Markus HOFER

Monte Carlo methods in financial
mathematics

PHD THESIS
written to obtain the academic degree of a Doctor of Engineer ing

Doctoral school "Mathematics and Scientific Computing"”

TU

Grazm
Graz University of Technology

Graz University of Technology

Supervisor:
O.Univ.-Prof. Dr.phil. Robert TICHY

Department of Analysis and Computational Number Theory

Graz, September 2012



EIDESSTATTLICHE ERKLARUNG

Ich erklare an Eides statt, dass ich die vorliegende Arlmiistindig verfasst, andere als die
angegebenen Quellen/Hilfsmittel nicht benutzt, und die denutzten Quellen woértlich und
inhaltlich enthommenen Stellen als solche kenntlich gdrnlaabe.

Gz, AM e ettt e e e e e
(Unterschrift)

STATUTORY DECLARATION

| declare that | have authored this thesis independentdy, Ithave not used other than the de-
clared sources/resources, and that | have explicitely @dbak material which has been quotes
either literally or by content from the used sources.

date (signature)



Preface

Financial mathematics is at least since the publicatiorhefdelebrated results of Black and
Scholes and Merton in the 1970s a fast growing research fReddearchers and practitioners
investigate several different issues, for example riskagament, utility theory and asset pric-
ing theory, on which this thesis is mainly focused. A milestan this context is the famous
Black-Scholes model, the structure of which makes it pdsdibtreat many problems in asset
pricing theory in a mathematically simple way. In particularices of several derivatives can
be given in an explicit form. Nevertheless, investigatiomshe last years have shown that the
Black-Scholes model does not replicate all features of ¢ad market properly and therefore
several more advanced models were developed with the dcavtat closed form solutions are
rare.

By the fact that the first fundamental theorem of asset gyigmplies that the price of any
derivative is given as the discounted expected value of tigenying payoff function under a
risk neutral probability measure, we can use numericagmatéon to find the price of a derivative
if an analytic solution is not available. A disadvantagelatsic numerical integration methods,
like for example the trapezoidal rule, is that their asyrtiptoonvergence rate decreases rapidly
when the number of dimensions of the integration domaine@®es. This is not the case for
Monte Carlo (MC) and Quasi Monte Carlo (QMC) integration a&tte several asset pricing
problems involve high-dimensional integration, MC and QM€hniques are frequently applied
in practice.

The purpose of this dissertation is to analyse and improvealtDQMC methods and investigate
related topics. In the opening chapter we start with a simbrdbduction to the relevant funda-
mental facts and close with the statement of our new redultthe following three chapters
we study the basics of MC and QMC, including criteria for théfarm distribution of special
deterministic sequences and probabilistic discrepaneymd® for MC sequences. In Chapter 5
and 6 we analyse two asset pricing techniques which rely oraltCQMC and give theoretical
and numerical results which illustrate why these methodswaell applicable in practice. The
last chapter is dedicated to derivative pricing under araaded market model where analytic
solutions, even for highly complex derivatives, are stithiféable.
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Chapter 1

Introduction and statement of results

1.1 (Quasi) Monte Carlo integration in option pricing

Starting from the seminal papers of Black and Scholes [1d]Merton [78], financial math-

ematics has become a very popular and fast growing reseatdhofier the last decades. Im-
portant topics include among others risk managementfyutiieory and asset pricing theory,
on which this thesis focuses. More precisely we will maindydoncerned with the pricing of
special derivatives, so-called options.

Definition 1.1 (Option) An option is a contract that gives its owner the right, but tia obli-
gation, to buy or to sell an underlying asset at a predefinggbtand price.

Before we can define the price of such a derivative, we havegiai® some basic properties of
financial market models. A detailed introduction into finahmarket models and asset pricing
can be found for example in the book of Cont and Tankov [23].

Definition 1.2 (Stochastic process)A family of random variable$.X;).>o, indexed by time,
defined on a probability spad€?, 7, P) is called stochastic process.

Definition 1.3 (Cadlag function) A functionf : [0,7] — R? is said to be cadlag if it is right-
continuous with left limits i.e. for eache [0, T'] the limits

flt=) = Tim_ f(s) fl+) = lim_ f(s)

s—t,s<t s—t,s>t
exist andf (t) = f(t+).

In the sequel we will use the following financial market modet (S;);>0 = (S}, ..., S8) >0

be a vector of caglad stochastic processes on a probalgbiyes?, 7, P), whereS, represents

the asset price processes of the underlying assets at time let(S?),~, be defined as a cash
account with risk free interest rate It is intuitive to assume that the asset price processes are
cadlag, since this allows jumps of the asset price procdagdbhese jumps can not be foreseen
by an investor.

Note that, due to the evolution of the asset price procesisiediows that at different points in

1



CHAPTER 1. Introduction and statement of results

time there are different amounts of information availafleus the probability of occurrence of
a random event changes with time. To include this flow of imfation into our market model,
we fix P and introduce the impact of information by conditioning osacalled filtrationlF,
instead of changing the probability measiiravith time.

Definition 1.4 (Filtration) A filtration on (2, F,P) is an increasing familyf = {(F;):>0 :
YVt > s> 0,Fs C F C F} of o-algebras ofF.

A probability space(2, F,P) equipped with a filtration is called a filtered probabilityase
(Q, F,F,P). We will only use filtrations which satisfy the following # conditions called
“usual hypothesis”:

e FisP-complete
e Fy contains allP-null sets of(2
e The family (F;):>o is right continuousF; = (1, Fs

We define a portfolias = (¢°, ..., ¢%) as the amount of cash invested in each asset held by the
investor. At timet the value of such a portfolio is

d

Vi(g) =D ¢"St.

k=1

Furthermore we define a so-called trading strategy as a dgrgortfolio (¢;).c(o,r) Which is
modified at different transaction datég, = 0 < 7T} < ... < T,11 = T. In the time interval
[T;, T;+1) the current portfolio remains unchanged and it will be deddiy¢;. It is not realistic
that an investor knows these trading times in advance, nitarly he will change his portfolio,
when a specific event has occurred. Hence the transactiea@at become stopping times and
the trading strategy becomes a simple predictable process.

Definition 1.5 (Stopping time) A random time 7' > 0 is called (F)-stopping time if V¢ >
0, {T <t} e F.

Definition 1.6 (Adapted process)A stochastic processX;):>o is said to be adapted to the
filtration F if, for eacht > 0, the value ofX, is revealed at time, or more precisely, if the
random variableX; is F;-measurable.

Definition 1.7 (Predictable process)The predictabler-algebra is thes-algebra® generated
on [0, 7] x Q by all adapted left-continuous processes. A mapping[0, 7] x Q — R which
is measurable with respect 1@ is called a predictable process.

Definition 1.8 (Simple predictable process)A predictable stochastic proceés).c|o 7 is called
a simple predictable process if it can be represented as

¢t = ¢oly—oy + Z Gil{e(Ti T}
i=0

2



CHAPTER 1. Introduction and statement of results

where0 =Ty < Ty < ... < T,11 = T are stopping times and eageh is a bounded random
variable which isF;-measurable.

Within the class of trading strategies we will be mainly netted in so-called self financing
trading strategies, which play an important role in the thexd arbitrage.

Definition 1.9 (Self financing trading strategy) Let (¢:).c[o,7 denote ad-dimensional trad-
ing strategy and.S).c[o,7) @ d-dimensional vector of price processes. If

Gt - St — P - S¢ =0,
holds for allt € (0,T), then the trading strategy is called self financing.

In other words a trading strategy is called self financingftiér the initial investment there is no
money extracted or added.
Now we are able to introduce the crucial concept of arbitrage

Definition 1.10 (Arbitrage opportunity) An arbitrage opportunity is a self financing trading
strategy with no initial costs, i.84(¢) = 0, where

P(Vt € [0,T] : Vi(¢) > 0) = 1 andP(Vp(¢) > 0) > 0.

Obviously, economically it makes sense to exclude the pibiggiof arbitrage in asset pricing
theory, which is called the no-arbitrage assumption. Nio# then trading strategies are not
assumed to be predictable, it can easily be shown that thieetriamot arbitrage free if the asset
price processes have jumps.

Having excluded arbitrage opportunities, the next quesschow can derivatives be included
in the market without introducing arbitrage. An answer tis thuestion is given by the first
fundamental theorem, which was first formulated by Harriaod Kreps [50] in a finite state
setting and extended to a very general form by Delbaen anacBehmayer [25]. The statement
of the theorem is that a financial market model is arbitrage ff and only if there exists a
probability measurd), which is equivalent to the real world probability measitesuch that
the discounted asset price proces@'s)tzo = (5:/59)i>0, 1 < i < d are martingales under

Q.

Definition 1.11 (Martingale) A cadlag proces$X;):>o on (2, F,F,P) is called martingale if
(X¢)e>0 is adapted tdF, E[| X;|] < oo for anyt > 0 and

E[X;|F.] = X,, Vs>t

Now we will focus on the pricing of derivatives. Options aually characterised by their so-
called payoff functiory, which defines the payment to the owner of the option whendhé&act
is executed. The first fundamental theorem of asset pricvmii@s that the price of an optiah

is always given as the discount@dexpected value of its payoff functiap i.e.

P =Egle " g(X)),

3



CHAPTER 1. Introduction and statement of results

where X denotes a random vector which depends on the vector of prazegsesS;):>o. By
transforming the underlying random variables we can wiigegroblem in the following form:

P =Egle " f(U)], (1.1)

whereU = (Uy,...,U,) is ad-dimensional random vector and &l] are uniformly distributed
on|0,1).

There are several approaches to calculate (1.1) for example by applying analytical meth-
ods which use the characteristic function of the asset jmiceess, the numerical solution of a
corresponding partial (integro-)differential equatiannoimerical integration methods. In most
cases it depends on the underlying option and the marketimdagher a specific technique is
efficient or not, for more details see e.g. [23].

In this thesis we mainly focus on numerical integration rodth Although classic humerical
integration schemes, like for example the trapezoidal, hdge a fast convergence rate for one-
dimensional problems, their convergence speed decreagiglyrwith increasingi. An alter-
native is provided by Monte Carlo (MC) integration methodsewe P is approximated by the
Monte Carlo estimator

1 N
D _ —rT
P = Ne ;f(Un)>

whereUs, ..., Uy are i.i.d. random vectors with the same distributiorl/asy the strong law
of large numbers it follows that if is integrable therP is a strongly consistent estimator f&r
and if f is square-integrable then it follows by the central limigdhem that

<= S _U(U) ~ B ) B N 0.o%rc), (1.2)
=1

whereo?,, = Var(f(U)) and 2> denotes the convergence in distribution. In particulas thi
means that the standard deviation of the estimator conseegeero with ratel //n indepen-
dently ofd.

For applications in financial mathematics the goal is to ggeean estimator with a reasonable
error in minimal computation time. Since the asymptoticvasgence rate is determined by the
central limit theorem, there are basically two possilgifitto decrease the error of the Monte
Carlo estimator: we can increase the number of generatedsp¥i or decrease the variance
constanta?\w in (1.2). By the fact that the first possibility results in aeinse increase of com-
putation time, so-called variance reduction techniquéschvaim at decreasing?, ., are very
popular. These methods include the use of control variat@ithetic variates, stratified sam-
pling and other concepts. A survey of variance reductiohrigpie can be found in the book of
Glassermann [42, Chapter 4].

Nevertheless, the error bounds for the Monte Carlo estiraat® of a probabilistic nature and
for some applications, especially if we are interested inoastvcase error, deterministic error
bounds are required. The idea of Quasi Monte Carlo (QMCyiatéon is to take an uniformly
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distributed but deterministic sequenes,),,>1 on thed-dimensional unit cube and use

_ 1 X
P:N;Jc(wn)

to approximateP. In the next section we introduce the concept of uniformriligtion of a se-
guence and illustrate that the deterministic bound on thaltiag integration error is of order
O((log N)?/N) for some special sequences. Although this convergencesratecreasing for
increasingd, it is in any case better than that obtained by Monte Carlegirattion.

Note that for practical purposes we are more interestedeirettor of an estimator which uses
exactly N points than in an asymptotic error bound. Thus for highe need an enormous num-
ber of pointsN to ensure thatlog N)¢/N < 1/+/N. Hence Quasi Monte Carlo integration is
an alternative to Monte Carlo methods for moderate

Anyway, it is difficult to compare the probabilistic error BfC and the deterministic error of
QMC. One approach to avoid this problem is to add the samenumiy distributed random
variable to each component of the points of a QMC sequends.€Bsy example of a so-called
randomised Quasi Monte Carlo (RQMC) sequence allows us rgpace the resulting prob-
abilistic errors of MC and RQMC. Another idea is to constract-dimensional sequence as
concatenation of a-dimensional deterministic QMC sequence and & s)-dimensional ran-
dom MC sequence. In Chapter 5 we show that such a sequencéesmpbsitive aspects of MC
and QMC. For an overview of different RQMC techniques, s&s 8kction 5.4].

1.2 Uniform distribution of sequences and discrepancy

Forz = (z1,...,24) € [0,1)% d > 1, let 1;(x) be the indicator function of the sét C
[0,1)? and denote by\; the d-dimensional Lebesgue measure. Eoe (ay, ..., aq) andb =
(b1,...,bg) With 0 < a;,b; < 1,i=1,...,d we writea < bif a; < b, fori =1,...,d.
We call the set of alk: € [0,1)¢ with a < 2 < b an axis-parallel box at-dimensional interval
[a,b).

Definition 1.12 (Uniform distribution of sequences) A sequencér,, ),>1 of vectors in[0, 1)4
is said to be uniformly distributed (u.d.) |, 1)? if

N d
2: = ]-a n
lim n=1"1 ’b)(x ) = | |(bz — a;),

N—oo N

for all d-dimensional intervalsa, b) C [0, 1).

The following theorem by Weyl [103] gives a further charaisi@tion of u.d. sequences.

Theorem 1.1 A sequencéz,,),>1 of vectors in0, 1)? is said to be u.d. if0, 1)? if and only if
for every continuous complex-valued functipon [0, 1)¢ the following relation holds:

N fa)
lim ==+ — z)dx.
/[ f(x)

N—oo N
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Theorem 1.1 already gives a hint how uniformly distributedisences can be used for numerical
integration. Unfortunately, the uniform distribution perty gives no quantitative information
on the integration error, therefore we introduce the conoggiscrepancy of a sequence. LZet
denote the set of all axis-parallel boxes andZlgtienote the set of all axis-parallel boXesb)
with a = (0,...,0).

Definition 1.13 (Discrepancy) Letz1, . .., 2y be a finite sequence {0, 1)?. The number
N
1
Dy = DN(:Cla"' ,$N) = sup M - )‘d(I)
ez N

is called discrepancy of the given sequence. Furthermordemete by

N
1
Dy = Dy(z1,...,xN) = sup M — (1)
11,

the so-called star-discrepancy of the sequence. For antefsequence or a sequence with more
than vV terms,Dy, D}, denote the corresponding quantities of the fi¥sterms of the sequence.

The connection between the discrepancy of a sequence anditbam distribution property is
characterised by the following result of Weyl [103]: a sewge(x,,),>1 is u.d. if and only if
limy_,n Dy(x1,...,25) =0.

Furthermore it can be shown, see e.g. [66], that

D% < Dy < 29D%

and thuslimy_,xy Dy (z1,...,zn) = 0 implieslimy_,xy DX (z1,...,2zn) = 0. Moreover it
follows by easy calculations thay N < Dy < 1 holds for any sequence @f numbers in
[0,1)%.

These bounds on the discrepancy were sharpened in severetiatis. Ford-dimensional in-
finite sequences the lower bound was improved by Roth [92y 10}, > Cj(log N)4/2 for
infinitely many positive integersV, whereC} > 0 is an absolute constant only depending
on d. Furthermore for a sequence &f points in[0,1)¢, d > 2 Roth obtainedN D} >
C?(log N)@=1/2 whereC? is an absolute constant only dependingdon

For cased = 1, Schmidt [94] improved the lower bound 8D} > Clog N, for infinitely
many integersV, whereC' > 0 is an absolute constant. Further improvements for the lower
bound of the discrepancy are e.g. due to Beck [11] and Bilgcdy and Vagharshakyan [13],
but the precise minimal asymptotic order of the discrepancstill an open problem. Upper
bounds for the discrepancy can be derived by using the itiigaaf LeVeque [72] as well as
of Erdés and Turan [34, 35].

Let f(z) = f(z),...,2(¥) be a function or0, 1]¢, d > 1. We define a partitiorP of [0, 1)¢
as a set off finite sequenceséj),...,n,(%;, 1<j<dwith0 = 77(()]) <...< 77,(%) = 1and let

i =

P denote the set of all such partitiofs Furthermore we define the operathy by

Ajf(m(l), . ,m(jfl),ngj),m(j“), . ,x(d))

6



CHAPTER 1. Introduction and statement of results

=fzM, ... ,:U(jfl),n(j) AR CO) R EeC

2 20D ) L G+D)

9 772 x(d))

ey g e ey

for0 <i <mjandwewriteA; . =A; - Aj,.
Definition 1.14 (Bounded variation in the sense of Vitali)Let f be a function orf0, 1]¢, then
the variation in the sense of Vitali is defined as

mi1—1 mg—1

V(d)(f) = sup Z Z ‘A1,...,df(77§11)>m>77z(j)) ’

PEP i 0 ig=0

A function is said to be of bounded variation in the sensetafiN V(%) ( f) is finite.

It can easily be seen that if a functighdepends on less thatvariables thark/ () (f) = 0.
But since such functions can also have an extremely irredpalbavior we extend the notion of
variation to the following definition.

Definition 1.15 (Bounded variation in the sense of Hardy and Kause) Let f be a function
on [0, 1]¢, denote by ®)(fyiq,. .. , 1) the variation off in the sense of Vitali restricted to the
k-dimensional face”®) (i1, ..., ix) = {(u1,...,uq) € [0,1]% : u; = 1forj # i1,... 4}
and denote by’ (f) the variation in the sense of Hardy and Krause. The funcfidas called of
bounded variation in the sense of Hardy and Krause if

d
ViH =Y > VB(fir,.. i) < oo

k=11<i1<..<ip<d

Now we are able to state the Koksma-Hlawka inequality [5Te ©ne-dimensional analogon is
due to Koksma [63].

Theorem 1.2 (Koksma-Hlawka inequality) Let f be of bounded variation of0, 1]¢ in the
sense of Hardy and Krause. Then

1N
— f(xn) — f(x)dz
N 2 ) /W (x)

Theorem 1.2 gives an deterministic upper bound for the efrQuasi Monte Carlo integration.
This bound is a product of the variation of the functipnwhich is assumed to be finite and the
star-discrepancy dfx,,),>1. Therefore it is essential for Quasi Monte Carlo integratio find
sequences with a low discrepancy.

A classical example of such a low discrepancy sequence isetkdis follows:

< V(f)Dy ().

Definition 1.16 (Van der Corput sequence)For n € Ny let the functiong,(n): Ng — [0,1)
be given by

Po(n) = by (Z nibi) = nb

i>0 i>0

The van der Corput sequence in base defined ag¢,(n))n>0.

7



CHAPTER 1. Introduction and statement of results

The van der Corput sequence anddtdimensional extension the so-called Halton sequence,
which is given by(¢y, (1), ..., ¢, (n))n>0 for co-prime bases;, 1 < i < d, are among those
sequences with the best known asymptotic discrepancy( ibg N)?/N), see [49].

For some applications it is possible to use a fixed se¥ gfoints with low discrepancy instead
of the first N points of an infinite sequence. An example of such a so-cétddiscrepancy
point set is given by the finite Hammersley sequence, defiged a

(n/N, ¢p,(n), ..., b, (1))n=01,..N—1. FOr such point sets Halton [49] proved théiD}, <
Cy(log N)¥=! holds.

Further examples of low discrepancy sequences and poimtcaet be found in the book of
Niederreiter [81]. More detailed information on uniforndystribution sequences, discrepancy
and related topics is provided by Drmota and Tichy [30] andpkts and Niederreiter [66].

1.3 Lévy processes

In the classical Black-Scholes (BS) model, for a rigorouinitéon see [14], the asset price pro-
cess is modelled as a geometric Brownian motion, which mikessible that prices of many
derivatives are given in an explicit form. However, sinceesal properties of real markets can
not be replicated by the BS model, many practitioners argharesers are using more advanced
market models. One possible extension is to apply more geagponential Lévy processes as
driving stochastic processes which means in the notati@eofion 1.1 thaf; = Spe*t, where

So is a positived-dimensional vector anflX; ).~ is ad-dimensional Lévy process. A detailed
introduction to the analysis of Lévy processes can be fontioki book of Sato [93]. For a survey
on Lévy processes in financial modelling, see e.g. the bo@oaot and Tankov [23].

Definition 1.17 (Lévy process)A cadlag stochastic procegsX;);>p on a probability space
(9, F,P) with values inR? is called Lévy process, if it possesses the following ptigeer

e Xg=0as,,
¢ Independent increments: for every increasing sequencenefty, .. .,t,, the random
variablesX;,, X;, — Xy,,..., X, — Xt, , are independent.

e Stationary increments: the law of;, , — X; does not depend an

e Stochastic continuityve > 0, limy_,o P(| X4n — Xi¢| > €) = 0.

Definition 1.18 (Brownian motion) A stochastic procesgB;);> is called Brownian motion
on (2, F,P), if

° BO =0a.s.,

o for every increasing sequence of tinigs . . , t,,, the random variable®,,, B, — By, . . .
B, — By, , are independent,

)

e B, . — B; has a Gaussian distribution with mean 0 and a positive defiodvariance
matrix A, Vvt € [0,7] and



CHAPTER 1. Introduction and statement of results

e B; has a.s. continuous sample paths.

Brownian Motion

1.00E1
1.00C
0.995-
0.99C

0.98t

I I I I L time
0.0 0.2 0.4 0.6 0.8 1.0

Figure 1.1: Brownian motion

Obviously, the BS model is also an exponential Lévy modelrertiiee underlying process is a
geometric Brownian motion. Another well known example ofévi process is the compound
Poisson process.

Definition 1.19 (Poisson process) et (7;);>1 be a sequence of i.i.d. exponential random vari-
ables with parametek and definel;, = Y | 7;. The process

Ny = Z 1{t2Tn}

n>1
is called one-dimensional Poisson process with intensity

The Poisson process is a counting process in the followingesé&V counts the number of
random time&,, which occur in0, 7’|, where(T,, — T,,—1)»>1 iS @ sequence of i.i.d. exponential
distributed random variables.

Definition 1.20 (Compound Poisson processpi compound Poisson process Brwith inten-
sity A > 0 and jump size distributiorfy is a stochastic proces’; defined as

N
X =YY,
i=1

where the jump sizeg; € R are i.i.d. with distribution fy and (IV;);>¢ is a Poisson process
with intensity)\, independent fronY;);>1. A compound Poisson process &fi is a vector ofd
compound Poisson processesin
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Compound Poisson proce

0.021

0.01r J—

I I I L time
0.2 0.4 0.6 0.8 1.0

-0.011

—-0.021 -

Figure 1.2: Compound Poisson processfynwith intensity = 10 and double-exponentially dis-
tributed jump sizes.

Lévy processes which are constructed as the sum of a Browmigion and a compound Pois-
son process are frequently used in financial modelling. Bexaf the advantageous analytical
properties of these so-called jump diffusion processesiynoption pricing problems can be
solved in an effective way.

Proposition 1.1 illustrates the close connection betwadiyprocesses and infinite divisible dis-
tributions, for a proof see [93, Theorem 7.10]. This relagioip is a central ingredient to make
an explicit calculation of the characteristic function diévy process possible. The closed for-
mula for the characteristic function, which forms the badiseveral option pricing techniques,
is provided by the Lévy-Khinchin theorem, see [93, Theoref].&urthermore the Lévy-Itd
theorem [93, Chapter 4] gives detailed information on thecstire of Lévy processes.

Definition 1.21 (Infinite divisibility) A probability distributionF onR? is said to be infinitely
divisible if for any integern > 1, there existn i.i.d. random variablesyy, ..., Y,, such that
Y: + ...+ Y, has distributionF'.

Proposition 1.1 (Infinite divisible laws and Lévy procességsLet (X;):>o be a Lévy process.
Then for everyt, the distribution ofX; is infinitely divisible. Conversely, given an infinitely
divisible distribution F, there exists a Lévy procgs§ ) such that the distribution ok is given
by F.

Definition 1.22 (Poisson random measure) et (2, F, P) be a probability spacef; ¢ R*!
and u a given (positive) Radon measure on a measurable spacé€). A Poisson random
measure orf’ with intensity measurg is an integer valued random measure:

M:Qx&—N
(w,A) = M(w, A)

such that

1. For (almost allw € Q, M(w,.) is an integer-valued Radon measure &nh for any
bounded measurable sdtC E, M(A) < oo is an integer valued random variable.

10



CHAPTER 1. Introduction and statement of results

2. For each measurable sdtC E with i(A) < oo, M(., A) = M(A) is a Poisson random
variable with parametep(A) < oo i.e.

k
oy ) (u(4))
P(M(A)=k)=e* BT VEk € N.
3. For disjoint measurable setd, .., A,, € &, the variablesM (A,),.., M(A,,) are inde-

pendent.

We define .
M(A) = M(4) - p(4)

as the compensated Poisson random measure.

Definition 1.23 (Lévy measure) Let (X;);>o be a Lévy process oR?. The measure on R?
defined by
v(A) =E[#{t € [0,1] : AX; #0,AX; € A}], Ae B(RY),

where B(R?) denotes the Boret-algebra, is called Lévy measure &f;. Note thatv(A) is
exactly the expected number of jumps with size$,iper unit time.

Theorem 1.3 (Lévy-1té decomposition)Let (X;):>0 be a Lévy process dR¢ and v its Lévy
measure, given by Definition 1.23. Then the following holds:

e v is a Radon measure d&?\ {0} and verifies:

/ l22v(dr) < oo, / v(dx) < oo.
|z[<1 |z|>1

e The jump measure of;, denoted by/x, is a Poisson random measure {ioo) x R?
with intensity measure(dx)dt.

e There exists a vectoy and ad-dimensional Brownian motio(B;);>o with covariance
matrix A such that

Xy =X+ X2 ++X} + X!, where
th = ~t,
X} = By,

X} = / xJx(ds x dx) and
|z|>1, s€[0,¢]

X} = lim x(Jx (ds x dx) — v(dx)ds)
eNO e<|z|<1, s€[0,¢]

= lim ij(dS x dz).
N0 Je<|a|<1, s€[0,1]

11



CHAPTER 1. Introduction and statement of results

The termsX}, X7, X}, X} are independent, the convergence in the last term is alnuostand
uniform int on [0, T'] and Jx is the compensated Poisson random measurgof

Basically the Lévy-1td decomposition states that everyljgnocess is a sum of three elementary
processes and the limit of the sum of compound Poisson meseEurthermore the theorem
says that only three parameters determine a Lévy procegselni the vectory, the covariance
matrix A and the Lévy measune. The triplet(~, A, v) is called characteristic triplet of a Lévy
process.

Definition 1.24 (Characteristic function) The characteristic functiopx : R — R of anR¢-
valued random variabléX is defined by

O x(2) = Elexp(izX)] = /[Rd € g (dz), VzeR%L

Theorem 1.4 (Lévy-Khinchin representation) Let(X;);>( be a Lévy process @ with char-
acteristic triplet(v, A, v). Then

E[eizTXt] =3 e R,

where the so-called characteristic exponérit) is given by

1 A
P(z) = —§zTAz + iyl 2 +/ <€ZZTx —-1- iszl{‘x‘gl}u(dx)).

R4
The idea of many option pricing techniques is to calculateltaplace or Fourier transform of
the option price by using the characteristic function of ith@lved random variables. The in-
verse transformation can be done very efficiently in mangsa®r example by using the Fast
Fourier Transform method, see e.g. [21] or [65]. Since traatteristic function of a Lévy pro-
cess is given by Theorem 1.4, we can apply such Laplace oidfdtansform methods when
the underlying process is an exponential Lévy process.

Apart from jump diffusion processes, the so-called puregyrocesses are frequently used in
financial modelling. Such processes have no diffusion jpaittan infinite jump activity. They
can be constructed as a so-called subordinated Lévy praghish is for example a Brownian
motion where the time progression is not linear but moddiea so-called subordinator. The-
orem 1.5 characterises the characteristic triplet of sdihated Lévy processes, for a proof see
e.g. [93, Theorem 30.1].

Definition 1.25 (Subordinator) A Lévy proces$X;);>o is called subordinator if its paths are
a.s. non-decreasing i.e.
t>s=X; > X;as.

Theorem 1.5 (Subordination of a Lévy process)Fix a probability spacé(2, 7, P). Let(X¢):>o

be a Lévy process dR? with characteristic exponent (u) and characteristic triplety, A, )
and let(S;):>0 be a subordinator with characteristic exponéiit:) and characteristic triplet

12



CHAPTER 1. Introduction and statement of results

(b,0, p). Then the procesg;);>o defined for eacly € Q by Y (t,w) = X (5(t,w),w) is a Lévy
process and its characteristic function is given by

E[equt] — etl(\I/(u))’

i.e. the characteristic exponent &f is obtained by composition of the Laplace exponers;of
with the characteristic exponent &f;. The characteristic triplefyY, AY, v¥) of Y; is given by

AY =pA

vY(B) = bv(B) + / h pX(B)p(ds), VB e B(RY),
0

Y =by+ / p(ds) / apy (dx),
0 {lz|<1}

wherep;® is the probability distribution ofY;. The processY;);> is said to be subordinate to
the proces$ X ):>o.

In the numerical analysis of option pricing problems in theafters 6 and 7, we will use two
pure jump processes, which are frequently applied for filmhneodelling: the variance gamma
process, which was first introduced by Madan and Seneta fbitee normal inverse Gaussian
process, which is due to Barndorff-Nielsen [10]. An ovewief subordinated Lévy processes
in financial mathematics can be found in [23].

In the last part of this thesis we consider the pricing of apdi where the payoff function de-
pends on the value of the supremum or the infimum of the asiet process during the life

time of the option. Hence to apply a pricing technique whiskeaithe Laplace transform we
need information on the characteristic function of theexial processes of the underlying Lévy
process.

Theorem 1.6 (Wiener-Hopf factorisation) Let (X;);>o be a Lévy process iR and (X;);>o
and(X,):>o its supremum and infimum process, respectively. Furthexnett be an exponen-
tially distributed random variable with parameter Then the characteristic function 6X;);>o
at the random timé can be factorised as

E[e?*X0] = E[e'*X0| E[e?X0], Vz € R,

or equivalently,

I TP
T Tozox(e) e A% (2), VZER,

whereg(z) denotes the characteristic functionf, ¢; (z) = E[¢”*~¢] andg, (2) = E[e?*Xs].

In general the calculation of the so-called Wiener-Hoptcfeu:ngj(z) and¢, (z) is very com-
plicated and involves a multi-dimensional numerical iné¢ign. Nevertheless there are a few
classes of Lévy processes for whi¢r;f(z) and ¢, () are given explicitly, for example the
Brownian motion or jump diffusions where the jump sizes aqeomentially distributed. A de-
tailed discussion of the Wiener-Hopf factorisation inchglthe proof of Theorem 1.6 can be
found in [93, Chapter 9]. The Wiener-Hopf factorisation hwit view to option pricing is dis-
cussed in the book of Kyprianou [67].

13



CHAPTER 1. Introduction and statement of results

1.4 Statement of new results

The structure of the remainder of this thesis is as followsthie present section we give an
overview of our new results. Chapters 2-7 correspond tasfiearticles which are submitted
for publication or already published, therefore every ¢tbagontains the necessary informa-
tion and the references to understand its contents. Clsapt&rare results of a joint work with
Christoph Aistleitner, Chapter 6 is collaboration with Ghwph Aistleitner and Robert Tichy
and Chapter 7 originates in a cooperation with Philipp Mayer

The second chapter deals with the distribution propertigheoso-called Kakutani's sequence
of partitions: Forw € (0,1) andw = {[t;—1,t;] : 1 < i < k} is any partition ofl0, 1], we denote
by ax the a-refinement ofr which is obtained by subdividing all intervals mfhaving maximal
length in two parts, proportional t® and1 — «, respectively. Kakutani’'s sequence of partitions
(a"w)nen is Obtained as the successiveefinement of the trivial partitioo = {[0, 1]}.
Furthermore letr, ),cn be a sequence of partitions [0f 1], with

mn = {[t7 1.t 1 <i<k(n)}

i—10 Y
Thenm,, is uniformly distributed (u.d.), if for any continuous furan f on [0, 1]

lim LZ £ = /O ()t

n—00 k(n) P

Kakutani [61] shows thata"w),en is u.d. for alla € (0, 1). Nevertheless, one can formulate
simple examples wher@" ), cn is not u.d. whenr is a non-trivial finite partition of0, 1.

We consider a more general splitting rule under which theneefient is defined as subdivid-
ing all intervals of maximal length positively homothetigato p, wherep is a finite partition
of [0, 1]. We give conditions om andx, which guarantee thdp"r),cn is u.d. and calculate
the maximal and minimal limit measures, in the case whémr),,cx is not u.d. The results in
Chapter 2 will be published in Annali di Matematica Pura eglqata [4].

In the third chapter we focus on the distribution of sequeraferectors of subsequent elements
of the van der Corput sequen¢e,(n)),>1, see Definition 1.16. In [37], Fialova and Strauch
calculate the limit distribution of¢y(n), ¢»(n + 1)),>1 by using analytic methods. In our ap-
proach we use the close connection between the van der Gaguénce and the so-called van
Neumann-Kakutani transformatidi: [0,1) — [0, 1) given by

1 1
Ty(x) = —1+ % +

bk PR
wherek € Nis such that: € [1 — 7,1 — 7= ]. One can easily show that the orbit of zero un-
der the ergodic van Neumann-Kakutani transformafipis exactly the van der Corput sequence
in baseb, i.e.

(T3 0)nz0 = (¢6(n))nz0. b > 2.

14



CHAPTER 1. Introduction and statement of results

By using methods from ergodic theory and the properties @vdn Neumann-Kakutani trans-
formation we extend the results of Fialova and Strauch telteanensional case, which means
that we calculate the limit distribution @fy(n), ..., ¢»(n + d — 1)),>1. These results are ac-
cepted for publication in Uniform Distribution Theory [2].

We define the so-called inverse of the discreparidyl, <) as the smallest possible cardinality of
a point set in0, 1]¢ having discrepancy bounded byBy a profound result of Heinrich, Novak,
Wasilkowski and Wozniakowski [52] the inverse of the sleserepancyn*(d,¢) satisfies the
upper bound

n*(d,e) < cly . de™?,

and Hinrichs [55] proved the lower bound

n*(d,e) > % de™ 1,
wherec!, . c2, are absolute constants. The upper bound is equivalent fac¢hthat for anyV
andd there exists a set df points in[0, 1] whose star-discrepancy is bounded-pyd'/2N~1/2,
The proof is based on the observation that a random poinasisfiss the desired discrepancy
bound with positive probability.
In Chapter 4 we prove a version of this result, which makepptieable for computational pur-
poses: for any given numbere (0, 1) there exists an (explicitly stated) numhey) such that
the star-discrepancy of a random set\dfpoints in[0, 1]¢ is bounded by:(q)d'/2N—1/2 with
probability at least, uniformly in N andd. More precisely we prove the following:
Foranys > 1, N > 1andq € (0, 1) arandomly generategddimensional point set:1, ..., zn)
satisfies

log (1—¢)~1) Vd
d VN

Dy(z1,...,2n8) < 5.70\/4.90 +

with probability at leasy.

The most interesting fact is that at the moment there existsomstruction of a deterministic
sequence which satisfies such discrepancy bounds, whaeeabdve theorem states that a ran-
dom Monte Carlo sequence has a discrepancy of this form vgthgrobability.

Chapter 5 is dedicated to randomized Quasi Monte Carlo rdsthwhere al-dimensional se-
guence is constructed as concatenation efdédmensional deterministic sequence and-a s-
dimensional random point set. Such constructions, whigle baen investigated e.g. by Spanier
[96], Okten [82,83] and Rosca [91], are useful since in matéedimensions the QMC method
typically yields better results, but its performance digantly falls off in quality if the dimen-
sion increases. Okten, Tuffin and Burago [85] proved prdisgibi asymptotic bounds for the
discrepancy of mixed sequences, which were refined by Griey4sd. Furthermore, Okten et
al. [85] show in numerical examples that this method is véfgcéive for problems in option
pricing.

In Chapter 5 we use an interval partitioning technique ta@iobimproved probabilistic bounds
for the discrepancy of mixed sequences. By comparing thetim laiver bounds we show that
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CHAPTER 1. Introduction and statement of results

our results are almost optimal. A paper which includes tiselte of this chapter will be pub-
lished in Monte Carlo Methods and Applications [3].

We mentioned in Section 1.1 that the convergence of the atdnidonte Carlo estimator can
be improved by so-called variance reduction techniquesexXample of such a method is the
so-called stratified sampling method. The idea behindisggtsampling is to generate points
conditional uniformly distributed on the elements of a jian of [0, 1)¢, the so-called strata,
instead of generating points uniformly distributed on thele d-dimensional unit cube. If the
strata are chosen properly this technique leads to a reducg @in (1.2).

A modification of stratified sampling is given by the so-cdlleatin hypercube sampling (LHS)
technique, where we divide, 1)¢ into a partition ofN¢ d-dimensional cubes with the same vol-
ume. Exactly one random point is generated uniformly digted in/NV of these cubes, where
the NV cubes are chosen randomly but in accordance with a certiginXuwentral limit theorem
for the resulting estimator was proved by Owen [86] and J&Tih shows that the variance of
the LHS estimator is never greater than the variance of drelard Monte Carlo estimator, pro-
vided the number of sample points is sufficiently large.

In many applications, especially in financial mathematicg faces a situation where the com-
ponents of the underlying random vectér= (Uy,...,U;) are dependent. Usually such de-
pendence structures are modelled by a so-called copulébdigin C', which is a distribution
function on[0, 1]¢, where all one-dimensional marginals are uniformly distréd on0, 1]. Latin
hypercube sampling with dependence (LHSD) is an extendibh8 where the cubes in which
points are generated are chosen according to the rankistat$ samples from the copula dis-
tribution C. This has the effect that the empirical distribution of theuiting points converges
to C, which is in general not the case for LHS.

Packham and Schmidt [88] prove that theimensional LHSD estimator is consistent and that
a central limit theorem holds for the two-dimensional LHS®imator. Furthermore, for the
two-dimensional case, they give conditions on the cogtiland on the integrand functiofi
which ensure that the variance of the LHSD estimator is ngreaiter than the variance of the
standard Monte Carlo estimator. In Chapter 6 we extend ttesséts to thel-dimensional case.
The results in this chapter are accepted for publicatioheriiternational Journal of Theoretical
and Applied Finance [5]

In the last chapter we focus on option pricing in one-dimemai exponential Lévy models, in
particular, we consider the pricing of so-called lookbagkians, where the payoff function is
defined for example asiax(maxo<i<7 St — K, 0), where(S;);>o denotes the asset price pro-
cess,I' denotes the maturity an denotes the strike price. In our setting the asset pricesgsoc
(St)e=0 is given byS; = SoeXt, whereSy > 0 and(X;);>o is a Lévy process.

Obviously, to price lookback options we need informatiorttee maximum process @5} ):>o.

As mentioned in Section 1.3, we can use the Wiener-Hopf fesetiion to obtain the character-
istic function of the maximum process, but for general Léxgycgsses this requires a numerical
multi-dimensional integration. Nevertheless there ammadlasses of Lévy processes for which
the Wiener-Hopf factorisation can be done in closed form,efcample when the underlying
Lévy process is the sum of a Brownian motion and a compounssBoiprocess with expo-
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nentially distributed jumps. Kou [64] proposed a financiarket model (typically called Kou
model), in which the logarithmic asset price process ismilesd by a jump diffusion with two-
sided exponential jumps, and showed that in this settind.tipdace transform of several exotic
derivatives, including lookback options, can be derivediditally (see [65]).

Jeannin and Pistorius [59] consider option pricing underhyiper-exponential jump diffusion
(HEJD) model which is defined as jump-diffusion with doubigesl hyper-exponentially dis-
tributed jumps sizes. They present formulae for Laplaaesfamed price of barrier and digital
options together with sensitivities of these prices. Stheeclass of HEJD lies dense in the class
of all Lévy process these results are also useful to apprateiprices when der underlying Lévy
process is for example a pure jump process like the variasew or the normal inverse Gaus-
sian process.

In Chapter 7 we present formulae for the Laplace transforpri@ of different types of look-
back options under the HEJD model. Furthermore, we give ditaefor the sensitivities of op-
tion prices, which are important for hedging. Moreover wevglin numerical examples that the
error introduced by the numerical inverse Laplace tramsédion is insignificant and that prices
of lookback options under the normal inverse Gaussian meaiebe approximated efficiently
with this method.
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Chapter 2

Uniform Distribution of generalized
Kakutani’s sequences of partitions

2.1 Introduction

In this paper we study a generalization of the Kakutanitapdjtprocedure, which was originally
introduced in [61].

Definition 2.1 (Kakutani splitting procedure) If o € (0,1) and7 = {[t;_1,t;] : 1 <i < k}

is any partition of[0, 1], thenar denotes itsy -refinement which is obtained by subdividing all
intervals ofr having maximal length in two parts, proportional dcand 1 — «, respectively.
The so-called Kakutani’'s sequence of partitidng'w),cn IS Obtained as the successiue-
refinement of the trivial partition = {[0, 1]}.

Definition 2.2 (Uniform distribution of sequences of partitions) Let (7, ),cn be a sequence
of partitions of|0, 1], with
m = {[ti1, 8] - 1 <0 < k(n)}.

Thenm,, is uniformly distributed (u.d. ), if for any continuous ftioo f on [0, 1]

k(n

N

lim L
n—00 k(n)

1
s = [ rw @.1)

i=1

Remark 2.1 For a sequence of partition&r,, ),,cn We define the associated sequence of mea-
sures( iy )nen by

1 k(n)
Hn = W ; 5t?7

whered, denotes the Dirac measure concentrated.atVleak convergence ¢fi,,),en to the
Lebesgue measure ¢ 1] is equivalent to conditioii2.1). In other words, a sequence of parti-
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CHAPTER 2. Uniform Distribution of generalized Kakutargsquences of partitions

tions is u.d. if and only if for every intervat, b] C [0, 1]

p S (1)

im ————- =) —a.

n—00 k(n)

Kakutani [61] proved that for ang € (0, 1) the sequence of partitions"w),cy is uniformly
distributed. The properties of the sequericéw),cn and related problems have been investi-
gated by many authors. For example, see [15] and [100] for diffoation of (a"w),,cny Where
the intervals of maximal length are split at a random pasitf©arbone and V6IC [19] general-
ized the splitting procedure for sequences of partition®.of|?, d > 2, and derived a general-
ization of Kakutani's result in higher dimensions. Recgrithe following further modification
of Kakutani’s splitting procedure was presented by¢ib[101].

Definition 2.3 (p - refinement) Let p denote a non-trivial finite partition of0, 1]. Then thep
-refinement of a partitionr of [0, 1], denoted bypr, is given by subdividing all intervals of
maximal length positively homothetically go

VoICi€ [101] proved, by using arguments from ergodic theory, thatsequencép”w),cn IS
u.d. for every finite partitiorp. Furthermore, he investigated the behavior of associatéd u
formly distributed sequences of points. The discrepancsegtiences of partitions constructed
asp -refinements ofv is discussed in Carbone [18] and Drmota and Infusino [29¢ fEsults

of Drmota and Infusino are based on the analysis of a speemkolution process, namely the
Khodak algorithm [62], where the generation of nodes hasiasi behavior as the splitting of
intervals in the Kakutani splitting sequence.

So far results on the uniform distribution of sequences dfitgens were only available in the
case when the starting partitiaris the trivial partitionw. A simple example shows that there ex-
ist starting partitionsr for which the sequenc@"),cn is not uniformly distributed. Consider
= {[0,2],[2,1]} andp = {[0,3],[3,1]}. In this case the splitting procedure operates
alternating onl0, 2| and[2, 1] and hence the sequences of associated measures corregpondi
to the subsequenceép?'),cn and(p?"+1m),cn converge to different measures. ¥ [101]
formulated the problem in the following form:

It is worth noticing that it is necessary to put some restitton the partitionr
(even in the simplest case of the Kakutani splitting procefii we hope for uni-
form distribution of(p"7),en. It would be interesting to find significant sufficient
conditions onr in order to obtain the uniform distribution ¢f" ), cx even for the
case of Kakutani’s splitting procedure.

The purpose of the present paper is to present a full solofi¢inis problem.
2.2 The uniform distribution of generalized Kakutani's sequences
of partitions

In the sequel we consider a partitignof [0, 1] consisting ofm > 2 intervals of lengths
p1,-- -, Pm,and a starting partition of [0, 1] consisting of > 2 intervals of lengthsyy, ..., ;.
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In the sequel leH denote the entropy of the probability distributipn . . . , p,,, which is defined

as
1 1
H = pilog (—) + ...+ ppylog <—> .
n Pm

Definition 2.4 (Rationally related) The numberkg (p%) ,...,log (i) are called rationally
related if there exists a positive real numbesuch that

1

log <—> =\, v;e€Z,j=1,...,m.
Dj

Without loss of generality we choogdeas large as possible, which is equivalent to assuming

ged(vy, ..., vm) = 1. If the numberdog <pi1) ..., log <#) are not rationally related, they

are called irrationally related.

Remark 2.2 Note that the numbelisg ( ) ..., log (#) are rationally related if and only

1
. ] p1
if all fractions

logp; . .
T 27]:17"'7m7
log p;
are rational.

For a fixed real number € (0, pyin), Wherepyin = min{p,...,pn}, letZ. denote the set of
all intervals that appear in the sequenigéw),cn and have length greater than or equakto
Let & be the set of intervals which are generated by splitting gerval inZ. and which have
length! satisfyingpmine < | < €. Denote byM, = || the cardinality of€.. Note that the set
&. changes only for certain values @fmore precisely when equals the length of at least one
interval appearing ifp"w)pen-.

We will use the following result from [29].
Lemma 2.1 Let M, be defined as above. Then

1. if log (p%) , ..., log (p%) are rationally related, letA be the largest real number for

which log (%) is an integer multiple of\, for j = 1,...,m. Then there exist a real
numbern > 0 and an integer > 0 such that

v =" 10 (10w (1) ) + 0 (gt 00 22)

where

A @
Qi(z) = me_A{K}

and{y} denotes the fractional part of.

21



CHAPTER 2. Uniform Distribution of generalized Kakutargsquences of partitions

2. Iflog (p%) ..., log (i) are irrationally related, then

ME:m_l—ko(l). (2.3)

eH €

The following theorem gives sufficient and necessary camitonT andp under which(p™ ), en
is uniformly distributed.

Theorem 2.1 Leto;,j = 1,...,1 denote the lengths of the intervals of the starting pamitio
Then the sequende”n),cn is uniformly distributed if and only if one of the followingradi-
tions is satisfied:

(1) the real numbersdog <p%) ..., log (#) are irrationally related or

(I the real numberdog (p%) ,...,log (i) are rationally related with parameteA and
the lengths of the intervals afcan be written in the form

a; = ce’r, ceRY vy €7, (2.4)
fori=1,...,1.

Remark 2.3 Condition (ll) includes the special case that the startiragtjpion = is a partition
consisting of intervals having the same length, and in patir the case when the starting
partition is the trivial partitionw.

For illustration, the next corollary characterizes thetstg partitionsz for which the original
Kakutani's sequence of partitions is u.d. .

Corollary 2.1 Let the sequence of partitionp™r),en be defined as a -refinement with
p =1[[0,p], [p,1]] andm = [[0, o], [, 1]]. Then(p"7),en is u.d. if and only if one of the following
conditions is satisfied:

(i) log(p)/log(1 — p) isirrational, or

(i) log <%> andlog (ﬁ) are rationally related with parametet anda = 7 for k € Z.
The next theorem describes the asymptotic behavior of telition of (p"7),cn for those
cases which are not covered by Theorem 2.1.

Theorem 2.2 Assume that neither condition (I) nor condition (ll) of Them 2.1 is satisfied.
Then for any intervald = [a, b] C [0, 1] which is completely contained in tti¢h interval of the
starting partitions for somei, 1 < ¢ < [, we have

k(n n
LS ()
n%oop k(n)

=c1(b—a),
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lim inf —Zj:l La (tj)
N—00 k(n)

= co(b—a),

where

. Za . (_A {1og<aj> —log(o) }) o y

-1

. ]2131“]‘ o < A {bg(an - log(a;) }) -

are constants depending on

Remark 2.4 Observe that only if the conditions (1) and (l1) fail to hold, is strictly larger and
co is strictly smaller thanl and the sequence is not u.d. (cf. Remark 2.1).

At the end of the introduction we mentioned the example= {[0,2],[%,1]} andp =
{[0,1],[3.1]}. In this case the theorem indicates that the maximal andnmainasymptotic
measure of0, §] is 3 and%, respectively, and accordingly the maximal and minimal snea of

[2,1] is % and 3, respectively.

2.3 Proofs

Proof of Theoren?2.1:

Proof:

Denote thd intervals ofr by I;,7 = 1,...,l. ThenI; has lengthv;,7 = 1,..., 1. To show that
(p"m)nen is uniformly distributed it is sufficient to prove that thdatve number of intervals of
(p"m)nen in I; converges tay;, for: = 1,...,1, since by [101, Theorem 2.7] the sequences of
partitions within the intervalg; are u.d.

Assume that (1) holds and 16t< e < (min;<;<; a;)(mini<;<n, p;). Leth. € N be the smallest
number for whichp”<7 contains only intervals of lengtke €. Then the sefh, : 0 < € <
(minj<j<; a;) (miny<i<m p;)} is of the form{n € N,n > ny} for somen,. Using the notation

of Lemma 2.1, the number of intervals pf<w which are contained id; equalsM,,, for

i1=1,...,1,where
(m— 1) 1
Meja, = GT)Z Tolz)
Fori=1,...,1,
(m—1ay 1
Lim ME/Oéi — lim meH = +o (E)
] Ma;
0N Mo, O R o (2
o
ijl @;j
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CHAPTER 2. Uniform Distribution of generalized Kakutargsquences of partitions

and thus the sequen¢g’ ) ¢ IS U.d. .
Now assume that condition () does not hold. Then the nun1bgrépil) ..., log (i) are ra-

tionally related with some paramet&r and the number of intervals pf< which are contained
in I; is M, ,,, where by Lemma 2.1

M, o, = (m — )mi)f; (log (%)) Lo ((log(e))de_(l_")> . (2.5)
Consider
M, 0, (m-1) az?}{(k’g(%)) ((log( ))de—(l—n))
I = o
i Mer 1 0000 LulB)) | o (og(oe--n)
_ Qi (log (%)) +0 ((bg(e)) i) 2.6)
Z]_l a;Q1 (log (a )) + 0 ((log(e))de—(l—n))

If (I1) holds, then

and
,A{M}

e

forallj=1,...,I. Thusfori =1,...,1,

Me/al Q4
lim = = ay,

l
0 Zj Moo, 205219

and(p"7m)pen is u.d. .
Now assume that neither (1) nor (II) holds. Then the numb@gs(pil) ,...,log <Ii) are ra-

tionally related with some paramet&r and the starting partitionn has to consist of at least two
elements. Furthermore, note that condition (Il) is eq@imato assuming

log (o) —log (e;) = ni;A, nyj € Z, (2.7)
fori,7 = 1,...,1, soif (Il) does not hold there necessarily exist indi¢gsfor which (2.7) is
not satisfied. Fix such j. Then
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CHAPTER 2. Uniform Distribution of generalized Kakutargsquences of partitions

Let the sequencé)rcn be defined by
e =aje ™ E>1.

Then fork > 1andn € {1,...,1},

Qn
log (;)

A {
_ {log(an) + kA —log(a;) }
A

[ log(an) — log(ay)

- bt bte) o
Hence,

(1 a_>> __A (2.10)
Ql 0og f - 1— e,Av '

and

7A{ 10%(07');10%((11') }

1 <10g (i‘—i)) _Ae — . (2.11)

By using (2.6), we obtain

0 Q1 (log (2) ) + 0 ((log(er) e, ) o

lim =

0 5 (g (22)) + 0 (1m0, ) T g e MY

By (2.8) andA > 0 it follows that

log(an)—log(a;)
_Ad loglan)—log(aj)
e { A }Sl, n=1,...,1,

and
—A{ IOg(O‘j)XIOg(O‘i)}
e < 1.
Thus
l log )
_pd log(an)—log(ay)
Zane { A } <1
n=1
and

M. ..
k—o0 Zj:l MEk/Oéj

Thus there exists a subsequence along which the relativeewof intervals in/; does not con-
verge toa;, and hence the sequeng€ ),y cannot be u.d. This proves the theorem. O
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CHAPTER 2. Uniform Distribution of generalized Kakutargsquences of partitions

Proof of Corollary?2.1.:

Proof:

The corollary is a special case of Theorem 2.1. By Remark@gdlition (i) is equivalent to
condition (1).

Furthermore, condition (i) is equivalent to (). Assunteat (1) holds, theny = ce™,1 — o =
ced? forg,r € Z,c € R, and thus

1 =ce™ + ce?™
1

S C=—F
GTA—{—qu

and
e 1

- erd 4 edh - ela=rA 4 17

Proof of Theoren?.2:

Proof:

Let thei-th interval ofr be denoted by; and leth. € N be the smallest number for whig« 7
contains only intervals of lengtk e. Then, following the proof of Theorem 2.1, the number of
intervals ofp"<7 which are contained if; is M., Which is given in (2.5). We denote by 4 (¢)

the number of intervals gf"<7 which are contained inl = [a, ] C I;. By [101, Theorem 2.7],
the sequences of partitions withipare u.d. Hence

(b —a)(m—1)Q1 (log (¢))
eH

Thus the relative number of intervals ihis given by

Ma(e) = +0 ((log(e))"e™ 7).

MA(e) _ (b—a)(m— 1231(10g(71)) +(’)((10g( ))def(lfn))
ZimiMejay st 0@ 0s(2) 4 o (ogoyte-t-m)

(b—a)Qs (10g (%)
Z] 15 Q1 (log (a

(=
) ( log(e) e_(l_”))
)

)+ ({log(e) 1)

Consider

(b—a)@1 (log (%)) (2.12)
> =1 @5 Q1 (log ()
(b — a)Ae~Mallog(ei)—log(e))}

S ajheMalos(es)—los(@))

- b-a . (2.13)

Sy ajexp (—A ({4 (log(ey) — log(e))} — {4 (log(cv) — log(e))}))
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CHAPTER 2. Uniform Distribution of generalized Kakutargsquences of partitions

For j # i, one easily sees that the functions

£1(6) = exp (-A ({log(aj)A— 10g(€)} B {bg(ai)A— log(¢) }>>

are piecewise constant with discontinuities at

e = aje ™ ande = aje*kA,

forall k € Z. By
fijlaze ™ 8 = fi i(aze k2,
figlaje ™) = fii(aje P,

for all k1, ky € Z, it follows that f; ;(e),0 < e < 1, only takes two different values, which are

exp (_A{log(@j) X log(cvi) }> and  exp (A{log(@z‘) j—\log(aj) }> .

Furthermore, for alk € Z

e t) = xp -1 {00 )

Fsfoge ) = oxp (1 { o8l st ).

By the above arguments it follows that the function

and

l
> ajfije),
j=1

wheref; ;(¢) = 1, can only take at mostdifferent values. Since all the functiorfs;(e),1 <
j < 1, attain their minimal value at the positionse ", k € Z, it follows that the quotient in
equation (2.13) is maximal at these positions and
Zl?(:nf Lo (])
limsup =————"2% — limsup
n—00 k(n) e—0

_Ma)
l

2 j=1 Meja,

= lim _Maleiep(=kA))
k—o00 ijl M(ai exp(—kA)) /o

— b—a

= log(c: )—lo o .
Zé-zl Qj exp (—A {W})

This proves the upper bound in Theorem 2.2.
To prove the lower bound in Theorem 2.2, we chodsey < 1 such that

Yo > max max {ozjeka | ozjffkA < ozl-} .
1<5<l k€eZ
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CHAPTER 2. Uniform Distribution of generalized Kakutargsquences of partitions

Then for alll < j < [ and for allk € Z the functionsf; ; attain their maximal value at the
positionsya,e**, and

o) — o fare) — exp (A {bg(ai) Xlog(aj) }) .

Therefore, the quotient in equation (2.13) attains its mali possible value at the positions
yoje PNk € 7, and

n—00 (n) e—0 Zj:l ME/ozj
= lim MaGoicxp(=hA))
k—o0 Zj:l M('Yaie_k/\)/aj
_ b—a
B log(a;)—log(a; .
Sy ajexp (A {W})
This proves the theorem. _
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Chapter 3

On the limit distribution of consecutive
elements of the van der Corput
sequence

3.1 Introduction

In the open problem collection on the web siteldrfiiform distribution theorythe following
problem is stated:

Let (¢5(n))n>0 denote the van der Corput sequence in ldageénd the distribution
of the sequencép,(n), gp(n + 1),...,¢p(n + s —1)),>0 in [0,1)5.2

The cases = 2 has recently been solved by Fialova and Strauch [37]. Thewestl that every
point (¢ (n), ¢p(n + 1)),>0 lies on the line segment
T {1 L 1 ! ]

1
y=r—1+-++ R TR vy

b pk+1’

for k > 0. Furthermore they could give an explicit formula for the ragyotic distribution
function of (¢y,(n), ¢p(n + 1)),>0 to calculate the limit

N—-1
tim 3 [an(n) — o+ 1) = 20
n=0

N—oco N

previously demonstrated by Pillichshammer and Steingdrd®0]. They also noted that the adf
of (¢p(n), pp(n + 1))n>0 is a copula.

In this article we solve the problem for the seque@gn), gp(n+1), ..., ¢p(n+s—1))p>o for

s > 2. A multi-dimensional extension of the van der Corput seqaén,(n)),>o, iS given by
the so-called Halton sequendey, (n), ¢y, (1), . - ., ¢p, (n))n>0 Which is uniformly distributed

'Problem 112 in the open problem  collection as of 11. Decembe2011
(http://www.boku.ac.at/MATH/udt/unsolvedproblems)pd
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CHAPTER 3. On the limit distribution of consecutive elenseat the van der Corput sequence

if and if the base$;1 < i < s are co-prime (see [53]). These sequences are well-stubjedts

in discrepancy theory, since they belong to the class ob#ledetlow discrepancy sequences. For
classical results in discrepancy theory, on low discrepagrjuences and the van der Corput
sequence see e.g. [26], [30] or [66].

Recently, several authors investigated the ergodic ptiegesf low discrepancy sequences, see
e.g. [48] and [84]. In the case of van der Corput sequence<#n be done using the so-called
von Neumann-Kakutani transformation, which will be dismb in the second section.

The outline of this article is as follows: in the second smttive define the van der Corput
sequence and the von Neumann-Kakutani transformationesadl their basic properties. In the
third section we state our main results on the distributibtyg(n), gp(n + 1), ..., ¢p(n + s —
1))n>o0-

3.2 van der Corput sequence and von Neumann-Kakutani trans-
formation

Letb € NandNy = NU {0}. Then for everyn € Ny, we can write
n= Znibi
120

wheren; € {0,1,...,b—1},7 > 0. The above sum is callgdadic representation of. Then;
are uniquely determined and at most a finite number; @re non-zero. Furthermore, every real
x € [0,1) has ab-adic representation of the following form

T = Z z;ib 1 (3.1)
i>0
wherex; € {0,1,...,b— 1},7 > 0. We callz ab-adic rational ifz = ab™¢, wherea andc are

positive integers and < a < b°. For allb-adic integers there are exactly two representations of
the form (3.1), one where; = 0,7 > ip and one where; = b — 1,7 > i for sufficiently large

1o € N. If we restrict ourselves to representations with# b — 1 for infinitely manys, then the
coefficientsz; in (3.1) are uniquely determined for alle [0, 1).

Forn € Ny we define the so-called radical-inverse function or Monna than): Ng — [0, 1)

by

dp(n) = p | Y b’ | =D nb

i>0 i>0

Note that¢,(n) mapsNy to the set ofb-adic rationals in0, 1), and therefore the image 8%,
undergy(n) is dense irf0, 1).

Definition 3.1 The van der Corput sequence in bade defined ag¢,(n))n>o.
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It is a classical result that the van der Corput sequenceifieronly distributed in[0, 1), see e.g.
[66]. Furthermore, its s-dimensional extension, the Halton sequence given by
(Pp, (n), - .., P, (n))n>0 fOr co-prime bases;, 1 < i < s, is uniformly distributed orf0, 1)°.
Properties of the van der Corput and the Halton sequenceeayenell-understood, since they
are so-called low discrepancy sequences, which are cetjedts in Quasi-Monte Carlo inte-
gration.

A second approach to define the van der Corput sequence igigythie von Neumann-Kakutani
transformatioriZ; : [0,1) — [0,1). For any integeb > 2 the inductive construction df; is as
follows: at first[0, 1) is split intob intervalsI} = [£, 1) fori = 0,1,...b— 1. Then the trans-
formationT? ,: [0, %52) — [1,1) is defined as translation &f into I}, ; fori = 0,1,...,b—1.
The next step is to divide all interval§ into b subintervals of the formi? = [, %) for
i=0,1,...b% — 1. Transformatiori : [0, 1’2b—51> — [, 1) is given as the extension @f
which translated? into 12 fori = 0,1,...,b — 1. Such a construction is called

! b2 —bti b2—btitl 2O _ _ :
splitting-and-stacking-construction and is illustrated=igure 3.1 forb = 2. Finally we define

the von Neumann-Kakutani transformationZas= lim,,,~ 77, 5. A plot of the transformation
T is given in Figure 3.2. By an observation of Lambert [68],][@&e also Hellekalek [53]) the
van der Corput sequence in bdsie exactly the orbit of the origin undér,, which means that

(T5'0)nz0 = (¢6(n))nz0, =2, (3.2)

whereT'z denotes the value of under aftem iterations ofT;,.

—
3
- 1
4
——
1 1
;_| 4 2
- T eammpmmmm > .
1 3 1 3
—_ —_ 1 — —_
2 4 2 4
] | | — ——
0 1 1 1 1 1
0 - 1 0 - - 0 -
2 4 2 4

Figure 3.1: The first two steps of a splitting-and-stackiogstruction in basé = 2.
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Figure 3.2: The von Neumann-Kakutani transformation irelbas 2.

For a proof of the ergodicity and measure-preserving ptaseof the von Neumann-Kakutani
transformation, see e.g. [38] or [39]. It follows from th@edicity of the von Neumann-Kakutani
transformation that7,'x),>o is uniformly distributed for almost every € [0, 1). Furthermore,
it can be shown that the von Neumann-Kakutani transformaisouniquely ergodic, which
implies that(7}'z),>0 is uniformly distributed for every: € [0, 1), see e.g. [48]. Moreover,
Pagés [89] showed that the orbit of the von Neumann-Kakutansformation starting at an
arbitrary pointz € [0, 1) is a low discrepancy sequence. Another possible genetializaf the
van der Corput sequence is the so-called randomized vanadpuGsequencél}’ X ),,>o where
X is uniformly distributed o0, 1), see [102].

Recently, Fialovd and Strauch solved the problem of cditgiathe limit distribution of the
sequenceéd,(n), ¢y (n + 1)),>0. They also concluded that the limit distribution is a copiiée
consider the multi-dimensional extension of this probl&w(3.2)

(¢5(n), do(n + 1)nz0 = (T30, T 0)nz0 = (130, T4(T3'0))n0-

By the fact that(7;'0),,>¢ is uniformly distributed ori0, 1) one can show théipy(n), ¢y (n +
1))n>0 is uniformly distributed on

I ={(z.y) : y = Ty},

Note thatI" coincides with the graph of the von Neumann-Kakutani tramsétion in Figure
3.2. In the next section we use this approach to find the linsiridution of (¢(n), ¢p(n +
1),...,¢p(n + s —1)),>o for arbitrarys > 2.
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3.3 The limit distribution of consecutive elements of the va der
Corput sequence

In the sequel we assume thats are fixed. Letl” denote the von Neumann-Kakutani transfor-
mation in baseé as described in Section 3.2. We define a mép: [0,1) — [0, 1)° by setting

t
Tt

y(t)=| T
Ts;lt
and

= {(z1,20,...,25) €[0,1)° 1z, =T 21,0 =2,...,5}

sl
©lw
alw
ol~
[iN

-~ e

Figure 3.3: Function graphs @ft, T?t andT°t. These curves appear as the two-dimensional
projections ofl” for larges.

The Lebesgue measukg on [0, 1) induces a measuteonI" by setting
v(A)=M({t: () € A}), AcCT.

Furthermorey induces a measureon [0, 1)* by embeddind" into [0, 1)®. More precisely for
every measurable subsBtC [0, 1)® we set

w(B) =v(BNT).
Theorem 3.1 The limit measure dfpy(n), dp(n +1),...,0p(n+ s —1))n>0 IS p.

Proof:
As mentioned in Section 3.2, we can rewrite

(p(n), pp(n +1),..., (045 —1))n>0 = (T70, T"0,..., T"710),>0
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= (T"0,T7(T"0),... ,Tsfl(TnO))nZ()-

Since(T™0),,>¢ is uniformly distributed o0, 1) andT is a measure-preserving transformation
with respect to\y, it follows immediately tha{7%(770)),,>0 is uniformly distributed orf0, 1)
fori =1,...,s— 1. Moreover, by constructiot?™0, T'(T™0), ..., T5~Y(T"0)),>o € I for all

n > 0.

Now consider a measurable sBt< [0,1)°. We define the empirical measure of the fifét
points of (770, ..., T~ Y(T™0)),>0 as

1
pn(B) = N#{O <n <N :(T"0,T(T™0),...,T5"YT"0)) € B}.
We have

1
lim pn(B) = lim <#{0 <n < N : (T"0,T(T70), ... ,T°1(T™0)) € B}

N—o0 N—oo

1
= lim N#{O <n < N:(T"0,T(T"0),...,T5"1(T"0)) € BNT}

N—oo
1 S
= lim —#{0<n < N:T"0 € Projection. (BNI)}
N—oco N 1

= A1( Projection, (B NT))
= v(BNT) = u(B)

where the fourth equation holds sin¢g"0),,>¢ is uniformly distributed orj0, 1) and since the
mapt — Tt is a bijection, and where Projectipr{A) denotes the projection of onto its first
coordinate. O

Remark 3.1 Note that the measurg is a copula on|0, 1]° for everys since every distribu-
tion function of a multi-dimensional sequengel, ..., z5),>o is a copula if the sequences
(21)n>0, - - -, (25)n>0 are uniformly distributed orf0, 1].

Remark 3.2 The setl" is a collection of countably many line segmentg(nt)®. Informally
speaking Theorem 3.1 means tli@s(n), ¢p(n + 1), ..., ¢s(n + s — 1)),>0 iS uniformly dis-
tributed onl".

Remark 3.3 By the unique ergodicity df’, the conclusion of Theorem 3.1 holds also for the
sequencéT™x, T(T"z),..., T 1(T"z)),>o for arbitrary = € [0, 1).

Remark 3.4 Another class of uniformly distributed sequences whichbeaseen as the orbits of
certain points under an ergodic transformation are seqesraf the forn{f{na}),>o, where{z}
denotes the fractional part afand« is irrational. In this case the corresponding transfornaeti
T is simply the rotatio’: z — 2 +a mod 1. It can easily be shown that the limit distribution
of consecutive elementsna}, {(n+1)a},...,{(n+s—1)a}),>o is the uniform distribution
on the curve which is given by

A~

f I:{(t7 Tt7 cee 77/—\‘871t)7t € [O’ 1)}
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However, since in this case the transformatiBrhas a particularly simple structure, the same
result can also be easily obtained using analytic arguments

35



Part |l

The discrepancy of Monte Carlo point
sets
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Chapter 4

Probabilistic discrepancy bounds for
Monte Carlo point sets

4.1 Introduction and statement of results

The numben* (s, €), which is defined as the smallest possible cardinality ofiatfset in[0, 1]°
having discrepancy bounded by is called theinverse of the discrepancyeinrich, Novak,
Wasilkowski, and Wozniakowski [52] proved the upper bound

n*(s,g) < Cabssg_27 (41)
which is complemented by the lower bound
n*(s,e) > CapsSE "

due to Hinrichs [55] (throughout the papet,s denotes absolute constants, not always the
same). Hence the inverse of the star-discrepancy deparatglii on the dimension, while the
precise dependence enis still unknown. It is easy to see that (4.1) is equivalerthfact that

for any NV ands there exists a sé2y of IV points in[0, 1]* such that the star-discrepanfy, of

this point set is bounded by

Di(Py) < cabw—“% 4.2)

(recently we showed that it is possible to choesg = 10 in (4.2), see [1]). The existence
of such a point set directly follows from the surprising atvag¢ion that a randomly generated
point set (that is, a Monte Carlo point set) satisfies therddsliscrepancy estimate with positive
probability. Of course, for applications such a mere eristeresult is not of much use, as was re-
marked by several colleagues at the MCQMC 2012 conferen8gdney. For this reason, in the
present paper we prove an applied version of (4.2), whichiges estimates for the probability
of a random point set satisfying (4.2) (depending on theevalithe constant). As our Theorem
4.1 below shows, this probability is extremely large alsefat moderate values af for exam-
ple for ¢ = 20. Additionally, the quality of our estimates for these proitiies improvesas the
dimensions increases (which is somewhat counter-intuitive, and oaigs from the exponential
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inequalities used in the proof, which cause a “concentmadfomass” phenomenon).

The fact that the probability of a random point set satigfy{d.2) is very large is in contrast
to the fact that no general constructions of point setsfgatg such discrepancy bounds are
known. So far, the best results are a component-by-compaoastruction of Doerr, Gnewuch,
Kritzer and Pillichshammer [27], a semi-deterministicalthm based on dependent random-
ized rounding due to Doerr, Gnewuch, and Wahlstrom [28],andnstruction of Hinrichs of a
“structured” set ofN = 1528 points in dimensiors = 15 having discrepancy less than 1/4 (by
this means solving one instance of an open problem in [33]).

For more information concerning the inverse of the disanepand tractability of multidimen-
sional integration we refer to a recent survey article of aneh [46], and to the monograph of
Novak and Wozniakowski [32, 33]. A collection of open pretnls on this topic can be found
in [51].

In the present paper, we will prove the following theorem.

Theorem 4.1 Foranys > 1, N > 1 andq € (0,1) a randomly generateg-dimensional point
set(zy,...,zy) satisfies

log (1-¢)7Y) /s
- N (4.3)

Dy (z1,...,2n) < 5.70\/4.90 +

with probability at leasy.

It is interesting that the quality of the discrepancy estaria Theorem 4.Improvesas the di-
mensions increases; for example the necessary numbgs) to have star-discrepancy bounded
by c(q, s)s'/2N—1/2 with probability at least 90% is 15.30 in dimensien= 1, while it is only
12.65 in dimensiors = 100. However, neglecting this advantage of large dimensiorwdier
to obtain a result which holds uniformly i#) one immidiately obtains the following corollary.

Corollary 4.1 Foranys > 1, N > 1andq € (0, 1) arandomly generateg-dimensional point
set(zy,...,zy) satisfies
Vs

Di(z1,...,2n) < 5.70,/4.90 + log ((1 — q)_l)\/—ﬁ (4.4)

with probability at leasy.

Theorem 4.1 shows that the probability that a random poingatisfies the discrepancy bound
c(q, s)s'/2N~1/2 is extremely large already for moderate values(qf s). The following table
illustrates this fact, fos = 10 ands = 100.

q 0.01] 05] 0.9] 0.99]0.999
c(q,10) | 12.62] 12.71| 12.92| 13.20| 13.48
c(9,100)| 12.62] 12.63] 12.65| 12.68| 12.71
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As the table shows, the probability that a random point set‘tmmall” discrepancy in the sense
that its discrepancy is bounded by'/2N—1/2 for some moderate (for example,c = 20)

is extremely large. This observation is an exciting coya#rof the fact that we do not have
the slightest idea of how to construct point sets satisfigngh discrepancy bounds, even for
moderateV ands. It should also be noted that calculating the star-diserepaf a given (high-
dimensional) point set is computationally very difficukteg41,47]. Hence, although our results
show that the probability of a random point set having smiatirg@pancy is very large, checking
that a concrete point set satisfies such discrepancy bosndgyeneral (in high dimensions) a
computationally intractable problem.

4.2 Preliminaries

Throughout the papes, > 1 denotes the dimension anddenotes the-dimensional Lebesgue
measure. Fog,y € [0,1]%, wherex = (z1,...,x5) andy = (y1,...,ys), we writez < y if
x; < y;, 1 <i<s,andforanys € [0,1]° we write [0, x| for the set{y € [0,1]* : 0 <y < z}.
Furthermore, we writ¢A| for the number of elements of a sét

The following Lemma 4.1 of Gnewuch [43, Theorem 1.15] is a@@rngredient in the proof of
our main result. For convenience we use the notation frorhdAa [44]: For any < (0, 1] a set
I" of points in[0, 1]? is called &-cover of|0, 1]° if for everyy € [0, 1]° there existr, z € TU{0}
such thatr < y < z andA([0, z)) — A([0,z)) < 6. The numbetV (s, §) denotes the smallest
possible cardinality of &-cover of|0, 1]°.

Similarly, for anyd € (0, 1] a setA of pairs of points fron{0, 1]° is called a’-bracketing cover
of [0, 1]*, if for every pair(z,z) € A the estimate\([0, z)) — A([0,z)) < ¢ holds, and if for
everyy < [0, 1]° there exists a paifr, ) from A such thatr < y < 2. The number\V; (s, d)
denotes the smallest possible cardinality éflaracketing cover ofo, 1]°.

Lemma 4.1 Foranys > 1 andé € (0,1]
N(s,8) < (2e)*(67L 4+ 1)

and
Ni(s,9) < 25 e (671 + 1),

By Lemma 4.1 for anyl < k < K there exists @ *-cover of[0, 1]*, denoted by[';, such that
Tk < (2e)%(2F +1)%.
Furthermore we denote b a2~ - bracketing cover for which
IAx| < 25715 (2K 4 1),
which also exists due to Lemma 4.1. Moreover we defigeas

'k ={ve[0,1)°: (v,w) € Ak for somew}.
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By definition for everyz € [0, 1]® there exists a paifvyx, wx) = (vk(z), wk (z)) for which
(vi,wg) € Ak such thatx < x < wg and

1
A0, wx]) = A, vi) < 5
Furthermore for everys, 2 < k < K andy € Iy there existuy_1 = vr_1(7), wxg—1 =
wi—1(7), Vk—1,wk—1 € L1 U {0}, such that,_; <~ < wy_; and

A0, we-1]) = A0, V1)) < -
We define
pr(z) = vk(2)
pr-1(z) = vk-1(pr (7)) = vrk-1(vK(T))
pr—2(%) = vk-2(pr-1(2)) = vk —2(vk-1(vK (7))
pi(z) = wvi(p2(x)),
and

Forz,y € [0,1]° we set

No,a] if @ 0,

y
[z, y] :{ Y ifz=0,y#0,
0 if x =y=0.

Then the sets

are disjoint, and we obtain

U me@mn @l < 2] < U me@men @, Ve € [0,1)°
k=0 k=0

Hence for every:, y € [0, 1]*

K-1

K
P 1[Pk(9€)7pk+1($)} %) < Lpa(y Z: [pr@) peri @] Y )- (4.5)

Moreover, independent af, we have fol) < k < K

M@ @) < o

N
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For0 < k < K we defineA;, to be the set of all sets of the form

[Pk (7), Prr1 ()],

wherez € [0,1]°. Then for0 < k < K, as a consequence of Lemma 4.1, we can bound the
cardinality of A;, by

4] < (2e)7 (241 + 1)8 . (4.6)

Note that all elements o, where0 < k < K, have Lebesgue measure bounded!t)/y This
dyadic decomposition method was introduced in [1], wheigdescribed in more detail.

Let X1,..., Xy be independent, identically distributed (i.i.d.) randoariables defined on
some probability spacé&?, .4, P) having uniform distribution orf0, 1]°, and let/ € A for
somek > 0. Then the random variablds (X;),...,1;(Xy) are i.i.d. random variables, hav-
ing expected value
A(I)
and variance " o
9 2781 — 27 ork>1,
A = MI)" < { 1/4 for k = 0. .1
Since theX,, are independent it follows that the random variable
N
Z 1I(Xn)
n=1

has expected valu& \(I) and varianceV (\(1) — A\(1)?).
In the proof of our main result we need two well-known restriten probability theory, namely

Bernstein’s and Hoeffding’s inequality. Bernstein’s inatity states that foeZq, ..., Zy being
i.i.d. random variables, satisfyiig~Z,, = 0 and|Z,,| < C a.s. for some&' > 0,

t2
: ( - t) = (2 (=N E22) +2Ct/3) '

By applying this inequality to the random variableg X,,) — A(I), we obtain

'

fort > 0. Using (4.7) we conclude

N

>,

n=1

N
Z 1I(Xn) - N)‘(I)
n=1

t2
> t) < 20xp (‘2 (NX(I) (1= A(I))) + 2t/3>

t2
t) <2exp (- for &> 2.
~ )- eXp( 2N2k(1—2k)+2t/3> or k=
(4.8)

N
Z 1I(Xn) - N)‘(I)
n=1

p<_
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Fork € {0, 1} we use Hoeffding’s inequality, which yields

P ( ] > t) < 2exp (-%2) . (4.9)

N
> 1(Xn) = NA(D)
n=1

4.3 Proof of Theorem 4.1

Since the theorem is trivial faN < 32 (s +log (1 —¢)™")) < 5.70% (s +1log ((1 — ¢) 1))
we assume tha¥ > 32 (s + log ((1 — ¢)~')) and set

o _ {logzN —log, (s +1og ((1 — q)_l))-‘ .

2

ThenK > 3, and

9K VSHOS;&%— D) ¢s+10g¢(](v1—q)‘1)]_ (4.10)
Furthermore we have
VN = N5 < 20s (4.11)

VN = /s+log((1—q) 1)

By choosingt = ¢v/sN for somec > 0, we conclude from (4.8), (4.9) and (4.11) that for any

c>0
IP)(

2e—2¢s fork =0,1

N
Z lf(Xn) - N)‘(I)
n=1

> C\/S_N>

< 4,12
- 2 exp Py Srv— c?s L for2 <k<K. ( )
. ( B )+3\/s+log((lfq)*1)
LetBi,k=0,...,K be given as
N
Be= ( 17(X,) — NA(ID)| > cm/sN). (4.13)
IGAk n=1

The strategy of the proof is to find constanisk = 0, ..., K for which

K
Y P(By) <1l—gq
k=0

holds for any givery.
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First we consider the cage= 0. By (4.6) we have that
|[Ao| < (6e)°.

We choose

0 \/ L+10g(6)  log (801 —)7)

2 2s
1 1 1—¢g) !
- _\/4_88+M7
V2 $

thus together with (4.12) and (4.13) it follows that

P(Bo) < ’A0‘26_26(2’8 _ (66)526—5(1+10g(6)) (1 — Q) _ 1- q.

Furthermore we get by (4.6) that
|A1| < (10e)®

and with

\/1 + log(10) N log (8(1 —¢)~1)

“ 2 25

1 log (1-¢)71)
< %\/5.39 =,

we obtain that

P(By) < |Ay[2e-25 — (10¢)2¢—*(+1os10) (L= 9) _

Next we consider the cage< k < K. By (4.6), (4.12) and (4.13) we have

CrS

P(By) < [Ag|-2-exp | —

2. 2—k(1 _ Q—k) + 4cp2-K /s

We set

o = \/1 ©log(2(28 1 4 1)) + 28 DA -9 \/2 L9-k(1 — 2k) 4

S
hence we get that

cry/'s
Vs +1log ((1—q)~1)

(4.14)
8 4
(4.15)
l-¢q) 1-g¢
8 4 -
2
(4.16)
3y/s+log((1—q)~1)
2.08-4.2-K
2.08-42-K

IN

\/1+10g(2(2k+1 +1))+10g(2(k+1))+1og((1§q)*1)\/2.27k(1_ka)+

1+ log((lgq)‘l)
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2.08-4-2-K

< \/1 + log(2(2F+1 + 1)) + log(2(k+1))\/2 227k(1 —27F) + 3

<2.08

for2 < k < K. Thus by (4.16) we obtain

cis
Co—k(1 _ o—k dep2— K /s
2-275(1-27%) + 34/s+log((1—¢)~1)

< (2¢)°(2%FD +1)° .2 exp (‘S (1 +log(2(2* 1 + 1>)>) 21<k_+1q>

P(By) < |Ag|-2-exp | —

1—g¢q
2k -

Summing up the estimated probabilities gives

K
ZIP’(B,QS( +22 ) (1-¢q)<1—q.
k=0

Therefore with at least probability, a realizationX; (w), ..., X, (w) is such that

K
w ¢ U By,.
k=0

We denote by, a point set which is defined by such a realization, i.e.

K
Zn=Xp(w), 1<n<N, forsomew ¢ UBk'
k=0

Set

e = \/2 -27k(1 —27F) +2.08 - 4-2-K/3.
Then

2o}

log(2:+D (1 — ¢)71)

1+ log(2(2F+1 + 1)) + .

log(2(++1)) L g (1= g)7h)
S S

log ((1 —q) Y

\/ +log 2 + log(2k+1) +0.12 +

MN i MN i MN

IN

1.12 + (2k + 3) log 2 +

log (1 —¢q)~ i
112+ 7log2 4+ —= =~ )
+ 7log2 + - 1;:

Qu
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log (1 —q)-1
< 3.28\/5.98 n M.

Therefore we obtain by using (4.14), (4.15) and (4.17)

log (( log (1 —¢)~")

- f\/5 39 + -
log (1-¢)1)

ck <— 488 + —————=

+ 3.28\/5.98 +

Applying (4.5), (4.10), (4.18) and Jensen’s inequality voéam

Zl[Ox Zn) <ZZ [Pk (@) Prt1 ()] (2n)

k=0n=1

< NA([0, wg (2)]) + \/WZ%
k=0

K
< NX([0,2])) + NA([z, wi (2)]) + VSN Y ex
k=0
— K
< NA([0, %)) +N\/S+log\/(](_\; —9)7) +\/S—Nkzock

K _
< NA([0,2]) + VsN (Z cp + \/1 L (Sl ) 1))
k=0

< NA([0,2]) + 5.70\/4.90 + M\/ﬁ.

Similarly a lower bound is given by

N K-1 N
> Toa(en) = Y0 D gy ()
n=1 k=0 n=1

ZN)\([O pK \/_ch

K-1
> NA([0,2]) — NA <[pK(ac),:U]> VN Y ¢
k

0
> NA([0,2]) — 5.70\/4.90 Lle(=0) x5

S
Combining the above bounds we finally arrive at

log (1-¢q)71) Vs

Di(21,...,2) < 5.70\/4.90+ .
VN
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Monte Carlo methods in asset pricing
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Chapter 5

Probabilistic error bounds for the
discrepancy of mixed sequences

5.1 Introduction and statement of results

A common notion to measure the regularity of point distiitns is the so-called star discrep-
ancy. Roughly speaking, the star discrepancy comparesetative number of elements of a
point set, which are contained in an axis-parallel box, éosblume of this box, and finally takes
the maximal deviation over all possible boxes. The QuasiddCarlo method for numerical
integration is based on the fact that the difference of tkegial of a function and the arithmetic
mean of the function values at certain sampling points caedtiemated by the product of the
variation of this function and the discrepancy of the setamfigling points. Therefore point sets
having a small star discrepancy can serve as a tool for noaténtegration, a method which is
frequently used for the evaluation of high-dimensiona¢gnals in applied mathematics. Many
constructions of low-discrepancy point sets only providedybounds for the discrepancy if the
number of points is large (in comparison with the dimensidijis led to the development of
the so-called randomized Quasi-Monte Carlo method, whiieh to combine the advantages of
the (deterministic) Quasi-Monte Carlo method and the atdges of the (random) Monte Carlo
method. For an introduction to discrepancy theory and igdiegtions in numerical mathemat-
ics we refer the reader to the books of Dick and Pillichshami2@], Drmota and Tichy [30],
Kuipers and Niederreiter [66] and Glasserman [42].

To formulate our results in a precise way we need some natafie write (=1, ..., z(%)) for
the coordinates of a point € [0, 1]°. We writez < yif () <y for1 < i < s. We write 0 and
1 for the points(0, ...,0) and(1,...,1) in [0,1]°. Fora € [0,1]® we define ans-dimensional
interval [0, a] as the sefz € [0,1]° : 0 < z < a} (which is ans-dimensional axis-parallel box).
Let (x4,...,2xn) be a sequence of points in thedimensional unit cube. The star discrepancy
Dy of (z1,...,zy) is defined as
| X
D}k\;(acl,,,,,xN) = Ssup Nzl[o,a}(xn)_)‘([ova]) :
a€l0,1]® el
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Here and in the sequeldenotes the Lebesgue measure. For simplicity we \i¥jf{¢x,, ) instead
of Dy (z1,...,zN). If (z,)n>1 is aninfinite sequence, we wrife}, (z,,) for the discrepancy of
the firstV elements ofz,,),,>1.

The importance of discrepancy theory in numerical mathes &t based on the Koksma-Hlawka
inequality, which states that for a sequerteg, ..., zy) of points in[0, 1]* and a functionf
having total variatiorVar f on [0, 1]° (in the sense of Hardy and Krause)

N

=3 F ) - /O f(x) da

n=1

< Dy (zy,) - Var f.

There exist many constructions of so-called low-discrepaequences, i.e. sequen¢es),>1
for which
Di(x,) < (logN)*N~!  as N — oo (5.1)

(this should be compared with a result of Roth [92] whichestahat every infinite sequence
of points from|0, 1]° has discrepancy> (log N)*/2N~! for infinitely many N; this has been
slightly improved by Beck [11] and Bilyk, Lacey and Vaghaakhan [13], but the precise min-
imal asymptotic order of the discrepancy is still an operbfmm). Sequences of this type are
only of practical use if the number of sampling poidisis “large” in comparison with the di-
mensions; in particular the right-hand side of (5.1) is increasing f6 < e°. On the other hand,
the so-called Monte Carlo method (which uses i.i.d. rangayeherated points instead of deter-
ministic points) gives an probabilistic bound of asymptatiorderN —1/2, independently of the
dimension. This led to the development of randomized QMEgration schemes, which try to
combine the advantages of (random) MC and (deterministdCQThere exist several meth-
ods for “randomizing” QMC rules; see for example Hickerrjb#], Matousek [76], Owen [86]
and L'Ecuyer and Lemieux [70]. In this paper we considalimensional sequences which are
constructed by concatenating the coordinates étdamensional QMC sequence and an d-
dimensional MC sequence. Sequences of this type are cafle@d” sequences, and have been
investigated e.g. by Spanier [96], Okten [82, 83] and Rd8@4 Extensive numerical exper-
iments have been carried out by Okten, Tuffin and Burago [#8) showed that the use of
mixed sequences can significantly improve the efficientyhef @MC method in applications
from financial mathematics.

Let (¢n)n>1 be ad-dimensional QMC sequence, and(éf,),,>; be a sequence of i.i.d. random
variables having uniform distribution o0, 1]*~%. We write (x,,),>1 for the sequence which
consists of the points,, = (¢,, X,,), i.e.z, = (qﬁf),...,qﬁd),Xy(Ll),...,X,SS*d)) forn > 1.
Okten, Tuffin and Burago [85] showed that for such a sequanagr the additional assumption
D3, (gn) — 0, for arbitrarye > 0

P (D (2n) < Di(gn) +) > 1—2e=N/? (5.2)

for sufficiently largeN (in [85, Theorem 5] the exponent2¢% N appears, but as Gnewuch [45]
remarks, the proof only givese?N/2). Their paper contains no information on the size of the

48



CHAPTER 5. Probabilistic error bounds for the discrepanfoynixed sequences

values of N for which (5.2) holds. Gnewuch [45] showed that
P (Di(zn) < Di(qn) +2) > 1 — 2N (s,¢/2)e~= N2, (5.3)

whereN(d, 0) is defined as the smallest number for which there exists a sét of M points
in [0,1]* such that for ally € [0,1]° there existz,z € T' U {0} such thatr < y < z and
([0, 2]) — A([0, z]) < 6 (the sefl" is called aj-coverof [0, 1]*, and the numbeN the covering
numbej. By [43, Theorem 1.15]

N(s,0) < (2e)°(67 L +1)%,
and therefore (5.3) implies
P(Dy(zn) < Dy(gn) +€) > 1—2(2¢)%(2/e + 1)36*52]\”2. (5.4)

In dimensions = 2 Gnewuch [44] proved a stronger upper bound for covering rargkand
conjectured that in all dimensions

N(s,0) <257° + 0s(67%).

(whereos means that the implied constant may depend)oihis would lead to an improve-
ment of (5.4).

We will also need the notion af-bracketing coversLet § € (0, 1]. A finite setA of pairs
of points from[0, 1]° is called aj-bracketing cover of0, 1]°, if for every pair(z,z) € A the
estimate([0, z]) — A([0,2]) < & holds, and if for every € [0,1]* there exists a paifr, z)

from A such thatr < y < z. The number/\/H(s, 9), which is called thebracketing number
denotes the smallest cardinality of-dracketing cover ofo, 1]°. By [43, Theorem 1.15]

Njj(5,8) <2718 (571 + 1)°.

Gnewuch’s result (5.3) has the advantage of being validifaNa> 1. However, (5.2) is asymp-
totically stronger than (5.3) (a¥ increases, for fixed). On the one hand, the purpose of this
paper is to show an improved version of (5.2), which is alnopgimal. On the other hand, we
want to show that the factar—° in (5.3) and (5.4), which essentially comes from the netgssi
to discretize the discrepancy with respect to a grid of gienie, is not necessary and can be
replaced byy® for an appropriate constant This might be surprising at first sight: the impact
of the necessity to discretize the discrepancy with reqpeztertain (possibly extremely close-
meshed) grid does not depend on the accuracy of this grid.

More precisely, we will prove the following theorem:

Theorem 5.1 Let (¢,,),>1 be ad-dimensional sequence, and IgX,,),,>1 be a sequence of
i.i.d. random variables having uniform distribution ¢ 1]*~¢. Let(z,,),>1 denote the mixed
sequence which consists of the points = (¢,, X,,). Then for every; > 0 there exists a
constanty = «(n) such that for every > 0

P (D (2n) < 2D (gn) +2) > 1 —y e 207N, (5.5)
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In (5.5) we can choose
~ = % [4loga(3/n)+2logy 7T (5.6)

As a direct consequence of Theorem 5.1 we obtain the follgwarollary, which is an improve-
ment of the result of Okten, Tuffin and Burago (5.2).

Corollary 5.1 Assume thaDy,(¢,) — 0, and letn > 0 be given. Then for arbitrary > 0
P (D () <e) > 1— e 20N

for sufficiently largeN .

Proof of Corollary 5.1: Letn > 0 be given, and lefy be so small thatl — /)3 > 1 — 7. Since
D} (gn) — 0 we haveD} (¢,) < ne/2 for sufficiently largeN. Thus by Theorem 5.1

P(Dy(zn) <€) = P(Dy(zn) <2Dy(qn) + (1 —1n)e)
> 1 7(77)86—2(1—7?)((1—7‘7)8)%
> 11— 672(1777)62]\[

for sufficiently largeN. This proves the corollary. O

Remark 5.1 Theorem 5.1 and Gnewuch’s result (5.3) both give probatiliro for
e < s1/2N—1/2

It is clear that a result like Theorem 5.1 can not give a pasitprobability for all possible
d>1, s > dande > 0, since this would imply (by choosinlg= 1 and(q1, . . ., gn) such that
D} (¢n) = 1/N) the existence of as-dimensional sequende, ..., zy) with discrepancy
< 2/N + ¢ for arbitrary s and N, which is in conflict with Roth’s result. In fact the bound
s1/2N—1/2 might be crucial: it is know that for allv > 1 ands > 1 there exists arV-element
sequence having discrepansy 10s'/2N~1/2, but it is unknown how far this upper bound is
from optimality. For more information we refer to [1], [52]ral [55].

Remark 5.2 Gnewuch [45, Remark 3.4] showed that in every bound of tha for
P (D (wn) < Dyv(aa) +¢) 2 1= f(s,e)e = V2

the functionf (s, ) has to grow at least exponentially #(this follows from a general result of
Heinrich, Novak, Wasilkowski and Wozniakowski [52]). idsexactly the same argument it can
be easily shown that every functigiis) replacing the factory® in our Theorem 5.1 (for some
fixedn) has to grow at least exponentially in Thus the only possible improvement of Theorem
5.1 with respect ta is a reduction of the baseg of the termy®.
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Remark 5.3 For any dimensiond > 1 ands > d it is impossible to find constants> 0 and
~ > 0 such that for arbitrarys > 0

P (Dy(xn) < 2Dk (gn) + ) > 1 — 4t 204meN

for sufficiently largeV. Thus the exponer{(1 — 7)e2N in Theorem 5.1 can not be improved to
2(1 + n)e?N (a proof of this remark will be given at the end of this paper).

Remark 5.4 Our corollary shows that it is possible to obtain an asymigtotder ofe—2(1-me*N
(for ¢ fixed, asN — oo) for arbitrarily small » > 0. However, ag; gets smaller the necessary
value of the constant in (5.5) and (5.6) increases , and in particular— oo asn — 0. We are
not able to decide whether it is possible to improve Theordnicb

P (D (xn) < 2Dk (gn) +) > 1 — 42N

for some constany. Summarizing these results, we know for every 0 that an asymptotic
order ofe~2(1=m=*N js possible anad ~2(1+7=*N js impossible, while the “critical” case ~2¢*~
remains open.

Remark 5.5 There are two differences between Theorem 5.1 and Gnewashik (5.3). On the
one hand, our bound for the discrepancy®is}; (¢, ) + € instead ofD3}, (g,,) + . The additional
term Dy (g,) comes from the interval partitioning method which is use@un proof, and it
seems that this extra term can not be avoided. In applicattbis should not cause problems,
since the deterministic sequen@g )i<»<n is chosen in such a way thaty, (¢,) is very small,
wherease can not be arbitrarily small (see Remark 1). On the other hame can avoid the
factor e7% from Gnewuch’s result, which can have a significant contidu particularly for
large values ok.

5.2 Preliminaries

We will use Hoeffding’s inequality and Bernstein’s ineqtigltwo classical inequalities from
probability theory.

Hoeffding's inequality: For Z1, ..., Zy being independent random variables, satisfying
|Z,| < ba.s.forsome < b, b—a <1,

N
P ( S (Zn—EZy)| > t) < 9¢72t%
n=1
Bernstein’s inequality: For 71, . .., Zx being independent random variables, satisfyjifig —
EZ, <1las,
N t2
]P’(Z(Zn—EZn) >t>§26Xp - =
o 2 (SN EZ2) +2t/3

The following lemma will be needed for the proof of Remark 3:
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Lemma5.1 Let(Z,),>1 be independent, fair Bernoulli random variables. et 0 be given.
Then there exists any = £¢(n) such that for every fixed € (0, ¢g) for all sufficiently largeN

N

n=1

Proof: To simplify notations we assume w.l.0.g. thdY is an integer. Ley be given, and set

pzp<§:znzN/2+sN>.

n=1

By Taylor’s formula we have for sufficiently small
log(1/2 +¢) >log1/2 + 2 — (1 +n)e?

and
log(1/2 —¢) >log1/2 — 2 — (1 + ).
By Stirling’s formula for sufficiently largeV

(hen) > o
N/2+eN) = 22rN(N/2+eN)N/2+eN)(N/2 — eN)(N/2=2N)

v

N NN
(=)
(N/2 + eN)(N/24eN) (N /2 — e N )(N/2=¢eN)
and therefore, also for sufficiently largeé,

N 1/N
N\ 1
1/N _ il
k=N/2+eN

N 1 1/N
> -
> (s on)ov)
NN

N 1/N
N (N/2 4 eN)(N/2+eN) (N /2 — e N )(N/2—=eN)N

,7752 < 1 )
‘ (1/2 4+ ¢)1/24e) (1/2 — )(1/2-2)2
o 1E’ exp ( —(1/2 +¢)log(1/2 +¢) — (1/2 — €)log(1/2 — &) — log 2)

e exp ( —(1/24¢)(log1/2 + 2 — (1 +n)e?)

v

v

—(1/2 — )(log 1/2 — 2 — (1 +1)e?) — log 2)
= ¢ exp ( —(2+ 77)82).
Thus for sufficiently largeV

pzexp(—2(1—|—?7)62N). O
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5.3 Proof of Theorem 5.1

We use a refined version of the dyadic partitioning technigyé]. Let N > 1, > 0,7 > 0
and a parametei > 10 be given f will be chosen as a function af, see equation (5.26) be-
low). For simplicity we assume thatis an integer.

Let (¢n)n>1 be ad-dimensional sequence, and write for the (d-dimensional) star discrep-
ancy of (¢n)1<n<n. Let Xi,..., Xy be ii.d. random variables defined on some probability
space(Q2, A, P), having uniform distribution o0, 1]*~¢, and write(z,,)1<,<n for the mixed
sequence which consists of thalimensional points:,, = (¢,, X,,). We will use the estimate

(2e)°(2F +1)° < elh=Ds, (5.7)

which holds for allk > p (since we assumed > 10, and since of course > 2).

Assume now that

e>27H (5.8)
and letI" be a2~2#-cover of[0, 1)* for which
2us
#F < (26)8(22“ + 1)3 < 6(2;;—1)5 < GT

Then, using Gnewuch’s method from [45] and Hoeffding’s imady we can easily show that
P (Dy(zn) < D+e+272) > 1-2e 2 N(#I)

5.2
> l_eQMse 25N7

which by (5.8) implies
P (Di(zn) < D+e+e27H) > 1— e 2N, (5.9)
For the rest of the proof we assume that instead of (5.8)
e<27H (5.10)
holds (which is the much more difficult case). Additionallg @ssume that

NI
o (5.11)

(this additional assumption will be dropped later). Let

>

K=K():= min{kz 1: 27k/2p=1/2 gs}.

Then
2 K212 <o <. 07 K2K-1/2 (5.12)
andy > 10 implies
K > p+ 15> 25. (5.13)
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By (5.12) and (5.13) we havi& X > 2. Thus by (5.10) and (5.11)
K <logy(e7%) <logy(2N/sp) < logy(N/10) < 2NV4 < 32N < 271#2:N.  (5.14)
Forp < k < K —1letTy, be a2~ *-cover of[0, 1%, for which
4T < (2€)°(2F + 1), (5.15)
Let A denote &2~ X -bracketing cover ofo, 1]* for which
#Ar < (2¢)°(2F +1)°. (5.16)

Such setd", and Ak exist by a result of Gnewuch [43, Theorem 1.15]. For notali@onve-
nience we also define

'k ={z€0,1°: (z,y) € Ak for somey € [0,1]°}

and
ki1 ={y€[0,1]°: (z,y) € Ak for somez € [0,1]°}

For everyx € [0, 1]° there exists apaipx, pr+1) = (P (x), prx+1(x)) forwhich (px, pr+1) €
Ak such thapyx <z < pg41 and

A([O’pKJrl]) - )\([0,])[(]) < % (517)

For everyzr € [0,1]° andk = K, K — 1, ..., 1+ 1 we can recursively determine pointg_; =
pr—1(x) € Tx—1 U{0}, such thapy_;(x) < pr(x) and

1
A([0, p&]) — A([0, p—1]) < oF—1°
For notational convenience we also define

Pu—1 = 0.

We define forz, y € [0,1]°

[0,y]\[0, 2] if 250
[0, y] if =0, y#0.

[x’y] :{
0 if z=y=0.

Ii(z) == [pe(v), prr1(@)], p—-1<k<K,

are disjoint, we have

Then the sets

1

K- K
U L@ clozlc | ),
iy

k=p—1 k 1
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and for allz, y € [0, 1]°

T
>

]_Ik( )( )< ]-Om] Z ]_[k (5.18)

k=p—1 k=p—1

Il
=

Foru —1 < k < K we write A, for the set of all sets of the for,(z), wherez can take any
possible value fronf0, 1]°. Then by (5.7), (5.15) and (5.16);, contains at most

#Tppq < (5.19)

elements. All elements oA, wherey < k < K, have Lebesgue measure bounde@bﬁl. The
elements ofd,,_; can have Lebesgue measure between 0 and 1.

Foranyk € {u, ..., K + 1} we will represent the numbegg € T’y in the form(uy, vg), where
uy, € [0,1]% andwy, € [0,1]*~¢, such thap;, has the coordinate{&,(:), .. u,(C ),v,(cl), ..,v,(f*d)).
We write Uy, and Vj, for the intervals0, ux] and [0, vg], and (Ug, Vi) for the setdJ, x V, =
[0, pr]. Everyz € [0,1]* uniquely determines points, € I'y, © < k < K + 1, and hence the
according values ofy, uy, vi, Uy, V). are also uniguely defined.

For two setsl, | € A, andl, € A we write I,_; < I} if there exists an: € [0, 1]° such
thatl = I(x) andl_; = Ix_1(z). For everyl, € Ax, u < k < K there exists exactly one
elementl;, _, of Ap_; for which I, _; < I. EveryI; € Ay, u < k < K uniquely determines
setsl,_1,...,I,—1 such that/,_; < --- < I}y < I;. Wheneverl} is fixed we will write
1,1 ..., I;_ forthese sets, which are uniquely determined,and;, v;, U;, vV, p <1 < k-1
for the according values, which are also uniquely deterthine

Everyl, € Ax, n <k < K, is of the form

(Uk+1, Ver )\ Uk, Vi) = ((Ug+1\Uk) X Vir1) U (Uk, X (Vier1\Vi))-

Everyl,_; € A, is of the form[0, p,| = (U, V,.).
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Px+1

X e

Pk

p,u+1

5, .

Vu+l

Figure 5.1: An illustration of our construction in the cake- 1, s = 2. A pointz € [0,1]? is
given and determines points, p,+1,-..,px+1 andsetd,,_ < I, < --- < Ix. For exempli-
fication we have also marked the sétgandV,, . Every setl;,, u < k < K, is of the form

(Uk+1, Ver ) \(Uk;, Vi) = ((Ug+1\Uk) X Vir1) U Uk, X (Vier1\Vi))-

Step by step we construct a functidi/) for intervals! from A,,_1, ..., Ak, such that for every

I the function valueS(I) is a subset of 1,. .., N} (we explain the necessity of this functish

in the footnoteé).

Firstly, let/,_, € A,_1. ThenI,_, is of the form(U,, V,,), and we can findNA(U,) — ND]
indicesn from {1,..., N} for which ¢,, € U,. This is possible since the discrepancy of
(gn)1<n<n is bounded byD, and hence the intervél, of Lebesgue measupgU,,) contains at
least| NA(U,) — N D] points of(g,)1<n<n. Denote this set of indices ty(1,,).

In the next step lef,, denote an element of,,. Thenl, is of the form(U,,, V,,)\I,—1, where
I, 1 €A, yandl,_y < I,. We can find NA(U,+1\U,)] indicesn which are not contained
in S(I,-1) but for whichg,, € U,41. We write S(1,,1) for this set of indices.

1Our proof is based on the decomposition of the unit cube iattspand the fact that an arbitrary interval can be
written as an union of sets of quickly decreasing Lebesguesare. However, in our situation this method can only
be directly applied if the number of elements(gf,)1 <<~ in a subset/ of [0, 1]% is~ A(U)N. Unfortunately, this
is not necessarily the case: the sétsve consider can be written in the forit\U ~ for some axis-parallel boxes
U™ andU~. Thus, if the discrepancip of (gn)1<n<n Is large in comparison with (U), the number of elements
of (¢n)1<n<n~, Which are contained i&v (which can be any number frofN\(U) — 2N D, NA(U) 4+ 2N D]) can
be much larger thatw\(U) (and this may hold not only for one, but for several of the seét&ch we need in our
decomposition!). To solve this problem, we distribute thai¢es{1, ..., N} to the sets in our decomposition in an
appropriate regular way, instead of assigning them diy¢otthe sets to which they actually belong.
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Generally, assume that the functiSris defined for all intervals i, for k = p—1, i, . .., mfor
somem. LetI,,, 1 denote an element of,,, 1. Thenl,, ; is of the form(Uy, 12, Viny2)\({u—1U
I,U---Uly),wherel, € Ayfork=p—1,... mandl,_; <--- < Iy, < I,. We can
find | NA(Up42\Unm+1)] indicesn which are not contained iUJZL:M_1 S(Iy), but for which
qn € Upt2. We write S(Iy1) for this set of indices.

Proceeding in this way we define the functi6rfor all elements ofd,,_+,..., Ag.

Additionally we define for every, € Ag, u < k < K,
R(Iy) = S({Iy—1)U---USUk-1),

wherel, 1 < -+ < I.

Then
K-1 K-1
i S(Iy) > [NAU.) = ND]+ Y [NAUk1\Us)]
k=p—1 k=p
K-1
> NA (U Uk+1\Uk) —ND — (K — p)
k=p

= NAUg)—ND — (K — p)

v

Z lUK(Qn) —2ND — (K - M)v

and accordingly

K N
i U S(Ik) > ZIUK+1(Q11)_2ND_(K+1_:“)'
k=p—1 =

Thus

N
Z 1[0,1] (xn)
n=1

N
> Lopx)(@n)
n=1

N
= Z ]‘UK (qn) : 1VK (Xn)
n=1

Y

N K—-1 N
- Z 1Uu(q”) 1y, (Xn) + Z Z (]'Uk+1\Uk (qn) - 1Vk+1(Xn) + 1y, (qn) - 1Vk+1\Vk (Xn))
Tl:1 k:u n:l

Y

K-1
Z ]—Vu( +Z ( Z 1Vk+1 Z 1Vk+1\Vk )) (520)

neS(I-1) k=p \neS(Ix) ne€R(Iy)
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and

IN

IN

IN

Mz

OJ:] SCn
e
Z Uk+1 qﬂ) 1VK+1(X)

1[07PK+1}(xn) +2ND + (K +1—p)
neUL 1 SUk)

Z 1V,L(Xn)+z< Z 1Vk+1 Z 1Vk+1\vk ))

nES(I,’Lfl) k=up nES Ik neRr Ik)
+2ND + (K +1 - p). (5.21)

Letl, 1 € A, 1 and define

Z=ZI1)= > 1y(X.).
neS(I,—-1)

Then by Hoeffding’s inequality

P(|Z —EZ|>eN) < 2e %N, (5.22)

Now assume thaf, € A, for somek, u < k < K. Then the random variable

Z:Z(Ik) = Z 1Vk+1 Z 1Vk+1\vk )

neS(Ix) nER(Iy)

(which is a sum of independent random variables) has expeealae

YA+ D AV \Wa)

neS(Ix) neR(1y)

and variance

IN

IN A

IN

Do AV = AV )+ > AV \Vi) (1 = (Vi1 \ Vi)

ne€S(Ix) neR(1y)
YAV + Y AV \Va)
neS(Iy) neR(Iy)

AVit1) - #S5Uk) + AV \Vi) - #R(Ix)
NAUk+1\Uk)A(Vi1) + NAUg)A(Vier-1\ Vi)
NA(IL)

N2k,
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We apply Bernstein’s inequality and obtain for 0

t2
P(|1Z-EZ| >t) <2exp <—m> (5.23)
If we let
. 6k'/2eN
5. ok/2
then by (5.12) we have
2t/3 < 24N
— 152k’
and therefore
36ke? N
P(|Z-EZ|>t) < 2exp (—m>
9~ 2ke*N/5, (5.24)

Let
B, 1= U (|1Z(Iy=1) —EZ(I,_1| > eN)
IEAH_1

Then by (5.19) and (5.22) we have
P(B,_1) < 2e 2" N/5cks,
Foru < k < K define
By = kaeJAk (!Z(m ~EZ(L)| > 6;“”%)
Then by (5.19) and (5.24), and sin€&V > us/2 > 5s,

K K K
SR € 31 20N < 30 RN < g < 3o
k=p k=p k=p

Overall we have

K
2 2 2
P U Bk < 36—25 N 4+ 26—25 N€3us < 36—2&‘ Neus'
k=p—1

Thus by (5.12), (5.14), (5.17) and (5.21) we have with prdtglat least1 — 3e~2=*Nehs for
allz € [0,1]°

N
> 100(zn)
n=1
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IN

Z 1V,L(Xn)+2( Z 1Vk+1 Z 1Vk+1\Vk ))

neS(Iu-1) k=p \neS(I) neR(Iy)
+2ND + (K +1—p)

E( > Ly(x Z( Yo i, X)+ Y Ly (X )))

neS(I,—1) = neS(Iy) neR(Iy)
n

IN

5. 2k/2

K 6L1/2
+eN [ 1+ ——— | +2ND +27#/2%:N
k=p

K
= B Z 1y, (Xn) +eN (1 + 27“/2 + Z 4k1/22k/2> L 9ND
nelUrz,,_1 S(Ix) P

K
6]{31/2
NX([0,px +1]) +eN (1 AR 52k/2> +2ND + (K +1— p)
k=p

IN

K 1/2
NA([0,2]) + N27K 4 eN (1+2 u/2+z OF )+2ND)

IN

. 9k/2

K

1/2
NA([0,2]) +eN | 14+ KY227K/2 4 o= “/2+Z Gk

2k/2

%,_/
§5M1/22—u/2

IN

+2ND

< NA([0,2]) + &N <1 + ml/?z—“/?) +2ND

Similarly by (5.12), (5.14), (5.17) and (5.20) we have witolpability at leastl — 3e2e"Nen
forall z € [0, 1]

N
S 1ju(ea) = NA(0,a]) —eN (1 + ml/?z*ﬂ/?) _9ND.
n=1

Therefore we have, with probability at ledst 3¢—2¢°Ner
Di(zn) < 2D+ (1 + ml/?z—u/?) . (5.25)

This holds under assumptions (5.10) and (5.11). Now it iy ¢asee that (5.25) also holds
without assuming (5.11), since in this cdse 3e 2" Nehns < (cf. Remark 1). Comparing this
result with (5.9), which holds under assumption (5.8) wetkae (5.25) holds with probability

greater than or equal to
1— 67252N62,us

60



CHAPTER 5. Probabilistic error bounds for the discrepanfoynixed sequences

Now letn be given. Set

= [4logy(3/n) +2log, 7] (5.26)
and
v =(n) = 2 = ¥ [4log2(3/n)+2log, T

Theny > 10. Some calculations show that fore (0, 1]

V/4logs(3/y) +2logy 7 <

< |

and consequently

-2
<1 +7/41og,(3/y) + 2log, 7 - 9—(4logy(3/y)+2log, 7)/2)

1+74yy2/97)2

(
(1+ ’y2/2)
1 -

AVARAVARY]

(5.27)

Thus by (5.25) and (5.27) far> 0

-2
P(Dy(zn) > D+¢e) < e exp (—252]\/ <1 + 7/;1/227“/2) >

< ,}/8672(1777)62]\/,

which proves the theorem. [

In conclusion we prove Remark 3 on the asymptotic optimalitthe probability estimate

1 ,y(n)se—Q(l—n)EQN‘

We show that this lower bound can not be replaced by
1_— ,Y(n)se—2(1+n)a21v

for any positiven, no matter how large the constant;) is chosen. More precisely, let> 1,
s > d andn > 0 be given, and assume that it is possible to find a constanth that for every
sequencéq, ),>1 and every > 0 for sufficiently largeN

P (D% (xn) < 2Dk (qn) +€) > 1 —4Pe 2" N0+, (5.28)

Chosern so small that
(1+7)* < (1+n), (5.29)

and let(gy,)»>1 be ad-dimensional sequence for whidhy, (¢,) — 0. Write I for the indicator
of the s-dimensional box of the forff, 1]¢ x [0,2!/(=9]. ThenI has Lebesgue measure 1/2.
Let X,,, n > 1 be i.i.d. random variables having uniform distribution [ﬁnl]s—d, and write
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(zn)n>1 for the mixed sequence. Then, € T if and only if X,, € [0,2"/(~9]. The random
variables

Lr(zn) = 1jg /(- (Xn)

are independent, fair Bernoulli random variables. Thus,iff chosen appropriately small, we
have by Lemma 5.1

N
N ) ) A
P (; 1](1,”) > 5 + (1 +77)€N> > e 252N(1+77)37

for sufficiently largeN. SinceD}; (¢g,) — 0, this implies
P (D} (wn) > 2Dy (gn) +¢) > e 2 NOHD’ (5.30)

for sufficiently largeN. By (5.29)

e—2e?N(1+7)?
— 0 as N — o0,

e 2N(tn)
and hence (5.30) implies
P (D% (zn) < 2D%(qn) +€) < 1 — 4P 2" N(140)

for sufficiently largeN, which is a contradiction to (5.28).
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Chapter 6

A central limit theorem for Latin
hypercube sampling with dependence

6.1 Introduction

In this article we consider the problem of reducing the varéaof a Monte Carlo (MC) estimator
for special functionals of a random vector with dependemypanents. Several different tech-
nigues can be used for this kind of problem, with differentaadages and shortcomings (for a
detailed comparison, see [42, Section 4]). A well-knowrtaegue isLatin hypercube sampling
(LHS), which is a multi-dimensional version of te&ratified samplingnethod and has been in-
troduced by [77]. Although this method is well applicablertany different types of problems,
it cannot deal with dependence structures among the compoatrandom vectors. Therefore,
we considet_atin hypercube sampling with dependeifcelSD), which was introduced by [97]
and provides variance reduction for many problems, eslheaidinancial mathematics.
Consider the problem of estimatifitjf (U, ..., U?)] for a Borel-measurable ar@-integrable
function f : [0,1]? — R, where(U!,...,U?) is a random vector with uniformly distributed
marginals and copul@’. Let (U},...,U%), 1 < i < n, denote an i.i.d. sample from this dis-
tribution. The standard Monte Carlo estimator, which isegiby1/n Y"1 | f(UL, ..., US), is
strongly consistent, and by the central limit theorem fanswf independent random variables
the distribution of the scaled estimator converges to a abdistribution, ie:

% SO, UD) — B, ..., UD]] B N (0, 0%c),
=1

whereo?, = Var(f(U',..., U%)). In particular this means that the standard deviation of the
estimator converges to zero with ratﬁ%.

The aim of this paper is to establish a similar result for thSID estimator, under some addi-
tional conditions on the copuld@ and the functiory. This has already been done in the bivariate
case by [88] by using a result of [36]. [88, Proposition 518pashowed that under more restric-
tive conditions on the copula functidari, the variance of the bivariate LHSD estimator does not
exceed the variance of the standard Monte Carlo estimator.
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An important application of Monte Carlo integration tedafunés lies in the field of financial
mathematics. Many problems in finance result in the numler@aputation of high-dimensional
integrals, for which MC methods provide an efficient solntidwo examples are the pricing of
Asian and discrete lookback options on several possiblyetzied assets. We will investigate
these special derivatives in numerical examples in theskdion.

This paper is organised as follows: in the second sectiomtreduce the main ideas of LHSD
and recall some important results. Our main results areepted in the third section, where we
state a central limit theorem and show under which conditereduction of variance, compared
to the standard Monte Carlo method, is possible. The lasibseis dedicated to a comparison
of the effectiveness of LHSD and MC in numerical examples.

6.2 Preliminaries

In this section, we recall the concept of stratified sampding its extensions to Latin hypercube
sampling and Latin hypercube sampling with dependence. [¥¢estate a consistency result,
which was proved by [88].

6.2.1 Stratified sampling and LHS

Suppose that we want to estim@éf (U)), whereU is an uniformly distributed random variable
on the interval0, 1] (from now on denoted b¥/ (|0, 1])), and wheref : [0,1] — R is a Borel-
measurable and integrable function. By the simple fact that

E(f(U)) =Y E(f(U)|U € A)P(U € Ay),
=1

where the intervalsl, . .. , A, (the so-calledstrata) form a partition of[0, 1], we get an estima-
tor for E(f(U)) by samplingU conditionally on the event§U € A;},i = 1,...,n. Choosing
strata of the formd; = [=1, 1) we can simply transform independent samglgs..., U"
from U([0, 1]) by setting

Vii=

1 U
YO =1,
n

n

which impliesV; € A4;,i = 1,...,n. The resulting estimator f@(f(U)) given by% S f(V)

is consistent, and by the central limit theorem for sums @épendent random variables the limit
variance is smaller than the limit variance of a standard tél@arlo estimator. For a more de-
tailed analysis of stratified sampling techniques, see$42tion 4.3.1].

This approach can be extended to the multivariate caseferdift ways. If we require that there
has to be exactly one sample in every stratum, we need to dfasamples, which is not fea-
sible for a high number of dimensiors One way to avoid this problem is Latin hypercube
sampling. Assume we want to estimaéf (U*,...,U?)), wheref : [0,1]¢ — R is a Borel-
measurable and integrable function. For fixedve generate: independent samples denoted
by (U},..., Uﬁ),z’ =1,...,n, where theU’/,j = 1,...,d are uniformly distributed orf0, 1].
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Additionally, we generatel independent permutations §1,...,n}, denoted byry, ..., g4,
drawn from a discrete uniform distribution on the set of alkgible permutations. Denote by
7 the value to which is mapped by thg-th permutation. Then thgth component of a Latin
hypercube sample is given by

7127—1+U_Z-]
n n’

V=

By fixing a dimensionj, the component(;Vlj, e VJ) form a stratified sample with strata of
equal length. It can be shown that the resulting estimatoif{¢f (U)) is consistent, and by
assuming thaf (U?, ..., U%) has a finite second moment it follows that the variance of tH& L
estimator

1 n
_Zf(vilv"'vvid)
nz‘:l

is smaller than the variance of the standard MC estimatoviged the number of sample points
is sufficiently large, see [97]. If is bounded a central limit theorem for the LHS estimator can
be shown, see [86]. Berry-Esseen-type bounds are also krsmern73]. A detailed discussion
of LHS is given in [42, Section 4.4].

This technique is not suitable for dealing with random vexteith dependent components since
the random variable®?’, j = 1,...,d, are independent. One way to extend the LHS method
to random vectors with dependent components is to apply loHSdependent components and
then introduce dependencies through a transformationeoE HiS points. Such a procedure is
tedious in general, and we will not pursue this approach artijér.

6.2.2 Latin hypercube sampling with dependence

In this subsection, we introduce Latin hypercube sampliity dependence. The main differ-
ence to the LHS method is that instead of random permutationg use rank statistics, which
are defined as follows:

Definition 6.1 (Rank statistics) Let X, ..., X,, be i.i.d. random variables with a continuous
distribution function. Denote the ordered random variabley Xy < --- < X(,,, P-a.s. We
call the index ofX; within X ;) < --- < X, thei-th rank statistic, given by

Ti,n :""i,n(Xla--'an) = Z]‘{Xkﬁxi}' (61)
k=1
Consider a random vectdf = (U',...,U?%), where every componerif is uniformly dis-

tributed on|0, 1] and the dependence structurelbfs modeled by a copul&'.

Let (U},. .., Ufl),z' = 1,...,n denote a sequence of independent samplégbf. .., U9), and
let /  be thei-th rank statistic of U7,...,U;) fori = 1,...,nandj = 1,...,d. Then a
LHSD is given by

. rj —1 ]
J = +n”", i=1,...,n,Vj=1,...,d, (6.2)
’ n n
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wherenl{n are random variables i, 1]. It is clear that(Vf;n, ..., Vi) forms a stratified sam-
pling in every dimension, where every stratum has equal length.

[88] consider different choices f@;\;'.'m to obtain special properties. For example, by choosing all
7, uniformly distributed or0, 1] and independent df?, the distribution of thé’/_ within their
strata is uniform. This choice has the disadvantage of séating the generatidn @f random
variables instead of only. An effective choice in terms of computation timen‘j;jn = 1/2,

which means that everyifn is located exactly in the centre of its stratum. In the remairof
this section, we briefly recall a result of [88] concerning tonsistency of the LHSD estimator
for E(f(U)), which is defined by

1 n
=1

The usual law of large numbers for sums of independent randoiables does not apply in this
case for two reasons: firstly in each dimension the sampiktofae independent because of
the application of the rank statistic, and secondly, ingirgathe samples sizeby one changes
every term of the sum instead of just adding one. Neverthgiiesan be shown that the following
consistency result holds, see [88, Proposition 4.1]:

Proposition 6.1 Let f : [0,1]¢ — R be bounded and continuous C-a.e. . Then the LHSD esti-
mator (6.3)is strongly consistent, ie :

1 & as
EZf(‘/z,lnaa‘/z?ln)LE(f(UlaaUd))a asn — oo.
=1

6.3 Central limit theorem and variance reduction

In this section we investigate the speed of convergenceedf HED estimator and discuss situa-
tions in which the use of LHSD results in a reduction of vac&nT his has already been done for
the bivariate case by [88]. They have also guessed the hdjimemsional version of the main

theorem, but no rigorous proof was given. Because of thetfettmost problems in finance

for which Monte Carlo techniques are suitable are high-disianal integration problems, it is

reasonable to investigate the speed of convergence andghengtotic) value of the variance

also in the multivariate case.

In the sequel, le€’,, denote the empirical distribution of the LHSD sample givgn b

_ 1 &
1 dy ._
Coful ) = =D Ly cur vt <uays
i=1

which is a distribution function. Furthermore, we defitige as
1 n
dy ._
Cn(ul’ N ) = E Zl 1{Fé(U})Sul,...,Fg(Uﬁ)gud}’ (64)
i
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where
, 1 <&
Fj(u) =~ > Lyicy  we01],
i=1
are the one-dimensional empirical distribution functibased ori7, ... U} for j = 1,... ,d.

To formulate a central limit theorem we will need some regtylaonditions on the integrand
and the copuld’.

Definition 6.2 (Hardy-Krause bounded variation) A functionf : [0,1]¢ — R is of bounded
variation (in the sense of Hardy-Krause)Wif( /) < oo with

d
VN = > VO(fsin. ).

k=11<i1 <...<ix<d

Here, the functional’ *) ( f) denotes the variation in the sense of Vitalifafestricted to thek -
dimensional face®) (i1, ... i) = {(u1,...,uq) € [0,1]% : u; = 1for j # i1,...,ix}. The
variation of a functionf in the sense of Vitali is defined by

VO (i, i) =sup Y A ),

P geP(it,....ir)

where the supremum is extended over all partiti@ts, , . .., ;) of F(*) (i1, ... ;) into subin-
tervals.J and A(f; J) denotes the alternating sum of the values aft the vertices of/. For
more information on this topic, see [87].

Definition 6.3 A function f : [0, 119 — R is right continuous if for any sequence
(uh,u2, . ub)penwithu), L/, j=1,...,d,

lim f(ul,u2,... ud) = f(ul,u?,... ud).

n—oo

The next statement concerning the convergence of randooeseegs will be used to prove
Proposition 6.2 and Theorem 6.2. For more details see ed [&rem 18.8].

Lemma6.1 Let(X,,),>1 and(Y,,),>1 be sequences &-valued random variables, with
X, 5 X and|X, — Y,| 5 0. ThenY, 5 X.

The following proposition of [99] is a generalization of kar results of [98] and [36]. It is the
essential ingredient in proofs of our main theorems.

Proposition 6.2 Assume thatC is differentiable with continuous partial derivatives

@C(ul,...,ud):Wforj:l,...,dﬁhen

ﬁ(Cn(ul,...,ud) —C(ul,... ,ud)) ch(ul, e ,ud),
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where

ln
1 dy _
CM“’“”“)“ggjlaﬁgﬁ(w»qwgmfw%r
=1

denotes the empirical copula function afl~ denote the generalised quantile functionsgf
forj =1,...,d, defined by
FJ~(u) = inf{x € R|FJ(x) > u}.

n

Furthermore,G¢ is a centred Gaussian random field given by
d .
Ge(ul, ... u?) = Bo(ul, ... ud) — ZajC(ul, uh)Be(1,..., 1,47,1,...,1), (6.5)
j=1

Bc is a d-dimensional pinned Brownian sheet[onl]? with covariance function

=C((ut,...,u) A @, ..., 7)) - C(l,...,u)C@, ... ,a%), (6.6)
where(u!,...,ud) A (@', ..., u?) denotes the componentwise minimum.
We can formulate a similar result for the sequetite
Proposition 6.3 Under the conditions of Proposition 6.2,

wx@wg“m%_amwwmgzadwwwm) (6.7)

holds, where all definitions are as in Proposition 6.2 afig(u", . .., u?) is given in(6.4).

Proof:

We only have to show that the supremum of the differenoé‘,phndC:n vanishes fom — oo
to apply Lemma 6.1, which completes the proof. Note thigtand C,, coincide on the grid
{(ix/n, ... ig/n),1 <iy,...,iqg < n}. It follows that

sup |[Co(ul, ... u®) — Ch(u', ..., ud)]

ul,.. ud
. . i 1 d
<  max Cn<l—1,...,z—d)—Cn<Zl ,...,Zd >‘§—.
1<4t,...i9<n n n n n n
Thus,sup,: _,q 1Cp(ul, ..., ud) — Cp(ul,...,u®)| = 0 for n — oo and (6.7) follows. [
In the sequel, alU*,i = 1,...,d are uniformly distributed random variables {in1] and all

integrals have to be understood in the sense of Lebesgeljesti Note that the next theorem is
an extension of [36, Theorem 6] from the case of bivariatdéodase of multi-variate random
vectorsU = (U!,...,U%).
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Theorem 6.1 Let the copulaC of (U!,...,U?) have continuous partial derivatives and let
f :[0,1] — R be a right-continuous function of bounded variation in tlemse of Hardy-
Krause. Then

1 < D 1 dy\ 7771 d
— f(ENUD, ..., FY UM -E[f(U,...,UY]) = Ge(ul, ... ud)df(u, ... u?),
77 (R B ) -E 0= ) Cel )i )
where the functiory : [0,1]% — R is defined by:
~ 0 if atleastonew’ =1, forj =1,....d,

Tl uf) = { flut,...,u?) otherwise. (6.8)

Furthermore, the limit distribution is Gaussian.

Proof:
By definition f is right-continuous and of bounded variation in the senselafdy-Krause.
Furthermore, it follows that almost surely

\/15 Z<f(F5(Uz‘1)> L FUUY) —ElF(UY Ud)])
=1
= \/_l_n Z(ﬂFé(US), . FYU —E[f(U,..., Ud)]),
=1

by the fact thaC is continuous orj0, 1]¢.
We use a multidimensional integration-by-parts technigtgposed by [104, Proposition 2].
Using the notation of [104] we get

% S (FENUD, .. Fiwh) - BIFW,...,uY))
i=1

—va [ Fl (G = O )
[0,1]4

d
= \/EZ(—l)k Z A;k’-klr--ajd/ (Cp — CO)(ul, ... ,ud)dj17...7jkf(u1, .. ,ud).
k=0 1,....dk [0,1]%

(6.9)

Here}_, . denotes the sum over all possible partitions of the{ggt. . ., jq} into two sub-
sets{ji,...,jrx} and{jgr1,.-.,jq} Of k respectivelyd — k elements, where each partition is
taken exactly once. In the cases= 0 andk = d, the sum is interpreted as being reduced to one
term.

Furthermore, the operatdy, . ;, indicates that the integral only applies to the variables. . , ji..

Note that after the application of the integral with resgeet;, . ;, f(ul, ...,u?), the integrated
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function is a function ind — k variables. Furthermore for a functignof d — k& variables, the
operatorA7 . isgiven by
A;k+1,...,jdg(jk+17 .. ajd) = Z (_1)mg(21, .. aid—k‘),
{i1,.iq—p} {0,134~k

wherem denotes the number of zeros{iy, . .., 741 }. This means that, fof ¢ {j1,...,Jx}

[071}d—k

o~

= o k(C”—C)(ul,“"ujil,l’ujJrla---,Ud)djl,___,jkf(ul,...,ujfl,l,ujJrl,_,,’ud)
0,1]¢—

_/[ y k(C”—C)(ul,“"ujil,o’ujJrla---,Ud)djl,___,jkf(ul,...,ujil,O,ujJrl,,“’ud)
0,1]%—

and
A*

Jk+15--:Jd

:A*

Jk+1

. A;d.
Thus

d
\/ﬁz(_l)k Z A;k+17~~~7jd /[0 1]k(Cn - C)(Ulv cee vud)dj17---7jkf(ulv T vud)
k=0 )

1,....d;k

d—1
= Vi) (DY 3 AL / (Co= O u g )
k=0 1,....dk [0,1]

~

+\/H(—1)d/ (Co— Y, (. u)

[0,1)¢

_ \/ﬁ(—1)d/ (o — OV, udF (. u.

[0,1)¢

The term

d—1
N D /[Ol}k(Cn—C)(ul,...,ud)dj17___7jkf(u1,...,ud)
kIO El

1,....d;k

vanishes because each of its terms is equal to zero due tasitdee of the following two
reasons: firstly, at least oné, j = 1,...,d is equal to one and therefofgu', ..., u?) = 0 by
definition, or, secondly, at least oné, j = 1,...,d is equal to zero, hend€, (u', ..., u?) =
C(ul,...,u?) =0.

Thus, by the continuous mapping theorem and (6.7), it fadlthvat

Z= Y (AR FAOD) < B W, UY)
=1
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-~

= (—1)d\/ﬁ (Cn—C)(ul,...,ud)df(ul,...,ud)

[0,1)¢
2, Gc(ul,...,ud)df(ul,...,ud).
[0,1]¢
Since f[o 1) Go(ul,. .. ,ud)df(ul, ...,u?) is a continuous, linear transformation of a tight
Gaussian process, it follows that the limiting distribatis Gaussian. 0

Remark 6.1 The reason for using the functiq/\ﬂnstead off is that the integrals of dimension
k=2,...,d—1in(6.9)are in general not vanishing. The one-dimensional integyeak zero
for every right-continuous function of bounded variatibthecause of special properties of the
functionC,,, for more details see [36]. In particular, this means thattie two-dimensional case
it is sufficient to assume

f(m) = f(z), z¢€ R2.

With this assumption instead ¢8.8)andd = 2, Theorem 6.1 is equivalent to [36, Theorem 6].
We use the functiofi to get a more convenient representation for the limit vacenf the LHSD
technigue, which we state in the next theorem.

Theorem 6.2 Under the assumptions and notations of Theorem 6.1, we have
1 ¢ 1 d 1 d D 2
%;(f(‘/z,nvv‘/z,n)_E[f(U 77U )]) _>N(07ULHSD)7 (610)

where

~ ~

aiHSD:/ E[Ge(!,.. G, wh]dfw!, .. uydf@, ... mY). (6.11)
[071]211

Proof:
We want to apply Theorem 6.1 together with Lemma 6.1, so we kaghow that

n

SV V) — FED. - L) ' ~0,  asn—o.

i=1

1

vn

By [71, Corollary 1]

n

SOV Vi) = FENUD), . FAUD)]

=1

<V(f) < o0,

whereV/( f) is the Hardy-Krause variation ¢f. Hence

n

Z{f(vz?n?vvzfln) - f(Fé(Uzl)77FrCzl(Uzd))]' — 0, asn — oo,
=1

1

vn
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which, together with Lemma 6.1 and Theorem 6.1, proves amqués.10). R
To derive equation (6.11) we apply Fubini’s theoreriZ{o;, ,;4 Go(ub, ..., ud)df(ul,... u))?.

By [71, Theorem 3] a function of bounded variatigrcan always be written as the difference
of two completely monotone functiong i and therefore an integral with respectftaan be
written as a difference of two integrals with respect to rasimeasureg, h. Thus

E[( WGc(ul,---,ud)df(ul,...,ud)f] _
:EK [Ol}dGC(ul’---aud)df(ul,...,ud)) ( o GC(ﬂl,--.,ﬂd)df(ﬂl,,,_’ﬂd)>:|

:EK Gc(ul,...,ud)dg(ul,...,ud)—/

(0,1]¢ (0,1]¢

: ( Ge(@, ..., adg(@, ... ,a%) — Gc(ﬂl,...,ﬂd)dh(ﬂl,...,ﬂd)>]
(0,1]¢ [0,1]¢

N EK/ Ge(u',...,u")Go@",...,u%)dg(u', ... ,ul)dg(@', ... ,u?)
[0,1)2d

- Go(ut, ..., uhGe@@!, ..., at)dh(ul,. .. ,ud)dg(@", ... a?)
[0,1]¢

- Go(ut,. .., uhGe@@!, ..., abdg(ut,. .. ud)dh(@!, ... a?)

where the use of Fubini's theorem is justified sintés bounded and[XY] < oo for two
jointly normal random variableX andY'. d

Remark 6.2 Note that by(6.5) and (6.6) the expression fo&%HSD in equation(6.11)can be
represented in terms af'. Additionally, further simplifications can be given for tf@lowing
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terms:

E[Bc(ul,...,ud) - Be(1,...,1,%,1,...,1)]
=C((u!y ..., w Ll AT T ) = C . u) T
oL 1,...0,1) - Be(l,. .., 1,301, 1)]
=C((1,..., 1,45 1,...,1,@,1,...,1)) — u'W,
E[Bc(1,...,1,u%,1,...,1)- Bc(1,...,1,@,1,...,1)] =/ AW — /W,
sinceC(1,...,1,u/,1,...,1) =/ forall j =1,...,d.

It is important to know if the LHSD estimator has a smalleriaace than the Monte Carlo
estimator. The variance of a standard Monte Carlo estimsigiven by

U%ﬂC:/ f(ul,...,ud)2dC(u1,...,ud)—(/
[0,1)¢

2
o f(ul,...,ud)dC(ul,...,ud)) )

We use this fact to establish a relation betweép, ando? ;¢ .

Proposition 6.4 Let the copulaC of (U, ...,U?) have continuous partial derivatives, Igt:
[0,1]¢ — R be a right-continuous function of bounded variation in teese of Hardy-Krause

and Ietfbe as defined in Theorem 6.1. $eC'(u', ..., ul) = W and

. C(,...,Lut 1., L@, 1,...,1), i#]
L ) 7\ — ) ’ ’ ) ’ » ) )
Cig', @) { u AT, i=J

Then
2 2
OLHSD = OMC

d
+/ 22@»0(1&, ... ,ud)(C(ﬂl, oahe? —o@t, . W A L ,Ed))
[071]211 j:l

d d
+3 Y g0, ahacw,. .. ul) (ci,j(u@',aj) - uiaj)df(ul, ubdf@t,. . ad).

j=1i=1

Proof:
Note that

/ f(ul,...,ud)de(ul,...,ud):/ f@l, .. udf@t, ... at)dC W Aat, . .. ulAa?),

[0,1]¢ [0,1]24

and that the functio®'(u! A @', ..., u¢ Au?) is also a copula, which follows by observing that
Craa,..  ulrnad)=PU' <ul g, U <ulAT?)
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=PU' <t Ut <@t,..., Ut <ut, UL <T?)

is a joint probability distribution with uniform marginals
By integration-by-parts like in Theorem 6.1 it follows fdret variance of the Monte Carlo esti-
mator that

2
012\/[0:/ fl, .. uh2do(l,. .. ud) — (/ f(ul,...,ud)dC(ul,...,ud))
[0,1] [0,1]

:/ f(ul,...,ud)f(ﬂl,...,ﬂd)dC((ul,...,ud)/\(ﬂl,...,ﬂd)>
[071}2(1

The proof is completed by using equations (6.5), (6.6),1(palhd Remark 6.2. O

Theorem 6.3 Let C and f satisfy the assumptions in Theorem 6.1 andfléte defined as in
Theorem 6.1. Furthermore let the functigrbe monotone non-decreasing in each argument and
max,ep.134(f(2)) < 0. Moreover assume that satisfies the following conditions:

1 d
Clu - 4 0,0, ... ud), je{l,....d} (6.13)
b c (T , TR T it O v AR T T et SO 71
Z CZ’](Z’U) < (d—2)u3+c(u ,...,uC L;J, /\u_,du R 7) )7 (6.14)
eyly U (w,...,u%)
whereu’ € [0,1], (@!,...,u?), (u', ..., u?) €[0,1]%

2 2

Proof:

By the assumptions ofi it follows thatfis right-continuous, of bounded variation in the sense
of Hardy-Kraus and monotone non-decresing in each arguiibos by (6.12) it is sufficient to
show that

d
23 9,C(ul, ... ,ud)(C(Hl, o —c@t,. WL AW L ,Ed)>
j=1

d d
Y ac@,.. whoCw. . ut)(Cig(l, T - wia') <0

j=1i=1
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forall (u!,...,u?), (@, ...,a%) € [0,1]%
This is true if
2 <C(ﬂ1, L —o@t, . @ A T ,ﬂd))
C(@, ..., a%) (Wit — O (ul,a))
i=

<> 0

1

holds for everyj € {1,...,d} and allu’ € [0,1], (@!,...,u%) € [0,1]%.
First we show that

c@,...,ahyd—c@,... W wadd Wt at) < 0,0 at) (W — ol AT

Note that this is always true if’ A%’ € {0,1}. Now assume that < w/ < v’ < 1, then

c@,..., ! —o@, ..., at) <o9;0®@, ..., ut) (W — )
c@,...,ahw —1) <o;c@, ..., uhyw (vl — 1)
—1 —d
cE,....@) > ;0 ..., u?)

w

which is true by assumption (6.13). Next assume thatu’ < @/ < 1, then

c@,....atd —o@,.... @ Lot @t at) < 0,0 . at) (W — )
c@,....atd — o@,.... @ Lot @t at) < 0,0 .t (W - 1)
c@,...,w 1w, wt,. . . ul ,
c@@,...,a%) - @,.... J;u ’ ’u)gajC(ﬂl,...,ﬁd)(ﬂJ—l)
cC@,...,w o, wtt,. . at) c@,...,a?) ,_;
C(Hla- 7Ed)_ (U7 7u 71;7u ’ 7u>§ (u 7_] 7u>(ﬂj_1)
U U
c@,..., w1, wtt, .. . ad) - c(@',...,a?)
ud - ﬂ] ’

which holds since assumption (6.13) implies tﬁéﬁ% is non-increasing i for all u/ €
[0,1], (u!,...,u?) € [0,1]¢.
LetC(w',...,u?) > 0then

c@,...,uhw—c@, ..., w L@ Al W ad)

d
<> aca,...ut) (v - Ciyw,T))

=
i#£]
c@,...,ayw—c@,. .., w L@ Al W ad)

d — _

c@,...,u . o
< Z ( ’ﬂi : )(u]uz_ci7j(u]7uz))
i=1
i#i
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Co@,. @ W A, @ ad)  Gs C(ud, T)
d o 2 J ) ) ) ) ) ) > ] i )
( Ju'+ c@t,...,u?) - Z_; K

i#]
which is true by assumption (6.14). The caS¢u',...,u?) = 0 follows by the fact that
Gt < 1 forall (@, u?) € [0,1)% O

Remark 6.3 Note that in the two-dimensional case, assump(®t3)is equivalent to the left
tail increasing property which implies a positive quadra@pendence of the copula Loosely
speaking this means that the componentg’aire more likely to be simultaneously small or
simulatneously large than in the independent case. Mow@nmdtion on different dependence
properties can be found in [60] and [80].

In the following two remarks we give examples of copula disttions which satisfy the as-
sumptions of Theorem 6.3.

Remark 6.4 Consider a multi-dimensional, one-parametric extensibrthe Farlie-Gumbel-
Morgenstern (FGM) copula given by

d d
C(ul,...,ud) = (Hul> (aH(l —u') + 1)
i=1

i=1

wherea € [—1,1]. Simple calculations show that the assumpt6ri3)is true if « € [0, 1].
Now consider the right hand-side ¢(6.14)

Finally assumptior(6.14)holds since

c@',...,wtw nul, @t .. u?)
c@t,...,ud)
c@,...,w L, Wt ... ad)
:min 1’ ) bl ) b ) )
()
d N d . .
) <Hz’:1,z’;ﬁj “Z) u’ <04 Hz’:l,z’;ﬁj(l —u')(1—u) + 1)
=min | 1, . :
(ngl EZ) (04 [T, (1 —a) + 1)
d B .
(0TI gy (1 =T (1 =) +1)
=min | 1,/

w <a 1%, (1 — @) + 1)
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>

for o € [0, 1].
Note that the independence copdlgu', ... ud) = Hle u' is the special case of the FGM
copula witha: = 0, therefore Theorem 6.3 holds also for the independencelaopu

Remark 6.5 A multi-dimension version of the Ali-Mikhail-Haq (AMH) ada is given by

d i
Cut,... ut) = Hid:lu :
1- aHi:l(l —u)

wherea € [—1, 1]. Asin the previous example it is easy to see (Gait3)is fullfilled if « € [0, 1].
To prove(6.14)consider again the term on the right hand-side

d Ci,j(uj,ﬂi) _ d W
i=1,i#] i=1,i#]
=(d— 1.

Furthermore Theorem 6.3 applies since

c@,..., whw nul, @t ad)
c@t,...,ud)
—uin (1 c@,..., w1, wtt, ... ud)
’ c@t,... ,ut)

(H?zl,i;éj ﬂz) <1 — oI, (1 - ﬂi))
(ML, @) (1 - Tl (- )1 — )

=min [ 1,4’
>u?

6.4 Application to option pricing

In this section we illustrate the effectiveness of Latin éngube sampling with dependence
in basket option pricing problems. The derivatives whichagasider are Asian and lookback
basket options. LetS;);>o be ad-dimensional vector of asset price processes antSiet>o
denote itsj-th component. Then the price of an Asian basket call opsagivien by
RN | . +
_ —rT( - - i
ABC_E[e <mZdZStj K) }

7j=1 =1

whereK > 0 denotes the fixed strike pricé s the number of underlying assefis= ty < t1 <
ty < ... < t, = T denote the observation poinfE,is the maturity of the option anddenotes
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the risk free interest rate. Similarly, the price of a dised@okback basket call option is given

by
1
oL~ e[ (s 1351, -K)'].
As a model for the asset price procésg"{)tzo of each asset=1,...,d, we use

S = Sl =mHXT i d >0,

wherew’ € R are constantsSg > (0 denote the constant initial asset values aﬁ'johre variance
gamma (VG) processes fgr=1,...,d. The VG proces$ X7 );>o with parametergt’, o7, ¢/),
which was first introduced by [75], is defined as a subordoh&eownian motion by

X/ =X/ (07,67, = (67,07), j=1,...,d,t>0, (6.15)

G]( 7,1)
WhereBg(Hj,aj) are independent Brownian motions with drift paramet#rsand volatility
parameters’,j = 1,...,d, andG7(c’, 1) are independent gamma processes independent of
BJ,j = 1,...,d with drift equal to one and volatility’ > 0. To ensure that the discounted
value of a portfolio invested in the asset is a martingalechaose

w! =log(1 — i/ — (67)%/2) /¢, j=1,...,d

By [74] a VG process can also be represented as the differeihteo independent gamma
processes, i&] = G/7 — G;7,j = 1,...,d. Let ()., v}) and(;”_, v’ ) denote the param-
eters of the gamma processgs~, G—7, respectively. These pairs of parameters can be easily
calculated from the parameters in equation (6.15) through

W= (02 20 jo =002 VA= (), j=1...d

Due to the fact that a gamma process has non-decreasing G@Tﬁs:orresponds to the posi-
tive movements of/ andG; ” corresponds to the negative movement&gf Our assumption

is that all positive movements of componentsXf = (X}, ..., X{) are dependent and all
negative movements of components Xf are dependent, but positive (negative) movements
of the j-th component are independent of negative (positive) mevasof all other compo-
nents, forallj = 1, ..., d. The dependence structure between positive and negatvemsmts
will be modelled by copula€'®, respectively. Summarising, the increment of dhgimensional
gamma processes in the inter{taLl, t;] givenby(G; ' ~Gi' ..., GG ) has cumula-
tive distribution functionC* (F; i, ..,Fii), whereFjji1 is the inverse cumulative distribution
function of a gamma distribution with the specific parametdrthe;j-th asset.

6.4.1 Numerical results

In this subsection, we compare the performance of LHSD witaadard Monte Carlo method
in option pricing problems.
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Parameters of the numerical examples

VG parameters:

pij=1,...,d -0.2859
oj,j=1,...,d 0.1927
c,j=1,...,d 0.2505
Option parameters:

number of assets 10
maturity T’ 1
initial asset price?j,j =1,...,d 100
risk free interest rate 0.05
number of monitoring points 4

time between monitoring points — ¢;_1,i =1,...,k 0.25
Simulation parameters:

number of simulated option prices per estimator 8000
number of simulations of the estimators 100
choice of parameterg ,,j =1,...,d,i=1,...,n 0.5

Table 6.1: Parameters sets for the VG processes, the optimhthe simulations.

The parameters of the underlying VG processes are stateabie .1 and are the same for all
components ofS;):>o. The parameter values are taken from a calibration of the x8gss
against options on the S&P 500 index by [56]. We observed itepraluations, which we do
not state here in detail, that the computation of one LHSDredor took aboufl.4 times of
the computation time of a corresponding Monte Carlo estim&tevertheless in our concrete
implementation the most time consuming part was the tramsfton of uniformly distributed
random variables into gamma distributed random varialles has to be done only once for all
LHSD estimations since by (6.2) when¢, = 1/2,5 = 1,...,d,i = 1,...,n one only needs
fixed quantiles of the gamma distribution. Therefore corapoim of 4000 LHSD estimators was
about five times faster than the computation of 4000 MontdoGastimators. One the other
hand for the Monte Carlo estimator, one has to perform thestoamationdn times for each
estimator.

Using the parameters of Table 6.1, the evaluation of eacthefoption values included the
computation of ar80-dimensional integral. Standard deviation and variancesveemputed
based on then = 100 runs of the LHSD and MC estimators. The ratios in columns 6@&né
each table were computed as the quotient of MC value and LHflzv

It is obvious that the effectiveness of LHSD compared to MCreases with increasing strike
price K. The same phenomenon was also observed by [88] in a muldrdional Black-Scholes
model for the LHSD estimator and by [42] for the standard LIstheator.

79



CHAPTER 6. A central limit theorem for Latin hypercube samglwith dependence

Prices of Asian basket call options with varying strike price K

« K LHSD MC SD.LHSD SD.MC SD.ratio Var.ratio

0.5 80 22.0542 22.0448 0.00071  0.00748 10.419 108.575
0.5 90 125511 12.5419 0.00080 0.00748 9.270 85.944
0.5 100 3.79294 3.78732 0.00241  0.00621 2.577 6.642
0.5 110 0.17227 0.17210 0.00119 0.00140 1.174 1.379
0.5 120 0.00024 0.00024 0.000040 0.000041 1.009 1.018

Table 6.2: Prices of Asian basket call options, where thedégnce structure of positive and
negative movements are modelled by a FGM copula with paesmet

Prices of Lookback basket call options with varying strike gice K

16" K LHSD MC SD.LHSD SD.MC SD.ratio Var. ratio

0.5 80 25.662 25.658 0.00294 0.00839 2.850 8.125
0.5 90 16.151 16.147 0.00294 0.00839 2.850 8.125
0.5 100 6.893 6.890 0.00322 0.00760 2.356 5.553
0.5 110 1.192 1.192 0.00305 0.00406 1.332 1.775
0.5 120 0.060 0.060 0.00086 0.00089 1.029 1.060

Table 6.3: Prices of Lookback basket call options, wherediyigendence structure of positive
and negative movements are modelled by a FGM copula withpeteaa.
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Lookback options in the HEJD model
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Chapter 7

Pricing and hedging of lookback
options in the HEJD model

7.1 Introduction

It has been known for many years that the classic Black-®8sholbdel suffers from many short-
comings and is not capable of explaining many importantsagilfacts of financial markets, like
skewed and heavy tailed return distributions, or the theiatroduced volatility smile/skew.
Thus, despite the superior analytical tractability of teemetric Brownian motion model, many
authors proposed the more general class of Lévy processesladying model for prices of fi-
nancial quantities. Most definitely we cannot do justicehe vast literature in this field and
we limit ourselves to cite just three classics related towork, namely [10], [20] or [64], and
refer the reader to those and references therein for moadlsien the use of Lévy processes
in finance. However, the extra flexibility of Lévy driven firmal models often comes at the
cost of more complicated pricing algorithms for exotic pd#pendent options. The purpose of
this article is thus to contribute to the development of neffigient pricing algorithms for cer-
tain popular exotic derivatives. More precisely, we willezdate the (time-)Laplace transformed
price of different kinds of lookback options and propose t@stl an efficient inversion algorithm
for this transform.

Loosely speaking, there are three approaches for pricinigatiees related to the maximum
or minimum of the asset price: Monte Carlo methods, Partiégro)-differential equations
(PIDE) schemes, and Laplace transform based methods, Wieekatter ones, if applicable, are
in general preferable in terms of performance. FocusindherLaplace transform approach we
would like to mention the very nice theoretical discussiegarding this kind of methods for gen-
eral Lévy processes by Eberlein et al. [31], where very gdriermulae for the (multi)-Laplace
transformed prices of many different option types werewideri For general Lévy processes
these formulae have the drawback that the inversion of tipdakca transform is typically quite
involved and for a numerical evaluation several numerintdgrations need to be performed.
However, for some particular Lévy processes these formaitaplify significantly and option
prices can be calculated by applying just a standard oneswiianal inversion. For example,
Kou [64] proposed a financial market model (typically calkamli model), in which the logarith-
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mic asset price process is described by a jump diffusion tmitisided exponential jumps and
showed that in this setting, the Laplace transform of séwxatic options, including lookback
options, can be given in an analytic way (see [65]). Notafalythe same class of processes,
Sepp [95] presents a PIDE approach for the pricing of looklmgutions.

The Kou model also sets the basis for the more general hypemential jump diffusion model
(HEJD), where the up- and downward jumps are not modeled liygéesexponential random
variable, but by a mixture of several exponential randoniatdes with different parameters.
Apart from the obvious advantage of more flexibility the maintivation for considering this
kind of models was established by Jeannin and Pistorius {@8) showed that many frequently
used Lévy based financial models can be approximated ailyitveell by HEJD processes.
More precisely, any process in the class of the so-calle@rgéhyper-exponential Lévy pro-
cesses, that includes e.g. the normal inverse Gaussian (NI or the CGMY process [20] to
name only two, can be represented as a limit of a sequence & ldEbcesses. Moreover, Jean-
nin and Pistorius also derived the time-Laplace transfquntes of barrier and digital options,
and some sensitivities, within the framework of HEJD modeticing of double barrier options
in HEJD models was discussed by N. Cai et al. [17] where alsodtae for the first passage
time and related identities of HEJD processes are givensd hwo papers also form the basis of
this work, where we slightly extend the existing resultspgplg them to the problem of pricing
lookback options.

Apart from applications in asset pricing jump diffusion nets] in particular models with expo-
nentially distributed jump sizes, are frequently used in theory, see e.g. Albrecher et al. [6].
A detailed overview on this topic can be found in the book ofissen and Albrecher [7].

The rest of the paper is organised as follows: in Section 2iweabrief introduction to HEJD
processes and the Wiener-Hopf factorisation for HEJD mee® In the third section, we derive
prices and sensitivities for different types of lookbackiops and in Section 4 we justify the
approximation of lookback option price under a NIG procegsdrresponding prices under a
HEJD process. A numerical analysis of our methods concltidepaper in Section 5.

7.2 Introduction to HEJD models and preliminary results

We will consider lookback options and similar derivatives an underlying asset, the price
process of which(S;):>o, is given asS; = SoeXt, whereSy > 0. We assuméE[eXt] = ¢
for all ¢ > 0, wherer denotes the risk free interest rate g );>( to be a Lévy process with
Xg=0a.s.

To valuate a lookback option we have to analyse the suprenmadriméimum process of the asset
price process. Let us hence define

X, = sup X, X, = inf X
0<s<t 0<s<t

and recall the well-known Wiener-Hopf factorisation.

Theorem 7.1 (Wiener-Hopf factorisation) Let (X;);>o be a Lévy process iR and (X;);>o
and(X,):>o its supremum and infimum process, respectively. Furthexnett be an exponen-
tially distributed random variable with parameter Then the characteristic function 6X;);>o
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at the random timé can be factorised in the following way:
E[¢*¥] = E[¢*%0|E[¢*Xe],  VzeR,

or equivalently

4w
q—log(¢X(Z)) ¢q( )¢q( )’ W GR,

whereg(z) is the characteristic function ok, ¢ (z) = Ele?*X¢] and ¢ (2) = Ele"20].

Additionally, formulae for the Wiener-Hopf factors, and¢;” can be given (see e.g. Sato [93]).
For general Lévy processes, however, the actual compatafithe factors affords numerical
evaluations of high-dimensional numerical integrals. Ofirse, for some particular types of
Lévy processes it is possible to give explicit formulaegfngrandgzb;r (see e.g. Kyprianou [67,
Chapter 6]).

A class of Lévy processes, which is well suited for assetepmodels and allows for consid-
erably simplified formulae for the Wiener-Hopf factors aritles identities are jump diffusions
with phase-type distributed jumps (cf. Asmussen et al. [[8Bre, at least in the first sections,
we concentrate on a special kind of the this last categoryéof/lprocesses, more precisely on
so called hyper-exponential jump-diffusions.

Definition 7.1 (Hyper-exponential jump-diffusion) Let X; be a Lévy process witky, = 0
s., thenX;, is called hyper-exponential jump-diffusion (HEJD), if @shthe following repre-

sentation
+

X; = ut+aWt+ZY++ZY* t>0,
i=1 7j=1

whereW is a Wiener processV,, N_ are Poisson processes with parametars > 0 and
A— > 0, respectively antﬂYf), (Y;") are i.i.d. families of mixed exponential random variables,
ie.

ZPTM sz i

where3 " 1pz =3 =Lpf >0i=1,....,n", p; >0,j=1,...,n" andZ, Z
are exponentially distributed with mean§™ > 0 and «; > 0, respectively. Moreover, all
random variables and processes are assumed to be indegenden

By the Lévy-Khinchin formula (see e.g. Sato [93]), the claggdstic exponent of a HEJD can
be written as

uX 2 —+ = angr
é(u) = log(E[e™*]) = wip — Eu + A Zpk ( i 1)
k=1 k
A ij (a — 1). (7.1)
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The functiong(u) can be extended analytically (cf. e.g. Sato [93, Chaptet®}he whole
complex plane except for the finite stsia;", fori =1,...,n"}, {—ia; , fori=1,...,n7}
and we will denote the roots of the Cramér-Lundberg equatign- ¢(—is) = 0 with positive
and negative real part, By (¢),i = 1,...,nT + 1andp; (¢),i = 1,...,n~ + 1, respectively.
Applying the formulae for general two-sided phase-typérithisted jumps on HEJD processes,
we find

Zil(l - ) [Tee (14 %)

ba (u) = — . and ¢, (u) = —— L
k=1 (1 - ﬂﬁ(q)) Hk:l (1 - p;(q))

Moreover, the time-Laplace transforms of the distributiaf X, and X, can be calculated
explicitly (cf. Mordecki [79])

m+
/ e "P(X; < 2)dt = 1(1 - Z A;(q)efpi(q)z), z>0 (7.2)
0 1 k=1
/ e "P(—X, < z)dt = 1(1 =D A (e @), 2>0 (7.3)
0 q

k=1

where the coefficientd (¢) and A, (q) are given by

Hnil(l B p;r(q})

+
Af(q) = Qo (7.4)
k 9
[T (1 22
v==Lv Py (@)
n- )

Hv:1 (1 + pl;_ )

Al (q) = v o (7.5)

m- k(@)
Hv:l,v;ék(l B Zi— (q))

Let us shortly note here, that another way to understandtibeeaformula is that for any ex-
ponentially distributed random varialle Xy and X, are hyper-exponential distributed random
variables.

With the notable exception of the Kou model (for whiechi = n~ = 1) the roots of the Cramér
Lundberg equation cannot be calculated analytically. Henealue to favorable structural prop-
erties of the Cramér Lundberg equation the numerical coationt of the roots is not diffi-
cult and can be efficiently implemented. The following Lem®a, which is a slight extension
of [16, Lemma 1], states the precise result.

Lemma 7.1 (Characterisation of the moment generating fundbn of X;) The functionp(—is)
is a convex function fos € (—a;, o). Furthermore:
e If 0 > 0, the equation-q + ¢(—is) = 0 for ¢ € R™ has rootsp, .k =1,...,nT +1 =
m*andp;,j=1,...,n" +1=m", which satisfy the condition
—00 < —p, i (q) <—a, <-—p (q) <...<—py(q) <—aj <—p;(q) <0,

0<pi(q)<af <pfa) <...<plle) <oy <pii, (q) < oo
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e If o = 0andp > 0, the equation—q + ¢(—is) = 0 for ¢ € R* has rootSp;j,k: =
1,...,nt+1=m" andp;,j=1,...,n~ =m~, which satisfy the condition

—oo< —a, _<—p _(q)<...<—py(q) <—a; <—pj(q) <0,
0<pi(g) <ai <p3(q)<...<plile) <oy <plii(q) <oo
e if o = 0 andpu < 0, the equation—q + ¢(—is) = 0 for ¢ € R* has roots,o:,k =
1,...,nTt =m* andp;,j=1,...,n~ +1=m", which satisfy the condition

—00 < —p,_1(q) <—a,- < —p,(q) <... <—=py(q) <—ay <—p;(g) <O,
0<pi(q) <ai <pilq)<...<pi(q) <ol <oo.

e if o = 0 andu = 0, the equation—q + ¢(—is) = 0 for ¢ € R* has roots,o;,k =
1L,....,nT =m™" andp;,j=1,...,n~ =m~, which satisfy the condition

—00 < —a - < —p,(q) <...<—py(q) <—oy <—py(g) <O,
0<pi(a)<af <pfle) <...<plile) <oy <oc

Proof:

For simplicity of notation, we set/(s) = ¢(—is). Note that in every case)(s) is a convex
function on(—a7, a7 ), because it is a sum of convex functions on this interval.
Furthermorey)(s) has poles on on the sefa, fori =1,...,n"}, {a;, fori=1,...,n"}.
For a positive poley; it follows v (a;” —) = +o0c andi(a; +) = —oo and for a negative pole
a; it follows (o, —) = —oo andy(a; +) = +o0. Furthermore)(s) is continuous between
two poles, so that there is always at least one root of thetiequaq + ¢(—is) = 0 between
two such poles. From the fact that0) = 0 and the convexity of in (—a;, o] ), we conclude
that there is exactly one root on each of the interyala; ,0) and (0, «; ). While all of the
observations so far hold in every of the four cases, we wilf nonsider different combinations
of o andy separately.

If o > 0, it follows by simple transformations that the equatien + v (s) = 0 has two more
roots thany(s) has poles and thdim;_, ;- ¥ (s) = lims_, _ ¥ (s) = +00. Because of these
facts, there is exactly one root {R-oo, o, ) and(azﬂ +00). Hence there is exactly one root
in each of the intervaléa;", ;) fori = 1,....m* — 1, (aj,4,0; ) fori=1,...,m~ —1,
(at,,400) and(—oo, ;).

The argumentation is similar in the three remaining casé®rew = 0. If 4 # 0, then
—q + ¥(s) = 0 has one more root than(s) has poles. Because bfn,_, . ¥(s) = +oo if
> 0andlim,_, o 9(s) = +ocif 4 < 0, there must be aroot ", , +-00) and(—oo, a, ),
respectively. The case = 0 ando = 0 follows directly from the above considerations. [
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7.3 Prices and Greeks of lookback options

In this section we will give pricing formulae for differenbdkback options on an underlying
asset, that is modeled by the exponential of a HEJD. Moreigalgc we will assume the asset
price S to be given as:

S, = SpeXt,

where X, is a HEJD process with; > 1. This last assumption guarantees that the expectation
of the stock price is finite.

We consider two classes of lookback options, namely floatmjfixed strike lookback options.
Denoting the maturity by" and the strike price by<, the payoff of fixed strike calls and puts
are defined bymaxo<¢<7 S; — K) with K > Sy and(K — ming<;<7 S;) " with 0 < K < S,
respectively. The prices of these options are given by

LCixed(T’ S0, K) = Ele™"" (max Sy = K)*], K = S, (7.6)

and

LPfixed(T, So, K) = E[e " (K — min S;)"], 0< K < S,
0<t<T

respectively. In the same manner the prices of puts and chlfi®ating strike lookback op-
tions are defined as expectations of their payéiffsix{ )/, maxo<;<7 S;} — S7) and (St —
min{ N, ming<;<7 S¢}), respectively, wherd/ > S, > N. Thus

LPfioat(T, So, M) = E[e ™" (max{M, [max St} St)]

(
Ele™ T(max{M [nax, SeH] — So
(

Ele~""( max Sy — M) +e M-S
0<t<
= LCfixed(T, So, M) + e "M — Sy (7.7)

and

LCfoat(T, So, N) = E[e " (St — min{N, OgltignT Se})]

= So — E[e™T (min{N, Or<nin S,

<t<T
—rT —rT . +
So—e +Ele™ ( oin Si)T]
= So — "IN + LPfixed(T, So, N) (7.8)

It follows by (7.7) and (7.8) that the price of a floating sérilookback put option is just the sum
of the price of a fixed strike lookback call option and a contstéith respect toX;. An analogous
statement applies to floating strike lookback call optidie. will use these facts frequently in
the proofs of the following theorems and corollaries.
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7.3.1 Prices of lookback options

As mentioned before the aim is to calculate the Laplace fimamsof prices of lookback options
and the following lemma will prove useful for this.

Lemma 7.2 Let X; be a HEJD. Then

lim eYP[X71 > y] =0, and lim eYPX, <y] =0, VT > 0.

Yy—00 y——o0

Proof:
Observe thatefX:=¢(=0)), ., is a martingale for any € (—a;,a;). Sincea; > 1, ¢ is
continuous ang(—i) = r > 0, there exists somé € (1, a]") such that(—if) > 0. Hence

Y P[Xp >y = LAWY Plr, < T,

wherer, denotes the first passage time of the procéss/er a levely. By the optimal sampling
theorem the second term can be dominated by

Py Plr, < T] < E[QBX(T:U/\T)] < BT E[QBX(T:U/\T)_¢(_iﬁ)(Ty/\T)] = ?(—iHT (7.9)

where the second inequality follows from the fact tR&t?(—*#)(T—(vAT))] > 1 and the required
result follows sinced > 1. The second limit result follows by applying the same argots®n
the dual reflecting processX;. O

Theorem 7.2 Let A,j(q) and A, (¢q) be given as in(7.4) and (7.5) and let the negative and
positive roots of the equatiop(—is) —q = 0 be given by, (¢),k =1,...,m~ andp:(q), k=

1,...,m™, respectively. Then the Laplace transform of the price okedfistrike lookback call
is given by
+
0o 1 ™ o~ 108(K/S0)(pf (atr)—1)
—aT +
LCrixed(T, So, K)dT = S A K > 5,
/0 e fixed( 0, K) Ooz—|—7“ ; k(oz—H“) ,OZ(CM—F?“) T 0
while for a fixed strike lookback put option we have
o0 1 e~ log(K/S0)(py, (atr)—1)
T LPfixed(T, So, K )dT = A K < Sp.
/0 e fixed(T, So, K )d Soa s ; i (o) () < So

Proof:
We need to calculate the Laplace transforni@f "7 (SpeX” — K)*], K > Sy. Defining

z = log(K/So) > 0,

we have - _
E[e—rT(SOGXT . K)Jr] — SO E[efrT(eXT _ ez)]‘{YTEZ}]' (710)
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Applying integration-by-parts and Lemma 7.2 yields
E[e*TTeXTl{YTZZ}] = —eTT/Z eYdP[ X1 > 9]
:—e*TT( e PIX T>z / e PIX sz]dy>

o
=Ele e’ iz, 00 + TT/ ! P[X7 > yldy.

Hence ,
SoE[e (X — )1z 5] = SOGTT/Z ! P[X 1 > yldy

and for allae > 0
/ e TS, IE:E[e*rT(eY )1{XT>z}]dT SO/ e e TT/ eV P X1 > y|dydT
0
= So/ ey/ ~eAIT pIX 7 > y|dTdy,

where changing the order of integration in the last stepgtfjad by Tonelli's theorem.
Note that the inner integral in the above is exactly the Leplmansform of the distribution of
the supremum proces$ and is hence given by equation (7.2), i.e. we have

m
(a+1)e Pk w (otr)y

/ (a+7‘)T P[XT > y
0 =1

By Lemma 7.1 andy(—i) = r we haveminy, p;r(oz +7) > ming p; (r) = 1 for & > 0 and
therefore,

+
0o _ 0o 1 m
/ TS Ble™ (X7 — *) g, ]dT = So / —— 3 Af(a+r)ertr gy
0 " - ot
+ +
1 e 108(K/50)(p; (a+1)—1)
=5 Af(a+r ,
Oa—H"kZl e ) pi(a+r)—1
which proves the first statement.
The second result follows from similar reasoning. O

Corollary 7.1 Let0 < N < Sy < M and letA], A, , p; andp; be as in Theorem 7.2, and
denote the maturity bY'. Then we have

00 1 o~ 108(M/So)(pf (a+r)—1) M S

=T LPyoa(T, So, M)dT = S Af(a+ - -=

/o e float(1', So, M) o TI; Sla+r) a1 pareiatn
(7.11)
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. g T e~ 108(N/S0)(py, (atr)—1) N
—aT 0 -
** LChoat(T, So, N)dT = — + S, A + — .
/0 € float( T’ So, ') a Oa—H"I; elatr) L—pp(a+r) a+r
(7.12)
Proof:
The proof follows immediately from Theorem 7.2, (7.7) and}7 0

7.3.2 Greeks of lookback options

In this subsection, we use the results of the previous stibeedo give formulae for the Laplace
transforms of sensitivities of lookback options. We derspressions foBy,, Ay andI'y,
which are defined by

ov o0*vV ov

AV:a—SO, FV:a—Sga @Vzﬁ—T,

whereS, denotes the initial price of the underlying as§éis the maturity of the option and
is the price of an option on the underlying asset.

Theorem 7.3 SupposeX; is a HEJD process witlr > 0 and leta > 0. Then the Laplace
transforms ofAr,¢y,., andI'rc;,., are given by

+ +
~ 1 & e~ log(K/So)(py, (a+r)—1)
Arc, = A - <K
LCflxed(a) Oé"‘rkzzl k(a—i_r)pk (a—i_r) p;:(a—'-?")—l ) 0<SO_ )
(7.13)
T a
iR —log(K /S T (atr)—
I'Lepea(@) = a5 ;A,‘g(a +7r)pf (a+r)e g(K/S0)(py; (a+r)—1) 0< Sy <K.
(7.14)
The Greeks of fixed strike lookback put option are given by
z 1 m~ s e—log(K/So)(p; (a+r)-1) " g
. _ - - <K<
LPﬂxed(a) 04—1—7“ Z k(a+’r.)pk (O[—|—'I") 1 . _(Oé+7°) 9 0 — — 05
k=1 Pk
(7.15)
i 1 1 - — — —log(K/S - (a47r)—
TLp (@) = S ;Ak (@ + 1)pr; (0 + r)e” EE/S)er 0= g < K <
(7.16)

Proof:
First note thatAy, andI'y, exist and are continuous, sinE®sixeq aNdLPsixeq can be understood
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(viewed as function ofSy) as convolution of the continuous density &ir and the function
f(z) = (x — ¢)*, the second derivative of which in the sense of distribwi@ngiven by the
Dirac-Delta measure.

Formulae (7.13) — (7.16) all directly follow by interchangi differentiation and the Laplace
transform. So we only have to show that changing the order fiact justified. To this end note
that

o [
8—50/0 € TLCfixed(T7507K)dT
1 o

=lim= [T (Lcﬁxed(T, So + €, K) — LCfixed(T’, So, K)) dT.
e—0U € 0

Now the aim is to apply the dominated convergence theorerhedifference quotient. Observe

that

1 _
P aT‘LCfixed(Ta So + ¢, K) — LCrixed(T’, So, K)‘

= lef(O‘Jrr)TIE{((SO + e)eyT - K)

SoeYT — K)l
€

1{6YT2K/(SO+6)} a ( {eYTzK/So}}

= le_(OH"")T E [eeYTl ((So + e)eyT - K)1

€ {K/(So+e)<eXT SK/SO}]

(X1>K/50) T

< K
—(a+r)T X _
< et <E[6 Tl{eXTZK/So}HS_o)

< e~ (atn)T <E [max(eyT, K/So)] + 55)
0

Furthermore we have that

> —(\aTTr X K
/0 e (ot )T(E[max(exT,K/So)] +S—O>dT

_ > —(a+n)T X1 | dr + ——
/0 e [max(e , /So)] + (@5
where the first term on the right hand-side was already catledland shown to be finite in the
proof of Theorem 7.2. Thus the dominated convergence threaen be applied to justify the
interchange of integration and differentiation and we have

0

a8, / et LCfixed(T', So, K)dT = / B*O‘Ti LCiixed(T', So, K)dT
950 Jo 0

050
0 ~
= / 6ﬂlTALCﬁxeddT = ALCpeq(@)-
0
The argumentation in the caselofc,,., is similar. Again we consider the differentiation quo-
tient and again we want to apply the dominated convergeramrém. First note that

1
— e *T|(LCrixea(T’, So + ¢, K) — 2 LCfixed(T’ So, K) + LCiixea(T’, So — ¢, K|

€
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1 J— —
_ —(a+r)T X _ X _
= 5_26 (a+r) ‘E[ee Tl{eXTzK/So}+((SO+€)€ T —K)I{K/(So-i-s)geXTgK/So}]
X X
| T ey oL FPME S ‘
1
—(a+r)T X _ _
< 3¢ B[ im0 ~ LFraasseoy|
1 .
a+r)T X _
+ et E[Ee Tl{K/(so+s>3eXT3K/so}}

e

_|_
1.
€

_l’_

. _
a+r)T X X X

e EU(SOB T—K)(l{eXTzK/So}_I{GXTZK/(SO_G)})”
a+r)T X X

TE|TL sy r<e¥r <a /500

1

2¢

e~ (atr) TE“S eXT K‘l
€

{6/ (So+e)<eXT <K /(S0 - e)}}
K +1P[K/(So+¢) <e¥T < K/(S) — ]

< p—(atr)
=© So— € €

Hence the dominated convergence theorem can be applied, if

[t P[K/(So +€) < X7 < K/(S)— )]
0

€

dT' < oo,

for any sufficiently smalk > 0. In fact, this is easily seen to be the case, if the distrilputif
X admits a density.

Hence, finally, we have to argue why the density of the distidim of X exists. For this pur-
pose, we use a result of Chaumont [22, Theorem 2], who staeXt- is absolutely continuous
for T' > 0 with respect to the Lebesgue measurefohif and only if the potential measure
of X is absolutely continuous with respect to the Lebesgue measuR "™ and0 is a regular
point for (—oo,0) and (0, o). Sinces? > 0, 0 is a regular point for both intervals in our case
and following Bertoin [12, Theorem I1.16] we get that the @lloge continuity of the potential

measure is equivalent to
1
Rl ———— )dx < o0, 7.17
/R <q + ¢(w)> (710

whereg(x) is the characteristic exponent &% given in (7.1). Using Lemma 7.1, we conclude
that all singularities and roots @f+ log(¢(z)) have non-zero imaginary part and since> 0,
¢(z) is a polynomial of degree™ + n~ + 2 divided by a polynomial of degree" + n—, thus

it follows that integral in (7.17) is finite.

The equations (7.15) and (7.16) follow by similar arguments O

Corollary 7.2 Under the assumptions of Theorem 7.3, the first and secoreat dedivatives of
prices of floating strike lookback options with respecbgoare given by

+ +
. ;] ™ o~ log(M/So)(pf (atr)=1) 7
A = Af Ay - 0< Sy <M
trral) = s DALl g o N e — = V<M,
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i 1 1 < — lo, T (atr)—

Pipia(®) = o kZlAz (o 1)pf (o r)e BP0 < 5 < M,

- 1 1 e~ 108(N/S0)(py, (atr)—1)

A =— AL N <N
LCroat( ) + a+r kz (()Z+T)pk (O[+T) 1 —p];(()é‘{‘r) ) 0 = SO,

iR 1 \- —log(N/S - (a+r)—

L Cpom(@) = a+r5_kz (a+7)p, (a+1)e g(N/S0)(py (atr)—1) 0< N <Sp.

Proof:

The corollary follows directly by Corollary 7.1, Theoren87(7.7) and (7.8). O

Theorem 7.4 SupposeX; is a HEJD process with and leta: > 0. Then the Laplace transforms
of the sensitivities of fixed strike lookback options witpext to the maturity” are given by

e~ log(K/So)(py (a+r)—1) K>
(a+71) , > 50,
pilo+r)—1 "

@)LCfixed( )= aLCflxed

(7.18)
e~ log(K/S0)(py, (a+r)—1)

OLPyed(@) = ALPfixed(a I~ p(atr)
k

Proof:

Note that the first equations in (7.18) and (7.19) are cldssitaplace transforms, given that
LCiixeqd aNdLPsixeq are differentiable (with respect t6). Here we will show that both are Lip-
schitz continuous and thus almost everywhere differelatjakhich is sufficient for the before-
mentioned results to apply.

Thus let us turn to the proof of the Lipschitz continuity aradenthat

|ILCiixed(T" + €, So, K) — LCrixed(T’, So, K|
= E[Q—T(T-i-ﬁ)(soeywre _ K)"’] _ E[e—rT(SOeYT _ K)""]‘

< E[efr(TJre)SoeYT“] — E[efrTSoeyT]

= E[e_’"TSo(eYT“ — eYT)} + E[5067T+6(6—r(T+e) _ e—rT)]‘

=TS, (E [eYT (eyT“*YT — 1)] + (e =1) E[eyﬂf])‘

E[BYT (67T+e—7T _ 1)]‘ + 62(6—7"5 _ 1)

<c ‘E[eYT] E[(exﬁ — 1)] ‘ + c3€
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where thec;'s denote some constants and we used the independence attbments of the
Lévy processY, the fact thaft[eX 7] < oo, and the local Lipschitz continuity of the exponential
function.

Furthermore for any < 5 < a7 we have

‘E[(exe—l)” (676_1)5])1/5

< L(H-z[(exe - 1)6])

B—1
5€ 1 (eed’(*iﬁ) — 1) < c5€

where we applied Jensen’s inequality, Doob’s martingadgurality, and again the local Lips-
chitz continuity of the exponential function.

This completes the proof of the Lipschitz continuitylafsxeq. The second result in (7.18) fol-
lows by similar arguments. O

E

VAN
—~

/B

Corollary 7.3 Let0 < N < Sy < M, a > 0 and let the assumptions of Theorem 7.4 be
satisfied. Then the Laplace transformgafp, ., and ©r,¢,,,, are given by

m* — lo; +(adr)—
@LPﬂoat(OZ) = OZI/JI\Dﬂoat(O[) =5 (aj—r ;A:(a N T)e 1 i;fi(?) (_+1) 1) B ) aai\i,
7 (7.20)
(:)Lcﬂoat(oc) = afaﬂoat(a) =5 (1 + ~ j‘_ - ; Ao+ 7“)6 lof(f/j;((:f:;) 1)) - aaj_vr,
7 (7.22)
respectively.
Proof:

By (7.7) it follows that the price of a floating strike looklaput option is the sum of the price
of a fixed strike lookback call option and an exponential fiomcwith respect tdl’. Thus by
the proof of the previous theorem the price of a floating stidokback put option is the sum
of two Lipschitz continuous functions and therefore Ligsclkeontinuous, which proves (7.20).
The second statement (7.21) follows analogously. O

7.4 Estimation of infinite activity processes via HEJD proceses

Having seen that lookback options can be priced efficiemhdEJD-model markets the goal
is now to apply these results to more general Lévy proce¥¥bse a direct generalisation is
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due to the lack of explicit formulae for the Laplace transferof the supremum and infimum
processes typically not possible, for so-called genadlisyper-exponential processes, there is
another possibility, which we will discuss now.

Definition 7.2 (Generalised hyper-exponential Lévy proces A Lévy process is called gen-
eralised hyper - exponential Lévy process (GHE), if its Limgasure admits a densityof the
formk(z) = k4 (7)1z50p + k- (—2)1(,<0y, Wherek, , k_ are completely monotone functions
on (0, c0).

Obviously the class of hyper-exponential jump diffusiogsiisubclass of the GHE processes,
since their Lévy density can be written as

nt n-
ot _ _ — —a-
kgpsp(x) = AT Zp;ra;re Y0y + A ij e % x1{$<0}. (7.22)
i=1 j=1

Another well-known member of the GHE class is the NIG prooghich has the following
representations of its Lévy densities:
B (5_@6596}(1(041') 5@66$K1(—ax)

knra(z) = —¢ ——Lasop +—

1ip<0}s (7.23)

wherea > |3] > 0,6 > 0 and K is the McDonald function
o0
Ki(z) = x/ e (2 — 1) 2dv.
1

Jeannin and Pistorius [59] show, that for every process GHE, a sequence of HEJD processes
(X™)n>0 can be constructed which converges weaklyXton the Skorokhod topology on the
space of real-valued cadlag functions Rn. They also show that the sequence of maximum
processes{Y”)nzo converges in distribution to the maximum proce$s The next theorem
states that also the sequence of lookback option pricesogew in distribution to the lookback
option price undeiX.

Theorem 7.5 Let X be a GHE process, which is not a compound Poisson proceghglgtrice
process be given a$; = SpeXt and letLCroa(So, K, T) be the pricing function of a floating
strike lookback call option. LetX"),>o be a sequence of HEJD processes, With — X
for n — oco. Then the sequence of floating strike lookback put optiorepiiCyj,,; under the
approximated processes™ converges td.Cyoat.

Proof:
Following the proof of Theorem 7.2, by using equation (718 sufficient to show

lim E[eiTT(eY; - ez)1{7;>z}] = E[eiTT(eyT - ez)l{YTZz}]’

which is, by the arguments used in the proof of Theorem 7 @ivatgnt to

o0 oo

lim ey IP’[Y; > yldy = / VP X1 > y]dy.

n—oo 2 2
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By using inequality (7.9) from Lemma 7.2, we can domirﬂt@[72 > y] and apply the dom-
inated convergence theorem, thus the proof is complete. d

Remark 7.1 The convergence of prices of fixed strike lookback optiodslaating strike look-
back put options follows by similar arguments.

7.5 Numerical results

In this last section we give numerical values of prices ande®&s of lookback options, which
result by applying the Gaver-Stehfest algorithm for nucadrLaplace transform inversion (see
e.g. [40]) to the formulae given in the Theorems 3.1 - 3.3 aab{laries 3.1 - 3.3. These results
are compared to corresponding values derived via Monteo@aggration. The main advantage
of our method is that computing the numerical Laplace ineearsf prices and Greeks takes only
1 second per option while the Monte Carlo simulation valaées$ several minutes.

The numerical analysis is divided into three subsectionghe first subsection we analyse
the numerical error of the Gaver-Stehfest algorithm, by garimg results from the presented
Laplace inversion method with a Monte Carlo (MC) simulatadra HEJD process. In the sec-
ond subsection we give prices of lookback options under aCHErdcess which is fitted to a
NIG process and compare them to a Monte Carlo simulation eftiginal NIG process. In
the last section, we compare sensitivities resulting fremtechnique with the corresponding
simulated values of a NIG process. All computations wereedorMathematica.

The problem of fitting a HEJD process to a NIG process is caensitlin the articles of Crosby,
LeSaux and Mijatovic [24] and Jeannin and Pistorius [59]bdth papers, a HEJD process is
fitted to a NIG process with parameters= 8.858, 5 = —5.808,§ = 0.176. All methods use
a mixture of seven exponentially distributed upward jumpalges Z;” and a mixture of seven
exponentially distributed downward jump variablgs to model the jumps of the logarithmic
price process. In [59] the parameterﬁ,i =1,...,7are fixed in the beginning and the remain-
ing parameters\*, o andpli,i = 1,...,7 are derived by a least squares approximation. The
parameten; follows from no-arbitrage considerations. Crosby, LeSand Mijatovic present
several fitting methods which use more complicated optitimisaechniques. In the following
numerical examples we use the parameter set corresporaingthod c) in [24] because it
showed the best performance. These parameters are givablm 7.1.
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Parameter set CLM

Parameter Value
O3 A A 0.04062; 3.09468; 4.55662
pt {0.07858, 0.15033, 0.20017, 0.22039, 0.20704, 0.1432D022}
P~ {0.05004, 0.12865, 0.22579, 0.21569, 0.18166, 0.1309B7AL7}
at {70.53135, 64.58179, 54.96035, 43.32801, 31.69567, 228716.12466}
a” {4.58662, 10.85414, 20.98976, 33.24374, 45.49773, 535331.90087}

Table 7.1: Parameters of the calibrated HEJD process fitt@dNIG process with parameters
o = 8.858,8 = —5.808,5 = 0.176 (method by Crosby, LeSaux and Mijatovic [24]).

7.5.1 Error of the Gaver-Stehfest algorithm

As a benchmark for our analysis, we use an unbiased Mont® Ganlulation method for the

HEJD, which applies to general jump diffusion processe® itimber of simulated paths is
100.000 and the computation time for one price is about 5 teimurhe results for prices of
fixed strike lookback call and put options are given in thel@aly.2 and 7.3, respectively. The
numerical errors in the approximation of sensitivities akfl strike lookback put options are
given in Table 7.4.
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Prices of fixed strike lookback call options in the HEJD model

So MC Price 9%%-conf.int. CLM
70 0.00116 (0.00048; 0.00185) 0.00088
75 0.00387 (0.00227; 0.00546) 0.00322
80 0.00953 (0.00722; 0.01185) 0.01071
85 0.03632 (0.03091; 0.04174) 0.03253
a0 0.09638 (0.08842; 0.10435) 0.09083
95 0.24363 (0.23116; 0.25609) 0.23522
100 0.56749 (0.54821; 0.58677) 0.56626
105 1.25536 (1.22719; 1.28353) 1.26059
110 2.53137 (2.49160; 2.57114) 2.56846
115 4.78483 (4.73138; 4.83828) 4.74117
120 7.93318 (7.86722; 7.99914) 7.90993
122.5 9.83583 (9.76352; 9.90814) 9.86508
125 12.03170 (11.95470; 12.10870) 12.0539
1275 14.44220 (14.36186; 14.52254) 14.4661
128 14.98910 (14.90728; 15.07092) 14.975
128.5 15.57960 (15.49714; 15.66206) 15.4928
129 16.00890 (15.92693; 16.09087) 16.0197
129.5 16.55780 (16.47508; 16.64052) 16.556
130 17.01520 (16.93203; 17.09837) 17.102

Table 7.2: Prices of fixed strike lookback call options witdrying initial asset price, strike
price K = 130 and maturityl’ = 1.
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Prices of fixed strike lookback put options in the HEJD model

So  MC Price 9%%-conf.int. CLM
70 6.52566 (6.47190; 6.57942) 6.53762
70.5 6.13835 (6.08455; 6.19215) 6.17411
71 5.85091 (5.79742; 5.90440) 5.88262
71.5 5.63913 (5.58548; 5.69278) 5.62039
72 5.39465 (5.34158; 5.44772) 5.37709
72.5 5.12923 (5.07689; 5.18157) 5.14933
75 416099 (4.11118;4.21080) 4.19454
77.5 3.43517 (3.38830; 3.48204) 3.46899
80 2.92254 (2.87822; 2.96686) 2.90436
85 2.03532 (1.99668; 2.07396) 2.09797
90 1.57349 (1.53832; 1.60866) 1.56554
95 1.19229 (1.16122;1.22336) 1.19899
100 0.95105 (0.92272; 0.97937) 0.93796
105 0.72813 (0.70269; 0.75356) 0.74684
110 0.56268 (0.53989; 0.58548) 0.60358
115 0.47751 (0.45603; 0.49899) 0.49407
120 0.39429 (0.37399; 0.41458) 0.40891
125 0.33014 (0.31157;0.34870) 0.34171
130 0.26002 (0.24218; 0.27786) 0.28801

Table 7.3: Prices of fixed strike lookback put options withyuag initial asset priceSy, strike
price K = 70 and maturity7 = 1.

The prices derived by our method are located in almost aflasthed5%-confidence interval
of the Monte Carlo estimator. Therefore, we conclude thamemical error resulting from the
Gaver-Stehfest algorithm is very small, especially whendifference between the initial asset
price and the strike price is not too large.

The Monte Carlo sensitivities in Table 7.4 are estimated lyiased central finite difference
estimators as described in Glasserman [42, Chapter 7]. Meedenbiased MC estimators for
the sensitivities, we use the same set of random paths for@#e computation, therefore a
comparison of the MC prices with prices resulting from ourtimod is omitted.
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Greeks of fixed strike lookback put options in the HEJD model

So MC A MCTT CLMA CLMT Adiff.in% I diff.in %

70 -0.86616 0.43778 -0.87705 0.90464 1.26% 106.64%
72.5 -0.44270 0.05355 -0.44126 0.05496 -0.33% 2.64%
75 -0.32967 0.04057 -0.33031 0.03604 0.20% -11.16%
77.5 -0.25327 0.02434 -0.25452 0.02544 0.49% 4.52%
80 -0.19952 0.02035 -0.20002 0.01862 0.25% -8.50%
82.5 -0.15964 0.01346 -0.15965 0.01396 0.00% 3.68%
85 -0.12936 0.00842 -0.12911 0.01065 -0.19% 26.58%
87.5 -0.10584 0.00736 -0.10563 0.00826 -0.20% 12.15%
90 -0.08711 0.00741 -0.08731 0.00649 0.23% -12.43%
92.5 -0.07259 0.00568 -0.07283 0.00516 0.33% -9.23%
95 -0.06109 0.00363 -0.06126 0.00414 0.28% 14.25%
97.5 -0.05159 0.00346 -0.05192 0.00336 0.64% -2.87%
100 -0.04420 0.00268 -0.04430 0.00275 0.23% 2.80%

Table 7.4: Prices of fixed strike lookback put options withyirzg initial asset price5, strike
price K = 70 and maturity? = 1.

The relative differences in the last two columns are catedlaising the following formulae:

CLMA—-MCA , CLMT - MCT

UCA . Ddiff. = AUCT . (7.24)
The numerical error in the computation of the sensitivitia®latively small, although the values
of the error of the second derivative vary quite a lot. EsgiwhensS is close to the strike

price the Monte Carlo estimator and the Laplace inversidnegdiffer.

7.5.2 Error of the parameter fit

The next step is to compare prices derived by our numericglalca inversion method with a
Monte Carlo simulation of the corresponding NIG process paths of the NIG process were
simulated on an equidistant grid, which of course introduzdias, but numerical experiments
show that a simulation of 100.000 simulated paths with 1 @@ points provides a reasonable
accuracy.

The computation times are about one hour for the Monte Cagkhod and 1 second for the com-
putation of one price together with the corresponding $ieitEs using the presented Laplace
inversion method. Our first example (see Table 7.5) is a fixekleslookback call option. In
Table 7.6, prices of floating strike lookback put options@mpared.
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Prices of fixed strike lookback call options in the NIG model

So  MC Price 9%%-conf.Int. CLM
70 0.00116 (0.00051;0.00182) 0.00088
75 0.00438 (0.00273; 0.00603) 0.00322
80 0.01202 (0.00931;0.01474) 0.01071
85 0.03254 (0.02776; 0.03733) 0.03253
90 0.08844 (0.08092; 0.09595)  0.09083
95 0.21810 (0.20634; 0.22987) 0.23522
100 0.54534 (0.52699; 0.56369) 0.56626
105 1.23040 (1.20301; 1.25779) 1.26059
110 2.52913 (2.49046; 2.56780) 2.56846
115 4.60783 (4.55722; 4.65844) 4.74117
120 7.78941 (7.72576; 7.85306) 7.90993
122.5 9.64449 (9.57600; 9.71298) 9.86508
125 11.9014 (11.8273; 11.9754) 12.0539
127.5 14.3110 (14.2333; 14.3886) 14.4661
128 14.83000 (14.7516; 14.9083) 14.975
128.5 15.3338 (15.2547; 15.4128) 15.4928
129 15.8319 (15.7524; 15.9113) 16.01972
129.5 16.3457 (16.2658; 16.4255) 16.556
130 16.9719 (16.8910; 17.0527) 17.102

Table 7.5: Prices of fixed strike lookback call options witdrying initial asset price, strike
price K = 130 and maturityl’ = 1.
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Prices of floating strike lookback put options in the NIG modé

So  MC Price 9%%-conf.Int. CLM
70 56.1569 (56.0765; 56.2372) 56.1588
75 51.1523 (51.0661; 51.2384) 51.1611
80 46.1821 (46.0902; 46.2739) 46.1686
85 41.1983 (41.1016; 41.2949) 41.1906
90 36.1890 (36.0873; 36.2906) 36.2488
95 31.3931 (31.2864; 31.4997) 31.3932
100 26.7064 (26.5971; 26.8156) 26.7242
105 22.3340 (22.2236; 22.4443) 22.4185
110 18.6218 (18.5126; 18.7309) 18.7265
115 15.8606 (15.7538; 15.9673) 15.8990
120 13.9640 (13.8601; 14.0678) 14.0679
122.5 13.3252 (13.2226; 13.4277) 13.5231
125 13.0204 (12.9178; 13.1229) 13.2119
127.5 12.9782 (12.8746; 13.0817) 13.1239
128 12.9709 (12.8670; 13.0747) 13.1330
128.5 12.8558 (12.7526; 12.9589) 13.1509
129 13.0367 (12.9317; 13.1416) 13.1778
129.5 12.9958 (12.8911; 13.1004) 13.2141
130 13.0514 (12.9466; 13.1561) 13.2599

Table 7.6: Prices of floating strike lookback put optiondwiarying initial asset pric&y, initial

maximumM = 130 and maturityl’ = 1.

The fitting procedure for HEJD processes is accurate andgtabthe case of vanilla options, see
[24]. Nevertheless, especially for valuesSfnearkK and M, respectively, there is a remarkable
difference between the corresponding prices. A possibf@arement could be to consider a
fitting method which concentrates more on the tail behavithedistribution of the increments

of the underlying process. See [9], for a fitting method whadtes that into account in the case

of fitting a HEJD to a CGMY process.

7.5.3 Overall error of the sensitivity estimators

The purpose of this subsection is to compare sensitivitigsices of fixed strike lookback op-
tions computed with a Monte Carlo method with our methodhaisihe parameter set CLM. The

last two columns in every of the following tables are caltedavia (7.24).
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Greeks of fixed strike lookback call options in the NIG model

So MCA MCT CLM A CLMT ADiIff.in% I Diff.in %

70 0.02012 0.00471 0.0215133 0.005021 6.92% 6.61%
72.5 0.03534 0.00781 0.0379496 0.008369 7.38% 7.16%
75 0.06035 0.01230 0.0647412 0.013370 7.28% 8.71%
77.5 0.10287 0.01968 0.10642 0.020297 3.45% 3.14%
80 0.16421 0.02750 0.1677 0.028963 2.13% 5.32%
82.5 0.24754 0.03792 0.251891 0.038380 1.76% 1.21%
85 0.35310 0.04624 0.358668 0.046664 1.58% 0.92%
87.5 0.47680 0.05184 0.482484 0.051717 1.19% -0.24%
90 0.60902 0.05424 0.613796 0.0527 0.78% -2.84%
92.5 0.73850 0.05136 0.743544 0.050765 0.68% -1.16%
95 0.86106 0.04752 0.866602 0.047605 0.64% 0.18%
97.5 0.97660 0.04320 0.982458 0.045664 0.60% 5.70%
100 1.09440 0.04800 1.10199 0.052875 0.69% 10.16%

Table 7.7: Prices of fixed strike lookback call options wittrying initial asset price, strike
price K = 100 and maturityl”’ = 1.

Greeks of fixed strike lookback put options in the NIG model

So MC A MCT CLMA CLMTI ADIff.in% I Diff.in%

70 -0.87740 0.31746 -0.87704 0.90464 -0.04% 184.96%
72.5 -0.44139 0.05647 -0.44126 0.05496 -0.03% -2.67%
75 -0.32881 0.03777 -0.33031 0.03604 0.46% -4.58%
77.5 -0.25198 0.02701 -0.25452 0.02544 1.01% -5.81%
80 -0.19713 0.01994 -0.20001 0.01861 1.46% -6.63%
82.5 -0.15679 0.01551 -0.15964 0.01395 1.82% -10.02%
85 -0.12624 0.01051 -0.12911 0.01065 2.28% 1.36%
87.5 -0.10313 0.00858 -0.10562 0.00825 2.42% -3.75%
90 -0.08494 0.00425 -0.08730 0.00648 2.78% 52.64%
92.5 -0.07081 0.00436 -0.07282 0.00515 2.85% 18.28%
95 -0.05947 0.00340 -0.06125 0.00414 3.01% 21.87%
97.5 -0.05034 0.00291 -0.05191 0.00336 3.13% 15.54%
100 -0.04280 0.00293 -0.04430 0.00275 3.51% -6.06%

Table 7.8: Prices of fixed strike lookback call options witrying initial asset price, strike
price K = 70 and maturityl = 1.

Note that the computation of the Greeks, ") means almost no additional computational effort

as one can see for example by comparing the formulae in Time®rkeand 3.2. As in Subsection
7.5.1, the error of th&' values is relatively high, especially negy = K.
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7.6 Conclusion

In this paper, we present explicit formulae for the Laplae@sforms of prices and sensitivities
of lookback options in a hyper-exponential jump diffusioondel. Since a wide class of expo-
nential Lévy processes can be approximated arbitrarilgeclyy HEJD processes, these results
give the possibility to efficiently approximate prices obkivack options for a vast class of pro-
cesses used in financial modelling. The effectiveness dftleesion of the Laplace transformed
values was illustrated in several numerical examples.
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