13)-(3.15)). . . . . . . . . . . . . . . . . . . . . . 853.3.5 Analysis of the pattern disrimination task (derivation ofequation (3.17)). . . . . . . . . . . . . . . . . . . . . . . . . . 893.3.6 Common models and parameters of the omputer simulations 903.3.6.1 LIF neuron model . . . . . . . . . . . . . . . . . . . 913.3.6.2 Short-term dynamis of synapses . . . . . . . . . . . 913.3.6.3 Model of bakground synapti ativity . . . . . . . . 923.3.6.4 Reward-modulated STDP . . . . . . . . . . . . . . . 933.3.6.5 Initial weights of trained neurons . . . . . . . . . . . 943.3.6.6 Software . . . . . . . . . . . . . . . . . . . . . . . . 943.3.7 Details to individual omputer simulations . . . . . . . . . . . 943.3.7.1 Cortial Miroiruits . . . . . . . . . . . . . . . . . 953.3.7.2 Readout neurons . . . . . . . . . . . . . . . . . . . . 963.3.7.3 Details to omputer simulation 1: Model for biofeed-bak experiment . . . . . . . . . . . . . . . . . . . . 973.3.7.4 Details to omputer simulation 2: Learning spike times 973.3.7.5 Details to omputer simulation 3: Testing the ana-lytially derived onditions . . . . . . . . . . . . . . 98



Contents xi3.3.7.6 Details to omputer simulation 4: Learning patternlassi�ation . . . . . . . . . . . . . . . . . . . . . . 983.3.7.7 Details to omputer simulation 5: Training a readoutneuron with reward-modulated STDP to reognizeisolated spoken digits . . . . . . . . . . . . . . . . . 983.4 Disussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 993.4.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 1033.4.2 Conlusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1043.5 Aknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1054 PCSIM: a Parallel Simulation Environment for Neural Ciruits 1074.1 Introdution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1074.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1104.2.1 Arhiteture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1104.2.2 Salability and Domain of Appliability . . . . . . . . . . . . 1114.3 Python interfae generation . . . . . . . . . . . . . . . . . . . . . . . 1134.4 Network onstrution . . . . . . . . . . . . . . . . . . . . . . . . . . . 1144.4.1 The example model . . . . . . . . . . . . . . . . . . . . . . . . 1154.4.2 The framework: objet-oriented, modular and extensible . . . 1164.4.3 Fatories: reating network elements from models . . . . . . . 1174.4.4 Neuron populations . . . . . . . . . . . . . . . . . . . . . . . 1184.4.5 Projetions: managing synapti onnetions . . . . . . . . . . 1194.5 Custom network elements . . . . . . . . . . . . . . . . . . . . . . . . 1214.6 Extending PCSIM using C++ . . . . . . . . . . . . . . . . . . . . . . 1244.7 PCSIM add-ons implemented in Python . . . . . . . . . . . . . . . . 1264.7.1 PyNN.psim . . . . . . . . . . . . . . . . . . . . . . . . . . . 1264.7.2 pypsimplus . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1264.7.3 pylsm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1314.8 Disussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1324.9 Aknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135A List of Publiations 137A.1 Comments and Contributions to Publiations . . . . . . . . . . . . . 138Bibliography 141





Chapter 1Introdution
Arguably, one of the most alluring unanswered questions in modern siene is howthe human brain works and gives rise to high-level mental proesses and behav-ior. There is a little doubt that any signi�ant progress towards answering thisquestion will have a profound impat on soiety, siene and tehnology. However,the degree of di�ulty of this open problem beomes evident as soon as we be-gin to onsider some known fats about the brain. First, it has a highly omplexstruture: it is omposed of a large number of units, approximately 100 billion neu-ral ells and about 1000 trillion synapti onnetions between them whih throughtheir synergisti ativity yield higher ognitive proessing. Seond, it has an ex-tremely omplex funtion: it generates highly diverse behaviors when faed withvarious tasks and situations by engaging a ombination of its ognitive proessingabilities like pereption, deision making, memory, language, motor ontrol et. Fur-thermore, the neural strutures and their assoiated dynamial and omputationalproesses are organized on di�erent spatial and temporal sales that span severalorders of magnitude (Churhland et al., 1993). On the spatial sale at the lowestlevel are the moleular and eletrophysiologial proesses within individual neuronsand synapses, then loal networks of neurons or neural iruits, brain areas, systemsand the whole brain at the highest level. On the temporal sale, the temporal pro-esses range from fast stohasti dynamis of ion hannels and generation of ationpotentials and postsynapti responses on the order of milliseonds, to long-termsynapti plastiity mehanisms (believed to underlie long-term memory formationand learning) and developmental hanges that ould span hours, days or longer.In spite of being a tremendous hallenge, the sienti� quest of understandingthe brain has led to notable progress in the last deades. For example, at the levelof individual neurons many proesses related to how neurons transmit and proesseletrial and hemial signals are well understood. Also, with the advanementof the eletrophysiology reording tehniques in vivo, numerous studies have beenpursued that reveal what information the spiking ativity of single or small groupsof neurons in di�erent parts of the brain ontains about a given stimuli, movementor spei� behavior of the animal, as well as how the neurons enode this informa-tion. In another line of researh, on the level of brain areas, funtional neuroimagingtehniques (fMRI, PET et.) have provided means to look whih parts of the brainare ativated above average when performing di�erent ognitive tasks and based onthat to map higher ognitive funtions to di�erent brain regions. These are onlya few of many examples of progress that has been made in di�erent sub�elds of



2 Chapter 1. Introdutionneurosiene. Still, at the level that should provide a link between the ativity ofindividual neurons and the funtion of di�erent brain areas, the level of loal neuraliruits at spatial sale on the order of millimeters in the ortex, many fundamentalquestions remain largely unanswered. Namely, it is not known what is the om-putational funtion of loal networks of biologial neurons, how is the omputationorganized, how the neural iruits self-organize in spei� strutures that implementthe omputational funtion, how they represent information, how they adapt andlearn at the miro-level in order to support the observed learning, memory and im-provement of performane at the behavioral level, and so on. In summary, we antentatively frame these questions in three overlapping topis: the omputationalfuntion of neural iruits, their realization of learning and their development.Before one starts to analyse what the omputational funtion of loal neuraliruits might be, one question that arises and is important to point out onernsthe degree of uniformity of the omputational algorithms aross areas in the ortex:whether all neural iruits implement a spei� adapted instane of a generi ompu-tational algorithm or the spei�s are so large that we an not lassify them as doingthe same type of omputation. Although urrently there is not a de�nite answeron that, there are some fats that go strongly in favor of the generi ortial algo-rithm hypothesis. One frequently given argument is that, as neuroanatomists haveobserved, there is a striking similarity in the anatomial harateristis of neuraliruits aross di�erent areas of the ortex, e.g. its laminar struture, harateristionnetivity patterns between ell types et., and this anatomial uniformity sug-gests also an existent uniformity at a funtional level (Douglas and Martin, 2004a).Additionally, the presene of topographi maps of sensory information in di�erentsensory orties, visual, auditory and somatosensory, indiates a general priniple ofspatial organization of information representation and proessing in ortex. In fatit has been also shown that if the opti nerve of an animal (a ferret) is rerouted to theauditory ortex early in development, auditory ortex develops a retinotopi maporganization normally found in visual ortex (von Melhner et al., 2000). Finally, ifwe treat the question from an evolutionary perspetive, it is likely to assume thatafter evolution found a brain struture in early mammals that proved very e�etivefor providing ertain advantageous behavioral apabilities, it started repliating thisstruture in desendant speies produing larger ortex, sine it led to animals withmore omplex and �exible behavior and inreased their hane of survival.Spei� ognitive funtions presumably involve diverse information proessingthat operate on inputs with di�erent dynamis and statistis. Departing from thepremise that ortial omputations share the same priniples of organization andhave similar harateristis, they have to be general enough to ahieve the requireddiverse types of input-output mappings. Further, their inherent learning proessesshould be robust and powerful enough to be able to realize the required omputationsand be independent of the statistial properties of the proessed inputs. Thesethemes of generality of omputational proesses, their e�ieny, robustness as well aslearning apabilities are subjets of investigations in omputer siene and, regardinglearning issues in partiular, its branh mahine learning. Hene, omputer siene



3is an indispensible and fruitful soure of theoretial tools, models and omputationalframeworks atively used in takling the question of the omputational funtion ofneural iruits.The formulated mathematial models that apture the dynamis of parts of thebrain, e.g. the stohasti dynamis of ion hannels, the input-output behavior of asingle neuron or the average population ativity of a path of the ortex, given usu-ally in the form of oupled nonlinear di�erential equations, are in most of the asesnot amenable to analytial analysis, espeially in models with a high-dimensionalstate. Thus, numerial simulations of the reated models on a omputer systemare integral part of every study of the omputational properties of biologial net-works of neurons. This implies an ongoing neessity to improve the proess ofsimulation-based analysis in all aspets and stimulates the researh on tehniquesand algorithms for simulation of neural systems, as well as software development ofneural simulation tools that implement those tehniques. An important omponentof these e�orts, in addition to researh on e�ient numerial integration algorithmsand e�ient and �exible algorithms for onstrution of neural models, are inno-vations in software design. The goal in these innovations is to reate a generalsimulation objet-oriented software framework that has an easy to use interfae,has already implemented a wide range of neurobiologial model omponents anddi�erent simulation strategies and perhaps most importantly, allows for easy userextensions on many levels. Also, as larger omputing resoures are available in theform of ommodity lusters or superomputer systems, one other desirable featureprovided by many neural simulators is the possibility of harnessing all available om-puting power for simulation of larger neural network models by using distributedsimulation of one large neural network on many mahines.There are two omplementary approahes that are applied in studies ondutingresearh on the omputational properties and organization of omputation in neuraliruits: the bottom-up and the top-down approah. In the bottom-up approah,�rst mathematial models that desribe neurobiologial strutures, mehanisms andproesses are derived based on su�ient amount of experimental data that hara-terize well the studied phenomena. Then the resulting mathematial models aresimulated numerially on a omputer and analysed from a omputational perspe-tive where it is examined what are the omputational onsequenes of these phe-nomena, i.e. what are the type of omputations that they an support or arry out.Within these studues it is often analysed what is the set of input-output funtionsthat a model an realize or learn, the way information is enoded within the model,what is the e�ieny of the omputation, noise robustness, possibility of saling upet. In the top-down approah, �rst a omputational framework or algorithm is pos-tulated as a possible andidate being able to explain the omputations arried outin neural iruits, and then a neural iruit model is onstruted that an arry outthe postulated omputations whih at the same time is onstrained by the availableexperimental data. Following a top-down approah in reating a model is instrumen-tal and neessary beause very often there is not enough experimental data aboutthe struture and dynamis of neural iruits needed to onstrain and build the



4 Chapter 1. Introdutionmodels. Thus, the postulated omputational theory an provide hypotheses aboutthe unknown mehanisms and their biophysial or neural implementation whih anbe used to omplete the model onstrution. Furthermore, the theory-in�uenedshaping of the models generates spei� preditions whih an be a valuable inputfor ideas about new experimental studies that an test the preditions diretly ortest onsequenes of them.In this thesis both top-down and bottom-up methods are applied in the studyof two entral questions regarding the funtion of neural iruits: what type ofomputations they implement and how learning on a synapti level yields usefulomputational funtions on a iruit and behavioral level. Motivated by the need tobest support the neural modeling and simulation requirements of the researh donein this thesis and other related work, a novel software framework for neural simu-lations with many useful features named PCSIM was developed, whih is anotheradditional ontribution of this thesis. PCSIM was suessfully used in the extensivesimulations in the studies in this thesis as well as in many other researh projets.Probabilisti inferene in graphial models has been often proposed as a suit-able andidate for explaining the omputations that the brain arries out in thefae of great amount of unertainty present in the sensory inputs and its internalrepresentations of the world. But the neural basis of these omputations, i.e. hownetworks of spiking neurons ould implement probabilisti inferene, remains un-lear. In hapter 2 this problem is approahed, and building on previous resultsin (Büsing et al., 2011) several di�erent possible implementations of probabilistiinferene in graphial models with networks of spiking neurons are presented. Thedeveloped neural implementations perform probabilisti inferene through Markovhain Monte Carlo sampling and use spei� network strutures or dendriti ompu-tations in biologially realisti neurons as basi building bloks to realize the requirednonlinear omputational operations. Hene, they propose that the omputationalfuntion of loal network strutures as well as the dendriti omputations in singleneurons is to support the probabilisti inferene operations on a larger network level.The models further suggest that the stohasti properties of biologial neurons havea useful purpose to provide the neessary stohastiity in the sampling algorithmand should not be viewed as undesirable noise. The performane and salability ofthe neural implementations are demonstrated through omputer simulations wherethey have been applied on several example graphial models.In hapter 3 it is analysed theoretially and through omputer simulations whatomputations an be learned with reward-modulated spike-timing-dependent plas-tiity, a synapti plastiity learning rule based on experimental �ndings about long-term synapti e�ay hanges dependent on spike times and the gating e�et of neu-romodulators on this type of plastiity. Spike-timing-dependent plastiity (STDP) isan experimentally observed e�et about hanges in synapti e�ay that is believedto underlie the learning and long-term memory proesses in the brain. Modulationof STDP with a neuromodulatory signal (e.g. dopamine) related to reward is a an-didate mehanism that ould explain how loal synapti hanges on a miro-salesupport adaptive behavioral hanges based on reinforements on a maro-sale. In



5hapter 3 it is shown that this plastiity rule enables spiking neurons to learn las-si�ation of temporal spike patterns, and respond with a high �ring rate to oneof the patterns while remaining silent for the other. It is also shown that neuronsan learn with reward-modulated STDP a spei� mapping from input spike pat-terns to output spike patterns. Moreover, it is analysed theoretially under whihonditions and parameter values for the learning rule and the neuron model thelearning in these learning tasks is suessful. Additionally, it is demonstrated thatreward-modulated STDP an explain experimental results of biofeedbak learningin monkeys (Fetz and Baker, 1973) and be used to train spiking neurons to read outinformation from a preproessing neural iruit. The results also suggest a fun-tional role for spontaneous ativity as performing random exploration needed inreward-based learning.Chapter 4 gives an overview of the Parallel neural C iruit SIMulator (PCSIM)with a fous on its integration with the Python programming language. PCSIM is aneural simulation environment intended for simulation of spiking and analog neuralnetworks with a support for distributed simulation of large-sale neural networkson multiple mahines. It is implemented in C++ with its user interfae exposedin the Python programming language. In hapter 4 key features of PCSIM's mod-ular and extensible objet-oriented framework and user interfae are outlined andit is desribed how these features enable the user to develop and onstrut neuralmodels easier and faster, to speed up the simulations of the models, and to addeasily ustom extensions to the framework in order to adapt the simulator to hisown modeling needs. Further, some of the many bene�ts the integration of PCSIMwith Python brings to the user are eluidated: high-level, easy to use, sripting in-terfae for spei�ation of the models, extending PCSIM with add-ons implementedin Python fostering a hybrid approah to modelling, and ombined usage of PCSIMwith many other sienti� omputing Python software pakages (general or neuro-siene spei�). Also, the supplementary PCSIM pakages implemented in purePython that augment the PCSIM pakage bundle with additional useful funtion-alities are desribed.Chapter 2 in this thesis is based on the paper Probabilisti Inferene in GeneralGraphial Models through Sampling in Stohasti Networks of Spiking Neurons bymyself (DP), Lars Büsing (LB) and Wolfgang Maass (WM). The paper was sub-mitted for publiation in 2011 and is under review. The experiments in this workwere onieved and designed by DP and WM. DP onduted the experiments andanalysed the simulation results. The paper builds on the theory of neural samplingdeveloped by LB and reported in (Büsing et al., 2011). DP and WM provided theadditional theoretial derivations and analysis in the paper. DP and WM wrote themanusript. LB provided valuable omments that helped to improve the manusript.Chapter 3 is based on the journal artile A Learning Theory for Reward-Modulated Spike-Timing-Dependent Plastiity with Appliation to Biofeedbak by



6 Chapter 1. IntrodutionRobert Legenstein1 (RL), myself1 (DP) and Wolfgang Maass (WM) (PLoS Com-putational Biology 4(10): e1000180, 2008). In this artile RL ontributed the theo-retial analysis, RL, DP and WM oneived and designed the experiments and DPonduted the experiments and analysed the simulation results. RL, DP and WMwrote the manusript.Chapter 4 is based on the journal artile PCSIM: A Parallel Simulation Envi-ronment for Neural Ciruits Fully Integrated with Python by myself (DP), ThomasNatshläger (TN) and Klaus Shuh (KS) (Frontiers in Neuroinformatis 3:11,2009). The PCSIM software desribed in the artile was developed by DP andTN, with ontributions from KS. TN supervised the software development projet.DP implemented and performed the omputer simulation tests reported in the ar-tile. The artile was written by DP and TN. KS wrote the setion that desribesthe PYLSM pakage and gave useful omments for improving the manusript.

1These authors ontributed equally to the work in this paper.



Chapter 2Probabilisti Inferene in GeneralGraphial Models throughSampling in Stohasti Networksof Spiking Neurons
Contents2.1 Introdution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142.3 Disussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382.5 Aknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . 53An important open problem of omputational neurosiene is the generi orga-nization of omputations in networks of neurons in the brain. It has been arguedthat traditional models for universal omputation, suh as Turing mahines, areless suitable as a oneptual framework. Probabilisti inferene in graphial mod-els has been proposed as an alternative, that would be better suited for solvingthe omputational tasks whih the brain has to arry out, where deisions haveto be made based on large numbers of unertain perepts and memories. But ithas remained an open problem how suh omputations ould be arried out bynetworks of spiking neurons. We show here that inherent stohasti features ofspiking neurons, in ombination with simple nonlinear omputational operations inspei� network motifs and dendriti arbors, enable networks of spiking neurons toarry out probabilisti inferene through sampling in general graphial models. Inpartiular, it enables them to arry out probabilisti inferene in Bayesian networkswith onverging arrows (�explaining away�) and with undireted loops, that our inmany real-world tasks. The resulting omputational model suggests that ubiquitousstohasti features of networks of spiking neurons, suh as trial-to-trial variabilityand spontaneous ativity, should not be viewed as e�ets of noise in deterministiomputations, but rather as neessary ingredients of this underlying omputationalorganization. We demonstrate through omputer simulations that this approah anbe saled up to neural emulations of probabilisti inferene in fairly large graphial



8 Chapter 2. Sampling in Graphial Models with Spiking Neuronsmodels, yielding some of the most omplex omputations that have been arried outso far in networks of spiking neurons.2.1 IntrodutionIn spite of intense theoretial and experimental researh that spans almost a entury,the fundamental questions how information proessing in the brain is organized,and whih onrete omputational operations are arried out by stereotypial or-tial miroiruits, have remained unanswered. Turing mahines, logial inferenemahines, and related universal omputational models would provide su�ient om-putational power for deterministi omputations, but their struture and dynamisis inompatible with basi aspets of neural iruits. Attrator neural networks andsyn�re hains fair better from this perspetive, but it seems di�ult to implementvery omplex omputations with them.Probabilisti inferene in Bayesian networks (Pearl, 1988) and other graphialmodels (Bishop, 2007; Koller and Friedman, 2009) has emerged as an alternativeomputational framework that is espeially suited for omputational tasks that thebrain has to solve: The formation of oherent interpretations of inomplete andambiguous sensory stimuli, fast learning of new information, integration of previ-ously aquired knowledge with new information, movement planning, reasoning anddeision making in the presene of unertainty (Rao et al., 2002; Doya et al., 2007;Fiser et al., 2010). In this approah one assumes that previously aquired knowledge(fats, rules, onstraints, suessful responses) is enoded in a joint distribution pover numerous random variables (RVs) z1, . . . , zK , that represent features of sen-sory stimuli, aspets of internal models for the environment, environmental andbehavioral ontext, values of arrying out partiular ations in partiular situations(Toussaint and Goerik, 2010), goals, et. If the values of some of these RVs assumeonrete values e (e.g. beause of observations, or beause a partiular goal needsto be reahed), the distribution of the remaining variables hanges in general. Atypial omputation that needs to be arried out for probabilisti inferene for somejoint distribution p(z1, . . . , zl, zl+1, . . . , zK) is the evaluation of an expression of thetype
p(z1|e) =

∑all possible values
v2, . . . , vl for z2, . . . , zl

p(z1, v2, . . . , vl|e) , (2.1)where onrete values e (the "evidene" or �observations�) have been inserted forthe RVs zl+1, . . . , zK . These variables are then often alled observable variables, andthe others latent variables. Note that the term �evidene� is somewhat misleading,sine the assignment e represents some arbitrary input to a probabilisti infereneomputation, without any onnotation that it represents orret observations ormemories. The omputation of the resulting marginal distribution p(z1|e) requires asummation over all possible values v2, . . . , vl for the RVs z2, . . . , zl that are urrentlynot of interest for this probabilisti inferene. This omputation is in general quite



2.1. Introdution 9omplex (in fat, it is NP-omplete (Koller and Friedman, 2009)) beause in theworst ase exponentially in l many terms need to be evaluated and summed up.It turned out to be surprisingly di�ult to eluidate how networks of neuronsin the brain ould possibly implement suh omputations, even for rather simpleprobability distribution p. Most previous attempts had foused on belief propaga-tion, i.e., on distributed deterministi arithmetial omputations for the evaluationof the r.h.s. of (2.1). Suh omputational shemes are hard to reonile with ex-perimental data on the dynamis of networks of neurons in the brain, for exampletheir stohasti aspets suh as trial-to-trial variability. In addition, belief prop-agation is not guaranteed to work for general Bayesian networks with undiretedyles. Other modelling attempts, starting with Boltzmann mahines (Akley et al.,1985), proposed that the ubiquitous stohasti aspets of neuronal responses pro-vide lues that the brain has hosen a ompletely di�erent way for arrying outprobabilisti inferene: by building an internal model for the probability distribu-tion p for whih inferene has to be arried out, and by drawing examples fromthis probability distribution p. This approah is referred to as sampling in mahinelearning. If one has a physial realization of p, i.e. a mehanism that draws samples(v1, . . . , vl) of assignments to all �free� RVs z1, . . . , zl in (2.1) aording to the dis-tribution p(z1, . . . , zl,e), one an estimate p(z1|e) by just observing how often eahpossible value v1 for z1 ours in these samples (v1, . . . , vl). Similarly one an inferrelationships among RVs z1, . . . , zl, e.g. whether z1 and z2 are orrelated by simplyobserving how often v1 = v2 ours in these samples.A very suessful method for suh probabilisti inferene through sampling hasbeome known in mahine learning under the name Markov hain Monte Carlo(MCMC) sampling (Neal, 1993), (Andrieu et al., 2003), (Koller and Friedman, 2009).The general idea is to onstrut a Markov hain whose set of states is exatly theset of all possible assignments (v1, . . . , vK) of values to the RVs of p, and whosestationary distribution of states (see Methods) is exatly the distribution p for whihone wants to arry out probabilisti inferene. Under some mild onditions therelative time that the Markov hain spends in eah of its states is guaranteed toonverge � from any initial state � to this stationary distribution p. Hene, as soonas the Markov hain provides a good approximation of p, the sequene of states(v1, . . . , vK) that it enters (starting from any initial state) an be viewed as almostunbiased samples from p.For a Boltzmann mahine a standard way of sampling is Gibbs sampling. ThisMarkov hain is reversible, i.e., stohasti transitions between states do not have apreferred diretion. This sampling method works well in arti�ial neural networks,where the e�et of eah neural ativity lasts for exatly one disrete time step. Butit is in on�it with basi features of networks of spiking neurons, where eah ationpotential (spike) of a neuron triggers inherent temporal proesses in the neuron itself(e.g. refratory proesses), and through postsynapti potentials of spei� durationsin other neurons to whih it is synaptially onneted. These inherent temporal pro-esses of spei� durations are non-reversible, and are therefore inonsistent with



10 Chapter 2. Sampling in Graphial Models with Spiking Neuronsthe mathematial model (Gibbs sampling) that underlies probabilisti inferene inBoltzmann mahines. However very reently a somewhat di�erent mathematialmodel (sampling in non-reversible Markov hains) has emerged as an alternativeframework for probabilisti inferene in neural networks, that is ompatible withthese basi features of the dynamis of networks of spiking neurons (Büsing et al.,2011). In this approah one relates the �ring ativity in a network N of K spik-ing neurons ν1, . . . , νK to sampling from a distribution p(z1, . . . , zK) over binaryvariables z1, . . . , zK by setting
zk(t) = 1 if and only if neuron νk has �red within the preedingtime interval (t− τ, t] of length τ ,

(2.2)(we restrit our attention here to binary RVs; multinomial RVs ould in priniplebe represented by WTA iruits � see Disussion). The onstant τ models theaverage length of the e�et of a spike on the �ring probability of other neurons orof the same neuron, and an be set for example to τ = 20 ms. However with thisde�nition of its internal state (z1(t), . . . , zK(t)) the dynamis of the neural network
N an not be modelled by a Markov hain, sine knowledge of this urrent statedoes not su�e for determining the distribution of states at future time points,say at time t + 5 ms. This distribution requires knowledge about when exatly aneuron νk with zk(t) = 1 had �red. Therefore auxiliary random variables ζ1, . . . , ζKwith multinomial or analog values were introdued in (Büsing et al., 2011), thatkeep trak of when exatly in the preeding time interval of length τ a neuron
νk had �red, and thereby restore the Markov property for a Markov hain that isde�ned over an enlarged state set onsisting of all possible values of z1, . . . , zK and
ζ1, . . . , ζK . However the introdution of these hidden variables ζ1, . . . , ζK , that keeptrak of inherent temporal proesses in the network N of spiking neurons, omesat the prie that the resulting Markov hain is no longer reversible (beause thesetemporal proesses are not reversible). But it was shown in (Büsing et al., 2011)that one an prove nevertheless for any distribution p(z1, . . . , zK) for whih theso-alled neural omputability ondition (NCC), see below, an be satis�ed by anetwork N of spiking neurons, that N de�nes a non-reversible Markov hain whosestationary distribution is an expanded distribution p(z1, . . . , zK , ζ1, . . . , ζK), whosemarginal distribution over z1, . . . , zK (whih results when one ignores the values ofthe hidden variables ζ1, . . . , ζK) is the desired distribution p(z1, . . . , zK). Hene anetwork N of spiking neurons an sample from any distribution p(z1, . . . , zK) forwhih the NCC an be satis�ed. This implies that any neural system that ontainssuh network N an arry out the probabilisti inferene task (2.1): The evidene eould be implemented through external inputs that fore neuron νk to �re at a highrate if zk = 1 in e, and not to �re if zk = 0 in e. In order to estimate p(z1|e), itsu�es that some readout neuron estimates (after some initial transient phase) theresulting �ring rate of the neuron ν1 that represents RV z1.The NCC requires that for eah RV zk the �ring probability density ρk(t) ofsome orresponding neuron νk at time t satis�es, if the neuron is not in a refratory



2.1. Introdution 11period
ρk(t) =

1

τ
·
p(zk = 1|z\k)

p(zk = 0|z\k)
, (2.3)where z\k denotes the urrent value of all other RVs, i.e., all zi with i 6= k. Weuse in this work the same model for a stohasti neuron as in (Büsing et al., 2011)(ontinuous time ase), whih an be mathed quite well to biologial data aordingto (Jolivet et al., 2006). In the simpler version of this neuron model one assumes thatit has an absolute refratory period of length τ , and that the instantaneous �ringprobability ρk(t) satis�es outside of its refratory period ρk(t) = 1

τ exp(uk(t)), where
uk(t) is its membrane potential (see Methods for an aount of the more omplexneuron model with a relative refratory period from (Büsing et al., 2011), that wehave also tested in our simulations). The NCC from (2.3) an then be reformulatedas a ondition on the membrane potential of the neuron

uk(t) = log
p(zk = 1|z\k)

p(zk = 0|z\k)
. (2.4)Let us onsider a Boltzmann distribution p of the form

p(z1, . . . , zK) =
1

Z
exp





∑

i,j

1

2
Wijzizj +

∑

i

bizi



 (2.5)with symmetri weights (i.e., Wij = Wji) that vanish on the diagonal (i.e., Wii = 0).In this ase the NCC an be satis�ed by a uk(t) that is linear in the postsynaptipotentials that neuron νk reeives from the neurons νi that represent other RVs zi:
uk(t) = bk +

K
∑

i=1

Wki zi(t) , (2.6)where bk is the bias of neuron νk (whih regulates its exitability),Wki is the strengthof the synapti onnetion from neuron νi to νk, and zi(t) approximates the timeourse of the postsynapti potential aused by a �ring of neuron νi at some time
tfi < t (zi(t) assumes value 1 during the time interval [tfi , t

f
i + τ), otherwise it hasvalue 0).However, it is well known that probabilisti inferene for distributions of theform (2.5) is too weak to model various important omputational tasks that thebrain is obviously able to solve, at least without auxiliary variables. While (2.5)only allows pairwise interations between RVs, numerous real world probabilistiinferene tasks require inferene for distributions with higher order terms. For ex-ample, it has been shown that human visual pereption involves �explaining away�,a well known e�et in probabilisti inferene, where a hange in the probability ofone ompeting hypothesis for explaining some observation a�ets the probability ofanother ompeting hypothesis (Kersten and Yuille, 2003). Suh e�ets an usuallyonly be aptured with terms of order at least 3, sine 3 RVs (for 2 hypotheses and



12 Chapter 2. Sampling in Graphial Models with Spiking Neurons1 observation) may interat in omplex ways. A well known example from visualpereption is shown in Fig. 2.1, for a probability distribution p over 4 RVs z1, . . . , z4,where z1 is de�ned by the pereived relative re�etane of two abutting 2D areas,
z2 by the pereived 3D shape of the observed objet, z3 by the observed shadingof the objet, and z4 by the ontour of the 2D image. The di�erene in shadingof the two abutting surfaes in Fig. 2.1A ould be explained either by a di�erenein re�etane of the two surfaes, or by an underlying urved 3D shape. The twodi�erent ontours (RV z4) in the upper and lower part of Fig. 2.1A in�uene thelikelihood of a urved 3D shape (RV z3). In partiular, a pereived urved 3D shape�explains away� the di�erene in shading, thereby making an uniform re�etanemore likely. The results of (Knill and Kersten, 1991) and numerous related resultssuggest that the brain is able to arry out probabilisti inferene for more omplexdistributions than the 2nd order Boltzmann distribution (2.5).We show in this work that the neural sampling method of (Büsing et al., 2011)an be extended to any probability distribution p, in partiular to distributions withhigher order dependenies among RVs, by using auxiliary spiking neurons in N thatdo not diretly represent RVs zk, or by using nonlinear omputational proesses inmulti-ompartment neuron models. As one an expet, the number of required aux-iliary neurons or dendriti branhes inreases with the omplexity of the probabilitydistribution p for whih the resulting network of spiking neurons has to arry outprobabilisti inferene. Various types of graphial models (Koller and Friedman,2009) have emerged as onvenient frameworks for haraterizing the omplexity ofdistributions p from the perspetive of probabilisti inferene for p.We will fous in this work on Bayesian networks, a ommon type of graphialmodel for probability distributions. But our results an also be applied for othertypes of graphial models. A Bayesian network is a direted graph (without diretedyles), whose nodes represent RVs z1, . . . , zK . Its graph struture indiates that
p(z1, . . . , zK) admits a fatorization of the form

p(z1, . . . , zk) =
K
∏

k=1

p(zk|pa(zk)), (2.7)where pa(zk) is the set of all (diret) parents of the node indexed by zk (see Fig. 2.1B,2.7A, 2.9 for examples). For example, the Bayesian network in Fig. 2.1B impliesthat the fatorization p(z1, z2, z3, z4) = p(z1)p(z2)p(z3|z1, z2)p(z4|z3) is possible.We show that the omplexity of the resulting network of spiking neurons forarrying out probabilisti inferene for p an be bounded in terms of the graphomplexity of the Bayesian network that gives rise to the fatorization (2.7). Morepreisely, we present three di�erent approahes for onstruting suh networks ofspiking neurons:
• through a redution of p to a Boltzmann distribution (2.5) with auxiliary RVs
• through a Markov blanket expansion of the r.h.s. of the NCC (2.4)



2.1. Introdution 13
: relative reflectance : 3D shape

: shading : contour    

or

or or

A B

  or  other

spikes of 

neuron 

1

0

t

t

preprocessing preprocessing

preprocessingpreprocessing

C D

Figure 2.1: See next page for �gure aption.
• through a fatorized expansion of the r.h.s. of the NCC (2.4)We will show that there exist two di�erent neural implementation options for eahof the last two approahes, using either spei� network motifs or dendriti pro-essing for nonlinear omputation steps. This yields altogether 5 di�erent optionsfor emulating probabilisti inferene in Bayesian networks through sampling via theinherent stohasti dynamis of networks of spiking neurons. Furthermore we willexhibit harateristi di�erenes in the omplexity and performane of the resultingnetworks, and relate these to the omplexity of the underlying Bayesian network.But in ontrast to some previously suggested emulations of probabilisti inferene bynetworks of spiking neurons, all 5 of these neural implementation options an read-ily be applied to Bayesian networks where several ars onverge to a node (givingrise to the �explaining away� e�et), and to Bayesian networks with undireted y-les (�loops�). All methods for probabilisti inferene from general graphial modelsthat we propose in this work are from the mathematial perspetive speial ases ofMCMC sampling. However in view of the fat that they expand the neural samplingapproah of (Büsing et al., 2011), we will refer to them more spei�ally as neuralsampling.We show through omputer simulations for three di�erent Bayesian networks ofdi�erent sizes that neural sampling an be arried quite fast with the help of theseond and third approah, providing good inferene results within a behaviorallyrelevant time span of a few hundred ms. One of these Bayesian networks addressesthe previously desribed lassial �explaining away� e�et in visual pereption from



14 Chapter 2. Sampling in Graphial Models with Spiking NeuronsFigure 2.1: The visual pereption experiment of (Knill and Kersten, 1991) that demon-strates �explaining away�, and the Bayesian network that models the phenomenon. A)Two visual stimuli, eah exhibiting the same luminane pro�le in the horizontal diretion.The two visual stimuli di�er only with regard to their ontours, whih suggest di�erent 3Dshapes (�at versus 2 ylinders). This in turn in�uenes our pereption of the re�etaneof the two halves of eah stimulus (a step in the re�etane at the middle line, versus uni-form re�etane): the ylindrial 3D shape �explains away� the re�etane step. B) TheBayesian network that models this e�et onsists of 4 RVs z1, z2, z3, and z4. The relativere�etane (z1) of the two halfs an have two values, di�erent (z1 = 1) or the same (z1 =0). The pereived 3D shape is either ylindrial (z2 = 1) or �at (z2 = 0). The relativere�etane and the 3D shape are diret auses of the shading (luminane hange) of thesurfaes denoted as z3, whih an have the pro�le like in panel A (z3 = 1) or a di�erentone (z3 = 0). The 3D shape of the objet auses di�erent pereived ontours z4, whih anbe either straight (z4 = 0) or urved (z4 = 1). The observed variables are the ontour (z4)and the shading (z3) of the stimulus. Subjets infer the value of the relative re�etaneand the 3D shape based on this evidene. The probability distribution p(z1, z2, z3, z4) ofthe Bayesian network fatorizes to p(z1)p(z2)p(z3|z1, z2)p(z4|z2), and the inferene problemis to alulate the marginal posterior probability distributions p(z1|z3, z4) and p(z2|z3, z4).C) Eah of these RVs zk are represented in our neural emulations of probabilisti infer-ene by a prinipal neuron νk in suh a way, that eah spike of νk sets the RV zk to 1for a time period of length τ . D) The struture of a network of spiking neurons that per-forms probabilisti inferene for the Bayesian network of panel B through sampling fromonditionals of the underlying joint probability distribution p(z1, z2, z3, z4). Eah prinipalneuron employs preproessing to satisfy the neural omputability ondition (NCC), eitherby dendriti proessing or by a preproessing iruit. Note that, in ontrast to the diretedayli Bayesian network of panel B, this omputational network (see Fig. 2.6 for a onreteneural emulation) is reurrently onneted, resulting from the fat that during probabilistiinferene information �ows also against the diretion of the ars in the Bayesian network(an example is the �explaining away� e�et).Fig. 2.1. The other two Bayesian networks not only ontain numerous �explainingaway� e�ets, but also undireted yles. Altogether, our omputer simulations andour theoretial analysis demonstrate that networks of spiking neurons an emulateprobabilisti inferene for general Bayesian networks. Hene we propose to viewprobabilisti inferene in graphial models as a generi omputational paradigm,that an help us to understand the omputational organization of networks of neu-rons in the brain, and in partiular the omputational role of preisely struturedortial miroiruit motifs.2.2 ResultsWe present several ways how probabilisti inferene for a given joint distribution
p(z1, . . . , zK), that is not required to have the form of a 2nd order Boltzmann dis-tribution (2.5), an be arried out through sampling from the inherent dynamis ofa reurrent network N of stohastially spiking neurons. All these approahes arebased on the idea that suh network N of spiking neurons an be viewed � for a



2.2. Results 15suitable hoie of its arhiteture and parameters � as a �physial model� for thedistribution p, in the sense that its distribution of network states onverges to p,from any initial state. Then probabilisti inferene for p an be easily arried out byany readout neuron that observes the resulting network states, or the spikes fromone or several neurons in the network. This holds not only for sampling from theprior distribution p, but also for sampling from the posterior after some evidene
e has beome available (see (2.1)). The link between network states of N and theRVs z1, . . . , zK is provided by assuming that there exists for eah RV zk a neuron νkso that eah time when νk �res, it sets the assoiated binary RV zk to 1 for a timeperiod of some length τ (see Fig. 2.1C). We refer to neurons νk that represent inthis way a RV zk as prinipal neurons. All other neurons are referred to as auxiliaryneurons.The mathematial basis for analyzing the distribution of network states, and re-lating it to a given distribution p, is provided by the theory of Markov hains. Morepreisely, it was shown in (Büsing et al., 2011) that by introduing for eah prinipalneuron νk an additional hidden analog RV ζk, that keeps trak of time within thetime interval of length τ after a spike of νk, one an model the dynamis of thenetwork N by a non-reversible Markov hain. This Markov hain is non-reversible,in ontrast to Gibbs sampling or other Markov hains that are usually onsidered inMahine Learning and in the theory of Boltzmann mahines, beause this failitatesthe modelling of the temporal dynamis of spiking neurons, in partiular refratoryproesses within a spiking neuron after a spike and temporally extended e�ets ofits spike on the membrane potential of other neurons to whih it is synaptially on-neted (postsynapti potentials). The underlying mathematial theory guaranteesthat nevertheless the distribution of network states of this Markov hain onverges(for the �original� RVs zk) to the given distribution p, provided that the NCC (2.4)is met. This theoretial result redues our goal, to demonstrate ways how a networkof spiking neurons an arry out probabilisti inferene in general graphial models,to the analysis of possibilities for satisfying the NCC (2.4) in networks of spikingneurons. The networks of spiking neurons that we onstrut and analyze build pri-marily on the model for neural sampling in ontinuous time from (Büsing et al.,2011), sine this is the more satisfatory model from the biologial perspetive. Butall our results also hold for the mathematially simpler version with disrete time.We exhibit both methods for satisfying the NCC with the help of auxiliaryneurons in networks of point neurons, and in networks of multi-ompartment neu-ron models (where no auxiliary neurons are required). All neuron models that weonsider are stohasti, where the probability density funtion for the �ring of aneuron at time t (provided it is urrently not in a refratory state) is proportionalto exp(u(t)), where u(t) is its urrent membrane potential at the soma. We assume(as in (Büsing et al., 2011)) that in a point neuron model the membrane potential
u(t) an be written as a linear ombination of postsynapti potentials. Thus if theprinipal neuron νk is modelled as a point neuron, we have



16 Chapter 2. Sampling in Graphial Models with Spiking Neurons
uk(t) = bk +

K
∑

i=1

Wki zi(t) , (2.8)where bk is the bias of neuron νk (whih regulates its exitability),Wki is the strengthof the synapti onnetion from neuron νi to νk, and zi(t) approximates the timeourse of the postsynapti potential in neuron νk aused by a �ring of neuron νi.The ideal neuron model from the perspetive of the theory of (Büsing et al., 2011)has an absolute refratory period of length τ , whih is also the assumed length of apostsynapti potential (EPSP or IPSP). But it was shown there through omputersimulations that neural sampling an be arried out also with stohastially �ringneurons that have a relative refratory period, i.e. the neuron an �re with someprobability with an interspike interval of less than τ . In addition, it was shown theretheoretially that the resulting neural network samples from a slight variation of thetarget distribution p, that is in most ases pratially indistinguishable.Before we desribe two di�erent theoretial approahes for satisfying the NCC,we �rst onsider an even simpler method for extending the neural sampling approahfrom (Büsing et al., 2011) to arbitrary distributions p: through a redution to 2ndorder Boltzmann distributions (2.5) with auxiliary RVs.2.2.1 Seond Order Boltzmann Distributions with Auxiliary Ran-dom Variables (Implementation 1)It is well known (Akley et al., 1985) that any probability distribution p(z1, . . . , zK),with arbitrarily large fators in a fatorization suh as (2.7), an be represented asmarginal distribution
p(z) =

∑

x∈X

p(z,x) (2.9)of an extended distribution p(z,x) with auxiliary random variables x, that an befatorized into fators of degrees at most 2. This an be seen as follows. Let p(z) bean arbitrary probability distribution over binary variables with higher-order fators
φc(z

c). Thus
p(z) =

1

Z

C
∏

c=1

φc(z
c) , (2.10)where z

c is a vetor omposed of the RVs that the fator φc depends on and Z isa normalization onstant. We additionally assume that p(z) is non-zero for eahvalue of z. The simple idea is to introdue for eah possible assignment v to theRVs z
c in a higher order fator φc(z

c) a new RV xc
v, that has value 1 only if v is theurrent assignment of values to the RVs in z

c. We will illustrate this idea through theonrete example of Fig. 2.1. Sine there is only one fator that ontains more than2 RVs in the probability distribution of this example (see aption of Fig. 2.1C),the onditional probability p(z3|z1, z2), there will be 8 auxiliary RVs x000, x001,



2.2. Results 17. . . , x111 for this fator, one for eah of the 8 possible assignments to the 3 RVs in
p(z3|z1, z2). Let us onsider a partiular auxiliary RV, e.g. x001. It assumes value 1only if z1 = 0, z2 = 0, and z3 = 1. This onstraint for x001 an be enfored throughseond order fators between x001 and eah of the RVs z1, z2 and z3. For example,the seond order fator that relates x001 and z1 has a value of 0 if x001 = 1 and
z1 = 1 (i.e., if z1 is not ompatible with the assignment 001), and value 1 otherwise.The individual values of the fator p(z3|z1, z2) for di�erent assignments to z1, z2 and
z3 are introdued in the extended distribution p(z,x) through �rst-order fators, onefor eah auxiliary RV xc

v. Spei�ally, the �rst-order fator that depends on x001has value µp(z3 = 1|z1 = 0, z2 = 0) − 1 (where µ is a onstant that resales thevalues of the fators so that µp(z3|z1, z2) > 1 for all assignments to z1, z2 and z3)if x001 = 1, and value 1 otherwise. Further details of the onstrution method for
p(z,x) are given in the Methods setion, together with a proof of (2.9).The resulting extended probability distribution p(z,x) has the property that,in spite of deterministi dependenies between the RVs z and x, the state set ofthe resulting Markov hain (that onsists of all non-forbidden value assignments to
z and x) is onneted. In the previous example a non-forbidden value assignmentis x001 = 1 and z1 = 0, z2 = 0, z3 = 1. But x001 = 0, z1 = 0, z2 = 0, z3 = 1 isalso a non-forbidden value assignment. Suh non-forbidden value assignments tothe auxiliary RVs x

c orresponding to one higher order fator, where all of themassume value of 0 regardless of the values of the z
c RVs provide transition pointsfor paths of probability > 0 that onnet any two non-forbidden value assignments(without requiring that 2 or more RVs swith their values simultaneously). Theresulting onnetivity of all non-forbidden states (see Methods for a proof) impliesthat this Markov hain, whih an be realized through a network N of spikingneurons aording to (Büsing et al., 2011), has p(z,x) as its unique stationarydistribution. The given distribution p(z) arises as marginal distribution of thisstationary distribution of N , hene one an use N to sample from p(z) (just ignorethe �ring ativity of neurons that orrespond to auxiliary RVs xc

v).Sine the number of RVs in the extended probability distribution p(z,x) anbe muh larger than the number of RVs in p(z), the orresponding spiking neuralnetwork samples from a muh larger probability spae. This, as well as the preseneof deterministi relations between the auxiliary and the main RVs in the expandedprobability distribution, slow down the onvergene of the resulting Markov hain toits stationary distribution. We show however in the following, that there are severalalternatives for sampling from an arbitrary distribution p(z) through a network ofspiking neurons. These alternative methods do not introdue auxiliary RVs x, butrather aim at diretly satisfying the NCC (2.4) in a network of spiking neurons. InComputer Simulation I (see Fig. 2.3) we have ompared the resulting onvergenespeed with that of the previously desribed method via auxiliary RVs. It turns outthat the alternative strategy provides an about 10 fold speed-up for the Bayesiannetwork of Fig. 2.1B.



18 Chapter 2. Sampling in Graphial Models with Spiking Neurons2.2.2 Using the Markov Blanket Expansion of the Log-odd RatioAssume that the distribution p for whih we want to arry out probabilisti infereneis given by some arbitrary Bayesian network B. There are two di�erent options forsatisfying the NCC for p, whih di�er in the way by whih the term on the r.h.s.of the NCC (2.4) is expanded. The option that we will analyze �rst uses from thestruture of the Bayesian network B only the information about whih RVs are inthe Markov blanket of eah RV zk. The Markov blanket Bk of the orrespondingnode zk in B (whih onsists of the parents, hildren and oparents of this node)has the property that zk is independent from all other RVs one any assignment vof values to the RVs z
Bk in the Markov blanket has been �xed. Hene p(zk|z\k) =

p(zk|z
Bk), and the term on the r.h.s. of the NCC (2.4) an be expanded as follows:

log
p(zk = 1|zBk = z

Bk(t))

p(zk = 0|zBk = zBk(t))
=

∑

v∈ZBk

wk
v · [zBk(t) = v] , (2.11)where

wk
v = log

p(zk = 1|zBk = v)

p(zk = 0|zBk = v)
. (2.12)The sum indexed by v runs over the set ZBk of all possible assignments of valuesto z

Bk , and [zBk = v] denotes a prediate whih has value 1 if the ondition in thebrakets is true, and to 0 otherwise. Hene, for satisfying the NCC it su�es if thereare auxiliary neurons, or dendriti branhes, for eah of these v, that beome ativeif and only if it beomes lear from the �ring ativity of the prinipal neurons νi thatrepresent the variables zi in the Markov blanket Bk, that these variables urrentlyassume the value v. The orresponding term wk
v an be implemented with the helpof the bias bk (see (2.8)) of the auxiliary neuron that orresponds to the assignment

v, resulting in a value of its membrane potential equal to the r.h.s. of the NCC(2.4). We will disuss this implementation option below as Implementation 2. Inthe subsequently disussed implementation option (Implementation 3) all prinipalneurons will be multi-ompartment neurons, and no auxiliary neurons are needed.In this ase wk
v sales the amplitude of the signal from a spei� dendriti branhto the soma of the multi-ompartment prinipal neuron νk.2.2.2.1 Implementation with Auxiliary Neurons (Implementation 2)We illustrate the implementation of the Markov blanket expansion approah throughauxiliary neurons for the onrete example of the RV z1 in the Bayesian networkof Fig. 2.1B (see Methods for a disussion of the general ase). Its Markov blanket

B1 onsists here of the RVs z2 and z3. Hene the resulting neural iruit (seeFig. 2.2) for satisfying the NCC for the prinipal neuron ν1 uses 4 auxiliary neurons
α00, α01, α10 and α11, one for eah of the 4 possible assignments v of values tothe RVs z2 and z3. Eah �ring of one of these auxiliary neurons should ause animmediately subsequent �ring of the prinipal neuron ν1. Lateral inhibition amongthese auxiliary neurons an make sure that after a �ring of an auxiliary neuron no



2.2. Results 19

Figure 2.2: Implementation 2 (the neural implementation with auxiliary neurons, that usesthe Markov blanket expansion of the log-odd ratio), for the explaining away motif of theBayesian network from Fig. 2.1B. There are 4 auxiliary neurons, one for eah possible valueassignment to the RVs z2 and z3 in the Markov blanket of z1. The prinipal neuron ν2 ( ν3) onnets to the auxiliary neuron αv diretly if z2 ( z3 ) has value 1 in the assignment v, orvia an inhibitory inter-neuron ιv if z2 ( z3 ) has value 0 in v. The auxiliary neurons onnetwith a strong exitatory onnetion to the prinipal neuron ν1, and drive it to �re wheneverany one of them �res. The larger gray irle represents the lateral inhibition between theauxiliary neurons .other auxiliary neuron �res during the subsequent time interval of length τ , therebyimplementing the required absolute refratory period of the theoretial model from(Büsing et al., 2011). The presynapti prinipal neuron ν2(ν3) is onneted to theauxiliary neuron αv diretly if v assumes that z2(z3) has value 1, otherwise viaan inhibitory interneuron v (see Fig. 2.2). In ase of a synapti onnetion via aninhibitory interneuron, a �ring of ν2(ν3) prevents a �ring of this auxiliary neuronduring the subsequent time interval of length τ . The diret exitatory synaptionnetions from ν2 and ν3 raise the membrane potential of that auxiliary neuron
αv, for whih v agrees with the urrent values of the RVs z2(t) and z3(t), so that itreahes the value wk

v, and �res with a probability equal to the r.h.s. of the NCC (2.4)during the time interval within whih the value assignment v remains valid. Theother 3 auxiliary neurons are during this period either inhibited by the inhibitoryinterneurons, or do not reeive enough exitatory input from the diret onnetionsto reah a signi�ant �ring probability. Hene, the prinipal neuron ν1 will alwaysbe driven to �re just by a single auxiliary neuron αv orresponding to the urrentvalue of the variables z2(t) and z3(t), and will �re immediately after αv �res.As αv has a �ring probability that satis�es the r.h.s. of the NCC (2.4) temporally



20 Chapter 2. Sampling in Graphial Models with Spiking Neuronsduring the time interval while z2(t) and z3(t) are onsistent with v, the �ring of theprinipal neuron ν1 satis�es the r.h.s. of the NCC (2.4) at any moment in time.2.2.2.2 Computer Simulation I: Comparison of two Methods for Emu-lating �Explaining Away� in Networks of Spiking NeuronsIn our preeding theoretial analysis we have exhibited two ompletely di�erentmethods for emulating in networks of spiking neurons probabilisti inferene in gen-eral graphial models through sampling: either by a redution to 2nd order Boltz-mann distributions (2.5) through the introdution of auxiliary RVs (Implementation1), or by satisfying the NCC (2.3) via the Markov blanket expansion. We have testedthe auray and onvergene speed of both methods for the Bayesian network ofFig. 2.1B, and the results are shown in Fig.2.3. The approah via the NCC onvergessubstantially faster.2.2.2.3 Implementation with Dendriti Computation (Implementation3)We now show that the Markov blanket expansion approah an also be implementedthrough dendriti branhes of multi-ompartment neuron models (see Methods) forthe prinipal neurons, without using auxiliary neurons (exept for inhibitory in-terneurons). We will illustrate the idea through the same Bayesian network exampleas disussed in Implementation 2, and refer to Methods for a disussion of the aseof arbitrary Bayesian networks. Fig. 2.4 shows the prinipal neuron ν1 in the spikingneural network for the Bayesian network of Fig. 2.1B. It has 4 dendriti branhes
δ00, δ01, δ10 and δ11, eah of them orresponding to one assignment v of values tothe variables z2 and z3 in the Markov blanket of z1. The input onnetions from theprinipal neurons ν2 and ν3 to the dendriti branhes of ν1 follow the same patternas the onnetions from ν2 and ν3 to the auxiliary neurons in Implementation 2. Let
v be an assignment that orresponds to the urrent values of the variables z2(t) and
z3(t). The e�aies of the synapses at the dendriti branhes and their thresholdsfor initiating a dendriti spike are hosen so that the total synapti input to thedendriti branh δv is then strong enough to ause a dendriti spike in the branh,that ontributes to the membrane potential at the soma a omponent whose am-plitude1 is equal to the parameter w1

v in (2.11). This amplitude ould for examplebe ontrolled by the branh strength of this dendriti branh (see (Losonzy et al.,2008; Legenstein and Maass, 2011)). The parameters an be hosen so that all otherdendriti branhes do not reeive enough synapti input to reah the loal thresholdfor initiating a dendriti spike, and therefore do not a�et the membrane potentialat the soma. Hene, the membrane potential at the soma of ν1 will be equal to the1Sine the parameters w
k
v in (2.11) an have both positive and negative values and the amplitudeof the dendriti spikes and the exitatory synapti e�ay is a positive quantity, in this and thefollowing neural implementations we always add a positive onstant to w

k
v to shift it into the positiverange. We subtrat the same onstant value from the steady state of the membrane potential.



2.2. Results 21

Figure 2.3: Results of Computer Simulation I: Performane omparison between an idealversion of Implementation 1 (use of auxiliary RVs, results shown in green) and an idealversion of implementations that satisfy the NCC (results shown in blue) for probabilistiinferene in the Bayesian network of Fig. 2.1B (�explaining away�). Evidene e (see (2.1)) isentered for the RVs z3 and z4, and the marginal probability p(z1|e) is estimated. A) Targetvalues of p(z1|e) for e = (1, 1) and e = (1, 0) are shown in blak, results from samplingfor 0.5 s from a network of spiking neurons are shown in green and blue. Panels C) andD) show the temporal evolution of the Kullbak-Leibler divergene between the resultingestimates of p(z1|e) through neural sampling, averaged over 10 trials for e = (1, 1) in C) andfor e = (1, 0) in D). The green and blue areas around the green and blue urves represent theunbiased value of the standard deviation. Panels A, C, D show that both approahes yieldorret probabilisti inferene through neural sampling, but the approah via satisfying theNCC onverges about 10 times faster. B) The �ring rates of prinipal neuron ν1 (solidline) and of the prinipal neuron ν2 (dashed line) in the approah via satisfying the NCC,estimated with a sliding window (alpha kernel K(t) = t

τ
exp (− t

τ
), τ = 0.1s). In thisexperiment the evidene e was swithed after 3 s (red vertial line) from e = (1, 1) to

e = (1, 0). The �explaining away� e�et is learly visible from the omplementary evolutionof the �ring rates of the neurons ν1 and ν2. The estimated marginal posterior is alulatedfor eah time point from the samples (number of spikes) from the beginning of the simulation(or from t = 3s for the seond inferene query with e = (1, 0)).ontribution from the urrently ative dendriti branh w1
v, implementing therebythe r.h.s of (2.11).



22 Chapter 2. Sampling in Graphial Models with Spiking Neurons

Figure 2.4: Implementation 3 (the neural implementation with dendriti omputation thatuses the Markov blanket expansion of the log-odd ratio), for the same explaining awaymotif as in Fig. 2.2. The prinipal neuron ν1 has 4 dendriti branhes, one for eahpossible assignment of values v to the RVs z2 and z3 in the Markov blanket of z1. Thedendriti branhes of neuron ν1 reeive synapti inputs from the prinipal neurons ν2 and
ν3 either diretly, or via an interneuron (analogously as in Fig. 2.2). It is required that atany moment in time exatly one of the dendriti branhes (that one, whose index v agreeswith the urrent �ring states of ν2 and ν3) generates dendriti spikes, whose amplitude atthe soma determines the urrent �ring probability of ν1.2.2.3 Using the Fatorized Expansion of the Log-odd RatioThe seond strategy to expand the log-odd ratio on the r.h.s. of the NCC (2.4) usesthe fatorized form (2.10) of the probability distribution p(z). This form allows usto rewrite the log-odd ratio in (2.4) as a sum of log terms, one for eah fator φc,
c ∈ Ck, that ontains the RV zk. One an write eah of these terms as a sum over allpossible assignments v of values of the variables z

c the fator φc depends on (exept
zk). This yields

log
p(zk = 1|z\k = z\k(t))

p(zk = 0|z\k = z\k(t))
=
∑

c∈Ck





∑

v∈Zc
\k

wc,k
v · [zc

\k(t) = v]



 , (2.13)where z
c
\k is a vetor omposed of the RVs z

c that the fator c depends on � without
zk, and z

c
\k(t) is the urrent value of this vetor at time t. Zc

\k denotes the set of allpossible assignments to the RVs z
c
\k. The parameters wc,k

v are set to
wc,k

v = log
φc(z

c
\k = v, zk = 1)

φc(z
c
\k = v, zk = 0)

. (2.14)



2.2. Results 23The fatorized expansion in (2.13) is similar to (2.11), but with the di�erene thatwe have another sum running over all fators that depend on zk. Consequently,in the resulting Implementation 4 with auxiliary neurons and dendriti branhesthere will be several groups of auxiliary neurons that onnet to νk, where eahgroup implements the expansion of one fator in (2.13). The alternative model thatonly uses dendriti omputation (Implementation 5) will have groups of dendritibranhes orresponding to the di�erent fators. The number of auxiliary neuronsthat onnet to νk in Implementation 4 (and the orresponding number of dendritibranhes in Implementation 5) is equal to the sum of the exponents of the sizesof fators that depend on zk: ∑c∈Ck 2
D(zc

\k
), where D(zc

\k) denotes the numberof RVs in the vetor z
c
\k. This number is never larger than 2|Bk | (where |Bk| isthe size of the Markov blanket of zk), whih gives the orresponding number ofauxiliary neurons or dendriti branhes that are required in the Implementation 2and 3. These two numbers an onsiderably di�er in graphial models where theRVs partiipate in many fators, but the size of the fators is small. Thereforeone advantage of this approah is that it requires in general fewer resoures. On theother hand, it introdues a more omplex onnetivity between the auxiliary neuronsand the prinipal neuron (ompare Fig.2.5 with Fig.2.2). Furthermore, the networkstruture in Implementation 2 is ompatible with a reently developed unsupervisedlearning arhiteture with spiking neurons that uses a loal STDP learning rule(Nessler et al., 2010).2.2.3.1 Implementation with Auxiliary Neurons and Dendriti Branhes(Implementation 4)A salient di�erene to the Markov blanket expansion and Implementation 2 arisesfrom the fat that the r.h.s. of the fator expansion (2.13) ontains an additionalsummation over all fators c that ontain the RV zk (we write Ck for this setof fators). This entails that the prinipal neuron νk has to sum up inputs fromseveral groups of auxiliary neurons, one for eah fator c ∈ Ck. Hene in ontrast toImplementation 2, where the prinipal neuron �red whenever one of the assoiatedauxiliary neurons �red, we now aim at satisfying the NCC by making sure that themembrane potential of νk approximates at any moment in time the r.h.s. of theNCC (2.4). One an ahieve this by making sure that eah auxiliary neuron αk

v�res immediately when the presynapti prinipal neurons assume state v. Someimpreision of the sampling may arise when the value of variables in z
c
\k hanges,while EPSPs aused by an earlier value of these variables have not yet vanished at thesoma of νk. This problem an be solved if the �ring of the auxiliary neuron aused bythe new value of zc

\k shunts suh EPSP, that had been aused by the preeding valueof z
c
\k, diretly in the orresponding dendrite. This shunting inhibition should haveminimal e�et on the membrane potential at the soma of νk. Therefore exitatorysynapti inputs from di�erent auxiliary neurons αv (that ause a depolarization byan amount wc,k

v at the soma) should arrive on di�erent dendriti branhes δv of νk(see Fig. 2.5), that also have onnetions from assoiated inhibitory neurons ι̂v.



24 Chapter 2. Sampling in Graphial Models with Spiking Neurons

Figure 2.5: Implementation 4 (implementation with auxiliary neurons and dendritibranhes, that uses the fatorized expansion of the log-odd ratio) for the same explain-ing away motif as in Fig. 2.2 and 2.4. As in Fig. 2.2 there is one auxiliary neuron αv foreah possible value assignment v to z2 and z3. The onnetions from the neurons ν2 and ν3(that arry the urrent values of the RVs z2 and z3) to the auxiliary neurons are the same asin Fig. 2.2, and when these RVs hange their value, the auxiliary neuron that orrespondsto the new value �res. Eah auxiliary neuron αv onnets to the prinipal neuron ν1 at aseparate dendriti branh δv, and there is an inhibitory neuron ι̂v onneting to the samebranh. The rest of the auxiliary neurons onnet to the inhibitory interneuron ι̂v. Thefuntion of the inhibitory neuron ι̂v is to shunt the ative EPSP aused by a reent spikefrom the auxiliary neuron αv when the value of the z2 and z3 hanges from v to anothervalue.Fig. 2.5 shows the resulting implementation for the same explaining away motifof Fig. 2.1B as the preedings �gures 2 and 3. Note that the RV z1 ours there onlyin a single fator p(z3|z1, z2), so that the previously mentioned summation of EPSPsfrom auxiliary neurons that arise from di�erent fators annot be demonstrated inthis example.



2.2. Results 252.2.3.2 Implementation with Dendriti Computation (Implementation5)The last neural implementation that we onsider is an adaptation of Implementation3 (the implementation with dendriti omputation, that uses the Markov blanketexpansion of the log-odd ratio) to the fatorized expansion of the log-odd ratio.In this ase eah prinipal neuron, instead of having all its dendriti branhes or-responding to di�erent value assignments to the RVs of the Markov blanket, hasseveral groups of dendriti branhes, where eah group orresponds to the linearexpansion of one fator in the log-odd ratio in (2.13). Fig. 2.6 shows the ompletespiking neural network that samples from the Bayesian network of Fig. 2.1B. Theprinipal neuron ν1 has the same struture and onnetivity as in Implementation 3(see Fig. 2.4), sine the RV z1 partiipates in only one fator, and the set of variablesother that z1 in this fator onstitute the Markov blanket of z1. The same is true forthe prinipal neurons ν3 and ν4. As the RV z2 ours in two fators, the prinipalneuron ν2 has two groups of dendriti branhes, 4 for the fator p(z3|z1, z2) withsynapti input from the prinipal neurons ν1 and ν3, and 2 for the fator p(z4|z2)with synapti inputs from the prinipal neuron ν4. Note for omparison, that thisneuron νk needs to have 8 dendriti branhes in Implementation 3, one for eahassignment of values to the variables z1, z3 and z4 in the Markov blanket of z2.The number of dendriti branhes of a prinipal neuron νk in this implemen-tation is the same as the number of auxiliary neurons for νk in Implementation 4,and is never larger than the number of dendriti branhes of the neuron νk in Im-plementation 3. Although this implementation is more e�ient with respet to therequired number of dendriti branhes, when onsidering the possible appliationof STDP for learning Implementation 3, the latter has the advantage that it anlearn an approximate generative model of the probability distribution of the inputswithout knowing apriori the fatorization of the probability distribution.The amplitude of the dendriti spikes from the dendriti branh δc,2
v of the prin-ipal neuron ν2 should be equal to the parameter wc,2

v from (2.13). The index cidenti�es the two fators that depend on z2. The membrane voltage at the somaof the prinipal neuron ν2 is then equal to the sum of the ontributions from thedendriti spikes of the ative dendriti branhes. At time t there is exatly oneative branh in eah of the two groups of dendriti branhes. The sum of the on-tributions from the two ative dendriti branhes results in a membrane voltage atthe soma of the prinipal neuron that orresponds to the r.h.s of the (2.13). In theMethods setion we provide a general and detailed explanation of this approah.2.2.4 Probabilisti Inferene through Neural Sampling in Largerand More Complex Bayesian NetworksWe have tested the viability of the previously desribed approah for neural samplingby satisfying the NCC also on two larger and more omplex Bayesian networks:the well-known ASIA-network (Lauritzen and Spiegelhalter, 1988), and an even



26 Chapter 2. Sampling in Graphial Models with Spiking Neurons

Figure 2.6: Implementation 5 (implementation with dendriti omputation that is based onthe fatorized expansion of the log-odd ratio) for the Bayesian network shown in Fig. 2.1B.RV z2 ours in two fators, p(z3|z1, z2) and p(z4|z2), and therefore ν2 reeives synaptiinputs from ν1, ν3 and ν4 on separate groups of dendriti branhes. Altogether the synaptionnetions of this network of spiking neurons implement the graph struture of Fig. 2.1D.larger randomly generated Bayesian network. The primary question is in both ases,whether the onvergene speed of neural sampling is in a range where a reasonableapproximation to probabilisti inferene an be provided within the typial rangeof biologial reation times of a few 100 ms. In addition, we examine for the ASIA-network the question to what extent more omplex and biologially more realistishapes of EPSPs a�et the performane. For the larger random Bayesian network weexamine whih di�erene in performane is aused by neuron models with absoluteversus relative refratory periods.2.2.4.1 Computer Simulation II: ASIA Bayesian NetworkThe ASIA-network is an example for a larger lass of Bayesian networks that are ofspeial interest from the perspetive of Cognitive Siene (Mansinghka et al., 2006).Networks of this type, that onsist of 3 types of RVs (ontext information, trueauses, observable symptoms) with direted edges only from one lass to the next,apture the ausal struture behind numerous domains of human reasoning. TheASIA-network (see Fig. 2.7A) enodes knowledge about diret in�uenes betweenenvironmental fators, 3 spei� diseases, and observable symptoms. A onretedistribution p that is ompatible with this Bayesian network was spei�ed throughonditional probabilities for eah node as in (Lauritzen and Spiegelhalter, 1988)(with one small hange to avoid deterministi relationship among RVs, see Table 2



2.2. Results 27
X: positive X-ray? D: dyspnoea?

T: tuberculosis? C: lung cancer? B: bronchitis?

A: visit to Asia? S: smoking?
A

Figure 2.7: See next page for �gure aption.in Methods). The binary RVs of the network enode whether a person had a reentvisit to Asia (A), whether the person smokes (S), the presene of diseases tuberulosis(T), lung aner (C), and bronhitis (B), the presene of the symptom dyspnoea (D),and the result of a hest x-ray test (X). This network not only ontains multiple�explaining away� e�ets (i.e., nodes with more than one parent), but also a loop(i.e., undireted yle) between the RVs S, B, D, C. Hene no probabilisti infereneapproah based on belief propagation is guaranteed to work for this ASIA-network.A typial example for probabilisti inferene in this network arises when oneenters as evidene the fats that the patient visited Asia (A = 1) and has Dyspnoea(D = 1), and asks what is the likelihood of eah of the RVs T, C, B that represent the



28 Chapter 2. Sampling in Graphial Models with Spiking NeuronsFigure 2.7: Results of Computer Simulation II: Probabilisti inferene in the ASIA networkwith networks of spiking neurons that use di�erent shapes of EPSPs loser to neurophys-iologial measurements. The simulated neural networks orrespond to Implementation 2.The evidene is hanged at t = 3s from e = (A = 1, D = 1) to e = (A = 1, D = 1, X = 1)(by additionally lamping the x-ray test RV to 1). The probabilisti inferene query is toestimate marginal posterior probabilities p(T = 1|e), p(C = 1|e, and p(B = 1|e). A) TheASIA Bayesian network. B) The three di�erent shapes of EPSPs used in the simulations,an alpha shape (green urve), a smooth plateau shape (blue urve) and the optimal ret-angular shape (blak urve). Panels C) and D) show the estimated marginal probabilitiesfor eah of the diseases, alulated from the samples generated during the �rst 800 ms ofthe simulation with alpha shaped (green bars), plateau shaped (blue bars) and retangular(red bars) EPSPs, ompared with the orresponding orret marginal posterior probabili-ties (blak bars), for e = (A = 1, D = 1) in C) and e = (A = 1, D = 1, X = 1) in D).The results are averaged over 20 simulations with di�erent random initial onditions andthe error bars show the unbiased estimate of the standard deviation. Panels E) and F)show the sum of the Kullbak-Leibler divergenes between the orret and the estimatedmarginal posterior probability for eah of the diseases using alpha shaped (green urve),plateau shaped (blue urve) and retangular (red urve) EPSPs, for e = (A = 1, D = 1)in E) and e = (A = 1, D = 1, X = 1) in F). The results are averaged over 20 simulationtrials, and the light green and light blue areas show the unbiased estimate of the standarddeviation for the green and blue urves respetively (the standard deviation for the redurve is not shown to avoid lutter). The estimated marginal posteriors are alulated foreah time point from the gathered samples from the beginning of the simulation (or from
t = 3s for the seond inferene query with e = (A = 1, D = 1, X = 1)).diseases, and how the result of a positive x-ray test would a�ets these likelihoods.We tested this probabilisti inferene in a network of spiking neurons aordingto Implementation 2 with three di�erent shapes of the EPSPs: an alpha EPSP, aplateau EPSP and the optimal retangular EPSP (See Fig. 2.7A). These shapesmath qualitatively the shapes of EPSPs reorded in the soma of pyramidal neuronsfor synapti inputs that arrive on dendriti branhes (see Fig. 2.1 in (Williamsand Stuart, 2002)). The neurons in the spiking neural network had an absoluterefratory period. Fig. 2.7C, D show that the network provides for all three shapesof the EPSPs within 800 ms of simulated biologial time quite aurate answers tothis probabilisti inferene query. Fig. 2.7E, F show also with smoother shapes ofthe PSPs the networks arrive at good heuristi answers within several hundreds ofmilliseonds. The KL divergene onverges in this ase to a small non-zero value,indiating an error aused by the approximation.Fig. 2.8 shows the spiking ativity of the neural network with alpha shapedEPSPs in one of the simulation trials. During the �rst 3 seonds of the simulation thenetwork alternated between two di�erent modes of spiking ativity, that orrespondto two di�erent modes of the posterior probability distribution. There are timeperiods when the prinipal neuron for the RV X (positive X-ray), T (tuberulosis)and C (lung .) had a higher �ring rate, with time periods in between where theywere silent. After t = 3s, when the evidene that the x-ray test is positive was



2.2. Results 29

Figure 2.8: Spike raster of the spiking ativity of the neurons in one of the 20 simulationtrials desribed in Fig. 2.7 for the network of spiking neurons with alpha shaped EPSPs.The evidene was swithed after 3 s (red vertial line) from e = (A = 1, D = 1) to
e = (A = 1, D = 1, X = 1) (by lamping the RV X to 1). In eah blok of rows the lowestspike train shows the ativity of a prinipal neuron (see left hand side for the label of theassoiated RV), and the spike trains above show the �ring ativity of the assoiated auxiliaryneurons. After t = 3s the ativity of the neurons for the x-ray test RV is not shown, sineduring this period the RV is lamped and the �ring rate of its prinipal neuron is induedexternally.introdued, the ativity of the network remained in the �rst mode.2.2.4.2 Computer Simulation III: Randomly Generated Bayesian Net-workIn order to test the performane of neural sampling for an �arbitrary�, less strutured,and larger graphial model, we generated a random Bayesian network aording tothe method proposed in (Ide and Cozman, 2002) (the details of the generationalgorithm are given in the Methods setion). We added an additional onstraint,that the maximum in-degree of the nodes should be not larger than 8. A resulting



30 Chapter 2. Sampling in Graphial Models with Spiking Neurons
1

1

1

1 1

0

0

0Figure 2.9: A randomly generated Bayesian network, for whih a neural implementationof probabilisti inferene was tested in Computer Simulation III. It ontains 20 nodes.Eah node has up to 8 parents. We onsider the generi but more di�ult instane forprobabilisti inferene where evidene e is entered for nodes z13, . . . , z20 in the lower partof the direted graph. Conditional probability tables were also randomly generated for allRVs.randomly generated network is shown in Fig. 2.9. It ontains nodes with up to8 parents, and it also ontains numerous loops. For the RVs z13 to z20 we �xeda randomly hosen assignment e. Neural sampling was tested for an ideal neuralnetwork that satis�es the NCC with a variety of random initial states, using spikingneurons with an absolute, and alternatively also with a relative refratory period.Fig. 2.10A shows that in most of our 10 simulations with di�erent randomly ho-sen initial states the sum of Kullbak-Leibler divergenes for the 12 RVs z1, . . . , z12beomes quite small within a seond. Only in a few trials several seonds wereneeded for that. Fig. 2.10C and 2.10D show the spiking ativity of the neural net-work from t = 0s to t = 8s in one of the 10 trials. It is interesting to observe thatthe network went through a number of network states, eah of them haraterizedby a high �ring rate of a partiular subset of the neurons.Similarly spontaneous swithings between internal network states have been re-ported in numerous biologial experiments (see e.g. (Abeles et al., 1995; Miller and



2.3. Disussion 31

Figure 2.10: See next page for �gure aption.Katz, 2010)), but their funtional role has remained unknown. In the ontext ofComputer Simulation III these swithings between network states arise beause thisis the only way how this network of spiking neurons an sample from a multi-modaltarget distribution p.2.3 DisussionWe have shown through rigorous theoretial arguments and omputer simulationsthat networks of spiking neurons are in priniple able to emulate probabilisti in-ferene in general graphial models. The latter has emerged as a quite suitablemathematial framework for desribing those omputational tasks that arti�ial and



32 Chapter 2. Sampling in Graphial Models with Spiking NeuronsFigure 2.10: Computer Simulation III: Neural emulation of probabilisti inferene throughneural sampling in the fairly large and omplex randomly hosen Bayesian network shownin Fig. 2.9. A) The sum of the Kullbak-Leibler divergenes between the orret andthe estimated marginal posterior probability for eah of the unobserved random variables
(z1, z2, · · · , z12), alulated from the generated samples (spikes) from the beginning of thesimulation up to the urrent time indiated on the x-axis, for simulations with a neuronmodel with relative refratory period. Separate urves with di�erent olors are shown foreah of the 10 trials with di�erent initial onditions (randomly hosen). The bold blakurve orresponds to the simulation for whih the spiking ativity is shown in C) and D).B) As in A) but the mean over the 10 trials is shown, for simulations with a neuron modelwith relative refratory period (solid urve) and absolute refratory period (dashed urve.).The gray area around the solid urve shows the unbiased estimate of the standard deviationalulated over the 10 trials. C) and D) The spiking ativity of the 12 prinipal neuronsduring the simulation from t = 0 s to t = 8 s, for one of the 10 simulations (neurons withrelative refratory period). The neural network enters and remains in di�erent networkstates (indiated by di�erent olors), orresponding to di�erent modes of the posteriorprobability distribution.biologial intelligent agents need to solve. Hene the results of this work provide alink between this abstrat desription level of omputational theory and models fornetworks of neurons in the brain. In partiular, they provide a prinipled frame-work for investigating how nonlinear omputational operations in network motifsof ortial miroiruits and in the dendriti trees of neurons ontribute to brainomputations on a larger sale.We have presented three di�erent theoretial approahes for extending the resultsof (Büsing et al., 2011), so that they yield explanations how probabilisti inferenein general graphial models ould be arried out through the inherent dynamisof reurrent networks of stohastially �ring neurons (neural sampling). The �rstand simplest one was based on the fat that any distribution an be representedas marginal distribution of a 2nd order Boltzmann distribution (2.5) with auxiliaryRVs. However, as we have demonstrated in Fig.2.3, this approah yields ratherslow onvergene of the distribution of network states to the target distribution.This is a natural onsequene of the deterministi de�nition of new RVs in terms ofthe original RVs, whih redues the ondutane (Koller and Friedman, 2009; Levinet al., 2008) (i.e., the probability to get from one set of network states to anotherset of network states) of the Markov hain that is de�ned by the network dynamis.Further researh is needed to larify whether this de�ieny an be overome throughother methods for introduing auxiliary RVs.We have furthermore presented two approahes for satisfying the NCC (2.2) of(Büsing et al., 2011), whih is a su�ient ondition for sampling from a given distri-bution. These two losely related approahes rely on di�erent ways of expanding theterm on the r.h.s. of the NCC (2.4). The �rst approah an be used if the underlyinggraphial model implies that the Markov blankets of all RVs are relatively small.The seond approah yields e�ient neural emulations under a milder onstraint: if



2.3. Disussion 33eah fator in a fatorization of the target distribution is rather small (and if thereare not too many fators). Eah of these two approahes provides the theoretialbasis for two di�erent methods for satisfying the NCC in a network of spiking neu-rons: either through nonlinear omputation in network motifs with auxiliary spikingneurons (that do not diretly represent a RV of the target distribution), or throughdendriti omputation in multi-ompartment neuron models. This yields altogetherfour di�erent options for satisfying the NCC in a network of spiking neurons. Thesefour options are demonstrated in Fig. 2.2 - 2.6 for a harateristi explaining awaymotif in the simple Bayesian network of Fig. 2.1B, that had previously been intro-dued to model inferene in biologial visual proessing (Knill and Kersten, 1991).The seond approah for satisfying the NCC never requires more auxiliary neuronsor dendriti branhes than the �rst approah.Eah of these four options for satisfying the NCC would be optimally supportedby somewhat di�erent features of the interation of exitation and inhibition inanonial ortial miroiruit motifs, and by somewhat di�erent features of den-driti omputation. Su�iently preise and general experimental data are not yetavailable for many of these features, and we hope that the omputational onse-quenes of these features that we have exhibited in this work will promote furtherexperimental work on these open questions. In partiular, the neural iruit ofFig. 2.5 uses an implementation strategy that requires for many graphial models(those where Markov blankets are substantially larger than individual fators) fewerauxiliary neurons. But it requires temporally preise loal inhibition in dendritibranhes that has negligible e�ets on the membrane potential at the soma, or inother dendriti branhes that are used for this omputation. Some experimentalresults in this diretion are reported in (Williams and Stuart, 2003), where it wasshown (see e.g. their Fig. 1) that IPSPs from apial dendrites of layer 5 pyramidalneurons are drastially attenuated at the soma. The options that rely on dendritiomputation (Fig. 2.4 and 2.6) would be optimally supported if EPSPs from den-driti branhes that are not ampli�ed by dendriti spikes have hardly any e�eton the membrane potential at the soma. Some experimental results whih supportthis assumption for distal dendriti branhes of layer 5 pyramidal neurons had beenreported in (Williams and Stuart, 2002), see e.g. their Fig.1. With regard to detailsof dendriti spikes, these would optimally support the ideal theoretial models withdendriti omputation if they would have a rather short duration at the soma, inorder to avoid that they still a�et the �ring probability of the neuron when thestate (i.e., �ring or non-�ring within the preeding time interval of length τ) ofpresynapti neurons has hanged. In addition, the ideal impat of a dendriti spikeon the membrane potential at the soma would approximate a step funtion (ratherthan a funtion with a pronouned peak at the beginning).We have foused in this work on the desription of ideal neural emulations ofprobabilisti inferene in general graphial models. Our results provide the basisfor investigating how approximations to these ideal neural emulations ould emergethrough synapti plastiity and other adaptive proesses in neurons. First explo-rations of these questions suggest that in partiular approximations to Implementa-



34 Chapter 2. Sampling in Graphial Models with Spiking Neuronstions 1,2 and 4 ould emerge through STDP in an ubiquitous network network mo-tif of ortial miroiruits (Douglas and Martin, 2004b): Winner-Take-All iruitsformed by populations of pyramidal neurons with lateral inhibition. This learning-based approah relies on the observation that STDP enables pyramidal neurons inthe presene of lateral inhibition to speialize eah on a partiular pattern of presy-napti �ring ativity, and to �re after learning only when this presynapti �ringpattern appears (Nessler et al., 2010). These neurons would then assume the roleof the auxiliary neurons, both in the �rst option with auxiliary RVs, and in theoptions shown in Fig. 2.2 and 2.5. Furthermore, the results of (Legenstein andMaass, 2011) suggest that STDP in ombination with branh strength potentiationenables individual dendriti branhes to speialize on partiular patterns of presy-napti inputs, similarly as in the theoretially optimal onstrutions of Fig. 2.4 and2.6. One di�erene between the theoretially optimal neural emulations and learn-ing based approximations is that auxiliary neurons or dendriti branhes learn torepresent only the most frequently ourring patterns of presynapti �ring ativity,rather than reating a omplete atalogue of all theoretially possible presynapti�ring patterns. This has the advantage that fewer auxiliary neurons and dendritibranhes are needed in these biologially more realisti learning-based approxima-tions.Other ongoing researh explores neural emulations of probabilisti inferene fornon-binary RVs. In this ase a stohasti prinipal neuron νk that represents abinary RV zk is replaed by a Winner-Take-All iruit, that enodes the value of amultinomial or analog RV through population oding, see (Nessler et al., 2010).2.3.1 Related WorkThere are a number of studies proposing neural network arhitetures that im-plement probabilisti inferene (Akley et al., 1985; Hinton and Sejnowski, 1986;Deneve, 2008; Steimer et al., 2009; Litvak and Ullman, 2009; Rao, 2004, 2007; Bo-browski et al., 2009; Siegelmann and Holzman, 2010; Bek and Pouget, 2007; Raoand Ballard, 1999; Ma et al., 2008, 2006; Deneve et al., 2001; Yu and Dayan, 2005;Shi and Gri�ths, 2009). Most of these models propose neural emulations of the be-lief propagation algorithm, where the ativity of neurons or populations of neuronsenodes intermediate values (alled messages or beliefs) needed in the arithmetialalulation of the posterior probability distribution. With some exeptions (Den-eve, 2008), most of the approahes assume rate-based oding of information and userate-based neuron models or mean-�eld approximations.In partiular, in (Litvak and Ullman, 2009) a spiking neural network model wasdeveloped that performs the max-produt message passing algorithm, a variant ofbelief propagation, where the neessary maximization and produt operations wereimplemented by speialized neural iruits. A spiking neural implementation of thesum-produt belief propagation algorithm was proposed in (Steimer et al., 2009),where the alulation and passing of the messages was ahieved in a reurrent net-work of interonneted liquid state mahines (Maass et al., 2002a). In these studies,



2.3. Disussion 35that implemented probabilisti inferene with spiking neurons through emulationof the belief propagation algorithm, the probability distributions or the messagesduring the alulation of the posterior distributions were enoded in an average �r-ing rate of a population of neurons. Another interesting approah, that adopts analternative spike-time based oding sheme, was desribed in (Deneve, 2008). Inthis study a spiking neuron model estimates the log-odd ratio of a hidden binarystate in a hidden Markov hain, and it outputs a spike only when it reeives newevidene from the inputs that auses a shift in the estimated log-odd ratio thatexeeds a ertain threshold, that is, only when new information about a hange inthe log-odd ratio is presented that annot be predited by the preeding spikes ofthe neuron. However, this study onsiders only a very restrited lass of graphialmodels: Bayesian networks that are trees (where for example no explaining awayan our).The idea that nonlinear dendriti mehanisms ould aount for the nonlinearproessing that is required in neural models that perform probabilisti inferenehas been proposed previously in (Rao, 2007) and (Siegelmann and Holzman, 2010),albeit for the belief propagation algorithm. In (Rao, 2007) the authors introdue aneural model that implements probabilisti inferene in hidden Markov models viathe belief propagation algorithm, and suggest that the nonlinear funtions that arisein the model an be mapped to the nonlinear dendriti �ltering. In (Siegelmann andHolzman, 2010) another rate-based neural model that implements the loopy beliefpropagation algorithm in general graphial models was desribed, where the requiredmultipliation operations in the algorithm were proposed to be implemented by thenonlinear proessing in individual dendriti trees.While there exist several di�erent spiking neural network models in the litera-ture that perform probabilisti inferene based on the belief propagation algorithm,there is a lak of spiking neural network models that implement probabilisti in-ferene through Markov hain Monte Carlo (MCMC sampling). To the best of ourknowledge, the neural implementations proposed in this work are the only spikingneural networks for probabilisti inferene via MCMC in general graphial models.In (Hinton and Sejnowski, 1986) a non-spiking neural network omposed of stohas-ti binary neurons was introdued, that performs probabilisti inferene via Gibbssampling. The neural network in (Hinton and Sejnowski, 1986) performs inferenevia sampling in probability distributions that have only pairwise ouplings betweenthe RVs. An extension was proposed in (Sejnowski, 1987), that an perform Gibbssampling in probability distributions with higher-order dependenies between thevariables, whih orresponds to the lass of probability distributions that we on-sider in this work. A spiking neural network model based on the results in (Hintonand Sejnowski, 1986) had been proposed in (Hinton and Brown, 2000), for a re-strited lass of probability distributions that only have seond order fators, andwhih satisfy some additional onstraints on the onditional independenies betweenthe variables. To the best of our knowledge, this approah had not been extendedto more general probability distributions.The existing gap between abstrat omputational models of brain proessing



36 Chapter 2. Sampling in Graphial Models with Spiking Neuronsthat use MCMC algorithms for probabilisti inferene on one hand, and neurosi-enti� data about neural strutures and neural proesses on the other hand, hasbeen pointed out and emphasized by several studies (Hoyer and Hyvärinen, 2003;Gershman et al., 2009; Fiser et al., 2010). The results in (Büsing et al., 2011) andin this work propose neural iruit models that aim to bridge this existing gap, andthereby suggest new means for analysis and interpretations for both the omputa-tional models and experimental neurosienti� �ndings. For instane, pereptualmultistability in ambiguous visual stimuli and several of its related phenomena wereexplained through abstrat omputational models that employ sequential samplingwith the Metropolis MCMC algorithm (Gershman et al., 2009). In our simulations(see Fig. 2.10) we showed that a spiking neural network an exhibit multistability,where the state hanges from one mode of the posterior distribution to another,even though the Markov hain de�ned by the neural network does not satisfy thedetailed balane property like the Metropolis algorithm.2.3.2 Experimentally Testable Preditions of our ModelsOur models postulate that knowledge is enoded in the brain in the form of proba-bility distributions p, that are not required to be of the restrited form of 2nd orderBoltzmann distributions (2.5). Furthermore they postulate that these distributionsare enoded through synapti weights and neuronal exitabilities, and possibly alsothrough the strength of dendriti branhes. Finally, our approah postulates thatthese learnt and stored probability distributions p are ativated through the inher-ent stohasti dynamis of networks of spiking neurons, using nonlinear features ofnetwork motifs and neurons to represent higher order dependenies between RVs.It also predits that (in ontrast to the model of (Büsing et al., 2011)) synaptionnetions between neurons are in general not symmetri, beause this enables thenetwork to enode higher order fators of p.The postulate that knowledge is stored in the brain in the form of probabilitydistributions, that are realized through the stohasti dynamis of neural iruits,is onsistent with the ubiquitous trial-to-trial variability found in experimental data(Dean, 1981; Tolhurst et al., 1983). It has been partially on�rmed through moredetailed analyses, whih show that spontaneous brain ativity shows many hara-teristi features of brain responses to natural external stimuli ((Kenet et al., 2003;Raihle, 2010; Berkes et al., 2011)). Further analysis of spontaneous ativity isneeded in order to verify this predition. Beyond this predition regarding spon-taneous ativity, our approah proposes that �utuating neuronal responses to ex-ternal stimuli (or internal goals) represent samples from a onditional marginaldistribution, that results from entering evidene e for a subset of RVs of the storeddistribution p (see (2.1)). A veri�ation of this predition requires an analysis ofthe distributions of network responses � rather than just averaging � for repeatedpresentations of the same sensory stimulus or task. Similar analyses of human re-sponses to repeated questions have already been arried out in ognitive siene(Gri�ths and Tenenbaum, 2006; Vul and Pashler, 2008; Denison et al., 2010), and



2.3. Disussion 37have been interpreted as evidene that humans respond to queries by sampling frominternally stored probability distributions.Our resulting model for neural emulations of probabilisti inferene predits,that even strong �ring of a single neuron (provided it represents a RV whose valuehas a strong impat on many other RVs) may drastially hange the ativity patternof many other neurons (see the hange of network ativity after 3 s in Fig. 2.8, whihresults from a hange in value of the RV that represents �x-ray�). One experimentalresult of this type had been reported in (Li et al., 2009). Fig. 2.8 also suggests thatdi�erent neurons may have drastially di�erent �ring rates, where a few neurons �rea lot, and many others �re rarely. This is a onsequene both of di�erent marginalprobabilities for di�erent RVs, but also of the quite di�erent omputational role anddynamis of neurons that represent RVs (�prinipal neurons�), and auxiliary neuronsthat support the realization of the NCC, and whih are only ativated by a veryspei� ativation patterns of other presynapti neurons. Suh strong di�erenes inthe �ring ativity of neurons has already been found in some experimental studies,see (Koulakov et al., 2009; Yassin et al., 2010). In addition, Fig. 2.10 predits thatreordings from multiple neurons an typially be partitioned into time intervals,where a di�erent �ring pattern dominates during eah time interval (see (Abeleset al., 1995; Miller and Katz, 2010)) for some related experimental data.Apart from these more detailed preditions, a entral predition of our model is,that a subset of ortial neurons (the �prinipal neurons�) represent through their�ring ativity the urrent value of di�erent salient RVs. This ould be tested, forexample, through simultaneous reordings from large numbers of neurons duringexperiments, where the values of several RVs that are relevant for the subjet, andthat ould potentially be stored in the ortial area from whih one reords, arehanged in a systemati manner.It will be more di�ult to test, whih of the onrete implementations of om-putational preproessing for satisfying the NCC that we have proposed, are imple-mented in some neural tissue. Both the underlying theoretial framework and ouromputer simulations (see Fig. 2.8) predit that the auxiliary neurons involved inthese loal omputations are rarely ative. More spei�ally, the model predits thatthey only beome ative when some spei� set of presynapti neurons (whose �ringstate represents the urrent value of the RVs in z\k) assumes a spei� pattern of �r-ing and non-�ring. Implementation 3 and 5 make orresponding preditions for theativity of di�erent dendriti branhes of pyramidal neurons, that ould potentiallybe tested through Ca++-imaging.2.3.3 ConlusionWe have proposed a new modelling framework for brain omputations, based onprobabilisti inferene. We have shown through omputer simulations, that stohas-ti networks of spiking neurons an arry out demanding omputational tasks withinthis modelling framework. This framework predits spei� funtional roles for non-linear omputations in network motifs and dendriti omputation: They support



38 Chapter 2. Sampling in Graphial Models with Spiking Neuronslearning and representation of higher order dependenies between salient randomvariables. On the miro level this framework proposes that loal omputational op-erations of neurons super�ially resemble logial operations like AND and OR, butthat these atomi omputational operations are embedded into a stohasti networkdynamis. Our framework proposes that the funtional role of this stohasti net-work dynamis an be understood from the perspetive of probabilisti inferenethrough sampling from omplex learnt probability distributions, that represent theknowledge base of the brain.2.4 Methods2.4.1 Markov ChainsA Markov hain M = 〈S, T 〉 in disrete time is de�ned by a set S of states s (weonsider for disrete time only the ase where S has a �nite size, denoted by |S|)together with a transition operator T . T is a onditional probability distribution
T (s|s′) for the next state s of M , given its preeding state s′. The Markov hain Mis started in some initial state s(0), and moves through a trajetory of states s(t) viaiterated appliation of the stohasti transition operator T (more preisely, if s(t−1)is the state at time t − 1, then the next state s(t) is drawn from the onditionalprobability distribution T (s|s(t− 1)). A powerful theorem from probability theory(see e.g. p. 232 in (Grimmett and Stirzaker, 2001)) states that if M is irreduible(i.e., any state in S an be reahed from any other state in S in �nitely many stepswith probability > 0) and aperiodi (i.e., its state transitions annot be trappedin deterministi yles), then the probability p(s(t) = s|s(0) was the initial state)onverges for t → ∞ to a probability p(s) that does not depend on s(0). This statedistribution p is alled the stationary distribution of M . The irreduibility of Mimplies that p is the only distribution over the states S that is invariant under thetransition operator T , i.e.

p(s) =
∑

s′∈S

T (s|s′) · p(s′) . (2.15)Thus, in order to arry out probabilisti inferene for a given distribution p, it su�esto onstrut an irreduible and aperiodi Markov hain M that leaves p invariant,i.e., satis�es (2.15). Analogous results hold for Markov hains in ontinuous time(Grimmett and Stirzaker, 2001)), on whih we will fous in this work.2.4.2 Neuron ModelsWe use two types of neurons, a stohasti point neuron model as in (Büsing et al.,2011), and a multi-ompartment neuron model.Point neuron model. We use the same point neuron model as in (Büsing et al.,2011). In (Büsing et al., 2011) rigorous proofs of the validity of neural sampling



2.4. Methods 39an only be given for spiking neurons with an absolute refratory period of length τ(the length of a PSP). The same holds for our results. But it was already shown in(Büsing et al., 2011) that pratially also a variation of the neurons model with arelative refratory period an be used. In this variation of the model one an have aquite arbitrary refratory mehanism modeled with a refratory funtion g(t), thatrepresents the readiness of the neuron to �re within the refratory period. The �ringprobability of the neuron model is then
ρ(t) = f(u(t))g(t− t̂) , (2.16)where t̂ is the time of the last �ring of the neuron before time t. The g(t) funtionusually has value 0 for g(0), meaning that the neuron annot �re a seond spikeimmediately after it has �red, and its value rises until g(s) = 1 for s > τ , indiatingthat after time interval of duration τ the neuron fully reovers from its refratoryperiod (this is a slight variation of the de�nition of g in (Büsing et al., 2011)).For a given g(t) funtion that models the refratory mehanism, the funtion

f(u) in the �ring rate equation an be obtained as a solution from the equation
∀u ∈ R : f(u)

∫ 1

0
exp

(

f(u)

∫ r

0
g(t)dt

)

dr = exp(u) . (2.17)It an be shown that for any ontinuous funtion g(t) there is a unique ontinuousfuntion f(u) that satis�es this equation (see (Büsing et al., 2011)). The multiplia-tive refratory funtion g(t) together with a modi�ed �ring probability funtion f(u)were derived in (Büsing et al., 2011) to ensure that eah neuron performs orretloal omputations and generates orret samples from the desired probability dis-tribution if one assumes that the other neurons do not hange their state. This doesnot guarantee in the general ase that the global omputation of the network whenall neurons operate simultaneously generates orret samples. However, as in (Büs-ing et al., 2011) we observed no signi�ant deviations from the orret posteriors inour simulations.Multi-ompartment neuron model. For the neural implementations with den-driti omputation (Implementations 3 and 5) we used a multi-ompartment neuronmodel whih is a modi�ed version of the neuron model introdued in (Legenstein andMaass, 2011). It extends the stohasti point neuron model desribed above (withseparate ompartments that represent the dendriti branhes) in order to apturethe nonlinear e�ets in the integration of synapti inputs at the dendriti branhesof CA1 pyramidal neurons reported in (Losonzy et al., 2008) for radial obliquedendrites.The loal membrane voltage Ai(t) of the branh i has a passive omponent ai(t)equal to the summation of the PSPs eliited by the spikes at the loal synaptiinputs
ai(t) =

∑

j

wijεij(t) (2.18)



40 Chapter 2. Sampling in Graphial Models with Spiking Neuronswhere wij is the synapti e�ay of input j to branh i and wijεij(t) is the postsy-napti potential eliited in the branh i by the spikes from input j. We model εij(t)as
εij(t) =

{

1 if t− t̂ij < τ

0 otherwise ,
(2.19)where t̂ij is the time of the last spike before t that arrived at input j. If a synhronoussynapti input from many synapses at one branh exeeds a ertain threshold, themembrane voltage at the branh exhibits a sudden jump due to regenerative integra-tion proesses resulting in a dendriti spike (Losonzy et al., 2008). This nonlinearityis modeled by a seond ative omponent âi(t)

âi(t) = βiH(ai(t) − θi) (2.20)where H(·) denotes the Heaviside step funtion, and θi is the threshold of branh i.The branh potential Ai(t) is equal to the sum of the passive omponent and theative omponent aused by the dendriti spike
Ai(t) = ai(t) + âi(t) . (2.21)The passive and ative omponents ontribute with a di�erent weighting fator tothe membrane potential at the soma. The passive omponent is onduted passivelywith a weighting fator vi < 1 that models the attenuation of the passive signal.We assume in the neural implementations that the attenuation of the passive signalis strong, i.e. that vi ≪ 1. The dendriti spike is saled by the branh strength

v̂i. The membrane potential at the soma of the neuron is a sum of the ative andpassive ontributions from all branhes
u(t) = b+

∑

i

viai(t) + v̂iâi(t) (2.22)The �ring probability in this neuron model and its refratory mehanism are thesame as for the point neuron model desribed above. It also an have an arbitraryrefratory mehanism de�ned with the �readiness to �re� multipliative funtion g(t)and a modi�ed �ring probability f(u).2.4.3 Details to Seond Order Boltzmann Distributions with Aux-iliary Variables (Implementation 1)Let p(z) be a probability distribution
p(z) =

1

Z

F
∏

f=1

γf (zf
<3)

C
∏

c=1

φc(z
c) (2.23)that ontains higher-order fators, where z = (z1, z2, . . . , zK) is a vetor of binaryRVs. γf (zf ) are the fators that depend on one or two RVs, and φc(z

c) are the



2.4. Methods 41higher order fators that depend on more than 2 RVs. z
c is the vetor of the RVs

zi in the fator φc(z
c), z

f
<3 is the vetor of RVs zi that the fator γf (zf

<3) dependson, and Z is the normalization onstant. F is the number of �rst and seond orderfators, and C is the total number of fators of order 3 or higher. To simplify thenotation, in the following we set γ(z) :=
∏F

f=1 γf (zf
<3), sine this set of fators in

p(z) will not be hanged in the extended probability distribution.Auxiliary RVs are introdued for eah of the higher order fators. Spei�ally,the higher-order relation of fator φc is represented by a set of auxiliary binary RVs
x

c = {xc
v|v ∈ Zc}, where we have a random variable xc

v for eah possible assignment
v ∈ Zc to the RVs in z

c (Zc is the domain of values of the vetor z
c). With theadditional sets of RVs x

c we de�ne a probability distribution p(z,x) by
p(z,x) =

1

Z
γ(z)

∏

c

(

∏

v∈Zc

ψc
v(xc

v)
∏

i∈Ic

βc
v,i(x

c
v, zi)

)

. (2.24)We denote the ordered set of indies of the RVs that ompose the vetor z
c as I

c,i.e.
I
c = (i1, i2, . . . , i|Ic|) ⇔ z

c = (zi1 , zi2 , . . . , zi|Ic|) , (2.25)where |Ic| denotes the number of indies in I
c.The seond order fators βc

v,i(x, z) are de�ned as
βc
v,i(x, z) = xδv(i),z + (1 − x) , (2.26)where v(i) denotes the omponent of the assignment v to z

c that orresponds tothe variable zi, and δv(i),zi
is the Kroneker-delta funtion. The fators βc

v,i(x
c
v, zi)represent a onstraint that if the auxiliary RV xc

v has value 1, then the values ofthe RVs in the orresponding fator z
c must be equal to the assignment v that xc

vorresponds to. If all omponents of xc are zero, then there is not any onstraint onthe z
c variables. This implies another property: at most one of the RVs xc

v in thevetor x
c, the one that orresponds to the state of z

c, an have value 1. Hene, thevetor x
c an have two di�erent states. Either all its RVs are zero, or exatly oneomponent xc

v is equal to 1, in whih ase one has z
c = v. The probability p(z,x)of states of x and z that do not satisfy these onstraints is 0.The values of the fators φc in p(z) for various assignments of zc are representedin p(z,x) by �rst-order fators that depend on a single one of the RVs xc

v. For eah
xc
v we have a new fator with value ψc

v(xc
v) = φc(v) − 1 if xc

v = 1, and ψc
v(xc

v) = 1otherwise. We assume that the original fators are �rst resaled, so that φc(z
c) > 1for all values of c and z

c. We had to modify the values of the new fators bysubtrating 1 from the original value φc(v), beause we introdued an additionalzero state for x
c that is onsistent with any of the possible assignments of z

c.The resulting probability distribution p(z,x) onsists of �rst and seond orderfators, and one an prove that it has the property



42 Chapter 2. Sampling in Graphial Models with Spiking Neurons
∑

x

p(z,x) = p(z) . (2.27)This an be seen as follows. If p(z,x) 6= 0, then for eah c either x
c = 0 (where

0 denotes the zero vetor), or x
c has one omponent xc

zc = 1, and xc
v = 0 for all

v 6= z
c. The latter value of x

c is denoted by x̂
c
zc . For all other values of x

c we have
p(z,x) = 0. Hene

∑

x

p(z,x) =
∑

x1∈{0,x̂1
zc}

∑

x2∈{0,x̂2
zc}

. . .
∑

xC∈{0,x̂C
zc}

p(z,x) . (2.28)From the de�nition of the new fators ψc we have
p(z,x) =

1

Z
γ(z)

∏

c

ψc
zc(xc

zc) =
1

Z
γ(z)

∏

c

(φc(z
c) − 1)x

c
zc . (2.29)Hene we an rewrite (2.28) as

∑

x

p(z,x) =
∑

x1
zc∈{0,1}

∑

x2
zc∈{0,1}

. . .
∑

xC
zc∈{0,1}

p(z,x) =

=
∑

x1
zc∈{0,1}

∑

x2
zc∈{0,1}

. . .
∑

xC
zc∈{0,1}

1

Z
γ(z)

∏

c

(φc(z
c) − 1)x

c
zc =

=
1

Z
γ(z)

∏

c

φc(z
c) = p(z) ,

(2.30)
yielding a proof of (2.27).The resulting spiking neural network N onsists of prinipal neurons νk, one foreah of the original RVs zk, and one prinipal neuron ν̂c

v for eah of the auxiliary RVs
xc
v. If we assume that the fator φc depends on zk, then the deterministi onstraintthat governs the relation between z and x is implemented by very strong exitatoryonnetions Mexc (ideally equal to +∞) between the prinipal neuron νk and allprinipal neurons ν̂c

v for whih zk is 1 in the assignment v to z
c. If for the prinipalneuron ν̂c

v in the orresponding assignment v to z
c the value of zk is 0, then thereare strong inhibitory onnetions Minh (ideally equal to −∞) through an inhibitoryinterneuron between neuron νk and neuron ν̂c

v. Additionally, eah of the prinipalneurons ν̂c
v has a bias

bcv = log(φc(v) − 1) − η(v)Mexc , (2.31)where the funtion η(v) denotes the number of oordinates of the vetor v thathave value 1. The biases of the prinipal neurons νk and the e�aies of the diretsynapti onnetions between the prinipal neurons νk that orrespond to the seondorder fators in p(z) are determined in the same way as for the spiking neuralnetwork struture in (Büsing et al., 2011) and depend only on the �rst and seondorder fators of p(z).



2.4. Methods 43We show in the following that the Markov hain represented by the spiking neuralnetwork that performs neural sampling in the 2nd Boltzmann distribution p(z,x) isirreduible. We designate a state of the neural network with the vetor (z, ζ,x, ξ).Here ζ = (ζ1, ζ2, . . . , ζK), where ζk is the refratory variable of the prinipal neuron
νk, and ξ is a vetor of all refratory variables ξc

v for the prinipal neurons ν̂c
v thatorrespond to the auxiliary RVs xc

v. The latter are de�ned as in (Büsing et al.,2011). At eah spike of a orresponding neuron the refratory variable is set to τ (τin neural sampling in disrete time is an integer number, that denotes the durationof the PSP in terms of disrete time steps). It dereases by 1 at eah subsequenttime step, until it reahes 0. We denote the transition operators for the refratoryvariables ζk hanging from state i+ 1 to i with T k
i,i+1, and hanging from state 0 to

τ with T k
τ,0. For the refratory variables ξc

v the transition operators are T v,c
i,i+1 and

T v,c
τ,0 . In the proof we onsider the ideal ase where Mexc → +∞ and Minh → −∞,whih an result in in�nitely large membrane potentials equal to +∞ or −∞. Thesevalues of the membrane potentials forbid the neuron to hange the value of its RV,beause if uk = +∞ then T k

0,1 = 0, and if uk = −∞ then T k
τ,0 = 0 (see (Büsinget al., 2011) for details), and the neuron is loked to one value of the RV. In all otherases, when the value of the membrane potential remains �nite, we have T k

τ,0 > 0and T k
0,1 > 0. In this ase the prinipal neuron an reah any value of ζk from anyother value in at most τ time steps. The same holds for the prinipal neurons ν̂c

v.If we onsider now an initial arbitrary non-forbidden state (z̄, ζ̄, x̄, ξ̄), then eahrefratory variable ξc
v with v 6= z̄

c is equal to 0, and ξc
v with v = z̄

c an be eithernon-zero or 0. If ξc
z̄c is non-zero then, sine the membrane potential of the prinipalneuron ν̂c

z̄c is log(φc(z̄
c) − 1), whih is �nite, there is a non-vanishing probabilityfor the network state (z̄, ζ̄, x̄, ξ̄) to hange to another state in whih ξc

z̄c = 0 in atmost τ time steps. Therefore we an onlude, that from the state (z̄, ζ̄, x̄, ξ̄) we anreah the state (z̄, ζ̄,0,0) that has x = 0 and ξ = 0 in at most τ time steps with anon-vanishing probability. In this new state all prinipal neurons νk are allowed tohange the value of their RV, beause their membrane potentials have �nite valuesdetermined by the sum of their biases and the e�aies of the synapti onnetionsfrom the seond order fators. Hene eah non-zero ζk an hange its value to 0in at most τ time steps. From this it follows that from any non-forbidden state
(z̄, ζ̄, x̄, ξ̄) we an reah the zero state (0,0,0,0) in at most 2τ time steps withnon-vanishing probability. We proeed in a similar manner to prove that from thezero state we an reah any other non-forbidden state (z̃, ζ̃, x̃, ξ̃). First we observethat from the zero state the prinipal neurons νk an hange their states ζk to ζ̃kin at most τ time steps, sine they all have �nite membrane potentials, i.e. we anreah the state (z̃, ζ̃,0,0). Then in the state (z̃, ζ̃,0,0) the prinipal neurons ν̂c

vwith v = z̃
c have �nite membrane potentials equal to log(φc(z̃

c)− 1), and they anhange their states ζc
z̃c to ζ̃c

z̃c in at most τ steps. Hene we have shown that we anreah any non-forbidden state (z̃, ζ̃, x̃, ξ̃) from any other other non-forbidden state
(z̄, ζ̄, x̄, ξ̄) in at most 4τ steps with non-vanishing probability, i.e. the Markov hainis irreduible.



44 Chapter 2. Sampling in Graphial Models with Spiking Neurons2.4.4 Details to Implementation 2In this neural implementation eah prinipal neuron νk has a dediated preproessinglayer of auxiliary neurons with lateral inhibition. All neurons in the network arestohasti point neuron models.The auxiliary neurons for the prinipal neuron νk reeive as inputs the outputsof the prinipal neurons orresponding to all RVs in the Markov blanket of zk. Thenumber of auxiliary exitatory neurons that onnet to the prinipal neuron νk is
2|Bk| (|Bk| is the number of elements of Bk), and we index these neurons with allpossible assignments of values to the RVs in the vetor z

Bk . Thus, for eah state
v of values at the inputs z

Bk we have a orresponding auxiliary neuron αk
v. Therealization of the NCC is ahieved by a spei� onnetivity between the inputsand the auxiliary neurons and appropriate values for the intrinsi exitabilities ofthe auxiliary neurons, so that at eah moment in time only the auxiliary neuron αk

vorresponding to the urrent state of the inputs z
Bk(t) = v, if it is not inhibited bythe lateral inhibition due to a reent spike from another auxiliary neuron, �res witha probability density as demanded by the NCC (2.3):

ρv(t) =
1

τ
·
p(zk = 1|zBk = v)

p(zk = 0|zBk = v)
) . (2.32)During the time when the state v of the inputs is ative, the other auxiliary neuronsare either strongly inhibited, or do not reeive enough exitatory input to reah asigni�ant �ring probability.The inputs onnet to the auxiliary neuron αk

v either with a diret strong ex-itatory onnetion, or through an inhibitory interneuron ιkv that onnets to theauxiliary neuron. The inhibitory interneuron ιkv �res whenever any of the prinipalneurons of the RVs z
Bk that onnet to it �res. The auxiliary neuron αk

v reeivessynapti onnetions aording to the following rule: if the assignment v assignsa value of 1 to the RV zi in the Markov blanket z
Bk , then the prinipal neuron

νi onnets to the neuron with a strong exitatory synapti e�ay wk
v,i = Mk

v ,whereas if v assigns a value of 0 to zi then the prinipal neuron νi onnets to theinhibitory interneuron ιkv. Thus, whenever νi �res, the inhibitory interneuron �resand prevents the auxiliary neuron αk
v to �re for a time period τ . We will assumethat the synapti e�ay Mk

v is muh larger than the log-odd ratio value of the RV
zk given z

Bk = v aording to the r.h.s. of (2.3). We set the bias of the auxiliaryneuron αk
v equal to

bkv = log
p(zk = 1|zBk = v)

p(zk = 0|zBk = v)
− η(v)Mk

v , (2.33)where η(v) gives the number of omponents of the vetor v that are 1.If the value of the inputs at time t is z
Bk(t), and none of the neurons �red in thetime interval [t−τ, t], then for an auxiliary neuron αk

v suh that v 6= z
Bk(t) there aretwo possibilities. Either there exists a omponent of v that is 0 and its orrespondinginput zBk

i (t) = 1, in whih ase the prinipal neuron of the RV zBk

i onnets to



2.4. Methods 45the inhibitory interneuron ιkv and inhibits αk
v. Or one has η(zBk(t)) < η(v) inwhih ase the number of ative inputs that onnet to neuron αk

v do not provideenough exitatory input to reah the high threshold for �ring. In this ase the �ringprobability of the neuron αk
v is

ρk
v(t) =

1

τ
exp

(

log
p(zk = 1|zBk = v)

p(zk = 0|zBk = v)
− (η(v) − η(zBk(t))Mk

v

)

, (2.34)and beause of the strong synapti e�aies of the exitatory onnetions equal to
Mk

v , whih are by de�nition muh larger than the log-odd ratio of the RV zk, itis approximately equal to 0. Hene, only the neuron αk
v with v = z

Bk(t) has anon-vanishing �ring probability equal to (2.32).The lateral inhibition between the auxiliary neurons is implemented througha ommon inhibitory iruit to whih they all onnet. The role of the lateralinhibition is to enfore the neessary refratory period of νk after any of the auxiliaryneurons �res. When an auxiliary neuron �res, the inhibitory iruit is ative duringthe duration of the exitatory PSP (equal to τ), and strongly inhibits the otherneurons, preventing them from �ring. The auxiliary neurons onnet to the prinipalneuron νk with an exitatory onnetion strong enough to drive it to �re a spikewhenever any one of them �res. During the time when the state of the input variablessatis�es z
Bk(t) = v, the �ring probability of the auxiliary neuron αk

v satis�es theNCC (2.3). This implies that the prinipal neuron νk satis�es the NCC as well.Introduing an evidene of a known value of a RV in this model is ahieved bydriving the prinipal neuron with an external exitatory input to �re a spike trainwith a high �ring rate when the observed value of the RV is 1, or by inhibiting theprinipal neuron with an external inhibitory input so that it remains silent whenthe observed value of the RV is 0.2.4.5 Details to Implementation 3We assume that the prinipal neuron νk has a separate dendriti branh δk
v foreah possible assignment of values to the RVs z

Bk , and that the prinipal neuronsorresponding to the RVs z
Bk in the Markov blanket Bk onnet to these dendritibranhes.It is well known that synhronous ativation of several synapses at one branh, ifit exeeds a ertain threshold, auses the membrane voltage at the branh to exhibita sudden jump resulting from a dendriti spike. Furthermore the amplitude of suhdendriti spike is subjet to plastiity (Losonzy et al., 2008). We use a neuron modelaording to (Legenstein and Maass, 2011), that is based on these experimentaldata. The details of this multi-ompartment neuron model were presented in thepreeding subsetion of Methods on Neuron Models. We assume in this modelthat the ontribution of eah dendriti branh to the soma membrane voltage ispredominantly due to dendriti spikes, and that the passive ondutane to thesoma an be negleted. Thus, aording to (2.22), the membrane potential at the



46 Chapter 2. Sampling in Graphial Models with Spiking Neuronssoma is equal to the sum of the nonlinear ative omponents ontributed from eahof the branhes δk
v:

uk(t) = bk +
∑

v

v̂k
vâ

k
v(t) , (2.35)where âk

v(t) is the nonlinear ontribution from branh δk
v, and v̂k

v is the strength ofbranh δk
v (see (Losonzy et al., 2008) for experimental data on branh strengths).

bk is the target value of the membrane potential in the absene of any synaptiinput. The nonlinear ative omponent (dendriti spike) âk
v(t) is assumed to beequal to

âk
v(t) = βk

vH(ak
v(t) − θk

v) , (2.36)where H(·) denotes the Heaviside step funtion, ak
v(t) is the loal ativation, and θk

vis the threshold of branh δk
v. The amplitude of the total ontribution of branh δk

vto the membrane potential at the soma is then v̂k
vβ

k
v.As an be seen in Fig. 2.4, the onnetivity from the inputs to the dendritibranhes is analogous as in Implementation 2 with auxiliary neurons: from eahprinipal neuron νi so that zi is in the Markov blanket of zk there is a diret synaptionnetion to the dendriti branh δk

v if the assignment v assigns to zi the value
1, or a onnetion to the inhibitory interneuron ιkv in ase v assigns the value 0 to
zi. The inhibitory interneuron ιkv onnets to its orresponding branh δk

v, and �reswhenever any of the prinipal neurons that onnet to it �re. The synapti e�aiesof the diret synapti onnetions are assumed to satisfy the ondition
∑

i∈Sk
v

wk
v,i > θk

v , (2.37)where Sk
v is the set of indies of prinipal neurons νi that diretly onnet to thedendriti branh δk

v, wk
v,i is the e�ay of the synapti onnetion to the branhfrom νi, and θk

v is the threshold at the dendriti branh for triggering a dendritispike. Additionally, eah synapti weight wk
v,i should also satisfy the ondition

wk
v,i >

∑

j∈Sk
v

wk
v,j − θk

v . (2.38)The same ondition applies also for the e�ay yk
v of the synapti onnetion frominhibitory interneuron ιkv to the dendriti branh δk
v.These onditions ensure that if the urrent state of the inputs is z

Bk(t) = v,then the dendriti branh δk
v will have an ative dendriti spike, whereas all otherdendriti branhes do not reeive enough total synapti input to trigger a dendritispike. The amplitude of the dendriti spike from branh δk

v at the soma is
v̂k
vβ

k
v = log

p(zk = 1|zBk = v)

p(zk = 0|zBk = v)
+ λk , (2.39)



2.4. Methods 47where λk is a positive onstant that is larger than all possible negative values of thelog-odd ratio. If the steady value of the membrane potential is equal to bk = −λk,then we have at eah moment a membrane potential that is equal to the sum of theamplitude of the nonlinear ontribution of the single ative dendriti branh and thesteady value of the membrane potential, whih yields the expression for the NCC(2.4).2.4.6 Details to the Implementation 4In this implementation a prinipal neuron νk has a separate group of auxiliaryneurons for eah fator c that depends on the variable zk. The group of auxiliaryneurons for the fator c reeives inputs from the prinipal neurons that orrespondto the set of the random variables z
c
\k that fator c depends on, but without zk. Foreah possible assignment of values v to the inputs z

c
\k, there is an auxiliary neuronin the group for the fator c, whih we will denote with αc,k

v . The neuron αc,k
v spikesimmediately when the state of the inputs swithes to v from another state, i.e. thespike marks the moment of the state hange. This an ahieved by setting the biasof the neuron similarly as in (2.33) to bkv = b0 − η(v)Mk

v where η(v)) is the numberof omponents of the vetor v that are equal to 1, Mk
v is the e�ay of the diretsynapti onnetions from the prinipal neurons to αc,k
v and b0 is a onstant thatensures high �ring probability of this neuron when the urrent value of the inputsis v.The onnetivity from the auxiliary neurons to the prinipal neuron keeps thesoma membrane voltage of the prinipal neuron νk equal to the log-odd ratio of zk (=r.h.s. of (2.4)). From eah auxiliary neuron αc,k

v there is one exitatory onnetionto the prinipal neuron, terminating at a separate dendriti branh δc,k
v . The e�ayof this synapti onnetion is ŵc,k

v = wc,k
v + λc

k, where wc,k
v is the parameter from(2.13), and λc

k is a onstant that shifts all these synapti e�aies ŵc,k
v into thepositive range.Additionally, there is an inhibitory interneuron ι̂c,kv onneting to the same den-driti branh δc,k

v . The inhibitory interneuron ι̂c,kv reeives input from all otherauxiliary neurons in the same sub-iruit as the auxiliary neuron αc,k
v , but not from

αc,k
v . The purpose of this inhibitory neuron is to shunt the ative EPSP when the in-puts z

c
\k hange their state from v to another state v

′. Namely, at the time momentwhen the inputs hange to state v
′, the orresponding auxiliary neuron αc,k

v′ will �re,and this will ause �ring of the inhibitory interneuron ι̂c,kv . A spike of the inhibitoryinterneuron should have just a loal e�et: to shunt the ative EPSP aused by theprevious state v at the dendriti branh δc,k
v . If there is not any ative EPSP, thisspike of the inhibitory interneuron should not a�et the membrane potential at thesoma of the prinipal neuron νk.At any time t, eah group of auxiliary neurons for a fator c ontributes one EPSPto the prinipal neuron, through the synapti input originating from the auxiliaryneuron that orresponds to the urrent state of the inputs. The amplitude of the



48 Chapter 2. Sampling in Graphial Models with Spiking NeuronsEPSP from the sub-iruit that orresponds to the fator c is equal to ŵc,k
v = wc,k

v +

λc
k. If we assume that the bias of the soma membrane potential is bk = −

∑

c∈Ck λc
k,then the total membrane potential at the soma of the prinipal neuron νk is equalto:

uk(t) = bk +
∑

c∈Ck

(wc,k
v + λc

k) =
∑

c∈Ck

wc,k
v , (2.40)whih is equal to the expression on the r.h.s. of (2.13) when one assumes that

z
c
\k(t) = v. Hene, the prinipal neuron νk satis�es the NCC.2.4.7 Details to the Implementation 5In this implementation eah prinipal neuron is a multi-ompartment neuron of thesame type as in Implementation 3, with a separate group of dendriti branhesfor eah fator c in the probability distribution that depends on zk. In the group c(orresponding to fator φc) there is a dendriti branh δc,k

v for eah assignment v tothe variables z
c
\k that the fator c depends on (without zk). The dendriti branhesin group c reeive synapti inputs from the prinipal neurons that orrespond to theRVs z

c
\k. Eah dendriti branh δc,k

v an ontribute a omponent v̂c,k
v âc,k

v (t) to thesoma membrane voltage uk(t) (where v̂c,k
v is like in Implementation 3 the branhstrength of this branh), but only if the loal ativation ac,k

v (t) in the branh exeedsthe threshold for triggering a dendriti spike. The onnetivity from the prinipalneurons orresponding to the RVs z
c
\k to the dendriti branhes of νk in the group cis suh so that at time t only the dendriti branh orresponding to the urrent stateof the inputs z

c
\k(t) reeives total synapti input that rosses the loal threshold forgenerating a dendriti spike and initiates a dendriti spike. This is realized with thesame onnetivity pattern from the inputs to the branhes as in Implementation 3depited in Fig. 2.4. The amplitude of the dendriti spike of branh δc,k

v at the somashould be ŵc,k
v = wc,k

v +λc
k where wc,k

v is the parameter from (2.13) and λc
k is hosenas in Implementation 3.The membrane voltage at the soma of the prinipal neuron νk is then equal tothe sum of the dendriti spikes from the ative dendriti branhes. At time t thereis exatly one ative branh in eah group of dendriti branhes, the one whihorresponds to the urrent state of the inputs. If we additionally assume that thebias of neuron νk is bk = −

∑

c∈Ck λc
k, then the membrane voltage at the soma hasthe desired value (2.40).2.4.8 Details to Computer SimulationsDetails to Computer Simulation I. The simulations with the neural networkthat orresponds to the approah where the �ring of the prinipal neurons satis�esthe NCC were performed with the ideal version of the implementations 2, whihassumes using retangular PSPs and no delays in the synapti onnetions. In the



2.4. Methods 49Table 2.1: The onditional probability tables for the Bayesian network in Fig. 2.1B.
p(z3 = 1|z1, z2) z1 = 0 z1 = 1
z2 = 0 0.15 0.85
z2 = 1 0.85 0.15

p(z4 = 1|z2)

z2 = 0 0.15
z2 = 1 0.85simulation with the neural network that orresponds to Implementation 1, the net-work was also implemented with the ideal version of neural sampling. In both asesthe duration of the retangular PSPs was τ = 20ms and the neurons had absoluterefratory period of duration τ . The simulations lasted for 6 seonds biologial time,where in the �rst 3 seonds the RV for the ontour (z4) was lamped to 1 and in theseond 3 seonds lamped to 0. For eah spiking neural network 10 simulation trialswere performed, eah time with di�erent randomly hosen initial state. The valuesof the synapti e�aies Mexc and Minh in the simulation of implementation 1 wereset to 10 times the largest value of any of the fators in the probability distribution.This ensures that a neuron with ative input from a synapse with e�ay Mexc willhave a very high membrane potential and will ontinuously stay ative regardlessof the state of the other inputs, and aordingly a neuron with ative input froma synapse with e�ay Minh will remain silent regardless of the state of the otherinputs.The values for the onditional probabilities p(z3|z2, z1) and p(z4|z2) in theBayesian network from Fig. 2.1 used in these simulations are given in Table 2.1.The prior probabilities p(z1 = 1) and p(z2 = 1) are both equal to 0.5.Details to Computer Simulation II. The onditional probability tables of theASIA-network are given in Table 2.2. We modi�ed the original network from (Lau-ritzen and Spiegelhalter, 1988) by eliminating the �tuberulosis or aner?� RV inorder to get it in suitable form to be able to perform neural sampling in it. In theoriginal ASIA network the �tuberulosis or aner?� RV had deterministi links withthe RVs �tuberulosis?� and �aner?� whih results in a Markov hain that is notonneted. The model aptures the following qualitative medial knowledge fats:1. Shortness of breath or dyspnoea may be due to tuberulosis, lung aner orbronhitis, none of them or many of them at the same time.2. A reent visit to Asia inreases the hane for tuberulosis.3. Smoking is a risk fator for both lung aner and bronhitis.



50 Chapter 2. Sampling in Graphial Models with Spiking NeuronsTable 2.2: The onditional probability tables for the ASIA Bayesian network.
p(A = 1) 0.01
p(S = 1) 0.5
p(T = 1|A)A = 0 0.01A = 1 0.05
p(B = 1|S)S = 0 0.3S = 1 0.6

p(C = 1|S)S = 0 0.01S = 1 0.10
p(X = 1|T,C) C = 0 C = 1T = 0 0.05 0.98T = 1 0.98 0.98
p(D = 1|T,C,B) T = 0 T = 1C = 0, B = 0 0.1 0.7C = 0, B = 1 0.8 0.9C = 1, B = 0 0.7 0.7C = 1, B = 1 0.9 0.94. Tuberulosis and lung aner signi�antly inrease the hanes of a positivehest x-ray test.We used a point neuron model as in (Büsing et al., 2011) desribed in theIntrodution setion of this work, where the membrane potential of the neuron is alinear sum of the PSPs eliited by the input spikes. We performed all simulationswith three di�erent shapes for the EPSPs. The �rst EPSP was an alpha shapedEPSP urve ε1(t) de�ned as

ε1(t) =

{

q1 · e(
t
τ + t1) · exp(−( t

τ + t1)) −
1
2 if 0 < t < (t2 − t1)τ,

0 otherwise. , (2.41)where the t1 and t2 are the points in time where the alpha kernel e · t · exp(−t) = 1
2 ,

q1 = 2.3 is a saling fator and τ = 17ms is the time onstant of the alpha kernel.The seond used EPSP was a plateau shaped urve ε2(t) de�ned with the followingequation
ε2(t) =



















q2 · (sin( πt
2τs

) if 0 < t < τs,

q2 if τs < t < τ − τe,

q2 · (
τ+τe−t

2τe
− 1

2π sin(2π(τ+τe−t)
2τe

)) if τ − τe < t < τ + τe,

0 otherwise. , (2.42)where τ = 30ms de�nes the duration of the EPSP and we use τ also to alulate thegenerated samples from the spike times. The τs = 7ms de�nes the duration of the



2.4. Methods 51rise of the EPSP kernel after an input spike, 2τe = 18ms determines the duration ofpart of the EPSP urve orresponding to the fall of the PSP bak to the baseline,modeled here with the sine funtion and q2 = 1.03 is a saling fator. The thirdshape of the EPSP that we used is the theoretially optimal retangular shape withduration τ . All neurons have an absolute refratory period of duration τ .The indiret onnetions going through inhibitory interneurons from the prini-pal neurons to the auxiliary neurons are modeled as diret onnetions with negativesynapti e�aies with IPSPs that math the shape of the EPSPs desribed above.All synapti onnetions in the network have delay equal to dsyn = 0.1ms. Theexitatory synapti weight from the prinipal neuron νi to an auxiliary neuron αk
vwas set to

wk
v,i = max

(

log
p(zk = 1|zBk = v)

p(zk = 0|zBk = v)
+ 10, 0

)

, (2.43)and the synapti weight for the inhibitory synapti onnetion from the prinipalneuron νi to an auxiliary neuron αk
v (whih models the indiret inhibitory onnetionthrough the inhibitory interneuron ιkv) is set to

wk
v,i = min

(

−10 − log
p(zk = 1|zBk = v)

p(zk = 0|zBk = v)
, 0

)

. (2.44)The e�ay of the synapti onnetions from the auxiliary neurons to theirprinipal neuron are set to wap = 30. The lateral inhibition is implemented bya single inhibitory neuron that reeives exitatory onnetions from all auxiliaryneurons with synapti e�ay equal to wai = 30. The inhibitory neuron onnetsbak to all auxiliary neurons and these synapti onnetions have retangular shapedIPSPs with duration τi = 30 ms. These retangular IPSPs approximate the e�etthat a iruit of fast-spiking bursting inhibitory neuron with short IPSPs would haveon the membrane potential of the auxiliary neurons. The e�ay of the synaptionnetion from the inhibitory neuron for the lateral inhibition to the auxiliaryneuron αk
v is set equal to wk

v,i in the previous equation. The bias of the prinipalneurons are set to b = −10 and the biases of the auxiliary neurons are set aordingto (2.33). The inhibitory interneuron for the lateral inhibition has bias b = −10.The evidene about known random variables in the neural network was intro-dued by injeted onstant urrent in the orresponding prinipal neurons of ampli-tude A+ = 40 if the value of the RV is 1 and A− = −40 if the value of the RV is 0.The simulations were performed for Tsim = 6 se. biologial time. For the separateases of eah EPSP shape the results were averaged over 20 simulation trials withdi�erent initial states of the spiking neural network and di�erent noise through thesimulation. The initial states were randomly hosen from the prior distribution ofthe ASIA network whih orresponds to a random state in the ativity of the spikingnetwork when no evidene is introdued. For ontrol we performed the same sim-ulations with randomly hosen initial states from an uniform distribution, and theresults showed slightly slower onvergene (data not shown). The initial states wereset by injeting onstant urrent pulse in the prinipal neurons at the beginning of



52 Chapter 2. Sampling in Graphial Models with Spiking Neuronsthe simulation, for the unknown RVs with amplitude A+ = 40 ( A− = −40 ) if thevalue of the RV in the initial state is 1 ( 0 ) and duration equal to τinit = 15ms.The simulations in Computer Simulation II were performed with the PCSIM2simulator for neural iruits (Peevski et al., 2009).Details to Computer Simulation III. The simulations were performed with theideal implementation of the NCC, whih orresponds to using retangular PSPs andzero delays in the synapti onnetions in the implementations 2-5. We performed 10simulations with an implementation that uses the neuron model relative refratoryperiod and another 10 simulations with an implementation that uses the neuronmodel with absolute refratory period. The duration of the PSPs was τ = 20 ms.The Bayesian network in this simulation was randomly generated with a vari-ation of the Markov hain Monte Carlo sampling algorithm proposed in (Ide andCozman, 2002). Instead of allowing ars in the Bayesian network in both dire-tions between the nodes and heking at eah new iteration whether the generatedBayesian network graph is ayli like in (Ide and Cozman, 2002), we preserved anordering of the nodes in the graph and allow an edge from the node zi to the node
zj only if i < j. We started with a simple onneted graph where eah node zi,exept for the �rst node z1, has onnetion from node zi−1. We then performed thefollowing MCMC iterations1. Choose randomly a pair of nodes (zi, zj) where i < j ;2. If there is an edge from zi to zj then remove the edge if the Bayesian net-work remains onneted, otherwise keep the same Bayesian network from theprevious iteration;3. If there is not an ar, then reate an edge from zi to zj if the node zj hasless than 8 parents, otherwise keep the Bayesian network from the previousiteration.Similarly to the proofs in (Ide and Cozman, 2002), one an prove that the sta-tionary distribution of the above Markov hain is a uniform distribution over allvalid Bayesian networks that satisfy the onstraint that a node an not have morethan 8 parents. To generate the Bayesian network used in the simulations we per-formed 500000 iterations of the above Markov hain. The onditional probabilitydistributions for the Bayesian network were sampled from Dirihlet distributionswith priors (α1, α2, . . . , αk) with αi = 0.6 for all i.In the simulations that use a neuron model with a relative refratory mehanism,we used the following form for the refratory funtion gk(t)

g(t) =
t

τ
−

sin(2πt
τ )

2π
. (2.45)The orresponding funtion f(u) for the �ring probability is de�ned impliitly by(2.17).2web site: www.igi.tugraz.at/psim



2.5. Aknowledgements 532.5 AknowledgementsThis hapter is based on the paper Probabilisti Inferene in General Graphial Mod-els through Sampling in Stohasti Networks of Spiking Neurons by Dejan Peevski(DP), Lars Büsing (LB) and Wolfgang Maass (WM). The paper was submitted forpubliation in 2011 and is under review. The experiments in the paper were on-ieved and designed by DP and WM. DP onduted the experiments and analysedthe simulation results. The paper builds on the theory of neural sampling developedby LB and reported in (Büsing et al., 2011). DP and WM provided the additionaltheoretial derivations and analysis in the paper. DP andWMwrote the manusript.LB provided valuable omments that helped to improve the manusript.





Chapter 3A Learning Theory forReward-ModulatedSpike-Time-Dependent Plastiitywith Appliation to Biofeedbak
Contents3.1 Introdution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 563.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 583.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 793.4 Disussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 993.5 Aknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . 105Reward-modulated spike-timing-dependent plastiity (STDP) has reentlyemerged as a andidate for a learning rule that ould explain how behaviorally rele-vant adaptive hanges in omplex networks of spiking neurons ould be ahieved ina self-organizing manner through loal synapti plastiity. However the apabilitiesand limitations of this learning rule ould so far only be tested through omputersimulations. This work provides tools for an analyti treatment of reward-modulatedSTDP, whih allows us to predit under whih onditions reward-modulated STDPwill ahieve a desired learning e�et. These analytial results imply that neuronsan learn through reward-modulated STDP to lassify not only spatial, but alsotemporal �ring patterns of presynapti neurons. They also an learn to respondto spei� presynapti �ring patterns with partiular spike patterns. Finally, theresulting learning theory predits that even di�ult redit-assignment problems,where it is very hard to tell whih synapti weights should be modi�ed in order toinrease the global reward for the system, an be solved in a self-organizing mannerthrough reward-modulated STDP. This yields an explanation for a fundamental ex-perimental result on biofeedbak in monkeys by Fetz and Baker. In this experimentmonkeys were rewarded for inreasing the �ring rate of a partiular neuron in theortex, and were able to solve this extremely di�ult redit assignment problem.Our model for this experiment relies on a ombination of reward-modulated STDPwith variable spontaneous �ring ativity. Hene it also provides a possible funtional



56 Chapter 3. A Learning Theory for Reward-Modulated STDPexplanation for trial-to-trial variability, whih is harateristi for ortial networksof neurons, but has no analogue in urrently existing arti�ial omputing systems.In addition our model demonstrates that reward-modulated STDP an be appliedto all synapses in a large reurrent neural network without endangering the stabilityof the network dynamis.3.1 IntrodutionNumerous experimental studies (see Abbott and Nelson (2000) for a review; Jaobet al. (2007) disusses more reent in-vivo results) have shown that the e�ay ofsynapses hanges in dependene of the time di�erene ∆t = tpost − tpre betweenthe �ring times tpre and tpost of the pre- and postsynapti neurons. This e�etis alled spike-timing-dependent plastiity (STDP). But a major puzzle for under-standing learning in biologial organisms is the relationship between experimentallywell-established rules for STDP on the mirosopi level, and adaptive hanges ofthe behavior of biologial organisms on the marosopi level. Neuromodulatorysystems, whih send di�use signals related to reinforements (rewards) and behav-ioral state to several large networks of neurons in the brain, have been identi�ed aslikely intermediaries that relate these two levels of plastiity. It is well-known thatthe onsolidation of hanges of synapti weights in response to pre- and postsynap-ti neuronal ativity requires the presene of suh third signals Bailey et al. (2000);Gu (2002). In partiular, it has been demonstrated that dopamine (whih is behav-iorally related to novelty and reward predition Shultz (2007)) gates plastiity atortiostriatal synapses Reynolds et al. (2001); Reynolds and Wikens (2002) andwithin the ortex Bao et al. (2001). It has also been shown that aetylholine gatessynapti plastiity in the ortex (see for example Shulz et al. (2000) and Thiel et al.(2002); Shulz et al. (2003) ontains a nie review of the literature).Corresponding spike-based rules for synapti plastiity of the form
d

dt
wji(t) = cji(t)d(t) (3.1)have been proposed in Izhikevih (2007) and Florian (2007) (see Fig. 3.1 for anillustration of this learning rule), where wji is the weight of a synapse from neuron ito neuron j, cji(t) is an eligibility trae of this synapse whih ollets weight hangesproposed by STDP, and d(t) = h(t)− h̄ results from a neuromodulatory signal h(t)with mean value h̄. It was shown in Izhikevih (2007) that a number of interestinglearning tasks in large networks of neurons an be aomplished with this simplerule (3.1). It has reently been shown that quite similar learning rules for spikingneurons arise when one applies the general framework of distributed reinforementlearning from Baxter and Bartlett (1999) to networks of spiking neurons Baras andMeir (2007); Florian (2007), or if one maximizes the likelihood of postsynapti �ringat desired �ring times P�ster et al. (2006). However no analytial tools have beenavailable, whih make it possible to predit for what learning tasks, and under whihparameter settings, reward-modulated STDP will be suessful. This work provides



3.1. Introdution 57suh analytial tools, and demonstrates their appliability and signi�ane througha variety of omputer simulations. In partiular, we identify onditions under whihneurons an learn through reward-modulated STDP to lassify temporal presynapti�ring patterns, and to respond with partiular spike patterns.We also provide a model for the remarkable operant onditioning experimentsof Fetz and Baker (1973) (see also Fetz (1969, 2007)). In the simpler ones of theseexperiments the spiking ativity of single neurons (in area 4 of the preentral gyrusof monkey ortex) was reorded, the deviation of the urrent �ring rate of an arbi-trarily seleted neuron from its average �ring rate was made visible to the monkeythrough the displaement of an illuminated meter arm, whose rightward positionorresponded to the threshold for the feeder disharge. The monkey reeived foodrewards for inreasing (or in alternating trials for dereasing) the �ring rate of thisneuron. The monkeys learnt quite reliably (within a few minutes) to hange the �r-ing rate of this neuron in the urrently rewarded diretion.1 Obviously the existeneof learning mehanisms in the brain whih are able to solve this extremely di�ultredit assignment problem provides an important lue for understanding the orga-nization of learning in the brain. We examine in this work analytially under whatonditions reward-modulated STDP is able to solve suh learning problem. We testthe orretness of analytially derived preditions through omputer simulations ofbiologially quite realisti reurrently onneted networks of neurons, where an in-rease of the �ring rate of one arbitrarily seleted neuron within a network of 4000neurons is reinfored through rewards (whih are sent to all 142813 synapses be-tween exitatory neurons in this reurrent network). We also provide a model for themore omplex operant onditioning experiments of Fetz and Baker (1973) by show-ing that pairs of neurons an be di�erentially trained through reward-modulatedSTDP, where one neuron is rewarded for inreasing its �ring rate, and simulta-neously another neuron is rewarded for dereasing its �ring rate. More preisely,we inreased the reward signal d(t) whih is transmitted to all synapses between1Adjaent neurons tended to hange their �ring rate in the same diretion, but also di�erentialhanges of diretions of �ring rates of pairs of neurons are reported in Fetz and Baker (1973) (whenthese di�erential hanges were rewarded). For example, it was shown in Fig. 3.9 of Fetz and Baker(1973) (see also Fig. 3.1 in Fetz (2007)) that pairs of neurons that were separated by no more thana few hundred mirons ould be independently trained to inrease or derease their �ring rates. Itwas also reported in Fetz and Baker (1973), and further examined in Fetz and Finohio (1975),that bursts of the reinfored neurons were often aompanied by ativations of spei� musles.But the relationship between bursts of the reorded neurons in preentral motor ortex and musleativations was reported to be quite omplex and often dropped out after ontinued reinforementof the neuron alone. Furthermore in Fetz and Finohio (1975) it was shown that all neurons testedin that study ould be dissoiated from their orrelated musle ativity by di�erentially reinforingsimultaneous suppression of EMG ativity. These results suggest that the solution of the reditassignment problem by the monkeys (to stronger ativate that neuron out of billions of neuronsin their preentral gyrus that was reinfored) may have been supported by large sale explorationstrategies that were assoiated with musle ativations. But the previously mentioned results ondi�erential reinforements of two nearby neurons suggest that this large sale exploration strategyhad to be omplemented by exploration on a �ner spatial sale that is di�ult to explain on thebasis of musle ativations (see setion 3.2 of Fetz (2007) for a detailed disussion).



58 Chapter 3. A Learning Theory for Reward-Modulated STDPexitatory neurons in the network whenever the �rst neuron �red, and dereasedthis reward signal whenever the seond neuron �red (the resulting omposed rewardorresponds to the displaement of the meter arm that was shown to the monkey inthese more omplex operant onditioning experiments).Our theory and omputer simulations also show that reward-modulated STDPan be applied to all synapses within a large network of neurons for long time periods,without endangering the stability of the network. In partiular this synapti plasti-ity rule keeps the network within the asynhronous irregular �ring regime, whih hadbeen desribed in Brunel (2000) as a dynami regime that resembles spontaneousativity in the ortex. Another interesting aspet of learning with reward-modulatedSTDP is that it requires spontaneous �ring and trial-to-trial variability within thenetworks of neurons where learning takes plae. Hene our learning theory for thissynapti plastiity rule provides a foundation for a funtional explanation of theseharateristi features of ortial network of neurons that are undesirable from theperspetive of most omputational theories.3.2 ResultsWe �rst give a preise de�nition of the learning rule (3.1) for reward-modulatedSTDP. The standard rule for STDP, whih spei�es the hange W (∆t) of thesynapti weight of an exitatory synapse in dependene on the time di�erene
∆t = tpost − tpre between the �ring times tpre and tpost of the pre- and postsy-napti neuron, is based on numerous experimental data (see Abbott and Nelson(2000)). It is ommonly modeled by a so-alled learning urve of the form

W (∆t) =

{

A+e
−∆t/τ+ , if ∆t ≥ 0

−A−e
∆t/τ− , if ∆t < 0

, (3.2)where the positive onstants A+ and A− sale the strength of potentiation anddepression respetively, and τ+ and τ− are positive time onstants de�ning the widthof the positive and negative learning window. The resulting weight hange at time tof synapse ji for a presynapti spike train Spre
i and a postsynapti spike train Spost

jis usually modeled Gerstner and Kistler (2002) by the instantaneous appliation ofthis learning rule to all spike pairings with the seond spike at time t
[

d

dt
wji(t)

]

STDP

=

∫ ∞

0
dr W (r)Spost

j (t)Spre
i (t− r)

+

∫ ∞

0
dr W (−r)Spost

j (t− r)Spre
i (t). (3.3)The spike train of a neuron i whih �res ation potentials at times t(1)i , t

(2)
i , t

(3)
i , . . .is formalized here by a sum of Dira delta funtions Si(t) =

∑

n δ(t− t
(n)
i ).The model analyzed in this work is based on the assumption that positive andnegative weight hanges suggested by STDP for all pairs of pre- and postsynaptispikes at synapse ji (aording to the two integrals in (3.3)) are olleted in an



3.2. Results 59eligibility trae cji(t) at the site of the synapse. The ontribution to cij(t) of allspike pairings with the seond spike at time t− s is modeled for s > 0 by a funtion
fc(s) (see Fig. 3.1A); the time sale of the eligibility trae is assumed in this workto be on the order of seonds. Hene the value of the eligibility trae of synapse jiat time t is given by

cji(t) =

∫ ∞

0
dsfc(s)

[

d

dt
wji(t− s)

]

STDP

, (3.4)see Fig. 3.1B. The atual weight hange d
dtwji(t) at time t for reward-modulatedSTDP is the produt cij(t) · d(t) of the eligibility trae with the reward signal

d(t) as de�ned by equation (3.1). Sine this simple model an in priniple leadto unbounded growth of weights, we assume that weights are lipped at the lowerboundary value 0 and an upper boundary wmax.The network dynamis of a simulated reurrent network of spiking neurons whereall onnetions between exitatory neurons are subjet to STDP is quite sensitive tothe partiular STDP-rule that is used. Therefore we have arried out our networksimulations not only with the additive STDP-rule (3.3), whose e�et an be analyzedtheoretially, but also with the more omplex rule proposed in Morrison et al. (2007)(whih was �tted to experimental data from hippoampal neurons in ulture Bi andPoo (1998)), where the magnitude of the weight hange depends on the urrent valueof the weight. An implementation of this STDP-rule (with the parameters proposedin Morrison et al. (2007)) produed in our network simulations of the biofeedbakexperiment (omputer simulation 1) as well as for learning pattern lassi�ation(omputer simulation 4) qualitatively the same result as rule (3.3).3.2.1 Theoretial analysis of the resulting weight hangesIn this setion, we derive a learning equation for reward-modulated STDP. Thislearning equation relates the hange of a synapti weight wji over some su�ientlylong time interval T to statistial properties of the joint distribution of the rewardsignal d(t) and pre- and postsynapti �ring times, under the assumption that theweight and orrelations between pre- and postsynapti spike times are slowly varyingin time. We treat spike times as well as the reward signal d(t) as stohasti variables.This mathematial framework allows us to derive the expeted weight hange oversome time interval T (see Gerstner and Kistler (2002)), with the expetation takenover realizations of the stohasti input- and output spike trains as well as stohastirealizations of the reward signal, denoted by the ensemble average 〈·〉E

〈wji(t+ T ) − wji(t)〉E
T

=
1

T

〈
∫ t+T

t

d

dt
wji(t

′)dt′
〉

E

=

〈〈

d

dt
wji(t)

〉

T

〉

E

, (3.5)where we used the abbreviation 〈f(t)〉T = T−1
∫ t+T
t f(t′) dt′. If synapti plastiity issu�iently slow, synapti weights integrate a large number of small hanges. In thisase, the weight wji an be approximated by its average 〈wji〉E (it is �self-averaging�,



60 Chapter 3. A Learning Theory for Reward-Modulated STDP

Figure 3.1: Sheme of reward-modulated STDP aording to equations (3.1) - (3.4). A)Eligibility funtion fc(t), whih sales the ontribution of a pre/post spike pair (with theseond spike at time 0) to the eligibility trae c(t) at time t. B) Contribution of a pre-before-post spike pair (in red) and a post-before-pre spike pair (in green) to the eligibilitytrae c(t) (in blak), whih is the sum of the red and green urves. Aording to equation(3.1) the hange of the synapti weight w is proportional to the produt of c(t) with areward signal d(t).see Gerstner and Kistler (2002)). We an thus drop the expetation on the left handside of equation (3.5) and write it as d
dt 〈wji(t)〉T . Using equation (3.1), this yields(see Methods)

d

dt
〈wji(t)〉T =

∫ ∞

0
dr W (r)

∫ ∞

0
ds fc(s) 〈Dji(t, s, r) νji(t− s, r)〉T

+

∫ 0

−∞
dr W (r)

∫ ∞

|r|
ds fc(s+ r) 〈Dji(t, s, r) νji(t− s, r)〉T .

(3.6)This formula ontains the reward orrelation for synapse ji
Dji(t, s, r) = 〈d(t)| Neuron j spikes at t− s, and neuron i spikes at t− s− r〉E ,(3.7)whih is the average reward at time t given a presynapti spike at time t − s − rand a postsynapti spike at time t− s. The joint �ring rate νji(t, r) = 〈Sj(t)Si(t−



3.2. Results 61
r)〉E desribes orrelations between spike timings of neurons j and i, i.e., it is theprobability density for the event that neuron i �res an ation potential at time t− rand neuron j �res an ation potential at time t. For synapses subjet to reward-modulated STDP, hanges in e�ay are obviously driven by o-ourrenes of spikepairings and rewards within the time sale of the eligibility trae. Equation (3.6)lari�es how the expeted weight hange depends on how the orrelations betweenthe pre- and postsynapti neurons orrelate with the reward signal.If one assumes for simpliity that the impat of a spike pair on the eligibilitytrae is always triggered by the postsynapti spike, one gets a simpler equation (seeMethods)

d

dt
〈wji(t)〉T =

∫ ∞

0
ds fc(s)

∫ ∞

−∞
dr W (r) 〈Dji(t, s, r) νji(t− s, r)〉T . (3.8)The assumption introdues a small error for post-before-pre spike pairs, beause fora reward signal that arrives at some time dr after the pairing, the weight updatewill be proportional to fc(dr) instead of fc(dr + r). The approximation is justi�ed ifthe temporal average is performed on a muh longer time sale than the time saleof the learning window, the e�et of eah pre-post spike pair on the reward signalis delayed by an amount greater than the time sale of the learning window, and

fc hanges slowly ompared to the time sale of the learning window (see Methodsfor details). For the analyzes presented in this work, the simpli�ed equation (3.8)is a good approximation for the learning dynamis. Equation (3.8) is a general-ized version of the STDP learning equation d
dtwji(t) =

∫∞
−∞ dr W (r) 〈νji(t− s, r)〉Tin Gerstner and Kistler (2002) that inludes the impat of the reward orrelationweighted by the eligibility funtion. To see the relation between standard STDPand reward-modulated STDP, onsider a onstant reward signal d(t) = d0. Thenalso the reward orrelation is onstant and given by D(t, s, r) = d0. We reoverthe standard STDP learning equation saled by d0 if the eligibility funtion isan instantaneous delta-pulse fc(s) = δ(s). Furthermore, if the statistis of thereward signal d(t) is time-independent and independent from the pre- and post-synapti spike statistis of some synapse ji, then the reward orrelation is givenby Dji(t, s, r) = 〈d(t)〉E = d0 for some onstant d0. Then, the weight hangefor synapse ji is d

dt〈wji(t)〉T = d0

∫∞
−∞ dr W (r)

∫∞
0 dsfc(s) 〈νji(t− s, r)〉T . Thetemporal average of the joint �ring rate 〈νji(t− s, r)〉T is thus �ltered by the el-igibility trae. We assumed in the preeding analysis that the temporal averageis taken over some long time interval T . If the time sale of the eligibility traeis muh smaller than this time interval T , then the weight hange is approxi-mately d

dt〈wji(t)〉T ≈ d0(
∫∞
0 dsfc(s))

∫∞
−∞ dr W (r) 〈νji(t, r)〉T , and the weight wjiwill hange aording to standard STDP saled by a onstant proportional to themean reward and the integral over the eligibility funtion. In the remainder of thishapter, we will always use the smooth time-averaged weight hange d

dt 〈wji(t)〉T ,but for brevity, we will drop the angular brakets and simply write d
dtwji(t).The learning equation (3.8) provides the mathematial basis for our followinganalyses. It allows us to determine synapti weight hanges if we an desribe a



62 Chapter 3. A Learning Theory for Reward-Modulated STDPlearning situation in terms of reward orrelations and orrelations between pre- andpostsynapti spikes.3.2.2 Appliation to models for biofeedbak experimentsWe now apply the preeding analysis to the biofeedbak experiment of Fetz andBaker (1973) that were desribed in the introdution. These experiments pose thehallenge to explain how learning mehanisms in the brain an detet and exploitorrelations between rewards and the �ring ativity of one or a few neurons within alarge reurrent network of neurons (the redit assignment problem), without hang-ing the overall funtion or dynamis of the iruit.We show that this phenomenon an in priniple be explained by reward-modulated STDP. In order to do that, we de�ne a model for the experiment whihallows us to formulate an equation for the reward signal d(t). This enables us toalulate synapti weight hanges for this partiular senario. We onsider as modela reurrent neural iruit where the spiking ativity of one neuron k is reordedby the experimenter.2 We assume that in the monkey brain a reward signal d(t)is produed whih depends on the visual feedbak (through an illuminated meter,whose pointer de�etion was dependent on the urrent �ring rate of the randomlyseleted neuron k) as well as previously reeived liquid rewards, and that this signal
d(t) is delivered to all synapses in large areas of the brain. We an formalize thissenario by de�ning a reward signal whih depends on the spike rate of the arbi-trarily seleted neuron k (see Fig. 3.2A, B). More preisely, a reward pulse of shape
εr(r) (the reward kernel) is produed with some delay dr every time the neuron kprodues an ation potential

d(t) =

∫ ∞

0
dr Spost

k (t− dr − r)εr(r). (3.9)Note that d(t) = h(t) − h̄ is de�ned in equation (3.1) as a signal with zero mean.In order to satisfy this onstraint, we assume that the reward kernel εr has zeromass, i.e., ε̄r =
∫∞
0 dr εr(r) = 0. For the analysis, we use the linear Poisson neuronmodel desribed in Methods. The mean weight hange for synapses to the reinforedneuron k is then approximately (see Methods)

d

dt
wki(t) ≈

∫ ∞

0
ds fc(s+ dr)εr(s)

∫ ∞

−∞
dr W (r) 〈νki(t− dr − s, r)〉T . (3.10)This equation desribes STDP with a learning rate proportional to ∫∞

0 ds fc(s +

dr)εr(s). The outome of the learning session will strongly depend on this integraland thus on the form of the reward kernel εr. In order to reinfore high �ring ratesof the reinfored neuron we have hosen a reward kernel with a positive bump in2Experiments where two neurons are reorded and reinfored were also reported in Fetz andBaker (1973). We tested this ase in omputer simulations (see Fig. (3.4)) but did not treat itexpliitly in our theoretial analysis.



3.2. Results 63
A

0 2.5 5

0

0.5

e
lig

. 
fu

n
c
ti
o

n

s [sec]

C

0

1.5

re
w

a
rd

 k
e

rn
e

l

0 1 2 3
−5

0

5

10

15

time [sec]

re
w

a
rd

 s
ig

n
a

l 
d

(t
)

B

Figure 3.2: Setup of the model for the experiment by Fetz and Baker Fetz and Baker(1973). A) Shema of the model: The ativity of a single neuron in the iruit determinesthe amount of reward delivered to all synapses between exitatory neurons in the iruit. B)The reward signal d(t) in response to a spike train (shown at the top) of the arbitrarilyseleted neuron (whih was seleted from a reurrently onneted iruit onsisting of 4000neurons). The level of the reward signal d(t) follows the �ring rate of the spike train. C)The eligibility funtion fc(s) (blak urve, left axis), the reward kernel εr(s) delayed by 200ms (red urve, right axis), and the produt of these two funtions (blue urve, right axis)as used in our omputer experiment. The integral of fc(s+ dr)εr(s) is positive, as requiredaording to equation (3.10) in order to ahieve a positive learning rate for the synapses tothe seleted neuron.the �rst few hundred milliseonds, and a long negative tail afterwards. Fig. 3.2Cshows the funtions fc and εr that were used in our omputer model, as well asthe produt of these two funtions. One sees that the integral over the produt ispositive and aording to equation (3.10) the synapses to the reinfored neuron aresubjet to STDP.This does not guarantee an inrease of the �ring rate of the reinfored neuron.Instead, the hanges of neuronal �ring will depend on the statistis of the inputs. Inpartiular, the weights of synapses to neuron k will not inrease if that neuron doesnot �re spontaneously. For unorrelated Poisson input spike trains of equal rate, the�ring rate of a neuron trained by STDP stabilizes at some value whih depends onthe input rate (see Song et al. (2000); Kempter et al. (2001)). However, in ompari-son to the low spontaneous �ring rates observed in the biofeedbak experiment Fetzand Baker (1973), the stable �ring rate under STDP an be muh higher, allowingfor a signi�ant rate inrease. It was shown in Fetz and Baker (1973) that also low�ring rates of a single neuron an be reinfored. In order to model this, we havehosen a reward kernel with a negative bump in the �rst few hundred milliseonds,and a long positive tail afterwards, i.e. we inverted the kernel used above to obtaina negative integral ∫∞
0 ds fc(s+dr)εr(s). Aording to equation (3.10) this leads to



64 Chapter 3. A Learning Theory for Reward-Modulated STDPanti-STDP where not only inputs to the reinfored neuron whih have low orrela-tions with the output are depressed (beause of the negative integral of the learningwindow), but also those whih are ausally orrelated with the output. This leadsto a quik �ring rate derease at the reinfored neuron.The mean weight hange of synapses to non-reinfored neurons j 6= k is givenby
d

dt
wji(t) ≈

∫ ∞

0
ds fc(s)

∫ ∞

−∞
dr W (r)

∫ ∞

0
dr′εr(r

′)

〈

νkj(t− dr − r′, s− dr − r′)

νj(t− s)
νji(t− s, r)

〉

T

,

(3.11)where νj(t) = 〈Sj(t)〉E is the instantaneous �ring rate of neuron j at time t. Thisequation indiates that a non-reinfored neuron is trained by STDP with a learningrate proportional to its orrelation with the reinfored neuron given by νkj(t −

dr − r′, s − dr − r′)/νj(t − s). In fat, it was noted in Fetz and Baker (1973)that neurons nearby the reinfored neuron tended to hange their �ring rate in thesame diretion. This observation might be explained by putative orrelations ofthe reorded neuron with nearby neurons. On the other hand, if a neuron j isunorrelated with the reinfored neuron k, we an deompose the joint �ring rateinto νkj(t− dr − r′, s− dr − r′) = νk(t− dr − r′)νj(t− s). In this ase, the learningrate for synapse ji is approximately zero (see Methods). This ensures that mostneurons in the iruit keep a onstant �ring rate, in spite of ontinuous weighthanges aording to reward-modulated STDP.Altogether we see that the weights of synapses to the reinfored neuron k anonly hange if there is spontaneous ativity in the network, so that in partiularalso this neuron k �res spontaneously. On the other hand the spontaneous networkativity should not onsist of repeating large-sale spatio-temporal �ring patterns,sine that would entail orrelations between the �ring of neuron k and other neurons
j, and would lead to similar hanges of synapses to these other neurons j. Apart fromthese requirements on the spontaneous network ativity, the preeding theoretialresults predit that stability of the iruit is preserved, while the neuron whih isausally related to the reward signal is trained by STDP, if ∫∞

0 ds fc(s+ dr)εr(s) ispositive.3.2.2.1 Computer simulation 1: Model for biofeedbak experimentWe tested these theoretial preditions through omputer simulations of a generiortial miroiruit reeiving a reward signal whih depends on the �ring of onearbitrarily hosen neuron k from the iruit (reinfored neuron). The iruit wasomposed of 4000 LIF neurons, with 3200 being exitatory and 800 inhibitory, inter-onneted randomly by 228954 ondutane based synapses with short term dynam-is 3. In addition to the expliitly modeled synapti onnetions, ondutane noise3All omputer simulations were also arried out as a ontrol with stati urrent based synapses,see Methods and Suppl.



3.2. Results 65(generated by an Ornstein-Uhlenbek proess) was injeted into eah neuron a-ording to data from Destexhe et al. (2001), in order to model synapti bakgroundativity of neoortial neurons in-vivo.4 This bakground noise eliited spontaneous�ring in the iruit at about 4.6 Hz. Reward-modulated STDP was applied ontin-uously to all synapses whih had exitatory presynapti and postsynapti neurons,and all these synapses reeived the same reward signal. The reward signal was mod-eled aording to equation (3.9). Fig. 3.2C shows one reward pulse aused by asingle postsynapti spike at time t = 0 with the parameters used in the experiment.For several postsynapti spikes, the amplitude of the reward signal follows the �ringrate of the reinfored neuron, see Fig. 3.2B.This model was simulated for 20 minutes of biologial time. Panels A, B, D ofFig. 3.3 show that the �ring rate of the reinfored neuron inreases within a fewminutes (like in the experiment of Fetz and Baker (1973)), while the �ring ratesof the other neurons remain largely unhanged. The inrease of weights to thereinfored neuron shown in Fig. 3.3C an be explained by the orrelations betweenits presynapti and postsynapti spikes shown in panel E. This panel shows thatpre-before-post spike pairings (blak urve) are in general more frequent than post-before-pre spike pairings. The reinfored neuron inreases its rate from around 4Hz to 12 Hz, whih is omparable to the measured �ring rates in Fetz and Baker(1973) before and after learning.In Fig. 3.9 of Fetz and Baker (1973) and Fig. 3.1 of Fetz (2007) the results ofanother experiment were reported where the ativity of two adjaent neurons wasreorded, and high �ring rates of the �rst neuron and low �ring rates of the se-ond neuron were reinfored simultaneously. This kind of di�erential reinforementresulted in an inrease and derease of the �ring rates of the two neurons orre-spondingly. We implemented this type of reinforement by letting the reward signalin our model depend on the spikes of the two randomly hosen neurons (we refer tothese neurons as neuron A and neuron B), i.e. d(t) = dA
+(t) + dB

−(t), where dA
+(t)is the omponent that positively rewards spikes of neuron A, and dB

−(t) negativelyrewards spikes of neuron B. Both parts of the reward signal, dA
+(t) and dB

−(t), werede�ned as in equation (3.9) for the orresponding neuron. For dA
+(t) we used thereward kernel εr as de�ned in equation (3.29), whereas for dB

−(t) we used εr− = −εr(note that the integral over εr− is still zero). At the middle of the simulation (simu-lation time t = 10min), we hanged the diretion of the reinforements by negativelyrewarding the �ring of neuron A and positively rewarding the �ring of neuron B (i.e.,
d(t) = dA

−(t)+dB
+(t)). The results are summarized in Fig. 3.4. With a reward signalmodeled in this way, we were able to independently inrease and derease the �ringrates of the two neurons aording to the reinforements, while the �ring rates of theother neurons remained unhanged. Changing the type of reinforement during the4More preisely, for 50% of the exitatory neurons the amplitude of the noise injetion wasredued to 20%, and instead their onnetion probabilities from other exitatory neurons werehosen to be larger (see Methods and Fig. S1 and S2 for details). The reinfored neuron had tobe hosen from the latter population, sine reward-modulated STDP does not work properly if thepostsynapti neuron �res too often beause of diretly injeted noise.



66 Chapter 3. A Learning Theory for Reward-Modulated STDPsimulation from positive to negative for neuron A and from negative to positive forneuron B resulted in a orresponding shift in their �ring rate hange in the diretionof the reinforement.The dynamis of a network where STDP is applied to all synapses between exi-tatory neurons is quite sensitive to the spei� hoie of the STDP-rule. The preed-ing theoretial analysis (see equation (3.10), (3.11)) predits that reward-modulatedSTDP a�ets in the long run only those exitatory synapses where the �ring of thepostsynapti neuron is orrelated with the reward signal. In other words: the rewardsignal gates the e�et of STDP in a reurrent network, and thereby an keep thenetwork within a given dynami regime. This predition is on�rmed qualitativelyby the two panels of Fig. 3.3A, whih show that even after all exitatory synapses inthe reurrent network have been subjet to 20 minutes (in simulated biologial time)of reward-modulated STDP, the network stays within the asynhronous irregular �r-ing regime. It is also on�rmed quantitatively through Fig. 3.5. These �gures showresults for the simple additive version of STDP (aording to equation (3.3)). Verysimilar results (see Fig. S3 and S4) arise from an appliation of the more omplexSTDP-rule proposed in Morrison et al. (2007) where the weight-hange depends onthe urrent weight value.3.2.3 Rewarding spike-timesThe preeding model for the biofeedbak experiment of Fetz and Baker fousedon learning of �ring rates. In order to explore the apabilities and limitations ofreward-modulated STDP in ontexts where the temporal struture of spike trainsmatters, we investigated another reinforement learning senario where a neuronshould learn to respond with partiular temporal spike patterns. We �rst applyanalytial methods to derive onditions under whih a neuron subjet to reward-modulated STDP an ahieve this.In this model, the reward signal d(t) is given in dependene on how well theoutput spike train Spost
j of a neuron j mathes some rather arbitrary spike train S∗(whih might for example represent spike output from some other brain strutureduring a developmental phase). S∗ is produed by a neuron µ∗ that reeives the same

n input spike trains S1, . . . , Sn as the trained neuron j, with some arbitrarily hosenweights w
∗ = (w∗

1 , . . . , w
∗
n)T , w∗

i ∈ {0, wmax}. But in addition the neuron µ∗ reeives
n′ − n further spike trains Sn+1, . . . , Sn′ with weights w∗

n+1, . . . , w
∗
n′ = wmax. Thesetup is illustrated in Fig. 3.6A. It provides a generi reinforement learning senario,when a quite arbitrary (and not perfetly realizable) spike output is reinfored, butsimultaneously the performane of the learner an be evaluated learly aording tohow well its weights wj1, . . . , wjn math those of the neuron µ∗ for those n inputspike trains whih both of them have in ommon. The reward d(t) at time t dependsin this task on both the timing of ation potentials of the trained neuron and spiketimes in the target spike train S∗

d(t) =

∫ ∞

−∞
dr κ(r)Spost

j (t− dr)S
∗(t− dr − r), (3.12)



3.2. Results 67

Figure 3.3: Simulation of the experiment by Fetz and Baker Fetz and Baker (1973) for thease where an arbitrarily seleted neuron triggers global rewards when it inreases its �ringrate. A) Spike response of 100 randomly hosen neurons within the reurrent networkof 4000 neurons at the beginning of the simulation (20se - 23se, left plot), and at theend of the simulation (the last 3 seonds, right plot). The �ring times of the reinforedneuron are marked by blue rosses. B) The �ring rate of the positively rewarded neuron(blue line) inreases, while the average �ring rate of 20 other randomly hosen neurons(dashed line) remains unhanged. C) Evolution of the average weight of exitatory synapsesto the reinfored neuron (blue line), and of the average weight of 1663 randomly hosenexitatory synapses to other neurons in the iruit (dashed line). D) Spike trains of thereinfored neuron before and after learning. E) Histogram of the time-di�erenes betweenpresynapti and postsynapti spikes (bin size 0.5ms), averaged over all exitatory synapsesto the reinfored neuron. The blak urve represents the histogram values for positive timedi�erenes (when the presynapti spike preedes the postsynapti spike), and the red urverepresents the histogram for negative time di�erenes.where the funtion κ(r) with κ̄ =
∫∞
−∞ ds κ(s) > 0 desribes how the reward signaldepends on the time di�erene r between a postsynapti spike and a target spike,



68 Chapter 3. A Learning Theory for Reward-Modulated STDP

Figure 3.4: Di�erential reinforement of two neurons (within a simulated network of 4000neurons, the two rewarded neurons are denoted as A and B), orresponding to the exper-imental results shown in Fig. 3.9 of Fetz and Baker (1973) and Fig. 3.1 of Fetz (2007).A) The spike response of 100 randomly hosen neurons at the beginning of the simulation(20se - 23se, left plot), and at the middle of simulation just before the swithing of thereward poliy (597se-600se, right plot). The �ring times of the �rst reinfored neuronA are marked by blue rosses and those of the seond reinfored neuron B are markedby green rosses. B) The dashed vertial line marks the swith of the reinforements at
t = 10min. The �ring rate of neuron A (blue line) inreases while it is positively reinforedin the �rst half of the simulation and dereases in the seond half when its spiking is nega-tively reinfored. The �ring rate of the neuron B (green line) dereases during the negativereinforement in the �rst half and inreases during the positive reinforement in the seondhalf of the simulation. The average �ring rate of 20 other randomly hosen neurons (dashedline) remains unhanged. C) Evolution of the average weight of exitatory synapses to therewarded neurons A and B (blue and green lines respetively), and of the average weightof 1744 randomly hosen exitatory synapses to other neurons in the iruit (dashed line).and dr > 0 is the delay of the reward.Our theoretial analysis (see Methods) predits that under the assumption ofonstant-rate unorrelated Poisson input statistis this reinforement learning taskan be solved by reward-modulated STDP for arbitrary initial weights if three on-straints are ful�lled:



3.2. Results 69

Figure 3.5: Evolution of the dynamis of a reurrent network of 4000 LIF neurons duringappliation of reward-modulated STDP. A) Distribution of the synapti weights of exita-tory synapses to 50 randomly hosen non-reinfored neurons, plotted for 4 di�erent periodsof simulated biologial time during the simulation. The weights are averaged over 10 sam-ples within these periods. The olors of the urves and the orresponding intervals are asfollows: red (300−360 se), green (600−660 se), blue (900−960 se), magenta (1140−1200se). B) The distribution of average �ring rates of the non-reinfored exitatory neurons inthe iruit, plotted for the same time periods as in A). The olors of the urves are the sameas in A). The distribution of the �ring rates of the neurons in the iruit remains unhangedduring the simulation, whih overs 20 minutes of biologial time. C) Cross-orrelogramof the spiking ativity in the iruit, averaged over 200 pairs of non-reinfored neurons andover 60 s, with a bin size of 0.2 ms, for the period between 300 and 360 seonds of simulatedbiologial time. It is alulated as the ross-ovariane divided by the square root of theprodut of varianes. D) As in C), but between seonds 1140 and 1200.(Separate plots ofpanel B, C, D for two types of exitatory neurons that reeived di�erent amounts of noiseurrents are given in Fig. S1 and S2.)
− νpost

minW̄ > wmaxW̄ε (3.13)
∫ ∞

−∞
dr W (r)ε(r)εκ(r) ≥ −νpost

maxW̄

∫ ∞

0
dr ε(r)εκ(r) (3.14)

∫ ∞

−∞
dr W (r)εκ(r) > −W̄ κ̄

[

ν∗νpost
max

wmax

f̄c

fc(dr)
+

ν∗

wmax
+ ν∗ + νpost

max

](3.15)



70 Chapter 3. A Learning Theory for Reward-Modulated STDP
A

−100 −50 0 50 100

−1

0

1

2

s [ms]

κ
(s

)

B

Figure 3.6: Setup for reinforement learning of spike times. A) Arhiteture. The trainedneuron reeives n input spike trains. The neuron µ∗ reeives the same inputs plus addi-tional inputs not aessible to the trained neuron. The reward is determined by the timingdi�erenes between the ation potentials of the trained neuron and the neuron µ∗. B) Areward kernel with optimal o�set from the origin of tκ = −6.6ms. The optimal o�set forthis kernel was alulated with respet to the parameters from omputer simulation 1 inTable 3.1. Reward is positive if the neuron spikes around the target spike or somewhatlater, and negative if the neuron spikes muh too early.The following parameters our in these equations: ν∗ is the output rate of neu-ron µ∗, νpost
min is the minimal output rate, νpost

max is the maximal output rate ofthe trained neuron, f̄c =
∫∞
0 dr fc(r) is the integral over the eligibility trae,

W̄ =
∫∞
−∞ dr W (r) is the integral over the STDP learning urve (see equation(3.2)), εκ(r) =

∫∞
−∞ dr′ κ(r′)ε(r − r′) is the onvolution of the reward kernel withthe shape of the postsynapti potential (PSP) ε(s), and W̄ε =

∫∞
−∞ dr ε(r)W (r) isthe integral over the PSP weighted by the learning window.If these inequalities are ful�lled and input rates are larger than zero, then theweight vetor of the trained neuron onverges on average from any initial weightvetor to w

∗ (i.e., it mimis the weight distribution of neuron µ∗ for those n inputswhih both have in ommon). To get an intuitive understanding of these inequalities,we �rst examine the idea behind onstraint (3.13). This onstraint assures thatweights of synapses i with w∗
i = 0 deay to zero in expetation. First note thatinput spikes from a spike train Si with w∗

i = 0 have no in�uene on the target spiketrain S∗. In the linear Poisson neuron model, this leads to weight hanges similarto STDP whih an be desribed by two terms. First, all synapses are subjet todepression stemming from the negative part of the learning urve W and randompre-post spike pairs. This weight hange is bounded from below by ανpre
i νpost

minW̄ forsome positive onstant α. On the other hand, the positive in�uene of input spikeson postsynapti �ring leads to potentiation of the synapse bounded from above by
ανpre

i wmaxW̄ε. Hene the weight deays to zero if −ανpre
i νpost

minW̄ > ανpre
i wmaxW̄ε,leading to inequality (3.13). For synapses i with w∗

i = wmax, there is an additionaldrive, sine eah presynapti spike inreases the probability of a losely following



3.2. Results 71spike in the target spike train S∗. Therefore, the probability of a delayed rewardsignal after a presynapti spike is larger. This additional drive leads to positiveweight hanges if inequalities (3.14) and (3.15) are ful�lled (see Methods).Note that also for the learning of spike times spontaneous spikes (whih might beregarded as �noise�) are important, sine they may lead to reward signals that anbe exploited by the learning rule. It is obvious that in reward-modulated STDP,a silent neuron annot reover from its silent state, sine there will be no spikeswhih an drive STDP. But in addition, ondition (3.13) shows that in this learningsenario, the minimal output rate νpost
min � whih inreases with inreasing noise �has to be larger than some positive onstant, suh that depression is strong enoughto weaken synapses if needed. On the other hand, if the noise is too strong alsosynapses i with wi = wmax will be depressed and may not onverge orretly. Thisan happen when the inreased noise leads to a maximal postsynapti rate νpost

maxsuh that onstraints (3.14) and (3.15) are not satis�ed anymore.The onditions (3.13)-(3.15) also reveal how parameters of the model in�uenethe appliability of this setup. For example, the eligibility trae enters the equationsonly in the form of its integral and its value at the reward delay in equation (3.15). Infat, the exat shape of the eligibility trae is not important. The important propertyof an ideal eligibility trae is that it is high at the reward delay and low at othertimes as expressed by the fration in ondition (3.15). Interestingly, the formulas alsoshow that one has quite some freedom in hoosing the form of the STDP window,as long as the reward kernel εκ is adjusted aordingly. For example, instead of astandard STDP learning window W with W (r) ≥ 0 for r > 0 and W (r) ≤ 0 for
r < 0 and a orresponding reward kernel κ, one an use a reversed learning window
W ′ de�ned by W ′(r) ≡ W (−r) and a reward kernel κ′ suh that εκ′(r) = εκ(−r).If (3.15) is satis�ed for W and κ, then it is also satis�ed for W ′ and κ′ (and in mostases also ondition (3.14) will be satis�ed). This re�ets the fat that in rewardmodulated STDP the learning window de�nes the weight hanges in ombinationwith the reward signal.For a given STDP learning window, the analysis reveals what reward kernels κare suitable for this learning setup. From ondition (3.15), we an dedue that theintegral over κ should be small (but positive), whereas the integral ∫∞

−∞ dr W (r)εκ(r)should be large. Hene, for a standard STDP learning window W withW (r) ≥ 0 for
r > 0 and W (r) ≤ 0 for r < 0, the onvolution εκ(r) of the reward kernel with thePSP should be positive for r > 0 and negative for r < 0. In the omputer simulationwe used a simple kernel depited in Fig. 3.6B, whih satis�es the aforementionedonstraints. It onsists of two double-exponential funtions, one positive and onenegative, with a zero rossing at some o�set tκ from the origin. The optimal o�set
tκ is always negative and in the order of several milliseonds for usual PSP-shapes
ε. We onlude that for suessful learning in this senario, a positive reward shouldbe produed if the neuron spikes around the target spike or somewhat later, and anegative reward should be produed if the neuron spikes muh too early.



72 Chapter 3. A Learning Theory for Reward-Modulated STDP3.2.3.1 Computer simulation 2: Learning spike timesIn order to explore this learning senario in a biologially more realisti setting,we trained a LIF neuron with ondutane based synapses exhibiting short termfailitation and depression. The trained neuron and the neuron µ∗ whih produedthe target spike train S∗ both reeived inputs from 100 input neurons emittingspikes from a onstant rate Poisson proess of 15 Hz. The synapses to the trainedneuron were subjet to reward-modulated STDP. The weights of neuron µ∗ wereset to w∗
i = wmax for 0 ≤ i < 50 and w∗

i = 0 for 50 ≤ i < 100. In order to simulatea non-realizable target response, neuron µ∗ reeived 10 additional synapti inputs(with weights set to wmax/2). During the simulations we observed a �ring rate of
18.2 Hz for the trained neuron, and 25.2 Hz for the neuron µ∗. The simulationswere run for 2 hours simulated biologial time.We performed 5 repetitions of the experiment, eah time with di�erent randomlygenerated inputs and di�erent initial weight values for the trained neuron. In eahof the 5 runs, the average synapti weights of synapses with w∗

i = wmax and w∗
i = 0approahed their target values, as shown in Fig. 3.7A. In order to test how loselythe trained neuron reprodues the target spike train S∗ after learning, we performedadditional simulations where the same spike input was applied to the trained neuronbefore and after the learning. Then we ompared the output of the trained neuronbefore and after learning with the output S∗ of neuron µ∗. Fig. 3.7B shows thatthe trained neuron approximates the part of S∗ whih is aessible to it quite well.Panels C-F of Fig. 3.7 provide more detailed analyses of the evolution of weightsduring learning. The omputer simulations on�rmed the theoretial predition thatthe neuron an learn well through reward-modulated STDP only if a ertain levelof noise is injeted into the neuron (see preeding disussion and the Fig. S6).Both the theoretial results and these omputer simulations demonstrate thata neuron an learn quite well through reward-modulated STDP to respond withspei� spike patterns.3.2.3.2 Computer simulation 3: Testing the analytially derived ondi-tionsEquations (3.13) - (3.15) predit under whih relationships between the parametersinvolved the learning of partiular spike responses through reward-modulated STDPwill be suessful. We have tested these preditions by seleting 6 arbitrary settingsof these parameters, whih are listed in Table 3.1. In 4 ases (marked by light grayshading in Fig. 3.8) these onditions were not met (either for the learning of weightswith target value wmax, or for the learning of weights with target value 0. Fig. 3.8shows that the derived learning result is not ahieved in exatly these 4 ases. Onthe other hand, the theoretially predited weight hanges (blak bar) predit inall ases the atual weight hanges (gray bar) that our for the hosen simulationtimes (listed in the last olumn of Table 3.1) remarkably well.



3.2. Results 73

Figure 3.7: Results for reinforement learning of exat spike times through reward-modulated STDP. A) Synapti weight hanges of the trained LIF neuron, for 5 di�erentruns of the experiment. The urves show the average of the synapti weights that shouldonverge to w∗

i
= 0 (dashed lines), and the average of the synapti weights that shouldonverge to w∗

i
= wmax (solid lines) with di�erent olors for eah simulation run. B) Com-parison of the output of the trained neuron before (top trae) and after learning (bottomtrae). The same input spike trains and the same noise inputs were used before and aftertraining for 2 hours. The seond trae from above shows those spike times S∗ whih arerewarded, the third trae shows the realizable part of S∗ (i.e. those spikes whih the trainedneuron ould potentially learn to reprodue, sine the neuron µ∗ produes them withoutits 10 extra spike inputs). The lose math between the third and fourth trae shows thatthe trained neuron performs very well. C) Evolution of the spike orrelation between thespike train of the trained neuron and the realizable part of the target spike train S∗. D)The angle between the weight vetor w of the trained neuron and the weight vetor w

∗ ofthe neuron µ∗ during the simulation, in radians. E) Synapti weights at the beginning ofthe simulation are marked with ×, and at the end of the simulation with •, for eah plastisynapse of the trained neuron. F) Evolution of the synapti weights w/wmax during thesimulation (we had hosen w∗

i = wmax for i < 50, w∗

i = 0 for i ≥ 50).



74 Chapter 3. A Learning Theory for Reward-Modulated STDP

Figure 3.8: Test of the validity of the analytially derived onditions (3.13)-(3.15) on therelationship between parameters for suessful learning with reward-modulated STDP. Pre-dited average weight hanges (blak bars) alulated from equation (3.22) math in signand magnitude the atual average weight hanges (gray bars) in omputer simulations, for 6di�erent experiments with di�erent parameter settings (see Table 3.1). A) Weight hangesfor synapses with w∗

i
= wmax. B) Weight hanges for synapses with w∗

i
= 0. Four aseswhere the onstraints (3.13) - (3.15) are not ful�lled are shaded in light gray. In all ofthese four ases the weights move into the opposite diretion, i.e., a diretion that dereasesrewards.Ex. τε[ms℄ wmax νpost

min [Hz℄ A+106 A−

A+
τ+ [ms℄ Aκ

+, Aκ
− τκ

2 [ms℄ tsim [h℄1 10 0.012 10 16.62 1.05 20 3.34, -3.12 20 52 7 0.020 5 11.08 1.02 15 4.58, -4.17 16 103 20 0.010 6 5.54 1.10 25 1.50, -1.39 40 194 7 0.020 5 11.08 1.07 25 4.67, -4.17 16 135 10 0.015 6 20.77 1.10 25 3.75, -3.12 20 26 25 0.005 3 13.85 1.01 25 3.34, -3.12 20 18Table 3.1: Parameter values used for omputer simulation 3 (see Fig. 3.8).3.2.4 Pattern disrimination with reward-modulated STDPWe examine here the question whether a neuron an learn through reward-modulated STDP to disriminate between two spike patterns P and N of its presy-napti neurons, by responding with more spikes to pattern P than to pattern N .Our analysis is based on the assumption that there exist internal rewards d(t) thatould guide suh pattern disrimination. This reward based learning arhitetureis biologially more plausible than an arhiteture with a supervisor whih providesfor eah input pattern a target output and thereby diretly produes the desired�ring behavior of the neuron (sine the question beomes then how the supervisorhas learnt to produe the desired spike outputs).



3.2. Results 75We onsider a neuron that reeives input from n presynapti neurons. A pattern
X onsists of n spike trains, eah of time length T , one for eah presynapti neuron.There are two patterns, P and N , whih are presented in alternation to the neuron,with some reset time between presentations. For notational simpliity, we assumethat eah of the n presynapti spike trains onsists of exatly one spike. Hene, eahpattern an be de�ned by a list of spike times: P = (tP1 , . . . , t

P
n ), N = (tN1 , . . . , t

N
n ),where tXi is the time when presynapti neuron i spikes for pattern X ∈ {P,N}. Ageneralization to the easier ase of learning to disriminate spatio-temporal presy-napti �ring patterns (where some presynapti neurons produe di�erent numbersof spikes in di�erent patterns) is straightforward, however the main harateristisof the learning dynamis are better aessible in this oneptually simpler setup.It had already been shown in Izhikevih (2007) that neurons an learn throughreward-modulated STDP to disriminate between di�erent spatial presynapti �r-ing patterns. But in the light of the analysis of Farries and Fairhall (2007) it isstill open whether neurons an learn with simple forms of reward-modulated STDP,suh as the one onsidered in this work, to disriminate temporal presynapti �ringpatterns.We assume that the reward signal d(t) rewards � after some delay dr � ationpotentials of the trained neuron if pattern P was presented, and punishes ationpotentials of the neuron if pattern N was presented. More preisely, we assume that

d(t) =

{

αP
∫∞
0 dr εr(r)S

post(t− dr − r) , if a pattern P was presented
αN
∫∞
0 dr εr(r)S

post(t− dr − r) , if a pattern N was presented(3.16)with some reward kernel εr and onstants αN < 0 < αP . The goal of this learningtask is to produe many output spikes for pattern P , and few or no spikes for pattern
N . The main result of our analysis is an estimate of the expeted weight hange ofsynapse i of the trained neuron for the presentation of pattern P , followed after asu�iently long time T ′ by a presentation of pattern N

∆wi =

∫ T ′

0
dt

[

〈

dwi(t)

dt

〉

E|P

+

〈

dwi(t)

dt

〉

E|N

]

,where 〈·〉E|X is the expetation over the ensemble given that pattern X was pre-sented. This weight hange an be estimated as (see Methods)
∆wi =

∫ ∞

−∞
drW (r)

[

νP (tPi + r)AP
i + νN (tNi + r)AN

i

]

, (3.17)where νX(t) is the postsynapti rate at time t for pattern X, and the onstants AX
ifor X ∈ {P,N} are given by

AX
i = αX

∫ ∞

0
dr′εr(r

′)

[

fc(dr + r′) +

∫ T ′

0
dtfc(t− tXi )νX(t− dr − r′)

]

. (3.18)



76 Chapter 3. A Learning Theory for Reward-Modulated STDPAs we will see shortly, an interesting learning e�et is ahieved if AP
i is positiveand AN

i is negative. Sine fc(r) is non-negative, a natural way to ahieve this is tohoose a positive reward kernel εr(r) ≥ 0 for r > 0 and εr(r) = 0 for r < 0 (also,
fc(r) and εr(r) must not be idential to zero for all r).We use equation (3.17) to provide insight on when and how the lassi�ation oftemporal spike patterns an be learnt with reward-modulated STDP. Assume for themoment that AN

i = −AP
i . We �rst note that it is impossible to ahieve through anysynapti plastiity rule that the time integral over the membrane potential of thetrained neuron has after training a larger value for input pattern P than for inputpattern N . The reason is that eah presynapti neuron emits the same numberof spikes in both patterns (namely one spike). This simple fat implies that it isimpossible to train a linear Poisson neuron (with any learning method) to respondto pattern P with more spikes than to pattern N . But equation (3.17) impliesthat reward-modulated STDP inreases the variane of the membrane potential forpattern P , and redues the variane for pattern N . This an be seen as follows.Beause of the spei� form of the STDP learning urve W (r), whih is positivefor (small) positive r, negative for (small) negative r, and zero for large r, ∆wi =

∫∞
−∞ drW (r)νP (tPi + r)AP

i has a potentiating e�et on synapse i if the postsynaptirate for pattern P is larger (beause of a higher membrane potential) shortly afterthe presynapti spike at this synapse i than before that spike. This tends to furtherinrease the membrane potential after that spike. On the other hand, sine AN
iis negative, the same situation for pattern N has a depressing e�et on synapse

i, whih ounterats the inreased membrane potential after the presynapti spike.Dually, if the postsynapti rate shortly after the presynapti spike at synapse i islower than shortly before that spike, the e�et on synapse i is depressing for pattern
P . This leads to a further derease of the membrane potential after that spike. Inthe same situation for pattern N , the e�et is potentiating, again ounterating thevariation of the membrane potential. The total e�et on the postsynapti membranepotential is that the �utuations for pattern P are inreased, while the membranepotential for pattern N is �attened.For the LIF neuron model, and most reasonable other non-linear spiking neuronmodels, as well as for biologial neurons in-vivo and in-vitro Stevens and Zador(1998); Mainen and Sejnowski (1995); Silberberg et al. (2004), larger �utuationsof the membrane potential lead to more ation potentials. As a result, reward-modulated STDP tends to inrease the number of spikes for pattern P for theseneuron models, while it tends to derease the number of spikes for pattern N , therebyenabling a disrimination of these purely temporal presynapti spike patterns.3.2.4.1 Computer simulation 4: Learning pattern lassi�ationWe tested these theoretial preditions through omputer simulations of a LIF neu-ron with ondutane based synapses exhibiting short-term depression and failita-tion. Both patterns, P and N, had 200 input hannels, with 1 spike per hannel(hene this is the extreme where all information lies in the timing of presynapti



3.2. Results 77spikes). The spike times were drawn from an uniform distribution over a time inter-val of 500ms, whih was the duration of the patterns. We performed 1000 trainingtrials where the patterns P and N were presented to the neuron in alternation. Tointrodue exploration for this reinforement learning task, the neuron had injeted20% of the Ornstein-Uhlenbek proess ondutane noise (see Methods for furtherdetails).The theoretial analysis predited that the membrane potential will have afterlearning a higher variane for pattern P , and a lower variane for pattern N . Whenin our simulation of a LIF neuron the �ring of the neuron was swithed o� (by settingthe �ring threshold potential too high) we ould observe the membrane potential�utuations undisturbed by the reset mehanism after eah spike (see Fig. 3.9C,D). The variane of the membrane potential did in fat inrease for pattern Pfrom 2.49(mV )2 to 5.43(mV )2 (panel C), and derease for pattern N (panel D),from 2.34(mV )2 to 1.33(mV )2. The orresponding plots with the �ring thresholdinluded are given in panels E and F, showing an inreased member of spikes ofthe LIF neuron for pattern P , and a dereased number of spikes for pattern N .Furthermore, as panels A and B in Fig. 3.9 show, the inreased variane of themembrane potential for the positively reinfored pattern P led to a stable temporal�ring pattern in response to pattern P.We repeated the experiment 6 times, eah time with di�erent randomly gener-ated patterns P and N , and di�erent random initial synapti weights of the neuron.The results in Fig. 3.9 G and H show that the learning of temporal pattern disrimi-nation through reward-modulated STDP does not depend on the temporal patternsthat are hosen, nor on the initial values of synapti weights.3.2.4.2 Computer simulation 5: Training a readout neuron with reward-modulated STDP to reognize isolated spoken digitsA longstanding open problem is how a biologially realisti neuron model an betrained in a biologially plausible manner to extrat information from a generi or-tial miroiruit. Previous work Maass et al. (2002b, 2004); Destexhe and Marder(2004); Maass et al. (2007); Nikoli¢ et al. (2007) has shown that quite a bit of salientinformation about reent and past inputs to the miroiruit an be extrated bya non-spiking linear readout neuron (i.e., a pereptron) that is trained by linearregression or margin maximization methods. Here we examine to what extent aLIF readout neuron with ondutane based synapses (subjet to biologially re-alisti short term synapti plastiity) an learn through reward-modulated STDPto extrat from the response of a simulated ortial miroiruit (onsisting of 540LIF neurons), see Fig. 3.10A, the information whih spoken digit (transformed intospike trains by a standard ohlea model) is injeted into the iruit. In omparisonwith the preeding task in simulation 4, this task is easier beause the presynapti�ring patterns that need to be disriminated di�er in temporal and spatial aspets(see Fig. 3.10B; Fig. S10 and 11 show the spike trains that were injeted into theiruit). But this task is on the other hand more di�ult, beause the iruit re-



78 Chapter 3. A Learning Theory for Reward-Modulated STDP

Figure 3.9: See next page for �gure aption.sponse (whih reates the presynapti �ring pattern for the readout neuron) di�ersalso signi�antly for two utteranes of the same digit (Fig. 3.10C), and even for twotrials for the same utterane (Fig. 3.10D) beause of the intrinsi noise in the iruit(whih was modeled aording to Destexhe et al. (2001) to re�et in-vivo onditionsduring ortial UP-states). The results shown in Fig. 3.10E - H demonstrate thatnevertheless this learning experiment was suessful. On the other hand we werenot able to ahieve in this way speaker-independent word reognition, whih hadbeen ahieved in Maass et al. (2002b) with a linear readout. Hene further work willbe needed in order to larify whether biologially more realisti models for readoutneurons an be trained through reinforement learning to reah the lassi�ationapabilities of pereptrons that are trained through supervised learning.



3.3. Methods 79Figure 3.9: Training a LIF neuron to lassify purely temporal presynapti �ring patterns: apositive reward is given for �ring of the neuron in response to a temporal presynapti �ringpattern P , and a negative reward for �ring in response to another temporal pattern N .A) The spike response of the neuron for individual trials, during 500 training trials whenpattern P is presented. Only the spikes from every 4-th trial are plotted. B) As in A),but in response to pattern N . C) The membrane potential Vm(t) of the neuron during atrial where pattern P is presented, before (blue urve) and after training (red urve), withthe �ring threshold removed. The variane of the membrane potential inreases duringlearning, as predited by the theory. D) As in C), but for pattern N . The variane of themembrane potential for pattern N dereases during learning, as predited by the theory.E) The membrane potential Vm(t) of the neuron (inluding ation potentials) during atrial where pattern P is presented before (blue urve) and after training (red urve). Thenumber of spikes inreases. F) As in E), but for trials where pattern N is given as input.The number of spikes dereases. G) Average number of output spikes per trial beforelearning, in response to pattern P (gray bars) and pattern N (blak bars), for 6 experimentswith di�erent randomly generated patterns P and N , and di�erent random initial synaptiweights of the neuron. H) As in G), for the same experiments, but after learning. Theaverage number of spikes per trial inreases after training for pattern P , and dereases forpattern N .3.3 MethodsWe �rst desribe the simple neuron model that we used for the theoretial analysis,and then provide derivations of the equations that were disussed in the preedingsetion. After that we desribe the models for neurons, synapses, and synaptibakground ativity ("noise") that we used in the omputer simulations. Finally weprovide tehnial details to eah of the 5 omputer simulations that we disussed inthe preeding setion.3.3.1 Linear Poisson Neuron ModelIn our theoretial analysis, we use a linear Poisson neuron model whose output spiketrain Spost
j (t) is a realization of a Poisson proess with the underlying instantaneous�ring rate Rj(t). The e�et of a spike of presynapti neuron i at time t′ on themembrane potential of neuron j is modeled by an inrease in the instantaneous�ring rate by an amount wji(t

′)ε(t− t′), where ε is a response kernel whih modelsthe time ourse of a postsynapti potential (PSP) eliited by an input spike. SineSTDP aording to Izhikevih (2007) has been experimentally on�rmed only forexitatory synapses, we will onsider plastiity only for exitatory onnetions andassume that wji ≥ 0 for all i and ε(s) ≥ 0 for all s. Beause the synapti responseis saled by the synapti weights, we an assume without loss of generality thatthe response kernel is normalized to ∫∞
0 ds ε(s) = 1. In this linear model, theontributions of all inputs are summed up linearly:

Rj(t) =
n
∑

i=1

∫ ∞

0
ds wji(t− s) ε(s) Si(t− s) , (3.19)



80 Chapter 3. A Learning Theory for Reward-Modulated STDP

Figure 3.10: See next page for �gure aption.where S1, . . . , Sn are the n presynapti spike trains. Sine the instantaneous �r-ing rate R(t) is analogous to the membrane potential of other neuron models, weoasionally refer to R(t) as the �membrane potential� of the neuron.3.3.2 Learning equationsIn the following, we denote by 〈x〉E|Spost
k

(t),Spre
i (t′) the ensemble average of a randomvariable x given that neuron k spikes at time t and neuron i spikes at time t′. Wewill also sometimes indiate the variables Y1, Y2, . . . over whih the average of x istaken by writing 〈x〉Y1,Y2,...|....Derivation of equation (3.6). Using equation (3.5), (3.1), and (3.4), we obtain the



3.3. Methods 81Figure 3.10: A LIF neuron is trained through reward-modulated STDP to disriminate as a�readout neuron� responses of generi ortial miroiruits to utteranes of di�erent spokendigits. A) Ciruit response to an utterane of digit �one� (spike trains of 200 out of 540neurons in the iruit are shown). The response within the time period from 100 to 200 ms(marked in gray) is used as a referene in the subsequent 3 panels. B) The iruit responsefrom A) (blak) for the period between 100 and 200 ms, and the iruit response to anutterane of digit �two� (red). C) The iruit spike response from A) (blak) and a iruitresponse for another utterane of digit �one� (red), also shown for the period between 100and 200 ms. D) The iruit spike response from A) (blak), and another iruit responseto the same utterane in another trial (red). The responses di�er due to the presene ofnoise in the iruit. E) Spike response of the LIF readout neuron for di�erent trials duringlearning, for trials where utteranes of digit �two� (left plot) and digit �one� (right plot) arepresented as iruit inputs. The spikes from eah 4th trial are plotted. F) Average numberof spikes in the response of the readout during training, in response to digit �one� (blue) anddigit �two� (green). The number of spikes were averaged over 40 trials. G) The membranepotential Vm(t) of the neuron during a trial where an input pattern orresponding to anutterane of digit �two� is presented, before (blue urve) and after training (red urve), withthe �ring threshold removed. H) As in G), but for an input pattern orresponding to anutterane of digit �one�. The variane of the membrane potential inreases during learningfor utteranes of the rewarded digit, and dereases for the non-rewarded digit.expeted weight hange between time t and t+ T

〈wji(t+ T ) −wji(t)〉E
T

=
∫ ∞

0
dsfc(s)

∫ ∞

0
drW (r)

〈〈

d(t)Spost
j (t− s)Spre

i (t− s− r)
〉

T

〉

E
+

∫ ∞

0
ds fc(s)

∫ 0

−∞
dr W (r)

〈〈

d(t)Spost
j (t− s+ r)Spre

i (t− s)
〉

T

〉

E

=

∫ ∞

0
dr W (r)

∫ ∞

0
ds fc(s)

〈〈

d(t)Spost
j (t− s)Spre

i (t− s− r)
〉

E

〉

T
+

∫ 0

−∞
dr W (r)

∫ ∞

|r|
ds fc(s+ r)

〈〈

d(t)Spost
j (t− s)Spre

i (t− s− r)
〉

E

〉

T

=

∫ ∞

0
dr W (r)

∫ ∞

0
ds fc(s) 〈Dji(t, s, r) νji(t− s, r)〉T +

∫ 0

−∞
dr W (r)

∫ ∞

|r|
ds fc(s+ r) 〈Dji(t, s, r) νji(t− s, r)〉T ,with Dji(t, s, r) = 〈d(t)| Neuron j spikes at t−s, and neuron i spikes at t−s−r〉E ,and the joint �ring rate νji(t, r) = 〈Sj(t)Si(t− r)〉E desribes orrelations betweenspike timings of neurons j and i. The joint �ring rate νji(t − s, r) depends on theweight at time t− s. If the learning rate de�ned by the magnitude of W (r) is small,the synapti weights an be assumed onstant on the time sale of T . Thus, thetime sales of neuronal dynamis are separated from the slow time sale of learning.For slow learning, synapti weights integrate a large number of small hanges. We



82 Chapter 3. A Learning Theory for Reward-Modulated STDPan then expet that averaged quantities enter the learning dynamis. In this ase,we an argue that �utuations of a weight wji about its mean are negligible and itan well be approximated by its average 〈wji〉E (it is �self-averaging�, see Gerstnerand Kistler (2002); Kempter et al. (1999)). To ensure that average quantities enterthe learning dynamis, many presynapti and postsynapti spikes as well as manyindependently delivered rewards at varying delays have to our within T . Hene, ingeneral, the time sale of single spike ourrenes and the time sale of the eligibilitytrae is required to be muh smaller than the time sale of learning. If time salesan be separated, we an drop the expetation on the left hand side of the lastequation and write
〈wji(t+ T ) −wji(t)〉E

T
=
wji(t+ T ) − wji(t)

T
=

1

T

∫ t+T

t

d

dt
wji(t

′)dt′ =
d

dt
〈wji(t)〉T .We thus obtain equation (3.6):

d

dt
〈wji(t)〉T =

∫ ∞

0
dr W (r)

∫ ∞

0
ds fc(s) 〈Dji(t, s, r) νji(t− s, r)〉T

+

∫ 0

−∞
dr W (r)

∫ ∞

|r|
ds fc(s+ r) 〈Dji(t, s, r) νji(t− s, r)〉T .Simpli�ation of equation (3.6). In order to simplify this equation, we �rst observethat W (r) is vanishing for large |r|. Hene we an approximate the integral overthe learning window by a bounded integral ∫∞

−∞ dr W (r) ≈
∫ TW

−TW
dr W (r) for some

TW > 0 and TW ≪ T . In the analyzes of this work, we onsider the ase wherereward is delivered with a relatively large temporal delay. To be more preise, weassume that a pre-post spike pair has an e�et on the reward signal only after someminimal delay dr and that we an write Dji(t, s, r) = d0 +Dpre,post
ji (t, s, r) for somebaseline reward d0 and a part whih depends on the timing of pre-post spike pairswith Dpre,post

ji (t, s, r) = 0 for s < dr and dr > TW . We an then approximate theseond term of equation (3.6):
∫ 0

−∞
dr W (r)

∫ ∞

|r|
ds fc(s + r) 〈Dji(t, s, r) νji(t− s, r)〉T

≈

∫ 0

−TW

dr W (r)

∫ ∞

|r|
ds fc(s+ r)

〈

(d0 +Dpre,post
ji (t, s, r)) νji(t− s, r)

〉

T

≈

∫ 0

−TW

dr W (r)

[
∫ ∞

0
ds fc(s)d0 〈νji(t− s, r)〉T

+

∫ ∞

|r|
ds fc(s+ r)

〈

Dpre,post
ji (t, s, r) νji(t− s, r)

〉

T

]beause 〈νji(t− s− r, r)〉T ≈ 〈νji(t− s, r)〉T for r ∈ [−TW , TW ] and TW ≪ T . Sine
Dpre,post

ji (t, s, r) = 0 for s ≤ TW , the seond term in the brakets is equivalent to



3.3. Methods 83
∫∞
0 ds fc(s+r)

〈

Dpre,post
ji (t, s, r) νji(t− s, r)

〉

T
whih in turn is approximately givenby ∫∞

0 ds fc(s)
〈

Dpre,post
ji (t, s, r) νji(t− s, r)

〉

T
if we assume that fc(s + r) ≈ fc(s)for s ≥ dr and |r| < TW . We an thus approximate the seond term of equation(3.6) as

∫ 0

−∞
dr W (r)

∫ ∞

|r|
ds fc(s + r) 〈Dji(t, s, r) νji(t− s, r)〉T

≈

∫ 0

−TW

dr W (r)

[∫ ∞

0
ds fc(s)d0 〈νji(t− s, r)〉T

+

∫ ∞

0
ds fc(s)

〈

Dpre,post
ji (t, s, r) νji(t− s, r)

〉

T

]

≈

∫ 0

−∞
dr W (r)

∫ ∞

0
ds fc(s) 〈Dji(t, s, r) νji(t− s, r)〉T .With this approximation, the �rst and seond term of equation (3.6) an be om-bined in a single integral to obtain equation (3.8).3.3.3 Derivations for the biofeedbak experimentWe assume that a reward with the funtional form εr is delivered for eah postsy-napti spike with a delay dr. The reward as time t is therefore

d(t) =

∫ ∞

0
dr Spost

k (t− dr − r)εr(r).Weight hange for the reinfored neuron (derivation of equation (3.10)). The rewardorrelation for a synapse ki a�erent to the reinfored neuron is
Dki(t, s, r) = 〈d(t)〉E|Spost

k
(t−s),Spre

i (t−s−r)

=

∫ ∞

0
dr′ εr(r

′)〈Spost
k (t− dr − r′)〉E|Spost

k
(t−s),Spre

i (t−s−r)

=

∫ ∞

0
dr′ εr(r

′)
[

νk(t− dr − r′) + wkiε(s+ r − dr − r′)

+δ(s − dr − r′)
]

=

∫ ∞

0
dr′εr(r

′)νk(t− dr − r′) +wki

∫ ∞

0
dr′ εr(r

′)ε(s+ r − dr − r′) + εr(s− dr).If we assume that the output �ring rate is onstant on the time sale of the rewardfuntion, the �rst term vanishes. We rewrite the result as
Dki(t, s, r) = εr(s− dr) + wki

∫ ∞

−∞
dr′ εr(s − dr + r′)ε(r − r′).



84 Chapter 3. A Learning Theory for Reward-Modulated STDPThe mean weight hange for weights to the reinfored neuron is therefore
d

dt
wki(t) =

∫ ∞

−∞
dr W (r)

(∫ ∞

0
ds fc(s)εr(s − dr) 〈νki(t− s, r)〉T +

wki

∫ ∞

−∞
dr′ ε(r − r′)

∫ ∞

0
ds fc(s)εr(s− dr + r′) 〈νki(t− s, r)〉T

)

. (3.20)We show that the seond term in the brakets is very small ompared to the �rstterm:
wki

∫ ∞

−∞
dr′ ε(r − r′)

∫ ∞

0
ds fc(s)εr(s − dr + r′) 〈νki(t− s, r)〉T =

wki

∫ ∞

−∞
dr′ ε(r − r′)

∫ ∞

0
ds fc(s− r′)εr(s − dr)

〈

νki(t− s− r′, r)
〉

T
≈

wki

∫ ∞

−∞
dr′ ε(r − r′)

∫ ∞

0
ds fc(s)εr(s − dr) 〈νki(t− s, r)〉T .The last approximation is based on the assumption that fc(s) ≈ fc(s − r′) and

〈νki(t − r′, r)〉T ≈ 〈νki(t, r)〉T for r′ ∈ [−TW − Tε, TW ]. Here, TW is the time saleof the learning window (see above), and Tε is time sale of the PSP, i.e., we have
ε(s) ≈ 0 for s ≥ Tε. Sine ∫∞

−∞ dr ε(r) = 1 by de�nition, we see that this is the �rstterm in the brakets of equation (3.20) saled by wki. For neurons with many inputsynapses we have wki ≪ 1. Thus the seond term in the brakets of equation (3.20)is small ompared to the �rst term. We therefore have
d

dt
wki(t) ≈

∫ ∞

0
ds fc(s+ dr)εr(s)

∫ ∞

−∞
dr W (r) 〈νki(t− dr − s, r)〉T .Weight hange for non-reinfored neurons (derivation of equation (3.11)). The re-ward orrelation of a synapse ji to a non-reinfored neuron j is given by

Dji(t, s, r) = 〈d(t)〉E|Spost
j (t−s),Spre

i (t−s−r)

=

∫ ∞

0
dr′ εr(r

′)〈Spost
k (t− dr − r′)〉E|Spost

j (t−s),Spre
i (t−s−r).We have

〈Spost
k (t− dr − r′)〉E|Spost

j (t−s),Spre
i (t−s−r)

=
〈Spost

k (t− dr − r′)Spost
j (t− s)〉E|Spre

i (t−s−r)

〈Spost
j (t− s)〉E|Spre

i (t−s−r)

=
νkj(t− dr − r′, s− dr − r′) + wkiwjiε(s + r − dr − r′)ε(r)

νj(t− s) + wjiε(r)
,for whih we obtain

Dji(t, s, r) =

∫ ∞

0
dr′ εr(r

′)
νkj(t− dr − r′, s− dr − r′) + wkiwjiε(s + r − dr − r′)ε(r)

νj(t− s) + wjiε(r)
.



3.3. Methods 85In analogy to the previous derivation, we assume here that the �ring rate νj(t− s)in the denominator results from many PSPs. Hene, the single PSP wjiε(r) issmall ompared to νj(t − s). Similarly, we assume that with weights wki, wji ≪

1, the seond term in the nominator is small ompared to the joint �ring rate
νkj(t− dr − r′, s − dr − r′). We therefore approximate the reward orrelation by

Dji(t, s, r) ≈

∫ ∞

0
dr′ εr(r

′)
νkj(t− dr − r′, s− dr − r′)

νj(t− s)
.Hene, the reward orrelation of a non-reinfored neuron depends on the orrelationof this neuron with the reinfored neuron. The mean weight hange for a non-reinfored neuron j 6= k is therefore

d

dt
wji(t) ≈

∫ ∞

0
ds fc(s)

∫ ∞

−∞
dr W (r)

∫ ∞

0
dr′εr(r

′)

〈

νkj(t− dr − r′, s− dr − r′)

νj(t− s)
νji(t− s, r)

〉

TThis equation deserves a remark for the ase that νj(t−s) is zero, sine it appears inthe denominator of the fration. Note that in this ase, both νkj(t−dr−r
′, s−dr−r

′)and νji(t − s, r) are zero. In fat, if we take the limit νj(t − s) → 0, then both ofthese fators approah zero at least as fast. Hene, in the limit of νj(t − s) → 0,the term in the angular brakets evaluates to zero. This re�ets the fat that sineSTDP is driven by pre- and postsynapti spikes, there is no weight hange if nopostsynapti spikes our.For unorrelated neurons, equation 3.11 evaluates to zero. For unorrelated neurons
k, j, νkj(t− dr − r′, s− dr − r′) an be fatorized into νk(t− dr − r′)νj(t− s), andwe obtain
d

dt
wji(t) ≈

∫ ∞

0
ds fc(s)

∫ ∞

−∞
dr W (r)

∫ ∞

0
dr′εr(r

′)
〈

νk(t− dr − r′)νji(t− s, r)
〉

T
.This evaluates approximately to zero if the mean output rate of neuron k is onstanton the time sale of the reward kernel.3.3.4 Analysis of spike-timing dependent rewards (derivation ofthe onditions (3.13)-(3.15)).Below, we will indiate the variables Y1, Y2, . . . over whih the average of x is takenby writing 〈x〉Y1,Y2,...|.... From equation (3.12), we an determine the reward orre-lation for synapse i

Dji(t, s, r) =

∫ ∞

−∞
dr′κ(r′)

〈

Spost
j (t− dr)S

∗(t− dr − r′)
〉

E|Spost
j (t−s),Spre

i (t−s−r)

=

∫ ∞

−∞
dr′κ(r′)

[

νpost
j (t− dr) + δ(s − dr) + wji(s+ r − dr)ε(s+ r − dr)

]

[

ν∗(t− dr − r′) + w∗
i ε(s+ r − dr − r′)

]

, (3.21)where νpost
j (t) = 〈Spost

j (t)〉E denotes the instantaneous �ring rate of the trainedneuron at time t, and ν∗(t) = 〈S∗(t)〉E denotes the instantaneous rate of the target



86 Chapter 3. A Learning Theory for Reward-Modulated STDPspike train at time t. Sine weights are hanging very slowly, we have wji(t−s−r) ≈

wji(t). In the following, we will drop the dependene of wji on t for brevity. Forsimpliity, we assume that input rates are stationary and unorrelated. In this ase(sine the weights are hanging slowly), also the orrelations between inputs andoutputs an be assumed stationary, νji(t, r) = νji(r). With onstant input rates, wean rewrite (3.21) as
Dji(t, s, r) = κ̄ν∗νpost

j + κ̄ν∗δ(s − dr) + κ̄ν∗wjiε(s + r − dr)

+ w∗
i

∫ ∞

−∞
dr′κ(r′)ε(s + r − dr − r′)

[

νpost
j (t− dr) + δ(s − dr) + wji(s+ r − dr)ε(s + r − dr)

]

,with κ̄ =
∫∞
−∞ ds κ(s). We use this results to obtain the temporally smoothed weighthange for synapse ji. With stationary orrelations, we an drop the dependeneof νji on t and write νji(t, r) = νji(r). Furthermore, we de�ne νW

ji (r) = νji(r)W (r)and obtain
d

dt
wji(t) =

∫ ∞

−∞
dr W (r)νji(r)

∫ ∞

0
ds fc(s) 〈Dji(t, s, r)〉T

=

∫ ∞

−∞
dr νW

ji (r)κ̄
[

ν∗νpost
j f̄c + ν∗fc(dr)

+ν∗wji

∫ ∞

0
ds fc(s)ε(s + r − dr)

]

+

∫ ∞

−∞
dr νW

ji (r)w∗
i ν

post

∫ ∞

−∞
dr′κ(r′)

∫ ∞

0
ds fc(s)ε(s + r − dr − r′) +

∫ ∞

−∞
dr νW

ji (r)w∗
i

∫ ∞

−∞
dr′κ(r′)fc(dr)ε(r − r′) +

∫ ∞

−∞
dr νW

ji (r)w∗
i

∫ ∞

−∞
dr′κ(r′)wji

∫ ∞

0
ds fc(s)ε(s + r − dr)ε(s + r − dr − r′).We assume that the eligibility funtion fc(dr) ≈ fc(dr + r) if |r| is on the time saleof a PSP, the learning window, or the reward kernel, and that dr is large omparedto these time sales. Then, we have

∫ ∞

−∞
dr νW

ji (r)

∫ ∞

−∞
dr′ κ(r′)fc(dr)ε(r − r′) = fc(dr)

∫ ∞

−∞
dr νW

ji (r)εκ(r)where εκ(r) =
∫∞
−∞ dr′ κ(r′)ε(r − r′) is the onvolution of the reward kernel withthe PSP. Furthermore, we �nd

∫ ∞

−∞
dr νW

ji (r)

∫ ∞

−∞
dr′ κ(r′)

∫ ∞

0
ds fc(s)ε(s + r − dr)ε(s + r − dr − r′)

≈ fc(dr)

∫ ∞

−∞
dr νW

ji (r)

∫ ∞

−∞
dr′ κ(r′)

∫ ∞

0
ds ε(s+ r − dr)ε(s + r − dr − r′)

= fc(dr)

∫ ∞

−∞
dr νW

ji (r)

∫ ∞

0
ds ε(s)εκ(s).



3.3. Methods 87With these simpli�ations, and the abbreviation ν̄W
ji =

∫∞
−∞ drνW

ji (r) we obtain theweight hange at synapse ji
d

dt
wji(t) ≈ κ̄ν∗νpost

j ν̄W
ji f̄c + fc(dr)κ̄ν̄

W
ji

[

ν∗ + ν∗wji + w∗
i ν

post
j

]

+ fc(dr)w
∗
i

∫ ∞

−∞
drW (r)νji(r)εκ(r) + fc(dr)wjiw

∗
i ν̄

W
ji

∫ ∞

−∞
dr ε(r)εκ(r),where ν̄W

ji =
∫∞
−∞ drW (r)νji(r).For unorrelated Poisson input spike trains of rate νpre

i and the linear Poissonneuron model, the input-output orrelations are νji(r) = νpre
i νpost

j + wjiν
pre
i ε(r).With these orrelations, we obtain ν̄W

ji = νpre
i νpost

j W̄ + wjiν
pre
i W̄ε where W̄ =

∫∞
−∞ dr W (r), and W̄ε =

∫∞
−∞ dr ε(r)W (r). The weight hange at synapse ji is then

d

dt
wji(t) ≈ κ̄f̄cν

∗νpre
i νpost

j

[

νpost
j W̄ +wjiW̄ε

]

+κ̄fc(dr)ν
pre
i

[

νpost
j W̄ +wjiW̄ε

] [

ν∗ + ν∗wji + w∗
i ν

post
j

]

+fc(dr)w
∗
i ν

pre
i

[

νpost
j

∫ ∞

−∞
dr W (r)εκ(r) + wji

∫ ∞

−∞
dr W (r)ε(r)εκ(r)

]

+fc(dr)w
∗
iwjiν

pre
i

[

νpost
j W̄ + wjiW̄ε

]

∫ ∞

0
dr ε(r)εκ(r), (3.22)We will now bound the expeted weight hange for synapses ji with w∗

i = wmaxand for synapses jk with w∗
k = 0. In this way we an derive onditions for whihthe expeted weight hange for the former synapses is positive, and that for thelatter type is negative. First, we assume that the integral over the reward kernel ispositive. In this ase, the weight hange given by (3.22) is negative for synapses iwith w∗

i = 0 if and only if νpre
i > 0, and −νpost

j W̄ > wjiW̄ε. In the worst ase, wji is
wmax and νpost

j is small. We have to guarantee some minimal output rate νpost
min suhthat even if wji = wmax, this inequality is ful�lled. This ould be guaranteed bysome noise urrent. Given suh minimal output rate, we an state the �rst inequalitywhih guarantees onvergene of weights wji with w∗

i = 0

−νpost
minW̄ > wmaxW̄ε.For synapses ji with w∗

i = wmax, we obtain two more onditions. The approximate



88 Chapter 3. A Learning Theory for Reward-Modulated STDPweight hange is given by
d

dt
wji(t)

1

νpre
i

≈ κ̄
[

νpost
j W̄ + wjiW̄ε

]

[

ν∗νpost
j f̄c + fc(dr)ν

∗ + fc(dr)ν
∗wji + fc(dr)ν

post
j wmax

]

+fc(dr)wmaxν
post
j

∫ ∞

−∞
dr W (r)εκ(r)

+fc(dr)wmaxwji

∫ ∞

−∞
dr W (r)ε(r)εκ(r)

+fc(dr)wmaxwjiν
post
j W̄

∫ ∞

0
dr ε(r)εκ(r)

+fc(dr)wmaxw
2
jiW̄ε

∫ ∞

0
dr ε(r)εκ(r).The last term in this equation is positive and small. We an ignore it in our su�ientondition. The seond to last term is negative. We will inlude in our onditionthat the third to last term ompensates for this negative term. Hene, the seondondition is

∫ ∞

−∞
dr W (r)ε(r)εκ(r) ≥ −νpost

j W̄

∫ ∞

0
dr ε(r)εκ(r),whih should be satis�ed in most setups. If we assume that this holds, we obtain

d

dt
wji(t) ≥ κ̄

[

νpost
j W̄ + wjiW̄ε

] [

ν∗νpost
j f̄c + fc(dr)ν

∗ + fc(dr)ν
∗wji + fc(dr)ν

post
j wmax

]

+fc(dr)wmaxν
post
j

∫ ∞

−∞
dr W (r)εκ(r).whih should be positive. We obtain the following inequality

∫ ∞

−∞
dr W (r)εκ(r) > −W̄ κ̄

[

ν∗νpost
j

wmax

f̄c

fc(dr)
+

ν∗

wmax
+ ν∗ + νpost

]

.All three inequalities are summarized in the following:
−νpost

minW̄ > wmaxW̄ε
∫ ∞

−∞
dr W (r)ε(r)εκ(r) ≥ −νpost

maxW̄

∫ ∞

0
dr ε(r)εκ(r)

∫ ∞

−∞
dr W (r)εκ(r) > −W̄ κ̄

[

ν∗νpost
max

wmax

f̄c

fc(dr)
+

ν∗

wmax
+ ν∗ + νpost

max

]

,where νpost
max is the maximal output rate. If these inequalities are ful�lled and inputrates are positive, then the weight vetor onverges on average from any initial weightvetor to w

∗. The seond ondition is less severe, and should be easily ful�lled inmost setups. If this is the ase, the �rst ondition (3.13) ensures that weights with
w∗ = 0 are depressed while the third ondition (3.15) ensures that weights with
w∗ = wmax are potentiated.



3.3. Methods 893.3.5 Analysis of the pattern disrimination task (derivation ofequation (3.17)).We assume that a trial onsists of the presentation of a single pattern starting attime t = 0. We ompute the weight hange for a single trial given that pattern
X ∈ {P,N} was presented with the help of equations (3.1), (3.3), and (3.4) as
d

dt
wi(t)

∣

∣

∣

∣

X

=

∫ ∞

0
dsfc(s)

[∫ ∞

0
drW (r)Spost(t− s)δ(t− s− r − tXi )

+

∫ ∞

0
drW (−r)Spost(t− s− r)δ(t− s− tXi )

]

d(t)

= αX

∫ ∞

0
dsfc(s)

[∫ ∞

0
drW (r)Spost(t− s)δ(t− s− r − tXi )

+

∫ ∞

0
drW (−r)Spost(t− s− r)δ(t− s− tXi )

]
∫ ∞

0
dr′εr(r

′)Spost(t− dr − r′)

= αX

∫ ∞

0
drfc(t− r − tXi )W (r)

∫ ∞

0
dr′εr(r

′)Spost(r + tXi )Spost(t− dr − r′)

+ αX

∫ ∞

0
drfc(t− tXi )W (−r)

∫ ∞

0
dr′εr(r

′)Spost(tXi − r)Spost(t− dr − r′).We an ompute the average weight hange given that pattern X was presented:
〈

d

dt
wi(t)

〉

E|X

= αX

∫ ∞

0
drfc(t− r − tXi )

W (r)

∫ ∞

0
dr′εr(r

′)〈Spost(tXi + r)Spost(t− dr − r′)〉E|X

+ αX

∫ ∞

0
drfc(t− tXi )

W (−r)

∫ ∞

0
dr′εr(r

′)〈Spost(tXi − r)Spost(t− dr − r′)〉E|X .If we assume that fc is approximately onstant on the time sale of the learningwindow W , we an simplify this to
〈

d

dt
wi(t)

〉

E|X

=

∫ ∞

−∞
drfc(t−t

X
i )W (r)

∫ ∞

0
dr′εr(r

′)〈Spost(tXi +r)Spost(t−dr−r
′)〉E|Xα

X .For the linear Poisson neuron, we an write the auto-orrelation funtion as
〈Spost(tXi + r)Spost(t− dr − r′)〉E|X = [νX(tXi + r)νX(t− dr − r′)

+νX(tXi + r)δ(tXi + r − t+ dr + r′)]

= νX(tXi + r)[νX(t− dr − r′) +

δ(tXi + r − t+ dr + r′)],where νX(t) = 〈Spost(t)〉E|X is the ensemble average rate at time t given that pattern
X was presented. If an experiment for a single pattern runs over the time interval



90 Chapter 3. A Learning Theory for Reward-Modulated STDP
[0, T ′], we an ompute the total average weight hange ∆wX

i of a trial given thatpattern X was presented as
∆wX

i =

∫ T ′

0
dt

〈

d

dt
wi(t)

〉

E|X

= αX

∫ ∞

−∞
drW (r)νX(tXi + r)

∫ T ′

0
dtfc(t− tXi )

∫ ∞

0
dr′εr(r

′)

[νX(t− dr − r′) + δ(tXi + r − t+ dr + r′)]

= αX

∫ ∞

−∞
drW (r)νX(tXi + r)

∫ ∞

0
dr′εr(r

′)

[

fc(r + dr + r′) +

∫ T ′

dr

dtfc(t− tXi )νX(t− dr − r′)

]

≈ αX

∫ ∞

−∞
drW (r)νX(tXi + r)

∫ ∞

0
dr′εr(r

′)

[

fc(dr + r′) +

∫ T ′

0
dtfc(t− tXi )νX(t− dr − r′)

] (3.23)By de�ning
AX

i = αX

∫ ∞

0
dr′εr(r

′)

[

fc(dr + r′) +

∫ T ′

0
dtfc(t− tXi )νX(t− dr − r′)

]

,we an write equation (3.23) as
∆wX

i =

∫ ∞

−∞
drW (r)νX(tXi + r)AX

i .We assume that eligibility traes and reward signals have settled to zero before a newpattern is presented. The expeted weight hange for the suessive presentation ofboth patterns is therefore
∆wi =

∫ ∞

−∞
drW (r)

[

νP (tPi + r)AP
i + νN (tNi + r)AN

i

]

.The equations an easily be generalized to the ase where multiple input spikes persynapse are allowed and where jitter on the templates is allowed. However, the maine�et of the rule an be read o� the equations given here.3.3.6 Common models and parameters of the omputer simula-tionsWe desribe here the models and parameter values that were used in all our omputersimulations. We will speify in a subsequent setion the values of other parametersthat had to be hosen di�erently in individual omputer simulations, in dependeneof their di�erent setups and requirements of eah omputer simulation.



3.3. Methods 913.3.6.1 LIF neuron modelFor the omputer simulations LIF neurons with ondutane-based synapses wereused. The membrane potential Vm(t) of this neuron model is given by:
Cm

dVm(t)

dt
= −

Vm(t) − Vresting

Rm
−

Ke
∑

j=1

ge,j(t)(Vm(t)−Ee)−
Ki
∑

j=1

gi,j(Vm(t)−Ei)−Inoise(t),(3.24)where Cm is the membrane apaitane, Rm is the membrane resistane, Vresting isthe resting potential, and ge,j(t) and gi,j(t) are theKe andKi synapti ondutanesfrom the exitatory and inhibitory synapses respetively. The onstants Ee and Eiare the reversal potentials of exitatory and inhibitory synapses. Inoise representsthe synapti bakground urrent whih the neuron reeives (see below for details).Whenever the membrane potential reahes a threshold value Vthresh, the neuronprodues a spike, and its membrane potential is reset to the value of the resetpotential Vreset. After a spike, there is a refratory period of length Trefract, duringwhih the membrane potential of the neuron remains equal to the value Vm(t) =

Vreset. After the refratory period Vm(t) ontinues to hange aording to equation(3.24).For a given synapse, the dynamis of the synapti ondutane g(t) is de�nedby
dg(t)

dt
= −

g(t)

τsyn
+
∑

k

A(t(k) + tdelay)δ(t − t(k) − tdelay) , (3.25)where A(t) is the amplitude of the postsynapti response (PSR) to a single presy-napti spike, whih varies over time due to the inherent short-term dynamis of thesynapse, and {t(k)} are the spike times of the presynapti neuron. The ondu-tane of the synapse dereases exponentially with time onstant τsyn, and inreasesinstantaneously by amount of A(t) whenever the presynapti neuron spikes.In all omputer simulations we used the following values for the neuron andsynapse parameters. The membrane resistane of the neurons was Rm = 100MΩ,the membrane apaitane Cm = 0.3nF , the resting potential, reset potential andthe initial value of the membrane potential had the same value of Vresting = Vreset =

Vm(0) = −70mV, the threshold potential was set to Vthresh = −59mV and therefratory period Trefract = 5ms. For the synapses we used a time onstant set to
τsyn = 5ms, reversal potential Ee = 0 mV for the exitatory synapses and Ee = −75mV for the inhibitory synapses. All synapses had a synapti delay of tdelay = 1ms.3.3.6.2 Short-term dynamis of synapsesWe modeled the short-term dynamis of synapses aording to the phenomenologialmodel proposed in Markram et al. (1998), where the amplitude Ak = A(tk+tdelay) ofthe postsynapti response for the kth spike in a spike train with inter-spike intervals



92 Chapter 3. A Learning Theory for Reward-Modulated STDPsoure/dest. ex.(U,D,F) inh. (U,D,F)ex. 0.5, 1.1, 0.02 0.25, 0.7, 0.02inh. 0.05, 0.125, 1.2 0.32, 0.144, 0.06Table 3.2: Mean values of the U, D and F parameters in the model from Markram et al.(1998) for the short-term dynamis of synapses, depending on the type of the presynaptiand postsynapti neuron (exitatory or inhibitory). These mean values, based on experi-mental data from Markram et al. (1998); Gupta et al. (2000), were used in all omputersimulations.
∆1,∆2, . . . ,∆k−1 is alulated with the following equations

Ak = w · uk ·Rk

uk = U + uk−1(1 − U)e−∆k−1/F

Rk = 1 + (Rk−1 − uk−1Rk−1 − 1)e−∆k−1/D,

(3.26)with hidden dynami variables u ∈ [0, 1] and R ∈ [0, 1] whose initial values forthe 1st spike are u1 = U and R = 1 (see Maass and Markram (2002) for a justi-�ation of this version of the equations, whih orrets a small error in Markramet al. (1998) ). The variable w is the synapti weight whih sales the amplitudesof postsynapti responses. If long-term plastiity is introdued, this variable is afuntion of time. In the simulations, for the neurons in the iruits the values for theU, D and F parameters were drawn from Gaussian distributions with mean valueswhih depended on whether the type of presynapti and postsynapti neuron of thesynapse is exitatory or inhibitory, and were hosen aording to the data reportedin Markram et al. (1998) and Gupta et al. (2000). The mean values of the Gaussiandistributions are given in Table 3.2, and the standard deviation was hosen to be
50% of its mean. Negative values were replaed with values drawn from uniformdistribution with a range between 0 and twie the mean value. For the simulationsinvolving individual trained neurons, the U, D and F parameters of these neuronswere set to the values from Table 3.2.We have arried out ontrol experiments with urrent-based synapses that werenot subjet to short-term plastiity (see Fig. S5, S8, S9; suessful ontrol experi-ments with stati urrent-based synapses were also arried out for omputer simula-tion 1, results not shown). We found that the results of all our omputer simulationsalso hold for stati urrent-based synapses.3.3.6.3 Model of bakground synapti ativityTo reprodue the bakground synapti input ortial neurons reeive in vivo, theneurons in our models reeived an additional noise proess as ondutane input.The noise proess we used is a point-ondutane approximation model, desribedin Destexhe et al. (2001). Aording to Destexhe et al. (2001), this noise proessmodels the e�et of a bombardment by a large number of synapti inputs in vivo,whih auses membrane potential depolarization, referred to as �high ondutane�



3.3. Methods 93state. Furthermore, it was shown that it aptures the spetral and amplitude har-ateristis of the input ondutanes of a detailed biophysial model of a neoortialpyramidal ell that was mathed to intraellular reordings in at parietal ortexin vivo. The ratio of average ontributions of exitatory and inhibitory bakgroundondutanes was hosen to be 5 in aordane to experimental studies during sen-sory responses (see Borg-Graham et al. (1998),Hirsh et al. (1998), and Andersonet al. (2000)). In this model, the noisy synapti urrent Inoise in equation (3.24) isa sum of two urrents:
Inoise(t) = ge(t)(Vm(t) − Ee) + gi(t)(Vm(t) − Ei), (3.27)where ge(t) and gi(t) are time-dependent exitatory and inhibitory ondutanes.The values of the respetive reversal potentials were Ee = 0 mV and Ei = −75 mV.The ondutanes ge(t) and gi(t) were modeled aording to Destexhe et al. (2001)as a one-variable stohasti proess similar to an Ornstein-Uhlenbek proess:

dge(t)

dt
= −

1

τe
[ge(t) − ge0] +

√

Deχ1(t)

dgi(t)

dt
= −

1

τi
[gi(t) − gi0] +

√

Diχ2(t),with mean ge0 = 0.012µS, noise-di�usion onstant De = 0.003µS and time onstant
τe = 2.7ms for the exitatory ondutane, and mean gi0 = 0.057µS, noise-di�usiononstant Di = 0.0066µS, and time onstant τi = 10.5ms for the inhibitory ondu-tane. χ1(t) and χ2(t) are Gaussian white noise of zero mean and unit standarddeviation.Sine these proesses are Gaussian stohasti proesses, they an be numeriallyintegrated by an exat update rule:

ge(t+ ∆) = ge0 + [ge(t) − ge0]e
− ∆

τe +AeN1(0, 1)

gi(t+ ∆) = gi0 + [gi(t) − gi0]e
−∆

τi +AiN2(0, 1),where N1(0, 1) and N2(0, 1) are normal random numbers (zero mean, unit standarddeviation) and Ae, Ai are amplitude oe�ients given by:
Ae =

√

Deτe
2

[1 − e
−2∆
τe ]

Ai =

√

Diτi
2

[1 − e
−2∆

τi ].3.3.6.4 Reward-modulated STDPFor the omputer simulations we used the following parameters for the STDP win-dow funtion W (r): A+ = 0.01wmax, A−/A+ = 1.05, τ+ = τ− = 30ms. wmaxdenotes the hard bound of the synapti weight of the partiular plasti synapse.Note that the parameter A+ an be given arbitrary value in this plastiity rule,



94 Chapter 3. A Learning Theory for Reward-Modulated STDPsine it an be saled together with the reward signal, i.e. multiplying the rewardsignal by some onstant and dividing A+ by the same onstant results in identialtime evolution of the weight hanges. We have set A+ to be 1% of the maximumsynapti weight.We used the α-funtion to model the eligibility trae kernel fc(t)

fc(t) =

{

t
τe
e−

t
τe , if t > 0

0 , otherwise , (3.28)where the time onstant τe was set to τe = 0.4s in all omputer simulations.For omputer simulations 1 and 4 we performed ontrol experiments (see Fig. S3,S4 and S7) with the weight-dependent synapti update rule proposed in Morrisonet al. (2007), instead of the purely additive rule (3.3). We used the parametersproposed in Morrison et al. (2007), i.e. µ = 0.4, α = 0.11, τ+ = τ− = 20ms. The
w0 parameter was alulated aording to the formula: w0 = 1

2wmaxα
1/1−µ where

wmax is the maximum synapti weight of the synapse. 1
2wmax is equal to the initialsynapti weight for the iruit neurons, or to the mean of the distribution of theinitial weights for the trained neurons.3.3.6.5 Initial weights of trained neuronsThe synapti weights of exitatory synapses to the trained neurons in experiments2-5 were initialized from a Gaussian distribution with mean wmax/2. The standarddeviation was set to wmax/10 bounded within the range [3wmax/10, 7wmax/10].3.3.6.6 SoftwareAll omputer simulations were arried out with the PCSIM software pakage(http://www.lsm.tugraz.at/psim). PCSIM is a parallel simulator for biologiallyrealisti neural networks with a fast ++ simulation ore and a Python interfae.It has been developed by Thomas Natshläger and Dejan Peevski. The time stepof simulation was set to 0.1ms.3.3.7 Details to individual omputer simulationsFor all omputer simulations, both for the ortial miroiruits and readout neu-rons, the same parameters values for the neuron and synapse models and the reward-modulated STDP rule were used, as spei�ed in the previous setion (exept inomputer simulation 3, where the goal was to test the theoretial preditions fordi�erent values of the parameters). Eah of the omputer simulations in this workmodeled a spei� task or experimental �nding. Consequently, the dependene ofthe reward signal on the behavior of the system had to be modeled in a spei� wayfor eah simulation (a more detailed disussion of the reward signal an be foundin the Disussion setion). The parameters for that are given below in separatesubsetions whih address the individual simulations. Furthermore, some of the re-maining parameters in the experiments, i.e. the values of the synapti weights, the



3.3. Methods 95Cortial miroiruitssimulation No. neurons pee, pei, pei, pii wexc(0) [nS℄ winh(0) [nS℄ COU1 4000 0.02,0.02,0.024,0.016 10.7 211.6 1.0, 0.25 540 0.1 0.784 5.1 0.4Table 3.3: Spei� parameter values for the ortial miroiruits in omputer simulation1 and 5. pconn is the onnetion probability, wexc(0) and winh(0) are the initial synaptiweights for the exitatory and inhibitory synapses respetively, and COU is the salingfator for the Ornstein-Uhlenbek noise injeted in the neurons.Trained (readout) neuronssimulation No. num. synapses wmax [nS℄ COU2 100 11.9 1.04 200 5.73 0.25 432 2.02 0.2Table 3.4: Spei� parameter values for the trained neurons in omputer simulation 2, 4and 5. wmax is the upper hard bound of the synapti weights of the synapses. COU is thesaling fator for the Ornstein-Uhlenbek noise injeted in the neurons.number of synapses of a neuron, number of neurons in the iruit and the Ornstein-Uhlenbek (OU) noise levels were hosen to ahieve di�erent goals depending on thepartiular experiment. Brie�y stated, these values were tuned to ahieve a ertainlevel of �ring ativity in the neurons, a suitable dynamial regime of the ativity inthe iruits, and a spei� ratio between amount of input the neurons reeive fromthe input synapses and the input generated by the noise proess.We arried out two types of simulations: simulations of ortial miroiruitsin omputer simulations 1 and 5, and training of readout neurons in omputersimulations 2, 3, 4 and 5. In the following we disuss these two types of simulationsin more detail.3.3.7.1 Cortial MiroiruitsThe values of the initial weights of the exitatory and inhibitory synapses for theortial miroiruits are given in Table 3.3. All synapti weights were bounded inthe range between 0 and twie the initial synapti weight of the synapse.The ortial miroiruit was omposed of 4000 neurons onneted randomlywith onnetion probabilities desribed in Details to omputer simulation 1. Theinitial synapti weights of the synapses and the levels of OU noise were tuned toahieve a spontaneous �ring rate of about 4.6 Hz, while maintaining an asynhronousirregular �ring ativity in the iruit. 50% of all neurons (randomly hosen, 50%exitatory and 50% inhibitory) reeived downsaled OU noise (by a fator 0.2 fromthe model reported in Destexhe et al. (2001)), with the subtrated part substitutedby additional synapti input from the iruit. The input onnetion probabilities of



96 Chapter 3. A Learning Theory for Reward-Modulated STDPthese neurons were saled up, so that the �ring rates remain in the same range as forthe other neurons. This was done in order to observe how the learning mehanismswork when most of the input ondutane in the neuron omes from a larger numberof input synapses whih are plasti, rather than from a stati noise proess. Thereinfored neurons were randomly hosen from this group of neurons.We hose a smaller miroiruit, omposed of 540 neurons, for the omputersimulation 5 in order to be able to perform a large number of training trials. Thesynapti weights in this smaller iruit were hosen (see Table 3.3) to ahieve anappropriate level of �ring ativity in the iruit that is modulated by the external in-put. The iruit neurons had injeted an Ornstein-Uhlenbek (OU) noise multipliedby 0.4 in order to emulate the bakground synapti ativity in neoortial neuronsin vivo, and test the learning in a more biologially realisti settings. This produedsigni�ant trial-to-trial variability in the iruit response (see Fig. 3.10D). A lowervalue of the noise level ould also be used without a�eting the learning, whereasinreasing the amount of injeted noise would slowly deteriorate the informationthat the iruit ativity maintains about the injeted inputs, resulting in a delineof the learning performane.3.3.7.2 Readout neuronsThe maximum values of the synapti weights of readout neurons for omputer sim-ulations 2, 4 and 5, together with the number of synapses of the neurons, are givenin Table 3.4.The neuron in omputer simulation 2 had 100 synapses. We hose 200 synapsesfor the neuron in omputer simulation 4, in order to improve the learning per-formane. Suh improvement of the learning performane for larger numbers ofsynapses is in aordane with our theoretial analysis (see equation (3.17), sinefor learning the lassi�ation of temporal patterns the temporal variation of thevoltage of the postsynapti membrane turns out to be of ritial importane (seethe disussion after equation (3.17)). This temporal variation depends less on theshape of a single EPSP and more on the temporal pattern of presynapti �ring whenthe number of synapses is inreased. In omputer simulation 5 the readout neuronreeived inputs from all 432 exitatory neurons in the iruit. The synapti weightswere hosen in aordane with the number of synapses in order to ahieve a �ringrate suitable for the partiular task, and to balane the synapti input and the noiseinjetions in the neurons.For the pattern disrimination task (omputer simulation 4) and the speehreognition task (omputer simulation 5), the amount of noise had to be hosen tobe high enough to ahieve su�ient variation of the membrane potential from trialto trial near the �ring threshold, and low enough so that it would not dominate the�utuations of the membrane potential. In the experiment where the exat spiketimes were rewarded (omputer simulation 2), the noise had a di�erent role. Asdesribed in the Results setion, there the noise e�etively ontrols the amount ofdepression. If the noise (and therefore the depression) is too weak, w∗ = 0 synapses



3.3. Methods 97do not onverge to 0. If the noise is too strong, w∗ = wmax synapses do not onvergeto wmax. To ahieve the desired learning result, the noise level should be in a rangewhere it redues the orrelations of the synapses with w∗ = 0 so that the depressionof STDP will prevail, but at the same time is not strong enough to do the same forthe other group of synapses with w∗ = wmax, sine they have stronger pre-before-post orrelations. For our simulations, we have set the noise level to the full amountof OU noise.3.3.7.3 Details to omputer simulation 1: Model for biofeedbak exper-imentThe ortial miroiruit model onsisted of 4000 neurons with twenty perent of theneurons randomly hosen to be inhibitory, and the others exitatory. The onne-tions between the neurons were reated randomly, with di�erent onnetivity prob-abilities depending on whether the postsynapti neuron reeived the full amountof OU noise, or downsaled OU noise with an additional ompensatory synaptiinput from the iruit. For neurons in the latter sub-population, the onnetionprobabilities were pee = 0.02, pei = 0.02, pie = 0.024 and pii = 0.016 where theee, ei, ie, ii indies designate the type of the presynapti and postsynapti neurons(e=exitatory or i=inhibitory). For the other neurons the orresponding onnetionprobabilities were downsaled by 0.4. The resulting �ring rates and orrelations forboth types of exitatory neurons are plotted in Fig. S1 and S2.The shape of the reward kernel εr(t) was hosen as a di�erene of two α-funtions
εr(t) = A+

r

t

τ+
r
e
1− t

τ
+
r −A−

r

t

τ−r
e
1− t

τ
−
r , (3.29)one positive α-pulse with a peak at 0.4 se after the orresponding spike, and onelong-tailed negative α-pulse whih makes sure that the integral over the rewardkernel is zero. The parameters for the reward kernel were A+

r = 1.379, A−
r = 0.27,

τ+
r = 0.2s, τ−r = 1s, and dr = 0.2s, whih produed a peak value of the reward pulse0.4s after the spike that aused it.3.3.7.4 Details to omputer simulation 2: Learning spike timesWe used the following funtion for the reward kernel κ(r)

κ(r) =







Aκ
+(e

− t−tκ
τκ
1 − e

− t−tκ
τκ
2 ) , if t− tκ ≥ 0

−Aκ
−(e

t−tκ
τκ
1 − e

t−tκ
τκ
2 ) , otherwise (3.30)where Aκ

+ and Aκ
− are positive saling onstants, τκ

1 and τκ
2 de�ne the shape of thetwo double-exponential funtions the kernel is omposed of, and tκ de�nes the o�setof the zero-rossing from the origin. The parameter values used in our simulationswere Aκ

+ = 0.1457, Aκ
− = −0.1442, τκ

1 = 30ms, τκ
2 = 4ms and tκ = −1ms. Thereward delay was equal to dr = 0.4s.



98 Chapter 3. A Learning Theory for Reward-Modulated STDP3.3.7.5 Details to omputer simulation 3: Testing the analytially de-rived onditionsWe used a linear Poisson neuron model as in the theoretial analysis with statisynapses and exponentially deaying postsynapti responses ε(s) = e(−s/τε)/τε. Theneuron had 100 exitatory synapses, exept in experiment #6, where we used 200synapses. In all experiments the target neuron reeived additional 10 exitatorysynapses with weights set to wmax. The input spike trains were Poisson proesseswith a onstant rate of rpre = 6Hz, exept in experiment # 6 where the rate was
rpre = 3Hz. The weights of the target neuron were set to w∗

i = wmax for 0 ≤ i < 50and w∗
i = 0 for 50 ≤ i < 100.The time onstants of the reward kernel were τκ

2 = 4ms, whereas τκ
1 had di�erentvalues in di�erent experiments (reported in table 3.1). The value of tκ was alwaysset to an optimal value suh that the εκ(0) =

∫∞
0 κ(−s)ε(s) = 0. The time onstant

τ− of the negative part of the STDP window funtion W (r) was set to τ+. Thereward signal was delayed by τd = 0.4s. The simulations were performed for varyingdurations of simulated biologial time (see the tsim-olumn in Table 3.1).3.3.7.6 Details to omputer simulation 4: Learning pattern lassi�ationWe used the reward signal from equation (3.16), with an α-funtion for the rewardkernel εr(r) = e
τ te

−t/τ , and the reward delay dr set to 300 ms. The amplitudes ofthe positive and negative pulses were αP = −αN = 1.435. and the time onstant ofthe reward kernel was τ = 100ms.3.3.7.7 Details to omputer simulation 5: Training a readout neuronwith reward-modulated STDP to reognize isolated spoken dig-itsSpike representations of speeh utteranes. The speeh utteranes were prepro-essed by the ohlea model desribed in Lyon (1982), whih aptures the �lteringproperties of the ohlea and hair ells in the human inner ear. The resultinganalog signals were enoded by spikes with the BSA spike enoding algorithmdesribed in Shrauwen and Campenhout (2003). We used the same preproessingto generate the spikes as in Verstraeten et al. (2005). The spike representationshad a duration of about 400 ms and 20 input hannels. The input hannels wereonneted topographially to the ortial miroiruit model. The neurons in theiruit were split into 20 disjunt subsets of 27 neurons, and eah input hannelwas onneted to the 27 neurons in its orresponding subsets. The readout neuronwas trained with 20 di�erent spike inputs to the iruit, where 10 of them resultedfrom utteranes of digit �one�, and the other 10 resulted from utteranes of digit�two� by the same speaker.Training proedure. We performed 2000 training trials, where for eah trial a spikerepresentation of a randomly hosen utterane out of 10 utteranes for one digit



3.4. Disussion 99was injeted into the iruit. The digit hanged from trial to trial. Whenever thereadout neuron spiked during the presentation of an utterane of digit �two�, apositive pulse was generated in the reward signal, and aordingly, for utteranes ofdigit �one�, a negative pulse in the reward was generated. We used the reward signalfrom equation (3.16). The amplitudes of the positive and negative pulses were
αP = −αN = 0.883. The time onstant of the reward kernel εr(r) was τ = 100ms.The pulses in the reward were delayed dr = 300 ms from the spikes that aused them.Cortial miroiruit details. The ortial miroiruit model onsisted of 540 neu-rons with twenty perent of the neurons randomly hosen to be inhibitory, and theothers exitatory. The reurrent onnetions in the iruit were reated randomlywith a onnetion probability of 0.1. Long-term plastiity was not modeled in theiruit synapses.The synapses for the onnetions from the input neurons to the iruit neuronswere stati, urrent based with axon ondution delay of 1ms, and exponentiallydeaying PSR with time onstant τe = 3 ms and amplitude winput = 0.715 nA.3.4 DisussionWe have presented in this work analytial tools whih make it possible to preditunder whih onditions reward-modulated STDP will ahieve a given learning goalin a network of neurons. These onditions speify relationships between parametersand auxiliary funtions (learning urves for STDP, eligibility traes, reward signalset.) that are involved in the spei�ation of the reward-modulated STDP learningrule. Although our analytial results are based on some simplifying assumptions,we have shown that they predit quite well the outomes of omputer simulationsof quite omplex models for ortial networks of neurons.We have applied this learning theory for reward-modulated STDP to a numberof biologially relevant learning tasks. We have shown that the biofeedbak result ofFetz and Baker Fetz and Baker (1973) an in priniple be explained on the basis ofreward-modulated STDP. The underlying redit assignment problem was extremelydi�ult, sine the monkey brain had no diret information about the identity of theneuron whose �ring rate was relevant for reeiving rewards. This redit assignmentproblem is even more di�ult from the perspetive of a single synapse, and hene forthe appliation of a loal synapti plastiity rule suh as reward-modulated STDP.However our theoretial analysis (see equation (3.10), (3.11)) has shown that thelongterm evolution of synapti weights depended only on the orrelation of pairsof pre- and postsynapti spikes with the reward signal. Therefore the �ring rate ofthe rewarded neuron inreased (for a omputer simulation of a reurrent networkonsisting of 4000 ondutane based LIF neurons with realisti bakground noisetypial for in-vivo onditions, and 228954 synapses that exhibited data-based shortterm synapti plastiity) within a few minutes of simulated biologial time, like inthe experimental data of Fetz and Baker (1973), whereas the �ring rates of the other



100 Chapter 3. A Learning Theory for Reward-Modulated STDPneurons remained invariant (see Fig. 3.3B). We were also able to model di�erentialreinforement of two neurons in this way (Fig. 3.4). These omputer simulationsdemonstrated a remarkable stability of the network dynamis (see Fig. 3.3A, 3.4A,3.5) in spite of the fat that all exitatory synapses were ontinuously subjeted toreward-modulated STDP. In partiular, the iruit remained in the asynhronous ir-regular �ring regime, that resembles spontaneous �ring ativity in the ortex Brunel(2000). Other STDP-rules (without reward modulation) that maintain this �ringregime have previously been exhibited in Morrison et al. (2007).Whereas this learning task foused on �ring rates, we have also shown (seeFig. 3.7) that neurons an learn via reward-modulated STDP to respond to in-puts with partiular spike trains, i.e., partiular temporal output patterns. It hasbeen pointed out in Farries and Fairhall (2007) that this is a partiularly di�ultlearning task for reward-modulated STDP, and it was shown there that it an be a-omplished with a modi�ed STDP rule and more omplex reward predition signalswithout delays. We have omplemented the results of Farries and Fairhall (2007)by deriving spei� onditions (equation (3.13)-(3.15)) under whih this learningtask an be solved by the standard version of reward-modulated STDP. Extensiveomputer simulations have shown that these analytially derived onditions for asimpler neuron model predit also for a LIF neuron with ondutane based synapseswhether it is able to solve this learning task. Fig. 3.8 shows that this learning the-ory for reward-modulated STDP is also able to predit quite well how fast a neuronan learn to produe a desired temporal output pattern. An interesting aspet ofFarries and Fairhall (2007) is that there also the utility of third signals that provideinformation about hanges in the expetation of reward was explored. We haveonsidered in this work only learning senarios where reward predition is not possi-ble. A logial next step will be to extend our learning theory for reward-modulatedSTDP to senarios from lassial reinforement learning theory that inlude rewardpredition.We have also addressed the question to what extent neurons an learn via reward-modulated STDP to respond with di�erent �ring rates to di�erent spatio-temporalpresynapti �ring patterns. It had already been shown in Izhikevih (2007) that thislearning rule enables neurons to lassify spatial �ring patterns. We have omple-mented this work by deriving an analyti expression for the expeted weight hangein this learning senario (see equation (3.17)), whih lari�es to what extent a neu-ron an learn by reward-modulated STDP to distinguish di�erenes in the temporalstruture of presynapti �ring patterns. This theoretial analysis showed that in theextreme ase, where all inoming information is enoded in the relative timing ofpresynapti spikes, reward-modulated STDP is not able to produe a higher aver-age membrane potential for seleted presynapti �ring patterns, even if that wouldbe rewarded. But it is able to inrease the variane of the membrane potential,and thereby also the number of spikes of any neuron model that has (unlike thesimple linear Poisson neuron) a �ring threshold. The simulation results in Fig. 3.9on�rm that in this way a LIF neuron an learn with the standard version of reward-modulated STDP to disriminate even purely temporal presynapti �ring patterns,



3.4. Disussion 101by produing more spikes in response to one of these patterns.A surprising feature is, that although the neuron was rewarded here only forresponding with a higher �ring rate to one presynapti �ring pattern P , it automat-ially started to respond to this pattern P with a spei� temporal spike pattern,that advaned in time during training (see Fig. 3.9A).Finally, we have shown that a spiking neuron an be trained by reward-modulated STDP to read out information from a simulated ortial miroiruit(see Fig. 3.10). This is insofar of interest, as previous work Maass et al. (2002b);Häusler and Maass (2007); Maass et al. (2007) had shown that models of generiortial miroiruits have inherent apabilities to serve as preproessors for suhreadout neurons, by ombining in diverse linear and nonlinear ways informationthat was ontained in di�erent time segments of spike inputs to the iruit ("liquidomputing model"). The lassi�ation of spoken words (that were �rst transformedinto spike trains) had been introdued as a ommon benhmark task for the evalu-ation of di�erent approahes towards omputing with spiking neurons Hop�eld andBrody (2001); Maass et al. (2002b, 2004); Destexhe and Marder (2004); Verstraetenet al. (2005). But so far all approahes that were based on learning (rather thanon lever onstrutions) had to rely on supervised training of a simple linear read-out. This gave rise to the question whether also biologially more realisti modelsfor readout neurons an be trained through a biologially more plausible learningsenario to lassify spoken words. The results of Fig. 3.10 may be interpreted as atentative positive answer to this question. We have demonstrated that LIF neuronswith ondutane based synapses (that are subjet to biologially realisti shortterm plastiity) an learn without a supervisor through reward-modulated STDPto lassify spoken digits. In ontrast to the result of Fig. 3.9, the output ode thatemerged here was a rate ode. This an be explained through the signi�ant in-lassvariane of iruit responses to di�erent utteranes of the same word (see Fig. 3.10C,D). Although the LIF neuron learnt here without a supervisor to respond with dif-ferent �ring rates to utteranes of di�erent words by the same speaker (whereasthe rate output was very similar for both words at the beginning of learning, seeFig. 3.10E), the lassi�ation apability of these neurons has not yet reahed thelevel of linear readouts that are trained by a supervisor (for example, speaker in-dependent word lassi�ation ould not yet be ahieved in this way). Further workis needed to test whether the lassi�ation apability of LIF readout neurons anbe improved through additional preproessing in the ortial miroiruit model,through a suitable variation of the reward-modulated STDP rule, or through a dif-ferent learning senario (mimiking for example preeding developmental learningthat also modi�es the presynapti iruit).The new learning theory for reward-modulated STDP will also be useful forbiologial experiments that aim at the lari�ation of details of the biologial im-plementation of synapti plastiity in di�erent parts of the brain, sine it allowsto make preditions whih types and time ourses of signals would be optimal fora partiular range of learning tasks. For eah of the previously disussed learningtasks, the theoretial analysis provided onditions on the struture of the reward



102 Chapter 3. A Learning Theory for Reward-Modulated STDPsignal d(t) whih guaranteed suessful learning. For example, in the biofeedbaklearning senario (Fig. 3.3), every ation potential of the reinfored neuron led �after some delay � to a hange of the reward signal d(t). The shape of this hangewas de�ned by the reward kernel ε(r). Our analysis revealed that this reward ker-nel an be hosen rather arbitrarily as long as the integral over the kernel is zero,and the integral over the produt of the kernel and the eligibility funtion is posi-tive. For another learning senario, where the goal was that the output spike train
Spost

j of some neuron j approximates the spike timings of some target spike train S∗(Fig. 3.7), the reward signal has to depend on both, Spost
j and S∗. The dependeneof the reward signal on these spike timings was de�ned by a reward kernel κ(r). Ouranalysis showed that the reward kernel has to be hosen for this task so that thesynapses reeive positive rewards if the postsynapti neuron �res lose to the timeof a spike in the target spike train S∗ or somewhat later, and negative rewards whenan output spike ours in the order of ten milliseonds too early. In the patterndisrimination task of Fig. 3.9 eah postsynapti ation potential was followed �after some delay � by a hange of the reward signal whih depended on the patternpresented. Our theoretial analysis predited that this learning task an be solvedif the integrals AP

i and AN
i de�ned by equation (3.18) are suh that AP

i > 0 and
AN

i ≈ −AP
i . Again, this onstraints are ful�lled for a large lass of reward kernels,and a natural hoie is to use a non-negative reward kernel εr. There are urrentlyno data available on the shape of reward kernels in biologial neural systems. Theprevious skethed theoretial analysis makes spei� predition for the shape of re-ward kernels (depending on the type of learning task in whih a biologial neuralsystem is involved) whih an potentially be tested through biologial experiments.An interesting general aspet of the learning theory that we have presentedin this work is that it requires substantial trial-to-trial variability in the neuraliruit, whih is often viewed as �noise� of imperfet biologial implementations oftheoretially ideal iruits of neurons. This learning theory for reward-modulatedSTDP suggests that the main funtional role of noise is to maintain a suitable levelof spontaneous �ring (sine if a neuron does not �re, it annot �nd out whetherthis will be rewarded), whih should vary from trial to trial in order to explorewhih �ring patterns are rewarded.5 On the other hand if a neuron �res primarilyon the basis of a noise urrent that is diretly injeted into that neuron, and noton the basis of presynapti ativity, then STDP does not have the required e�eton the synapti onnetions to this neuron (see Fig. S6). This perspetive opensthe door for subsequent studies that ompare for onrete biologial learning tasksthe theoretially derived optimal amount and distribution of trial-to-trial variabilitywith orresponding experimental data.5It had been shown in Maass et al. (2002b); Häusler and Maass (2007); Maass et al. (2007) thatsuh highly variable iruit ativity is ompatible with a stable performane of linear readouts.



3.4. Disussion 1033.4.1 Related WorkThe theoretial analysis of this model is diretly appliable to the learning ruleonsidered in Izhikevih (2007). There, the network behavior of reward-modulatedSTDP was also studied some situations di�erent from the ones in this work. Theomputer simulations of Izhikevih (2007) operate apparently in a di�erent dynamiregime, where LTD dominates LTP in the STDP-rule, and most weights (exeptthose that are atively inreased through reward-modulated STDP) have valueslose to 0 (see Fig. 1b and d in Izhikevih (2007), and ompare with Fig. 3.5 in thishapter). This setup is likely to require for suessful learning a larger dominane ofpre-before-post over post-before-pre pairs than the one shown in Fig. 3.3E. Further-more, whereas a very low spontaneous �ring rate of 1 Hz was required in Izhikevih(2007), omputer simulation 1 shows that reinforement learning is also feasibleat spontaneous �ring rates whih orrespond to those reported in Fetz and Baker(1973) (the preeding theoretial analysis had already suggested that the suess ofthe model does not depend on partiularly low �ring rates). The artiles Baras andMeir (2007) and Florian (2007) investigate variations of reward-modulated STDPrules that do not employ learning urves for STDP that are based on experimentaldata, but modi�ed urves that arise in the ontext of a very interesting top-down the-oretial approah (distributed reinforement learning Baxter and Bartlett (1999)).The authors of P�ster et al. (2006) arrive at similar learning rules in a supervisedsenario whih an be reinterpreted in the ontext of reinforement learning. Weexpet that a similar theory as we have presented in this work for the more om-monly disussed version of STDP an also be applied to their modi�ed STDP rules,thereby making it possible to predit under whih onditions their learning ruleswill sueed. Another reward based learning rule for spiking neurons was reentlypresented in Fiete and Seung (2006). This rule exploits orrelations of a rewardsignal with noisy perturbations of the neuronal membrane ondutane in order tooptimize some objetive funtion. One ruial assumption of this approah is thatthe synapti plastiity mehanism �knows� whih ontributions to the membrane po-tential arise from synapti inputs, and whih ontributions are due to internal noise.Suh expliit knowledge of the noise signal is not needed in the reward-modulatedSTDP rule of Izhikevih (2007), whih we have onsidered in this work. The prieone has to pay for this potential gain in biologial realism is a redued generality ofthe learning apabilities. While the learning rule in Fiete and Seung (2006) approx-imates gradient asent on the objetive funtion, this annot be stated for reward-modulated STDP at present. Timing-based pattern disrimination with a spikingneuron, as disussed in the setion �Pattern disrimination with reward-modulatedSTDP� of this work, was reently takled in Gütig and Sompolinsky (2006). Theauthors proposed the tempotron learning rule, whih inreases the peak membranevoltage for one lass of input patterns (if no spike ourred in response to the inputpattern) while dereasing the peak membrane voltage for another lass of input pat-terns (if a spike ourred in response to the pattern). The main di�erene betweenthis learning rule and reward-modulated STDP is that the tempotron learning rule



104 Chapter 3. A Learning Theory for Reward-Modulated STDPis sensitive to the peak membrane voltage, whereas reward-modulated STDP is sen-sitive to loal �utuations of the membrane voltage. Sine the time of the maximalmembrane voltage has to be determined for eah pattern by the synapti plastiitymehanism, the basi tempotron rule is perhaps not biologially realisti. There-fore, an approximate and potentially biologially more realisti learning rule wasproposed in Gütig and Sompolinsky (2006), where plastiity following error trialsis indued at synapse i only if the voltage within the postsynapti integration timeafter their ativation exeeds a plastiity threshold κ. One potential problem ofthis rule is the plastiity threshold κ, sine a good hoie of this parameter stronglydepends on the mean membrane voltage after input spikes. This problem is ir-umvented by reward-modulated STDP, whih onsiders instead the loal hangein the membrane voltage. Further work is needed to ompare the advantages anddisadvantages of these di�erent approahes.3.4.2 ConlusionReward-modulated STDP is a very promising andidate for a synapti plastiity rulethat is able to orhestrate loal synapti modi�ations in suh a way that partiularfuntional properties of larger networks of neurons an be ahieved and maintained(we refer to Izhikevih (2007) and Farries and Fairhall (2007) for disussion of po-tential biologial implementations of this plastiity rule). We have provided in thiswork analytial tools whih make it possible to evaluate this rule and variations ofthis rule not just through omputer simulations, but through theoretial analysis.In partiular we have shown that suessful learning is only possible if ertain rela-tionships hold between the parameters that are involved. Some of these preditedrelationships an be tested through biologial experiments.Provided that these relationships are satis�ed, reward-modulated STDP turnsout to be a powerful rule that an ahieve self-organization of synapti weightsin large reurrent networks of neurons. In partiular, it enables us to explainseemingly inexpliable experimental data on biofeedbak in monkeys. In additionreward-modulated STDP enables neurons to distinguish omplex �ring patterns ofpresynapti neurons, even for data-based standard forms of STDP, and withoutthe need for a supervisor that tells the neuron when it should spike. Furthermorereward-modulated STDP requires substantial spontaneous ativity and trial-to-trialvariability in order to support suessful learning, thereby providing a funtionalexplanation for these ubiquitous features of ortial networks of neurons. In fat,not only spontaneous ativity but also STDP itself may be seen in this ontextas a mehanism that supports the exploration of di�erent �ring hains within areurrent network, until a solution is found that is rewarded beause it supports asuessful omputational funtion of the network.



3.5. Aknowledgments 1053.5 AknowledgmentsThis hapter is based on the journal artile A Learning Theory for Reward-Modulated Spike-Timing-Dependent Plastiity with Appliation to Biofeedbak byRobert Legenstein1 (RL), myself1 (DP) and Wolfgang Maass (WM) (PLoS Com-putational Biology 4(10): e1000180, 2008). In this artile RL ontributed the theo-retial analysis, RL, DP and WM oneived and designed the experiments and DPonduted the experiments and analysed the simulation results. RL, DP and WMwrote the manusript.Markus Diesmann, Eberhard Fetz, Razvan Florian, Yves Fregna, Wulfram Ger-stner, Nikos Logothetis, Abigail Morrison, Matthias Munk, Gordon Pipa and DanShulz ontributed with helpful disussions during the preparation of the artile.Malolm Slaney provided a MATLAB implementation of the ohlea model fromLyon (1982). Benjamin Shrauwen, David Verstraeten, Mihiel D'Haene and Ste-fan Klamp� provided additional ode that used in the speeh lassi�ation task(omputer simulation 5).

1These authors ontributed equally to the work in the paper.





Chapter 4PCSIM: a Parallel SimulationEnvironment for Neural Ciruits
Contents4.1 Introdution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1074.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1104.3 Python interfae generation . . . . . . . . . . . . . . . . . . . 1134.4 Network onstrution . . . . . . . . . . . . . . . . . . . . . . . 1144.5 Custom network elements . . . . . . . . . . . . . . . . . . . . 1214.6 Extending PCSIM using C++ . . . . . . . . . . . . . . . . . 1244.7 PCSIM add-ons implemented in Python . . . . . . . . . . . 1264.8 Disussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1324.9 Aknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . 135The Parallel C iruit SIMulator (PCSIM) is a software pakage for simulationof neural iruits. It is primarily designed for distributed simulation of large salenetworks of spiking point neurons. Although its omputational ore is written inC++, PCSIM's primary interfae is implemented in the Python programming lan-guage, whih is a powerful programming environment and allows the user to easilyintegrate the neural iruit simulator with data analysis and visualization tools tomanage the full neural modeling life yle. The main fous of this work is to desribePCSIM's full integration into Python and the bene�ts thereof. In partiular we willinvestigate how the automatially generated bidiretional interfae and PCSIM'sobjet-oriented modular framework enable the user to adopt a hybrid modeling ap-proah: using and extending PCSIM's funtionality either employing pure Pythonor C++ and thus ombining the advantages of both worlds. Furthermore, we de-sribe several supplementary PCSIM pakages written in pure Python and tailoredtowards setting up and analyzing neural simulations.4.1 IntrodutionGiven the omplex nonlinear nature of the dynamis of biologial neural systems,many of their properties an be investigated only through omputer simulations.The need of researhers to inrease their produtivity while implementing inreas-ingly omplex models without eah time having to reinvent the wheel has beome a



108 Chapter 4. PCSIM: Simulation Environment for Neural Ciruitsdriving fore to develop simulators for neural systems that inorporate best knownpraties in simulation algorithms and tehnologies, and make it aessible to theuser through a high-level user-friendly interfae (Brette et al., 2007). It has alsobeen brought to attention that it is of importane to use large neural networks withbiologially realisti onnetivity (on the order of 104 synapses per neuron) as simu-lation models of mammalian ortial networks (Morrison et al., 2005). Simulation ofsuh large models an pratially be done only by exploiting the omputing powerand the memory of multiple omputers by means of a distributed simulation.There are di�erent neural simulation environments presently available and al-though many of them were initially envisioned for a spei� purpose and domainof appliability, during ontinuing development their set of features expanded toimprove generality and support onstrution of a wide range of di�erent neuralmodels; see (Brette et al., 2007) for a reent overview. The two most prominenttools are NEURON (Hines and Carnevale, 1997; Carnevale and Hines, 2006) andGENESIS (Bower and Beeman, 1998) whih aim at simulation of detailed multi-ompartmental neuron models and small networks of detailed neurons. Anotherlass of quite general neural simulation environments whih fous on the simula-tion of large-sale ortial network models and the improvement of their simulatione�ieny through distributed omputing inlude NEST (Gewaltig and Diesmann,2007; Plesser et al., 2007), NCS (Brette et al., 2007) and SPLIT (Hammarlund andEkeberg, 1998). There are also more dediated neural simulation tools like iNVT(iLab Neuromorphi Vision Toolkit1) whih is an example of a pakage spei�allytailored for the domain of brain-inspired neuromorphi vision. All of the abovesimulation environments support parallel simulation of one model on multiple pro-essing nodes by using ommodity lusters and many of them an also be run onsuper-omputers. The simulation tool PCSIM desribed in this work is designed forsimulating neural iruits with a support for distributed simulation of large saleneural networks. Its development started as an e�ort to redesign the previous CSIMsimulator2 (Natshläger et al., 2003) and augment its apabilities, with the majorextension being the implementation of a distributed simulation engine in C++ anda new onvenient programming interfae. The aim was to provide a general extensi-ble framework for simulation of hybrid neural models that inlude both spiking andanalog neural network omponents together with other abstrat proessing elementswhile making the setup and ontrol of parallel simulations as onvenient as possiblefor the user. Hene, given its urrent set of features, the PCSIM simulator is los-est to the seond group (NEST, NCS, SPLIT) of neural simulation environmentsmentioned above.Performing a neural network simulation usually requires ombined usage of sev-eral additional software tools together with the simulator, for stimulus preparation,analysis of output data and visualization. Being able to steer all the neessary toolsfrom one programming environment redues the omplexity of setting up simulation1http://ilab.us.edu/toolkit/home.shtml2http://www.lsm.tugraz.at/sim

http://ilab.usc.edu/toolkit/home.shtml
http://www.lsm.tugraz.at/csim


4.1. Introdution 109experiments sine all development an be done in a single programming languageand the burden of developing utilities for onversion of data formats between het-erogeneous tools is avoided. Given its objet-oriented apabilities and its strongsupport for integration with other programming languages, the Python program-ming language is a very promising andidate for providing suh a unifying softwareenvironment for simultaneous use of various sienti� software libraries. As Pythonis beoming inreasingly popular in the sienti� ommunity as an interpreting lan-guage of hoie for sienti� appliations, the developers of many neural simulatortools deided to provide a Python interfae for their simulator in addition to itslegay interfae in a ustom sripting language. Moreover, a simulation tool alledBrian whih uses Python as an implementation language was reently developed tobring to the user the full �exibility of an interpreting language in speifying andmanipulating neural models (Goodman and Brette, 2008).In spite of the evident pratial advantages in using Python as the single pro-gramming language for all tasks during a neural modeling life yle, there is theapparent disrepany between the need for omputational performane of the sim-ulation and onstrution of the model on one hand, and rapid development of themodel on the other. Using C++ an solve the performane issue, but will dereasethe produtivity of the modeler and requires higher level of programming skills andexperiene. In ontrast Python is easy to learn, �exible to use and signi�antlyinreases the produtivity of the modeler, however it lags far behind C++ in per-formane.3 Hene, instead of adopting a single language, an alternative is to enablean easy mix and math of both languages during the development of a model, i.e.to introdue a hybrid modeling approah (Abrahams and Grosse-Kunstleve, 2003).In this hapter we will desribe how the modular objet-oriented framework ofPCSIM in ombination with an automated interfae generation supports suh ahybrid modeling approah.In partiular, we brie�y review PCSIM's main features (Se. 4.2) before wedesribe the automated proess to generate the Python interfae (Se. 4.3). InSe. 4.4 we detail PCSIM's network onstrution appliation programming interfae(API), whih is a entral part of PCSIM's objet-oriented modular framework. InSe. 4.5 we demonstrate another advantage of the hybrid modeling approah: weshow how PCSIM's onept of a general network element an be used as an interfaeto another simulation tool. While these examples onentrate on the Python aspetof the hybrid modeling, we show in Se. 4.6 how the user an easily extend PCSIM'sfuntionality using C++. Additional PCSIM pakages implemented in Python arereviewed in setion 4.7. In Se. 4.8 we disuss and summarize the presented oneptsand approahes.3The simulation tool Brian mentioned above, heavily uses the numerial Python pakage numpy(Oliphant, 2007) written in C to ahieve reasonable performane.



110 Chapter 4. PCSIM: Simulation Environment for Neural Ciruits

Figure 4.1: Arhiteture overview of PCSIM4.2 Overview4.2.1 ArhitetureThe high-level arhiteture of PCSIM is depited in Fig. 4.1. The PCSIM librarywritten in C++ (libpsim) onstitutes the ore of the simulator. The API of thePCSIM library is exposed to the Python programming language by means of thePython extension module pypsim (see Se. 4.3 for details). The library is made upof three main omponents: the simulation engine with its ommuniation system, apool of built-in network elements (i.e. neuron and synapse types) and the networkonstrution layer. Before presenting the network onstrution layer in detail inSe. 4.4 we will brie�y desribe in the next paragraphs the main features of theunderlying simulation engine and its ommuniation system.The simulation engine integrates all the network elements (typially neurons andsynapses) and advanes the simulation to the next time step, and uses its ommu-niation system to handle the routing and delivery of disrete and analog messages(i.e. spikes and e.g. �ring rates or membrane voltages) between the onnetednetwork elements. PCSIM's simulation engine is apable of running distributedsimulations where the individual network elements are loated at di�erent omput-ing nodes. Setting up a distributed simulation is handled easily from a users point ofview: there are no (or very little) ode hanges neessary when swithing from a non-distributed to a distributed simulation. The distributed simulation mode is intendedfor employing a luster of mahines for simulation of one large network where eahmahine integrates the equations of a subset of neurons and synapses in the network.A distributed PCSIM simulation runs as an MPI4 based appliation omposed ofmultiple MPI proesses loated on di�erent mahines5. The implementation of thespike routing, transfer and delivery algorithm between the nodes in a distributedsimulation is based on the ideas presented in (Morrison et al., 2005). In additionPCSIM o�ers the possibility to run a simulation as a multi-threaded appliation,both in a non-distributed and a distributed setup. The multi-threaded mode is in-4http://www-unix.ms.anl.gov/mpi/5To be preise, we use the C++ bindings o�ered by the MPICH2 library, where urrently noneof the advaned features of the MPI-2 standard are used.

http://www-unix.mcs.anl.gov/mpi/


4.2. Overview 111

Figure 4.2: Simulation times of the CUBA network distributed over di�erent number ofproessing nodes, ompared to the expeted simulation time (dashed line) (see text fordetails). Four di�erent sizes of networks were simulated: 4000 neurons with on average
1.6 × 106 synapses (diamonds), 20000 neurons with on average 40 × 106 synapses (stars),50000 neurons with on average 250 × 106 synapse (irles) and 100000 neurons with onaverage 1 × 109 synapses (squares). The plotted simulation times are averages over 12simulation runs. The variation of simulation time between di�erent simulation runs wassmall, therefore we did not show it.tended for performing simulations on one multi-proessor mahine when one wantsto split the omputational workload among multiple threads in one proess, eahrunning on a di�erent proessor. However, we should note that the multi-threadedsimulation engine is still undergoing optimization, as we are working on improve-ment of the saling of the multi-threaded simulation to math the saling ahievedwith an equivalent distributed simulation.4.2.2 Salability and Domain of AppliabilityOne of the goals of the development of PCSIM was enabling simulations of largeneural networks on standard omputer lusters through distributed omputing. Byutilizing the parallel apabilities of PCSIM the simulation time for a model an beredued by using more proessors (on multiple mahines) as omputing resoures.As a test of the salability, we performed multiple simulations with the PCSIMimplementation of the CUBA model desribed in (Brette et al., 2007), with dif-ferent number of leaky integrate-and-�re neurons (4000, 20000, 50000 and 100000)and distributed over a di�erent number of proessors (eah proessor on a di�erentmahine). We hanged the resting potential in the neuron equations from −49mVto −60mV suh that the network does not show any spontaneous ativity. In or-



112 Chapter 4. PCSIM: Simulation Environment for Neural Ciruitsder to eliit a spiking ativity in the network, an input neuron population of 1000neurons was onneted randomly to it with probability 0.1, i.e. eah neuron in thenetwork reeives inputs from on average 100 input neurons. The input neurons �redhomogeneous Poisson spike trains at a rate of 5 Hz. The simulation was performedfor 1 se biologial time with a time step of 0.1 ms. We have set the onnetionprobability within the network to 0.1, in order to reah realisti number of 10000synapses per neuron for the network size of 100000 neurons. The transmission delayof spikes was set to 1 ms. We saled the weights of the network so that the mean�ring rate of the neurons was between 2.4 and 2.7 Hz for all network sizes (morepreisely 2.68 Hz, 2.55 Hz, 2.52 Hz and 2.45 Hz for the network with 4000 , 20000,50000 and 10000 neurons, respetively).The used mahines had Intel R© XeonTM64 bit CPUs with 2.66 GHz and 4 MBlevel-2 proessor ahe, and 8 GB of RAM. They were onneted in a 1 Gbit/sEthernet LAN.If we assume ideal linear speed-up, then the expeted simulation time of a modelon N mahines given the atual simulation time on K mahines is equal to thesimulation time on K mahines times K divided by N . In the evaluation of thesaling, for the estimation of the expeted simulation time (see Fig. 4.2) we usedthe measured simulation time of the model on the minimum number of mahinesused for that partiular network size. Namely, we used the atual simulation time on
K = 1 mahine for the network sizes of 4000 and 20000 neurons, and the simulationtime on K = 4 and K = 16 mahines for the network sizes of 50000 and 100000neurons respetively.Fig. 4.2 shows that in the ase of 4000 neurons the omputational load on eahnode is quite low, hene the ost of the spike message passing dominates the sim-ulation time whih results in sub-linear saling. For the networks with 20000 and50000 neurons the atual simulation time is shorter than the expeted simulationtime indiating a supra-linear speed-up for up to 24 nodes. For more than 24 nodesthe atual simulation time approahes the expeted simulation time. The reasonfor the supra-linear speed-up is more e�ient usage of the proessor ahe when thenetwork is distributed over larger number of nodes (Morrison et al. (2005)). For thenetwork with 100000 neurons the speed-up is not distinguishable from the expetedlinear speed-up (taking K = 16 nodes as the base measurement).The ombination of features that PCSIM supports makes it suitable for varioustypes of neural models. Its domain of appliability an be onsidered aross twoomplementary aspets: the size of networks that an be simulated, and the varietyof di�erent models that an be onstruted and simulated, determined by the avail-able neuron and synapse models, plastiity mehanisms, onstrution algorithmsand similar. Conerning the size of models, beause of its distributed apabilitiesPCSIM is mainly targeted towards large neural systems with realisti ortial on-netivity omposed of 105 neurons and above. As the results from the salabilitytest show, a spiking network with 105 neurons and 104 synapses per neuron anbe simulated in a reasonable time on a ommodity luster with about 20 mahines,and the speed-up is linear when more mahines are employed for the simulation.



4.3. Python interfae generation 113Regarding the support for onstrution of various di�erent models in PCSIM, thegenerality of the ommuniation system and the extensibility with ustom networkelements enables simulation of hybrid models (spiking and analog networks) inor-porating di�erent levels of abstration. By utilizing the onstrution framework alsostrutured models with diversity of neuron and synapse types and varying parametervalues an be de�ned and simulated, and the built-in support for synapti plastiityfurther expands the domain of usability towards models that investigate synaptiplastiity mehanisms.4.3 Python interfae generationIn order to enable a hybrid modeling approah we wanted to use a Python interfaegeneration tool that was apable of wrapping PCSIM's objet-oriented and modu-lar API suh that the Python API will be as lose as possible to the C++ API.Our hoie for this purpose was the Boost.Python6 library (Abrahams and Grosse-Kunstleve, 2003). The strength of Boost.Python is that by using advaned C++ompile-time introspetion and template meta-programming tehniques it providesomprehensive mappings between C++ and Python onstruts and idioms. Thereis support, amongst others, for exeption handling, iterators, operator overloading,standard template library (STL) ontainers and Python olletions, smart pointersand virtual funtions that an be overridden in Python. The later feature makes theinterfae bidiretional, meaning that in addition to the possibility of alling C++ode from Python, user extension lasses implemented in Python an be alled fromwithin the C++ framework. This is an enabler for the targeted hybrid modelingapproah; we will see examples for this later on in this hapter.However, using Boost.Python without any additional tools does not lead to asolution where the interfae an be generated in an automati fashion sine for eahnew lass added to the library's API one would have to write a substantial pieeof Boost.Python ode. As automati Python wrapping of the C++ interfae is oneof the main prerequisites for leveraging a hybrid modeling approah, a solution isneeded to automatially synhronize the Python and C++ API of a library likelibpsim. Fortunately, there exists the Py++ pakage7 whih was developed to alle-viate the repetitive proess of writing and maintaining Boost.Python ode. Py++by itself is an objet-oriented framework for reating ustom Boost.Python odegenerators for an appliation library written in C++. It builds on GCC-XML8, aC++ parser based on the GCC ompiler that outputs an XML representation ofthe C++ ode. Py++ uses this strutured information together with some user in-put, in form of a Python program, and produes the neessary Boost.Python ode,onstituting the Python interfae for a spei�ed set of C++ lasses and funtions(see Fig. 4.3).6http://www.boost.org/do/libs/release/libs/python/do/7http://www.language-binding.net/8http://www.gxml.org

http://www.boost.org/doc/libs/release/libs/python/doc/
http://www.language-binding.net/
http://www.gccxml.org


114 Chapter 4. PCSIM: Simulation Environment for Neural Ciruits
Figure 4.3: The proessing steps in the generation of the Python interfae for PCSIM.Finally the Boost.Python C++ ode is ompiled and linked together with theC++ library under onsideration (libpsim in our ase) to produe the Python ex-tension module ontaining the Python API of the library (pypsim in our ase).Thus, the work of the developer (and the user as we will see later on) redues to ade�nition of high-level rules to selet whih lasses and methods should be exposed.For the generation of the PCSIM Python interfae pypsim, we split the rulesPy++ needs into two subsets, inlusion and exlusion rules (see Fig. 4.3). Theinlusion rules ontain the rules that mark a seleted set of lasses to be exposed toPython. The exlusion rules ontain the post-proessing, where some of the methodsof the lasses that were inluded in the inlusion rules are marked to be exluded,and all poliies are de�ned for the inluded methods that require them9. Py++allows to speify the rules in a high-level, generi fashion, making them robust tohanges in the interfae of the PCSIM C++ library. Hene, in most ases hanges inthe PCSIM API did not require hanges in the Python program that generates thewrapper ode, whih simpli�ed its maintenane. An example of suh a high-levelrule would be �In all lasses that are derived from lass A, do not expose the methodthat returns a pointer of type B�. Suh a general rule will then be still valid if forexample we introdue more lasses derived from A, or add additional funtions thatreturn a pointer of type B in some of the lasses.To summarize, the Python integration of PCSIM using Boost.Python togetherwith the Py++ ode generator allowed us to ome up with a solution to automat-ially expose PCSIM's objet-oriented and modular API bidiretionally in Python.In the following setions we will show how suh an bidiretional integration of PC-SIM into Python an pratially be used and whih possibilities and advantagesarise.4.4 Network onstrutionA large portion of the Python PCSIM interfae is devoted to the onstrution ofneural iruits. At the lowest level PCSIM provides methods to reate individual9Call poliies de�ne the hange of ownership of objets that ross the boundaries of the C++library, i.e. the objet passed from Python to the C++ library and from the C++ library toPython.



4.4. Network onstrution 115network elements (i.e. neurons and synapses) and to onnet them together.On top of these primitives a powerful and extensible framework for iruit on-strution based on probabilisti rules is built. The soure of inspiration for the in-terfae of the framework was the Ciruit Tool in the CSIM simulator10 and PyNN,an API for simulator-independent proedural de�nition of spiking neural networks(Davison et al., 2008). We will use a onrete example11, desribed in more depthin the next subsetion, to present the network onstrution framework and its typ-ial use ases where emphasis is put on those features that were enabled by thebidiretional Python interfae generated by the approah desribed in Se.4.3.4.4.1 The example modelWe seleted the model to be simple enough for didati reasons, but omplete enoughwith all the elements neessary to explain the main novel onepts of the interfaeand its Python extensibility features. The onnetivity patterns are based on ex-perimental data that we use in our urrent researh work. The model onsists of aspatial population of neurons loated on a 3D grid with integer oordinates withina volume of 20 × 20 × 6. 80% of the neurons in the model are exitatory, andthe rest are inhibitory. The exitatory neurons are modeled as regular spiking andthe inhibitory neurons as fast spiking Izhikevih neurons (Izhikevih, 2004). Theonnetions between exitatory neurons in the network are reated aording tothe trivariate probabilisti model de�ned in (Buzas et al., 2006). This onnetivitymodel desribes the distribution of the exitatory pathy long-range lateral onne-tions found in the super�ial layers of the primary visual ortex in ats that dependson the lateral distane of the ells and their orientation preferene. Orientation pref-erene is the a�nity of V1 ells to �re more when a bar with a spei� orientationangle is present in their reeptive �elds. The onnetivity rule is de�ned by the fol-lowing equations that express the onnetivity probability between two exitatoryells.
P (li, lj, φi, φj) =C G(li, lj)V (φi, φj) (4.1)

G(li, lj) =e−
|li−lj|

2

2σ2 (4.2)
V (φi, φj) =eκ cos 2(φi−φj) (4.3)

li = (xi, yi) and lj = (xj , yj) are the 2D loations and φi and φj are the orien-tation preferenes of the pre- and postsynapti neurons i and j. The funtion Gintrodues the dependene of the onnetivity probability on the lateral distanebetween the neurons, and V models the dependeny on the di�erenes in the ori-entation preferenes of the neurons. C, κ and σ are saling oe�ients. The valuesfor the preferred orientation angles of the neurons in the example are generated byevolving a self-organizing map (SOM) (Obermayer and Blasdel, 1993). Additionally10http://www.lsm.tugraz.at/iruits11The full soure ode of this example is available in the supplementary material.

http://www.lsm.tugraz.at/circuits


116 Chapter 4. PCSIM: Simulation Environment for Neural Ciruits
Figure 4.4: A diagram of the most important onepts within the network onstrutioninterfae. The arrows indiate a �uses� relationship between the onepts.the ondution delay of a onnetion between exitatory neurons is probabilistiallydependent on the distane between the 3D loations of its pre- and postsynaptineurons.

D(li, lj) = D0
|li − lj|

N(µ, σ, bl, bu)
(4.4)Here N(µ, σ, bl, bu) is a bounded normal distribution representing the transmissionveloity of the axon. A random value from N(µ, σ, bl, bu) is sampled as follows: �rsta random number from a normal distribution with mean µ and standard deviation

σ is drawn and if that value is not within the range [bl, bu], then it is drawn from anuniform distribution with that range. D0 represents a proper saling fator in theformula.4.4.2 The framework: objet-oriented, modular and extensibleFig. 4.4 shows the basi onepts of PCSIM's onstrution framework together withtheir interations during the onstrution proess. This framework allows modelspei�ation in terms of populations of neurons onneted by probabilistially de-�ned onnetivity patterns alled projetions.A population of network elements utilizes several objet fatories to generatethe network elements. A fatory enapsulates the logi for the neuron and synapsegeneration deoupled from the other parts of the onstrution proess. Every timea new neuron is to be reated in a population the fatory is used to generate theneuron objet. The objet fatories an use either random distribution objets orvalue generators to generate values for the parameters and attributes of the networkelement instanes. When we talk about a parameter we mean a parameter of thedi�erential equations used to model a neuron or synapse. In ontrast an attributedesribes any other (more abstrat) property of a network element. In our examplethe orientation preferene φ will be suh an attribute of an exitatory neuron.A projetion manages onnetions between two populations. During the on-strution phase of a projetion a onnetion deision prediate is used to determinewhether a onnetion should be reated for a pair of neurons. A onnetor fatory isthen used to reate instanes of the onnetor elements like synapses (this is analo-gous to the objet fatory for populations). The onnetor fatory also uses randomdistributions or onnetor value generators for the parameter values of the onnetor



4.4. Network onstrution 117elements. In order to implement a spei� onstrution algorithm, the user typiallyjust needs to implement ustom value generator and onnetion deision prediatelasses, as we will demonstrate in the following subsetions.4.4.3 Fatories: reating network elements from modelsWe will start onstruting the network model by de�ning the lasses (or families) ofneurons models: inhibitory and exitatory neurons. This is aomplished by de�ningan element fatory for eah family. As explained in Se. 4.4.1 the exitatory neuronshave an orientation preferene φ whih depends on the loation of the neuron in thepopulation. For this reason we will assoiate the attribute phi with eah exitatoryneuron:ex_fatory = Fatory( model = IzhiNeuron( type = "RS" ),Vinit = UniformDistribution( -50e-3, -60e-3 ),attribs = dit( phi = OrientationPreferValGen() )The statement above reates a fatory for the exitatory family of neurons basedon a regular spiking (RS) Izhikevih neuron model (Izhikevih, 2004) whereIzhiNeuron is a built-in network element lass. The keyword argument Vinit= UniformDistribution(...) assoiates a uniform random number generatorwith the initial membrane voltage Vinit. This has the e�et that wheneverthe fatory is used to generate an atual instane of an exitatory neuron, theparameter Vinit will be randomly hosen from the interval [−50,−60]mV. Finallythe keyword argument attribs = dit( phi = ... ) has two e�ets: a) theattribute phi is attahed to ex_fatory and b) the ustom value generatorOrientationPreferValGen is used to generate a partiular value for phi eahtime ex_fatory is asked to generate an instane of an exitatory model neuron.The value of the phi attribute will be used afterwards for the reation of synaptionnetions.In the example we implement the ustom value generatorOrientationPreferValGen in pure Python. This is enabled by the partiu-lar feature of Boost.Python whih allows C++ virtual funtions to be overriddenfrom within Python.lass OrientationPreferValGen(PyAttributePopObjetValueGenerator):def __init__(self):PyAttributePopObjetValueGenerator.__init__(self)self.map = som.OrientationMapSOM([20,20℄)def generate(self, rng):return self.map.pref( self.lo().x(), self.lo().y() )Value generators (in this ase to be derived fromPyAttributePopObjetValueGenerator) have a simple interfae omposed ofthe onstrutor __init__ and the method generate whih have to be implemented



118 Chapter 4. PCSIM: Simulation Environment for Neural Ciruitsby the user. In our partiular example we reate the orientation map, that maps2D oordinates to an orientation preferene angle in the onstrutor, and will useit in the method generate. The map is based on the SOM algorithm enapsulatedin the Python lass OrientationMapSOM (details not relevant here). The generatemethod is alled to determine the value of the orientation angle attribute phiwhenever a neuron instane from the fatory has to be reated. The value generatorinherits several onvenient methods from its base lass that one an use for aessingproperties of the neuron for whih generate is alled, like self.lo to get the 3Dloation of the neuron within a population (see next setion). We then pass the xand y oordinates to the orientation map (method pref) in order to alulate thevalue of the orientation preferene angle.For the inhibitory neuron model we reate a similar fatory:inh_fatory = Fatory( model = IzhiNeuron( type = "FS" ),Vinit = UniformDistribution( -50e-3, -60e-3 ),attribs = dit( ) )The di�erene to the exitatory neuron model is that a fast spiking (FS) Izhikevihneuron model is used and the attribute ditionary attribs = dit( ) is empty.This is beause there is no orientation preferene of the inhibitory ells in theonsidered model.4.4.4 Neuron populationsA population in PCSIM represents an organized set of neurons that an be manip-ulated as one strutural unit in the model. In the AugmentedSpatialPopulationthat we will use in this example, the neurons have assoiated 3D oordinates, afamily identi�er, and an extensible set of ustom attributes that the user an at-tah to eah of the neurons. We already enountered this in the previous setion.The family identi�er allows the de�nition of multiple families/lasses of neurons, i.e.subsets of neurons with similar properties, within a single population. Our popu-lation will have two families of neurons, the family of exitatory and the family ofinhibitory neurons. For eah of the two families of neurons we have spei�ed in theprevious setion a fatory that will be used to generate the neuron instanes withinthe population.pop = AugmentedSpatialPopulation( net, [ ex_fatory(), inh_fatory() ℄,RatioBasedFamilies( [ 4, 1 ℄ ),CuboidIntegerGrid3D( 20, 20, 6 ) )ex_pop, inh_pop = pop.splitFamilies()Note that the �rst argument (net) spei�es the overall network to whih thispopulation of neurons will belong. The lass CuboidIntegerGrid3D, whih is abuilt-in speialization of the more general onept of an arbitrary set of points in3D, de�nes the possible loations for the neurons (integer oordinates within avolume of 20×20×6). The population is to be omposed of two families of neurons



4.4. Network onstrution 119(exitatory and inhibitory), reated by the two given fatories (ex_fatory andinh_fatory). To aomplish this we use a RatioBasedFamilies objet whihrandomly hooses for eah 3D loation from whih family of neurons the partiularinstane will be reated. Speifying the ratio 4:1 for exitatory to inhibitory neuronsyields the desired 80% exitatory neurons. The lass RatioBasedFamilies is abuilt-in speialization of the general onept of a spatial family identi�er generatorwhih enapsulates the logi for deiding whih fatory to use depending on the 3Dloation.For the purpose of more onvenient setup of onnetions later on, the reatedpopulation is split into two sub-populations, one for eah family.4.4.5 Projetions: managing synapti onnetionsThe synapti onnetions in the network onstrution interfae are reated by meansof projetions. A projetion is a onstrut that represents a set of synapti onne-tions originating from one population of neurons and terminating at another pop-ulation12. PCSIM has built-in onstrution algorithms for reating various typesof onnetion projetions, like onstant probability random onnetivity or randomonnetivity with probability dependent on the distane (or lateral distane) be-tween the neurons.However, to reate a projetion with a spei� onnetivity pattern, one usuallyde�nes a ustom onnetion deision prediate. A deision prediate deides for anindividual pair of neurons whether to form a onnetion based on the parametersand attributes of those neurons. In our example we implemented the onnetiondeision prediate OrientationSpeifiConnPrediate in pure Python, enapsu-lating the probabilisti rule for onnetion making from Equ. 4.1, whih states thatthe onnetion probability depends on the distane between and the orientationpreferenes of the pre- and postsynapti neurons.lass OrientationSpeifiConnPrediate(PyAugmentedConnetionDeisionPrediate):def __init__(self, C):PyAugmentedConnetionDeisionPrediate.__init__(self)self.orient_onn_prob = OrientationSpeConnProbability(C)self.unidist = UniformDistribution(0.0, 1.0)def deide(self, sr, dst, rnd ):prob = self.orient_onn_prob(self.sr_attr(sr, 'phi'),self.dest_attr(dst, 'phi'),self.dist_2d( sr, dst ) )return self.unidist(rnd) < probThe PyAugmentedConnetionDeisionPrediate base lass is used when one hasto de�ne a ustom onnetion deision prediate that uses the neuron attributes12The soure and destination populations an be the same if the goal is to reate reurrentonnetions in one population.



120 Chapter 4. PCSIM: Simulation Environment for Neural Ciruitsand onnets neurons from populations of type AugmentedSpatialPopulation. Toomplete the implementation of the prediate, it is required to override the deidemethod and �ll the onstrutor with the neessary initializations. The methoddeide is alled within the onnetion onstrution proess for eah andidatepair of neurons that ould be onneted and is expeted to output true (makea onnetion) or false (no onnetion). In our example, we reate an instane(orient_onn_prob) of the OrientationSpeConnProbability lass to alulatethe probability aording to the Equ. 4.1 (the full implementation of the lass isavailable in the supplementary material). This instane is alled in the deidemethod with the orientation preferenes of the andidate soure and destinationneurons and their lateral distane as arguments. The orientation preferenes areobtained via the sr_attr and dest_attr methods (inherited from the base lass),and the lateral distane via the dist_2d method. By omparing a uniformlydistributed random number to the alulated probability a Bernoulli distributionwith the desired probability for the outome true is generated.Before we an reate the projetion we have to de�ne a onnetor fatory (lassConnFatory) that will be used to generate the synapse objets within the proje-tion.ee_syn_fatory = ConnFatory(model = StatiSpikingSynapse(W = 1e-4),delay = DelayCond(v_mean = 2e2, v_SH = 0.2,v_min = 0.1e-3, v_max = 5e-3) )The onnetor fatory di�ers from the element fatory objets used in onjuntionwith neuron populations, in that the parameters of the reated objets (typiallysynapses) an depend on the attributes of the soure and destination networkelements they are onneting. In our example, the onnetor fatory for theonnetions between exitatory neurons is based on a urrent-based synapse modelwith exponential deay post-synapti response (lass StatiSpikingSynapsein PCSIM). Additionally, the DelayCond value generator is assoiated to thedelay parameter of the synapse, whih produes distane dependent delay valuesaording to Equ. 4.4. The DelayCond is a built-in value generator in PCSIM.Now we an reate the projetion that will generate all reurrent onnetionsbetween the exitatory neurons.ee_proj = ConnetionsProjetion( ex_pop, ex_pop, ee_syn_fatory(),PrediateBasedConnetions(OrientationSpeifiConnPrediate( 1.0 ) ) )We speify in the onstrutor of the projetion the onnetor fatory for gen-eration of the synapses and the PrediateBasedConnetions lass instanethat iterates over all andidate pre- and postsynapti neurons and delegatesthe deision whether to make a onnetion to the onnetion deision prediateOrientationSpeifiConnPrediate given as an argument.A onnetion deision prediate is typially used when in the probabilisti on-



4.5. Custom network elements 121netivity de�nition the probability that two neurons are onneted depends on theattributes and parameters of the two neurons and is independent from the otherreated onnetions. In the general ase, with suh a onnetivity, a separate dei-sion whether to make a onnetion has to be made at eah andidate neuron pair,yielding a omplexity of the wiring algorithm that is quadrati with respet to thenumber of neurons. In a distributed senario, a speed-up of the onstrution ispossible by splitting the wiring workload among the multiple mahines the model issimulated on. If the number of mahines is inreased with the number of neurons,keeping the number of neurons per node �xed, and if we assume that the number ofinput synapses per neuron does not inrease, then the wiring time will sale linearlywith the number of neurons.For other onnetivity shemes where further optimizations are possible, a fasterwiring algorithm an be implemented diretly in the lass that iterates over the neu-ron pairs. For example, for the ase of onstant probability random onnetions,a speial RandomConnetions lass that implements faster wiring an be used in-stead of PrediateBasedConnetions. When using the RandomConnetions, thewiring time is proportional to the number of reated onnetions if the network isonstruted on a single mahine, and remains onstant in the distributed ase withthe assumption that the number of mahines is inreased proportionally with thenumber of neurons.134.5 Custom network elementsThe PCSIM ommuniation system is general in a sense that it supports spikingand analog messages as ommuniation between network elements. The networkelements are not restrited to one type of message and an have multiple input andoutput ports, eah of them apable of either reeiving or sending spiking or analogmessages (see Fig. 4.5A and Fig. 4.5B).The generality of the framework allows the user to implement ustom proessingelements that map multiple inputs to multiple outputs and plug them in a networkmodel inter-onneted together with spiking or analog neural networks. Suh us-tom network elements an either be implemented in C++ (see Se. 4.6) or in purePython. This feature of PCSIM has various potential uses. For example the useran implement new neuron types for a preliminary experiment in Python �rst, in-stead of diretly implementing them in C++ (see Se. 4.6). Another possible usageis to implement more abstrat or omplex elements like a whole population of spik-ing neurons in Python by using vetors from the numerial Python pakage numpy14 (Oliphant, 2007) for step-by-step integration of the equations. This approahhas been shown to have good performane, and is appliable for homogeneous neu-ron populations, where all neuron instanes have the same neuron model (Brian13It is out of sope of this work to detail the algorithms behind the e�ient implementation ofthe network onstrution framework in the distributed simulation senario; this will be reportedelsewhere.14http://numpy.sipy.org

http://numpy.scipy.org


122 Chapter 4. PCSIM: Simulation Environment for Neural Ciruits

Figure 4.5: A) Network elements of di�erent type (with di�erent arrangement of inputand output ports) interonneted together in a PCSIM network. Di�erent olors of ports,gray or white, mark their di�erent types, spiking or analog. B) Neurons and synapses arespei� subtypes of the more general onept of an network element. C) Shemati diagramof the embedding of a network simulated with the Brian simulator into a PCSIM networkelement.simulator, (Goodman and Brette, 2008)).We detail suh an example in this setion, where the Brian simulator is used toimplement a population of spiking neurons as a single network element, and thenplug it into a PCSIM simulation together with other built-in network elements.The spiking neural network model we will simulate with Brian is the modi�edversion of the CUBA benhmark model desribed in Se. 4.2.2, with a network sizeof 4000 neurons. We have used the same onnetivity probability of 0.02 and thesame weights as in (Brette et al., 2007), instead of the modi�ed 0.1 onnetivityprobability and saled weights in Se. 4.2.2. The PCSIM network element that wewill reate to enapsulate the Brain network has 1000 spiking input ports and 4000spiking output ports (see Fig. 4.5C). Eah of the output ports is assoiated to oneneuron.To implement this model as a PCSIM network element, one has to implement aPython lass BrianCiruit derived from PySimObjet. In the onstrutor of thislass the Brian spiking network is reated and initialized.



4.5. Custom network elements 123lass BrianCiruit(PySimObjet):def __init__( self ):PySimObjet.__init__( self )self.registerSpikingOutputPorts(arange(4000))self.registerSpikingInputPorts(arange(1000))input = PCSIMInputNeuronGroup(1000, self)self.P = P = brian.NeuronGroup(4000, model = eqs,threshold=-50*mV, reset=-60*mV)Pe = P.subgroup(3200)Pi = P.subgroup(800)Ce = brian.Connetion(Pe, P, 'ge' )Ci = brian.Connetion(Pi, P, 'gi' )Ce.onnet_random( Pe, P, p = 0.02, weight = 1.62*mV )Ci.onnet_random( Pi, P, p = 0.02, weight = -9*mV )Cinp = brian.Connetion( input, P, 'ge' )Cinp.onnet_random( input, P, p = 0.1, weight = 3.5*mV)self.brian = brian.Network(input, P, Ce, Ci, Cinp )self.brian.prepare()self.brian.lok.set_duration(2.0*seond)The mapping of the PCSIM input ports to a Brian neuron group is managedby the simple auxiliary neuron group named PCSIMInputNeuronGroup (see thesupplementary material for the implementation). The reset method resets thestate of the network to time step t = 0, whih is ahieved by alling the reinitmethod of the Brian network, and initializing the membrane potential vetor P.Vto random values from an uniform distribution.def reset(self, dt):self.brian.reinit()self.P.V = -60*mV+10*mV*rand(len(self.P))return 0The step-by-step iteration of the network is done in the overridden advane methodwhih performs one time-step update of the Brian network with the update methodand the tik method of the assoiated Brian lok objet. At the end of eahtime step the generated spikes of the population are gathered and delivered to theoutput ports of the PCSIM network element.def advane(self, ai):self.brian.update()self.brian.lok.tik()self.setOutputSpikes( ai, self.P.get_spikes() )self.learSpikeBuf()return 0Note that no Python loops are present, the setOutputSpikes method that transfersthe spikes is implemented in C++ in the base lass PySimObjet, so there is noperformane loss aused by the transfer of spikes from Brian to PCSIM and vieversa.The new BrianCiruit network element lass an then be instantiated and



124 Chapter 4. PCSIM: Simulation Environment for Neural Ciruitsadded to a PCSIM simulation. The following ode segment reates an instane ofthe Brian spiking network, adds it as a network element, sets up the input and runsthe simulation for 2.0 seonds (1000 neurons that emit Poisson spike trains at rate5 Hz (PoissonInputNeuron) are onneted to the 1000 input ports of the Briannetwork element15).net = SingleThreadNetwork()inpNrnPop = SimObjetPopulation( net,PoissonInputNeuron( rate = 5, duration = 1000 ), 1000 )pyir = BrianCiruit()pyir_id = net.add(pyir)for i in range(inpNrnPop.size()):net.onnet(inpNrnPop[i℄, 0, pyir_id, i)net.reset()net.simulate( 2.0 )4.6 Extending PCSIM using C++The objet-oriented framework of PCSIM an be extended by the user at manydi�erent levels. Typial extensions of PCSIM inlude either implementations ofnew neuron and synapse types, or implementations of lasses enapsulating ustomonstrution rules in the network onstrution interfae, as we have illustrated inthe previous setions. By utilizing the features of the Boost.Python library andPy++, the extensions an be implemented either in pure Python as already shownor in C++.For reating C++ extensions, PCSIM provides a tool that ompiles the ustomC++ lasses, automatially generates the Python wrapper interfae for these andpaks everything into a separate Python extension module. In order to simplifythe proedure of reating a ustom extension, the user starts the implementationfrom an extension template ontained in the PCSIM distribution. Let us assumethat we want to implement two lasses: a new neuron type MyNeuron and a newsynapse type MySynapse. One the C++ implementation is �nished, there are threeadditional steps that have to be done to produe the PCSIM extension module.First, the C++ soure �les of the extension have to be enlisted in the �lemodule_reipe.make. This �le is read by PCSIM's C++ build tool CMake16.15The net.onnet(sr_id, sr_port, dest_id, dest_port) method onnets the port num-ber sr_port of the element with id sr_id, to the port number dest_port of the element withid dest_id.16http://www.make.org



4.6. Extending PCSIM using C++ 125SET( MODULE_SOURCESsr/MySynapse.ppsr/MyNeuron.pp) As the seond step, we have to speify the names of the lasses we want to inludein the Python interfae in the �le python_interfae_speifiation.py whihholds the extension module interfae spei�ation. For our example the insertedlines should look like:def speify( M, options ):M.lass_( 'MySynapse' ).inlude()M.lass_( 'MyNeuron' ).inlude()return MNote that the argument M in the ode above represents the Py++ representation ofthe C++ ode of the ustom PCSIM extension to be built, with its rather intuitivequery interfae.The name of the extension module (in our example my_psim_module) is spe-i�ed in both module_reipe.make and python_interfae_speifiation.py�les. Finally, the ompilation is done using the speial purpose ommand-line om-pilation tool for PCSIM extensions:> Python psim_extension.py buildThe ompiled extension module then an be imported and used within Python asany other module.import pypsimimport my_psim_moduleThe main pypsim module should always be imported before any PCSIM extensionmodules, beause the lasses in the extension are derived from lasses in pypsimand these lasses should be already in the Python namespae. The user andevelop multiple PCSIM extension modules that an be used simultaneously in onesimulation.The reation of PCSIM extensions as a separate Python extension module relieson the support of Boost.Python and Py++ for omponent-based development, sothat C++ types from one Python extension module an be passed to funtionsfrom another extension module while still preserving the information about theross-module C++ inheritane relationships. This enables objet instanes fromthe lasses in the extension module to be used within the PCSIM objet-orientedframework in the main pypsimmodule. The omponent-based development has alsothe advantage that during the development of new ustom lasses only the extensionmodule has to be reompiled, not the whole pypsim library.During the ompilation of the PCSIM extension module the same proessingsteps happen as for the main pypsim module (see Fig. 4.3). We use the same



126 Chapter 4. PCSIM: Simulation Environment for Neural Ciruitssripts both for generation of the Python interfae of the main PCSIM pakage andfor the Python integration of PCSIM extension modules. Sine the post-proessingexlusion rules are expressed with the Py++ query interfae in a generi way, theyare appliable also to the wrapping of the extension lasses. This is due to the fatthat extension lasses are derived from base lasses in the PCSIM objet-orientedframework and as suh share their ommon properties on whih the rules are based.Hene, the interation of the user with the interfae generation and the moduleompilation redues to speifying a list of the C++ soure �les, and a list of lassesto be exposed in Python. The rest of the proess is automatized and the detailsare hidden behind the ommand-line interfae of the speial ompilation tool forPCSIM extensions.4.7 PCSIM add-ons implemented in PythonOn top of the main PCSIM Python API (enapsulated in pypsim) several addi-tional pakages have been developed. They are implemented in pure Python andheavily rely on many third party sienti� Python pakages. The purpose of thesepakages is either to augment the apabilities of PCSIM, or add additional separatefuntionalities that are suitable to be used together with PCSIM.4.7.1 PyNN.psimThe objetive of the PCSIM development to adopt ongoing initiatives to de�ne stan-dards for model spei�ation of neural networks that would foster interoperabilitybetween di�erent simulators is re�eted in the support of the PyNN projet17 (Davi-son et al., 2008). The PyNN projet is an e�ort to reate a standardized, uni�edPython-based API for proedural spei�ation of neural network models aiming ateasier exhange of models between simulators. The user interfae of PCSIM has beenaugmented with an additional software layer to support the PyNN API making itpossible to use models spei�ed in PyNN within PCSIM. Due to the fat that PyNNwas one of the soures for inspiration of the PCSIM interfae, the onepts betweenthe two interfaes math losely, so the translation of the PyNN statements in or-responding PCSIM statements was straightforward and did not require substantialprogramming logi that ould have hindered the performane of the interfae. ThepyNN.psim pakage is an integral part of the PyNN distribution.4.7.2 pypsimplusAfter we started to use PCSIM for our simulation purposes, it was beoming ap-parent that adding another layer above the interfae of the pypsim module angreatly simplify the routine tasks that are usually performed while setting up andrunning simulations. The pypsimplus pakage was reated with the intention to �llthis gap. Note that the pypsimplus pakage is dependent on PCSIM. For a more17http://neuralensemble.org/tra/PyNN/

http://neuralensemble.org/trac/PyNN/


4.7. PCSIM add-ons implemented in Python 127omprehensive, simulator independent tool-set for neural simulations, we refer thereader to the NeuroTools pakage18. In the following paragraphs we will desribetwo main omponents of the pypsimplus pakage and give a demonstration of itsuse19.Reordings. In PCSIM the value of a parameter or output port is reorded duringa simulation by onneting it to a proper reording network element. The purposeof the Reordings lass is to provide simpler means to set up reorders and savingthe reorded data during a PCSIM simulation. For example it allows to reate apopulation of reorders that reord the ativity of a population of elements with eahreorder onneted to one of the elements (e.g. the spiking output of a populationof neurons). For exampler = Reordings(net)r.spikes = nrn_popul.reord( SpikeTimeReorder() )r.Vm = net.reord( my_nrn, ``Vm'', AnalogReorder() )r.weights = synapses.reord( AnalogReorder( samplingTime ), ``W'' )shedules the reording of all spikes in the population nrn_popul, the membranepotential Vm of a single neuron (my_nrn), and the weights of a group of plastisynapses. To save that data to an HDF5 �le20 one would use the ommandr.saveInOneH5File(f)At any time later on, the saved data an be loaded from the �le in a new Reordingsobjet.r = onstrutReordingsFromH5File(f)plot(r.Vm)The members and attributes of the newly reated Reordings objet r are numpyarrays or Python lists holding the reorded data. For example r.Vm and r.W willbe numpy arrays with the reorded values of the membrane potential of the neuronand with the evolution of the reorded synapti weights during the simulation,respetively. Note that if the user swithes to a distributed simulation the sameode, without any hanges, an be used.To summarize, the Reordings lass simpli�es the spei�ation, storage andretrieval of reorded data by
• providing automati detetion of the type of the reorded data based on thereorder lasses, and onversion of the reorded data to appropriate HDF518http://neuralensemble.org/tra/NeuroTools19There are other misellaneous utilities present within the pypsimplus pakage, as for exampletools for easier management of IPython parallel omputing luster instanes, routines for inspetionof the struture of an already reated networks in PCSIM and routines for proessing and analysisof spike train data.20http://www.hdfgroup.org/HDF5/

http://neuralensemble.org/trac/NeuroTools


128 Chapter 4. PCSIM: Simulation Environment for Neural Ciruitsdata strutures.
• implementing automati gathering and sorting of reorded data from all pro-essing nodes in a distributed simulation, and saving it in HDF5 in the sameformat as if the simulation was exeuted on a single node.These funtionalities are hidden behind a onvenient user interfae and are manip-ulated in the same manner in both single-node and distributed simulation modes.For the implementation of the Reordings lass, the mpi4py21 (Dalín et al., 2008)and pytables22 pakages were used.Experiment-Model Framework. Simulation, modeling and development envi-ronments in various �elds (e.g. eletroni iruit design, software engineering, signalproessing, mehanial engineering) usually inlude a library of already developedreusable omponents that are readily available to the modeler. In the area of ompu-tational neurosiene, there is a similar e�ort to provide resoures for easier reusabil-ity of models, e.g. online databases of already published models (Hines et al., 2004),or onstruts within the simulator that allow enapsulation of a simpler model asa well-de�ned omponent that an be used as a building blok at a higher-levelof abstration. As a �rst step towards a omponent-based modeling with PCSIM,we have set up a light-weight framework that ould leverage and enourage enap-sulation of some generi parts of a model as reusable omponents, whih an beexhanged among modelers.The basis of the framework is omposed of three lasses: Model, Experiment andParameters. The Model is a base lass whih the user inherits from when he wants todevelop a model omponent. Several model omponents an be ombined together toreate a new model omponent. The Experiment lass provides means to perform aontrolled simulation with an already developed ustom Model lass. It enapsulatesdi�erent failities regarding saving output data to �les, on�guration of models,saving the urrent version of the sripts, naming of di�erent runs of experiments et.The on�guration of the models is done with a Parameters lass holding the modelparameters in a hierarhial struture. For reating instanes of the Experiment andModel lasses remotely within the IPython parallel omputing framework23 (Pérezand Granger, 2007) there are RemoteExperiment and RemoteModel proxy lasses,whih an be used to manipulate remote experiment and model instanes in thesame way as if they were loal.pypsimplus in ation. We will demonstrate in the following paragraphs howpypsimplus, together with other general sienti� and omputational neurosienePython pakages, an be utilized to perform an analysis of the ativity of the Brianspiking network example from Se. 4.5. In partiular we will investigate what e�et21http://mpi4py.sipy.org22http://www.pytables.org/moin23http://ipython.sipy.org

http://mpi4py.scipy.org
http://www.pytables.org/moin
http://ipython.scipy.org


4.7. PCSIM add-ons implemented in Python 129a hange in the injeted input in the network will have on the ross-orrelogram ofits spike response.At the beginning we will set up the reording of the spiking output of all 4000neurons in the network. After reating a Reordings objet, we reate a populationof reorders to reord the spikes from the 4000 output ports of the BrianCiruitnetwork element.r = Reordings()r.spikes = reord_ports(net, pyir_id, range(4000),SpikeTimeReorder() )net.simulate(2.0)r.saveInOneH5File('results.h5')We have aomplished this by using the reord_ports funtion from thepypsimplus pakage, used to speify reording of a set of output ports. Afterthe simulation is performed, the reordings are saved in a HDF5 �le for subsequentretrieval.In another sript we setup the analysis of the output data and the plotting.After the reation of the Reordings objet by loading the reorded data from thesaved HDF5 �le, we plot the spiking ativity of the network for the �rst 0.4 seondsof the simulation with the plot_raster funtion in pypsimplus (see Fig. 4.6A).r = onstrutReordingsFromH5File('results.h5')figure(1)plot_raster(r.spikes, time_range = (0,0.4), fmt = ',')plot_raster uses the plotting routines from the matplotlib24 pakage (Hunter,2007) to realize the plotting.Additionally we will alulate and plot the ross-orrelogram of the spiking a-tivity, de�ned as the histogram of time di�erenes between the spike times from twodi�erent spike trains, alulated and summed over a set of randomly hosen pairsof neurons from the network. To ahieve this, we utilize the pypsimplus funtionavg_ross_orrelate_spikes.orr = avg_ross_orrelate_spikes(r.spikes, num_pairs = 2000,binsize = 1e-3, orr_range = (-200e-3,200e-3) )figure(2)bar(arange(-200e-3,201e-3, 1e-3), orr, width = 1e-3, olor = 'k')In our ase the ross-orrelogram is alulated from the spike times of 2000randomly hosen pairs of neurons from the network, for time lags within the range24http://matplotlib.soureforge.net



130 Chapter 4. PCSIM: Simulation Environment for Neural Ciruits

Figure 4.6: Plots from the output analysis example with the pypsimplus pakage. A)Spike response of the spiking network implemented in Se. 4.5, with input neurons emittingspikes generated from a homogeneous Poisson proess with a rate of 5 Hz, for the �rst 0.4seonds of the simulation. B) Cross-orrelogram of the spike response of the network modelfrom A). C) Spike response of the spiking network implemented in Se. 4.5, when the inputneurons emit spikes generated from a inhomogeneous Poisson proess with a rate hangingaording to a sinusoidal funtion (see text for details). D) Cross-orrelogram of the spikeresponse of the network model from C).
[−200ms, 200ms] and a bin size of 1ms. We then plot the ross-orrelogram valueswith the bar funtion from matplotlib (the plot is shown in Fig. 4.6B)25In the example in Se. 4.5, the input neurons were setup to generate a homoge-neous Poisson spike trains with 5 Hz rate. Now we will modify the input generationso that the input neurons will emit inhomogeneous Poisson spike trains, with a �ringrate r(t) = 5(1 + sin(2π10t)). First we reate a population of input neurons of typeSpikingInputNeuron that emit an expliitly given sequene of spike times.inpNrnPop = SimObjetPopulation(net, SpikingInputNeuron(), 1000)Then we iterate through all the input neurons and set the spike sequene of eahinput neuron aording to the previously de�ned inhomogeneous Poisson proess.25For larity reasons, we only give the main matplotlib plotting ommand in the example odebloks, and omit the additional formatting ommands used for Fig. 4.6.



4.7. PCSIM add-ons implemented in Python 131For the generation of the inhomogeneous Poisson spike time sequenes we invoke theinh_poisson_generator method of an instane of the StGen (stimulus generator)lass available in the NeuroTools Python pakage for omputational neurosiene.The method aepts three parameters, a sequene speifying the time momentswhere the rate hanges (parameter t), the sequene of the new �ring rate valuesat these time moments (parameter rate) and the duration of the spiking proess(parameter t_stop)26.time_steps = arange(0,2000,1); stgen = StGen()for i in range(inpNrnPop.size()):spikelist = stgen.inh_poisson_generator(rate = 5*(1 + sin(time_steps/1000.0*20*pi)),t = time_steps, t_stop = 2000.0)inpNrnPop.objet(i).setSpikes(spikelist.spike_times/1000)The spike raster and the ross-orrelogram obtained after rerunning the simula-tion with the newly de�ned input are shown in Fig. 4.6, panels C and D, respetively.Through this demo we have eluidated to the reader how a typial PCSIM sim-ulation run is performed in Python, and the bene�ts that ome from the utilizationof Python as a unifying sripting environment within whih PCSIM is used togetherwith its add-on pypsimplus and other sienti� and omputational neurosienePython pakages. Additionally to their side-by-side usage with PCSIM, the Pythonsienti� pakages are harnessed also in the bundling of ommon reipes and re-ourring usage patterns in the PCSIM extra add-on pakages, as in the ase ofpypsimplus. The olletion of Python sienti� pakages presently available overa broad enough range of funtionalities to enable, in almost all ases, handling allof the steps of a modeling e�ort in Python (e.g. stimulus preparation, responseanalysis and plotting as shown in the demo). The data ommuniation between thedi�erent pakages and PCSIM typially redues to passing Python sequenes (listsor numpy arrays) from one pakage to another.4.7.3 pylsmThe pylsm pakage is aimed to support the analysis of the omputational propertiesof ortial miroiruits within the liquid state mahine (LSM) approah (Maasset al. (2002)). In this approah multiple simulation trials are performed whereinput spike trains, drawn from a de�ned input distribution, are injeted in theortial iruit, and a readout whih reads the spiking ativity of the iruit istrained by a supervised learning algorithm to approximate some funtion of theseinputs.The framework ontains all the neessary mahinery for performing the simula-tions and the training of the readout27. In a typial task the user de�nes the neural26Time in neurotoools is spei�ed in milliseonds, hene the division by 1000 when we need toonvert the spike time sequene in seonds before inserting it in a PCSIM neuron.27It has similar features as the pakage desribed in (Natshläger et al., 2003), whih was imple-



132 Chapter 4. PCSIM: Simulation Environment for Neural Ciruitsiruit to be used as a liquid, hooses the desired input distribution, the input-outputmapping funtion, and the learning algorithm for the readout from the ones avail-able in the pakage, and then performs the LSM training and testing proedures.For example, the user an de�ne a distribution of inputs whih onsist of di�erenttime segments, and eah of these time segments ontains a jittered version of someprede�ned spike train template. In the available learning algorithms for the readouta least-square algorithm with non-negative onstraints is also inluded. It an beused to train a linear readout with the biologially more realisti onstraint that allthe weights originating from exitatory (inhibitory) neurons are positive (negative)(Haeusler and Maass, 2007).4.8 DisussionThe appliation programming interfae of PCSIM is an objet-oriented frameworkomposed of many lasses interating together to ahieve the desired operation.Within this framework we introdued several novel onepts like element and on-netor fatories, value generators and onnetion deision prediates. The user anustomize and extend this framework by deriving from the interfae lasses of theAPI to implement his own spei� network elements or network onstrution algo-rithms.The wrapping approah. There exist several possible approahes for implement-ing a Python interfae of a simulation software library implemented in C/C++. Anextension to the NCS software alled Brainlab (Drewes, 2005) uses generation of a�le from Python with delarative spei�ation of the model whih is then loaded inthe simulator. Another ommon method is to use interpreter-to-interpreter intera-tion with the onversion of data strutures between Python and C++ handled bymeans of the Python/C API, an approah adopted by NEURON (Hines et al., 2009)and NEST (Eppler et al., 2008). This method is appliable only if the simulator al-ready has an interpreting interfae. For the reation of PyMoose (Ray and Bhalla,2008), the Python interfae of MOOSE (http://moose.soureforge.net/), thedevelopers applied the interfae generator tool SWIG28 (Beazley, 2003). Certainly,one an also implement a Python interfae by using solely the Python/C API.Sine PCSIM's interfae was to be newly developed, only the later two optionswere appliable. We opted for the interfae generator tool approah ombined withautomati wrapper ode generation, sine from the available options it seemed to usthe fastest way, in terms of the amount of development e�ort required, to ahievethe desired Python wrapping of the PCSIM objet-oriented framework. One ofour goals for the integration of PCSIM with Python was to simplify and supporta hybrid modeling approah by enabling the user to implement extensions of thePCSIM objet-oriented framework in Python and/or C++, while not having tomented in Matlab and was part of the CSIM pakage.28http://www.swig.org

http://moose.sourceforge.net/
http://www.swig.org


4.8. Disussion 133bother with details regarding the interoperability between these two programminglanguages.The exellent support of Boost.Python for advaned C++ onepts and appro-priate mapping of orresponding idioms between the two languages allowed us toexpose the omplete PCSIM API, urrently ≈ 300 lasses, to Python in a non-intrusive way. This means that the fat that the PCSIM API is to be exposed toPython does not impose any hanges at the C++ level nor does it put any on-straints on its design. Furthermore the ompilation of the libpsim library itselfdoes not depend on any Python library or wrapping ode.Bidiretional interfae and hybrid model de�nition. One of the features ofBoost.Python enabling the hybrid approah is the ability to derive Python lassesfrom the wrapped interfae lasses, and override the virtual funtions. Hene, suhustom Python lass methods an be alled from within C++ and thus allow anintegration of Python ode into the PCSIM C++ ode. A similar bidiretionalinterfae has been implemented between Python and NEURON (Hines et al., 2009),where Python an issue ommands towards NEURON, but also Python ode an bealled and exeuted from within NEURON in an ative Ho session 29. In PCSIMthe two-way interation between Python and C++ enables user ustomizations tobe oded in pure Python, and then plugged into the PCSIM C++ framework. Thisbrings additional �exibility and freedom to the user, meaning that he an �rst do fastimplementations in Python, e.g. extensions to the network onstrution interfae(Se. 4.4), in the prototyping phase, and afterwards the implementation an beported to C++ to gain maximum performane.The ability to de�ne PCSIM network elements in Python opens a possibilityfor a seamless Python-C++ integration also during the simulation, not only in thenetwork onstrution stage. The example desribed in Se. 4.5 shows that networkelements an be implemented in Python, by using vetorized tehniques employingthe highly e�ient numerial Python pakage numpy (whih is implemented in C).This adds �exibility, sine the equations desribing the element an be hangedquikly without any neessary ompilation while not sari�ing performane, sineby using numpy vetors, the integration algorithm is broken down in elementaryvetor operations thus avoiding any loops within Python that ould be detrimentalfor the performane.This approah seems also to be advantageous when one wants to implementnetwork elements that have some abstrat proessing logi, e.g. signal proessing�lters, mahine learning algorithms or similar. In this ase one an utilize a large setof available C++ libraries that have Python bindings, for an e�ient implementa-tion, and handle in Python the transfer of data from the input ports of the networkelement to the input methods of the library, and from the output of the library tothe output ports of the network element.The possibility to implement PCSIM network elements in pure Python o�ers29Ho is the native NEURON interpreting language.



134 Chapter 4. PCSIM: Simulation Environment for Neural Ciruitsa onvenient way to ahieve run-time interoperability between PCSIM and otherneural network simulators (Cannon et al., 2007), provided that the simulator has aPython interfae, allows ontrol of the simulation proess at individual time steps,and has the possibility to write input and read output data during the simula-tion at eah time step. As shown in the example in Se.4.5, we have suessfullyimplemented interoperability with the Brian simulator, whih possesses the afore-mentioned apabilities. One interesting further appliation of this interoperabilityould be a distributed simulation of a large neural network where the sub-networkson eah node are implemented with the Brian simulator, and the parallel ommuni-ation is handled by PCSIM's ommuniation system. Another possible approah ofusing Python as a glue language to ahieve simulator interoperability is to setup aPython sript as a top-level oordinator of a step-by-step simultaneous exeution oftwo simulators, where the neessary data transfer between the simulators is realizedthrough intermediate Python data strutures (Ray and Bhalla, 2008).High-level wrapping spei�ation and extensibility. Sine the interfae hasa �ne granular struture, omposed of many deoupled lasses (≈ 300) this impliesthat there are many lasses to be wrapped and exposed to Python. It would simplybe impossible to manually manage all the neessary Boost.Python wrapper ode.Furthermore, the possibility of adding extensions to the interfae puts additionalonstraints to the wrapping approah to be robust enough to work for the exten-sion lasses too, without any signi�ant intervention from the user. Nevertheless,by exploiting the powerful interfae generator tool Py++ the wrapping of suh alarge number of lasses is rendered feasible.30 We were able to speify high-levelgeneri rules within Py++ for the de�nition of the wrapping of all the lasses inthe PCSIM API and their sensible extensions. To be preise, the Python programthat spei�es the rules for the Python interfae generation for ≈ 300 lasses is about400 lines of Python ode. As these rules apply for the extensions too, the user aneasily extend the PCSIM simulator with its own ustom C++ lasses and ompilethem in a separate Python extension pakage, whih an be used together with themain pypsim pakage (the tool support for this is inluded in PCSIM). This wasmade possible by the Boost.Python and Py++ support for ross-module inheritanerelationships and omponent-based development (see Se. 4.6).To summarize, by the easy extensibility of its interfae both in Python andC++, PCSIM enables the modelers to think hybrid when developing their models(Abrahams and Grosse-Kunstleve, 2003).Python as a sripting environment. Providing a Python interfae to a neuralsimulator inreases its versatility and onsequently the produtivity of the model-ers in many ways. The objet oriented design of the language, its expressive andlean syntax, allows the modeler to fous on the high-level logi of the model in-30The only drawbak we enounter is the rather long ompile time when reompiling the wholePython interfae. This is due to the fat that Boost.Python heavily uses C++ templates.



4.9. Aknowledgments 135stead of struggling with the intriaies and the nuts and bolts of the programminglanguage. Furthermore, there is a growing number of general sienti� and spe-i� omputational neurosiene software tools available as Python pakages, fornumerial alulations, sienti� funtions, plotting, saving data to �les, parallelomputing et. We have used several sienti� Python pakages to enhane PCSIMwith useful utilities on top of its basi interfae. As we have illustrated through asimple example in Se. 4.7, in ombination with suh Python pakages PCSIM anbe used as the main omponent of a Python-based neural simulation environmentwhere all steps within a neural model development life-yle, from the spei�ationof the model and performing the simulations, to storage of simulation output data,data analysis and visualization an be performed. Overall, the integration of PCSIMwith Python added additional valuable failities to the user, turning PCSIM into afull-�edged neural simulation environment.PCSIM Resoures. Many resoures for PCSIM an be found at its webpage http://www.igi.tugraz.at/psim. The web page ontains a user man-ual, examples, installation instrutions, omplete lass referene doumentationand the omplete material for the tutorial that was given at the FIAS The-oretial Neurosiene and Complex Systems summer shool held in Frankfurt,Germany in August, 2008. The users an disuss topis and pose questionsonerning usage and installation of PCSIM on the psim-users mailing list onSoureforge R©(http://www.soureforge.net/projets/psim) where the PCSIMdevelopment projet is hosted. In the future, the user manual will ontinuouslyundergo extensions and revisions to better organize the ontent and to inlude ad-ditional topis and more elaborate information about the PCSIM onepts and on-struts. Additional examples overing various PCSIM features will also be madeavailable on the web site.4.9 AknowledgmentsThis hapter is based on the journal artile PCSIM: A Parallel Simulation Environ-ment for Neural Ciruits Fully Integrated with Python by myself (DP), ThomasNatshläger (TN) and Klaus Shuh (KS) (Frontiers in Neuroinformatis 3:11,2009). The PCSIM neural simulator desribed in the artile was developed byDP and TN, with ontributions from KS. TN supervised the software developmentprojet. DP implemented and performed the omputer simulation tests reported inthe artile. The artile was written by DP and TN. KS wrote the setion that de-sribes the PYLSM pakage and gave useful omments for improving the manusript.

http://www.igi.tugraz.at/pcsim
http://www.sourceforge.net/projects/pcsim




Appendix AList of Publiations
1. R. Brette, M. Rudolph ,T. Carnevale,M. Hines,D. Beeman,J.M. Bower, M.Diesmann, A. Morrison, P.H. Goodman, F.C. Harris Jr.,M. Zirpe , T.Natshläger, D. Peevski, B. Ermentrout , M. Djurfeldt, A. Lansner, O.Rohel, T. Vieville, E. Muller, A.P. Davison, S. El Boustani, and A. Destexhe.Simulation of networks of spiking neurons: a review of tools and strategies,Journal of Computational Neurosiene 23(3):349-398, 2007.2. R. Legenstein1, D. Peevski1, and W. Maass Theoretial analysis of learningwith reward-modulated spike-timing-dependent plastiity, In Pro. of NIPS2007, Advanes in Neural Information Proessing Systems, volume 20. MITPress, 2008.3. Legenstein R., Peevski D. and Maass W. A Learning Theory for Reward-Modulated Spike-Timing-Dependent Plastiity with Appliation to Biofeedbak,PLoS Computational Biology 4(10): e1000180, 2008.4. A.P. Davison , D. Brüderle, J. Kremkow , E. Muller , Peevski D., Perrinet,L. and P. Yger, PyNN: a ommon interfae for neuronal network simulators,Frontiers in Neuroinformatis. Conferene Abstrat: Neuroinformatis 2008.5. A.P. Davison, D. Brüderle, J. Eppler, J. Kremkow, E. Muller, D. Peevski,L. Perrinet and P. Yger, PyNN: a ommon interfae for neuronal networksimulators, Frontiers in Neuroinformatis 2:11, 2008.6. D. Peevski, T. Natshläger and K. Shuh PCSIM: A Parallel SimulationEnvironment for Neural Ciruits Fully Integrated with Python, Frontiers inNeuroinformatis 3:11, 2009.7. E. Muller, A. P. Davison, T. Brizzi, D. Bruederle, M. J. Eppler, J. Kremkow,D. Peevski, L. Perrinet, M. Shmuker and P. Yger (2009) NeuralEnsem-ble.Org: Unifying neural simulators in Python to ease the model omplexitybottlenek, Frontiers in Autonomi Neurosiene. Conferene Abstrat: Neu-roinformatis 2009.8. D. Peevski, L. Büsing, W. Maass. Probabilisti Inferene in General GraphialModels through Sampling in Stohasti Networks of Spiking Neurons, submit-ted for publiation, 2011.1These authors ontributed equally to the paper



138 Appendix A. List of PubliationsA.1 Comments and Contributions to PubliationsThe �rst publiation Simulation of networks of spiking neurons: a review of tools andstrategies is a review publiation whih overviews di�erent simulation environmentsfor networks of spiking neurons. In this publiation I prepared and performed thebenhmark simulations for the simulators CSIM and its suessor PCSIM.The publiation Theoretial analysis of learning with reward-modulated spike-timing-dependent plastiity was written by Robert Legenstein (RK), myself (DP)and my supervisor Wolfgang Maass (WM). RK provided the theoretial analysis,RL, DP and WM onieved the experiments and DP prepared and performed thesimulations for the experiments and analysed the simulation results. RL, DP andWM wrote the paper. The paper was seleted for a spotlight poster presentation atthe 21th Annual Conferene on Neural Information Proessing Systems (NIPS) 2007,Vanouver, Canada. The results from this paper were extended and published ina journal artile A Learning Theory for Reward-Modulated Spike-Timing-DependentPlastiity with Appliation to Biofeedbak by the same authors, published in PLOSComputational Biology. Apart from ontaining in a more elaborate form the resultsfrom the onferene publiation, the journal publiation also inludes additionaltheoretial analysis and additional results from elaborate simulation experiments.In this artile RL ontributed the theoretial analysis, RL, DP and WM onievedthe experiments and DP onduted the simulation experiments and analysed thesimulation results. RL, DP and WM wrote the paper. The journal artile providesthe basis for Chapter 3 of this thesis.The journal publiation PyNN: a ommon interfae for neuronal network sim-ulators published in Frontiers in Neuroinformatis desribes the software pakagePyNN, a simulator-independent Python-based interfae for spei�ation and simula-tion of models omposed of networks of spiking neurons. All those who ontributedode to PyNN were added as o-authors of this artile. I ontributed to PyNN themodule that implements the support for the PCSIM simulator.The journal artile PCSIM: A Parallel Simulation Environment for Neural Cir-uits Fully Integrated with Python published in Frontiers in Neuroinformatis givesan overview of the funtionalities of the PCSIM simulator and its integration withthe Python programming language. The PCSIM simulator was developed by myself(DP) and Thomas Natshläger (TN), with ontributions from Klaus Shuh (KS).DP implemented and performed the omputer simulation tests reported in the ar-tile. The paper was written by DP and TN. KS wrote the setion that desribesthe PYLSM pakage. This artile provides the basis for Chapter 4 of this thesis.The artile Probabilisti Inferene in General Graphial Models through Samplingin Stohasti Networks of Spiking Neurons is a joint work together with Lars Büsing(LB) and Wolfgang Maass (WM). It was submitted for publiation in 2011 andis under review. The experiments were onieved and designed by myself (DP)and WM. DP onduted the experiments and analysed the simulation results. Thepaper builds on the theory of neural sampling developed by LB and reported in(Büsing et al., 2011). DP and WM provided the additional theoretial derivations



A.1. Comments and Contributions to Publiations 139and analysis in the paper. DP and WM wrote the paper. LB provided valuableomments that helped to improve the paper. This artile provides the basis forChapter 2 of this thesis.





BibliographyAbbott, L. F. and Nelson, S. B. (2000). Synapti plastiity: taming the beast.Nature Neurosiene, 3:1178�1183. 56, 58Abeles, M., Bergman, H., Gat, I., Meilijson, I., Seidemann, E., Tishby, N., andVaadia, E. (1995). Cortial ativity �ips among quasi-stationary states. ProNatl Aad Si U S A, 92(19):8616�8620. 30, 37Abrahams, D. and Grosse-Kunstleve, R. W. (2003). Building hybrid systems withBoost.Python. C/C++ Users Journal, 21(7):29�36. 109, 113, 134Akley, D. H., Hinton, G. E., and Sejnowski, T. J. (1985). A learning algorithm forboltzmann mahines. Cognitive Siene, 9:147�169. 9, 16, 34Anderson, J., Lampl, I., Reihova, I., Carandini, M., and Ferster, D. (2000). Stim-ulus dependene of two-state �utuations of membrane potential in at visualortex. Nature Neurosiene, 3(6):617�621. 93Andrieu, C., Freitas, N. D., Douet, A., and Jordan, M. I. (2003). An introdutionto MCMC for mahine learning. Mahine Learning, 50:5�43. 9Bailey, C. H., Giustetto, M., Huang, Y.-Y., Hawkins, R. D., and Kandel, E. R.(2000). Is heterosynapti modulation essential for stabilizing Hebbian plastiityand memory? Nature Reviews Neurosiene, 1:11�20. 56Bao, S., Chan, V. T., and Merzenih, M. M. (2001). Cortial remodelling induedby ativity of ventral tegmental dopamine neurons. Nature, 412(6842):79�83. 56Baras, D. and Meir, R. (2007). Reinforement learning, spike-time-dependent plas-tiity, and the bm rule. Neural Computation, 19(8):2245�2279. 56, 103Baxter, J. and Bartlett, P. L. (1999). Diret gradient-based reinforement learning:I. gradient estimation algorithms. Tehnial report, Researh Shool of Informa-tion Sienes and Engineering, Australian National University. 56, 103Beazley, D. (2003). Automated sienti� software sripting with SWIG. FutureGeneration Computer Systems, 19(5):599 � 609. 132Bek, J. M. and Pouget, A. (2007). Exat inferenes in a neural implementation ofa hidden Markov model. Neural Computation, 19(5):1344�1361. 34Berkes, P., Orban, G., Lengyel, M., and Fiser, J. (2011). Spontaneous ortial a-tivity reveals hallmarks of an optimal internal model of the environment. Siene,331:83�87. 36



142 BibliographyBi, G. and Poo, M. (1998). Synapti modi�ations in ultured hippoampal neurons:dependene on spike timing, synapti strength, and postsynapti ell type. JNeurosiene, 18(24):10464�10472. 59Bishop, C. M. (2007). Pattern Reognition and Mahine Learning (InformationSiene and Statistis). Springer, 1st ed. 2006. orr. 2nd printing edition. 8Bobrowski, O., Meir, R., and Eldar, Y. C. (2009). Bayesian �ltering in spiking neuralnetworks: Noise, adaptation, and multisensory integration. Neural Computation,21(5):1277�1320. 34Borg-Graham, L. J., Monier, C., and Frégna, Y. (1998). Visual input evokes tran-sient and strong shunting inhibition in visual ortial neurons. Nature, 393:369�373. 93Bower, J. M. and Beeman, D. (1998). The book of GENESIS (2nd ed.): exploringrealisti neural models with the GEneral NEural SImulation System. Springer-Verlag New York, In., New York, NY, USA. 108Brette, R., Rudolph, M., Carnevale, T., Hines, M., Beeman, D., Bower, J. M., Dies-mann, M., Morrison, A., Goodman, P. H., Jr., F. C. H., Zirpe, M., Natshläger,T., Peevski, D., Ermentrout, B., Djurfeldt, M., Lansner, A., Rohel, O., Vieville,T., Muller, E., Davison, A. P., Boustani, S. E., and Destexhe, A. (2007). Simula-tion of networks of spiking neurons: a review of tools and strategies. Journal ofComputational Neurosiene, 23(3):349�398. 108, 111, 122Brunel, N. (2000). Dynamis of networks of randomly onneted exitatory andinhibitory spiking neurons. Journal of Physiology-Paris, 94:445�463. 58, 100Büsing, L., Bill, J., Nessler, B., and Maass, W. (2011). Neural dynamis as sampling:A model for stohasti omputation in reurrent networks of spiking neurons.submitted for publiation. 4, 5, 10, 11, 12, 13, 15, 16, 17, 19, 32, 36, 38, 39, 42,43, 50, 53, 138Buzas, P., Kovas, K., Feresko, A. S., Budd, J. M. L., Eysel, U. T., and Kisvarday,Z. F. (2006). Model-based analysis of exitatory lateral onnetions in the visualortex. J Comp Neurol, 499(6):861�81. 115Cannon, R., Gewaltig, M.-O., Gleeson, P., Bhalla, U., Cornelis, H., Hines, M.,Howell, F., Muller, E., Stiles, J., Wils, S., and Shutter, E. D. (2007). Interoper-ability of neurosiene modeling software: Current status and future diretions.Neuroinformatis, 5(2):127�138. 134Carnevale, N. T. and Hines, M. L. (2006). The NEURON Book. Cambridge Uni-versity Press, New York, NY, USA. 108Churhland, P. S., Koh, C., and Sejnowski, T. J. (1993). What is omputationalneurosiene?, pages 46�55. MIT Press, Cambridge, MA, USA. 1



Bibliography 143Dalín, L., Paz, R., Storti, M., and D'Elía, J. (2008). Mpi for python: Perfor-mane improvements and mpi-2 extensions. Journal of Parallel and DistributedComputing, 68(5):655�662. 128Davison, A. P., Brüderle, D., Eppler, J. M., Kremkow, J., Muller, E., Peevski, D.,Perrinet, L., and Yger, P. (2008). PyNN: a ommon interfae for neuronal networksimulators. Front. Neuroinform., 2(11). 115, 126Dean, A. F. (1981). The variability of disharge of simple ells in the at striateortex. Experimental Brain Researh, 44:437�440. 36Deneve, S. (2008). Bayesian spiking neurons I: Inferene. Neural Computation,20(1):91�117. 34, 35Deneve, S., Latham, P. E., and Pouget, A. (2001). E�ient omputation and ueintegration with noisy population odes. Nat Neurosi, 4(8):826�831. 34Denison, S., Bonawitz, E., Gopnik, A., and Gri�ths, T. (2010). Preshoolers samplefrom probability distributions. In Pro. of the 32nd Annual Conferene of theCognitive Siene Soiety. 36Destexhe, A. and Marder, E. (2004). Plastiity in single neuron and iruit ompu-tations. Nature, 431:789�795. 77, 101Destexhe, A., Rudolph, M., Fellous, J. M., and Sejnowski, T. J. (2001). Flutu-ating synapti ondutanes rereate in vivo-like ativity in neoortial neurons.Neurosiene, 107(1):13�24. 65, 78, 92, 93, 95Douglas, R. J. and Martin, K. A. (2004a). Neuronal iruits of the neoortex. AnnuRev Neurosi, 27:419�451. 2Douglas, R. J. and Martin, K. A. (2004b). Neuronal iruits of the neoortex.Annual Review of Neurosiene, 27(1):419�451. 34Doya, K., Ishii, S., Pouget, A., and Rao, R. P. N. (2007). Bayesian Brain: Proba-bilisti Approahes to Neural Coding. MIT-Press. 8Drewes, R. (2005). Modeling the brain with NCS and brainlab. Linux Journal,2005(134):2. 132Eppler, J. M., Helias, M., Muller, E., Diesmann, M., and Gewaltig, M.-O. (2008).Pynest: a onvenient interfae to the nest simulator. Front. Neuroinform, 2(12).132Farries, M. A. and Fairhall, A. L. (2007). Reinforement learning with modulatedspike timing-dependent synapti plastiity. Journal of Neurophysiology, 98:3648�3665. 75, 100, 104Fetz, E. E. (1969). Operant onditioning of ortial unit ativity. Siene,163(870):955�958. 57



144 BibliographyFetz, E. E. (2007). Volitional ontrol of neural ativity: impliations for brain-omputer interfaes. J Physiol, 579(3):571�579. 57, 65, 68Fetz, E. E. and Baker, M. A. (1973). Operantly onditioned patterns of preentralunit ativity and orrelated responses in adjaent ells and ontralateral musles.J Neurophysiol, 36(2):179�204. 5, 57, 62, 63, 64, 65, 67, 68, 99, 103Fetz, E. E. and Finohio, D. V. (1975). Correlations between ativity of motorortex ells and arm musels during operantly onditioned response patterns.Exp. Brain Researh, 23(3):217�240. 57Fiete, I. R. and Seung, H. S. (2006). Gradient learning in spiking neural networks bydynami perturbation of ondutanes. Physial Review Letters, 97(4):048104�1to 048104�4. 103Fiser, J., Berkes, P., Orbán, G., and Lengyel, M. (2010). Statistially optimal per-eption and learning: from behavior to neural representations. Trends in CognitiveSienes, 14(3):119 � 130. 8, 36Florian, R. V. (2007). Reinforement learning through modulation of spike-timing-dependent synapti plastiity. Neural Computation, 6:1468�1502. 56, 103Gershman, S. J., Vul., E., and Tenenbaum, J. (2009). Pereptual multistability asMarkov hain Monte Carlo inferene. Advanes in Neural Information ProessingSystems, 22:611�619. 36Gerstner, W. and Kistler, W. M. (2002). Spiking Neuron Models. Cambridge Uni-versity Press, Cambridge. 58, 59, 60, 61, 82Gewaltig, M.-O. and Diesmann, M. (2007). NEST (NEural Simulation Tool). Shol-arpedia, 2(4):1430. 108Goodman, D. and Brette, R. (2008). Brian: a simulator for spiking neural networksin python. Front. Neuroinform., 2(5). 109, 122Gri�ths, T. L. and Tenenbaum, J. B. (2006). Optimal Preditions in EverydayCognition. Psyhologial Siene, 17(9):767�773. 36Grimmett, G. R. and Stirzaker, D. R. (2001). Probability and Random Proesses.Oxford University Press, 3rd edition. 38Gu, Q. (2002). Neuromodulatory transmitter systems in the ortex and their rolein ortial plastiity. Neurosiene, 111(4):815�835. 56Gupta, A., Wang, Y., and Markram, H. (2000). Organizing priniples for a diversityof GABAergi interneurons and synapses in the neoortex. Siene, 287:273�278.92Gütig, R. and Sompolinsky, H. (2006). The tempotron: a neuron that learns spiketiming-based deisions. Nature Neurosiene, 9(3):420�428. 103, 104



Bibliography 145Haeusler, S. and Maass, W. (2007). A statistial analysis of information-proessing properties of lamina-spei� ortial miroiruit models. Cereb Cor-tex, 17(1):149�62. 132Hammarlund, P. and Ekeberg, O. (1998). Large neural network simulations onmultiple hardware platforms. Journal of omputational neurosiene, 5(4):443�459. 108Häusler, S. and Maass, W. (2007). A statistial analysis of information proess-ing properties of lamina-spei� ortial miroiruit models. Cerebral Cortex,17(1):149�162. 101, 102Hines, M., Davison, A. P., and Muller, E. (2009). Neuron and python. Front.Neuroinform, 3(1). 132, 133Hines, M. L. and Carnevale, N. T. (1997). The neuron simulation environment.Neural Computation, 9(6):1179�1209. 108Hines, M. L., Morse, T., Migliore, M., Carnevale, N. T., and Shepherd, G. M.(2004). ModelDB: A database to support omputational neurosiene. Journalof Computational Neurosiene, 17(1):7�11. 128Hinton, G. E. and Brown, A. D. (2000). Spiking Boltzmann mahines. In In Ad-vanes in Neural Information Proessing Systems 12, Cambridge, MA. MIT Press.35Hinton, G. E. and Sejnowski, T. J. (1986). Learning and relearning in Boltzmannmahines. In Rumelhart, D. E. and MClelland, J. L., editors, Parallel DistributedProessing: Explorations in the Mirostruture of Cognition, volume 1 of LetureNotes in Computer Siene. MIT Press, Cambridge, MA. 34, 35Hirsh, J. A., Alonso, J. M., Reid, R. C., and Martinez, L. M. (1998). Synaptiintegration in striate ortial simple ells. J. Neurosi., 18(22):9517�9528. 93Hop�eld, J. J. and Brody, C. D. (2001). What is a moment? Transient synhronyas a olletive mehanism for spatio-temporal integration. Pro. Nat. Aad. Si.USA, 98(3):1282�1287. 101Hoyer, P. O. and Hyvärinen, A. (2003). Interpreting neural response variability asMonte Carlo sampling of the posterior. In S. Beker, S. T. and Obermayer, K.,editors, Advanes in Neural Information Proessing Systems 15, pages 277�284.MIT Press, Cambridge, MA. 36Hunter, J. D. (2007). Matplotlib: A 2d graphis environment. Computing in Sieneand Engineering, 9(3):90�95. 129Ide, J. and Cozman, F. (2002). Random generation of Bayesian networks. In Bitten-ourt, G. and Ramalho, G., editors, Advanes in Arti�ial Intelligene, volume



146 Bibliography2507 of Leture Notes in Computer Siene, pages 366�376. Springer Berlin /Heidelberg. 29, 52Izhikevih, E. (2004). Whih model to use for ortial spiking neurons? NeuralNetworks, IEEE Transations on, 15(5):1063�1070. 115, 117Izhikevih, E. M. (2007). Solving the distal reward problem through linkage of STDPand dopamine signaling. Cerebral Cortex, 17:2443�2452. 56, 75, 79, 100, 103, 104Jaob, V., Brasier, D., Erhova, I., Feldman, D., and Shulz, D. E. (2007). Spiketiming-dependent synapti depression in the in vivo barrel ortex of the rat. JNeurosiene, 27(6):1271�84. 56Jolivet, R., Rauh, A., Lüsher, H.-R., and Gerstner, W. (2006). Prediting spiketiming of neoortial pyramidal neurons by simple threshold models. Journal ofComputational Neurosiene, 21:35�49. 11Kempter, R., Gerstner, W., and van Hemmen, J. L. (1999). Hebbian learning andspiking neurons. Phys. Rev. E, 59(4):4498�4514. 82Kempter, R., Gerstner, W., and van Hemmen, J. L. (2001). Intrinsi stabilization ofoutput rates by spike-based hebbian learning. Neural Computation, 13:2709�2741.63Kenet, T., Bibithkov, D., Tsodyks, M., Grinvald, A., and Arieli, A. (2003).Spontaneously emerging ortial representations of visual attributes. Nature,425(6961):954�956. 36Kersten, D. and Yuille, A. (2003). Bayesian models of objet pereption. CurrentOpinion in Neurobiology, 13(2):150 � 158. 11Knill, D. C. and Kersten, D. (1991). Apparent surfae urvature a�ets lightnesspereption. Nature, 351:228�230. 12, 14, 33Koller, D. and Friedman, N. (2009). Probabilisti Graphial Models: Priniples andTehniques (Adaptive Computation and Mahine Learning). MIT Press. 8, 9, 12,32Koulakov, A. A., Hromadka, T., and Zador, A. M. (2009). Correlated onnetivityand the distribution of �ring rates in the neoortex. The Journal of Neurosiene,29(12):3685�3694. 37Lauritzen, S. L. and Spiegelhalter, D. J. (1988). Loal omputations with probabil-ities on graphial strutures and their appliation to expert systems. Journal ofthe Royal Statistial Soiety, Series B, 50(2):157�224. 25, 26, 49Legenstein, R. and Maass, W. (2011). Branh-spei� plastiity enables self-organization of nonlinear omputation in single neurons. The Journal of Neu-rosiene. in press. 20, 34, 39, 45



Bibliography 147Levin, D. A., Peres, Y., and Wilmer, E. L. (2008). Markov Chains and MixingTimes. Amerian Mathematial Soiety. 32Li, C. T., Poo, M., and Dan, Y. (2009). Burst spiking of a single ortial neuronmodi�es global brain state. Siene, 324:643�646. 37Litvak, S. and Ullman, S. (2009). Cortial iruitry implementing graphial models.Neural Computation, 21(11):3010�3056. 34Losonzy, A., Makara, J. K., and Magee, J. C. (2008). Compartmentalized dendritiplastiity and input feature storage in neurons. Nature, 452:436�441. 20, 39, 40,45, 46Lyon, R. (1982). A omputational model of �ltering, detetion, and ompression inthe ohlea. In Proeedings of IEEE International Conferene on ICASSP, pages1282�1285. 98, 105Ma, W. J., Bek, J. M., Latham, P. E., and Pouget, A. (2006). Bayesian inferenewith probabilisti population odes. Nat Neurosi, 9(11):1432�1438. 34Ma, W. J., Bek, J. M., and Pouget, A. (2008). Spiking networks for Bayesianinferene and hoie. Current Opinion in Neurobiology, 18(2):217 � 222. Cognitiveneurosiene. 34Maass, W., Joshi, P., and Sontag, E. D. (2007). Computational aspets of feedbakin neural iruits. PLoS Computational Biology, 3(1):e165, 1�20. 77, 101, 102Maass, W. and Markram, H. (2002). Synapses as dynami memory bu�ers. NeuralNetworks, 15:155�161. 92Maass, W., Natshlaeger, T., and Markram, H. (2002a). Real-time omputing with-out stable states: A new framework for neural omputation based on perturba-tions. Neural Computation, 14(11):2531�2560. 34Maass, W., Natshläger, T., and Markram, H. (2002b). Real-time omputing with-out stable states: A new framework for neural omputation based on perturba-tions. Neural Computation, 14(11):2531�2560. 77, 78, 101, 102Maass, W., Natshlager, T., and Markram, H. (2002). Real-time omputing with-out stable states: A new framework for neural omputation based on perturba-tions. Neural Comp., 14(11):2531�2560. 131Maass, W., Natshläger, T., and Markram, H. (2004). Fading memory and kernelproperties of generi ortial miroiruit models. Journal of Physiology � Paris,98(4�6):315�330. 77, 101Mainen, Z. and Sejnowski, T. (1995). Reliability of spike timing in neoortialneurons. Siene, 268:1503�1505. 76



148 BibliographyMansinghka, V. K., Kemp, C., Tenenbaum, J. B., and Gri�ths, T. L. (2006). Stru-tured priors for struture learning. In In Proeedings of the 22nd Conferene onUnertainty in Arti�ial Intelligene (UAI). AUAI Press. 26Markram, H., Wang, Y., and Tsodyks, M. (1998). Di�erential signaling via the sameaxon of neoortial pyramidal neurons. Pro. Nat. Aad. Si. USA, 95:5323�5328.91, 92Miller, P. and Katz, D. (2010). Stohasti transitions between neural states in tasteproessing and deision-making. J. of Neuros., 30(7):2559�2570. 30, 37Morrison, A., Aertsen, A., and Diesmann, M. (2007). Spike-timing-dependent plas-tiity in balaned random networks. Neural Computation, 19:1437�1467. 59, 66,94, 100Morrison, A., Mehring, C., Geisel, T., Aertsen, A., and Diesmann, M. (2005).Advaning the Boundaries of High-Connetivity Network Simulation with Dis-tributed Computing. Neural Comp., 17(8):1776�1801. 108, 110, 112Natshläger, T., Markram, H., and Maass, W. (2003). Computer models and analy-sis tools for neural miroiruits. In Kötter, R., editor, Neurosiene Databases. APratial Guide, hapter 9, pages 123�138. Kluwer Aademi Publishers (Boston).108, 131Neal, R. M. (1993). Probabilisti inferene using markov hain monte arlo methods.Tehnial report, University of Toronto Department of Computer Siene. 9Nessler, B., Pfei�er, M., and Maass, W. (2010). STDP enables spiking neurons todetet hidden auses of their inputs. In Pro. of NIPS 2009: Advanes in NeuralInformation Proessing Systems, volume 22, pages 1357�1365. MIT Press. 23, 34Nikoli¢, D., Haeusler, S., Singer, W., and Maass, W. (2007). Temporal dynamisof information ontent arried by neurons in the primary visual ortex. In Pro.of NIPS 2006, Advanes in Neural Information Proessing Systems, volume 19,pages 1041�1048. MIT Press. 77Obermayer, K. and Blasdel, G. G. (1993). Geometry of orientation and oulardominane olumns in monkey striate ortex. J Neurosi, 13(10):4114�29. 115Oliphant, T. E. (2007). Python for sienti� omputing. Computing in Siene &Engineering, 9(3):10�20. 109, 121Pearl, J. (1988). Probabilisti Reasoning in Intelligent Systems. Morgan-Kaufmann,San Franiso, CA. 8Peevski, D., Natshläger, T., and Shuh, K. (2009). PCSIM: a parallel simula-tion environment for neural iruits fully integrated with Python. Frontiers inNeuroinformatis, 3(0). 52



Bibliography 149Pérez, F. and Granger, B. E. (2007). IPython: A system for interative sienti�omputing. Computing in Siene and Engineering, 9(3):21�29. 128P�ster, J.-P., Toyoizumi, T., Barber, D., and Gerstner, W. (2006). Optimal spike-timing-dependent plastiity for preise ation potential �ring in supervised learn-ing. Neural Computation, 18(6):1318�1348. 56, 103Plesser, H., Eppler, J., Morrison, A., Diesmann, M., and Gewaltig, M.-O. (2007).E�ient parallel simulation of large-sale neuronal networks on lusters of multi-proessor omputers. Leture Notes in Computer Siene, 4641:672�681. 108Raihle, M. E. (2010). Two views of brain funtion. Trends in Cognitive Sienes,14(4):180�190. 36Rao, R. P. and Ballard, D. H. (1999). Preditive oding in the visual ortex: a fun-tional interpretation of some extra-lassial reeptive-�eld e�ets. Nat Neurosi,2(1):79�87. 34Rao, R. P. N. (2004). Bayesian omputation in reurrent neural iruits. NeuralComputation, 16(1):1�38. 34Rao, R. P. N. (2007). Neural models of Bayesian belief propagation. In Doya, K.,Ishii, S., Pouget, A., and Rao, R. P. N., editors, Bayesian Brain., pages 239�267.MIT-Press, Cambridge, MA. 34, 35Rao, R. P. N., Olshausen, B. A., and Lewiki, M. S. (2002). Probabilisti Models ofthe Brain. MIT Press. 8Ray, S. and Bhalla, U. S. (2008). PyMOOSE: Interoperable sripting in Python forMOOSE. Front. Neuroinform., 2(6). 132, 134Reynolds, J. N., Hyland, B. I., and Wikens, J. R. (2001). A ellular mehanism ofreward-related learning. Nature, 413:67�70. 56Reynolds, J. N. and Wikens, J. R. (2002). Dopamine-dependent plastiity of or-tiostriatal synapses. Neural Networks, 15(4-6):507�521. 56Shrauwen, B. and Campenhout, J. V. (2003). BSA, a fast and aurate spike trainenoding sheme. In Proeedings of the International Joint Conferene on NeuralNetworks, volume 4, pages 2825�2830. 98Shultz, W. (2007). Behavioral dopamine signals. Trends in Neurosiene, 30:203�210. 56Sejnowski, T. J. (1987). Higher-order Boltzmann mahines. In AIP ConfereneProeedings 151 on Neural Networks for Computing, pages 398�403, Woodbury,NY, USA. Amerian Institute of Physis In. 35



150 BibliographyShi, L. and Gri�ths, T. (2009). Neural implementation of hierarhial Bayesianinferene by importane sampling. In Bengio, Y., Shuurmans, D., La�erty, J.,Williams, C. K. I., and Culotta, A., editors, Advanes in Neural InformationProessing Systems 22, pages 1669�1677. MIT Press, Cambridge, MA. 34Shulz, D. E., Ego-Stengel, V., and Ahissar, E. (2003). Aetylholine-dependentpotentiation of temporal frequeny representation in the barrel ortex does notdepend on response magnitude during onditioning. J Physiol Paris, 97(4�6):431�439. 56Shulz, D. E., Sosnik, R., Ego, V., Haidarliu, S., and Ahissar, E. (2000). A neuronalanalogue of state-dependent learning. Nature, 403(6769):549�553. 56Siegelmann, H. T. and Holzman, L. E. (2010). Neuronal integration of dynamisoures: Bayesian learning and Bayesian inferene. Chaos: An InterdisiplinaryJournal of Nonlinear Siene, 20(3):037112. 34, 35Silberberg, G., Bethge, M., Markram, H., Pawelzik, K., and Tsodyks, M. (2004).Dynamis of population rate odes in ensembles of neoortial neurons. J Neuro-physiology, 91(2):704�709. 76Song, S., Miller, K. D., and Abbott, L. F. (2000). Competitive hebbian learningthrough spike-timing dependent synapti plastiity. Nature Neurosiene, 3:919�926. 63Steimer, A., Maass, W., and Douglas, R. (2009). Belief propagation in networks ofspiking neurons. Neural Computation, 21(9):2502�2523. 34Stevens, C. F. and Zador, A. M. (1998). Input synhrony and the irregular �ring ofortial neurons. Nature Neurosiene, 1:210�217. 76Thiel, C. M., Friston, K. J., and Dolan, R. J. (2002). Cholinergi modulation ofexperiene-dependent plastiity in human auditory ortex. Neuron, 35(3):567�574. 56Tolhurst, D., Movshon, J., and Dean, A. (1983). The statistial reliability of signalsin single neurons in at and monkey visual ortex. Vision Researh, 23(8):775 �785. 36Toussaint, M. and Goerik, C. (2010). A Bayesian view on motor ontrol andplanning. In Sigaud, O. and Peters, J., editors, From motor to interation learningin robots. Studies in Computational Intelligene, pages 227�252. Springer. 8Verstraeten, D., Shrauwen, B., Stroobandt, D., and Campenhout, J. V. (2005).Isolated word reognition with the liquid state mahine: a ase study. InformationProessing Letters, 95(6):521�528. 98, 101von Melhner, L., Pallas, S. L., and Sur, M. (2000). Visual behaviour mediated byretinal projetion direted to the auditory pathway. Nature, 404:871�876. 2



Bibliography 151Vul, E. and Pashler, H. (2008). Measuring the rowd within: Probabilisti repre-sentations within individuals. Psyhologial Siene, 19(7):645�647. 36Williams, S. R. and Stuart, G. J. (2002). Dependene of EPSP e�ay on synapseloation in neoortial pyramidal neurons. Siene, 295(5561):1907�1910. 28, 33Williams, S. R. and Stuart, G. J. (2003). Voltage- and site-dependent ontrol of thesomati impat of dendriti ipsps. J Neurosi, 23(23):7358�7367. 33Yassin, L., Benedetti, B. L., Jouhanneau, J.-S., Wen, J. A., Poulet, J. F. A., andBarth, A. L. (2010). An embedded subnetwork of highly ative neurons in theneoortex. Neuron, 68:1043�1050. 37Yu, A. J. and Dayan, P. (2005). Inferene, attention, and deision in a Bayesianneural arhiteture. In Saul, L., Weiss, Y., and Bottou, L., editors, Advanes inNeural Information Proessing Systems 17, pages 1577�1584. MIT Press, Cam-bridge, MA. 34


	Introduction
	Probabilistic Inference in General Graphical Models through Sampling in Stochastic Networks of Spiking Neurons
	Introduction
	Results
	Second Order Boltzmann Distributions with Auxiliary Random Variables (Implementation 1)
	Using the Markov Blanket Expansion of the Log-odd Ratio 
	Implementation with Auxiliary Neurons (Implementation 2)
	Computer Simulation I: Comparison of two Methods for Emulating ``Explaining Away'' in Networks of Spiking Neurons
	Implementation with Dendritic Computation (Implementation 3)

	Using the Factorized Expansion of the Log-odd Ratio 
	Implementation with Auxiliary Neurons and Dendritic Branches (Implementation 4)
	Implementation with Dendritic Computation (Implementation 5)

	Probabilistic Inference through Neural Sampling in Larger and More Complex Bayesian Networks
	Computer Simulation II: ASIA Bayesian Network
	Computer Simulation III: Randomly Generated Bayesian Network


	Discussion
	Related Work
	Experimentally Testable Predictions of our Models
	Conclusion

	Methods
	Markov Chains
	Neuron Models
	Details to Second Order Boltzmann Distributions with Auxiliary Variables (Implementation 1)
	Details to Implementation 2
	Details to Implementation 3
	Details to the Implementation 4
	Details to the Implementation 5
	Details to Computer Simulations

	Acknowledgements

	A Learning Theory for Reward-Modulated Spike-Time-Dependent Plasticity with Application to Biofeedback
	Introduction
	Results
	Theoretical analysis of the resulting weight changes
	Application to models for biofeedback experiments
	Computer simulation 1: Model for biofeedback experiment

	Rewarding spike-times
	Computer simulation 2: Learning spike times
	Computer simulation 3: Testing the analytically derived conditions

	Pattern discrimination with reward-modulated STDP
	Computer simulation 4: Learning pattern classification
	Computer simulation 5: Training a readout neuron with reward-modulated STDP to recognize isolated spoken digits 


	Methods
	Linear Poisson Neuron Model
	Learning equations
	Derivations for the biofeedback experiment
	Analysis of spike-timing dependent rewards (derivation of the conditions (3.13)-(3.15)).
	Analysis of the pattern discrimination task (derivation of equation (3.17)).
	Common models and parameters of the computer simulations
	LIF neuron model
	Short-term dynamics of synapses
	Model of background synaptic activity
	Reward-modulated STDP
	Initial weights of trained neurons
	Software

	Details to individual computer simulations
	Cortical Microcircuits
	Readout neurons
	Details to computer simulation 1: Model for biofeedback experiment
	Details to computer simulation 2: Learning spike times
	Details to computer simulation 3: Testing the analytically derived conditions
	Details to computer simulation 4: Learning pattern classification
	Details to computer simulation 5: Training a readout neuron with reward-modulated STDP to recognize isolated spoken digits


	Discussion
	Related Work
	Conclusion

	Acknowledgments

	PCSIM: a Parallel Simulation Environment for Neural Circuits
	Introduction
	Overview
	Architecture
	Scalability and Domain of Applicability

	Python interface generation
	Network construction
	The example model
	The framework: object-oriented, modular and extensible
	Factories: creating network elements from models
	Neuron populations
	Projections: managing synaptic connections

	Custom network elements
	Extending PCSIM using C++
	PCSIM add-ons implemented in Python
	PyNN.pcsim
	pypcsimplus
	pylsm

	Discussion
	Acknowledgments

	List of Publications
	Comments and Contributions to Publications

	Bibliography

