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Preface

Comments of the supervisor

The goal of the Thesis is to apply fixed-point methods to phdifferential equa-
tions of elliptic type. The background of this method is teduction of the initial
value problem

y, = f(X7 y)
y(X0) = Yo

for ordinary differential equations to a fixed-point prabléor the operator
X
Y09 =yo+ [ 1(E.%(8)dE
%o

(model equation). In cade(x, &) is a fundamental solution of the linear differential
operatorg, the boundary value problem

gu = F(xu) in Q
u = gonadQ

can be reduced to a fixed-point problem for the operator

U(x) = o)+ 80+ [ E(x §)F(E.u(&))dé, (*)
Q

whereug is a solution of the boundary value problem for the homogaseguation
£u = 0 andu’compensates the boundary values of the domain integraft®o ze

In case the right-hand sid¥x, u) depends only on the desired functieifand not
on its derivatives), the corresponding fixed-point probtam be solved in the space
of continuous functions. The necessary estimates of thakleingular) integral
operator are more complicated if the right-hand siddepends not only on the
function u itself but also on its (first-order) derivativesy, that is, we consider a
partial differential equation of the form

Lu=F(X,u,du).

Of course, in this case a suitable function space is the sfammntinuously differ-
entiable functions. The auxiliary solutionganduare to be estimated by Schauder
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estimates, and therefore the underlying function spadeeispace of Holder con-
tinuously differentiable functions.

The author of the Thesis has not only to find the corresponestighates for singu-
lar integrals and the necessary estimates of Schauderrtype literature, but also
he has to adapt the proofs to the special situation of theatqre¢:). The author
should be in a position to realize complete proofs of all$awhich exceed the basic
knowledge of Mathematical Analysis. An Appendix of the Tiseshould contain
at least the sketches of the proofs of all advanced toolstwdre to be applied. The
generality of the basic material should be as high as negessadhat the author is
in a position — if desired — to teach a corresponding cours$esimome university
with complete proofs.

The starting point of the thesis is a lecture on "Partiakdédhtial equations 2" given
by the supervisor. This lecture considers the much simplee that the right-hand
side does not depend on the first-order derivatives, th#éestight-hand side has
the form§(x,u). The author is allowed to use some arguments of that lechde a
of related lectures of supervoisor without quoting thosespges.



List of Symbols and Abbreviation

Symbol Description

Q always is an open subset (domain) in Euclidean space
R n>2

mQ the finite measure of the domain

L is general linear second order elliptic differential op-

erator of divergence type

L* Adjoint to the linear second order elliptic differential
operatorl
0 . L . .
o = % first order derivative with respect to th#n compo-
X nent
E(x, &) fundamental solution of a linear elliptic partial differ-

ential equation with singularity &t

ck Space of functions of which derivatives up to the or-
derk are continuous

Ck®and0<a <1 Space of functions of which derivatives up to the or-
derk are Holder continuous

l differential operator acting on the boundary

U Image ofu

|- llcka Holder norm of the function of which derivative up to
orderk are Holder continuous defined in (4.7) Chap-
ter 4

[ Weighted Hélder norm

R The radius of the ball (a closed and convex subset of
Banach space)



10 Table of Symbols

Symbol/Abbr. Description

PDE Partial differential equation

ODE Ordinary differential equation

BVP Boundary value problem

VP Initial value problem

h surface measure of unit ball R"

Tn volume of unit ball inR"

@ a twice continuously differentiable function vanish-
ing at neighborhood of the boundadf or simply a
test function

F The right hand side of a non-linear partial differential
equation mainly a function depending on space like
variablex, functionu(x) andd u(x)

Schauder () First version of Schauder Fixed Point Theorem

Schauder (I1)

Second version of Schauder Fixed Point Tineore
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Abstract

We solve the boundary value problems for non-linear secaoddreelliptic partial
differential equations when the right hand side depend$erspace like variable
X, hot only on the desired solutianbut also on its first order derivativeyu. We
show the existence and uniqueness by Schauder Fixed Padordiih and Con-
traction Mapping Principle. We consider tB&? function space for our research
work because in our boundary value problems the right hadelisvolves the first
order derivatives generally. First we give the detailecbpaf the result by which
one can reduce the boundary value problem to a fixed pointtgerThe corre-
sponding fixed point operator is defined by the fundamentatiso of the linear
homogeneous equation.

Next we discuss the necessary background material for tiséeage and unique-
ness of the solution. For a special boundary value problenhélLaplace operator
in unit disk the Schauder estimates has be proved. Sinceothesponding fixed
point operators involve the weakly singular kernels so we giso the necessary re-
sults on the computation of such integrals. The importasulten the estimates of
the singular integrals with two weak singularities haverbeeluded in Appendix
B. Mapping properties of the corresponding fixed point ofmesaare of fundamen-
tal importance which we need during the evaluatio€bf -norm. The Chapter 3
deals with these properties of the fixed point operators &/bee learns to which
Banach space the operators belong.

Then the existence and uniqueness of the solution of thedasyvalue problems
have been formulated and various situations and restgt@ave been discussed.
In order to apply Schauder Fixed Point Theorem, certaimiotisins and relatively
compactness of the operators is also the part of this th€mstraction Mapping
Principle put additional restrictions.

At the end we give the optimization results where we stateraban of examples
dealing with the different situations. We also give the éaigpossible boun@
for C19-norms of the admissible boundary values. Then we deterthmeadius
which leads to the largeS§l.
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Introduction

The main objective of the present thesis is to solve the bayndalue problems for
the non-linear second order elliptic partial differengglations.

To understand the basics of partial differential equati@nrefer [26]. Also [12]
gives good information on partial differential equationdinite and even in infinite
dimensions.

Our goal is confined to find the existence and uniqueness aédh#ions of the
Dirichlet problem:

Lu = F(,udu) in Q (0.1)
u = ¢ on 20Q (0.2)

where/L is linear second order differential operator of the form

n
Lu:.z

o (aij(x)dju) + ibi(x)aiqucu. (0.3)
i,]=1 i=

From now on we shall consider the case of elliptic partidedéntial operator, i.e,

n
> aij (), >Allyll> forall xyecR" (0.4)
i,]=1

Fixed point methods are great tools to solve the partiakdbfiitial equations spe-
cially the boundary value problem for non-linear partidfetential equation (0.1)
and (0.2). In the framework of analytical solutions of dilippartial differential
equation, often, the existence and uniqgueness is showndgfdixed point results.
Already in the existing literature, there are a number ohsiseed point theorems
have been proved. Brouwer Fixed Point Theorem is a fundaaheggult in this re-
gards in finite dimensions. Since we work in infinite dimensicfunction spaces,
we here present the existence and uniqueness results feplingns of bound-
ary value problems of the form (0.1) and (0.2) by using thedfigeint methods
like Schauder Fixed Point Theorem and Contraction Mapphnirgchple. This will
be done even for differential equations where right handssatepend not only on
the desired solutions but also on their first order deriestivFurther discussion
on fixed point method is given in the chapter four. The exppcoof of Schauder
Fixed Point Theorem is presented in the appendix C.

The first chapter of this thesis deals all the necessary sspk@ducing the bound-
ary value problems (0.1) and (0.2) to the corresponding fpadt operator where
we necessarily require the fundamental solution of thealimfferential equation

17



18 Introduction

Lu= 0. That is, we must need enough results on the existence d&fmental solu-
tions of the homogeneous partial differential equationgtvive consider. In [35]
W. Littman, G. Stampaccia and H. F. Weinberger give all neagsdetails on the
existence of fundamental solutions for the (self adjointgyence type linear dif-
ferential operators with measurable coefficients and fosgnthese fundamental
solutions can be estimated by the fundamental solution efLéplace equation.
Similar result on the existence of fundamental solution lieen given by C. Mi-
randa in [38] but here the coefficients are required to be éfatdntinuously differ-
entiable. Luis Escauriaza [15] extend the results from {8%5he case of elliptic and
parabolic partial differential equations when they are am-dlivergence form and
gives the estimate for the bound of the fundamental sol@gain with the weaker
assumptions on the coefficients, that is, they need to bernafsurable. All above
results on the existence of fundamental solution are chaoig for the domains in
R" for n > 3 but for two dimensional case the existence has been showhthy
Kenig and W. M. Ni in [29] and is estimated by

E(x¢)| < X— &2 for n<3 (0.5)

E(x,&)] < C(1+log|x—¢&|) for n=2. (0.6)

M. Griter and K.O. Widman [24] has provided the discussiothenfundamental
solution of the non-self adjoint elliptic operator.

Chapter two is about the function spaces and other back droaterial which
is required to solve the boundary value problems by the fix@dtgechniques.
We consider the boundary value problems with right hand defgending on the
derivatives of the desired solution. So a natural demand isohsider the Ba-
nach space of continuously differentiable functions. Buibteof work has been
done on the Schauder type estimates which give the bounduifasts of elliptic
partial differential equations by its boundary values ia #idlder spaces. So we
consider theCh? as Banach space. The first major article on Schauder estimate
were carried out by S. Agmon, A. Douglis and L. Nirenberg ihdere a com-
prehensive discussion is given and the Schauder type estirfa elliptic partial
differential equations have been established in Holderlgyworms. Very similar
estimates are found for the systems of elliptic partialedéhtial equations in [3].
More over the Schauder estimates on both the interior and tegtboundary in the
last two articles are given. E.A. Baderko has also wrote dawamber of papers
on the Schauder type estimates for elliptic and parabolitgbalifferential equa-
tions. Schauder estimates in Holder spaces for obliqueatese problems have
been found in [6]. Baderko uses her previous result [8] ora8dbr estimates in
Cl%-norm for parabolic partial differential equation to showj page(22-24) the
Schauder estimates for partial differential equation tptt type in C19-norm
which is an important estimate. For further information @h&uder type estimates
in Holder and Sobolev spaces we refer to [18] and [38].

Our fixed point operator is defined by an integral having tmelamental solution in
its integrand which is singular but has a weak singularityaB8 important consider-
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ation is to deal with the singular integrals. Since we shaifycout our constructions
in the Holder spaces so we have also to deal the singularaitegh two weak sin-
gularities. E. M. Stein, in [47] and [46], has given a numbkestimates for such
integrals. S. G. Mikhlin, [37], [36] also deals with the sulgr integrals. We too
prove the explicit estimates of the integrals with two wealgslarities for a do-
main inR". This result has been added in the appendix B. Another veppitant
book of S. G. Mikhlin, N. F.Morozov, and M.V. Paukshtbhe integral equations
of the theory of elasticity covers a number of properties on the theory of integral
equations and also covers the singular integrals. As lotigeafixed point operator
(1.9) discussed in the Chapter 1 is not differentiated twes, we stay with weak
singularity and then the integrals can be estimated cortipayaeasily. But if we
differentiate two times, the order of the singularity beesnequal to the dimen-
tions of the space and then this integral exists only in thesef Cauchy principal
value. Although these Cauchy type integrals are beyonddbpesof the present
thesis, but [48] is a good article to understand the factauich stegral due to their
importance for future work.

Maximum principles are very important tools in the theorypattial differential
equations and we are frequently use them to estimate thewobf linear elliptic
equations. These maximum principles give the estimateslofisns by its bound-
ary values. In literature there are a number of such maximanciple are already
available. A fundamental result is the Hopf Maximum Priheigshich says the
following

Let u= u(x),x € R" be a € solution ofLu > 0 whereL is elliptic linear differential
operator (3) with = 0 in an open domaif2 and coefficients are locally bounded
and if u takes maximum value M @dthen u= M.

D. Gilbarg, N. S. Trudinger in [18] and C. Miranda [38] resfregly have given
various maximum principles for the elliptic type secondesrgartial differential
equations which we use in our approach. For non-uniformigted operator with
measurable coefficients, maximum principles have beenulated in [49]. K.
O. Widman, in [55] gives a quantitative form of maximum piple for elliptic
equations. Another important book which covers most of teasiof elliptic partial
differential equation is [42], where the authors give vasionaximum principles.

The third chapter is about the mapping and regularity ptogeeof singular integral
operators where we show that our fixed point operator (1.®ngs to the spaces of
continuously differentiable and Hélder continuously dréntiable functions which
also shows that the solutidw (1.9) defined see in Chapter 1, maps these function
spaces into themselves. We also prove an important propgtitye fixed point op-
erator that is we prove its relative compactness in the spiidélder continuously
differentiable functions. This property is essential towlthe existence results by
Schauder Fixed Point Theorem. At the end of third chapteriveevshat operator
(1.9) of Chapter 1, is contractive under certain conditidrager on the contractivity
of the operator leads to the additional restrictions to fiamcspaces in some sense.
For more regularity properties we refer to [40] where autjiges the different sit-
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uations for classical solutions of non-linear ellipticged order partial differential
equations in the plane. X. Cabré, and L. A. Caffarelli, [16¢ the Krylov-Safonov
Harnack inequality and show the situations where the vigcgslution of fully
non-linear second order elliptic Partial differential atjan are inC%%, C%2. In
our consideration due to the application of the Schaudémasts in the Holder
spaces, we need the boundary of the domain to be sufficiantpth. For the do-
mains with non-smooth boundaries one has to consider thel&obpaces to work
in. Many cases of non-smooth domains or domains with edgeslieen discussed
by V. A. Kondrat'ev, and O. A. Olmik, [30]. Here authors provide a long survey on
the solutions of non-linear elliptic and other types of eliéntial equations mainly
in non-smooth domains. Most of the work of O. A. Dk, covers the non-smooth
domains and very useful references are given in her abowteart

Fourth chapter is an important one where we present theeexistand uniqueness
results by Schauder Fixed point Theorem and ContractionpiigpPrinciple. We
also give the explicit condition for mapping the balls (&dsand convex subsets) of
the Banach space into itself which then gives the conditiorihe radii of the balls.
That is we have to find the best balls. Moreover the estimatsie obtain help
us also to show the maximum norm of the boundary values tmabeaonsidered.
Only CL1% is a Banach space that we have considered there. We use évetetiive
compactness to show the existence of solutions by Schaumberdm. The second
part of the Chapter 4 is about the the existence and unige@f#se solution of the
Dirichlet boundary value problems for non-linear partigdedtential equation. We
show the contractivity and additional condition on the vadof the ball discussed
in the fifth chapter. W. Tutschke [53], [54] has proved thauhessfor the spaces of
continuous function. S. Graubner, in [21], [22] has alsovptbsuch results. He
replaces balls by poly-cylinders.

The Chapter 5 is the consequence of the chapter four. Andisnatla establish
the optimization results. These optimizations providertbeessary information on
the choice of largest possible interval in which we choogertdii of the balls.
Moreover in certain cases we give also the largest posstiadfor the boundary
values that we can consider. We also give the largest pesséndC for C1.9-
norms of the admissible boundary values. Then we deterrheatius of the ball
which leads to the large§t.

At the end we shall give the summary and planned work for theéu



1. REDUCTION OF BOUNDARY VALUE PROBLEMS FOR
NON-LINEAR PDES TO FIXED-POINT PROBLEMS

Mainly, the present dissertation revolves around the swigtof the boundary value
problems (BVPs) for non-linear partial differential eqoas (PDESs) by the fixed-
point theorems We shall be considering the boundary value problems in case
when the right hand side depends on the desired solutionlaasaen its first order
derivatives. Naturally, it is most important that we musk &bout the reduction of
the boundary value problems to the fixed-point operatorttayavith the necessary
assumptions on the right hand side and coefficients of tlierdiftial operator and
boundary values. The current chapter covers all the negessgps and details
required for the reduction. First section scales down thendary value problem
for non-linear partial differential equations to fixed pooperator. So the goal of the
chapter is that the solution of the boundary value problenothing but equivalent
to find the fixed-point of the corresponding fixed-point opera

We shall assume that the boundary value problem is invertipkhe integral where
the integrand contains a fundamental solution of the homeges partial differen-
tial equations, so it is obvious that we give a brief note @ftindamental solutions
and their existence. So the second section deals the fumdainselutions of the
homogeneous partial differential equations. Moreoverftindamental solution of
the Laplace equation for domainsIi®Y has been presented which gives good idea
about the topic.

1.1. Reduction of boundary value problems for non-linear
elliptic PDEs to fixed point operator equations

Let £ be a differential operator defined in a domgif R", and let be an operator
acting on the boundagQ of Q. We focus on the reduction of the boundary value
problems of the type

Lu = F(,udu in Q i=123- - (1.1)
u = ¢ on 0Q (1.2)

to a fixed-point problem. Where the right hand silef (1.1) is a given function
depending on a point of domai@, the desired solutiom and also on the first
derivatives ofu with respect to any of the components of the arbitrary poirthe
domain ofR".

1Contraction Mapping Principle and Schauder Fixed Poiniofém

21



22 1. Reduction of boundary value problems to fixed-point peots

We are going to solve the boundary value problem (1.1),(@®&er the following
assumptions:

(i) Suppos&? is a bounded domain iIR" with sufficiently smooth boundary

(i) Let £ be a linear differential operator of divergence type, that i

0 Ju
Lu = ;a—xl (aljﬁ—)(j)+IZb|a—)(i+Cu

— Zﬁi (aijdju) +Zbi(}.u+cu.
1] T

(i) Suppose that the homogeneous differential equation= 0 possesses the
fundamental solution representedbf, &) .

(iv) ¢is a linear operator acting on the bounda@ such as the restriction of a
certain function defined i to the boundary.

(v) Finally, we assume that the boundary value problem

Lu = 0 in Q
u = ¢ on 0Q

is uniquely solvable.

It is important to note that the last assumption (v) abovéicts not only the ad-
missible boundary operatdrbut also to the admissible domaifsi.e, only those
domains can be considered which are bounded by sufficiantipth boundaries.

All above assumptions are satisfied for the following Dilethboundary value prob-
lem:

Au = 0 in Q
u = ¢ on 29Q

in sufficiently smoothly bounded domains. Here operétsronly a certain restric-
tion of desired solution to the boundary. It is well knowntttiee Dirichlet problem
for Laplace equation in the balls R" can be solved explicitly by the Poisson Inte-
gral Formula and of course is uniquely solvable.

Moreover, the unique solution of Dirichlet problem for tHepptential operatoA?
requires not only the restriction of the desired soluticon the boundary itself but
also its normal derivativedu/JdN (so-called Neumann condition) on the boundary
0Q.

Letu be a given solution of the following differential equation

Lu = F(,udu) in Q.
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We define the following operator,

V= [ECEOF(EuE),auE)de. (13)
Q

whereF is the given right hand side of differential equation (1.1).

A property of fundamental solutions implies that
LV = F(-,u,0u). (1.4)

Before proving a lemma on distributional solution of eqaas of type (1.4), we
give the definition of the distributional solutions of thdvomogeneous partial dif-
ferential equations

Definition (Distributional Solution) SupposeC* is adjoint to the linear differen-
tial operatorC andu is an integrable function satisfying the relation

/ (@h-+ (1)< uc’p) dx=0 (1.5)
Q

for any choice of a test functiop. Thenu is called a weak solution of the differ-
ential equationCu = hin the distributional sense. Additionally, a weak solution
distributional sense is necessarily a solution in the ataksense provided thatis
k-times continuously differentiable.

Weak solutioru of the homogeneous equatign = 0, consequently, are character-
ized by the relation.

/uﬁ*(pdx: 0
Q

Now we come to a very nice result which gives assurance ofXistesce of distri-
butional solutions of partial differential equation.

Lemma 1.1 Suppose E, ¢ ) is a fundamental solution afu = O with singular-
ity at £. WhereL is k-th order differential operator of divergence type. fititke
function u defined by

ux) = [ E(x &)n(&)ag
Q

turns out to be a distributional solution of the inhomogemedifferential equation
Lu=nh.

Proof Let us denoteQ as domain ofx—space and th& —space byQy and Q¢
respectively. If¢ is a k-times continuously differentiable test functionrthene



24 1. Reduction of boundary value problems to fixed-point peots

has

/u[,*cpdx _ / /E(x,f)h(f)df L pdx
Q Q;

Qx

Fubini theorem= = h(¢) E(x, &)L ¢pdx | d&
[ro{fewoced

15)= = (-1*[nE)¢E)ds. m
Q¢

In order to reduce the boundary value problem (1.1), (1.2)fteed-point problem,
we first assume that, is a given solution of the differential equation (1.1), that
is,

LU, = F(-,Uy,dUy). (1.6)

Let
w:/tufﬂwam@xdm@»&,
Q

Here we define &, as follows,
Ve =: U, — V4, (1.7)
Then by the lemma (1.1) we have,
LV, = F (-, us, G u,),
Consequently,

»CV* = »C(U*—V*>,
= F(-,U,dU,) —F (-,Uy,0Uy),
= 0,

that is, v, = u, —V,, turns out to be the solution of the homogeneous equation
Lv, = 0. In view of (1.7), we obtain for a given solutian of the equation (1.6)
the representation

w=w+w=w+/fh®FﬁMA®@w@»M, (1.8)

Q

wherev, is a solution of the homogeneous equatibn = 0.

Starting from the representation (1.8) of a given solutiaintroduce an operator
in order to construct solutions. Letbe any function belonging to a subset of
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the underlying function space. Further, Vebe any solution of the homogeneous
equationlv = 0 Then define an image ofby

U =v+V =V [ EC,E)F(E,u(), aué) dé, (19)
Q

If uis a fixed point of this operator, that is,
LU = Lv+ LV =0+ F(-,u,du), (1.10)

and so each fixed point turns out to be a solution of the naafidifferential equa-
tion

Lu=F(-,u,du), (1.11)
therefore each fixed-pointis a solution of the differential equation (1.1).
Formula (1.8) shows that especially a given solutigiis a fixed point of the oper-
ator (1.9) provided, is defined by (1.7). However, formula (1.9) demonstratet tha
not only this speciall, but also each fixed point of the operator (1.9) is a solution

of the differential equation (1.1) where v is any solutiontleé the homogeneous
differential equationCv = 0.

This fact can be used in order to construct a solution of thmbary value problem
(1.1), (1.2). This is possible by a suitable choice of theisoh v of the homoge-
neous equatiov = 0. Of course, we assume thabelongs to a given subset of
the function space under consideration. Now we choose,

V= U+ U,

whereuy is the solution of the given boundary value problem for thenbgeneous
partial differential equation whileis a solution of homogeneous partial differential
equation also which compensates the boundary valudétfzero. In other words,
Ug is a solution of

Lug = 0 in Q
uyp = ¢ on 0Q

andu’solves the boundary value problem

LG = 0 in Q
0 = —N on 0Q.

Now letu be the fixed point of the operator

U = uw+d+Vv
— o+ 0+ [ E(,8)F(E.u(@),qu() dé,
Q
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Clearly we obtain

LU = Lup+ LG+ LV
= 0+0+F(,udu) in Q

and

N = lug+LG+eV
= ¢-WN+N=¢ on 0Q

that is the boundary value problem (1.1), (1.2) is compjesaitisfied, hence the
fixed pointU = uis a solution of the BVP (1.1), (1.2).

To sum up, we terms the theorem:

Theorem 1.1 The solution of boundary value problem (1.1), (1.2) is thedix
point of the operator

U =to+ 0+ [E(.&)F (E.u(&).au(@)dE. (1.12)
Q

and vice versa

where @ and( are the solutions of the following boundary value problems

Lu = 0 in Q
uyp = ¢ on 0Q

and

LG = 0 in Q

u = £ (/E(-,E)f(f,u(f),du(f))df> on 9Q

Q

respectively.

Example 1.1 Let up and(i are the solutions of Dirichlet problems with,

Up=9g(x) and 0= I /// |x f\ u(é)) dé on 0Q (1.13)

for Laplace equationdug = 0 and Al = 0 respectively in the bounded domdn
in R3. Then each fixed-point of the operator

U (X) = Uo(X) 4n/// ‘X E| ui¢)) gg (1.14)
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is a solution of of the Dirichlet problem

Au = F(-,u,du) in Q (1.15)
u = g onadQ. (1.16)
Indeed, since 1 L
E(x,§) = an X—¢&]

is a fundamental solution of the Laplace equation.

Thus in order to find solutions of the boundary value probldrthe form (1.1),
(1.2), one has only to apply fixed-point theorems. Of coussaumber of such
theorems are available in literature but we shall only abemisthe Schauder Fixed
Point Theorem and the Contraction Mapping Principle. Is tiegards, chapters 4
and 5 of the current manuscript discuss the existence sdsylfixed point meth-
ods. Further, the operator (1.12) must satisfies the negessaditions. Since the
operator (1.12) is defined with the help of fundamental sofuE (x, &) and since
a fundamental solution is weakly singularétone has to estimate weakly singu-
lar integrals. Moreover, if one needs to have consideratioiHolder spaces then
integrals with two singularities are of immense importantee next chapters deal
with such integrals in details and their mapping properties

Before proceeding to next chapter we give a short note onuhéamental solu-
tions. It is important because we shall always assume tedtdinogeneous equa-
tion occurring in our boundary value problem possessesa@afuental solution.

1.2. Fundamental solutions

Solutionsu of a partial differential equatiofu = O with an isolated singularity
say¢ are called fundamental solutions in case thats a special behavior at the
isolated singularity. This special behavior can be described with the help of a
boundary integral occurring in the Green integral formula.

In order to apply the Green’s Integral Formula to functioasihg a singularity at a
point in the interior of a domaif, one has to omit a neighborhood of the singular
point £. Now the domain of integration is then confined2g = Q — U, whereU;

is thee-neighborhood of . See on next page.
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Ug

Here the boundary d®, consists of two parts, firgtQ of the given domaif2 and
second the-sphere centered &t

Let E(x, &) be the solution ofLu = 0 having an isolated singularity &t while v is
anyk-times continuously differentiable function. Then the &rentegral formula
applied tou = E(x, &) andvin Q. implies the relation

k+1 * _
(-1) /QEE(X,E)L vix= | PIE(E).Vdu+ L PEE) v
(1.17)
where
/BQP[u,v]du:/Q<v£u+(—l)k+1u£*v> dx. (1.18)

The relation (1.17) leads to the following definition of a i@amental solutions

Definition 1.1 (Fundamental Solution) The function u= E(x, ) is said to be a
“fundamental solution” of the equatiofu = 0 with singularity até if the following
three conditions are satisfied:

(1) u=E(x,¢&) is the solution offu = 0 for x # &

(2) The boundary integral over thesphere in (1.17) tends tev(&) as € tends
to zero, that is,

lim P[E(x,&),v]du = —v(¢&) (1.19)

£—0 |x_§|:g
where v is any ktimes continuously differentiable function.

(3) the function u= E(x, ) is weakly singular a€, i.e, it can be estimated by

const
E(x,§)| < x_Z[a

wherea < n (the dimension of the space).

(1.20)

Following lemma gives the proof of the fundamental solutain_aplace equa-
tion.

Lemma 1.2 If w, means the surface measure of the unit sphei@'irthen

1
(N—2)an|x—&|"2
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is a fundamental solution of the Laplace equatioiRify n > 3, whose singularity
is located at¢.

Proof . Since the Laplace operataris self adjoint, so by Green'’s integral formula
we have,

/Q(vAu—uAv)dx: /m (Vd—N —ua—N) du =: /(99P[u,v]du

On thee-sphere centered &t we have,

9 _ 9
ON  or

c
wherer = |x— &|. For the solution of Laplace equatlun: —— (cis constant), it

follows that
c(n—2) c ov

sn—l + 8n—2 ) W
on the sphere = €. This expression can be written in the form

Plu,v] = v(X) -

v —v()- 2y 02 S

Now we have to integrate these three terms overetpherer = €. Clearly, the
surface measure @fsphere is equal te" ey, where thew, is the surface measure
of the unit sphere. Therefore absolute value of the integjréie first term can be
estimated by

2 -2
'/x AL (E»'C(;” STE C(:”—l)'|X_S?|pg|v(x)‘V(E>|-

Sincev is continuous, the supremum tends to zere tends to zero. Consequently,
the limit of the integral of the first term equals zero.

The integral of the second term in (1.21) can be estimatedsiyguhe Schmidt
inequality

’/X &= s 8” 12>d“' < V(&) ] &M o,
< o(n-2)av(é)|.

Sincedv/dr is bounded (because v is continuous), so the integral oeethiind
term in (1.21) can be estimated as,

cC ov
/X—Ee gnz gy ddH| < [cf-const an-é.

So the integral tends to zero as- 0.
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To sum up
[ Pluvdu=cn—2)an-v(e).
x—§|=¢
Therefore the limit is equal te-v(¢) if we choose

1

T2

Which is the desired choice ofthat leads to the final resull.

1.3. Existence of fundamental solutions for more general igbtic
differential operator

In analysis, an important question is the existence of adarehtal solution in case
of a general second or higher order elliptic differentiadigior of the form,

0 0 0
L = ga—)(i(a”a—)(j)—i_lzbla—xi—i_c,

C. Miranda [38] says that for a domainlit! and Holder continuously differentiable
coefficients, not only that the fundamental solutigfx, & ) exists but it also satisfies
following estimates:

const.
e E X, <
( E) |X— E‘nfz
. dE(X,f) < const.

_COmS
[x—¢&|"
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We consider the boundary value problems for non-linearrsooder elliptic par-
tial differential equations with variable coefficients b&tform:

Lu = F(,udu) in Q (2.1)
u = ¢ on 0Q (2.2)

whereQ is a bounded domain iR" with finite measurenQ, the boundary data
is assumed to be of clagg"? while the right hand side satisfies the following
Lipschitz condition:

| F (-, ur, Giun) — F (-, Uz, Gi)| < Lafur — [+ Lz j|dius — G| (2.3)
]

andF(-,0,0) is bounded by, that is|F(-,0,0)| < M.

Note: The above Lipschitz condition (2.3) is only required tosttbe unique ex-
istence of solution but for the existence results by SchésBiexed Point Theorem,
we only require the boundedness of the right hand side.

Where the operatof is given by

n n

Lu= % o (aij(-)9ju) + Zl(bi(-)ﬁiu)Jrcu. (2.4)

i,]=1 i=

We shall require the coefficiengs (-) andbj(-) to be continuously differentiable or
Holder continuously differentiable.

Our goal is to show the existence and uniqueness of the solofi the bound-
ary value problem (2.1),(2.2) by ti&chaudemlandBanachFixed Point Theorems.
Clearly, the right hand side depends on the first order direvaf the desired solu-
tion u so we have to choose a suitable Banach space. Due to an ditgilzithe
Schauder type estimates, we have the advantage to use therldpaces as required
Banach spaces to have investigations in. Also we will neeidya maximum prin-
ciples for estimation of solutiong andu of homogeneous problefiup = 0 and
L0 = 0 respectively.

Before going towards the behavior of the singular integriashe first section,
we give a short introduction about the function spaces winehshall consider
throughout this dissertation.

31
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2.1. Holder space ¢

As we have hinted that we shall deal the non-linear seconef qattial differential
equations of elliptic type when the right hand side depemndshe desired solu-
tion and its derivatives so in general, this leads to the idenation of either space
of continuously differentiable functions or space of fuaos which have Holder
continuous derivatives up to first order.

Since we possess enough literature on the Schauder typeasssiso we shall give
preference to consider ti@-? function space. In the last section of this chapter,
we discuss the Schauder estimates in details.

2.2. Singular integrals

We are going to discuss the two types of singular integrals
i Integral with one weak singularity

ii Integral with two weak singularities

2.2.1. Integral with one weak singularity

It is clear from the first chapter that under certain assuomgtihe boundary value
problem can be reduced to the following fixed point operator

U = o+ 0+ [ E(.&)F (§.u(€),qu(E))dg (2.5)

where we have to deal with the integrals whose kernels haa& giagularities. For
example with the fundamental solutions of the partial défgial equations. Natu-
rally, we must evaluate the behavior of such singular irgtlsginear the singularity)
and their mapping properties see Chapter 3. In [2] Agmon,dhsand Nirenberg
narrate about such kernels with weak singularities vergipic

The functionF involved in the above integral equation, is assumed tofgate
Lipschitz condition or is only bounded, so its norm can bema&ut of integral and
we are then left with a weakly singular integral having on@kvsingularity of the
form,

dé .
K'/QW’ with o <n. (2.6)

To investigate such type of integrals, one need certaiftsgsane of them is well
known as Schmidt inequality stated as:

Lemma 2.1 (Schmidt Inequality) SupposeQ is a domain inR", with finite
measure @ not necessarily bounded. Denote the volume of a unit b&@liby 1,
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while the measure of surface of unit balkig then forO < a < n

dé W /mQ\ 1w
[ e <r_) @)

for each x ofR"., 1

That means, the use of Schmidt inequality will always be gpairtant step to es-
timate such types of integrals. But importantly, Schmidiguaality provides the
result for one weak singularity.

Since our main considerations are to investigate the demsof these integrals
under the sign of integration because we are going to workace of Holder con-
tinuously differentiable functions. The first order detivas leads to the increase
in the order of singularity but even then we are staying widakvsingularity with
o +1 < n(the dimensions of the space) and estimation of integrabegrerformed
by Schmidt inequality. But if one wants to work in spaces [eor C%? then the
situation is more complicated and tricky because integmnativolves the strong sin-
gularity. Then the integral is understood as a Cauchy palaialue in literature.
One has to be more careful that case.

2.2.2. Integral with two weak singularities

An important result about the estimates of integrals hawitegrand with two weak
singularities say at andx’ is the following theorem. This result is even true for
an unbounded domain having finite measm®. It is important that the following
result is also a counter example and correction to the raseft in the book of S.
G. Mikhlin see Appendix B.

Theorem 2.1 Suppos&? is a domain inR", with finite measure @, suppose
further thatA and u are real numbers satisfying the inequaliti@s< A < n and
0 < u < n then there exist constantg,(C; and G depending only o2, A and u
such that

n N—A—LU

/ dé Ci/X —X | +Cp, for A+pu#n (2.8)
o X=X =gr Cs—4min|x —x'|, for A+p=n

is true for any 2 points 'xand X not necessarily belonging t@ but having a
positive distance less than 2. Hefeis an element iR" and & is the volume

1Proof of Schmidt Inequality is available in literature sgsihot included here.
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element in n-space . Wherg,©C, and G are given explicitly by:

2n 1 1 2mn
Cl_Z”Au‘M{n—)\ +n—u+n—)\—u}
1 2m
=2 Q
C2 nM{n—A+n—u+n—A—u}+m

1 1 mQ

Proof : This has been proved in Appendix B.

Remark 2.1 The estimate is also true if the distances of the two poirdsgaen
greater than 2 but then we get other constants. This sitnasaliscussed in next
chapter under title mapping properties.

2.2.3. Integral in the sense of Cauchy principal value

When one has to work in different function spaces then varmoapping properties
of singular integral operators are to be dealt with. In thevjmus subsections we
have discussed the more easy cases concerning the wealasiegiwhich are

rather easy to handle. Here we deal with singular integradénly the strong sin-
gularities and those unbounded integrals which don’t eagsproper or improper
integrals. In a broader sense these integrals exist in tiessd Cauchy Principal
Value, briefly either CPV. or PV. integrals. A detail note oauchy type integrals
both in univariate and multivariate cases has been desidoyp@. R. Krommer and

C. W. Ueberhuber in [33] p14.

The existence of Cauchy Principal Value Integrals for uasiclasses of integral
equations has been discussed by M. A. Golberg [20]. Simgjlénese integrals
occur in the integral transforms, for instance, in Hilbert &iesz transforms which
have been mentioned by A. J. Jerri in [25].

We now examine the Cauchy type integrals with an example. iGanda [38] has
dealt such integrals. Here we consider a bounded do@amR". Suppose the
functionk : Q — R is unbounded in an arbitrary neighborhood of a pdiraf Q.
Let B¢() be the sphere with respect to the Euclidean norRrand ¢ € (0, )
and let the functiork be Riemann integrable over the regiOnB:(&). Then the
CPV integral is defined by

/Q* k(x, £)d& := lim K(x, )d& (2.9)

£-0/Q\Be(£)
provided that the limit exists.

G. Monegato [39] stated that if the order of the singularstyai most equal to the
dimension of the space of which our dom&lns taken as subset, the above limit is
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independent of the particular norm otherwise it depend$ieratcertain norm. An
important example of the CPV integral is given by,

J(x)::/* F&) 4 (2.10)

o [x—¢&"
We encounter this type of integral during the solutions afirmtary value prob-
lems for inhomogeneous partial differential equations. ufficient condition for
the existence of above integral defined in (2.10) is that timetfon F is Holder
continuous a€ that is for for O< a < 1 there is a constaft such that

79— F (&) <Clx—¢&[* (2.11)

that means, the the functiof having the property of Holder continuity leads to the
reduction in the order of the singularity of the kernel appegin the integrand and
we stay with a weak singularity and then simplifications cardbne similar to the
previous sections.

2.3. Schauder estimates

Schauder estimates play a very important role in the thebgjliptic Partial Dif-
ferential Equations. In view of wikipedia these estimatestsmsed on the existence
theory of Juliusz Schauder so they are named after him. Nyttbat Schauder es-
timates are of worth importance in existence theory of lifeea also for non-linear
elliptic PDEs. These estimates guarantee that the Holdemdor the solutions
of PDEs, in general, is controlled by the Holder norm of thermary data, i.e,
they are very critical in solving the boundary value probdera lot of literature is
already available on these estimates.

In the articles of Agmon, Douglis and Nirenberg [2] and [3amprehensive dis-
cussion on Schauder estimates is already given. In thisdegaostly the| - ||c2.a
bound for the solutions of PDEs is estimated. E. A. BaderR@f@ves the case
|- |lcza explicitly which is very important for our consideratiorsnce our main
focus is on boundary value problems for non linear seconéroetliptic PDES.
We will mainly focus on the function spa€*?, hence it would be a natural de-
mand to have Schauder estimates for this case at our disgos@ilbarg and N.
S. Trudinger [18] has also presented various results onusielhaestimates with
applications in the framework of boundary value problems.

Foremost, there are two kinds of Schauder estimates:
 |nterior Schauder Estimates
» Estimates near the boundary

The “Interior Estimates”, provide us the bounds for theives up to the second
order of the solution and their H6lder continuity in any caupsubset of the do-
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main that is, for the solution of a boundary value problem)22.2), we have the
following bound,

lullézaq) < € (IFllcas(q) + lullcora) (2.12)

Here the norm depends on the behavior of source term and tiimuwity of the
solutionu. Sign “*” represents the weighted norm inside the domair that a
positive distance from the boundary. Constaxepends on the Holder exponent
dimension on the space ellipticity constanty and theC%% bound of the constants
appearing in the elliptic operator.

In the later situation we get the same type of estimates asaweih (2.12) but here
the Holder norm depends additionally on the regularity afrmtary terms and we
have the following Schauder estimates up to the boundary.

lullczaq <€ (IFllcon(@) +lullcoiey + 9 lczeony)  (2.13)
whereC additionally depending on domata.

In general setting, for the regularity 6Kt29 of solutions, Gilbarg [19] has proved
the lemma as:

Lemma 2.2 Let Q be a &® domain, k> 0, and assume & CX29(Q), the
boundary valeg € Ckt29(Q), the right hand side £ Ck?(Q) and the coefficients
of &, bj,c are in d‘y“(Q). Then the following Schauder estimate is true

[Ullckrzaigy <C <|| flloxa o)+ llullcoq) +11¢ ||ck+2-a(ag)> (2.14)

The Schauder estimates for the Holder continuity of the diesivative of the solu-
tion up to the boundary is given in [8] and [7]

lullcra) < C (IFlcaae + Iullcoe) + 9 lcrapa))  (215)

When the solution satisfies a certain maximum principle,ntiiédle term can be
dropped or one can estimate it by the Holder norm of the bayratta.

We also prove the Schauder estimate€1§-norm inR” and in this case we eval-
uate the constants explicitly. For this see Appendix A.

Of course for the differential equations with variable dwméfnts, additional
smoothness properties are required for the variables. u8elhastimates near the
boundary for the elliptic partial differential equationfsam arbitrary order are pre-
sented in [2] where the authors give both the cases of eaqusatith constant and
variable coefficients and interior estimates. Moreovepragrehensive discussion
about the boundary conditions and their smoothness is dginglar estimates for
the systems of partial differential equations were givgB8jnRegarding the interior
estimates for systems of elliptic PDEs we refer to [14].
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2.4. Maximum minimum principles

The maximum principle is an important property of the sans of certain partial
differential equations which can be of elliptic or parabdiype. The maximum
principle, in general, says that a maximum value of a fumc{which is the so-
lution of partial differential equation) in a domain exisis the boundary of the
domain. To illustrate more, a solution of elliptic PDE isds#b satisfy the strong
maximum principle if it attains its maximum value inside themain then it is
uniformly constant in the closure of the domain. Moreovlee $trong maximum
principle is very useful to find the a priori estimates of tb&isions of linear partial
differential equations and specially of boundary valueébpgms for non-linear par-
tial differential equations. We investigate boundary eatuoblems for non-linear
PDEs where these maximum principles play essential partMi@nda [38] p7,

gives the maximum principle for the general linear secorttoPDE of the type
Lu= f:

Lemma 2.3 LetQ be a bounded domain and u be a regular solution of homoge-
neous equatiofu= 0in Q. Suppose further that u is non-constant and continuous
in Q. If c < 0then throughouf:

max|u| < max|ul| (2.16)
Q 0Q

more precisely if e= 0 then throughouf) we have the two sided estimate:

minu < u < maxu (2.17)
Q 9Q

More results on the strong and weak maximum principles arengby D. Gilbarg
[19].

The weak maximum principle, on the other hand, says that Hawe the maximum
on the boundary even then this maximum value may exist irsideterior of the

domain, for instance a weak maximum principle has been eadi in [19] where
it says that,

Lemma 2.4 Let £ be a general linear second order elliptic operator defined in
section 1.1, in a bounded domdh Suppose that if

Lu>0and c=0in Q
with u€ C?(Q) NC%Q) then the maximum of u is given by,
supu = supu (2.18)
Q Fle)

and if
Lu<0and c=01in Q

then minimum of u is given by

infu=infu (2.19)
Q 0Q
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The last equation gives the minimum principle.

The maximum principles are the basis of proving the Harnaekjuality in the
framework of partial differential equations. We shall bequently using the maxi-
mum principle in our existence results for the a priori esti@s of the solutions of
non-linear partial differential equations.



3. MAPPING PROPERTIES OF RELATED OPERATORS

The chapter one reduces the boundary value problems to dukedoint operator in-
volving the singular integrals. In general these singuitegrals are of the form,

JECOF (& u(E), au@)de, 3.1)
Q

whereE(-, &) is a fundamental solution of the linear homogeneous dllipéirtial
differential equationZu = 0 and by definition a fundamental solution is weakly
singular.

Our main focus will be on solving the class of the boundaryearoblems for non-
linear partial differential equations with variable coeitfnts having the principal
part as Laplace operator when the right hand side dependmiyobon the desired
solution but also on its first order derivatives. Moreovershell apply Schauder
and Banach Fixed Point Theorems to obtain our existencésesience it will be
mandatory to choose the suitable function spaces or Bamea®es to work in.

Since the right hand side depends on the derivatives of thé@oof the boundary
value problem, itis natural to consider the space of cootisly differentiable func-
tionsC!. But as mentioned before, we want to utilize the presencheoSthauder
estimates which are developed mainly for the Holder spa&swe shall work
with C1¢ function space. The next important chapter gives detaithemxistence
results, where we prove the existence and uniqueness obhimgos of BVPs for
non-linear PDEs. These existence results demands to heeeamapping proper-
ties of the fixed-point operator in our hand first.

Now we shall confine ourselves to the non linear partial dgffitial equations which
have the Laplace operator as a principal part and right hatedis a function of
the solutionu and its first order derivatives. Here we can bring the terromfr
differential operator with first order derivatives of thdwgmn and the rest lower
order terms to the right hand side and we stay with the Lapigegator on the
left hand side. The reason is that we can now work with theiexfindamental
solution of the Laplace operator which we have already piomdhe Section 1.2
in Chapter 1. We shall consider a bounded dongaim R" and the corresponding
fundamental solution for the Laplace operator is given by

1
EX7 - - )
%8 = a2
The Dirichlet boundary value problem, considered is
Au = F(,udu) in Q
u = ¢ on 20Q

n>3.

39



40 3. Mapping properties of the operators

i.e, we have\ instead of the general second order elliptic different@drator,.

By the Theorem (1.1), the above BVP is reduced to,

(£))
_u+u+/n 2wn|x EI”ZE

or briefly,
U=u+0+V, (3.2)
whereV is given by
1 [F(u(E),0u(E))
T2, Q/ FEHE &9

while ug andu are the solutions of the Laplace equation with boundaryesasp
and—V respectively.

Clearly the singular integrd in (3.3) is a significant component of the fixed point
operator (3.2), so we shall be discussing the mapping ptiepesf this integral
operatorV then we carry these propertieso It will be important to note that
throughout the investigation we shall assume the densitgtion 7 to be Lipschitz
continuous or bounded.

3.1. Continuity of V

We again considev

1 [FEu).aue)
MCREN TR B v

The continuity ofv can easily be checked as follows

V(x) — V(x/)

1 1 1
= gy | 006 (s g )
Q

B 1 |X_€|n72_|x’_5|n72
- —(n_mg/ﬂf,u(f),du(a) ( g R ) d

- m/ﬂf,wf),dwf)) (Ix—&— X — &) wde (3.4)
Q

where

X —&]M3 4 [x— &K — &+ Ix— &M IX — P X - "

e K= €2 x— g2
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That implies,
/ Il /
’V(x)—V(x) <o paX XY
where
dé dé dé
Y =
Q/M—f\“2~|x—f\1+!\%—f|"3-\x—f|2+ +!\*—fll-\><—fl“

(3.5)

In (3.5) each integral with two singularities is bounded bhe®drem (2.1) and we
have (-2) total terms. Moreover, we have an explicit value for thtegral estimate
and so the absolute value of left hand side of (3.4) can be msdmall as possible
whenx — X. But notice that theorem (2.1) is only true for the domainihgv
diameter less than 2. i.ix— X | < 2. The constants occurring during the estimates
of each of aboven(— 2) number of integrals are the same so one can write down the
above inequality:

. df
X —&[n2 [x— [
Q

< ﬁ|x—x/|-(n—2)

For |[x—X | > 1 we can consider again equation (3.4)

V(X)) - V(x) (3.6)
1 1 1
- m!?(f,u(f),&.u(f)) (\%—E|”2_ |x—E|”—2) d&
V() - V(x)]

[l 1 1

(n—Z)%! ()(Enz +!X—f”2) dé (3.7)
[l / 1 1

-2 Z(X—E“2+!x—fn2) @ 38

here using the Schmidt inequality two times we get the boonthfe integrals that
means

[l (@)2/3.‘)(_)(" (3.9)

‘V(x)—V(x’) S e

which shows finally tha¥/ (x) is continuous.
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3.2.V(x) eC}Q)

For sugaV | we differentiate under the sign of integration, so we get

1 F(EuE),auE)
= (”—2)%9/ TS $19

and

17 &
V1= e | g e

again Schmidt inequality leads to the following

[aV]| < % (%) (3.11)

_ o1t X—& % -—§&
= (n_ZM/F(«E,U(«S),dU(E))(b(_ﬂn ‘X,,_ﬂn)df

this implies that

)(}.V( —av(x)| < ”f” /IdE (3.12)

by the same arguments as previous we have,

| <2(n—1)|X —X | 11 :
|)( _€|n—z . |)(/ —E|1/2

from (3.12) we get,
An-DIF g f d¢ |
(n—2)an 2 X =&z X = &12

here we apply the following estimate for the integral overoandin with finite
measure, sagnQ, in R" of the function with two weak singularities lying gtand
X

AV (X)—aV(X)

1 anrrry, ’ "
- dé < ThIn2 mQ—47T‘In X —X ‘
Q/M—sw-w—av $Sonop tIINET px—x|

where0< pu<n,0<v<nandu+v=n
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we get
AV (X)—aV(x )| < 2(n:—12)>||ai-"|| X =X |- (C—8n’|n X —x””)
where C is given by
C= EET;—HnInZ—i—mQ.
Thus we have
laiV(x/) —avV(x)| < W X —x”’a (Ctl’“+8nt1"’ In|x —x | )

(3.13)

! 1
wheret ;= ‘x —X

The last expression shows that the first order derivativeéé(gf are continuous.
Hence one can easily find th¥ ||z norm. ThusV (x) € C1(Q) which is very nice
property ofV (X).

3.3. V(x) e Ct9(Q)

Now another important mapping property of the singulargra€operatod (x) is
discussed that is whether it is a member of the Banach €pef€Q) or not. Again
the last inequality (3.13) implies

2(n— 1|7l

> (nN—2)an

av () -av ()|
X

IA

-max(Ct'~% +8mt* “Int)  (3.14)

suppose magCt*~% +8mt-%Int) =m

av () -av ()|

e can-i

(N—2)uwn

sup < (3.15)

Now fort = [X —X'| > 1, from the previous arguments we have

e 7] 1 1
av(X)-av(K)| < m_a%!{w_ﬂmfﬂﬂ_adef

(3.16)
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using Schmidt inequality 2 times, we get

! " 1/n
avix)-avi)| < 271 (@)

avn@gyml

IA

n—-2

21F| (ma\""
—2

IN

>

and

OV (X) —av(x")| _ 2|F] (m)\*" 1-a I
< . : =m. 20
Sup X' —x"|a ~—n-2 Tn maxt M2

wheret1~? is monotonically increasing function ahg 1 so we have the maximum
for each t. Now ifd > 1 is the diameter of the domain thdh @ is the maximum
for eacha € (0,1). So ultimately we get
AV (X)—aV(X) N 1/n
S[mquM)]Hﬂ:m@wﬂ

X =X

S
up h Tn n-—2 n-2

Clearly the Hoélder constant is finite
So now form’” = max(m,nY), ||V ||cLe is given by

2/n 1/n
(@) (E) , n{f]”%”z (3.17)

Vv < max
Vligra < - - -

Hence the/ € CL.9,

3.4. Relative compactness of the operator (x)

To show that the operatdt is relatively compact i€t —norm, we considev as
the image sequence of defined in the ballBr

B (0) ;= {ue CH: ||ullcra <R}

and then later on we will take this resultlt, where we required to show that the
fixed point operatoU is relatively compact.

Suppose fouy, there ard/ the arbitrary sequence in images.

1 /F(f,uk(f),dUk(f))

de::_(n_zymg V_EW_Z

dé
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Letx be any arbitrary point in the domaf®, so we have

Vie(X) —Vi(X) :ﬁ/}"(f,w(f),duk(f)) { \X—;”Z - |X_iz|n—2 }df
Q

0-3IF de
= -2 <X Q/|x—,s|'|x’—<$|n—2'

/!

Vi(X) —Vk(X)

The integral in the right hand side of the last inequality msté, see for example
the result on two weak singularities in appendix or ChapieioZzhe left hand side
of the last inequality tends to 0 &s— x/| is arbitrarily small and the bound is inde-
pendent of the indek, which shows that the sequendgare Lipschitz continuous
(consequently equi-continuous too) in the sup-norm. Heveare in a position of
application of the well known Arzela-Ascoli theorem. Nobat in view of Arzela-
Ascoli theorem, we have now a uniformly convergent sub-saqgeVy, of Vi which
converges uniformly in the sup-norm.

This is very important to note that up to now, we have foundsthie sequence which
converges in the sup norm but it is not sufficient for us beeaus are in the&€-?
function space and we require the convergence in the fjotfg.a.

SinceCl? is a Banach space, so it is enough for us to show that the seg\en

or its sub sequence is a fundamental (Cauchy) sequence mothe|| - ||c1« and
then we can take into consideration the definition of a Barspate to show con-
vergence. Now our main goal in this section, in one sense,fiad a fundamental
sub-sequence & in C1%—space. According to the definition of the nofim|cv.,
for Vi, to be a fundamental sequence, we have to show for arbitrarglements of
the sequenc¥, Vi, [[Viq — Viknllcre is arbitrarily small, i.e||Vig — Vi, llcra < € for
sufficiently largd andm. The crucial step will be to show that the Hélder constant
is not only finite but it is arbitrarily small as well.

S. G. Krén, Y. . Petunn and E. M. Seménov in [31] give a very nice result of such
compact embedding. Here authors explain their result fddétcale. In essential,
the necessary steps for the existence of a fundamentalrsesjteer Holder (scale)
constant are discussed. We use the similar constructighdgroof of an important
lemma prior to the proof of the existence of a fundamentalisege inC1-¢ space.
An important requirement for the proof of the lemma is thechela bounded and
equi-continuous subsequence in the saprm.

Now for the derivatives we have already found a result andaveh

(% — &)X — &~ (% — &)[x—&|"

/ I F 1l
FGVk(X) —FW(x)| < (n—Z)OLhQ/ |X—E|”-|X/—f|” d¢,
2(n-D|F|

=2 -|x—x/| : (C—8n)|n|x—x/|‘) ,
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which again are equi-continuous, that means, by Arzelaskstheorem, we

have found a subsequentg,V,,,V,,,- - - which itself not only is convergent but
also the sequence of its first order derivatives with respethe first argument
01Vy,,01Vy,, 01Vy,, - - - are convergent.

Similarly, we can find a subsequeno®,mp,mg,- - - of ¢1,¢2,¢3,--- such that
02V, ; 02Vim,, 02V, - - - IS convergent,and also this sequence, at the same time is
convergent fob1Vin,, 1 Vim,, 01Vimg, - - -

By carrying on this procedure we are able to find a sub sequsayé, , Vi,, Vi, - -
which not only itself is convergent but for which the first erdderivatives with
respect to all arguments converge too.

Finally, since théVh,,Vh,,Vh,,- - - and its first order derivatives with respect to all
arguments are bounded we can prove an easy but importafit resu

Lemma 3.1 Let0O < a < 8 < 1, suppose further that,foe uniformly bounded
sequence of functions i@ and equi-continuous isupnorm. Moreover, suppose
that f, be a uniformly convergent subsequence,ahén the Holder constant;

“fn’ - fm'} (X/> - [fn' - fm'} (X”>
X —X]°

sup

is arbitrarily small for sufficiently large n and m for att < 3.

Proof Of course we can write,

’ [fn' - fm’] (X/> - [fn' - fm/] (Xﬁ>

X=X
i () =t ()] = [ () = (4) ]
X=X
M () =t ()] = [ () = O] 1, o
X —x'|f
(b)) JmG)=m G g
Since, by hypothesis, we know thét is uniformly bounded sequence @f# so
we have / )
cl )__ Xin/ﬁ<x ) < I licos- (3.19)

1Arzela-Ascoli theorem guarantees the existence of a unifoconvergent subsequence.
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Using (3.19) in (3.18), for sufficiently larg&/, n’, we get

} [fn' - fm’} (X/> - [fn' - fm’] (Xﬁ>

/ n|B—a
Sup }X/ _X//}or <2. mr:'iX(H fn||c0,g) . ’X —X (3.20)
for
1
X/ B X// < £ B-a
2-max] follgos
~h
we get

’ [fn/ - fm’] (X/) - [fn/ - fm'} (X”)
X =x'|"

<€ (3.21)

and now when
>h

— Y

’ 1
’X —X

due to the fact from hypothesis thit is uniformly convergent in sup-norm, so we
have

8/
‘ fn/ (X) — fm/ (X)’ < E 'ha.
for sufficiently largen, .
Finally, the inequality (3.18) leads to the desired result,

’ [fn’ - fm'} (X/> - [fn' - fm'} (X”> < ’ [fn/ - fm’] (X/) ’ + ’ [fn’ - fm'} (X”>

! !

& &

Ehay & pa
< h T3
< €-h%

for sufficiently largen, .

a

Now since’x’ —X| is monotonically increasing function,

so for
I "
X —X|>h
we have
! " Cf a
X—X| >h
or we can write
1




48 3. Mapping properties of the operators

ultimately we get

[ty — ] (X)’())([/f,;fm’] )] _ el
< €&

sup

Remark Although Lemma (3.1) is an important result for our consadien but it
provides us a basis to establish the important embeddingsésr example Adams
[1] p(11-12) has given such embedding results where autBordiscuss that if the
domain is bounded then the embeddings turn out be compadaod. We have
the following embedding result:

If n is nonnegative integer and f@ < a < B < 1 the embedding ®(Q) —
C™(Q) exists. And moreover, ifQ is a bounded domain then this embedding
is compact. This implies that the Holder space with largetded exponent is em-
bedded in a Holder space with a smaller Holder exponent. Bieim our case, the
domain is bounded and if we start with a larger Holder expdr@éthan compact-

ness in &7 is obvious by the embedding result we just discussed.

Now we carry on our considerations for the proof that the figedht operatotJ
defined above is relatively compact in the 8lin the Banach spad@-“.

Up to now we have prove the existence of a convergent sukeseg\, of Vi in
the sup-norm. Sincé, is a convergent sequence in suporm this implies thav
is fundamental sequence. Consequently, we have

Vig —Vin| < &, for | andmlarge enough

so is true for every subsequence.

Next, we are going to show that thg is also convergent in thg- ||cio-norm.
Clearly the subsequendg can be written as follows

7] % —&l

| 1
d
o] e e

Vg (X) = G

For equi-continuity, we use the result, that for the singuigegral with two weak
singularities we have

2(n—1)[|F|

O () =V (X)| < =5

max(Ct1*°’ +8mti-? Int) ’x— X ’ )

The last inequality shows that the sequedsg, is equi-continuous and in view of
Arzela-Ascoli theorem we have a uniformly convergent sghsece, saxﬂivklf. As

&.Vk; is convergent and obviously is a fundamental sequence rsoligrary small
€ >0, we get

v —avk,

<e. (3.22)
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At the end, we give the final step of the section, i.e, the HOlmstant to be
arbitrarily small, and already from the previous sectidimsclear that it is finite. To
show that the Holder constant is arbitrarily small we firgetanto consideration the
fact that the sequen@,, is bounded in the spa@?# with larger exponent which

can be easily checked with arguments discussed above. Thapply Lemma (1)
proved in this section to get arbitrarily small Hélder camst
e,

‘(dvk{ - &'V'4n> (X/) _ <ivkil _ OWK"> <Xﬁ) <e (3.23)

Sup ’X/ _X//

that leads to the desired result concerning the existereeafvergent subsequence
of ik in CcLa,

Hence, we have proved the relative compactness of the thhatope(x).

3.5. Contractivity of V(x)

To check the that fixed-point operatdris contractive, we shall, first, check that
is contractive in thé| - ||c1.a-norm. So, let us consider again the operator

|X_ E‘an

where F satisfies the Lipschitz condition (2.3) in Chapter 2.

Let for arbitraryy; in the ball defined at the beginning of the Section 3.2 there is
an arbitrary imag#®/; in the same ball then to each andu,, images ar&/; andVs,
equation (3.24) leads to the following,

Vi =V = d&

1 /]:(g,uz(g),&.uz(f))—I(E,ul(f),&.ul(f))
(n—2)en ) x—&[n-2
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And the absolute value is estimated as

V1 —Vs|

<

Hence we get

V1 —

where

Then

V1 — 3y

m'}f(xyul, p) — F(c, U, p?)}-/@ dé

(Ll |U1—u2|+Zsz |diug — &uz|>/| - 5 dé

1 wh /mQ\ 2"
[ Lo 1lug — ||t | &0 (22
(n_2>%< 1f|ug U2||+; 2,jlluz — tzlc. ) 5 < Tn)

1 mQ\ %"
== | L1jlu1—u a Lo illup—u o | ==
2(n—2) <1H 1~ tellcna + 3 Laijlun 2Hc17>(rn)

1 m 2/n
7 () <L1+ZL2J> Jun el
J

1 mQ\ /"
V2|| = Z(n 2) ( ) <L1+;L27]> ||U]_—U2||Clﬁa. (325)

Next for the derivatives, we have

X-(x—&)

oV, — Vo= = 2 x_Zp

dé

X = F (& u(xi),dus(&)) — F(&,u(xi), dux(E))

IN

IN

IN

IN

1
m|}—<X7U1,aiul)—]:(X,Uz,ﬁiuz)‘-Q/m dé

1 1
m <L1|U1_U2|+2L27]‘ |&|U1—ﬁ|u2|> Q/W dé

- mQ\ /"
—F— | L — Lo - _ 2.4
(n_2m< 1]lug u2||+; 2 [lur — Ug|ca. ) n( - )

H

mo 1/n
—— [ L1jlug—u a Lo i-llur — Usll~ia bl
(n—2) < 1]us — el +; 2,j " lur—U2f|a ) < - )

1 mQ\ /"
iz () <L1+2sz) s Ul e
]
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and we get

1 /mQ\¥"
Java—aval < = () (mzm) - tlere.  (3:26)
J

Now for Holder constant we have

AV1(X) — V(X ) — avl a.vz(x”

B éi X — & q
<\x L M—EI”) ¢

VLX) — BVa(X) — VA (X') — BVa(X)

1 Vool [ 278 X =&
SCE <L1+§L2"> = tellre Q/i\x—ﬂ” g

Z(n_:L) / " , ”
< S (L Sy | X =X (= 8mfin i =X||)-lus — tallea,
= (n—2)ah< 1+; 271> X =x'|- (C—8m|In|x —x[})-[Jur — Uzflcs

and further

dé

For|x —X | =t < 1 we get

AV304) —ava(x) — VD) () — AV ()
X —X'|a

2(n—1
= ﬁ <L1+2L2,1> -0 [lur— Uz2lcra (3.27)

where,0 = [max(Ct}~9 —8mt!~9|Int])].

and for|x —x'| =t > 1 we have

VL) — AV (X) — V) () - AVa(x)

‘X/ _X//|a

n—3 mQ\ /" L
S n 2 <L1+ Z L2 ]) <T—n) maX(t ) . ”Ul— UZHCLG' (328)

Now [[V1 —V5||c1a IS estimated

V1 —V2||cre <m- <L1+ Z L27j> -|Jur — 2| cra (3.29)
J
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1/1m\?" /mo\Y" 2(n-1)
m=max|= | =— , , m
2\2 Tn Tn Wh
wherem is the maximum of two in equations (3.27) and (3.28) for wttioh con-

struction is done above.
Now for the fixed point operatdd = up+ G+ V by triangle inequality we have

with

|U1 —UzHcl.a <o — JZHCM + |IV1 —VQHCLG. (3.30)

Applying the maximum principle for Laplace equation and 8thauder estimate
to U having boundary valuesV, we have

U1—Uzl[cia < V1 —Vz2|lcra + [[U1 — W2|) + |IV1 — V2cra

cl(

< CH(|IM1—Vallcra + 101 — 2llc(a0)) + IV — Vol|cra

< CH(IV1—Vallcra + [0 — Bollcaq)) + IV — Vol cra

< CH(IVi—Vallera + V1 = Vallgra) + [IV1 — Val|cia

< (2CT+1)[M - Ve|lcta.

So we get,
||U1 —U2||C1A,a < (2C1+ l) -m- <L1-|— Z L27j> ||U1 — U2||Cl,a. (3.31)

]

So finally forU to be contractive the following condition is to be satisfied

(2Ct+1)-m- <L1+ZL2J> <1 (3.32)
J

Hence under the conditions (3.32) the operat@x) is contractive.

All above mapping properties are of worth importance. Siig thesis deals the
existence results by Schauder Fixed Point Theorem and &xioin Mapping Prin-
ciple which we shall carry out in the next chapters.



4. EXISTENCE AND UNIQUENESS THEOREMS

The goal of the current chapter is to solve the boundary vatablems for non-
linear differential equations where the the right hand gdefunction of a pointin

the domain, the desired solutiorand its first order derivativgu, by the Contrac-

tion Mapping Principlé and Schauder Fixed Point Theorem in the Banach spaces.
Here we conside€? andCL? spaces and we solve the boundary value problems
for the non-linear Partial differential equations. Thisapter is based on the re-
sults dealing the existence and uniqueness of solutionseiriunction spaces by
Schauder Fixed Point Theorem and Contraction Mapping Pleoespectively.

Mainly, we solve the non-linear partial differential egoas by fixed-point tech-
niques. But initially, for motivation, a simple example of ardinary differential
equation is discussed. Here to understand the fundamgwealsonsider the space
of continuous functions. Then this procedure is extendedganore general PDEs
in the Holder spaces (of course, other Banach spaces cabeatsmsidered).

Since the right hand sides of a given non-linear differéeg@ations, generally, are
not defined for the whole function space so it will be obvidusttwe shall apply
both fixed point theorems in a bal (a closed and convex subset of the Banach
space) with a certain radi8. More precisely, we will solve our problems in the
balls in the Banach space. Optimization of the function sgax balls is discussed
in the next chapter.

We shall start with the non-linear Poisson equation withoibxendary value (x) €
CL9(9Q). Optimality condition in the function spac@"? for the application of
Schauder and Banach Fixed-Point Theorems will be invdstigan the nutshell,
the current chapter investigates two important resultsatygm

* Restriction on the radiu® of the ball when the fixed point operator maps the
ball into itself.

» Restriction on the radiug of the ball if the contractive condition is satisfied
by the image of the ball under the fixed point operator.

The contractive condition will lead to the unique existent¢he solution of the
non-linear elliptic partial differential equations. Thisfipart of the chapter explains
the relative compactness of the operators under consiolerfatr the existence of
the solutions by Schauder Fixed Point Theorem.

During the investigations, we apply the well known Schawesimates which are
very important tools to prove our results. Since, these Gadiatype estimates give

1Banach Fixed Point Theorem

53
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the estimates of the solutions of elliptic PDEs in terms aififmtary values in the
Holder spaces, is the reasons to consider the Holder sparcesrfwork.

This chapter contains the following sections:
» Section 4.1 is about the basic fixed point theorems whichreeansidering.

* In Section 4.2, first we give the model case ordinary difiiéied Equation
(Application fixed point theorem defined in section(4.1).

» Section 4.3 deals with the condition on the radius of théibd&anach space
for which our fixed-point operator maps the b@linto itself. We give the
estimate for the restriction & in this case. This section is necessary for the
application of both the fixed point theorems.

* In the section 4.4, we prove the relative compactness obpegator which
gives rise to state a theorem for the existence of solutiothiagiven problem
by Schauder Fixed Point Theorem (II).

» Section 4.5 narrates an additional condition for uniggsn& the solution,
that the fixed-point operator is contractive in the Holdemmand an explicit
result for the estimate is proved.

As we have discussed already our main focus is to solve maadlipartial differen-
tial equations so the sections (4.3)-(4.5) are all abouPbEs. The consideration
of a model problem of an ordinary differential equationseoton (4.2) is to carry
through the idea of the fixed-point approach to non-lineag®D

The whole chapter deals with the various aspects of theesdstand uniqueness
of solutions by applying the the Schauder Fixed Point Theoaead Contraction
Mapping Principle, so it will be better to recall the defiaits of the well known
fixed point theorems we are going to use.

4.1. Basic fixed-point theorems

In the following definitions, we are recalling the theorems shall apply for the
proofs of the existence and uniqueness of solutions of m@at PDESs in general
and to ODEs in particular.

Definition 4.1 (Contraction Mapping Principle). Let 2l be a closed subset of a
Banach space on a domdin R" with certain norm. Suppose, further thats

a contractive operator (under the norm of the Banach spaappimg?! into itself.
ThenTt possesses a uniquely determined fixed-poift.in

Clearly the Contraction Mapping Principle guarantees thigue existence, so it
will be an important tool for us to show the uniqueness e ofsthlation in case of
our boundary value problems.

Now we give the definitions of two versions of Schauder FixethPTheorems:
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Two versions of Schauder Fixed-Point Theorem

Definition 4.2 (Schauder [).Let M be a compact and convex subset of a Banach
space, and let be a continuous mapping M into itself. Thenf has at least one
fixed point inM.

And second version of the Schauder theorem is

Definition 4.3 (Schauder II). Let M be a closed and convex subset of a Banach
space, letf be a continuous mapping ® into itself, and suppose thdtM) is
relatively compact, them has at least one fixed point M.

As in our case we will apply the above fixed point theorems &oltalls in Banach
spaces but these are closed and convex subset. That is wiagll\apply only the
second version of Schauder Fixed Point Theorem which reguinly the subsets
to be closed and convex.

Since both the theorems defined above are well known resuliterature so we
are not including their proofs here. For Contraction Magpirinciple (Banach
Fixed Point Theorem) see E. Kreyszig [34] where in detaslpitoof is given. To
know about the construction of proving the Schauder Thepwanefer [34] where
author gives necessary details of the proof. In appendih€second version of
Schauder Fixed Point Theorem has been proved.

Also, it is clear from above definitions that we require, floe application of both
theorems, the condition that the operator maps the bakéd@nd convex subset
of Banach space) into itself must have to be satisfied. Sodbalts of Section
4.3 will appear to be necessary for both theorems for thaaliegtion in the balls.
Our main focus will be to solve the boundary problems in gehdomains for
non-linear equations of the following types:

Au = F(-,u,du) in Q (4.1)

u = ¢ on,0Q (4.2)

by fixed point theorems stated above.
Before going to the main Sections 4.3-4.5 which deals withldbundary value

problem above, we start with the initial value problem untter following head-
line:

4.2. The Model case of ordinary differential equation

We have the following initial value problem
y = ¥ (4.3)
y(0) = 1L (4.4)

We are going to solve the above initial value problem by that@ation Mapping
Principle and Schauder Fixed Point Theorem.
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For the above initial value problem, we assume:

» The right hand side is Lipschitz continuousyr(at least locally Lipschitz
continuous).

* Xis point of the real axis.

* We apply the Schauder Fixed Point Theorem and Contractiapgihg Prin-
ciple to the balls in a Banach space.

Then the above problem is equivalent to the integral eqaatio

Y% =1+ [ Y(E)dE,

In view of Chapter 1, the initial value problem can be reducdthe following fixed
point-operator:

Y00 =1+ [ yA(6)de (4.5)

and the balB centered at the initial value with radiunsgn the Banach spad@”[a, b]
is given by
Br(1) :={yeC°[0,p]: ly—1||<r}
which clearly is closed and convex subse€8f
= IVl <1+r

so we get
V-1 < [ &)
[ de- 1yl

< p(1+r)2

IN

wherep is the length of the interval and we want the largest inteovek-axis in
which solution is continuous.

Hence operatoY maps the balB; (1) into itself if the following condition is satis-
fied:
IY(x) — 1] < p(1+1)2<r

p(L+r)?<r

r
p < m (4.6)

is the first condition fop whenY maps the ball into itself.

Here we can apply the Schauder Il provided the operator dkiim@.5) is relatively
compact in the ball. So we assume that for an arbitrary sexguehthe solutions
Yk, there exists an arbitrary sequence of imageso we have from (4.5)

%=1+ [ "V2(8)de,
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0.35

p—axis

L L L L L L L
o 0.5 1 1.5 2 2.5 3 3.5 4
r—axis

this implies y
Y9 —(X) = [ YR(&)aE.

wherex is an arbitrary point if0,x], we get,

Y

¥ = ¥e(x)

/
< VP [x—x

< (1+p)2’x—x/ ,

which shows that the image sequengas equi-continuous and by Arzela-Ascoli
theorem there exists a uniformly convergent subsequéncéy that converges in
sup norm. So the imagéis relatively compact in the ball.

Here we can apply the Schauder Fixed Point Theorem (Schéjdand the fixed
point is the the solution of the above IVP.

Note: To use Schauder Theorem, we do not need the Lipschitz condtn the
right hand side necessarily, rather only local boundedisessough.

Now for the application of contraction mapping principles vequire additionally
that the operator Y not only maps the ball into itself but istcactive too.
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Contractivity of the fixed point operator Y:

AsY is depending oy, so, for arbitrarily choseg; andy, we have the imageg
andY, respectively then we can write,

M- = [ (76~ ¥3E)

M-l = [ 1538 - ¥B(E)) 1o
< L1000 - 2(8)) (2(8) +92(8)) g
< (all+ Iyl [ d&- Iyi-vel

since by the definition of the bally|| < 1+r

Yo =Y2|| < 2p(1+r) || y1— Yol
1
<

Of course the operator will be contractive if the followingndition holds,

2p(1+r)<1

2(1+r)
which is the 2nd condition fop.

Now by Contraction Mapping Principle we have unique fixedhpof the operator
Y and the above initial value problem has a unique solutiohigha fixed point of
the above operator. Also now, we are in a position to get arogpiate value of the
p, i.e the length of the interval in which the functigms continuous. The estimate,

for the besp is given by

_1
P<3

both conditions are shown below

p—axis

» [—axis

11
4 2
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Hence the given initial value problem is solvable by Schayideand the contrac-
tion mapping principle.

The above example gives an idea about the way we will devalopanstructions
for BVPs in the other function (Banach) spaces.

Now we consider the boundary value problems (4.1),(4. Bttogr with the follow-
ing assumptions.

From now on we will assume:
1 Q will be an open bounded domainRf' with measurémQ)
2 p(x) €CL9(9Q)
3 |F(-,ug,diur) — F(-,up,0iu2)| < Lqjup —up| + ZLZ,j |0iu1 — diup|
fori,j =1,2,3- - thatis Lipschitz condition hJoIds.
4 |F(-,0,0)| <Mis given.

We will apply the theorem Schauder (1) instead of Schautjan(section 4.3 be-
cause in this case we need a weaker condition on the subbetBénach space, i.e,
relatively compactness of the operator. But Section 4.%sdeih the Contraction
Mapping Principle as discussed earlier.

Remark to the assumptions on the right hand sidesThe Lipschitz condition on
F(x,u,du) is ncessary for the application of the Contraction Mappinigdiple
in order to show that the corresonding operator is contragprovided the Lips-
chitz constants are small enough). For the application@&ttond version of the
Schauder Fixed-Point Theorem, however, this Lipschitzld@m is not necessary.
In this case it is enough to assume that the right-hand.ideu, du) is continu-
ous (in order to prove the boundedness$®Btx,u, du)| in balls of the underlying
function space), see also Remark 4.3 in Subsection 4.4.2.

Since for the application of both theorems, we have to shawttie fixed point
operator maps the Banach space into itself and then we valvghe condition
under which the operator maps a ball into itself. Here we icemgheCl? as a
Banach space for the solution of boundary value problem),(4.2) and the norm
for anyu € C1¢ is defined as follows.

‘&u )—adu(X)
,sup X=X 4.7)

x|’

ou
||ul|cre := max| sup|u|,sup

Since we know from Theorem 1, in Chapter 1 that the solutiothefboundary
value problem (4.1),(4.2) is a fixed point of the operatoratigun

_ au(s))
U (X) = up +u+/ — 2%\x i dé (4.8)
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or
U=up+0+V (4.9)

where

1 /F(f,U(f),dU(E))

V(X>: (n_z)(l)ng |X_E|n_2

dé (4.10)

Up is the solution of the following problem

Aug = O inQ
U = ¢ ondQ

andu’is solution of the homogeneous problem

Al = 0 inQ
1 [FEU©.aE)
G (n—2>mw! iz e = V(9 on 00 (411)

4.3. Fixed point operator maps a ballB in C19, into itself

In this section as mentioned earlier we will construct thiskia which both Con-
traction Mapping Principle and Schauder Fixed Point Thexmes applicable. Also
we are going to show that the operators maps the functiore§patinto itself. In
other words, we find the restriction to the radius of the lmadipply the Contraction
Mapping Principle and Schauder Fixed Point Theorem. Thesdaimchlet prob-
lem for a non-linear Poisson equation when the right hanel dgbends only on the
desired solutiom has been investigated by W. Tutschke in [53], wi@tspace has
been considered and the boundary data is supposed to beamiguous and the
right hand side involve only the solutianbut not its first order derivatives.

Define to anyu € C1%(Q) an imageJ by,

L1 FEU.aE)
U(x)_uo+u+(n_2)wng/ g e (4.12)
or
U=up+0G+V (4.13)

Now we will show that the operatdl maps the spadg>? and a ball inC1? into
itself. First, it is enough to show th&t(x) as defined in (4.10) is i€1?. Since
the objective of this section is to find the condition underichithe fixed point
operator (4.12) maps certain balls (closed and convex w)asdehe Banach space
CL% into itself and then to find the explicit formulation in thisgards, we define
such a ball.
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Let the ball®B in CL9 is defined as,

B (0) := {ue CH : ||uflca <R} (4.14)
Again considering/
_ 1 F(&,u(é),au(d))
V(x) = (n—2)an/ g (4.15)

now for sugV (x)|, using Schmidt inequality, we have

1 1
Vo) szﬁzﬁ;ww!&jafiﬁ

a3

= (n-2wn 2\ T
17l /mQ\s
< 2(n—2)'<r—n) (4.16)

and for supa;V | we apply the estimate (3.11) already constructed in Ch&pteo
we get

|Fl (moY
[aV] < n=2) (T—n) : (4.17)

AV (X)—aV(x)
Now, finally, for the Holder constant, sup

, We again apply the

X =X'|@
mapping property of Section 3.3 from to get.
Fort=|x —X | <1,
AV (X) = av(X) - :
sup’ 2= 1|7 -m (4.18)

X—X|a = (-2

and fort = |X —X'| > 1, from the previous arguments we have

AV (X)—aV(X) 1/n
apl V)= !<:2wrn,<nu2) o

X —X'|@ “n-2 \ 1

wheret!~9 is monotonically increasing function and> 1 so we have a maximum
for each t. Now ifd > 1 is the diameter of the domain thdh @ is the maximum
for eacha € (0,1). So ultimately we get

AV (X)—aV(X)

su < max|AN=D (M2 Rkl
P X —x"|@ - Wh "\ Tn n—2
< m”(d)~”—'f” (4.19)

n—2
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where maXCt!~9 +8mt!~9Int) = m
Clearly the Hoélder constant is finite.
So now by combining (4.16),(4.17) and (4.19), the ndjMtX) |-« iS given by

1 /m\Z" rmo\Y" ] |IF
||V( )HCla < maX[é(—) ,(—) , m] m (420)

Tn Th

HenceV e Ccla,

For an estimation aF we consider
]—"(x,u,g—:i) :]-“<x,u,g—:) — F(x,0,0) +F(x,0,0)

‘J—“ <x u s—)' ‘]—“ <x u, g)‘:) —]—"(x,0,0)'+|J—"(x,0,0)|

)]—"(x u, g)q)‘ < L1|u1—0|-|—ZL2J

7 (e g )| < tlbtens S vl +m

6u1
— —0|+M
0% ‘

hence

Hf(x u,gu)Hgﬁ%-LlnLSR~ZL2J+M (4.21)
J

Now (4.20) takes the form

max{%(@)zm,(@)l/n, i

Tn

IV|lcra < — } (%-Ll-l-%-ZLz?j-H\/l)
J
(4.22)

Now we are to show thai in (4.10) belongs t€1? also.

Again from (4.10)
U=up+0+V
due to the fact thaEl-9 is a Banach space, the triangle inequality implies,
U llcragq) < [Uollcrag) + 18llcra gy + IVIicra g

Applying the Schauder estimate from Section 2.3 of Chapter 2

Il csa@) <K (IFllca +l18llctaoq) + 1)
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whereK is constant of the Schauder estimate. Also using the maxiprimgiple
for Laplace equation leads to the following calculations:

Wicte < K(I9llcrean) + llvoll) +K (IVllcse + 161 + IV llcra g
K (II8llcta gy +101) +K (M lcxo + VD) + IV | craq
K (I18llcaoa) + 18llcse ) + K (IVllcra + VI + IV llgre ()

K (I8 leraan) + 19 llcre ) +K (IVlgto + IV lcre) + IV llctaay
2K lera + 2KV et + IV gt g
2K||@]|cra + (2K +1) ||V||cra

ININIA

IA N

Using equation (4.22) we have

Vllcraig) < 2K[[@[lcra (2K +1)) - m- (9%- Li+R-Y Lo+ M)
]

wheremis given by,

2/n 1/n
max[}- <E) ,<E) , m”] =m (4.23)

2 Tn Tn

Hence the operatdd maps the function spac@"? into itself. And the condition
on the radius of ball, under whid¢h maps the ball into itself as follows

2K||¢||cm+(2K+1>-m<9%-L1+9%-ZL2,,- —|—M> <R (4.24)
J
or
R > 2K||¢|cra +M(2K +1) (m- Li+R-5 Lo +M> . (4.25)
J

To sum up, we have the following statement:

Theorem 4.1 LetQ be a bounded domain iR" with boundan®Q of class G-¢
then, provided that the right hand side is Lipschitz conimsi(at least locally), the
boundary value problem (4.1),(4.2) is solvable, in the Balvith radiusfR defined
in (4.14), by Contraction Mapping Principle and Schaudexdd Point Theorem,
only if the inequality (4.24) is satisfied.

Itis important that the above theorem is not enough for tipdiegtion of fixed point
result but it provides us the necessary condition to befeatifor the application of
the both fixed point results while the additional conditians yet to be discussed.

From (4.25), following immediate consequence can be drawn.
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Corollary 4.1 An admissible bound for the boundary values is given by

1¢]lcra < imax[m—m(zKH) (%-Ll(iﬁ)-i—%- ZLZ,-(D%)JFM) (4.26)
J

2K

Remark 4.1 Clearly the corollary above gives us the restriction to #rege of the
boundary values that can be considered to solve the BVP®fetinear PDESs.

Remark 4.2 The following section deals with the more necessary requerds for
Schauder (Il) and we are going to discuss an important dpretat for the appli-
cation of Schauder Fixed Point Theorem, i.e, we will show#tative compactness
of the operator.

4.4. Application of Schauder Fixed-Point Theorem

In this section we are going to prove that the opergtdefined according to (4.9) is
relatively compact in the baiB which is a closed and convex subset of the Banach
spaceCl?. Since the main goal of the present section is to apply tha®ier (I1).
During the construction of relative compactness of the fpeitit operatot) in the

ball in the Banach space, so we will adapt procedure as fsllow

I - We assume that for an arbitrary sequence of solutipthere exists a se-
guence of images.

il - We will show that theUy are equi-continuous in the supremum norm.

iii - In the 3rd step we apply the Arzela Ascoli theorem thabgntees the
existence of convergent subsequence (convergence isiagaip norm).

iv - Finally we will show the existence of subsequencé&pthat converges not
only in the sup norm but also in the respective Holder norm.

v - Using the information from the above steps, we shall agulgauder Theo-
rem for the existence of the solutions.

Numbers (i) to (iv) will be discussed in subsection (4.4i8, we will show the
relative compactness of our fixed point operator. Subseéat.2) covers the final
stage of the section that is we apply the Schauder II.

4.4.1. Relative compactness of the operator

We again consider only V and show that ¥eas the image sequence of theare
relatively compact in the bafB defined above itt:?, and then later on we will
take this result t&Jy, which we require.

In Section 3.4 of chapter 3, we have already found the r&atbmpactness of the
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operator V. There we have found a subsequenag ofhich converges in th€-@
and we are not reproducing it again here.

We start with the assumption of having a subsequencé (:n‘ayvk; which is a

fundamental (Cauchy) sequencedh?-norm and hence convergent.
Mg — Vi, llcta < & forlarge K, kn, (4.27)

So the triangle inequality confirms the existence of fundatadesubsequence of the
imagedJy.

Since,
U=u+Gi+V
implies,

/! = ~/ V/

using again the triangle inequality, Schauder estimatenaxmum principle

HUkl’ —Uk;anlﬁa < ”ka — Gk{n”cl,a -+ Hvki’ —Vk;anl,a.
Since the boundary values of thg are given by—V,, the Schauder
estimates and lemma 3.1 show that alsouQearNe a fundamental se-
quence in th€%-norm. Therefore

Jug -,

ot <e¢ forlarge K,k (4.28)

4.4.2. Application of Schauder Il in the balls

We have given the existence of a fundamental sequence b§)(4n2the Banach
spaceCl? under the respective norm, so the operafois relatively compact.
Hence by the second version of the Schauder theorem theseatieast one so-
lution of the boundary value problem (4.1),(4.2). To shoatth has a fixed point
(not necessarily unique) in the b&l (the closed and convex subset of Banach space
cl9) defined by (4.14), both the conditions that the operatoratiag ball into it-

self by (4.24) and images are relatively compact in the bal{428) are already
satisfied. Hence we have the existence of solution in theXall

We prove the following theorem,

Theorem 4.2 Let assumptions numbered (1)-(4) from page (59) are satisfie
suppose further that the non-linear boundary value prob{érh),(4.2) is reduced
to fixed point operator U in (4.9). Let U maps the bl into itself by (4.25).
Moreover, U is relatively compact in the ball then the BVPdk/able by Schauder

().
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Remark 4.3For existence by Schauder Fixed Point Theorem, we reqgjiné maand
side to be only continuous or bounded by a consB{ft) wherefR is the radius
of the ball. If the right hand side is not Lipschitz contingdaut is only bounded
then(R-L1+R- Yilaj+ M) is replaced by either a constant or B§fR) accord-

ingly.
For example:

F (XY, U, U, ,u) = U2+ | dyu?

clearly the above function is bounded locally ByR) = 2 + (9%)% in the ball
defined in (4.14). But it is not Lipschitz continuous so orthe tSchauder Fixed
Point Theorem is applicable.

See also the Remark to the assumptions on the right-harslisi@&ec-
tion 4.3 (page 59).

4.4.3. Application of Schauder Fixed-Point Theorem in the Wole Banach
space

Regarding the application of Schauder Fixed Point Theorethe Whole Banach
space, we refer to the results proved in [9], where the aujhas the existence
results by the Schauder theorem in the whole Banach spacdasd:

Theorem 4.3 Let X be a Banach space. If fis a completely continuous magppin
(not necessarily linear) of X into itself andX) is bounded then f has a fixed point
in X.

4.5. Application of Contraction Mapping Principle

In the first subsection we shall give the existence and umigge of solution by
Contraction Mapping Principle in the closed and convex stshballs) of a Ba-
nach space while in the subsection 4.5.2, we shall give aagrotee existence and
uniqueness in the whole Banach space Q.

4.5.1. Existence and uniqueness in a Ball

Since we have to apply the Contraction Mapping Principlewsaequire that the
operatoltJ, defined in (4.9) is contractive. We find the explicit resattthe operator
to be contractive that leads to the unique existence of theiso of the boundary
value problem (4.1),(4.2)

To verify that the fixed point operatar is contractive, we shall, first, check that
is contractive in thé| - ||c1.a-norm.
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From inequality (3.29) in Chapter 3, we have found the foltgyestimate

V1 —V2|lcra <m- <|—1+ Z L27j> -|Jug — Uz||cLa (4.29)
J

[1 (mQ)z/” (mQ)l/” 2(n—1) ]
m=max|= [ — , , m
2\ Tn Tn h

wherenm' is explained in Section (3.5).

and

Now sinceU = up+ i+ V so by triangle inequality again we have
U1 —Uzlcre < 01— 2lcra +[[V1 —Va|cia- (4.30)

Applying maximum principle for Laplace equation and Schaugstimate ta hav-
ing boundary valuesV, we have

U1 —UzllcLa K (IV1 —Vallcra + |01 — G2[) + V1 — V2| cra

K (IVi = Vallcra + [0 — W2llcaq)) + V1 —Vallcra
K (V1= Vallcra + (01— G2llco0)) + V1 = Valcta
K(IIV1 = Vallcra +[IV1 = Vallcra) +[[V1 = V2||c1a
(2K +1)||V1 —V2||cra-

VAN VAN VAR VAN VAN

Using the results, we get

U1 —Uz||cre < (2K+1)-m- (Ll + Z Lz,j> |ug — U2|cra (4.31)
J

so finally forU to be contractive the following condition is to be satisfied

(2K +1)-m- <L1+ZL2J~> <1 (4.32)
J

Hence if the condition in last inequality is satisfied thea\l{x) is contractive.
To sum up the following theorem has been proved:

Theorem 4.4 Let Q be the bounded domain with finite measur@ nsuppose
further that non-linear boundary value problem (4.1),difreduced to the fixed

point operator U in (4.9). If U, maps a baiB in C1¢ into itself with estimate
(4.24), moreover, if the operator is contractive with,

1/m2\?" /mo\¥" 2(n-1) ,

then the boundary value problem (4.1),(4.2) is uniquelyaole (by Contraction
Mapping Principle). Where K is a Constant from the Schaudénete.
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Remark 4.4 The condition for contractivity (4.32) put an additionastéction on
R together with one we obtained from the self map so that ptesbibund for the
boundary values is restricted additionally.

Remark 4.5The result which we have in (4.32) for contractivity dematwdshoose
Lipschitz constant sufficiently small for operator to be wwaative. And so the
boundary value problem in (4.1) and (4.2) is uniquely sdiwab

4.5.2. Applications to the whole Banach space

The local Lipschitz condition with respect to the desireldigson u and its first order
derivatives on the right hand side of (4.1) is necessaryHerapplication of Con-
traction Mapping Principle in a closed subset of BanachapBat additionally, if
the right hand side satisfies the global Lipschitz condjtiwe can apply the Con-
traction Theorem in the whole Banach space i.e, the existand uniqueness can
be easily shown in the whole Banach space. For example thehamnd side is the

1 1 : . : . , o
function 2 1Tr which, of course, is global Lipschitz continuous so in trase

we can show the existence and uniqueness by ContractioniMpPBpnciple in the
whole Banach space but this does not lead to the explicitzlon. Foremost, in
the case of global Lipschitz continuous right hand side wanoafind the solution
in the closed and convex subsets of Banach spaces to findtthes of types
(4.25), (4.26) and (4.32).

In other words, if the constructed solutiarbelongs to a bal3, then
the statement € 5 can be interpreted as an a-priori estimate.of

4.6. Solution in the ball centered at the solution of homogesous
equation

Instead of considering the solution of boundary value grob{4.1),(4.2) in the ball
defined in (4.33), one can also work in the ball

Br(Uo) := {u € CH: [lu—Upl|cra <R}, (4.33)

that is a ball centered at the solution of Laplace equatiatedtabove. In this
situation, one can work with a particular boundary valuepem but nevertheless,
much similar estimates can be found as described in theque\gections of this
chapter.



5. OPTIMIZATION OF FIXED-POINT METHODS

This chapter is the consequence of the chapter four and ablisét the optimiza-
tion results. These optimizations provide the necessdoynmation on the choice
of largest possible interval in which we choose the radiihef balls. Moreover in
certain cases we give also the largest possible bound fductinedary values which
we can consider. We also give the largest possible b@ufat C-%-norms of the
admissible boundary values. Then we determine the radiughich leads to the
largestC.

We know from Chapter 4 that the boundary value problem

Au = F(-,u,du) in Q
u = ¢ on 2dQ

is solvable in the ball,
B (0) ;= {ue CH: ||ullcra <M}, (5.1)

by Schauder Fixed Point Theorem if the following estimateus,

2C1||¢||c1~,a+(2K+1>‘m<9{'|-1+9{-ZLz,j-I-M) <
J

or
2K||¢ ||cra + (2K +1) -m(R-L(R) + M) <R (5.2)
whereK is constant from the Schauder estimatesla®) = L1(R) + 3 L2 j(R) is

the Lipschitz constant revealed from the right hand sidéeftifferential equation,
that is we have assumed that it is Lipschitz continuous abegrto Chapter 4.

For Contraction Mapping Principle we require additionagt

(2K+1)-m- (Ll(fﬁ) + Z L2 (fﬁ)) <1
J
or

(2K +1)-m- (L(R)) < L. (5.3)

has to be satisfied.

69
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5.1. Schauder Theorem and optimization

Since we already know that, to ensure the existence of soluive must have to
satisfy the condition (5.2), i.e,

10]lcra < %{%—(2K+1)~m(%-L(%)+M)}, (5.4)

the above estimate leads to the maximum bound for the boynddue within
the ball (5.1). To find the largest possible bounfl|c.« we have to maximize
the right hand side of the last inequality, that is, migix— k (93 - L(R) + M)} with
K=m(2K+1).

Differentiating with respect tés, we have,

{1—K(m-L’(m)+L(m))} ~0 (5.5)
implies that,
d 1
0 (R-L(R) =, (5.6)

providedL (9R) is differentiable. Suppose, in addition, thaR) is a monotonically
increasing, that is, fofR; < R, there isL'(93;1) < L'(932). So consequently, we
havel'(931) - 1 < L'(932) - ;R and hencé. (RR) - R is a monotonically increasing
function.

. . . . 1
Equation (5.6) has a unique solutiortat providedL (0) < P and we have,

K-L'(R)- R +Kk-L(R) =1 (5.7)

We have the following result:

: : : d
Lemma 5.1 There is at most one solution of the equation (5.6&% (R-L(R))

. : : : : 1
is monotonically increasing function and@) < P

But yet we have to discuss the following cases

5.1.1. Unique existence of optimal radius of the ball

Lemma 5.2 The equation (5.6) has a unique solution if

. d
dr

(- L(R)) is monotonically increasing function.

* L(0) < %

- Jim o (9-L(O%)) >

Xl
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That is we have the following two situations when we get thiguely determined
determined radiudt where the radius of the ball lies in the interval i;]. Hence,
intersection point

R
] intersection point
=
K K
e it je == == - - .
Largest interval . Largest interval
PR-axis

Figure 5.1.: Uniquely determined largest raddis of the ball.

(0, "] is the largest interval we get for choosing the radius ofitak.

5.1.2. No solution but application of Schauder Fixed Pointtieorem in the

whole ball

Lemma 5.3 The equation (5.6) has no solution if

. dc;{ (- L(R)) is a monotonically increasing function.
1
¢ L(0) < =.
0) <

. d 1
" om, gm (P LOY) <

In this situation we don’t have any solution of equation |526éd therefore, no
intersection point but even then we are in a position to afelyauder Fixed Point
Theorem in the ball with arbitrary radius. The following figullustrate this case.

no intersection point

—

SR-axis

f(R)-axis
X~

Figure 5.2.: No uniquely determined optimal radias.
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But this is very interesting situation because here, stélare in a position to apply
the Schauder Fixed Point Theorem in the whole ball. For begsailts, the radius
is taken bigger and bigger. To get the explicit results, ia fituation, we can fix
the radius that leads to the desired results.

5.1.3. No solution and no application of Schauder Fixed PotrTheorem

The equation (5.6) has no solution if:

(R -L(R)) is monotonically increasing function.

dr

* L(0) >%

In terms of the diagram we have. Here we are in a position wiverean't apply

A A

f(9R) fR)

f(R)-axis

X[
X

>
>

SR-axis

Figure 5.3.: No existence of solution

the Schauder theorem for existence of solution.

5.1.4. Additional condition for Schauder theorem
We again consider equation (5.2)

[9llcia < 5 (98— K (3-L(%) +M)) > 0

which imples that
R—K(R-LR)+M) >0
or

N> K (R-L(R) +M) (5.8)
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We have the following figures clarifying the last inequahbtyd choice of the radius.

axi f(R)-axis
[O-axis for)=m8 N f(9) =%
() 5
R-axis R-axis
T % (M) - Re (R, )
Figure 5.4.: Two different cases for the existence of passiélues of the radius of
the ball.

The situation in the left side in the figure above demands tmsé the radius addi-
tionally in the interval [c, d] while the right side intervigad the interval [he)

5.1.5. Additional condition when ball is centered at the saltion of
homogeneous equation

Br(Uo) := {u € CH%: [lu—Upl|cra <R}, (5.9)
by Schauder Fixed Point Theorem if the following estimateus,
lU—uwllcte < K (fﬁ L1 +R- ZLZ’j +|V|> <R
]
< R—K(RL(R)+M)

since||U — ug||c1a iS @ norm so we have

R —K(RL(R)+M) >0 (5.10)
M 1
L — =
( (R) + 9%) >
M 1 , .
We have to ensure that, n’(ﬂ_(ﬁ%) + §> < leads to the interval as in the next

figure.
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f(R)-axis
A
1
- — )
~ SR-axis
1 |
R € (R, R2)
Figure 5.5.: Maximum interval for he radius of the ball forhn@ader Fixed Point
Theorem.

Note:

For the application of Schauder Fixed Point Theorem we dentire the Lipschitz
condition rather we require only the boundedness of thet hgimd side. If the
bound of the right hand side is representedB$R) then above all conditions are
satisfied forB(fR) instead ofR (L(2R) + M) because all above discussion deals the
mapping properties @ mapping the ball into itself for which we don’t necessarily
require the Lipschitz continuity on the right hand side.

5.2. Contraction Mapping Principle

To apply the contraction mapping principle we have to chaekdondition that the
fixed point operator is not only maps the ball into itself asandition (5.2) but also
that the operator is contractive see (5.3).

Inequality (5.3) leads to the the estimate,

L(R) < % (5.11)

To apply the Contraction Mapping Principle we must satibfyall cases discussed
in the previous sections of the current chapter togethértivé last inequality (5.11)
obtained from contractive condition.

Contraction Mapping Principle is applied according to tbikofving figures.

5.2.1. Contraction Mapping Principle for the case of the Bdlcentered atug

In this situation the contractive condition is
1

L) <~ (5.12)

. 1 N .
with of courseL(0) < PL Then the following intervals can be considered



5.3. Solutions of inhomogeneous boundary value problems 75

OV oy

X

-~ SR-axis

rl;ossible values cifl’/t only for Schauder Theorem

e > . .
possible values di for Banach fixed point theorem

Figure 5.6.: Largest possible interval for the radius fax @ontraction Mapping
Principle.

x|

| interval ofi)‘% interval of R

Xl

|
interval of R

Figure 5.7.: Various cases for Contraction Mapping Prilecip

5.3. Solutions of inhomogeneous boundary value problems

We have developed the necessary theory to solve a class nflaguvalue prob-
lems for non-linear elliptic PDEs when the right hand sidpetels not only on the
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solutionu but also on its first order derivatives. Now we give applizas of the
results to specific examples. We will consider the boundahyesproblem for non-
linear partial differential equations when the left handescontains the Laplace
operator and the right hand sides always depends on theatieeiwf the desired
solution. We solve the BVPs only in the unit disk in the pland ae will be using
the fundamental solution of Laplace equation in two dimensi

5.3.1. General representation

In this subsection, we estimate the B&%-norm of the fixed point operatdy
which is defined by the convolution of the right hand side ®fimdamental solu-
tion. We also consider the arbitrary boundary valgies. we shall handle different
situations for theCk-%-norm of the boundary values to be maximal. We shall also
look for the optimal radius of the ball for given fixed bounglamlues and for a
fixed right hand side.

We consider the following general boundary value problemrmfan-linear elliptic
partial differential equation:

Au = F(-,u,du) in Q (5.13)
u = g(x) onodQ (5.14)

under the following assumptions:
1 - Q be a unit disk ifR?
2 -g(x) eCL9(0Q)
3 - |F (U, dug) — F (-, U, GUz)| < Lafus — W[+ Lo j|dius — Gty

]
fori,j =1,2,3--- that means that the Lipschitz condition holds or only
bounded right hand sides.

4 -|F(-,0,0)| < M is given if required.
5 - The homogeneous equation possesses a fundamentabsoluti

We know that the solution of the above problem is equivaleriinding the fixed-
point of the following operator equation

U=ug+0+V (5.15)

whereV is given by

Vo Q/ 10g](6Y) — (&,m)|- F(£),u(),&())dC (5.16)

while
Aug = O in Q
Up = g(x) on dQ
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andd’is solution of the homogeneous problem:
Al = 0 inQ
1
—ﬁéflogl(x,y)—(E,n)|-F((Z),u(Z),&.(Z))dZ (5.17)

-
Il

= —V(x) on 9Q. (5.18)

We look for the solution in the spa&-? (Q) because the right hand side depends
on the derivatives of the desired solution by the fixed poietirad. So we consider
the following closed and convex subset in the the Banachespa€ (Q) of the
Holder continuously differentiable functions @49 (Q),

B (0) := {ue CH: ||ullcra <M}, (5.19)

5.3.2. General condition orlJ for mapping the ball into itself

The operator (5.15) will map the ball into itself if,
U llcram) < [[Uollcrams) + l|Gllcras) + [V [lcram) < (R) (5.20)

where||up||cra and||ll|cra Will be estimated by Schauder’s estimateFo satisfy
that (5.15) maps the ball into itself, we first consider ovilgnd check its mapping
properties;

Vo=~ [[logloxy) — (E.m)]- F(@).u@), 4204 (521)
Q
=V = 21 [ogiixy) - € mllac 522)
forO<|(x,y)—(&,n)| < 1,Qusing the Schmidt inequality
M< /I R 52
VI < @ (5.24)

for [(x,y) - (&,n)| = 1, we have, log(x,y) — (¢, n)| < |(x,y) — (&, n)| and having
the fact that the domain is the unit disk in the plané(sgy) — (§,n)| < 2

Vi< D1 iy - @ miag (525)
Q
|7
< E'l'é/mz (5.26)
VI < L 527

For a detailed proof of Schauder type estimateRinsee the appendix A.
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Now for Holder constant, first we find the norm of the derivatfV

AN — 2n//|xy MH XV ZEN) £ 2),u2).8(0)dg

V)= (&)
V| < ”f”//‘xy )

ol
2
similarly for o,V

oV <

V] < ”—J;” (5.28)

and we have the following estimate

VX,Y)=VX"Y)| < VX =X"|+aVvIlly -yl (5.29)

< Ml e Ply v a0
< H]:|H X,y)— (X' V')! (5.31)
‘V(X’,)/) —V(X",)//)| ¥ X// |10
|(X’,y’> _ (X//7y//)|d S ||‘F|| } }/ }/ )’ (532)
< V2||F||=Hq (5.33)

and for the Holder constant of the derivative, we again have,

W) -V Y) = o // K~f(z,u<z>,axu<z>)<z>dz

N/ .7:
max 2 XY) — VYD,

@ y)-xnyn|® —

wherek andl are given by,

B d¢
' = // Wy)— Em 1y — (& m))] (5:34)
Sy («E D Ky —(En)
(

= 5.35
K ey S EmE Ty (&P 539
ift = }(x’,)/) X', )/’)} (5.36)
In our case we have< 2 anda = % hence we have
|0XV(X,7}/> - 0XV(XH7)/,>| S 7”?” (537)

o 10%y) — (Y[
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in view of inequalities (5.28),(5.31),(5.32) and (5.39) get
IVllgrag) = 717l (5.38)
Using Schauder estimates, (5.22) in (5.17) we get:
Vllcray < luollcracg) + 10llcraig) + [V llcrag) (5.39)

< [2”“ KiKoH + Egg§<|g| +2K1KoH +4(21% 4 1) KfKZZH}

- [2”“ KiKoHg + ?;a§<| () 4 2K1KoHg + 4(21% + 1) KfK%HG}
Q
+7[|F| (5.40)

whereH andH are the Hoélder constants of the given boundary values ard the
derivatives respectively. Similarly thdy andHg are the Holder constants of the
boundary values af and its derivatives respectively.

The last inequality can also be written in the following way
Ullcag < [2779KiKo+142KiKo+4(2 7+ DKFKE] || dllcraog)
+ |28 K KoHg + ?33(\ 0] + 2K KoHg +4(21% + 1)KZKZHg
+7||F| (5.41)

the constant&; andK»,? are given

4.2¢
K= ——— (5.42)
ncos(a%)
and 5
_. (= a
Ko =: (a(1+2 )+n). (5.43)
for fixed o = % K1 andKj are given by
8
Ki=— 5.44
1= (5.44)
and
Ko =4(14+V2)+ 1. (5.45)

Finally, for a unit disk in the plane, the inequality (5.418ncbe formulated as
follows

1U leta ) < 10416/g]lcra(gq) + 72399/ 7. (5.46)

2Existence of these constants has been proved in the app&ndix
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Now if ||F|| is bounded (by the radius of the ball) thenwill map the ball (4.14)
into itself when

10416|g||cLa + 72395 F|| < R. (5.47)

The inequality (5.47) is the condition fo mapping the balBgy(0) into itself for
each bounded right hand side which also is the sole conditicthe application of
Schauder Fixed Point Theorem and the relative compactriésssounderstood by
the discussion that we had in the previous chapters.

5.4. Application of Schauder’s Fixed Point Theorem and
optimization

Here we consider various examples and then we find the condifor the best
radius of the ball, the maximal bound of tk#-%-norm of the boundary values
and the restriction on the right hand side. We deal with diffié situations in the
following boundary value problems.

The examples below give the existence of fixed-point sahstiof the boundary
value problem in the ball centered at the zero element of uhetion space and
then correspondingly, we give the maxim@h?-norm of the boundary values

5.4.1. Existence of the solution with arbitrary C-% boundary values

Example 1:

Au = Kk(cosu+dyu) in Q
u = g(x) on dQ

wherek is a given real parameter in general. We assume that the boumdiues

g are arbitrary irC1%(dQ) andQ is the unit disk in the plane. We know that the
given boundary value problem is equivalent to finding thedipeint of the operator
defined in (5.15) if it maps the ball defined in (5.19) intolitse

According to (5.47) a fixed point will be the solution of theumalary value problem
if the following condition is satisfied

10416|9||c1a + 72395K|(1+R) <R (5.48)
this implies that
1
a < ——(R—- :
lgllers < 7o476( — 72398K|(1+9%) (5.49)

where|k| (14 R) is the bound of the right hand side in the ball.

We get the following conditions to be satisfied:
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« ;| > 72395K|(1+R)

R , -
e |k < 7239511 that is for sufficiently smallk| we are able to solve the
above boundary value problem by Schauder Fixed Point Theore

If for a fixed |k|, we consider the following fixed right hand side given by
Au=1.25x 10"°(cosu+ d(u)) in Q
and we get the condition
R > 72395x 1.25x 10 %(1+R)

so any sufficiently larg&y larger than 09949 will lead to the largéfg||cLa-

Example 2:

Au = (Gu)° in Q (5.50)
u = g(x) on Q. (5.51)

We assume that the boundary vab{®) is Holder continuously differentiable then
the corresponding fixed-point operator maps the ball (dritB)itself if

lUllcre < 10416|9|/cLe +72395|F| <R (5.52)
1 2
= « < (MR- _
lOllcte < 10 16(9‘{ 72395)%) (5.53)

then the maximaCY?-norm ofg leads to the two conditions to be satisfied:

o 2 . N .
R > 72395R“ which impliesh < 75305

f(R)-axis
A

144790 R

' > R-axis
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7 x 10°°

x 10"

« For the maximal value of thé'-?-norm ofg we have(1 — 2 x 72398%) =0
which leads tdR* = ﬁo This solves the equation and for tBis we get
the maximum value of th€1-?-norm ofg that is 69 x 10~°.

Th corresponding maximum value of the nornga$ shown in the figure above.
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Example 3:

Au = 125x107°(5+(d)°) in Q (5.54)
u = g(x) on dQ. (5.55)

We assume that the boundary vafi{®) are Holder continuously differentiable then
the corresponding fixed-point operator maps the ball (4rit8)itself if

IUllcre < 10416|g||ca +72395x 1.25x 107 8|| F|| <R (5.56)

= 1 —6 2
a < - . .
9llcte < 10416(9% 72395x 1.25x 107° (5+ R )) (5.57)

The maximal norm ofj leads again to the two conditions to be satisfied,
* R e (04726105777

Maximum interval for the radius of the Ball
15 T T T T T 15

Z’ 2nd intersection
oint
o SN
| 10 410

& %"
Y- ~

5t 15

T72395x 1.25x 107 (5+R?)
1st
n e'r)s;gtlon
. . inTeari;al . ‘;
00 2 4 : 10 12
R — axi§

« for the maximal value of th€?-norm ofg we have 1- 2 x 72395x 1.25 x

10°
6 o . *_ - @000
10~°R = 0 which leads toR" = 1.25 % 144790

tion and for thisti* we get the maximum value of ti@-?-norm ofg. An
easy calculation shows that the maximal value of@h€-norm ofg is equal
to 2.3 approximately.

~ 5.5 which solves the equa-

R —72395x 1.25% 107 (5+ R?)

) fi(Dfi);-a}xiNs

f(%R)-axis
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5.4.2. Optimization for a ball centered at the solution of tke Laplace equation
with given boundary value

Example 4.

Au = % in Q
1+ (6x(u))

u = g(x) on 0Q.

We assume again that the boundary values are Holder conshudifferentiable
on the boundary Q. And if corresponding fixed point operatbr will map the
ball,

B (Ug) := {ue CH: lu—up||cra <R} (5.58)

into itself then the boundary value problem with this fixedibdary datay is solv-
able by Schauder Fixed Point Theorem.

We look for the maximum radius of the ball for whithmaps the ball into itself.
Here we get the following inequality.

U —uo|lcra < 72395|.F||. (5.59)
Since here the right hand side is globally bounded by 1 so we ge

U — Up||cra < 72395< R (5.60)

Result:

 For globally bounded right hand side we solved for givenriotary data for
an arbitrary parametdefor certainfRg > 7239%. For a ball with a small a
radiusi, we have to choosesmall enough.

* In a similar way, the present boundary value problem witio zBoundary
value and right hand side globally boundedksolvable for the same choice
of the radius of the ball.

Example5:

1 )
Au = in Q

2(1+(0X(u))2>
u = g(x) on dQ.

We assume again that the boundary values are Holder conshudifferentiable
on the boundaryQ. And if the corresponding fixed-point operatdr= ug+ G+V
will map the following ball,

B (Ug) :={ueCH: lu—up||cra <R} (5.61)
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into itself then the boundary value problem with this fixedibdary datay is solv-
able by Schauder Fixed Point Theorem. We look for the maximasiius of the
ball for whichU maps the ball into itself. Here we get the following ineqtyali

U — Ug||cra < 72395|F]. (5.62)

Since here the right hand side is globally bounde%bﬁo we get.

1
||U — UOHCl,a S 72395x é S R. (563)

Again, the right hand is globally bounded and for e&th> 72395x % And the
operatolJ maps the ball into itself.

Example 6:

Au = (&) inQ
u = g(x) on 0Q.

With the same assumptions the operatoe ug+ G+ V maps the following ball,
B (Ug) := {ue CH: lu—up|cra <R}, (5.64)

into itself. Then the boundary value problem with this fixeslbdary datay is
solvable by Schauder Fixed Point Theorem. We look for theimar radius of the
ball for whichU maps the ball into itself. Here we get the following ineqtyali

U —uo|lcra < 72395|.F||. (5.65)
Since the right hand side, here is bounded®y so we get

72395(%%) <N (5.66)
;| — 72395(R3) (5.67)

IV —uoflcra <
<

the last inequality gives the largest possible intervali@r radius of the ball, and
the largest possible radigs* in this case is @037.

All above examples show the details of various situatiomstfe radius of the ball
and we show under circumstances what best ball we can havat ighwe had
constructed the best balls.

5.5. Optimal balls for the application of Contraction Mapping
Principle

To apply the Contraction Mapping Principle to the boundalue problem (5.13)
and (5.14), we have to show;
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Intersection

point
f(R) =R

. f(R) = 7239973

y— >A
1*'(\()7 0) length of the interval for the radius ’20'00377 0)

* The fixed-point operator maps the ball into itself.
» Image of the ball under the fixed point operator is contvacti

The fixed point operator is represented by (5.15).The firstitmn thatU maps a
closed and convex set (5.19) in the function space, inttf itsalready satisfied by
(5.47).

The Following calculation will show that the operator define (5.15) is contrac-
tive. Here, additionally, we assume that,

» The right hand side is Lipschitz continuous, that is
| F (-, u, 0xu1) — F (-, Up, Ox) | < Ly|ug — Up| 4 L2|dug — dup|.

WhereL (%) = L1(R) 4+ L2(R) is the Lipschitz constant.

5.5.1. General condition orlJ to be contractive in the ball

The operator (5.15) will be contractive if,
U1 —Uz||cra < const|lug — u2||cLa (5.68)

and consk 1.

Again we first consider only and check its mapping properties;

- Q/ log|(xy) — (&.m)| - F((Q).u(),a)d  (5.69)

MVol < S [ loglxy) — (€ m)0¢ -~ olleta  (570)
Q
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for 0 < |(x,y) — (&,n)| < 1, using the Schmidt inequality.

VT S
VR é/ oy wlee 67D
Mvel < S el 5.72)

and for|(x,y) — (&,n)| > 1, we have, log(x,y) — (&,n)| < |(x,y) — (&,n)|, for the
unit disk in the plane sqx y)—(&,n)| <2

i
Mvl < Y //| )= EM ot talend5.73)

< z—n‘l‘ /] 288 v - el (5.74)
Q

IVi—V2|| < L(R)-|ur—uz|lcLa- (5.75)

Now for the Hdlder constant, we find the norm of the derivatf&/; — V> first.
Using the Lipschitz continuity of the right hand side, we &av

1 1 L xy)—(&n)
oW =5 4/ Sy Em ] F((2).u2),8(2))0g

(x,y)—(&,n)|

- L(R) 1 e — woll
= 0N~ V| < o £/|(x,y)—(f,n)\dz 1~ bl

L(R

o — vl < "2~ s

similarly for dV1 — a,V»

L(R
lavi-aval < SOV e (5.76)

Using the above estimates for the derivatives we have thewirlg estimate for

a—l
2

LA b0) ~ LAV O < V3L 00)- s el = Hoy- 577

For the Holder constant of the derivative, we have again,
(V1—V2) (%,V)—(Vl—Vz) x"y") =

o // ( (ug,duy) — (Uz,dUZ))(Z)dZ

10V (,y) — AN (| < EEL I = tellere

21
(V1 —=V2) (X,y) = (Vi = Vo) (X", y")]
o y) Ky = THEY -~ el
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wherek andl are given by,

B d¢
= //\x' “Enley— &y ©®

(¢
(”M’)—( ) Xy) =€
|(X"y") = (&% |[(xYy)—(&,
if t = |(Xy)— (Y] (5.80)

. 1
and moreover, in our case< 2 anda = > Hence we have

[0V (X,Y) — oV (XY 7
<T7L(R) - ||juy — a :=Hag,—g 5.81
T oy —peyne = It =R (68D
in view of the inequalities (5.75),(5.76),(5.77) and (5.8 get

||V1 —V2||C1A,a = 7L(9‘{) . ||U1 — U2||C1A,a. (5.82)

K

’; ) (5.79)

‘ 2

Using Schauder estimate in (5.41), we have

[U1—Uzfcra < [JU1—U2flcra + (V1= V2|icra (5.83)
< 2YMIK KoHG, g, + n;gxl U1 — Up| + 2K1KoHg, —g,

+4(219 £ 1)KZK2Hg, g, + 7L(R) - ||us — || ca(5.84)

< 723983 (R) - |lur — U2||cLa- (5.85)
ForU to be contractive we must have to chod$8t) be sufficiently small, that is,
1

we have to choosk(fR) < 5305

Result: The above condition fdd to be contractive leads to another restriction on
the radius of the ball to be chosen subject to the last inggual

Without further loss of generality we come to some expligdraples
Example 7:
Au = W+ (0u)? inQ
u = g(x) on dQ.

To show the existence and uniqueness by Contraction Magjingiple, we have
to fulfill the following two conditions.

» The fixed-point operator maps the ball into itself.
» The fixed point operator is contractive.

The first condition leads to the following bound for the boanadvalues
1 2 3
lgllcre < 7o775(% — 72395R° + %)) (5.86)

Result1: The above inequality leads to the existence of the largestval with the
radiusfR, that is\h € (0,0.0000138.
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Intersection

point
f(R) =R

*f(R) = 72395(R? + R3)

A< >A
f'l'(‘07 O) length of the interval for the radius ’&H* ~ 00000138 0)

and the maximal value of the norm of the boundary values is/atxelow

10 maximum value off (R)-axis
4 T Y T T T
2F 4
2
Q2 o R —T2395(R2 +R3)
®
A~ 2 4
&
Y 4t i
_6 - -
_8 - 4
-10 | | | |
0.5 1 15 2 25
(%), 0) %* X—axix x10°

Now according to condition (5.85) the operatbis contractive in the ball if
72393 (R) <1 (5.87)

whereL(fR) is the Lipschitz constant of the density function and hereareeasily
find out for the right hand side

G+ (0x(ur)* ~ B — (3(W2))®| < Jus+uglfus — el
1B — Bt | (Oxus) + s Gl + ()
< (29‘{-1—39{2) lur — U2||cra-
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Here the Lipschitz constant is given by,

L(R) = 2% + 312

(5.88) implies
> 1
_ o, /289592
SR < % ~6.9x10°° (5.89)

so we have two conditions on the choice of the radius of thedmal for the the
unique existence of solution by Contraction Mapping Pphei

Result: In view of the maximum principle and the Schauder estimtg§.i.a,
the solution can be estimated by its boundary valigk1« and if ||g||cie < C
then for all possible boundary values we have evaluated alges$tC that is
0.00000000033.



6. SUMMARY AND OUTLOOK

6.1. Summary

In our research, we have solved the Dirichlet boundary vaheblems for non-
linear second order elliptic partial differential equatso by fixed point methods.
BVPs with right hand side depending on the desired solutiwh its first order
derivatives were considered while the left hand sides wereegl second order
elliptic operator with the principal part as Laplace operat

After reducing the boundary value problems to the corredpmyfixed point opera-
tor we apply the fixed point theorems. For the existence argleness we applied
following fixed point results,

» Schauder Fixed Point Theorem.
» Contraction Mapping Principle.

In order to show the existence of solutions, Schauder Fixéct Fheorem was ap-
plied. We have also shown that the corresponding fixed pgqetaior is relatively
compact. The solutions both in full Banach space and thogeiballs (closed and
convex subsets) have been found.

We have uniquely solved the boundary value problems by @ottn Mapping
Principal. Here and in the case of Schauder (Il), we havengigimal balls in the
underlying function spaces. Many other important resuits i@ferences about the
solutions of boundary valued problems for non-linear sdoomler elliptic partial
differential equations, are the part of the current manpscr

6.2. Outlook

We look forward to work in the following directions in future

» Since it is clear from the summary that in this dissertgtie solved the
boundary value problem for non-linear second order etliptirtial differen-
tial equations when the linear second order operator hagriheipal part as
the Laplace operator. Now in future, one of our goal will betmsider the
more general elliptic operators. Here we have to work witleofundamental
solutions instead of the fundamental solution of the Laplkeguation.

» We considered only Dirichlet conditions on the boundarpwNve have a
plan to work with more general boundary conditions for exEsphe Neu-
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mann boundary conditions. In case BVPs are not uniquelyabtdy we shall
look for the conditions under which these BVPs are uniquelyable which
in general is not the case.

» Since we need the Schauder estimates to solve the bounalas/problems
for elliptic equation, we intend to find the Schauder typénestes explicitly.
A similar case of Schauder estimates for the Poisson equiatibe unit disk.

» We shall consider other function spaces for example Selsgaces in stead
of Holder spaces, for our future planed work.



A. APPENDIX

A.1. CY% bound for the solution of Poisson equation in 2-D

Chapter four deals with th@>? bound of the solutions of the boundary value prob-
lems for non-linear partial differential equations where use the Schauder esti-
mates. These Schauder type estimates are bounded by centaia of the bound-
ary values, the right hand side of the differential equatibe solution itself and
constants while these constants generally are not expliciown. Here we give
the detail proof of these constants explicitly for the solnbf the Poisson equation
in the plane. Most of the constructions in this appendixkstefrom the the lecture
of W. Tutschke [52]. It will be of importance that we will uskeet concept of the
holomorphic functions for our considerations. We will uggdmorphic functions
because any holomorphic functi@h in the complex plane, is defined as;

Definition A.1 A function
® = u(x,y) +iv(x,y) (A1)

is said to be a holomorphic if u and v have continuous firstipaderivatives and
satisfy the Cauchy-Riemann equation;

ou=adyVv and du=—0dv (A.2)

Also both u and v are solutions of the Laplace equation.

Moreover, from (A.1), botlhu andv can be estimated bg.

Since we know that the Laplace equatidm= 0 in the balls can be solved by the
Poisson integral.

Prior to go with the holomorphic function, we use the Poissibegral to find some
necessary estimates for the solution of the Laplace equatid their derivatives,
specially when the boundary values are Hélder continuous.

A.1.1. Results from the Poisson integral

We are going to solve the following Laplace equation;
Au=0 in Q. (A.3)

whereQ is the domain in the-plane.
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Suppose that the closed digk- zp| < Ris contained ir2. Then, we know that at an
interior pointsz of the disk, the functiom is represented by the Poisson Integral

—|z— =z
u(2) 2nR / IZ—z|2 A bl R (A.4)
|{—20|=R

where( is the point on the boundary of the disk agslis the length element of the
boundary, i.e, the circle.

The value ofu at the center is given by.
1
Uzo) = 5= [ u@yds (A5)
1{~20/=R

that means, the value of at the center is the mean value afi({) of u on the
=R

Further we choose anynot greater thaiR. Applying formula (A.5) to this circle
with radiusr, we have

ruz) =5 [ u@ds
|{—20|=R

now, integrating over the interval € r < R, and taking into consideration that
rdsdr= dédn is the area element in the z-plane, it follows

—R2 u(z // Z)dédn

\Z 7|<R
implies L
Uz = [ u@)dgan (A6)
|{—2|<R

hence the following lemma is proved:

Lemma A.1 The value (zy) of the solution of the Laplace equation at an inte-
rior point Zg is not only the mean value (A.5) of u with respect to a circletesd
at z. It is the mean value (A.6) of u with respect to a disk centater also.

Since the Laplace equation is a linear differential equatigth constant coeffi-
cients, the partial derivativezxu and dyu of the solutionu with respect tax andy
respectively are also the solutions of the Laplace equatiemma (A.1) applied to
these derivatives and Green-Gauss Integral Formula leads,

ouz) = [ u@)e. (A7)
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and

quz) =5 [ u@dn. (A.8)
[{—2|=R
Provided the absolute value otan be estimated iyl everywhere i2, we obtain
the bound for the above derivatives and as a result we prove:

Lemma A.2 Suppose u is a solution of the Laplace equation with< M ev-
erywhere inQ. Suppose, further, that the closed disk centered atith radius R is
contained inQ. Then the valuegy(zp) and dy(zo) of the first order derivative\u
anddyu can be estimated by

AM aM

Bu(z) < 5. and ldu(zo) < . (A.9)

Up to now, we have estimated the first order derivatives ofsleition of the
Laplace equation at the center of the disk with radRusNext we are going to
have the result for these derivatives at the boundary.

A.2. Behavior of the first order derivatives of the solution d the
Laplace equation near the boundary

For simplicity of the calculations, we will consider th@tis the unit disk. Suppose
also thatu is a solution of the Laplace equation@with |u| < M. Foremost, no
assumptions concerning the limitswét the boundary points has to be made.

Let zbe an arbitrary interior point of the unit digk. Then the distance affrom
the boundaryz| = 1 equals to * |z and thus a closed disk centerea atith radius
0 < 1—|z| is completely contained if2 which is shown in the figure below.

Figure A.1.: Closed disk with radiu® contained in the unit ball

Applying the lemma (A.3) to that disk and carrying out the tineiting process
0 — 1—1z|, we have the following statement:
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Lemma A.3 Suppose u is a solution of the Laplace equation in the urktais
lu| <M everywhere irQ. Then the absolute values of the first order derivatives of
the solution at z can be estimated by;

4M 4M
[oxu(z)| < 1—12) and |du(z)| < =) (A.10)

A.3. Behavior of the solution when the boundary values are
Holder continuous

Again we consider the same unit disk, and Uebe the solution of the Laplace
equation inQ. Suppose now, however, thanhow is defined and continuous in the
closed unit disk, i.e, for alt with |zl < 1. We denote the boundary valueswét
z< 0Q by g(z) that meansi(z) = g(z) as long agz = 1.

We suppose additionally thgiis Holder continuous at the boundary pagiti.e,
9(2) —9(z0)| < H |z 2| (A.11)
for everyz € 0Q where 0< o < 1. We can write,
—H |2 2| < 9(2) —9(20) < +H - [z— 2| (A.12)

The following construction deals with the estimationof z,|* from above by the
solution of the Laplace equation. Since we know from complealysis that,

log(z—75) =In|z—7Z| +iaryz—z,). (A.13)

For z € Q, for suitably choser, there exists a uniquely defined branch of polar
angles ar(z — z,) such that

c<argz—z) <c+Tm (A.14)

the last inequality can be re-written as,

T m T
—5 < argz—z,) — (c+ 5) < +§ (A.15)

subtracting (c—i— g) on both sides of (A.13) implies

log(z—2) —i<C+ 7—2T> =In|z— 2| +iargz— z) —i<c+ 7_2T>

multiplying a on both sides we have

a (Iog(z—zo) —i<c+ g)) =1In|z—2|% +ia (arg(z—zo) - <c+ 7—;))
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arg(z—z0 )

Figure A.2.: argf — 7,)

which implies

exp[a<|og(z_zo)—i(c+g)>] :\z—zo\“-exp[ia<arg(z—zo)—(C+g>>].

Since (A.13) is holomorphic in the unit disk, the last exgres defines also a holo-
morphic function. Already we know that efig) = cogx) +isin(x), thus real part

is given by,
U(2) =|z— 2" ~cos[a (arg(z—zo) — (c+7—2T)>] :

Hence by definition (A.1) th&J(z) is a positive solution of the Laplace equation.
Consequently we get,

U2

cos[a (arg(z— 20)— (c+ ’g))

the inequality (A.15) gives immediately,

22| =

U2

N
COS(G§>

This is the desired estimate (f— z,|* by a solutionU (z) of the Laplace equa-
tion.

|z— 20| <

Using the last inequality in (A.12), we get,

U@ <D @<t U@ (Al6)
COS(G §> COS<G§>

Now we return to the solution = u(z) of the Laplace equation introduced at the
beginning of the present section. Singe) = g(z) on the boundary, the inequality
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(A.16) shows thati(z) — u(z) satisfies the inequality,

y H
_@u@) <u(2)—9(z) < +@

on the boundary Q. It is important to note that the last two-sided estimate is
true not only on the boundagQ, but also everywhere i@ because for Laplace
equation the following statement is true:

U(z) (A.17)

Lemma A.4 (Maximum principle) Suppose ¢ and b are solutions of the
Laplace equation iM2. Suppose further, that the boundary valuas g of u
and y respectively, satisfy the inequality

01< Q2 (A.18)
everywhere on the bounda#f. Then one has

up < Uy (A.19)

Indeed, this statement is an immediate consequence of thienona principle ap-
plied to the differenceg = u; — up. Sinceug has the boundary valuggs=g1—g> <
0, one has
Up <supgo <0
Q
everywhere i. Taking into account the definition o, the inequality (A.19) has
thus been proved.

Consequently, (A.16) is true everywhere(in Hence we have

u(2) - g(2)| < — U
cos(a’%)

The definition ofU (z) at previous page shows, further, thi{z) < |z— 2| and,
therefore, the last estimate passes into

u(2) —9(20)| £ ———[z— 2l (A.20)
cos(a’g)

To sum up, the following statement has been proved:

Lemma A.5 Suppose the boundary function=gg(z) of u= u(z) satisfies a
Holder condition (A.12) with Hélder constant H and Holdepexenta, 0 < o < 1,
at z. Then z) satisfies the Hélder condition (A.20) for each 2.

Note that condition (A.20) is satisfiezy € Q in case the boundary valuggz)

satisfy the Holder condition (A.12) everywhere @@).
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A.4. Behavior of the first order derivatives of a solution at he
boundary in the case of Holder continuous boundary
values.

In this section, we are going to estimate the derivatdy@sanddyu of a solution of
the Laplace equation in the unit diSkprovided the boundary values g are Holder-
continuous (with Holder-constakt and Holder-exponertt, 0 < a<1) everywhere
on the boundary Q.

Let z(+# 0) be an arbitrary point in the unit disk. Lej be the uniquely determined
point at which the ray frond = 0 throughz intersects the boundagQ. Choose
0 < 1—|z. Then the (closed) disk with radidscentered ar is contained in the
(closed) disk with radius 4 |z| 4+ d centered aty:

In view of lemma (A.5), i.e, from (A.20), we have

) —g@)| < — |zl
cos(a’g)
< H (1- \Z|—i—5)°’

cos(a’g)
everywhere in the disk with radius-1|z| + & centered aty, i.e.,
M= L(l— |z +0)¢
cos(a%)

is a bound of the absolute value|of{) — g(zo)| in that disk. Applying the lemma
(A.3) tou({) — g(z0) in the (smaller) disk with radiug centered at we obtain

. a
4M 4H  (1-]2+9) (A21)

(@) < = <
R ncos(a’g) 0
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and the same estimate is true &u(z).

The limiting proces® — 1— |Z| yields:

Lemma A.6 Suppose the boundary values g of a solution u of the Laplaca-eq
tion in the unit disk are Holder-continuous with Holder-sbant H and the Holder-
exponentr, 0 < a < 1. Then at an interior point z the first order derivatives of u
can be estimated by

KqH
u(z)| < —— (A.22)
(1-121)
and
KqH
[Au(z)] < ;1—:1 (A.23)
(1-121)
where 4.0
Kj=— (A.24)
ncos(a%)

Remark A.1 The same statements of the last to lemmas are true fo0zal-
though we have carried out the construction fo£ © where we get the results if we
have limiting process as2 0

A.5. An important criterion for Holder continuity of the
solution of the Laplace equation

Up to now, we have found that if the boundary values are Hétoatinuous then
the first order derivatives of the solution of the Laplaceattun are bounded and
the bounds are known to us by lemma A.6. The following theodess with the
Holder continuity of the solution of the Laplace equatiod &y using lemma A.6,
we find the explicit Holder constant in this case.

Theorem A.1 Suppose &= u(z) is defined and continuously differentiable in the
open unit disk|¢ < 1). Suppose, further, that the first order derivatives can be
estimated by

) )

where C andx are given constant$) < a < 1. Then u is Holder-continuous in the
unit disk, and a Holder constant, in this case, is given by GKere

|oxu(2)| < and |du(z)| < (A.25)

Ky = (2(1-&—2")-1—71). (A.26)
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Proof Consider an arbitrary pair of poinis andz, not coinciding withz= 0. Of
course, we can writg; in the following trigonometric form

zj=rjexp(id;), j=12
Without any loss of generality we may assume that
ro>rq and Hh<Hh<Hh+m
We denote the distance betwegrandz by d, i.e, we define
d=|z—17|.
Introducing another pair of poinig andz, defined by
zz3=(r1—d)exp(id1) and zz=(rp—d)exp(idz)

Definezz =2z, =0if ry < d. So we havez; — z3| < d and|z — 7| < 2d because
the distance betweenexp(idz) = z andriexp(id,) =r2—r1, also, this not larger
than as illustrated bellow,

Since,
X =rcosd and y=rsind

Using the chain rule we get

ou = 0Jku-cosd +dyu-sind
dsu = Oxu-(—rsind)+odyu-rcoss.

wherez = x+ iy andr = |z|. The assumptions (A.25) are the estimates

2C
Ul < ———— (A.27)
(1-12)
2C
|oyu| < g (A.28)

()
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Using (A.27), we get the estimates

u(z) —u(z)| < 2C / (1—1)@1dr (A.29)
max(r;—d,0)
r2

U(z0) —u(za)] < 2C / (1—r)%1dr. (A.30)
max(r1—d,0)

The length of the interval of integration is not larger tidaim the case of the in-
tegral in (A.29), while it is not larger thandZor the integral in (A.30).Therefore,
the values of the integrals in (A.29) and (A.30) can only blgyed if the lim-
its of the integrals are replaced by niax- d,0) and 1 and by ma@ — 2d,0) and
1 respectively, i.e, the integrals under considerationlmestimated from above

by,

2C a-1]?

F [_ (1 B r) } max(1—d,0) (A-31)
and o L

el pa-1

o [ (1-1) ] max(1—2d,0) (A.32)
respectively.

, C 2C :
The expression (A.31) equa%d“ or o according as > d or 1 < d respec-
. . . 2C
tively, and, therefore, in any case the expression (A.3hptsmaller thanad“.

- : 2C :
Similarly, (A.32) is equal togzad“ or %2" according as > 2d or 1 < 2d re-
spectively. Consequently, in both cases, the expressid32jAs not larger than
and“. To sum up, we have got the following estimates:

2 o
a
21+O(C

u(z) - u(z)| < =—d. (A.3)

u(zz) —u(zz)| < (A.33)

Integrating (A.28) over the circular arc with radius— d betweenzz andz;, we
obtains

2C(r1—d)
— < — . .
lu(zg) —u(z3)| < A—rtd)ia (J2—351) (A.35)
Note that 9,9
2(r1 —d)sin 2; L -z <. (A.36)

Clearly, for 0< a < Z, a < Zsina. The estimate (A.36) leads, therefore, to

dr—T1 <

4(r1—d)%(z92— 91) < 4(r1—d) sin
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Using this in (A.35), and the inequality-1r; +d > 1, we have

U(z) — u(z)] < 0 = . (a.37)

In view of the triangle inequality, we have
U(z2) —u(z2)] < [u(z2) —u(za)| + |u(za) —u(z3)| +[u(z3) —u(z1)[.  (A.38)
using (A.33), (A.34) and (A.37) in (A.38), ultimately, wevea

U(z2) — u(z)] SC(§(1+ZG)+7T>|22—21|0- (A.39)

Which is the desired result.

It is important to note that the last theorem guaranties thlelét-continuity of the
solution of the Laplace equation inside the domain when thentary values are
Holder-continuous.

A.6. Holder-continuity in the whole domain

Theorem A.2 Suppose the boundary values g of a solution u of the Laplace
equationAu = 0 in the unit disk are Hoélder-continuous with Hélder-condté&h
and Holder-exponentr, 0 < a < 1. Then u is Holder-continuous with the same
Holder-exponentr in the closed unit disk, and the Holder-constant ikH .

Proof

Proof of this theorem is not included here.

A.7. The Dirichlet boundary value problem for holomorphic
functions with Holder-continuous boundary values

Next we look for a holomorphic solutio® = u(x,y) + iv(x,y) in the unit disk

Q the real part of whichu has prescribed boundary valugson the unit circle
0Q. Again, the boundary valuegare supposed to be Holder-continuous with the
Holder-constanH and the Holder-exponemnt, 0 < o < 1.

As mentioned in the definition of holomorphic functions agjioming that real part
of the desiredd is the solution of the Laplace equation having the boundahyer
g on the unit circle. In view of theorem A.2, the real pais Holder-continuous in
the closed unit disk, with a Holder-constar;KoH.

Having constructed the real partof @, the Cauchy-Riemann system determines
its imaginary partv up to an imaginary constant. By lemma A.6, the first order
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derivatives ofu are estimated by (A.22) and (A.23). And since the real andjima
inary part of the® are interconnected by equations (A.2), the same estimates,

true for the imaginary pant then. Again by theorem A.2, the imaginary part is
v is Holder-continuous in the closed unit di€k and the Holder-constant is same
K1K2oH.

And we can easily have

@(22) - ()] < |u(z2) —u(z)| +[V(z2) —V(22)]
(A.40)

In view of the Holder-continuity ofl andv, we see the&b, too, is Hélder-continuous
with Holder-constant R1KoH.

Summarizing the above arguments, the following statemasnbleen proved:
Lemma A.7 Suppose g is Hdlder-continuous with the Hoélder-constantrid a
the Holder-exponentr, 0 < o < 1. Then each holomorphic function whose real

part has the boundary values g turns out to be Holder-comtirsuwith Holder-
constanK;K,H and the same Holder-exponemt

Now we consider the boundary value problem

@ = 0 in Q (A.41)
Re® = g on 0Q (A.42)
Im®(zg) = ¢ (A.43)

wherez, is a fixed chosen point (in the unit di€k). It is important to note tha®
is uniquely determined by up to an imaginary constant arglabinstant however is
uniquely determined by the condition (A.43). Here we canhafiee lemma (A.7)
to the boundary value problem (A.41)-(A.43).

To have the bound fg®| we can write,

@) = |P(2)—-P(20)+ P()|
< [@(2) - @(20)] + [ @(20)]
< 2KiKoH|z— 20| + | ®(20))| (A.44)
whereKz, K> are explicitly known constants.
Moreover,
|@(z0)] = |u(z0) +iv(20)| < |U(Z0)| + |V(20)]
< |u(zo)| +|c|

|u(zp)| can be estimated by the maximum minimum principle of the aeplequa-
tion by its boundary values

() < max (o
|@(20)| < max(g] + [c|
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hence (A.44) implies as follows

|P(2)] < 2K1KH|z—20|" +max|g] + c] (A.45)

since, for unit disk, we havig — zy| < 2, that meangz— 7|9 < 2%. Hence we get
the following result:

Corollary A.1 The absolute value of the solution of the uniquely deterchine
solution® of the boundary value problem (A.41)-(A.43) can be estithbie

|®(2)] < 21 IK KoH + rggx|g| +]c| (A.46)

A.8. Differentiability of boundary values with respect to the
polar angle &

We know that the solution(z) of the Laplace equation at an interior points of the
ball of radiusR is represented by Poisson Integral Formula as

1 R?—|z—2z|?
u@) =5 - / u(Z)#ds

I{—20|=R
For boundary valueg, and having the fact thats= Rd3, we have the following
representation for unit disk.

2n
1 1—12?

uz) =5 / 0(9), Z_|§||2d19. (A.47)
3=0

We suppose now thdt = exp(id) be an arbitrary point on the unit circle ande
an arbitrary point in the unit disk.

Zexp(i(9 +5))
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Here the distancez— (| of zand{ is equal to the distance betwerexp(id) and
{expid) =exp(i(d +9)), i.e,

formula (A.47) implies

21
u(zexp(id)) —u(z 1 9+0)—g(d) 1—|z?
( p(a)) UZETg/O o] g o( )'|z—‘z|\2d’9' (A.48)

Applying the law of mean to the difference quotient in theegrand and carrying
out the limiting proces$ — 0, we have the following lemma proved:

Lemma A.8 Suppose the boundary values g are continuously differeletiaith
respect to the polar anglé. Then the solution of the Laplace equation is also
continuously differentiable with respectdq and this derivative can be represented
by the Poisson integral with the densiyg:

21
1 1—12
ou(z) = / %9(9) Z_'j|2da. (A.49)

A.9. Holder-continuously differentiable boundary values

Next we extend the last lemma A.8 in order to investigate timapdex derivatives
@’ of the solution® of the boundary value problem (A.41)-(A.43), in the case
when the boundary values are Hélder-continuously difféadte ind. LetH be
the Holder-constant alyg. Theorem A.2 says thak u is Holder-continuous in the
closed unit disk where a Holder-constant is givermKZI:I. Also, since,

x=rcosd and y=rsind (A.50)

by the chain rule we can write

du_ﬁuﬁ duﬂ

019UZ(9—19_(9_X019+0_)/019 (A51)
by (A.50) we have,
ou Ju Jdu
Now in view of the C-R equations
du .dv Jdu . du
r_ 27 32t 77 T
¢ = ax 'ox = ax I(9y’ (A-53)
on multiplyingiz = ix — y the last equation implies
Jdu Jdu Jdu Jdu
o w [ ,0u, duy ./ odu  ou
iz® _kIJ_( yax+xdy)+l<xdx+ydy)' (A.54)
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Comparing (A.52) and (A.54), we obtain
Jgu=Re¥ (A.55)

Theorem A.2 implies tha¥ is Holder-continuous in the closed unit disk where the
Holder-constant isR;KoH. SinceW(0) = 0 and|z| < 1 we get, further.

W(2)| = |W(2) — ¥(0)| < 2K1KoH - |z— 0] < 2K1KoH. (A.56)
Since|®’'| = |W(z)| for || = 1, we get
|@'| < 2K1KoH. (A.57)

which is true on the boundagQ. Then the maximum principle for holomorphic
functions guarantees that the last inequality is valid yvlere inQ. Further, for
pointsz; andz, on the unit circle the definition dP implies

V() - ®(@) = W@+, W)
= —iY () (z_lz - 2_11> — le (‘P(Zz) - ‘4—'(21)>

Thus in view of above inequalities

¥ (22) - @' (z)] £ W2 |a-2|+|¥(z)-¥@)
< 2K1K2H~ |z — 2o +2K1K2|:| . |Zl—22|a
< (2K1K2H~ |z — 22‘1—01 +2K1K2g) |z — 22|a
< 2(21*“+1) KiKoH - |21 — 25]°.

Consequently, ézl‘“ + 1) K1KoH is a Holder-constant for the real part @ on
the boundaryQ. Once more applying Lemma (A.7), we see that

4(21—" + 1) K2K2H (A.58)

is a Holder-constant ob’ in the closed unit disk.

Summarizing the above arguments, we have proved the falpstatement:

Theorem A.3 Suppose that the real part @ is Holder-continuously differen-
tiable on the boundargQ whereH is a Hélder-constant of the derivative of the
boundary values. The®' is Holder-continuous i, and a Holder-constant op’
is given by

4(21—" + 1) K2K2H (A.59)

(A.57) proves the following corollary



108 A. Appendix

Corollary A.2 ProvidedH is a Hélder-constant of the derivative of the bound-
ary values g of the real part ap, the absolute value ap’ can be estimated by

|@'| < 2K1K2H. (A.60)

Our main goal is to have all necessary constants expli@tlytfeC-%-norm of the
solution of Dirichlet problem where the boundary valuestdééder-continuously
differentiable. Here we apply the technique of using thecepih of the holomorphic
functions, we again consider (A.1)

@ =u(xy)+iv(Xy)
where u and v are the solutions of the Laplace equation, whas to

U(X7 y) =@ iV<X7 y)

Using the triangle inequality of Banach space we get

lullera < [|®llcra +[[Vllcra

< <||¢>||+||¢’||+max"’"(22>‘W(Zl)')

|21 — 2|7

|21 — 2|7

+ (IIVII + |0V + max V(Z2) — 0Xv(zl)|>

< 2MKaKeH + maxig] +[¢] + 2KiKH + 4(21—“ + 1) K2K2H]
(A.61)

A.10. Complete Schauder estimate for the solution of
inhomogeneous boundary value problem foiR?

We assume that:
* Qis a bounded domain in the plane with finite measufe
« The boundaryQ is inC19,
« The right hand sidé is inC19.
We know that the solution of the inhomogeneous Dirichletrimtary value problem

for the Laplace equation

Au = F(,up) in Q intheplane (A.62)
u = ¢ ondQ (A.63)
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is given by the following integral equation

UM =to— 5 [[ F((&.m),ulE,m),qu(E,m)Inl(xy) ~ (€, m)]dédn
Q

21
(A.64)

has to estimate for the general bounded domaif®4rwith sufficiently smooth
boundary wherey is the solution of the Laplace equation in the domaifkfn

For two points in the unit disk we have

O<r<?2 (A.65)
for their polar distance.
IfO<r <1,then L
Egr\lnr\go (A.66)
If1<r<2,then
0<rlInr| <2In2 (A.67)
and thusforxXr <2
Irinr| <2In2 and||nr|§$nz. (A.68)

Hence by the triangle inequality.

In2 1
U gz < luollgre + |1 Fllcra s dgdn  (A69)
2m é/ [(xy) —(&,n)]

By using the Schmidt inequality and estimate (A.61), we get
U (X)|lcra < 279K KoH + max|g|+ ¢
1 2K1KoH] +4(21*“ + 1) K2K2H +C(Q)|| Flcta-

Which is the final form of the Schauder estimates up to the Bagnwhere all
constants are explicitly known.
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B. APPENDIX

B.1. Estimate for the integral having 2 weak singularitiesn a
domain Q with finite measure and Q is domain in R"

This theorem is about an estimate of an integral having agrand with two weak
singularities ak’ andx”. This result is even true for an unbounded domain having
finite measurenQ. Moreover this estimate is true, only when—x'| < 2. Itis
important the that following result is also a counter exasrgutd correction to the
result used in the book of S. G. Mikhlintegral equations and their applications to
certain problems in mechanics, mathematical physics actthi@ogy(1964) p(59-
62).

Theorem B.1 Suppose&Q is domain inR", with finite measure @, suppose
further thatA and u are real numbers satisfying the inequaliti@s< A < n and
0 < u < n then there exist constantg,(C, and G depending only of2, A and u
such that

/ dé X =X " 4c,  forA+p#n (B.1)
) X —&2-[X"—&|H ~ | Cz—4min|]X —X |, forA +u =n '

is true for any 2 points 'xand X not necessarily belonging t@ but having a
positive distance less than 2. Whéres an element ifR" and &€ is volume element
in n-space

Proof The proof is performed by splitting up the domain of integnatinto five
sub-domains then estimating the integral on all sub domadigidually and then
summing up those integrals. We do this by polar coordinat@ssphere.

Denote|x —X | = 2¢, where, 0< £ < 1. The integral under consideration can be
estimated from above by the sum of following integrgls j = 1,2,3,4,5 which
are defined as the integrals over the intersectiof2 efith the following sets

l1 with. |X — &| < & while |X' —&| > ¢,

I, with. [X' — &| < & while [X — &| > &,

lzwith. € < |X —&| < 1while|x —&| < |X —&

Iy with. € < [X' — &| <1 while|x —&| < |X — &

5 with. [xX — &| and|X' — &| both are> 1.
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Figure B.1.: 2

In the case, whep=1 one ha$x" — &| > € and using polar coordinates, therefore,
we have, Finally we obtain

21
[ < ——

N—A=H .M. B.2
_n—)\“E (B.2)

Where 21-M is surface area of the unit spherel®, and we have the standard
result for it

A same estimate we get foF

2
Iy < %5”4—“ M (B.3)

Now for I3 whene < X — &| < 1 while |x — &| < [X' — &|. Then the integral (B.1)
is estimated as follows

forn=£ A 4+, I3 is given by
— _(1-&"* KM (B.4)
forn= A+ u we get

I3 < —2mne-M, (B.5)

and very similar types of estimates flarby a similar calculation
Firstlgforn£A +

s < ————(1—e"2"H).M (B.6)
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secondlyjsforn=A 4+ u

4 < —=2mlne-M (B.7)

And finally for Is we havelx — &| and|x" — &| both are> 1.

s < [dE
Q
< mQ (B.8)
Now adding alll; from inequalities (B.2),(B.3),(B.4,B.5),(B.6) and (B.7)
’ n|N=A—H
Ci|X —X +Co, forA +u#n
dé < (B.9)
|)(_E|)\|)(/_€|IJ B / 1 .
Q C3—4nln’x—x’, forA+u=n

whereCq, C; andCs are given explicitly by

2 1 1 2
C i M{ n } (B.10)

T n—)\+n—u+n—)\—u
1 1 21
Cz_an{n_/\+n_“+n_A_u}+mQ (B.11)

1 1 mQ
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C. APPENDIX

C.1. Proof of the second version of Schauder’s Fixed-Point
Theorem

SupposeM is closed and convex subset of a Banach sphc®a continuous map-
ping of M into itself, andf (M) is relatively compact. Denote the convex hull of
f(M) by S. SinceM is closed and convex, the s8tis a subset oM and thus
f(S c f(M) C S i.e., f mapsSinto itself.

Where convex hull is defined as

Definition (Convex hull) The convex hull of a set S is the smallest closed and
convex set containing S

To the existence by Schauder(l) , we first define the Mazuriarha which state
as

Definition (Mazur's Lemma ) The convex hull of a relatively compact set is com-
pact

Consequently, the first version of Schauder Fixed Point fidrao

Schauder(l) Let M be a compact and convex subset of a Banach space, and let f
be a continuous mapping of M into itself. Then f has at leastfonpoint in M.

is applicable to the restriction dfto S, i.e., f has at least one fixed point& Since
SC M, the existence of a fixed point d¢fin M is proved.
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