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Kurzfassung

In der Konstruktion und Analyse von elektromagnetischen Geräten ist die Bestimmung
der Stromdichte sowie des Magnetfeldes in verschiedenen Konstruktionsteilen äußerst
wichtig. Speziell für Probleme mit komplexer Geometrie ist eine dreidimensionale (3D)
Analyse im Frequenz- oder Zeitbereich notwendig. Die Methode der finiten Elemen-
te (FEM) wird sehr häufig für solche Analysen verwendet. In dieser Arbeit werden
zwei mögliche Formulierungen für 3D - Stromverdrängungsprobleme untersucht. Die
sogenannte (A, v−A) Formulierung verwendet das magnetische Vektorpotential A im
gesamten Problembereich zusätzlich zu dem in leitfähigen Gebieten verwendeten zei-
tintegrierten elektrischen Skalarpotential v.

In der (T,Φ− Φ) Formulierung werden die Feldgrößen einerseits mit dem Strömungs-
vektorpotential T, welches in nichtleitenden Gebieten bekannt und sonst unbekannt ist
und andererseits zusätzlich mit dem magnetischen Skalarpotential Φ im gesamten Pro-
blemgebiet beschrieben. Die Vektorpotentiale werden bei der FEM vorteilhaft durch
Kantenbasisfunktionen (Kantenelemente) und die skalaren Potentiale durch Knoten-
basisfunktionen (Knotenelemente) angenähert.

Stromverdrängungsprobleme sind eine spezielle Klasse von Wirbelstromproblemen mit
der Vorschreibung von Spannung oder Strom. Auf die Komplementarität der beiden
Formulierungen wird hingewiesen. Es wird gezeigt, dass die Spannungsvorgabe eine
starke globale Zwangsbedingung bei der (A, v −A) Formulierung und ein natürlicher
Weg zur Kopplung mit den Potentialfunktionen ist, während bei der (T,Φ − Φ) For-
mulierung die Spannungsvorgabe eine schwache Bedingung ist, die zur Realisierung die
Einführung eines speziellen eingeprägten Vektorpotentials erfordert. Auf der anderen
Seite ist die Stromvorgabe eine starke globale Bedingung für die (T,Φ − Φ) Formu-
lierung und stellt einen natürlichen Weg zur Kopplung mit den Potentialfunktionen
dar, während die Strombedingung im Fall der (A, v −A) Formulierung eine schwache
globale Bedingung ist, die zur Realisierung der Einführung eines speziellen Skalarpo-
tentials bedarf.

Die Beschreibung der Implementierung der Stromvorgabe bei der (A, v−A) Formulie-
rung ist neu in der vorliegenden Arbeit. Des Weiteren neu ist Erweiterung der vorstell-
ten Methode auf transiente Wirbelstromprobleme. Die Validierung der beschriebenen
Verfahren wird durch Vergleich mit mittels herkömmlicher Methoden gelöster Beispie-
le durchgeführt, wobei eine ausgezeichnete Übereinstimmung erzielt wird. Im letzten
Schritt wird die neue Methode auf einige industrielle Probleme angewendet.
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Abstract

Determining the current density distribution as well as the magnetic flux distribution
in different parts is extremely important in the design and analysis of electromagnetic
appliances. Three dimensional analysis, in frequency or time domain, especially for
problems with complex geometries is required. The finite element method (FEM) is
widely used for such kind of analyses. In this work, two potential formulations are
studied for 3D skin effect problems. The A, v − A formulation uses the magnetic
vector potential in the entire problem domain and additionally, the time integrated
electric scalar potential in the eddy current region. In the T,Φ − Φ formulation, the
field quantities are expressed with the current vector potential T known in the domain
free of eddy currents and unknown elsewhere. The magnetic scalar potential Φ is used
in the whole problem domain. In a finite element context, the vector potentials are
advantageously approximated by edge basis functions whereas the scalar potentials are
expanded by node based ones.
The skin effect problem is a special class of eddy current problem with the prescrip-
tion of either the voltage or the current. Compelementarity of the two formulations
is pointed out. It is shown that the voltage prescription condition is a strong global
constraint for the A, v − A formulation and a natural way of coupling with the po-
tential functions whereas in case of the T,Φ−Φ formulation, this condition is a weak
global constraint and needs a magnetic source potential function to be introduced. On
the other hand, the current prescription condition is a strong global constraint for the
T,Φ−Φ formulation and a natural way of coupling with potential functions whereas in
case of the A, v −A formulation, this condition is a weak global constraint and needs
the source electric scalar potential corresponding to the source of a unit potential, in
terms of the scalar basis function obtained as the sum of the nodal basis functions
corresponding to the nodes on the electrodes with given current condition. The treat-
ment and implementation of the current condition in the A, v − A formulation is a
new feature in this work. The newly developed technique is extended to transient skin
effect problems in the time domain too. The validation of the technique was carried
out by selecting and solving problems which could be tackled by existing techniques as
well. Excellent agreement was obtained during the comparison of the results. In the
next step, it was applied to some industrial problems.
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Chapter1
Introduction

The skin effect problem is the magneto-dynamic problem of finding the current density
distribution in an arbitrary system of current carrying conductors. Displacement effects
are considered negligible [3, 4]. The skin effect problems are in fact a special class of
eddy current fields described by means of partial differential equations coupled to
the external source voltages or currents. These equations are formulated in terms of
potential functions from which field quantities are easily retrievable. A lot of work has
already been done in developing various potential formulations describing eddy current
fields both in two and three dimensions [5,6]. Mixed potential formulations, using both
vector and scalar potentials, approximated either by means of nodal elements or by
means of edge elements [5], are now available to get unique solutions [7] for the potential
functions [8]. Either the magnetic vector potential, A and the electric scalar potential,
V or the current vector potential (also named as electric vector potential in some
literature), T and the magnetic scalar potential, Φ are used in conducting regions,
whereas the magnetic field in nonconducting regions is described by A or Φ [9]. For
nodal based approximations of the potential functions two excellent overviews on the
differential formulations are given in [9] and [10]. Use of the edge elements for the
approximation of potentials is summarized in [11] for different possible formulations.

1.1. Literature review

These problems have been investigated for a long time. Analytical techniques [12]
applied initially resulted in useful results for conductors of simple shapes. The first at-
tacking of such problems with arbitrary geometries was made by Silvester [13] in 1968,
using numerical techniques [14,15]. He used the modal theory of current flow to make
an eigenvalue problem and using the network analysis subroutines to produce the skin
effect curves in terms of AC and DC resistance and inductance ratios. Afterwards, the
finite element method [16, 17] was applied to two dimensional skin effect problems by
many other authors too including M. V. K. Chari [18], Z. J. Csendes, A. Konrad [19]
and I. D. Mayergoyz [20].
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In [20] a modification to the mathematical formulation of skin effect problems is
proposed to make it possible to trace the skin effect in 3-D problems and perfect con-
ductors. The idea was to introduce filamentary or virtual current carrying conductors
in the actual conductor. The field equations outside the conducting region are so com-
prised that the total current in the conductors appear explicitly in the formulation
through the boundary conditions. Boundary integral method is used for the realiza-
tion of the formulation.

A scheme to model the skin depth in massive conductors is presented with voltage
and current forced conditions in the finite element AΨV formulation in [21]. Nodal
based shape functions have been used with the enforcement of the coulomb gauge. First
order iso-parametric brick and second order hierarchical elements have been used. It
is shown that higher order elements can give better results for skin depth.

In [22] a finite element formulation for 3-D current driven problems is presented
which uses potential functions to represent the field quantities. An impressed current
vector potential is used to describe an arbitrary current distribution in the conduc-
tors corresponding to the net given current. Edge elements have been used for the
representation of the impressed current vector potential and nodal elements for the
magnetic scalar potential in the whole problem domain. Options for the selection of
the impressed vector potential have been discussed thoroughly.

Study of two potential formulations, T,Ω and A,Ψ coupled with electric circuit
equations is presented in [23] and [24]. Here, hybrid elements are used with the en-
forcement of the gauge condition, by setting the vector potential component along the
tree edges equal to zero.

In [25] the choice of nodal or edge finite elements for the expansion of magnetic
vector potential and its gauging is explored, specially when higher order elements are
used in the finite element analysis of 3-D magnetostatic problems. Recommendation
for the edge elements for ungauged vector potential has been made for better numer-
ical stability and accuracy. The solution of singular system of equations is obtained
by iterative solvers like ICCG, provided the consistence of the right hand side is ensured.

In [26–30] coupling of magnetic vector potential formulation and H-formulations with
global quantities is given and the use of source fields associated with both formulations
in connection with voltage and current sources is proposed. The complementarity of
the two formulations has also been elaborated.

A comparison of a few finite element formulations for two dimensional eddy current
problems is presented in [31]. These formulations are based on a single component
magnetic vector potential for current sources only. One of these formulations takes
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into account the proximity and skin effects. A mesh adaptation procedure is given for
such problems with integro-differential formulation, for example in [32]

1.2. Outline of the thesis

In the next Section of this chapter , a brief description of the Galerkin method is pre-
sented.

In chapter 2 , the field model of the eddy current problem and the skin effect problem
is presented. The differential equations and boundary conditions for both problems are
shown in terms of the field quantities. The two potential formulations, the A, v −A
and the T,Φ− Φ, for the eddy current problem are introduced.

In chapter 3 , the skin effect problem with prescribed voltage condition is presented.
The A, v − A formulation naturally suites the voltage as a global constraint to be
incorporated in terms of the modified electric scalar potential. The coupling of global
quantities with potential formulations is presented.

In chapter 4 , it is shown that the incorporation of the given current condition in the
T,Φ−Φ formulation is natural with the use of the impressed current vector potential.

In contrast, in chapter 5 it is presented that the T,Φ − Φ formulation needs addi-
tional treatment to incorporate the condition of voltage excitation. This is achieved
by assuming filamentary currents for the voltage sources. The source field function is
used to account for the unknown current of source or around the hole to establish the
circuit relation in the Galerkin finite element equations.

The A, v−A formulation, for skin effect problems with prescribed current condition,
is presented in chapter 6 . The Dirichlet boundary condition, in this formulation, is not
completely specified. The treatment of the partially specified boundary condition, on
the electrodes with given current condition, is shown and implemented in the software
environment(EleFAnT 3D, developed at IGTE). In this case the introduction of a unit
source electric scalar potential facilitates to establish the relation between the poten-
tials and the given currents of the sources in the weak form.

The treatment of transient skin effect problems is shown in chapter 7 . The time
stepping technique is described for general nonperiodic excitations. It is shown that
the time difference technique using linear interpolation gives the discretized system of
equations. Stepping through several periods is necessary, with this approach, to obtain
the steady state solution of time periodic skin effect problems approximately. It is also
shown that transient problems with time periodic excitations can be solved both in
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the frequency and the time domain at the cost of stepping through one period only.
Nonlinearity of the transient problems is taken into account with the use of the fixed
point method.

In chapter 8 , for validation purposes, the results of the two potential formulations
are compared for a thick conductor coil problem. Furthermore an industrial problem is
solved with the newly developed technique i.e. the A, v−A formulation generalized for
the given current condition. Higher harmonic losses are computed in the short circuit
ring of a 14 pole induction motor. Analysis is performed at the preselected harmonics,
300Hz, 600Hz and 1200Hz. The validation of the technique, the A, v−A formulation
with current sources, for transient skin effect problems is done by solving the thick
conductor coil problem, already solved for the steady state case, with time stepping
technique and discrete frequency domain analysis.

Finally, the conclusion of the work is given in chapter 9 .

1.3. Galerkin’s finite element technique

The first step in the numerical solution of the partial differential equations is to reduce
them to a system of algebraic equations for static and stationary field problems, or
to a system of ordinary differential equations for time dependent fields. This is done
by using variational techniques in most of the cases [33]. The system of ordinary
differential equations of the transient case simplifies to a complex algebraic equations
system for time harmonic problems in which case the operator of the time derivation
reduces to a simple multiplication by jω ( ∂

∂t
⇒ jω), where ω is the angular frequency.

To cover the general case of transient problems Galerkin’s method is the most general
and suitable one.

In the application of Galerkin’s method, the Dirichlet boundary conditions are sat-
isfied exactly while the Neumann boundary conditions are approximated [34]. This
leads in the static case to the same solution which is obtained by applying the Ritz’s
method [35].

For transient eddy current field problems, the differential equation to be solved has
the following form

L2u+ Lt
∂u

∂t
= f in Ω, (1.1)

where u is the unknown function to be evaluated and f is the known forcing function.
L2 is a second order elliptic differential operator and Lt a symmetric operator with
respect to any arbitrary function w and the function u such that∫

Ω

(Ltu)w dΩ =

∫
Ω

u (Ltw) dΩ. (1.2)
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The boundary and initial conditions to be satisfied are

LDu = g on ΓD, (1.3)

LNu = h on ΓN , (1.4)

u(t = 0) = u0, (1.5)

where g and h are the known functions to be specified on the disjunct parts ΓD and
ΓN of the boundary Γ, i. e. Dirichlet and Neumann boundary conditions are specified
on the corresponding surfaces. The operator LD is the identity operator if u is a scalar
function or it yields the tangential or the normal component of u if the latter is a vector
function. The operator LN denotes some kind of partial derivation such as n× curl or
n · grad. The differential equation (1.1) and the Neumann boundary condition (1.4)
can be combined to write the operator equation as

L2u+ Lt
∂u

∂t
+ δΓN

LNu = f + δΓN
h in Ω. (1.6)

The function δΓN
is a Dirac distribution concentrated on the surface ΓN , i.e.

δΓN
(P ) =

{
0 if P /∈ ΓN
∞ if P ∈ ΓN

(1.7)

which satisfies ∫
Ω

δΓN
w dΩ =

∫
ΓN

w dΓ, (1.8)

with w any arbitrary function. To obtain the weak form of the boundary value problem,
the operator equation (1.6) is multiplied by any weighting function w and integrated
over the problem domain Ω∫

Ω

(
L2u+ Lt

∂u

∂t
− f

)
w dΩ +

∫
ΓN

(LNu− h) (LDw) dΓ = 0 ∀w, (1.9)

with LDw = 0 on ΓD. It can be seen from the above equation that, for any function w,
the differential equation (1.1) and the Neumann boundary condition (1.3) are satisfied.
Of course, the fundamental lemma of the variational calculus is assumed to be valid,
i.e. if G is a continuous function and∫

Ω

Gw dΩ = 0 (1.10)

for w arbitrary with
w(∂Ω) = 0 (1.11)

then
G = 0 identically within Ω, (1.12)



1.3. Galerkin’s finite element technique 6

Application of the partial integration to the equation (1.9) will in general be a Green’s
identity of the form∫

Ω

(L2u)w dΩ =

∫
Ω

(L1u) (L1w) dΩ−
∮

Γ

(LNu)w dΓ = 0, (1.13)

where L1 is a first order differential operator. The unknown function u is approximated
by means of an entire function set {fk}

u(n)(r, t) = uD(r, t) +

n1∑
k=1

uk(t)fk(r). (1.14)

The time dependence of the unknown coefficients uk is shown explicitly for the general
case of transient field problems. The symbol n1 denotes the number of degrees of
freedom of the approximate function u(n). The function uD satisfies the inhomogenous
(1.3) and the expansion functions fk the homogenous Dirichlet boundary conditions

LDfk = 0 on ΓD. (1.15)

The initial solution u0 in (1.5) can be approximated as

u
(n)
0 =

n1∑
k=1

u0kfk, (1.16)

therefore initial values can be assigned to uk

uk(t = 0) = u0k. (1.17)

Choosing an entire function set {fk} of n1 elements satisfying the homogenous Dirichlet
boundary conditions (1.15), Galerkin’s equations are obtained from (1.9) using Green’s
identity∫

Ω

(
L1u

(n)
)

(L1fk) dΩ +
∂

∂t

∫
Ω

(
Ltu

(n)
)
fk dΩ =

∫
Ω

ffk dΩ +

∫
ΓN

h (LDfk) dΓ,

k = 1, 2, · · · , n1.(1.18)

Inserting (1.14) into (1.18), a system of ordinary differential equation can be written:

Au +
∂

∂t
(Bu) = f . (1.19)

The elements of u are the coefficients uk and the elements of matrices A, B and vector
f are:

Aik =

∫
Ω

(L1fi) (L1fk) dΩ, (1.20)
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Bik =

∫
Ω

(Ltfi) fk dΩ, (1.21)

fi =

∫
Ω

ffi dΩ +

∫
ΓN

h (LDfi) dΓ−
∫

Ω

(L1uD) (L1fi) dΩ. (1.22)

There are normally two unknown potential functions introduced in most of the for-
mulations of eddy current fields, specially the two formulations used in this work. If
the boundary value problem consists of two governing differential equations with two
unknown functions u and v, then the operators themselves are matrices (L2 and Lt)
and the Galerkin equations (1.19) change to:[

Auu Auv

Avu Avv

]{
u
v

}
+

[
Buu Buv

Bvu Bvv

]{{
u̇
v̇

}}
=

{
f
g

}
(1.23)

with the function v approximated by n2 elements of an entire function set {gk} as

v(n)(r, t) = vD(r, t) +

n2∑
k=1

vk(t)gk(r) (1.24)

where n2 stands for the degrees of freedom of the approximating function v(n) and
the known vector g consists, similarly to f , of integrals of the products of the forcing
function and the expansion functions over the problem domain Ω. The symmetry of
the matrices A and B is numerically advantageous.

An important step in the classical Galerkin method is the selection of trial functions
defined over the entire solution domain that can represent the true solution, at least
approximately. For most two and three dimensional problems it is very difficult to find
such functions. To alleviate this difficulty, the entire domain is subdivided into small
subdomains and simpler trial functions defined over these subdomains are used. These
subdomains are called finite elements. In each finite element, the unknown quantities
are approximated by means of special interpolation polynomials, the shape functions.
These expansion functions have to fulfill certain conditions. They have to satisfy the
continuity conditions from one element to another, e.g., the normal component of B
and D or the tangential components of E and H have to be continuous, depending
upon the potential formulation to be used to represent the field quantities. Elements
with such shape functions are called conformal elements. The global approximation
of the unknown quantities is established by means of global shape functions. These
global shape functions have a local support, outside of which their value is zero.

Two types of shape functions are used in this work. They are either assigned to the
nodes or to the edges of the finite element mesh. In nodal finite elements, node based
scalar shape functions are used to approximate the unknown potentials and in edge
finite elements, edge based vector shape functions serve this purpose.
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The mapping of the geometry into curvilinear coordinate systems and the approxima-
tion of the scalar potentials is performed by means of nodal shape functions. Vector
potentials can either be approximated by means of nodal finite elements, whereby each
component of the vector potential is expanded using the same set of functions, or by
means of edge finite elements. Edge finite elements are used in this work for vector
potential expansion. A hybrid finite element with 56 degrees of freedom (DoFs), 36
edges and 20 nodes, is shown in Figure 1.1 with the order numbers assigned to the
DoFs and the geometry of the finite element in a local coordinate system indicated.
Second order interpolation polynomials N

(e)
k (given in the appendix) are assigned to

1 2

3 4

5 6

7 8

9

10

11

12

13

14

15

16

17

18

19

20

21

24

22

23

25

26

27

28

29

30

31

32

33

34

35
36

1 2 3

4

5
67

8

9
10

11
12

14 15

16

17
1819

20

13

Figure 1.1 Edge elements and Nodal elements.

the nodes of a finite element with the following property:

N
(e)
k =

{
1 in the node k,
0 in all other nodes,

(1.25)
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where the superscript (e) corresponds to one finite element. The corresponding global
shape functions Nk(k = 1, 2, · · · , nn) are one in the node k of the finite element mesh
and zero in all other nodes, where nn is the number of nodes in the mesh.
Similarly, second order vector polynomials N

(e)
k are assigned to the edges of the finite

elements. The vector polynomial functions used in this work can be written as

N
(e)
k = fk grad α, with α = ξ, η or ζ, (1.26)

where ξ, η and ζ are the axes in the local coordinate system and fk are polynomial
functions (given in appendix) corresponding to the respective edges of the finite element

in the three directions. The edge shape functions N
(e)
k are further chosen to have the

following property: ∫
Ck

N
(e)
l · ds =

{
1 l = k,
0 l 6= k

, (1.27)

where Ck stands for the kth edge in the problem finite element mesh. The corresponding
global shape function Nk (k = 1, 2, · · · , ne) has the same property in relation with
global edges where ne is the total number of edges in the finite element mesh.
The transformation between the local and the global coordinates is established by
means of locally defined nodal basis functions as

x(ξ, η, ζ) =
nn

(e)∑
k=1

xkN
(e)
k (ξ, η, ζ),

y(ξ, η, ζ) =
nn

(e)∑
k=1

ykN
(e)
k (ξ, η, ζ), (1.28)

z(ξ, η, ζ) =
nn

(e)∑
k=1

zkN
(e)
k (ξ, η, ζ),

where (xk, yk, zk) are the global coordinates of the node k and nn
(e) stands for the

number of nodes in one element. The same transformation defines the element shape
functions in terms of the global coordinates (x, y, z). The global set of expansion
functions, either nodal based or edge based shape functions, are used to approximate
the unknown potential functions, in the Galerkin’s equations (1.18). These global
expansion functions are functions of (x, y, z) and are also used to satisfy the Dirichlet
boundary conditions (1.15).
Scalar potential functions can only be approximated by nodal shape functions. The
following function uD can be constructed to satisfy the Dirichlet boundary condition
(1.3)

uD =

nD∑
k=1

gkNk. (1.29)
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where gk is the given value of the function g in the node k and nD is the number of
nodes on the Dirichlet boundary ΓD. Therefore the scalar potential u is approximated
as

u(n) = uD +
nn∑

k=nD+1

ukNk. (1.30)

Edge basis functions are used in this work for the approximation of vector potentials
due to the advantage in case of iron air interfaces and the sharp corners in the problem
region, although the possibility to use the nodal expansion functions is also available
by approximating each component of the vector potential with the same set of the basis
functions.
When vector potentials are approximated by edge basis functions, the function uD
satisfying (1.3) is constructed as

uD =

nDe∑
k=1

gkNk, (1.31)

where nDe stands for the number of edges on ΓD and the scalar gk is the line integral
of the known function g, the tangential component of the u specified on ΓD. The
unknown vector potential u can now be written as

u(n) = uD +
ne∑

k=nDe+1

ukNk, (1.32)

where

uk =

∫
Ck

u.ds. (1.33)

It is to be noted that only vector quantities with continuous tangential components
can be expanded by means of edge elements.

There exists a functional relationship between the spaces spanned by the two sets of
expansion functions {Nk} and {Nk}. Let W 0 be the space spanned by the nodal basis
functions with Nk ∈ W 0 and W 1 the space spanned by the edge basis functions with
Nk ∈ W 1, then the following functional relation holds:

grad(W 0) ⊂ W 1, (1.34)

i.e. the gradients of the nodal basis functions lie in the same function space in which
the edge basis functions [36]. It is obvious from the fact that the sum of all nodal basis
functions is one

nn∑
k=1

Nk = 1 (1.35)

so
nn∑
k=1

gradNk = 0, (1.36)
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i.e., the maximal of number linearly independent gradients of the nodal basis functions
is (nn − 1), that is the number of tree edges in the graph defined by the finite element
mesh. On the other hand, the gradients of the nodal basis functions are in the function
space spanned by the edge basis functions, therefore we have the following nn − 1
linearly independent relations

gradNk =
ne∑
l=1

cklNl, k = 1, 2, · · · , nn − 1, (1.37)

where
ne∑
l=1

c2
kl > 0, k = 1, 2, · · · , nn − 1. (1.38)

By taking the curl of (1.37) one can obtain

ne∑
l=1

ckl curlNl = 0, k = 1, 2, · · · , nn − 1. (1.39)

The above three relations imply that the maximal number linearly independent curls
of the edge basis functions is ne − (nn − 1), the number of cotree edges in the graph
of the finite element mesh. The nodal and the edge basis functions are linearly in-
dependent but not their gradients or their curls. There exist only (nn − 1) linearly
independent gradients of the nodal basis functions in W 1 (i.e. equal to tree edges) and
ne − (nn − 1) linearly independent curls of the edge basis functions (i.e. equal to the
number of cotree edges).



Chapter2
Eddy Current Problems and Skin Effect Problems

An eddy current problem arises if a time varying magnetic field is excited within a
body made of conducting material and the excitation field is realized by a coil with
given current density J0 situated outside the conductor. This leads to a static but
time varying magnetic field in the non-conducting regions Ωn surrounding the eddy
current carrying conductors constituting the region Ωc (Ω = Ωn + Ωc). In Ωc, both
the magnetic and the eddy current fields are present and are coupled. On the other
hand, if the total current through a conductor or the applied voltage across it is given
and the current density distribution is unknown then a skin effect problem is arrived
at. The displacement current density is assumed to be negligible, i.e. the differential
equations of quasi-static fields hold.

Skin effect problems are in fact a special class of eddy current fields described by
means of partial differential equations coupled to external source voltages or currents.
The prescription of the voltage or the current is the peculiarity of skin effect prob-
lems. The problem domain of eddy current or skin effect problems constitutes usually
conducting parts, air regions and also ferromagnetic materials, are regions of complex
geometries. Therefore the complex geometries and nonlinear material properties de-
mand numerical techniques to be used for the solution of such problems. Finite element
techniques are widely used for both of these problems. The differential equations and
the boundary conditions for the field vectors for both classes are presented first and
then the two problems are described separately.

2.1. Differential equations and boundary conditions for
field quantities

The set of differential equations is:

curlH = J in Ωc, (2.1)

curlH = J0 in Ωn, (2.2)
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curlE = −∂B

∂t
in Ωc, (2.3)

divB = 0 in Ω. (2.4)

The boundary conditions, as shown in Figs. 2.1 and 2.2,

KnH 
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n


B

H n

b  B n

c

E n
E
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 H n 0

Hn

cn
are continuous

and B n

Figure 2.1 Field model of an eddy current problem

for the eddy current problem are

E× n = 0 on ΓE, (2.5)

H× n = 0 on ΓHc , (2.6)

H× n = K on ΓHn , (2.7)

B · n = −b on ΓB (2.8)
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Figure 2.2 Field model of a skin effect problem

and for skin effect problems:

E× n = 0 on ΓE, (2.9)

H× n = 0 on ΓHc and ΓHn , (2.10)

B · n = 0 on ΓB (2.11)

where H is the magnetic field intensity, J the current density vector, E the electric
field intensity, B the magnetic flux density and the subscripts c and n represent the
conducting and the non-conducting regions respectively. J0 is the given current density
of the coils which is supposed to be known. n is the unit normal vector pointing outward
from the problem domain Ω.
Additionally, the material equations can be written as:

H = νB or B = µH, (2.12)
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J = σE or E = ρJ (2.13)

where ν is the reluctivity, µ the permeability, ρ the resistivity and σ the conductivity.
The interface conditions for the magnetic field intensity in the eddy current domain
Hc and in the eddy current free domain Hn, and the magnetic flux density in the eddy
current domain Bc and in the eddy current free domain Bn are:

Hc × nc + Hn × nn = 0 on Γcn, (2.14)

Bc · nc + Bn · nn = 0 on Γcn. (2.15)

where nc is a unit normal vector pointing from eddy current domain towards the eddy
current free domain and nn, the unit normal vector pointing from non-conducting
towards the conducting domain on the interface of the two regions which is represented
by Γcn.

2.2. Eddy current problem

The finite element solution of the field boundary value problem is usually sought with
the introduction of potential functions [6, 11]. There are basically two possibilities to
choose the potential functions describing eddy current problems.
In a finite element context, the vector potentials are advantageously approximated by
edge basis functions whereas the scalar potentials should be expanded by node based
ones.

2.2.1. A, v −A formulation

The A, v − A formulation uses the magnetic vector potential A introduced in the
entire problem domain and additionally, the time integrated electric scalar potential v
is defined in the eddy current region only.

B = curlA in Ω, (2.16)

E = −∂A

∂t
− grad∂v

∂t
in Ωc. (2.17)

This results in the exact satisfaction of (2.3) and (2.4). To obtain a symmetric system,
the scalar potential V in terms of the time derivative of a modified scalar potential v
i.e.,

V =
∂v

∂t
, v(t = 0) = 0 or v =

∫ t

0

V (r, τ)dτ, (2.18)

is introduced.
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2.2.1.1. Boundary value problem for the potentials

(2.1) and (2.2) respectively, can be written in terms of potential functions using (2.16),
(2.17) and the fist part of the material relation (2.12)

curl(νcurlA) + σ
∂A

∂t
+ σgrad

∂v

∂t
= 0 in Ωc, (2.19)

curl(νcurlA) = J0 in Ωn. (2.20)

In the eddy current domain, there is one equation for two potential functions, a
second scalar differential equation can be obtained from the law of continuity divJc = 0,
which is in fact the consequence of (2.1), as

div(−σ∂A

∂t
− σgrad∂v

∂t
) = 0 in Ωc. (2.21)

The complete boundary value problem in terms of potential functions, using an un-
gauged vector potential, consists of the differential equations (2.19), (2.20), (2.21) and
the boundary conditions:

According to (2.6) the tangential component of H is zero on ΓHc that implies normal
component of J also vanishes on this boundary part. So in terms of the potential
functions,

νcurlA× n = 0 and

n · (−σ∂A

∂t
− σgrad∂v

∂t
) = 0 on ΓHc . (2.22)

(2.5) implies

n×A = 0 and v = constant = v0 on ΓE (2.23)

According to (2.7) the known surface current density K is given as the tangential
component of H on ΓHn , so

νcurlA× n = K on ΓHn (2.24)

The magnetic surface charge density b in (2.8) is specified in terms of the tangential
component of A as

n×A = α on ΓB (2.25)

The continuity condition of the normal component of B in (2.15) is written as

curlA · nc + curlA · nn = 0 on Γcn, (2.26)

The continuity condition of the tangential component of H in (2.14) in terms of the
potential functions is

νccurlA× nc + νncurlA× nn = 0 on Γcn, (2.27)

nc · σ
∂

∂t
(A + gradv) = 0 on Γcn. (2.28)
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2.2.1.2. Galerkin equations

The use of the edge basis functions for the expansion of vector potential ensures the
continuity of its tangential component on Γcn. Consequently, the continuity of the nor-
mal component of the magnetic flux density B (2.15) and, thus (2.26) is automatically
ensured. The only concern which remains for the interface condition, is the tangential
continuity of the magnetic field intensity H. That is also achieved in the weak sense
naturally by the surface integrals of the form∫

Γcn

Ni · (H× n) dΓ. (2.29)

arising in the Galerkin equations both in Ωn and Ωc and thus canceling out.
The vector potential is approximated by edge basis functions as

A ≈ Ah =

n1∑
j=1

AjNj (2.30)

where n1 is the number of edges in the finite element mesh except those on ΓE and ΓB,
and Aj are the line integrals of A along the edges.

The electric scalar potential is expanded by nodal basis functions as

v ≈ vh =

n2∑
j=1

vjNj (2.31)

where n2 is the number of nodes in Ωc except those on ΓE and vj are the nodal values
of the approximated scalar potential.
Setting (2.30) and (2.31) into (2.19), (2.20) as well as into the vector Neumann bound-
ary condition in (2.22) and (2.24) and using the basis functions Ni as weighting func-
tions for vector equations, results into the equations∫

Ωc

Ni ·
[
curl(νcurlAh) + σ

∂

∂t
(Ah + gradvh)

]
dΩ

+

∫
ΓHc

Ni · (νcurlAh × n) dΓ +

∫
Ωn

Ni · curl(νcurlAh) dΩ

+

∫
ΓHn

Ni · (νcurlAh × n) dΓ +

∫
Γcn

Ni · (νccurlAh × nc) dΓ

+

∫
Γcn

Ni · (νncurlAh × nn) dΓ =

∫
Ωn

Ni · J0 dΩ +

∫
ΓHn

Ni ·K dΓ,

(i = 1, 2, · · · , n1), (2.32)

which can be transformed, using integration by parts (i.e. considering the vector iden-
tities, F · curlG = G · curlF − div (F×G) and f divF = −F · grad f + div (fF))
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and taking into account that the coordinate functions fulfill the homogeneous Dirichlet
boundary conditions and also making use of the divergence theorem, into the following
Galerkin equations:

∫
Ωc

curlNi · νcurlAh dΩ +

∫
Ωc

Ni · σ
∂

∂t
(Ah + grad vh) dΩ

=

∫
Ωc

Ni · J0 dΩ +

∫
ΓHn

Ni ·K dΩ i = 1, 2, · · · , n1. (2.33)

Setting (2.30) and (2.31) into (2.21) as well as into the scalar Neumann boundary
condition in (2.22) and using the basis functions Ni as weighting functions for scalar
equations, results into the equations

∫
Ωc

Ni

[
−divσ ∂

∂t
(Ah + gradvh)

]
dΩ +

∫
ΓHc

Ni

[
σ
∂

∂t
n · (Ah + gradvh)

]
dΓ

+

∫
Γcn

Ni

[
σ
∂

∂t
n · (Ah + gradvh)

]
dΓ = 0, (i = 1, 2, · · · , n2), (2.34)

and the similar transformation as used above gives the following Galerkin equations:

∫
Ωc

gradNi · σ
∂

∂t
(Ah + gradvh) dΩ = 0, i = 1, 2, · · · , n2. (2.35)

It has been shown in section 1.3 that the resulting system of equations is singular,
therefore the consistency of the right hand side is mandatory. This is achieved by the
introduction of an impressed current vector potential T0 to represent the effect of the
coils with given current density. The function T0 satisfies:

curlT0 = 0 in Ωc, and curlT0 = J− 0 in Ωn, (2.36)

T0 × n = K on ΓHn , and T0 × n = 0 on ΓHc . (2.37)

The above introduction results in the consistent right hand side of the equation
(2.33) as ∫

Ωc

curlNi · νcurlAh dΩ +

∫
Ωc

Ni · σ
∂

∂t
(Ah + grad vh) dΩ

=

∫
Ωc

curlNi ·T0 dΩ i = 1, 2, · · · , n1. (2.38)
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2.2.2. T,Φ− Φ formulation

In this formulation, the current vector potential T is introduced in the conducting
domain and a magnetic scalar potential Φ is used in the both eddy current as well as
in the eddy current free domain to determine the electromagnetic field quantities in
the problem domain.

The field quantities are derived from the potentials as

H = T0 + T− gradΦ, J = curlT0 + curlT in Ωc, (2.39)

H = T0 − gradΦ, J = curlT0 in Ωn, (2.40)

Ampere’s law (2.1) and (2.2) is, hence, satisfied exactly with the above assumption.

2.2.2.1. Boundary value problem for the potentials

Faraday’s law (2.3) leads to the differential equation

curl (ρcurlT) +
∂

∂t
µ (T− gradΦ) = −curl (ρcurlT0)− ∂

∂t
(µT0) in Ωc. (2.41)

In the eddy current domain, there is one equation for two potential functions, a
second scalar differential equation can be obtained from the divergence free property
of the time derivative of the magnetic flux density B, which is a consequence of (2.3):

div
∂

∂t
[µ (T− gradΦ)] = −div (µT0) in Ωc, (2.42)

similarly in the eddy current free domain,

− div ∂
∂t

(µgradΦ) = −div (µT0) in Ωn. (2.43)

The complete boundary value problem in terms of potential functions, using an
ungauged vector potential, consists of the differential equations (2.41), (2.42), (2.43)
and the boundary conditions, in (2.5), (2.6), (2.8) and (2.7) respectively, in terms of
the potential functions:

ρcurlT× n = −ρcurlT0 × n (= 0) and

n · µ (T− gradΦ) = −T0 · n (= 0) on ΓE, (2.44)

T× n = T0 × n (= 0) and Φ = Φ0 on ΓHc , (2.45)
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n · µgradΦ = µ
∂Φ

∂n
= b+ µT0 · n on ΓB, (2.46)

T0 × n = K, Φ = Φ0 on ΓHn , (2.47)

2.2.2.2. Galerkin equations

The continuity of the tangential component of the magnetic field intensity, i.e. of H×n
is ensured by the continuity of the magnetic scalar potential in the two domains and
by setting the tangential component of the current vector potential to zero on the
interface:

T× n = 0 on Γcn. (2.48)

The continuity of the normal component of the magnetic flux density B is also
achieved in the weak sense through surface integrals of the form∫

Γcn

Ni B · n dΓ (2.49)

arising in the Galerkin equations both in Ωn and Ωc and thus canceling out.

The vector potential is approximated by edge basis functions as

T ≈ Th =

n1∑
j=1

TjNj, (2.50)

where n1 is the number of edges in the eddy current domain except those on ΓH and
Γcn, and Tj are the line integrals of T along the edges.

The magnetic scalar potential is expanded by nodal basis functions as

Φ ≈ Φh =

n2∑
j=1

ΦjNj. (2.51)

where n2 is the number of nodes in Ωc except those on ΓE and vj are the nodal values
of the approximated scalar potential.

Setting (2.50) and (2.51) into (2.41) as well as into the vector Neumann boundary
condition in (2.44) and using the basis functions Ni as weighting functions for vector
equation, results into the equations
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∫
Ωc

Ni · curl (ρcurlTh) dΩ

+

∫
Ωc

Ni ·
[
∂

∂t
(µTh)−

∂

∂t
(µgradΦh)

]
dΩ +

∫
ΓE

Ni · (ρcurlTh × n) dΓ

= −
∫

Ωc

Ni ·
[
curl (ρcurlT0) +

∂

∂t
(µT0)

]
dΩ, i = 1, 2, · · · , n1, (2.52)

which can be transformed, by using partial integration, into the following Galerkin
equations:

∫
Ωc

curlNi · ρcurlTh dΩ +

∫
Ωc

µ
∂

∂t
(Th − gradΦh) dΩ

= −
∫

Ωc

curlNi · ρcurlT0 dΩ−
∫

Ωc

Ni ·
∂

∂t
(µT0) dΩ i = 1, 2, · · · , n1 (2.53)

and, setting (2.50) and (2.51) into (2.42), (2.43) and as well as into the scalar Neumann
boundary condition in (2.44) and (2.46) and using the basis functions Ni as weighting
functions for scalar equations, results into the equations∫

Ωc

Ni
∂

∂t
div [(µTh − µgradΦh)] dΩ−

∫
Ωn

Ni
∂

∂t
div (µgradΦh) dΩ

+

∫
ΓE

Ni
∂

∂t
µ

(
−Th · n +

∂Φh

∂n

)
dΓ +

∫
ΓB

Ni
∂

∂t

(
∂Φh

∂n

)
dΓ

+

∫
Γcn

Ni

[
− ∂

∂t
(µTh · nc) +

∂

∂t

(
µ
∂Φh

∂nc

)
+
∂

∂t

(
µ
∂Φh

∂nn

)]
= −

∫
Ω

Ni
∂

∂t
div (µT0) dΩ +

∫
ΓB

Ni
∂

∂t
(b+ µT0 · n) dΓ

+

∫
Γcn

Ni
∂

∂t
(µT0 · nc + µT0 · nn) dΓ i = 1, 2, · · · , n2, (2.54)

which can be transformed, by using partial integration, into the following Galerkin
equations:

−
∫

Ω

gradNi ·
∂

∂t
µgradΦh dΩ

+

∫
Ωc

gradNi ·
∂

∂t
(µTh) dΩ

= −
∫

Ω

gradNi ·
∂

∂t
(µT0)−

∫
ΓB

Ni
∂b

∂t
dΩ i = 1, 2, · · · , n2. (2.55)
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2.3. Skin effect problems

The devices encountering eddy currents are usually supplied through electric circuits.
The currents and voltages associated with the conducting parts of those appliances are
normally required to be coupled with the circuits. The field model of a general skin
effect problem along with the boundary and interface conditions, as shown in Fig. 2.2
is presented here with a brief introduction of the two global conditions to be treated
separately in the next four chapters.
It involves an eddy current carrying domain Ωc surrounded by a non-conducting region
Ωn(Ω=Ωc+Ωn). The electric and magnetic fields are coupled in the conducting domain
only, while in the non-conducting domain the magnetic field is essentially static [37].

The same potential introduction as used for the eddy current problems is applica-
ble in skin effect problems too. The two global conditions, i.e. voltage and current
prescription related to external sources are to be incorporated in case of skin effect
problems. Boundary conditions for the potential functions, which arise in case of the
prescribed voltage and current, are different for the four possible cases.

2.3.1. Voltage excitation condition

In the A, v−A formulation the given voltage condition is to be incorporated in terms
of the modified electric scalar potential on the boundary parts where tangential com-
ponent of the electric field vanishes, i.e. on the electrodes. This treatment will be
shown in the following chapter.

In the T,Φ − Φ formulation, the condition of voltage prescription is treated by in-
troducing an additional current vector potential the so called source field function t0.
The properties of this function and the additional equations arising in the system of
equations are arrived at in the chapter 5.

2.3.2. Current excitation condition

Skin effect problems with the given current condition are easily handled with the
T,Φ − Φ formulation provided the eddy current domain is simply connected. The
impressed field function T0 is used to incorporate this condition, with the assumption
of arbitrary current filament of known current between the two source electrodes and
running solely in the conducting domain. The role of the impressed field function and
its properties are different from those of the same function used in the eddy current
problem. This will be presented in chapter 4.

If the currents instead of voltages are specified for the electromotive sources of the
skin effect problem then the Dirichlet boundary condition for the A, v−A formulation
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in the conducting regions becomes unspecified. This will be treated similarly to periodic
boundary conditions. This is achieved by the introduction of a sum nodal basis function
corresponding to the nodes on each of the electrodes with the prescribed current by
setting the scalar potential to an unknown constant on that specific electrode. The
approach to obtain this function and its properties are described in chapter 6. The new
basis function is then used as a weighting function to obtain the additional equations.
The relation between this coordinate function and the prescribed current, in terms
of both the vector and scalar potential functions, is shown and the complete set of
Galerkin equations is also derived in chapter 6.
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A, v −A Formulation of Skin Effect Problems

with Voltage Excitation

In this formulation, the Dirichlet boundary conditions on the electrodes are non ho-
mogeneous. The prescribed voltage condition, in terms of the modified electric scalar
potential v , is the essential boundary condition to be satisfied. It is shown that the
scalar potential realizes a strong global constraint which appears in the set of Galerkin
equations obtained in this formulation.

The problem consisting of n thick inductors shown in Fig.3.1 is used to arrive at
the formulation. It can be assumed that the normal component of the magnetic flux
density vanishes at a reasonably long distance from the magnetic field sources, i.e.
from the electric currents and the permanent magnets. Hence, there is an option
always available to assume a boundary surface away from the problem domain where
homogeneous conditions for the normal component of magnetic flux density can be
defined. This kind of boundary is termed as the far boundary and is denoted by Γ0

here.

3.1. Strong global constraint for the A, v −A

formulation

The voltage is a strong global constraint in this formulation [38]. If the voltage is
prescribed, it is to be satisfied as an essential boundary condition for the scalar potential
on the electrodes connected to the voltage sources. In this situation, the boundary
condition for the potential functions is

A× n = 0, v i(t) =

∫ t

0

u i(τ)dτ on ΓiE for i = 1, 2, · · · , n (3.1)

A× n = 0, v i(t) = 0 on Γ0
E, the reference electrode (3.2)
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Figure 3.1 Bounded problem domain containing n conductors.

as shown in Fig.3.1. In the above two conditions, the assertion is made that the voltage
is the difference of the electric scalar potential values on the two electrodes connected
to the source. In order to make it explicit, the way in which the voltage is defined is
important. If the voltage is defined as a line integral of the electric field intensity, E
from one electrode to the other, i.e.

u(t) =

∫
C

E · dl, (3.3)

then the selection of the curve, C affects the value of the integral because of the presence
of the time varying magnetic field. Another definition of the voltage is required here to
be complied completely by this potential prescription on the electrodes [39]. According
to this definition, the total power in the problem domain defined as the sum of the
power loss and the time derivative of the magnetic energy is equal to the product of
the voltage and the total current.

The total power of the arrangement is
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p(t) =

∫
Ωc

|J(r, t)|2

σ
dΩ +

d

dt

∫
Ωc+Ωn

(∫ B(r,t)

0

HdB

)
dΩ

=

∫
Ωc

E · J dΩ +

∫
Ωc+Ωn

∂B

∂t
·H dΩ. (3.4)

The second term in the above relation can be written in terms of the magnetic vector
potential, A as

∫
Ωc+Ωn

∂B

∂t
·H dΩ =

∫
Ωc+Ωn

curl
∂A

∂t
·H dΩ (3.5)

By using the vector identity, div(A×B) = B · curlA−A · curlB and the divergence
theorem, this can be written as

∫
Ωc+Ωn

curl
∂A

∂t
·H dΩ =

∫
Ωc+Ωn

∂A

∂t
· curlH dΩ +

∮
∂(Ωc+Ωn)

(
∂A

∂t
×H

)
· n dΓ. (3.6)

On ΓiE, Γ0
E, ΓB and Γ0, the homogeneous Dirichlet boundary condition is ensured

for the magnetic vector potential, i.e. the tangential component of A is zero there,
whereas H×n is zero on ΓH , a naturally satisfied boundary condition for the potential
functions. Therefore, the closed surface integral in (3.6) is overall zero,

∫
Ωc+Ωn

∂B

∂t
·H dΩ =

∫
Ωc

∂A

∂t
· J dΩ. (3.7)

Substituting (3.7) into (3.4) leads to

p(t) =

∫
Ωc

(
E +

∂A

∂t

)
· JdΩ = −

∫
Ωc

grad
∂v

∂t
· J dΩ

=

∫
Ωc

∂v

∂t
divJ dΩ−

∮
∂Ωc

∂v

∂t
J · n dΩ. (3.8)

The volume integral is zero due to the divergence free property of the current density,
J while the surface integral is also zero except on ΓiE because the scalar potential is set
to zero on Γ0

E and the normal component of J is zero on the interface of conducting and
non-conducting domains, Γcn. Hence, in view of (3.1), the above relation is simplified
to

p(t) = −u(t)

∫
Γi
E

J · ndΓ = ui(t)ii(t), (3.9)

which verifies the assertion made.
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3.2. Boundary value problem

The boundary value problem comprises the differential equations (2.19), (2.20), (2.21)
in terms of potential functions and the boundary conditions (2.17), (2.18) and:

A Neumann boundary condition is specified on ΓH , a symmetry plane in most of the
cases

νcurlA× n = 0 on ΓHn , (3.10)

νcurlA× n = 0 and

n · −σ ∂
∂t

(A + gradv) = 0 on ΓHc (3.11)

and a Dirichlet boundary condition on ΓB and on Γ0

n×A = 0 on ΓB and on Γ0. (3.12)

The prescribed voltage in terms of scalar potential (3.1) is the only essential non
homogeneous boundary condition to be satisfied on each of the source electrodes ΓiE.

3.3. Galerkin equations

To obtain the Galerkin’s equations in the entire problem domain, the potential approx-
imation is

A ≈ Ah =

n1∑
j=1

AjNj,

v ≈ vh = vD +

n2∑
j=1

vjNj, (3.13)

whereas the same ansatz for the vector potential in eddy current domain and in the
eddy current free domain is applied. The functions Nj(j = 1, 2, · · · , n1) are the edge
basis functions corresponding to all the edges in both Ωc and Ωn except those located on
ΓE or on ΓB [40]. At the same time, Nj(j = 1, 2, · · · , n2) are the nodal basis functions
corresponding to all the nodes in the eddy current domain which are not located on
ΓE. Thereby, the continuity of the tangential component of the vector potential is
guaranteed. The coordinate functions Nj(j = 1, 2, · · · , n1) and Nj(j = 1, 2, · · · , n2)
comply with the homogenous Dirichlet boundary conditions:

n×Nj = 0 on ΓE and on ΓB, Nj = 0 on ΓE. (3.14)

Furthermore, the known function vD corresponding to Dirichlet boundary condition of
the scalar potential is

vD =
n∑
i=1

vi0
∑

Nodesj∈Γi
E

N i
j , (3.15)
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Galerkin’s equations are written as∫
Ω

curlNi · νcurlAh dΩ +

∫
Ωc

Ni · σ
∂

∂t
(Ah + gradvh) dΩ

= 0 i = 1, 2, · · · , n1, (3.16)

∫
Ωc

gradNi · σ
∂

∂t
(Ah + gradvh) dΩ = 0, i = 1, 2, · · · , n2. (3.17)
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T,Φ− Φ Formulation of Skin Effect Problems

with Current Excitation

In the T,Φ−Φ formulation, the given current condition is incorporated by introducing
the impressed field function T0 with different properties than that of the same function
representing the effect of coils in the eddy current problem. This formulation is obtained
for the skin effect problems with simply connected eddy current domain. The problem
consisting of n thick inductors shown in Fig.3.1 is used to arrive at the formulation.

The unknown current vector potential T is introduced [41] in the eddy current do-
main and the reduced magnetic scalar potential Φ in the whole problem domain. The
field quantities are obtained as

H = T0 + T− gradΦ in Ωc, (4.1)

H = T0 − gradΦ in Ωn, (4.2)

J = curlT0 + curlT in Ωc. (4.3)

Both the functions T and T0 are approximated with the aid of edge basis functions Nj,
whereas the function Φ with nodal basis functions Nj. The curl of the function T0 is
required to represent an arbitrary current density distribution in the conductors with
the given net current in other words it describes the static current field. Furthermore,
the tangential component of T0 is continuous in the whole problem region.

4.1. Strong global constraint for the T,Φ− Φ

formulation

In this formulation, the total electric current is a global quantity which is directly
connected with the magnetic field, H through Ampere’s law (2.1) which is exactly
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satisfied in this formulation as shown in Section 2.2.2

curlH = J and

∫
ΓEi

J · n ds = ii. (4.4)

Therefore, the total current is the strong global quantity or a strong global constraint
in case it is prescribed.
In the finite element context, it can be interpreted in another way. Since, the current
vector potentials T and T0 are expanded with edge basis functions, their circulation
along a closed path can be directly obtained from the expansion coefficients. Therefore
the flux of their curls which is current, is directly connected with these coefficients and,
hence, can be said to be expressed in a strong sense.

4.2. Boundary value problem

The problem is solved in two steps, first to solve a static current flow problem to
compute the function T0 . The curl of which describes the static current field in the
conducting domain. In the next step the boundary value problem for T and Φ is solved
satisfying the current condition by setting the tangential component of T equal to zero
on the interface of the conducting and nonconducting domains. In this situation the
tangential component of T0 will satisfy the total current condition through the respec-
tive cross section of the conductor.

The properties of the function T0 are

curlT0 = 0, in Ωn,

−
∫

Γi
E

curlT0 · n dΓ =

∫
Γ0
E

curlT0 · n dΓ = ii,

T0 × n is continous on Γcn. (4.5)

There are several options for the selection of this function, the most convenient one
in the general shape case is to assume current filaments in the conducting domain,
between the two electrodes of each of the inductors carrying the prescribed current
ii. T0 in Ωn is chosen to be the Biot-Savart field Hs due to these current filaments
and is obtained as the solution of the following current flow problem in the conducting
domain Ωc:

curl (ρcurlT0) = 0, in Ωc

T0 × n = Hs × n on Γcn,

ρcurlT0 × n = 0 on ΓiE,Γ
0
E. (4.6)

In case of simple inductor shapes, e.g. cylindrical or racetrack shapes, an economical
choice of a single component T0 can be used to represent a uniform current density
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distribution.

In the next step, the boundary value skin effect problem for T and Φ with the given
function T0 is obtained, which consists of the differential equations (2.41), (2.42), (2.43)
and the boundary conditions:

ρcurlT× n = 0, µ (T− gradΦ) · n = −µT0 · n on ΓiE and on Γ0
E, (4.7)

µ
∂Φ

∂n
= µT0 · n on ΓB, (4.8)

T× n = 0, Φ and µ (T0 − gradΦ) · n are continuous on Γcn (4.9)

4.3. Galerkin equations

Galerkin’s method is applied to the above boundary value problem by approximating
the potentials as

T ≈ Th =
∑
k∈E

TkNk,

Φ ≈ Φh =
∑
k∈N

ΦkNk. (4.10)

Since all the Dirichlet boundary conditions for both T and Φ are homogenous, there-
fore no TD and ΦD functions are required. The given current condition is satisfied
through the tangential components of T and T0 on conducting and non-conducting
materials interface Γcn [42]. The resulting equations are

∫
Ωc

curlNk · ρcurlTh dΩ +
∂

∂t

[∫
Ωc

Nk · µTh dΩ−
∫

Ωc

Nk · µgradΦh dΩ

]
= −

∫
Ωc

curlNk · ρcurlT0 dΩ−
∫

Ωc

Nk ·
∂

∂t
(µT0) dΩ (4.11)

∂

∂t

[
−
∫

Ωc

gradNk · µTh dΩ +

∫
Ω

gradNk · µgradΦh dΩ

]
=

∫
Ω

gradNk ·
∂

∂t
(µT0) dΩ, (4.12)
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T,Φ− Φ Formulation of Skin Effect Problems

with Voltage Excitation

In the T,Φ − Φ formulation, the prescribed voltage needs to be coupled with the
potential functions. Here, the detailed approach to derive this formulation is shown
considering the boundary value problem for multiply connected eddy current domain
and external circuits with given voltages.

A multiply connected problem domain as shown in Fig. 5.1 is used to establish the
relation between the potential functions and the electric global quantities. The current
vector potential T̃ is introduced in the conducting region and the reduced magnetic
scalar potential Φ in the whole problem domain. Additionally, a current vector po-
tential or so called source field function ti0 is used to take into account the unknown
currents ii associated with the electromotive force sources with given voltages and
the multiply connected conducting domain [43,44]. The curl of each of these functions
is zero in the eddy current free domain, while it is non zero in the eddy current domain.

The potentials are introduced as:

H = T− gradΦ =
n∑
i=1

iiti0 + T̃− gradΦ in Ω, (5.1)

and the current density field is given by

J =
n∑
i=1

iicurlti0 + curlT̃ in Ωc (5.2)

such that ∫
Γi

curlti0 =

∮
∂Γi

ti0 · dl = 1, (5.3)

where Γi is any cross-section of the ith inductor through which the net current ii is
flowing. The unit source field function can be obtained by assuming current filaments



5.1. Weak global constraint for the T,Φ− Φ formulation 33

c

0

n

0

1

2

i

n

.

.

.

.

.

. B

i3
i1

in

ii

i2

B

E
0

E
2

E
1 E

0

E
0

E
0

cn

cn

E
i

E
n

Figure 5.1 Bounded problem domain showing conductors with holes

of unit currents through the electrodes and also around the holes. These functions are
represented with edge basis functions. The use of edge basis functions for the expansion
of these functions guarantee the tangential continuity. The scalar potential function Φ
is continuous in the whole problem domain.

5.1. Weak global constraint for the T,Φ− Φ

formulation

The circuit relation in terms of potential functions is shown here for a single inductor.
Consider an isolated portion of a thick conductor, as shown in Fig.5.2, with a voltage
u applied across its two electrodes ΓE1 with scalar potential,v of value v1 and ΓE2 with
scalar potential value v2 resulting in a current i flowing through it. The voltage in
terms of the scalar potential values at the two terminals is u = v1 − v2.
Let us first assume that the current through the conductor is 1 A resulting in a current
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density distribution of J0(r). One such particular current density solution is obtainable
by solving a current flow problem for unit current supplied through the electrodes [45].
Let the vector identity, div(vJ0) = J0·gradv+vdivJ0, be integrated over the conducting
domain. Since divJ0 = 0;

∫
Ωc

div(vJ0) dΩ =

∫
Ωc

J0 · gradv dΩ,∫
Ωc

J0 · gradv dΩ =

∮
∂Ωc

vJ0 · n dΓ (5.4)

the divergence theorem has been used to obtain the surface integral. Since J0 · n = 0
on the conductor surface except on ΓE,

∫
Ωc

J0 · gradv dΩ =

∫
ΓE1

v1J0 · n dΓ +

∫
ΓE2

v2J0 · n dΓ

= −v1 + v2 = −u0 (5.5)

The negative sign of the scalar potential v1 is due to the fact that the assumed current
density field and the unit normal vector at ΓE1 are in opposite direction whereas at
ΓE2 the two are in the same direction as shown in Fig. 5.2. In general, the electric field
intensity can be written in terms of the magnetic vector potential and the gradient of
the electric scalar potential, as in (2.17), so the voltage across the two terminals is

u0 =

∫
Ωc

J0 · E dΩ +

∫
Ωc

J0 ·
∂A

∂t
dΩ. (5.6)

The second integral on the right hand side can be written by using the vector identity,
div(A× t0) = t0 · curlA−A · curlt0, and writing J0 as curlt0:

∫
Ωc

J0 ·
∂A

∂t
dΩ =

∫
Ωc

t0 ·
∂(curlA)

∂t
dΩ− ∂

∂t

∫
∂Ωc

(A× t0) · n dΓ. (5.7)

Let the support of the function t0, Ω0 be selected such that it contains the conducting
domain, Ωc entirely, so that a closed path around the conductor runs within Ω0. Let
the choice of the function t0 be made such that its tangential component vanishes on
∂Ω0 and it satisfies J0 = curlt0 within Ω0. In this way, by expanding the surface
integral to the far boundary Γ0, it vanishes.

u0 =

∫
Ωc

J0 · E dΩ +

∫
Ω0

t0 ·
∂B

∂t
dΩ. (5.8)
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The above relation can be generalized for a conducting domain with multiple electrodes
and perforated conducting domain. For each of the external circuits, the above relation
will hold, so

ui =

∫
Ωc

Ji0 · E dΩ +

∫
Ω0

ti0 ·
∂B

∂t
dΩ, (5.9)

where superscript i stands for the ith source.
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5.2. Boundary value problem

Faraday’s law (2.3) and the divergence free property of the magnetic flux density, B
(2.4) constitute the differential equations for the potentials.

curl

(
ρ

n∑
i=1

iicurlti0

)
+ curl

(
ρcurlT̃

)
+
∂

∂t

(
µ

n∑
i=1

iiti0 + µT̃− µgradΦ

)
= 0 in Ωc, (5.10)

∂

∂t
div

(
µ

n∑
i=1

iiti0 + µT̃− µgradΦ

)
= 0 in Ωc, (5.11)

∂

∂t
div

(
µ

n∑
i=1

iiti0 − µgradΦ

)
= 0 in Ωn. (5.12)

whereas ρ is the resistivity and µ the permeability.
Boundary and interface conditions of the problem obtained in terms of potential

functions, using (2.5) and (2.8), are

ρcurlT× n = 0, µ

(
n∑
i=1

iiti0 + T̃− gradΦ

)
on ΓiE and Γ0

E , (5.13)

µ

(
n∑
i=1

iiti0 − gradΦ

)
· n = 0 on ΓB, (5.14)

nc × T̃ = 0, nc × ti0 = nn × ti0, nc ·

(
µ

n∑
i=1

iiti0 + µT̃− µgradΦ

)

+nn ·

(
µ

n∑
i=1

iiti0 − µgradΦ

)
= 0 on Γcn, (5.15)

5.3. Galerkin equations

The potentials are approximated as

T ≈ Th =
n∑
i=1

iiti0 +

n1∑
k=0

TkNk,

Φ ≈ Φh =

n2∑
k=0

ΦkNk (5.16)
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where n1 is the number of edges in the conducting domain and n2 the number of nodes
in the whole domain..

The operator equation (5.10) is weighted with the functions Nk and also with the
functions ti0 . The equations (5.11) and (5.12) are weighted with Nk functions. The
resulting Galerkin equations are:

∫
Ωc

curlNk · ρcurlTh dΩ +
∂

∂t

[∫
Ωc

Nk · µTh dΩ−
∫

Ωc

Nk · µgradΦh dΩ

]
= 0 (5.17)

∫
Ωc

curlti0 · ρcurlTh dΩ

+
∂

∂t

[∫
Ωc

ti0 · µTh dΩ−
∫

Ωc

ti0 · µgradΦh dΩ

]
= ui i = 1, 2, · · · , n , (5.18)

∂

∂t

[
−
∫

Ω

gradNk · µTh dΩ +

∫
Ω

gradNk · µgradΦh dΩ

]
= 0 (5.19)

ui is the given voltage of the ith source, and is zero for the holes.
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A, v −A Formulation of Skin Effect Problems

with Current Excitation

In this chapter, the introduction of a new nodal basis function which is the sum of
the nodal basis functions corresponding to the nodes on each of the electrodes with
given current condition is presented. In order to extend the A, v −A formulation to
take into account the current sources, the unspecified Dirichlet boundary conditions
for the scalar potential demand a special treatment. The treatment of the incompletely
specified boundary condition for the scalar potential at the electrodes is presented and
the system of Galerkin equations is obtained.
It is also shown that the prescribed current condition is a weak global constraint in
this formulation and

6.1. Boundary value problem

The problem of Fig. 3.1 is now considered with the condition of given currents in

instead of voltages un . The Dirichlet boundary condition for the scalar potential of
(3.10) is not completely specified because of the unknown voltages of the sources.

The boundary value problem comprises the differential equations (2.19), (2.20),
(2.21) in terms of potential functions and the boundary conditions

n×A = 0, and v = unknown constant vi0 on each of the ΓiE, (6.1)

n×A = 0 and v = 0 on each of the Γ0
E, (6.2)

n×A = 0 on ΓB (6.3)

νcurlA× n = 0 on ΓHn , (6.4)
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νcurlA× n = 0 and

n · −σ ∂
∂t

(A + gradv) = 0 on ΓHc (6.5)

The prescribed current in terms of the scalar potential in (6.1) is the only essential non
homogeneous boundary condition to be satisfied on each of the source electrodes ΓiE.

6.2. Galerkin equations

The potential functions are approximated as

A ≈ Ah =

n1∑
k=1

AkNk, v ≈ vh =
n∑
i=1

v iD +

n2∑
k=1

vkNk, (6.6)

v iD =
∑

nodesj∈Γi
E

v ijN
i
j , (6.7)

where n1 is the number of edges in Ω excluding those on ΓiE, the far boundary, Γ0

and n2 is the number of nodes in Ωc excluding those on ΓiE. v i
D is the modified scalar

potential function corresponding to the electrode ΓiE of the ith source, through which
the total current is given and n is the number of inductors or the electrodes of the
sources in the problem with prescribed currents. Since the electrodes are equipotential
surfaces [46],

viD = vi0
∑

nodesj∈Γi
E

N i
j , (6.8)

∑
nodesj∈Γi

E

N i
j = NΓi

E
, (6.9)

viD = vi0NΓi
E
, (6.10)

The function NΓi
E

is the new basis function that is further used as weighting function
to complete the formulation for the given current condition. The function NΓi

E
has its

support limited to the elements which include at least one of the nodes on ΓiE, that is
only to a single layer adjacent to ΓiE. As an example, an inductor is shown in Fig. 6.1
in which the support of this new function is shown. The function NΓi

E
is equal to 1 on

ΓiE, i.e. it corresponds to the source of a unit modified potential on ΓiE.

Two sets of Galerkin finite element equations (3.16) and (3.17) describe the A, v−A
formulation for problems with given voltages. Another set is now needed to complete
the formulation, due to addition of the n unknown voltages.
Since the boundary condition on the electrode with prescribed current condition, ΓiE
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Electrode
ΓEi

Domain with NΓEi= 0

Support of NΓEi

Figure 6.1 Support of NΓi
E

in a massive rectangular Conductor/inductor.

introduces an additional unknown vi0, the unknown constant value of the scalar po-
tential on ΓiE, an additional equation for each electrode is required to complete the
equation system.

Furthermore, the surface integral relation∫
Γi
E

σ(
∂A

∂t
+ grad

∂v

∂t
) · n dΓ = ii, (6.11)

is to be satisfied for each of the electrodes ΓiE through which the total current is pre-
scribed.

The function NΓi
E

is used as the weighting function along with the potentials ap-
proximations (6.6) and (6.7) for divJ = 0 to write the required additional equation
as ∫

Ωc

NΓi
E

[−divσ ∂
∂t

(Ah + gradvh)] dΩ

+

∫
Γcn

NΓi
E

[σ
∂

∂t
n · (Ah + gradvh)] dΓ = 0. (6.12)

By using the vector identity, f divF = div(fF)− F · grad f , with F and f any vector
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and any scalar function respectively, and Gauss law it becomes∫
Ωc

gradNΓi
E
· σ ∂
∂t

(Ah + gradvn)] dΩ

−
∮

Γcn+Γi
E+Γ0

E

NΓi
E

[σ
∂

∂t
n · (Ah + gradvh)] dΓ

+

∫
Γcn

NΓi
E

[σ
∂

∂t
n · (Ah + gradvh)] dΓ = 0. (6.13)

The surface integrals on Γcn cancel out, on Γ0
E it is zero because NΓi

E
is zero there, and,

since NΓi
E

is 1 on ΓiE, ∫
Ωc

gradNΓi
E
.σ
∂

∂t
(An + gradvn)] dΩ

−
∫

Γi
E

[σ
∂

∂t
n · (An + gradvn)] dΓ = 0. (6.14)

Using (6.11), the additional set of equations is written as∫
Ωc

gradNΓi
E
.σ
∂

∂t
(Ah + gradvh) dΩ = ii, i = 1, 2, ..., n . (6.15)

Therefore the complete set of Galerkin equations for the A, v −A formulation of skin
effect problems with current excitation consists of (3.16), (3.17) and (6.15). The system
of equations is singular but symmetric with n1 + n2 + n degrees of freedom and the
same number of equations.

6.3. Weak global constraint for the A, v −A

formulation

The total current is the flux type quantity which is only weakly conserved in the
magnetic vector potential formulation [47]. Therefore, the total current flowing in a
conductor is only expressed in a weak sense. It is coupled with the field quantities
through Ampere law which is itself expressed in the weak form. The current ii through
any cross section of the inductor is defined by (6.11). It becomes apparent by using
NΓi

E
as the weighting function in the weak formulation of divJ = 0. The same approach

is adopted in the last section to obtain Galerkin equations.



Chapter7
Transient Skin Effect Problems

The motivation of this chapter is to present the extension of the new feature of the
A, v−A formulation to transient skin effect problems as well. The techniques already
developed for the linear and nonlinear transient problems at the Institute for Funda-
mentals and Theory in Electrical Engineering (IGTE) were used for this work.
The formulations presented in the preceding chapters result in a system of ordinary
differential equations which has to be solved, in the general case of transient prob-
lems, in the time domain [48]. The general form of these equations showing the time
dependence explicitly is

S(t)x(t) + M
dx(t)

dt
= f(t), (7.1)

for the A, v −A formulation and

Sx(t) +
d

dt
(M(t)x(t)) = f(t), (7.2)

for the T,Φ− Φ formulation.

The vector x(t) is the vector of unknown potentials and f(t) correspond to the given
forcing term. The system matrices S(t) and M(t) are, in case of nonlinear problems,
time dependent because of their dependence on the solution vector x(t) depending on
the potential formulations employed. The stiffness matrix S(t) is a function of ν in the
A, v −A formulation which depends on the potentials. In contrast, it is a function of
ρ in the T,Φ − Φ formulation which does not depend on the solution vector. On the
other hand, the mass matrix M(t) is a function of µ in the T,Φ−Φ formulation which
depends on the potentials. In contrast, it is a function of σ in the A, v−A formulation
which does not depend on the solution vector.

The above system of equations is to be solved by time stepping method in general
and in special periodic case the stepping through several periods can be avoided.
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7.1. General excitation

If the excitations are non-periodic the only option to solve the resultant system of
Galerkin equation is to use the time stepping technique, the so called brute force
method. This technique is also necessary if the transient solution is required. The time
stepping technique is applicable to linear as well as nonlinear problems. The unknowns
of the equations are sought at discrete time instants tk(1, 2, · · · , N)

tk =
k∑
i=1

∆ti, (k = 1, 2, · · · ). (7.3)

∆ti is the length of the ith time step.
Let the time interval be chosen so small that the variation of the time dependent

quantities x(t) and f(t) can be assumed to be linear. In Fig. 7.1, the linear interpolation
of x(t), which is a component of x(t), is shown between two consecutive time instants.
The function x(t) is interpolated for t ∈ [tk−1, tk] as

x(τ) = xk−1 +
τ

∆t
(xk − xk−1) , (7.4)

where

τ = t− tk−1 (7.5)

whereas ẋ is approximated between the two time instants as

ẋ =
1

∆t
(xk − xk−1) . (7.6)

Setting x and ẋ, from (7.4) and (7.6) respectively, in (7.1) or (7.2) and weighting it
with an arbitrary weighting function w results in the system of equations

∫ ∆t

0

(Sx(τ) + Mẋ(τ)− f(τ))w dτ = 0, (7.7)

where w is some weighting function. This results in each time dependent quantity f(t)
not differentiated with respect to time being replaced by

f(t) = Θfk + (1−Θ)fk−1, (7.8)

and the time derivative by

ḟ =
1

∆t
(fk − fk−1), (7.9)

where Θ is a factor given by

Θ =
1

∆t

∫ ∆t

0
wτ dτ∫ ∆t

0
w dτ

, with Θ ∈ [0, 1]. (7.10)
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Figure 7.1 Linear interpolation of a time function x(t).

Some special values of Θ results in the following specific methods [49]:

Θ = 0: forward Euler method,
Θ = 1: backward Euler method,
Θ = 1/2: Crank-Nicholson method,
Θ = 2/3: Galerkin method.

Using (7.8) and (7.9), (7.1) can be written as(
ΘSk +

1

∆t
M

)
xk +

(
(1−Θ) Sk−1 −

1

∆t
M

)
xk−1 = Θfk + (1−Θ) fk−1. (7.11)
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The equation (7.2) becomes(
ΘS +

1

∆t
Mk

)
xk +

(
(1−Θ) S− 1

∆t
Mk

)
xk−1 = Θfk + (1−Θ) fk−1. (7.12)

The solution of the systems of equations (7.11) and 7.12 is straightforward, i.e. start-
ing with an initial solution x0, the unknown vector x1 is obtained. Knowing x1, x2

can be obtained. In general, xk is obtained with xk−1 given. The choice of the initial
solution x0 = 0 is always available to start the time stepping procedure. So with the
time stepping method, the system of equations (7.1) and (7.2) is reduced to systems
of algebraic equations in the time domain analysis [50] [51].

The time discretized equation system for both potential formulations can be written
as

S̄kxk + M̄k−1xk−1 = f̄k,k−1, for k = 1, 2, · · · , N , (7.13)

with the system matrices

S̄k = ΘSk +
1

∆t
Mk, (7.14)

M̄k−1 = −
(

(1−Θ) Sk−1 +
1

∆t
Mk−1

)
, (7.15)

and the forcing function term

f̄k,k−1 = Θbk + (1−Θ) fk−1, (7.16)

where Sk and Mk are as given in (7.1) and (7.2). The index k stands for the kth

time step and also shows the nonlinear dependence of the system matrices on the
ferromagnetic material properties. If n is the number of degrees of freedom (DoF) in
the finite element mesh, a nonlinear equation system with n.N unknowns has to be
solved. Starting with an initial solution x0, in every time step k the equation system
(7.13) is to be solved.

7.2. Time periodic excitation

For the special time periodic case and an equal interval time step, ∆t is given as

∆t =
T

N
, (7.17)

where T is the time period and N the number of time steps within one time period.
After the transients decay, the steady state solution is periodic with the same period T
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as that of the harmonic excitation [52]. The following periodicity condition holds for
the potentials obtained with the computation:

x(t) = x(t+ T ). (7.18)

The above relation is true for every component of the unknown vector x. A typical
periodically varying component of x is shown in Fig. 7.2. Let the periodicity condition
(7.18) be achieved after a minimum time ts then

ts = pT, (7.19)

where p is the number of periods to be computed to obtain the steady state solu-
tion. The total number of time steps to obtain the steady state solution is then
n = 1, 2, · · · , N.p where N is the number of time steps within one period. If ho-
mogeneous initial conditions x = 0 are given, it is necessary to compute over p periods
until (7.18) is satisfied approximately. The transient skin effect problem with periodic

t

ƒ(t)

.......

t0
tN

tkt2t1

T/2

.......

ƒ(t)= −ƒ(t+T/2)

Figure 7.2 General time harmonic potential function f(t) after steady state.

excitation can be efficiently solved in the time domain by stepping through only one
period by enforcing the periodicity condition. In the frequency domain, the harmonic
balance method can also be used to solve such problems efficiently. Both methods are
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briefly described here. The current prescription condition, in the A, v−A formulation,
is implemented in the software environment (EleFAnT 3D) for the linear and nonlinear
transient skin effect problems.

7.2.1. Linear case

Since the vector of the forcing function is time periodic with a period T there exists a
periodic steady-steady state solution satisfying the periodicity condition x(0) = x(T ).
N coupled linear equation systems are obtained as a result of the time discretization
of (7.1) within one period with a constant time step ∆t = T/N

Axk + Bxk−1 = fk for k = 1, 2, · · · , N , (7.20)

where A and B are linear combinations of the matrices S and M, fk is a linear com-
bination of the known vectors f(k∆t) and f((k − 1)∆t) and xk = x(k∆t) is the vector
of unknowns at the kth time step. To obtain the steady-state solution the periodicity
condition, x0 = xN , is enforced. Block-diagonalization can be applied after arranging
the solution xk and right hand side vectors for N time instants within a period [53].
With the use of discrete Fourier transform N/2 linear systems are required to be solved.
Time domain steady state solution is obtained by the inverse Fourier transformation.

Another option to solve the linear problem is the application of harmonic balance
method in the frequency domain [54]. The differential equation (7.1) can be trans-
formed into the frequency domain by writing

x(t) = Re{Xejωt}, f(t) = Re{Fejωt} (7.21)

where ω is the angular frequency and j represents the imaginary unit. Using the above
relation, (7.1) can be written in the complex form as:

(S + jωM) ·X = F (7.22)

7.2.2. Nonlinear case

The case of the A, v−A formulation is considered here. As in the nonlinear problem the
relation between the magnetic field intensity, H and the flux density B is nonlinear, the
matrix S in (7.1) and, hence, the matrices A and B in (7.20) depend on xk, therefore
the Fourier block-diagonalization presented in the previous section is not possible. In
this case, the magnetic field intensity can be decomposed in linear and nonlinear parts
as

H = νFPB−MFP (7.23)

where νFP is an appropriate reluctivity independent of B and MFP is a field depen-
dent magnetization-like quantity. Starting with an arbitrary MFP , it is updated at
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each iteration step. The value of the so called fixed point reluctivity νFP is chosen for
the better rate of convergence of the method [55].

The choice of a fixed value of νFP at every time step makes the matrices A and
B unaltered for all values of k, so the block-diagonalization of the previous section
becomes applicable at every nonlinear iteration step. In contrast, the right hand side
becomes dependent on the problem variables, which can be easily managed with the
use of iterative approach. It can be determined using the previous time step solution
in (7.23).

The fixed point method [56] together with the harmonic balance method allows the
linearization of the finite element Galerkin equations. The equations for each harmonic
are decoupled in this way.

Using (7.23) in (7.1), S and M become independent of x, but the right hand side f
will depend on the unknowns:

S̃ x(t) + M̃ ẋ(t) = f̃(x, t). (7.24)

where f̃(x, t) contains the excitation and a term which corresponds to MFP [54]. Be-
cause MFP is a function of B therefore right hand side of (7.24) depends on x. Solving

(7.24) iteratively, the vector f̃ in an iteration step is determined from the solution x of

the previous step using (7.23). Once f̃ is determined, the vector depends on time only.
So (7.24) transforms into the same form as that of (7.1):

S̃ x(t) + M̃ ẋ(t) = g̃(t). (7.25)

The vectors x and g̃ are approximated as complex Fourier-series with N harmonics:

x(t) ∼= Re

{
X0 +

N∑
n=1

Xne
jnω0t

}
,

g̃(t) ∼= Re

{
G̃0 +

N∑
n=1

G̃ne
jnω0t

}
(7.26)

where ω0 is the angular frequency of the excitation. X0 and G̃0 are the DC-components
and Xn and G̃n are the complex amplitudes at frequency nω0. The approximations of
x and g̃ together with (7.25) lead to N + 1 linear decoupled equation systems:

S̃X0 = G̃0,
(
S̃ + jnω0M̃

)
·Xn = G̃n, n = 1, 2, · · · , N. (7.27)

The amplitudes are calculated from the time signals by the so called Discrete Fourier
Transform (DFT):

G̃0 =
1

M

M−1∑
k=0

g̃(k∆t), G̃n =
2

M

M−1∑
k=0

g̃(k∆t)e−j
2Π/M

n
k, n = 1, 2, · · · ,M − 1, (7.28)

where M is the number of time values for g̃ and ∆t is the time step.



Chapter8
Applications and Results

The validation of the newly developed technique, the A, v −A formulation with cur-
rent prescription condition, is carried out by selecting some problems in the frequency
domain, which are also solvable with the other techniques presented in chapters 3 − 5 .
Afterwards an industrial application is shown by presenting the analysis results of an
induction machine problem. The extension of the method to the transient case is ver-
ified with its application to the steady state problem already solved in the frequency
domain.

8.1. A multi turn reactor coil problem

A square (2400 mm) coil of copper (µ = µ0, σ = 5.7× 107 S/m) rectangular conductor
(300mm x 60mm) reactor arrangement consisting of twenty turns is studied. The
gap between each turn is 20 mm while the distance of the first conductor above the
symmetry plane is 150 mm.

A sinusoidal (f = 50Hz) current of 100,000 amperes is given through each of the
electrodes on the xz plane, while electrodes on the other end are the reference electrodes
with zero scalar potential on each of them.
Due to the time varying magnetic field, an electric field is induced in the coil conductor
resulting in a typical skin effect problem. The problem has been analyzed both by the
A, v − A and the T,Φ − Φ formulation on the same grid. Forces acting on each of
the turns of the winding are determined and also the inductance of the arrangement is
computed.

8.1.1. Model of one eighth Problem

Only one eighth of the problem is sufficient to be modeled due to symmetry. The
geometry of the problem is defined starting with an initial grid. The rectangular grid
elements are so called macro elements which are further divided into finite elements
by specifying the subdivisions. Material properties are also defined at macro element
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Figure 8.1 Top view of the coil and its dimensions

level. The model of this problem consists of 1078 macro elements, as shown in Fig.
8.2 with three symmetry planes passing through the origin and three far boundaries
at distance of 10 meters from the problem origin. The model structure is subdivided
into finite elements keeping in mind the problem symmetry and expected skin effect.
A relatively finer mesh is used for the outer surfaces of the conductors. The finite
element discretization resulting in 96,775 second order hexahedral elements is shown
in Fig. 8.3.The same mesh is used for both the formulations.
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Figure 8.2 Macro element structure
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Figure 8.3 Finite element mesh.
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8.1.2. Comparison of results

The resulting system of algebraic equations has been solved by the conjugate gradient
(CG) technique. The current has been prescribed in the A, v−A version by setting the
scalar potential to an unknown constant value on each of the electrodes shown shaded
in Fig. 8.3. In the T,Φ − Φ approach, T0 has been chosen as the Biot-Savart field
of the filamentary current carrying conductors through the middle of each rectangular
conductor in the air region, whereas a static current flow problem is first solved in
the conducting domain. The current density obtained as solution of the static current
flow problem along with the assumed current filaments is shown in Fig. 8.4. The

Figure 8.4 Absolute value of the temporary current density distribution obtained by solving a
current flow problem for T,Φ−Φ technique, showing the current filaments through
the conductors

current distribution is almost uniform except at the sharp edges as a result of the
static current flow. The current density peak can be observed at the inner corner of
the top conductor. The current density distribution results of the skin effect problem
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obtained with both of the formulations are shown in 8.5 and 8.6. In the skin effect
problem, the density peak is about 20 times higher.

Figure 8.5 Absolute value of the current density distribution with A, v −A technique

Figure 8.6 Absolute value of the current density distribution with T,Φ− Φ technique
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Cond. A, v −A T,Φ − Φ

No. Force-X Force-Z Force-X Force-Z

(kN) (kN) (kN) (kN)

1 41.67 44.01 42.07 45.01

2 29.35 13.15 29.84 13.75

3 28.71 3.10 29.19 3.39

4 28.51 −6.26 28.99 −6.24

5 28.23 −15.38 28.71 −15.60

6 27.78 −24.62 28.27 −25.09

7 27.23 −34.30 27.71 −35.02

8 26.76 −44.55 27.24 −45.54

9 27.20 −54.90 27.72 −56.17

10 42.64 −79.64 43.12 −80.82

Method Energy (Joules) Inductance (µH)

A, v −A 346257.59 277.01

T,Φ − Φ 345393.60 276.31

Table 8.1 Comparison of forces on the conductors, energy and inductance of the arrangement
[2]

In Table 8.1, two of the three components of the forces acting on each of the turn,
computed with both formulations, are compared. The forces in the x and y directions
are of equal magnitude as is obvious from the problem symmetry. The electromagnetic
energy and the inductance of the arrangement computed with both the techniques is
also given in Table 8.1. This shows a good agreement.

Table 8.2 characterizes the computational resources. It is evident from the results
that the T,Φ−Φ approach is more efficient as far as computational time is concerned.
One reason is also shown in the table that the number of degrees of freedom are less in
this approach due to the definition of the scalar potential in the whole problem domain.
On the other hand the magnetic vector potential is defined in the whole problem region
in the A, v −A approach. Hence, due to the smaller problem size the solution time is
lower in the T,Φ− Φ approach. But on the other hand, the additional resources such
as considering the current filaments and solving the static current flow problem are
required in this approach. The above problem is more evident when the conducting
domain in the skin effect problem is multiply connected. The computational time for
the impressed field is also restrictive when there is a large number of conductors with
given currents involved in the problem.
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Method No. of DoF. No. of CG it. CPU time(seconds)

A, v −A 1187998 9126 11975

T,Φ− Φ 525368 1719 876

Table 8.2 Comparison of computational data and results [2]

Figure 8.7 Absolute value of the maximum current density distribution with voltage prescrip-
tion condition A, v −A technique

8.1.3. Validation of results

Although the comparison of the results obtained with both the approaches validates
the new technique developed, another reverse approach is also used to reinforce the val-
idation argument. The voltage across the conductors is obtained in terms of the scalar
potential in the A, v −A formulation when the problem is solved with given current
condition. These voltages are given in Table 8.3, with the numbering of inductors from
bottom to top.

The so obtained potential values are then specified to solve the problem with the
voltage prescription condition, which validates the results obtained by the given current
condition of the same formulation. This result is presented in Fig. 8.7 which is similar
to that in Fig. 8.5.
To observe the skin effect behaviour inside the conductor line graphs for the total
current density are shown for both the techniques in Fig. 8.8 and Fig. 8.9. It is
apparent that the current density is maximum on the inner side of the conductor
which is due to the skin effect as well as in accordance with Ohm’s law. However, the
higher current density on the outer surface of the conductor as compared to the inner
part is solely due to the skin effect.
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No. of inductor Voltage (Re) Voltage (Im)

1 4.48 224.09

2 5.51 227.36

3 6.08 228.81

4 6.26 228.48

5 6.07 226.43

6 5.54 222.67

7 4.64 217.18

8 3.31 209.90

9 1.46 200.79

10 −1.03 189.88

Table 8.3 Voltages across inductors.

Figure 8.8 Skin effect shown for the bottom conductor at 55mm depth along the line of width
A, v −A technique
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Figure 8.9 Skin effect shown for the bottom conductor at 55mm depth along the line of width
T,Φ− Φ technique
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8.2. Higher harmonic losses in an asynchronous
machine

The reduction of the total loss of electrical machines is one of the most important re-
search goals in machine design. The aim of this work has been to evaluate the copper
loss in the short circuit ring using three dimensional (3D) finite element analysis (FEA).
The stator winding is supplied with 3-phase supply at 50 Hz. The induced current in
the rotor bars has a nonuniform distribution due to skin effect. The current density
distribution and the resulting copper loss in the bars and the end ring are determined
in this analysis.

This problem is solved using the A, v − A formulation with prescribing the total
current through the bars as presented in chapter 6. It is not possible to attempt this
analysis with the T,Φ − Φ formulation because of the large number of inductors in-
volved and the complex geometry of the problem conducting domain.
The subject of this work is to compute the additional losses in the rotor squirrel cage
under open-circuit conditions. The end region of a 2.5 MW, 14 poles IM with 84 sta-
tor slots and 112 rotor bars is modeled for the higher harmonic losses in the end region.

Since the losses in the rotor bars can be evaluated using two dimensional (2D) finite
element analysis, the comparison of the two analyses was also carried out. The losses
that arise in the short circuit ring, can not be estimated by a 2D analysis. The main
purpose of the 3D analysis was to determine the eddy current losses which occur at
several harmonics in the end ring to which the rotor bars are connected.

8.2.1. 3D model of the motor end region

A 3D model of the end region of the machine is built using ANSYS [57]. A nonuniform
mesh is required to take account of the skin effect in the conducting domain. The 2D
model is built first and the FE mesh is generated taking into account the skin depth of
the conducting material at higher frequencies. A portion of the 2D model is shown in
Fig. 8.10, which is extruded into the 3rd dimension afterwards. A length of 30cm on
both sides of the end ring, i.e. on bars side and on the end air region, is modeled. The
complete model consists of 314730 hexahedral elements. A portion of the 3D model
and its mesh are shown in Fig. 8.11. The model was built to take into account the
stator excitation and definition of the properties of stator and rotor iron, so that it was
possible to study the effects of different parameters.
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Figure 8.10 2D model of the motor and mesh
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Figure 8.11 Portion of the motor 3D model and mesh
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8.2.2. Computation of rotor currents

A 2D numerical simulation using a single component magnetic vector potential and
with motion of the rotor taken into consideration in order to evaluate the copper losses
in the rotor slots was performed. As a result of this transient analysis, the rotor
currents have become available which are required to be prescribed for different higher
harmonics in the 3D analysis. The rotor movement has been realized in the 2D transient
computation using a time-stepping procedure where the geometry modification due to
rotor rotation in every time-step has been considered by linear interpolation along the
sliding interface in the air-gap [58]. The time increment between the transient steps
has been small enough to take the stator slot’s harmonics into consideration:

ν = p+ gN1 with g = ±1,±2, · · · (8.1)

where ν denotes the spatial harmonic order, p stands for the number of stator pole pairs
(p = 7) and N1 for the number of stator slots (N1 = 84). These spatial harmonics of
the stator field induce the rotor currents with the rotor frequency

fRν =

[
fSν
f1

− (1− s) ν
p

]
f1 (8.2)

where fSν denotes the frequency of the spatial field wave in the stator coordinate sys-
tem, s is the slip (s = 0) and f1 stands for the nominal frequency of 50Hz. Hence,
dominating rotor currents of frequencies of 300Hz, 600Hz, 1200Hz and higher are to
be expected. In order to discretize the current period of a frequency of 1200Hz by
more than 10 samples, a time-step of 50µs has been employed.

Figure 8.12 Flowchart of the proposed procedure. [1]

Using the procedure of Fig. 8.12, the losses in the rotor bars have been evaluated.
The losses that arise in the short circuit ring, through which the rotor conductors are
connected, can not be estimated by a 2D analysis. In order to evaluate these losses, a
3D FE simulation is required. Since a transient 3D analysis with the included motion
would require an enormous amount of calculation time, the simulation has been carried
out in the frequency domain. Separate simulations for the three prominent harmonics
have been carried out. The model has been linearized and the superposition principle
has been applied to determine the higher harmonic losses cumulatively.
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Figure 8.13 Current in the rotor bar obtained by transient 2-D FE analysis. [1]
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8.2.3. 3D analysis

By analyzing the harmonic content of the currents obtained by 2D simulation, the
individual rotor current harmonics have been separately prescribed in the 3D analysis.
The 3D simulation has been carried out using the A, v−A formulation in the frequency
domain. The detail of the new feature of this formulation has been given in chapter 6.

8.2.3.1. Boundary conditions

Boundary conditions for the problem were specified at the bounding surfaces of the
outer elements of the model. There is neither a far boundary nor a magnetic symmetry
plane. Only one electric symmetry plane is present where a non homogeneous bound-
ary condition for the electrodes with the given current condition is present. In this
model, the normal component of the magnetic flux density is assumed to vanish on the
round surface, i.e. around the stator iron and end air region. Therefore the tangential
component of the magnetic vector potential is zero there. Furthermore, at the end of
the end air region the similar condition is applicable. The number of electrodes with
the given current condition are 112 in this problem. For each harmonic analysis the
currents to be prescribed have been obtained as shown earlier. Each harmonic present
in the currents obtained by 2D transient analysis has been prescribed to one 3D model.
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Figure 8.14 Current density distribution in the portion of the end-ring at 600Hz [1]
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Type of the analysis Calculated losses

3D Harmonic analysis at 300 Hz (first winding field) 0.6%

3D Harmonic analysis at 600 Hz (first stator slot harmonic) 96.8%

3D Harmonic analysis at 1200 Hz (second stator slot harmonic) 0.8%

Sum of all losses obtained by 3D harmonic analysis 98.2%

Transient analysis (2D) 100%

Table 8.4 Comparison of the losses in rotor bars obtained by 2D transient and by 3D harmonic
analysis [1].

8.2.3.2. Results

The current density distribution obtained in the analysis is shown in a portion of the
end-ring and connecting rotor bars in Fig. 8.14. It can be observed that a peak occurs
in the rotor bar. The portion of the bars that is outside the rotor iron has a remarkably
low current density. The current density field is even more uniform in the end-ring. It
can be anticipated that more copper losses occur in the bars as compared to the short
circuit ring.

As seen from Table 8.4, using this proposed procedure, the losses in the rotor slots
obtained by transient 2D analysis and losses obtained by harmonic 3D analysis are
in good agreement. Based on these results the assumption can be made that the su-
perposition principle is an acceptable method in order to reduce the computation time.

Excess rotor copper losses in the rotor end-ring have been computed using a gen-
eralized A, v −A formulation and the superposition principle for higher harmonics of
the rotor current. It has been shown that, using this proposed numerical procedure,
the excess rotor copper losses can be evaluated in the frequency instead of in the time
domain. For each frequency of the rotor current, an equation system of 14 millions
unknowns has been solved. The solving procedure carried out in the single core of a
2.8GHz personal computer with 36 GB RAM took approximately 3 days. It has been
proven that excess rotor copper losses in the rotor bars can present a very prominent
loss component. These parasitic effects can only be reduced by altering the stator slot
number or by redesigning the rotor slot geometry. On the other hand, based on the
results of this research, the conclusion can be drawn that the copper losses in the rotor
end-ring are much smaller compared to rotor bars and do not provoke considerable
heating of the induction machine.

Table 8.4 shows the losses in the rotor bars computed at the three important harmon-
ics in 3D analysis and those obtained through 2D transient analysis. It is interesting
to note that the losses computed in the rotor bars are higher as a result of 2D analysis
than those obtained in the 3D one. The reason is that 2D transient analysis take ac-
count all higher harmonics whereas in 3D analysis losses due to selected harmonics are
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computed only. Another reason is taking account of the nonlinearity which is neglected
in 3D computation. A linear ferromagnetic material is considered (µ = 1000) for all
computations.

8.2.3.3. Leakage inductance approximation of the end ring

The inductance plays an important role in the characterization of magnetic devices such
as motors. In the foregoing analysis of the induction motor, the leakage inductance
of the end ring is approximated using the magnetic energy in the end region. The
relationship

W =
n∑
i=1

1

2

(
LERI

2
ER

)
(8.3)

is used for this computation, where LER is the leakage inductance of the portion of the
end ring between two bars and n the number of rotor bars. IER is the current in the
end-ring which is obtained through the 3D analysis by integrating the current density
field at a cross section of the end-ring between the two bars.
Inductance with the axisymmetric 2D model shown in the Fig. 8.15 is also computed
for the comparison purpose. The two results are in good agreement.

Figure 8.15 Axi-symmetric 2D model of the end-ring
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8.3. Transient analysis of the multi turn reactor coil
problem

The problem of section 8.1 has been studied for its transient behaviour with prescribed
sinusoidal current at 50 Hz frequency. The motivation behind the choice of the above
problem was to verify the implementation of the given current feature of the A, v−A
formulation for transient skin effect problems. Since the frequency domain analysis
results are already available, the verification goal is economically achieved. The new
feature is validated only for linear problems, although it is implemented for nonlinear
problems too.

The problem is solved with three approaches, first with the time stepping method,
second in the discrete frequency domain by the backward Euler method using constant
time step, and third with the harmonic balance method in the frequency domain.

8.3.1. Time stepping

The time stepping solution takes a long time due to the large time constant of the
equivalent circuit of the inductor arrangement. In fact, it was expected beforehand
that the solution time will be long to obtain the steady state solution with the time
stepping procedure. On the basis of the post processing results of the problem solution
in the frequency domain the estimated time constant of the reactor arrangement is
0.1636 s. The time to reach the steady state is usually five times the time constant.
This means that, for the excitation of the 50 Hz, the expected steady state solution
will be available after stepping through 41 periods. The transient results of the reactor
arrangement problem, which can be represented as an equivalent RL circuit, verified
this behaviour afterwards. The current density distribution at the specific time instants
are shown in Figs. 8.16, 8.17 and 8.18. A time step of 2 ms was chosen for the first
30 periods and 1 ms for stepping though the last 14 periods. After stepping through
about 40 cycles the periodicity condition is satisfied approximately.

Figure 8.16 Current density field peak value in the top conductor at time 2 ms
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Figure 8.17 Current density field peak value in the top conductor at time 482 ms

Figure 8.18 Current density field peak value in the top conductor at time 862 ms

8.3.2. Harmonic solution in the time domain

Since the prescribed current is time harmonic, the time stepping is not necessary when
we are interested in the steady state solution of the transient skin effect problem only.
Enforcing the periodicity condition and using the discrete Fourier transform the solu-
tion is obtained by stepping through one period.
It can be observed that with the use of fine time step the steady state solution is more
close to the solution obtained in the frequency domain analysis as in section 8.1. The
current density peak occurs in the top most conductor, therefore the results are shown
for three different time discretizations, i.e. 36, 60 and 200 time steps in one period.

The current density distribution is shown in Figs. 8.19, 8.20 and 8.21 for the cor-
responding time instant of 0.002 sec or 0.012 sec which may be compared with the
solution in the time harmonic case shown in Fig. 8.5 which occurs at an electrical
angle of 127◦.
The steady state solution was achieved in about 35 days using the time stepping tech-
nique for this problem, whereas the discrete frequency approach took only 6.5hours
with 200 time steps in one period on the same machine.
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Figure 8.19 Current density field peak value (occur at 0.002s) in the discrete frequency anal-
ysis with 36 time steps

Figure 8.20 Current density field peak value (occur at 0.002s) in the discrete frequency anal-
ysis with 60 time steps

8.3.3. Harmonic solution in the frequency domain

Since the problem is linear, the higher harmonics are not expected in the solution. The
current prescribed condition is given for the 50Hz excitation at the electrodes and 36
discrete time steps are defined using the harmonic balance scheme. The problem is
solved in 9172 Conjugate Gradient iterations. The current density plot is shown in Fg.
8.22
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Figure 8.21 Current density field peak value (occur at 0.002s) in the discrete frequency anal-
ysis with 200 time steps

Figure 8.22 Current density field peak value (occur at 0.017s) in the harmonic balance method



Chapter9
Conclusion

In this work, the emphasis was put on the treatment and incorporation of the current
prescription condition in the A, v−A potential formulation for the skin effect problem.
After presenting a brief literature review of finite element techniques developed for this
class of problems, the Galerkin method was explained with reference to the two specific
formulations. Next, focus was made to compare two dual formulations, the A, v −A
and the T,Φ− Φ for both the voltage and the current prescription conditions.

It was shown that the voltage prescription condition is a strong global constraint for
the magnetic vector potential formulation. The given voltage condition is satisfied by
enforcing the corresponding scalar potential value on the respective electrodes as an
essential boundary condition.

In contrast, the current prescription condition is a strong global constraint for the
current vector potential formulation. It is satisfied through the introduction of the
impressed field function which represent the Biot-Savart field in the eddy current free
domain, whereas in the conducting domain, its curl represents an arbitrary current den-
sity distribution and is defined by the solution of the stationary current flow problem.
The tangential component of the impressed field function is set equal to the tangential
component of the Biot-Savart filed on the interface of the conducting and nonconduct-
ing domains. Consequently, the given current condition is satisfied for the skin effect
problem. The computational requirements of the impressed field function limits this
formulation to skin effect problems with low number of inductors. The necessity to
take account of the multiply connected conducting domain is also a limitation of this
formulation.

In the T,Φ−Φ formulation voltage sources require the introduction of a source field
function. The computation of the Biot-Savart field and the solution of the stationary
current flow problems are also prerequisites to solve the skin effect problem with a
general multiply connected conducting domain.
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In the A, v −A formulation, the given current condition of the skin effect problem
is treated as a periodic boundary condition to be satisfied essentially.

General time dependent skin effect problems with given current condition are solved
with time stepping technique. The prescribed current is discretized and incorporated
for the additional equations arising in case of A, v−A formulation. The special case of
time periodic excitation is dealt with both in frequency domain, with harmonic balance
method, and in discrete frequency domain, with backward Euler method with constant
time step.

Industrial applications have been included to show the capabilities as well as the
merits and demerits of both the formulations in different special situations, after pre-
senting relatively simple problems solved with both the formulations for comparison of
computational effort. It has been shown that the T,Φ − Φ formulation is preferable
for the current prescription condition due to its advantage of less computational time,
and, hence a lower number of resulting degrees of freedom, when the problem domain
is simply connected (or at least with low number of holes) or with a small number of
inductors. On the other hand, when there is a large number of inductors involved with
the current prescription condition or the skin effect problem involves the prescribed
voltage condition, the A, v −A formulation is better suited.
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Appendix

A.1. Node based 3-D shape functions

Twenty second order (in each of the three variables) polynomials, N
(e)
k (ξ, η, ζ) are used

to approximate the potentials. These are called shape functions of the Serendipity class
(Horace Walpole), due to their discovery by chance and can be written in a closed form.

For Corner Nodes (ξ = ±1, η = ±1, ζ = ±1) :

N
(20)
k (ξ, η, ζ) =

1

8
(1± ξ)(1± η)(1± ζ)(±ξ ± η ± ζ − 2), k = 1, 2, · · · , 20. (A.1)

For Side middle Nodes:

N
(20)
k (ξ, η, ζ) =

1

4
(1− ξ2)(1± η)(1± ζ), ξ = 0, η = ±1, ζ = ±1, (A.2)

N
(20)
k (ξ, η, ζ) =

1

4
(1± ξ)(1− η2)(1± ζ), ξ = ±1, η = 0, ζ = ±1, (A.3)

N
(20)
k (ξ, η, ζ) =

1

4
(1± ξ)(1± η)(1− ζ2), ξ = ±1, η = ±1, ζ = 0, (A.4)

k = 1, 2, · · · , 20.

A.2. Edge based 3-D shape functions

In Fig. 1.1, the orientation of the edges of one vector finite element is shown. 12 of the
36 edges are in one coordinate direction, therefore the shape functions which are the
second order polynomials, for only ξ direction are written here. The basis functions,
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in other two directions can be obtained by cyclic interchange of the local variables, ξ,
η and ζ.

N
(36)
k (ξ, η, ζ) =

1

8
(1 + ηkη)(1 + ζkζ)(4ξkξ + ηkη + ζkζ − 1)gradξ,

k = 1, 2, · · · , 8, (A.5)

where ξk = ±1
2
, ηk = ±1 and ζk = ±1,

N
(36)
k (ξ, η, ζ) =

1

4
(1− η2)(1 + ζkζ)gradξ, k = 9, 12 ζk = ±1, (A.6)

N
(36)
k (ξ, η, ζ) =

1

4
(1 + ηkη)(1− ζ2)gradξ, k = 10, 11 ηk = ±1. (A.7)
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[9] O. B́ıró and K. R. Richter, “CAD in Electromagnetism,” P. W. Hawkes (ed),
Advances in Electronics and Electron Physics, vol. 82, pp. 1–96, 1991.



Bibliography 77
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