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“All of old. Nothing else ever. Ever tried. Ever failed. No matter. Try again. Fail again. Fail better.”
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Abstract

“Similarity breeds connection” – with these words Miller McPherson expressed the principle of

homophily that connections between individuals are based on shared traits.

With the advent of online social networks users were able to interact with real-world friends

on Web-based platforms without geographic constraints. Although this seemed to overcame the

limitations of user’s locations for cultivating relations, the spatial distance between users still

plays an important role for the creation of new links. Location information of users represents

the natural behaviour of their daily contacts and therefore allows a researcher to model their real-

world contacts without joining explicit friends lists on the Web. Subsequently, data from online

social networks and location-based sources can not only be used to model existing links but also

to predict upcoming links.

The goal of this research is to investigate the extent to which different sources of location-based

data can support data from an online social network for the prediction of upcoming interactions and

the tie-strength of these interactions. We overcome the problem of missing large scale real-world

data by collecting data from various sources in the virtual world of Second Life. In the first part of

the dissertation we focus on the problem of link prediction in the online social network supported

by one single source of location-based data. This approach sheds light onto valuable features to

model social proximity between users and suitable machine learning techniques. Based on those

results we next investigate the differences between three different but related location-based data

sources for the prediction of interactions in the online social network. Finally, we combine all

available data sources and tighten the link prediction problem to predict the tie-strength between

already connected users.
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Our analysis reveals that user-pairs with interactions are more similar than user-pairs without

interactions and this homophily even grows with increasing tie-strength. Connected users share

more groups, have a smaller spatial distance between them and visit more common places. These

signs of intimacy are also supported by topological features that model the closeness of users

from the network’s perspective. For the actual prediction tasks we identify features based on

the homophily as being most valuable in the online social network and the location-based data

sources. Although the performance of the machine learning algorithms depends on the character

of the actual data source and the availability of data, a combination of the online social network

and the location-based sources could be identified as most valuable for the prediction tasks.

Location information turned out as a promising source of data for the prediction of interactions

and the tie-strength between users. We complemented online social networks with three different

sources of location-based data and demonstrated the benefit of this approach for several prediction

tasks. To the best of our knowledge this is the first work that combines online social networks

and three different location-based data sources obtained from the same group of users for the

prediction of interactions and tie-strength between users.

Keywords: Online Social Networks � Location-Based Social Networks � Link Prediction � Tie-

Strength Prediction � Data Mining �Machine Learning � Virtual Worlds � Second Life
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Kurzfassung

“Similarity breeds connection”. Die Beziehungen zwischen Personen beruhen auf ihrer Ähn-

lichkeit – mit diesen Worten wurden von Miller McPherson die Prinzipien der Homophilie be-

schrieben.

Durch die Popularität von Web-basierten sozialen Netzwerken können Personen ohne geogra-

phische Einschränkungen miteinander kommunizieren und interagieren. Obwohl es den Anschein

erweckt, dass dadurch Beziehungen über große Entfernungen geführt werden können, spielt die

geographische Distanz zwischen Personen bei der Entstehung neuer Beziehungen noch immer

eine große Rolle. Genaue Informationen über die Aufenthaltsorte von Personen entsprechen dabei

deren natürlichem und alltäglichem Verhalten. Somit ist es möglich, Listen mit persönlichen Kon-

takten ohne explizite Freundeslisten von Web-basierten Plattformen zu erstellen. Mit diesen In-

formationen können Kontaktnetzwerke erstellt werden und in weiterer Folge auch Kontakte, die

in der Zukunft entstehen, vorhergesagt werden.

Das Ziel dieser Dissertation ist es, den Einfluss von drei unterschiedlichen Quellen mit perso-

nenbezogenen Positionsinformationen auf ein Web-basiertes soziales Netzwerk zu evaluieren und

zukünftige Text-Interaktionen zwischen Personen und die Intensität dieser Verbindungen vorher-

zusagen. Da es in der realen Welt keine geeigneten Datenquellen für diese Untersuchungen gibt,

wurden die Daten im Umfeld der virtuellen Welt von Second Life erhoben. Im ersten Teil der

Dissertation wird der Einfluss von Positionsdaten einer einzelnen Datenquelle auf die Vorhersag-

barkeit von Text-Interaktionen in einem sozialen Netzwerk untersucht. Aus den gewonnen Resul-
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taten werden Rückschlüsse auf geeignete Metriken zur Modellierung von Beziehungen zwischen

Personen und die dafür geeigneten maschinellen Lernalgorithmen gezogen. Darauf aufbauend

werden drei unterschiedliche Quellen mit personenbezogenen Positionsinformationen hinsichtlich

der Vorhersehbarkeit von zukünftigen Text-Interaktionen zwischen diesen Personen verglichen.

Im letzten Teil der Dissertation werden alle verfügbaren Datenquellen verknüpft um die Intensität

der Beziehungen von Personen vorherzusagen die bereits im sozialen Netz verbunden sind.

Die durchgeführten Analysen zeigen eine sehr hohe Ähnlichkeit von Personen mit bestehenden

Text-Interaktionen und mit wachsender Intensität dieser Verbindungen steigt auch deren Ähn-

lichkeit. Verbundende Personen gehören mehr gleichen Gruppen an, haben eine geringere ge-

ographische Distanz zueinander und besuchen öfter dieselben Orte. Unterstützt werden diese

Beobachtungen durch Eigenschaften, die aus der topologischen Struktur des sozialen Netzwerks

abgeleitet werden. Die Analyse von Metriken für die Vorhersage zeigt, dass die Ähnlichkeit

zweier Personen, die aus dem sozialen Netzwerk und den Positionsdaten abgeleitet wurden, am

einflussreichsten ist. Die bei der Untersuchung verwendeten Algorithmen zum maschinellen Ler-

nen variierten mit der Verfügbarkeit und dem Charakter der Daten, wobei durch die Kombination

des sozialen Netzwerks mit den Positionsdaten die besten Resultate für die Prognosen gefunden

wurden.

In den durchgeführten Untersuchungen haben sich Positionsdaten von Personen als aussage-

kräftige Datenquelle zum Vorhersagen von Text-Interaktionen zwischen Personen und deren Inten-

sität erwiesen. Dafür wurden Daten aus unterschiedlichen Quellen kombiniert, um den positiven

Einfluss von Positionsdaten zu testen. Das ist die erste Arbeit, in der ein Text-basiertes soziales

Netzwerk mit drei unterschiedlichen Positionsdatenquellen verknüpft wird, um eine Vorhersage

für zukünftige Text-Interaktionen und deren Intensität zu untersuchen.

Schlüsselwörter: Online Social Networks � Location-Based Social Networks � Link Prediction

� Tie-Strength Prediction � Data Mining �Machine Learning � Virtual Worlds � Second Life
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CHAPTER 1

Introduction

It is in the nature of humans to build groups and socialize with

others but with the evolution of humanity the social cohesion be-

tween individuals changed and became more complex. Reasons

for that were technological advances in travel-abilities, global

communications and personal interactions [Easley and Kleinberg,

2010]. Although it seems that the spatial influence of relations has

weakened, geographic information still plays an important role in

the creation of new relations. The rising popularity of online so-

cial networks like Facebook and location-based social networks

like FourSquare implicated the availability of information about

relations between individuals as well as position data of these in-

dividuals at a large scale. This data allows to represent existing

relations between users as well as the prediction of upcoming re-

lations with high accuracy.
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Chapter 1. Introduction

1.1. Motivation

Boyd and Ellison [2007] defined the main characteristics of social networks as follows: 1) users

maintain a profile that describes themselves and make the profile visible to the public or only to a

subset of friends. 2) users have a list of friends or acquaintances to define their social relations to

others. These friends-lists evolve and change over time and form the actual “social network”. 3)

users can view the profiles of their friends, interact with them and respond to updates or changes of

their friends’ profiles. Although this global definition of a social network is valid for most available

networks, the aim and nature of these platforms are manifold: business networks like LinkedIn∗,

hybrid information-entertainment networks like Twitter† or networks for special target groups like

Catsters‡. The main motivations for the use of these social networks range from mapping existing

friends to social networks, maintaining these friends and even making new friends [Lampe et al.,

2006; Ellison et al., 2007]. These new links in the network form such as they do in the real world

– between users that share similar interests or other habits [McPherson et al., 2001; Mislove et al.,

2010].

To analyse and describe the pair-wise relations in a social network Bondy and Murty [1976]

suggested the mathematical structure of graphs. A graph G〈V ,E〉 is defined as a set of vertices V ,

representing the actual users, and a set of edges E that connect users in this network. An example

for a social network that models the relations among users is the network of interactions between

the characters of Victor Hugo’s Les Misérables as depicted in Figure 1.1. The characters in this

network are represented as nodes and the relations between these characters are represented as

edges.

Since the social proximity between users in a social network is not equal among all user-pairs,

we can use two different approaches to measure the “distance” between them: topological features

and homophilic features. Topological features affect the structure of the entire network from a

global or local perspective. An example for a local network feature is the number of common

neighbours a user-pair has, i.e. the more common neighbours a pair of users has, the higher is

the probability that these users will form a connection in the future [Papadimitriou et al., 2011].

An example for a global network feature is the average shortest path between two users, i.e. the

shorter the average path between two users, the closer these users are in the network [Romero and

Kleinberg, 2010]. In contrast, homophilic features do not consider the structure of the surrounding

network but only measure the “alikeness” or “similarity” of a user-pair. Examples are shared

interests of two users or the number of locations two users visited concurrently [McPherson et al.,

2001]. It is in the nature of humans that relations between users are not of equal strength and as
∗www.linkedin.com
†www.twitter.com
‡www.catsters.com
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Figure 1.1.: Network of interactions between characters of Victor Hugo’s Les Misérables [New-
man and Girvan, 2004].

a consequence Granovetter [1973] introduced the tie-strength of a relationship by proposing the

terms “strong tie” and “weak tie”. An example for strong and weak ties in a network are close

friends and acquaintances in the online social network of Facebook [Kahanda and Neville, 2009].

Although weak ties only model relations between slightly connected nodes in the network they

are essential for the structure of the network and the coherence of its nodes [Granovetter, 1973;

Gilbert and Karahalios, 2009; Jones et al., 2013; Onnela et al., 2007; Kahanda and Neville, 2009].

Although the possibilities of online social networks seem to overcome the limitations of a user’s

location for maintaining interpersonal relations, the spacial distance between user-pairs still plays

an important role for the creation of new links [Lewis et al., 2008]. Up until a few years ago it was

infeasible to collect location information of users on a large scale but with the advent of mobile

GPS devices, e.g. mobile phones, and platforms to share position information, e.g. FourSquare,

this information became available. Although people are concerned about the implications of the

collection and analysis of this sensitive data [Iqbal and Lim, 2010; Consolvo et al., 2005], they

3



Chapter 1. Introduction

find benefits in some cases [Michael et al., 2006; Abbas et al., 2011]. From a user perspective the

main motives to use location-based social networks are that 1) users want to show their current

location to a befriended user, 2) users utilize the current location as a method of self representation

and 3) users exploit location information to coordinate with friends [Lindqvist et al., 2011]. The

final decision to share data depends on the actual user or service that requests data, the reason why

the information is desired and finally the accuracy and resolution of the requested data [Michael

et al., 2006].

Similar to online social networks where social or textual interactions represent links between

users [Boyd and Ellison, 2007], location-based information provided by users complies with their

relations as well [Li et al., 2008; Scellato et al., 2011; Liu et al., 2012; Mok and Wellman, 2007].

A detailed analysis of users’ movement shows that 10-30% of these movements can be explained

by location based data whereas 50-70% of these movements were influenced by periodic habits

[Cho et al., 2011]. This is a clear indication that the locations users visit are more than they seem

at a first glance. They contain information about work place and home location [Cho et al., 2011],

the actual age of users [Popescu and Grefenstette, 2010] or health and relational status [Dong

et al., 2011]. Based on this data it is easy to create user profiles and assign the users to groups that

reflect their interests [Joseph et al., 2012]. Fusco et al. [2011] defined social network that are based

on location data of users in a formal way: “A location-based social network is the convergence

between location based services and online social networking.”

The alikeness of user-pairs and the structural closeness of users can not only be used to model

existing relations but also to predict relations that occur in the future. This “link prediction prob-

lem” was defined and described by Liben-Nowell and Kleinberg [2002] to predict co-authorship

of scientific publications in the future. Ongoing work has shown that structural features [Romero

et al., 2011; Fire et al., 2011] as well as homophilic features [Golder and Yardi, 2010; Rowe et al.,

2012] can be employed as indicators for the probability that two users form a connection in the

future. In general we can state that the closer two users are in the network (e.g. more common

neighbours), the higher is the chance that they form a link in the future. Experiments applied

to different online social networks and location-based social networks proved the efficiency of

various features [Li and Chen, 2010; Golder and Yardi, 2010]. A common observation in these

experiments was that more available data yields in a higher predictability of future links: A higher

amount of information can be used to describe the relations between users more detailed or com-

pute additional features.

Existing research either focuses on online social networks or location-based social networks for

prediction of links and their tie-strength and there is no research that investigates the consequences

and benefits of different sources of location-based information for the prediction of new links in

an online social network. A possible explanation is that it is nearly infeasible to collect real-world
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data on a large scale. Popular Web platforms like Google+ or Facebook do not provide interfaces

to automatically download this data and due to privacy restrictions user profiles are in general not

publicly accessible.

1.2. Problem Statement and Research Questions

The aim of this thesis is to explore the benefits of online social networks enhanced by different

sources of location information. In particular we aim to analyse the extent to which data from

different domains, i.e. online social networks and location-based social networks, enhance the

predictability of future links and the tie-strength of these links.

The main purpose of this thesis can be outlined with the overall problem statement:

How can different sources of location-based data be exploited to predict links and

their strength in a related online social network and to what extent does the combina-

tion of location-based data and online social network data enhance this prediction?

In order to start with the prediction of relations between users, i.e. link prediction or tie-strength

prediction, we are interested in features to measure the social proximity between users that can

be derived from an online social network and location-based data sources. Although literature

suggests several measures, they strongly depend on the quality and the type of the used datasets.

Based on the results of the evaluated features, we are further interested in the prediction of in-

teractions in an online social network supported by location-based data. For the link prediction

tasks literature in general recommends unsupervised machine learning approaches for feature en-

gineering and supervised machine learning approaches for prediction but again we only found

work that evaluates either one or the other domain, i.e. the online social network domain or the

location-based domain and not a large-scale combination of both. To pursue with the prediction

of links using an online social network supported by location-based data we are interested in the

predictability of interactions using different sources of location-based data. Literature only eval-

uates different sources that are not related to each other and this circumstance makes it nearly

impossible to compare these sources. Finally we are interested in the prediction of the tie-strength

of social relations with social proximity features applied to the online social network combined

with three location-based data sources.

According to this, we can state the four research questions as follows:

Research Question 1

Which social proximity features can be derived from an online social network and location-

based data sources and how do they differ for different types of relations between users?
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Research Question 2

How can a combination of social proximity measures derived from an online social network

and a location-based social network predict interactions between users?

Research Question 3

Can different location-based data sources be used to predict interactions in a related online

social network and which source is the most valuable?

Research Question 4

To what extent can a combination of an online social network and three different location-

based data sources support the prediction of tie-strength of links between users?

1.3. Scientific Contributions

In this thesis we overcome the problem of the missing large scale real-world data and replace it

with virtual data: The datasets used in this thesis origin from the virtual world of Second Life

but as they are created by humans they can be mapped to the real world. For the experiments we

exploit data from two different domains: the Facebook-like online social network “My Second

Life” where users of Second Life can interact with each other using text postings, comments, and

loves, and three different location-based data sources of these residents: 1) “Shared Locations” –

users can virtually check-in at specific locations and share this information on their Web-profile,

2) “Favoured Locations” – users can specify their top 10 locations within the virtual world on

their Web-profile and 3) “Monitored Locations” – the in-world movement trajectories of Second

Life Residents. The benefits of this approach are the public availability of the data, the absence

of technical restrictions to collect the data and the anonymity of the users. Nevertheless, the data

was created by real persons and can therefore be compared with real-world data of social and

location-based networks.

We harvested the necessary information with Web crawlers respectively in-world robots over

a period of 12 months and created a data model from the raw data. We analysed the data of the

online social network as well as the data from the three location-based data sources. To determine

the relations among all users we combined the collected information and applied metrics based on

the homophily of user-pairs and the structure of the created network. We explored the differences

and commonalities among different relation types of user-pairs and based on the obtained results

we examined the predictability of future links and the tie-strength of these links using supervised

and unsupervised machine learning algorithms. To the best of our knowledge there is no research

that combines online social networks and different location-based social networks obtained from

the same user group for the prediction of links and the tie-strength of these links at large scale.
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1.4. Structure of the Thesis

1.4.1. Paper Contributions

Most parts of this thesis have been published in the proceedings of conferences, as journals or

books and all chapters are annotated with the publications they are based on. The publications and

the contributions can be summarised as follows:

• Steurer, Michael; Trattner, Christoph; Predicting Partnership with Location-based and On-

line Social Network Data submitted to Elsevier Journal of Neurocomputing.

The idea for this paper was initiated by the author and Christoph Trattner. Christoph Trattner

supported the author with discussion about the experiment’s setup and the results. The

author conducted the experiments and evaluated the results. The paper was mainly written

by the author and the co-author contributed to the conclusion.

• Steurer, Michael; Trattner, Christoph; Helic Denis Predicting Social Interactions from Dif-

ferent Sources of Location-based Knowledge, The Third International Conference on Social

Eco-Informatics, Lisbon, Portugal, 2013.

The idea to write this paper was initiated by the author. The writing of the paper as well as

the experiments and the evaluation of the results were done by the author. The second and

third author contributed with discussing the results and contributed to the abstract.

• Steurer, Michael; Trattner, Christoph; Acquaintance or Partner? Predicting Partnership in

Online and Location-based Social Networks; Proceedings of the 2013 IEEE/ACM Inter-

national Conference on Advances in Social Networks Analysis and Mining, IEEE/ACM,

Niagara Falls, Canada, 2013.

The idea for this paper was initiated by the author and Christoph Trattner. The experiments

and the evaluation of the results were done by the author. The co-author contributed with

useful discussion and support to interpret the results of the experiments. The paper was

mostly written by the author and the co-author wrote the related work and contributed to the

introduction and conclusions.

• Steurer, Michael; Trattner, Christoph; Who will Interact with Whom? A Case-Study in Sec-

ond Life using Online and Location-based Social Network Features to Predict Interactions

between Users; In Proceedings of the MUSE-MSM Post-Proceedings, 2013.

The idea for writing this paper was initiated in equal parts by the author and Christoph Trat-

tner. The experiments and the evaluation of the results were done by the author. The paper

was mainly written by the author and the co-author wrote the related work and contributed

to the introduction and conclusion.
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• Steurer, Michael; Trattner, Christoph; Predicting Interactions In Online Social Networks:

An Experiment in Second Life; Proceedings of the 4th International Workshop on Modeling

Social Media, Paris, France, 2013.

The idea for writing this paper was initiated by Christoph Trattner and the author. The

experiments and the evaluation of the results were done by the author. Christoph Trattner

supported the author with discussions about the experiment’s setup and the results. The

paper was written by the author and the co-author.

• Steurer, Michael; Trattner, Christoph; Kappe, Frank; Success Factors of Events in Vir-

tual Worlds A Case Study in Second Life; Workshop on Network and Systems Support for

Games, Venice, Italy, 2012.

The idea for writing this paper was originated in equal parts by the author and Christoph

Trattner. The experiments and the evaluation of the results were done by the author. The

paper was written by the author and Christoph Trattner.

• Kappe, Frank; Zaka, Bilal; Steurer, Michael; Automatically Detecting Points of Interest and

Social Networks from Tracking Positions of Avatars in a Virtual World; ASONAM, Athens,

Greece, 2009.

The idea for writing this paper was initiated by Frank Kappe. The experiments were con-

ducted by Bilal Zaka and Michael Steurer. The paper was was mainly written by Frank

Kappe and Bilal Zaka. The author contributed in writing about data retrieval social methods

and the proximity analysis.

1.4.2. Organization

The thesis is organised as follows:

Chapter 1: Introduction

In this chapter we give an overview of the topic and motivate the aim for this research. We

present the scientific contributions and formulate the problem statement and the research

questions.

Chapter 2: Related Work

In this chapter we present an extended overview of existing literature in this field. We cover

link prediction and tie-strength prediction in online social networks as well as in location-

based social networks.

Chapter 3: Success of Events in Second Life

In this chapter we present the approaches to harvest data from a Second Life Web resource
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and in-world position data at a large scale. Based on the collected information we evaluate

the success of events in Second Life based on features derived from their meta description.

Chapter 4: Prediction of Interactions

In this chapter we describe the prediction of interactions between users and the reciprocity

of these interactions. We employ data from a location-based social network and an online-

social network of the same users to do the experiments.

Chapter 5: Compare Region Sources

In this chapter we compare three related but independent sources of location-based data

regarding the predictability of social interactions. We apply different homophilic features

to the location-data and use supervised and unsupervised machine learning approaches to

evaluate them.

Chapter 6: Prediction of Partnership

In this chapter we analyse aspects of tie-strength of relations between users – defined as

partners and acquaintances – in an online social network supported by location-based data

obtained from three different sources.

Chapter 7: Research Results and Conclusions

In this chapter we summarize the found results and draw the conclusion. We present answers

to the research questions defined in the introductory chapter of the thesis.
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CHAPTER 2

Related Work

In this chapter we review existing literature in the field of online

social networks and location-based social networks. We summa-

rize previous work and concentrate the results and findings of pre-

vious experiments. A more detailed elaboration of related work

can be found in the individual chapters.

This chapter can be divided into two sections: In Section 2.1 we

present an overview of existing work in the general field of on-

line social networks. In Section 2.1.1 we focus on link prediction

in these online social networks and tighten this problem in Sec-

tion 2.1.2 where we also consider the strength of links between

users for the prediction task. In Section 2.2 we broadly cover lit-

erature on location-based social networks and work that is related

to position data in general. Section 2.2.1 covers future place pre-

diction whereas Section 2.2.2 focuses on the prediction of future

links in location-based social networks.
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2.1. Online Social Networks

It’s in the nature of humans to form relations and graph theory defines a model to describe these

relations in a mathematical structure: A graph is a mathematical structure that models the pair-wise

relations between objects.

A graph G is an unordered triple 〈V (G),E(G),ψG〉 consisting of a non-empty set

V (G) of vertices, a set E(G), disjoint from V (G), of edges and an incidence function

ψG that associates with each edge of G an unordered pair of (not necessarily distinct)

vertices of G. [Bondy and Murty, 1976]

The analysis of social networks started back in the 1960s (see [Barnes, 1969] or [Mitchell,

1969]), where users of the social network are represented as vertices and the relation between

these users is indicated by edges between these vertices. Due to the limited availability of real

word data, the analysis of online social networks started with small datasets and one of the first

sets was introduced by Zachary [1977] that focused on an anthropological approach of detecting

and analysing conflicts in a small karate club. The authors analysed the structure of the social

network and explored the implications of the conflict that finally yielded in the separation into two

clubs.

With the advent of the World Wide Web, the availability of larger dataset became feasible and

starting with the GeoCities network, the SixDegrees network [Boyd and Ellison, 2007] and MyS-

pace, Facebook finally became the most successful online social network with over 845 Million

users in February 2012 [Wilson et al., 2012]. Due to it’s popularity the Facebook social network

is in the interest of researcher and so there are several datasets available under the umbrella of the

Stanford Network Analysis Project [Leskovec, 2012]. Since it was introduced in 2004, the usage

of Facebook changed in various ways: Lampe et al. [2006] state that the online social network of

Facebook became more and more part of user’s daily life. One reason for this is the increasing pop-

ularity of mobile phones and the according ease-of-use to access the social networks ubiquitously

[Kisekka et al., 2013]. Users adapt the social activities and social environment on the network

upon their personal changes using these new technological features, e.g. making new friends or

moving to a different location [Lampe et al., 2008].

In most cases the social network of Facebook aims at users with an existing offline bonding

who want to stay in touch with each other and with all their already known friends [Lampe et al.,

2006]. Once a link in the network is created, the main motivations are the preservation of the real-

world friendship and the access to information about users they met socially in class or dormitory

[Lampe et al., 2006]. These users try to model their personal online profile according to their real

personal profile and get the attention of their existing contacts from the real life [Lampe et al.,
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2006]. This interplay between the real world and the social network is not one-way only but the

effects are reciprocal: As reported by Ellison et al. [2007], relationships in Facebook have an

effect onto the real world ties of users as well. In their paper they even found positive influence on

the self-esteem and the life satisfaction of Facebook users. Further, the usage of an online social

network even helps users to maintain their old relations and create new relations when they change

their real world community due to the move to a different location [Ellison et al., 2007].

Per se, social networks are not statical but instead evolve over time. Users declare friendship

and communicate to each other for a certain timespan [Chun et al., 2008]. In their paper Chun

et al. [2008] analysed the differences between a social network i.e. friendship network, and the

actual activity network i.e. communication network, of comments in an online guest books. Al-

though they found similarities in the overall structure in both network types, the activity network

contained more information due to its weighted and directed character and the additional factor of

time. This implies that the actual interactions between users allow to draw a more accurate and

detailed picture of the overall relations between users. Similar observations were reported by Wil-

son et al. [2009] who analysed the interactions and social relations of approximately 10 Million

Facebook users. They reported differences between the activity network and the social network

and suggested to “design social applications with the interaction graph in mind” as they “reflect

the real user activity rather than the social linkage alone”.

“Similarity breeds connection” - in networks of any type the homophily, i.e. alikeness or simi-

larity, between users forms connections [McPherson et al., 2001]. Mislove et al. [2010] reported

a high homophily of befriended users in the social network of Facebook which implies that user

groups of befriended users share similar attributes. Based on this observation Mislove et al. [2010]

inferred the attributes of all users in a group from a subset of only 20% of the users with over 80%

accuracy. This indicates that users with similar attributes and characteristics form communities

in social networks. In a subsequent work Ugander et al. [2011] investigated in the anatomy of

the entire Facebook graph and even revealed strong age homophily on a local level and a strong

nationality homophily on a global level. Surprisingly, they did not find any signs of a gender ho-

mophily between users. This observation goes inline with Lewis et al. [2008] who experimented

with users from different social environments and areas. Their analysis unveiled differences in

the characteristics of users with different status and location. Golbeck et al. [2011] investigated in

the personality of Twitter users and used the publicly available information on their Web-profiles

to classify users into the “Big Five” personality traits: Openness to Experience, Conscientious-

ness, Extroversion, Agreeableness and Neuroticism. Although there were differences between the

classes, they could overall predict these classes with high accuracy using machine learning algo-

rithms. An extension to this work was done by Adali and Golbeck [2012] who used the semantics

of exchanged messages of Twitter users and compared it to the actual relations between the users.
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Based on the similarity and the influence of their directed followers they tried to find the charac-

teristics of personality. Their results go inline with earlier experiments by Golbeck et al. [2011]

who unveiled the social environment of users as a good predictor for their personality.

Online social networks can not only be used to represent the profiles of single users and their

personal information but also to infer the social relationship between them. In the next section we

first focus on the analysis of these interactions and further on the prediction of social relations and

interactions.

2.1.1. Link Prediction

One of the most prominent research topics in online social networks is the prediction of new

links between users that evolve in the future. The idea is to create a graph model to represent the

social network and use it to apply measures that map the relations between single users. These

relations can depend on information that is intrinsic to the network, i.e. topological features like

the common neighbours of two single users, on extrinsic information, i.e. homophilic features like

the mutual interests of two users, or on a combined set of topological and homophilic features.

One of the well-known experiments to predict new links in an online social network using

topological features was conducted by Liben-Nowell and Kleinberg [2002]. They defined the

“link prediction problem” and applied their approaches to five co-authorship networks of scientific

research papers. The examined networks changed their structure dynamically over time as more

and more links formed new and so they applied a supervised learning approach to predict these

evolving links. For their experiments they used intrinsic network information, i.e. information that

can be derived from the topological structure of the network and their analysis revealed that this is

a very valuable source for the prediction of future links between users. They identified the number

of common neighbours two unconnected users have as one of strongest indicators for a possible

future link. This concept was pursued by Romero and Kleinberg [2010] who investigated in these

triadic closures, i.e. users that are linked through common neighbours tend to form a link as well.

For their experiments they exploited information from the directed network structure of the Twitter

network. On the one-hand side they could verify that the existence of a common neighbour in the

network is a strong indicator of future connections in directed social networks but on the other-

hand side they also found that this features is not homogeneously distributed over the network.

The actual in-degree (number of neighbours with a link to the user in the directed network) is not

the main predictor for a triadic closure but instead the in-degrees of all neighbours of a user is the

best metric to predict future links. This goes in-line with Ugander et al. [2011] who found a clear

degree associativity which means that users with higher activity connect to users with a higher

activity as well.
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Topological features can be broadly divided into local features that exploit the actual neigh-

bourhood of users within the network and global features that take the entire structure of the

network into account. Local features only consider the distance between two users using their

direct neighbours, e.g. common neighbours, whereas global features consider the structure of the

entire network, e.g. Katz Status Index [Papadimitriou et al., 2011]. Global features require in gen-

eral more computational resources but they have a higher predictive power if compared to local

features. As a consequence, there were attempts to combine local and global features.

Zhou et al. [2009] exploited nine of the most popular metrics that rely on the structure of the

network and compared six different networks with respect to these features. Due to the fact that

global based algorithms are very slow but effective and local based algorithms are fast but with a

worse performance they tried to find a trade-off between simplicity and performance. As a conse-

quence they introduced a new metric that has the performance of a global feature but the structure

of the Adamic-Adar measure. Overall the introduced measure had a better performance than ex-

isting local features with a slightly higher computational costs. Another attempt to reduce the

complexity of global features was done by Fire et al. [2011]. They introduced a replacement for

the Katz Status Index referred to as Friends-Measure and evaluated this measure on five large on-

line social networks using supervised machine learning algorithms. Similar attempts to combine

different feature sets where made by Papadimitriou et al. [2011] who also tried to boost the per-

formance of features based on the local network structure using global features. They introduced

a new global measure called Friend Link that improves other local features and also other existing

global features.

A first attempt to isolate homophilic features from profiles in the Twitter online social network

was done by Golder and Yardi [2010]. They blanked out the topological and structural proper-

ties between users and let users choose to follow others only upon their social profiles. Although

they compared it to existing topological techniques, the profile information alone was a signif-

icant predictor for new links in the network and even outperformed existing network-structure

based algorithms. The network of Twitter gained attraction of other researchers as well due to it’s

hybrid information-entertainment architecture and the corresponding information richness. Yin

et al. [2011a] states that existing approaches for the prediction of new links based on the network

topology alone are not sufficient as the structures and relations between users are too dynamic and

complex. In a subsequent paper Yin et al. [2011b] unveiled that 90% of upcoming links are triadic

closures, i.e. users are not connected but have common neighbours and hence are not more than

two hops away. Among the homophilic features they used for the analysis, the age of the user

account was a crucial factor for the prediction of future links. This analysis revealed the particular

importance of the profile information and Rowe et al. [2012] went a step further and exploited the

semantic content of tweets to predict future followers. Their experiments showed that the seman-
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tic information of the text messages even outperform features that are based on local topological

information in the network. They further stated that social aspects play an important role in the

creation of new links and users with a high degree, i.e. users that are well connected to other users

in the network, are even more driven by these social factors.

Lee and Brusilovsky [2010] used the citation network of CiteULike to show the influence of ho-

mophily between users with varying social proximity in the network. They used different features

based on profile metadata, tags and information items in general. Their experiments showed that

connected users share more items with each other and are therefore more similar to each other than

users that are not connected to each other. This observation can even be extended because the sim-

ilarity between users even decreases with increasing distance in the network. For instance, users

with a distance of two in the social network are less similar than users that are connected. Iden-

tical observation where made by Schifanella et al. [2010] who investigated the social networks of

Last.FM and Flickr. In particular they looked for the similarities of users considering the groups

they joined and interests they specified. They analysed the groups users participated in and the

shared tags based on their music taste. Again, they found a strong correlation between friendship

between users and the homophilic of their profiles. For the Last.FM dataset they even found that

these similarities are more valuable for the prediction of friendship than the listening patterns of

users.

Topological and homophilic features are both valuable predictors for the prediction of future

links and Shibata et al. [2012] evaluated the differences between them. They investigated in a

citation network to find new co-authors and used homophilic features (attribute features, semantic

features) and topological features to predict this new co-authorships. With their experiments they

could identify Jaccard’s Coefficient and differences in the betweenness centrality from the topo-

logical features and the similarity between documents of two users from the homophilic features

as most valuable. Their work showed that both types of features have high potential to predict new

links.

However, there is still the unresolved questions on the actual method to combine homophilic

and topological features to get the best prediction results. Backstrom and Leskovec [2011] used

Supervised Random Walks to combine the structural information hidden in the network and the

information of the actual user. Their results showed that this approach identifies positive links bet-

ter than existing supervised and unsupervised learning approaches on either feature set. Al Hasan

et al. [2006] also used a combination of topological and homophilic features to predict links in

a co-authorship network of scientific publication data. As their focus was on computational ef-

ficiency, they omitted global topological network features and only used homophilic and local

topological features. With the Support Vector Machine learning algorithm they identified a subset

of features like the sum of common neighbours or similar keywords in the profile as most suitable
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for the prediction of new links. In contrast, Chelmis and Prasanna [2012] evaluated the directed

communication of users in the social networks of Facebook and Twitter using an unsupervised

learning algorithm. They used topological features and combined them with context information

of user-pairs using textual and temporal features, i.e. content and date similarity of interactions.

Their analysis showed that this approach outperforms existing solutions and they finally state that

the prediction gets better the more homophilic and topological features are available. Zheleva et al.

[2010] extended this idea and used an existing online social network and added the information

of the family structure of users. They derived homophilic features from the base network and ex-

tended it with the structural information of the family network. In particular they used the strength

of ties between family members to achieve better results for the prediction. This additional source

of knowledge yielded in a significantly higher results for the prediction of future links if compared

to traditional approaches.

2.1.2. Influence of Tie-Strength

The strength of a relation between users can not only be used as an additional source of knowledge

[Zheleva et al., 2010] but it can also be seen as an extension to the link prediction problem. Gra-

novetter [1973] explored the different strength of links between users in a network and his studies

revealed that the structure of networks highly depend on weak connections between users and so

does the information transport within networks: he identified groups of users in the network and

identified the weak links between these groups as essential for information transportation and the

coherence of the network.

With the advent of larger social network datasets, the proof of Granovetter’s theory became

more and more feasible and for instance Gilbert and Karahalios [2009] used a Facebook dataset

to investigate in the tie strength problem. They asked users to manually assess their relationships

to other users and differentiate between user-pairs with a strong tie and user-pairs with a weak tie.

For their network model, they used seven classes e.g. intimacy, intensity or duration, to define the

features between users. Their experiments showed that the intimacy (number of friends or intimate

words used) and intensity (number of wall words or number of outbound posts) were most suited

to predict the tie strength. Jones et al. [2013] also used the social network of Facebook to predict

the tie strength between users and conducted interviews with the users to assess the findings. For

the actual prediction they exploited features obtained from the private and public messages sent

between users. Their analysis revealed that the frequency of interactions is the most successful

predictor for strong ties - the higher the frequency of communication, the higher is the probability

that the user relation is a strong tie. Surprisingly, public communications on the wall (postings,

comments, loves) is more valuable for the prediction of tie strength than the private communication
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is. Another interesting proof of Granovetter’s theory was conducted by Onnela et al. [2007] who

used the data of a mobile phone network to investigate in the tie strength between users. They

unveiled that the actual structure of the network is very robust if strong ties are removed but the

network completely collapses as soon as weak ties are deleted. In contrast to this global effects

upon the removal of weak ties, they observed that strong ties are vital to local structures in the

network as weak links build around them.

As mentioned in Chun et al. [2008] there is a difference between the social network and the

activity network of users. The activity network contains more information with all the interac-

tions whereas the online social network has a broader meaning especially for sociological studies

[Kahanda and Neville, 2009]. Kahanda and Neville [2009] focused on the tie-strength in an ac-

tivity network with postings, comments and loves. For their supervised learning approach they

used transactional information to model the information transfer between two users, topological

features to model the local and global structures in the network and network-transactional features

to model the information transfer between users with respect to other interactions in the entire net-

work. Their experiments revealed that these network-transactional features are very valuable for

the prediction of strong ties as they model the actual number and types of all interactions between

users instead of simple counting the exchanged interactions between two users. Viswanath et al.

[2009] used a Facebook dataset collected over a year to investigate in the changes of the activity

network over time. They found significant differences as the activity network is highly time de-

pendent whereas the social network maintains structural properties over time. Due to the fact that

the tie strength is directly related to the activity network, there is a strong deviation of weak and

strong ties.

The link prediction problem can be tightened to predict the tie-strength of an existing link be-

tween two users. Leskovec et al. [2010] applied topological features to several datasets and fo-

cused on the prediction of positive respectively negative links, e.g. Slashdot with links that are

either “friends” or “foes”. They state that the information about the negative links in a social

network are an additional source of knowledge and therefore have significant influence on the

characteristics of the network and thus to the prediction of positive links. Another example is

Cheng et al. [2011] who determined whether users of the Twitter network have a reciprocal com-

munication or not. Among all the features they examined, they identified the similarity of users as

the most powerful feature. They state that users with a similar status have a high probability that

they have a reciprocal communication as well. Among the number of interactions, the actual sign

of the communication (uni-directional or bi-directional) is an additional source of knowledge and

therefore a valuable source for link or tie-strength prediction tasks.

Granovetter [1973] stated that the information diffusion in a network highly depends on the

type of the connection between users. This was examined by Romero et al. [2011] who tried to
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predict the popularity of hashtags in the Twitter network. In their first analysis they found that

the local social structure of people in a network that use a certain hashtag has a crucial influence

on the future popularity of these hashtags. As a consequence they inferred that similarities in

hashtags are a valuable source to predict future links within a network. Indeed, according to

Granovetter’s theory of information transmission among weak links, they found remarkable results

for the prediction of weak links using the similarity of hashtags. This results were even topped

when they combined the homophilic information of the hashtags with the structural information of

the local social network. Buccafurri et al. [2013] defined the term tie-strength in a slightly different

way and defined the connections between users in different social networks as weak ties. They

introduced the term “bridge” for users that participate in more than one social network and hence

connect users from different networks. They compared the properties of these bridge-users with

power users of single networks and found that both cause a higher network degree in the combined

network although there was no correlation between the two groups. Overall they confirmed that

the combination of several different networks is a valuable source of knowledge which yields in

better insights into the structure and characteristics of the network. A similar approach was chosen

by Gilbert [2012] who tried to map the tie strength of users from one social medium to another.

They used the Twitter network to learn about the relations between users and validated the found

prediction model using a Facebook dataset of the same users. One of their main results was that the

Twitter-built model generalizes to Facebook and can therefore be used to predict the tie-strength

between users in other networks.

The more information available, the higher is the predictability of links or tie strength between

users. So far we have seen that these sources of information or knowledge can be derived from

the structure of networks, the homophilic similarity of user-pairs or other social network users.

Another type of social networks that became available on large scale during the last years are

location-based social networks. In the next section we will present an overview of literature in the

fields of location-based services and location-based social networks.

2.2. Location-Based Social Networks

A native approach to cover the relations between users is the collection of the places they visit

and their moving trajectories. In the past it was nearly impossible to collect this data but with the

advent of mobile GPS devices (e.g. mobile phones) and Web platforms with focus on location data

(e.g. FourSquare), it became feasible to harvest this information.

From a privacy perspective the collection of tracking data is very ambivalent. Michael et al.

[2006] examined the benefits and drawbacks of location based tracking data and equipped users
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with GPS enabled devices. After the data collection the users where interviewed about their per-

sonal concerns from the perspective of law enforcement and health aspects. This interviews re-

vealed that users think this information can be useful for monitoring people with health problems

but can also be very dangerous if the collected data is in the wrong hands. These observations

go inline with Iqbal and Lim [2010] who also investigated in privacy issues with location-based

data. They equipped volunteer users with GPS enabled devices and compared these data with self

reports. They tried to rise the awareness of issues with the privacy of location based data and em-

phasize the need for ethical and legislative regulations to protect from abuse. Similar approaches

and findings where made by Consolvo et al. [2005] who investigated the demanding problem of

trust and privacy of location based data. In contrast to Michael et al. [2006] they did not ask for

concerns in the collection process itself but for the sharing behaviour of users. They found out that

users make the decision to share data depending on three factors: 1) it depends on the actual user or

service that requests the data, 2) it depends on the actual reason why the information is desired and

finally, 3) it depends on the the accuracy and resolution of the requested data. Further they found

that the actual social relation between requester and user is not an indicator for the willingness to

share location information. Li and Chen [2010] collected data over a period of 21 months from the

location-based social network of Brightkite and found privacy concerns correlating with the age,

gender, mobility and the geographic regions of users. They inferred that the privacy settings are

highly influenced by other users that are are connected with a strong-tie, i.e. friends. According to

Sadeh et al. [2009] users have problems in articulating their privacy preferences for sharing their

location data through different applications. Privacy preferences change over time and the usage

of applications. Hence, these settings can not be assigned at one time but need to be adopted over

time. As a solution they presented machine learning techniques to automatically pre-select these

settings for users.

One of the main concerns users had was the in-correctness of the collected data and the con-

sequential implications. Abbas [2010] equipped users with GPS enabled devices and interviewed

the participants upon their attitudes and raised socio-ethical questions about this collection pro-

cess. The concerns were basically related to the inaccuracy of the datasets and it’s implications,

respectively the privacy concerns when sharing sensitive information with others. This goes along

with a subsequent study by Abbas et al. [2011] to unveil the concerns of users when they are

tracked by mobile devices. Although users can benefit from the tracking of position data, all of

the participants had doubts about the vulnerability of the tracking system and the incorrectness

of the data. The missing integrity of the data could have negative impacts and could result in

incorrect evidence for incrimination [Abbas et al., 2011]. This even confirmed a previous study

by Tsai et al. [2009] who reported user concerns in sharing location data with others. Although

users identified some useful applications (tracking in case of emergency) users believed that the
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drawbacks outweigh the benefits.

Another paper that investigates in trust and privacy concerns of users utilizing location based

tools was conducted by Fusco et al. [2011]. They examined the different relational types between

related users, e.g. friends or co-workers, upon their willingness to share location information. Al-

though most of the people did not exactly know what the consequences of revealing their location

information were, most of them believed that this kind of information would have a big impact on

the future relations. Besides the concerns about privacy and security of these settings, some users

also believed that sharing location information could strengthen their social links in two ways.

Disclosing location information to friends was interpreted as a sign of trust, respectively backing

off this information was also interpreted as sign of trust: “if you trust me then why the need to do

lookups on my real-time or historical physical whereabouts? You should just believe me when I

tell you where I am, where I have been and where I am about to go.” [Fusco et al., 2011]

Similar to online social networks the raw data can be used to establish a network that models

the relations between users. Fusco et al. [2010] defined location-based social networks as:

“A Location Based Social Network is the convergence between location based ser-

vices and online social networking.”

One of this location-based social networks that enables users to share their locations is Four-

Square and Lindqvist et al. [2011] conducted interview with users of this network. These users

stated the main motives to use the service as: 1) show the current location to a user’s friends, 2)

use the check-ins at certain locations as a method of self presentation and finally 3) exploit the

location information to coordinate with friends. Surprisingly, they also identified a group of users

that exploited the Web service for safety reasons to inform others about their current location.

Lindqvist et al. [2011] also reported that users are eager to check in at special places and locations

that are unique and interesting instead of usual places. This behaviour sets them apart within their

user group. In contrast to previous publications by Consolvo et al. [2005] or Michael et al. [2006]

only a minor group of their interview partners had concerns on privacy. The authors believed that

this could be explained by the selection of interview partners as they already used the FourSquare

Web service and a therefore biased.

Examples for commercial applications of location-based data where made by Traynor and Cur-

ran [2012] who identified their business values for advertisements and user profiling. They ad-

dressed the security and privacy challenges of users which (in most cases) do not go along with

the business cases. As a consequence they suggested the difficult challenge of a negotiation be-

tween all involved parties which is mandatory for the acceptance of these services. On the other

hand, not all applications that are based on location data have these tight privacy demands. Wang

et al. [2010] for instance, used internal social ties in a company based on location data to organise
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meeting rooms schedule and connect the users through this interactions.

A requirement for all applications based on position information is the analysis of the struc-

ture of the location-based social networks and the relations between users. Li and Chen [2009]

did a large scale analysis of the Brightkite network which is a location-based social network that

allows users to “check-in” at certain places. In their analysis they classified users according to

the locations they have visited and found high degree users with a higher mobile activity. It is

obvious that the higher location diversity and frequency of a location change make future loca-

tions of power-users harder to predict regardless of the additional data. Scellato et al. [2011a]

tried to infer the actual friendship between users from the geographic properties of their social

relations. In their experiments they found that users with only a few friends have on average a

shorter spatial distance to their friends than people with a lot of friends. They assumed that this

positive correlation between the number of friends and distance is caused by social triads that are

geographically wider. A deeper analysis of the tie-strength also revealed that the distance plays

a crucial role for friendship as well-connected users have a shorter geographical distance. These

results were also supported by Atzmueller et al. [2012] who investigated in the spatial information

of users at scientific conferences. They tried to infer the relations among participants based on the

sessions they attended and the face-to-face contact between users. They could find a correlation

between the duration of the face-to-face contacts and the sessions users attended in common. Us-

ing the relationship information and the spatial information they could even identify the different

roles of users within the conference. The relation between interactions and co-locations was also

investigated by Liu et al. [2012] who worked on the correlation between attended events of users

and the social interactions in online social networks. They found a high correlation between the

social interactions and the visited events, and with a detailed location analysis they identified 70%

of all online friends and nearly 85% of all location friends living within a distance of 10 miles.

One of the first attempts to unveil the social information of users hidden behind location-based

data sources was done by Popescu et al. [2010]. They examined the social information within the

social network of Flickr and analysed the tags users attached to their pictures. Interestingly, the

experiments did not only unveil the preferred locations of users but also their age.

The spatial distance between users is one of the most limiting factors of human relations. Ex-

periments conducted by Mok and Wellman [2007] revealed a maximum distance for face-to-face

contacts in our everyday life of around 5 miles. They further found indicators that the frequency

of contacts drops off after 50 miles (equivalent to an hour by car) for personal contacts and 100

miles for telephone contacts. The datasets for these experiments were collected in the Nineteen

Seventies but the authors of the paper inferred that the advent of social networking sites and the

according ease of communication simply moved these limits further away. Mok and Wellman

[2007] concluded that humans need the physical contact to others for continuous relationships but
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the possibilities of a long distance communication with social media opens new directions for long

distance relationships. In a similar paper by Cho et al. [2011], the authors found out that short dis-

tance travels in general are not influenced by the social relations whereas long distance travels are

highly influenced by the social relations a users has. Overall, 10-30% of all movements of users

could be explained by periodic movement whereas 50-70% of all movements were influenced by

periodic movement.

Joseph et al. [2012] classified groups of users not upon their role or position the network but

just by the places they visit. They found that geo-spatial properties and homophilic information

of users are strong indicators and powerful predictors for the groups they are associated to. They

state that the knowledge of classifying users can be useful to sharpen the check-in behaviour

of users – an example application would be to identify tourists upon their movement and make

appropriate suggestions for future locations to visit. A similar approach was done by Hegde et al.

[2013] who used the profile information of users to classify places and assign tags to these places.

These tags are derived from the interests and habits of users that visited that place. They could

finally derive meaningful tags for places and these tags stabilize as more users visit a certain

place. Li et al. [2008] investigated in the similarity between users and the probability of a contact

if users share not only the same regions but also the same mobility patterns. They found out

that similar users also share the same trajectories of movement and they could even observe an

increasing user-alikeness the longer a common trajectory was. Similar to activity networks, the

additional consideration of the time sequences resulted in an enormous boost for the prediction of

user contacts. This results where confirmed by Gonzalez et al. [2008] who used the trajectories of

mobile phone users and created patterns of their daily movement over a period of 6 months. Their

analysis uncovered that users, despite their home and work location, follow reproducible patters.

They identified the epidemic prevention of diseases and urban planning as a potential application

for their findings. Another paper that investigates in urban planning was done by Giannotti et al.

[2011] who equipped cars with GPS sensors and collected trajectory data. They also reported that

these mobility patterns are a very powerful source of information but it requires a complex model

to analyse the raw information to bring it into a useful and valuable resource.

2.2.1. Predict Future Places

The actual prediction of places users visit in the near future and new occurring links highly depends

on the used source of data. Cho et al. [2011] compared a location-based social network where users

specify their location using check-ins with location data provided by a telephone company. They

analysed both data sources and found that check-in data is more detailed and valuable because

users provide more information about their actual place if compared to the mobile phone data, e.g.
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the fast food restaurant in the first floor and the company in the third floor of the same building

can not be distinguished using mobile phone data but it can be distinguished using the meta-

information of a check-in.

As stated in Cho et al. [2011] the mobility patterns of users are highly influenced by periodic

movement of users. With this fact in mind, Song et al. [2010] investigated in the predictability

of humans and found surprising results. Although only around 50% of all movements follow

daily routines [Cho et al., 2011], they conducted experiments to predict the future locations of

users with 93%. The conclusion of their observations was that these results combined with the

regularities of users could have a positive influence on traffic engineering and urban planning.

This regularities were further investigated by Gao et al. [2012] who evaluated the socio-historical

ties in location-based social networks. They focused on the social contacts between users in the

FourSquare network and compared it to the places users actually visited. They found that users

in general “visit few places many times and many places a few time” which follows a power-law

distribution. Further they showed that the location history of users influences their further places

only for a short period of time, e.g. it is very likely that people go to a coffee shop right after

they had a lunch break. Their experiments revealed that user-pairs with a social relation tend to

visit similar places. This observation was confirmed by Lerman et al. [2012] who investigated in

events users attended with respect to their role in a social network. Their experiments revealed

a positive correlation between the number of common friends two users have and the probability

that they will attend the same events. Based on these correlations they tried to predicted the future

events users will visit. They proved that a higher similarity of two users in the online social

network, results in a higher similarity for attended events and visited locations. Another approach

to identify users that visit similar events was done by Zhang et al. [2012] who tried to find the “geo-

social influence” of users in a given location-based social network. They attempted to identify the

influence of social connections when visiting events and the identification of these events. Their

experiments resulted in the spatial distance as most prominent feature for the relation between

users, i.e. physically close users are more similar.

The moving behaviour of users and their visits to places was further examined by Noulas et al.

[2012b] who investigated in two different location based social services. They found that 60-80%

of all users checked-in at places they did not visit during the last 30 days and up to 80% of all

locations were visited for the first time. In their approach they tried to recommend places to users

they did not visit before and learned from “social ties and venue-visit data simultaneously”. Their

results revealed that a combination of social network data, the history of users and place features

like frequency were most valuable for the recommendation task. In a subsequent work Noulas et al.

[2012a] compared the prediction of a user’s next place using unsupervised and supervised machine

learning approaches. In the unsupervised prediction approach, implemented as a ranked list, they

26



2.2. Location-Based Social Networks

used single features based on the previous location of users and their friends to predict user’s next

places. For the supervised approach they combined these features and reduced the problem to a

binary classification problem. They state that the supervised learning approach outperformed the

unsupervised approach due to the combination of features and the according information gain.

Backstrom et al. [2010] found evidence (in particular the spatial distance between users) that

the locations users visit have a high influence on the social communications. They showed that

the probability of friendship falls monotonically with the distance and more specifically they state

that “the probability of friendship is roughly proportional to the inverse of distance” for medium to

long range distances. Based on this observations they also tried to predict users future locations by

adding the available social relations to their models and outperformed other models significantly.

Zhou et al. [2012] used the history of user check-ins in the Gowalla location-based social net-

work and explored different collaborative filtering approaches for the prediction of new locations.

In contrast to previous studies they did not use any domain knowledge but only the actual user’s

location history. The recommenders they used were based on the exploitation of three different

check-in types: 1) recommendations based on the location history of other users, 2) recommen-

dations based on previous locations of the actual user and finally, 3) recommendations based on a

semantic analysis of locations. They found the approach with semantic information about previous

locations as the most valuable as it showed the best results for the prediction. Besides Gowalla and

FourSquare, Facebook as one of the most successful online social networks introduced “Places”

in August 2010 which allows users to share location information with their friends. Chang and

Sun [2011] analysed the location history of Facebook users and tried to predict future check-in

locations of users and the response of their friends upon this check-in. For the actual prediction of

future places they identified the location history of users and their friends as most suitable. Then

they predicted the responses of other users for these future check-ins and among others they iden-

tified the physical distance between the actual user and the responder as most valuable metric. Li

et al. [2013] combined the prediction of future locations and the prediction of new links that occur

in the future using the spatial-temporal components of the Gowalla location-based social network.

Their analysis showed that visited locations have a high influence on future locations and the pre-

diction of future social interactions as well. They used the inferred social-temporal features for

supervised learning approaches and found remarkable results as they could predict future relations

with over 90% just by using the social-tie features and similarities in the behaviour of users.

In the next section we will focus on this link prediction problem in location-based social net-

works and give a rough overview of existing literature.
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2.2.2. Predict Future Links

In the previous section we have already seen that similar users tend to visit the same places and this

knowledge can be used to predict future places of these users. Eagle et al. [2009] used the alike-

ness of users to extend the prediction of places to the prediction of new links between users. They

collected data of users with mobile devices and compared it to self reported data. Experiments

based on this dataset showed that location data generally correlates with the self reported data and

even unveiled that about 95% of all friendship data could be predicted with the observed data.

Their experiments were a first step into location based network analysis and brought first insights

into the predictive power of the data. The two applications of future place and link prediction were

also investigated by Ye et al. [2010] who applied unsupervised machine learning techniques using

a simple collaborative filtering. Their approach was two-fold: 1) predict social links upon com-

mon visited places and 2) predict new places upon the location information of social ties. They

validated their approaches using a dataset from the location-based social network of FourSquare

and showed that prediction in both directions is feasible. Another paper that investigates in the

correlation between the social proximity and the mobility traces of users was done by Wang et al.

[2011]. They used mobility trajectories collected with mobile phones and tried to infer their prox-

imity in the network. With their supervised learning algorithm they could outperform traditional

prediction algorithms based on the social structure alone by adding location based information

and data. Besides similarity features, i.e. places visited in common, the time sequence of these

visit plays an important role in the prediction of future places and links. Based on this assumption,

Lauw et al. [2005] found out that two individuals are likely to know each other if they have a co-

occurrence in the same place at the same time. They used these “spatio-temporal co-occurrences”

to model relationships between users and create a network from this data. They further used the

intensity and the number of co-occurrences to make more precise measures about these relation-

ships, i.e. they added a weight to differ between strong and weak ties. Finally they compared

their approach to another similarity based approach to link users and found promising results that

open further direction for research. One of these projects were simple predictions upon the actual

places two users visited by Xiao et al. [2012]. They separated the prediction algorithms into three

different modes: geographic overlap and semantic overlap and location sequence. They state that

the probability that two users share the same interests does not only depend on the actual places

they visit but also on the semantic information behind the location, e.g. a tag or category assigned

to these places and the actual time sequence when users visits these places, e.g. first museum, then

shopping mall and finally café. They applied their model to a location based dataset and showed

that a model that considers these time sequences outperforms models without this information.

The prediction of new links can not only be applied to large online social networks like Four-

Square but also to smaller datasets like halls of residence or scientific conferences. In their paper
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Dong et al. [2011] tracked students at their dormitory rooms using their mobile phones and in-

ferred the actual social relations between them from their location trajectories. Their results upon

movement and social interactions with other students revealed that the collected information cor-

relates with the health and relational status of these students. Further they found that the mobility

traces of users change over the years due to changes in their lifestyle habits. Choi et al. [2013]

conducted a similar experiment with trajectories of students and their communication habits. Al-

though they only had few participants in their experiments they could identify two types of re-

lationships: formal contacts and informal contacts. Chin et al. [2012b] examined the homophily

of research-conference attendees by measuring their locations, i.e. attended sessions, for a recom-

mendation system of new social links. They identified physical interactions as very useful as users

attending the same sessions have similar research interests and therefore have a strong homophily

between them. In a subsequent work Chin et al. [2012a] used position data and interaction data to

focus on the activity network and investigated in the time before and after an actual tie was cre-

ated. They found strong evidence that users tend to create ties (“friend”, “follower” or “exchanged

contacts”) in online social networks after a co-occurrence at a certain location but the interaction

activity (exchanging messages) on the online social network significantly drops after this link has

been created. Scholz et al. [2012] followed this direction and employed the communication dura-

tion of conference participants to classify their relations into strong and weak ties. They identified

topological network features a most useful to predict new links and to determine strong ties be-

tween users. Based on these results they predicted recurring links during the conference and found

the contact duration combined with the strong link information as feature outperforming all other

network topological features.

Besides homophilic features and topological features alone, a combination of both can support

the prediction of links and tie-strength. Scellato and Mascolo [2011] showed that future links are

highly influenced by location trajectories of users and in a subsequent study Scellato et al. [2011b]

even found that the simple “common places visited” approach could identify 30% of all users as

place friends. To improve these results they expanded the used geo-location features with social

features (e.g. neighbours in the network) and global features (e.g. distance from home) for the

prediction task. Using this combination of features they could identify 66% of all links that evolve

in the future which is an tremendous improvement of predictability. Another interesting study

that combines homophilic and topological metrics by Guy et al. [2010] considered nine different

features which were classified into three different classes. 1) the common friends of a user-pair, 2)

the things two users are interested in and 3) the places two users visited in common. Although the

nine features alone produced varying results, the combination of features into classes was more

successful: They found that the things two users are interested in is the most useful feature set

for the prediction of similarity between users which is comparable to the prediction of a social
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tie. Allamanis et al. [2012] used the spatial distance between users and their social information

within the network to predict future social relations. Their analysis revealed that each source can

predict future social links alone but a combination, referred to that as “gravitational attachment

process”, outperforms either sources. This combination takes the triadic closure of users in the

social network and the spatial location of users for the prediction of new links into account. Further

they used features and metrics of the places users visit to enhance the prediction of future links.

Bischoff [2012] showed that there is a correlation between homophilic similarities and struc-

tural relations between users in an online social network and the locations these users visit. They

classified the links between users according to the events they visited and found a strong cor-

relation to the tie strength in the online social network. Cranshaw et al. [2010] employed data

collected from the location-based social network Loccacino which combines position information

of users (check-ins) with the online social network of Facebook (text interactions). They found a

strong correlation between the location trails of users and their social interactions. They employed

features that measure the actual locations visits of users and the entropy at these places to support

topological features of the online social network. This yields in “model of friendship” that highly

correlates with the actual online social relations of these users. Another attempt to combine the

position information of users with an online social network was done by Pan et al. [2011]. They

combined the knowledge of an online social network and a location-based social network and

analysed the interactions between users with respect to the tagging of places on Facebook. In their

experiments they measured the influence of either networks in the combined network and found

interesting results: The directed and weighted interaction network has a strong influence on the

community structure of the entire network whereas the location based social network, referred to

as co-presence network, has a strong influence on the degree and path metric. They concluded

that a combined network of interaction and location information shows different aspects of users

interaction and social relation but overall they complement each other.

Volkovich et al. [2012] collected data from an online social network and a location-based social

network and separated the links according to Granovetter’s theory into strong and weak ties. They

observed that user pairs that are close to each other in the interaction network, i.e. strong ties, also

have a shorter spatial distance between them if compared to weak ties. Further they observed that

users with shorter spatial distances are more likely to form sub networks with a core structure.

These results can be compared to Pappalardo et al. [2012] who tried to find indicators for the tie

strength between users in multi-modal networks. The number of text interactions between users

has already been identified as valuable measure but in their work they applied the tie strength to

location based data. Besides the actual visits of locations they found that the tie strength of a link

is also highly influenced by actual place of the interactions.
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CHAPTER 3

Success of Events in Second Life

Parts of the contents of this chapter have been published in the paper Success Factors
of Events in Virtual Worlds A Case Study in Second Life presented at the Workshop on
Network and Systems Support for Games [Steurer et al., 2012].

IN this chapter we describe the terminology of the virtual world of Second Life and the process

to collect in-world data with robots. We exploit publicly available events in the virtual

world and send autonomous robots to the event locations that collect position data of other

residents. Based on the collected meta information of the events, e.g. categories, maturity rating

or duration, we predict whether a future event will be successful or not.

The remainder of this chapter is organized as follows. Section 3.1 gives a general introduction

to the topic and in Section 3.2 we discuss the related work in this area. In Section 3.3 we present

details about the retrieval methods to collect data from a public event calendar with a web crawler

and an in-world robot that moves through the virtual environment to harvest the location data of

avatars. In Section 3.4 we describe the collected dataset and in Section 3.5 we present the set up

and the results of the prediction experiments. Finally, Section 3.6 concludes the chapter and gives

a perspective for future work.
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Abstract

In this paper we present the results of a study that aims to analyse publicly announced event data in

the virtual world of Second Life with the goal to predict whether or not an event will be successful

by terms of increasing the average traffic of a region. To that end, we collected data from a publicly

accessible event calender in Second Life and the in-world position data of avatars visiting these

events. Based on the statistical analysis of features such as event category, duration or maturity

rating, provided by the Second Life event calendar, we built a simple predictive model that can

decide upon the success of an event with an accuracy of over 92%.

3.1. Introduction

Over the past 10 years social networks evolved and users spend more and more time with their

online friends. The most popular social network Facebook has approximately 800 Million users

by now and would be, if compared to residents of the world’s countries, the third largest country in

the whole world. Users have different ideas why they are using this new media, starting from being

in contact with their friends to playing online games. Virtual worlds provide the same features as

these networks do but enrich the user experience with a three dimensional representation of their

environment. In contrast to online role-playing games, virtual worlds are not games or quest-

oriented per se but focus on user interaction and creativity.

The virtual land of Second Life is divided into fixed-size quadratic regions with 65,536 square

meters each that can be bought by users for real money. In the second quarter of 2011, the overall

land size was over 2000 km2 which equals about 30,500 regions [Linden Lab, 2011]. With an

average of 64,000 online avatars in an area of 2000 km2 (31.25 avatars per km2) the main problem

for new users is to find other avatars for interaction [Voyager, 2011]. One approach to meet new

people are events, activities or parties carried out in a particular location in the virtual world. Just

as in real life, residents of Second Life can host events and announce location and time of the event

on a public event calender. Further they can add a description, set a category, e.g. Education or

Music, and rate the event according to their maturity level. According to Figure 3.1 the number of

events is approximately 900 per day and hence it is hard for new users to find events that fit their

interests where they can meet new people.

In this paper we focus on these publicly accessible events hosted by residents of Second Life and

investigate in their influence on the avatar traffic. We collected event information and combined

it with the position information of avatars prior, during and after the event. Overall we have

harvested approximately 80,000 events over a period of three months and about 110 Million data

samples of avatars position information.
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With a statistical analysis of the combined data we can answer questions about the usefulness of

events to increase the average avatar traffic. Based on these results we could also find features and

success factors for region owners to make their regions more popular. Further, we try to answer the

question on the predictability of the success of an event to give both region owners and residents

an estimator for future events.

3.2. Related Work

With the advent of mobile phones and location based services spatial data brings innovative per-

spectives to analyse users movements. Chen and Roy [2009] presented an approach to detect

photos of events by using spatial and temporal information. One step further in this direction is

to link position data to predict links between users. [Cranshaw et al., 2010] employed mobility

patterns of users and the structure of their social network to predict friendship by comparing their

location trajectories. Location based analysis can be even extended to an accurate prediction of

users behaviour to predict future movements. Wang et al. [2011] showed that mobile phone data

can be employed to predict the future movements of users with a probability of 92%. Although

these papers all show the value of position data it is nearly impossible to collect real world position

data of users on a large scale.

Due to their closeness to the real-world virtual environments have become a valuable field of

research for different areas [Bainbridge, 2007; Hendaoui et al., 2008], starting from e-learning

[Hefley et al., 2012], to a playground for real-word innovations [Kohler et al., 2009] and economy

[Eisenbeiss et al., 2012]. In virtual worlds researchers are able to conduct experiments that are

typically hard to perform in the real-world because of a lack of data. To overcome the problem

of data collection, literature suggests several approaches to detect users in-world behaviour. The

most simple solution is to place scripted sensors into the virtual world, monitor the surrounding

users and send this information to a database [Kappe et al., 2009; Metaverse Business, 2011; Yee

and Bailenson, 2008]. This approach turned out as not very sufficient because it relies on the

owner of the land to place sensors and detect users. Further, in-world sensors can only detect

at most 16 avatars concurrently within a range of 96 meters [La and Michiardi, 2008]. Other

approaches intercept the communication protocol between the client software and the Second Life

servers to do network traffic analysis and monitor avatars and objects [Varvello et al., 2008; Zhang

et al., 2010]. For example Cranefield and Li [2009] integrated a tool into the Second Life client to

monitor social expectations of other avatars.
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Figure 3.1.: Number daily events over a period of three months in Second Life.

3.3. Data Collection

3.3.1. Web Crawler

Linden Lab allows users to create events and announce them to the public∗ (see Figure 3.2). To do

so, a user must log into its Second Life account on the Web page, specify the name of the event,

a description and the actual location with date and time. Events can be assigned to predefined

categories and rated according to their maturity level which is “general”, “mature” or “adult”.

Every registered Second Life user can host events and hence the number of available events is very

large no matter how many people are interested in the actual activity. Due to maturity restrictions

users that are not logged in or did not yet confirm their age can only search for events with a

G-rated maturity level. To access all events Linden Lab requires users to confirm that they are at

least 18 years old by logging into the Web service and explicitly confirm their age. To actually

find events, users then enter a query that matches their interests into a Web form and refine this

query by selecting categories and the actual date of the activity (or search for currently on-going

events). Depending on this settings, the user is provided with a list of all events that match the

specified query. A query without any keywords or specified categories returns all available events

ordered by start time.

To automatically harvest events from the Web page we have implemented a Web-crawler that

runs daily to fetch all events from the public calendar. The procedure is straightforward because we

imitated the browser’s behaviour and parsed the required data from the HTML response. First, we

registered a new avatar with Second Life and manually confirmed that the user is at least 18 years

of age in the avatars profile to access all available events. To reverse engineer the communication

protocol between web browser and server we employed the standard developer tools provided by
∗https://secondlife.com/my/community/events/index.php
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Figure 3.2.: Residents of Second Life can host events and announce them publicly accessible on a
Web page.

Google’s Chrome Web browser and recorded the HTTP requests and responses while manually

logging into Second Life’s Web page. After transmitting the user credentials the Web page replied

with a session cookie which is necessary for all further interactions to prove the identity of the

logged in user. After reverse engineering the Web requests to fetch all the event data with an empty

query string (to get all available events), we were provided with an HTML page that contained the

desired information. We parsed the Document Object Model tree of the response and extracted

the required event information from the raw HTML data. This data was then stored in a database

for further processing and evaluation. Unfortunately, the Web page responded only with 20 events

and so all further events could only be accessed by sending AJAX requests. Google’s developer

tools again reveal the structure of these requests. To disguise the automated requests and to prevent

from being banned by Linden Lab we added some fuzziness to the requests. We tried to imitate

human behaviour by varying the interval between the requests and so it took about one hour to get

the entire event data for a single day.

During a three-month’s period we were able to extract about 84,000 events from the Web page

which yields in about 935 events per day. Figure 3.1 depicts the distribution of events per day

over the period of three months. The dataset contains information about the event with title and
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description, the actual location of the event with region name and accurate coordinates, the name

of the event’s host, the time when the event starts and the duration, the category of the event, the

required maturity and a potential admission fee.

Besides Second Life’s public event calender, the described data collection approach can also be

used to harvest data from other Web-resources of Second Life. Among others this includes the

social network “My Second Life”, a Facebook-like social network platform that aims at Second

Life users. This platform allows users to interact with each other with postings, comments and

loves, share their favourite locations, and specify their interests and potential partners. The log

in process and the collection process with HTML requests are similar but only the raw HTML

response is different. As a consequence, we only have to adopt the data parsers and the data model

in the database to fetch other resources.

3.3.2. In-World Robots

To harvest the position data of residents of Second Life we have implemented two different ap-

proaches: First, a general approach that allows us to collect position data from a vast amount of

regions. The drawback of this solution is that we were only able to collect information about the

number of residents in regions and the rough coordinates of the present avatars but we could not

identify the residents. In contrast, in the second approach we were able to determine the unique

identity of the residents and their accurate location. Unfortunately, the computational resources

for this collection process were higher and hence the collected amount of data was smaller. Fig-

ure 3.5 shows a typical region with avatars indicated as green dots: With the first approach we

could identify the number of green dots and their approximate location with low computational

resources, whereas we could identify the identity of the green dots and their accurate locations

with high computational resources.

For both approaches we employed LibOpenMetaverse† which is a command line client to con-

nect to Second Life. Basically the client has the same capabilities as the official Second Life

viewer has but does not provide a graphical user interface. All interactions that are typically done

by using mouse or keyboard are text-commands which makes it easier for developers to control

the client and automate its behaviour [Zhang et al., 2010]. The needed computational resources to

run a single instance of the client were very low and so several clients could be run concurrently

on a standard Linux server.

The used clients should act completely autonomous and so it needed a few additional capabili-

ties if compared to the original Second Life viewer to manage different tasks. The basic abilities

†http://lib.openmetaverse.org
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Figure 3.3.: Average number of avatars prior, during (indicated by the hatched bars) and after an
event in Second Life.

for the bots were autonomous log in and the imitation of human behaviour to disguise the bot

character:

• Autonomous login. Once the client was started, it requested a database for user credentials

to log into Second Life. The database stored all the manually registered accounts which

allowed a flexible management of user data as new users could be added easily. While

logged in, the server disrupted the connection to the clients from time to time, e.g. restart

of the region server, and automatically logged out the connected clients. If so, the client

autonomously reconnected to the Second Life after a certain amount of time. In case of

such a connection reset the client randomly selected an new region to log in again. This

functionality was implemented with a Linux Cron job (a time-based job scheduler) that

periodically checked for all running clients. If a client was not connected any more it tried

to restart until it was connected again.

• Imitate human behaviour. After the log in process, the avatar did not move and stayed at

the same place at the same location. In general region owners do not want any autonomous

avatars in their regions and ban them as soon as they were detected. To avoid this banning,

the bot imitated human behaviour, walked around in the virtual world and even teleported

to arbitrary locations within the region.

In the next two sections we describe the collection process of the two approaches to collect

data. With the first approach we could collect the location data of anonymous users with low

computational costs whereas in the second approach we could collect the identity and the accurate

location data of users with higher computational costs.
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Figure 3.4.: Distribution of event durations for different event categories.

Harvest rough position data. The developed bot monitored regions without actually visiting

these regions but only sent a request to each region to get the coordinates of all present avatars

instead. The received data was parsed by the bot and then sent to a database where it is stored

persistently for further processing. Unfortunately, the response did not contain the actual names

of the avatars but with this approach we were able to fetch data from a large amount of regions.

To reduce the number of requests and to reduce load on Linden Lab’s server we created a simple

metric that uses the number of currently online avatars for the interval between two requests.

Details of this metric can be found in Table 3.1.

Harvest detailed position data. The second approach to collect the position information of

avatars did not only harvest the location of avatars and the time stamp but also the unique identities

of the present avatars. In contrast to the previous approach, it is required to visit the actual region

in order to get all the information. The bot requested the database with on-going events for the

next location to be visited and then teleported to this region. As soon at it arrived there, it fetched

the information about surrounding avatars and their accurate locations and sent it to a database for

further processing. Then it requested the database for the next location to teleport to and harvested

information about avatars again. On average this took around one minute and so the harvesting

capabilities of a single bot were very limited. As a consequence we employed a pool of bots (the

user credentials were stored in a database) that simultaneously and independently visit regions,

fetch the required information and move on to the next region. The regions to be visited were

stored in a queue-like data structure obtained from a database. The actual frequency of region

visits depended on the actual number of regions to be visited and the number of bots that harvest

this data.
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# Avatars in Region Request Interval
0 45 min

1−5 15 min
6−10 10 min
> 10 5 min

Table 3.1.: The update frequency for a rough estimation of the number of avatars in region depends
on the actual number of present avatars in the actual region.

3.4. Dataset Description

In this section we evaluate the data collected event data and the avatars position data collect with

the bots.

3.4.1. Event Data

We have collected data from Second Life’s event calendar over a period of three months and

the dataset contained 84,234 events hosted in 2,756 different regions. We could identify the

most common words in the events titles as “DJ”, “club”, “rock”, “party” and “music”. Events

can be filtered from 10 different categories with five categories containing 94% of all events:

Nightlife/Entertainment 47%, Live Music 30%, and Commercial, Games and Contests 7% each.

The duration of events varied from 10 minutes to 720 minutes with 32% lasting less or equal 60

minutes, 45% lasting between 61 minutes and 120 minutes, and 10% of all events lasting 720

minutes. The maturity of events depended on the location where they were hosted. Regions re-

spectively events, can be rated as General with no age verification, Mature with the restriction to

be at least 16 years old and finally Adult with no admittance below 18 years of age. The event-

set contained 12.1% events rated as general accessible, 75.4% of the events rated as mature and

12.5% of all events are rated as adult. Figure 3.4 shows the distribution of events over a day with

two peaks at noon and 6 pm. Hosts could demand for an entrance fee for avatars to attend an

event but it was not widely used as only 385 events demanded for money ranging from 1 to 15,000

Linden Dollars. The collected events were created by 3,900 different avatars which is on average

22 events per avatar. A more detailed analysis showed that 3250 avatars created events only in one

single region, 435 created events in two different regions, and 138 avatar created events in three

different regions. Only 22 avatars created events in more than 5 different regions.

Due to the high number of events, we have limited the dataset of the events for all further com-

putations according to the following considerations: we did not consider events with a duration of

more than 4 hours because region owners create events up to the maximum of 8 hours just to be
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Figure 3.5.: A detail of Second Life’s map with green dots representing avatars and a computed
heatmap to indicate areas with high traffic.

visible in the list of on-going events on Linden’s Web-page. Similar to the event duration we omit-

ted recurring events (an event starts right after another event with the same name ends) because

region owners create succeeding events only to be present in the list of on-going events.

3.4.2. Position Data

For the experiments in this paper we have collected 110 Million data samples in over 21,000

regions that contain the number of present avatars in a certain region and the time stamp. The

number of avatars was not even distributed because most of the regions had less than 5 concurrently

present avatars on average. In particular we identified around 3,000 regions with an average traffic

of less than 1 avatar per day, 16,000 regions with an average traffic between 1 and 5 avatars per

day and 2,000 regions with an average traffic between 6 and 10 avatars per day. The remaining

regions had an average avatar traffic of more than 10 per day. Figure 3.5 shows a region where

the green dots indicate avatars present in the regions. The heat map visualizes the most attractive

locations within the region.

3.5. Experiments and Results

In order to predict the success of public events we combined the event data with the location data

collected in the virtual world. We extracted basic information like location, start time and duration

from all events and matched every event with the number of present avatars. To see the effect of a

specific event on the number of concurrent online avatars we used this information of participants
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from one hour and 15 minutes before the event started until one hour and 15 minutes after the

event ended. Using this data we computed the average traffic as the average number of online

avatars for every event prior, during and after the incident separately.

In this section we present the results of experiments we have conducted on the combined dataset

of avatar traffic information prior, during and after the event. First, we provide an descriptive-

statistic overview of events and their implications on the avatar traffic in a region. We divide the

events into different time slots and show the effects of avatar traffic. Second, we present the results

of a predictive model to forecast whether an event increases the traffic in a region or not.

3.5.1. Descriptive Statistics

To get a rough overview of the avatar traffic change during an event we compared the average

avatar traffic during an event with the average avatar traffic one hour prior and past the event. On

average we observed over 14 avatars per region prior an event (M = 14.07, SE = 13.85), over

19 avatars per region during an event (M = 19.67, SE = 14.16) and finally around 16 avatars per

region after the event ended (M = 16.29, SE = 13.32). This is an increase of +33.84% avatars per

region during an event if compared to the time interval prior the event. The significance of these

differences was shown with a paired students t-test: t(82,951) =−51.13, p≤ .01. After the event

ended, the average number of avatars dropped −16.9%. Again we computed the significance of

this drop-off with a paired students t-test: t(82,951) = 35.42, p≤ .01.

For a more detailed analysis we split the events according to their categories, duration, and

maturity to see the implications on the avatar traffic. The baseline for all measures is the average

of the overall events with an increase of +33.84% of avatar traffic. Figure 3.6 shows the average

increase of the avatar traffic for different categories: Arts and Discussion perform best whereas in

contrast the most frequent categories Music and Nightlife were on average. Figure 3.7 depicts the

average increase of avatar traffic for different durations of events if compared to the overall avatar

traffic. It can be seen that there is no relation between the duration of events and the average gain.

Figure 3.8 depicts the average increase of avatar traffic for the maturity rating of events. One can

see that adult-rated events cause a higher average traffic boost than mature- or general rated events.

We omitted the representation of traffic change for different weekdays as it did not influence the

traffic during events at all.

3.5.2. Success of Events

During our analysis on the dataset we noticed that not all events had a positive effect on the avatar

traffic for a region. In particular we saw that 40.6% of all events had a positive effect on the traffic
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Figure 3.6.: The average traffic increase during an event segmented into the different event cate-
gories. Hatched bars indicate an increase above the overall average of 33.84%.

of a region and 59.4% of all events had a negative effect.

Based on this observation the question arises if it is possible to build a model (= train a classifier)

to correctly identify good (= events that increase the traffic in a regions) and bad events (= events

that decrease the traffic in a region). More formally, given a list of events as input samples for our

model I = {e1, e2, . . . , en}, we want to learn the function f : I → D which maps each event ei

correctly to a corresponding class D = {good, bad}. Due to the binary classification the baseline

for these experiments is 50% (or 0.5 AUC).

In machine learning this is seen as a supervised learning setting with a range of possible learning

algorithms. To find the best learning algorithm we conducted the experiments using for instance

Support Vector Machines (SVM), Logistic Regression or Stochastic Gradient Descent and com-

pared the average F1-scores and AUC values with each other. We could finally identify a Naïve

Bayes classifier as most valuable and hence it was used for our final prediction model and the

present results in this paper. To analyse the performance of the used classifiers and validate the

found results we chose a 10-fold cross validation.

In Table 3.2, we show the performance of our model based on different features. The features

Maturity (= maturity rating of an event), Duration, Weekday (= the day of the week an event takes
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Figure 3.7.: The average traffic increase during an event segmented into the different event dura-
tions. Hatched bars indicate an increase above the overall average of 33.84%.
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Figure 3.8.: The average traffic increase during an event segmented into different maturity ratings.
Hatched bars indicate an increase above the overall average of 33.84%.

place) and Start (= the time of a day a event takes place) alone have very low classification power,

i.e. the AUC values are close to the baseline. The feature Category showed the best results with 0.6

AUC. However, if we combine all these features (= Combined), we can see that we significantly

outperform the baseline, which means that we classify an event as good or bad in 83.4% of the

cases correctly if we look at the AUC value.
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Feature Precision Recall F1 AUC
Baseline 0.353 0.594 0.442 0.500
Category 0.618 0.627 0.619 0.601
Maturity 0.353 0.594 0.442 0.540
Duration 0.380 0.585 0.439 0.550
Weekday 0.353 0.594 0.442 0.521

Start 0.562 0.593 0.518 0.599
Combined 0.766 0.765 0.766 0.834

Prior Avatars 0.860 0.853 0.849 0.921
Region 0.758 0.760 0.758 0.835
Host 0.730 0.729 0.717 0.791
All 0.846 0.845 0.845 0.929

Table 3.2.: Results of the event prediction experiment using our best performing Naive Bayes clas-
sifier.

Apart from the standard features, we also checked the features Host (= name of the host), Prior

Avatars (= maximum number of avatars one hour before an event takes place) and Region (= the

region where event is hosted). As shown in Table 3.2, the highest classification power can be

archived with the number of avatars prior an event. Interestingly, if we combine all features of the

table (= All) we could predict 92.9% of all events correctly using this model.

3.6. Conclusion and Outlook

In this research paper we focused on public accessible events hosted by residents of a virtual world

and their influence on the traffic of a region. For that purpose, we collected event information of the

Second Life event calender and combined it with the position information of avatars prior, during

and after an event. With a statistical analysis of the combined data we could answer questions

about the usefulness of events to increase the traffic of a region and could extended this to find

features and success factors for region owners to make their regions more popular. Further, we

introduced a predictive model that classifies “good” and “bad” events prior to an event with a

accuracy of over 92%. Among several features we have identified the number of avatars that are

present prior an event as the most valuable parameter to predict the success of an event: present

avatars attract more visitors.
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CHAPTER 4

Prediction of Interactions

This chapter is based on the paper Predicting Interactions In Online Social Networks:
An Experiment in Second Life published and presented at the 4th International Work-
shop on Modeling Social Media and the book chapter Who will Interact with Whom? A
Case-Study in Second Life using Online and Location-based Social Network Features
to Predict Interactions between Users published in MUSE-MSM Post-Proceedings
[Steurer et al., 2013; Steurer and Trattner, 2013].

IN this chapter we employ data from a directed online social network and an undirected

location-based social network, model the relations between users by applying features to

both networks and finally combine the networks. These features can be broadly divided in

topological features that reflect the relation between users with respect to the network structure

and homophilic features that indicate the actual similarity or alikeness of a user-pair. We employ

these features to first predict interactions between users and then predict whether this interaction

is reciprocal or not. In both experiments we determine the most suitable features for the prediction

tasks in either networks and a combination of both. Overall the chapter is structured as follows:

In Section 4.2, we discuss related work. In Section 4.3 we shortly introduce the dataset used for

our experiments. In Section 4.4 we outline the set of features used for our experiments in Sec-

tion 4.5. Section 4.6 presents the results of our study. Finally, Section 4.7 discusses the findings

and concludes the chapter
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Abstract

Although considerable amount of work has been conducted recently of how to predict links be-

tween users in online social media, studies inducing features from different domain data are rare.

In this paper we present the latest results of a project that studies the extent to which interactions

– in our case directed and bi-directed message communication – between users in online social

networks can be predicted by looking at features obtained from online and location-based social

network data. To that end, we conducted a number of experiments on data obtained from the

virtual world of Second Life. As our results reveal, location-based social network features outper-

form online social network features if we try to predict interactions between users. However, if

we try to predict whether or not this communication was also reciprocal, we find that online social

network features seem to be superior.

4.1. Introduction

As a part of the recent hype on social network research, a high amount of attention and research

activity was devoted to the problem of predicting links between users [Liben-Nowell and Klein-

berg, 2007], e.g. the issue of forecasting whether or not two users u and v of a given online social

network G〈V ,E〉 will interact with each other in the future. While considerable amount of work

has been recently conducted of how to predict links between users in online social media, studies

comparing different sources of knowledge are rare.

To contribute to this research, we present in this paper the latest results of a research project

that aims to study the extent to which interactions – in our case directed and bi-directed message

communications –in online social networks can be predicted inducing features from online social

network and location-based social network data. To tackle this issue we trained a binary classifier

that learned the relations between users u and v based on a number of features induced from

online social network and location-based social network data. For the purpose of our study we

furthermore differentiated between two types of feature sets – network topological features and

homophilic features [Wang et al., 2011]. Since it is nearly impossible to obtain rich large-scale

real-world online social and location-based data, our investigation focused on the virtual world

of Second Life, where we could easily find and mine both sources of data. We obtained data

from a resource called My Second Life which is a large-scale online social network for residents

of Second Life. This social network can be compared to Facebook but aims at a different target

group: residents of Second Life who interact with each other by sharing text messages, comments,

and loves. Additionally, we were able to collect location-based social network data of residents in

the virtual world by implementing so-called in-world bots.
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Overall, it is our interest to answer the following research questions:

• RQ1: To what extent do user pairs – interacting or not interacting with each other – differ

based on social proximity features induced from the online social network and the location-

based social network?

• RQ2: To what extent can we predict interactions between users and reciprocity of these

interactions inducing features from both domains?

• RQ3: Which feature set (homophilic or topological) is most suitable to predict interactions

between users and the reciprocity of these interactions.

To that end, we conducted a number of experiments using statistical methods and supervised

learning approaches. As our statistical analysis reveals, there are many significant differences

between user pairs with interactions and user pairs without interactions. For instance, users with

an interactions on the online social network have a shorter average distance between them in the

location-based social network. To predict these interactions with supervised learning, we find that

location-based social network features outperform online social network features to a great extent.

However, if we try to predict reciprocal message communication between users, online social

network features seem to be superior. Finally, we find that there are no clear patterns whether or

not homophilic or network topological features perform better to predict interactions or reciprocity

between users.

4.2. Related Work

Although considerable amount of work has been recently conducted of how to predict links be-

tween users in online social media, studies exploiting different kinds of knowledge sources for

the link prediction problem are rare. An example is a study conducted by Cranshaw et al. [2010]

where the authors collected location data and Facebook friendship data through a mobile app.

Based on a number of experiments they show that the so-called place-entropy features are best

suited to predict friendship between users in Facebook. Interestingly and contrary to our study,

Cranshaw et al. [2010] only looked at the mobile side, i.e. they did not investigate features induced

directly from the social network. Furthermore, they only considered friendship links and did not

look at communication links as we do in our study. Another related work in this context are the

studies of Guy et al. [2008, 2009, 2010] where the authors investigate the similarity between users

exploiting 9 different sources of data classified into three different classes: people, things, and
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Figure 4.1.: Sample of a user profile in the online social network My Second Life. Users can post
text message on their wall or can communicate with each other by commenting or
loving onto each other’s posts.

places. Looking at only semantic features such as tags, they find that the so-called “tagged-with”

feature performs well in all three different data category sources.

Probably one of the first projects investigating the link prediction problem from the network

topological perspective in the context of online social media is a work conducted by Golder and

Yardi [2010]. In their paper they study the micro-blogging service Twitter and find “that two struc-

tural characteristics, transitivity and mutuality, are significant predictors of the desire to form new

ties”. The first paper investigating the extent to which reciprocity could be predicted in the online

social media is a recent paper by Cheng et al. [2011]. By applying a rich set of network based

features including link prediction features from Liben-Nowell and Kleinberg [2007], they show

that the so-called out-degree measure of a user in Twitter is the best feature to predict reciprocity.

Another interesting work in this context is a study conducted by Yin et al. [2011]. In their paper

they investigate the link prediction problem within the micro-blogging system Twitter. The main

contribution, apart from studying the performance of well established link prediction methods, is

the introduction of a “novel personalized structure-based link prediction model” which “noticeably

outperforms the state-of-the-art” methods. The first work studying the computational efficiency

of network topological features in the online domain is a paper written by Fire et al. [2011]. In

their work they apply a rich set of over 20 features on a set of 5 different online social network

sites with respect to their computational efficiency. Their study reveals that the so-called friends

measure shows a good trade-off between accuracy and computational efficiency.

Another study in this context is a recent study conducted by Rowe et al. [2012] In their work they
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study the link prediction problem, or the question who will follow whom, in the micro-blogging

system Tencent Weibo. Looking at both – semantic and network topological features – they show

that the predictability of links can be significantly improved by training a classifier that uses both.

Although the work of Rowe et al. has considerable amount of overlap with our own work, their

study only looked at features which could be directly induced from the online media site Tencent

Weibo. Hence, contrary to our own work they did not include external knowledge such as location-

based social network data as we do in our study. Finally, the last study to be mentioned is a work

conducted by Scellato et al. [2011]. Similar to our work they tried to exploit features from the

location-based social network of Gowalla to predict links between users. However, in contrast

to our work, they only focused on location-based social data and did not combine online social

network and location-based social network data as we do in this paper. In their analysis over a

period of three months they found that most of the links are formed between users that visit the

same places or places that share similar properties.

4.3. Datasets

As stated in the introductory part of this paper we conducted our experiments on two types of

datasets – online social network and location-based social data – both obtained from the virtual

world of Second Life. The reasons for choosing Second Life over other real world sources are

manifold: First, in contrast to networks such as Facebook, the online social network My Sec-

ond Life does not restrict extensive crawling of user profiles. Second and contrary to real world

online social networks, most profiles in My Second Life are public, i.e. we can mine a large frac-

tion of the network. Third, in virtual worlds the location information of users can be harvested

in an automated way whereas it is nearly impossible to obtain large-scale tracking data of users

in the real world. In this section we describe the collection process for the data as used in our

experiments.

4.3.1. Location-based Social Network Dataset

The collection of the location-based social network dataset in Second Life was a two stage process:

First a list of popular locations from the Second Life Event calendar∗ was crawled. Second, overall

15 in-world agents so-called in-world-bots were implemented to teleport to these locations and

gather location information of the users at place.

In detail the procedure was the following: In order to harvest all events in Second Life we

implemented a Web-crawler that runs on a daily bases to obtain all publicly announced events on
∗http://secondlife.com/community/events/
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the Second Life Event calendar. Allover, we were able to obtain data of 218,245 unique events

during a period of ten months starting in March 2012.

In order to collect location data of the users we implemented overall 15 in-world agents on

the basis of the open source command-line client libopenmetaverse†. Due to the modularity of

the tool, we were able to enhance the functionality of our agents to teleport around in the virtual

world to collect location data of all surrounding users in a region. This location information

comprised the current region, x and y coordinates of the location within this region, and a time

stamp. The pool of agents was controlled by a centralized instance sending our in-world bots to

ongoing events. Due to the large amount of concurrent events in several regions of Second Life

and the constraint that a bot was only able to obtain data of one single region at the same time, our

sampling rate was set to a limit of 15 minutes. All in all, we were able to obtain over 13 Million

data samples of 190,160 unique users visiting events with this kind of approach [Steurer et al.,

2012].

4.3.2. Online Social Network Dataset

In July 2011 Linden Labs introduced an online social network called My Second Life‡ similar to

other social networks such as Google+ or Facebook. Residents of the virtual world can log-in with

their in-world credentials, access their friend lists and have a so-called Feed that can be compared

to the Google+ Stream or the Facebook Wall. The social interaction with other users is done by

sharing text messages, screenshots, comments and so-called loves which can be seen equally to

a Like on Facebook or a Plus in Google+ (see Figure 4.1). Furthermore, users can enhance their

profiles by adding personal information such as interests, groups, etc.

We attempted to download the profile data of all 190,160 users found by the avatar-bots. In

the next step we parsed the interaction-partners of the these users and downloaded the profile

information of the missing ones. This procedure was repeated until no new users could be found

by our crawler anymore. Finally, this yielded in a dataset of 311,959 users with 300,657 of them

opened to the public, and 135,181 with interactions on their feed.

4.4. Feature Sets

As already outlined, it is our interest to predict interactions between users in online social networks

based on features induced from online social network and location-based social network data. To
†http://lib.openmetaverse.org/
‡https://my.secondlife.com/
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Table 4.1.: Basic metrics of the two networks and their combination used for the experiments.
Name Location-based GM Online GF GFM = GF +GM

Type undirected directed directed
Nodes 131,349 135,181 37,118
Edges 2,343,683 209,653 1,043,172
Degree 35.7 3.1 56.2

that end, we induced two different types of feature sets from our data sources: network topological

and homophilic features [Wang et al., 2011]. In order to start with the description of the different

features calculated for our experiments we first describe the networks derived from the collected

data.

The first network, referred to as online social network, was based on data obtained from the

users profile where every edge in this directed network indicates communication between two

users. This yielded in a network with 135,181 users and 209,653 edges. The second network,

referred to as location-based social network, was based on the users location data where every

edge in this undirected network indicated that two users were seen concurrently in the same region

on two different days. This yielded in a network with 142,507 nodes and 3,773,316 edges. A

summery of both networks can be found in Table 6.1 and Figure 4.2 shows the degree distribution

of the social network and location-based social network. Both networks show power-law qualities

with an alpha of 1.55 and a corresponding fitting error of 0.13 for the online social network and

and alpha value of 2.67 and a fitting error of 0.16 for the location-based social network [Clauset

et al.].

4.4.1. Online Social Network: Topological Features

In social networks such as Facebook or Google+ the friendship of users is based on a mutual

agreement where both confirm each other. In contrast to this, users of the online social network

My Second Life can post onto each others’ walls without this mutual agreement. Hence, as a con-

sequence, we considered the social network as a directed graph GF〈VF ,EF〉 with VF representing

the users and e = (u,v) ∈ EF if user u posted, commented, or liked something on the feed of user

v.

We defined the set of the neighbors of a node v ∈GF as Γ(v) = {u | (u,v) ∈ EF or (v,u) ∈ EF}
and based on this definition of neighborhood we used the following topological features:

• Common Neighbors FCN(u,v). This represented number of interaction-partners two users

had in common.

FCN(u,v) = |Γ(u)∩Γ(v)|
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Figure 4.2.: Degree distributions for the online and the location-based social network.

For a directed network we split this into the number of common users F+
CN(u,v) = |Γ+(u)∩

Γ+(v)| to which both users sent messages to and the number of users F−CN(u,v) = |Γ−(u)∩
Γ−(v)| from which both users received messages.

• Jaccard’s Coefficient FJC(u,v). The ratio of the total number of neighbors and the number

of common neighbors of two users was taken from [Jain and Dubes, 1988] and is defined as

follows.

FJC(u,v) =
|Γ(u)∩Γ(v)|
|Γ(u)∪Γ(v)|

For directed networks this could be split into two coefficients for received messages

F−JC(u,v) = |Γ−(u)∩Γ−(v)|
|Γ−(u)∪Γ−(v)| and sent messages F+

JC(u,v) = |Γ+(u)∩Γ+(v)|
|Γ+(u)∪Γ+(v)| .

• Adamic Adar FAA(u,v). Instead of just counting the number of common neighbors with

Jaccard’s Coefficient in a network, this feature adds weights to all neighbors of a pair of

users [Adamic and Adar, 2003].

FAA(u,v) = ∑
z∈Γ(u)∩Γ(v)

1
log(|Γ(z)|)

According to Cheng et al. [2011] et al. this can be transformed into F−AA(u,v) =
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∑
z∈Γ−(u)∩Γ−(v)

1
log(|Γ−(z)|) for directed networks.

• Preferential Attachment Score FPS(u,v). This feature took into account that active users, i.e.

users with many interaction partners, are more likely to form new relationships than users

with not so many interactions [Barabási and Albert, 1999].

FPS(u,v) = |Γ(u)| · |Γ(v)|

The score was applied to a directed network with two different features: F+
PS(u,v) = |Γ+(u)|·

|Γ−(v)|, respectively F−PS(u,v) = |Γ−(u)| · |Γ+(v)| [Cheng et al., 2011].

4.4.2. Online Social Network: Homophilic Features

As stated before, users in Second Life can enhance their online social network profile by adding

additional meta-data information such as interests or groups. As observed by a number of previous

studies in this area [Rowe et al., 2012; Wang et al., 2011], homophily is an important variable in

the context of the link prediction problem. To account for factor, we defined a set of homophilic

features which we calculated as group and interest similarity between users u,v. Formally, we

defined the groups of a user u as ∆(u), respectively her interests as Ψ(u).

• Common Groups GC(u,v). The first feature we induce is the so-called common groups

measure. It is calculated as follows.

GC(u,v) = |∆(u)∩∆(v)|

• Jaccard’s Coefficient for Groups GJC(u,v). The second feature, is the so-called Jaccard’s

coefficient for groups. It was calculated in the following form.

GJC(u,v) =
|∆(u)∩∆(v)|
|∆(u)∪∆(v)|

• Common Interests IC(u,v). The third homophilic feature, was the number of interests two

users had in common.

IC(u,v) = |Ψ(u)∩Ψ(v)|

• Jaccard’s Coefficient for Interests IJC(u,v). And finally the last feature, which is a combi-

nation of total interests and common interests of the users.

IJC(u,v) =
|Ψ(u)∩Ψ(v)|
|Ψ(u)∪Ψ(v)|
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4.4.3. Location-based Social Network: Topological Features

We applied the same network topological feature calculations to the location-based social network

as we did for the online social network. The network had edges between users that met on at

least two days. Using this relation between in-world users defined the topological features similar

to Section 4.4.1. Here, the neighbors of a node in the undirected location-based social network

GM〈VM,EM〉 were defined as Θ(u) = {v | (u,v) ∈ GM} and starting with this we defined the

topological features as follows.

• Common Neighbors MCN(u,v).

MCN(u,v) = |Θ(u)∩Θ(v)|

• Jaccard’s Coefficient MJC(u,v).

MJC(u,v) =
|Θ(u)∩Θ(v)|
|Θ(u)∪Θ(v)|

• Adamic Adar MAA(u,v).

MAA(u,v) = ∑
z∈Θ(u)∩Θ(v)

1
log(|Θ(z)|)

• Preferential Attachment Score MPS(u,v).

MPS(u,v) = |Θ(u)| · |Θ(v)|

4.4.4. Location-based Social Network: Homophilic Features

These features were based on the actual distance between users, the regions they visit, and the

number of days where they co-occurred concurrently. Let O(u,v) be the co-locations of user u

and user v, when both users resided in the same region concurrently. An observation o ∈ O(u,v)

was 4-tuple of region r, time stamp t, location coordinates of user u: lu = (xu,yu) and user v:

lv = (xv,yv).

• Physical Distance AD(u,v). Whenever two users were observed concurrently, we measured

the distance between them based on their x and y coordinates. As a indicator for their overall

physical closeness, we therefore computed the average physical Euclidean distance between
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two users for all observations where both were present in the same region concurrently.

AD(u,v) =
1

|O(u,v)| ∑
o∈O(u,v)

‖o(lu)−o(lv)‖

• Days Seen AS(u,v). This feature indicated the number of days when two users have been

observed in the same region concurrently.

The regions of a user were defined as P(u) = {ρ ∈ P | user u was observed in region P} and so

we computed the region properties of users as follows:

• Common Regions RC(u,v). The number of regions two users visited, not necessarily at the

same time.

RC(u,v) = |P(u)∩P(v)|

• Regions Seen Concurrently RS(u,v). In contrast to the Common Regions feature, this fea-

ture took only the regions into account where both users were observed in the same region

concurrently.

• Observations Together RO(u,v). This feature was taken from Cranshaw et al. [2010] and

represented the number of total regions of two users divided by the sum of each user’s

number of regions.

RO(u,v) =
|Pu∪Pv|
|Pu|+ |Pv|

4.5. Experimental Setup

All in all, we conducted two different experiments to study the extent to which interactions be-

tween users in online social networks can be predicted. Both experiments were based on the

combination of the online social network GF and the location-based social network GM described

in Section 4.4. To that end, we followed the approach of Guha et al. [2004] in both experiments

who suggest to create two datasets with an equal number of “positive edges” and “negative edges”

for the binary classification problem. This results in balanced datasets for the test- and the training

data and therefore in a baseline of 50% for the prediction when guessing randomly. For the eval-

uation of the binary classification problem we employed different supervised learning algorithms

and used the area under the ROC curve (AUC) as our main evaluation metric to determine the per-

formance of our features [Huang and Ling, 2005; Ling et al., 2003]. We justified our findings with

a 10-fold cross validation approach using the WEKA machine-learning suite [Hall et al., 2009].
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Chapter 4. Prediction of Interactions

In this section we describe in detail how the trainings and test data set for both experiments was

generated.

4.5.1. Predicting Interactions

The task here is to predict whether or not two users interacted with each other on the feed by

using topological and homophilic information of the online social network and the location-based

social network. In the first step we computed the edge-features for the user-pairs as described in

Section 4.4 for both networks independently. Then, in the second step we created the intersection

of both networks as directed graph GFM〈VFM,EFM〉 where VFM = {v|v ∈VF ,v ∈VM}, and EFM =

{(u,v)|(u,v) ∈ EM, (u,v) ∈ EF ,v and u ∈ VFM}. This newly created network consisted of 37,118

nodes and 1,014,352 pairs with location co-occurrences ((u,v) ∈ EM), 36,213 pairs with social

interaction ((u,v) ∈ EF), and 7,393 edges with both ((u,v) ∈ EM,EF).

For the binary classification problem we uniformly selected 2,500 user-pairs with a social inter-

action and a location co-occurrence (“positive edges”) {e+ = (u,v)|e+ ∈EFM, e+ ∈EF , e+ ∈EM}
and 2,500 user-pairs with a location co-occurrence but without a social interaction (“negative

edges”) {e− = (u,v)| e− /∈ EF , e− ∈ EM}. These edges, i.e. pairs of users, and the according edge

features from both domains were used as datasets for all further evaluations and experiments.

4.5.2. Predicting Reciprocity

The task here is to predict whether two users had mutual activities on each other’s wall, i.e. recip-

rocal interactions, by exploiting topological and homophilic information of the online social net-

work and the location-based social network. We defined a reciprocal edge as e′′ = (u,v)|(u,v) ∈
GF , (v,u) ∈GF , a non-reciprocal edge as e′ = (u,v)|(u,v) ∈GF , (v,u) /∈ GF , and used this differ-

ence for the binary classification problem. In contrast to the previous experiment we considered the

online social network as undirected network for the computation of the edge-features but retained

information about the reciprocity of the interactions. The edge features for the location-based

social network were again considered as undirected. For the actual experiment we combined the

online social network and the location-based social network to a new undirected network referred

to as G′FM〈V ′FM,E ′FM〉where V ′FM = {v|v∈VF ,v∈VM}, and E ′FM = {(u,v)|(u,v)∈ EM, (u,v)∈ EF

or (v,u) ∈ EF ,v and u ∈V ′FM}. Out of the 7,393 user-pairs with a social interaction and a location

co-occurrence we identified 1,431 reciprocal edges and 4,531 non-reciprocal edges in the online

social network. For the binary classification task we uniformly selected pairs of users from the

undirected network G′FM with 1,000 reciprocal edges (“positive edges”) and non-reciprocal edges

(“negative edges”) each. These edges, i.e. user-pairs with the according features, were used for all

further evaluations and experiments.
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Table 4.2.: Means and standard errors of the features in the online social network and the location-
based social network for the group of users having interactions with each other vs. the
groups of users having no interactions (***=significant at level 0.001) .

Features Have Interactions Have No Interactions

O
nl

in
e

So
ci

al
N

et
w

or
k

Common Neighbors (in) F−CN(u,v)∗∗∗ 2.81±0.32 0.02±0.00
Common Neighbors (out) F+

CN(u,v)∗∗∗ 2.39±0.27 0.01±0.00
Adamic Adar FAA(u,v)∗∗∗ 14.65±1.28 1.71±0.18
Jaccard’s Coefficient (in) F−JC(u,v)∗∗∗ 0.05±0.00 0.00±0.00
Jaccard’s Coefficient (out) F+

JC(u,v)∗∗∗ 0.04±0.00 0.00±0.00
Preferential Attachment (in) F−PS(u,v)∗∗∗ 1566.55±239.31 3.88±0.64
Preferential Attachment (out) F+

PS(u,v)∗∗∗ 2088.94±441.14 4.92±1.53
Common Groups GC(u,v)∗∗∗ 1.92±0.07 0.40±0.02
Jaccard’s Coefficient GJC(u,v)∗∗∗ 0.05±0.00 0.01±0.00
Common Interests IC(u,v) 0.07±0.01 0.02±0.00
Jaccard’s Coefficient IJC(u,v) 0.00±0.00 0.00±0.00

Lo
ca

tio
n-

ba
se

d
So

ci
al

N
et

w
or

k

Common Neighbors MCN(u,v)∗∗∗ 52.48±4.98 83.61±2.31
Jaccard’s Coefficient MJC(u,v)∗∗∗ 0.20±0.00 0.10±0.00
Preferential Attachment MPS(u,v)∗∗∗ 218341.22±164510.35 530640.88±50352.29
Adamic Adar MAA(u,v)∗∗∗ 26.89±3.19 36.43±0.98
Regions Seen RS(u,v)∗∗∗ 2.81±0.09 1.41±0.02
Common Regions RC(u,v)∗∗∗ 3.59±0.34 3.03±0.08
Observations Together RO(u,v)∗∗∗ 0.22±0.00 0.10±0.00
Distance AD(u,v)∗∗∗ 10.32±0.36 38.13±0.95
Days Seen AS(u,v)∗∗∗ 7.34±0.21 3.98±0.09

4.6. Results

Before we start with the analysis of how to predict interactions between users, we show the dif-

ferences between user pairs with and without interactions in the social network, respectively user

pairs with reciprocal and non-reciprocal interactions for both domains. Both the Anderson-Darling

test and the one-sampled Kolmogorov-Smirnov test showed that none of the distributions of the

features described in Section 4.4 were normally distributed. Hence, and similar to Bischoff [2012],

we compared the variances of all features using a Levene test (p < 0.01). To test for significant

differences of the means, we employed Mann-Whitney-Wilcoxon test in case of equal variances

and a two-sided Kolmogorov-Smirnov test in case of unequal variances. The differences of the

means between the groups of users regarding their interaction type can be found in Table 4.3 and

4.2. Overall, we found the following:

• Interactions: Mean values of topological features in the online social network were signif-

icantly higher for user pairs with interactions compared to users without interactions. For

homophilic features, a significant difference between user pairs was observed for features
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Table 4.3.: Means and standard errors of the features in the online social network and the location-
based social network for the group of users having reciprocal interactions vs. the
groups of users having no reciprocal interactions with each other (*=significant at level
0.1, **=significant at level 0.01, and ***=significant at level 0.001).

Features Reciprocal Non Reciprocal

O
nl

in
e

So
ci

al
N

et
w

or
k

Common Neighbors FCN(u,v)∗∗∗ 10.20±1.10 0.80±0.10
Adamic Adar FAA(u,v)∗∗∗ 6.46±0.61 0.71±0.06
Jaccard’s Coefficient FJC(u,v)∗∗∗ 0.08±0.00 0.04±0.00
Preferential Attachment FPS(u,v)∗∗∗ 12544.28±2066.82 403.15±93.73
Common Groups GC(u,v) 2.04±0.11 1.81±0.10
Jaccard’s Coefficient GJC(u,v) 0.06±0.00 0.05±0.00
Common Interests IC(u,v) 0.12±0.02 0.05±0.01
Jaccard’s Coefficient IJC(u,v) 0.01±0.00 0.00±0.00

Lo
ca

tio
n-

ba
se

d
So

ci
al

N
et

w
or

k

Common Neighbors MCN(u,v)∗∗∗ 42.59±2.67 61.29±11.96
Jaccard’s Coefficient MJC(u,v)∗∗ 0.2±0.01 0.19±0.01
Preferential Attachment MPS(u,v)∗ 41663.58±4547.60 473151.99±411215.48
Adamic Adar MAA(u,v) 21.01±1.30 32.25±7.79
Regions Seen RS(u,v) 2.82±0.10 2.71±0.18
Common Regions RC(u,v) 3.25±0.12 4.00±0.83
Observations Together RO(u,v) 0.23±0.00 0.21±0.00
Distance AD(u,v)∗∗ 9.35±0.48 11.19±0.57
Days Seen AS(u,v)∗∗ 7.22±0.31 6.96±0.33

based on group affiliation whereas features based on specified interests did not show sig-

nificant differences. Topological features in the location-based social network also showed

significant differences between users but contrary, users with no interactions had a higher

number of common neighbors, preferential attachment score, and Adamic Adar score. Users

with interactions had more common regions and observations, and they saw each other on

more days. Furthermore, user pairs with interactions in the online social network had a

significantly shorter average distance between them.

• Reciprocity: The differences between user pairs with reciprocal interactions and non-reci-

procal interactions can be found in Table 4.3. The results revealed significant differences

between users in the online social network for all topological features but no significant

differences for homophilic features. Comparing differences between user pairs also showed

significant differences in the topological features of the location-based social network (Com-

mon Neighbors, Jaccard’s Coefficient and Preferential Attachment Score) but only the av-

erage distance between users and the number of days they saw each other was significantly

different for the homophilic features
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Table 4.4.: Overall results AUC and (ACC) of the Logistic Regression learning approach for pre-
dicting interactions between users and their reciprocity in the online social network of
Second Life using online social network and location-based social network features.

Feature Sets Interaction Reciprocity
Lo

gi
st

ic
R

eg
re

ss
io

n Online
Social

Network

Topological 0.878 (71.8%) 0.676 (64.9%)
Homophilic 0.640 (63.4%) 0.507 (52.5%)
Combined 0.863 (76.8%) 0.679 (64.8%)

Location-
based Social

Network

Topological 0.858 (76.7%) 0.530 (51.2%)
Homophilic 0.885 (80.6%) 0.556 (54.4%)
Combined 0.919 (84.8%) 0.551 (53.5%)

All Features 0.953 (89.6%) 0.709 (65.2%)

In the remainder of this section we present the results obtained from the two supervised learn-

ing experiments described in Section 4.5. As learning strategy we used the Logistic Regression

learning algorithm since it can be easily implemented and interpreted [Jones et al., 2013].

4.6.1. Predicting Interactions: Online Social Network vs. Location-based Social

Network Features

The results of the first experiment can be found in Table 4.4 where we present the outcome of the

prediction model for two different sources of knowledge and the according feature sets.

The values in the table represent the area under the ROC curve (AUC) and the accuracy of

the prediction (ACC) as metrics for the predictability with a baseline for the binary classification

problem of 0.5 AUC. As we can see, using topological features from the online social network

improved the predictability of interactions between users by +37.8% whereas homophilic features

(groups and interests) enhanced the baseline by +14.0%. In contrast to this, topological features

from the location-based social network improved the baseline by +35.8% whereas homophilic

features improved it by +38.5%. The combined topological and homophilic features from either

networks resulted in a predictability of 0.953 AUC outperforming the baseline by +45.3%.

Overall, and interestingly, looking at the feature set in Table 4.4 we can see that location-based

features were a great source to predict interactions between users in online social networks and

they even outperformed online social network features. To evaluate the predictability of interac-

tions of features separately, we present the coefficients of the Logistic Regression algorithm and

their levels of significance when all features were used simultaneously. Table 4.5 shows that Pref-

erential Attachment Score for incoming messages F−PS(u,v) in the online social network and the

average distance between users AD(u,v) in the location-based social network were most impact-
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Table 4.5.: Coefficients of the Logistic Regression when all topological and homophilic features
from both domains are used simultaneously in the dataset (***=significant at level
0.001).

Features Interactions Reciprocity

O
nl

in
e

So
ci

al
N

et
w

or
k

Common Neighbors (in) F−CN(u,v) -1.782615∗∗∗ –
Common Neighbors (out) F+

CN(u,v) 0.138448∗∗∗ –
Common Neighbors FCN(u,v) – -0.658291∗∗∗

Adamic Adar FAA(u,v) 0.196078 -0.108824∗∗∗

Jaccard’s Coefficient (in) F−JC(u,v) 0.025060∗∗∗ –
Jaccard’s Coefficient (out) F+

JC(u,v) 2.416276 ∗∗∗ –
Jaccard’s Coefficient FJC(u,v) – 0.495911∗∗∗

Preferential Attachment (in) F−PS(u,v) 7.405495∗∗∗ –
Preferential Attachment (out) F+

PS(u,v) -0.000097 –
Preferential Attachment FPS(u,v) – -1.107698
Common Groups GC(u,v) -0.000066∗∗∗ -0.000040∗∗∗

Jaccard’s Coefficient GJC(u,v) 0.216582∗∗∗ -0.046399
Common Interests IC(u,v) -1.230746 1.732937
Jaccard’s Coefficient IJC(u,v) 0.932973 7.158616

Lo
ca

tio
n-

ba
se

d
So

ci
al

N
et

w
or

k

Common Neighbors MCN(u,v) -0.019859∗∗∗ -0.004276
Jaccard’s Coefficient MJC(u,v) -0.001736∗∗∗ -0.000470∗∗∗

Preferential Attachment MPS(u,v) 0.000551∗∗∗ 0.000574
Adamic Adar MAA(u,v) 0.000001∗∗∗ 0.000000
Regions Seen RS(u,v) 0.294520 -0.101258
Common Regions RC(u,v) 0.717518∗∗∗ 0.093925
Observations Together RO(u,v) 0.022711∗∗∗ -0.064381
Distance AD(u,v) 10.570453∗∗∗ 1.158166∗∗∗

Days Seen AS(u,v) -0.010596∗∗∗ -0.002153

ing features. Struck-out values in the table indicate a significance value of p > 0.05. To give an

overview of the correlation of the features, we calculated the pair-wise Spearman-rank correlation

of the used features from both domains as shown inTable 4.8.

4.6.2. Predicting Reciprocity: Online Social Network vs. Location-based Social

Network Features

The results of the second experiment can be found in Table 4.4 where we present the area under

the ROC curve (AUC) and the accuracy of the prediction (ACC). As in the previous experiment

the baseline for randomly guessing is 0.5 AUC due to the balanced dataset.
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Using topological features from the online social network increased the predictability of reci-

procity by +17.6% whereas homophilic features alone (groups and interests) performed as bad

as the baseline. Due to the little predictive power of the homophilic features the combination of

all features in the online social network results in a prediction gain of +17.6% which is equal to

topological features alone. In contrast to this, topological features from the location-based so-

cial network improved the baseline approach by +3.0% for the topological features and by +5.6%

for the homophilic features. The combination of feature sets in the location-based social network

boosted the predictability by +5.1%. The combination of features from either domains elevated the

predictability of the reciprocity between two users up to 0.709 AUC, which is a boost of +20.9%

if compared to the baseline of 0.5 AUC. Similar to the previous experiment, we computed the

coefficients of the Logistic Regression algorithm in Table 4.5. In the online social network do-

main the Common Neighbors feature FCN(u,v) and in the location-based social network domain

the distance between users AD(u,v) had the highest and most significant values. Again, struck-out

values indicate a significance p > 0.05.

4.6.3. Verification of Stability: Predicting Interactions and Reciprocity with SVM

and Random Forrest

The results of the conducted experiments based on LogisticRegression clearly showed that fea-

tures from the location-based social network are better suited to predict interactions between users,

whereas features from the online social network are better suited to predict reciprocity of inter-

actions. However, to verify the stability of these findings we employed two additional learning

algorithms: Random Forest and Support Vector Machine which are well suited for high dimen-

sional, numeric and inter-dependent attributes (see Table 4.8) [Bischoff, 2012; Jones et al., 2013].

The results of these learning algorithms are presented in Tables 4.6 and 4.7. Overall, the results

can be interpreted as follows:

• Predicting Interactions: Using Logistic Regression, features from the location-based so-

cial network outperformed features from the online social network and similar results were

observed for Support Vector Machine and Random Forest. In both cases features of the

location-based social network resulted in a better prediction of interactions than features

from the online social network. Overall, the performance of the combined feature set using

Support Vector Machine was 0.882 AUC and using Random Forest was 0.979 AUC.

• Predicting Reciprocity: For the prediction of reciprocity of interactions between users using

Logistic Regression, online social network features outperformed location-based social net-

work features. For other learning algorithms we found similar results as features from the

online social network also outperformed features from the location-based social network.
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Table 4.6.: Overall results AUC and (ACC) of the SVM learning approach for predicting interac-
tions between users and their reciprocity in the online social network of Second Life
using online social network and location-based social network features.

Feature Sets Interactions Reciprocity

SV
M

Online
Social

Network

Topological 0.669 (66.9%) 0.646 (64.6%)
Homophilic 0.638 (63.8%) 0.522 (52.2%)
Combined 0.737 (73.7%) 0.639 (63.9%)

Location-
based Social

Network

Topological 0.793 (79.3%) 0.529 (52.9%)
Homophilic 0.761 (76.1%) 0.515 (51.5%)
Combined 0.849 (84.9%) 0.539 (53.9%)

All Features 0.882 (88.2%) 0.638 (63.8%)

Table 4.7.: Overall results AUC and (ACC) of the Random Forrest learning approach for predicting
interactions between users and their reciprocity in the online social network of Second
Life using online social network and location-based social network features.

Feature Sets Interactions Reciprocity

R
an

do
m

Fo
re

st

Online
Social

Network

Topological 0.893 (79.7%) 0.628 (62.2%)
Homophilic 0.624 (62.8%) 0.488 (50.4%)
Combined 0.910 (82.5%) 0.635 (60.5%)

Location-
based Social

Network

Topological 0.852 (77.9%) 0.530 (52.2%)
Homophilic 0.872 (80.3%) 0.479 (49.2%)
Combined 0.916 (85.7%) 0.550 (53.2%)

All Features 0.979 (93.0%) 0.684 (62.8%)

The combination of all features from both domains predicted reciprocity of interactions

with 0.652 AUC using Support Vector Machine respectively 0.684 using Random Forest.

4.7. Discussion and Conclusions

In this work we harvested data from two Second Life related data sources: an online social net-

work with text-based interactions and a location-based social network with position data. We

modeled the social proximity between users with topological and homophilic network features

and conducted two experiments.

• RQ1: To answer the first research question, we compared different features of user pairs

regarding their interactions and the reciprocity of these interactions. This analysis revealed

that pairs with interactions were tighter connected in the online social network but the oppo-

site was observed for the location-based social network. A possible explanation is that users
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in Second Life are allowed to directly “jump” to different regions in the whole virtual world

but see the present users only upon arrival. We believe that users are more likely to stay in

a region if they know present users, i.e. they have interactions on the online social network.

This mobility activity could explain the tight connections in the location-based social net-

work. This assumption is supported by homophilic features from both networks: users with

interactions had more common groups, regions, and they saw each other on more days. Fur-

thermore, the average distance was significantly shorter than users without interactions. All

observed features were significantly different except interest based features but we assume

this is due to the sparse data. The found results for predicting reciprocity of interactions

was similar to the prediction of interactions themselves. User pairs with reciprocal interac-

tions had tight connections in the online social network but the opposite was observed for

the location-based social network. Again, homophilic features of user pairs with reciprocal

interactions indicated a higher alikeness in both networks.

• RQ2: For the second research question we predicted interactions and the reciprocity of

these interactions. To do so, we chose Logistic Regression because it is easy to implement

and interpret. We observed that interactions can be better predicted with features from the

location-based social network than with features from the social network. Surprisingly, the

opposite was observed for the reciprocity of interactions. In both experiments we found the

combination of features from both networks outperforming either networks: Interactions

could be predicted with 0.953 AUC and the reciprocity of these interactions with 0.709

AUC. The Logistic Regression coefficients of the features unveiled that a short average

distance between users is a good indicator for interactions and their reciprocity. To verify our

results that online social network features outperform features from the location-based social

network for the prediction of interactions and vice versa for the prediction of reciprocity, we

used two additional learning algorithms: Support Vector Machines and the Random Forest

learning approach. Both algorithms approved the observations made in the experiment with

Logistic Regression.

• RQ3: To answer the third research question, we compared homophilic features and topolog-

ical features regarding the predictability of interactions and their reciprocity. Interestingly,

we could not find a stable pattern over all experiments, as it was for instance proposed by

Rowe et al. [2012]. Although topological features of the online social network outperformed

homophilic features in all three learning algorithms we found variation of the results for the

location-based social network. Using Logistic Regression homophilic features performed

better than topological features but in contrast, the opposite was observed for Support Vec-

tor Machines. With Random Forest homophilic features were better suited for the prediction

of interactions but homophilic features were better suited for the reciprocity of interactions.
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For future work, it is planned to dig deeper into the data and to address issues such as the variety

of time (which we did not address in this study) or the issue why reciprocal links seem to be better

predicted with social network features than with position data. Furthermore, we plan to extend our

approach to predict other relations between users besides communicational interactions such as

for instance partnership which can be also mined from the social network of Second Life. Finally,

it is our interest to switch from supervised to unsupervised learning.
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Table 4.8.: Spearman’s Correlation Matrix (*=significant at level 0.1, **=significant at level 0.01,
and ***=significant at level 0.001).
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CHAPTER 5

Compare Region Sources

This chapter has been published in the paper Predicting Social Interactions from Dif-
ferent Sources of Location-based Knowledge, presented at the Third International
Conference on Social Eco-Informatics [Steurer et al., 2013].

IN this chapter we employ the location data of users from three different sources to predict their

interactions in a directed online social network. We define a set of features to model the user

relations that can be applied to all location sources. In order to start with the actual prediction

we compare user-pairs with interactions and user pairs without interaction among all three location

sources. We employ a simple Collaborative Filtering algorithm to determine the most suitable

features for the prediction task and then apply different supervised learning algorithms to predict

interactions between users. The derived results are then compared to each other with respect to

the feature selection and the results of the prediction.

In detail the chapter is structured as follows: In Section 5.2 we shortly discuss related work in

the area. In Section 5.3 we introduce the collected datasets and introduce the features computed to

predict social interactions between users in Section 5.4. The setup of the experiments is depicted

in Section 5.5 followed by the results in Section 5.6. Finally, Section 5.7 discusses the findings

and concludes the chapter.
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Chapter 5. Compare Region Sources

Abstract

Recent research has shown that digital online geo-location traces are new and valuable sources

to predict social interactions between users, e.g. check-ins via FourSquare or geo-location infor-

mation in Flickr images. Interestingly, if we look at related work in this area, research studying

the extent to which social interactions can be predicted between users by taking more than one

location-based knowledge source into account does not exist. To contribute to this field of re-

search, we have collected social interaction data of users in an online social network called My

Second Life and three related location-based knowledge sources of these users (monitored loca-

tions, shared locations and favoured locations), to show the extent to which social interactions

between users can be predicted. Using supervised and unsupervised machine learning techniques,

we find that on the one hand the same location-based features (e.g. the common regions and com-

mon observations) perform well across the three different sources. On the other hand, we find that

the shared location information is better suited to predict social interactions between users than

monitored or favoured location information of the user.

5.1. Introduction

There is no doubt that tomorrow’s world will be mobile and social. It is therefore not surprisingly

that recent research has rigorously followed this trend to study new methods to for instance pre-

dict social ties or links between people in such an environment. Interestingly, if we look at related

work in this area (e.g. [Scellato et al., 2011b; Cranshaw et al., 2010; Bischoff, 2012]), research

studying the extent to which social links can be predicted between users typically takes just one

knowledge source into account, e.g. online social network data from Facebook, or location-based

social network data from FourSquare. To contribute to this emergent and still sparse field of re-

search, we have recently started a project (see [Steurer et al., 2012; Steurer and Trattner, 2013a,b])

with the overall goal to predict links and tie strength between users from various sources of social

and mobile data. Since it is nearly impossible to obtain a complete dataset containing both kinds

of knowledge sources in the real world, we focused with our experiments on a virtual environment

called My Second Life. This allowed us to easily mine any kind of information needed for such a

type of a project on a large scale. So far, we have studied the extent to which partnership [Steurer

and Trattner, 2013b] and in general interactions can be predicted [Steurer and Trattner, 2013a]

by looking at homophilic features such as for instance common interests, common groups, or

common-places visited and network topological features where we investigated common friends

features such as Adamic Adar, Jaccard’s coefficient etc. Interestingly, we find, that the location

information of the user is to a great extent useful to predict tie strength for the interactions be-
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tween users in the virtual world of Second Life, most of the time outperforming online social

network features. While we only used one particular type of location-based knowledge source

about users, namely monitored locations, in our previous research, in this paper we are interested

to overall study three different types of knowledge sources: monitored locations, shared locations

and favoured locations. We employed 10 different features to predict social interactions between

users and unveil what type of location-based knowledge source and what types of features are the

most valuable. Overall, we would like to answer the following research questions in this paper:

• RQ1: Are there any statistically significant differences between the users having and not

having social interaction with each other based on the features induced from our three dif-

ferent kinds of location-based knowledge sources?

• RQ2: Which features perform best across those three types of location-based knowledge

sources?

• RQ3: What kind of knowledge sources is in the end the most valuable to predict social

interactions between users?

To answer the first question we analysed the datasets with statistical methods according to our

features. This evaluation showed that there were significant differences between user-pairs with

a social interaction and users without an social interaction across all computed features and all

three sources of location information. For instance, user-pairs with a social interaction share

more common regions compared to user-pairs without social interaction. To answer the second

research question, we employed Collaborative Filtering for each feature independently to predict

the social interactions between the users to find the most valuable features. Among others we

found that common regions and common observations of two users were a good indicator for an

social interaction between them. For the last question we combined the best features for each

region source and showed that the user’s Shared Locations are more valuable to predict social

interactions than Monitored or Favoured locations.

5.2. Related Work

Approaches by Ling et al. [2003] or Al Hasan et al. [2006] for link prediction using features

obtained from online social networks where greatly enhanced with the advent of user’s location

data. On of the first studies in this field was conducted Cranshaw et al. [2010] who combined

the interaction of the online social network Facebook with the location-based social network of

Loccaccino. They introduced various metrics to compute users homophily and found a signif-

icant correlation between social interactions and location-based features. Similar observations
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were made by Thelwall [2009] who revealed significant homophily between interacting users in

MySpace and even inferred an real-life friendship from the online social network. This goes in-

line with Bischoff [2012] who found relations between connections in Last.FM and visited music

concerts based on demographic, structural and taste-related attributes. Scellato et al. [2011b] in-

vestigated in the location-based social network of Gowalla and found 30% of newly created links

as “place friends”. Research by Wang et al. [2011] follows this direction. They investigated in the

prediction of social relations using mobility data obtained from mobile phones and found mobile

information significantly outperforming simple network measures. Another paper by Scellato et al.

[2011a] focuses on the structural differences between the three location-based social networks of

Brighknight, Foursquare, and Gowalla. In contrast to our work, they did not have different loca-

tion sources for one single online social network and their focus was on the actual spatial distance

between user.

5.3. Data Sets

Our experiments were based on a social interaction dataset of users in an online social network and

three independent location-based knowledge sources: Monitored Locations, Shared Locations,

and Favoured Locations from a virtual world. In particular, we focused in our experiments on

a virtual environment called Second Life, where we could easily mine the necessary information

needed for the experiments on a large scale (see [Steurer et al., 2012; Steurer and Trattner, 2013a,b]

for more details).

5.3.1. Social Interaction Dataset

The online social network My Second Life was introduced by Linden Labs, the company behind

Second Life, in July 2011. It is a social network that can be compared to Facebook regarding

postings and check-ins but aims only at residents of the virtual world: just as in Facebook, resi-

dents can interact with each other sharing text messages, and comment or love (similar to a “like”

in Facebook) these messages. Figure 5.1 depicts a typical profile of a user with postings, com-

ments, and loves from others. The profile of users can be accessed with a unique URI derived

from the user name and we attempted to download the profile data of over 400,000 users with a

web-crawler. We extracted their interaction partners and downloaded the missing profiles itera-

tively. With this approach, we found 152,509 profiles with interactions on their wall and identified

1,084,002 postings, 459,734 comments and 1,631,568 loves.
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5.3. Data Sets

Figure 5.1.: User profile of an Second Life resident in the online social network My Second Life
showing a posting, a shared snapshot with location information, and a comment.

5.3.2. Location-based Dataset

To predict the social interactions between users we employed location information obtained from

three different sources of data.

Monitored Locations As in the real life, residents of Second Life can host events in the virtual

world for other residents and publicly announce this information on an event calendar. We imple-

mented a web-crawler that harvested this calendar periodically to extract all events with accurate

event-location and start time. Based on this information we have implemented 15 avatar-bots that

visited these events with an interval of 15 minutes and collected the accurate location of the par-

ticipating users. Starting in March 2012 we were able to collect 262,234 events over a period of

12 months yielding in a dataset of nearly 19 million data samples, i.e. user-location tuples, of over

410,616 different users in 4,132 unique locations.

Shared Locations Users of My Second Life can not only interact with each other using postings,

comments, or loves, they can also share location information about their current in-world location

as well through in-world pictures. The idea of sharing these locations can be compared to pictures

uploaded to Flickr or Facebook enriched with GPS information (see Figure 5.1). Overall, we

identified 496,912 snapshots in 13,583 unique locations on 45,835 profiles.
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Figure 5.2.: The number of user observations in the three different location-based knowledge
sources.

Favoured Locations Every resident of Second Life can specify up to 10 so-called “Picks” on it’s

profile representing the favourite locations of users. User can enhance these picks with a picture

and personal text note. These favoured locations are visible to other users and hence it can be

easily accessed with a Web browser using a URI derived from the user’s name. We found 191,610

profiles with favoured location information sharing 811,386 locations in 25,311 unique regions.

Figure 6.2 depicts the number of observations of the collected users for the three location

sources. Both, Shared and Monitored Locations show power law qualities which is in contrast

to the Favoured Locations due to Linden’s limitations of 10 picks per user.

5.4. Features

Based on the collected location-based user data we induced overall 10 different features in or-

der to measure the homophily between the users and to predict social interactions between them

[Cranshaw et al., 2010; Steurer and Trattner, 2013a,b]. For the reminder of this paper the se-

quence of observations O(u) of a user u are denoted as 1) Om(u) for Monitored Locations, 2)

Os(u) for Shared Location, and 3) O f (u) for Favoured Locations. In contrast, the set of locations

where a user was observed is defined as P(u) = {ρ ∈ O(u)}. The actual features we used in our

experiments are as follows:
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Common Locations RC(u,v) The simplest metric to determine the homophiliy between two

users u and v is the number of regions they have visited in common. In particular this can be

computed as RC(u,v) = |P(u)∩P(v)|.

Total Locations RT (u,v) Analogous to the common regions, one can also define the regions two

users have in total and use it as a homophilic feature RT (u,v) = |P(u)∪P(v)|.

Jaccard’s Coefficient RJC(u,v) A combination of the common regions of two users and their

total regions is the overlap of locations which is defined as the fraction of common locations and

locations visited by both users Cranshaw et al. [2010]. This feature is also known as Jaccard’s

Coefficient RJC(u,v) = |P(u)∩P(v)|
|P(u)∪P(v)| .

Location Observations RO(u,v) Another feature taken from Cranshaw et al. [2010] is the lo-

cation observations that is similar to the Jaccard’s Coefficient between two users. It is computed

as the number of locations two users have in common divided by the sum of locations either user

have RO(u,v) = |P(u)∩P(v)|
|P(u)|+|P(v)| .

Location User-Count RU (u,v) The following three features were first introduced by Cranshaw

et al. [2010] and try model the location diversity of regions two users visited in common. The first

and most simple feature to include the popularity of a region is the overall number of observations

of unique users at a certain region. According to this we calculated the mean user-count RU ,µ(u,v)

and the standard deviation of the mean RU ,σ(u,v) of all regions two users visited in common

P(u)∩P(v).

Location Frequency RF(u,v) Similar to the previous feature of counting users at a certain lo-

cation, we can also compute the frequency at the actual location. Again we calculated the mean

frequency RF ,µ(u,v) and the according standard deviation RF ,σ(u,v) of the frequency of regions

two users u and v have in common.

Location Entropy RE(u,v) A refinement of the two previous features, is the entropy that also

takes the probabilities of observations at a location L into account. The probability that a user

has visited a certain region is defined as the number of observations of the actual users divided

by the overall number of observations at this regions. Let Ou,L be the observations of a user u at

a location L and OL be all observations at the location L. The probability can then be computed

as probL(u) =
|Ou,L|
|OL| . Based on this we can compute the entropy of a certain location L as EL =
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−∑u∈UL PL(u) · log(PL(u)) with UL representing all users observed a the location L. With this

definition we computed the mean entropy RE,µ(u,v) of the locations two users visited in common

and the according standard deviation of the mean RE,σ(u,v).

5.5. Experimental Setup

Overall, we conducted different kinds of experiments to study the social interactions between users

based on the three different sources of location information.

In order to conduct these experiments we created a network from the social interactions obtained

from the online social network of Second Life. In this network, nodes represented the users and

edges indicate the social interactions between them. These edges were considered as unweighted

and so we add an edge between two users no matter how often they communicated with each

other. Further we did not distinguish the actual type of interaction and considered text messages,

comments and loves equally. This finally yielded in a network of 152,509 users connected by

270,567 edges. Formally this can be written as G′O〈V ′O,E ′O〉 with V ′O representing the users with an

interaction on their feed and e = (u,v) ∈ E ′O if user u interacted with user v (comment, posting,

love). Then we enriched the nodes with the observations O(u) from all three location data sources

and removed nodes from the network if this data was not available in all three sources. Formally

this new network can be defined as GO〈VO,EO〉 where VO = {u | u ∈ V ′O, u ∈ OM, u ∈ OS, u ∈
OF} and e = (u,v) ∈ EO if user u interacted with user v (comment, posting, love). This reduced

the network size to 14,508 nodes and 23,446 edges. For the actual experiments we followed

Guha et al. [2004] who suggest to create a balanced set of user-pairs with an interaction and

without interaction for the prediction task. In particular we randomly selected 15,000 user-pairs

with interaction {e+ = (u,v)|(u,v) ∈ EO,u and v ∈ VO} connecting users V+
O . The remaining

15,000 edges without interaction in between were created by selecting random user-pairs from

the network without interaction {e− = (u,v)|(u,v) /∈ EO,u and v ∈ VO}. Using this network we

computed the features described in Section 5.4 for all 30.000 user-pairs and each location source

separately. This network-setup implies a baseline of 0.5 for the prediction task in case of random

guessing user-pairs with interactions or without interactions.

5.5.1. Analysis of Homophily

In the first experiment we analysed similarities and dissimilarities of user-pairs with interaction e+

and user-pairs without interaction e− for each location source separately. We computed the mean

values of the features and the according standard error in either sources separately. Using a one-

sampled Kolmogorov-Smirnov and a Anderson-Darling test showed that none of the distributions
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of the features was from the family of normal distribution. As a consequence and similarly to

Bischoff [2012], we compared the variances of all features between interacting and non-interacting

user-pairs with a Levene test (p < 0.01). To test for significant differences of the means, we

employed Mann-Whitney-Wilcoxon test in case of equal variances and a two-sided Kolmogorov-

Smirnov test in case of unequal variances.

5.5.2. Feature Engineering

In order to utilize the supervised machine learning algorithms to predict whether or not a user-pair

interacted with each other we had to determine the features that are most suited for this task. To

assess the impact of each feature separately we used a simple Collaborative Filtering algorithm

for a first rough overview and implemented a method proposed by Liben-Nowell and Kleinberg

[2002]: For every user in the network we created ranked lists of the remaining users in the network

based on the homophily obtained from the single features. To evaluate the performance of this

approach we compared lists with different length to the actual interaction partners of each user.

This was computed as the fraction of correctly identified interaction partners divided by the length

of the overall retrieved users also referred to as the positive predictive value or precision. To

validate the results of this approach we additionally employed the built-in Information Gain and

the Correlation-Based Feature Subset Selection of the WEKA learning suite [Hall et al., 2009] to

find the most valuable features for supervised learning.

5.5.3. Predicting Social Interactions with Supervised Learning

Based on the most valuable features determined for every region source separately, we tried to

predict whether two users have a social interaction in the online social network. We combined

features selected by the Correlation-Based Feature Subset Selection for each location source sepa-

rately and obtained the three feature sets used for supervised learning algorithms. Due to the split

into 15,000 user-pairs with interactions and 15,000 user-pairs without interactions we reduced the

experiment to a binary classification problem. To compare the different location-based knowledge

sources against each other, we applied the WEKA machine learning suite onto the combined set of

features obtained with feature engineering for each region source separately. To do so, we applied

three learning algorithms: “Logistic Regression” as it can be easily interpreted, and “Random For-

est” and “Support Vector Machine” as both of them are suited for high-dimensional data. For the

verification of the results provided by the machine learning tool, we used a ten-fold approach for

the split of training set and test set.
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Table 5.1.: Means and standard errors of features applied to the three sources of location data
comparing user-pairs with and without interactions (∗p < 0.1, ∗∗p < 0.01, and ∗∗∗p <
0.001).

Features Have Interactions Have No Interactions

M
on

ito
re

d
L

oc
at

io
ns

RC(u,v)∗∗∗ 0.49±0.01 0.12±0.00
RU ,µ(u,v)∗∗∗ 179.02±1.49 211.51±2.55
RU ,σ(u,v)∗∗∗ 188.64±1.17 215.04±1.48
RE,µ(u,v)∗∗∗ 1.52±0.00 1.60±0.01
RE,σ(u,v)∗∗∗ 0.53±0.00 0.56±0.00
RF ,µ(u,v)∗∗∗ 637.50±6.22 755.68±10.96
RF ,σ(u,v)∗∗∗ 787.40±5.66 894.85±7.71
RJC(u,v)∗∗∗ 0.05±0.00 0.01±0.00
RO(u,v)∗∗∗ 0.04±0.00 0.01±0.00
RT (u,v)∗∗∗ 12.24±0.10 10.03±0.07

Sh
ar

ed
L

oc
at

io
ns

RC(u,v)∗∗∗ 1.01±0.02 0.02±0.00
RU ,µ(u,v)∗∗∗ 22.78±0.23 38.10±3.23
RU ,σ(u,v)∗∗∗ 28.91±0.25 37.09±1.52
RE,µ(u,v)∗∗ 0.80±0.00 0.86±0.02
RE,σ(u,v)∗∗∗ 0.44±0.00 0.46±0.01
RF ,µ(u,v)∗∗∗ 92.99±0.82 144.85±11.18
RF ,σ(u,v)∗ 160.61±1.14 180.70±7.31
RJC(u,v)∗∗∗ 0.03±0.00 0.00±0.00
RO(u,v)∗∗∗ 0.02±0.00 0.00±0.00
RT (u,v)∗∗∗ 63.70±0.59 15.11±0.19

Fa
vo

ur
ed

L
oc

at
io

ns

RC(u,v)∗∗∗ 0.11±0.00 0.00±0.00
RU ,µ(u,v)∗∗∗ 12.90±0.33 18.57±1.76
RU ,σ(u,v)∗∗∗ 13.23±0.37 22.26±2.17
RE,µ(u,v)∗∗ 0.71±0.01 0.81±0.03
RE,σ(u,v)∗∗∗ 0.40±0.00 0.51±0.02
RF ,µ(u,v)∗∗ 16.17±0.37 21.55±1.92
RF ,σ(u,v)∗∗ 15.79±0.40 25.01±2.28
RJC(u,v)∗∗∗ 0.02±0.00 0.00±0.00
RO(u,v)∗∗∗ 0.02±0.00 0.00±0.00
RT (u,v)∗∗∗ 8.04±0.03 6.95±0.03

5.6. Results

In this Section we present the results of the conducted experiments.
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Table 5.2.: Feature Engineering with Collaborative filtering and the according Information Gain.
Highlighted features were derived from Correlation-Based Feature Subset Selection.

Features Info Gain
Collaborative Filtering

Pre@5 Pre@10 Pre@20
M

on
ito

re
d

L
oc

at
io

ns
RC(u,v) 0.048 0.081 0.062 0.048
RU ,µ(u,v) < 0.01 0.047 0.041 0.039
RU ,σ(u,v) < 0.01 0.046 0.040 0.037
RE,µ(u,v) < 0.01 0.025 0.029 0.029
RE,σ(u,v) < 0.01 0.046 0.037 0.033
RF ,µ(u,v) < 0.01 0.047 0.043 0.037
RF ,σ(u,v) < 0.01 0.046 0.040 0.035
RJC(u,v) 0.051 0.071 0.063 0.052
RO(u,v) 0.051 0.071 0.063 0.052
RT(u,v) 0.012 0.077 0.043 0.023

Sh
ar

ed
L

oc
at

io
ns

RC(u,v) 0.211 0.280 0.252 0.208
RU ,µ(u,v) < 0.01 0.133 0.119 0.104
RU ,σ(u,v) < 0.01 0.185 0.161 0.137
RE,µ(u,v) < 0.01 0.122 0.089 0.074
RE,σ(u,v) < 0.01 0.192 0.164 0.129
RF ,µ(u,v) < 0.01 0.115 0.099 0.091
RF ,σ(u,v) < 0.01 0.109 0.108 0.101
RJC(u,v) 0.208 0.221 0.187 0.157
RO(u,v) 0.208 0.221 0.187 0.157
RT(u,v) 0.234 0.159 0.121 0.107

Fa
vo

ur
ed

L
oc

at
io

ns

RC(u,v) 0.040 0.104 0.085 0.060
RU ,µ(u,v) < 0.01 0.079 0.075 0.055
RU ,σ(u,v) < 0.01 0.082 0.074 0.058
RE,µ(u,v) < 0.01 0.082 0.076 0.056
RE,σ(u,v) < 0.01 0.086 0.077 0.057
RF ,µ(u,v) < 0.01 0.081 0.075 0.055
RF ,σ(u,v) < 0.01 0.074 0.071 0.056
RJC(u,v) 0.040 0.108 0.086 0.059
RO(u,v) 0.040 0.108 0.086 0.059
RT(u,v) 0.020 0.002 0.002 0.003

5.6.1. Analysis of Homophily

We computed the mean values and standard errors for all features of 15,000 user-pairs with interac-

tions and 15,000 user-pairs without interactions in the online social network. Table 5.1 summarizes

the differences for features applied to all three sources of location-based information.
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5.6.1.1. Monitored Locations

On average user-pairs with interaction could be found in 0.5 common regions RC(u,v), had over

12 total regions RT (u,v), and Jaccard’s Coefficient RJC(u,v) and observations RO(u,v) of around

0.05. For user-pairs with interaction we furthermore found an average user count RU ,µ(u,v) of

over 179, an entropy RE,µ(u,v) of 1.52 and a user frequency RF ,µ(u,v) of 637 for commonly

visited regions. For user-pairs without interaction we observed less commonly visited regions and

total regions as well as Jaccard’s Coefficient and observations. In contrast, for features based on

the location diversity, i.e. entropy, frequency, and user-count, we observed higher values. With the

tests described in Section 5.5 we found significant differences for all applied features.

5.6.1.2. Shared Locations

The characteristics for the features applied to the Shared Locations were similar to the features

applied to the Monitored Locations. For user-pairs with interaction we observed around 1 com-

mon region RC(u,v), 63 total regions RT (u,v), and a Jaccard’s Coefficient RJC(u,v) and observa-

tions RO(u,v) in the same regions of around 0.03. For common regions we observed a average

user-count RU ,µ(u,v) of 22, region entropy RE,µ(u,v) of 0.8, and region frequency RF ,µ(u,v) of

92. Similar to the Monitored Locations dataset we observed higher values for common regions,

Jaccard’s Coefficient, observations, and total regions for user-pairs with interaction, whereas fre-

quency, user-count and entropy were lower.

5.6.1.3. Favoured Locations

Again we observed similar results as already described for the previous locations dataset but due to

the reduced number of picks per user the absolute values were lower. We observed 0.11 common

regions RC(u,v) for users interacting with each other, respectively 0.02 for observations RO(u,v)

and Jaccard’s Coefficient RJC(u,v). In contrast these values were nearly 0 for user-pairs without

interaction. Interacting users had around 8 total regions RT (u,v) whereas user-pairs without in-

teraction had only around 7 total regions. For features that model the location diversity (RE(u,v),

RF(u,v), RU (u,v)) we again observed lower values for users interacting with each other if com-

pared to users without interaction.

5.6.2. Feature Engineering

For a rough estimation of the predictability of interactions we employed a Collaborative Filtering

algorithm using features applied to the three location-based knowledge sources. Previous results of
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the analysis of homophily showed that user-pairs with interactions had higher values for common

regions, total regions, Jaccard’s Coefficient and observations. Hence, we rank this features in

this experiment in descending order. Contrary, features based on the location diversity (RE(u,v),

RF(u,v), RU (u,v)) showed significantly lower values for interacting user-pairs and so we ranked

them in ascending order. In addition to Collaborative Filtering, we used WEKA’s Information Gain

algorithm for verification of these results and finally a Correlation-Based Feature Subset Selection

to find valuable features for further prediction. In Table 5.2 we present the results of Collaborative

Filtering and the according values of the Information Gain algorithm for the features applied to

the three location sources.

5.6.2.1. Monitored Locations

The Collaborative Filtering approach unveiled the common regions RC(u,v), total regions RT (u,v),

respectively Jaccard’ Coefficient RJC(u,v) and common observations RO(u,v) for different list

lengths as most valuable. However, features modeling location diversity like user-count, entropy,

frequency of user’s common regions performed inferior. This results were inline with the In-

formation Gain algorithm that showed similar results for the computed features. Additionally,

Correlation-Based Feature Subset Selection identified these features as most valuable.

5.6.2.2. Shared Locations

Collaborative Filtering exposed common region RC(u,v), Jaccard’s Coefficient RJC(u,v), and

observations RO(u,v) as most valuable. These three features plus the total number of regions

RT (u,v) were also identified as best features using the Information Gain algorithm. Similarily, the

Correlation-Based Feature Subset Selection algorithm unveiled Jaccard’s Coefficient RJC(u,v),

common observations RO(u,v), and the total number of regions RT (u,v) as the most valuable

features in the set.

5.6.2.3. Favoured Locations

Similar to the previous result the Collaborative Filtering approach identified the common regions

RC(u,v), Jaccard’s Coefficient RJC(u,v) and common observations RO(u,v) as most valuable.

Information Gain additionally puts the total number of regions RT (u,v) on the list which is also

inline with the previous result. Finally, Correlation-Based Feature Subset Selection found common

regions RC(u,v), Jaccard’s Coefficient RJC(u,v) and the total number of regions RT (u,v) to be best

suited for further prediction tasks.
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Table 5.3.: Predicting Interactions between user-pairs with supervised learning based on combined
features of different location sources.

Feature Set Logistic SVM Random Forest
Monitored Locations 0.632 0.605 0.618
Shared Locations 0.849 0.791 0.846
Favoured Locations 0.630 0.593 0.628

5.6.3. Predicting Social Interactions

Based on the results of the previous experiment we used features identified by Correlation-Based

Feature Subset Selection for predicting whether two users have an interaction with each other or

not. One can find these features highlighted in bold letters in Table 5.2 for different region sources.

We combined these individual features to feature-sets for every location source separately and

predicted the interaction between user-pairs with three different learning algorithms. We utilized

Logistic Regression, Support Vector Machine (SVM), and Random Forest and used the Area under

the ROC curve (AUC) as main evaluation metric. In Table 5.3 the results of these evaluations

are shown and one can see that Logistic Regression outperforms the two remaining algorithms

on each of the three location-datasets. In particular, we found that the feature-set applied to the

Shared Location dataset predicted interactions between users with 0.849 AUC which is a boost of

+34.9% if compared to baseline for random guessing. For the remaining two region sources we

observed a predictability of around 0.63 which is +13% over baseline. Random Forest and SVM

showed similar results but performed inferior.

5.7. Discussion and Conclusion

In this paper we have harvested data from different sources of the virtual world of Second Life:

First we collected social interaction data between users from the online social network My Second

Life and second, we collected data from three different and independent location sources, i.e.

locations monitored while users were attending events, locations they share, and their favourite

locations. For every single location source we computed 10 features representing the homophily

between user-pairs and employed them to predict whether two users had social interaction with

each other or not. This section concludes the paper and tries to give answers to the research

questions from Section 5.1 and provides possible explanations for the results derived from the

conducted experiments.

• RQ1: To answer the first research question, we evaluated the differences between user-pairs

that had an interaction in the online social network and user-pairs without this interaction.
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This analysis revealed statistically significant differences for nearly all features: User-pairs

with interactions on average visited more common regions and had more common observa-

tions together. In contrast to this, they visited regions with a lower user-count, frequency,

and entropy which can be interpreted as sign of intimacy: Users with interactions already

know each other and therefore they meet in places that are less frequented by other users.

We could observe this for all three data sources but due to the diverse datasets the charac-

teristics were different: the Shared Locations dataset showed more distinct tendencies than,

for instance the picks dataset with the limit of 10 picks per user.

• RQ2: To answer the second research question we employed Collaborative Filtering to pre-

dict the social interactions between the users based on 10 different features independently

across all location sources. We found that the most valuable features over all the location-

based knowledge sources were the number of common regions RC(u,v), the Jaccard’s Co-

efficient RJC(u,v), and the total number of regions of two users RT (u,v). Although these

characteristics were similar over all sources, we observed differences in the Information

Gain. Features applied to the Shared Locations seemed best suited for predicting interac-

tions as the Information Gain was higher if compared to Favoured or Monitored Locations.

• RQ3: Considering the Information Gain of features applied to the three location sources, we

already had the premonition that data obtained from a user’s Shared Locations has the high-

est potential to predict interactions. Indeed, a detailed look at the combined feature sets to

predict interactions unveiled that the this dataset worked best among all sources. We believe

that this is for the following two reasons: First, users can share message from everywhere

within the virtual world over their social network and the data collection approach does not

miss any data. Second, users explicitly share locations and places they like and spend time

in. Other users that visit their profiles because they already know each other, see these loca-

tions, and also visit them. This can be seen as an explicit promotion of Shared Locations of

a user. We believe that Monitored Location data performed inferior as we only have a clip-

ping of the actual user’s visited regions due to limited resources. A similar explanation can

be made for the picks data source but here the limiting factor was not the crawling resources

but the restriction to 10 picks per user. Overall, the three different learning algorithms ap-

plied to the datasets were stable and show similar results over all three sources – Logistic

Regression showed the best results whereas Support Vector Machine and Random Forrest

were inferior.

For future work we plan to also incorporate the number of social interactions in our predictive

model to better account for the strengths of social ties between the users. Furthermore, we plan to

account for the variation of time which we did not consider in this paper.
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CHAPTER 6

Prediction of Partnership

This chapter is based on the paper Acquaintance or Partner? Predicting Partner-
ship in Online and Location-based Social Networks published and presented at the
IEEE/ACM International Conference on Advances in Social Networks Analysis and
Mining and Predicting Partnership with Location-based and Online Social Network
Data submitted to the Elsevier Journal of Neurocomputing [Steurer and Trattner,
2013c].

IN this chapter we evaluate the tie-strength between user-pairs – defined as partners or ac-

quaintances – in an online social network and different location-based social networks. We

differentiate between time-dependent and time-independent data sources and compute fea-

tures that measure the relation between users. We apply these features to the data sources and

evaluate them regarding the differences in tie-strength. Based on this analysis we use two ap-

proaches to predict the tie-strength between users. First, we employ various supervised learning

algorithms to predict the tie-strength and in the second step we substantiate these findings using

an unsupervised Collaborative Filtering approach.

In detail the chapter is structured as follows: In Section 6.2 we discuss related work. In Sec-

tion 6.3 we shortly introduce the dataset used for our experiments. In Section 6.4 we outline the

set of features used for our experiments described in Section 6.5. Section 6.6 presents the results

of our study. Finally, Section 6.7 discusses our findings and concludes the chapter.
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Abstract

Existing approaches to predict tie strength between users cover either online social networks or

location-based social networks. However, there are no studies that combine these networks to un-

veil information about the intensity of the social relations between users. In this research paper we

analyze aspects of tie strength -– defined as partners and acquaintances — in an online social net-

work for residents of Second Life supported by location-based data obtained from three different

sources. We compare user pairs according to their partnership and reveal significant differences

between partners and acquaintances. Following these observations, we evaluate the social prox-

imity of users with supervised and unsupervised learning algorithms and identified homophilic

features as most valuable for the prediction of partnership.

6.1. Introduction

Social networks contain useful information about the relation between their participants and the

understanding of their characteristics is a prerequisite to interpret social dynamics [Coleman,

1988]. The advent of online social networks afforded large-scale data and topological network

features were complemented by homophilic features that model the alikeness of users in a net-

work. Nevertheless, the social proximity between users in the real world is not only driven by

online social networks but also by their mobility patterns. The availability of such data changed

with the arrival of GPS aware mobile phones and location-based social network platforms like

FourSquare, and opened new information sources.

As not all links in a network are equal, it is not sufficient to consider them merely as loosely

coupled. Granovetter [1973] introduced the term “tie strength” to model the intensity of a user

relation and proposed the overlap of neighbors derived from the network topology as an indicator.

A considerable body of research investigating tie strength focused on either online social networks

[Gilbert, 2012; Gilbert and Karahalios, 2009; Zheleva et al., 2010] or location-based social net-

works [Wang et al., 2011; Choi et al., 2013; Bischoff, 2012]. However, there are only few studies

that combine both domains [Pan et al., 2011; Volkovich et al., 2012]. To further investigate into

this combination, in this paper we analyze the tie strength between users – defined as partners

and acquaintances - with social proximity features derived from an online social network and

location-based data obtained from three distinct sources: monitored locations, shared locations

and favoured locations. To the best of our knowledge there are neither studies that aim at tie

strength prediction using the combined data from an online domain and a location domain nor

studies that compare different sources of location-based data in terms of the tie strength.
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Since it is nearly impossible to collect large-scale social network and position data of the same

users in a real-world scenario, we obtained datasets for the experiments from the virtual world of

Second Life. Text-based interactions between residents (posts, comments, loves) and profile data

(affiliated groups, specified interests, partnership information) were harvested from a Facebook-

like online social network called “My Second Life”. In addition to text-interaction data, these

profiles also allow users to post pictures with attached location information that are visible to

others, i.e. Shared Locations (see Figure 6.1(a)), and specify the top-10 locations they like to visit,

i.e. Favoured Locations (see Figure 6.1(b)). Additionally, we monitored position and mobility

patterns of users that are attending events in the virtual environment over a period of 12 months.

We computed social proximity features based on user interactions and location information to

model the user relations and answer the following research questions:

• RQ1: To what extent do partners and acquaintances differ from each other with respect to

social proximity features induced from an online social network and three different sources

of location-based data?

• RQ2: How well can we predict the partnership between users with social proximity features

derived from the online social network and the different location-based data sources?

• RQ3: Which social proximity features across all domains offer the highest information gain

and the highest accuracy for the prediction of partnership between users?

• RQ4: To what extent does the available time information in the location-based data support

the computation of social proximity features and affect the prediction of partnership?

Based on these questions, we conducted a number of experiments using statistical methods and

supervised respectively unsupervised learning approaches with the following results: A statistical

analysis of the studied features showed that significant differences existed between partners and

acquaintances. For instance, we discovered that partners were less interested in exploring new

locations and they meet at less frequented locations compared to acquaintances. This goes in line

with the observation that the number of text interactions and the average spatial distance between

users shows signs of intimate contact. The learning algorithms identified time-dependent features,

such as attended events and the spatial distance between users to be most valuable with regard to

partnership prediction. Our experiments further showed that the combination of features from both

domains (=the online social network merged with location-based data) outperformed the features

of either domains.

The major contributions of this paper are as follows: 1) The introduction of a novel large-scale

dataset that incorporates online social network data and three location-based datasets of the same

users. 2) The analysis of a large set of social proximity features from an online social network

supported by location-based datasets to predict the partnership between users.
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6.2. Related Work

Relevant related work in this area can broadly be divided into the following two areas: Predicting

links and predicting tie strength in online and location-based social networks.

6.2.1. Predicting links in Online and Location-based Social Networks

Liben-Nowell and Kleinberg [2002] formalized the problem of predicting new links in a network

and developed an approach based on the topology of the network. They used information about

direct neighbors and employed the ensemble of all paths from one user to another. This approach

yielded in significantly better predictability of new links compared to a random approach. Compu-

tationally efficient methods of this structure-centric approach were evaluated by Fire et al. [2011].

Surprisingly, using only topological features they could successfully find new links that evolve

within two hops in the network. However, topological features can only be applied if the structure

of the actual network is known. If this is not the case, homophilic features such as a metric for the

likeness of two users can be used instead. In their work Thelwall [2009] investigated the social

network of MySpace using homophilic features. Their studies revealed a significant homophily

of origin, marital status and the sexual orientation in existing links. Further they uncovered that

a friendship in an online social network could even reflect an offline friendship. While these pa-

pers were of analytical nature, Mislove et al. [2010] extended the known attributes of a few users

in a network to learn about other users. They used Facebook datasets with educational data and

region information as attributes and found that one could infer the attributes of 80% of users from

the remaining 20% with an accuracy of 80%. Rowe et al. [2012] combined topological features

and homophilic features in the Chinese microblogging service Tencent Weibo. In their work they

predict network links and show that homophilic features do not only significantly outperform a

random baseline but also topological features.

Scientific work for the link prediction problem was mainly done for online social networks but

as more and more position data became available, the combination of both worlds was investi-

gated too. One popular work in this respect is for instance a study of Cranshaw et al. [2010]

who examined data of the Facebook application Locaccino and analyzed the offline mobility data

of 489 users. They used the position data, separated it into two categories with topological and

homophilic information and tried to predict the online links with the position information. Ho-

mophilic data obtained from the location was identified as valuable information but in combina-

tion with topological features it performed even better. Scellato et al. [2011b,a] also revealed the

importance of place related features and identified 30% of new links in the Gowalla network as

place friends and 40% of all links within a range of 100 kilometers. Further they uncovered a
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weak correlation between the number of friends and their spatial distance. Noulas et al. [2012]

used this fact to predict venues of users in Gowalla network. They also achieved best results when

combining information from social ties and visited venues.

6.2.2. Predicting Tie Strength in Online and Location-based Social Networks

Not all links between nodes in a network are equal and Granovetter [1973] tightened the definition

by introducing the tie strength of connections. Studies by Gilbert and Karahalios [2009]; Gilbert

[2012] used Facebook to investigate tie strength between online friends. They combined com-

munication features, topological information and the social distance, and correlated it with 2,000

users who specified their real friends in interviews and questionnaires. They could predict differ-

ent tie strength with an accuracy of 85% and notably, they were even able to transfer information

about the tie strength of two users from one social network to the other, i.e. from Facebook to

Twitter.

While the tie strength between users in online social networks was extensively investigated,

few studies combined offline networks and tie strength. The first to mention study is by Wang

et al. [2011] who collected the mobile phone data of 6 Million users and measured the tie strength

according to the number of calls between user pairs. They found that although new links could

be predicted via mobility measures alone, combining them with topological information in the

network yielded even better results. With regard to tie strength, they found that its correlation

with the user mobility traces and social proximity was weak. This is in agreement with Choi et al.

[2013] who analyzed communication patterns and indoor mobility tracking of 22 office mates. To

define tie strength, the users formal and informal contacts were differentiated in their study. Via

a supervised learning approach, they could identify links with an accuracy of 85%. Finally, the

last to mention paper in this respect is the work of Bischoff [2012]. In her work the author studied

the social network Last.fm in respect to the geo-location of user and attended events. Tie strength

was defined as the number of commonly attended events, and online communications and music

tastes were used to predict it. The results were in agreement with previous works, confirming a

correlation between tie strength and data from the online social network.

6.3. Datasets

We conducted our experiments using online social network data obtained from My Second Life∗

and location-based data from three different sources: 1) Shared Locations, 2) Favoured Locations,

∗http://my.secondlife.com/
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(a) Text-Interactions and Shared Locations. (b) Favoured Locations.

Figure 6.1.: Users of Second Life can share text messages (posts, comments, and loves), loca-
tion information using snapshots, and up to 10 so-called “Picks” that represent their
favourite locations in Second Life.

and 3) Monitored Locations. There were several reasons for choosing Second Life as a fundament

for our experiments: First, unlike networks such as Facebook, My Second Life does not restrict

extensive crawling of the users profiles. Second, in contrast to real-world online social networks,

most of the profiles in My Second Life are public, i.e. a large fraction of the network can be

mined. Third, it is possible to automatically harvest location-based datasets of the same users

from different sources at a large scale. In this section we describe the data collection process in

order to conduct the experiments (see [Steurer et al., 2012; Steurer and Trattner, 2013b,c]).

6.3.1. Online Social Network Dataset

In 2007 Linden Labs introduced the online social network platform My Second Life which is

similar to Facebook or Google+. The target group are residents of Second Life to share text

messages, comments or loves (similar to Facebook’s “Likes”). Users of Second Life automatically

have a profile without additional registration and by default these profiles are opened for public

access. In contrast to Facebook, there is no mutual friendship confirmation between users and

every user can post onto the Feed of each other (similarly to Facebook’s “Wall”) without their

explicit permission. Besides the interactions with others, users can enhance their profiles and

describe themselves with a biography, interests, and their partnership status. Users can even marry

in Second Life but a wedding is not free of charge and costs 10 Linden Dollars (Linden Dollar is

the virtual currency used in Second Life – 1 US Dollar equals approximately 258 Linden Dollars).

Though, nothing is forever and cancelling this partnership costs 25 Linden Dollars.

To harvest this data, we attempted to download the interaction data and profile information of
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residents of Second Life with groups, interests, and partner. We extracted the user names of the

interaction partners. Overall, we downloaded the profile data of 152,509 users with interactions

on their walls and identified 1,084,002 postings, 459,734 comments, 1,631,568 loves and 285,528

unique groups. On average users joined 15.61 groups specified 6.5 interests. 39,936 users were

in a partnership which resulted in 18,468 couples in the whole dataset. Formally, this network

is defined as GO〈VO,EO〉, with VO representing the users with interactions on their Feed, and

e = (u,v) ∈ EO if user u interacted with user v (posting, comment, love). In Table 6.1 we present

the basic properties of the network.

6.3.2. Location-Based Datasets

For the prediction task of a user-pair’s relationship we employed location information of users

obtained from three different location sources. Shared Locations and Favoured Locations could

be extracted from the user profiles on the web-platform My Second Life, whereas Monitored

Locations were collected directly in Second Life.

Shared Locations: Besides text-interactions, users can also share pictures, i.e. snapshots, of the

virtual world on the Web-platform of My Second Life. Similar to applications like “FourSquare”

or “Flickr” these pictures can be enriched with position information of virtual places. The position

information consists of a region name (Second Life is parcelled into squared regions with 256x256

meters) and the accurate coordinates within this region. An example of a snapshot with attached

position information can be found in Figure 6.1(a) with a check-in at region “Shermerville NW”

– the actual coordinates within this regions are hidden in the meta-data. One can see that the time

stamp of the actual check-in in this picture is not accurate as it is stated as “1 day ago”. The older

a posting is, the imprecisely this time stamp is, e.g. “a few days ago”, “about 2 months ago”, or

“over a year ago”. A deeper inspection of these pictures reveals that they are stored in Amazon’s

CloudFront network which is a web service to “distribute content to users with low latency, high

data transfer speeds, and no commitments”†. The response of a simple HTTP Head request to the

URI of the shared pictures unveils information about the storage location, the cache-control, and

a time-stamp called “last-modified”. Surprisingly, this time stamp correlates with the displayed

inaccurate time stamp in the snapshot and turned out as the actual time stamp when the picture was

shared. Using this method we could overall harvest 496,912 snapshots with accurate time stamps

in 13,583 unique regions from 45,835 user profiles.

Similar to the online social network, we create a network using the time and place information

of the shared snapshots. Whenever two users shared a picture with location information from a

certain inworld location concurrently, we assume that they were somehow related to each other.

†aws.amazon.com/cloudfront/
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Figure 6.2.: The number of user observations in the three different location-based sources.

Hence, we create a network where users are represented as nodes and two users have an edge

between them if they shared a picture from the same region within a time-interval of 2 hours. This

approach yields in a shared locations network GS〈VS,ES〉 with 13,099 users connected by 23,251

edges (see Table 6.1 for further details).

Favoured Locations: Users of Second Life can specify up to 10 so-called “Picks” on their web

profile that represent their favourite locations in Second Life. Besides the general description of

the location and the accurate position (again with region name and coordinates within this region),

users can enhance these picks with a picture and a personal text note. These favoured locations

are visible to other users and hence they can be easily accessed with a Web browser and a Web

crawler. Using this crawler, we automatically collected 191,610 profiles sharing 811,386 locations

in 25,311 unique regions. Due to the nature of this kind of location data we are not able to fetch

any time information from this source as it simply does not exist. As a consequence, it is further

not possible to create a network structure of users as described in the previous section.

Monitored Locations: Similar to the real life, residents of Second Life can host events and

announce them to the public‡. Users log into the Second Life Web page and create new events

with name, description, location and start time and assign them to one out of ten predefined

categories, e.g. Nightlife or Live Music. Further, events have three maturity ratings that depend on

the rating of the location: General without any age restrictions, Mature with users at least 16 years

old, and finally Adult accessible only for grown-up users.

‡http://secondlife.com/community/events/
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One of the many advantages of using Second Life as testbed for our experiments is the fact that

all events are announced to the general public on the Second Life website – called the Second

Life event calendar. In order to harvest this kind of data we implemented a simple Web-based

crawler which collected all relevant event information on a daily basis. Starting in March 2012,

we collected 262,234 events over a period of 12 months [Steurer et al., 2012].

To participate in the virtual world, users register with Second Life, download the client software

from Linden Labs and log in. Among other third party clients, libopenmetaverse§ is an open-

source client for the command-line to enter the environment. It can be run as a server process

and the functionality can be easily enhanced due to the modular design. We added new capabili-

ties to automatically move around in the virtual world and to collect information of surrounding

users. These user-bots were controlled by a centralized server-instance that sent them to places

with ongoing events. On average a bot needed 1 minute to move to a new location and collect the

position data of surrounding users. To speed up the collection process and to visit more events

concurrently, we employed a pool of 15 bots that alternately visited events. The collected infor-

mation comprised user names, accurate position of the observed users, and a time stamp. Overall,

we collected nearly 19 million data samples of 410,619 different users in 4,105 different locations

from in-world Second Life.

The naive approach to create a network out of this huge amount of data would have been to

inter-link two users with each other whenever they met. Since this would yield in a network with

billions of edges, we applied a simple heuristic to prune our data. In particular, we only inter-

linked two users with each other in the network if they were seen concurrently in the same region

on two different days. With this simple approach at hand we were able to reduce the number of

edges to 4,473,739. Formally we define this network as graph GM〈VM,EM〉 with VM representing

the users in the network and e = (u,v) ∈ EM if users u and v were concurrently observed in the

same region on two different days. In Table 6.1 we present the basic properties of the network.

Figure 6.2 depicts the number of observations of the collected users for the three location

sources. Both, Shared- and Monitored Locations show power law qualities which is in contrast to

the Favored Locations due to Linden’s limitations of 10 picks per user.

6.4. Feature Description

As already outlined in the introductory part of this paper, it is our aim to study the extent to which

partnership between users can be predicted based on data from two different domains – online

§http://lib.openmetaverse.org/
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Table 6.1.: Basic metrics of the used networks and their combination used for the experiments.
Name Online GO Monitored GM Shared GS Combined G

Type directed undirected undirected directed
#Nodes 152,509 156,844 13,099 44,603
#Edges 270,567 4,473,739 23,251 1,419,543
Degree 3.54 57.05 3.55 63.65

social network data and location-based data. In this section we induce the features to model the

relationship between users for these sets of data [Rowe et al., 2012; Steurer and Trattner, 2013b,a].

6.4.1. Online Social Network Features

Based on the interactions between users we created a social network, where users participating

in this network were represented as nodes and the interactions between these users were mod-

elled by edges. Using the structural information of this network and the information about the

group affiliation the the specified interests we can compute topological and homophilic features as

follows:

Topological Features We defined the neighbors of a user u in the network with respect to

the communication direction: Neighbors that received a message from user u were denoted as

Γ(u)+ = {v | (u,v)∈EO} and neighbors that send messages to user u as Γ(u)−= {v | (v,u)∈EO}.
The first and most simple measure was the number of common friends a pair of users had. Due to

the different definitions of neighbors, we defined the common outgoing neighbors as O+
CN(u,v) =

|Γ+(u)∩ Γ+(v)| and the common incoming neighbors as O−CN(u,v) = |Γ−(u)∩ Γ−(v)|. Similar

to the common neighbors a pair of users has, we can also define the total number of neighbors

a user-pair has. Analogous, we define the total number of outgoing neighbors as O+
T (u,v) =

|Γ+(u)∪Γ+(v)| and the total number of incoming neighbors as O−CN(u,v) = |Γ−(u)∩Γ−(v)|. A

simple combination of these two features is Jaccard’s Coefficient and can be seen as a measure for

exclusiveness of this relation. Again, we split it into two features O+
JC(u,v) = |Γ+(u)∩Γ+(v)|

|Γ+(u)∪Γ+(v)| and

O−JC(u,v) = |Γ−(u)∩Γ−(v)|
|Γ−(u)∪Γ−(v)| .

In their paper Cheng et al. [2011] investigate in the reciprocity of user communication in a di-

rected network and to take this bidirectional communication into account, we computed OR(u,v) =

1 if (u,v) ∈ EO, (v,u) ∈ EO and OR(u,v) = 0 if (u,v) ∈ EO, (v,u) /∈ EO. Furthermore they pro-

posed a modification to the Adamic-Adar measure for directed networks which can be written as

O−AA(u,v) = ∑
z∈Γ−(u)∩Γ−(v)

1
log(|Γ−(z)|) .
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“Preferential Attachment Score” takes the level of activity into account and due to the directed

structure used O+
PS(u,v) = |Γ+(u)| · |Γ+(v)|, and one for received-message neighbors O−PS(u,v) =

|Γ−(u)| · |Γ−(v)|.

Homophilic Features In contrast to the topological features in the previous section, homophilic

features directly represent the alikeness of user-pairs. These features do not dependent on their

direct neighbors in the network or the structure of the network per se because they are only based

on properties of either nodes. These features have been identified as valuable resource for link

prediction in several studies [Thelwall, 2009; Mislove et al., 2010; Scellato et al., 2011a].

Users of Second Life can join groups and specify interests on their profiles to state their opin-

ions. The structure of the data is quite similar for interests and groups, so we could apply the same

mechanisms to indicate the similarity between a pair of users. Formally, we defined the groups of a

user u as ∆(u) and the specified interests as Ψ(u). For each pair of users in the network we defined

the common interests and the common groups they share: GC(u,v) = |∆(u)∩∆(v)|, respectively

IC(u,v) = |Ψ(u)∩Ψ(v)|. Further, we computed Jaccard’s Coefficient to take the total number

of groups and interests into account: GJC(u,v) = |∆(u)∩∆(v)|
|∆(u)∪∆(v)| , respectively IJC(u,v) = |Ψ(u)∩Ψ(v)|

|Ψ(u)∪Ψ(v)| .

Users can share text messages, comments, or loves with others and the intensity of this commu-

nication could be an indicator of their partnership. As a consequence we measured the number of

occurrences for each type of interaction and summed it up for the overall number of interactions

between users. We defined PP(u,v) as the number of text messages, PC(u,v) as the number of

comments, PL(u,v) as the number of loves, and PI(u,v) = PP(u,v) + PC(u,v) + PL(u,v) as the

number of interactions between user u and v.

Another measure for the proximity of users is the average message length of all interactions

between them. Hence, we computed the average message length PA(u,v) as concatenation of all

postings and comments between user u and user v and divided it by their quantity.

6.4.2. Location-Based Features

In Section 6.3.2 we have introduced the three different sets of location information. Based on

the obtained location data of users we can compute features that are either time-independent, i.e.

which places users visited, or time-dependent, i.e. when users visited which places.

6.4.2.1. Time-Independent Features

In this feature set we consider the places users visited without respect to time and induced overall

10 different features to measure time-independent relations between them [Cranshaw et al., 2010;

111



Chapter 6. Prediction of Partnership

Steurer et al., 2013; Steurer and Trattner, 2013c].

For the reminder of this paper the sequence of observations O(u) of a user u are denoted as

1) Os(u) for Shared Location, 2) O f (u) for Favoured Locations, and 3) Om(u) for Monitored

Locations. In contrast, the set of locations where a user was observed is defined as P(u) = {ρ ∈
O(u)}. The actual features we used in our experiments are as follows: The simplest metric to

determine the homophily between two users u and v is the number of regions they have visited

in common. In particular this can be computed as RC(u,v) = |P(u)∩P(v)|. Analogous to the

common regions, one can also define the regions two users have in total and use it as a homophilic

feature RT (u,v) = |P(u)∪P(v)|. A combination of the common regions RC(u,v) of two users and

their total regions RT (u,v) is the overlap of locations which is defined as the fraction of common

locations and locations visited by both users [Cranshaw et al., 2010]. This feature is also known

as Jaccard’s Coefficient RJC(u,v) = |P(u)∩P(v)|
|P(u)∪P(v)| .

A feature taken from Cranshaw et al. [2010] is the location observations that is similar to the

Jaccard’s Coefficient between two users. It is computed as the number of locations two users have

in common divided by the sum of locations either user have RO(u,v) = |P(u)∩P(v)|
|P(u)|+|P(v)| .

The following three features were also first introduced by Cranshaw et al. [2010] and try model

the location diversity of regions two users visited in common. The first and most simple feature to

include the popularity of a region is the overall number of observations of unique users at a certain

region. According to this we calculated the mean user-count RU (u,v) of all regions two users

visited in common P(u)∩P(v). The second feature taken from Cranshaw et al. [2010] is similar

to the previous feature of counting users at a certain location. We computed the frequency defined

as the overall observations of users at a certain location. Again we calculated the mean frequency

RF(u,v) of the frequency of regions two users u and v have in common. A refinement of the two

previous features, is the entropy that also takes the probabilities of observations at a location L

into account. The probability that a user has visited a certain region is defined as the number of

observations of the actual users divided by the overall number of observations at this regions. Let

Ou,L be the observations of a user u at a location L and OL be all observations at the location L. The

probability can then be computed as probL(u) =
|Ou,L|
|OL| . Based on this we can compute the entropy

of a certain location L as EL =−∑u∈UL PL(u) · log(PL(u)) with UL representing all users observed

a the location L. With this definition we computed the mean entropy RE(u,v) of the locations two

users visited in common.

6.4.2.2. Time-Dependent Features

For the two location sources of Shared- and Monitored Locations we collected the actual locations

users visited but also the accurate time and date information of these visits. Using this additional
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information we could create two location-based social networks GS and GM formed upon the co-

occurrences of users. Hence, we can employ the structure of the networks to compute topological

features and the actual position and time information of users to compute homophilic features.

Topological Features Based on the structure of location-based social networks we can com-

pute undirected features that are similar to the topological features in the online social network.

Users in online networks with small-world characteristics are clustered locally and the more neigh-

bors two users have in common, the closer they are connected. With the formal definition of

the neighbors of a node u ∈ VL as Θ(u) = {v | (u,v) ∈ EL} this feature could be computed as

LCN(u,v) = |Θ(u)∩Θ(v)|. This measure indicated the overlap of neighbors regardless of the

total number of neighbors the users have. This total number of neighbors two users have can be

computed as LT (u,v) = |Θ(u)∪Θ(v)| As a combination of both metrics, we computed Jaccard’s

Coefficient as the number of common neighbors divided by the total number of neighbors of two

users: LJC(u,v) = |Θ(u)∩Θ(v)|
|Θ(u)∪Θ(v)| .

A refinement of this metric was proposed by Adamic and Adar [2003]. As not all neighbors in

a network have the same tie strength, they added weights to the links and computed the relation

between two users as LAA(u,v) = ∑
z∈Θ(u)∩Θ(v)

1
log(|Θ(z)|) .

Another feature to measure the structural overlap of two users was introduced by Cranshaw et al.

[2010]. They introduced the “neigbourhood overlap” as the number of common neighbors divided

by the sum of neighbors of either users. Formally, this can be written as LNO(u,v) = |Θ(u)∩Θ(v)|
|Θ(u)|+|Θ(v)| .

Active users within a network are more likely to form new interactions than users with less

activity. “Preferential Attachment Score” was first mention by Barabási and Albert [1999] and is

the product of the sum of neighbors of either users: LPA(u,v) = |Θ(u)| · |Θ(v)|.

Homophilic Features Previously mentioned topological features only depend on the actual net-

work structure. In contrast, this is not possible for homophilic features as they depend on the

available information which is different for Shared- and Monitored Locations.

Shared Locations: For this feature set we can only compute the number of days two users

have seen each other, i.e. the metric AS(u,v) represents the number of days where a user-pair

concurrently (within 2 hours) shared pictures from the same region.

Monitored Locations: As outlined before, we implemented user-bots that monitored the present

users at event sites. Using the position data of users, respectively the location and time span

of events, we identified all events a user u visited over a year: Π(u) = {e1, . . . ,en} where ei

represented the i’th event out of n visited. With this simple metric we computed the number
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of events two users attended in common EC = |Π(u)∩Π(v)|, the total number of events ET =

|Π(u)∪Π(v)|, and finally their fraction EJC = |Π(u)∩Π(v)|
|Π(u)∪Π(v)| .

A refinement of this measure also takes the trajectory of the visited events into account. For

each user pair (u,v) we created two vectors~ε(u),~ε(v) that represent their totally visited events.

The j’th component of each vector~ε was set to 1 if the user visited the actual event and was set

to 0 if it did not. Then we computed the cosine similarity of these two vectors which is formally

defined as ECS =
~ε(u)·~ε(v)
||~ε(u)||·||~ε(v)|| where ||~ε|| represented the Euclidean length of the vector.

Similar measures can be based on the categories and the maturity rating of events. Events are

assigned to different categories and for each user u we created a vector~δ of length, where every

item represented the number of events attended in a category. We computed the cosine similarity

of two users’ vectors~δ(u) and~δ(v) as ECCos =
~δ(u)·~δ(v)
||~δ(u)||·||~δ(v)||

. The same measure was applied to

the maturity rating of events: EMCos =
~γ(u)·~γ(v)
||~γ(u)||·||~γ(v)|| with~γ representing number of events a users

visited with the according maturity level.

Finally, we present two features that reflected the user’s activity. First, the already known num-

ber of days two users were concurrently seen in the same region AS(u,v) and second, we defined

the average distance between them: with the accurate position of every user, we computed the

Euclidean distance between them and averaged over all observations to get the spatial proximity

AD(u,v) of the users u and v.

6.5. Experimental Setup

In the previous section we described different features that depend on the domain, i.e. online

social network or location-based datasets, and the availability of time information. In this section

we present the design of the experiments to answer the research questions stated in Section 6.1.

In Section 6.3.1, we created a network GO〈VO,EO〉 from the social text-interactions obtained

from the online social network of Second Life . We enrich the nodes VO of this network with

groups-, interests- and interaction information of users and compute the topological and ho-

mophilic features as described in Section 6.4.1. Then we add time-independent location informa-

tion from the Shared Locations, Picked Locations, and Monitored Locations (see Section 6.3.2) to

this network and compute the according time-independent features as presented in Section 6.4.2.

Further, we compute topological and homophilic time-dependent features (Section 6.4.2) for the

networks GS〈VS,ES〉 based on the Shared Locations and GM〈VM,EM〉 based on the Monitored Lo-

cations and again add the derived data to the online social network.

As already outlined, we obtained data from two different domains: text-interaction data for the
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online social network, the Shared Locations and the Favoured Locations of users from their pro-

file pages on the Web-platform My Second Life and in contrast, the Monitored Locations dataset

directly from inworld Second Life. Hence, the data origins from different domains and as a con-

sequence, we create the overlap of users in both sources. In other words: for the experiments we

only considered users with data available in both domains: the profile pages on the Web-platform

and inworld Second Life. The overall number of users in this new network G〈V ,E〉 was 44,603

and the number of edges was 1,419,543 with 1,584 user pairs in a partnership (see Table 6.1 for

basic characteristics of the network).

To actually answer the research questions, we describe the analysis to compare partners and

acquaintances upon their features to determine significant differences. Then we show supervised

and unsupervised learning approaches to evaluate these features regarding their predictability of

partnership.

6.5.1. Comparing Partners and Acquaintances

To answer the first research question, we analyzed the similarities and dissimilarities between

partners and acquaintances with respect to the features described in Section 6.4. We split the user

pairs into balanced sets of partners and acquaintances, and computed mean values and standard

errors of all features in either sets separately. The one-sampled Kolmogorov-Smirnov and the

Anderson-Darling test showed that none of the distributions of the features were from the family

of normal distribution. As a consequence and similarly to Bischoff [2012], we compared the

variances of all features between partners and acquaintances using a Levene test (p < 0.01). To

test significant differences of mean values, we employed Mann-Whitney-Wilcoxon test in case of

equal variances and a two-sided Kolmogorov-Smirnov test in case of unequal variances.

6.5.2. Predicting Partnership

Residents of Second Life can marry their friends and the partnership information with the partner’s

name appears on their profiles. To answer the remaining research questions, we employed the

social proximity features to predict whether a user pair is in a partnership or not.

Basically, we used two different techniques:

Predicting Partnership with Supervised Learning In this approach we applied different learn-

ing algorithms onto a training set to identify characteristics of partnership and then verified this

in a test set. To do so, we reduced the prediction problem to a binary classification problem by

selecting 1,500 partners and acquaintances from the network whose proximity features were fed
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into the WEKA machine learning suite [Hall et al., 2009]. To validate the obtained results we used

a ten-fold cross validation approach.

Predicting Partnership with Unsupervised Learning Due to the balanced data set of partners

and acquaintances, the binary classification problem has a baseline of 0.5 when randomly guess-

ing. However, to better estimation the performance and importance of the supervised learning

algorithm features, it is recommended to compare the results with an unsupervised learning ap-

proach [Bischoff, 2012]. For that purpose, we used a simple Collaborative Filtering technique

that was first proposed by Liben-Nowell and Kleinberg [2002]: for every user in a partnership,

we rank all acquaintances according to the features described in Section 6.4. Next, we ranked

potential partners for every feature separately and computed the success rate of finding the partner

within a results list of length k.

6.6. Results

In this section we present the results of the conducted experiments.

6.6.1. Comparing Partners and Acquaintances

We computed the mean values and standard errors for all features of partners and acquaintances

and used the Mann-Whitney-Wilcoxon test, respectively Kolmogorov-Smirnov test to determine

whether they differ significantly. In Table 6.2, 6.3 and 6.4 we present the differences between

partners and acquaintances for features from the online social network and the location-based data

sources.

6.6.1.1. Online Social Network Features

At first glance, Table 6.2 reveals that partners were less connected in the network than acquain-

tances. In particular, we can see that acquaintances had approximately 11 common interaction

partners O+
CN(u,v), O−CN(u,v) whereas partners had about 1 partner in common. Similar obser-

vations were made for Jaccard’s Coefficient O+
JC(u,v), O−JC(u,v), Adamic-Adar OAA(u,v), and

Preferential Attachment Score O+
PS(u,v), O−PS(u,v). For the communication direction ORE(u,v)

we examined bidirectional communication in nearly 50% of all partnerships but in only 30% of

all acquaintances. All topological features were significantly different.

Looking at the homophilic features, partners had on average 2.30 common groups GC(u,v)

versus 0.50 for acquaintances. This goes in line with the Jaccard’s Coefficient GJC(u,v) that also
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Table 6.2.: The mean values and standard errors for topological (white background) and ho-
mophilic (grey background) features in the online social network. (∗∗∗=significant at
level 0.001).

Features Partners Acquaintances
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OAA(u,v)∗∗∗ 0.81±0.10 6.30±0.07
O+

CN(u,v)∗∗∗ 1.12±0.18 11.70±0.13
O−CN(u,v)∗∗∗ 1.08±0.23 11.93±0.13
O+

JC(u,v)∗∗∗ 0.06±0.00 0.05±0.00
O−JC(u,v)∗∗∗ 0.03±0.00 0.05±0.00
O+

PS(u,v)∗∗∗ 367.21±107.91 9854.15±132.40
O−PS(u,v)∗∗∗ 361.17±107.91 6921.79±115.11
ORE(u,v)∗∗∗ 0.49±0.01 0.29±0.00
O+

T (u,v)∗∗∗ 10.62±0.98 119.49±0.79
O−T (u,v)∗∗∗ 9.66±1.04 141.18±1.08
GC(u,v)∗∗∗ 2.30±0.09 0.50±0.01
GJC(u,v)∗∗∗ 0.06±0.00 0.01±0.00
GT (u,v)∗∗∗ 20.46±0.43 28.44±0.09
IC(u,v) 0.05±0.01 0.06±0.00
IJC(u,v) 0.00±0.00 0.00±0.00
IT (u,v)∗∗∗ 3.94±0.15 9.02±0.05
PA(u,v)∗∗∗ 27.25±0.67 18.53±0.13
PC(u,v)∗∗∗ 5.00±0.50 2.02±0.07
PI(u,v)∗∗∗ 19.40±1.81 13.11±0.29
PL(u,v)∗∗∗ 12.33±1.35 10.47±0.24
PP(u,v)∗∗∗ 2.07±0.13 0.62±0.06

differs significantly. The total number of groups two users joined was significantly different as well

but this time partners joined on average less total groups than acquaintances (20.46 vs. 28.44). In

contrast to the significant differences for group-based features, only the total number of interests

IT (u,v) showed significant differences for interest-based features. Common interests IC(u,v) and

Jaccard’s Coefficient were not meaningful due to small values and insignificant differences.

Although the topological features would let us assume that partners did not actively participate

in the online social network, the interaction data drew a different picture: on average partners

had 19.40 interactions PI(u,v) which was significantly more than acquaintances with 13.11. This

significant difference was observed for postings, comments, and loves as well. Accordingly, we

noticed an average message length PA(u,v) of 27.25 characters per message for partners but only

18.53 characters for acquaintances.
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Table 6.3.: The mean values and standard errors for time-independent features based on the three
different location sources. (∗=significant at level 0.1 and ∗∗∗=significant at level 0.001).

Features Partners Acquaintances
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RC(u,v)∗∗∗ 0.50±0.05 0.46±0.01
RU (u,v)∗ 33.92±1.62 29.12±0.18
RE(u,v) 0.90±0.02 0.88±0.00
RF(u,v)∗ 118.14±5.93 115.55±0.67
RLO(u,v)∗ 0.03±0.00 0.01±0.00
RO(u,v)∗ 0.02±0.00 0.01±0.00
RT (u,v)∗∗∗ 6.08±0.33 35.59±0.22

Fa
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ed

RC(u,v)∗∗∗ 0.57±0.02 0.08±0.00
RU (u,v)∗∗∗ 44.26±1.76 48.17±0.76
RE(u,v)∗∗∗ 1.07±0.01 1.14±0.01
RF(u,v)∗∗∗ 55.69±1.99 61.09±0.88
RLO(u,v)∗∗∗ 0.12±0.00 0.01±0.00
RO(u,v)∗∗∗ 0.08±0.00 0.01±0.00
RT (u,v)∗∗∗ 4.85±0.08 5.31±0.02
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RC(u,v)∗∗∗ 3.99±0.10 0.98±0.01
RU (u,v)∗∗∗ 1319.20±18.33 1382.99±4.28
RE(u,v)∗∗∗ 2.29±0.01 2.35±0.00
RF(u,v)∗∗∗ 5217.94±81.61 5545.56±19.42
RLO(u,v)∗∗∗ 0.44±0.01 0.08±0.00
RO(u,v)∗∗∗ 0.28±0.00 0.06±0.00
RT (u,v)∗∗∗ 10.53±0.21 15.47±0.06

6.6.1.2. Location-Based Social Network Features

Time-Independent Features Table 6.3 shows a detailed overview of the differences between

partners and acquaintances for the time-independent features applied to the three different location

sources.

Shared Locations: Among all features only the number of common- and total locations showed

differences at a significance level of p < 0.001. Partners visited more common locations RC(u,v)

(0.50 vs. 0.46) but had on average less total locations RT (u,v) (6.08 vs. 35.59). For the remaining

features we could only identify negligible differences between partners and acquaintances.

Favoured Locations: All features based on this dataset showed significant differences. User-

pairs in a partnership had on average more common locations RC(u,v) with 0.57 vs. 0.08 but had

less total locations RT (u,v) with 4.85 vs. 5.31. The three features that consider the characteristics

of places two users visited in common (Entropy RE(u,v), User Count RU (u,v), and Frequency
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Table 6.4.: The mean values and standard errors for time-dependent topological (white back-
ground) and homophilic (grey background) features of the Shared- and Monitored
dataset. (∗∗=significant at level 0.01 and ∗∗∗=significant at level 0.001).

Features Partners Acquaintances
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LAA(u,v) 1.11±0.13 1.73±0.05
LCN(u,v) 0.11±0.02 0.22±0.01
LJC(u,v) 0.01±0.00 0.00±0.00
LNO(u,v)∗∗∗ 0.07±0.01 0.03±0.00
LPS(u,v)∗∗ 6.52±1.66 33.94±1.36
LT (u,v)∗∗ 0.96±0.12 1.67±0.05
AS(u,v∗∗∗ 0.37±0.05 0.09±0.00

M
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d

LAA(u,v)∗∗∗ 77.87±6.03 181.24±3.15
LCN(u,v)∗∗∗ 52.30±5.48 53.33±1.19
LJC(u,v)∗∗∗ 0.29±0.01 0.17±0.00
LNO(u,v)∗∗∗ 0.81±0.00 0.87±0.00
LPS(u,v)∗∗∗ 92324.84±42759.98 82591.90±3771.87
LT (u,v)∗∗∗ 153.51±9.33 355.12±5.62
ECCos(u,v)∗∗∗ 0.82±0.01 0.66±0.00
EC(u,v)∗∗∗ 9.51±0.85 1.00±0.02
ECos(u,v)∗∗∗ 0.43±0.01 0.04±0.00
EJC(u,v)∗∗∗ 0.31±0.01 0.02±0.00
EMCos(u,v)∗∗∗ 0.76±0.01 0.19±0.00
ET (u,v)∗∗∗ 32.22±1.60 41.45±0.27
AS(u,v)∗∗∗ 11.54±0.44 6.74±0.11
AD(u,v)∗∗∗ 5.02±0.27 11.70±0.22

RF(u,v)) showed significant differences as well. On average all three values were smaller for

partners if compared to acquaintances.

Monitored Locations: The overlap of visited regions RC(u,v) with 3.99 was significantly higher

than the according feature of acquaintances with 0.98 but again, the opposite was observed for

the total number of regions RT (u,v) (10.53 vs. 15.47). Similar to Favoured Locations, the places

partners visited in common had significantly less entropy RE(u,v), a lesser user frequency RF(u,v)

and user count RU (u,v).

Time-Dependent Features As depicted in Table 6.4, we could only compute these features

for Shared Locations and Monitored Locations as there is not time-information available in the

Favoured Locations dataset.

Shared Locations: For the topological features in this dataset we only observed a significant

difference of p < 0.001 for the feature considering the neighbourhood overlap LNO(u,v) were
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partners had a higher overlap than acquaintances. Although the values were less significant, we

observed a lower preferential attachment score LPS(u,v) and a lower total number of neighbours

LT (u,v) for partners. The remaining features did not show any significant differences. The only

homophilic feature in this dataset indicates that partners met on 0.37 days whereas acquaintances

only met on 0.09 day which is a significant difference.

Monitored Locations: We observed over 52 common neighbors LCN(u,v) for partners and over

53 common neighbors for acquaintances with a significant difference. The results of the Adamic-

Adar measure LAA(u,v) and Preferential Attachment Score LPS(u,v) go in line but Jaccard’s Co-

efficient LJC(u,v) was slightly higher for partners. For the homophilic features we discovered a

significantly higher number of total events ET (u,v) for acquaintances if compared to partners. In

contrast, partners did not only attend more common events EC(u,v), these events also showed a

higher similarity in sense of categories ECCos(u,v) and maturity EMCos(u,v). This results can be

compared to the actual days user-pairs met: partners have seen each other on over 11 days com-

pared to over 6 days of acquaintances and during their co-occurrence they had a significantly less

spatial distance (5.02 vs. 11.70 meter) between them.

6.6.2. Predicting Partnership with Supervised Learning

We utilized popular supervised learning approaches such as J.48, Logistic Regression and Support

Vector Machine (SVM) to predict partnership and used the area under the ROC curve (AUC) as

our main evaluation metric [Ling et al., 2003; Huang and Ling, 2005]. The detailed results are

depicted in Table 6.5 and can be described as follow:

Online Social Network In this dataset, we combined features that are based on the structure of

the network, i.e. topological features, and on the other hand side we combined features that mea-

sure the alikeness of two users, i.e. homophilic features. Finally, we combined the two sets and

determined the overall predictive power of online social network features. With Logistic Regres-

sion, topological features alone could predict the partnership between two users with 0.836 AUC

and the homophilic features could predict it with 0.787 AUC. The combination of these two fea-

ture sets surpassed the prediction of either feature sets and predicted partnership with 0.864 AUC.

Overall, Logistic Regression outperformed J.48 and the SVM in all datasets but the characteristics

of the prediction were stable among all algorithms.

Location-based Datasets In these datasets, Logistic Regression also performed best for time-

independent features if compared to the remaining algorithms. We could predict the partnership

120



6.6. Results

Table 6.5.: Area under the ROC curve (AUC) to predict partnership with different supervised
learning algorithms using feature sets from the online social network and three dif-
ferent sources of location.

Feature Sets Logistic J.48 SVM

Online Social Network
Topological 0.836 0.823 0.647
Homophilic 0.787 0.759 0.689
Combined 0.864 0.814 0.730

Location-based Datasets

Time
Independent

Shared 0.771 0.737 0.623
Favoured 0.705 0.648 0.659
Monitored 0.901 0.846 0.831

Time
Dependent

Shared 0.524 0.523 0.505
Favoured − − −
Monitored 0.894 0.860 0.801

between two users correctly with an AUC of 0.771 for Shared Locations, 0.901 for Monitored Lo-

cations, and 0.705 for Favoured Locations using Logistic Regression. The application of learning

algorithms to the time-dependent Shared Locations dataset showed poor prediction results with an

AUC around 0.52 which is closed to flipping a coin. In contrast, the combination of topological

features (0.728 AUC) and homophilic features (0.873 AUC) in the Monitored Locations dataset

resulted in an AUC of 0.894 for Logistic Regression. Again, Logistic Regression outperformed

J.48 and SVM although the results were stable among all three algorithms.

Combined Datasets Besides the in-depth analysis of the two domains, we also combined avail-

able features from different source to predict partnership. As depicted in Table 6.6 the results

of all three algorithms were stable and again, Logistic Regression performed best among all of

them. In all cases the combination of features from the online social network and a location-based

dataset outperformed either sources. The combination of features from the online social network

and features from the Monitored Location dataset performed best and could predict a partnership

between users with 0.939 AUC.

As Logistic Regression performed best among all datasets obtained from the online social net-

work and the location-based datasets we use this algorithm to determined the usefulness of each

single feature alone. Additionally, we determined the information gain of the single features using

WEKA’s attribute evaluation algorithm. The results of these computations are presented in Ta-
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Table 6.6.: Predicting partnership with supervised learning algorithms based on combined feature
sets from the online social network and the three different sources of location.

Feature Sets Logistic J.48 SVM
Online Social Network 0.864 0.814 0.730

Shared Locations 0.771 0.737 0.599
Favoured Locations 0.705 0.648 0.659

Monitored Locations 0.917 0.883 0.842
Online + Shared 0.883 0.827 0.744

Online + Favoured 0.898 0.821 0.763
Online + Monitored 0.939 0.867 0.852

ble 6.7 for the online social network respectively in Table 6.8 and Table 6.9 for the location-based

datasets.

6.6.2.1. Online Social Network Features

As depicted in Table 6.7, the Preferential Attachment Scores for messages from neighbors O+
PS(u,v)

in the online social network had the highest information gain with 0.304 a and corresponding pre-

diction factor of 0.842 AUC. For homophilic features, Jaccard’s Coefficient for groups GJC(u,v)

was around 0.6 AUC and features based on the interests of users IC(u,v), IJC(u,v) did not work

at all. Communication based features P(u,v) with number of postings and loves, respectively

average message length could predict partnership with around 0.60 AUC.

6.6.2.2. Location-Based Social Network Features

Time-Independent Features The detailed results for the time-dependent features can be found

in Table 6.8.

Shared Locations: The only noteworthy feature in this dataset is the total number of locations

RT (u,v) two users have visited. We computed an information gain of 0.175 and predictive power

of 0.740 for the area under the ROC curve, AUC. The remaining features can be considered as less

important due to small values for AUC and information gain.

Favoured Locations: Considering the homophilic features of the favoured locations we found

an information gain of 0.132 for the location overlap RLO(u,v) and the common observations

RO(u,v), respectively 0.126 for the regions two users visited in common RC(u,v). This goes in

line with the AUC values of these three features with around 0.66. The remaining features have

negligible values for the information gain and the AUC.
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Table 6.7.: Results of the supervised and unsupervised approach to predict partnership using topo-
logical (white background) and homophilic (grey background) features from the online
social network

Features AUC Gain SR@1 SR@5 SR@10
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OAA(u,v) 0.615 < 0.1 0.120 0.329 0.549
O+

CN(u,v) 0.609 < 0.1 0.120 0.318 0.593
O−CN(u,v) 0.672 0.100 0.153 0.329 0.494
O+

JC(u,v) 0.435 < 0.1 0.186 0.461 0.637
O−JC(u,v) 0.651 < 0.1 0.186 0.428 0.593
O+

PS(u,v) 0.842 0.304 0.044 0.186 0.450
O−PS(u,v) 0.709 0.156 0.033 0.230 0.439
ORE(u,v) 0.527 < 0.1 0.131 0.406 0.637
O+

T (u,v) 0.805 0.248 0.054 0.153 0.428
O−T (u,v) 0.829 0.281 0.033 0.197 0.417
GC(u,v) 0.595 < 0.1 0.252 0.483 0.604
GJC(u,v) 0.599 < 0.1 0.296 0.472 0.604
GT (u,v) 0.613 < 0.1 0.022 0.153 0.406
IC(u,v) 0.510 < 0.1 0.087 0.329 0.560
IJC(u,v) 0.510 < 0.1 0.087 0.329 0.560
IT (u,v) 0.669 < 0.1 0.044 0.241 0.505
PA(u,v) 0.632 < 0.1 0.076 0.516 0.725
PC(u,v) 0.534 < 0.1 0.395 0.692 0.813
PI(u,v) 0.557 < 0.1 0.318 0.648 0.846
PL(u,v) 0.578 < 0.1 0.263 0.604 0.747
PP(u,v) 0.688 < 0.1 0.461 0.747 0.868

Monitored Locations: Features based on the commonly visited events RC(u,v), RO(u,v), and

RLO(u,v) showed results around 0.4 for information gain and around 0.88 for the AUC. The values

computed using this dataset showed similar characteristics as it was in the Favoured Locations but

performed in general superior.

Time-Dependent Features A detailed listing of all results for this feature sets can be found in

Table 6.9. Due to the missing time information in the Favoured Locations dataset we can only

compute these features for Shared- and Monitored Locations.

Shared Locations: Interestingly, none of the topological and the homophilic features in this

dataset had an information gain over 0.1. Further, considering the AUC of the single features we

observed negligible predictive power not far from flipping a coin, i.e. 0.5 AUC.

Monitored Locations: None of the topological features in the Monitored Locations dataset had

an information gain over 0.1 but this time these features were outperformed by homophilic fea-
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Table 6.8.: Results of the supervised and unsupervised approach to predict partnership using time-
independent features obtained from three different sources of location data.

Features AUC Gain SR@1 SR@5 SR@10
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RC(u,v) 0.530 < 0.1 0.142 0.417 0.626
RU (u,v) 0.516 < 0.1 0.022 0.153 0.164
RE(u,v) 0.502 < 0.1 0.044 0.109 0.164
RF(u,v) 0.509 < 0.1 0.044 0.153 0.175
RLO(u,v) 0.477 < 0.1 0.153 0.439 0.659
RO(u,v) 0.477 < 0.1 0.153 0.439 0.659
RT (u,v) 0.740 0.175 0.033 0.153 0.384

Fa
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ed

RC(u,v) 0.663 0.126 0.175 0.428 0.615
RU (u,v) 0.563 < 0.1 0.131 0.230 0.263
RE(u,v) 0.522 < 0.1 0.120 0.230 0.263
RF(u,v) 0.557 < 0.1 0.131 0.241 0.263
RLO(u,v) 0.666 0.132 0.175 0.417 0.615
RO(u,v) 0.666 0.132 0.175 0.417 0.615
RT (u,v) 0.512 < 0.1 0.033 0.175 0.395

M
on

ito
re

d

RC(u,v) 0.829 0.274 0.406 0.725 0.835
RU (u,v) 0.546 < 0.1 0.087 0.395 0.637
RE(u,v) 0.521 < 0.1 0.076 0.428 0.648
RF(u,v) 0.553 < 0.1 0.098 0.351 0.593
RLO(u,v) 0.888 0.416 0.527 0.780 0.890
RO(u,v) 0.888 0.416 0.527 0.780 0.890
RT (u,v) 0.654 < 0.1 0.000 0.131 0.351

tures: Jaccard’s Coefficient EJC(u,v) and the cosine similarity ECos(u,v) of events had the highest

information gain and correctly predicted partnership with around 0.84 AUC. The average distance

between two avatars AD(u,v) had a predictive power of 0.744 AUC but we observed a remarkable

low AUC of 0.350 for the days two avatars were concurrently seen in the same regions AS(u,v).

6.6.3. Predicting Partnership with Unsupervised Learning

Additionally, we compared the results of the supervised prediction algorithm with the outcome of

an unsupervised learning algorithm. This is useful to better estimate the performance in real ap-

plications [Bischoff, 2012] and to support our previous findings. Hence, we implemented a simple

Collaborative Filtering approach to rank potential partners of users according to their similarity.

The success rates that the actual partner was found in lists of length 1 (SR@1), 5 (SR@5), and 10

(SR@10) are presented in Table 6.7 for the online social network and in Table 6.8 and Table 6.9

for location-based datasets. Obviously, we could observe an increasing hit rate with increasing

number of suggested users, i.e. increasing list length.
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Table 6.9.: Results of the supervised and unsupervised approach to predict partnership using
topological (white background) and homophilic (grey background) features from the
Shared- and Monitored Locations.

Features AUC Gain SR@1 SR@5 SR@10
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LAA(u,v) 0.525 < 0.1 0.087 0.120 0.142
LCN(u,v) 0.521 < 0.1 0.098 0.164 0.208
LJC(u,v) 0.508 < 0.1 0.098 0.186 0.208
LNO(u,v) 0.510 < 0.1 0.109 0.164 0.164
LPS(u,v) 0.524 < 0.1 0.087 0.120 0.175
LT (u,v) 0.525 < 0.1 0.087 0.120 0.142
AS(u,v) 0.501 < 0.1 0,131 0,197 0,208
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LAA(u,v) 0.741 < 0.1 0.230 0.626 0.681
LCN(u,v) 0.711 < 0.1 0.384 0.626 0.703
LJC(u,v) 0.486 < 0.1 0.417 0.615 0.703
LNO(u,v) 0.516 < 0.1 0.351 0.571 0.659
LPS(u,v) 0.177 < 0.1 0.241 0.626 0.681
LT (u,v) 0.727 < 0.1 0.230 0.626 0.681
ECCos(u,v) 0.666 < 0.1 0.175 0.417 0.604
EC(u,v) 0.813 0.290 0.483 0.747 0.791
ECos(u,v) 0.841 0.368 0.538 0.758 0.802
EJC(u,v) 0.839 0.364 0.549 0.747 0.802
EMCos(u,v) 0.776 0.264 0.307 0.571 0.692
ET (u,v) 0.605 < 0.1 0.000 0.131 0.406
AS(u,v) 0.350 < 0.1 0.472 0.681 0.703
AD(u,v) 0.744 < 0.1 0.197 0.582 0.659

6.6.3.1. Online Social Network Features

Although 5 out of 10 topological features had an information gain > 0.1 the success-rate with

a list length of 1 was considerable low. Among all features Jaccard’s Coefficient O+
JC(u,v) per-

formed best with SR@1 = 0.186, SR@5 = 0.461, and finally SR@10 = 0.637. The evaluation of

homophilic and interaction based features showed that the number of postings performed better

than topological and group- or interest-based features. We found out that the actual number of

postings PP(u,v) and the number of comments PC(u,v) two users shared performed best. In group

related features in the online social network, 29.6% of all partners were ranked on top of the list

for SR@1.
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6.6.3.2. Location-based Social Network Features

Time-Independent Features A detailed overview of the described features and results can be

found in Table 6.8.

Shared Locations: Although all features performed inferior, we found that the common loca-

tions RC(u,v), location overlap RLO(u,v) and common observations RO(u,v) two users visited

performed best.

Favoured Locations: Similar to the supervised learning approach, the commonly visited loca-

tions RC(u,v), location overlap RLO(u,v), and common observations RO(u,v) outperform other

features.

Monitored Locations: We identified the location overlap RLO(u,v) and commonly visited lo-

cations RC(u,v) with an accuracy of around SR@1 = 0.527 as most valuable for the prediction

which is in line with the according values of information gain. The remaining features performed

inferior. Further, Monitored Locations resulted in the best results for the prediction of partnership

among all three location sources.

Time-Dependent Features A detailed list of results for the unsupervised learning approach with

time-dependent features can be found in Table 6.9.

Shared Locations: The results for this approach support the findings from the supervised learn-

ing approach: Neither topological nor homophilic features seem to be suitable for the prediction

of partnership.

Monitored Locations: Similar to the supervised learning we could observe that homophilic

features outperform topological features in the unsupervised learning approach. Among these

features we identified cosine-similarity ECos(u,v) and the Jaccard’s Coefficient EJC(u,v) of com-

monly visited events as the most valuable for prediction. From the set of topological features only

Jaccard’s Coefficient LJC(u,v) showed promising results.

6.7. Discussion and Conclusion

In this work we harvested data from two Second Life related domains: an online social network

with text-based interactions and three sources of location-based position data. We modelled the

relations between users with social proximity features and conducted experiments to answer the

research questions.
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• RQ1: For the first research question, we evaluated the differences between partners and

acquaintances in the online social network and the location-based datasets. Interestingly,

this analysis revealed that partners had less common neighbors and communication part-

ners than acquaintances in the location-based social networks and the online social network.

Contrary to this observation, homophilic features revealed a strong affection between part-

ners; we found evidence that partners shared more common groups, had more interactions

between them and attended more events together. Besides this we observed similar char-

acteristics for time-independent features in the three location sources Monitored Locations,

Shared Locations, and Favoured Locations: partners tend to visit more regions in common

and have more common observations together. In contrast to this, they visit regions with

a lower user-count, frequency, and entropy which can be interpreted as sign of intimacy:

users in a partnership are familiar with their environment and are not anxious to meet new

users in unknown places. This is in line with the observation that partners were on average

spatially closer than acquaintances during their co-occurrence.

• RQ2: For the second research question, we predicted the partnership between users and

hence merged the data from the two domains and the according features into one network.

We reduced the prediction problem to a binary classification problem and evaluated the

features using three different learning algorithms. Although all of them showed similar

characteristics, Logistic Regression performed best which is in line with related work in this

area [Rowe et al., 2012; Leskovec et al., 2010]. Network topological features turned out as

useful if sufficient data is available but nevertheless homophilic features like the number of

common groups two users joined or the common events they attended outperformed these

features. This result can be compared to the real world where the alikeness of two users,

i.e. homophily, is a premise for a working partnership. We found that the most valuable fea-

tures of time-independent features across all three location-based sources were the number

of common regions RC(u,v), the Jaccard’s Coefficient RJC(u,v), and the total number of

regions of two users RT (u,v). Although these characteristics were similar over all sources,

features applied to the Monitored Locations seemed best suited for predicting partnership

if compared to Favoured or Shared Locations. We believe that the difference between the

location sources is founded in the divergent location sources. Only 31% of all users have

ever shared snapshots with location information and only 66% specified favoured locations

on their profile. This sparseness of data seems to be the main reason why the Shared Loca-

tions and Favoured Locations were outperformed by the Monitored Locations. Overall, the

combination of features from the online social network and the Monitored Locations could

predict partnership with 0.939 AUC using Logistic Regression.
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• RQ3: For the third research question, we compared the predictive power of single features

with a simple Collaborative Filtering approach. To that end, we computed the predictability

of partnership for every feature with Logistic Regression and ranked lists of users’ simi-

larity. In online social networks homophilic features outperform topological features when

using unsupervised learning which is in contrast to a supervised learning approach. The re-

sults for time-independent features are similar over all three location sources and go in line

with the supervised learning algorithms: Monitored Locations outperform Shared Loca-

tions outperform Favoured Location. Results of supervised learning algorithms using time-

dependent features goes in line with supervised learning as well. Features like Jaccard’s

Distance LJC(u,v) or cosine similarity of attended events ECos(u,v) have a high predictive

power with both concepts. Overall this lets us assume that homophilic features have a better

correlation for tie strength than topological features in general. In particular we identified

features derived from the attitude of users, like events and groups, as features with the high-

est information gain. Further, interpersonal bonding with spatial distance and number of

postings were detected as evidence for a partnership between two users.

• RQ4: For the last research question, we examined topological and homophilic time-depen-

dent features based on the Shared- and Monitored Locations datasets. As already mentioned,

time-dependent features derived from the Shared Locations dataset do not contribute to the

prediction of partnership due to the sparseness of available data. However we found promis-

ing results for the Monitored Locations dataset: In the time-dependent dataset, homophilic

features outperform topological features but their combination was even slightly outper-

formed by time-independent features. This results are surprising in several ways: Although

time-dependent features perform worse than time-independent features, a combination of

both outperforms either sources significantly. This lets us assume that the time-component

is a very crucial factor for the prediction of tie-strength. Further, homophilic features per-

formed better than topological features which is in contrast to the online social network

where topological features outperformed homophilic features.

Conclusion Features in an online social network induced from text-interactions in Second Life

perform well to foresee partnership between users and location-based data even supports this

prediction. Overall, topological features were identified as useful if sufficient data is applica-

ble whereas homophilic features were more robust against this sparseness as they do not depend

on the missing data of other users in the network.
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CHAPTER 7

Research Results and Conclusions

IN this dissertation we collected data from an online social

network that aims at residents of the virtual world of Sec-

ond Life and three different location-based data sources of

these residents. We computed metrics that model the social prox-

imity between users and evaluated them for different types of user

relations. Based on these results we applied supervised and unsu-

pervised machine learning techniques to the location-based data

sources and the online social network as well as a combination of

both to predict links between users and the tie-strength of these

links.

This chapter outlines the found results and can be divided into

two sections: In Section 7.1 we summarize the main contribu-

tions presented in this thesis and answer the research results stated

in the introductory part. Finally, we conclude the dissertation in

Section 7.2.
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7.1. Summary of Results

In this thesis we described approaches to collect user data in a virtual world from two different

domains: online social network data which is a Facebook-like social network where users share

text messages, specify interests and join groups, and location-based data that represents users’

movement from three different sources: 1) “Shared Locations” – users check-in at specific loca-

tions, 2) “Favoured Locations” – users specify their top 10 locations and 3) “Monitored Locations”

– users’ in-world movement trajectories. We computed metrics that model the social proximity

between users with topological features and homophilic features. Topological features (e.g. num-

ber of common neighbours) were obtained from the network structure of both the online social

network data and the available location-based data sources. In contrast, homophilic features that

model the alikeness or similarity of a user-pair were split into time-dependent features (e.g. num-

ber of days two avatars were seen concurrently) and time-independent features (e.g. number of

commonly visited locations) depending on the information richness of the actual data source.

Using this test bed we conducted several experiments to answer the research questions stated in

Chapter 1:

Research Question 1

Which social proximity features can be derived from an online social network and location-

based data sources and how do they differ for different types of relations between users?

The analysis revealed that user-pairs with interactions are more tightly connected in the online

social network than users without interactions. Interestingly, the opposite was observed for the

location-based social network. A possible explanation is that users in Second Life are allowed

to directly teleport to different locations in the whole virtual world but see the currently present

users only upon arrival. We believe that users are more likely to stay in a location if they know

any present users (i.e. they have interactions with these users in the online social network) or

otherwise move on to the next location. This higher activity and the accordingly higher diversity

due to the short-term visits explain the tighter integration of non-interacting users into the location-

based social network. This assumption is supported by homophilic features from both networks:

users with interactions had more common groups, visited more common locations and they saw

each other on more days. Furthermore, the average spatial distance between interacting users was

significantly shorter than the spatial distance between users without interaction. The evaluation

of the reciprocity of interactions between users was similar as users with a reciprocal interaction

also had tighter connections in the online-social network. Again, homophilic features of user-pairs

with reciprocal interactions indicated a higher alikeness in both networks if compared to user-pairs

with uni-directional interactions.
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Interestingly, we found out that user-pairs tend to be less integrated into the network structure

with increasing tie-strength which can be interpreted as a sign of intimacy. In other words, user-

pairs that are in a relationship have less common friends if compared to user-pairs that are just

acquaintances. This intimacy is even supported by the observation that homophilic features re-

vealed a strong affection between users connected with a strong tie: they shared more common

groups, had more interactions between them and attended more events together than user-pairs

with a weak tie. Further, they tend to visit more locations in common and have more common

observations in locations with a lower user-count, frequency and entropy. It seems that users

connected by a strong tie are more familiar with their environment and are not anxious to meet

new users in unknown places or interact with them in the online social network. This is in line

with the observation that strong ties were on average spatially closer than weak ties during their

co-occurrences.

Research Question 2

How can a combination of social proximity measures derived from an online social network

and a location-based social network predict interactions between users?

We used unsupervised machine learning approaches to determine valuable and information rich

features, and we applied supervised machine learning algorithms for the actual prediction task

where we tried to predict whether or not a user-pair has an interaction in the online social network.

We combined the topological and homophilic features from the online social network with the

topological and homophilic features of the “Monitored Locations” dataset.

To determine the most promising features for the link prediction we implemented an unsu-

pervised learning algorithm based on ranked lists of users’ similarity, respectively used the In-

formation Gain metrics of single features. We identified Jaccard’s Coefficient and Preferential

Attachment Score as most promising among the topological features in the online social network

as well as in the location-based social network. Homophilic features in the online social network

suffered from the sparseness of data and hence were not very valuable. In contrast, homophilic

features obtained from the location-based social network were very promising: common visited

locations, common observations and the average distance between users were identified as most

valuable.

For the actual prediction of interactions between pairs of users, features obtained from the

location-based social network performed better in general than features from the online social

network. It is interesting to note that topological features outperform homophilic features in the

online social network whereas the opposite could be observed for the location-based social net-

work. Overall, with the combination of features from the online and the location-based social

network we were able to predict whether two users have an interaction or not with more than
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97% AUC. For the prediction of reciprocity of interactions we observed similar results with the

difference that features from the online social network performed better than features from the

location-based social network. Overall we could predict reciprocal interaction with features from

both domains with an accuracy of nearly 68% AUC. Although the results among all supervised

learning algorithms were stable in their prediction performance, Logistic Regression performed

best.

Research Question 3

Can different location-based data sources be used to predict interactions in a related online

social network and which source is the most valuable?

Based on the results using the online social network and one location-based social network, we

were further interested in the differences between the three location-based data sources (“Shared

Locations”, “Favoured Locations” and “Monitored Locations”) and hence compared their value

for the prediction of interactions.

As the time information was not available for all the datasets we could not infer a network

structure for all of them and as a consequence we only used homophilic time-independent features

to model the social proximity between users for a fair comparison. In order to predict interactions,

we evaluated the differences between user-pairs that had an interaction in the online social network

and user-pairs without this interaction. The detailed analysis of the results revealed statistically

significant differences for nearly all features: User-pairs with interactions on average visited more

common locations and had more common observations. In contrast to this, they visited locations

with a lower user-count, frequency and entropy which can be interpreted as a sign of intimacy:

Users with interactions already know each other and therefore they meet in places that are less

frequented by others. We could observe this for all three data sources but due to the diverse

datasets the characteristics were different: the “Shared Locations” dataset showed more distinct

tendencies than, for instance, the “Favoured Locations” dataset with its limitation of 10 picks per

user.

For the prediction of interactions we found significant differences between the data sources

and identified “Shared Locations” as most successful (84.9% AUC) outperforming “Monitored

Locations” (63.2% AUC) and “Picked Locations” (63.0% AUC). This was again caused by the

different characteristics as well as the sparseness of the data sets: First, users can share locations

from everywhere within the virtual world on their profile and the data collection approach does

not miss any data. Second, users explicitly share locations and places they like and spend time

in. Other users who visit their profiles because they already know each other, see these locations

and also visit them. This can be seen as an explicit promotion of a user’s shared locations. An

explanation why the others perform worse is that “Monitored Locations” only cover a clipping of
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locations due to resource limitations and “Picked Locations” are limited per se to 10 per users.

A more detailed analysis revealed that the most valuable features among all the location-based

knowledge sources were the number of common locations, Jaccard’s Coefficient and the total

number of locations two users visited.

Research Question 4

To what extent can a combination of an online social network and three different location-

based data sources support the prediction of tie-strength of links between users?

To tighten the problem of predicting interactions between user-pairs we aimed to even forecast

the tie-strength between already connected user-pairs. Strong ties were defined as users that are in

a partnership (residents of Second Life can get married) and have an interaction in the online social

network whereas weak ties are user-pairs that just have an interaction in the online social network.

To model the social proximity between users, we applied homophilic and topological features to

the online social network as well as the three location-based data sources. We reduced the predic-

tion problem to a binary classification problem and evaluated the features using different learning

algorithms with Logistic Regression performing best. Although the characteristics were similar

and stable over all three location-based data sources, features applied to the “Monitored Loca-

tions” data set were suited best for predicting partnership if compared to “Favoured Locations”

or “Shared Locations”. The reason is that the “Monitored Locations” data set is more detailed as

accurate time information and context data are available if compared to the “Shared Locations”

or “Favoured Locations” data sets. As a consequence we were able to compute topological fea-

tures and even more homophilic features, e.g. average distance between users or commonly visited

events, which supports the prediction of tie-strength. Overall we could predict partnership with

over 93.9% AUC for the combination of features from the online social network and features from

the “Monitored Locations” dataset.

Network topological features turned out as useful if sufficient data is available but nevertheless

homophilic features like the number of common groups two users joined or the common events

they attended outperformed these features. For the prediction of tie-strength with data from the

online social network we identified the Preferential Attachment Score as the most valuable topo-

logical feature whereas features derived from the communication behaviour of users turned out

as promising homophilic features. In the location-based data sources we identified the Adamic-

Adar coefficient as most successful although these features were outperformed by homophilic

features. We found the number of locations two users visited in common as most valuable among

all location-sources. If available, time-dependent features like the days two users where seen con-

currently in the same location or the average distance between two users were also identified as

powerful metrics for the prediction task.
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7.2. Conclusions

In this thesis we collected data from an online social network and three different sources of

location-based data of Second Life residents. We computed features with the collected data that

model the social proximity between users and evaluated differences between various types of user

relations. Based on these results we predicted links between users and the tie-strength of these

links using supervised and unsupervised machine learning techniques.

The conducted experiments for the prediction tasks clearly show the value of online social

networks supported by location-based information. Although features derived from the online

social network alone show promising and valuable results for the prediction of interactions and tie-

strength, a combination of features from the online social network and location-based information

outperforms these results. We compared three different location-based data sources to each other

and all of them showed similar characteristics for the prediction tasks. Overall, we have clearly

identified the value of homophilic features in the location-based domain and the consequences for

the prediction tasks. These homophilic features performed well among all the three location-based

sources but we have also seen that available time information allows the computation of additional

features which are valuable for the prediction tasks.

With the conducted experiments and the results of these experiments in this thesis we shed light

onto the benefit of location-based information combined with personal online social networks for

the prediction of interactions between users and the prediction of tie-strength of these interactions.

Although all these experiments are based on data collected from a virtual world, it is created by

humans as they control their virtual character in the virtual world. As a consequence the data is

a perfect test bed for the conducted experiments as all the data is publicly available and per se

anonymised due to the anonymity of Second Life. Overall this thesis shows the relevance and

benefits of location-based data but also potential risks as real-world position information of users

becomes more and more available.
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