
Graz University of Technology

Institute for Computer Graphics and Vision

Dissertation

Simultaneous Localization and Mapping

in Dynamic Environments

Katrin Sarah Santner
Graz, Austria, May 2012

Thesis supervisors

Prof. Dr. Horst Bischof

Prof. Dr. Konrad Schindler

Nothing endures but change.

Heraklit

iii

Abstract

The simultaneous localization and mapping (SLAM) problem of an autonomous mobile

robot aims at answering two key questions: “Where is the robot?” and “How does the

world around it look like?”. Solving the SLAM problem involves constructing a map of a

previously unknown environment while simultaneously localizing within this map us-

ing observations from different sensors perceiving the outside world. Generally, SLAM

is an essential prerequisite for autonomous mobile robots to accomplish higher level

tasks such as path planning, obstacle avoidance or grasping. Nowadays, digital cameras

are an interesting alternative to established sensor technologies as they are lightweight,

widely-used, cheap, small and battery-saving.

Today’s vision based solutions - called vSLAM - either assume a static environment

or simply ’forget’ old parts of the map to cope with map size constraints and scene

dynamics. Especially when performing large-scale perpetual localization and mapping,

one faces problems like memory consumption, computation time, scalability and ro-

bustness. Moreover, scenes containing repetitive and dynamic scene elements require

robust data association methods.

In this thesis we propose a visual SLAM method able to cope with scene dynamics in

large-scale environments by employing a novel map representation for sparse visual fea-

tures. A new 3D point descriptor called Histogram of Oriented Cameras (HOC) encodes

anisotropic spatial visibility information and the importance of each three-dimensional

landmark. Consequently, dynamic elements do not affect localization performance as

the constructed map implicitly adapts to dynamic changes during mapping. To gain

efficiency and scalability during map building and loop closing, camera poses are orga-

nized in an undirected graph.

To evaluate the proposed methods, a new benchmark dataset aiming at long-term

mapping within an ever changing world has been recorded. The developed SLAM

system is extensively evaluated in a series of simulated and real-world experiments.

v

vi

We demonstrate the ability of handling dynamic changes in the map, we can improve

localization accuracy and data association and we are able to allow reasonable control

of the map size.

Keywords: computer vision, mobile robotics, simultaneous localization and mapping,

structure from motion, dynamic environments, benchmark dataset, SLAM, visual SLAM,

histogram of oriented cameras

Kurzfassung

Die simultane Lokalisierung und Kartierung (SLAM) zielt auf die Beantwortung zweier

zentraler Fragen ab: “Wo ist der Roboter”? Und “Wie sieht die Welt um ihn herum aus?”. Mit

Hilfe verschiedener Sensordaten wird eine Karte einer bisher unbekannten Umgebung

erstellt und zeitgleich die Position des Roboters innerhalb dieser Karte bestimmt. Das

Lösen des SLAM Problems ist eine wesentliche Voraussetzung für weitere Aufgaben, wie

Pfadplanung, Hindernisserkennung oder das Greifen von Gegenständen. Heutzutage

sind digitale Kameras eine interessante Alternative zu etablierten Sensor-Technologien,

da sie leicht, weit verbreitet, billig, kompakt und stromsparend sind.

Heutige kamera-basierte Lösungen - vSLAM genannt - nehmen entweder eine sta-

tische Umgebung an oder ”vergessen” einfach veraltete Teile einer Karte um erhöh-

tem Speicherbedarf und dynamischen Umgebungen entgegenzuwirken. Insbesondere

in großen Umgebungen steht man vor Herausforderungen wie Speicherbedarf, Rechen-

zeit, Skalierbarkeit und Robustheit. Darüber hinaus erfordern Szenen mit repetitiven

Elementen und dynamische Objekten robuste Methoden der Datenassoziation.

Diese Arbeit stellt einen vSLAM Algorithmus vor, welcher mit dynamischen Szenen

in großen Umgebungen umgehen kann. Dafür wurde ein neuer Deskriptor - genannt

Histogram of Oriented Cameras (HOC) - entwickelt, der anisotrope, räumliche Sicht-

barkeit und die Wichtigkeit eines Kartenpunktes kodiert. Daher wird die Lokalisierung

von dynamischen Elementen nicht beeinflusst und die erstellte Karte passt sich implizit

ihrer veränderten Umgebung an. Um Effizienz und Skalierbarkeit während der Schlei-

fenschließung zu steigern, werden die einzelne Kamera-Positionen in einem ungerich-

teten Graphen organisiert.

Um die vorgeschlagenen Methoden zu evaluieren wurde eine neuer Benchmark-

Datensatz in einer sich ständig ändernden Umgebung aufgezeichnet. Das entwickelte

SLAM-System wurde in einer Reihe von simulierten und realen Experimenten analy-

vii

viii

siert. Es wird gezeigt, dass wir mit dynamischen Veränderungen in der Karte umgehen

können, die Lokalisierungsgenauigkeit verbessern und in der Lage sind die Anzahl an

Punkten in einer Karte zu steuern.

Schlagwörter: digitale Bildverareitung, mobile Roboter, simultanes Lokalisieren und

Kartenerstellen, Struktur durch Bewegung, dynamische Umgebungen, Datensatz, SLAM,

optisches Lokalisieren und Kartenerstellen, Histogram orientierter Kameras

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used other than the

declared sources / resources, and that I have explicitly marked all material which has been quoted

either literally or by content from the used sources.

Place Date Signature

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als die

angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich und

inhaltlich entnommene Stellen als solche kenntlich gemacht habe.

Ort Datum Unterschrift

Acknowledgments

It is the commitment of many great people that brought me in the position of being able

to finish my PhD studies.

Especially, I want to thank my supervisor Horst Bischof, who guided my research

with his experience and inspiring comments. Despite of that he provided a pleasant

and exciting working environment at the institute and organized barbecues at his home-

town. Further, I wish to thank Konrad Schindler for agreeing to act as my second thesis

supervisor and his encouraged and fruitful comments and discussions.

Moreover, I would like to give my most sincere thanks to my dear colleagues at

ICG, namely Martin Lenz, Christof Hoppe, Markus Heber, Arnold Irschara, Christian

Reinbacher, Michael Maurer and Manfred Klopschitz. Amusing intra- and extra-faculty

discussions, collaborative Ü-Menü cooking, one or two bottles of after work beer and

their friendship will always remind me of my PhD years.

I am especially indebted to the head of the robot vision lab Matthias Rüther. He

mainly guided my research through excessive discussions, helpful suggestions and good

thought-provoking impulses. Design and realization of this work would have never been

possible without his tireless assistance in the last four years. Thank you!

Finally, I feel greatly indebted to my family and friends for their love and support:

Mama, Papa, Lukas, Oma, Opa and Mirli, Friedl, Kathi, Hanna, Niki and Martina.

Thanks for your patience and trust. Especially, I would like to accentuate the trust, love

and support of my husband Jakob.

xi

xii

This work was supported by the Austrian Research Promotion Agency (FFG) and

Federal Ministry of Economics, Family Affair and Youth (BMWFJ) within the Austrian

research Studio Machine Vision Meets Mobility.

Contents

1 Introduction 1
1.1 Problem Definition . 5
1.2 Contributions . 8
1.3 Outline . 9

2 Related Work 11
2.1 Simultaneous Localization and Mapping 11

2.1.1 A Bit of History . 11
2.1.2 Recent Advances in Visual SLAM 12

2.2 SLAM in Dynamic Environments . 14
2.3 Conclusion . 18

3 Theory and Background 21
3.1 Projective Geometry . 21

3.1.1 The Two-dimensional Projective Space 22
3.1.2 The Three-dimensional Projective Space 23
3.1.3 Geometric Transformations . 23
3.1.4 Rotation Representations . 26
3.1.5 Perspective Camera Model . 30

3.2 Multiple View Reconstruction . 34
3.2.1 Multi-View Geometry . 34
3.2.2 Structure and Motion Estimation . 37

3.3 Conclusion . 46

4 Visual Localization and Map Building in Static Environments 47
4.1 Introduction . 47
4.2 Visual Features for Localization and Map Building 49

xiii

xiv

4.2.1 Sparse Visual Features . 51
4.2.2 Dense Visual Features . 55
4.2.3 Appearance based Features . 55

4.3 Map Building . 57
4.3.1 Landmark Maps . 58
4.3.2 Occupancy Grid Maps . 60
4.3.3 Topological or Appearance Based Maps 62
4.3.4 Conclusion . 63

4.4 Incremental Localization Techniques . 65
4.4.1 Pose Prediction . 67
4.4.2 Recursive Filtering Techniques for Pose Correction 68
4.4.3 Optimization based Techniques for Pose Correction 71
4.4.4 Conclusion . 71

4.5 Global Localization Techniques . 72
4.6 A Complete Visual SLAM Algorithm . 76

4.6.1 Environment Model . 78
4.6.2 Visual Localization and Mapping Framework 80

4.6.2.1 Image Acquisition . 80
4.6.2.2 Initialization . 80
4.6.2.3 Incremental Localization 82
4.6.2.4 Map Building . 83
4.6.2.5 Global Localization . 83

4.7 Conclusion . 85

5 Visual Localization and Map Building in Dynamic Environments 89
5.1 Introduction and Motivation . 90

5.1.1 What is a Dynamic World? . 90
5.1.2 Challenges in Dynamic Environments 92

5.2 A Novel Feature Descriptor for Visual Mapping 93
5.2.1 Motivation . 93
5.2.2 Feature Descriptor . 94
5.2.3 Descriptor Shapes . 97
5.2.4 Bin Weighting Schemes . 98
5.2.5 Incorporation of the HOC descriptor into the Visual SLAM Process 102

5.3 A Novel Method for Keyframe Organization 108
5.3.1 Motivation . 108
5.3.2 Pose Graph for Keyframe Organization and Map Extension 110
5.3.3 An Accelerated Loop Closing Routine 114

5.4 Conclusion . 117

xv

6 Experiments 119
6.1 The Problem of Evaluation in Dynamic SLAM 119

6.1.1 Introduction and Motivation . 120
6.1.2 A New Dataset for Benchmarking Dynamic SLAM Approaches . . 123

6.2 Evaluation of HOC-based SLAM . 129
6.2.1 Synthetic Experiments . 130
6.2.2 Static Camera - Moving Scene . 133
6.2.3 Moving Camera - Moving Scene . 137

6.3 Evaluation of the Novel Pose Graph, the Adaptive Keyframe Selection
and Map Point Insertion . 141

6.4 Conclusion and Discussion . 146

7 Conclusion and Outlook 151
7.1 Conclusion . 151
7.2 Outlook . 152

A Non-Linear Least-Squares Parameter Estimation Techniques 155
A.1 Introduction . 155
A.2 Iterative Parameter Estimation Methods . 155

A.2.1 Newton-Iteration . 157
A.2.2 Gauss-Newton Method . 157
A.2.3 Gradient-Descent . 158

A.3 Levenberg-Marquardt Algorithm . 158
A.3.1 Partitioned Levenberg-Marquardt 159
A.3.2 Sparse Levenberg-Marquardt . 160

B List of Publications 161
B.1 Thesis Relevant Publications . 161
B.2 Other Publications . 163

Bibliography 167

List of Figures

1.1 Different robot types. 2
1.2 SLAM as chicken-and-egg problem. 3
1.3 Network graph for SLAM. 4
1.4 Challenging scenarios when performing visual SLAM. 6

3.1 Hierarchy of transformations. 24
3.2 Rotation representations. 30
3.3 Perspective camera model. 32
3.4 Two-view geometry. 36
3.5 Triangulation error. 38
3.6 Bundle adjustment problem. 40
3.7 Bundle adjustment Jacobian structure. 42
3.8 Least-squares line fitting. 43

4.1 Simultaneous Localization and Map Building. 48
4.2 Sensors and their features. 50
4.3 Image features. 53
4.4 Sparse three-dimensional feature representations. 54
4.5 Dense visual features. 56
4.6 Appearance based features. 56
4.7 Mapping network. 57
4.8 Landmark maps. 59
4.9 Landmark based map building workflow. 60
4.10 Occupancy grids. 61
4.11 Topological maps. 63
4.12 Localization network. 65

xvii

xviii LIST OF FIGURES

4.13 Incremental localization workflow. 67
4.14 Filtering based localization techniques. 70
4.15 Vocabulary tree. 74
4.16 Vocabulary tree queries. 75
4.17 The proposed visual SLAM workflow. 78
4.18 Image acquisition and processing. 81
4.19 Map and keyframe initialization. 81
4.20 Vocabulary tree query results. 84
4.21 Geometric loop closure verification. 85
4.22 Schematic loop closing process. 86
4.23 Loop closure correction. 86
4.24 Results of an indoor environment. 87

5.1 Categorization of a robots environment. 91
5.2 Platonic solids with triangular faces. 94
5.3 Three dimensional feature descriptor. 95
5.4 HOC update procedure. 96
5.5 Octahedral representation. 99
5.6 Icosahedron update procedure. 100
5.7 Probabilistic HOC weighting. 102
5.8 Building blocks influenced by the HOC descriptor. 103
5.9 Toy example to highlight the benefits of the HOC descriptor. 104
5.10 Dynamic environment - evolution of the map over time. 105
5.11 Dynamic environment - evolution of the map over time. 106
5.12 Scalability demonstration - evolution of the map over time. 106
5.13 Improving data association. 107
5.14 State machine describing the ideal transitions between tracking and ex-

ploring mode of a mobile robot performing continuous localization and
mapping over a long period of time in a large-scale, dynamic environment 109

5.15 Loop closure scenario within a long-term mapping experiment. 109
5.16 Building blocks influenced by the pose graph. 110
5.17 Graph structure. 110
5.18 Keyframe insertion. 112
5.19 Keyframe selection. 112
5.20 Candidate features. 113
5.21 Candidate keyframes. 114
5.22 Calculation of the similarity transformation. 115
5.23 Advanced loop closing. 117

6.1 Estimated maps of the Radish dataset repository all consisting of laser
and odometry data only. 120

6.2 The Rawseeds dataset. 123

LIST OF FIGURES xix

6.3 Hardware setup. 125
6.4 Static Camera - Moving Scene . 126
6.5 Moving Camera - Moving Scene . 127
6.6 Sketched trajectories. 14 different trajectories with different starting point

locations have been recorded. The dataset contains images captured at 10
different days. 128

6.7 Overview of the test scenery. 129
6.8 Synthetic experiment - map evolution for Simulation_a. 131
6.9 Results of the indoor_b testset. 135
6.10 Results of the indoor_d testset. 136
6.11 Static camera - moving scene: Graphical visualization of the indoor_b

dataset. 137
6.12 Moving camera - moving scene: Data association evaluation. 138
6.13 Analysis of the systems scalability. 140
6.14 Moving camera - moving scene: Analysis of the systems scalability. . . . 140
6.15 Moving camera - moving scene: Localization accuracy. 142
6.16 Accuracy evaluation. 144
6.17 Accelerated loop closing. 147
6.18 Result of the outdoor dataset. 148
6.19 Final 3D models. 148

List of Tables

2.1 Comparison of SLAM algorithms operating in dynamic environments. . . 19

3.1 Algebraic properties of the two-dimensional projective space P2. 22
3.2 Algebraic properties of the three-dimensional projective space P3. 23
3.3 Hierarchy of transformations. 24
3.4 Geometric transformations. 26
3.5 Various M-estimator. 44
3.6 Cost and weighting functions of different M-Estimators. 45

4.1 Map building techniques. 64
4.2 Localization techniques. We distinguish between recursive filtering and

optimization based localization approaches. We summarized some char-
acteristics like sensor data used, the underlying map representation and
pose estimation accuracy. The computation time includes feature extrac-
tion, data association and pose estimation. The last column indicates the
algorithms ability to solve the global localization task. 73

4.3 Environment representation. 79

6.1 Comparison of different SLAM benchmarks. 122
6.2 Groundtruth landmarks. 127
6.3 Landmark occurrences. 128
6.4 Groundtruth distances between adjacent landmarks. 129
6.5 Synthetic experiments. 130
6.6 Results of the four synthetic test sequences. 132
6.7 Static camera - moving scene: Results of the four real-world test sequences

with a rigidly mounted stereo rig. 135

xxi

xxii LIST OF TABLES

6.8 Static camera - moving scene: Re-localization performance evaluated at
three real-world test sequences assuming a static camera. 136

6.9 Moving camera - moving scene: Data association evaluation. 139
6.10 Moving camera - moving scene: Analysis of the systems scalability. . . . 141
6.11 Moving camera - moving scene: Accuracy evaluation. 142
6.12 Localization accuracy. 144
6.13 Accuracy evaluation comparing groundtruth distances to estimated ones

between adjacent landmarks. 145
6.14 Scalability evaluation. 146

1
Introduction

Throughout the last decades robotic research has seen great progress in constructing

human-like, self-operating and autonomous robotic systems with many fields of appli-

cations. They assist humans in everyday life, perform perpetual tasks in industrial envi-

ronments or advance into environments which are dangerous or unreachable for human

beings. Domestic robots have been constructed to perform basic household tasks such

as vacuuming, mowing the lawn, wiping the floor or cleaning the pool. In the field of

medicine surgery robots have become more and more popular, where minimal invasive

surgery has reduced the tissue trauma and remote surgery has become possible. Mobile

robots are found in military applications, space exploration, rescue scenarios, security

environments, industry and care of the elderly. Rescue robots are applied in distressed

areas dangerous for human beings. In scientific research, robots are used to explore

hard reachable areas such as undersea or outer space. Healthcare robots either assist

individual humans (e.g. smart wheelchairs) or perform repeatable tasks in pharmacies

or hospitals (e.g. delivering drugs). Autonomous mobile robots or cars are able navigate

on their own through everyday scenarios. Service robots take over service tasks such as

serving coffee or drinks or guiding visitors through museums or exhibitions while per-

forming path planning, obstacle avoidance or grasping. Autonomous driving cars safely

navigate through urban traffic scenarios while detecting traffic signs, considering traffic

rules or taking care of pedestrians. Figure 1.1 shows some robots whose applications

vary from assistance robots to self-driving cars.

The design and development of intelligent, self-acting robots combines scientific

achievements from different research areas such as artificial intelligence, robotics, sensor

technology, machine learning, mathematics, physics and applied mechanics. However,

1

2 Chapter 1. Introduction

(a) (b) (c)

(d) (e)

Figure 1.1: Different robot types. (a) Wheelchair with various kind of sensors on it for
disabled or high-maintenance persons. (b) Articulated industrial robot. (c) Service robot
offering drinks. (d) Multi-arm surgery robot. (e) Autonomously driving car.

to perform higher-level applications such as path planning or grasping a robot has to

solve two fundamental key problems: ”Where am I?” and ”How does the world look like?”.

In literature this problem is known as Simultaneous Localization and Mapping, often ab-

breviated as SLAM. Solving this problem involves constructing a map of a previously

unknown environment while simultaneously localizing within this map. It can be seen

as a chicken-or-egg problem as depicted in Figure 1.2: A robot equipped with one or

more sensors perceiving the outside world is not able to estimate its position without

the existence of a map. At the same time the map cannot be constructed from these

sensor observations without the knowledge of the vehicle’s pose. In simple terms, a

robot requires a map to determine its position in the world, whereas knowing its pose

is necessary to construct a map.

Generally, the SLAM problem can be visualized as a Bayesian network as depicted

in Figure 1.3(a). The variables of interest, namely the sensor poses Pi and map points Xj,

are connected by sensor measurements mij. Unfortunately, both sensor measurements

and robot pose estimates are perturbed by noise. Therefore, most successful solutions

3

KNOWN
POSITIONS

MAPPING

KNOWN
MAP

LOCALIZATION

Figure 1.2: Simultaneous localization and mapping can be seen as chicken-and-egg prob-
lem. To estimate its pose a robot requires a map while at the same time the map can
only be built given an accurate vehicle pose.

assume a Gaussian distribution for both sensor pose estimate and measurement noise.

If one can find correspondences between different measurements (also known as data

association) and is able to connect measurements throughout poses as shown in the

graph, one can find a maximum likelihood solution to the pose and structure problem.

In the past, lots of methods have been developed to solve the SLAM problem us-

ing different kinds of sensors and achieved reasonable results. At the beginning re-

search concentrated on wheeled robots driving in planar scenes and constructing two-

dimensional representations of the environment using laser range finders or sonar sen-

sors. Increased computing power and the development of more sophisticated sensor

technologies such as cameras, pant-tilt laser scanners or time-of-flight cameras allow

to build realistic, large-scale three-dimensional representations of the environment in

acceptable time. Simultaneously, the fields of computer vision, robot vision and aug-

mented reality have made great scientific progress regarding image processing, three-

dimensional scene reconstruction, object tracking or realistic, real-time scene visualiza-

tion. Besides, cameras can be found in many electronic devices such as smartphones,

tablets or laptops and come along with many advantages: lightweight, widely-used,

cheap, small and battery-saving. Furthermore, a single image contains much more in-

formation than data delivered from a laser range finder or sonar sensor for which rea-

sons industrial or consumer cameras are becoming the preferred sensor in the robotics

community.

To solve the SLAM problem with vision sensors - also known as visual SLAM or

vSLAM - two methodologies have emerged: batch optimization techniques such as bun-

dle adjustment (BA) [137] minimize some form of image-based error to solve for camera

pose parameters and 3D points, whereas recursive filtering techniques [25] update prob-

4 Chapter 1. Introduction

P0 P1 P2 P3

X0 X1 X2 X3

m00 m0,1

X5X4

m0,2 m0,3 m1,1 m1,3m1,2 m1,4 m2,1 m2,3 m2,4 m2,5 m3,2 m3,3 m3,4 m3,5

(a)

P0 P1 P2 P3

X0 X1 X2 X3 X5X4

(b)

P0 P1 P2 P3

X0 X1 X2 X3 X5X4

(c)

Figure 1.3: Network graphs for SLAM. (a) Bayesian network design for a SLAM prob-
lem. Sensor poses Pi and map points Xj need to be estimated. Those are linked through
observations mij delivered by the sensor and form a network graph. (b) When per-
forming EKF based SLAM old poses are marginalized out and their measurements are
forwarded to the current state. (c) Marginalization when performing keyframe-based
bundle adjustment is done by ignoring some poses and their measurements (courtesy
of [128]).

1.1. Problem Definition 5

ability distributions over map points and sensor poses. Historically the first research

area originates from photogrammetry where structure from motion (SfM) techniques

are applied to compute sensor poses and three-dimensional landmarks out of a collec-

tion of unordered images. The robotics community instead developed recursive filtering

approaches (e.g. Extended Kalman Filters (EKF), Particle Filters) to compute map and

pose estimates using an incremental image stream captured by a moving robot. Gener-

ally, both approaches pursue the same goal with different algorithmic frameworks.

Both approaches, SfM and EKF, continuously add poses, points, measurements and

links to the network graph while exploring the environment. As a consequence the

computational effort and storage requirements get larger with every incoming frame

and only allow the exploration of a restricted area with a limited number of poses and

landmarks. To overcome these limitations recursive filtering techniques marginalize out

old poses while broadcasting their measurements. Unfortunately, this leads to a fully

connected graph, which, when solved with an EKF causes a huge, intractable state vector

and covariance matrix (compare Figure 1.3(b)). SfM techniques instead perform sliding

window bundle adjustment over carefully chosen keyframes (compare Figure 1.3(c)),

which outperform the EKF approach in terms of accuracy, scalability and speed [128].

1.1 Problem Definition

Most existing solutions to the visual SLAM problem presume the following assump-

tions:

• The robot is surrounded by a static, well-structured environment containing sta-

tionary objects only [63].

• The environment map and robot trajectory are estimated once and used for lo-

calization afterwards. Subsequent changes of the surroundings are not taken into

account [39, 136].

However, most applications mentioned above (vacuum cleaner, service robot, tour

guide robot, autonomous driving car) do not allow a static world assumption. Let’s

consider a domestic robot equipped with a vision sensor aiding in everyday life by

serving drinks to different places in an apartment and vacuuming the entire flat. Dur-

ing operation roommates are moving around distorting its sensor readings throughout

several frames. Moreover, humans may change the environment daily by disarranging

furniture or adding new objects to the flat. The robot must be able to react on these

6 Chapter 1. Introduction

changes to successfully accomplish its tasks. As a consequence, a static map would not

be the method of choice since path planning, obstacle avoidance or grasping may fail.

In addition, the SLAM algorithm must be able to process a huge amount of data over

several months while executing its instructions online.

Figure 1.4: Challenging scenarios when performing visual SLAM. Short-term changes
such as moving persons or driving cars lead to distorted sensor readings. Different
lighting conditions, moved furniture or various weather situations pose a challenge for
every camera-only SLAM algorithm.

Unfortunately, the scenario described above is not solvable up to now. While the

SLAM problem within a static world is a well studied problem, the long-term localiza-

tion and mapping task within an ever changing world remains an open problem in the

field of robotic research. A few solutions have been presented tackling the problem of

short-term noise (i.e. objects/people moving inside the robots field of view) by filtering

out these spurious measurements from the sensor data or detecting and tracking of the

objects. Other solutions focus on clustering or learning different environment configu-

rations over time but do not provide a solution to update an existing map. Especially,

when dealing with sparse local features stemming from visual sensors the change detec-

1.1. Problem Definition 7

tion and map update problem is not solved at all. The key problem there is that infor-

mation gained from map features which should be visible from a certain viewpoint, but

are actually not observed is completely ignored. Most existing SLAM solutions simply

incorporate all incoming sensor data into the map which leads to serious problems like

increased storage requirements, inconsistent map representations and as a consequence

incorrect data association. In highly dynamic scenes, static SLAM would inevitably fail

in the long run.

Looking at Figure 1.4 a complete visual SLAM system operating over weeks or even

months faces the following problems:

• Huge amount of incoming data to process.

• Increased computation time and storage requirements.

• Visitation of the same area multiple times.

• Motion blur or frame-loss during data acquisition.

• Various lighting and weather conditions.

• Objects move according to different time scales. Short-term noise originates from

driving cars or moving pedestrians. Long-term changes arise from moved furni-

ture or opened/closed doors.

To overcome these problems, a visual SLAM solution has to be designed which is

able to robustly navigate through highly dynamic scenes while constructing and up-

dating a three-dimensional map. Different solutions have been proposed to tackle the

problem of moving people or driving cars by filtering or tracking these dynamic scene

elements [143, 141, 146]. Other solutions focused on the representation of long-term

maps to handle low-dynamic scene elements moved outside the robots field of view

[4, 71]. However, continuous mapping over a long-period of time remains an open

problem in the SLAM community. These considerations together with above mentioned

problems lead to the following requirements:

• Permanently perform the localization and mapping task.

• Claim robustness against short-term changes.

• Detect and recover from localization failures.

• Continuously check for loop closures and correct them.

8 Chapter 1. Introduction

• Continuously check for map consistency and steadily repair and update an exist-

ing map.

1.2 Contributions

Compared to state-of-the-art in vision-based localization and mapping, the proposed

vSLAM system contains two main contributions which allow a robot to robustly navi-

gate through real-world scenarios containing high and low dynamic entities over a long

period of time. We are able to continuously perform localization and mapping whilst

permanently checking for loop closures. Short-term changes are filtered out during the

localization task and the constructed map implicitly adapts to dynamic changes.

At first, a new three-dimensional feature descriptor called Histogram of Oriented

Cameras (HOC) has been developed, which encodes anisotropic spatial visibility infor-

mation and the importance of a three-dimensional landmark. Each feature holds and

updates a histogram of the poses of observing cameras. It is hereby able to estimate

its probability of occlusion and importance for localization from a given viewpoint.

Through visibility-dependent map filtering we are able to delete vanished landmarks

and guarantee an up-to-date map. Hence, short- and long-term dynamics do not af-

fect localization and the constructed map implicitly adapts to dynamic changes during

mapping.

Second, keyframes are organized in an undirected, unweighted view-graph, which

facilitates sliding window bundle adjustment. The graph structure is further employed

to speed up loop closure correction where only a subset of keyframes is determined

to be corrected for rotation, translation and scale. As a consequence parameters to be

estimated during loop closure correction can be diminished drastically, especially when

navigating through large-scale scenes.

In addition, we investigated the difficulties and challenges when trying to bench-

mark a visual SLAM system in a dynamic environment setting. Considerations lead

to the development of a new benchmark dataset denoted CDBench containing visual

data recorded throughout several days in a mixed indoor/outdoor setting. The dataset

comprises moving people, cars, different lighting and weather conditions and long-term

changes such as removed and modified objects.

1.3. Outline 9

1.3 Outline

The thesis is organized as follows. A short historical overview on the simultaneous

localization and mapping problem followed by an extensive review on state-of-the-art

methods concerning visual SLAM and methods dealing with dynamic environments is

given in Chapter 2. In Chapter 3, the theoretical foundations to understand visual lo-

calization and mapping are discussed. This includes topics like projective geometry, the

perspective camera model as well as two- and multi-view geometry with special focus

on bundle adjustment techniques. The basic concepts to perform visual localization and

map building are described in Chapter 4. At the beginning we focus on features used

for visual localization and map building followed by a detailed description of state-of-

the-art concepts in localization, map building and global pose estimation. Finally, our

visual SLAM framework is presented. Chapter 5 contains the theoretical descriptions of

the new three-dimensional feature descriptor and the pose graph. We demonstrate how

to incorporate them in our visual SLAM framework and highlight their benefits when

compared to standard vSLAM systems. The remainder of this thesis includes the gen-

eration of a benchmark dataset with special focus on life-long operation and dynamic

environments in Chapter 6. Our framework is then evaluated regarding localization and

mapping accuracy, scalability and robustness on the presented dataset. We finally give

a conclusion and an outlook to future work in Chapter 7.

2
Related Work

2.1 Simultaneous Localization and Mapping

2.1.1 A Bit of History

The first authors who followed a Bayesian formulation for robot pose estimation and

showed how successive measurements of objects can be used to improve both robot

and object location in a global world coordinate frame were Smith and Cheesman [119].

The survey paper by Durrant-Whyte et al. [46] first established the acronym SLAM

and proved important convergence results. From that on several papers were published

providing solutions to the mapping problem given known poses. Here, the pioneering

work of Moravec and Elfes [88] using occupancy grid maps and Kuipers and Byun

[67] performing topological mapping have to be mentioned. Early works in the field of

robot localization have been presented by Leonard and Durrant-Whyte [70] or Lu and

Milios [76]. Leonard and Durrant-Whyte presented an EKF-based localization algorithm

within an existing map composed of geometric beacons. Lu and Milios instead aligned

successive laser range scans to estimate the robot’s pose.

From a historical point of view the most prominent algorithm performing SLAM

using a Kalman Filter (KF) for pose and landmark estimation has been presented by

Dissanayake et al. [30] using a millimeter-wave radar. Montemerlo et al. [85] invented

the FastSLAM algorithm which forms the basis of many state-of-the-art solutions, where

the robot pose is estimated with a Particle Filter (PF).

11

12 Chapter 2. Related Work

2.1.2 Recent Advances in Visual SLAM

Currently, most existing algorithms follow either a pure optimization based or recur-

sive filtering approach to solve the visual SLAM problem. Filtering approaches update

probability distributions over landmarks and sensor poses in a recursive manner, while

optimization based approaches, also known as incremental Structure from Motion, use

bundle adjustment techniques to estimate sensor poses and landmarks.

Davison and Murray [26] presented the first stereo visual SLAM system based on

standard EKF. Later, Davison [25, 27] improved their approach to operate in real-time

with a single camera named MonoSLAM. However, perspective projection of Euclidean

points is a non-linear process and leads to inaccurate filtering results. Therefore, Montiel

et al. [87, 17] proposed an inverse depth parametrization for EKF-based SLAM. How-

ever, EKF approaches are restricted to a small number of landmarks because of O(n2)

space and computation costs. Consequently, many authors focused on complexity re-

duction by using an information filter [134] or by exploiting the sparsity structure of the

information matrix [29]. Also Chli et al. [16] formed a tree-like hierarchical structure,

where 3D point features are grouped into clusters from coarse (all grouped together)

to fine (independent) to speed up probabilistic monocular SLAM. To allow monocular

approaches to operate in large environments many authors [18, 100, 101] proposed to

use submaps. In [18] Clemente et al. used MonoSLAM in each submap, where feature

correspondences between submaps are established to correct scale drift and to join the

individual maps. Paz et al. [100] joined the different submaps in a binary-tree fashion at

fixed intervals reducing the computation time from O(n2) to O(n). Later they improved

their approach to work with both monocular and stereo information [101].

Contrarily, Eade and Drummond [31] or Elinas et al. [33] adapted the FastSLAM [85]

idea to monocular sensor inputs based on a Rao-Blackwellized Particle filter and used a

separate EKF for each three-dimensional landmark. To reduce the memory consumption

of three-dimensional occupancy grid maps Marks et al. [77] diminished the map to 2D

occupancy grids holding the height of a potential obstacle.

Recently, optimization based approaches have become more popular where incre-

mental SfM techniques attracted attention. To achieve constant computation time BA

is only performed over a fixed number of carefully selected keyframes also denoted as

sliding window or active window [91]. The most prominent work in this field has been

implemented by Klein and Murray [63], who split the tracking and mapping process into

separate threads allowing for real-time single camera SLAM in small workspaces called

PTAM. The tracking task (i.e. camera pose estimation relative to a sparse pointcloud) is

2.1. Simultaneous Localization and Mapping 13

handled by a simple motion model followed by feature point matching and n-point pose

estimation [89]. The map building part generates three-dimensional landmarks through

multi-view triangulation followed by bundle adjustment. They also fused their PTAM

framework [56] with the relative BA approach proposed by Sibley et al. [114] to allow

for loop closures. A similar system has been proposed by Clipp et al. [19] using a stereo-

camera in a larger workspace. Here, loop closing is performed by applying BA over the

whole map and trajectory, which is computationally very demanding when applied to

a huge number of poses and points. Mei et al. [82] formed a graph of camera poses and

landmarks connected by relative transformations and perform relative bundle adjust-

ment of both structure and motion based on [114]. To efficiently handle loop closures

Lim et al. proposed a hybrid map representation [?] consisting of locally metric maps

containing poses and points and a topological map made of keyframes only. Hereby,

local maps are optimized through bundle adjustment techniques while the topological

nodes are optimized separately. Contrary, Strasdat et al. [126] suggested to optimize

metric and topological maps simultaneously using a double window approach. The

inner window is presented as point-to-frame constraints optimized through BA. The

outer window is defined by frame-to-frame constraints, which are optimized through

their scale drift aware pose graph optimization routine [127]. To limit the parameters

to be estimated Konolige and Agrawal [65] merged consecutive poses and associated

features in a probabilistic manner. The reduced graph is optimized using the TORO [45]

framework.

Taking sparse feature maps and camera poses produced by real-time SfM algo-

rithms as input, Newcombe and Davison [92] computed dense environment models.

Hereby, GPU-based optical flow is used to estimate pixel-wise correspondences between

keyframes resulting in local dense reconstructions which are merged in a subsequent

step. They extended their approach without relying on sparse features and keyframes

named DTAM [93]. Here, photometric information of several monocular RGB images is

fused into a single cost volume to estimate a depth map for selected keyframes through

a non-convex optimization framework. Depth values stored in each keyframe are then

used to compute a dense representation of the environment. The resulting map allows

to track the camera at frame rate by whole image registration.

With the launch of range image devices providing 2.5D data (e.g. Microsofts Kinect)

large scale dense reconstruction of indoor environments has been proposed by Henry

et al. [54]. An advanced iterative closest point (ICP) variant is used to robustly es-

timate interframe motion while realistic environment modeling is handled by Surfels

14 Chapter 2. Related Work

[102]. Contrary, Newcombe et al. [60] fused all incoming depth data into a single global

implicit surface model using a truncated signed distance function. They successfully

showed a dense representation of a desktop scene. The sensor pose is estimated by reg-

istering the depth map relative to the whole surface using a hierarchical ICP algorithm.

At the time of writing dense mapping techniques were restricted to small-scale scenes

only [92, 93, 60, 43, ?] or used a pseudo-dense representation [54] to operate in larger

areas.

2.2 SLAM in Dynamic Environments

Research tackling the problem of localization and map building within a non-static en-

vironment is sparse - especially when using vision sensors. Therefore, we also want to

highlight some approaches taking laser or sonar sensor as input. Generally, two lines

of research have emerged: Those focusing on short-term changes within crowded envi-

ronments containing moving people, driving cars or bicycles. Others, concentrating on

less frequent changes like moved furniture, opened or closed doors within a long-term

mapping context. A tabular summary of available methods is also presented in Table 2.1.

Referring to the first group Wang et al. [145] proposed a SLAM framework combined

with an object detection and tracking mechanism to filter out the dynamic parts of the

scene, also known as SLAM-DATMO. They are using a motion-based moving object

detector [143] and a Bayesian formulation for object tracking. They presented results

using a vehicle in a road scenario equipped with two laser range finders. In [144, 141]

they improved their framework regarding computation time and accuracy by using two

separate probabilistic filters for moving object tracking and the localization and mapping

task. Additionally, two object detection algorithms were presented classifying moving

and stationary objects in laser scan data where the dynamic scene elements are stored

in a local occupancy grid map for each moving object separately. This probabilistic

information is fed back to the SLAM process, where a global feature based map is built.

Montemerlo et al. [86] used a particle filter to estimate both the robot pose and the

position of persons in a previously mapped environment. A larger particle set is used

for person tracking which is conditioned on the estimated robot pose represented by

a smaller set of particles. Hence, the number of particles depends on the number of

dynamic objects currently observed by the sensor. Without relying on a previously built

map Lidoris et al. [72] estimate the position and velocity of all moving entities together

2.2. SLAM in Dynamic Environments 15

with the robot pose using the same approach as [86], where a moving person in 2D laser

data is modeled as a cylindrical object. Both algorithms [86, 72] cannot handle arbitrary

moving targets since their detection algorithm is restricted to the shape of a person.

Contrary, Miller and Campbell [83] used a KF to track moving objects within a map

built of stationary objects. To robustly solve the data association problem a particle filter

is used whose discrete output is utilized by the tracking task. The proposed factorization

allows for an automatic detection of dynamic objects in the map without increasing the

particle set as in [86].

A purely monocular approach has been developed by Marzorati et al. [24] who use

two separate EKFs for the static and dynamic parts in the scene. They proposed to use

uncertain projective geometry to detect dynamic elements. Results are provided within

a small office scene using a few features only. Wangsiripitak and Murray [146] are using

a 3D object tracker within the MonoSLAM framework [27] to detect moving objects and

occlusions. Unfortunately, all monocular based approaches are limited to office envi-

ronments. A stereo-based approach named SLAMMOT was proposed by Lin and Wang

[73], where a binary Bayes filter and the inverse depth parametrization are integrated

into a decision tree to perform moving object detection. Both robot pose and moving

object trajectory are estimated by an EKF. They showed that they outperform monocular

SLAMMOT approaches because the stereo-system solves the limited observability and

also increases the accuracy of the localization. Similarly, Solá [122] invented BiCam-

SLAM with a rule-based moving object detection method where object tracking is done

separately and individually by a KF in a robocentric representation.

Many authors built a map out of stationary objects while getting rid of the dynamic

elements. The earliest work in this direction has been presented by Fox et al. [40]

who developed a probabilistic filter which only uses measurements stemming from

stationary objects. Therefore, they enhanced the traditional inverse sensor model [133]

to capture the probability a measurement is originating from an obstacle not contained

in the map. Their framework has been evaluated during a localization task in highly

populated environments using a prebuilt map. Hähnel et al. [48] incorporated the

results of a people tracker into a probabilistic filter to get rid of these spurious elements

in laser sensor data. Without incorporating these dynamic elements data association,

scan alignment, localization and map building becomes more accurate. They evaluated

their algorithm in a large-scale environment where several people were moving near the

robot. They further improved moving people detection by developing an Expectation-

Maximization (EM) algorithm [49]. The filtered laser data is again used to create an

16 Chapter 2. Related Work

occupancy grid of the static scenery. Both methods do not update the map adaptively

and only stationary objects are present in the map. Huang et al. [58] combined sonar

and vision data to differentiate between dynamic and stationary objects. The temporal

difference between subsequent sonar readings and a statistical background subtraction

technique applied to camera images allowed them to detect moving objects and exclude

them from the mapping process.

Baig et al. [7] incorporate information stemming from an occupancy grid made

of stationary data to detect moving objects in the scene. If the ray of laser data ends

in a grid cell previously seen as free space then the beam must correspond to a non-

stationary object which is then tracked by a global nearest neighbor method and stored

in a separate map. Rays ending in a filled grid are considered to be static and used

to update the map. One drawback of their method is that a local grid map containing

stationary objects is required to allow moving object detection.

The second group concentrates on long-term localization and mapping, where many

authors focused on learning the robustness and strength of different landmarks [2, 55]

or to robustly discriminate between static and dynamic scene elements [4, 5]. Andrade-

Cetto and Sanfeliu [2] combined appearance properties and strength states to learn the

robustness of each landmark. This measure of importance is used within an EKF for

state estimation. Furthermore, this quality measure allows them to delete unreliable

features from the map. Hochdorfer and Schlegel [55] addressed the problem of ever

growing number of landmarks within a feature based map, especially in life-long op-

erations. To avoid extensive growing of the EKF state-vector, they limit the number of

allowed landmarks in a two stage process: First, k-means clustering combined points

which are observed from neighboring robot poses. Second, landmarks with the lowest

localization benefit within each cluster, estimated out of their covariances, are removed.

To differentiate between static and dynamic objects Anguelov et al. [4] used an EM

algorithm to learn a model of non-stationary objects from a sequence of occupancy grid

maps stemming from different points in time. Unfortunately, their algorithm requires

three prerequisites: Objects must be uniquely identifiable by their shape, they should

not move during mapping and should be spaced enough from each other. To overcome

these problems they proposed to combine an omni-directional camera with a laser range

finder [5] to capture color, motion, appearance and shape of stationary (walls) and non-

stationary (doors) objects. They showed that the algorithm greatly benefits from the

supplemental information stemming from the vision sensor. Stachniss and Burgard

2.2. SLAM in Dynamic Environments 17

[124] instead tried to learn different configurations of a grid map stored in several local

sub maps using a laser range finder. To estimate the configurations of dynamic areas

they performed clustering of local grid maps assuming that a limited number of clusters

is sufficient to model the scene configurations (e.g. two clusters would model an opened

or closed door).

To capture the environmental changes over a longer period of time many researchers

incorporate additional information into traditional two-dimensional occupancy grids.

Arbuckle at al.[6] invented temporal occupancy grids, where each grid cell captures the

probabilities at different timescales. The stored probabilities are exploited to differen-

tiate between fixed obstacles (those having high values at all timescales) and moving

obstacles (those having high values on short timescales only). Similarly, Mitsou and

Tzafestas [84] store the whole history of sensor readings in each cell using the so called

TimeIndex [35], which is organized as a B-tree for fast access operations. To check for

dynamic objects they exploit the standard deviation of the probabilties stored in each

grid cell, where a small deviation indicates a static cell, while a high variance represents

a dynamic object. However, both grid structures are only used to identify low- or high-

dynamic objects but do not adapt the resulting grid map. More recently, Levinson and

Thrun [71] proposed to store the variances of the sensor data in each grid cell. As a

consequence they are able to identify dynamic scene elements during localization and

prefer those map parts more likely to be stationary. They showed successful navigation

superior to GPS with an autonomous driving vehicle during rush-hour traffic. Instead

of storing additional information in the occupancy grid structure many authors use two

or more traditional grids. Wolf and Sukhatme [150] maintain one grid map for the static

and the dynamic map components each. In order to verify which laser sensor reading

can be regarded as dynamic, they make use of a recursive Bayes filter dependent on the

previous grid map states.

The most complete systems operating over a long period of time and trying to adapt

an existing map to the most recent environmental changes have been presented by

[8, 28, 66]. Biber and Duckett [8] create occupancy grid maps from laser data at dif-

ferent timescales to incorporate new elements while preserving the old and stable ones.

Hereby, each incoming laser reading is compared to all timescales and the one best fit-

ting the data is used. They evaluated their method regarding localization accuracy over

several weeks. Dayoub and Duckett [28] focused on map adaption within an existing

topological map made of omni-directional images. They are using the concept of long-

term and short-term memory, where persistent features extracted from the images are

18 Chapter 2. Related Work

added to the map whereas older ones are removed. A rehearsal algorithm is presented

to select stable features moved to the long-term memory while a recall algorithm is

responsible for feature deletion. They evaluated their algorithm in a long-term experi-

ment over nine weeks monitoring a canteen scene and showed improvements in local-

ization against static approaches. Unfortunately, the topology of the initial map is never

changed and remains fixed. Similarly, Konolige and Bowman [66] adapted FrameSLAM

[65] to update a given map in case of new or removed features and to recover from lo-

calization failure. They first build a connectivity graph between keyframes, based on the

number of successful SIFT features, and delete those keyframes with a very high SIFT

matching percentage to the neighbors. They evaluated their system in a dynamic indoor

environment of about 50× 50m2, including moving people and various lighting condi-

tions. They successfully managed to update a map after removed and added furniture

and kept the number of keyframes relatively small.

2.3 Conclusion

This chapter provided a short historical overview of the SLAM problem followed by

an extensive review of state-of-the-art algorithms especially in vision based SLAM. The

main focus lied on localization and mapping techniques dealing with dynamic environ-

ments in a life-long mapping context. Here, many authors are using two-dimensional

range scanners. Those algorithms who make use of a vision sensor are restricted to

operate in small-scale areas. All vision based methods either use object detection and

tracking to separate moving objects from the static map or perform spatial clustering in

combination with heuristics to discard weak features. Few of them have the ability to

repair, change or update the previously constructed map. Instead of that many authors

augment a map with an additional timing variable or try to learn different environment

configurations.

Table 2.1 provides a compact comparison of SLAM algorithms operating in dynamic

environments by means of handling high or low dynamic scene elements or being able

to update and repair an existing map. We also highlighted our solutions to the SLAM

problem being capable to deal with all challenges when traveling in highly dynamic

scenes over a long period of time.

2.3. Conclusion 19

Approach
continuous

SLAM
high dy-
namics

low dy-
namics

removing
data

adding
data

map
required

Anguelov et
al. [4]

× × X × × X

Montemerlo
et al. [86]

× X × × × X

Wang et al.
[145, 141, 73],
Lidoris et
al. [72],
Miller et al.
[83],Hähnel et
al. [48]

× X × × X ×

Daniele et al.
[24]

× X X × X ×

Baig et al. [7] × X X × X X

Arbuckle et al.
[6], Levinson
et al. [71],
Biber and
Duckett [8]

X X X × X ×

Andrade-
Cetto et al.
[2]

X × X X X ×

Dayoub et al.
[28]

X X X × X X

Konolige and
Bowman [66]

X X X X X ×

Ours
[103, 104]

X X X X X ×

Table 2.1: Comparison of SLAM algorithms operating in dynamic environments. We
checked if they are able to handle high (e.g. moving people, driving cars) and low (e.g.
moved or added furniture, plants) scene dynamics as well as their ability to react on
environmental changes and to update the existing map by removing vanished objects
or add new landmarks to the map. Some algorithms need to build a map out of static
components only to detect dynamic entities later on (map required). In contrast to
previous approaches our solution handles both static and dynamic objects as well as
map updates in a life-long mapping context without relying on a previously built map.

3
Theory and Background

A visual SLAM algorithm operating on a robot equipped with one or more cameras

should create a three-dimensional map of its unknown surrounding while moving and

localizing within this map using visual sensor information only. Therefore, we require

knowledge about the imaging process, the extraction of three-dimensional information

out of image data and the geometric relationship between two or more cameras and the

three-dimensional world. This chapter provides the theoretical background and a math-

ematical framework in order to understand the visual localization and map building

tasks.

First, the imaging process and its involved geometric entities are reviewed in Section

3.1. This involves the description of the two- and three-dimensional projective space

and their geometric transformations. We also explain different rotation representations

because of their importance in parameter estimation techniques later on. Finally, the

imaging process and its geometric properties by means of the general projective camera

is described. Section 3.2 concentrates on the geometry between two or more images

including a detailed description of the geometric relations between two views and the

estimation of three-dimensional structure out of them. In large part we concentrate

on structure from motion (SfM) and its mathematical framework, which describes the

process of three-dimensional data estimation out of multiple views.

3.1 Projective Geometry

The imaging process, namely the mapping of a three-dimensional scenery to two-dimensional

images, is described elegantly by projective geometry. We focus on the geometry and its

21

22 Chapter 3. Theory and Background

entities in the two- and three-dimensional projective space P2 and P3, since the imaging

model is described by a mapping from P3 to P2. Especially when performing visual

SLAM one has to understand how images are built and the geometric properties be-

tween the world and the image representing it. More attention is given to different

rotation representations, since they play an important role in parameter estimation tech-

niques such as bundle adjustment. Finally, the anatomy of the general projective camera

with its geometric entities is described. For a more detailed description on projective

geometry, their main geometric ideas and various camera models we refer the reader to

[53], [34] and [153].

3.1.1 The Two-dimensional Projective Space

A point (x, y) in the Euclidean plane R2 is represented as homogeneous point (X, Y, 1)

in the projective space P2, by simply adding a 1 as a third coordinate. Since overall

scaling is irrelevant (WX, WY, W) is the same point as (X, Y, 1). The transformation

from projective points to Euclidean ones is given by (X/W, Y/W) = (x, y). Similarly, a

line is defined by

ax + by + c = 0 ∈ R2 (3.1)

(3.2)

where u = (a, b, c) denotes the line and p = (X, Y, W) a point on the line. An important

property is, that the roles of points and lines can be interchanged - the so called duality

principle. As a consequence the intersection of two lines or the line through two points

are both defined by the vector cross product. All mentioned properties are summarized

in Table 3.1.

Property Algebraic formulation
Homogeneous point x = (X, Y, W)
Homogeneous line l = (a, b, c)

Euclidean point x̃ = (X/W, Y/W)
Intersection of two lines x = la × lb

Line defined by two points l = xa × xb
Line normal n = (a, b)T

Table 3.1: Algebraic properties of the two-dimensional projective space P2.

3.1. Projective Geometry 23

3.1.2 The Three-dimensional Projective Space

All concepts of P2 can be extended to the projective space P3. Points and planes, as

their brothers points and lines in P2, are represented as four-vectors (X, Y, Z, W) and

(a, b, c, d). Also their intersection, plane equation and back-transformation to the Eu-

clidean space R3 are defined the same way as in P2 and summarized in Table 3.2.

Property Algebraic formulation
Homogeneous point x = (X, Y, Z, W)
Homogeneous plane l = (a, b, c, d)

Euclidean point x̃ = (X/W, Y/W, Z/W)

Intersection of three planes

 la
T

lb
T

lc
T

 x = 0

Plane defined by three points

xa
T

xb
T

xc
T

 l = 0

Plane normal n = (a, b, c)T

Table 3.2: Algebraic properties of the three-dimensional projective space P3.

3.1.3 Geometric Transformations

Generally, a projective transformation describes an invertible, linear mapping h : Pn →
Pn. Since it preserves the collinearity of points it is also called a collineation. Acting on a

homogeneous point x ∈ Pn, a projective transformation can be written as simple matrix

left-multiplication by a non-singular (n + 1) × (n + 1) matrix H, called Homography

x′ = H x.

The most important specializations of projective transformations are isometries, sim-

ilarity transformations and affine transformations, which are briefly described in the

following sections. In fact, projective transformations are applied in many fields of com-

puter vision and 3D reconstruction: mapping between image planes (e.g. removing lens

distortion), transformation of points and lines, camera projection or multi-view geom-

etry (e.g. trifocal tensors, frame transformations). As shown in Figure 3.1 they form a

hierarchy within the projective group. We also describe their composition and invariant

24 Chapter 3. Theory and Background

Euclidean similarity affine projective
Transformations

rotation X X X X
translation X X X X

uniform scaling X X X
non-uniform scaling X X

shear X X
perspective projection X

Invariants
length X
angle X X

ratio of lengths X X
parallelism X X X
incidence X X X X
cross ratio X X X X

Table 3.3: Hierarchy of transformations. We show their allowed geometric transforma-
tions and the measures that remain invariant in every group.

Figure 3.1: Hierarchy of transformations. Geometric transformations form a hierar-
chy within the projective group dependent on their inner-group invariants and allowed
transformations.

properties which are summarized in Table 3.3. All transformations and their matrix

representation are given in Table 3.4.

Isometries

Isometries (metric transformations, Euclidean transformations) are composed of a 3×
3 rotation matrix R and a 3 × 1 translation vector t. These transformations preserve

Euclidean distances and model rigid body motions (relative movements in P3). A planar

isometry in P2 has 3 degrees of freedom (DOF); one for rotation and two for translation.

In P3 a metric transformation has 6 DOF.

The two-dimensional rotation matrix is defined the following way:

3.1. Projective Geometry 25

R(φ) =

(
cos(φ) −sin(φ)

sin(φ) cos(φ)

)
. (3.3)

A general three-dimensional rotation is composed of the three orthogonal rotation

matrices around the coordinates axes:

R(φ, θ, ψ) =


1 0 0

0 cos(φ) −sin(φ)

0 sin(φ) cos(φ)




cos(θ) 0 sin(θ)

0 1 0

−sin(θ) 0 cos(θ)




cos(ψ) −sin(ψ) 0

sin(ψ) cos(ψ) 0

0 0 1



=


c(θ)c(ψ) −c(φ)s(ψ) + s(φ)s(θ)c(ψ)) s(φ)s(ψ) + c(φ)s(θ)c(ψ)

c(θ)s(ψ) c(φ)c(ψ) + s(φ)s(θ)s(ψ) −s(φ)c(ψ) + c(φ)s(θ)s(ψ)

−s(θ) s(φ)c(θ) c(φ)c(θ)


(3.4)

where s(.) and c(.) denote the sine and cosine function. A more detailed discussion on

rotations matrices and their different parameterizations is given in Section 3.1.4.

Similarity Transformation

A similarity transformation extends the metric transformation with an additional isotropic

scaling factor. The scaling factor adds one additional degree of freedom in P2 (4 DOF)

and P3 (7 DOF). It is also known as equi-form transformation because of its shape pre-

serving nature.

Affine Transformation

The affine transformation is composed of a non-singular linear transformation A fol-

lowed by a translation t. Hereby, the affine matrix is represented by rotations and

non-isotropic scaling D

A = R(θ)R(−φ)DR(φ) (3.5)

D =

(
λ1 0

0 λ2

)
or


λ1 0 0

0 λ2 0

0 0 λ2

 (3.6)

26 Chapter 3. Theory and Background

leading to a total of 6 DOF (two for both rotations, two for translation and two for

non-isotropic scaling) in P2 or 12 DOF in P3.

Projective Transformation

The projective transformations are more general than their affine counterpart since the

fourth matrix row does not contain the null-vector. In contrast to affine transformations,

it behaves non-linear when operating on inhomogenous points. The additional non-null

vector leads to a total of 8 DOF (in P2) or 15 DOF (in P3).

Group Matrix Distortion P2 P3

Isometry
(

R t
0T 1

) 3DOF
length, area,
angle

6DOF
length, vol-
ume

Similarity
(

sR t
0T 1

) 4 DOF
ratio of length
and angle

7 DOF
absolute conic

Affinity
(

A t
0T 1

) 6 DOF
parallel lines,
ratio of line
segments and
area

12 DOF
parallel
planes, ratio
of volumes,
cetroids

Projective
(

A t
vT s

) 8 DOF
collinearity,
cross ratio
of collinear
points, con-
currency

15 DOF
intersection
and tangency
of surfaces

Table 3.4: Geometric transformations. The number of degrees of freedom (DOF) as
well as their invariants are described for P2 and P3. The matrix representation of the
appropriate transformation H is also given [53].

3.1.4 Rotation Representations

As shown in Equation 3.4 a rotation matrix in P3 is represented by a 3 × 3 orthog-

onal matrix composed of three rotations around the principal axes, where the three

parameters define the rotation around each axis. A rotation matrix R comes along with

3.1. Projective Geometry 27

orthogonality and norm constraints:

det(R) = 1

R−1 = RT (3.7)

‖Rv‖= ‖v‖.

While the nine parameter encoding is useful for coordinate and frame transformations,

it has disadvantages in many parameter estimation applications like bundle adjustment.

Therefore, we focus on simpler representations consisting of three or four parameters

like Euler angles, quaternions and the axis-angle representation.

Euler Angles

Any rotation from one orthogonal coordinate system to another can be described by

three successive rotations parametrized by the Euler angles (θ, φ, ψ). Each angle de-

scribes a rotation about a single coordinate axis, where we focus on the most popular

out of 12 rotation orderings called ZYZ or Y convention. Hereby, an initial coordinate

system xyz is transformed the following way:

1. Rotation by angle ψ around the z-axis resulting in x′y′z′.

2. Rotation by angle φ around the y’-axis resulting in x′′y′′z′′.

3. Rotation by angle θ around the z”-axis.

The final rotation matrix R is computed by matrix multiplication of three matrices Rz(ψ),

Ry′(φ) and Rz′′(θ) each describing a rotation about a single axis.

R = Rz(ψ) · Ry′(φ) · Rz′′(θ)

=


c(ψ)c(φ)c(θ)− s(ψ)s(θ) −c(ψ)c(φ)s(θ)− c(θ)s(ψ) c(ψ)s(φ)

s(ψ)c(φ)c(θ)− c(ψ)s(θ) −s(ψ)c(φ)s(θ) + c(ψ)c(θ) s(ψ)s(φ)

−s(φ)c(θ) s(φ)s(θ) c(φ)

 . (3.8)

28 Chapter 3. Theory and Background

The inverse mapping is given by


ψ

φ

θ

 =


arctan

(
r23
r13

)
arctan

(√
r2

13+r2
23

r33

)
arctan

(
− r32

r31

)
 , (3.9)

where rij denotes the matrix element or R in the i-th row and j-th column. If φ = 0 or

φ = kπ a double rotation about identical z-axes would occur, which is also known as

gimbal lock. Figure 3.2(a) shows the three axis rotations evolved in a ZYZ convention.

Unit Quaternions

A unit quaternion is a four parameter vector q = (q1, q2, q3, q4) obeying the constraint

that

q2
1 + q2

2 + q2
3 + q2

4 = 1. (3.10)

The four parameters are defined as

q1 = exsin(
θ

2
)

q2 = eysin(
θ

2
)

q3 = ezsin(
θ

2
) (3.11)

q4 = cos(
θ

2
),

where ex, ey, ez denote the Euler axes and θ the rotation angle. The fourth parameter is

also called the scalar term, which can be calculated from q1, q2, q3 through Equation 3.10.

3.1. Projective Geometry 29

The conversions between a rotation matrix R and quaternions are as follows:

R =


2(q2

4 + q2
1)− 1 2(q1q2 − q4q3) 2(q1q3 + q4q2)

2(q1q2 + q4q3) 2(q2
4 + q2

2)− 1 2(q2q3 − q4q1)

2q1q3 − q4q2 2(q2q3 + q4q1) 2(q2
4 + q2

3)− 1

 (3.12)


q1

q2

q3

q4

 =
1
2


sgn(r32 − r23)

√
r11 − r22 − r33 + 1

sgn(r13 − r31)
√

r22 − r33 − r11 + 1

sgn(r21 − r12)
√

r33 − r11 − r22 + 1
√

r11 + r22 + r33 + 1

 , (3.13)

where rij denotes the matrix element of R in the i-th row and j-th column. Their usage in

computer vision and robotics is very popular because of their compact representation,

the absence of discontinuous jumps and singularities and the reduced computational

cost.

Axis-Angle Representation

In the axis-angle representation, also called exponential coordinates, a rotation is ex-

pressed by two parameters: the rotation angle θ and a unit vector v ∈ R3 indicating the

axis of rotation. This four parameter representation can also be converted to a three-

parameter case where rotation axis and angle are encoded by a non-normalized vector,

where the angle is given by its magnitude. The conversion between rotation matrix R

to its axis-angle counterpart (v, θ) with ‖v‖= 1 is given by the Rodrigues formula (also

called the exponential map):

R(v, θ) = I + sin(θ) [v]× + (1− cos(θ)) [v]2×, (3.14)

where [v]× denotes the antisymmetric matrix of v. Its conversion (also denoted as loga-

rithmic mapping) is given by

θ = arccos
(

trace(R)− 1
2

)
(3.15)

v =
1

2sin(θ)


r32 − r23

r13 − r31

r21 − r12

 . (3.16)

30 Chapter 3. Theory and Background

This type of rotation representation is sketched in Figure 3.2(b).

(a) (b)

Figure 3.2: Rotation representations. (a) Three rotations around one of the main coordi-
nate axes parameterized by the Euler Angles. Here the ZYZ or Y-convention is shown.
(b) The axis-angle representation consists of a unit vector v denoting the axis of rotation
and the angle θ its amount.

3.1.5 Perspective Camera Model

A camera defines a mapping from a three-dimensional point in space onto the two-

dimensional image plane, which can be easily formulated by projective geometry. The

camera coordinate system with its origin in the camera center C is defined as follows:

The viewing direction of the camera is the positive z-axis, also known as principal axis

or optical axis. The principal plane intersects with the xy-axis whereas the image plane

is located parallel to it at distance f . Assuming a basic pinhole camera model, an

image point x = (u, v) is defined by the intersection of the ray through a point in space

X = (X, Y, Z)T and the projection center C with the image plane.

Looking at Figure 3.3 this can be expressed as

(
u

v

)
=

(
f X

Z

f Y
Z

)
(3.17)

using similar triangles (central perspective projection). Taking homogeneous coordi-

nates into account Equation 3.17 can be rewritten as simple matrix multiplication

3.1. Projective Geometry 31


f X

f Y

Z

 =


f 0 0 0

0 f 0 0

0 0 1 0




X

Y

Z

1



=


f 0 0

0 f 0

0 0 1

[I3×3|03×1

]


X

Y

Z

1

 . (3.18)

In practice the origin of the image frame is not at the principal point p = (px, py) (the

intersection of the optical axis and the image plane) as assumed in Equation 3.18, but

translated to the upper left pixel for example. This leads to the principal point offset

(px, py) expressed in the following Equation:


f X + Zpx

f Y + Zpy

Z

 =


f 0 px

0 f py

0 0 1

[I3×3|03×1

]


X

Y

Z

1

 . (3.19)

The first 3× 3 matrix is called camera calibration matrix K, which holds the intrinsic

camera parameters. Together with the 3× 4 matrix [I3×3|03×1] this results in the homo-

geneous camera projection matrix P, which describes the mapping from a homogeneous

world point X to a homogeneous image point x by matrix multiplication

x = K [I3×3|03×1] X

= P X. (3.20)

The above defined camera calibration matrix K assumes quadratic pixels. In the rare

case of sheared pixels an additional skew parameter s may be added leading to the

32 Chapter 3. Theory and Background

general form of a camera calibration matrix

K =


f s px

0 f py

0 0 1

 . (3.21)

Figure 3.3: Perspective camera model. (left) A camera coordinate frame lying in a com-
mon world coordinate frame O. The extrinsic parameters R and t (representing an
Euclidean transformation) describe pose and orientation of the camera in the world co-
ordinate frame. (right) Pinhole camera geometry, where C is the camera center and p
the principal point. Focal length f denotes the perpendicular distance between image
plane and projection center C. The mapping from a world point X onto the image plane
can be described by similar triangles.

Generally, three-dimensional points are defined within a common (Euclidean) world

coordinate frame. The camera model defined so far is called central perspective camera,

which assumes that the camera coordinate frame coincides with the world coordinate

frame. In order to describe the orientation of the camera coordinate frame at a different

pose an Euclidean transformation is used. Equation 3.20 can be extended to

x = K [I3×3|03×1]

[
R t

0T 1

]
X

= K[R|t] X (3.22)

using R and t to transform a world point X to the camera coordinate frame before

projection takes place. Since R and t describe the exterior orientation of a camera they

are called the external camera parameters. The inverse of the Euclidean transformation can

be used to compute the camera center C = (0, 0, 0, 1)T in the world coordinate frame as

3.1. Projective Geometry 33

follows:

Cw =

[
R t

0T 1

]−1


0

0

0

1

 = −RT t. (3.23)

Putting all together the general projection matrix P defines a linear mapping from the

projective space P3 to the image plane P2 with eleven DOF (3 for R, 3 for t and 5 for K)

P = K [R|t] . (3.24)

The above described imaging model is assumed to be noise free. In practice many

devices come along with lens distortion effects due to manufacturing errors in the lenses

(i.e. straight lines in the scene are not imaged straight). The most common types are

radial and tangential distortion, where radial distortion is the most significant one [138,

154]. In order to correct a distorted pixel xd = (ud, vd) to an undistorted pixel xu =

(uu, vu), one has to define a radial distortion function L(r) which is modeled as

xu =

(
uu

vu

)
=

[
px + L(r)(ud − px)

py + L(r)(vd − py)

]
, (3.25)

where px and py denote the center of radial distortion (typically the principal point).

The distortion function L(r) is approximated by a Taylor-series

L(r) = 1 + κ1r + κ2r2 + κ3r3 + ...

r =
√
(ud − px)2 + (vd + py)2, (3.26)

where r denotes the Euclidean distance between the undistorted pixel and the center of

distortion. The distortion parameters {κ1, κ2, ...} are usually determined together with

the intrinsic camera parameters during a calibration process. For detailed description

on internal camera calibration and distortion estimation we refer the reader to [53, 138,

154]. A useful tool to perform intrinsic calibration together with distortion estimation is

provided by Bouguet et al. [11].

34 Chapter 3. Theory and Background

3.2 Multiple View Reconstruction

Since visual SLAM algorithms produce three-dimensional information out of multiple

images taken from different locations, this Section outlines the geometry between two

or more images of the same scene. Generally, this involves several steps like intrinsic

camera calibration, computation of their relative orientation followed by the detection

of point correspondences used for triangulation. While intrinsic calibration has been

discussed in Section 3.1 we review epipolar geometry in Section 3.2.1, which describes

the algebraic relations between two images. Furthermore, the construction of three-

dimensional information out of two or more images through triangulation is discussed.

We also introduce the concept of bundle adjustment in Section 3.2.2, which exploits the

problem of estimating or refining camera parameters and three-dimensional structure

simultaneously through an iterative optimization algorithm minimizing some kind of

image based error.

3.2.1 Multi-View Geometry

Multi-view geometry deals with the relationship between two or more images and how

depth information can be recovered. The different geometric properties and relations of

3D points observed from two calibrated views and their image projections are described

by the epipolar geometry. Based on the pinhole camera model depicted in Section 3.1.5

two basic concepts are reviewed in this chapter: First, fundamental and essential matri-

ces are derived describing the algebraic relation between corresponding image points in

two precalibrated views. Second, we introduce structure estimation out of two or more

views by triangulating projective rays passing through point correspondences.

Epipolar Geometry

Given a scene point X and its image projections x and x′ using two different projection

matrices P and P′, the relation between both image points is encoded in the fundamental

matrix F.

Figure 3.4 sketches this relationship between image points x and x′: One can easily

see that image points, the triangulated 3D point X and both camera centers C and C′

define a plane which is called epipolar plane. The epipoles e and e′ are the points of

intersection of the line joining the two camera centers with the image planes. They can

also be interpreted as the projection of the camera center of one view in the second one.

The baseline describes the line joining the two camera centers. Intersecting the epipolar

3.2. Multiple View Reconstruction 35

plane with the image planes results in the epipolar lines l and l′. As shown in Figure 3.4

the epipolar line in one view can be interpreted as the projection of the ray from camera

center to world point X in the second view.

Above described entities allow us to derive a relationship between both image points.

Generally, each point x in one image corresponds to an epipolar line l′ in the second

image. This projective mapping from points to lines is encoded in the fundamental

matrix F:

l′ = [e]× x′ = [e′]× Hπ x = Fx, (3.27)

with l′ = e′ × x′ = [e′]×x′. Equation 3.27 can be interpreted as the transfer of image

point x via the epipolar plane to a corresponding point x′ into the second view written

as x′ = Hπ x using a 2D homography Hπ. Finally, we define the fundamental matrix

F = [e′]× Hπ. (3.28)

Up to now we described a correlation between points and lines. Equation 3.27 can

be used to derive a geometric relation between corresponding image points x and x′ the

following way:

x′T l′ = 0

x′T F x = 0, (3.29)

which is also known as the correspondence condition, using the condition that x′ lies on

the epipolar line l′.

The fundamental matrix is a uniquely defined, homogeneous 3× 3 matrix of rank

2 and has seven DOF. Therefore, at least seven point correspondences are necessary to

compute F. For a more detailed derivation of the fundamental matrix and its computa-

tion we refer the reader to [53].

The essential matrix E can be seen as a specialization of the fundamental matrix

operating on normalized image coordinates

x̂′T E x̂ = 0, (3.30)

where x̂ = K−1 x and x̂′ = K′−1 x. To understand the relation between F and E we

36 Chapter 3. Theory and Background

Figure 3.4: Two-view geometry. Two cameras marked by their projection centers C and
C′ are shown. The image projections x and x′ of the scene point X together with both
camera centers form the epipolar plane. The epipolar line l′ is defined by the intersection
of the epipolar plane and the image plane. The line joining both camera centers is called
baseline. Intersecting the baseline with both image planes results in the epipoles e and
e′. The epipolar line l′ can also be seen as the image of the ray in space defined by C
and X in the second view. So the projection x′ of X in the second view must lie on l′.

substitute for x̂′ and x̂ resulting in the following equations

(
K′−1 x′

)T
E K−1 x = 0

x′TK′−T E K−1 x = 0

K′−T E K−1 = F

K′T F K = E (3.31)

Multi-View Triangulation

The projection matrix explained in Section 3.1.5 defines a mapping from three-dimensional

world coordinates to two-dimensional image coordinates. Triangulation from two or

more views describes the inverse problem, where a world point can be computed from

two corresponding image positions and the projection matrices from those views. As-

suming noise-free projection matrices and correspondences, the reconstructed point is

defined by the intersection of the two back-projected rays through the image points. In

practice these two measurements are subject to noise and their rays will not intersect

3.2. Multiple View Reconstruction 37

(compare Figure 3.5). Therefore, an estimated solution needs to be computed. The most

popular method makes use of the projection equation x = P X. Given an image point in

its homogeneous form x = w(u, v, 1) and splitting the known camera matrix P into rows

the mapping from world coordinates to image coordinates can be rewritten as follows:

wu = PT
1 X

wv = PT
2 X (3.32)

w = PT
3 X,

where PT
i denotes the i-th row of the general projection matrix P. Replacing w in the

first two equations results in a linear equation system

PT
3 Xu− PT

1 X = 0

PT
3 Xv− PT

2 X = 0 (3.33)

for a single homogeneous image point x. Since a three-dimensional world point X

is described by a 4-vector at least two corresponding image points x ↔ x′ and the

appropriate projection matrices P and P′ are necessary. The required solution for X

is given by the eigenvector corresponding to the smallest eigenvalue of the matrix A,

which is defined as follows:


PT

3 u− PT
1

PT
3 v− PT

2

(P′)T
3 u′ − (P′)T

1

(P′)T
3 v′ − (P′)T

2

 X = A X = 0. (3.34)

Equation 3.34 describing two-view triangulation can be easily extended to multiple

views, where A is a 2n× 3 matrix and n the number of views where X is visible in.

3.2.2 Structure and Motion Estimation

In the previous section we described the geometric relationship between two views in

terms of fundamental and essential matrix. Furthermore, we show how corresponding

points between calibrated image pairs can be used to compute three-dimensional in-

38 Chapter 3. Theory and Background

formation. Generally, triangulation cannot be performed exactly since most correspon-

dence algorithms deliver noisy point correspondences which do not satisfy the epipolar

constraint. Looking at Figure 3.5 the correct image points x and x′ are close to the

measured ones x̂ and x̂′, where d and d′ denotes the Euclidean distance between them.

Moreover, camera poses used for triangulation cannot be estimated exactly, which fur-

ther decreases reconstruction accuracy. Hence, we seek to find a 3D point X and camera

parameters P and P′ which minimize the sum of squared errors err = d2 + d′2 between

measured and predicted image points, also referred to as reprojection error. Usually, an

iterative non-linear minimization algorithm such as Levenberg-Marquardt [78] is used

to estimate both structure and motion. These considerations can also be extended to

an arbitrary number of views and points, also referred to as bundle adjustment (BA) or

structure from motion (SfM).

Figure 3.5: Triangulation error. Given projection matrices P and P′ a three-dimensional
point X is computed from two corresponding image points x and x′. Because of mea-
surement noise triangulation cannot be performed exactly resulting in reprojection er-
rors d and d′ between measured (x̂, x̂′) and predicted (x, x′) image points.

Basically, there exist two methods performing structure and motion estimation from

multiple views: Sequential or batch based methods.

Sequential Methods Starting from a two-view reconstruction subsequent image views

are inserted one at a time. Hereby, each view is registered to an already existent

pointcloud. An image view with known intrinsics can be registered to an already

existing pointcloud through at least three 2D ↔ 3D correspondences resulting in

four solutions [53]. Recovering both intrinsic and extrinsic camera parameters can

3.2. Multiple View Reconstruction 39

be done by at least six correspondences. This form of sequential structure from

motion has been used from many authors like [21, ?, 106]. The reconstruction is

then extended by adding three-dimensional points through standard triangulation

methods using two or more views.

As an alternative one can merge partial reconstructions from two views into a

single consistent 3D model using 3D ↔ 3D correspondences. At least four non-

collinear points are necessary to compute a similarity transformation registering

both pointsets. Partial reconstructions are merged sequentially or hierarchically as

described by [37, 64, 42].

Alternatively, one can exploit epipolar geometry to relate an incoming image to

the previous one. Given eight image point correspondences one can use the Eight-

Point-algorithm [52] to compute the fundamental matrix. Given the internal cal-

ibration matrices we can recover the relative camera motion between two views

from the essential matrix as described in [53]. The resulting projection matrices

can be used for structure estimation through triangulation as described in Section

3.2.1. Recently Snavely et al. [121] followed this approach.

Batch-based Methods Batch-based methods use all captured images simultaneously to

recover structure and motion within an optimization routine. In contrast to se-

quential methods there exists no error propagation from previous reconstructions

since the overall error can be distributed equally. Starting from a coarse initial

solution structure and motion is improved through standard bundle adjustment

routines allowing for fast convergence [135, 79, 20].

Nearly all described methods perform some kind of structure and motion refine-

ment after initial reconstruction minimizing an image based error, which is also known

as bundle adjustment (BA). In the following, estimation of camera parameters and

three-dimensional structure through an iterative least-squares solver is explained. Fur-

thermore, robust cost functions are introduced to deal with data association outliers.

Problem Definition

Given an initial estimate of camera poses Pj and 3D landmarks Xi bundle adjustment

refines both parameter sets simultaneously by minimizing the reprojection error

ε(Pj, Xi) = mij − Pj · Xi, (3.35)

40 Chapter 3. Theory and Background

where mij denotes the image point of Xi captured by camera Pj. Throughout this chapter

mij are denoted as measurements or observations, which are kept fixed during the whole

optimization procedure. Usually, a non-linear least-squares solver is used to minimize

the sum of squared residuals, which can be summarized as

min
Xi,Pj

∑
ij

‖mij − Pj · Xi‖2, (3.36)

using the standard projection function.

Figure 3.6: Bundle adjustment problem. Four scene points X1, ..., X4 are observed by
three cameras P1, P2, P3. The lines visualize which scene point produces a measurement
in a specific camera. Hereby, mij denotes the measurement of map point Xi in camera
Pj.

Figure 3.6 shows a bundle adjustment problem consisting of three camera poses and

four map points to be optimized. The lines visualize which map point is associated to a

measurement in a specific view.

Parameter Estimation

The cost function depicted in Equation 3.35 describes a non-linear relationship between

parameters and measurements. Further, the number of parameters to be optimized is

much smaller than the number of measurements. So we have to deal with an overdeter-

mined non-linear system of equations, which can be solved by a non-linear least-squares

optimization routine as described in Appendix A.

The projection matrices Pj and world points Xi can be rearranged in a single param-

3.2. Multiple View Reconstruction 41

eter vector P = {PT, XT}, where P = {P1, ..., Pm} contains the camera parameters and

X = {X1, ..., Xn} the map point parameters. Similarly, the image measurements denoted

asM can be divided intoM = {M1,, Mn}, where each Mi contains the measurements

available for map point Xi. Each Mi is written as Mi = {mi1, mi2,, mim}, where mij de-

scribes the projection of the i-th world point into the j-th image. The measurements are

visualized in Figure 3.6 as lines connecting map point and camera pose. Assuming that

each map point is visible in each image results in a maximum of m · n measurements.

We further recognize that image point mij only depends on the parameters of the j-th

camera and the i-th point, which leads to ∂mij
∂Pk
6= 0 only if j = k and ∂mij

∂Xk
6= 0 only if i = k.

Because of the non-linearity of the cost function and the sparse relationship between

measurements and parameters a sparse Levenberg-Marquardt algorithm as described

in Appendix A.3 is applied. The Jacobian J = ∂P
∂M shown in Figure 3.7(a) exhibits this

sparse block structure. In practice a map point is not visible in all views as shown in

Figure 3.6, which results in the appropriate Jacobian sketched in Figure 3.7(b). Referring

to the Jacobian J used in Appendix A.3

J =


A1 B1

A2 B2
...

. . .

An Bn

 (3.37)

the blocks Ai contain the derivatives with respect to the camera parameters P = {P1, ..., Pm}
and are structured like this:

Ai =


Ai1

. . .

Aim

 , (3.38)

where Aij =
∂mij
∂Pj

. The blocks Bi =
∂Mi
∂Xi

contain the derivatives with respect to the point

parameters X = {X1, ..., Xn}, where Bij =
∂mij
Xi

Bi =


Bi1
...

Bim

 . (3.39)

42 Chapter 3. Theory and Background

(a) (b)

Figure 3.7: Bundle adjustment Jacobian structure. (a) If every map point is observed
from every camera we get this kind of block structure in the Jacobian. The gray boxes
remain empty. (b) Here we show the Jacobian structure for the bundle adjustment
problem depicted in Figure 3.6. The blocks corresponding to those map points not
producing a measurement in a certain camera are set to zero.

These matrices together with the error function in Equation 3.36 are used in the

sparse Levenberg-Marquardt algorithm to optimize both structure X and motion P. For

a detailed derivation of the bundle adjustment problem and some implementation hints

utilizing the block structure as well as the sparsity of the Jacobian we refer the reader to

the excellent reviews given in [53] and [137].

Robust Cost Functions

Looking at the cost function in Equation 3.36 the traditional bundle adjustment problem

optimizes the Euclidean reprojection error in a least-squares manner. If measurements

are free of outliers, the least-squares cost function would lead to the Maximum Likeli-

hood estimate of the parameters. In practice measurements cannot be estimated robustly

due to data association failures (e.g. wrong feature point matching). This would result

in large reprojection errors having a strong influence on the squared cost function to be

optimized. Figure 3.8 demonstrates the effect of a single outlier (red) to a least-squares

fit of a line to some data points.

To be more robust against outlier measurements the least-squares cost function is

replaced by an M-Estimator. To understand their behavior we take at look at the general

3.2. Multiple View Reconstruction 43

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

18

20

Figure 3.8: Least-squares line fitting. The least-squares estimate of the line through the
data points is shown in blue. A single outlier data point (red) greatly influences the
result of the optimum least-squares line fit depicted in red.

formulation of a bundle adjustment problem

min
∑

i

C(εi), (3.40)

where εi denotes the residuals and C(.) : R → R a cost function operating on the

residuals which should be less increasing than square. In traditional bundle adjustment

C(.) is written in a least-squares sense C(ε) = 1
2 ε2 resulting in Equation 3.36 with ε

defined as the standard reprojection error from Equation 3.35. A minimum occurs if the

derivative of Equation 3.40 becomes zero

∑
i

ψ(εi)
∂εi

∂P
= 0, (3.41)

where P denotes the parameters to be estimated and

ψ(εi) =
∂C(εi)

∂P
(3.42)

is called the influence function. Let us define a weighting function operating on the

44 Chapter 3. Theory and Background

influence function w(x) = ψ(x)
x , then Equation 3.41 becomes

∑
i

w(εi) εi
∂εi

∂P
= 0, (3.43)

which is an equation system containing weighted gradients. As shown in [?] Equation

3.43 results from solving an iterated reweighted least-squares problem, which can be

solved by iterative numerical algorithms like Gauss-Newton or Levenberg-Marquardt.

Since the weighting function depends on the residuals w(εi), it must be recomputed

every iteration.

Table 3.5 describes different cost functions C(x) (including the standard squared

cost function), which could be used if outliers are present. Even their influence function

ψ(x) as well as the weighting term w(x) are presented. Their graphical representation

is shown in Table 3.6.

M-Estimator C(x) ψ(x) w(x)

Squared 1
2 x2 x 1

L1 |x| sgn(x) 1
|x|

Huber

{
|x| ≤ k
|x| ≥ k

{
1
2 x2

k(|x| − k
2)

{
x
ksgn(x)

{
1
k
|x|

Tukey

{
|x| ≤ k
|x| ≥ k

{
k2

2 {1− exp{−
(x

k

)2}}(
k2

6

) x
[
1−

(x
k

)2
]2

0


[
1−

(x
k

)2
]2

0

Table 3.5: Various M-estimators. We summarize the cost function C(x), the influence
function ψ(x) and the resulting weight w(x) of four M-Estimators.

Squared error As mentioned above the squared error is not robust against outliers since

their influence is not bounded. Looking at the weighting function in Table 3.6, each

residual is weighted equally.

L1 It measures the absolute value of the residuals, where outliers are given less weight.

Of course they reduce the influence of large errors but they are still given low

3.2. Multiple View Reconstruction 45

M-Estimator C(x) w(x)

Squared

−6 −4 −2 0 2 4 6
0

5

10

15

−6 −4 −2 0 2 4 6
0

0.2

0.4

0.6

0.8

1

L1

−6 −4 −2 0 2 4 6
0

5

10

15

−6 −4 −2 0 2 4 6
0

0.5

1

1.5

2

2.5

3

Huber

−6 −4 −2 0 2 4 6
0

5

10

15

−6 −4 −2 0 2 4 6
0

0.2

0.4

0.6

0.8

1

Tukey

−6 −4 −2 0 2 4 6
0

5

10

15

−6 −4 −2 0 2 4 6
0

0.2

0.4

0.6

0.8

1

Table 3.6: Cost and weighting functions of different M-Estimators. Looking at the weight
w(x) one can see that the squared cost function assigns equal weight to each residual.
L1, Huber and Tukey instead reduce the influence of high residuals. Tukey is a so called
cut-off estimator since measurements resulting in high residuals are regarded as outlier.

weight since there is no cut-off point.

Huber Introduced by Huber et al.[59], it combines the standard squared and the L1

error, where residuals smaller than k get constant weight and higher residuals are

downweighted. The weighting function shown in Table 3.6 reflects this behaviour.

Tukey In contrast to the others, Tukey [139] is a cut-off estimator, where residuals above

a certain threshold are depicted as outliers. This behavior is reflected in the weight-

ing function in Table 3.6.

Huber and Tukey both depend on a tuning constant k, which is used for outlier iden-

tification and weight computation, where smaller values for k results in more resistance

46 Chapter 3. Theory and Background

to outliers. Since an iterative optimization procedure is used, the residuals change in

every iteration. Therefore, the value of k is a critical factor throughout the optimization

process which should be recomputed every iteration based on the distribution of the

residuals. Generally k = 1.345σ for Huber and k = 4.685σ for Tukey with σ denoting

the standard deviation of the residuals. A robust measure for σ is given by the median

absolute deviation (MAD) of the residuals

σ ≈ 1.4826 MAD(ε1, ..., εn) (3.44)

MAD({X1, ..., Xn}) = mediani
(
|Xi −medianj(Xj)|

)
. (3.45)

For a detailed insight on robust regression and data analysis the reader is referred to

Mosteller and Tukey [90].

3.3 Conclusion

In this chapter we provided the preliminaries for this work. The principles of projective

geometry, especially the perspective camera model, form the basic prerequisite for every

visual SLAM algorithm. The estimation of three-dimensional points out of two or more

views are used especially in the map building process. Moreover, the understanding of

the imaging process and parameter estimation techniques such as bundle adjustment is

required to form a basic visual SLAM procedure.

4
Visual Localization and Map

Building in Static Environments

Throughout this chapter our own visual SLAM algorithm operating within a static envi-

ronment is derived, whose building blocks are sketched in Figure 4.1. Before describing

the proposed algorithm in detail, we provide an extensive overview on current state-of-

the-art techniques to perform visual localization and map building. After a brief prob-

lem description in Section 4.1 we first describe various visual features, their parameteri-

zations, field of application and properties in Section 4.2. Localization and map building

- although performed simultaneously - are examined separately. Section 4.3 focuses on

different map representations and visual map building techniques given accurate sensor

poses. The localization process using vision sensors assuming a previously constructed

point map is described in Section 4.4. Finally, current loop closing techniques together

with fast and robust place recognition algorithms are examined Section 4.5.

In the last Section 4.6 our visual SLAM algorithm is explained in detail. Based on

the information gained from state-of-the-art review in the preceding theoretical back-

ground sections, we decided to use incremental structure from motion techniques to

build a three-dimensional pointcloud map where the robots trajectory is represented by

keyframes.

4.1 Introduction

Generally, every visual SLAM algorithm comprises two main parts: After reading and

processing the sensor data, a map from a previously unknown environment is built

47

48 Chapter 4. Visual Localization and Map Building in Static Environments

and localization within this map is performed. Optionally, loop closure detection and

correction can be added to handle large scale environments. Figure 4.1 outlines the main

tasks to be solved when performing localization and mapping.

LOCALIZATION

 Pose Prediction
 Data Association
 Pose Correction

MAP BUILDING

 Keyframe Insertion
 Feature Insertion

LOOP CLOSING

 Loop Closure Detection
 Loop Closure Correction
 Pose Correction
 Map Correction

MAP

SENSOR INPUT

 Data Reading
 Feature
Generation

Pointcloud Vocabulary TreeOccupancy Grid Topological Map

Figure 4.1: Simultaneous Localization and Map Building. Despite data processing, a
SLAM algorithm consists of two building blocks: Localization and Map Building. Local-
ization is the process of determining the robot/sensor pose within a given environment.
Map building instead assumes accurate pose estimates while constructing a previously
unknown surrounding. The loop closing process, consisting of loop closure detection
and correction, can be decoupled from the whole SLAM process.

Localization describes the problem of determining the robot/sensor pose relative to

a given map. Using a vision sensor this process is also known as position tracking or

visual pose estimation, since the robot keeps track of its pose while moving within the

environment.

The mapping process instead describes the problem of building an accurate rep-

resentation of the surrounding given accurate sensor poses. In many cases a three-

dimensional representation is constructed when using visual sensor information.

When performing simultaneous localization and mapping one has to think about the

type of map to be built, the appropriate mapping algorithm as well as how localization

is performed within the map:

The environment representation must be chosen carefully taking into account differ-

ent aspects like sensor information, size and structure of the environment the robot is

traveling in and subsequent higher-level tasks. While occupancy grid maps are more

suitable for range sensor devices like time-of-flight cameras, laser or sonar [44, 32,

47, 105], feature based maps are preferred for monocular camera or stereo mapping

4.2. Visual Features for Localization and Map Building 49

[63, 25, 65]. A robot equipped with a laser sensor moving in the plane constructs two-

dimensional occupancy grids. Contrary, an autonomous vehicle traveling in a multi-

floor environment capturing the surrounding with a stereo-camera would construct a

three-dimensional pointcloud associated with some distinctive visual features (e.g SIFTs,

SURFs or Harris corners). Size, structure, appearance and complexity of the environ-

ment to be constructed often restrict the developer to a specific map representation.

When dealing with a large outdoor scenery containing lots of distinctive features, sparse

point based maps are preferred because of storage requirements [102]. A more detailed

representation like textured dense surface information or three-dimensional occupancy

grids could be used for describing a small, restricted desktop environment [93]. If the

reconstructed map should be used for any higher-level robotic tasks such as grasping or

path planning, occupancy grid maps are the method of choice since they contain infor-

mation about free, unseen or occupied space as well as occlusion information allowing

a robot to compute safe pathways to reach a desired location.

The choice of the mapping algorithm mostly depends on the given sensor infor-

mation and its noise characteristics. Range sensing devices are often integrated into

probabilistic occupancy grids [47], where and inverse sensor model is defined to deal

with noisy sensor readings. When dealing with cameras only, salient image features

can be extracted and sparse three-dimensional pointclouds are estimated. Inaccurate

feature extraction methods or wrong data association are common error sources, which

are usually handled by a robust optimization routine during mapping [63].

The localization procedure deals with the representation and estimation of the sensor

pose. Here, poses can be estimated in the two- or three-dimensional domain. While a

laser range finder restricts a localization algorithm to two dimensions, a range image

device allows a 6DOF pose estimate. In both cases there exist a huge variety of different

parameterizations like mean and covariance estimated by a Kalman Filter [25], a set of

particles [107] or exterior orientation composed of rotation and translation computed

through a non-linear least-squares optimizer [63].

4.2 Visual Features for Localization and Map Building

To gather knowledge about the environment an autonomous system perceives the out-

side world through various sensors and extracts meaningful information out of them.

A robot can be equipped with a huge variety of sensors (compare Figure 4.2) like sonar,

wheel encoders, bumpers, laser range finders, stereo-rigs, infrared sensors or time-of-

50 Chapter 4. Visual Localization and Map Building in Static Environments

flight cameras. All of them provide different measures like range and bearing readings,

a single image, the robots velocity, the robots global position or simply the existence of

an obstacle.

(a) (b) (c)

Figure 4.2: Sensors and their features. (a) Robot equipped with various sensors per-
ceiving outside world. (b) Raw laser measurement (360 data points, high information
content, computationally not expensive). (c) Corner (green) and line (gray) features
extracted out of the raw laser reading (7 data points, low information content, compu-
tationally expensive).

In order to describe the surrounding world there exist two main strategies: First,

one could use the raw sensor output as input for a SLAM process (e.g. whole image,

depth map). Second, only specific information described by some higher-level feature

can be extracted out of one or more raw sensor readings (also called feature extraction).

In visual SLAM, a feature refers to an interesting part in the image domain or cam-

era coordinate frame, ranging from simple structures such as points, edges, curves or

lines to more complex descriptions extracted out of a larger image subregion. The most

desirable property of an image feature is its stability under local and global image defor-

mations such as scale, rotation and translation changes or illumination and brightness

variations. Furthermore, it should be easily recognizable, fast to compute and exhibit

a high degree of reproducibility. The process to locate visual features consists of two

main steps: feature detection followed by feature extraction. A feature detection algorithm

decides for every pixel whether there is a specific image feature or not. Feature extrac-

tion extracts some relevant information around a certain neighborhood of the detected

4.2. Visual Features for Localization and Map Building 51

feature, which results in a so called feature descriptor of a specific size.

Whether to use raw sensor data or some extracted features highly depends on the

underlying application, environment and computational power available: Raw sensor

measurements may be used for occupancy grid mapping or obstacle avoidance, while

geometric features like lines or polygons are useful for topological or landmark based

map building. Even the surrounding environment plays an important role when per-

forming feature extraction. Line, plane or corner features (also known as low-level

features) are preferred to represent well-structured indoor environments. Using raw

sensor data maximizes the information content and requires no computationally expen-

sive feature extraction algorithms but at the same time comes along with high storage

requirements and low distinctiveness. Feature extraction methods instead are usually

computationally very expensive leading to serious delays in data processing, which

should be considered during the design of a SLAM algorithm. On the other hand

features require less storage and are more distinctive than raw sensor readings. To vi-

sualize a features information content, memory consumption and distinctiveness Figure

4.2 shows a raw laser reading as well as line and corner features extracted out of it.

In contrast to laser range finders, sonar or odometry sensors, vision based sensors

provide an enormous amount of information about the surrounding world and are be-

coming more and more popular. We present three main types of visual features, as-

suming that the reader is familiar with CCD/CMOS technology and transport protocols

like Firewire (IEEE 1394) or USB. Otherwise, we refer the reader to an excellent overview

given by Siegwart and Nourbakhsh [115]. We distinguish between sparse visual features

(Section ??) referring to single image pixels, dense features (Section 4.2.2) describing a

larger image portion and appearance based features (Section 4.2.3) corresponding to the

information found in one ore more images.

4.2.1 Sparse Visual Features

Sparse visual features are computed out of a subset of image pixels only and are located

at a single image pixel, which corresponds to a specific location in the physical world.

As mentioned at the beginning a two-step procedure consisting of feature detection and

feature extraction is necessary to fully describe a sparse visual feature.

The simplest one is called an image patch, where a small region of a predefined size

is cropped around an image point. The image point itself is found by an interest point

detector. The most popular interest points used in the robotics community are corner

detectors such as Harris [51], FAST [109] or SUSAN [120] often found by searching for

52 Chapter 4. Visual Localization and Map Building in Static Environments

two dominant, different edge directions. Figure 4.3(a) shows quadratic image patches

extracted around Harris corners. Image patches are fast to compute but are not robust

against viewpoint and illumination changes. Since the information content of a single

image patch is not very high, they are not very descriptive and reliable.

Contrary, a blob detector, such as maximally stable extremal regions (MSER) pro-

posed by Matas et al. [81], defines image regions by summarizing pixels with similar

intensity values. MSERs are invariant under affine transformations and useful for wide-

baseline matching. Unfortunately, they are sensitive to lighting effects such as change

of daylight or shadows. Figure 4.3(b) demonstrates three regions found by MSER.

Both, image patches and MSER regions, are not invariant to viewpoint and lighting

changes, they are not robust against high-frequency noise and have a weak discrimi-

native property. To overcome these limitations one can use the Scale Invariant Feature

Transform (SIFT) descriptor [74] which combines a Difference of Gaussian (DOG) based

keypoint detector with a descriptor based on gradient histograms. After keypoint detec-

tion the 16× 16 neighborhood is subdivided into 4× 4 image patches where a gradient

histogram with 8 bins is computed. This results in 16 gradient histograms of length 8

from whom a feature descriptor of length 128 is built. In contrast to beforehand men-

tioned features it is robust against rotation, scale, lighting and viewpoint changes, which

are desirable properties when identifying corresponding features during localization

and mapping. Figure 4.3(d) shows SIFT descriptors extracted around DOG keypoints,

where the size of the circle corresponds to the estimated scale and the line its gradient

magnitude orientation.

Sparse visual features are often used in landmark maps, where the environment is

described in two- or three-dimensions. Depending on the used sensor different parame-

terizations exist leading from a two-dimensional image feature to its three-dimensional

representation in the camera coordinate frame:

In case of a monocular imaging device a three-dimensional observation cannot be

represented by its coordinates but only by the viewing ray leading from the camera

center through the image point. This leads to various representations like unified in-

verse depth [87] as shown in Figure 4.4(a), anchored homogeneous points [123], inverse

scaling [80] or parallax angle [155]. For a well structured overview and a comparison

between these different types of landmarks in the context of Kalman Filter-based SLAM

we refer the reader to [15]. Contrary, three-dimensional points are also estimated out of

more singular views through multi-view triangulation as described in Section 3.2.1.

When dealing with a stereo-setup two-view triangulation can be performed to di-

4.2. Visual Features for Localization and Map Building 53

(a) (b)

(c) (d)

Figure 4.3: Image features. (a) Local image patches extracted around Harris cornerer.
(b) MSER features describing a larger, connected image region. (c) Gradient histograms
of SIFT features (yellow) around a DOG keypoint (red). (c) SIFT features around DOG
keypoints (red) where the size of the circle depicts the scale and the line the magnitude
orientation.

rectly estimate a features depth. After intrinsic and extrinsic camera calibration, corre-

sponding points in both images have to be found through correspondence algorithms.

For details we refer the reader to Scharstein and Szeliski [112] for a survey on various

techniques. Given associated image points one can use two-view triangulation as de-

scribed in Section 3.2.1 to estimate the depth of points. Matched point correspondences

and the resulting sparse pointcloud are presented in Figures 4.4(b) and 4.4(c). The ac-

curacy of the estimated depth depends on the following parameters: First, the more in-

accurate the preceding intrinsic and extrinsic calibration process the more uncertain the

resulting depth estimates. Second, point correspondence estimation is a notable error

source. One can easily verify that little pixel deviations may lead to large uncertainties in

54 Chapter 4. Visual Localization and Map Building in Static Environments

(a) (b)

1000

(c) (d)

Figure 4.4: Sparse three-dimensional feature representations. (a) In the monocular case
the inverse depth parametrization allows a three-dimensional feature representation
(courtesy of [17]). (b) SIFT features extracted from stereo images are matched and pro-
duced corresponding image points. (c) The three-dimensional pointcloud is computed
through two-view triangulation. (d) Planes estimated out of line segments (courtesy of
[95]).

z-direction. Third, there is a direct relationship between the depth of the scene point to

be estimated and the estimated z-value. Far away objects are triangulated less accurate

than near ones. Fourth, a large baseline allows for a more accurate reconstruction of the

three-dimensional point. Last, corresponding image points far away from the principal

point lead to more uncertainty in the reconstruction, because of manufacturing errors of

the chip and distortion effects which increase at image boundaries. Sparse pointclouds

are used both indoors and outdoors and are suitable for any unstructured environments.

4.2. Visual Features for Localization and Map Building 55

Compared to monocular features they are computationally more expensive because of

double feature extraction and features matching, but more accurate because of accurate

triangulation.

Instead of single three-dimensional point features one could also fit lines, surface

patches or other geometric primitives to the pointcloud data (compare Figure 4.4(d)).

To estimate the parameters of a line in range data one can use approaches like split and

merge, RANSAC, Hough-Transform or linear regression [96]. These types of features

are often used in well-structured indoor environments like flats, offices or corridors and

require less storage in contrast to sparse pointcloud data. However, feature extraction

requires more computation time.

4.2.2 Dense Visual Features

Dense visual features allow a more detailed representation of the environment and also

provide occlusion information which can be used for higher level robotic tasks such as

path planning or grasping. Dense pointclouds, planes and polygonal surface meshes

refer to this group.

In order to calculate a dense three-dimensional pointcloud one could estimate per

pixel correspondences between two or more images through an optical flow [149] algo-

rithm as shown in Figure 4.5(a). Although resulting in very realistic environment maps

their high computational effort and huge memory requirement restrict their operation

area to small desktop scenes or single objects models.

A more sophisticated environment representation consists of a dense surface model

computed out of depth maps or range image data as presented in [92, 60]. Unfortunately,

these mesh based techniques are very time and memory consuming and therefore only

applicable in restricted environments such as small desktop scenes.

Plane parameters can be derived from 3D lines [95] or one can do a least-squares-

fitting to pointcloud data [147, 108] as shown in Figure 4.5(b). In contrast to surface

meshes these are less memory consuming and applied in large, well-structured indoor

environments.

4.2.3 Appearance based Features

Appearance based features (global image features) are functions over the entire image

area and therefore correspond to a larger world area. A histogram of the grayvalues or

colorvalues can be used to describe a specific location (see Figure 4.6(a)). An alternative

56 Chapter 4. Visual Localization and Map Building in Static Environments

(a) (b)

Figure 4.5: Dense visual features. (a) Dense surface information (right) calculated out of
stereo images. (b) Planes estimated by a least-squares method (courtesy of [147]).

is to use fingerprints, where a bunch of local features is detected and summarized in

a higher-level description [69]. Figure 4.6(b) shows a fingerprint composed of vertical

lines and sixteen hues of color. Global image features are the method of choice when

dealing with a topological map.

0

1000

2000

3000

4000

5000

grayvalue

#

0 50 100 150 200 250

(a) (b)

Figure 4.6: Appearance based features. (a) Grayvalue histogram of a single image. (c)
Fingerprints are a collection of various image measurements like vertical lines and color
information in this case (courtesy of [69]).

4.3. Map Building 57

4.3 Map Building

Map building describes the process of constructing a map of the environment using the

data of the sensors a robot is equipped with. Hereby, the robot poses are assumed to

be known. Figure 4.7 shows the graphical model of the mapping process, where gray

shaded variables are unknown. Given the sensor poses at different points in time Pi

and their associated sensor readings mij, the map building process aims at recovering

the environment composed of landmarks Xj. Optionally, some kind of relative motion

information ui is provided to compute the absolute poses Pi.

Pi‐1 Pi Pi+1 Pi+2

Xj Xj+1 Xj+2 Xj+3

MAP

mi‐1,j mi‐1,j+1 mi+1,j+1

mi+1,j+2

mi+1,j+3

ui ui+1 ui+2

Figure 4.7: Mapping network. The graphical model of the mapping process where gray
shaded values (landmark locations) need to be estimated. The sensor poses at different
timestamps Pi and their associated data mij are used to construct the landmark locations
Xj.

The representation of the environment forms the basis of every map building system

and therefore a reasoned design is a basic prerequisite for a successful operation of the

algorithm. If we could design our “ideal” environment configuration, it should meet the

following requirements: Low memory consumption is a basic prerequisite, especially

when mapping large scale environments such as houses, campus areas or even cities. At

the same time we want to store as much information as possible - for example occlusion

information or even semantic information. Furthermore, the representation should be

usable for many robotic tasks such as localization, mapping, obstacle avoidance, path

planning or grasping. To reduce the computational effort when building a map the

complexity of the representation should be kept as simple ass possible. Last but not

least, we want the environment to be visualizable and readable for human beings.

The huge variety of applications and requirements lead to many different environ-

58 Chapter 4. Visual Localization and Map Building in Static Environments

ment designs, especially when performing visual SLAM. In the following the most im-

portant map representations are described together with a short discussion of their

properties and field of application. We also depict various map building algorithms

since they are strongly linked to the underlying map representation.

4.3.1 Landmark Maps

As stated in Section 4.2 a feature m is represented in the robots coordinate frame or

image plane. A landmark instead is defined by the features location in the global world

coordinate frame through its two- or three-dimensional coordinate X, which is often

computed using the robot pose the feature is associated with. Optionally, a landmark

uncertainty and some form of signature d is stored too. The signature can be seen

as a unique characterization of the landmark and often comes along with the feature

extraction algorithm (e.g. keypoint descriptor, grayvalue histogram of an image patch,

length of the extracted line, etc.), which is used for data association during map building.

Robotic sensors deliver high-dimensional raw data like 2D or 3D laser range read-

ings, high-resolution images or dense depth maps. In landmark maps only a small

number of features are extracted. Local features are then converted to landmarks lying

in the global world coordinate frame. The type of landmarks used for map building,

data association and localization depends on the sensors used and the environment the

robot is traveling in. Figure 4.8 shows some two- and three-dimensional landmark based

maps using various geometric primitives.

Generally, a landmark for map building should fulfill the following requirements:

• It should be easily reobservable which allows us to detect it from different robot

positions.

• A landmark should be unique among others, so that it can be easily identified over

and over again. More specifically, if the sensor returns to an already visited place

it should be an easy task to determine that the landmarks have been seen before.

• The parametrization or representation of the landmark should be chosen according

to the environment to be mapped. For example points should be preferred to lines

when mapping unstructured outdoor environments.

• Only stationary landmarks should be added to the map. Using moving landmarks

like persons or cars the robot might estimate a wrong pose when doing localization

with the constructed map.

4.3. Map Building 59

(a) (b)

(c) (d)

Figure 4.8: Landmark maps. (a) Line features (cyan) are used to represent a planar
indoor environment where groundtruth data is shown in red (courtesy of [94]). (b)
Mapping of an office room using orthogonal planes constructed out of line segments
fitted to laser range data (courtesy of [95]). (c) Pointcloud map of a desktop environment
constructed out of single camera poses. (d) Dense surface based reconstruction of an
office environment using poses of a single camera. (courtesy of [92])

The general map building workflow is sketched in Figure 4.9 and consists of four

main parts:

1. Local features (keypoints, corners, lines, etc.) are extracted from the raw sensor

data as explained in Section 4.2.

2. They are transformed to landmarks in the global world coordinate frame using the

given sensor poses.

3. Provided the signature from the feature extraction algorithm one has to perform

data association in order to distinguish between new landmarks and those already

contained in the map. Data association can be performed through nearest neighbor

search in the feature space [1, 74] or template matching [63].

60 Chapter 4. Visual Localization and Map Building in Static Environments

4. Finally, unobserved landmarks are used to extend the current map. Features of

reobserved landmarks are used to refine the landmark position of those already

in the map. This refinement process can be done through recursive filtering tech-

niques (e.g. (Extended) Kalman Filter [25]) or least-squares optimization routine

(e.g. bundle adjustment [63]).

LANDMARK
GENERATION

 global pose
 uncertainty
 signature

DATA
ASSOCIATION

 new landmarks
 reobserved
landmarks

MAPPING

 update map
 refine map

FEATURE
EXTRACTION

 sparse
 dense
 appearance

Figure 4.9: Landmark based map building workflow. Building an environment out
of raw sensor data can be decomposed into four main tasks: First, features have to
extracted. Second, using the provided robot pose they are transformed to landmarks in
the global word coordinate frame. Third, using the distinctive feature signature, data
association is performed to distinguish between new and reobserved landmarks. Last,
new landmarks are added to the map while revisited ones are used to refine existing
landmarks.

4.3.2 Occupancy Grid Maps

Occupancy grid maps have been first introduced by Moravec and Elfes [88] in the context

of sonar based map building. Hereby, the environment is discretized into an equally

sized grid, where each grid cell Xj holds a probability pj for being occupied. Each cell

(2D) or voxel (3D) can be regarded as free space (low probability), part of an obstacle

(high probability) or unseen (unitialized probability). This type of map representation

is often used when a robot is equipped with a range sensing device like sonar, laser or

range cameras. The range and bearing values together with the robot position can be

directly used to verify if a cell is empty space (i.e. the ray strikes through the cell) or

occupied (i.e. the cell has been hit by a range measurement).

The goal of an occupcancy grid mapping algorithm is to calculate the posterior prob-

ability over maps p(X|P1:t, m1:t) provided accurate sensor poses P1:t and the sensor data

m1:t up to time t. One key assumption is that grid cells are independent from each other

4.3. Map Building 61

(a) (b)

Figure 4.10: Occupancy grids. (a) Two-dimensional occupancy grid map made of sonar
data (courtesy of [133]). (b) Three-dimensional occupancy grid created out of 3D laser
scan data with color coded height (courtesy of [152]).

and their state can be estimated separately

p(X|P1:t, m1:t) =
∏

j

p(Xj|P1:t, m1:t). (4.1)

To avoid numerical instabilities during map creation each cell stores its probability pt
j at

time t in its log-odd form lt
j

lt
j = log

(
p(Xj|P1:t, m1:t)

1− p(Xj|P1:t, m1:t)

)
, (4.2)

which allows for fast and additive map updates through

lt
j = lt−1

j + sensor_model(Xi|Pt, mt)− l0
j (4.3)

sensor_model(Xj|Pt, mt) = log
(

p(Xj|Pt, mt)

1− p(Xj|Pt, mt)

)
, (4.4)

where l0
j denotes the initial belief of the cell which is usually set to 0 [133]. The function

sensor_model(Xj|Pt, mt) returns the probability for the cell Xj being occupied given the

robot pose and sensor data at time t. The sensor model used to interpret every incoming

measurement is usually a combination of a linear function and a Gaussian whose relia-

bility depends on the noise characteristics of the used sensor. For a detailed discussion

on sensor modeling the reader is referred to [132] or [133]. Usually, all cells lying within

the perceptual field of a sensor are considered for an update. The probabilities pt
j can

62 Chapter 4. Visual Localization and Map Building in Static Environments

be easily recovered through

pt
j = 1− 1

1 + exp{lt
j}

. (4.5)

Figure 4.10 presents a two and three-dimensional occupancy grid created with sonar

and 3D laser scan data, respectively.

4.3.3 Topological or Appearance Based Maps

In contrast to occupancy grid maps, topological maps dissect the environment into dis-

tinct places, where the most relevant image information is concentrated. More specif-

ically, the environment is represented as an undirected, unweighted graph consisting

of nodes and edges. The nodes represent a characteristic area or point in the map that

is easily recognizable later on. The edges connecting the nodes represent adjacency,

which can be seen as safe navigation paths between the specific locations. Figure 4.11(a)

shows a topological map of a flat, where the nodes are set at very discriminative places

like doorways, corners or specific rooms. Alternatively, also artificial landmarks can be

added as a node in a topological map as used by [98] shown in Figure 4.11(b).

The nodes can store a lot of information in order to encode a specific place, e.g. sin-

gle image feature, a collection of geometric features (e.g. points, lines, planes, corners

etc.) or even one or more images characterizing the surrounding of the node. Ulrich et

al. [140] attach color histograms to each node while others [110, 111, 3] build the map

out of local image descriptors like SIFT or SURF features. To create a more distinctive

representation Tapus et al. [131] combine edges from panoramic images, color informa-

tion and corners extracted from a laser range finder to represent a single node in the

map. Many topological map building algorithms [41, 23] use image data only which are

stored in a database for fast place recognition later on. Hereby, an image is represented

by a bag of visual words where each word is a local image region described by a patch

or descriptor. For speedup and storage reasons these visual words are quantized and

organized in a tree structure, also known as vocabulary tree.

One challenge when building a topological map is the decision when to add a new

node to the graph. Most of the time a new node is inserted when the robot has covered

a certain distance (e.g. 3m or 4◦) based on relative motion estimates ui. Another method

is to compare the extracted feature information of the currently processed frame to the

nodes already existing in the map. If they do not match to any stored region, features

are describing an unknown region and a new node is created.

4.3. Map Building 63

(a) (b)

Figure 4.11: Topological maps. (a) A topological map of an indoor environment where
nodes define some distinctive points or areas in the map. The edges connecting the
nodes represent pathways which can be traversed safely from the robot. In visual maps
often one or more images are representatives for each location. (b) Artificial landmarks
like the pink label or the marked docking station [98] can also be used to represent a
node in the map.

When building a topological map the edges are added incrementally. In its simplest

form an edge just represents a valid path between two nodes which is an essential infor-

mation for subsequent tasks like navigation or path planning. In metric map building an

edge can also store the relative movement ui of the robot provided by odometry sensors,

inertial measurement units or some kind of visual odometry algorithm.

4.3.4 Conclusion

Table 4.1 summarizes above mentioned map types. We compare their ability to han-

dle different sensor data, the resolution/accuracy of the estimated map as well as their

memory consumption and computation time. Hereby, computation time includes data

preprocessing, possible feature extraction methods and the virtual map building algo-

rithm.

Landmark maps handle sparse visual features only and are applied in localization

and mapping tasks. Since they do not provide occlusion information or estimates about

free or occupied space they cannot be used for obstacle avoidance, grasping or path

planning as occupancy grid maps do. Contrary, they do not require that much memory

64 Chapter 4. Visual Localization and Map Building in Static Environments

Map Type Sensor Data Resolution
Memory
consump-
tion

Computation
time

Landmark Map 2D/3D Features high low medium

Occupancy Grid Map Raw sensor data medium
medium-
high

medium

Topological Map
Raw sensor
data/Features

low low high

Table 4.1: Map building techniques. The three different map types are compared regard-
ing their sensor data used for map building, the resolution and memory consumption of
the resulting map and the computation time. Hereby, computation time includes sensor
data preprocessing, feature extraction and map building.

and result in high accurate environment maps.

The main disadvantage of occupancy grid maps is that memory consumption grows

to the third power with the size of the environment explored. Especially the degree of

discretization (i.e. the cell resolution) affects the accuracy of the resulting map and its

storage requirements. Therefore, many authors [152] use hierarchical data structures

like quadtrees or octrees to reduce memory consumption and to speed up access time

to specific grid cells. In contrast to landmark based maps they come along with various

advantages: First, no feature extraction is necessary since raw sensor data can be used

directly. Second, no data association is required. Third, the resulting maps can be

used for grasping or path planning. Finally, the accuracy of the resulting map can be

controlled by setting the desired resolution.

A topological map can be seen as the most compressed and most abstract represen-

tation of the environment. The huge amount of data encoded in each image is broken

down to a simplified representation containing the most relevant data for a specific

area. Therefore, its main applications are fast and robust place recognition or loop clo-

sure detection. Because of the relative motion information encoded in the maps edges,

topological maps are often used for higher level robotic tasks like path planning or

navigation. In contrast to landmark based maps or occupancy grid maps this form of

map representation provides no human readable visualization through geometric fea-

tures. Since no structure estimation is necessary the computational effort is very low,

while on the other hand many image features need to be stored leading to large storage

requirements.

4.4. Incremental Localization Techniques 65

4.4 Incremental Localization Techniques

Mobile robot localization describes the process of determining the pose of the robot

within a known environment. A graphical depiction is shown in Figure 4.12, where

the gray shaded variables are unknowns. Given the map Xj and sensor measurements

mij associated with some landmarks, the localization process aims at recovering the

sensor pose Pi. Unfortunately, measurements are subject to noise and therefore only

the most likely pose can be estimated. Consider a robot moving using noisy odometry

information ui only; it might get lost due to high uncertain motion data delivered by

the sensors. Thus the robot has to localize itself relative to a given map using additional

information stemming from sensors perceiving the outside world.

When doing localization one also has to consider if the robot moves in a well-

structured static environment or if it is surrounded by dynamic elements like persons

or cars. Short-term changes affect only a single sensor reading and are usually filtered

out or treated as noise. More persistent changes like moved furniture, opened or closed

doors or lighting changes require special treatment.

Pi‐1 Pi Pi+1 Pi+2

Xj Xj+1 Xj+2 Xj+3

MAP

mi‐1,j mi‐1,j+1 mi+1,j+1

mi+1,j+2

mi+1,j+3

ui ui+1 ui+2

Figure 4.12: Localization network. The graphical model of a localization process, where
gray shaded values (sensor poses and interframe motion ui) are unknown. The observed
landmarks Xj and their associated features mij are used to estimate the sensor pose Pi.

Generally, localization techniques can be subdivided into local or global ones. Local

localization techniques (also known as tracking or incremental localization) assume an

initial pose estimate and the robot keeps track of its pose during navigation. Given the

initial sensor pose, sensor data is compared to the existing map resulting in a refined

pose. This chapter provides an overview on local localization techniques. We shortly

66 Chapter 4. Visual Localization and Map Building in Static Environments

outline their functionality, characteristics and field of application with special focus on

visual localization. Global localization is discussed in Section 4.5.

Incremental or local localization assumes a rough prior on the robot pose and no re-

covery is possible if the algorithm loses its pose. Incremental localization is designed to

compensate odometric errors stemming from any odometry device or algorithm. Gen-

erally, the incremental localization process can be divided into two separate phases -

prediction and correction - which are shown in Figure 4.13:

Prediction Internal motion sensors like wheel encoder, global positioning systems (GPS),

inertial measurement units (IMU) or some kind of visual odometry ui are used to

predict a new sensor position P̂i from the previous one Pi−1. Assuming noisy

motion information ui this increases the uncertainty of the predicted pose which

needs to be corrected in the subsequent step by incorporating sensor data. How

visual sensors can be used to provide interframe motion estimates is examined in

Section 4.4.1.

Correction Exteroceptive sensor readings mij at time i are used to update the predicted

pose, resulting in a more accurate sensor position Pi. Hereby, features provided

by the sensor data are associated to landmarks in the map. The difference between

the measurements stemming from the map to those from the sensor is examined

to refine the prediction P̂i. This can either be handled by a recursive filtering or

pure optimization based approach, which are described in Sections 4.4.2 and 4.4.3,

respectively.

Throughout this chapter we distinguish between recursive filtering and optimization

based correction methods using vision sensors only. The filtering versions are derived

from the Bayes filter, where the robot pose is modeled as a Gaussian distribution (EKF,

Unscented Kalman Filter (UKF)), as an equally spaced grid (metric, topological) or as

discrete samples (Monte Carlo techniques, particle filter). Optimization based tech-

niques are split into purely appearance-based or point-based methods. An appearance-

based method operates in the image space allowing approximate sensor pose estimates

only, while point-based algorithms try to compute a pose relative to a given pointcloud

allowing for accurate localization.

In the following we shortly describe the generation of odometry information ui,

which is used to predict a preliminary robot pose. Afterwards, update methods of both

probabilistic and geometric categories are presented and we highlight their positive and

negative aspects in context to purely vision-based localization.

4.4. Incremental Localization Techniques 67

PREDICTION

MOTION

• wheel encoder
• GPS, IMU
• visual odometry
• motion model
• …

CORRECTION

SENSOR DATA

MAP

ui mij

Figure 4.13: Incremental localization workflow. Localization, given a map of the envi-
ronment, is subdivided into two phases: First, the robots pose is predicted using some
noisy sensor information from interoceptive sensors. The underlying map and readings
from exteroceptive sensors are used to compute a more accurate pose in the correction
phase.

4.4.1 Pose Prediction

The first part of every localization algorithm requires an odometry input ui, which esti-

mates the change in position between time i− 1 and i to predict a new robot pose P̂i at

time i.

Visual odometry uses sequential camera images to compute interframe motion ui,

which can be estimated in many different ways. In the following the most prominent

ones are shortly described. After image acquisition and distortion correction, the com-

putation of inter-frame motion at time i involves the following steps:

1. Feature extraction and matching: Salient image features are detected in the current

frame and matched against one or more preceding frames producing correspond-

ing image points.

2. Camera motion estimation can be done in several ways using different imaging

devices and motion recovery techniques:

• Given monocular images and corresponding feature points between three or

more images, Nister et al. [?] propose to use the five-point algorithm together

with RANSAC to estimate the relative pose between frames. These initial

estimates are used to perform multi-view triangulation, resulting in a three-

dimensional pointcloud valid up to scale. The pose of every successive frame

68 Chapter 4. Visual Localization and Map Building in Static Environments

is estimated relative to the previously constructed pointcloud by a three-point

algorithm [50]. Again new 3D points are triangulated using corresponding

image features and the pose of the next frame is estimated again.

• Given depth data from a stereo rig, relative motion between a set of corre-

sponding 3D points can be computed by an iterative optimization routine

assuming Gaussian landmark noise [99].

• Instead of modeling the error in the three-dimensional space other authors

[130] exploit an image-based error. Hereby, the relative motion between two

stereo-rigs is computed by minimizing the reprojection error of the point-

cloud stemming from the current frame in the previous one.

• Given corresponding 3D points Xi−1 ↔ Xi provided by two stereo-camera

pairs Pi−1 and Pi at time i− 1 and i, the relative motion is defined by a rigid

body transformation ui = [R, t], which relates both pointsets to each other

RXi−1 + t = Xi.

All described methods are locally very accurate and smooth but tend to drift over

a long period of time. Hence, using visual odometry information only would result in

wrong pose estimates in the long run. Therefore, additional sensor information coupled

with the information stemming from a pre-built map are used to correct odometric

drift, which is summarized in the update step of every localization algorithm. Various

methods tackling this problem are described in the two following sections.

4.4.2 Recursive Filtering Techniques for Pose Correction

In filtering based localization one can distinguish between Markov Localization tech-

niques like EKF or UKF, grid based techniques using a histogram filter or Monte Carlo

localization (PF). All are using different approximations to represent the sensor pose

and are restricted to operate on specific map representations.

Markov Localization

In EKF-based localization the robot pose is represented by a Gaussian distribution com-

posed of mean and covariance. Hereby, a motion model operating on Pi−1 and ui is used

to predict a new pose P̂i. The measurement model instead computes the prediction of

measurements m̂ij given the estimated pose P̂i and the precomputed map Xj. The differ-

ence between observed mij and predicted m̂ij measurements is used to compute a new

4.4. Incremental Localization Techniques 69

pose Pi. Both motion and measurement model are linearized throughout the process.

When dealing with high uncertainties the linearization incurs higher approximation er-

rors of the underlying distribution leading to wrong pose estimates.

The UKF [62] represents the Gaussian as sigma points leading to a more accurate

approximation when passed through a non-linear function. Therefore, it gives better

estimates than the EKF when dealing with non-linear motion and measurement models

or high sensor noise.

For a more detailed description we refer the reader to [148]. Kalman filter based

localization using precomputed landmarks (green) is shown in Figure 4.14(a). The

groundtruth path is represented as solid line where the estimated trajectory is marked

as dotted line. Applying odometry information ui to Pi−1 results in a predicted pose

P̂i, with a large uncertainty ellipsoid shaded light gray. Incorporating measurement in-

formation mij results in a refined pose Pi, whose uncertainty is decreased (dark shaded

ellipsoid).

Histogram Filter

When using histogram filters, poses are distributed over a regular grid, where each

occupied cell represents a possible sensor pose [13, 12]. The resolution of the grid

can be chosen by the user. Figure 4.14(b) shows a histogram filter for a robot moving

in the plane. In case of a very coarse grid resolution this leads to localization in a

topological environment, where each grid cell corresponds to a different place or area.

They are not computationally expensive but provide less accurate pose estimates. A

finer resolution (e.g. 15cm for x and y and 5◦ for the robots orientation) is called metric

localization and leads to accurate pose estimates but at the expense of more computation

time and memory consumption. Figure 4.14(b) demonstrates the usage of a histogram

filter representing planar robot motion within occupancy grid-based localization.

Monte Carlo Localization

The youngest and most popular localization technique is Monte Carlo localization (also

known as particle filtering), where the robot poses are represented by a set of discrete

points (particles). Each of them is carrying a weight factor encoding its importance. At

the beginning, particles are evenly distributed over the whole map with equal weight.

After moving each particle using the odometry information ui perturbed by noise, the

importance weights are updated. As in EKF localization, sensor measurements are pre-

70 Chapter 4. Visual Localization and Map Building in Static Environments

(a) (b)

(c)

Figure 4.14: Filtering based localization techniques. (a) Kalman filter based localization
given some landmarks (green) observed from the robot. Starting from an initial pose the
predicted (light gray) and corrected (dark gray) poses together with their uncertainty el-
lipsoids are shown. The groundtruth path is shown as solid line. (b) A histogram filter
operating in the plane together with its map is shown. Each cell combination corre-
sponds to a specific place in the map, where probabilities stored in the cells represent
the confidence of the pose. Darker gray values in the map correspond to more likely
robot poses (courtesy of [133]). (c) Particle filter based localization using sonar readings
(blue), where the most likely pose (highest importance weight) is marked green. The
red dots describe all pose hypothesis contained in the particle filter (courtesy of [133]).
Any distribution can be modeled using either a histogram or particle filter technique.

dicted using the new particle poses and compared to the measurements stemming from

the sensor reading. The more the measurement predictions coincide with the sensor

data, the higher the particles are weighted. Finally, resampling of the particles takes

place, where those with higher weight are duplicated and those with a low weight are

discarded. This leads to a new set of particles with uniform weight concentrated at the

most likely map positions. Figure 4.14(c) demonstrates three steps during particle filter

based localization using a sonar sensor given an executive drawing of an indoor envi-

ronment. Starting with pose hypothesis (red dots) distributed over the whole area, pose

4.4. Incremental Localization Techniques 71

estimates are further refined by incorporating sensor measurements which are com-

pared against the map. Naturally, the more particles are used the more accurate the

resulting pose estimates but the more expensive are the computational costs.

4.4.3 Optimization based Techniques for Pose Correction

The basis of optimization based localization is an iterative optimization routine min-

imizing a geometric error metric. The sensor pose to be estimated is modeled by its

orientation (rotation matrix) and position (translation vector) and therefore three (2D)

or six (3D) parameters need to be estimated. Since there is no explicit categorization, we

differ between image-based and point-based algorithms.

Point based algorithms require a pre-built two- or three-dimensional landmark map

and their associated signatures d as input. After extracting a set of features from the

image to be localized, 2D ↔ 3D matches are established between the query image and

the existing map. A 6DOF pose relative to the map can be computed by a perspective

n-Point algorithm given a set of n correspondences between 3D map points and their

2D image projections [89, 75] or least-squares optimization techniques minimizing the

reprojection error [63, 127, 117].

When dealing with range image devices many authors perform data association

between 3D range image features and 3D map points leading to 3D ↔ 3D correspon-

dences. In order to be robust against wrong data associations a RANSAC [36] algorithm

is used to compute a least-squares solution of the rigid motion between at least 3 point

correspondences. Alternatively, one can use a three-dimensional variant of the iterative

closest point algorithm to register the pointcloud stemming from the imaging device to

the map.

Image based algorithms operate on topological maps and often solve the global posi-

tioning task which is described in more detail in Section 4.5.

4.4.4 Conclusion

An overview of localization methods is given in Table 4.2, where we summarized char-

acteristic like sensor data used, type of the underlying map, pose estimation accuracy,

robustness to wrong data associations and computation time. Hereby, the computa-

tion time includes image processing, possible feature extraction methods as well as the

localization algorithm itself.

EKF and UKF localization can only solve the position tracking problem because of

72 Chapter 4. Visual Localization and Map Building in Static Environments

the uni-modal representation of the robot pose. Moreover, outliers during data associ-

ation may cause the filters to fail. Both filters are only applicable to landmark based

maps which require feature extraction and landmark generation. One further character-

istic is, that they cannot process negative data association information (i.e. if a landmark

is represented in the map but not observed by the sensors).

In contrast to EKF and UKF, histogram filters can solve the global positioning prob-

lem because of the non-parametric representation. Furthermore, they can handle all

kinds of maps and sensor data. Even more, also negative data association can be pro-

cessed. Their accuracy highly depends on the degree of discretization of the underlying

grid, where a finer resolution results in higher computation time.

Particle filters can handle both occupancy grid maps as well as landmark based maps

[61]. Additionally, they are very robust against wrong data associations, where random

particles can be added. Their accuracy grows with the number of particles but at the

expense of a higher computation time.

Optimization based localization algorithms either operate on landmark based maps

or topological maps. Naturally, point based algorithms produce more accurate pose

estimates and are also resistant to wrong data associations when robust estimators are

used. Image based techniques operate on topological maps only providing rough pose

estimates but are fast to compute and also solve the global localization task.

4.5 Global Localization Techniques

In contrast to its incremental counterpart, global localization techniques do not use any

a-priori knowledge about the pose to be estimated and therefore global localization is

much more difficult than tracking. Global localization techniques can be divided into

two sub-problems: wake-up problem and kidnapped robot problem. At wake-up the robot

is initially placed somewhere in the map without any estimate about its current pose.

Transferring the robot during tracking abruptly to some other unknown localization de-

scribes the kidnapped robot problem. In contrast to the wake-up problem where the

robot is aware of its unknown pose, the robot assumes a wrong pose estimate at the kid-

napped robot problem. Of course, one might argue, that nobody ever kidnaps a robot,

but it does often occur indirectly in practice: just assume a pose tracking algorithm

which fails during operation.

Most image based algorithms are operating on topological maps only consisting of

geo-tagged images, an image database or a collection of image features representing

4.5. Global Localization Techniques 73

R
ec

ur
si

v e
Fi

lt
er

in
g

Lo
ca

li
za

ti
on

Se
ns

or
D

at
a

M
ap

Ty
pe

A
cc

ur
ac

y
R

ob
us

tn
es

s
C

om
pu

ta
ti

on
ti

m
e

G
lo

ba
l

Lo
ca

liz
a-

ti
on

EK
F

Fe
at

ur
es

La
nd

m
ar

k
M

ap
m

ed
iu

m
lo

w
fa

st
no

U
K

F
Fe

at
ur

es
La

nd
m

ar
k

M
ap

m
ed

iu
m

lo
w

fa
st

no

To
po

lo
gi

ca
lg

ri
d

Fe
at

ur
es

To
po

lo
gi

ca
lm

ap
lo

w
m

ed
iu

m
m

ed
iu

m
ye

s

M
et

ri
c

gr
id

R
a w

da
ta

,
Fe

at
ur

es
O

cc
up

an
cy

G
ri

d,
La

nd
m

ar
k

m
ap

m
ed

iu
m

hi
gh

sl
ow

ye
s

M
C

L
R

aw
da

ta
,

Fe
at

ur
es

O
cc

up
an

cy
G

ri
d,

La
nd

m
ar

k
m

ap
hi

gh
hi

gh
m

ed
iu

m
ye

s

O
pt

im
iz

at
io

n
ba

se
d

Lo
ca

li
za

ti
on

Po
in

t
ba

se
d

Fe
at

ur
es

La
nd

m
ar

k
M

ap
hi

gh
hi

gh
m

ed
iu

m
no

Im
ag

e
ba

se
d

R
aw

da
ta

,
Fe

at
ur

es
To

po
lo

gi
ca

lM
ap

lo
w

hi
gh

fa
st

ye
s

Ta
bl

e
4.

2:
Lo

ca
liz

at
io

n
te

ch
ni

qu
es

.
W

e
di

st
in

gu
is

h
be

tw
ee

n
re

cu
rs

iv
e

fil
te

ri
ng

an
d

op
ti

m
iz

at
io

n
ba

se
d

lo
ca

liz
at

io
n

ap
pr

oa
ch

es
.

W
e

su
m

m
ar

iz
ed

so
m

e
ch

ar
ac

te
ri

st
ic

s
lik

e
se

ns
or

da
ta

us
ed

,t
he

un
de

rl
yi

ng
m

ap
re

pr
es

en
ta

ti
on

an
d

po
se

es
ti

m
at

io
n

ac
cu

ra
cy

.
Th

e
co

m
pu

ta
ti

on
ti

m
e

in
cl

ud
es

fe
at

ur
e

ex
tr

ac
ti

on
,d

at
a

as
so

ci
at

io
n

an
d

po
se

es
ti

m
at

io
n.

Th
e

la
st

co
lu

m
n

in
di

ca
te

s
th

e
al

go
ri

th
m

s
ab

ili
ty

to
so

lv
e

th
e

gl
ob

al
lo

ca
liz

at
io

n
ta

sk
.

74 Chapter 4. Visual Localization and Map Building in Static Environments

a specific place (vocabulary tree). Consider a topological map composed out of 1.000

nodes where each node is represented by a collection of 50.000 features. Given a query

image each feature has to be compared against 50.000.000 descriptors of the map in or-

der to find the most similar node in the graph. This would lead to problems storing the

map (e.g. 50.000 · 1.000 · 128 = 6.400.000.000 bytes ≈ 6.4GB in case of SIFT features) and

is computationally infeasible when doing exhaustive search. As a consequence, an ef-

fective data structure is needed to search a large database (nodes) in a high-dimensional

space (descriptor length). In order to solve this problem most existing approaches are

inspired by the bag-of-words approach for object or place recognition [116, 97] denoted

as vocabulary tree.

The vocabulary tree is defined by k clusters at L levels, where k defines the branching

and cluster factor and L the number of levels. The clusters are built during an unsuper-

vised offline training phase using a large set of arbitrary image descriptor vectors. First,

k-means clustering is performed on the whole set resulting in k cluster centers defining

k nodes at the first level. Second, each descriptor is assigned to the closest cluster center

resulting in k groups. The k-means procedure is then applied recursively to each group

again. This results in a total of kL leaf nodes denoted as visual words. The final tree can

be interpreted as nested Voronoi cells as shown in Figure 4.15(a).

(a) (b)

Figure 4.15: Vocabulary tree. (a) Vocabulary tree with branching factor k = 3 and two
levels L = 2 visualized as Voronoi diagram. (b) Vocabulary tree where three images
(ball, house, car) with three descriptors each have been added. The query image (house
containing three features) is passed down the tree and the paths (red) are compared
resulting in three votes for the house and one correlation with ball and car, respectively.

4.5. Global Localization Techniques 75

During operation the trained tree is used to compute a single integer for every input

descriptor: Hereby, the descriptor is compared to the first k cluster centers at the first

level and the closest one is determined by a simple dot product. This procedure is

applied recursively down the tree. The path down the tree is stored as a single integer

which is used for scoring later on. Furthermore, each node in the tree stores the features

from whom it has been visited. This so called inverted file structure speeds up the query

process later on. In order to determine the similarity of a query image to those already

in the database, all features extracted out of the query image are propagated down the

tree and their feature paths are compared to those already in the tree. The image with

the most similar paths is reported as a match. Figure 4.15(b) shows a vocabulary tree,

where three images (ball, house, car) have already been inserted. For a given query

image (house) the most similar one has to be found. Therefore, three SIFT descriptors

are propagated down the tree (red lines) ending up in three different leaf nodes, where

the house is visited most (black scoring dots on the right). The inverted file structure

speeds up similarity computation since only images stored in the passed nodes have to

be taken into account. The similarity itself is computed by different scoring functions

such as Jacard Scoring or term frequency-inverse document frequency (tf-idf). For a

detailed description we refer the reader to [116, 97].

(a) (b) (c)

Figure 4.16: Vocabulary tree queries. (a) Nine images are already in the database. (b)(c)
Query images are marked green and their two most similar images from the database
are presented.

Regarding memory consumption and computation time we employ the same exam-

76 Chapter 4. Visual Localization and Map Building in Static Environments

ple as above. Assuming SIFT descriptors a vocabulary tree only requires 128 · kL bytes

of storage (e.g. 128 MB for k = 10, L = 6). A query for a single descriptor takes only k · L
dot products plus some effort for scoring. Figure 4.16 shows the two best matches for

the query images depicted on the top right, where the images on the left have already

been in the database.

In literature Sivic and Zisserman [116] or Nister and Stewenius [97] only concen-

trated on small image datasets for object recognition. Later on Schindler et al. [113]

use the most informative features only to boost the retrieval performance in a topolog-

ical map consisting of more than 30000 streetside images. More recently Cummins et

al. [22, 23] also capture the inference between visual words by constructing a Chow-Lui

tree resulting in a more robust place recognition system especially when dealing with

a huge amount of data (103256 images) and repetitive structures over a long trajectory

(1000 km).

All mentioned algorithms return a probability for each image/place already in the

map, describing the similarity to the query image. Hence, they do not return a specific

pose in the map but probabilities for the most likely places. Because of the low memory

requirement and the fast computation time, a vocabulary tree is quite often used for

loop closure detection. Even if pose estimation during pose tracking fails, a database

query provides a new starting point to continue tracking again.

4.6 A Complete Visual SLAM Algorithm

This section describes our complete framework performing localization and map build-

ing using image data only. As investigated by Strasdat et al. [128] sliding window

bundle adjustment should be preferred over recursive filtering techniques in monocular

SLAM. Therefore, we decided to implement an incremental SfM algorithm operating

on keyframes and building a sparse three-dimensional pointcloud map. The different

building blocks of our visual SLAM framework are depicted in Figure 4.17 and de-

scribed in more detail in the subsequent sections.

From all beforehand mentioned approaches performing localization and mapping

we use those best suitable for a visual SLAM system, which should meet the following

requirements:

Continuous localization and map building A visual SLAM algorithm should perform

continuous, incremental localization and map building over a long period of time

in large scale environments. We propose to use keyframes (the pose of an image

4.6. A Complete Visual SLAM Algorithm 77

at a specific point in time used for map expansion) and a sparse three-dimensional

pointcloud together with sliding window bundle adjustment because of the follow-

ing reasons: First, only heuristically selected keyframes are used for map building

and pose estimation, since subsequent frames contain a lot of redundant infor-

mation not necessary during bundle adjustment optimization. As a consequence

repeated optimization over a sliding window of a predefined size becomes practi-

cable and results in accurate pose estimates (compare [128]). Assuming the robot

moves with constant, moderate velocity the localization process is invoked more

frequently than the map building process. Second, to model an unstructured envi-

ronment a sparse pointcloud map (see Section 4.3.1) is the best choice since we do

not want to make any assumptions about the structure of the surroundings (e.g.

planar, orthogonal indoor buildings). Although, planes or lines would consume

less memory they are not able to model arbitrary surroundings.

Robust data association Each landmark is a highly distinctive description attached to

facilitate data association during pose tracking. We decided to use the rotation

and scale invariant SIFT descriptors [74]. Although features like image patches are

faster and easier to compute they are less distinctive and not as reliable as SIFT

descriptors (see Section 4.2). Moreover, existing GPU implementations [151] allow

fast SIFT descriptor computation and matching.

Recovery and relocalization In case of tracking failures or when reentering the map

at a different point in time, a robust method for image based place recognition

is necessary. We borrowed the concepts used in topological SLAM and organize

extracted features in a vocabulary tree, as described in Section 4.5, since global

localization does not need any a-priori information about the pose to be estimated.

Furthermore, a vocabulary tree provides an elegant way to store a huge amount

of data (e.g. many images) and allows for fast database queries resulting in rough

pose estimates, which can be used as a new starting point for position tracking.

Loop closure detection and correction The system should continuously check for loop

closures and automatically correct the drift induced by visual odometry. Loop clo-

sure detection is performed by querying the vocabulary tree everytime a keyframe

is established. After a positive loop closure detection structure and motion opti-

mization over the whole map and trajectory is performed.

The workflow of our visual SLAM system using SfM for trajectory and landmark

estimation is visualized in Figure 4.17. After initializing the map from two images, a

78 Chapter 4. Visual Localization and Map Building in Static Environments

INITIALIZATION

KEYFRAME

LOCALIZATION

MAP BUILDING

IMAGE ACQUISITION LOOP CORRECTION

no

yes

yes

no

RECOVERY

LOOP
DETECTION

Figure 4.17: The proposed visual SLAM workflow. After map initialization we grab
a new image from the camera device and perform pose tracking. If tracking failed a
recovery routine re-localizes the current frame. If the sensor has moved a certain amount
we start exploring new terrain, establish a new keyframe and extend the map, otherwise
the next image is processed. If we visit a previously seen place (loop detection) structure
and motion refinement over the whole trajectory is performed.

new frame is processed and localization with respect to the given map is performed. In

case of localization failure a recovery routine is started performing global localization. If

there is no need for a new keyframe the next frame is processed. Otherwise, the map is

expanded by new landmarks. In case of a loop closure the whole map and trajectory has

to be corrected. In the following we introduce the representation of our environment

and its notation. Finally, the building blocks as shown in Figure 4.17 are described more

detailed.

4.6.1 Environment Model

Our environment is represented by a set of landmarks (also called map points) Xj and

keyframes (also called camera poses) Pi, located in a global world coordinate frame. The

j-th map point is represented by its three-dimensional coordinates Xj = (Xj, Yj, Zj, 1)T in

homogeneous form. Each map point is associated with a descriptor dj used for data

association. Additionally, a set of image measurements mij related to the j-th land-

mark is stored. Every single measurement (also called observation) describes a local

interest point descriptor (SIFT) dij as well as its two-dimensional image coordinates

xij = (u, v, 1)T
ij in keyframe Pi. Every map point comes along with at least two im-

4.6. A Complete Visual SLAM Algorithm 79

age measurements, from whom it has been triangulated. The i-th camera pose is

parametrized by a standard projection matrix

Pi = K [I3×3|03×1]

[
Ri ti

0T 1

]
(4.6)

composed of a 3× 3 rotation matrix Ri and 3× 1 translation vector ti defining the pose

and orientation of the camera in the global world coordinate frame. The internal calibra-

tion matrix K is determined by a preceding calibration process and therefore assumed

to be known in advance.

Map point Xj is projected onto the image plane of keyframe Pi with the projection

equation

x̂ij =


u

v

1


ij

=
(
Pi Xj

)
n (4.7)

where x̂ij is called the prediction and (.)n denotes the conversion from homogeneous

to Euclidean coordinates. Additionally, all features extracted from the keyframes are

stored in a vocabulary tree V as described in Section 4.5 for fast loop closure detection

and relocalization. The parametrization of our environment is summarized in Table 4.3.

Xj

(
Xj, Yj, Zj, 1

)T homogeneous, three-dimensional land-
mark coordinates

dj
descriptor associated with Xj used for
data association

mij (u, v, 1)T
ij

set of image measurements related do Xj
described by homogeneous image coor-
dinates in keyframe Pi

Pi
K [I3×3|03×1]

Ri ti

0T 1

 intrinsic K and extrinsics Ri, ti parame-
ters define the projection matrix for a
keyframe

V
vocabulary tree organizing the image
features of every keyframe

Table 4.3: Environment representation. Our map is composed of map points Xj and
keyframes Pi located in a global world coordinate frame. Each map point is associated
with two or more measurements mij in image Pi.

80 Chapter 4. Visual Localization and Map Building in Static Environments

Modeling the environment as a set of sparsely distributed three-dimensional points

is more memory efficient than dense occupancy grid maps or triangle meshes and al-

lows the modeling of arbitrary environments in contrast to planes, lines or any other

geometric primitive. Moreover, we are not restricted to some specific structure of the

surrounding (e.g. orthogonal planes) and sparse pointclouds fit well into the SfM pro-

cess. The main issues using sparse map points are: How many points should be triangu-

lated to guarantee robust localization and where should we add new points to expand

the map.

Using images as input one could add every incoming frame to the traveled trajectory,

but in practice subsequent images along a robot path contain lot of redundant informa-

tion. Hence, the concept of using keyframes is much more memory efficient and still

allows robust localization and map expansion as shown by Klein and Murray [63]. The

difficulties lie in when or where to add a new keyframe to the map to guarantee enough

image overlap to preceding frames and robust triangulation of new landmarks. If too

many camera poses are established memory consumption increases. In case of insuffi-

cient keyframes visual connectivity is lost resulting in localization failures and distorted

maps.

4.6.2 Visual Localization and Mapping Framework

Based on the environmental representation, localization and map building is handled

by an incremental SfM framework together with a vocabulary tree for loop closure de-

tection and relocalization. In the following the different steps involved in our visual

SLAM process as shown in Figure 4.17 are described.

4.6.2.1 Image Acquisition

Image acquisition involves grabbing a new frame Pi from the camera device followed

by undistortion using the coefficients determined in an offline calibration process. Af-

terwards, SIFT [74] keypoints xi and their descriptors di are extracted using a fast GPU

implementation [151].

4.6.2.2 Initialization

To initialize we enforce the user to acquire two images exhibiting enough baseline for

accurate two-view triangulation later on. Using the previously extracted keypoints, SIFT

descriptor matching results in 2D ↔ 2D correspondences. The eight-point algorithm [?]

4.6. A Complete Visual SLAM Algorithm 81

(a) (b) (c)

Figure 4.18: Image acquisition and processing. (a) Image grabbed from the camera
device. (b) After distortion correction using the parameters from an offline calibration
process. (c) Extracted SIFT keypoints (red) and their descriptors (green), which are used
for data association and map point generation.

together with a RANSAC routine is used to estimate the exterior orientation of both

cameras, where the world coordinate frame origin resides with the first camera. Both

sensor poses form the initial set of keyframes in the map and landmarks are established

through two-view triangulation.

(a)

−200 −100 0 100 200 300

−300

−250

−200

−150

−100

−50

0

50

1000

100

200

300

400

500

600

700

800

900

x

z

(b)

Figure 4.19: Map and keyframe initialization. (a) Two input image chosen by the user
and their corresponding image points. (b) Using the eight-point-algorithm this results
in map points (black) and camera poses (red), which define the initial environment. The
origin of the whole reconstruction resides in the first camera.

In case of a stereo image device no initialization process is necessary since three-

82 Chapter 4. Visual Localization and Map Building in Static Environments

dimensional information is provided directly by the sensor.

4.6.2.3 Incremental Localization

Assuming a sparse pointcloud Xj and the pose Pi−1 of the latest keyframe, incremental

localization aims at computing the current pose estimate Pi given a single, undistorted

image and its extracted keypoints xi and descriptors di. As described in Section 4.4 this

comprises a prediction and correction step:

Prediction To predict a pose P̂i interframe motion has to be estimated. Given a range-

image device camera motion is estimated by using a three-point pose estimation

method [50] embedded in a RANSAC [36] algorithm. Hereby, 3D ↔ 3D point

correspondences established through feature matching are used to compute a

rigid body transformation describing the camera motion between two consecutive

frames.

When dealing with monocular input some kind of motion model needs to be

defined approximating the sensor motion. Here, we simply ignore interframe

motion and set P̂i = Pi−1. Since images are captured at high framerates this is a

sufficient initialization for the subsequent correction step.

Correction To refine the estimate P̂i to be correctly aligned with the map two steps are

necessary: First, all map points within the view frustum of P̂i are determined.

Therefore, each landmark Xj is projected onto the image using Equation 4.7 and

each landmark whose projection resides within the image borders forms the po-

tentially visible set X̃j. Their associated descriptors d̃j are compared against those

extracted from Pi defining the 2D ↔ 3D correspondences xi ↔ X̃j. Second, given

at least three correspondences the camera pose can be computed through a least-

squares optimization routine by minimizing the reprojection error:

Pi = arg min
P̂i

d
(
xi, P̂i X̃j

)
, (4.8)

where d(.) denotes the Euclidean distance. To be more robust against matching

outliers a robust error norm (compare Section 3.2.2) within a reweighted least-

squares solver is used resulting in a corrected pose Pi after at most 10 iterations.

Incremental localization is done as long there is no need for another keyframe.

4.6. A Complete Visual SLAM Algorithm 83

4.6.2.4 Map Building

Map building involves the decision when to add a new keyframe to the map, the con-

struction of new map points and the refinement of both structure and motion through

bundle adjustment.

For simplicity the tracked pose Pi becomes a new keyframe Pk, if the camera has

moved a certain amount (e.g. 12cm or 5◦), which has been used by many authors before

in localization and mapping [63]. This rule guarantees enough overlap to previous

keyframes, which is an essential prerequisite for subsequent bundle adjustment and the

construction of new map points.

In order to construct new map points each keypoint xi lacking a positive match dur-

ing tracking is considered for map expansion. To establish corresponding keypoints

of the current frame are matched against the descriptors in the last N keyframes fol-

lowed by a geometric verification using epipolar geometry. To establish new landmarks

multi-view triangulation is performed. The keyframe, newly created map points, their

descriptors and newly found measurements in the last N frames are added to the envi-

ronment. All image descriptors stemming from Pk are inserted into the vocabulary tree

V representing a new place.

Since optimizing the complete map is computationally demanding, only structure

and motion over the last N keyframes are refined by applying sparse bundle adjustment

as described in Section 3.2.2. The keyframes are parametrized by three Euler angles (see

Section 3.1.4) and the 3× 1 translation vector resulting in 6 parameters to be optimized

per keyframe. The map point is represented by its three Euclidean coordinates.

As long as no loop closure is detected, incremental localization and map building

are performed in an alternating manner.

4.6.2.5 Global Localization

The global localization task consists of a loop closure check for every keyframe, a recov-

ery task in case of a tracking failure or when reentering a known map. The descriptors

of every keyframe are inserted into the pre-trained vocabulary tree V as described in

Section 4.5. One can use the approach proposed by Nister et al. [97] or the FAB-MAP

algorithm proposed by Cummins et al. [23]. Both implementations are able to detect

revisited places over long time differences and are robust against lighting changes. The

descriptors di of the currently processed frame Pi are propagated down the tree return-

ing the M most similar keyframes. Clearly, the result always contains recently added

84 Chapter 4. Visual Localization and Map Building in Static Environments

keyframes, as well as keyframes established a long time before. While the former ones

can always be safely rejected, the loop closures frames may be polluted by outliers due

to the quantization effects of the vocabulary tree. They are geometrically verified by

establishing 2D ↔ 2D correspondences between the current frame and the potential

candidate. A RANSAC routine is used to estimate the fundamental matrix F. The can-

didate producing the most inliers while estimating F is regarded as the potential loop

closing frame Pl.

The query results for the 8 most similar frames in a loop are shown in Figure 4.20.

The x-axis denotes the query images and the y-axis denotes the indices of the 8 most

similar keyframes. Up to keyframe 240 the query results are mostly spatial neighbors

of the current keyframe (e.g. diagonal elements). After frame 240, a second parallel

line emerges indicating a loop closure. Figure 4.21 shows the results of loop closure

detection for the candidate frames marked blue in Figure 4.20. Hereby, the candidate

with the highest number of inliers reported from the RANSAC routine is assigned to be

the loop closing frame Pl (framed red).

50 100 150 200 250

50

100

150

200

250

keyframe

10
 m

o
st

 s
im

ila
r

fr
am

es

Figure 4.20: Vocabulary tree query results. The x-axis denotes the current query frame
while the y-axis shows the keyframe indices of the 8 most similar neighbors. Recently
added keyframes (diagonal elements) are ignored during loop closure detection since
they are in the spatial neighborhood of the query frame. The remaining candidates are
geometrically verified.

In case of relocalization or recovery, the pose is estimated by a non-linear least-

squares optimization routine minimizing the reprojection error, initialized with the best

4.7. Conclusion 85

Figure 4.21: Geometric verification of the loop closure candidates for the query image
framed green. Wrong voctree responses are filtered out through descriptor matching fol-
lowed by fundamental matrix estimation. The keyframe producing the most RANSAC
inliers is reported to be the loop closing frame Pl (framed red).

matching keyframe Pl:

Pk = arg min
Pl

d (xk, Pl Xl) . (4.9)

After successful recovery incremental localization is continued.

In contrast to relocalization, loop closures require special treatment. To close the

loop and to guarantee convergence of the subsequent bundle adjustment routine, as

many correspondences as possible xk ↔ Xl between the current frame Pk and map

points visible from Pl have to established. Therefore, descriptors associated with the set

of map points X∗k visible from Pk are compared to the set of map points X∗l visible by

the loop closing frame Pl. If there exists a positive match between two points Xk and Xl,

all measurements mkk related to Xk are added as additional measurements for map point

Xl and the duplicate landmark Xk is deleted. A simplified sketch of the loop closing

process is shown in Figure 4.22. Once enough correspondences are detected, sparse

bundle adjustment is applied over the entire map and keyframe poses. In contrast

to iterative map optimization we use the least-squares cost function since the newly

added measurements result in high reprojection errors. Hence, they would be treated

as outliers by a robust cost function. The results of the loop closing process are shown

in Figure 4.23, where the top-view of map and trajectory before and after loop closure

detection and correction is shown.

4.7 Conclusion

Early in this chapter we presented three typical visual features used in robotics. Then we

provided an intensive state-of-the-art overview on different environment models, map

building algorithms as well as localization techniques within the map. We put special

86 Chapter 4. Visual Localization and Map Building in Static Environments

(a) (b) (c)

Figure 4.22: Schematic loop closing process. (a) Before loop closing the green points are
visible at the beginning and the red points at the end of the loop. (b) After determining
the potential loop closing frame Pl, 2D ↔ 3D point correspondences between Pk and
map points visible from Pl are established. (c) Sparse bundle adjustment over the whole
loop is performed to correct all sensor poses and landmarks.

−5

0

5

10

−20−15−10−5051015202530

Z[m]

X[m
]

(a)

−5

0

5

10

−20−15−10−5051015202530
Z[m]

X[m
]

(b)

Figure 4.23: Loop closure correction. (a) Top view of a three-dimensional map (red)
and a 70m trajectory (blue) before loop closing took place, where a small displacement
occurs. (b) Corrected map and trajectory after applying bundle adjustment over the
whole environment.

emphasis on global localization techniques using a vision sensor only, since it is a basic

prerequisite for every SLAM algorithm. Based on these considerations we implemented

our own framework capable of doing simultaneous localization and map building using

either a monocular camera or a rang8e image device. We also presented techniques to

recover from localization failures and for robust loop closure detection and correction.

The proposed visual SLAM algorithm is able to perform localization and map build-

ing within static environments resulting in a set of camera poses and a sparse three-

dimensional pointcloud map of the environment. Figure 4.24 shows the resulting envi-

ronment and estimated trajectory of a typical indoor scenery, where we used stereo-data

as input and traveled a closed loop. Even short-term noise caused by moving people

is handled implicitly by the robust cost function during bundle adjustment. If the pro-

posed algorithm should perform visual SLAM over a long period of time in a large

4.7. Conclusion 87

scale environment containing dynamic scene elements several modifications would be

necessary: First, the current heuristic used for keyframe selection and landmark cre-

ation leads to a steadily increasing map size. This involves high memory consumption

and computation time. Hence, a more sophisticated rule for keyframe selection would

be necessary and map points should be added at unexplored regions only. Second, the

presented loop closing routine becomes computationally infeasible when traveling in

larger environments since a huge amount of parameters would be optimized. Finally,

during map building we assumed a static environment. This assumption only holds for

laboratory conditions or single run reconstructions but not for many real-world applica-

tions. A robot traveling in everyday scenarios is confronted with an ever changing world

consisting of moved furniture, driving cars or lighting variations. A mapping algorithm

operating in a dynamic world should react on these changes and offer the possibility

to update and repair an existing map. The following section focuses on localization

and map building in dynamic environments and comprehends some solutions to tackle

these problems.

(a)

(b) (c)

Figure 4.24: Results of an indoor environment. (a) Images recorded in a typical office
building. (b) The resulting three-dimensional map and trajectory. (b) Top view of map
and trajectory overlaid on a floor plan.

5
Visual Localization and Map

Building in Dynamic

Environments

In the previous chapter we described the different blocks necessary to implement a

SLAM algorithm using vision sensors. Assuming a static environment the proposed

algorithm is able to construct a three-dimensional representation of the environment

while simultaneously localizing within this world. In visual SLAM, as presented in

Section 4.6, map construction is done in a single run only, without considering any en-

vironmental changes. Simply adding all incoming sensor data would involve increased

memory consumption, inconsistent maps and data association problems - especially in

high dynamic scenes. Consequently, SLAM would inevitably fail in the long run.

This chapter addresses exactly these problems. At the beginning we try to see our en-

vironment from a robots point of view and highlight the challenges and problems when

performing visual SLAM in a real-world scenario. We propose two main contributions

to tackle the problems arising in dynamic surroundings: First, a novel three-dimensional

landmark descriptor is developed in Section 5.2, which allows us to react on dynamic

entities. The descriptor stores feature visibility information and implicitly filters out-of-

date map regions. Second, a graph-based keyframe organization is presented in Section

5.3 to gain efficiency and scalability in loop closing and sliding window bundle adjust-

ment. We show how to embed them into our visual SLAM algorithm depicted in Section

4.6 and highlight their benefits.

89

90 Chapter 5. Visual Localization and Map Building in Dynamic Environments

5.1 Introduction and Motivation

5.1.1 What is a Dynamic World?

Most state-of-the-art works on visual SLAM assume a well-structured environment con-

taining stationary objects only and input data is captured in a single run. For a robot

moving in real-world environments over long periods of time this assumption does not

hold anymore. People are moving around resulting in noisy sensor readings. Simulta-

neously they also modify the surrounding by adding, moving or deleting objects such

as furniture, packages, plants, posters, desks or chairs leading to undefined changes in

the robots sensor readings.

In Figure 5.1 we define the different states of a realistic, everyday environment a

robot is moving in, where we can distinguish five categories: There exists a lot of static

objects, which do not change their position and appearance over time. When thinking

of a robust SLAM system the map should be made mainly out of stationary objects

since these are reliable landmarks for localization. Buildings, walls, windows, floors or

locked doors belong to this group. Dynamic scene elements instead are grouped into

noisy, radiometric, short-term and long-term dynamics, which undergo different time

scales. Noisy dynamics are moving randomly inside the robots field of view and are

characterized through unpredictable movements. Leaves moved by the wind or clouds

belong to this group. Consequently, landmarks stemming from these objects should not

be present in the map or at least not used for localization. Short-term dynamic ele-

ments are moving quickly and flighty inside the robots field of view and can be found

at many different places in the map. For example pedestrians or cars are moving in

front of the robot in real-world traffic scenes. Even in indoor office scenes or museums

steadily walking people distort the robots sensor readings. However, as mentioned in

Section 2.2, short-term dynamic changes can be robustly filtered out during the SLAM

process since they are not important for pose tracking. Static objects probably chang-

ing their appearance over time outside the robots field of view are called radiometric

dynamics. Appearance changes are mainly caused by seasonal changes (summer, win-

ter, day, night) or varying lighting conditions (artificial lighting, sunshine, shadows).

Here, seasonal changes occur at regular time intervals while varying lighting conditions

are temporally unpredictable. Objects with shiny surfaces like metallic doors, floors or

lights belong to this group. Since these objects do not change their position they repre-

sent important landmarks for localization. Long-term dynamic scene elements instead

pose a greater challenge for the localization and mapping task. Usually, they move in-

5.1. Introduction and Motivation 91

STATIC
Objects do not change their position

Important for localization

walls, windows, floor, locked doors, stairs

DYNAMIC
noisy dynamics short-term dynamics

Objects moving randomly inside the robots FOV
Unimportant for localization

Objects moving flighty inside the robots FOV
Unimportant for localization

leaves or foliage in the wind, clouds pedestrians, cars, bikes, robots

radiometric dynamics long-term dynamics

Static objects changing their appearance
Important for localization

Objects moving outside the robots FOV
Important für localization

seasonal changes (day-night, summer-winter),
lighting changes, shadows

chairs, desks, doors, sofas, plants, images,
parking cars

Figure 5.1: Categorization of a robots environment. Besides static scene elements a
visual SLAM algorithm is confronted with noisy, short-term, radiometric and low-
dynamic elements. A complete visual SLAM algorithm should be able to handle all
these scene configurations especially in the context of life-long map building.

frequently outside the robots field of view and can only be found at specific places in

the map like sofas, posters, images, plants, desks or chairs. For example, a book lying

on a desk is regarded stationary when faced by the robots sensor and therefore included

in the map as a landmark. Afterwards, it can be moved or deleted outside the robots

FOV. Nonetheless they represent important landmarks for localization process. Both, ra-

diometric and long-term dynamic changes can only be detected if the robot revisits the

same place again. In that case the same place results in different sensor measurements,

which should be used to repair the existing map (i.e. update shifted objects, remove

deleted objects or add new objects).

92 Chapter 5. Visual Localization and Map Building in Dynamic Environments

5.1.2 Challenges in Dynamic Environments

Considering this environment categorization a robot is confronted with a lot of chal-

lenges to be solved when performing life-long localization and mapping:

Noisy dynamics Randomly, unpredictably moving objects like leaves, grass or trees do

not represent reliable landmarks for localization and should not be added to the

map. As a consequence they should be filtered out or ignored throughout the

whole SLAM procedure. Otherwise, these spurious landmarks would overfill the

map and lead to increased storage requirements.

Short-term dynamics Objects moving rapidly inside the robots field of view like driv-

ing cars or pedestrians should be filtered out or ignored and not be incorporated

into the map. As noisy dynamics, these temporary measurements would lead to

an ever growing number of landmarks, a falsified map representation and wrong

localization results.

Radiometric dynamics Radiometric entities do not change their position over time, but

might alter their appearance induces through external forces. As long as their

corresponding landmarks are detected reliably during pose tracking they should

be kept in the map. Otherwise, their appearance information should be updated.

In order to maintain a consistent and up-to-date map and to guarantee robust

localization this process must be done permanently and online.

Long-term dynamics Long-term scene dynamics should be detected by comparing cur-

rent sensor data to the already existent map. Landmarks corresponding to moved

or vanished objects have to be deleted from the map. New entities should be

added to the map. As above this process must be done permanently and online

guaranteeing an up-to-date map.

Long-term localization and mapping Despite the handling of dynamic objects, local-

ization and mapping over a long period of time comes along with many other

challenges. Normally, the number of poses and landmarks grows proportional to

the map building time since keyframes and landmarks are continuously added to

the map. If the robot performs navigation over a longer period of time (e.g. days,

weeks or even months) and revisits several places multiple times this would lead

to increased computation time and storage requirements. Therefore, a desirable

effect is to keep the map size proportional to explored space rather than navigation

5.2. A Novel Feature Descriptor for Visual Mapping 93

time. Additionally, when traveling a long period of time, multiple loop closures

may occur. Here, visual information should be used to check continuously for

loop closures and to aid in relocalization when tracking fails. A fast and accurate

method to solve multiple, nested loops is indispensable.

In the following, two concepts aiding to solve above described challenges are devel-

oped.

5.2 A Novel Feature Descriptor for Visual Mapping

To tackle the problems of high scene dynamics, change detection, map update and

scalability we developed a new feature descriptor adding spatial visibility information to

each three-dimensional landmark. First, the intuition behind the descriptor is motivated

in Section 5.2.1 followed by a theoretical description in Section 5.2.2. Finally, we show

its incorporation in our visual SLAM framework and highlight its benefits in Section

5.2.5.

5.2.1 Motivation

Most existing SLAM solutions, including the one proposed in Section 4.6, assume a

static environment containing only stationary objects. The map is updated with all

incoming sensor data and used for localization afterwards. In reality the static world

assumption does not hold since the world a robot is moving in contains a lot of non-

stationary objects. When aiming at long-term mapping and exploring objects like doors,

office desks or furniture may move. Simply adding all incoming sensor data to the

map without reacting on environmental changes would continuously enlarge and even

distort the map. The key problem thereby is how to handle map features which should

be visible from a certain viewpoint, but are actually not observed. While probabilistic

approaches like occupancy grids may implicitly solve this problem by downweighting

the affected cells, approaches based on sparse local features can not. This results in

ever growing maps and may also lead to data association problems caused by multiple

occurrences of the same object in the map (e.g. moved sofa).

To implicitly handle the ambiguity between scene dynamics and occlusion, we pro-

pose to add spatial visibility information to local map features. To encode the visibility

and importance of each three-dimensional landmark in a map, we develop the Histogram

of Oriented Cameras (HOC) descriptor. The basic idea is, that each descriptor tracks how

94 Chapter 5. Visual Localization and Map Building in Dynamic Environments

often its associated landmark has been observed from a specific location. Hence, the

constructed map implicitly adapts to dynamic changes during mapping and dynamic

entities should not affect localization.

5.2.2 Feature Descriptor

To build the three-dimensional feature descriptor, the volume around each map point

is divided into a set of k concentric spheres with logarithmically increasing radii ri,

i = 1, ..., k. Hereby, each sphere is approximated through a Platonic solid defined by a set

of m faces fi,j, j = 1, ..., m. A Platonic solid is a convex, symmetric, regular polyhedron

where all faces are congruent regular polygons and all its vertices lie on a common

sphere (compare Figure 5.2).

(a) (b) (c)

Figure 5.2: Platonic solids with triangular faces, where all vertices lie on a sphere: The
three solids are a tetrahedron (a) an octahedron (b) and an icosahedron (c).

The discrete polyhedral discre of the space around each map point can be seen as a

three-dimensional histogram. A single histogram bin is defined by the volume Vi,j of a

pyramid frustum between two consecutive radii ri and ri+1 limited by two correspond-

ing faces fi,j and fi+1,j. Figure 5.3 shows a three-dimensional feature descriptor with

four spheres approximated by tetrahedra. A single histogram bin is highlighted blue.

Each descriptor bin tracks how often its associated landmark has been observed from a

camera resting in this bin. Based on this number a probability pi,j, that the map point is

visible from within that frustum, is estimated. The higher pi,j the more probable it is to

observe this map point with a sensor resting in volume Vi,j. Hence, the view-dependent

importance of the landmark encoded in pi,j is defined by how often the specific landmark

is observed from that viewpoint. A logarithmic spacing of the radii allows us to cover

a large volume around each map point, assuming that spatial partitioning is more im-

5.2. A Novel Feature Descriptor for Visual Mapping 95

portant for closer features. Additionally, a different feature descriptor may be added to

each bin to model view-dependent appearance. Summarized, each descriptor H consists

of the following components

H =



ri i = 1, ..., k

fi,j j = 1, ..., m

Vi,j = {(ri, ri+1], (fi,j, fi+1,j)}

pi,j

(5.1)

Figure 5.3: Three dimensional feature descriptor. The logarithmically spaced spheres
are approximated by octahedron. A histogram bin defined by a pyramidal frustum is
highlighted blue.

Every time a new map point is added to the map, its HOC-descriptor is initialized

and bins corresponding to the observing camera poses are updated. All remaining bins

are marked unseen. Map points and their associated HOC-descriptors already present

in the map are only considered for an update if they lie within the view frustum of

the current camera pose. The update routine consists of the following steps which are

summarized in Algorithm 1: First, the descriptors within the field of view of the current

camera pose are determined. Afterwards, the bins (i.e. volumes Vi,j), the camera is

resting in, are computed. Finally, those bins producing a positive match during data

association are upweighted while the rest is downweighted.

Figure 5.4 shows the update procedure given various camera positions, two map

points and an occluding plane. Both points lie in the view frustum of camera Pc, where

96 Chapter 5. Visual Localization and Map Building in Dynamic Environments

the point producing a positive match X1 is updated (green bin) and the occluded one

X2 is downweighted (red bin).

Algorithm 1 HOC Update Procedure
Input: camera pose P, map points
Output: updated HOC descriptors

for all HOC H in FOV of P do
Vi,j ← computeBin(P, H)
pi,j ← updateBin(Vi,j)

end for

(a) (b)

Figure 5.4: HOC update procedure. (a) Map points X1 and X2 lie within the view
frustum of the current processed camera Pc and their HOCs are considered for an up-
date. Given an occluding plane, only the bin corresponding to X1 is upweighted (green)
while the other one is downweighted (red). Bins already visited by previous cameras are
marked gray, where darker values indicate a higher weighted bin. (b) The associated de-
scriptor weights of points X1 and X2 with visibility information encoded red (invisible)
and green (visible). The color intensity encodes the reliability of the information.

The above described descriptor allows many different variations regarding appear-

ance and update procedure. In the following, different polyhedral approximations as

well as various weighting schemes are described in more detail. How this descriptor is

embedded in our visual SLAM framework is addressed in Section 5.2.5.

5.2. A Novel Feature Descriptor for Visual Mapping 97

5.2.3 Descriptor Shapes

Although there exist various platonic solids, we concentrate on icosahedra and octahe-

dra because of the spatial resolution of the bins. Although upsampling through triangle

dissection would result in more fine-grained bins, it turned out that the number faces

of an icosahedron or octahedron are sufficient to handle dynamic scene elements. In

the following both shapes are described in more detail and efficient algorithms for bin

computation are presented.

Icosahedron

Each sphere is approximated by an icosahedron consisting of twenty faces represented

as equal sized triangles (see Figure 5.2). Given a camera pose P = K[R|t] and a HOC-

descriptor H within its field of view, the associated histogram bin Vi,j, j = 1, ..., 20 is

computed the following way: First, we determine the corresponding radius interval

(ri, ri+1] by calculating the Euclidean distance d between camera center C = −RT · t and

map point X associated to H:

d = ‖C− X‖ (5.2)

ri < d ≤ ri+1. (5.3)

Second, the intersection between the icosahedron and the line segment from map point

to camera center returns the valid face f j. For fast triangle intersection the circumcenters

of each triangle are organized in a kd-tree. After projecting the camera center onto the

sphere a nearest-neighbor search in the tree returns the corresponding face. It has to be

mentioned that the kd-tree is identical for all HOC-descriptors and needs to be stored

only once. Computed radii and the two corresponding faces uniquely define the bins

frustum Vi,j. The bin verification given an icosahedron is summarized in Algorithm 2.

Algorithm 2 Icosahedron - computeBin
Input: camera pose P = K[R|t], HOC descriptor H associated to X
Output: bin Vi,j

C = −Rt · t
d = ‖C− X‖
i← ri < d ≤ ri+1
Ĉ ← sphereProject(C)
j← kdTreeNN(Ĉ)
Vi,j = {(ri, ri+1], (fi,j, fi+1,j)}

98 Chapter 5. Visual Localization and Map Building in Dynamic Environments

Because of the rather fine approximation of the sphere consisting of twenty faces

we propose to use this type of descriptor for small environments like office or desktop

scenes. Even if the scenery consists of tiny, dynamic objects like telephones, cups or

books this representation should be preferred over the octahedron.

Octahedron

One drawback of the above described sphere approximation is the computationally in-

tensive identification of the histogram bins each time a descriptor is considered for an

update. To overcome this problem we propose to use an octahedron as underlying

geometry. Hereby, each histogram bin is defined by one octant in the descriptor coor-

dinate system O = {E1, E2, E3}. The octant domains are defined by three orthogonal

planes E1, E2, E3 in homogeneous form. Figure 5.5 shows the descriptor with its three

planes bordering a single octant. Given the camera center C = −RT · t a simple formula

delivers the binary representation of the corresponding face index j

j =
sgn

(
CT · [E1E2E3]

)
+ 1

2
, (5.4)

which can be computed in constant time. To allow each descriptor its own coordinate

system we decided to use the three orthogonal planes. The proposed procedure is again

summarized in Algorithm 3.

Algorithm 3 Octahedron - computeBin
Input: camera pose P = K[R|t], HOC descriptor H associated to X
Output: bin Vi,j

C = −Rt · t
d = ‖C− X‖
i← ri < d ≤ ri+1

j =
sgn(CT ·[E1E2E3])+1

2
Vi,j = {(ri, ri+1], (fi,j, fi+1,j)}

5.2.4 Bin Weighting Schemes

As described in Section 5.2.2 each bin holds its visibility information in terms of a

probability. In this section two possible weighting schemes to compute a bins probability

are presented.

5.2. A Novel Feature Descriptor for Visual Mapping 99

Figure 5.5: Octahedral representation. For computational reasons each sphere is ap-
proximated by an octahedron, where bin computation given a camera center can be
computed in constant time using the three orthogonal planes E1, E2, E3 defining the de-
scriptor coordinate system.

A Counting Scheme for HOC Update

Each bins probability pi,j should reflect the importance of the specific landmark from

within this frustum. The easiest way is an observation counter where each bin holds an

integer ni,j, corresponding to the number of observations from sensors resting in Vi,j. In

case of a positive observation, ni,j is increased, otherwise decreased. A positive obser-

vation occurs if the map point lies within the cameras field of view and concurrently

produces a positive match during data association (e.g. feature matching). A negative

observation occurs if the sensor should observe the landmark but did not produce a

positive match. From ni,j the importance weight pi,j is calculated according to a sigmoid

function

pi,j =
1

1 + e−λni,j
, (5.5)

where λ is a user defined scalar. Looking at the sigmoid function displayed in Figure

5.6(a) for different values of λ, smaller values of λ yield in smoother curves and should

be used for low dynamic scenes, whereas higher values are appropriate for a fast chang-

ing surrounding. Using this kind of voting scheme one should clamp the bin value ni,j

between 0.05 < pi,j < 0.95 to avoid over- or undersaturated bins (i.e. environmental

100 Chapter 5. Visual Localization and Map Building in Dynamic Environments

changes would not affect the objects probability). It should be mentioned that any func-

tion (e.g. truncated signed distance function) can be applied to compute a landmarks

importance pi,j.

−20 −15 −10 −5 0 5 10 15 20

0

0.2

0.4

0.6

0.8

1

n

p
(n

)

λ = 0.3

λ = 0.5

λ = 0.9

(a) (b)

Figure 5.6: Icosahedron update procedure. (a) Weighting function for different values of
λ, which is used for assigning each bin a probability for being visible. (b) Update of the
descriptor with three sensor positions. Darker colors indicate a higher weighted bin.

An example of a landmark together with its HOC descriptor observed from various

cameras multiple times is shown in Figure 5.6(b), where darker colors indicate a higher

weighted bin. The update procedure is summarized in Algorithm 4.

Algorithm 4 Update - Counting HOC Weighting
Input: bin Vi,j
Output: probability pi,j

if positive match then
ni,j ← ni,j + 1

else
ni,j ← ni,j − 1

end if
pi,j =

1
1+e−λni,j

A Probabilistic Scheme for HOC Update

Here, the log-odd representation, as utilized by standard occupancy grid mapping algo-

rithms, is employed to update the probability pi,j. The probability of each bin is defined

in its log-odd form li,j, where the value at time t is computed from the previous one as

5.2. A Novel Feature Descriptor for Visual Mapping 101

follows:

lt
i,j = lt−1

i,j + log
(

p(d)
1− p(d)

)
− l0

i,j, (5.6)

where l0
i,j denotes the initial log-odd value corresponding to the bin volume Vi,j and p(d)

represents a probability the associated map point is visible from within that volume (in

most cases l0
i,j = 0). The probability pi,j can be recovered from Equation 5.6 as

pi,j = 1− 1
1 + exp{li,j}

. (5.7)

In order to calculate p(d) we make use of the matching score established during data

association, where we seek to assign higher weights to better matches. Using Lowe’s

ratio [74] of the closest d1 to the second closest d2 matching distance

d =
d2

d1
(5.8)

we compute p(d) as

p(d) =


0.7 d > stL

1
s−1

(
0.2
tl

d + 0.5s− 0.7
)

tl ≤ d ≤ stL

0.4 d < tL,

(5.9)

where tL denotes Lowe’s matching threshold and s a user specified scaling factor to

adjust the sensitivity of the weighting function. Hence, a bin is downweighted if no

match occurs (i.e. d < tL) or upweighted proportional to the matching performance

of its feature descriptor. Figure 5.7 shows the proposed weighting scheme for three

different values of s. The more distinctive the feature descriptor (i.e. the higher Lowe’s

ratio d), the more reliable its associated landmark. The value of s just modifies the slope

of the weighting function, where a lower value should be chosen for high dynamic

scenes. Higher values flatten the weighting function suitable for low dynamic scenes.

The update procedure is summarized in Algorithm 5.

102 Chapter 5. Visual Localization and Map Building in Dynamic Environments

0 1 2 3 4 5 6 7 8
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

d

p
(d

)

s = 2
s = 3
s = 5

Figure 5.7: Probabilistic HOC weighting. Based on Lowe’s ratio d during matching we
assign higher weights to those map points associated with a more distinctive feature
descriptor. We show three different plots of the weighting function stated in Equation
5.9 for s = {2, 3, 5}.

Algorithm 5 Update - Probabilistic HOC Weighting
Input: bin Vi,j
Output: probability pi,j

d = d2
d1

compute p(d) using Equation 5.9
lt
i,j = lt−1

i,j + log
(

p(d)
1−p(d)

)
− l0

i,j

pi,j = 1− 1
1+exp{lt

i,j}

5.2.5 Incorporation of the HOC descriptor into the Visual SLAM Process

Throughout this chapter we describe how to embed the HOC descriptor into our visual

SLAM framework, which processes are influenced and highlight the benefits arising

from the descriptor incorporation. Figure 5.8 highlights the different states influenced

by the HOC descriptor and its benefits.

To incorporate the proposed descriptor we sightly change our environment model

defined in Section 4.6.1. Despite its three-dimensional coordinates and the feature de-

5.2. A Novel Feature Descriptor for Visual Mapping 103

INITIALIZATION

KEYFRAME

LOCALIZATION

MAP BUILDING

IMAGE ACQUISITION

LOOP CORRECTION

no yes

yes

no

RECOVERY

LOOP
DETECTION

FAILURE

n
o

yes

DATA
ASSOCIATION

SCALABILITY
DYNAMICS

Figure 5.8: Building blocks influenced by the HOC descriptor (orange). The visibility
information and importance measure stemming from the HOC descriptor affects the
localization and map building process. During pose estimation the descriptor facilitates
data association. During the map building stage dynamic scene elements can be filtered
out which influences the algorithms scalability.

scriptor each landmark Xj is attached a HOC descriptor Hj:

Xj =


(
Xj, Yj, Zj, 1

)T

dj

Hj

(5.10)

New descriptors are created everytime a new landmark is added to the map during map

building while descriptor updates are performed during the localization phase.

The proposed HOC descriptor enables us to implicitly store the visibility of each

three-dimensional landmark together with a view-dependent importance measure for

localization. This more complex map representation comes along with a lot of benefits

regarding dynamic environments, scalability and also facilitates data association. These

advantages are demonstrated in the following on a simple toy example: A stereo camera

is mounted on a tripod. We placed several objects in front of the camera onto a desk

where nearly all of them are moved, removed and added over time. Some input data is

shown in Figure 5.9.

104 Chapter 5. Visual Localization and Map Building in Dynamic Environments

Figure 5.9: Toy example to highlight the benefits of the HOC descriptor. We show the
left images of a stereo camera which has been mounted on a tripod. Several catchy
objects in front of the camera have been moved, added or disappeared over time. Frame
numbers are shown at the bottom right.

Dynamic Scene Updates

Short- and long term scene dynamics as well as occlusions are handled implicitly by the

HOC descriptor. Instead of simply adding all incoming sensor data to the map we are

able to include negative information in landmark based maps. This allows us to react

on environmental changes by filtering out unstable or unseen map points by looking at

the bins weight. Therefore, the resulting map only contains the most recent and most

stable features.

The evolution of the map over time is shown in Figure 5.10. The top row depicts the

ever growing environment without using any visibility information. Contrarily, adding

the HOC descriptor to every landmark results in a consistent map holding only the most

recent objects (bottom row). Here, we showed the most likely map by visualizing only

those map points whose maximum bin weight exceeds 0.5. The landmarks correspond-

ing to the book highlighted orange in Figure 5.9 are also bordered in Figure 5.10. After

processing all frames there exist three entities of the same object at different places (top

row). When using the HOC descriptor unseen landmarks have been removed success-

fully and only one book occurs at the right place in the map.

To further highlight the descriptors ability to handle dynamic objects, we also project

the actual map onto the currently processed frame demonstrating that the map only

contains the most recent environment configuration when using the HOC descriptor.

Without visibility information the map gets populated with all moved objects resulting

in duplicate occurrences of the same object and an ever growing number of landmarks.

Projected map points (red) and the number of landmarks are shown in Figure 5.11.

5.2. A Novel Feature Descriptor for Visual Mapping 105

Figure 5.10: Dynamic environment - evolution of the map over time. An estimated map
using stereo images (Figure 5.9) is presented. We oppose the map without using the
proposed descriptor (top row) to the one estimated when using the HOC descriptor
(bottom row). For visual inspection we highlighted the landmarks corresponding to the
book marked orange in Figure 5.9. Compared with the input images this results in a
three-dimensional pointcloud representing only the most recent environment configu-
ration. Frame number is depicted on the upper right corner.

Scalability

The HOC descriptor allows us to keep the map size proportional to explored space

rather than time. Landmarks whose maximum of all bins is smaller than a predefined

threshold wmin are interpreted as vanished features, since they are not visible from any

viewpoint. The effect of this simple threshold operation is again demonstrated on the

toy example. This time we monitored the map size over time, which is shown in Figure

5.12. Instead of a steadily rising number of landmarks (black) the HOC descriptor

guarantees a nearly constant map size.

Data association

The importance measure encoded in each histogram bin greatly enhances data associ-

ation through effective prefiltering of visible map points. Instead of performing data

106 Chapter 5. Visual Localization and Map Building in Dynamic Environments

Figure 5.11: Dynamic environment - evolution of the map over time. All points inside
the cameras view frustum are projected onto the image plane (red dots). We also stated
the number of points visible in each image.

0 20 40 60 80 100 120 140
200

300

400

500

600

700

800

frame

m

ap
 p

o
in

ts

 − HOC
 + HOC

Figure 5.12: Scalability demonstration - evolution of the map over time. We recorded the
number of landmarks in the map every frame. Thresholding the maximum bin value
and erasing the invisible map points lead to a more constant map size (red) in contrast
to the standard SLAM approach (black).

association (e.g. descriptor matching) using all points within the cameras view frustum

we select those map points with an importance weight exceeding a predefined thresh-

old. As a consequence we reduce the number of matching candidates which shortens

computation time and delivers more robust matches, especially in large, high dynamic

scenes.

To sketch this behavior we picked out a camera pose from an already mapped test

run as described in the experimental Section 6.3. As shown in Figure 5.13(a) the camera

is located outside a building facing a huge portion of an already reconstructed areal.

5.2. A Novel Feature Descriptor for Visual Mapping 107

(a)

(b) (c)

Figure 5.13: Improving data association. (a) View of a camera located outside in front
of a building already mapped. The potentially visible map with (green) and without
(red) incorporating visibility information. (b) Assuming a three-dimensional pointcloud,
simply reprojecting all points (yellow) within the view frustum of the camera would
result in a huge matching effort every frame when performing tracking. (c) Selecting
the most visible points drastically reduces the possible matching candidates.

Without using visibility information during data association all map points resting in-

side the cameras view frustum (red) are considered for descriptor matching (Figure

5.13(b)). With the HOC descriptor we can filter out those visible from that camera pose

(green) by considering the descriptors weight, which reduces the possible matching can-

didates drastically (Figure 5.13(c)).

108 Chapter 5. Visual Localization and Map Building in Dynamic Environments

5.3 A Novel Method for Keyframe Organization

To tackle the challenges especially occurring in long-term operation - computation time,

storage requirements or multiple nested loop closing - we propose a pose graph together

with an adaptive keyframe selection routine and a novel loop closing approach. First,

this is motivated in Section 5.3.1 followed by a theoretical description in Section 5.3.2.

Finally, our solution to fast, nested loop closing is presented in Section 5.3.3.

5.3.1 Motivation

State-of-the-art simultaneous localization and mapping algorithms relying on sparse

bundle adjustment using keyframes follow very naive approaches for keyframe selec-

tion, map point insertion, sliding window bundle adjustment and loop closing. Usually,

they are designed to operate in a small, restricted area while visiting each place only

once for map construction. Loop closing is performed once in order to correct wrong

pose estimates caused by drift. If a robot should perform life-long visual localization

and map building in a large scale environment, more sophisticated rules are necessary

to reduce memory consumption and computation time. Hereby, the most challenging

tasks are when and where to add new sensor information to the environment while re-

ducing the number of points and keyframes in the map to a minimum. Adding a new

keyframe everytime when the robot has traveled a certain distance would steadily in-

crease computation time and memory consumption. Instead of that we should be able to

decide if we are moving in already explored areas while tracking quality is considered

well or if we are entering unknown terrain. In the first case tracking without mapping

is sufficient and no additional keyframe is necessary. In the latter, keyframes have to

be established and map points should be added to carefully selected areas - preferred

to those regions lacking landmark information or where the environment has changed

due to dynamic entities in the map. The state machine depicted in Figure 5.14 shows

the desired interaction between tracking and exploring in a long-term SLAM system.

When tracking only is performed over a long period of time, keyframe insertion

does not occur at periodic points in time. Therefore, sliding window bundle adjustment

cannot be performed over the last N keyframes only, since no frame overlap would be

guaranteed. Alternatively, keyframes around a certain neighborhood should be con-

sidered when performing sliding window bundle adjustment, which may also include

keyframes stemming from previous test runs created long time ago.

Moreover, nested loop closure correction could be accelerated if only affected map

5.3. A Novel Method for Keyframe Organization 109

EXPLORING
Keyframe insertion

Map update
Pose and map refinement

TRACKING
Pose estimation

Entering unknown terrain

Traveling in known terrain

Figure 5.14: State machine describing the ideal transitions between tracking and explor-
ing mode of a mobile robot. To reduce computation time and memory consumption
keyframe insertion and map expansion should take place at selective points in time.
Ideally, pose estimation should be performed when the robot is traveling in already ex-
plored areas. When entering unknown terrain or environment has changed, the robot
should start exploring again and add keyframes and map points at carefully chosen
places.

parts are considered without touching already consistent map portions. A typical sce-

nario is shown in Figure 5.15, where a robot has already explored and corrected a large

map portion (red trajectory) and only a small inconsistent part (blue trajectory) needs

to be added to the large self-contained loop. Since no additional information could be

gained when performing loop closure correction over the whole trajectory, it is sufficient

to attach the small inconsistent part to the existing map.

Figure 5.15: Loop closure scenario within a long-term mapping experiment. Hereby,
only a small inconsistent part (blue) has to be added to an already corrected map and
trajectory (red). To gain efficiency it would be wise to identify the affected parts for loop
closing, while the rest remains untouched.

In the following solutions to the above mentioned problems are presented, which

can be easily integrated into our visual SLAM framework proposed in Section 4.6.

New heuristics for advanced keyframe selection, sliding window bundle adjustment

and guided landmark insertion utilizing a view graph are presented in Section 5.3.2. To

gain efficiency and scalability in loop closing, we identify affected map regions through

110 Chapter 5. Visual Localization and Map Building in Dynamic Environments

an efficient graph search, and apply a large scale nested loop optimization as described

in Section 5.3.3. Figure 5.16 highlights the different states influenced by the presented

solutions and their benefits.

INITIALIZATION

KEYFRAME

LOCALIZATION

MAP BUILDING

IMAGE ACQUISITION

LOOP CORRECTION

no yes

yes

no

RECOVERY

LOOP
DETECTION

FAILURE

n
o

yes

SCALABILITY
DYNAMICS

SCALABILITY
EFFICIENCY

SCALABILITY

Figure 5.16: Keyframe selection, map building and loop closing processes are affected by
the proposed pose graph. Adaptive keyframe selection reduces the number of poses in
the graph. Heuristics for map expansion and loop closing reduces the number of points
in the map as well as computation time during sliding window bundle adjustment and
loop correction.

5.3.2 Pose Graph for Keyframe Organization and Map Extension

Similarly to topological maps we propose to organize camera poses in an undirected,

unweighted graph, where each keyframe represents a node. Links are established incre-

mentally after map expansion, which is described in the following section. Figure 5.17

depicts a pose graph of keyframes after two independent runs.

Figure 5.17: Graph structure. Keyframes Pj are organized in an unweighted, undirected
graph. Links between nodes are established incrementally during pose tracking.

5.3. A Novel Method for Keyframe Organization 111

An Image based Measure for Keyframe Selection

A crucial step in a visual SLAM system is the decision when to add a keyframe and

expand the map. Typically, an incoming frame is assigned to be a new keyframe if

the camera has moved a certain distance from the previous keyframe [66, 127]. This

helps to maintain visual connectivity for the subsequent bundle adjustment procedure,

but also steadily increases the number of poses to be optimized in continuous mapping

over a long period of time. Hence, a more sophisticated rule for keyframe selection

is needed during pose tracking. Pose tracking for an incoming frame Pc is performed

by minimizing the reprojection error over 2D ↔ 3D correspondences between image

features and potentially visible map points. Keypoints xc extracted from the current

frame are matched against reprojected map points Xm using a guided search, which

(when implemented on the GPU) allows for real-time performance [19]. To keep the

map size proportional to explored space rather than exploration time, we propose the

following rule: In every new frame we form a two-dimensional histogram of keypoints

in the image domain with a bin size of 50× 50 px. Let Nc be the set of bins which contain

at least one keypoint xc, whereas Nm denotes the set of bins containing a keypoint

successfully matched during visual tracking. We create a new keyframe from Pc, if

|Nm|
|Nc|

< 0.55, (5.11)

which assures that at least 55% of the image area is covered by keypoints used for

tracking. Additionally, tracking quality measured by the mean reprojection error after

pose correction defines a further criterion for keyframe selection. We create a new

keyframe, if

d(mij, Pi Xj) < τ, (5.12)

where τ is a user defined threshold (throughout our experiments we set τ = 2.5px).

If Equations 5.11 or 5.12 are fulfilled, Pc becomes a new keyframe Pk and is added to

the pose graph as a new node. We link Pk to these four keyframes which produce the

most correspondences during tracking (sketched as dashed lines in Figure 5.18). The

described procedure is again visualized in Figure 5.19.

112 Chapter 5. Visual Localization and Map Building in Dynamic Environments

Figure 5.18: Keyframe insertion. When performing map expansion a new keyframe Pk
is added as a node to the graph and linked (dashed lines) to those keyframes producing
the four most matching correspondences during tracking.

(a) (b)

Figure 5.19: Keyframe selection. The red-dotted lines depict the borders of a two-
dimensional histogram. Extracted keypoints are shown as blue dots defining the set
of bins Nc containing at least one keypoint. The green keypoints have been successfully
matched during visual tracking. (a) 138 (green) out of 1665 (blue) keypoints produce a
positive match during data association but cover only 25% of the whole image. Thus a
new keyframe is established. (b) 101 (green) out of 1665 (blue) keypoints are matched
and cover 62% of the whole image area. Although there are less matches than in (a) no
keyframe is created because of the better distribution of matched map points.

Map Expansion based on Scene Coverage

After a new keyframe has been inserted new map points have to be created. A naive ap-

proach would be to add every unmatched feature point to the existing map. In contrast

to that we would like to add new landmarks only in unexplored surroundings or where

the environment has changed. Therefore, we again use the histogram from the tracking

5.3. A Novel Method for Keyframe Organization 113

process and consider a subset xc of all keypoints xc

xc = {xc|xc ∈ {Nc \ Nm}}, (5.13)

which form a candidate set of features for map expansion. The bins containing the

candidate set xc are highlighted yellow in Figure 5.20. Each feature is matched with

a carefully chosen subset of keyframes already stored in the map to guarantee visual

connectivity in the subsequent bundle adjustment process and to establish point corre-

spondences for triangulation in case of monocular map building. To reduce the match-

ing effort candidate keyframes are determined through a breadth first search within the

graph up to a depth of four. Figure 5.21(a) highlights the frames considered for map

extension compared to a fix sliding window.

Figure 5.20: Candidate features. The histogram bins containing no matched feature
from the pose tracking process are highlighted yellow. The keypoints (blue dots) resting
in these regions are considered for map extension. Hence, we assure only constructing
landmarks in unknown terrain.

When creating new map points we have to distinguish if we are equipped with a

range image device or a monocular camera.

In the case of a range image device map extension is an easy task and we only

have to decide which of the candidate features xc are added to the map. From each

bin the feature producing the most matches with the candidate frames is added as a

landmark to the map. Its three-dimensional position is already given through stereo

triangulation as described in Section 3.2.1 followed by a transformation into the global

world coordinate frame using the pose of the keyframe Pk.

For monocular devices we eliminate those candidate keyframes with insufficient

114 Chapter 5. Visual Localization and Map Building in Dynamic Environments

baseline for accurate triangulation and the reduced subset is used for subsequent feature

matching. As above, the feature producing the most matches of each bin is triangulated

using multi-view triangulation given the keyframe poses from the view-graph.

After feature matching and triangulation we perform sparse bundle adjustment with

the candidate frames, the current keyframe Pk and their associated map points to refine

both structure and motion in a local subregion.

(a) (b)

Figure 5.21: Candidate keyframes. (a) Keyframes used for feature matching, landmark
generation and subsequent sliding window bundle adjustment are established through
a breadth first search in the view graph. The affected region is highlighted gray. (b)
Other approaches only consider the last N keyframes where each test run is considered
individually although visiting the same area.

The presented rules allow to create a new keyframe if we explore unknown sur-

roundings, environment has changed or tracking quality has reduced. Additionally, it

guarantees that only new observations are considered for map expansion. In contrast

to existing approaches [63] we do not use a fixed number of frames for sliding window

bundle adjustment and frames considered for bundling are taken from various test runs

as shown in Figure 5.21(a), which is a desirable side effect in long-term mapping or

when visiting the same place multiple times.

5.3.3 An Accelerated Loop Closing Routine

Throughout this chapter we propose a new procedure allowing for fast loop closure

correction. Again candidate frames for loop closure and relocalization are detected by

a vocabulary tree approach relying on the visual bag of words scheme as described in

Section 4.5.

Once a loop has been detected, a possible solution would be to perform structure

and motion optimization over the whole trajectory, which is computationally very de-

manding. To correct translation, rotation and scale (in case of monocular sensor input)

we make use of the pose optimization procedure proposed in [127].

5.3. A Novel Method for Keyframe Organization 115

Hereby, the pose graph optimization procedure estimates new keyframe poses by

minimizing the residual of relative pose constraints ∆i,j = Pj · P−1
i , where each constraint

is described by a similarity transformation

∆i,j =

[
sR t

0T 1

]
, (5.14)

where s handles the scale drift occurred over time when performing monocular SLAM.

In case of a range imaging device

∆i,j =

[
R t

0T 1

]
, (5.15)

for all relative pose constraints since no drift needs to be corrected.

If a single camera is used then s = 1 for all constraints despite the loop constraint

∆c,l , where a similarity transformation is estimated by a RANSAC routine between two

corresponding 3D point sets as follows:

After loop closure detection we establish 2D ↔ 3D correspondences xc ↔ Xl be-

tween the current frame Pc and the map points visible from the potential loop frame

Pl (i.e. the best matching keyframe). We further employ 3D ↔ 3D correspondences

Xc ↔ Xl between map points associated with Pc and Pl, respectively. A RANSAC

[36] routine is applied to robustly compute a similarity transformation Tlc between both

point sets. A sketch of the loop closing situation is shown in Figure 5.22.

Tlc

Xc

Pc Pl

Figure 5.22: Calculation of the similarity transformation during loop closing between
3D ↔ 3D correspondences.

Because we potentially carry a very large and consistent map with a comparably

small, inconsistent loop attached to it, we need to identify the subset of keyframes Pi

to be optimized (compare Figure 5.15). Starting from the current pose Pc we traverse

116 Chapter 5. Visual Localization and Map Building in Dynamic Environments

the graph in all directions, until we hit an already optimized keyframe Po. All visited

nodes, denoted as Pv, are used for loop correction. The final subset Pi = {Pl; Po; Pc; Pv}
serves as input for the pose graph optimization, where Po and Pl are held fixed. The

relative constraints ∆i,j between poses are also derived from the graph. To geometrically

close the loop, we employ the pose graph optimization procedure which minimizes the

residual of relative pose constraints, where the loop constraint is modeled the following

way:

∆c,l = Pl · (Pc · Tlc)
−1 (5.16)

An iterative Levenberg-Marquardt algorithm minimizes the following error function

ε =
∑

i,j

rT
i,j ri,j (5.17)

ri,j = log
[
∆i,j ·

(
Pj · P−1

i

)−1
]

, (5.18)

where Pl and Po are kept fixed, because they define the entry points of an already closed

loop (compare Figure 5.23). This results in a set of corrected similarity poses Pi

Pi =

[
sR t

0T 1

]
. (5.19)

Given the subset of optimized poses Pi, we are able to correct a map point Xm by

computing its centroid

Xm = centroid
(
P−1

i

(
Pi Xm

))
. (5.20)

In a final step we perform structure bundling of those map points only visible from Pi,

to refine the resulting environment.

If we followed a path in the graph and did not visit a previously optimized node, we

have detected an open map trajectory (e.g. from relocalization). In this case there is no

information available about map consistency and we reorient the keyframes Po = {Pc; Pv}
and their associated map points with the similarity transformation Tlc. Figure 5.23

shows a schematic view of the optimization procedure used for loop correction. If a

closed loop exists (left drawing) we end up in an already optimized pose Po, otherwise

we started at an unknown location and re-entered the map (right drawing).

5.4. Conclusion 117

Figure 5.23: Advanced loop closing. Through graph traversal we establish a subset
of poses considered for loop closing. Starting from the current camera frame Pc, we
traverse the graph until an already optimized keyframe Po is reached. All visited
keyframes (connected through dashed lines) form the set of poses used for optimiza-
tion. Two possible scenarios may occur when performing loop closure correction: First
(left drawing), the whole loop is corrected. Second (right drawing), we reached an open
end and poses are only transformed to fit correctly into the map.

5.4 Conclusion

We presented a novel feature descriptor called histogram of oriented cameras (HOC)

holding visibility information and an importance weight for localization for each land-

mark. In contrast to most existing approaches, which encode visibility in a camera-

centered way (e.g. using keyframes), we propose to add a per-feature spatial histogram

of the number of observations. Two different descriptor setups (icosahedron or octahe-

dron) has been presented, whereas the octahedron allows for bin computation in con-

stant time given a camera pose. To compute the importance weight of each histogram

bin two weighting schemes has been presented. The first one simply counts the number

of observations for each bin. The second one follows a probabilistic update procedure

taking the descriptors matching score into account. We highlighted the descriptors ben-

efits when incorporated into a visual SLAM framework. Although the HOC descriptor

requires more storage it comes along with advantages like the implicit handling of dy-

namic scene elements, the ability to reduce the number of points in the map and the

reduced matching effort during visual tracking.

Additionally, an adaptive keyframe selection routine which compares the current

sensor reading to the already existing map has been presented. It allows us to con-

verge to tracking only when traveling in known terrain. On the other hand only sensor

118 Chapter 5. Visual Localization and Map Building in Dynamic Environments

readings describing new or unseen portions of the environment are added to the map.

These new rules in conjunction with the HOC descriptor guarantee a stabilized map

size, a minimal number of keyframes in the map and an up-to-date map being able to

adapt to dynamic environments.

The proposed graph structure together with robust loop closure detection allows

us to efficiently close large, nested loops. More specifically, when traveling in a large,

consistent map, only small, inconsistent parts have to be corrected. Affected camera

views can be detected in linear time and subsequent structure refinement only involves

a small portion of the whole map. The presented routine assumes a well-defined map

the loop is attached to. In future work one could investigate the quality of both maps,

where qualitative better map should remain fix whereas the other one is warped to it.

6
Experiments

To deal with highly dynamic scenes within life-long operation a novel feature descriptor

and a modified topological map representation have been proposed in Chapter 5. Fur-

thermore, to tackle the problems of storage requirements, computation time and multi-

ple nested loop closures, an accelerated loop closing strategy together with an adaptive

keyframe selection and map point insertion routine has been presented. The proposed

methods have been successfully embedded in our visual SLAM framework described in

Section 4.6.

Since our main focus lies on long-term mapping within a dynamic environment a

new benchmark dataset containing images of different times of day has been recorded,

which is described in Section 6.1. To highlight the benefits of the novel feature de-

scriptor proposed in Section 5.2 several synthetic and real-world experiments have been

performed and evaluated in Section 6.2. Here, we focused on the evaluation of scala-

bility, localization performance and map adaption. The fast and adaptive loop closing

strategy utilizing the pose graph described in Section 5.3 is evaluated in Section 6.3.

6.1 The Problem of Evaluation in Dynamic SLAM

Although there exist a lot of publicly available datasets, none of them addresses the

problem of life-long localization and map building in an ever changing world. After

reviewing a few of them in Section 6.1.1, we motivate and present our own dataset

named CDBench in Section 6.1.2.

119

120 Chapter 6. Experiments

6.1.1 Introduction and Motivation

In order to evaluate a SLAM solution one can choose between a vast amount of datasets

available online. Most of these datasets only provide raw sensor information without

any groundtruth data, where the majority of them consists of odometry and laser scan

data. The KTH dataset1 provides laser and odometry readings of a planar moving robot

from an area outside the university building. In order to evaluate the mapping perfor-

mance a list of walls of the building is provided. For experiments with this dataset we

refer the reader to Folkesson and Christensen [38]. Similarly, the Killian Court dataset

provided by Bosse et al. [10] contains laser, sonar and odometry readings of a robot

moving in the plane over a trajectory length of 2.2km. The greatest repository consist-

ing of laser, sonar and wheel encoder data is called Radish dataset2 [57]. Here, the most

prominent ones are the Freiburg Campus (by Cyrill Stachniss), the Intel Reasearch Lab

(by Dirk Hähnel) or the ACES Campus (by Patrick Beeson). Some estimated maps are

shown in Figure 6.1.

(a) (b) (c)

Figure 6.1: Estimated maps of the Radish dataset repository all consisting of laser and
odometry data. (a) Freiburg Campus dataset (courtesy of [125]). (b) Intel Research Lab
dataset (courtesy of [47]). (c) ACES Texas dataset (courtesy of [44]).

A dataset consisting of vision, odometry and laser scan data has been recorded by

Smith et al. [118]. They maneuvered a robot several kilometers through their campus

and the adjacent park altogether resulting in three different testsets containing multiple

loops and moving people. For accuracy evaluation of the vehicle position GPS data is

also provided.

More recently, Sturm et al. [129] published a large dataset comprising of color images

1http://www.nada.kth.se/~johnf/kthdata/dataset.html
2http://radish.sourceforge.net/index.php

http://www.nada.kth.se/~johnf/kthdata/dataset.html
http://radish.sourceforge.net/index.php

6.1. The Problem of Evaluation in Dynamic SLAM 121

and related depth data from Microsoft KINECT and a groundtruth trajectory of all

camera poses3. They recorded nine different sequences of a desk or office environment

where groundtruth is estimated by a highly accurate motion-capture system.

All mentioned datasets do not focus on long-term or radiometric dynamics and data

logging has been done in a single run only. A dataset with laser and odometry data

of three independent loops containing exclusively short-term dynamics (e.g. moving

people) has been recorded by Wang et al. [142], which aims at moving object track-

ing only. The most complete repository is presented by the Rawseeds Project4 providing

static, dynamic, indoor or outdoor environments. Here, the robot is equipped with a

huge amount of sensors like sonar, laser, odometry, IMUs, GPS and cameras. Addition-

ally, they provide groundtruth data of the robot pose in a small, predefined area within

their test circuit (see Figure 6.2). Indoors they mounted multiple cameras at the ceil-

ing detecting visual tags mounted on the robot in order to estimate the robot’s position

within the restricted area. Outdoors the robots pose is captured with a high precision

RTK (Real Time Kinematics) GPS system. Unfortunately, only 3DOF motion estimation

is necessary since all sensors are mounted rigidly on the robot moving exclusively in

planar environments. Two out of nine datasets contain short-term scene dynamics and

trajectories overlap at segments only. However, their main purpose lies in the compar-

ison of SLAM algorithms with different sensor technologies. Therefore, several error

measurements are suggested, which are described more precisely by Bonarini et al. [9]

and Ceriani et al. [14]. Some images of the indoor datasets together with a floorplan and

the traveled trajectory are presented in Figure 6.2. At the time of writing nine different

SLAM algorithms mainly operating on laser data have been tested on single runs only.

All benchmarks mentioned so far do not provide any evaluation of the environment

estimated by a SLAM algorithm. Furthermore, most of them contain data captured in

a single run only and therefore only short-term scene dynamics may occur (see Table

6.1). To evaluate long-term or radiometric dynamics a longer recording time would

be necessary. Moreover, there exist just three datasets containing one or more vision

sensors, where only the Rawseeds Project captured data at different days. A dataset

for evaluating long-term visual localization and mapping presumes images captured at

multiple days while traversing the same area multiple times. It should contain both

long- and short-term dynamics as well as different lighting and weather conditions. At

the time of writing such a dataset does not exist.

3http://cvpr.in.tum.de/data/datasets/rgbd-dataset
4http://www.rawseeds.org/home/

http://cvpr.in.tum.de/data/datasets/rgbd-dataset
http://www.rawseeds.org/home/

122 Chapter 6. Experiments

D
ataset

sensors
indoor(i)

outdoor(o)
m

otion
dynam

ic
elem

ents
G

T
poses

G
T

m
ap

r ecording
tim

e

K
TH

laser
odo

o
3D

O
F

×
×

×
1d

K
illian

C
ourt

laser
sonar

odo
i

3D
O

F
×

×
×

1d

R
adish

laser
sonar

odo
i,o

3D
O

F
×

×
×

1d

N
ew

C
ollege

laser
odo

m
ono

stereo
i,o

3D
O

F
short-term

G
PS

×
1d

R
G

B-D
K

inect
i

6D
O

F
×

m
ocap

×
1d

W
ang

laser
odo

i
3D

O
F

short-term
×

×
1d

R
aw

seeds
m

ultisensor
i

3D
O

F
short-term
radiom

etric
m

ocap
×

3d

o
3D

O
F

G
PS

×
5d

C
D

B
ench

stereo
i

6D
O

F
short-term

tripod
visual

1d

i,o
6D

O
F

short-term
long-term

radiom
etric

noisy

m
easured
land-
m

arks
×

10d

Table
6.1:

C
om

parison
of

different
SLA

M
benchm

arks.
There

exist
a

lot
of

publicly
available

datasets,w
here

the
m

ost
of

them
contain

laser
and

odom
etry

data.
G

roundtruth
m

ap
(G

T
m

ap)
and

poses
(G

T
poses)

are
rarely

available
and

data
is

acquired
in

a
single

run
only.The

C
D

Bench
instead

has
been

captured
at

10
different

days
w

hile
traversing

a
fixed

num
ber

of
landm

arks
every

run.N
otation:(i)

indoor,(o)
outdoor,(m

ocap)
m

otion
capture

system
,(odo)

odom
etry

provided
by

w
heelencoder.

6.1. The Problem of Evaluation in Dynamic SLAM 123

(a) (b)

Figure 6.2: The Rawseeds dataset. (a) Images from the indoor dataset containing chal-
lenging pictures like shiny corridors, blurred hallways or featureless areas. (b) Associ-
ated floorplan with the trajectory sketched (red) and the groundtruth area (blue).

6.1.2 A New Dataset for Benchmarking Dynamic SLAM Approaches

Traditionally, a SLAM dataset consists of a moving sensor which explores a mostly

static environment. The main difficulties when constructing a benchmark dataset es-

pecially for large-scale dynamic environments are manifold. First, groundtruth for the

traveled trajectory has to be provided. While outdoors this would be possible with

GPS, indoor sequences require more sophisticated setups. Especially when covering

large areas, groundtruth generation would need an inside-out tracking system moni-

toring the sensor pose over the whole scenery. Second, groundtruth generation for an

ever changing environment poses further challenges. One would require an accurate,

three-dimensional drawing of the whole scenery both indoors and outdoors everytime

the environment has changed. Finally, every SLAM algorithm produces a different en-

vironment model (e.g. planes, lines, pointclouds, occupancy grids) where a generally

accepted mapping error measure is necessary. Consequently, evaluating the localization

and mapping performance in static and dynamic environments becomes impractical

and the problem of benchmarking dynamic scenes needs to be divided into simpler

evaluation tasks.

To evaluate the robustness of a SLAM algorithm against dynamic changes one can

keep a static camera in a restricted environment whilst objects are moved randomly

within the camera’s view frustum. This results in groundtruth poses every frame and

124 Chapter 6. Experiments

mapping performance can be evaluated at least visually. If both camera and scene are

moving, benchmarking localization and mapping performance becomes impossible. To

capture as much scene dynamic as possible a long-term experiment throughout several

days traversing the same area over and over again is necessary. This allows for the

evaluation of localization repeatability and accuracy within a dynamic world as well as

the algorithm’s robustness against an ever changing world.

Due to the lack of publicly available datasets in both high and low dynamic envi-

ronments captured over a long period of time, we recorded our own data, which is

available online5. To account for different dynamic scene elements and to permit some

sort of map evaluation we decided to provide two separate datasets: First, an indoor

dataset with a non-moving stereo camera, where a lot of different objects in front of the

camera have been moved, deleted or occluded. This dataset aims at evaluating localiza-

tion accuracy, robustness and map building accuracy. Second, a long-term experiment

over 10 days in a mixed indoor and outdoor environment is used to evaluate the perfor-

mance, robustness, accuracy and scalability of a SLAM algorithm in a life-long setting.

In contrast to existing datasets we focus on long-term dynamic scene elements, which

pose a greater challenge for every visual SLAM application. Therefore, several objects

have been moved deliberately.

All datasets have been recorded with the CCD stereo-rig Bumblebee2 from PointGrey6

featuring a resolution of 640 × 480 pixels and a baseline of approximately 12cm. In

order to receive internal camera parameters and the relative orientation of both cameras

to each other we used the Camera Calibration toolbox for Matlab [11]. For electric power

supply we used a standard 12V, 7.2Ah lead-acid battery. Frame grabbing has been

implemented using libdc13947 on a standard consumer laptop running Ubuntu 10.04.

The whole hardware setup is shown in Figure 6.3. In the following the content of both

datasets is described in detail.

Static Camera - Moving Scene

The first dataset consists of three sequences (named indoor_a, ..., indoor_c) with the

stereo-rig mounted statically on a tripod to get groundtruth data for camera pose and

relocalization performance in high dynamic scenes. Objects in front of the camera have

been moved, deleted or occluded several times. In an additional dataset (named in-

5http://rvlab.icg.tugraz.at/project_page/project_slam/project_slam.htm
6http://www.ptgrey.com/products/bumblebee2/bumblebee2_stereo_camera.asp
7http://damien.douxchamps.net/ieee1394/libdc1394/

http://rvlab.icg.tugraz.at/project_page/project_slam/project_slam.htm
http://www.ptgrey.com/products/bumblebee2/bumblebee2_stereo_camera.asp
http://damien.douxchamps.net/ieee1394/libdc1394/

6.1. The Problem of Evaluation in Dynamic SLAM 125

Figure 6.3: Hardware setup. The camera is attached through Firewire to a consumer
laptop. For electric power supply we used a 12V lead-acid battery.

door_d) the camera has been moved several times over an office table while manipulating

dominant objects . By moving these dominant objects to different places we can evaluate

the algorithms robustness to adapt an existing map to the currently visible configuration

and the stability regarding data association and pose estimation. The testsets consist of

571, 497, 277 and 349 stereo-image pairs, respectively. We choose a uniform background

in order to visually evaluate the performance of the mapping algorithm to repair and

update an existing map. A subset of images from each dataset is presented in Figure

6.4.

The static camera - moving scene data aims at evaluating localization accuracy, scala-

bility, the algorithms robustness against short-term and noisy scene dynamics and its

ability to update and repair an existing map.

Moving Camera - Moving Scene

The second dataset consists of 15443 gray-scale images recorded with a hand-held

stereo-rig. A total of 14 independent trajectories named outdoor_a, ..., outdoor_n have

been collected over a trajectory length of 1.4km in a mixed indoor/outdoor scenery.

Figure 6.6 presents a schematic overview of the test scenery, where all trajectories are

roughly outlined. We grabbed at different times of day, covering an area of approxi-

mately 30× 130m2. To test for relocalization (kidnapped robot problem) the trajectories

also differ in their starting point locations. The scenery contains moving people and

vehicles, narrow corridors, shiny floors, glass doors, metallic surfaces, different weather

126 Chapter 6. Experiments

Figure 6.4: Static Camera - Moving Scene. A total of four datasets have been captured
where three of them assume a static camera mounted on a tripod with various moving
objects inside the robots field of view. In the fourth dataset the camera has been moved
over an office desk several times while catchy objects (red) have changed their position
or have been deleted outside the robots field of view.

(foggy, sunshine, wet) and lighting conditions (cloudy, sunny, morning, late afternoon)

as well as long-term changes such as moved cars, bicycles and furniture. Some promi-

nent images contained in the CDBench are presented in Figure 6.5.

When processing all images a visual SLAM algorithm is confronted with many chal-

lenging tasks such as robust data association, multiple loop closures, relocalization,

kidnapped robot problem, multiple traversals of the same area, storage requirements,

processing time as well as map adaption.

The moving camera - moving scene dataset aims at evaluating localization accuracy,

scalability, the algorithms robustness against scene dynamics, computation time and

storage requirements in a long-term experiment.

6.1. The Problem of Evaluation in Dynamic SLAM 127

Figure 6.5: Moving Camera - Moving Scene. We captured short-term noise such as mov-
ing people or vehicles as well as varying surroundings and different weather conditions.
Additionally, multiple occurrences of the same object at different locations affect map
consistency and data association.

Groundtruth Acquisition

Since there is no GPS information available indoors we decided to use fixed landmarks

such as duct covers, boundary stones, traffic signs or door frames to evaluate localiza-

tion accuracy and repeatability. Spread over the whole scenery we defined 15 landmarks,

both indoors and outdoors. In each testrun a subset of them is passed. Everytime a land-

mark has been traversed the testruns name and the filename of the currently grabbed

image was recorded (an excerpt of the resulting file containing various landmark posi-

tions is shown in Table 6.2). Figure 6.7 shows the covered environment from a birds-eye

view with the building overlain in red and landmark locations marked as yellow grids.

How often a specific landmark has been traversed is summarized in Table 6.3, where all

of them have been visited at least three times. Landmarks at crossings have been visited

more frequently.

outdoor_a right_img_000016.pgm 1
outdoor_a right_img_000201.pgm 8
outdoor_a right_img_000294.pgm 4

. . .
outdoor_d right_img_001262.pgm 15
outdoor_e right_img_000007.pgm 1
outdoor_e right_img_000246.pgm 9

. . .

Table 6.2: Groundtruth landmarks. In each testrun (left column) a subset of landmarks
(right column) has been passed and the associated images have been recorded (middle
column) for accuracy evaluation later on.

Additionally, we manually measured the distance between two adjacent landmarks

128 Chapter 6. Experiments

Figure 6.6: Sketched trajectories. 14 different trajectories with different starting point
locations have been recorded. The dataset contains images captured at 10 different
days.

landmark id occurrences landmark id occurrences landmark id occurrences
#1 7 #9 6 #15 5
#4 7 #10 4 #16 3
#5 6 #12 4 #17 3
#6 7 #13 4 #18 4
#8 3 #14 4 #20 3

Table 6.3: Landmark occurrences. Each landmark in the testset is at least passed three
times, where landmarks near crossings have been visited more frequently.

6.2. Evaluation of HOC-based SLAM 129

#1

#4#5

#6
#8

#14 #15

#9 #10 #13

#12

#16

#18

#1720 #

30 m

130 m

Figure 6.7: Overview of the test scenery. A subset of 15 fixed, predefined landmarks
(boundary stone, duct cover, parking places), shown as yellow grids, are passed each run
to provide groundtruth information. The building’s outline is highlighted red. (courtesy
of Google9

with a laser distance measuring device provided that they are facing each other. The

groundtruth distances are given in Table 6.4.

adjacent landmarks groundtruth distance [m]
#1↔ #9 11.60
#9↔ #10 19.61

#10↔ #13 25.57
#1↔ #8 4.77
#8↔ #14 6.38
#1↔ #4 13.66
#14↔ #6 21.48
#6↔ #5 22.94
#5↔ #4 18.72
#4↔ #12 30.16

#12↔ #20 30.32
#20↔ #17 6.33
#14↔ #15 12.95
#15↔ #16 17.63

Table 6.4: Groundtruth distances between adjacent landmarks. These have been mea-
sured with a laser range finder, where only measurements between neighboring land-
marks facing each other are available.

6.2 Evaluation of HOC-based SLAM

To evaluate the performance and to highlight the benefits of the proposed feature de-

scriptor, we performed a series of simulated and real-world experiments with the stereo-

130 Chapter 6. Experiments

setup described in Section 6.1.2. We compared the outcome of our standard visual

SLAM algorithm (-HOC) as described in Section 4.6 with its extension using the HOC-

descriptor (+HOC) described in Section 5.2. In both scenarios we evaluated the map

growth over time (i.e. scalability) and the pose estimation error (i.e. accuracy), where

groundtruth was available.

6.2.1 Synthetic Experiments

The four synthetic experiments were used to demonstrate the performance and correct-

ness of the HOC descriptor. Groundtruth map and sensor poses allow us to directly

measure pose estimation accuracy, mapping performance and scalability by monitoring

the map size over time.

The four synthetic experiments, named Simulation_a, ..., Simulation_d, assume a static

stereo-system using the camera calibration parameters from the hardware setup de-

scribed in Section 6.1.2. Objects are represented as 3D pointclouds of variable size

covering approximately 10% of the image. Throughout the experiments we captured

at 25 frames per second and the resulting image measurements, i.e. projections of the

3D points, were corrupted with Gaussian noise (σ = 0.5px). Objects were moved and

lied approximately 80 to 220 cm in front of the camera. The parameters used for each

experiment are summarized in Table 6.5. Some input frames of Simulation_a are shown

in the top row of Figure 6.8.

testcase # frames # objects object velocity

Simulation_a 62 6 0.6 m/sec
Simulation_b 59 5 0.6 m/sec
Simulation_c 62 5 0.4 m/sec
Simulation_d 62 5 0.6 m/sec

Table 6.5: Synthetic experiments. Parameters used in the four synthetic experiments.

Throughout the synthetic experiments we used our standard visual SLAM frame-

work (named -HOC) described in Section 4.6 taking stereo-images as input. Addition-

ally, the HOC-descriptor proposed in Section 5.2 is added to each landmark (named

+HOC). To deal with moving objects we used an icosahedron as HOC-shape with three

radii and the Sigmoid function to calculate the importance weight of each bin with

λ = 0.9. In order to discard moved or removed objects we set the threshold parameter

wmin = 0.35 as described in Section 5.2. We evaluated camera pose (translational and

rotational error) at every frame and monitored the evolution of the map size over time.

6.2. Evaluation of HOC-based SLAM 131

Figure 6.8: Synthetic experiment - map evolution for Simulation_a. (top row - input)
Six objects move in horizontal direction in front of the stereo camera. We show the left
input image at different points in time. (middle row -HOC) Backprojected map esti-
mated with our standard visual SLAM procedure. (bottom row +HOC) Backprojected
map constructed by the SLAM algorithm using the proposed HOC descriptor for each
landmark. The saturation encodes the weight of each landmark.

Pose errors account for the algorithm’s localization accuracy and robustness against

scene dynamics. The number of points present in the map are a measure of scalability

and map adaption where a constant number of landmarks is preferable. The transla-

tional error errtrans is given as Euclidean distance between the two camera centers of the

estimated pose and the groundtruth pose. To get the rotational error errrot we compute

the angle between the viewing directions of the estimated and groundtruth pose. errtrans

and errrot between the estimated sensor pose Pe = [Re|te] and the given groundtruth pose

Pg = [Rg|tg] are defined as follows:

errtrans = ‖
(
−RT

e · te

)
−
(
−RT

g · tg

)
‖

errrot = acos
(

ve · vg

‖ve‖ · ‖vg‖

)
, (6.1)

where ve and vg denote the third column of Re and Rg, respectively.

Additionally, we compared the position of the landmarks estimated by both ap-

proaches to the groundtruth map by computing the Euclidean distance between them.

Because of object movements there are multiple occurrences of the same object in the

map as visible in Figure 6.8. If images are processed with the HOC descriptor we com-

132 Chapter 6. Experiments

pare the most likely map point with its associated groundtruth landmark. Here, the

most likely landmark is the one with the highest bin weight. If images are processed

with our standard visual SLAM algorithm we compute the Euclidean distances to the

nearest and most distant corresponding landmark.

error measure testcase

Sim a Sim b Sim c Sim d

translational error [mm]
- HOC mean

(max)
12.06

(179.10)
8.6

(79.8)
65.0

(205.7)
113.5

(352.5)

+ HOC mean
(max)

0.97
(41.49)

0.2
(0.4)

0.3
(0.8)

0.4
(2.1)

rotational error [deg]
- HOC mean

(max)
0.45

(6.10)
0.3

(2.8)
0.03
(0.4)

2.8
(8.7)

+ HOC mean
(max)

0.05
(2.41)

0.004
(0.01)

0.0004
(0.001)

0.005
(0.01)

mapping error [mm] - HOC
min 15.24 14.07 21.47 16.75

max 156.72 156.45 177.49 200.60

+ HOC mean 10.41 9.75 7.26 8.39

map size [pts]

GT 277 246 264 264

- HOC 1526 1670 3035 3425

+ HOC 435 441 644 825

Table 6.6: Results of the four synthetic test sequences. We compared the standard SLAM
implementation (-HOC) to the one incorporating visibility information (+HOC). We
present mean and (maximal) translational and rotational errors of the estimated sen-
sor pose as well as the deviation of the estimated map to the groundtruth. Furthermore,
the groundtruth map size (input) and the final map size after the last processed frame
using both approaches is given.

Mapping and pose errors are evaluated for every frame and the averaged results

are summarized in Table 6.6, where mean and maximal errors are given for the transla-

tional and rotational component. The average mapping error for the HOC approach is

given, where for the standard SLAM procedure (-HOC) the mean over the minimal and

maximal distances is provided.

In contrast to the standard SLAM approach the additional visibility information

encoded in the HOC descriptor drastically boosts localization and mapping accuracy.

Here, the error ranges between 0.2 and 0.97mm whereas the standard SLAM procedure

6.2. Evaluation of HOC-based SLAM 133

produces much larger pose errors ranging from 8.6 to 113.5mm. Since objects are moving

sideways the translational error is much higher than the rotational offset. Furthermore,

the map size can be reduced to a quarter which greatly enhances data association in

terms of matching performance and speed while simultaneously improving the pose

estimates. When compared to the groundtruth (GT), our standard SLAM approach pro-

duces up to 13 times more landmarks. The HOC descriptor greatly reduces the number

of map points but did not reach the minimum map size as given by the groundtruth.

This may arise from the effect that some bins of a landmark are not downweighted

properly due to some jitter in the camera pose. This aliasing effect is caused by a slight

deviation of the pose, where the camera crosses the bin borders and previously up-

weighted bins are not downweighted properly anymore. We also reach better mapping

accuracy when incorporating the new descriptor. Here, the mean deviation ranges be-

tween 7.26 to 10.41mm only. The standard SLAM procedure instead produces much

higher map points offsets.

The evolution of the backprojected map points compared to the groundtruth over

time is shown in Figure 6.8. The bottom row represents the image of the estimated

map when incorporating the HOC descriptor, which is nearly similar the groundtruth

image (top row). Hereby, old positions of the object disappear after some time since

they get a lower weight during localization. More recent positions instead are given a

higher weight and assist the localization process. Constructing the map without visi-

bility information steadily increases the map size and results in multiple occurrences of

the same object in the map (see middle row).

6.2.2 Static Camera - Moving Scene

These experiments are used to demonstrate the algorithm’s robustness against short-

term and noisy dynamics. A groundtruth sensor pose allows us to directly measure pose

estimation accuracy. Again the evolution of the map size over time provides a measure

for the system’s scalability. We used the four indoor sequences of the benchmark dataset

described in Section 6.1.2. For exemplary images see Figure 6.4.

Throughout the experiments we take the stereo-images as input. Each landmark is

further assigned a HOC descriptor with spheres approximated by octahedrons. Since

the testset only contains images captured close to the objects we decided to use four

distance bins. As weighting function we employ the sigmoid function with λ = 0.9. To

get rid of vanished map points we compute the histograms maximum value and discard

those with wmin < 0.35.

134 Chapter 6. Experiments

Again we evaluated the translational and rotational error using Equation 6.1 for all

testsets where groundtruth was available (indoor_a, ..., indoor_c). We confront the pose

accuracy of our standard SLAM algorithm (-HOC) proposed in Section 4.6 with the

one using the HOC descriptor (+HOC). We also compare the map size after the final

frame has been processed. The accuracy, completeness and actuality of the resulting

map can only be inspected visually. Table 6.7 presents the mean and maximum pose

errors for each real-world experiment and the final map size. Similar to the synthetic

experiments we gain pose accuracy and drastically reduce the number of landmarks

when incorporating visibility information during SLAM.

A visual comparison of the estimated maps and trajectories of the indoor_b and in-

door_d testsets are given in Figures 6.9 and 6.10. Using visibility information from the

HOC descriptor the map always represents the most recent environmental configura-

tion, while out-of-date landmarks disappear after some time. Small relicts (light gray

map points on he right) result from the aliasing effect already mentioned in Section

6.2.1. On the contrary, including every sensor measurement results in overcrowded

maps where up to eight times more landmarks are present in the standard case. Mul-

tiple occurrences of the same object lead to wrong data associations and pose estimates

as demonstrated in Figure 6.9 and Table 6.7. In Figure 6.10 the moved and deleted ob-

jects are highlighted red for better visibility. When using the HOC descriptor one can

see that the map always contains the most recent objects, provided that the sensor is

visiting the same place again. Deleted objects disappear in the map (second frame) and

reappear (third and fourth frame) at the correct place. Furthermore, a map constructed

with the HOC descriptor contains only the most prominent features while noisy map

points caused by inaccurate or wrong triangulations are filtered out. It has to be men-

tioned, that the occluded object - although providing prominent, stable features - will

disappear after some time, since its bins are getting downweighted. On reappearance it

is added to the map as a new landmark. Since landmark importance is defined by the

number of positive observations this is a valid behaviour of our algorithm.

In addition, we also evaluated re-localization performance every 30-th frame where

groundtruth is available. Therefore, we perform exhaustive SIFT-matching of the fea-

tures contained in the current frame against all features in the map. The HOC descriptor

can be used to filter out the most probable map points by looking at the histogram’s

maximum value, which reduces matching effort and boosts data association accuracy.

The camera pose is then estimated through a 3-point RANSAC between 3D ↔ 3D cor-

respondences.

6.2. Evaluation of HOC-based SLAM 135

translational error [mm] rotational error [deg] map size [pts]
testcase + HOC - HOC + HOC - HOC + HOC - HOC

indoor_a 5.67 (18.05) 16.53 (28.94) 0.28 (1.03) 0.82 (1.44) 816 7904
indoor_b 17.56 (55.71) 190.21 (281.42) 0.95 (3.07) 8.99 (12.94) 1593 11899
indoor_c 1.57 (25.61) 15.57 (20.36) 0.07 (1.00) 0.81 (1.10) 855 6192
indoor_d - - - - 3817 6838

Table 6.7: Static camera - moving scene: Results of the four real-world test sequences
with a rigidly mounted stereo rig. We compared our standard SLAM implementation
(-HOC) to the one incorporating visibility information (+HOC). We present mean and
maximal translational and rotational errors of the estimated sensor pose when compared
to groundtruth. Furthermore, the final map size after the last processed frame using
both approaches is given.

Figure 6.9: Results of the indoor_b testset. We show estimated camera poses and land-
marks with (+HOC) and without (-HOC) using visibility information. Input images are
given for visual map comparison.

136 Chapter 6. Experiments

Figure 6.10: Results of the indoor_d testset. A camera has been moved several times over
an office table where prominent objects (yellow) have been transfered to different places.
We show the resulting maps estimated by our standard SLAM approach (- HOC) and
the algorithm using the HOC descriptor (+HOC). For better visualization the dynamic
objects are marked red in both landmark maps.

The results for both translational and rotational error are summarized in Table 6.8.

As expected even the re-localization accuracy is increased since the map constructed

with the HOC descriptor only contains the most recent objects. A graphical visualiza-

tion of the results for pose error, scalability and relocalization of the indoor_b dataset is

presented in Figure 6.11.

translational error [mm] rotational error [deg]
testcase + HOC - HOC + HOC - HOC

indoor_a 6.67 (28.54) 15.89 (41.27) 0.31 (1.31) 0.78 (1.96)
indoor_b 20.06 (76.36) 187.66 (281.20) 1.03 (3.53) 8.86 (12.75)
indoor_c 3.53 (8.62) 9.23 (17.04) 0.19 (0.43) 0.56 (1.10)

Table 6.8: Static camera - moving scene: Re-localization performance evaluated at three
real-world test sequences assuming a static camera. We compared our standard SLAM
implementation (-HOC) to the one incorporating visibility information (+HOC). We
present mean and maximal translational and rotational errors of the estimated sensor
pose when compared to groundtruth.

6.2. Evaluation of HOC-based SLAM 137

20 40 60 80 100 120 140 160
0

50

100

150

200

250

keyframe

tr
an

sl
at

io
n

al
 e

rr
o

r
[m

m
]

 − HOC
 + HOC

(a)

20 40 60 80 100 120 140 160
0

2

4

6

8

10

12

keyframe

ro
ta

ti
o

n
al

 e
rr

o
r

[d
eg

]

 − HOC
 + HOC

(b)

50 100 150 200 250 300 350 400 450

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

frame

m
ap

 s
iz

e
[p

ts
]

 − HOC
 + HOC

(c)

0 100 200 300 400 500
0

50

100

150

200

250

300

350

frame

re
−l

oc
al

iz
at

io
n

ac
cu

ra
cy

 [m
m

]

 − HOC
 + HOC

(d)

Figure 6.11: Static camera - moving scene: Graphical visualization of the indoor_b
dataset. Translational (a) and rotational (b) error for every keyframe. (c) Map size
over time. (d) Re-localization accuracy of the translational component. Our standard
SLAM approach (black) is compared to the one using the HOC descriptor (red).

6.2.3 Moving Camera - Moving Scene

The experiment is used to investigate speedup and accuracy during descriptor matching

(i.e. data association), the system’s scalability and localization accuracy. The improve-

ments during data association are demonstrated on the long-term dataset dataset. Scal-

ability and localization accuracy instead are shown in a small, clearly represented area

only. The algorithms performance in a long-term experiment is addressed in Section 6.3.

Throughout these experiments we only use the left image of the stereo-pair and

perform monocular visual SLAM as described in Section 4.6. Again we employ the

HOC descriptor to react on environmental changes (compare Section 5.2.5). Since we

are traveling in a wider area we use an icosahedron as underlying shape with nine radii.

138 Chapter 6. Experiments

To compute the weight of he bins we used the probabilistic weighting scheme described

in Section 5.2.4 with s = 5. To delete vanished map points we set wmin = 0.3. Each

keyframe is further stored in a pose graph and keyframe insertion is done on demand

as described in Section 5.3.

Data association

Employing the visibility information during pose tracking as described in Section 5.2.5

greatly reduces the average matching candidates per frame. For demonstration purpose

Figure 6.12 shows the number of visible map points per frame while processing the

outdoor_l testrun highlighted green in Figure 6.18. Using the HOC descriptor during

tracking (red) reduces the matching candidates from 7753 to 902 on average, compared

to matching without considering visibility (black). This results in a speedup of factor

4. Especially when traveling in z-direction (i.e. viewing direction of the camera) in the

map, we greatly reduce possible matching candidates. This can be seen particularly at

the three black ridges in Figure 6.12.

We also summarized the averaged number of visible points per frame for each of

the 14 testruns separately in Table 6.9. Notably we got a reduction of up to 91.18% per

frame. The reduced number of putative matching candidates per frame results in less

false matches, a speed up of the tracking process and more accurate localization results

(as shown later in this section).

200 500 800

5000

10000

15000

frame

vi

si
b

le
 p

o
in

ts

Figure 6.12: Moving camera - moving scene: Data association evaluation. Putative
matching candidates per frame with (red) and without (black) using visibility informa-
tion for the run highlighted green in Figure 6.18 are compared. We reduced the number
of visible map points from 7753 to 902 per frame on average.

6.2. Evaluation of HOC-based SLAM 139

testrun avg. matching effort [pts] reduction [%]
+ HOC - HOC

outdoor_a 292 512 42.92%
outdoor_b 237 423 43.99 %
outdoor_c 395 1614 75.52 %
outdoor_d 444 1823 75.63 %
outdoor_e 272 1900 85.68 %
outdoor_f 585 2746 78.71 %
outdoor_g 923 9179 89.94%
outdoor_h 523 5932 91.18%
outdoor_i 444 901 50.68%
outdoor_j 406 3287 87.64%
outdoor_k 761 3968 80.83%
outdoor_l 902 7753 88.36%
outdoor_m 1187 7998 85.16%
outdoor_n 2704 7796 65.31%

Table 6.9: Moving camera - moving scene: Data association evaluation. We present the
average number of visible points per frame for each testrun separately with (+HOC)
and without (-HOC) considering the visibility information. The percentaged reduction
is also given.

Scalability

To highlight the systems scalability, we only considered a subset of images traversing

the same area four times. The reasons for considering only a small map portion are

two-fold: First, the area has been recorded four times at different days at changing

weather conditions. Hence, the algorithms robustness against long-term, short-term

and radiometric dynamics is evaluated. Second, it provides a more descriptive example

than processing the whole dataset and allows better visualization and understanding of

the whole process. Figure 6.13 shows images from the processed subset named subset_1,

..., subset_4 and a snapshot of the traversed area. We evaluated the evolution of the

map size over time and the putative matching candidates per frame by comparing the

systems performance with (+HOC) and without (-HOC) visibility information.

Map growth over time is shown in Figure 6.14(a) and map size after each run is

listed in Table 6.10. The map size grows more rapidly in our standard SLAM procedure

(-HOC), since no landmark deletion took place. Even when using the HOC descriptor

a small increase can be observed, which is explained by the ever changing environ-

ment where new landmarks have to be established to guarantee an up-to-date map. As

140 Chapter 6. Experiments

byproduct we reduced the average matching effort per frame each run as shown in Table

6.10 and Figure 6.14(b).

(a) (b)

Figure 6.13: Analysis of the systems scalability. (a) Images taken from the four testruns
traversing the same area at different days. (b) Snapshot of the subarea traversed four
times to evaluate the systems scalability and localization performance. Two landmarks
are passed each run.

0 200 400 600 800 1000 1200 1400
0

1000

2000

3000

4000

5000

6000

7000

8000

frame

m

ap
 p

o
in

ts

 − HOC
 + HOC

(a)

0 200 400 600 800 1000 1200 1400
0

500

1000

1500

2000

2500

3000

3500

frame

vi

si
b

le
 p

o
in

ts

 − HOC
 + HOC

(b)

Figure 6.14: Moving camera - moving scene: Analysis of the systems scalability. (a) Map
growth over time throughout the four runs with (red) and without (black) visibility
information from the HOC descriptor. (b) Per frame matching effort throughout the
four testruns with (red) and without (black) incorporating the HOC descriptor.

6.3. Evaluation of the Novel Pose Graph, the Adaptive Keyframe Selection and Map
Point Insertion 141

map size (increase) [pts] avg. matching effort [pts]
run - HOC + HOC - HOC + HOC

subset_1 2424 1461 322.90 222.03
subset_2 3969 (+1540) 1749 (+288) 962.18 530.36
subset_3 5541 (+1572) 1752 (+3) 1536.82 657.80
subset_4 7448 (+1907) 2045 (+293) 1716.64 621.10

Table 6.10: Moving camera - moving scene: Analysis of the systems scalability. We
compared the map size and average matching effort per frame with (+HOC) and without
(-HOC) using the proposed descriptor.

Localization Accuracy

During the traversal of the four subsets in the restricted area we also passed two land-

marks (#4 and #5) every testrun as shown in Figure 6.13(b). To get a measure for local-

ization accuracy we compute the mean deviation from the centroid for the i-th landmark

as follows:

Ci =

∑n
j=1 Ci

j

n

erri =

∑n
j=1

(
‖Ci

j − Ci‖
)

n
, (6.2)

where n is the total number of traversal of landmark i. The error measures for both land-

marks are presented in Table 6.11. Due to the huge variety in the input data like moved

cars or changing weather conditions (compare Figure 6.13(a)) our standard SLAM ap-

proach fails during localization in the fourth run. Furthermore, without using the local-

ization importance encoded in the HOC descriptor the map gets polluted with already

vanished landmarks or wrongly triangulated map points. Figure 6.15 shows the es-

timated trajectories (red) and the underlying map from a birds-eye-view when using

both approaches on the restricted area. The blue dots mark the estimated positions of

the traversed landmarks, where our standard SLAM approach fails in the fourth run.

6.3 Evaluation of the Novel Pose Graph, the Adaptive Keyframe

Selection and Map Point Insertion

In order to evaluate the performance of the pose graph together with the adaptive

keyframe selection and map point insertion routine described in Section 5.3, we pro-

142 Chapter 6. Experiments

(a) (b)

Figure 6.15: Moving camera - moving scene: Localization accuracy. Map and trajec-
tories estimated by the visual SLAM algorithms. The positions of the two traversed
landmarks are marked in blue. (a) Estimated environment when using our standard
SLAM algorithm. (b) Results when incorporating the HOC descriptor.

landmark mean deviation [cm]
- HOC + HOC

#4 4.46 3.71
#5 73.68 9.78

Table 6.11: Moving camera - moving scene: Accuracy evaluation. We processed the
images of the four subsets taken in the restricted area. We compared the mean deviation
from the centroid of two landmarks (#4 and #5) with (+HOC) and without (-HOC) using
the proposed descriptor.

cessed the entire outdoor dataset (see Section 6.1.2). Here, we focused especially on

the life-long mapping context and evaluated the localization accuracy as well as the

scalability of our approach.

Throughout this experiment we take the monocular grayscale images as input and

perform incremental SfM combined with the HOC descriptor described in Section 5.2.

We use an icosahedron as underlying shape with nine radii. To assign a weight to each

bin we used the probabilistic weighting scheme described in Section 5.2.4 with s = 5.

6.3. Evaluation of the Novel Pose Graph, the Adaptive Keyframe Selection and Map
Point Insertion 143

To delete vanished map points we set wmin = 0.3. Each keyframe is further stored in the

pose graph and both, keyframe and map point insertion is done on demand as described

in Section 5.3.

Localization Accuracy

To evaluate the localization accuracy we saved the estimated camera projection center

Ci
j = −RT · t whenever a groundtruth-image has been processed. Ideally, all pose es-

timates Ci
j of landmark i should be identical. So the mean deviation from the centroid

Ci of all estimates acts as a measure for localization repeatability and stability of the

whole system (compare Equation (6.2), describing the proposed error measure erri for

landmark i). It is important to note that the first pose estimate for each landmark is

computed before loop closure took place. Therefore, it is omitted from the centroid

computation and its localization error is given separately. This scenario is also visual-

ized in Figure 6.16 showing a closeup of all recorded poses for landmark # 4. There is

a single outlier contained in the pose estimates stemming from the trajectory estimation

before loop closing took place and therefore only the poses after loop closure correction

green box) are considered for accuracy evaluation.

Within each of the 14 trajectories we passed a subset of predefined landmarks ex-

actly and recorded the estimated pose. The mean deviation from the centroid of all

pose estimates is presented in Table 6.12. We successfully (re)localized over the whole

trajectory while exploring perpetually. The mean deviation ranges between 1.36cm and

10.84cm, which are reasonable numbers for hand-held recording. Landmarks #13 and

#10 are outliers where localization failed when processing testrun outdoor_n evoked by

high lighting variations in the input data. Here, existing map points have not been rec-

ognized and a new map has been established. The wrong trajectory would be corrected

if reentering the map at a known position and correcting the wrong pose estimates

through loop closing.

Additionally, we computed the deviation between adjacent landmark centroids and

compare them to the groundtruth distance given in Table 6.4. Since groundtruth dis-

tances are measured in a nearly planar region, above computed landmark centroids

Ci have to lie in the same plane before computing the distances between them. The

computation of the distance between neighboring landmark works as follows:

• A plane is fitted to all camera centers over the whole trajectory using a RANSAC

approach to retrieve the plane parameters.

144 Chapter 6. Experiments

Figure 6.16: Accuracy evaluation. Recorded camera poses when passing landmark # 4
are marked as blue circles. The final trajectory (red) is shown together with the esti-
mated map points (black). The single pose on the left corner has been recorded before
loop closure correction took place. Localization accuracy is only evaluated at the poses
recorded after loop closing (green window).

landmark average err [cm] 1st pose error

#1 6.64 176.40
#4 5.70 290.00
#5 6.01 3.22
#6 7.50 86.59
#8 5.39 180.91
#9 10.84 12.03
#10 65.14 94.70
#12 3.44 78.01
#13 238.70 195.06
#14 4.58 8.91
#15 10.31 23.09
#16 3.06 4.77
#17 1.36 70.87
#18 4.42 20.07
#20 1.56 82.32

Table 6.12: Localization accuracy. Average deviation from the centroid at each landmark
after loop closure correction is measured. Deviations for poses before loop closing are
listed separately (right most column).

6.3. Evaluation of the Novel Pose Graph, the Adaptive Keyframe Selection and Map
Point Insertion 145

• All centroids Ci are projected onto the plane.

• The distances dl,m between facing landmark centroids l and m (see Table 6.4 for

neighboring landmarks) are described by the Euclidean distance measure.

• Since we are performing monocular SLAM, the estimated distance dl,m and groundtruth

distances d̂l,m are related by a scaling factor s, which is computed the following

way:

– The scale estimates sl,m between dl,m and d̂l,m are simply given through sl,m =
d̂l,m
dl,m

.

– In order to be robust against wrong centroid estimates, the overall scaling

factor s is calculated by taking the median estimate of all sl,m.

• The final error measure errl,m between estimated dl,m and groundtruth distances

d̂l,m is given through errl, m = |d̂l,m − s · dl,m|.

The deviation between groundtruth and estimated landmark distances is summa-

rized in Table 6.13. As expected the error between landmarks #10 and #13 is remarkably

high, because even their deviation from the centroid varies a lot (compare Table 6.12).

landmarks l ↔ m error errl,m [m]
#1↔ #9 0.09
#9↔ #10 0.49

#10↔ #13 6.87
#1↔ #8 0.06
#8↔ #14 0.43
#1↔ #4 0.18
#14↔ #6 0.19
#6↔ #5 0.54
#5↔ #4 0.31
#4↔ #12 0.39

#12↔ #20 0.61
#20↔ #17 0.09
#14↔ #15 0.18
#15↔ #16 0.13

Table 6.13: Accuracy evaluation comparing groundtruth distances to estimated ones
between adjacent landmarks. The euclidean distances between neighboring landmark
centroids has been measured and, after applying an overall scaling factor, compared to
the groundtruth measures reported in Table 6.4.

The final map and trajectory are overlain on a satellite image as shown in Figure

6.18. We successfully built a correct map and trajectory of the surrounding area. Only

146 Chapter 6. Experiments

the large loop as shown in Figure 6.17 has not been corrected properly since there is

a small offset between the dots representing the facades and the groundplan at the

rightmost side of the image near landmark #18. Here, the scale drift has not been

estimated exactly during loop closure correction resulting in a slightly wrong correction

correction of map points and camera poses. Full 3D models after processing all 14

trajectories of the CDBench dataset are shown in Figure 6.19.

Scalability

Scalability is measured by the reduction in the number of points and poses to be opti-

mized during the loop closing procedure. The loop closing strategy presented in Section

5.3 boosts computing time and scalability. Most of the time only small inconsistent parts

have to be added to a large, self-contained map. The situation for the loop closures while

processing the outdoor sequence is shown in Figure 6.17. We successfully identified the

subset of camera poses to be optimized (red), while the larger part of the map already

corrected remains fixed (blue). Even subsequent structure bundling can be reduced to a

small subset of points only (green dots), which speeds up the whole loop closing proce-

dure. In total we correctly detected three loop closures. The reduction in the number of

poses and points to be optimized (compared to our standard approach taking all poses

and points into account) is given in Table 6.14.

+(pose graph) -(pose graph)
loop closure # points # poses # points # poses

1 6434 240 6434 240
2 5636 244 11486 569
3 8805 346 21 499 1148

Table 6.14: Scalability evaluation. Utilizing the pose graph to detect affected map regions
for loop closing greatly reduces the parameters to be optimized in contrast to standard
methods.

6.4 Conclusion and Discussion

In this chapter we performed extensive experiments, including both simulated and real-

world setups, to evaluate the performance of the novel three-dimensional landmark de-

scriptor HOC, the adaptive loop closing algorithm and keyframe selection routine. Since

we mainly concentrate on life-long mapping within a dynamic world, we recorded and

6.4. Conclusion and Discussion 147

(a) (b)

(c)

(d)

Figure 6.17: Accelerated loop closing. (a),(c) Instead of performing structure and mo-
tion refinement over the whole trajectory, we establish a subset of poses (red) through
efficient graph traversal. Also structure estimation reduces to a smaller subset of points
to be optimized (green). (b),(d) Successfully corrected map and trajectory.

148 Chapter 6. Experiments

Figure 6.18: Result of the outdoor dataset. The final map (black dots) and trajectories
(blue) overlain on a satellite image.

(a)

(b)

Figure 6.19: Resulting 3D models after processing all 14 trajectories of the mixed in-
door/outdoor images contained in the CDBench dataset. The estimated trajectories are
marked in blue.

6.4. Conclusion and Discussion 149

presented a new benchmark dataset called CDBench, where through a long recording

time (14 runs at 10 different days over more than two weeks) as much scene dynam-

ics as possible have been captured. Additionally, groundtruth by means of manually

measured distances between predefined landmarks has been provided.

Throughout our experiments we focused on measuring scalability, localization ac-

curacy, relocalization ability and mapping performance of our visual SLAM algorithm.

Herby, we confronted our standard SLAM framework (compare Section 4.6) with a so-

lution using the HOC descriptor as well as the pose graph described in Chapter 5:

The systems scalability has been measured in many different ways: Stability of the

map size over time, matching effort during data association, computation time and

memory consumption. Simply incorporating all sensor information would continously

enlarge the map in every run, especially during life-long operation within a changing

environment. Looking at Figure 6.14(a) and Tables 6.6, 6.7 and 6.10 we are able to

stabilize the mapsize in synthetic, small-scale and large-scale experiments throughout

mulitple runs. This also drastically reduces memory consumption which is a desirable

effect in the context of continuous localization and mapping. Although the amount

of saved data per feature is larger than in standard SLAM algorithms, we finally save

memory by keeping the overall map size small.

During tracking we greatly benefit from the visibility information encoded in the

HOC descriptor, where we reduced the average matching effort from 42.92% to 91.18%

per frame as presented in Table 6.9. This is also visualized in Figure 6.12, when compar-

ing the number of visible map points per frame with and without visibility information,

particularly at the three black ridges. The reduction in possible matching candidates

further boosts matching performance, matching effort and consequently the accuracy of

the subsequent pose tracking.

An advantage regarding computing time comes along with the proposed loop clos-

ing strategy. Most of the time only small inconsistent parts have to be added to a

large self-contained map. Instead of performing structure and motion bundling over

the whole map only a small portion is considered for refinements, which speeds up the

whole loop closing procedure. While being able to process 10 frames per second when

doing tracking and sliding window bundle adjustment, loop closing (graph pose opti-

mization followed by structure bundling) requires about 5 seconds. However, this could

also be implemented parallel to the subsequent tracking procedure.

Localization accuracy has been measured in synthetic and real-world experiments

by comparing the estimated poses to groundtruth data or by passing predefined, manu-

150 Chapter 6. Experiments

ally measured landmarks multiple times. The static camera-moving scene experiments

have shown that localization is more robust with our method (compare Table 6.7 and

Figure 6.9). Especially in high dynamic scenes the standard map becomes filled up with

ambiguous data and correct localization may fail.

As demonstrated in the long-term experiment we successfully (re)localized while

exploring perpetually. For accuracy evaluation pose estimates when passing predefined

landmarks have been stored. Here, the mean deviation from the centroid of all pose

estimates and the distance between those act as a measure of localization accuracy as

reported in Tables 6.12 and 6.13. Unfortunately, high lighting variations lead to wrong

data associations during tracking and caused the algorithm to fail in the last run, as seen

by the high offset in Table 6.12 at landmarks #10 and # 13. As a consequence a parallel

map is established while the existing one is downweighted by the HOC descriptor. In

order to deal with radiometric dynamics a more sophisticated update rule has to be

developed.

Since providing groundtruth data in an ever changing world becomes infeasible,

mapping performance has just been evaluated in the synthetic experiments. When deal-

ing with dynamic scene elements we clearly outperform our standard SLAM procedure

as presented in Table 6.6. The novel feature descriptor correctly adapts an existing

map by downweighting vanished or moving landmarks and creating new map points

upon new measurements. One problem might arise when dealing with periodic occur-

rences like opened or closed doors, temporary occlusions or recurrent lighting condi-

tions which may be filtered out by the HOC descriptor and added again to the map on

reappearance. A simple approach is to change the parameter p in Equation 5.9, but in

general more sophisticated strategies are needed. Moreover, due to the aliasing effect

caused by small deviations of the camera pose estimate, already vanished landmarks are

not downweighted properly (compare Figure 6.10). Here, a weighted update procedure

taking neighboring bins into account would solve the aliasing effect.

7
Conclusion and Outlook

7.1 Conclusion

In this thesis the problem of simultaneous localization and mapping of autonomous

mobile robots using vision sensors has been addressed, with special focus on life-long

operation in a dynamic surrounding. Popular SLAM algorithms assume a static en-

vironment or simply do not react on environmental changes. Operating in large-scale

environments over a long period of time becomes intractable since map sizes increase

steadily and dynamic scene elements may cause wrong pose estimates.

We presented a keyframe-based SLAM framework taking both monocular or stereo

data as input. Keyframes are organized in an undirected, unweighted view-graph,

which facilitates sliding window bundle adjustment, keyframe insertion and map ex-

pansion. To speed up loop closure correction we employ the graph structure to deter-

mine a subset of keyframes to be corrected for rotation, translation and scale. To deal

with dynamic scene elements we attach the Histogram of Oriented Cameras descrip-

tor to each map point which encodes, given a camera view, visibility information as

well as its importance for localization. We presented two different descriptor shapes

- octahedron and icosahedron - together with specific update algorithms and impor-

tance measures. The proposed algorithm is able to operate over long-periods of time

indoors and outdoors and is able to implicitly handle dynamic scene elements during

map building.

An extensive review of available visual SLAM solutions showed that they are re-

stricted to operate in static environments only, where map construction and loop closure

correction is performed only once. Dynamic scene elements are either ignored, filtered

151

152 Chapter 7. Conclusion and Outlook

out or not taken into account leading to wrong pose estimates and a falsified map repre-

sentation. The solutions presented here are able to deal with a variety of different scene

dynamics. More specifically, we are able to implicitly update, repair and expand a given

map upon a change in the surroundings. The consequence of this are more accurate

pose estimates, an up-to-date map and reduced memory effort.

Finally, we addressed the lack of a benchmark dataset aiming at long-term map-

ping within an ever changing world. Therefore, a benchmark dataset consisting of

14 independent runs made of noisy (e.g. leaves moved by the wind), short-term (e.g.

pedestrians), radiometric (e.g. different lighting conditions) and long-term (e.g. park-

ing cars) dynamics has been recorded and published, which pose a great challenge

for every visual SLAM system. As demonstrated in our experiments we successfully

(re)localized while exploring perpetually. Especially after a long time of operation, in a

standard SLAM approach the map becomes filled up with ambiguous data, and correct

localization may fail. Contrarily, we are able to react on environmental changes and

improve localization accuracy implicitly. During pose tracking we greatly benefit from

the visibility information encoded in the HOC descriptor, where we reduced the aver-

age matching effort, which also affects computation time per frame. Finally, we saved

memory by keeping the overall map size small.

7.2 Outlook

In this thesis, we presented two powerful methods allowing a SLAM algorithm to oper-

ate in a dynamic world over a long time interval. Both have been evaluated with a novel

benchmark dataset. However, there are still open questions and drawbacks, which may

be addressed in future work:

Evaluation

In this thesis we mainly employed our CDBench dataset to perform detailed evaluation

of our SLAM framework. Here, we only compared our method to a common state-of-

the-art algorithm, as there is hardly any solution available, which is able to deal with

dynamic surrounding using vision sensors only. However, in future work a detailed

comparison of various visual SLAM methods in the CDBench dataset needs to be done.

In order to provide some useful measures for the mapping performance dynamic

scene elements should be annotated over the whole dataset and tagged according to the

7.2. Outlook 153

dynamic categorization provided in Section 5.1.1. This would further allow to evaluate

the algorithms robustness against different scene dynamics.

Additionally, the effects of the parameters of the HOC descriptors and their weight-

ing schemes has not been investigated. Future work should include an extensive param-

eter study and their effect on handling dynamic environments should be investigated.

Moreover, the effect of using different HOC shapes should be evaluated.

Finally, recording further trajectories should keep going on - preferably throughout

several seasons. This would allow us to investigate the effect of seasonal changes (e.g.

summer or winter) on localization performance and, even more important, on map

construction and adaption when using the HOC descriptor.

Incorporation of Additional Information

Currently, we only used the negative information from the data association process to

update the HOC descriptors weight and to react on environmental changes. The in-

corporation of semantic information (e.g. timestamps, objects detection) could further

boost the algorithms performance. In our work the different time scales each dynamic

object is related to have not been investigated. For example, landmarks related to a

pedestrian behave different than landmarks belonging to an opened/closed door. Ex-

panding the HOC descriptor with the ability to implicitly handle such different behavior

could improve the handling of periodic events.

Moreover, it is not clear how additional information like date, time or some higher

level semantic information (e.g. person, car, door, building) can be used to improve the

ability of an algorithm to deal with scene dynamics.

Computational Effort

In this work we did not focus on runtime improvements of the algorithms used in

the different buildings blocks of our framework. Since our algorithms have been imple-

mented as MATLAB prototypes more engineering effort is necessary to achieve real-time

performance. Here, graph based optimization presented by Kümmerle et al. [68] would

boost sliding window bundle adjustment during both map building and loop closure

correction.

154 Chapter 7. Conclusion and Outlook

Radiometric Dynamics

As shown in the experiments radiometric dynamics (e.g. abrupt lighting changes) cause

the algorithm to fail, since all landmarks simultaneously change their appearance. In

our case, a further loop closure detection may have corrected wrong pose estimates

caused by lighting variations. However, radiometric dynamics need to be investigated

more extensively.

Loop Closing Strategy

The presented loop closing strategy aims at accelerating the whole loop closing process

by attaching a small inconsistent map part to a large consistent map. Contrary, it does

not take the quality of the previously mapped environment into account assuming that

perpetual sliding window bundle adjustment ensures a consistent, accurate map. Fur-

ther investigations are necessary to identify the less accurate part of a map by defining

a reasonable quality measure. Consequently, the less accurate part should be aligned to

the qualitative higher map.

A
Non-Linear Least-Squares

Parameter Estimation Techniques

A.1 Introduction

Many computer vision problems like camera calibration or bundle adjustment try to

estimate a set of parameters by minimizing some kind of image space error through an

iterative least-square solver. In case of camera calibration a set of image points (checker

board corners) with known world coordinates is imaged by the camera. The central

perspective projection function (see Section 3.1.5) defines the relation between the world

coordinates and the extracted image points. The aim of the parameter estimation proce-

dure is to identify the unknowns of the central perspective projection function, namely

the intrinsic and extrinsic parameters by minimizing the euclidean distance between

projected world points and extracted image points.

This Chapter deals with the most popular iterative non-linear least-square solver,

namely Newton, Gauss-Newton and Gradient-Descent. The Levenber-Marquardt algo-

rithm which is a combination of Gauss-Newton and Gradient-Descent is reviewed in

Section A.3.

A.2 Iterative Parameter Estimation Methods

Suppose you are given a measurement vector M ∈ RN , a parameter vector P ∈ RM and

a non-linear function f : RM → RN constraining the parameters P through f (P) = M.

In most practical cases measurements M are subject to noise and only an estimate P̂ can

155

156 Chapter A. Non-Linear Least-Squares Parameter Estimation Techniques

be computed being as close as possible to M. Hence, we try to seek P̂ minimizing some

error metric in the measurement space:

arg min
P
‖ε(P)‖

ε(P) =‖ f (P̂)−M‖ (A.1)

Starting with an initial guess P0 close to the minimum we try to iteratively refine the

estimate assuming that f is locally linear

f (P0 + ∆) = f (P0) + J ∆ (A.2)

J =
∂ f
∂P

, (A.3)

where J is the Jacobian with respect to the parameters P. Within the next iteration we

seek for a P1 = P0 + ∆, which minimizes

ε1 = f (P1)−M = f (P0) + J ∆−M = ε0 + J ∆,

which is the same as minimizing the linear minimization problem ‖ε0 + J ∆‖ over ∆.

The shift vector ∆ is found by solving the normal equation

(JT J)∆ = −JT ε0 (A.4)

or by computing the pseudo inverse J+

∆ = −J+ ε0. (A.5)

This results in an iterative procedure summarized as:

Pi+1 = Pi + ∆i, (A.6)

A.2. Iterative Parameter Estimation Methods 157

where ∆i is the solution to

‖ε i + J ∆i‖ with

J =
∂ f
∂Pi

(A.7)

ε i = f (Pi)−M.

A.2.1 Newton-Iteration

To be general, Newton-Iteration tries to find the minimum of an arbitrary scalar-valued

function g(P) provided an initial guess P0 close to the optimum. A minimum with

respect to ∆ is found by expanding the function g(P) around P0 by a Taylor series and

setting the first derivative to zero:

g(P0 + ∆) = g(P0) + g′(P0)∆ + ∆ g′′(P0)∆/2 + ... (A.8)

∂g(P0 + ∆)
∂∆

= g′(P0) + g′′(P0)∆ = 0. (A.9)

Hereby, g′ and g′′ denote the gradient and Hessian, respectively.

Turning to the specific squared error norm, g(P) is defined as

g(P) =
1
2
‖ε(P)‖2 (A.10)

=
1
2

ε(P)Tε(P), (A.11)

where ε(P) = f (P) − M. Consequently g′ = ε′Tε = f ′T ε = JTε(P) and the Hessian

g′′ = ε′Tε + ε′′Tε = JT J + ε′′Tε .

A.2.2 Gauss-Newton Method

Assuming that f (P) is linear then the second derivative within the Hessian vanishes

and g′′ = JT J. Substituting into Equation A.9 results in

∂g(P0 + ∆)
∂∆

= JTε(P) + JT J ∆ = 0 (A.12)

= JT J ∆ = −JTε(P), (A.13)

158 Chapter A. Non-Linear Least-Squares Parameter Estimation Techniques

which is the same as the normal equations A.4. Approximating the Hessian through JT J

defines the Gauss-Newton Method, which gives reasonable results close to the actual

minimum.

A.2.3 Gradient-Descent

To reach the minimum the gradient descent method follows the negative gradient, which

defines the direction of the most rapid decrease of the cost function:

∆ = −λ g′ = −λJTε(P), (A.14)

where the length of the step is controlled by λ. Although having slower convergence

than the Gauss-Newton Method it may be the preferred method when starting with an

initial estimate far away from the optimum.

A.3 Levenberg-Marquardt Algorithm

The Levenberg-Marquardt algorithm combines the advantages of Gradient-Descent and

Gauss-Newton where the normal equations to be solved

(JT J)∆ = −JTε

are replaced by

(JT J + λI)∆ = −JTε. (A.15)

One Levenberg-Marquardt iteration is defined by solving repeatedly Equation A.15 for

different values of λ until an acceptable ∆ is found.

If λ is very small the method favors a Gauss-Newton iteration, which converges

fast to the minimum near the optimal solution. If λ is large then the method favors a

Gradient-Descent iteration guaranteeing a decrease in the cost function when being far

away from the minimum.

Unfortunately, the Levenberg-Marquardt algorithm is only suited for a small amount

of parameters, because solving the normal equations has complexity M3. Therefore,

partitioning the parameter space and exploiting the sparse structure of the resulting

Jacobian leads to great time savings especially when trying to estimate a huge amount

of parameters.

A.3. Levenberg-Marquardt Algorithm 159

A.3.1 Partitioned Levenberg-Marquardt

Partitioning the parameter vector P = (a, b) the Jacobian can be written as J = ∂ f
∂P =

[∂ f
∂a |

∂ f
∂b] = [A|B], which is also known as the Schur complement trick. Then the normal

equation A.15 can be written as(
AT A ATB

BT A BTB

)[
∆a

∆b

]
+ λI =

(
ATε

BTε

)
. (A.16)

After adding the damping factor λ to the diagonal entries of AT A and BTB results

in λ(AT A) = (AT A)∗ = U∗ and lambda(BTB) = (BTB)∗ = V∗. Hence, Equation A.16 is

rewritten as (
U∗ W

WT V∗

)[
∆a

∆b

]
=

(
εA

εB

)
, (A.17)

where W = ATB, εA = ATε and εB = BTε. Multiplying both sides with[
I −WV∗−1

0 I

]

results in a system of equations where the top right block vanishes:[
U∗ −WV∗−1WT 0

WT V∗

][
∆a

∆b

]
=

[
εA −WV∗−1εB

εB

]
. (A.18)

Finally, one has to solve for ∆a by(
U∗ −WV∗−1WT

)
∆a = εA −WV∗−1εB

and back-substitute to get ∆b

WT∆a + V∗∆b = εB

.

160 Chapter A. Non-Linear Least-Squares Parameter Estimation Techniques

A.3.2 Sparse Levenberg-Marquardt

A further break up of the measurements M = (MT
1 , MT

2 , ..., MT
n)

T and parameters P =

(aT, bT
1 , ..., bT

n)
T and the assumption that Mi only depends on a and bj results in

∂Mi

∂bj
= 0 i 6= j.

This results in a sparse block-structure of the Jacobian J

J =


A1 B1

A2 B2
...

. . .

An Bn

 . (A.19)

As a consequence each step of the algorithm only requires a computation time linear

in M instead of M3.

B
List of Publications

B.1 Thesis Relevant Publications

Histogram of Oriented Cameras - a New Descriptor for Visual SLAM in Dy-
namic Environments

Katrin Pirker, Matthias Rüther, Horst Bischof

In: Proceedings of British Machine Vision Conference (BMVC),

August 2010, Aberystwyth, Great Britain

(Accepted for poster presentation, 34 % acceptance rate)

Abstract: Simultaneous localization and mapping (SLAM) is a basic prerequisite in au-

tonomous mobile robotics. Most existing visual SLAM approaches either assume a static

environment, or simply forget old parts of the map to cope with map size constraints

and scene dynamics. We present a novel map representation for sparse visual fea-

tures. A new 3D point descriptor called Histogram of Oriented Cameras (HOC) encodes

anisotropic spatial visibility information and the importance of each three-dimensional

landmark. Each feature holds and updates a histogram of the poses of observing cam-

eras. It is hereby able to estimate its probability of occlusion and importance for local-

ization from a given viewpoint. In a series of simulated and real-world experiments we

prove that the pro- posed descriptor allows to cope with dynamic changes in the map,

improves localization accuracy and enables reasonable control of the map size.

161

162 Chapter B. List of Publications

Large-Scale Robotic SLAM through Visual Mapping

Christof Hoppe, Katrin Pirker, Matthias Rüther and Horst Bischof

In: Proc. 35rd Workshop of the Austrian Association for Pattern Recognition (AAPR/OAGM),

May 2011, Graz, Austria

(Accepted for oral presentation)

Abstract: Keyframe-based visual SLAM systems perform reliably and fast in medium-

sized environments. Currently, their main weaknesses are robustness and scalability in

large scenarios. In this work, we propose a hybrid, keyframe based visual SLAM system,

which overcomes these problems. We combine visual features of different strength, add

appearance-based loop detection and present a novel method to incorporate non-visual

sensor information into standard bundle adjustment frameworks to tackle the problem

of weakly textured scenes. On a standardized test dataset, we outperform EKF-based

solutions in terms of localization accuracy by at least a factor of two. On a self-recorded

dataset, we achieve a performance comparable to a laser scanner approach.

CD SLAM - Continuous Localization and Mapping in a Dynamic World

Katrin Pirker, Matthias Rüther and Horst Bischof

In: IEEE/RSJ Proceedings of Conference on Intelligent Robots and Systems (IROS),

September 2011, San Francisco, USA

(Accepted for poster presentation, 32 % acceptance rate)

Abstract: When performing large-scale perpetual localization and mapping one faces

problems like memory consumption or repetitive and dynamic scene elements requiring

robust data association. We propose a visual SLAM method which handles short- and

long-term scene dynamics in large environments using a single camera only. Through

visibility-dependent map filtering and efficient keyframe organization we reach a con-

siderable performance gain only through incorporation of a slightly more complex map

representation. Experiments on a large, mixed indoor/outdoor dataset over a time pe-

riod of two weeks demonstrate the scalability and robustness of our approach.

B.2. Other Publications 163

B.2 Other Publications

Human Body Volume Estimation in a Clinical Environment

Katrin Pirker, Matthias Rüther, Horst Bischof, Falko Skrabal and Georg Pichler

In: Proc. 33rd Workshop of the Austrian Association for Pattern Recognition (AAPR/OAGM),

2009, Stainz, Austria

(Accepted for oral presentation, 58.97 % acceptance rate)

Abstract: Medical scientists try to improve the accuracy of human body composition

measurement by segmental Bioelectrical Impedance Analysis (BIA). Determination of

body composition includes estimation of total body water, fat-free mass and extra- and

intra-cellular water, which are of great importance in disease states like cancer, malnu-

trition, disturbances of hydration as seen in heart-, hepatic- and renal failure. Currently,

body composition is derived by measuring the specific resistivity of the total body or of

its segments and heuristically determining their volumes. Whereas the resistivity mea-

surement is very accurate, the main uncertainty factor remains the volume estimation,

which is performed through empirical models. To improve the accuracy of volume esti-

mation a vision based measurement system is proposed. A portable system consisting

of stereo cameras and projectors has been constructed, which can be used in a clinical

environment even for bedridden, disabled and intensive care patients. In this work the

main focus lies on realistic human body modeling and volume calculation from noisy

three-dimensional data. The accuracy of the volume measurement has been compared

to groundtruth data of two volunteers.

An Omnidirectional Time-of-Flight Camera and its Application to Indoor SLAM

Katrin Pirker, Matthias Rüther, Gerald Schweighofer, Horst Bischof and Heinz Mayer

In: IEEE Proceedings of 11th International Conference on Control, Automation, Robotics and

Vision (ICARCV),

December 2010, Singapore

(Accepted for oral presentation)

Abstract: Photonic mixer devices (PMDs) are able to create reliable depth maps of

indoor environments. Yet, their application in mobile robotics, especially in simultane-

ous localization and mapping (SLAM) applications, is hampered by the limited field of

view. Enhancing the field of view by optical devices is not trivial, because the active

164 Chapter B. List of Publications

light source and the sensor rays need to be redirected in a defined manner. In this work

we propose an omnidirectional PMD sensor which is well suited for indoor SLAM and

easy to calibrate. Using a single sensor and multiple planar mirrors, we are able to reli-

ably navigate in indoor environments to create geometrically consistent maps, even on

optically difficult surfaces.

GPSlam: Marrying Sparse Geometric and Dense Probabilistic Visual Map-
ping

Katrin Pirker, Gerald Schweighofer, Matthias Rüther and Horst Bischof

In: Proceedings of British Machine Vision Conference (BMVC),

August 2011, Dundee, Great Britain

(Accepted for poster presentation, 32 % acceptance rate)

Abstract: We propose a novel, hybrid SLAM system to construct a dense occupancy

grid map based on sparse visual features and dense depth information. While previous

approaches deemed the occupancy grid usable only in 2D mapping, and in combination

with a probabilistic approach, we show that geometric SLAM can produce consistent,

robust and dense occupancy information, and maintain it even during erroneous explo-

ration and loop closure. We require only a single hypothesis of the occupancy map and

employ a weighted inverse mapping scheme to align it to sparse geometric informa-

tion. We propose a novel map-update criterion to prevent inconsistencies, and a robust

measure to discriminate exploration from localization.

Fast and Accurate Environment Modeling using Three-Dimensional Occu-
pancy Grids

Katrin Pirker, Gerald Schweighofer, Matthias Rüther and Horst Bischof

In: Proceedings of 1st IEEE Workshop on Consumer Depth Camera for Computer Vision (ICCV,CDC4CV),

November 2011, Barcelona, Spain

(Accepted for poster presentation, 32 % acceptance rate)

Abstract: Building a dense and accurate environment model out of range image data

faces problems like sensor noise, extensive memory consumption or computation time.

We present an approach which reconstructs 3D environments using a probabilistic oc-

cupancy grid in real-time. Operating on depth image pyramids speeds up computation

B.2. Other Publications 165

time, whereas a weighted interpolation scheme between neighboring pyramid layers

boosts accuracy. In our experiments we compare our method with a state-of-the-art

mapping procedure. Our results demonstrate that we achieve better results. Finally, we

present its viability by mapping a large indoor environment.

Photogrammetric Camera Network Design for Micro Aerial Vehicles

Christof Hoppe, Andreas Wendel, Stefanie Zollmann, Katrin Pirker, Arnold Irschara,

Horst Bischof, Stefan Kluckner

In: Proceedings of Computer Vison Winterworkshop (CVVW),

February 2012, Mala Nedelja, Slovenia

(Accepted for poster presentation)

Abstract: Micro Aerial Vehicles (MAVs) equipped with high resolution cameras have

the ability of cost efficient and autonomous image acquisition from unconventional

viewpoints. To fully exploit the limited flight-time of current MAVs view planning

is essential for complete and precise 3D scene sampling. We propose a novel camera

network design algorithm suitable for MAVs for close range photogrammetry that ex-

ploits prior knowledge of the surrounding. Our algorithm automatically determines a

set of camera positions that guarantees important constraints for image based 3D recon-

struction. On synthetic experiments we demonstrate that our camera network design

obtains detailed 3D reconstructions with a reduced number of images at the desired

accuracy level. Comparable results are also computed on an outdoor experiment using

our MAV in autonomous flight mode.

Bibliography

[1] M. Altermatt, A. Martinelli, N. Tomatis, and R. Siegwart, SLAM with corner features

based on a relative map, in IEEE/RSJ International Conference on Intelligent Robots and

Systems, vol. 2, 2004, pp. 1053 – 1058. (cited on page 59)

[2] J. Andrade-Cetto and A. Sanfeliu, Concurrent map building and localization on indoor

dynamic environments, International Journal on Pattern Recogniton, 16 (2002). (cited on

pages 16 and 19)

[3] A. Angeli, S. Doncieux, J.-A. Meyer, and D. Filliat, Visual topological SLAM and global

localization, in Proceedings of the IEEE International Conference on Robotics and Automa-

tion, 2009, pp. 2029–2034. (cited on page 62)

[4] D. Anguelov, R. Biswas, D. Koller, B. Limketkai, S. Sanner, and S. Thrun, Learning

hierarchical object maps of non-stationary environments with mobile robots, in Proceedings of the

Conference on Uncertainty in Artificial Intelligence, 2002. (cited on pages 7, 16, and 19)

[5] D. Anguelov, D. Koller, E. Parker, and S. Thrun, Detecting and modeling doors with mo-

bile robots, in Proceedings of IEEE International Conference on Robotics and Automation,

vol. 4, 2004, pp. 3777 – 3784. (cited on page 16)

[6] D. Arbuckle, A. Howard, and M. Mataric, Temporal occupancy grids: a method for classi-

fying the spatio-temporal properties of the environment, in IEEE/RSJ International Conference

on Intelligent Robots and Systems, vol. 1, 2002, pp. 409 – 414. (cited on pages 17 and 19)

[7] Q. Baig, T.-D. Vu, and O. Aycard, Online localization and mapping with moving objects de-

tection in dynamic outdoor environments, in IEEE International Conference on Intelligent

Computer Communication and Processin, 2009, pp. 401–408. (cited on pages 16 and 19)

[8] P. Biber and T. Duckett, Dynamic maps for long-term operation of mobile service robots, in

Proceedings of Robotics: Science and Systems, 2005. (cited on pages 17 and 19)

167

168

[9] A. Bonarini, W. Burgard, G. Fontana, M. Matteucci, D. G. Sorrenti, and J. D. Tardos,

RAWSEEDS: Robotics advancement through web-publishing of sensorial and elaborated extensive

data sets, in Proceedings of IROS’06 Workshop on Benchmarks in Robotics Research, 2006.

(cited on page 121)

[10] M. Bosse, P. Newman, J. Leonard, and S. Teller, Simultaneous localization and map build-

ing in large-scale cyclic environments using the atlas framework, The International Journal of

Robotics Research, 23 (2004), pp. 1113–1139. (cited on page 120)

[11] J. Y. Bouguet, Camera calibration toolbox for Matlab, 2008. (cited on pages 33 and 124)

[12] W. Burgard, D. Fox, D. Hennig, and T. Schmidt, Estimating the absolute position of a mobile

robot using position probability grids, in Proceedings of the Thirteenth National Conference

on Artificial Intelligence, 1996, pp. 896–901. (cited on page 69)

[13] A. Cassandra, L. Kaelbling, and J. Kurien, Acting under uncertainty: Discrete bayesian

models for mobile-robot navigation, in Proceedings of the IEEE/RSJ International Conference

on Intelligend Robots and Systems, 1996, pp. 963–972. (cited on page 69)

[14] S. Ceriani, G. Fontana, A. Giusti, D. Marzorati, M. Matteucci, D. Migliore, D. Rizzi,

D. G. Sorrenti, and P. Taddei, Rawseeds ground truth collection systems for indoor self-

localization and mapping, Autonomous Robots, 27 (2009), pp. 353–371. (cited on page 121)

[15] S. Ceriani, D. Marzorati, M. Matteucci, D. Migliore, and D. G. Sorrenti, On fea-

ture parameterization for EKF-based monocular SLAM, in World Congress of the International

Federation of Automatic Control, 2011, pp. 6829–6834. (cited on page 52)

[16] M. Chli and A. J. Davison, Automatically and efficiently inferring the hierarchical structure of

visual maps, in International Conference on Robotics and Automation, 2009, pp. 2211–2218.

(cited on page 12)

[17] J. Civera, A. Davison, and J. Montiel, Inverse depth parametrization for monocular slam,

IEEE Transactions on Robotics, 24 (2008), pp. 932–945. (cited on pages 12 and 54)

[18] L. Clemente, A. Davison, I. Reid, J. Neira, and J. Tardós, Mapping large loops with a single

hand-held camera, in Proceedings of Robotics: Science and Systems, 2007. (cited on page 12)

[19] B. Clipp, J. Lim, J.-M. Frahm, and M. Pollefeys, Parallel, real-time visual slam, in IEEE/RSJ

International Conference on Intelligent Robots and Systems, 2010, pp. 3961–3968. (cited

on pages 13 and 111)

[20] D. Crandall, A. Owens, N. Snavely, and D. Huttenlocher, Discrete-continuous opti-

mization for large-scale structure from motion, in IEEE Conference on Computer Vision and

Pattern Recognition, june 2011, pp. 3001 –3008. (cited on page 39)

[21] A. Criminisi, I. Reid, and A. Zisserman, Single view metrology, International Journal of

Computer Vision, 40 (2000), pp. 123–148. (cited on page 39)

BIBLIOGRAPHY 169

[22] M. Cummins and P. Newman, FAB-MAP: Probabilistic Localization and Mapping in the Space

of Appearance, The International Journal of Robotics Research, 27 (2008), pp. 647–665. (cited

on page 76)

[23] , Highly scalable appearance-only SLAM - FAB-MAP 2.0, in Robotics Science and Sys-

tems, Seattle, USA, June 2009. (cited on pages 62, 76, and 83)

[24] M. Daniele, M. Matteo, M. Davide, R. Roberto, and S. D. Giorgio, Use a single camera

for simultaneous localization and mapping with mobile object tracking in dynamic environments,

in ICRA09 Workshop on Safe navigation in open and dynamic environments - Application

to autonomous vehicles, 2009. (cited on pages 15 and 19)

[25] A. Davison, Real-time simultaneous localisation and mapping with a single camera, in IEEE

International Conference on Computer Vision, oct. 2003, pp. 1403 –1410 vol.2. (cited on

pages 3, 12, 49, and 60)

[26] A. Davison and D. Murray, Simultaneous localization and map-building using active vision,

IEEE Transactions on Pattern Analysis and Machine Intelligence, 24 (2002), pp. 865 –880.

(cited on page 12)

[27] A. Davison, I. Reid, N. Molton, and O. Stasse, MonoSLAM: Real-time single camera slam,

IEEE Transactions on Pattern Analysis and Machine Intelligence, 29 (2007), pp. 1052 –1067.

(cited on pages 12 and 15)

[28] F. Dayoub and T. Duckett, An adaptive appearance-based map for long-term topological lo-

calization of mobile robots, in IEEE/RSJ International Conference on Intelligent Robots and

Systems, sept. 2008, pp. 3364 –3369. (cited on pages 17 and 19)

[29] F. Dellaert and M. Kaess, Square Root SAM: Simultaneous localization and mapping via

square root information smoothing, International Journals of Robotic Research, 25 (2006),

pp. 1181–1203. (cited on page 12)

[30] G. Dissanayake, P. M. Newman, S. Clark, H. F. Durrant-Whyte, and M. Csorba, A

solution to the simultaneous localization and map building (slam) problem, IEEE Transactions on

Robotics and Automation, 17 (2001), pp. 229–241. (cited on page 11)

[31] E. Eade and T. Drummond, Scalable monocular SLAM, in IEEE International Conference

on Computer Vision, 2006, pp. 469–476. (cited on page 12)

[32] A. I. Eliazar and R. Parr, DP-SLAM: Fast, robust simultaneous localization and mapping

without predetermined landmarks, in International Joint Conference on Artificial Intelligence,

2003, pp. 1135–1142. (cited on page 48)

[33] P. Elinas, R. Sim, and J. Little, σ SLAM: stereo vision SLAM using the rao-blackwellised

particle filter and a novel mixture proposal distribution, in IEEE International Conference on

Robotics and Automation, 2006, pp. 1564 –1570. (cited on page 12)

170

[34] O. Faugeras and Q.-T. Luong, The Geometry of Multiple Images, MIT Press, 2001. ISBN:

0-262-06220-8. (cited on page 22)

[35] E. Fink and K. B. Pratt, Indexing of compressed time series, in Data Mining in Time Series

Databases, World Scientific, pp. 51–78. (cited on page 17)

[36] M. A. Fischler and R. C. Bolles, Random sample consensus: a paradigm for model fitting with

applications to image analysis and automated cartography, Commun. ACM, 24 (1981), pp. 381–

395. (cited on pages 71, 82, and 115)

[37] A. W. Fitzgibbon and A. Zisserman, Automatic camera recovery for closed or open image

sequences, in Proceedings of the European Conference on Computer Vision, 1998, pp. 311–

326. (cited on page 39)

[38] J. Folkesson and H. Christensen, Graphical SLAM - a self-correcting map, in IEEE Interna-

tional Conference on Robotics and Automation, 2004, pp. 383 – 390. (cited on page 120)

[39] D. Fox, W. Burgard, F. Dellaert, and S. Thrun, Monte Carlo Localization: Efficient position

estimation for mobile robots, in Proceedings of the International Conference on Artificial

Intelligence, 1999, pp. 343–349. (cited on page 5)

[40] D. Fox, W. Burgard, and S. Thrun, Markov localization for mobile robots in dynamic environ-

ments, Journal of Artificial Intelligence Research, 11 (1999), pp. 391–427. (cited on page 15)

[41] F. Fraundorfer, C. Engels, and D. Nister, Topological mapping, localization and navigation

using image collections, in IEEE/RSJ International Conference on Intelligent Robots and

Systems, 2007, pp. 3872 –3877. (cited on page 62)

[42] R. Gherardi, M. Farenzena, and A. Fusiello, Improving the efficiency of hierarchical

structure-and-motion, in IEEE Conference on Computer Vision and Pattern Recognition,

2010, pp. 1594 –1600. (cited on page 39)

[43] G. Graber, T. Pock, and H. Bischof, Online 3d reconstruction using convex optimization, in

1st Workshop on Live Dense Reconstruction From Moving Cameras (ICCV), 2011. (cited

on page 14)

[44] G. Grisetti, C. Stachniss, and W. Burgard, Improved techniques for grid mapping with

rao-blackwellized particle filters, IEEE Transactions on Robotics, 23 (2007), p. 2007. (cited on

pages 48 and 120)

[45] G. Grisetti, C. Stachniss, and W. Burgard, Nonlinear constraint network optimization for

efficient map learning, Transactions on Intelligent Transport Systems, 10 (2009), pp. 428–439.

(cited on page 13)

[46] D. R. H. Durrant-Whyte and E. Nebot, Localisation of automatic guided vehicles, in The 7th

International Symposium in Robotics Research, 1995. (cited on page 11)

BIBLIOGRAPHY 171

[47] D. Hähnel, W. Burgard, D. Fox, and S. Thrun, A highly efficient FastSLAM algorithm

for generating cyclic maps of large-scale environments from raw laser range measurements, in

IEEE/RSJ International Conference on Intelligent Robots and Systems, 2003. (cited on

pages 48, 49, and 120)

[48] D. Hähnel, D. Schulz, and W. Burgard, Map building with mobile robots in populated

environments, in IEEE/RSJ International Conference on Intelligent Robots and Systems,

vol. 1, 2002, pp. 496 – 501 vol.1. (cited on pages 15 and 19)

[49] D. Hähnel, R. Triebel, W. Burgard, and S. Thrun, Map building with mobile robots in

dynamic environments, in IEEE International Conference on Robotics and Automation, 2003.

(cited on page 15)

[50] R. Haralick, D. Lee, K. Ottenburg, and M. Nolle, Analysis and solutions of the three point

perspective pose estimation problem, in IEEE Computer Society Conference on Computer

Vision and Pattern Recognition, 1991, pp. 592 –598. (cited on pages 68 and 82)

[51] C. Harris and M. Stephens, A combined corner and edge detector, in Fourth Alvey Vision

Conference, 1998, pp. 147–151. (cited on page 51)

[52] R. I. Hartley, In defense of the eight-point algorithm, IEEE Transactions on Pattern Analysis

and Machine Intelligence, 19 (1997), pp. 580–593. (cited on page 39)

[53] R. I. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision, Cambridge

University Press, ISBN: 0521540518, second ed., 2004. (cited on pages 22, 26, 33, 35, 38, 39,

and 42)

[54] P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox, RGBD mapping: Using depth cameras

for dense 3d modeling of indoor environments, in In RGB-D: Advanced Reasoning with Depth

Cameras Workshop in conjunction with RSS, 2010. (cited on pages 13 and 14)

[55] S. Hochdorfer and C. Schlegel, Towards a robust visual slam approach: Addressing the

challenge of life-long operation, in International Conference on Advanced Robotics, june 2009,

pp. 1 –6. (cited on page 16)

[56] S. Holmes, G. Sibley, G. Klein, and D. Murray, A relative frame representation for fixed-time

bundle adjustment in SFM, in IEEE International Conference on Robotics and Automation,

may 2009, pp. 2264 –2269. (cited on page 13)

[57] A. Howard and N. Roy, The robotics data set repository (radish), 2003. (cited on page 120)

[58] G. Huang, A. Rad, and Y. Wong, A new solution to map dynamic indoor environments, Inter-

national Journal of Advanced Robotic Systems, (2008). (cited on page 16)

[59] P. Huber, Robust Statistics, Wiley, New York, 1974. (cited on page 45)

172

[60] S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. Newcombe, P. Kohli, J. Shotton,

S. Hodges, D. Freeman, A. Davison, and A. Fitzgibbon, KinectFusion: real-time 3d re-

construction and interaction using a moving depth camera, in Proceedings of the 24th annual

ACM Symposium on User interface software and technology, 2011, pp. 559–568. (cited on

pages 14 and 55)

[61] P. Jensfelt and H. Christensen, Pose tracking using laser scanning and minimalistic envi-

ronmental models, IEEE Transactions on Robotics and Automation, 17 (2001), pp. 138 –147.

(cited on page 72)

[62] S. Julier and J. Uhlmann, A new extension of the kalman filter to nonlinear systems, in Proc. of

AeroSense: The 11th Int. Symp. on Aerospace/Defense Sensing, Simulations and Controls,

1997. (cited on page 69)

[63] G. Klein and D. Murray, Parallel tracking and mapping for small ar workspaces, in IEEE

and ACM International Symposium on Mixed and Augmented Reality, 2007, pp. 225 –234.

(cited on pages 5, 12, 49, 59, 60, 71, 80, 83, and 114)

[64] M. Klopschitz, A. Irschara, G. Reitmayr, and D. Schmalstieg, Robust incremental struc-

ture from motion, in 3DPVT10, 2010. (cited on page 39)

[65] K. Konolige and M. Agrawal, FrameSLAM: From bundle adjustment to real-time visual map-

ping, IEEE Transactions on Robotics, 24 (2008), pp. 1066 –1077. (cited on pages 13, 18,

and 49)

[66] K. Konolige and J. Bowman, Towards lifelong visual maps, in Proceedings of the IEEE/RSJ

international Conference on Intelligent Robots and Systems, 2009, pp. 1156–1163. (cited

on pages 17, 18, 19, and 111)

[67] B. Kuipers and Y.-T. Byun, A robot exploration and mapping strategy based on a semantic

hierarchy of spatial representations, Journal of Robotics and Autonomous Systems, 8 (1991),

pp. 47–63. (cited on page 11)

[68] R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard, g2o: A general

framework for graph optimization, in Proc. of the IEEE Int. Conf. on Robotics and Automation

(ICRA), Shanghai, China, May 2011. (cited on page 153)

[69] P. Lamon, I. Nourbakhsh, B. Jensen, and R. Siegwart, Deriving and matching image fin-

gerprint sequences for mobile robot localization, in IEEE International Conference on Robotics

and Automation, vol. 2, 2001, pp. 1609 – 1614 vol.2. (cited on page 56)

[70] J. J. Leonard and D. H. Whyte, Mobile robot localization by tracking geometric beacons, IEEE

Transactions on Robotics and Automation, 7 (1991). (cited on page 11)

[71] J. Levinson and S. Thrun, Robust vehicle localization in urban environments using probabilistic

maps, in IEEE International Conference on Robotics and Automation, 2010, pp. 4372 –4378.

(cited on pages 7, 17, and 19)

BIBLIOGRAPHY 173

[72] G. Lidoris, D. Wollherr, and M. Buss, Bayesian state estimation and behavior selection for

autonomous robotic exploration in dynamic environments, in IEEE/RSJ International Confer-

ence on Intelligent Robots and Systems, 2008, pp. 1299 –1306. (cited on pages 14, 15,

and 19)

[73] K.-H. Lin and C.-C. Wang, Stereo-based simultaneous localization, mapping and moving object

tracking, in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2010,

pp. 3975 –3980. (cited on pages 15 and 19)

[74] D. G. Lowe, Distinctive image features from scale-invariant keypoints, International Journal of

Computer Vision, 60 (2004), pp. 91–110. (cited on pages 52, 59, 77, 80, and 101)

[75] C.-P. Lu, G. Hager, and E. Mjolsness, Fast and globally convergent pose estimation from video

images, IEEE Transactions on Pattern Analysis and Machine Intelligence, 22 (2000), pp. 610

–622. (cited on page 71)

[76] F. Lu and E. Milios, Globally consistent range scan alignment for environment mapping, Au-

tonomous Robots, 4 (1997), pp. 333–349. (cited on page 11)

[77] T. Marks, A. Howard, M. Bajracharya, G. Cottrell, and L. Matthies, Gamma-SLAM:

Using stereo vision and variance grid maps for slam in unstructured environments, in IEEE In-

ternational Conference on Robotics and Automation, may 2008, pp. 3717 –3724. (cited on

page 12)

[78] D. W. Marquardt, An algorithm for least-squares estimation of nonlinear parameters, SIAM

Journal on Applied Mathematics, 11 (1963), pp. 431–441. (cited on page 38)

[79] D. Martinec and T. Pajdla, Robust rotation and translation estimation in multiview recon-

struction, in IEEE Conference on Computer Vision and Pattern Recognition, 2007, pp. 1 –8.

(cited on page 39)

[80] D. Marzorati, M. Matteucci, D. Migliore, and D. G. Sorrenti, On the use of inverse

scaling in monocular SLAM, in IEEE International Conference on Robotics and Automation,

2009, pp. 2030 –2036. (cited on page 52)

[81] J. Matas, O. Chum, M. Urban, and T. Pajdla, Robust wide baseline stereo from maximally

stable extremal regions, in British Machine Vision Conference, 2002. (cited on page 52)

[82] C. Mei, G. Sibley, M. Cummins, P. Newman, and I. Reid, A constant time efficient stereo

SLAM system, in British Machine Vision Conference, 2009. (cited on page 13)

[83] I. Miller and M. Campbell, Rao-blackwellized particle filtering for mapping dynamic envi-

ronments, in IEEE International Conference on Robotics and Automation, 2007, pp. 3862

–3869. (cited on pages 15 and 19)

[84] N. Mitsou and C. Tzafestas, Temporal occupancy grid for mobile robot dynamic environment

mapping, in Mediterranean Conference on Control Automation, june 2007, pp. 1 –8. (cited

on page 17)

174

[85] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit, FastSLAM: A factored solution to

the simultaneous localization and mapping problem, in In Proceedings of the AAAI National

Conference on Artificial Intelligence, 2002, pp. 593–598. (cited on pages 11 and 12)

[86] M. Montemerlo, S. Thrun, and W. Whittaker, Conditional particle filters for simultaneous

mobile robot localization and people-tracking, in IEEE International Conference on Robotics

and Automation, 2002, pp. 695 – 701. (cited on pages 14, 15, and 19)

[87] J. Montiel, J. Civera, and A. Davison, Unified inverse depth parametrization for monocular

SLAM, in Proceedings of Robotics: Science and Systems, 2006. (cited on pages 12 and 52)

[88] H. Moravec and A. Elfes, High resolution maps from wide angle sonar, in IEEE International

Conference on Robotics and Automation, vol. 2, 1985, pp. 116 – 121. (cited on pages 11

and 60)

[89] F. Moreno-Noguer, V. Lepetit, and P. Fua, Accurate non-iterative O(n) solution to the pnp

problem, in IEEE International Conference on Computer Vision, 2007. (cited on pages 13

and 71)

[90] F. Mosteller and J. W. Tukey, Data analysis and regression : a second course in statistics,

Addison-Wesley, 1977. (cited on page 46)

[91] E. Mouragnon, M. Lhuillier, M. Dhome, F. Dekeyser, and P. Sayd, 3D reconstruction

of complex structures with bundle adjustment: an incremental approach, in IEEE International

Conference on Robotics and Automation, 2006, pp. 3055 –3061. (cited on page 12)

[92] R. Newcombe and A. Davison, Live dense reconstruction with a single moving camera, in IEEE

Conference on Computer Vision and Pattern Recognition, 2010, pp. 1498 –1505. (cited on

pages 13, 14, 55, and 59)

[93] R. A. Newcombe, S. Lovegrove, and A. J. Davison, DTAM: Dense tracking and mapping in

real-time, in Intrenational Conference on Computer Vision, 2011. (cited on pages 13, 14,

and 49)

[94] V. Nguyen, A. Harati, A. Martinelli, R. Siegwart, and N. Tomatis, Orthogonal SLAM: a

step toward lightweight indoor autonomous navigation, in IEEE/RSJ International Conference

on Intelligent Robots and Systems, oct. 2006, pp. 5007 –5012. (cited on page 59)

[95] V. Nguyen, A. Harati, and R. Siegwart, A lightweight SLAM algorithm using orthogonal

planes for indoor mobile robotics, in IEEE/RSJ International Conference on Intelligent Robots

and Systems, 2007, pp. 658 –663. (cited on pages 54, 55, and 59)

[96] V. Nguyen, A. Martinelli, N. Tomatis, and R. Siegwart, A comparison of line extraction

algorithms using 2D laser rangefinder for indoor mobile robotics, in IEEE/RSJ International

Conference on Intelligent Robots and Systems, 2005, pp. 1929 – 1934. (cited on page 55)

BIBLIOGRAPHY 175

[97] D. Nister and H. Stewenius, Scalable recognition with a vocabulary tree, in IEEE Computer

Society Conference on Computer Vision and Pattern Recognition, 2006, pp. 2161 – 2168.

(cited on pages 74, 75, 76, and 83)

[98] I. R. Nourbakhsh, A. Soto, J. Bobenage, S. Grange, R. Meyer, and R. Lutz, An effective

mobile robot educator with a full-time job, Artificial Intelligence, 114 (1999), pp. 95–124. (cited

on pages 62 and 63)

[99] C. F. Olson, L. Matthies, M. Schoppers, and M. W. Maimone, Rover navigation using

stereo ego-motion, Robotics and Autonomous Systems, 43 (2003), pp. 215–229. (cited on

page 68)

[100] L. Paz, P. Jensfelt, J. Tardos, and J. Neira, EKF SLAM updates in O(n) with divide and con-

quer SLAM, in IEEE International Conference on Robotics and Automation, 2007, pp. 1657

–1663. (cited on page 12)

[101] L. Paz, P. Pinies, J. Tardos, and J. Neira, Large-scale 6-DOF SLAM with stereo-in-hand,

IEEE Transactions on Robotics, 24 (2008), pp. 946 –957. (cited on page 12)

[102] H. Pfister, M. Zwicker, J. V. Baar, and M. H. Gross, Surfels: surface elements as rendering

primitives, in Annual Conference on Computer Graphics, 2000, pp. 335–342. (cited on

pages 14 and 49)

[103] K. Pirker, M. Rüther, and H. Bischof, Histogram of oriented cameras - a new descriptor for

visual SLAM in dynamic environments, in Proceedings of British Machine Vision Conference,

2010. (cited on page 19)

[104] , CD SLAM - continuous localization and mapping in a dynamic world, in Proc. IEEE/RSJ

Conference on Intelligent Robots and Systems, 9 2011. (cited on page 19)

[105] K. Pirker, M. Rüther, G. Schweighofer, H. Bischof, and H. Mayer, An omnidirectional

time-of-flight camera and its application to indoor SLAM, in IEEE Proceedings of International

Conference on Control, Automation, Robotics and Vision, 2010. (cited on page 48)

[106] M. Pollefeys, D. Nistér, J. M. Frahm, A. Akbarzadeh, P. Mordohai, B. Clipp, C. En-

gels, D. Gallup, S. J. Kim, P. Merrell, C. Salmi, S. Sinha, B. Talton, L. Wang, Q. Yang,

H. Stewénius, R. Yang, G. Welch, and H. Towles, Detailed real-time urban 3D reconstruc-

tion from video, International Journal of Computer Vision, 78 (2008), pp. 143–167. (cited on

page 39)

[107] J. M. Porta, J. J. Verbeek, and B. J. A. Kröse, Active appearance-based robot localization using

stereo vision, Auton. Robots, 18 (2005), pp. 59 – 80. (cited on page 49)

[108] V. Pratt, Direct least-squares fitting of algebraic surfaces, in Conference on Computer graphics

and interactive techniques, 1987, pp. 145–152. (cited on page 55)

[109] E. Rosten and T. Drummond, Machine learning for high-speed corner detection, in European

Conference on Computer Vision, 2006, pp. 430–443. (cited on page 51)

176

[110] P. Rybski, F. Zacharias, and J.-F. Lett, Using visual features to build topological maps of

indoor environments, in IEEE International Conference on Robotics and Automation, vol. 1,

2003, pp. 850 – 855. (cited on page 62)

[111] D. Sabatta, Vision-based topological map building and localisation using persistent features, in

Robotics and Mechatronics Symposium, 2008. (cited on page 62)

[112] D. Scharstein and R. Szeliski, A taxonomy and evaluation of dense two-frame stereo corre-

spondence algorithms, International Journal of Computer Vision, 47 (2002), pp. 7–42. (cited

on page 53)

[113] G. Schindler, M. Brown, and R. Szeliski, City-scale location recognition, in IEEE Confer-

ence on Computer Vision and Pattern Recognition, 2007, pp. 1 –7. (cited on page 76)

[114] G. Sibley, C. Mei, I. Reid, and P. Newman, Adaptive relative bundle adjustment, in Robotics

Science and Systems, 2009. (cited on page 13)

[115] R. Siegwart and I. R. Nourbakhsh, Introduction to Autonomous Mobile Robots, Bradford

Company, Scituate, MA, USA, 2004. (cited on page 51)

[116] J. Sivic and A. Zisserman, Video google: a text retrieval approach to object matching in videos,

in IEEE International Conference on Computer Vision, 2003, pp. 1470 –1477. (cited on

pages 74, 75, and 76)

[117] I. Skrypnyk and D. Lowe, Scene modelling, recognition and tracking with invariant image

features, in International Symposium on Mixed and Augmented Reality, 2004, pp. 110 –

119. (cited on page 71)

[118] M. Smith, I. Baldwin, W. Churchill, R. Paul, and P. Newman, The new college vision and

laser data set, The International Journal of Robotics Research, 28 (2009), pp. 595–599. (cited

on page 120)

[119] R. C. Smith and P. Cheeseman, On the representation and estimation of spatial uncertainty,

International Journal of Robotic Research, (1985). (cited on page 11)

[120] S. M. Smith and J. M. Brady, Susan - a new approach to low level image processing, Interna-

tional Journal of Computer Vision, 23 (1995), pp. 45–78. (cited on page 51)

[121] N. Snavely, I. Simon, M. Goesele, R. Szeliski, and S. Seitz, Scene reconstruction and visual-

ization from community photo collections, Proceedings of the IEEE, 98 (2010), pp. 1370 –1390.

(cited on page 39)

[122] J. Solà, Towards Visual Localization, Mapping and Moving Objects Tracking by a Mobile Robot:

a Geometric and Probabilistic Approach., PhD thesis, Institut National Polytechnique de

Toulouse, 2007. (cited on page 15)

[123] , Consistency of the monocular EKF-SLAM algorithm for three different landmark

parametrizations, in IEEE International Conference on Robotics and Automation, 2010,

pp. 3513 –3518. (cited on page 52)

BIBLIOGRAPHY 177

[124] C. Stachniss and W. Burgard, Mobile robot mapping and localization in non-static environ-

ments, in International Conference on Artificial Intelligence, 2005, pp. 1324–1329. (cited on

page 17)

[125] C. Stachniss, G. Grisetti, D. Hähnel, and W. Burgard, Improved rao-blackwellized map-

ping by adaptive sampling and active loop-closure, in Workshop on Self-Organization of Adap-

tiVE behavior (SOAVE), 2004, pp. 1–15. (cited on page 120)

[126] H. Strasdat, A. Davison, J. Montiel, and K. Konolige, Double window optimisation for

constant time visual SLAM, in IEEE International Conference on Computer Vision, 2011.

(cited on page 13)

[127] H. Strasdat, J. M. M. Montiel, and A. Davison, Scale drift-aware large scale monocular

SLAM, in Proceedings of Robotics: Science and Systems, Zaragoza, Spain, June 2010.

(cited on pages 13, 71, 111, and 114)

[128] H. Strasdat, J. M. M. Montiel, and A. J. Davison, Real-time monocular SLAM: Why filter?,

in International Conference on Robotics and Automation, 2010, pp. 2657–2664. (cited on

pages 4, 5, 76, and 77)

[129] J. Sturm, S. Magnenat, N. Engelhard, F. Pomerleau, F. Colas, W. Burgard, D. Cre-

mers, and R. Siegwart, Towards a benchmark for RGB-D SLAM evaluation, in Proceedings

of the RGB-D Workshop on Advanced Reasoning with Depth Cameras at Robotics: Science

and Systems Conference, 2011. (cited on page 120)

[130] N. Sünderhauf, K. Konolige, S. Lacroix, P. Protzel, and T. U. Chemnitz, Visual odom-

etry using sparse bundle adjustment on an autonomous outdoor vehicle, in Tagungsband Au-

tonome Mobile Systeme, 2005. (cited on page 68)

[131] A. Tapus and R. Siegwart, Incremental robot mapping with fingerprints of places, in IEEE/RSJ

International Conference on Intelligent Robots and Systems, 2005, pp. 2429 – 2434. (cited

on page 62)

[132] S. Thrun, Learning occupancy grids with forward sensor models, Autonomous Robots, 15

(2002), pp. 111–127. (cited on page 61)

[133] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics (Intelligent Robotics and Au-

tonomous Agents), The MIT Press, 2005. (cited on pages 15, 61, and 70)

[134] S. Thrun, Y. Liu, D. Koller, A. Ng, Z. Ghahramani, and H. Durrant-Whyte, Simulta-

neous localization and mapping with sparse extended information filters, International Journal of

Robotics Research, International Journal of Robotics Research (2004). (cited on page 12)

[135] C. Tomasi and T. Kanade, Shape and motion from image streams under orthography—a fac-

torization method, in Proc. of the National Academy of Sciences of the United States of

America, vol. 90, November 1993, pp. 9795–9802. (cited on page 39)

178

[136] B. L. Torsten Sattler and L. Kobbelt, Fast image-based localization using direct 2d-to-3d

matching, in IEEE International Conference on Computer Vision, 2011. (cited on page 5)

[137] B. Triggs, P. Mclauchlan, R. Hartley, and A. Fitzgibbon, Bundle adjustment - a modern

synthesis, in Vision Algorithms: Theory and Practice, LNCS, Springer Verlag, 2000, pp. 298–

375. (cited on pages 3 and 42)

[138] R. Tsai, A versatile camera calibration technique for high accuracy 3d machine vision using off-

the-shelf tv cameras and lenses, IEEE Journal of Robotics and Automation, (1987). (cited on

page 33)

[139] J. W. Tukey, Exploratory Data Analysis, Addison-Wesley, 1977. (cited on page 45)

[140] I. Ulrich and I. Nourbakhsh, Appearance-based place recognition for topological localization,

in IEEE International Conference on Robotics and Automation, 2000, pp. 1023 –1029. (cited

on page 62)

[141] C.-C. Wang, Simultaneous Localization, Mapping and Moving Object Tracking, PhD thesis,

Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, April 2004. (cited on

pages 7, 14, and 19)

[142] C.-C. Wang, D. Duggins, J. Gowdy, J. Kozar, R. MacLachlan, C. Mertz, A. Suppe, and

C. Thorpe, Navlab slammot datasets, May 2004. Carnegie Mellon University. (cited on

page 121)

[143] C.-C. Wang and C. Thorpe, Simultaneous localization and mapping with detection and tracking

of moving objects, in IEEE International Conference on Robotics and Automation, 2002.

(cited on pages 7 and 14)

[144] C.-C. Wang, C. Thorpe, M. Hebert, S. Thrun, and H. Durrant-whyte, Simultaneous

localization, mapping and moving object tracking, International Journal of Robotics Research,

(2004). (cited on page 14)

[145] C.-C. Wang, C. Thorpe, and S. Thrun, Online simultaneous localization and mapping with

detection and tracking of moving objects: theory and results from a ground vehicle in crowded

urban areas, in IEEE International Conference on Robotics and Automation, 2003, pp. 842 –

849. (cited on pages 14 and 19)

[146] S. Wangsiripitak and D. W. Murray, Avoiding moving outliers in visual SLAM by track-

ing moving objects, in IEEE international conference on Robotics and Automation, 2009,

pp. 705–710. (cited on pages 7 and 15)

[147] J. Weingarten and R. Siegwart, 3D SLAM using planar segments, in IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems, 2006, pp. 3062 –3067. (cited on

pages 55 and 56)

[148] G. Welch and G. Bishop, An introduction to the kalman filter, tech. rep., University of North

Carolina at Chapel Hill, 1995. (cited on page 69)

BIBLIOGRAPHY 179

[149] M. Werlberger, W. Trobin, T. Pock, A. Wedel, D. Cremers, and H. Bischof, Anisotropic

Huber-L1 optical flow, in Proceedings of the British Machine Vision Conference (BMVC),

London, UK, September 2009. (cited on page 55)

[150] D. Wolf and G. S. Sukhatme, Online simultaneous localization and mapping in dynamic en-

vironments, in International Conference on Robotics and Automation, 2004, pp. 1301–1306.

(cited on page 17)

[151] C. Wu, SiftGPU: A GPU implementation of scale invariant feature transform (SIFT). (cited on

pages 77 and 80)

[152] K. M. Wurm, A. Hornung, M. Bennewitz, C. Stachniss, and W. Burgard, OctoMap: A

probabilistic, flexible, and compact 3D map representation for robotic systems, in Proceedings of

the ICRA Workshop on Best Practice in 3D Perception and Modeling for Mobile Manipu-

lation, 2010. Software available at http://octomap.sf.net/. (cited on pages 61 and 64)

[153] M. Yi, S. Steffano, K. Jana, and S. S. Shankar, An Invitatio to 3-D Vision, Springer, 2004.

(cited on page 22)

[154] Z. Zhang, Flexible camera calibration by viewing a plane from unknown orientations, in Inter-

national Conference on Computer Visio, 1999, pp. 666–673. (cited on page 33)

[155] L. Zhao, S. Huang, L. Yan, and G. Dissanayake, Parallax angle parametrization for monoc-

ular SLAM, in IEEE International Conference on Robotics and Automation, 2011, pp. 3117

–3124. (cited on page 52)

http://octomap.sf.net/

	Introduction
	Problem Definition
	Contributions
	Outline

	Related Work
	Simultaneous Localization and Mapping
	A Bit of History
	Recent Advances in Visual SLAM

	SLAM in Dynamic Environments
	Conclusion

	Theory and Background
	Projective Geometry
	The Two-dimensional Projective Space
	The Three-dimensional Projective Space
	Geometric Transformations
	Rotation Representations
	Perspective Camera Model

	Multiple View Reconstruction
	Multi-View Geometry
	Structure and Motion Estimation

	Conclusion

	Visual Localization and Map Building in Static Environments
	Introduction
	Visual Features for Localization and Map Building
	Sparse Visual Features
	Dense Visual Features
	Appearance based Features

	Map Building
	Landmark Maps
	Occupancy Grid Maps
	Topological or Appearance Based Maps
	Conclusion

	Incremental Localization Techniques
	Pose Prediction
	Recursive Filtering Techniques for Pose Correction
	Optimization based Techniques for Pose Correction
	Conclusion

	Global Localization Techniques
	A Complete Visual SLAM Algorithm
	Environment Model
	Visual Localization and Mapping Framework
	Image Acquisition
	Initialization
	Incremental Localization
	Map Building
	Global Localization

	Conclusion

	Visual Localization and Map Building in Dynamic Environments
	Introduction and Motivation
	What is a Dynamic World?
	Challenges in Dynamic Environments

	A Novel Feature Descriptor for Visual Mapping
	Motivation
	Feature Descriptor
	Descriptor Shapes
	Bin Weighting Schemes
	Incorporation of the HOC descriptor into the Visual SLAM Process

	A Novel Method for Keyframe Organization
	Motivation
	Pose Graph for Keyframe Organization and Map Extension
	An Accelerated Loop Closing Routine

	Conclusion

	Experiments
	The Problem of Evaluation in Dynamic SLAM
	Introduction and Motivation
	A New Dataset for Benchmarking Dynamic SLAM Approaches

	Evaluation of HOC-based SLAM
	Synthetic Experiments
	Static Camera - Moving Scene
	Moving Camera - Moving Scene

	Evaluation of the Novel Pose Graph, the Adaptive Keyframe Selection and Map Point Insertion
	Conclusion and Discussion

	Conclusion and Outlook
	Conclusion
	Outlook

	Non-Linear Least-Squares Parameter Estimation Techniques
	Introduction
	Iterative Parameter Estimation Methods
	Newton-Iteration
	Gauss-Newton Method
	Gradient-Descent

	Levenberg-Marquardt Algorithm
	Partitioned Levenberg-Marquardt
	Sparse Levenberg-Marquardt

	List of Publications
	Thesis Relevant Publications
	Other Publications

	Bibliography

