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Preface

Financial mathematics is at least since the publication of the celebrated results of Black and
Scholes and Merton in the 1970s a fast growing research field.Researchers and practitioners
investigate several different issues, for example risk management, utility theory and asset pric-
ing theory, on which this thesis is mainly focused. A milestone in this context is the famous
Black-Scholes model, the structure of which makes it possible to treat many problems in asset
pricing theory in a mathematically simple way. In particular, prices of several derivatives can
be given in an explicit form. Nevertheless, investigationsin the last years have shown that the
Black-Scholes model does not replicate all features of the real market properly and therefore
several more advanced models were developed with the drawback that closed form solutions are
rare.

By the fact that the first fundamental theorem of asset pricing implies that the price of any
derivative is given as the discounted expected value of the underlying payoff function under a
risk neutral probability measure, we can use numerical integration to find the price of a derivative
if an analytic solution is not available. A disadvantage of classic numerical integration methods,
like for example the trapezoidal rule, is that their asymptotic convergence rate decreases rapidly
when the number of dimensions of the integration domain increases. This is not the case for
Monte Carlo (MC) and Quasi Monte Carlo (QMC) integration andsince several asset pricing
problems involve high-dimensional integration, MC and QMCtechniques are frequently applied
in practice.

The purpose of this dissertation is to analyse and improve MCand QMC methods and investigate
related topics. In the opening chapter we start with a short introduction to the relevant funda-
mental facts and close with the statement of our new results.In the following three chapters
we study the basics of MC and QMC, including criteria for the uniform distribution of special
deterministic sequences and probabilistic discrepancy bounds for MC sequences. In Chapter 5
and 6 we analyse two asset pricing techniques which rely on MCand QMC and give theoretical
and numerical results which illustrate why these methods are well applicable in practice. The
last chapter is dedicated to derivative pricing under an advanced market model where analytic
solutions, even for highly complex derivatives, are still available.
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Chapter 1

Introduction and statement of results

1.1 (Quasi) Monte Carlo integration in option pricing

Starting from the seminal papers of Black and Scholes [14] and Merton [78], financial math-
ematics has become a very popular and fast growing research field over the last decades. Im-
portant topics include among others risk management, utility theory and asset pricing theory,
on which this thesis focuses. More precisely we will mainly be concerned with the pricing of
special derivatives, so-called options.

Definition 1.1 (Option) An option is a contract that gives its owner the right, but notthe obli-
gation, to buy or to sell an underlying asset at a predefined time and price.

Before we can define the price of such a derivative, we have to explain some basic properties of
financial market models. A detailed introduction into financial market models and asset pricing
can be found for example in the book of Cont and Tankov [23].

Definition 1.2 (Stochastic process)A family of random variables(Xt)t≥0, indexed by timet,
defined on a probability space(Ω,F ,P) is called stochastic process.

Definition 1.3 (Cadlag function) A functionf : [0, T ] → Rd is said to be cadlag if it is right-
continuous with left limits i.e. for eacht ∈ [0, T ] the limits

f(t−) = lim
s→t,s<t

f(s) f(t+) = lim
s→t,s>t

f(s)

exist andf(t) = f(t+).

In the sequel we will use the following financial market model: let (St)t≥0 = (S1
t , . . . , S

d
t )t≥0

be a vector of caglad stochastic processes on a probability space(Ω,F ,P), whereSt represents
the asset price processes of the underlying assets at timet and let(S0

t )t≥0 be defined as a cash
account with risk free interest rater. It is intuitive to assume that the asset price processes are
cadlag, since this allows jumps of the asset price processesbut these jumps can not be foreseen
by an investor.
Note that, due to the evolution of the asset price processes,it follows that at different points in
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CHAPTER 1. Introduction and statement of results

time there are different amounts of information available.Thus the probability of occurrence of
a random event changes with time. To include this flow of information into our market model,
we fix P and introduce the impact of information by conditioning on aso-called filtrationF,
instead of changing the probability measureP with time.

Definition 1.4 (Filtration) A filtration on (Ω,F ,P) is an increasing familyF = {(Ft)t≥0 :
∀t ≥ s ≥ 0,Fs ⊆ Ft ⊆ F} of σ-algebras ofF .

A probability space(Ω,F ,P) equipped with a filtration is called a filtered probability space
(Ω,F ,F,P). We will only use filtrations which satisfy the following three conditions called
“usual hypothesis”:

• F is P-complete

• F0 contains allP-null sets ofΩ

• The family(Ft)t≥0 is right continuous,Ft =
⋂
s>tFs

We define a portfolioφ = (φ0, . . . , φd) as the amount of cash invested in each asset held by the
investor. At timet the value of such a portfolio is

Vt(φ) =

d∑

k=1

φkSkt .

Furthermore we define a so-called trading strategy as a dynamic portfolio (φt)t∈[0,T ] which is
modified at different transaction dates,T0 = 0 < T1 < . . . < Tn+1 = T . In the time interval
[Ti, Ti+1) the current portfolio remains unchanged and it will be denoted byφi. It is not realistic
that an investor knows these trading times in advance, more likely he will change his portfolio,
when a specific event has occurred. Hence the transaction datesTi’s become stopping times and
the trading strategy becomes a simple predictable process.

Definition 1.5 (Stopping time) A random time T > 0 is called (F)-stopping time if ∀t ≥
0, {T ≤ t} ∈ Ft.

Definition 1.6 (Adapted process)A stochastic process(Xt)t≥0 is said to be adapted to the
filtration F if, for eacht ≥ 0, the value ofXt is revealed at timet, or more precisely, if the
random variableXt isFt-measurable.

Definition 1.7 (Predictable process)The predictableσ-algebra is theσ-algebraP generated
on [0, T ] × Ω by all adapted left-continuous processes. A mappingX : [0, T ]× Ω → Rd which
is measurable with respect toP is called a predictable process.

Definition 1.8 (Simple predictable process)A predictable stochastic process(φ)t∈[0,T ] is called
a simple predictable process if it can be represented as

φt = φ01{t=0} +
n∑

i=0

φi1{t∈(Ti,Ti+1]},

2



CHAPTER 1. Introduction and statement of results

where0 = T0 < T1 < . . . < Tn+1 = T are stopping times and eachφi is a bounded random
variable which isFt-measurable.

Within the class of trading strategies we will be mainly interested in so-called self financing
trading strategies, which play an important role in the theory of arbitrage.

Definition 1.9 (Self financing trading strategy) Let (φt)t∈[0,T ] denote ad-dimensional trad-
ing strategy and(St)t∈[0,T ] a d-dimensional vector of price processes. If

φt · St − φt− · St = 0,

holds for allt ∈ (0, T ), then the trading strategy is called self financing.

In other words a trading strategy is called self financing, ifafter the initial investment there is no
money extracted or added.
Now we are able to introduce the crucial concept of arbitrage.

Definition 1.10 (Arbitrage opportunity) An arbitrage opportunity is a self financing trading
strategy with no initial costs, i.e.V0(φ) = 0, where

P(∀t ∈ [0, T ] : Vt(φ) ≥ 0) = 1 andP(VT (φ) > 0) > 0.

Obviously, economically it makes sense to exclude the possibility of arbitrage in asset pricing
theory, which is called the no-arbitrage assumption. Note that when trading strategies are not
assumed to be predictable, it can easily be shown that the market is not arbitrage free if the asset
price processes have jumps.
Having excluded arbitrage opportunities, the next question is how can derivatives be included
in the market without introducing arbitrage. An answer to this question is given by the first
fundamental theorem, which was first formulated by Harrisonand Kreps [50] in a finite state
setting and extended to a very general form by Delbaen and Schachermayer [25]. The statement
of the theorem is that a financial market model is arbitrage free if and only if there exists a
probability measureQ, which is equivalent to the real world probability measureP, such that
the discounted asset price processes(S̃it)t≥0 = (Sit/S

0
t )t≥0, 1 ≤ i ≤ d are martingales under

Q.

Definition 1.11 (Martingale) A cadlag process(Xt)t≥0 on (Ω,F ,F,P) is called martingale if
(Xt)t≥0 is adapted toF, E[|Xt|] <∞ for anyt ≥ 0 and

E[Xt|Fs] = Xs, ∀s > t.

Now we will focus on the pricing of derivatives. Options are usually characterised by their so-
called payoff functiong, which defines the payment to the owner of the option when the contract
is executed. The first fundamental theorem of asset pricing implies that the price of an optionP
is always given as the discountedQ-expected value of its payoff functiong, i.e.

P = EQ[e
−rT g(X)],

3



CHAPTER 1. Introduction and statement of results

whereX denotes a random vector which depends on the vector of price processes(St)t≥0. By
transforming the underlying random variables we can write the problem in the following form:

P = EQ[e
−rT f(U)], (1.1)

whereU = (U1, . . . , Ud) is ad-dimensional random vector and allUi are uniformly distributed
on [0, 1).
There are several approaches to calculateP in (1.1) for example by applying analytical meth-
ods which use the characteristic function of the asset priceprocess, the numerical solution of a
corresponding partial (integro-)differential equation or numerical integration methods. In most
cases it depends on the underlying option and the market model whether a specific technique is
efficient or not, for more details see e.g. [23].
In this thesis we mainly focus on numerical integration methods. Although classic numerical
integration schemes, like for example the trapezoidal rule, have a fast convergence rate for one-
dimensional problems, their convergence speed decreases rapidly with increasingd. An alter-
native is provided by Monte Carlo (MC) integration methods whereP is approximated by the
Monte Carlo estimator

P̂ =
1

N
e−rT

N∑

n=1

f(Un),

whereU1, . . . , UN are i.i.d. random vectors with the same distribution asU . By the strong law
of large numbers it follows that iff is integrable then̂P is a strongly consistent estimator forP
and iff is square-integrable then it follows by the central limit theorem that

1√
n

n∑

i=1

[f(Ui)− E[f(U)]]
D−→N(0, σ2MC), (1.2)

whereσ2MC = Var(f(U)) and
D−→ denotes the convergence in distribution. In particular this

means that the standard deviation of the estimator converges to zero with rate1/
√
n indepen-

dently ofd.
For applications in financial mathematics the goal is to generate an estimator with a reasonable
error in minimal computation time. Since the asymptotic convergence rate is determined by the
central limit theorem, there are basically two possibilities to decrease the error of the Monte
Carlo estimator: we can increase the number of generated pointsN or decrease the variance
constantσ2MC in (1.2). By the fact that the first possibility results in an intense increase of com-
putation time, so-called variance reduction techniques, which aim at decreasingσ2MC , are very
popular. These methods include the use of control variates,antithetic variates, stratified sam-
pling and other concepts. A survey of variance reduction technique can be found in the book of
Glassermann [42, Chapter 4].

Nevertheless, the error bounds for the Monte Carlo estimator are of a probabilistic nature and
for some applications, especially if we are interested in a worst-case error, deterministic error
bounds are required. The idea of Quasi Monte Carlo (QMC) integration is to take an uniformly

4



CHAPTER 1. Introduction and statement of results

distributed but deterministic sequence(xn)n≥1 on thed-dimensional unit cube and use

P =
1

N

N∑

n=1

f(xn)

to approximateP . In the next section we introduce the concept of uniform distribution of a se-
quence and illustrate that the deterministic bound on the resulting integration error is of order
O((logN)d/N) for some special sequences. Although this convergence rateis decreasing for
increasingd, it is in any case better than that obtained by Monte Carlo integration.
Note that for practical purposes we are more interested in the error of an estimator which uses
exactlyN points than in an asymptotic error bound. Thus for highd we need an enormous num-
ber of pointsN to ensure that(logN)d/N ≤ 1/

√
N . Hence Quasi Monte Carlo integration is

an alternative to Monte Carlo methods for moderated.
Anyway, it is difficult to compare the probabilistic error ofMC and the deterministic error of
QMC. One approach to avoid this problem is to add the same uniformly distributed random
variable to each component of the points of a QMC sequence. This easy example of a so-called
randomised Quasi Monte Carlo (RQMC) sequence allows us to compare the resulting prob-
abilistic errors of MC and RQMC. Another idea is to constructa d-dimensional sequence as
concatenation of as-dimensional deterministic QMC sequence and a(d − s)-dimensional ran-
dom MC sequence. In Chapter 5 we show that such a sequence combines positive aspects of MC
and QMC. For an overview of different RQMC techniques, see [42, Section 5.4].

1.2 Uniform distribution of sequences and discrepancy

For x = (x1, . . . , xd) ∈ [0, 1)d, d ≥ 1, let 1I(x) be the indicator function of the setI ⊆
[0, 1)d and denote byλd thed-dimensional Lebesgue measure. Fora = (a1, . . . , ad) andb =
(b1, . . . , bd) with 0 ≤ ai, bi ≤ 1, i = 1, . . . , d we writea ≤ b if ai ≤ bi, for i = 1, . . . , d.
We call the set of allx ∈ [0, 1)d with a ≤ x < b an axis-parallel box ord-dimensional interval
[a, b).

Definition 1.12 (Uniform distribution of sequences)A sequence(xn)n≥1 of vectors in[0, 1)d

is said to be uniformly distributed (u.d.) in[0, 1)d if

lim
N→∞

∑N
n=1 1[a,b)(xn)

N
=

d∏

i=1

(bi − ai),

for all d-dimensional intervals[a, b) ⊆ [0, 1)d.

The following theorem by Weyl [103] gives a further characterisation of u.d. sequences.

Theorem 1.1 A sequence(xn)n≥1 of vectors in[0, 1)d is said to be u.d. in[0, 1)d if and only if
for every continuous complex-valued functionf on [0, 1)d the following relation holds:

lim
N→∞

∑N
n=1 f(xn)

N
=

∫

[0,1)d
f(x)dx.

5



CHAPTER 1. Introduction and statement of results

Theorem 1.1 already gives a hint how uniformly distributed sequences can be used for numerical
integration. Unfortunately, the uniform distribution property gives no quantitative information
on the integration error, therefore we introduce the concept of discrepancy of a sequence. LetI
denote the set of all axis-parallel boxes and letI0 denote the set of all axis-parallel boxes[a, b)
with a = (0, . . . , 0).

Definition 1.13 (Discrepancy) Letx1, . . . , xN be a finite sequence in[0, 1)d. The number

DN = DN (x1, . . . , xN ) = sup
I∈I

∣∣∣∣∣

∑N
n=1 1I(xn)

N
− λd(I)

∣∣∣∣∣

is called discrepancy of the given sequence. Furthermore wedenote by

D∗
N = D∗

N (x1, . . . , xN ) = sup
I∈I′

∣∣∣∣∣

∑N
n=1 1I(xn)

N
− λd(I)

∣∣∣∣∣

the so-called star-discrepancy of the sequence. For an infinite sequence or a sequence with more
thanN terms,DN ,D

∗
N denote the corresponding quantities of the firstN terms of the sequence.

The connection between the discrepancy of a sequence and theuniform distribution property is
characterised by the following result of Weyl [103]: a sequence (xn)n≥1 is u.d. if and only if
limN→N DN (x1, . . . , xN ) = 0.
Furthermore it can be shown, see e.g. [66], that

D∗
N ≤ DN ≤ 2dD∗

N

and thuslimN→N DN (x1, . . . , xN ) = 0 implies limN→N D
∗
N (x1, . . . , xN ) = 0. Moreover it

follows by easy calculations that1/N ≤ DN ≤ 1 holds for any sequence ofN numbers in
[0, 1)d.

These bounds on the discrepancy were sharpened in several directions. Ford-dimensional in-
finite sequences the lower bound was improved by Roth [92] toND∗

N > C1
d(logN)d/2 for

infinitely many positive integersN , whereC1
d > 0 is an absolute constant only depending

on d. Furthermore for a sequence ofN points in [0, 1)d, d ≥ 2 Roth obtainedND∗
N >

C2
d(logN)(d−1)/2 whereC2

d is an absolute constant only depending ond.
For cased = 1, Schmidt [94] improved the lower bound toND∗

N > C logN , for infinitely
many integersN , whereC > 0 is an absolute constant. Further improvements for the lower
bound of the discrepancy are e.g. due to Beck [11] and Bilyk, Lacey and Vagharshakyan [13],
but the precise minimal asymptotic order of the discrepancyis still an open problem. Upper
bounds for the discrepancy can be derived by using the inequalities of LeVeque [72] as well as
of Erdös and Turán [34,35].

Let f(x) = f(x(1), . . . , x(d)) be a function on[0, 1]d, d ≥ 1. We define a partitionP of [0, 1]d

as a set ofd finite sequencesη(j)0 , . . . , η
(j)
mj , 1 ≤ j ≤ d with 0 = η

(j)
0 ≤ . . . ≤ η

(j)
mj = 1 and let

P denote the set of all such partitionsP . Furthermore we define the operator∆j by

∆jf(x
(1), . . . , x(j−1), η

(j)
i , x(j+1), . . . , x(d))

6



CHAPTER 1. Introduction and statement of results

=f(x(1), . . . , x(j−1), η
(j)
i+1, x

(j+1), . . . , x(d))− f(x(1), . . . , x(j−1), η
(j)
i , x(j+1), . . . , x(d))

for 0 ≤ i < mj and we write∆j1,...,jk = ∆j1 · · ·∆jk .

Definition 1.14 (Bounded variation in the sense of Vitali)Letf be a function on[0, 1]d, then
the variation in the sense of Vitali is defined as

V (d)(f) = sup
P∈P

m1−1∑

i1=0

· · ·
md−1∑

id=0

∣∣∣∆1,...,df(η
(1)
i1
, . . . , η

(d)
id

)
∣∣∣ .

A function is said to be of bounded variation in the sense of Vitali if V (d)(f) is finite.

It can easily be seen that if a functionf depends on less thatd variables thanV (d)(f) = 0.
But since such functions can also have an extremely irregular behavior we extend the notion of
variation to the following definition.

Definition 1.15 (Bounded variation in the sense of Hardy and Krause) Let f be a function
on [0, 1]d, denote byV (k)(f ; i1, . . . , ik) the variation off in the sense of Vitali restricted to the
k-dimensional faceF (k)(i1, . . . , ik) = {(u1, . . . , ud) ∈ [0, 1]d : uj = 1 for j 6= i1, . . . , ik}
and denote byV (f) the variation in the sense of Hardy and Krause. The functionf is called of
bounded variation in the sense of Hardy and Krause if

V (f) =

d∑

k=1

∑

1≤i1<...<ik≤d
V (k)(f ; i1, . . . , ik) <∞.

Now we are able to state the Koksma-Hlawka inequality [57]. The one-dimensional analogon is
due to Koksma [63].

Theorem 1.2 (Koksma-Hlawka inequality) Let f be of bounded variation on[0, 1]d in the
sense of Hardy and Krause. Then

∣∣∣∣∣
1

N

N∑

n=1

f(xn)−
∫

[0,1]d
f(x)dx

∣∣∣∣∣ ≤ V (f)D∗
N (xn).

Theorem 1.2 gives an deterministic upper bound for the errorof Quasi Monte Carlo integration.
This bound is a product of the variation of the functionf , which is assumed to be finite and the
star-discrepancy of(xn)n≥1. Therefore it is essential for Quasi Monte Carlo integration to find
sequences with a low discrepancy.
A classical example of such a low discrepancy sequence is defined as follows:

Definition 1.16 (Van der Corput sequence)For n ∈ N0 let the functionφb(n) : N0 → [0, 1)
be given by

φb(n) = φb


∑

i≥0

nib
i


 :=

∑

i≥0

nib
−i−1.

The van der Corput sequence in baseb is defined as(φb(n))n≥0.

7



CHAPTER 1. Introduction and statement of results

The van der Corput sequence and itsd-dimensional extension the so-called Halton sequence,
which is given by(φb1(n), . . . , φbd(n))n≥0 for co-prime basesbi, 1 ≤ i ≤ d, are among those
sequences with the best known asymptotic discrepancy ofO((logN)d/N), see [49].
For some applications it is possible to use a fixed set ofN points with low discrepancy instead
of the firstN points of an infinite sequence. An example of such a so-calledlow discrepancy
point set is given by the finite Hammersley sequence, defined as
(n/N, φb1(n), . . . , φbd−1

(n))n=0,1,...,N−1. For such point sets Halton [49] proved thatND∗
N ≤

Cd(logN)d−1 holds.
Further examples of low discrepancy sequences and point sets can be found in the book of
Niederreiter [81]. More detailed information on uniformlydistribution sequences, discrepancy
and related topics is provided by Drmota and Tichy [30] and Kuipers and Niederreiter [66].

1.3 Lévy processes

In the classical Black-Scholes (BS) model, for a rigorous definition see [14], the asset price pro-
cess is modelled as a geometric Brownian motion, which makesit possible that prices of many
derivatives are given in an explicit form. However, since several properties of real markets can
not be replicated by the BS model, many practitioners and researchers are using more advanced
market models. One possible extension is to apply more general exponential Lévy processes as
driving stochastic processes which means in the notation ofSection 1.1 thatSt = S0e

Xt , where
S0 is a positived-dimensional vector and(Xt)t≥0 is ad-dimensional Lévy process. A detailed
introduction to the analysis of Lévy processes can be found in the book of Sato [93]. For a survey
on Lévy processes in financial modelling, see e.g. the book ofCont and Tankov [23].

Definition 1.17 (Lévy process)A cadlag stochastic process(Xt)t≥0 on a probability space
(Ω,F ,P) with values inRd is called Lévy process, if it possesses the following properties:

• X0 = 0 a.s.,

• Independent increments: for every increasing sequence of timest0, . . . , tn, the random
variablesXt0 ,Xt1 −Xt0 , . . . ,Xtn −Xtn−1 are independent.

• Stationary increments: the law ofXt+h −Xt does not depend ont.

• Stochastic continuity:∀ǫ > 0, limh→0 P(|Xt+h −Xt| ≥ ǫ) = 0.

Definition 1.18 (Brownian motion) A stochastic process(Bt)t≥0 is called Brownian motion
on (Ω,F ,P), if

• B0 = 0 a.s.,

• for every increasing sequence of timest0, . . . , tn, the random variablesBt0 , Bt1−Bt0 , . . . ,
Btn −Btn−1 are independent,

• Bt+s − Bt has a Gaussian distribution with mean 0 and a positive definite covariance
matrixA, ∀t ∈ [0, T ] and

8
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• Bt has a.s. continuous sample paths.

0.0 0.2 0.4 0.6 0.8 1.0
time

0.985

0.990

0.995

1.000

1.005

Brownian Motion

Figure 1.1: Brownian motion

Obviously, the BS model is also an exponential Lévy model where the underlying process is a
geometric Brownian motion. Another well known example of a Lévy process is the compound
Poisson process.

Definition 1.19 (Poisson process)Let (τi)i≥1 be a sequence of i.i.d. exponential random vari-
ables with parameterλ and defineTn =

∑n
i=1 τi. The process

Nt =
∑

n≥1

1{t≥Tn}

is called one-dimensional Poisson process with intensityλ.

The Poisson process is a counting process in the following sense:NT counts the number of
random timesTn, which occur in[0, T ], where(Tn−Tn−1)n≥1 is a sequence of i.i.d. exponential
distributed random variables.

Definition 1.20 (Compound Poisson process)A compound Poisson process onR with inten-
sityλ > 0 and jump size distributionfY is a stochastic processXt defined as

Xt =

Nt∑

i=1

Yi,

where the jump sizesYi ∈ R are i.i.d. with distributionfY and (Nt)t≥0 is a Poisson process
with intensityλ, independent from(Yi)i≥1. A compound Poisson process onRd is a vector ofd
compound Poisson processes onR.

9
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0.2 0.4 0.6 0.8 1.0
time

-0.02

-0.01

0.01

0.02

Compound Poisson process

Figure 1.2: Compound Poisson process onR, with intensity = 10 and double-exponentially dis-
tributed jump sizes.

Lévy processes which are constructed as the sum of a Brownianmotion and a compound Pois-
son process are frequently used in financial modelling. Because of the advantageous analytical
properties of these so-called jump diffusion processes, many option pricing problems can be
solved in an effective way.
Proposition 1.1 illustrates the close connection between Lévy processes and infinite divisible dis-
tributions, for a proof see [93, Theorem 7.10]. This relationship is a central ingredient to make
an explicit calculation of the characteristic function of aLévy process possible. The closed for-
mula for the characteristic function, which forms the basisof several option pricing techniques,
is provided by the Lévy-Khinchin theorem, see [93, Theorem 8.1]. Furthermore the Lévy-Itô
theorem [93, Chapter 4] gives detailed information on the structure of Lévy processes.

Definition 1.21 (Infinite divisibility) A probability distributionF onRd is said to be infinitely
divisible if for any integern ≥ 1, there existn i.i.d. random variablesY1, . . . , Yn such that
Y1 + . . . + Yn has distributionF .

Proposition 1.1 (Infinite divisible laws and Lévy processes) Let (Xt)t≥0 be a Lévy process.
Then for everyt, the distribution ofXt is infinitely divisible. Conversely, given an infinitely
divisible distribution F, there exists a Lévy process(Xt) such that the distribution ofX1 is given
byF .

Definition 1.22 (Poisson random measure)Let (Ω,F , P ) be a probability space,E ⊂ Rd+1

and µ a given (positive) Radon measure on a measurable space(E, E). A Poisson random
measure onE with intensity measureµ is an integer valued random measure:

M : Ω× E → N

(ω,A) 7→M(ω,A)

such that

1. For (almost all)ω ∈ Ω, M(ω, .) is an integer-valued Radon measure onE: for any
bounded measurable setA ⊂ E, M(A) <∞ is an integer valued random variable.

10
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2. For each measurable setA ⊂ E withµ(A) <∞, M(., A) =M(A) is a Poisson random
variable with parameterµ(A) <∞ i.e.

P (M(A) = k) = e−µ(A)
(µ(A))k

k!
, ∀k ∈ N.

3. For disjoint measurable setsA1, .., An ∈ E , the variablesM(A1), ..,M(An) are inde-
pendent.

We define
M̃(A) =M(A)− µ(A)

as the compensated Poisson random measure.

Definition 1.23 (Lévy measure)Let (Xt)t≥0 be a Lévy process onRd. The measureν on Rd

defined by
ν(A) = E[#{t ∈ [0, 1] : ∆Xt 6= 0,∆Xt ∈ A}], A ∈ B(Rd),

whereB(Rd) denotes the Borelσ-algebra, is called Lévy measure ofXt. Note thatν(A) is
exactly the expected number of jumps with sizes inA, per unit time.

Theorem 1.3 (Lévy-Itô decomposition)Let (Xt)t≥0 be a Lévy process onRd andν its Lévy
measure, given by Definition 1.23. Then the following holds:

• ν is a Radon measure onRd\{0} and verifies:
∫

|x|≤1
|x|2ν(dx) <∞,

∫

|x|≥1
ν(dx) <∞.

• The jump measure ofXt, denoted byJX , is a Poisson random measure on[0,∞) × Rd

with intensity measureν(dx)dt.

• There exists a vectorγ and ad-dimensional Brownian motion(Bt)t≥0 with covariance
matrixA such that

Xt = X1
t +X2

t ++X3
t +X4

t , where

X1
t = γt,

X2
t = Bt,

X3
t =

∫

|x|≥1, s∈[0,t]
xJX(ds × dx) and

X4
t = lim

ǫց0

∫

ǫ≤|x|≤1, s∈[0,t]
x(JX(ds× dx)− ν(dx)ds)

= lim
ǫց0

∫

ǫ≤|x|≤1, s∈[0,t]
xJ̃X(ds × dx).

11
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The termsX1
t ,X

2
t ,X

3
t ,X

4
t are independent, the convergence in the last term is almost sure and

uniform int on [0, T ] and J̃X is the compensated Poisson random measure ofJX .

Basically the Lévy-Itô decomposition states that every Lévy process is a sum of three elementary
processes and the limit of the sum of compound Poisson processes. Furthermore the theorem
says that only three parameters determine a Lévy process uniquely: the vectorγ, the covariance
matrixA and the Lévy measureν. The triplet(γ,A, ν) is called characteristic triplet of a Lévy
process.

Definition 1.24 (Characteristic function) The characteristic functionφX : Rd → R of anRd-
valued random variableX is defined by

ΦX(z) = E[exp(izX)] =

∫

Rd

eizxµx(dx), ∀z ∈ Rd.

Theorem 1.4 (Lévy-Khinchin representation) Let(Xt)t≥0 be a Lévy process onRd with char-
acteristic triplet(γ,A, ν). Then

E[eiz
TXt ] = etψ(z), z ∈ Rd,

where the so-called characteristic exponentψ(z) is given by

ψ(z) = −1

2
zTAz + iγT z +

∫

Rd

(
eiz

T x − 1− izTx1{|x|≤1}ν(dx)
)
.

The idea of many option pricing techniques is to calculate the Laplace or Fourier transform of
the option price by using the characteristic function of theinvolved random variables. The in-
verse transformation can be done very efficiently in many cases, for example by using the Fast
Fourier Transform method, see e.g. [21] or [65]. Since the characteristic function of a Lévy pro-
cess is given by Theorem 1.4, we can apply such Laplace or Fourier transform methods when
the underlying process is an exponential Lévy process.
Apart from jump diffusion processes, the so-called pure jump processes are frequently used in
financial modelling. Such processes have no diffusion part,but an infinite jump activity. They
can be constructed as a so-called subordinated Lévy process, which is for example a Brownian
motion where the time progression is not linear but modelledby a so-called subordinator. The-
orem 1.5 characterises the characteristic triplet of subordinated Lévy processes, for a proof see
e.g. [93, Theorem 30.1].

Definition 1.25 (Subordinator) A Lévy process(Xt)t≥0 is called subordinator if its paths are
a.s. non-decreasing i.e.

t ≥ s⇒ Xt ≥ Xs a.s.

Theorem 1.5 (Subordination of a Lévy process)Fix a probability space(Ω,F ,P). Let(Xt)t≥0

be a Lévy process onRd with characteristic exponentΨ(u) and characteristic triplet(γ,A, ν)
and let (St)t≥0 be a subordinator with characteristic exponentl(u) and characteristic triplet

12
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(b, 0, ρ). Then the process(Yt)t≥0 defined for eachω ∈ Ω byY (t, ω) = X(S(t, ω), ω) is a Lévy
process and its characteristic function is given by

E[eiuYt ] = etl(Ψ(u)),

i.e. the characteristic exponent ofYt is obtained by composition of the Laplace exponent ofSt
with the characteristic exponent ofXt. The characteristic triplet(γY , AY , νY ) of Yt is given by

AY = bA

νY (B) = bν(B) +

∫ ∞

0
pXs (B)ρ(ds), ∀B ∈ B(Rd),

γY = bγ +

∫ ∞

0
ρ(ds)

∫

{|x|≤1}
xpXs (dx),

wherepXt is the probability distribution ofXt. The process(Yt)t≥0 is said to be subordinate to
the process(Xt)t≥0.

In the numerical analysis of option pricing problems in the Chapters 6 and 7, we will use two
pure jump processes, which are frequently applied for financial modelling: the variance gamma
process, which was first introduced by Madan and Seneta [75] and the normal inverse Gaussian
process, which is due to Barndorff-Nielsen [10]. An overview of subordinated Lévy processes
in financial mathematics can be found in [23].

In the last part of this thesis we consider the pricing of options, where the payoff function de-
pends on the value of the supremum or the infimum of the asset price process during the life
time of the option. Hence to apply a pricing technique which uses the Laplace transform we
need information on the characteristic function of the extremal processes of the underlying Lévy
process.

Theorem 1.6 (Wiener-Hopf factorisation) Let (Xt)t≥0 be a Lévy process inR and (X t)t≥0

and(X t)t≥0 its supremum and infimum process, respectively. Furthermore, letθ be an exponen-
tially distributed random variable with parameterq. Then the characteristic function of(Xt)t≥0

at the random timeθ can be factorised as

E[eizXθ ] = E[eizXθ ]E[eizXθ ], ∀z ∈ R,

or equivalently,
q

q − log(φX(z))
= φ+q (z)φ

−
q (z), ∀z ∈ R,

whereφ(z) denotes the characteristic function ofX1, φ+q (z) = E[eizXθ ] andφ−q (z) = E[eizXθ ].

In general the calculation of the so-called Wiener-Hopf factorsφ+q (z) andφ−q (z) is very com-
plicated and involves a multi-dimensional numerical integration. Nevertheless there are a few
classes of Lévy processes for whichφ+q (z) andφ−q (z) are given explicitly, for example the
Brownian motion or jump diffusions where the jump sizes are exponentially distributed. A de-
tailed discussion of the Wiener-Hopf factorisation including the proof of Theorem 1.6 can be
found in [93, Chapter 9]. The Wiener-Hopf factorisation with a view to option pricing is dis-
cussed in the book of Kyprianou [67].

13
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1.4 Statement of new results

The structure of the remainder of this thesis is as follows: in the present section we give an
overview of our new results. Chapters 2-7 correspond to scientific articles which are submitted
for publication or already published, therefore every chapter contains the necessary informa-
tion and the references to understand its contents. Chapters 2-5 are results of a joint work with
Christoph Aistleitner, Chapter 6 is collaboration with Christoph Aistleitner and Robert Tichy
and Chapter 7 originates in a cooperation with Philipp Mayer.

The second chapter deals with the distribution properties of the so-called Kakutani’s sequence
of partitions: Forα ∈ (0, 1) andπ = {[ti−1, ti] : 1 ≤ i ≤ k} is any partition of[0, 1], we denote
byαπ theα-refinement ofπ which is obtained by subdividing all intervals ofπ having maximal
length in two parts, proportional toα and1− α, respectively. Kakutani’s sequence of partitions
(αnω)n∈N is obtained as the successiveα-refinement of the trivial partitionω = {[0, 1]}.
Furthermore let(πn)n∈N be a sequence of partitions of[0, 1], with

πn = {[tni−1, t
n
i ] : 1 ≤ i ≤ k(n)}.

Thenπn is uniformly distributed (u.d.), if for any continuous function f on [0, 1]

lim
n→∞

1

k(n)

k(n)∑

i=1

f(tni ) =

∫ 1

0
f(t)dt.

Kakutani [61] shows that(αnω)n∈N is u.d. for allα ∈ (0, 1). Nevertheless, one can formulate
simple examples where(αnπ)n∈N is not u.d. whenπ is a non-trivial finite partition of[0, 1].
We consider a more general splitting rule under which the refinement is defined as subdivid-
ing all intervals of maximal length positively homothetically to ρ, whereρ is a finite partition
of [0, 1]. We give conditions onρ andπ, which guarantee that(ρnπ)n∈N is u.d. and calculate
the maximal and minimal limit measures, in the case when(ρnπ)n∈N is not u.d. The results in
Chapter 2 will be published in Annali di Matematica Pura ed Applicata [4].

In the third chapter we focus on the distribution of sequences of vectors of subsequent elements
of the van der Corput sequence(φb(n))n≥1, see Definition 1.16. In [37], Fialová and Strauch
calculate the limit distribution of(φb(n), φb(n + 1))n≥1 by using analytic methods. In our ap-
proach we use the close connection between the van der Corputsequence and the so-called van
Neumann-Kakutani transformationTb : [0, 1) → [0, 1) given by

Tb(x) = x− 1 +
1

bk
+

1

bk+1
,

wherek ∈ N is such thatx ∈
[
1− 1

bk
, 1− 1

bk+1

]
. One can easily show that the orbit of zero un-

der the ergodic van Neumann-Kakutani transformationTb is exactly the van der Corput sequence
in baseb, i.e.

(T nb 0)n≥0 = (φb(n))n≥0, b ≥ 2.
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By using methods from ergodic theory and the properties of the van Neumann-Kakutani trans-
formation we extend the results of Fialová and Strauch to thed-dimensional case, which means
that we calculate the limit distribution of(φb(n), . . . , φb(n + d − 1))n≥1. These results are ac-
cepted for publication in Uniform Distribution Theory [2].

We define the so-called inverse of the discrepancyn∗(d, ε) as the smallest possible cardinality of
a point set in[0, 1]d having discrepancy bounded byε. By a profound result of Heinrich, Novak,
Wasilkowski and Woźniakowski [52] the inverse of the star-discrepancyn∗(d, ε) satisfies the
upper bound

n∗(d, ε) ≤ c1absdε
−2,

and Hinrichs [55] proved the lower bound

n∗(d, ε) ≥ c2absdε
−1,

wherec1abs, c
2
abs are absolute constants. The upper bound is equivalent to thefact that for anyN

andd there exists a set ofN points in[0, 1]d whose star-discrepancy is bounded bycabsd
1/2N−1/2.

The proof is based on the observation that a random point set satisfies the desired discrepancy
bound with positive probability.
In Chapter 4 we prove a version of this result, which makes it applicable for computational pur-
poses: for any given numberq ∈ (0, 1) there exists an (explicitly stated) numberc(q) such that
the star-discrepancy of a random set ofN points in [0, 1]d is bounded byc(q)d1/2N−1/2 with
probability at leastq, uniformly inN andd. More precisely we prove the following:
For anys ≥ 1, N ≥ 1 andq ∈ (0, 1) a randomly generateds-dimensional point set(z1, . . . , zN )
satisfies

D∗
N (z1, . . . , zN ) ≤ 5.70

√
4.90 +

log ((1− q)−1)

d

√
d√
N

with probability at leastq.
The most interesting fact is that at the moment there exists no construction of a deterministic
sequence which satisfies such discrepancy bounds, whereas the above theorem states that a ran-
dom Monte Carlo sequence has a discrepancy of this form with high probability.

Chapter 5 is dedicated to randomized Quasi Monte Carlo methods, where ad-dimensional se-
quence is constructed as concatenation of as-dimensional deterministic sequence and ad − s-
dimensional random point set. Such constructions, which have been investigated e.g. by Spanier
[96], Ökten [82, 83] and Roşca [91], are useful since in moderate dimensions the QMC method
typically yields better results, but its performance significantly falls off in quality if the dimen-
sion increases. Ökten, Tuffin and Burago [85] proved probabilistic asymptotic bounds for the
discrepancy of mixed sequences, which were refined by Gnewuch [45]. Furthermore, Ökten et
al. [85] show in numerical examples that this method is very effective for problems in option
pricing.
In Chapter 5 we use an interval partitioning technique to obtain improved probabilistic bounds
for the discrepancy of mixed sequences. By comparing them with lower bounds we show that
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our results are almost optimal. A paper which includes the results of this chapter will be pub-
lished in Monte Carlo Methods and Applications [3].

We mentioned in Section 1.1 that the convergence of the standard Monte Carlo estimator can
be improved by so-called variance reduction techniques. Anexample of such a method is the
so-called stratified sampling method. The idea behind stratified sampling is to generate points
conditional uniformly distributed on the elements of a partition of [0, 1)d, the so-called strata,
instead of generating points uniformly distributed on the wholed-dimensional unit cube. If the
strata are chosen properly this technique leads to a reduce of σ2MC in (1.2).
A modification of stratified sampling is given by the so-called Latin hypercube sampling (LHS)
technique, where we divide[0, 1)d into a partition ofNd d-dimensional cubes with the same vol-
ume. Exactly one random point is generated uniformly distributed inN of these cubes, where
theN cubes are chosen randomly but in accordance with a certain rule. A central limit theorem
for the resulting estimator was proved by Owen [86] and Stein[97] shows that the variance of
the LHS estimator is never greater than the variance of the standard Monte Carlo estimator, pro-
vided the number of sample points is sufficiently large.
In many applications, especially in financial mathematics,one faces a situation where the com-
ponents of the underlying random vectorU = (U1, . . . , Ud) are dependent. Usually such de-
pendence structures are modelled by a so-called copula distribution C, which is a distribution
function on[0, 1]d, where all one-dimensional marginals are uniformly distributed on[0, 1]. Latin
hypercube sampling with dependence (LHSD) is an extension of LHS where the cubes in which
points are generated are chosen according to the rank statistics of samples from the copula dis-
tributionC. This has the effect that the empirical distribution of the resulting points converges
toC, which is in general not the case for LHS.
Packham and Schmidt [88] prove that thed-dimensional LHSD estimator is consistent and that
a central limit theorem holds for the two-dimensional LHSD estimator. Furthermore, for the
two-dimensional case, they give conditions on the copulaC and on the integrand functionf
which ensure that the variance of the LHSD estimator is nevergreater than the variance of the
standard Monte Carlo estimator. In Chapter 6 we extend theseresults to thed-dimensional case.
The results in this chapter are accepted for publication in the International Journal of Theoretical
and Applied Finance [5]

In the last chapter we focus on option pricing in one-dimensional exponential Lévy models, in
particular, we consider the pricing of so-called lookback options, where the payoff function is
defined for example asmax(max0≤t≤T St −K, 0), where(St)t≥0 denotes the asset price pro-
cess,T denotes the maturity andK denotes the strike price. In our setting the asset price process
(St)t≥0 is given bySt = S0e

Xt , whereS0 > 0 and(Xt)t≥0 is a Lévy process.
Obviously, to price lookback options we need information onthe maximum process of(St)t≥0.
As mentioned in Section 1.3, we can use the Wiener-Hopf factorisation to obtain the character-
istic function of the maximum process, but for general Lévy processes this requires a numerical
multi-dimensional integration. Nevertheless there are a few classes of Lévy processes for which
the Wiener-Hopf factorisation can be done in closed form, for example when the underlying
Lévy process is the sum of a Brownian motion and a compound Poisson process with expo-
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nentially distributed jumps. Kou [64] proposed a financial market model (typically called Kou
model), in which the logarithmic asset price process is described by a jump diffusion with two-
sided exponential jumps, and showed that in this setting theLaplace transform of several exotic
derivatives, including lookback options, can be derived analytically (see [65]).
Jeannin and Pistorius [59] consider option pricing under the hyper-exponential jump diffusion
(HEJD) model which is defined as jump-diffusion with double sided hyper-exponentially dis-
tributed jumps sizes. They present formulae for Laplace transformed price of barrier and digital
options together with sensitivities of these prices. Sincethe class of HEJD lies dense in the class
of all Lévy process these results are also useful to approximate prices when der underlying Lévy
process is for example a pure jump process like the variance gamma or the normal inverse Gaus-
sian process.
In Chapter 7 we present formulae for the Laplace transformedprice of different types of look-
back options under the HEJD model. Furthermore, we give formulae for the sensitivities of op-
tion prices, which are important for hedging. Moreover we show in numerical examples that the
error introduced by the numerical inverse Laplace transformation is insignificant and that prices
of lookback options under the normal inverse Gaussian modelcan be approximated efficiently
with this method.
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Uniform distribution of sequences
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Chapter 2

Uniform Distribution of generalized
Kakutani’s sequences of partitions

2.1 Introduction

In this paper we study a generalization of the Kakutani splitting procedure, which was originally
introduced in [61].

Definition 2.1 (Kakutani splitting procedure) If α ∈ (0, 1) andπ = {[ti−1, ti] : 1 ≤ i ≤ k}
is any partition of[0, 1], thenαπ denotes itsα -refinement which is obtained by subdividing all
intervals ofπ having maximal length in two parts, proportional toα and1− α, respectively.
The so-called Kakutani’s sequence of partitions(αnω)n∈N is obtained as the successiveα -
refinement of the trivial partitionω = {[0, 1]}.

Definition 2.2 (Uniform distribution of sequences of partitions) Let (πn)n∈N be a sequence
of partitions of[0, 1], with

πn = {[tni−1, t
n
i ] : 1 ≤ i ≤ k(n)}.

Thenπn is uniformly distributed (u.d. ), if for any continuous function f on [0, 1]

lim
n→∞

1

k(n)

k(n)∑

i=1

f(tni ) =

∫ 1

0
f(t)dt. (2.1)

Remark 2.1 For a sequence of partitions(πn)n∈N we define the associated sequence of mea-
sures(µn)n∈N by

µn =
1

k(n)

k(n)∑

i=1

δtni ,

whereδt denotes the Dirac measure concentrated att. Weak convergence of(µn)n∈N to the
Lebesgue measure on[0, 1] is equivalent to condition(2.1). In other words, a sequence of parti-
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tions is u.d. if and only if for every interval[a, b] ⊂ [0, 1]

lim
n→∞

∑k(n)
i=1 1[a,b](t

n
i )

k(n)
= b− a.

Kakutani [61] proved that for anyα ∈ (0, 1) the sequence of partitions(αnω)n∈N is uniformly
distributed. The properties of the sequence(αnω)n∈N and related problems have been investi-
gated by many authors. For example, see [15] and [100] for a modification of(αnω)n∈N where
the intervals of maximal length are split at a random position. Carbone and Volčič [19] general-
ized the splitting procedure for sequences of partitions of[0, 1]d, d ≥ 2, and derived a general-
ization of Kakutani’s result in higher dimensions. Recently, the following further modification
of Kakutani’s splitting procedure was presented by Volčič [101].

Definition 2.3 (ρ - refinement) Let ρ denote a non-trivial finite partition of[0, 1]. Then theρ
-refinement of a partitionπ of [0, 1], denoted byρπ, is given by subdividing all intervals of
maximal length positively homothetically toρ.

Volčič [101] proved, by using arguments from ergodic theory, thatthe sequence(ρnω)n∈N is
u.d. for every finite partitionρ. Furthermore, he investigated the behavior of associated uni-
formly distributed sequences of points. The discrepancy ofsequences of partitions constructed
asρ -refinements ofω is discussed in Carbone [18] and Drmota and Infusino [29]. The results
of Drmota and Infusino are based on the analysis of a special tree evolution process, namely the
Khodak algorithm [62], where the generation of nodes has a similar behavior as the splitting of
intervals in the Kakutani splitting sequence.
So far results on the uniform distribution of sequences of partitions were only available in the
case when the starting partitionπ is the trivial partitionω. A simple example shows that there ex-
ist starting partitionsπ for which the sequence(ρnπ)n∈N is not uniformly distributed. Consider
π =

{[
0, 25
]
,
[
2
5 , 1
]}

andρ =
{[

0, 12
]
,
[
1
2 , 1
]}

. In this case the splitting procedure operates
alternating on

[
0, 25
]

and
[
2
5 , 1
]

and hence the sequences of associated measures corresponding
to the subsequences(ρ2nπ)n∈N and(ρ2n+1π)n∈N converge to different measures. Volčič [101]
formulated the problem in the following form:

It is worth noticing that it is necessary to put some restriction on the partitionπ
(even in the simplest case of the Kakutani splitting procedure) if we hope for uni-
form distribution of(ρnπ)n∈N. It would be interesting to find significant sufficient
conditions onπ in order to obtain the uniform distribution of(ρnπ)n∈N even for the
case of Kakutani’s splitting procedure.

The purpose of the present paper is to present a full solutionof this problem.

2.2 The uniform distribution of generalized Kakutani’s sequences
of partitions

In the sequel we consider a partitionρ of [0, 1] consisting ofm ≥ 2 intervals of lengths
p1, . . . , pm, and a starting partitionπ of [0, 1] consisting ofl ≥ 2 intervals of lengthsα1, . . . , αl.
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In the sequel letH denote the entropy of the probability distributionp1, . . . , pm, which is defined
as

H = p1 log

(
1

p1

)
+ . . .+ pm log

(
1

pm

)
.

Definition 2.4 (Rationally related) The numberslog
(

1
p1

)
, . . . , log

(
1
pm

)
are called rationally

related if there exists a positive real numberΛ such that

log

(
1

pj

)
= νjΛ, νj ∈ Z, j = 1, . . . ,m.

Without loss of generality we chooseΛ as large as possible, which is equivalent to assuming

gcd(ν1, . . . , νm) = 1. If the numberslog
(

1
p1

)
, . . . , log

(
1
pm

)
are not rationally related, they

are called irrationally related.

Remark 2.2 Note that the numberslog
(

1
p1

)
, . . . , log

(
1
pm

)
are rationally related if and only

if all fractions
log pi
log pj

, i, j = 1, . . . ,m,

are rational.

For a fixed real numberǫ ∈ (0, pmin), wherepmin = min{p1, . . . , pm}, let Iǫ denote the set of
all intervals that appear in the sequence(ρnω)n∈N and have length greater than or equal toǫ.
Let Eǫ be the set of intervals which are generated by splitting an interval inIǫ and which have
lengthl satisfyingpminǫ ≤ l < ǫ. Denote byMǫ = |Eǫ| the cardinality ofEǫ. Note that the set
Eǫ changes only for certain values ofǫ, more precisely whenǫ equals the length of at least one
interval appearing in(ρnω)n∈N.

We will use the following result from [29].

Lemma 2.1 LetMǫ be defined as above. Then

1. if log
(

1
p1

)
, . . . , log

(
1
pm

)
are rationally related, letΛ be the largest real number for

which log
(

1
pj

)
is an integer multiple ofΛ, for j = 1, . . . ,m. Then there exist a real

numberη > 0 and an integerd ≥ 0 such that

Mǫ =
m− 1

ǫH
Q1

(
log

(
1

ǫ

))
+O

(
(log(ǫ))dǫ−(1−η)

)
, (2.2)

where

Q1(x) =
Λ

1− e−Λ
e−Λ{ x

Λ
}

and{y} denotes the fractional part ofy.
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2. If log
(

1
p1

)
, . . . , log

(
1
pm

)
are irrationally related, then

Mǫ =
m− 1

ǫH
+ o

(
1

ǫ

)
. (2.3)

The following theorem gives sufficient and necessary conditions onπ andρ under which(ρnπ)n∈N
is uniformly distributed.

Theorem 2.1 Letαj , j = 1, . . . , l denote the lengths of the intervals of the starting partition π.
Then the sequence(ρnπ)n∈N is uniformly distributed if and only if one of the following condi-
tions is satisfied:

(I) the real numberslog
(

1
p1

)
, . . . , log

(
1
pm

)
are irrationally related or

(II) the real numberslog
(

1
p1

)
, . . . , log

(
1
pm

)
are rationally related with parameterΛ and

the lengths of the intervals ofπ can be written in the form

αi = ceviΛ, c ∈ R+, vi ∈ Z, (2.4)

for i = 1, . . . , l.

Remark 2.3 Condition (II) includes the special case that the starting partition π is a partition
consisting of intervals having the same length, and in particular the case when the starting
partition is the trivial partitionω.

For illustration, the next corollary characterizes the starting partitionsπ for which the original
Kakutani’s sequence of partitions is u.d. .

Corollary 2.1 Let the sequence of partitions(ρnπ)n∈N be defined as aρ -refinement with
ρ = [[0, p], [p, 1]] andπ = [[0, α], [α, 1]]. Then(ρnπ)n∈N is u.d. if and only if one of the following
conditions is satisfied:

(i) log(p)/ log(1− p) is irrational, or

(ii) log
(
1
p

)
andlog

(
1

1−p

)
are rationally related with parameterΛ andα = 1

ekΛ+1
for k ∈ Z.

The next theorem describes the asymptotic behavior of the distribution of(ρnπ)n∈N for those
cases which are not covered by Theorem 2.1.

Theorem 2.2 Assume that neither condition (I) nor condition (II) of Theorem 2.1 is satisfied.
Then for any intervalA = [a, b] ⊂ [0, 1] which is completely contained in thei-th interval of the
starting partitionπ for somei, 1 ≤ i ≤ l, we have

lim sup
n→∞

∑k(n)
j=1 1[a,b](t

n
j )

k(n)
= c1(b− a),
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lim inf
n→∞

∑k(n)
j=1 1[a,b](t

n
j )

k(n)
= c2(b− a),

where

c1 =




l∑

j=1

αj exp

(
−Λ

{
log(αj)− log(αi)

Λ

})


−1

> 1,

c2 =




l∑

j=1

αj exp

(
Λ

{
log(αi)− log(αj)

Λ

})


−1

< 1

are constants depending oni.

Remark 2.4 Observe that only if the conditions (I) and (II) fail to hold,c1 is strictly larger and
c2 is strictly smaller than1 and the sequence is not u.d. (cf. Remark 2.1).

At the end of the introduction we mentioned the exampleπ =
{[

0, 25
]
,
[
2
5 , 1
]}

and ρ ={[
0, 12
]
,
[
1
2 , 1
]}

. In this case the theorem indicates that the maximal and minimal asymptotic
measure of[0, 25 ] is 1

2 and 1
3 , respectively, and accordingly the maximal and minimal measure of

[25 , 1] is 2
3 and 1

2 , respectively.

2.3 Proofs

Proof of Theorem2.1:
Proof:
Denote thel intervals ofπ by Ii, i = 1, . . . , l. ThenIi has lengthαi, i = 1, . . . , l. To show that
(ρnπ)n∈N is uniformly distributed it is sufficient to prove that the relative number of intervals of
(ρnπ)n∈N in Ii converges toαi, for i = 1, . . . , l, since by [101, Theorem 2.7] the sequences of
partitions within the intervalsIi are u.d.
Assume that (I) holds and let0 < ǫ ≤ (min1≤j≤l αj)(min1≤i≤m pi). Lethǫ ∈ N be the smallest
number for whichρhǫπ contains only intervals of length< ǫ. Then the set{hǫ : 0 < ǫ ≤
(min1≤j≤l αj) (min1≤i≤m pi)} is of the form{n ∈ N, n ≥ n0} for somen0. Using the notation
of Lemma 2.1, the number of intervals ofρhǫπ which are contained inIi equalsMǫ/αi

for
i = 1, . . . , l, where

Mǫ/αi
=

(m− 1)αi
ǫH

+ o

(
1

ǫ

)
.

For i = 1, . . . , l,

lim
ǫ→0

Mǫ/αi∑l
j=1Mǫ/αj

= lim
ǫ→0

(m−1)αi

ǫH + o
(
1
ǫ

)
∑l

j=1
(m−1)αj

ǫH + o
(
1
ǫ

)

=
αi∑l
j=1 αj

= αi,
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and thus the sequence(ρnπ)n∈N is u.d. .

Now assume that condition (I) does not hold. Then the numberslog
(

1
p1

)
, . . . , log

(
1
pm

)
are ra-

tionally related with some parameterΛ, and the number of intervals ofρhǫπ which are contained
in Ii isMǫ/αi

, where by Lemma 2.1

Mǫ/αi
=

(m− 1)αiQ1

(
log
(
αi
ǫ

))

ǫH
+O

(
(log(ǫ))dǫ−(1−η)

)
. (2.5)

Consider

Mǫ/αi∑l
j=1Mǫ/αj

=

(m−1)αiQ1(log(
αi
ǫ ))

ǫH +O
(
(log(ǫ))dǫ−(1−η))

∑l
j=1

(m−1)αjQ1

(

log
(

αj
ǫ

))

ǫH +O
(
(log(ǫ))dǫ−(1−η))

=
αiQ1

(
log
(
αi
ǫ

))
+O

(
(log(ǫ))dǫ−(1−η))

∑l
j=1 αjQ1

(
log
(αj

ǫ

))
+O

(
(log(ǫ))dǫ−(1−η)) . (2.6)

If (II) holds, then

{
log
(αj

ǫ

)

Λ

}
=




log
(
cevjΛ

ǫ

)

Λ





=

{
log(c) + vjΛ− log(ǫ)

Λ

}

=

{
log(c)− log(ǫ)

Λ

}

and

Q1

(
log
(αj
ǫ

))
=

Λe
−Λ

{

log(n)−log(ǫ)
Λ

}

1− e−Λ
,

for all j = 1, . . . , l. Thus fori = 1, . . . , l,

lim
ǫ→0

Mǫ/αi∑l
j=1Mǫ/αj

=
αi∑l
j=1 αj

= αi,

and(ρnπ)n∈N is u.d. .

Now assume that neither (I) nor (II) holds. Then the numberslog
(

1
p1

)
, . . . , log

(
1
pm

)
are ra-

tionally related with some parameterΛ, and the starting partitionπ has to consist of at least two
elements. Furthermore, note that condition (II) is equivalent to assuming

log (αj)− log (αi) = nijΛ, nij ∈ Z, (2.7)

for i, j = 1, . . . , l, so if (II) does not hold there necessarily exist indicesi, j for which (2.7) is
not satisfied. Fix suchi, j. Then

{
log(αj)− log(αi)

Λ

}
> 0. (2.8)
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Let the sequence(ǫk)k∈N be defined by

ǫk = αie
−kΛ, k ≥ 1.

Then fork ≥ 1 andn ∈ {1, . . . , l},




log
(
αn
ǫk

)

Λ



 =





log
(
αnekΛ

αi

)

Λ





=

{
log(αn) + kΛ− log(αi)

Λ

}

=

{
log(αn)− log(αi)

Λ

}
. (2.9)

Hence,

Q1

(
log

(
αi
ǫk

))
=

Λ

1− e−Λ
, (2.10)

and

Q1

(
log

(
αj
ǫk

))
=

Λe
−Λ

{

log(αj )−log(αi)

Λ

}

1− e−Λ
. (2.11)

By using (2.6), we obtain

lim
k→∞

αiQ1

(
log
(
αi
ǫk

))
+O

(
(log(ǫk))

dǫ
−(1−η)
k

)

∑l
n=1 αnQ1

(
log
(
αn
ǫk

))
+O

(
(log(ǫk))dǫ

−(1−η)
k

) =
αi

∑l
n=1 αne

−Λ
{

log(αn)−log(αi)

Λ

} .

By (2.8) andΛ > 0 it follows that

e
−Λ

{

log(αn)−log(αi)

Λ

}

≤ 1, n = 1, . . . , l,

and

e
−Λ

{

log(αj)−log(αi)

Λ

}

< 1.

Thus
l∑

n=1

αne
−Λ

{

log(αn)−log(αi)

Λ

}

< 1

and

lim
k→∞

Mǫk/αi∑l
j=1Mǫk/αj

6= αi.

Thus there exists a subsequence along which the relative number of intervals inIi does not con-
verge toαi, and hence the sequence(ρnπ)n∈N cannot be u.d. This proves the theorem. �
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Proof of Corollary2.1:
Proof:
The corollary is a special case of Theorem 2.1. By Remark 2.2,condition (i) is equivalent to
condition (I).
Furthermore, condition (ii) is equivalent to (II). Assume that (II) holds, thenα = cerΛ, 1− α =
ceqΛ, for q, r ∈ Z, c ∈ R+, and thus

1 = cerΛ + ceqΛ

⇔ c =
1

erΛ + eqΛ

and

α =
erΛ

erΛ + eqΛ
=

1

e(q−r)Λ + 1
.

�

Proof of Theorem2.2:
Proof:
Let thei-th interval ofπ be denoted byIi and lethǫ ∈ N be the smallest number for whichρhǫπ
contains only intervals of length< ǫ. Then, following the proof of Theorem 2.1, the number of
intervals ofρhǫπ which are contained inIi isMǫ/αi

, which is given in (2.5). We denote byMA(ǫ)

the number of intervals ofρhǫπ which are contained inA = [a, b] ⊆ Ii. By [101, Theorem 2.7],
the sequences of partitions withinIi are u.d. Hence

MA(ǫ) =
(b− a)(m− 1)Q1

(
log
(
αi
ǫ

))

ǫH
+O

(
(log(ǫ))dǫ−(1−η)

)
.

Thus the relative number of intervals inA is given by

MA(ǫ)∑l
j=1Mǫ/αj

=

(b−a)(m−1)Q1(log(
αi
ǫ ))

ǫH +O
(
(log(ǫ))dǫ−(1−η))

∑l
j=1

(m−1)αjQ1

(

log
(

αj
ǫ

))

ǫH +O
(
(log(ǫ))dǫ−(1−η))

=
(b− a)Q1

(
log
(
αi
ǫ

))
+O

(
(log(ǫ))dǫ−(1−η))

∑l
j=1 αjQ1

(
log
(αj

ǫ

))
+O

(
(log(ǫ))dǫ−(1−η)) .

Consider

(b− a)Q1

(
log
(
αi
ǫ

))
∑l

j=1 αjQ1

(
log
(αj

ǫ

)) (2.12)

=
(b− a)Λe−Λ{ 1

Λ
(log(αi)−log(ǫ))}

∑l
j=1 αjΛe

−Λ{ 1
Λ
(log(αj)−log(ǫ))}

=
b− a

∑l
j=1 αj exp

(
−Λ

(
{ 1
Λ(log(αj)− log(ǫ))} − { 1

Λ (log(αi)− log(ǫ))}
)) . (2.13)
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For j 6= i, one easily sees that the functions

fi,j(ǫ) := exp

(
−Λ

({
log(αj)− log(ǫ)

Λ

}
−
{
log(αi)− log(ǫ)

Λ

}))

are piecewise constant with discontinuities at

ǫ = αie
−kΛ andǫ = αje

−kΛ,

for all k ∈ Z. By

fi,j(αie
−k1Λ) = fi,j(αie

−k2Λ),

fi,j(αje
−k1Λ) = fi,j(αje

−k2Λ),

for all k1, k2 ∈ Z, it follows thatfi,j(ǫ), 0 < ǫ < 1, only takes two different values, which are

exp

(
−Λ

{
log(αj)− log(αi)

Λ

})
and exp

(
Λ

{
log(αi)− log(αj)

Λ

})
.

Furthermore, for allk ∈ Z

fi,j(αie
−kΛ) = exp

(
−Λ

{
log(αj)− log(αi)

Λ

})

and

fi,j(αje
−kΛ) = exp

(
Λ

{
log(αi)− log(αj)

Λ

})
.

By the above arguments it follows that the function

l∑

j=1

αjfi,j(ǫ),

wherefi,i(ǫ) = 1, can only take at mostl different values. Since all the functionsfi,j(ǫ), 1 ≤
j ≤ l, attain their minimal value at the positionsαie−kΛ, k ∈ Z, it follows that the quotient in
equation (2.13) is maximal at these positions and

lim sup
n→∞

∑k(n)
j=1 1[a,b](t

n
j )

k(n)
= lim sup

ǫ→0

MA(ǫ)∑l
j=1Mǫ/αj

= lim
k→∞

MA(αi exp(−kΛ))∑l
j=1M(αi exp(−kΛ))/αj

=
b− a

∑l
j=1 αj exp

(
−Λ

{
log(αj)−log(αi)

Λ

}) .

This proves the upper bound in Theorem 2.2.
To prove the lower bound in Theorem 2.2, we choose0 < γ < 1 such that

γαi > max
1≤j≤l

max
k∈Z

{
αje

−kΛ | αje−kΛ < αi

}
.
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Then for all1 ≤ j ≤ l and for allk ∈ Z the functionsfi,j attain their maximal value at the
positionsγαie−kΛ, and

fi,j(γαie
−kΛ) = fi,j(αje

−kΛ) = exp

(
Λ

{
log(αi)− log(αj)

Λ

})
.

Therefore, the quotient in equation (2.13) attains its minimal possible value at the positions
γαie

−kΛ, k ∈ Z, and

lim inf
n→∞

∑k(n)
j=1 1[a,b](t

n
j )

k(n)
= lim inf

ǫ→0

MA(ǫ)∑l
j=1Mǫ/αj

= lim
k→∞

MA(γαi exp(−kΛ))∑l
j=1M(γαie−kΛ)/αj

=
b− a

∑l
j=1 αj exp

(
Λ
{

log(αi)−log(αj)
Λ

}) .

This proves the theorem. �
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Chapter 3

On the limit distribution of consecutive
elements of the van der Corput
sequence

3.1 Introduction

In the open problem collection on the web site ofUniform distribution theorythe following
problem is stated:

Let (φb(n))n≥0 denote the van der Corput sequence in baseb. Find the distribution
of the sequence(φb(n), φb(n+ 1), . . . , φb(n+ s− 1))n≥0 in [0, 1)s.1

The cases = 2 has recently been solved by Fialová and Strauch [37]. They showed that every
point (φb(n), φb(n+ 1))n≥0 lies on the line segment

y = x− 1 +
1

bk
+

1

bk+1
, x ∈

[
1− 1

bk
, 1− 1

bk+1

]

for k ≥ 0. Furthermore they could give an explicit formula for the asymptotic distribution
function of(φb(n), φb(n+ 1))n≥0 to calculate the limit

lim
N→∞

1

N

N−1∑

n=0

|φb(n)− φb(n+ 1)| = 2(b− 1)

b2

previously demonstrated by Pillichshammer and Steinerberger [90]. They also noted that the adf
of (φb(n), φb(n+ 1))n≥0 is a copula.
In this article we solve the problem for the sequence(φb(n), φb(n+1), . . . , φb(n+s−1))n≥0 for
s > 2. A multi-dimensional extension of the van der Corput sequence (φb(n))n≥0, is given by
the so-called Halton sequence,(φb1(n), φb2(n), . . . , φbs(n))n≥0 which is uniformly distributed

1Problem 1.12 in the open problem collection as of 11. December 2011
(http://www.boku.ac.at/MATH/udt/unsolvedproblems.pdf)
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if and if the basesbi1 ≤ i ≤ s are co-prime (see [53]). These sequences are well-studied objects
in discrepancy theory, since they belong to the class of so-called low discrepancy sequences. For
classical results in discrepancy theory, on low discrepancy sequences and the van der Corput
sequence see e.g. [26], [30] or [66].

Recently, several authors investigated the ergodic properties of low discrepancy sequences, see
e.g. [48] and [84]. In the case of van der Corput sequences this can be done using the so-called
von Neumann-Kakutani transformation, which will be discussed in the second section.
The outline of this article is as follows: in the second section we define the van der Corput
sequence and the von Neumann-Kakutani transformation and recall their basic properties. In the
third section we state our main results on the distribution of (φb(n), φb(n+ 1), . . . , φb(n+ s−
1))n≥0.

3.2 van der Corput sequence and von Neumann-Kakutani trans-
formation

Let b ∈ N andN0 = N ∪ {0}. Then for everyn ∈ N0, we can write

n =
∑

i≥0

nib
i

whereni ∈ {0, 1, . . . , b− 1}, i ≥ 0. The above sum is calledb-adic representation ofn. Theni
are uniquely determined and at most a finite number ofni are non-zero. Furthermore, every real
x ∈ [0, 1) has ab-adic representation of the following form

x =
∑

i≥0

xib
−i−1 (3.1)

wherexi ∈ {0, 1, . . . , b − 1}, i ≥ 0. We callx a b-adic rational ifx = ab−c, wherea andc are
positive integers and0 ≤ a < bc. For allb-adic integers there are exactly two representations of
the form (3.1), one wherexi = 0, i ≥ i0 and one wherexi = b− 1, i ≥ i0 for sufficiently large
i0 ∈ N. If we restrict ourselves to representations withxi 6= b− 1 for infinitely manyi, then the
coefficientsxi in (3.1) are uniquely determined for allx ∈ [0, 1).
Forn ∈ N0 we define the so-called radical-inverse function or Monna map φb(n) : N0 → [0, 1)
by

φb(n) = φb


∑

i≥0

nib
i


 :=

∑

i≥0

nib
−i−1.

Note thatφb(n) mapsN0 to the set ofb-adic rationals in[0, 1), and therefore the image ofN0

underφb(n) is dense in[0, 1).

Definition 3.1 The van der Corput sequence in baseb is defined as(φb(n))n≥0.
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It is a classical result that the van der Corput sequence is uniformly distributed in[0, 1), see e.g.
[66]. Furthermore, its s-dimensional extension, the Halton sequence given by
(φb1(n), . . . , φbs(n))n≥0 for co-prime basesbi, 1 ≤ i ≤ s, is uniformly distributed on[0, 1)s.
Properties of the van der Corput and the Halton sequence are very well-understood, since they
are so-called low discrepancy sequences, which are centralobjects in Quasi-Monte Carlo inte-
gration.
A second approach to define the van der Corput sequence is by using the von Neumann-Kakutani
transformationTb : [0, 1) → [0, 1). For any integerb ≥ 2 the inductive construction ofTb is as
follows: at first[0, 1) is split intob intervalsI1i =

[
i
b ,
i+1
b

)
for i = 0, 1, . . . b− 1. Then the trans-

formationT1,b :
[
0, b−1

b

)
7→
[
1
b , 1
)

is defined as translation ofI1i into I1i+1 for i = 0, 1, . . . , b−1.
The next step is to divide all intervalsI1i into b subintervals of the formI2i =

[
i
b2 ,

i+1
b2

)
for

i = 0, 1, . . . b2 − 1. TransformationT2,b :
[
0, b

2−1
b2

)
7→
[
1
b2
, 1
)

is given as the extension ofT1,b

which translatesI2b2−b+i into I2b2−b+i+1 for i = 0, 1, . . . , b − 1. Such a construction is called
splitting-and-stacking-construction and is illustratedin Figure 3.1 forb = 2. Finally we define
the von Neumann-Kakutani transformation asTb = limn→∞ Tn,b. A plot of the transformation
T2 is given in Figure 3.2. By an observation of Lambert [68], [69] (see also Hellekalek [53]) the
van der Corput sequence in baseb is exactly the orbit of the origin underTb, which means that

(T nb 0)n≥0 = (φb(n))n≥0, b ≥ 2, (3.2)

whereT nb x denotes the value ofx under aftern iterations ofTb.
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Figure 3.1: The first two steps of a splitting-and-stacking-construction in baseb = 2.
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Figure 3.2: The von Neumann-Kakutani transformation in base b = 2.

For a proof of the ergodicity and measure-preserving properties of the von Neumann-Kakutani
transformation, see e.g. [38] or [39]. It follows from the ergodicity of the von Neumann-Kakutani
transformation that(T nb x)n≥0 is uniformly distributed for almost everyx ∈ [0, 1). Furthermore,
it can be shown that the von Neumann-Kakutani transformation is uniquely ergodic, which
implies that(T nb x)n≥0 is uniformly distributed for everyx ∈ [0, 1), see e.g. [48]. Moreover,
Pagés [89] showed that the orbit of the von Neumann-Kakutanitransformation starting at an
arbitrary pointx ∈ [0, 1) is a low discrepancy sequence. Another possible generalization of the
van der Corput sequence is the so-called randomized van der Corput sequence(T nb X)n≥0 where
X is uniformly distributed on[0, 1), see [102].

Recently, Fialová and Strauch solved the problem of calculating the limit distribution of the
sequence(φb(n), φb(n+1))n≥0. They also concluded that the limit distribution is a copula. We
consider the multi-dimensional extension of this problem.By (3.2)

(φb(n), φb(n+ 1))n≥0 = (T nb 0, T
n+1
b 0)n≥0 = (T nb 0, Tb(T

n
b 0))n≥0.

By the fact that(T nb 0)n≥0 is uniformly distributed on[0, 1) one can show that(φb(n), φb(n +
1))n≥0 is uniformly distributed on

Γ = {(x, y) : y = Tbx}.

Note thatΓ coincides with the graph of the von Neumann-Kakutani transformation in Figure
3.2. In the next section we use this approach to find the limit distribution of (φb(n), φb(n +
1), . . . , φb(n + s− 1))n≥0 for arbitrarys ≥ 2.

32



CHAPTER 3. On the limit distribution of consecutive elements of the van der Corput sequence

3.3 The limit distribution of consecutive elements of the van der
Corput sequence

In the sequel we assume thatb, s are fixed. LetT denote the von Neumann-Kakutani transfor-
mation in baseb as described in Section 3.2. We define a mapγ(t) : [0, 1) → [0, 1)s by setting

γ(t) :=




t
T t
T 2t

...
T s−1t




and

Γ := {(x1, x2, . . . , xs) ∈ [0, 1]s : xi = T i−1x1, i = 2, . . . , s} = {γ(t) : t ∈ [0, 1)} .
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Figure 3.3: Function graphs ofT t, T 2t andT 5t. These curves appear as the two-dimensional
projections ofΓ for larges.

The Lebesgue measureλ1 on [0, 1) induces a measureν onΓ by setting

ν(A) = λ1({t : γ(t) ∈ A}), A ⊂ Γ.

Furthermore,ν induces a measureµ on [0, 1)s by embeddingΓ into [0, 1)s. More precisely for
every measurable subsetB ⊆ [0, 1)s we set

µ(B) = ν(B ∩ Γ).

Theorem 3.1 The limit measure of(φb(n), φb(n+ 1), . . . , φb(n + s− 1))n≥0 is µ.

Proof:
As mentioned in Section 3.2, we can rewrite

(φb(n), φb(n+ 1), . . . , φb(n+ s− 1))n≥0 = (T n0, T n+10, . . . , T n+s−10)n≥0
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= (T n0, T (T n0), . . . , T s−1(T n0))n≥0.

Since(T n0)n≥0 is uniformly distributed on[0, 1) andT is a measure-preserving transformation
with respect toλ1, it follows immediately that(T i(T n0))n≥0 is uniformly distributed on[0, 1)
for i = 1, . . . , s− 1. Moreover, by construction(T n0, T (T n0), . . . , T s−1(T n0))n≥0 ∈ Γ for all
n ≥ 0.
Now consider a measurable setB ∈ [0, 1)s. We define the empirical measure of the firstN
points of(T n0, . . . , T s−1(T n0))n≥0 as

µN (B) =
1

N
#{0 ≤ n ≤ N : (T n0, T (T n0), . . . , T s−1(T n0)) ∈ B}.

We have

lim
N→∞

µN (B) = lim
N→∞

1

N
#{0 ≤ n ≤ N : (T n0, T (T n0), . . . , T s−1(T n0)) ∈ B}

= lim
N→∞

1

N
#{0 ≤ n ≤ N : (T n0, T (T n0), . . . , T s−1(T n0)) ∈ B ∩ Γ}

= lim
N→∞

1

N
#{0 ≤ n ≤ N : T n0 ∈ Projectionx1(B ∩ Γ)}

= λ1( Projectionx1(B ∩ Γ))

= ν(B ∩ Γ) = µ(B)

where the fourth equation holds since(T n0)n≥0 is uniformly distributed on[0, 1) and since the
mapt → T t is a bijection, and where Projectionx1(A) denotes the projection ofA onto its first
coordinate. �

Remark 3.1 Note that the measureµ is a copula on[0, 1]s for everys since every distribu-
tion function of a multi-dimensional sequence(x1n, . . . , x

s
n)n≥0 is a copula if the sequences

(x1n)n≥0, . . . , (x
s
n)n≥0 are uniformly distributed on[0, 1].

Remark 3.2 The setΓ is a collection of countably many line segments in[0, 1)s. Informally
speaking Theorem 3.1 means that(φb(n), φb(n + 1), . . . , φb(n + s − 1))n≥0 is uniformly dis-
tributed onΓ.

Remark 3.3 By the unique ergodicity ofT , the conclusion of Theorem 3.1 holds also for the
sequence(T nx, T (T nx), . . . , T s−1(T nx))n≥0 for arbitrary x ∈ [0, 1).

Remark 3.4 Another class of uniformly distributed sequences which canbe seen as the orbits of
certain points under an ergodic transformation are sequences of the form({nα})n≥0, where{x}
denotes the fractional part ofx andα is irrational. In this case the corresponding transformation
T̂ is simply the rotation̂T : x 7→ x+α mod 1. It can easily be shown that the limit distribution
of consecutive elements({nα}, {(n+1)α}, . . . , {(n+ s− 1)α})n≥0 is the uniform distribution
on the curvêΓ which is given by

Γ̂ :={(t, T̂ t, . . . , T̂ s−1t), t ∈ [0, 1)}.
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However, since in this case the transformationT̂ has a particularly simple structure, the same
result can also be easily obtained using analytic arguments.

35



Part II

The discrepancy of Monte Carlo point
sets
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Chapter 4

Probabilistic discrepancy bounds for
Monte Carlo point sets

4.1 Introduction and statement of results

The numbern∗(s, ε), which is defined as the smallest possible cardinality of a point set in[0, 1]s

having discrepancy bounded byε, is called theinverse of the discrepancy. Heinrich, Novak,
Wasilkowski, and Woźniakowski [52] proved the upper bound

n∗(s, ε) ≤ cabssε
−2, (4.1)

which is complemented by the lower bound

n∗(s, ε) ≥ cabssε
−1

due to Hinrichs [55] (throughout the paper,cabs denotes absolute constants, not always the
same). Hence the inverse of the star-discrepancy depends linearly on the dimension, while the
precise dependence onε is still unknown. It is easy to see that (4.1) is equivalent tothe fact that
for anyN ands there exists a setPN of N points in[0, 1]s such that the star-discrepancyD∗

N of
this point set is bounded by

D∗
N (PN ) ≤ cabs

√
s√
N

(4.2)

(recently we showed that it is possible to choosecabs = 10 in (4.2), see [1]). The existence
of such a point set directly follows from the surprising observation that a randomly generated
point set (that is, a Monte Carlo point set) satisfies the desired discrepancy estimate with positive
probability. Of course, for applications such a mere existence result is not of much use, as was re-
marked by several colleagues at the MCQMC 2012 conference inSydney. For this reason, in the
present paper we prove an applied version of (4.2), which provides estimates for the probability
of a random point set satisfying (4.2) (depending on the value of the constant). As our Theorem
4.1 below shows, this probability is extremely large already for moderate values ofc, for exam-
ple for c = 20. Additionally, the quality of our estimates for these probabilities improvesas the
dimensions increases (which is somewhat counter-intuitive, and originates from the exponential
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inequalities used in the proof, which cause a “concentration of mass” phenomenon).

The fact that the probability of a random point set satisfying (4.2) is very large is in contrast
to the fact that no general constructions of point sets satisfying such discrepancy bounds are
known. So far, the best results are a component-by-component construction of Doerr, Gnewuch,
Kritzer and Pillichshammer [27], a semi-deterministic algorithm based on dependent random-
ized rounding due to Doerr, Gnewuch, and Wahlström [28], anda construction of Hinrichs of a
“structured” set ofN = 1528 points in dimensions = 15 having discrepancy less than 1/4 (by
this means solving one instance of an open problem in [33]).

For more information concerning the inverse of the discrepancy and tractability of multidimen-
sional integration we refer to a recent survey article of Gnewuch [46], and to the monograph of
Novak and Woźniakowski [32, 33]. A collection of open problems on this topic can be found
in [51].

In the present paper, we will prove the following theorem.

Theorem 4.1 For anys ≥ 1, N ≥ 1 andq ∈ (0, 1) a randomly generateds-dimensional point
set(z1, . . . , zN ) satisfies

D∗
N (z1, . . . , zN ) ≤ 5.70

√
4.90 +

log ((1− q)−1)

s

√
s√
N

(4.3)

with probability at leastq.

It is interesting that the quality of the discrepancy estimate in Theorem 4.1improvesas the di-
mensions increases; for example the necessary numberc(q, s) to have star-discrepancy bounded
by c(q, s)s1/2N−1/2 with probability at least 90% is 15.30 in dimensions = 1, while it is only
12.65 in dimensions = 100. However, neglecting this advantage of large dimensions inorder
to obtain a result which holds uniformly ins, one immidiately obtains the following corollary.

Corollary 4.1 For anys ≥ 1, N ≥ 1 andq ∈ (0, 1) a randomly generateds-dimensional point
set(z1, . . . , zN ) satisfies

D∗
N (z1, . . . , zN ) ≤ 5.70

√
4.90 + log ((1− q)−1)

√
s√
N

(4.4)

with probability at leastq.

Theorem 4.1 shows that the probability that a random point set satisfies the discrepancy bound
c(q, s)s1/2N−1/2 is extremely large already for moderate values ofc(q, s). The following table
illustrates this fact, fors = 10 ands = 100.

q 0.01 0.5 0.9 0.99 0.999
c(q,10) 12.62 12.71 12.92 13.20 13.48
c(q,100) 12.62 12.63 12.65 12.68 12.71
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As the table shows, the probability that a random point set has “small” discrepancy in the sense
that its discrepancy is bounded bycs1/2N−1/2 for some moderatec (for example,c = 20)
is extremely large. This observation is an exciting counterpart of the fact that we do not have
the slightest idea of how to construct point sets satisfyingsuch discrepancy bounds, even for
moderateN ands. It should also be noted that calculating the star-discrepancy of a given (high-
dimensional) point set is computationally very difficult, see [41,47]. Hence, although our results
show that the probability of a random point set having small discrepancy is very large, checking
that a concrete point set satisfies such discrepancy bounds is in general (in high dimensions) a
computationally intractable problem.

4.2 Preliminaries

Throughout the paper,s ≥ 1 denotes the dimension andλ denotes thes-dimensional Lebesgue
measure. Forx, y ∈ [0, 1]s, wherex = (x1, . . . , xs) andy = (y1, . . . , ys), we writex ≤ y if
xi ≤ yi, 1 ≤ i ≤ s, and for anyx ∈ [0, 1]s we write [0, x] for the set{y ∈ [0, 1]s : 0 ≤ y ≤ x}.
Furthermore, we write|A| for the number of elements of a setA.

The following Lemma 4.1 of Gnewuch [43, Theorem 1.15] is a central ingredient in the proof of
our main result. For convenience we use the notation from [43] and [44]: For anyδ ∈ (0, 1] a set
Γ of points in[0, 1]s is called aδ-cover of[0, 1]s if for everyy ∈ [0, 1]s there existx, z ∈ Γ∪{0}
such thatx ≤ y ≤ z andλ([0, z)) − λ([0, x)) ≤ δ. The numberN (s, δ) denotes the smallest
possible cardinality of aδ-cover of[0, 1]s.
Similarly, for anyδ ∈ (0, 1] a set∆ of pairs of points from[0, 1]s is called aδ-bracketing cover
of [0, 1]s, if for every pair(x, z) ∈ ∆ the estimateλ([0, z)) − λ([0, x)) ≤ δ holds, and if for
everyy ∈ [0, 1]s there exists a pair(x, z) from ∆ such thatx ≤ y ≤ z. The numberN[ ](s, δ)
denotes the smallest possible cardinality of aδ-bracketing cover of[0, 1]s.

Lemma 4.1 For anys ≥ 1 andδ ∈ (0, 1]

N (s, δ) ≤ (2e)s(δ−1 + 1)s

and
N[ ](s, δ) ≤ 2s−1es(δ−1 + 1)s.

By Lemma 4.1 for any1 ≤ k ≤ K there exists a2−k-cover of[0, 1]s, denoted byΓk, such that

|Γk| ≤ (2e)s(2k + 1)s.

Furthermore we denote by∆K a2−K- bracketing cover for which

|∆K | ≤ 2s−1es(2K + 1)s,

which also exists due to Lemma 4.1. Moreover we defineΓK as

ΓK = {v ∈ [0, 1]s : (v,w) ∈ ∆K for somew}.
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By definition for everyx ∈ [0, 1]s there exists a pair(vK , wK) = (vK(x), wK(x)) for which
(vK , wK) ∈ ∆K such thatvK ≤ x ≤ wK and

λ([0, wK ])− λ([0, vK ]) ≤ 1

2K
.

Furthermore for everyk, 2 ≤ k ≤ K and γ ∈ Γk there existvk−1 = vk−1(γ), wk−1 =
wk−1(γ), vk−1, wk−1 ∈ Γk−1 ∪ {0}, such thatvk−1 ≤ γ ≤ wk−1 and

λ([0, wk−1])− λ([0, vk−1]) ≤
1

2k−1
.

We define

pK(x) = vK(x)

pK−1(x) = vK−1(pK(x)) = vK−1(vK(x))

pK−2(x) = vK−2(pK−1(x)) = vK−2(vK−1(vK(x)))

...

p1(x) = v1(p2(x)),

and
pK+1(x) = wK(x), p0(x) = 0.

Forx, y ∈ [0, 1]s we set

[x, y] :=





[0, y]\[0, x] if x 6= 0,
[0, y] if x = 0, y 6= 0,
∅ if x = y = 0.

Then the sets
[pk(x), pk+1(x)], 1 ≤ k ≤ K,

are disjoint, and we obtain

K−1⋃

k=0

[pk(x), pk+1(x)] ⊂ [0, x] ⊂
K⋃

k=0

[pk(x), pk+1(x)], ∀x ∈ [0, 1]s.

Hence for everyx, y ∈ [0, 1]s

K−1∑

k=0

1
[pk(x),pk+1(x)]

(y) ≤ 1[0,x](y) ≤
K∑

k=0

1
[pk(x),pk+1(x)]

(y). (4.5)

Moreover, independent ofx, we have for0 ≤ k ≤ K

λ
(
[pk(x), pk+1(x)]

)
≤ 1

2k
.
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For0 ≤ k ≤ K we defineAk to be the set of all sets of the form

[pk(x), pk+1(x)],

wherex ∈ [0, 1]s. Then for0 ≤ k ≤ K, as a consequence of Lemma 4.1, we can bound the
cardinality ofAk by

|Ak| ≤ (2e)s
(
2k+1 + 1

)s
. (4.6)

Note that all elements ofAk, where0 ≤ k ≤ K, have Lebesgue measure bounded by2−k. This
dyadic decomposition method was introduced in [1], where itis described in more detail.

Let X1, . . . ,XN be independent, identically distributed (i.i.d.) random variables defined on
some probability space(Ω,A,P) having uniform distribution on[0, 1]s, and letI ∈ Ak for
somek ≥ 0. Then the random variables1I(X1), . . . ,1I(XN ) are i.i.d. random variables, hav-
ing expected value

λ(I)

and variance

λ(I)− λ(I)2 ≤
{

2−k(1− 2−k) for k ≥ 1,
1/4 for k = 0.

(4.7)

Since theXn are independent it follows that the random variable

N∑

n=1

1I(Xn)

has expected valueNλ(I) and varianceN(λ(I)− λ(I)2).

In the proof of our main result we need two well-known resultsfrom probability theory, namely
Bernstein’s and Hoeffding’s inequality. Bernstein’s inequality states that forZ1, . . . , ZN being
i.i.d. random variables, satisfyingEZn = 0 and|Zn| ≤ C a.s. for someC > 0,

P

(∣∣∣∣∣
N∑

n=1

Zn

∣∣∣∣∣ > t

)
≤ 2 exp


− t2

2
(∑N

n=1 EZ
2
n

)
+ 2Ct/3


 .

By applying this inequality to the random variables1I(Xn)− λ(I), we obtain

P

(∣∣∣∣∣
N∑

n=1

1I(Xn)−Nλ(I)

∣∣∣∣∣ > t

)
≤ 2 exp

(
− t2

2 (Nλ(I) (1− λ(I))) + 2t/3

)

for t > 0. Using (4.7) we conclude

P

(∣∣∣∣∣
N∑

n=1

1I(Xn)−Nλ(I)

∣∣∣∣∣ > t

)
≤ 2 exp

(
− t2

2N2−k(1− 2−k) + 2t/3

)
for k ≥ 2.

(4.8)
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Fork ∈ {0, 1} we use Hoeffding’s inequality, which yields

P

(∣∣∣∣∣
N∑

n=1

1I(Xn)−Nλ(I)

∣∣∣∣∣ > t

)
≤ 2 exp

(
−2t2

N

)
. (4.9)

4.3 Proof of Theorem 4.1

Since the theorem is trivial forN < 32
(
s+ log

(
(1− q)−1

))
< 5.702

(
s+ log

(
(1− q)−1

))

we assume thatN ≥ 32
(
s+ log

(
(1− q)−1

))
and set

K =

⌈
log2N − log2

(
s+ log

(
(1− q)−1

))

2

⌉
.

ThenK ≥ 3, and

2−K ∈
[√

s+ log ((1− q)−1)

2
√
N

,

√
s+ log ((1− q)−1)√

N

]
. (4.10)

Furthermore we have

√
sN = N

√
s√
N

≤ 2−K+1√s√
s+ log ((1− q)−1)

N. (4.11)

By choosingt = c
√
sN for somec > 0, we conclude from (4.8), (4.9) and (4.11) that for any

c > 0

P

(∣∣∣∣∣
N∑

n=1

1I(Xn)−Nλ(I)

∣∣∣∣∣ > c
√
sN

)

≤





2e−2c2s for k = 0, 1

2 exp


− c2s

2·2−k(1−2−k)+ 4c2−K√
s

3
√

s+log((1−q)−1)


 for 2 ≤ k ≤ K.

(4.12)

LetBk, k = 0, . . . ,K be given as

Bk =
⋃

I∈Ak

(∣∣∣∣∣
N∑

n=1

1I(Xn)−Nλ(I)

∣∣∣∣∣ > ck
√
sN

)
. (4.13)

The strategy of the proof is to find constantsck, k = 0, . . . ,K for which

K∑

k=0

P (Bk) < 1− q

holds for any givenq.
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First we consider the casek = 0. By (4.6) we have that

|A0| ≤ (6e)s.

We choose

c0 =

√
1 + log(6)

2
+

log (8(1 − q)−1)

2s

≤ 1√
2

√
4.88 +

log ((1− q)−1)

s
, (4.14)

thus together with (4.12) and (4.13) it follows that

P(B0) ≤ |A0|2e−2c20s = (6e)s2e−s(1+log(6)) (1− q)

8
=

1− q

4
.

Furthermore we get by (4.6) that
|A1| ≤ (10e)s

and with

c1 =

√
1 + log(10)

2
+

log (8(1− q)−1)

2s

≤ 1√
2

√
5.39 +

log ((1− q)−1)

s
, (4.15)

we obtain that

P(B1) ≤ |A1|2e−2c21s = (10e)s2e−s(1+log(10)) (1− q)

8
=

1− q

4
.

Next we consider the case2 ≤ k ≤ K. By (4.6), (4.12) and (4.13) we have

P(Bk) ≤ |Ak| · 2 · exp


− c2ks

2 · 2−k(1− 2−k) + 4ck2−K
√
s

3
√
s+log((1−q)−1)


 . (4.16)

We set

ck =

√

1 + log(2(2k+1 + 1)) +
log
(
2(k+1)(1− q)−1

)

s

√
2 · 2−k(1− 2−k) +

2.08 · 4 · 2−K
3

hence we get that
∣∣∣∣∣

ck
√
s√

s+ log ((1− q)−1)

∣∣∣∣∣

≤

∣∣∣∣∣∣∣

√
1 + log(2(2k+1 + 1)) + log(2(k+1)) + log((1−q)−1)

s

√
2 · 2−k(1− 2−k) + 2.08·4·2−K

3√
1 + log((1−q)−1)

s

∣∣∣∣∣∣∣
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≤
∣∣∣∣∣
√

1 + log(2(2k+1 + 1)) + log(2(k+1))

√
2 · 2−k(1− 2−k) +

2.08 · 4 · 2−K
3

∣∣∣∣∣
≤2.08

for 2 ≤ k ≤ K. Thus by (4.16) we obtain

P(Bk) ≤ |Ak| · 2 · exp


− c2ks

2 · 2−k(1− 2−k) + 4ck2−K
√
s

3
√
s+log((1−q)−1)




≤ (2e)s(2(k+1) + 1)s · 2 · exp
(
−s
(
1 + log(2(2(k+1) + 1))

)) 1− q

2(k+1)

=
1− q

2k
.

Summing up the estimated probabilities gives

K∑

k=0

P(Bk) ≤
(
3

4
+

K∑

k=3

2−k
)
(1− q) < 1− q.

Therefore with at least probabilityq, a realizationX1(ω), . . . ,Xn(ω) is such that

ω /∈
K⋃

k=0

Bk.

We denote byzn a point set which is defined by such a realization, i.e.

zn = Xn(ω), 1 ≤ n ≤ N, for someω /∈
K⋃

k=0

Bk.

Set

λk =
√

2 · 2−k(1− 2−k) + 2.08 · 4 · 2−K/3.
Then

K∑

k=2

ck =
K∑

k=2

λk

√
1 + log(2(2k+1 + 1)) +

log(2(k+1)(1− q)−1)

s

≤
K∑

k=2

λk

√
1 + log 2 + log(2k+1) + 0.12 +

log(2(k+1))

s
+

log ((1− q)−1)

s

≤
K∑

k=2

λk

√
1.12 + (2k + 3) log 2 +

log ((1− q)−1)

s

≤
√

1.12 + 7 log 2 +
log ((1− q)−1)

s

1√
2

K∑

k=2

√
kλk
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≤ 3.28

√
5.98 +

log ((1− q)−1)

s
. (4.17)

Therefore we obtain by using (4.14), (4.15) and (4.17)

K∑

k=0

ck ≤
1√
2

√
4.88 +

log ((1− q)−1)

s
+

1√
2

√
5.39 +

log ((1− q)−1)

s

+ 3.28

√
5.98 +

log ((1− q)−1)

s
(4.18)

Applying (4.5), (4.10), (4.18) and Jensen’s inequality we obtain

N∑

n=1

1[0,x](zn) ≤
K∑

k=0

N∑

n=1

1
[pk(x),pk+1(x)]

(zn)

≤ Nλ([0, wK(x)]) +
√
sN

K∑

k=0

ck

≤ Nλ([0, x]) +Nλ([x,wK(x)]) +
√
sN

K∑

k=0

ck

≤ Nλ([0, x]) +N

√
s+ log ((1− q)−1)√

N
+
√
sN

K∑

k=0

ck

≤ Nλ([0, x]) +
√
sN

(
K∑

k=0

ck +

√
1 +

log ((1− q)−1)

s

)

≤ Nλ([0, x]) + 5.70

√
4.90 +

log ((1− q)−1)

s

√
sN.

Similarly a lower bound is given by

N∑

n=1

1[0,x](zn) ≥
K−1∑

k=0

N∑

n=1

1[pk(x),pk+1(x)]
(zn)

≥ Nλ([0, pK(x)]) −
√
sN

K−1∑

k=0

ck

≥ Nλ([0, x]) −Nλ
(
[pK(x), x]

)
−

√
sN

K−1∑

k=0

ck

≥ Nλ([0, x]) − 5.70

√
4.90 +

log ((1− q)−1)

s

√
sN.

Combining the above bounds we finally arrive at

D∗
N (z1, . . . , zn) ≤ 5.70

√
4.90 +

log ((1− q)−1)

s

√
s√
N
.
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Part III

Monte Carlo methods in asset pricing
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Chapter 5

Probabilistic error bounds for the
discrepancy of mixed sequences

5.1 Introduction and statement of results

A common notion to measure the regularity of point distributions is the so-called star discrep-
ancy. Roughly speaking, the star discrepancy compares the relative number of elements of a
point set, which are contained in an axis-parallel box, to the volume of this box, and finally takes
the maximal deviation over all possible boxes. The Quasi-Monte Carlo method for numerical
integration is based on the fact that the difference of the integral of a function and the arithmetic
mean of the function values at certain sampling points can beestimated by the product of the
variation of this function and the discrepancy of the set of sampling points. Therefore point sets
having a small star discrepancy can serve as a tool for numerical integration, a method which is
frequently used for the evaluation of high-dimensional integrals in applied mathematics. Many
constructions of low-discrepancy point sets only provide good bounds for the discrepancy if the
number of points is large (in comparison with the dimension). This led to the development of
the so-called randomized Quasi-Monte Carlo method, which tries to combine the advantages of
the (deterministic) Quasi-Monte Carlo method and the advantages of the (random) Monte Carlo
method. For an introduction to discrepancy theory and its applications in numerical mathemat-
ics we refer the reader to the books of Dick and Pillichshammer [26], Drmota and Tichy [30],
Kuipers and Niederreiter [66] and Glasserman [42].

To formulate our results in a precise way we need some notation. We write(x(1), . . . , x(s)) for
the coordinates of a pointx ∈ [0, 1]s. We writex ≤ y if x(i) ≤ y(i) for 1 ≤ i ≤ s. We write 0 and
1 for the points(0, . . . , 0) and(1, . . . , 1) in [0, 1]s. Fora ∈ [0, 1]s we define ans-dimensional
interval [0, a] as the set{x ∈ [0, 1]s : 0 ≤ x ≤ a} (which is ans-dimensional axis-parallel box).
Let (x1, . . . , xN ) be a sequence of points in thes-dimensional unit cube. The star discrepancy
D∗
N of (x1, . . . , xN ) is defined as

D∗
N (x1, . . . , xN ) = sup

a∈[0,1]s

∣∣∣∣∣
1

N

N∑

n=1

1[0,a](xn)− λ([0, a])

∣∣∣∣∣ .
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Here and in the sequelλ denotes the Lebesgue measure. For simplicity we writeD∗
N (xn) instead

of D∗
N (x1, . . . , xN ). If (xn)n≥1 is an infinite sequence, we writeD∗

N (xn) for the discrepancy of
the firstN elements of(xn)n≥1.

The importance of discrepancy theory in numerical mathematics is based on the Koksma-Hlawka
inequality, which states that for a sequence(x1, . . . , xN ) of points in [0, 1]s and a functionf
having total variationVar f on [0, 1]s (in the sense of Hardy and Krause)

∣∣∣∣∣
1

N

N∑

n=1

f(xn)−
∫ 1

0
f(x) dx

∣∣∣∣∣ ≤ D∗
N (xn) ·Var f.

There exist many constructions of so-called low-discrepancy sequences, i.e. sequences(xn)n≥1

for which
D∗
N (xn) ≪ (logN)sN−1 as N → ∞ (5.1)

(this should be compared with a result of Roth [92] which states that every infinite sequence
of points from[0, 1]s has discrepancy≫ (logN)s/2N−1 for infinitely manyN ; this has been
slightly improved by Beck [11] and Bilyk, Lacey and Vagharshakyan [13], but the precise min-
imal asymptotic order of the discrepancy is still an open problem). Sequences of this type are
only of practical use if the number of sampling pointsN is “large” in comparison with the di-
mensions; in particular the right-hand side of (5.1) is increasing for N ≤ es. On the other hand,
the so-called Monte Carlo method (which uses i.i.d. randomly generated points instead of deter-
ministic points) gives an probabilistic bound of asymptotical orderN−1/2, independently of the
dimension. This led to the development of randomized QMC integration schemes, which try to
combine the advantages of (random) MC and (deterministic) QMC. There exist several meth-
ods for “randomizing” QMC rules; see for example Hickernell[54], Matoušek [76], Owen [86]
and L’Ecuyer and Lemieux [70]. In this paper we considers-dimensional sequences which are
constructed by concatenating the coordinates of ad-dimensional QMC sequence and ans − d-
dimensional MC sequence. Sequences of this type are called “mixed” sequences, and have been
investigated e.g. by Spanier [96], Ökten [82, 83] and Roşca[91]. Extensive numerical exper-
iments have been carried out by Ökten, Tuffin and Burago [85],who showed that the use of
mixed sequences can significantly improve the efficienty of the QMC method in applications
from financial mathematics.

Let (qn)n≥1 be ad-dimensional QMC sequence, and let(Xn)n≥1 be a sequence of i.i.d. random
variables having uniform distribution on[0, 1]s−d. We write (xn)n≥1 for the sequence which

consists of the pointsxn = (qn,Xn), i.e. xn = (q
(1)
n , . . . , q

(d)
n ,X

(1)
n , . . . ,X

(s−d)
n ) for n ≥ 1.

Ökten, Tuffin and Burago [85] showed that for such a sequence,under the additional assumption
D∗
N (qn) → 0, for arbitraryε > 0

P (D∗
N (xn) ≤ D∗

N (qn) + ε) ≥ 1− 2e−ε
2N/2 (5.2)

for sufficiently largeN (in [85, Theorem 5] the exponent−2ε2N appears, but as Gnewuch [45]
remarks, the proof only gives−ε2N/2). Their paper contains no information on the size of the
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values ofN for which (5.2) holds. Gnewuch [45] showed that

P (D∗
N (xn) ≤ D∗

N (qn) + ε) ≥ 1− 2N (s, ε/2)e−ε
2N/2, (5.3)

whereN (d, δ) is defined as the smallest numberM for which there exists a setΓ of M points
in [0, 1]s such that for ally ∈ [0, 1]s there existx, z ∈ Γ ∪ {0} such thatx ≤ y ≤ z and
λ([0, z])− λ([0, x]) ≤ δ (the setΓ is called aδ-coverof [0, 1]s, and the numberN thecovering
number). By [43, Theorem 1.15]

N (s, δ) ≤ (2e)s(δ−1 + 1)s,

and therefore (5.3) implies

P (D∗
N (xn) ≤ D∗

N (qn) + ε) > 1− 2(2e)s(2/ε+ 1)se−ε
2N/2. (5.4)

In dimensions = 2 Gnewuch [44] proved a stronger upper bound for covering numbers, and
conjectured that in all dimensions

N (s, δ) ≤ 2δ−s + os(δ
−s).

(whereos means that the implied constant may depend ons). This would lead to an improve-
ment of (5.4).

We will also need the notion ofδ-bracketing covers: Let δ ∈ (0, 1]. A finite set∆ of pairs
of points from[0, 1]s is called aδ-bracketing cover of[0, 1]s, if for every pair(x, z) ∈ ∆ the
estimateλ([0, z]) − λ([0, x]) ≤ δ holds, and if for everyy ∈ [0, 1]s there exists a pair(x, z)
from ∆ such thatx ≤ y ≤ z. The numberN[ ](s, δ), which is called thebracketing number,
denotes the smallest cardinality of aδ-bracketing cover of[0, 1]s. By [43, Theorem 1.15]

N[ ](s, δ) ≤ 2s−1es(δ−1 + 1)s.

Gnewuch’s result (5.3) has the advantage of being valid for all N ≥ 1. However, (5.2) is asymp-
totically stronger than (5.3) (asN increases, for fixedε). On the one hand, the purpose of this
paper is to show an improved version of (5.2), which is almostoptimal. On the other hand, we
want to show that the factorε−s in (5.3) and (5.4), which essentially comes from the necessity
to discretize the discrepancy with respect to a grid of precision ε, is not necessary and can be
replaced byγs for an appropriate constantγ. This might be surprising at first sight: the impact
of the necessity to discretize the discrepancy with respectto a certain (possibly extremely close-
meshed) grid does not depend on the accuracy of this grid.

More precisely, we will prove the following theorem:

Theorem 5.1 Let (qn)n≥1 be a d-dimensional sequence, and let(Xn)n≥1 be a sequence of
i.i.d. random variables having uniform distribution on[0, 1]s−d. Let (xn)n≥1 denote the mixed
sequence which consists of the pointsxn = (qn,Xn). Then for everyη > 0 there exists a
constantγ = γ(η) such that for everyε > 0

P (D∗
N (xn) ≤ 2D∗

N (qn) + ε) ≥ 1− γse−2(1−η)ε2N . (5.5)
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In (5.5) we can choose
γ = e2·⌈4 log2(3/η)+2 log2 7⌉. (5.6)

As a direct consequence of Theorem 5.1 we obtain the following corollary, which is an improve-
ment of the result of Ökten, Tuffin and Burago (5.2).

Corollary 5.1 Assume thatD∗
N (qn) → 0, and letη > 0 be given. Then for arbitraryε > 0

P (D∗
N (xn) ≤ ε) ≥ 1− e−2(1−η)ε2N

for sufficiently largeN .

Proof of Corollary 5.1: Let η > 0 be given, and let̂η be so small that(1 − η̂)3 > 1 − η. Since
D∗
N (qn) → 0 we haveD∗

N (qn) ≤ η̂ε/2 for sufficiently largeN . Thus by Theorem 5.1

P (D∗
N (xn) ≤ ε) ≥ P (D∗

N (xn) ≤ 2D∗
N (qn) + (1− η̂)ε)

≥ 1− γ(η̂)se−2(1−η̂)((1−η̂)ε)2N

≥ 1− e−2(1−η)ε2N

for sufficiently largeN . This proves the corollary. �

Remark 5.1 Theorem 5.1 and Gnewuch’s result (5.3) both give probability zero for

ε ≤ s1/2N−1/2.

It is clear that a result like Theorem 5.1 can not give a positive probability for all possible
d ≥ 1, s > d andε > 0, since this would imply (by choosingd = 1 and(q1, . . . , qN ) such that
D∗
N (qn) = 1/N ) the existence of ans-dimensional sequence(x1, . . . , xN ) with discrepancy

≤ 2/N + ε for arbitrary s andN , which is in conflict with Roth’s result. In fact the bound
s1/2N−1/2 might be crucial: it is know that for allN ≥ 1 ands ≥ 1 there exists anN -element
sequence having discrepancy≤ 10s1/2N−1/2, but it is unknown how far this upper bound is
from optimality. For more information we refer to [1], [52] and [55].

Remark 5.2 Gnewuch [45, Remark 3.4] showed that in every bound of the form

P (D∗
N (xn) ≤ D∗

N (qn) + ε) ≥ 1− f(s, ε)e−ε
2N/2

the functionf(s, ε) has to grow at least exponentially ins (this follows from a general result of
Heinrich, Novak, Wasilkowski and Woźniakowski [52]). Using exactly the same argument it can
be easily shown that every functionf(s) replacing the factorγs in our Theorem 5.1 (for some
fixedη) has to grow at least exponentially ins. Thus the only possible improvement of Theorem
5.1 with respect tos is a reduction of the baseγ of the termγs.

50



CHAPTER 5. Probabilistic error bounds for the discrepancy of mixed sequences

Remark 5.3 For any dimensionsd ≥ 1 ands > d it is impossible to find constantsη > 0 and
γ > 0 such that for arbitraryε > 0

P (D∗
N (xn) ≤ 2D∗

N (qn) + ε) ≥ 1− γse−2(1+η)ε2N

for sufficiently largeN . Thus the exponent2(1− η)ε2N in Theorem 5.1 can not be improved to
2(1 + η)ε2N (a proof of this remark will be given at the end of this paper).

Remark 5.4 Our corollary shows that it is possible to obtain an asymptotic order ofe−2(1−η)ε2N

(for ε fixed, asN → ∞) for arbitrarily small η > 0. However, asη gets smaller the necessary
value of the constantγ in (5.5) and (5.6) increases , and in particularγ → ∞ asη → 0. We are
not able to decide whether it is possible to improve Theorem 5.1 to

P (D∗
N (xn) ≤ 2D∗

N (qn) + ε) ≥ 1− γse−2ε2N

for some constantγ. Summarizing these results, we know for everyη > 0 that an asymptotic
order ofe−2(1−η)ε2N is possible ande−2(1+η)ε2N is impossible, while the “critical” casee−2ε2N

remains open.

Remark 5.5 There are two differences between Theorem 5.1 and Gnewuch’sresult (5.3). On the
one hand, our bound for the discrepancy is2D∗

N (qn)+ ε instead ofD∗
N (qn)+ ε. The additional

termD∗
N (qn) comes from the interval partitioning method which is used inour proof, and it

seems that this extra term can not be avoided. In applications this should not cause problems,
since the deterministic sequence(qn)1≤n≤N is chosen in such a way thatD∗

N (qn) is very small,
whereasε can not be arbitrarily small (see Remark 1). On the other hand, we can avoid the
factor ε−s from Gnewuch’s result, which can have a significant contribution particularly for
large values ofs.

5.2 Preliminaries

We will use Hoeffding’s inequality and Bernstein’s inequality, two classical inequalities from
probability theory.

Hoeffding’s inequality: For Z1, . . . , ZN being independent random variables, satisfyinga ≤
|Zn| ≤ b a.s. for somea < b, b− a ≤ 1,

P

(∣∣∣∣∣
N∑

n=1

(Zn − EZn)

∣∣∣∣∣ > t

)
≤ 2e−2t2 .

Bernstein’s inequality: ForZ1, . . . , ZN being independent random variables, satisfying|Zn −
EZn| ≤ 1 a.s.,

P

(∣∣∣∣∣
N∑

n=1

(Zn − EZn)

∣∣∣∣∣ > t

)
≤ 2 exp


− t2

2
(∑N

n=1 EZ
2
n

)
+ 2t/3


 .

The following lemma will be needed for the proof of Remark 3:
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Lemma 5.1 Let (Zn)n≥1 be independent, fair Bernoulli random variables. Letη > 0 be given.
Then there exists anε0 = ε0(η) such that for every fixedε ∈ (0, ε0) for all sufficiently largeN

P

(
N∑

n=1

Zn ≥ N/2 + εN

)
≥ e−2ε2(1+η)N .

Proof: To simplify notations we assume w.l.o.g. thatεN is an integer. Letη be given, and set

p = P

(
N∑

n=1

Zn ≥ N/2 + εN

)
.

By Taylor’s formula we have for sufficiently smallε

log(1/2 + ε) ≥ log 1/2 + 2ε− (1 + η)ε2

and
log(1/2 − ε) ≥ log 1/2− 2ε− (1 + η)ε2.

By Stirling’s formula for sufficiently largeN
(

N

N/2 + εN

)
≥ 1

2

NN

√
2πN(N/2 + εN)(N/2+εN)(N/2 − εN)(N/2−εN)

≥
(
e−ηε

2
)N ( NN

(N/2 + εN)(N/2+εN)(N/2− εN)(N/2−εN)

)

and therefore, also for sufficiently largeN ,

p1/N =




N∑

k=N/2+εN

(
N

k

)
1

2N




1/N

≥
((

N

N/2 + εN

)
1

2N

)1/N

≥ e−ηε
2

(
NN

(N/2 + εN)(N/2+εN)(N/2 − εN)(N/2−εN)2N

)1/N

= e−ηε
2

(
1

(1/2 + ε)(1/2+ε)(1/2 − ε)(1/2−ε)2

)

≥ e−ηε
2
exp

(
− (1/2 + ε) log(1/2 + ε)− (1/2 − ε) log(1/2 − ε)− log 2

)

≥ e−ηε
2
exp

(
− (1/2 + ε)(log 1/2 + 2ε− (1 + η)ε2)

−(1/2− ε)(log 1/2 − 2ε− (1 + η)ε2)− log 2
)

= e−ηε
2
exp

(
− (2 + η)ε2

)
.

Thus for sufficiently largeN

p ≥ exp
(
− 2(1 + η)ε2N

)
. �
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5.3 Proof of Theorem 5.1

We use a refined version of the dyadic partitioning techniquein [1]. Let N ≥ 1, ε > 0, η > 0
and a parameterµ ≥ 10 be given (µ will be chosen as a function ofη, see equation (5.26) be-
low). For simplicity we assume thatµ is an integer.
Let (qn)n≥1 be ad-dimensional sequence, and writeD for the (d-dimensional) star discrep-
ancy of (qn)1≤n≤N . Let X1, . . . ,XN be i.i.d. random variables defined on some probability
space(Ω,A,P), having uniform distribution on[0, 1]s−d, and write(xn)1≤n≤N for the mixed
sequence which consists of thes-dimensional pointsxn = (qn,Xn). We will use the estimate

(2e)s(2k + 1)s ≤ e(k−1)s, (5.7)

which holds for allk ≥ µ (since we assumedµ ≥ 10, and since of courses ≥ 2).

Assume now that
ε ≥ 2−µ, (5.8)

and letΓ be a2−2µ-cover of[0, 1]s for which

#Γ ≤ (2e)s(22µ + 1)s ≤ e(2µ−1)s ≤ e2µs

2
.

Then, using Gnewuch’s method from [45] and Hoeffding’s inequality we can easily show that

P
(
D∗
N (xn) ≤ D + ε+ 2−2µ

)
≥ 1− 2e−2ε2N (#Γ)

≥ 1− e2µse−2ε2N ,

which by (5.8) implies

P
(
D∗
N (xn) ≤ D + ε+ ε2−µ

)
≥ 1− e2µse−2ε2N . (5.9)

For the rest of the proof we assume that instead of (5.8)

ε ≤ 2−µ (5.10)

holds (which is the much more difficult case). Additionally we assume that

ε >

√
µs√
2N

. (5.11)

(this additional assumption will be dropped later). Let

K = K(ε) := min
{
k ≥ 1 : 2−k/2k−1/2 ≤ ε

}
.

Then
2−K/2K−1/2 ≤ ε ≤ 2 · 2−K/2K−1/2, (5.12)

andµ ≥ 10 implies
K ≥ µ+ 15 ≥ 25. (5.13)
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By (5.12) and (5.13) we have2−K ≥ ε2. Thus by (5.10) and (5.11)

K ≤ log2(ε
−2) ≤ log2(2N/sµ) ≤ log2(N/10) ≤ 2N1/4 ≤ ε3/2N ≤ 2−µ/2εN. (5.14)

Forµ ≤ k ≤ K − 1 let Γk be a2−k-cover of[0, 1]s, for which

#Γk ≤ (2e)s(2k + 1)s. (5.15)

Let∆K denote a2−K -bracketing cover of[0, 1]s for which

#∆K ≤ (2e)s(2k + 1)s. (5.16)

Such setsΓk and∆K exist by a result of Gnewuch [43, Theorem 1.15]. For notational conve-
nience we also define

ΓK = {x ∈ [0, 1]s : (x, y) ∈ ∆K for somey ∈ [0, 1]s}

and
ΓK+1 = {y ∈ [0, 1]s : (x, y) ∈ ∆K for somex ∈ [0, 1]s}

For everyx ∈ [0, 1]s there exists a pair(pK , pK+1) = (pK(x), pK+1(x)) for which(pK , pK+1) ∈
∆K such thatpK ≤ x ≤ pK+1 and

λ([0, pK+1])− λ([0, pK ]) ≤ 1

2K
. (5.17)

For everyx ∈ [0, 1]s andk = K,K − 1, . . . , µ+1 we can recursively determine pointspk−1 =
pk−1(x) ∈ Γk−1 ∪ {0}, such thatpk−1(x) ≤ pk(x) and

λ([0, pk])− λ([0, pk−1]) ≤
1

2k−1
.

For notational convenience we also define

pµ−1 = 0.

We define forx, y ∈ [0, 1]s

[x, y] :=





[0, y]\[0, x] if x 6= 0
[0, y] if x = 0, y 6= 0.
∅ if x = y = 0.

Then the sets
Ik(x) := [pk(x), pk+1(x)], µ− 1 ≤ k ≤ K,

are disjoint, we have
K−1⋃

k=µ−1

Ik(x) ⊂ [0, x] ⊂
K⋃

k=µ−1

Ik(x),
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and for allx, y ∈ [0, 1]s

K−1∑

k=µ−1

1Ik(x)(y) ≤ 1[0,x](y) ≤
K∑

k=µ−1

1Ik(x)(y). (5.18)

Forµ − 1 ≤ k ≤ K we writeAk for the set of all sets of the formIk(x), wherex can take any
possible value from[0, 1]s. Then by (5.7), (5.15) and (5.16),Ak contains at most

#Γk+1 ≤ eks (5.19)

elements. All elements ofAk, whereµ ≤ k ≤ K, have Lebesgue measure bounded by2−k. The
elements ofAµ−1 can have Lebesgue measure between 0 and 1.

For anyk ∈ {µ, . . . ,K +1} we will represent the numberspk ∈ Γk in the form(uk, vk), where

uk ∈ [0, 1]d andvk ∈ [0, 1]s−d, such thatpk has the coordinates(u(1)k , . . . , u
(d)
k , v

(1)
k , . . . , v

(s−d)
k ).

We writeUk andVk for the intervals[0, uk] and [0, vk], and(Uk, Vk) for the setsUk × Vk =
[0, pk]. Everyx ∈ [0, 1]s uniquely determines pointspk ∈ Γk, µ ≤ k ≤ K + 1, and hence the
according values ofIk, uk, vk, Uk, Vk are also uniquely defined.

For two setsIk−1 ∈ Ak−1 andIk ∈ Ak we writeIk−1 ≺ Ik if there exists anx ∈ [0, 1]s such
thatIk = Ik(x) andIk−1 = Ik−1(x). For everyIk ∈ Ak, µ ≤ k ≤ K there exists exactly one
elementIk−1 of Ak−1 for which Ik−1 ≺ Ik. EveryIk ∈ Ak, µ ≤ k ≤ K uniquely determines
setsIµ−1, . . . , Ik−1 such thatIµ−1 ≺ · · · ≺ Ik−1 ≺ Ik. WheneverIk is fixed we will write
Iµ−1 . . . , Ik−1 for these sets, which are uniquely determined, andpl, ul, vl, Ul, Vl, µ ≤ l ≤ k−1
for the according values, which are also uniquely determined.

EveryIk ∈ Ak, µ ≤ k ≤ K, is of the form

(Uk+1, Vk+1)\(Uk, Vk) = ((Uk+1\Uk)× Vk+1) ∪ (Uk × (Vk+1\Vk)).

EveryIµ−1 ∈ Aµ−1 is of the form[0, pµ] = (Uµ, Vµ).
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x

UΜ

VΜ+1

pK+1

pK

pΜ

pΜ+1
IK

IΜ-1

IΜ

Figure 5.1: An illustration of our construction in the cased = 1, s = 2. A point x ∈ [0, 1]2 is
given and determines pointspµ, pµ+1, . . . , pK+1 and setsIµ−1 ≺ Iµ ≺ · · · ≺ IK . For exempli-
fication we have also marked the setsUµ andVµ+1. Every setIk, µ ≤ k ≤ K, is of the form
(Uk+1, Vk+1)\(Uk, Vk) = ((Uk+1\Uk)× Vk+1) ∪ (Uk × (Vk+1\Vk)).

Step by step we construct a functionS(I) for intervalsI fromAµ−1, . . . , AK , such that for every
I the function valueS(I) is a subset of{1, . . . , N} (we explain the necessity of this functionS
in the footnote1).
Firstly, letIµ−1 ∈ Aµ−1. ThenIµ−1 is of the form(Uµ, Vµ), and we can find⌈Nλ(Uµ)−ND⌉
indicesn from {1, . . . , N} for which qn ∈ Uµ. This is possible since the discrepancy of
(qn)1≤n≤N is bounded byD, and hence the intervalUµ of Lebesgue measureλ(Uµ) contains at
least⌈Nλ(Uµ)−ND⌉ points of(qn)1≤n≤N . Denote this set of indices byS(Iµ).
In the next step letIµ denote an element ofAµ. ThenIµ is of the form(Uµ, Vµ)\Iµ−1, where
Iµ−1 ∈ Aµ−1 andIµ−1 ≺ Iµ. We can find⌊Nλ(Uµ+1\Uµ)⌋ indicesn which are not contained
in S(Iµ−1) but for whichqn ∈ Uµ+1. We writeS(Iµ+1) for this set of indices.

1Our proof is based on the decomposition of the unit cube into parts, and the fact that an arbitrary interval can be
written as an union of sets of quickly decreasing Lebesgue measure. However, in our situation this method can only
be directly applied if the number of elements of(qn)1≤n≤N in a subsetU of [0, 1]d is≈ λ(U)N . Unfortunately, this
is not necessarily the case: the setsU we consider can be written in the formU+\U− for some axis-parallel boxes
U+ andU−. Thus, if the discrepancyD of (qn)1≤n≤N is large in comparison withλ(U), the number of elements
of (qn)1≤n≤N , which are contained inU (which can be any number from[Nλ(U) − 2ND,Nλ(U) + 2ND]) can
be much larger thanNλ(U) (and this may hold not only for one, but for several of the setswhich we need in our
decomposition!). To solve this problem, we distribute the indices{1, . . . , N} to the sets in our decomposition in an
appropriate regular way, instead of assigning them directly to the sets to which they actually belong.
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Generally, assume that the functionS is defined for all intervals inAk for k = µ−1, µ, . . . ,m for
somem. LetIm+1 denote an element ofAm+1. ThenIm+1 is of the form(Um+2, Vm+2)\(Iµ−1∪
Iµ ∪ · · · ∪ Im), whereIk ∈ Ak for k = µ − 1, . . . ,m andIµ−1 ≺ · · · ≺ Im ≺ Im+1. We can
find ⌊Nλ(Um+2\Um+1)⌋ indicesn which are not contained in

⋃m
k=µ−1 S(Ik), but for which

qn ∈ Um+2. We writeS(Ik+1) for this set of indices.
Proceeding in this way we define the functionS for all elements ofAµ−1, . . . , AK .

Additionally we define for everyIk ∈ Ak, µ ≤ k ≤ K,

R(Ik) = S(Iµ−1) ∪ · · · ∪ S(Ik−1),

whereIµ−1 ≺ · · · ≺ Ik.

Then

#

K−1⋃

k=µ−1

S (Ik) ≥ ⌈Nλ(Uµ)−ND⌉+
K−1∑

k=µ

⌊Nλ(Uk+1\Uk)⌋

≥ Nλ



K−1⋃

k=µ

Uk+1\Uk


−ND − (K − µ)

= Nλ(UK)−ND − (K − µ)

≥
N∑

n=1

1UK
(qn)− 2ND − (K − µ),

and accordingly

#

K⋃

k=µ−1

S (Ik) ≥
N∑

n=1

1UK+1
(qn)− 2ND − (K + 1− µ).

Thus
N∑

n=1

1[0,x](xn)

≥
N∑

n=1

1[0,pK ](xn)

=

N∑

n=1

1UK
(qn) · 1VK (Xn)

=

N∑

n=1

1Uµ(qn) · 1Vµ(Xn) +

K−1∑

k=µ

N∑

n=1

(
1Uk+1\Uk

(qn) · 1Vk+1
(Xn) + 1Uk

(qn) · 1Vk+1\Vk(Xn)
)

≥
∑

n∈S(Iµ−1)

1Vµ(Xn) +

K−1∑

k=µ


 ∑

n∈S(Ik)
1Vk+1

(Xn) +
∑

n∈R(Ik)
1Vk+1\Vk(Xn)


 (5.20)
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and

N∑

n=1

1[0,x](xn)

≤
N∑

n=1

1UK+1
(qn) · 1VK+1

(Xn)

≤




∑

n∈
⋃K

k=µ−1 S(Ik)

1[0,pK+1](xn)


+ 2ND + (K + 1− µ)

≤
∑

n∈S(Iµ−1)

1Vµ(Xn) +

K∑

k=µ


 ∑

n∈S(Ik)
1Vk+1

(Xn) +
∑

n∈R(Ik)
1Vk+1\Vk(Xn)




+2ND + (K + 1− µ). (5.21)

Let Iµ−1 ∈ Aµ−1 and define

Z = Z(Iµ−1) =
∑

n∈S(Iµ−1)

1Vµ(Xn).

Then by Hoeffding’s inequality

P (|Z − EZ| > εN) ≤ 2e−2ε2N . (5.22)

Now assume thatIk ∈ Ak for somek, µ ≤ k ≤ K. Then the random variable

Z = Z(Ik) =
∑

n∈S(Ik)
1Vk+1

(Xn) +
∑

n∈R(Ik)
1Vk+1\Vk(Xn)

(which is a sum of independent random variables) has expected value
∑

n∈S(Ik)
λ(Vk+1) +

∑

n∈R(Ik)
λ(Vk+1\Vk)

and variance
∑

n∈S(Ik)
λ(Vk+1)(1 − λ(Vk+1)) +

∑

n∈R(Ik)
λ(Vk+1\Vk)(1 − λ(Vk+1\Vk))

≤
∑

n∈S(Ik)
λ(Vk+1) +

∑

n∈R(Ik)
λ(Vk+1\Vk)

≤ λ(Vk+1) ·#S(Ik) + λ(Vk+1\Vk) ·#R(Ik)
≤ Nλ(Uk+1\Uk)λ(Vk+1) +Nλ(Uk)λ(Vk+1\Vk)
= Nλ(Ik)

≤ N2−k.
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We apply Bernstein’s inequality and obtain fort > 0

P (|Z − EZ| > t) ≤ 2 exp

(
− t2

2−k+1N + 2t/3

)
. (5.23)

If we let

t =
6k1/2εN

5 · 2k/2 ,

then by (5.12) we have

2t/3 ≤ 24N

15 · 2k ,

and therefore

P (|Z − EZ| > t) ≤ 2 exp

(
− 36kε2N

25 (2 + 24/15)

)

= 2e−2kε2N/5. (5.24)

Let
Bµ−1 =

⋃

I∈Aµ−1

(|Z(Iµ−1)− EZ(Iµ−1| > εN)

Then by (5.19) and (5.22) we have

P(Bµ−1) ≤ 2e−2ε2N/5eµs.

Forµ ≤ k ≤ K define

Bk =
⋃

Ik∈Ak

(
|Z(Ik)− EZ(Ik)| >

6k1/2εN

5 · 2k/2

)
.

Then by (5.19) and (5.24), and sinceε2N > µs/2 ≥ 5s,

K∑

k=µ

P(Bk) ≤
K∑

k=µ

2e−2kε2N/5eks ≤
K∑

k=µ

2e−kε
2N/5 ≤ 3e−µε

2N/5 ≤ 3e−2ε2N .

Overall we have

P




K⋃

k=µ−1

Bk


 ≤ 3e−2ε2N + 2e−2ε2Ne3µs ≤ 3e−2ε2Neµs.

Thus by (5.12), (5.14), (5.17) and (5.21) we have with probability at least1 − 3e−2ε2Neµs for
all x ∈ [0, 1]s

N∑

n=1

1[0,x](xn)
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≤
∑

n∈S(Iµ−1)

1Vµ(Xn) +

K∑

k=µ


 ∑

n∈S(Ik)
1Vk+1

(Xn) +
∑

n∈R(Ik)
1Vk+1\Vk(Xn)




+2ND + (K + 1− µ)

≤ E


 ∑

n∈S(Iµ−1)

1Vµ(Xn) +
K∑

k=µ


 ∑

n∈S(Ik)
1Vk+1

(Xn) +
∑

n∈R(Ik)
1Vk+1\Vk(Xn)






+εN


1 +

K∑

k=µ

6k1/2

5 · 2k/2


+ 2ND + 2−µ/2εN

= E




∑

n∈
⋃K

k=µ−1 S(Ik)

1VK (Xn)


+ εN


1 + 2−µ/2 +

K∑

k=µ

4k1/22−k/2


+ 2ND

≤ Nλ([0, pK+1]) + εN


1 + 2−µ/2 +

K∑

k=µ

6k1/2

5 · 2k/2


+ 2ND + (K + 1− µ)

≤ Nλ([0, x]) +N2−K + εN


1 + 2−µ/2 +

K∑

k=µ

6k1/2

5 · 2k/2


+ 2ND)

≤ Nλ([0, x]) + εN



1 +K1/22−K/2 + 2−µ/2 +

K∑

k=µ

6k1/2

5 · 2k/2
︸ ︷︷ ︸
≤5µ1/22−µ/2




+ 2ND

≤ Nλ([0, x]) + εN
(
1 + 7µ1/22−µ/2

)
+ 2ND

Similarly by (5.12), (5.14), (5.17) and (5.20) we have with probability at least1 − 3e−2ε2Neµs

for all x ∈ [0, 1]

N∑

n=1

1[0,x](xn) ≥ Nλ([0, x]) − εN
(
1 + 7µ1/22−µ/2

)
− 2ND.

Therefore we have, with probability at least1− 3e−2ε2Neµs,

D∗
N (xn) ≤ 2D + ε

(
1 + 7µ1/22−µ/2

)
. (5.25)

This holds under assumptions (5.10) and (5.11). Now it is easy to see that (5.25) also holds
without assuming (5.11), since in this case1− 3e−2ε2Neµs ≤ 0 (cf. Remark 1). Comparing this
result with (5.9), which holds under assumption (5.8) we seethat (5.25) holds with probability
greater than or equal to

1− e−2ε2Ne2µs.
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Now letη be given. Set
µ = ⌈4 log2(3/η) + 2 log2 7⌉ (5.26)

and
γ = γ(η) = e2µ = e2·⌈4 log2(3/η)+2 log2 7⌉.

Thenµ ≥ 10. Some calculations show that fory ∈ (0, 1]

√
4 log2(3/y) + 2 log2 7 ≤ 4

y

and consequently

(
1 + 7

√
4 log2(3/y) + 2 log2 7 · 2−(4 log2(3/y)+2 log2 7)/2

)−2

≥
(
1 + 7 · 4 · y · y2/9 · 7−1

)−2

≥ (1 + y2/2)−2

≥ 1− y. (5.27)

Thus by (5.25) and (5.27) forε > 0

P (D∗
N (xn) > D + ε) ≤ e2µs exp

(
−2ε2N

(
1 + 7µ1/22−µ/2

)−2
)

≤ γse−2(1−η)ε2N ,

which proves the theorem. �

In conclusion we prove Remark 3 on the asymptotic optimalityof the probability estimate

1− γ(η)se−2(1−η)ε2N .

We show that this lower bound can not be replaced by

1− γ(η)se−2(1+η)ε2N

for any positiveη, no matter how large the constantγ(η) is chosen. More precisely, letd ≥ 1,
s > d andη > 0 be given, and assume that it is possible to find a constantγ such that for every
sequence(qn)n≥1 and everyε > 0 for sufficiently largeN

P (D∗
N (xn) ≤ 2D∗

N (qn) + ε) ≥ 1− γse−2ε2N(1+η). (5.28)

Choseη̂ so small that
(1 + η̂)3 ≤ (1 + η), (5.29)

and let(qn)n≥1 be ad-dimensional sequence for whichD∗
N (qn) → 0. Write I for the indicator

of the s-dimensional box of the form[0, 1]d × [0, 21/(s−d)]. ThenI has Lebesgue measure 1/2.
Let Xn, n ≥ 1 be i.i.d. random variables having uniform distribution on[0, 1]s−d, and write
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(xn)n≥1 for the mixed sequence. Thenxn ∈ I if and only if Xn ∈ [0, 21/(s−d)]. The random
variables

1I(xn) = 1[0,21/(s−d)](Xn)

are independent, fair Bernoulli random variables. Thus, ifε is chosen appropriately small, we
have by Lemma 5.1

P

(
N∑

k=1

1I(xn) ≥
N

2
+ (1 + η̂)εN

)
≥ e−2ε2N(1+η̂)3 ,

for sufficiently largeN . SinceD∗
N (qn) → 0, this implies

P (D∗
N (xn) ≥ 2D∗

N (qn) + ε) ≥ e−2ε2N(1+η̂)3 (5.30)

for sufficiently largeN . By (5.29)

e−2ε2N(1+η̂)3

e−2ε2N(1+η)
→ 0 as N → ∞,

and hence (5.30) implies

P (D∗
N (xn) ≤ 2D∗

N (qn) + ε) < 1− γse−2ε2N(1+η)

for sufficiently largeN , which is a contradiction to (5.28).
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Chapter 6

A central limit theorem for Latin
hypercube sampling with dependence

6.1 Introduction

In this article we consider the problem of reducing the variance of a Monte Carlo (MC) estimator
for special functionals of a random vector with dependent components. Several different tech-
niques can be used for this kind of problem, with different advantages and shortcomings (for a
detailed comparison, see [42, Section 4]). A well-known technique isLatin hypercube sampling
(LHS), which is a multi-dimensional version of thestratified samplingmethod and has been in-
troduced by [77]. Although this method is well applicable tomany different types of problems,
it cannot deal with dependence structures among the components of random vectors. Therefore,
we considerLatin hypercube sampling with dependence(LHSD), which was introduced by [97]
and provides variance reduction for many problems, especially in financial mathematics.
Consider the problem of estimatingE[f(U1, . . . , Ud)] for a Borel-measurable andC-integrable
function f : [0, 1]d → R, where(U1, . . . , Ud) is a random vector with uniformly distributed
marginals and copulaC. Let (U1

i , . . . , U
d
i ), 1 ≤ i ≤ n, denote an i.i.d. sample from this dis-

tribution. The standard Monte Carlo estimator, which is given by1/n
∑n

i=1 f(U
1
i , . . . , U

d
i ), is

strongly consistent, and by the central limit theorem for sums of independent random variables
the distribution of the scaled estimator converges to a normal distribution, ie:

1√
n

n∑

i=1

[f(U1
i , . . . , U

d
i )− E[f(U1, . . . , Ud)]]

D−→N(0, σ2MC ),

whereσ2MC = Var(f(U1, . . . , Ud)). In particular this means that the standard deviation of the
estimator converges to zero with rate1√

n
.

The aim of this paper is to establish a similar result for the LHSD estimator, under some addi-
tional conditions on the copulaC and the functionf . This has already been done in the bivariate
case by [88] by using a result of [36]. [88, Proposition 5.9] also showed that under more restric-
tive conditions on the copula functionC, the variance of the bivariate LHSD estimator does not
exceed the variance of the standard Monte Carlo estimator.
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An important application of Monte Carlo integration techniques lies in the field of financial
mathematics. Many problems in finance result in the numerical computation of high-dimensional
integrals, for which MC methods provide an efficient solution. Two examples are the pricing of
Asian and discrete lookback options on several possibly correlated assets. We will investigate
these special derivatives in numerical examples in the lastsection.
This paper is organised as follows: in the second section we introduce the main ideas of LHSD
and recall some important results. Our main results are presented in the third section, where we
state a central limit theorem and show under which conditions a reduction of variance, compared
to the standard Monte Carlo method, is possible. The last section is dedicated to a comparison
of the effectiveness of LHSD and MC in numerical examples.

6.2 Preliminaries

In this section, we recall the concept of stratified samplingand its extensions to Latin hypercube
sampling and Latin hypercube sampling with dependence. We also state a consistency result,
which was proved by [88].

6.2.1 Stratified sampling and LHS

Suppose that we want to estimateE(f(U)), whereU is an uniformly distributed random variable
on the interval[0, 1] (from now on denoted byU([0, 1])), and wheref : [0, 1] → R is a Borel-
measurable and integrable function. By the simple fact that

E(f(U)) =

n∑

i=1

E(f(U)|U ∈ Ai)P(U ∈ Ai),

where the intervalsA1, . . . , An (the so-calledstrata) form a partition of[0, 1], we get an estima-
tor for E(f(U)) by samplingU conditionally on the events{U ∈ Ai}, i = 1, . . . , n. Choosing
strata of the formAi = [ i−1

n , in) we can simply transform independent samplesU1, . . . , Un

from U([0, 1]) by setting

Vi :=
i− 1

n
+
Ui
n
, i = 1, . . . , n,

which impliesVi ∈ Ai, i = 1, . . . , n. The resulting estimator forE(f(U)) given by 1
n

∑n
i=1 f(Vi)

is consistent, and by the central limit theorem for sums of independent random variables the limit
variance is smaller than the limit variance of a standard Monte Carlo estimator. For a more de-
tailed analysis of stratified sampling techniques, see [42,Section 4.3.1].
This approach can be extended to the multivariate case in different ways. If we require that there
has to be exactly one sample in every stratum, we need to drawnd samples, which is not fea-
sible for a high number of dimensionsd. One way to avoid this problem is Latin hypercube
sampling. Assume we want to estimateE(f(U1, . . . , Ud)), wheref : [0, 1]d → R is a Borel-
measurable and integrable function. For fixedn we generaten independent samples denoted
by (U1

i , . . . , U
d
i ), i = 1, . . . , n, where theU ji , j = 1, . . . , d are uniformly distributed on[0, 1].
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Additionally, we generated independent permutations of{1, . . . , n}, denoted byπ1, . . . , πd,
drawn from a discrete uniform distribution on the set of all possible permutations. Denote by
πji the value to whichi is mapped by thej-th permutation. Then thej-th component of a Latin
hypercube sample is given by

V j
i :=

πji − 1

n
+
U ji
n
, j = 1, . . . , d; i = 1, . . . , n.

By fixing a dimensionj, the components(V j
1 , . . . , V

j
n ) form a stratified sample with strata of

equal length. It can be shown that the resulting estimator for E(f(U)) is consistent, and by
assuming thatf(U1, . . . , Ud) has a finite second moment it follows that the variance of the LHS
estimator

1

n

n∑

i=1

f(V 1
i , . . . , V

d
i )

is smaller than the variance of the standard MC estimator, provided the number of sample points
is sufficiently large, see [97]. Iff is bounded a central limit theorem for the LHS estimator can
be shown, see [86]. Berry-Esseen-type bounds are also known, see [73]. A detailed discussion
of LHS is given in [42, Section 4.4].
This technique is not suitable for dealing with random vectors with dependent components since
the random variablesV j

i , j = 1, . . . , d, are independent. One way to extend the LHS method
to random vectors with dependent components is to apply LHS to independent components and
then introduce dependencies through a transformation of the LHS points. Such a procedure is
tedious in general, and we will not pursue this approach any further.

6.2.2 Latin hypercube sampling with dependence

In this subsection, we introduce Latin hypercube sampling with dependence. The main differ-
ence to the LHS method is that instead of random permutationsπi we use rank statistics, which
are defined as follows:

Definition 6.1 (Rank statistics) LetX1, . . . ,Xn be i.i.d. random variables with a continuous
distribution function. Denote the ordered random variables byX(1) < · · · < X(n), P-a.s. We
call the index ofXi withinX(1) < · · · < X(n) thei-th rank statistic, given by

ri,n = ri,n(X1, . . . ,Xn) :=

n∑

k=1

1{Xk≤Xi}. (6.1)

Consider a random vectorU = (U1, . . . , Ud), where every componentU j is uniformly dis-
tributed on[0, 1] and the dependence structure ofU is modeled by a copulaC.
Let (U1

i , . . . , U
d
i ), i = 1, . . . , n denote a sequence of independent samples of(U1, . . . , Ud), and

let rji,n be thei-th rank statistic of(U j1 , . . . , U
j
n) for i = 1, . . . , n and j = 1, . . . , d. Then a

LHSD is given by

V j
i,n :=

rji,n − 1

n
+
ηji,n
n
, i = 1, . . . , n,∀j = 1, . . . , d, (6.2)
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whereηji,n are random variables in[0, 1]. It is clear that(V j
1,n, . . . , V

j
n,n) forms a stratified sam-

pling in every dimensionj, where every stratum has equal length.
[88] consider different choices forηji,n to obtain special properties. For example, by choosing all

ηji,n uniformly distributed on[0, 1] and independent ofU ji , the distribution of theV j
i,n within their

strata is uniform. This choice has the disadvantage of necessitating the generation of2n random
variables instead of onlyn. An effective choice in terms of computation time isηji,n = 1/2,

which means that everyV j
i,n is located exactly in the centre of its stratum. In the remainder of

this section, we briefly recall a result of [88] concerning the consistency of the LHSD estimator
for E(f(U)), which is defined by

1

n

n∑

i=1

f(V 1
i,n, . . . , V

d
i,n). (6.3)

The usual law of large numbers for sums of independent randomvariables does not apply in this
case for two reasons: firstly in each dimension the samples fail to be independent because of
the application of the rank statistic, and secondly, increasing the samples sizen by one changes
every term of the sum instead of just adding one. Nevertheless, it can be shown that the following
consistency result holds, see [88, Proposition 4.1]:

Proposition 6.1 Let f : [0, 1]d → R be bounded and continuous C-a.e. . Then the LHSD esti-
mator (6.3) is strongly consistent, ie :

1

n

n∑

i=1

f(V 1
i,n, . . . , V

d
i,n)

P a.s.−−−→ E(f(U1, . . . , Ud)), asn→ ∞.

6.3 Central limit theorem and variance reduction

In this section we investigate the speed of convergence of the LHSD estimator and discuss situa-
tions in which the use of LHSD results in a reduction of variance. This has already been done for
the bivariate case by [88]. They have also guessed the higher-dimensional version of the main
theorem, but no rigorous proof was given. Because of the factthat most problems in finance
for which Monte Carlo techniques are suitable are high-dimensional integration problems, it is
reasonable to investigate the speed of convergence and the (asymptotic) value of the variance
also in the multivariate case.
In the sequel, letCn denote the empirical distribution of the LHSD sample given by

Cn(u
1, . . . , ud) :=

1

n

n∑

i=1

1{V 1
i,n≤u1,...,V d

i,n≤ud},

which is a distribution function. Furthermore, we defineCn as

Cn(u
1, . . . , ud) :=

1

n

n∑

i=1

1{F 1
n(U

1
i )≤u1,...,F d

n(U
d
i )≤ud}, (6.4)
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where

F jn(u) =
1

n

n∑

i=1

1{Uj
i ≤u}

, u ∈ [0, 1],

are the one-dimensional empirical distribution functionsbased onU j1 , . . . , U
j
n for j = 1, . . . , d.

To formulate a central limit theorem we will need some regularity conditions on the integrandf
and the copulaC.

Definition 6.2 (Hardy-Krause bounded variation) A functionf : [0, 1]d → R is of bounded
variation (in the sense of Hardy-Krause) ifV (f) <∞ with

V (f) =

d∑

k=1

∑

1≤i1<...<ik≤d
V (k)(f ; i1, . . . , ik).

Here, the functionalV (k)(f) denotes the variation in the sense of Vitali off restricted to thek -
dimensional faceF (k)(i1, . . . , ik) = {(u1, . . . , ud) ∈ [0, 1]d : uj = 1 for j 6= i1, . . . , ik}. The
variation of a functionf in the sense of Vitali is defined by

V (k)(f ; i1, . . . , ik) = sup
P

∑

J∈P(i1,...,ik)

|∆(f ;J)|,

where the supremum is extended over all partitionsP(i1, . . . , ik) ofF (k)(i1, . . . , ik) into subin-
tervalsJ and∆(f ;J) denotes the alternating sum of the values off at the vertices ofJ . For
more information on this topic, see [87].

Definition 6.3 A function f : [0, 1]d → R is right continuous if for any sequence
(u1n, u

2
n, . . . , u

d
n)n∈N with ujn ↓ uj , j = 1, . . . , d,

lim
n→∞

f(u1n, u
2
n, . . . , u

d
n) = f(u1, u2, . . . , ud).

The next statement concerning the convergence of random sequences will be used to prove
Proposition 6.2 and Theorem 6.2. For more details see eg [58,Theorem 18.8].

Lemma 6.1 Let (Xn)n≥1 and(Yn)n≥1 be sequences ofR-valued random variables, with

Xn
D−→X and |Xn − Yn| P−→ 0. ThenYn

D−→X.

The following proposition of [99] is a generalization of earlier results of [98] and [36]. It is the
essential ingredient in proofs of our main theorems.

Proposition 6.2 Assume thatC is differentiable with continuous partial derivatives

∂jC(u1, . . . , ud) = ∂C(u1,...,ud)
∂uj

for j = 1, . . . , d. Then

√
n
(
C̃n(u

1, . . . , ud)− C(u1, . . . , ud)
)

D−→GC(u
1, . . . , ud),
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where

C̃n(u
1, . . . , ud) =

1

n

n∑

k=1

1{U1
k≤F

1−
n (u1),...,Ud

k≤F
d−
n (ud)},

denotes the empirical copula function andF j−n denote the generalised quantile functions ofF jn
for j = 1, . . . , d, defined by

F j−n (u) = inf{x ∈ R|F jn(x) ≥ u}.

Furthermore,GC is a centred Gaussian random field given by

GC(u
1, . . . , ud) = BC(u

1, . . . , ud)−
d∑

j=1

∂jC(u1, . . . , ud)BC(1, . . . , 1, u
j , 1, . . . , 1), (6.5)

BC is a d-dimensional pinned Brownian sheet on[0, 1]d with covariance function

E[BC(u
1, . . . , ud) ·BC(u1, . . . , ud)]

=C((u1, . . . , ud) ∧ (u1, . . . , ud))− C(u1, . . . , ud)C(u1, . . . , ud), (6.6)

where(u1, . . . , ud) ∧ (u1, . . . , ud) denotes the componentwise minimum.

We can formulate a similar result for the sequenceCn.

Proposition 6.3 Under the conditions of Proposition 6.2,

√
n
(
Cn(u

1, . . . , ud)− C(u1, . . . , ud)
) D−→GC(u

1, . . . , ud) (6.7)

holds, where all definitions are as in Proposition 6.2 andCn(u1, . . . , ud) is given in(6.4).

Proof:
We only have to show that the supremum of the difference ofCn andC̃n vanishes forn → ∞
to apply Lemma 6.1, which completes the proof. Note thatCn and C̃n coincide on the grid
{(i1/n, . . . , id/n), 1 ≤ i1, . . . , id ≤ n}. It follows that

sup
u1,...,ud

|C̃n(u1, . . . , ud)− Cn(u
1, . . . , ud)|

≤ max
1≤i1,...,id≤n

∣∣∣C̃n
( i1
n
, . . . ,

id
n

)
− C̃n

( i1 − 1

n
, . . . ,

id − 1

n

)∣∣∣ ≤ d

n
.

Thus,supu1,...,ud |C̃n(u1, . . . , ud)− Cn(u
1, . . . , ud)| → 0 for n→ ∞ and (6.7) follows. �

In the sequel, allU i, i = 1, . . . , d are uniformly distributed random variables on[0, 1] and all
integrals have to be understood in the sense of Lebesgue-Stieltjes. Note that the next theorem is
an extension of [36, Theorem 6] from the case of bivariate to the case of multi-variate random
vectorsU = (U1, . . . , Ud).
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Theorem 6.1 Let the copulaC of (U1, . . . , Ud) have continuous partial derivatives and let
f : [0, 1]d → R be a right-continuous function of bounded variation in the sense of Hardy-
Krause. Then

1√
n

n∑

i=1

(
f(F 1

n(U
1
i ), . . . , F

d
n (U

d
i ))−E[f(U1, . . . , Ud)]

)
D−→
∫

[0,1]d
GC(u

1, . . . , ud)df̂(u1, . . . , ud),

where the function̂f : [0, 1]d → R is defined by:

f̂(u1, . . . , ud) =

{
0 if at least oneuj = 1, for j = 1, . . . , d,

f(u1, . . . , ud) otherwise.
(6.8)

Furthermore, the limit distribution is Gaussian.

Proof:
By definition f̂ is right-continuous and of bounded variation in the sense ofHardy-Krause.
Furthermore, it follows that almost surely

1√
n

n∑

i=1

(
f(F 1

n(U
1
i ), . . . , F

d
n (U

d
i ))− E[f(U1, . . . , Ud)]

)

=
1√
n

n∑

i=1

(
f̂(F 1

n(U
1
i ), . . . , F

d
n (U

d
i ))− E[f̂(U1, . . . , Ud)]

)
,

by the fact thatC is continuous on[0, 1]d.
We use a multidimensional integration-by-parts techniqueproposed by [104, Proposition 2].
Using the notation of [104] we get

1√
n

n∑

i=1

(
f̂(F 1

n(U
1
i ), . . . , F

d
n (U

d
i ))− E[f̂(U1, . . . , Ud)]

)

=
√
n

∫

[0,1]d
f̂(u1, . . . , ud)d(Cn − C)(u1, . . . , ud)

=
√
n

d∑

k=0

(−1)k
∑

1,...,d;k

∆∗
jk+1,...,jd

∫

[0,1]k
(Cn − C)(u1, . . . , ud)dj1,...,jk f̂(u

1, . . . , ud).

(6.9)

Here
∑

1,...,d;k denotes the sum over all possible partitions of the set{j1, . . . , jd} into two sub-
sets{j1, . . . , jk} and{jk+1, . . . , jd} of k respectivelyd − k elements, where each partition is
taken exactly once. In the casesk = 0 andk = d, the sum is interpreted as being reduced to one
term.
Furthermore, the operatordj1,...,jk indicates that the integral only applies to the variablesj1, . . . , jk.
Note that after the application of the integral with respecttodj1,...,jk f̂(u

1, . . . , ud), the integrated
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function is a function ind − k variables. Furthermore for a functiong of d − k variables, the
operator∆∗

jk+1,...,jd
is given by

∆∗
jk+1,...,jd

g(jk+1, . . . , jd) =
∑

{i1,...,id−k}∈{0,1}d−k

(−1)mg(i1, . . . , id−k),

wherem denotes the number of zeros in{i1, . . . , id−k}. This means that, forj /∈ {j1, . . . , jk}

∆∗
j

∫

[0,1]d−k

(Cn − C)(u1, . . . , ud)dj1,...,jk f̂(u
1, . . . , ud)

=

∫

[0,1]d−k

(Cn − C)(u1, . . . , uj−1, 1, uj+1, . . . , ud)dj1,...,jk f̂(u
1, . . . , uj−1, 1, uj+1, . . . , ud)

−
∫

[0,1]d−k

(Cn − C)(u1, . . . , uj−1, 0, uj+1, . . . , ud)dj1,...,jk f̂(u
1, . . . , uj−1, 0, uj+1, . . . , ud)

and
∆∗
jk+1,...,jd

= ∆∗
jk+1

. . .∆∗
jd
.

Thus

√
n

d∑

k=0

(−1)k
∑

1,...,d;k

∆∗
jk+1,...,jd

∫

[0,1]k
(Cn −C)(u1, . . . , ud)dj1,...,jk f̂(u

1, . . . , ud)

=
√
n

d−1∑

k=0

(−1)k
∑

1,...,d;k

∆∗
jk+1,...,jd

∫

[0,1]k
(Cn − C)(u1, . . . , ud)dj1,...,jk f̂(u

1, . . . , ud)

+
√
n(−1)d

∫

[0,1]d
(Cn − C)(u1, . . . , ud)df̂(u1, . . . , ud)

=
√
n(−1)d

∫

[0,1]d
(Cn − C)(u1, . . . , ud)df̂(u1, . . . , ud).

The term

√
n

d−1∑

k=0

(−1)k
∑

1,...,d;k

∆∗
jk+1,...,jd

∫

[0,1]k
(Cn − C)(u1, . . . , ud)dj1,...,jk f̂(u

1, . . . , ud)

vanishes because each of its terms is equal to zero due to at least one of the following two
reasons: firstly, at least oneuj , j = 1, . . . , d is equal to one and thereforêf(u1, . . . , ud) = 0 by
definition, or, secondly, at least oneuj , j = 1, . . . , d is equal to zero, henceCn(u1, . . . , ud) =
C(u1, . . . , ud) = 0.
Thus, by the continuous mapping theorem and (6.7), it follows that

1√
n

n∑

i=1

(
f(F 1

n(U
1
i ), . . . , F

d
n (U

d
i ))− E[f(U1, . . . , Ud)]

)
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= (−1)d
√
n

∫

[0,1]d
(Cn − C)(u1, . . . , ud)df̂(u1, . . . , ud)

D−→
∫

[0,1]d
GC(u

1, . . . , ud)df̂(u1, . . . , ud).

Since
∫
[0,1]d GC(u

1, . . . , ud)df̂(u1, . . . , ud) is a continuous, linear transformation of a tight
Gaussian process, it follows that the limiting distribution is Gaussian. �

Remark 6.1 The reason for using the function̂f instead off is that the integrals of dimension
k = 2, . . . , d − 1 in (6.9) are in general not vanishing. The one-dimensional integrals are zero
for every right-continuous function of bounded variationf because of special properties of the
functionCn, for more details see [36]. In particular, this means that inthe two-dimensional case
it is sufficient to assume

f̂(x) = f(x), x ∈ R2.

With this assumption instead of(6.8)andd = 2, Theorem 6.1 is equivalent to [36, Theorem 6].
We use the function̂f to get a more convenient representation for the limit variance of the LHSD
technique, which we state in the next theorem.

Theorem 6.2 Under the assumptions and notations of Theorem 6.1, we have

1√
n

n∑

i=1

(
f(V 1

i,n, . . . , V
d
i,n)− E[f(U1, . . . , Ud)]

)
D−→N(0, σ2LHSD), (6.10)

where

σ2LHSD =

∫

[0,1]2d
E
[
GC(u

1, . . . , ud)GC(u
1, . . . , ud)

]
df̂(u1, . . . , ud)df̂(u1, . . . , ud). (6.11)

Proof:
We want to apply Theorem 6.1 together with Lemma 6.1, so we have to show that

1√
n

∣∣∣∣∣
n∑

i=1

[
f(V 1

i,n, . . . , V
d
i,n)− f(F 1

n(U
1
i ), . . . , F

d
n (U

d
i ))
]∣∣∣∣∣→ 0, asn→ ∞.

By [71, Corollary 1]
∣∣∣∣∣
n∑

i=1

[
f(V 1

i,n, . . . , V
d
i,n)− f(F 1

n(U
1
i ), . . . , F

d
n (U

d
i ))
]∣∣∣∣∣ ≤ V (f) <∞,

whereV (f) is the Hardy-Krause variation off . Hence

1√
n

∣∣∣∣∣
n∑

i=1

[
f(V 1

i,n, . . . , V
d
i,n)− f(F 1

n(U
1
i ), . . . , F

d
n (U

d
i ))
]∣∣∣∣∣→ 0, asn→ ∞,
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which, together with Lemma 6.1 and Theorem 6.1, proves equation (6.10).
To derive equation (6.11) we apply Fubini’s theorem toE[(

∫
[0,1]d GC(u

1, . . . , ud)df̂(u1, . . . , ud))2].

By [71, Theorem 3] a function of bounded variation̂f can always be written as the difference
of two completely monotone functionsg, h and therefore an integral with respect tôf can be
written as a difference of two integrals with respect to positive measuresg, h. Thus

E

[(∫

[0,1]d
GC(u

1, . . . , ud)df̂(u1, . . . , ud)
)2]

=

= E

[(∫

[0,1]d
GC(u

1, . . . , ud)df̂(u1, . . . , ud)
)
·
(∫

[0,1]d
GC(u

1, . . . , ud)df̂(u1, . . . , ud)
)]

= E

[(∫

[0,1]d
GC(u

1, . . . , ud)dg(u1, . . . , ud)−
∫

[0,1]d
GC(u

1, . . . , ud)dh(u1, . . . , ud)
)

·
(∫

[0,1]d
GC(u

1, . . . , ud)dg(u1, . . . , ud)−
∫

[0,1]d
GC(u

1, . . . , ud)dh(u1, . . . , ud)
)]

= E

[(∫

[0,1]2d
GC(u

1, . . . , ud)GC(u
1, . . . , ud)dg(u1, . . . , ud)dg(u1, . . . , ud)

−
∫

[0,1]d
GC(u

1, . . . , ud)GC(u
1, . . . , ud)dh(u1, . . . , ud)dg(u1, . . . , ud)

−
∫

[0,1]d
GC(u

1, . . . , ud)GC(u
1, . . . , ud)dg(u1, . . . , ud)dh(u1, . . . , ud)

+

∫

[0,1]d
GC(u

1, . . . , ud)GC(u
1, . . . , ud)dh(u1, . . . , ud)dh(u1, . . . , ud)

)]

=

∫

[0,1]2d
E

[
GC(u

1, . . . , ud)GC(u
1, . . . , ud)

]
dg(u1, . . . , ud)dg(u1, . . . , ud)

−
∫

[0,1]d
E

[
GC(u

1, . . . , ud)GC(u
1, . . . , ud)

]
dh(u1, . . . , ud)dg(u1, . . . , ud)

−
∫

[0,1]d
E

[
GC(u

1, . . . , ud)GC(u
1, . . . , ud)

]
dg(u1, . . . , ud)dh(u1, . . . , ud)

+

∫

[0,1]d
E

[
GC(u

1, . . . , ud)GC(u
1, . . . , ud)

]
dh(u1, . . . , ud)dh(u1, . . . , ud)

=

∫

[0,1]2d
E

[
GC(u

1, . . . , ud)GC(u
1, . . . , ud)

]
df̂(u1, . . . , ud)df̂(u1, . . . , ud),

where the use of Fubini’s theorem is justified sincef̂ is bounded andE[XY ] < ∞ for two
jointly normal random variablesX andY . �

Remark 6.2 Note that by(6.5) and (6.6) the expression forσ2LHSD in equation(6.11)can be
represented in terms ofC. Additionally, further simplifications can be given for thefollowing
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terms:

E[BC(u
1, . . . , ud) ·BC(1, . . . , 1, uj , 1, . . . , 1)]

= C((u1, . . . , uj−1, uj ∧ uj , uj+1 . . . , ud))− C(u1, . . . , ud)uj ,

E[BC(1, . . . , 1, u
i, 1, . . . , 1) ·BC(1, . . . , 1, uj , 1, . . . , 1)]

= C((1, . . . , 1, ui, 1, . . . , 1, uj , 1, . . . , 1)) − uiuj ,

E[BC(1, . . . , 1, u
j , 1, . . . , 1) · BC(1, . . . , 1, uj , 1, . . . , 1)] = uj ∧ uj − ujuj,

sinceC(1, . . . , 1, uj , 1, . . . , 1) = uj for all j = 1, . . . , d.

It is important to know if the LHSD estimator has a smaller variance than the Monte Carlo
estimator. The variance of a standard Monte Carlo estimatoris given by

σ2MC =

∫

[0,1]d
f(u1, . . . , ud)2dC(u1, . . . , ud)−

(∫

[0,1]d
f(u1, . . . , ud)dC(u1, . . . , ud)

)2
.

We use this fact to establish a relation betweenσ2MC andσ2LHSD.

Proposition 6.4 Let the copulaC of (U1, . . . , Ud) have continuous partial derivatives, letf :
[0, 1]d → R be a right-continuous function of bounded variation in the sense of Hardy-Krause

and letf̂ be as defined in Theorem 6.1. Set∂jC(u1, . . . , ud) = ∂C(u1,...,ud)
∂uj

and

Ci,j(u
i, uj) =

{
C(1, . . . , 1, ui, 1, . . . , 1, uj , 1, . . . , 1), i 6= j

ui ∧ uj , i = j.

Then

σ2LHSD = σ2MC

+

∫

[0,1]2d
2

d∑

j=1

∂jC(u1, . . . , ud)
(
C(u1, . . . , ud)uj − C(u1, . . . , uj−1, uj ∧ uj , uj+1, . . . , ud)

)

+

d∑

j=1

d∑

i=1

∂jC(u1, . . . , ud)∂iC(u1, . . . , ud)
(
Ci,j(u

i, uj)− uiuj
)
df̂(u1, . . . , ud)df̂(u1, . . . , ud).

(6.12)

Proof:
Note that
∫

[0,1]d
f(u1, . . . , ud)2dC(u1, . . . , ud) =

∫

[0,1]2d
f(u1, . . . , ud)f(u1, . . . , ud)dC(u1∧u1, . . . , ud∧ud),

and that the functionC(u1 ∧ u1, . . . , ud ∧ ud) is also a copula, which follows by observing that

C(u1 ∧ u1, . . . , ud ∧ ud) = P(U1 ≤ u1 ∧ u1, . . . , Ud ≤ ud ∧ ud)
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= P(U1 ≤ u1, U1 ≤ u1, . . . , Ud ≤ ud, Ud ≤ ud)

is a joint probability distribution with uniform marginals.
By integration-by-parts like in Theorem 6.1 it follows for the variance of the Monte Carlo esti-
mator that

σ2MC =

∫

[0,1]d
f(u1, . . . , ud)2dC(u1, . . . , ud)−

(∫

[0,1]d
f(u1, . . . , ud)dC(u1, . . . , ud)

)2

=

∫

[0,1]2d
f(u1, . . . , ud)f(u1, . . . , ud)dC

(
(u1, . . . , ud) ∧ (u1, . . . , ud)

)

−
∫

[0,1]2d
f(u1, . . . , ud)f(u1, . . . , ud)dC(u1, . . . , ud)dC(u1, . . . , ud)

=

∫

[0,1]2d
C
(
(u1, . . . , ud) ∧ (u1, . . . , ud)

)
df̂(u1, . . . , ud)df̂(u1, . . . , ud)

−
∫

[0,1]2d
C(u1, . . . , ud)C(u1, . . . , ud)df̂(u1, . . . , ud)df̂(u1, . . . , ud).

The proof is completed by using equations (6.5), (6.6), (6.11) and Remark 6.2. �

Theorem 6.3 Let C and f satisfy the assumptions in Theorem 6.1 and letf̂ be defined as in
Theorem 6.1. Furthermore let the functionf be monotone non-decreasing in each argument and
maxx∈[0,1]d(f(x)) ≤ 0. Moreover assume thatC satisfies the following conditions:

C(u1, . . . , ud)

uj
≥ ∂jC(u1, . . . , ud), j ∈ {1, . . . , d}, (6.13)

d∑

i=1,i 6=j

Ci,j(u
j , ui)

uj
≤ (d− 2)uj +

C(u1, . . . , uj−1, uj ∧ uj, uj+1, . . . , ud)

C(u1, . . . , ud)
, (6.14)

whereuj ∈ [0, 1], (u1, . . . , ud), (u1, . . . , ud) ∈ [0, 1]d.
Thenσ2LHSD ≤ σ2MC .

Proof:
By the assumptions onf it follows that f̂ is right-continuous, of bounded variation in the sense
of Hardy-Kraus and monotone non-decresing in each argument. Thus by (6.12) it is sufficient to
show that

2

d∑

j=1

∂jC(u1, . . . , ud)
(
C(u1, . . . , ud)uj − C(u1, . . . , uj−1, uj ∧ uj, uj+1, . . . , ud)

)

+

d∑

j=1

d∑

i=1

∂iC(u1, . . . , ud)∂jC(u1, . . . , ud)
(
Ci,j(u

j , ui)− ujui
)
≤ 0
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for all (u1, . . . , ud), (u1, . . . , ud) ∈ [0, 1]d.
This is true if

2
(
C(u1, . . . , ud)uj − C(u1, . . . , uj−1, uj ∧ uj, uj+1, . . . , ud)

)

≤
d∑

i=1

∂iC(u1, . . . , ud)
(
ujui − Ci,j(u

j , ui)
)

holds for everyj ∈ {1, . . . , d} and alluj ∈ [0, 1], (u1, . . . , ud) ∈ [0, 1]d.
First we show that

C(u1, . . . , ud)uj−C(u1, . . . , uj−1, uj∧uj, uj+1, . . . , ud) ≤ ∂jC(u1, . . . , ud)
(
ujuj − uj ∧ uj

)
.

Note that this is always true ifuj ∧ uj ∈ {0, 1}. Now assume that0 < uj ≤ uj < 1, then

C(u1, . . . , ud)uj −C(u1, . . . , ud) ≤ ∂jC(u1, . . . , ud)
(
ujuj − uj

)

C(u1, . . . , ud)(uj − 1) ≤ ∂jC(u1, . . . , ud)uj(uj − 1)

C(u1, . . . , ud)

uj
≥ ∂jC(u1, . . . , ud)

which is true by assumption (6.13). Next assume that0 < uj < uj < 1, then

C(u1, . . . , ud)uj − C(u1, . . . , uj−1, uj , uj+1, . . . , ud) ≤ ∂jC(u1, . . . , ud)
(
ujuj − uj

)

C(u1, . . . , ud)uj − C(u1, . . . , uj−1, uj , uj+1, . . . , ud) ≤ ∂jC(u1, . . . , ud)uj
(
uj − 1

)

C(u1, . . . , ud)− C(u1, . . . , uj−1, uj , uj+1, . . . , ud)

uj
≤ ∂jC(u1, . . . , ud)

(
uj − 1

)

C(u1, . . . , ud)− C(u1, . . . , uj−1, uj , uj+1, . . . , ud)

uj
≤ C(u1, . . . , ud)

uj
(
uj − 1

)

C(u1, . . . , uj−1, uj , uj+1, . . . , ud)

uj
≥ C(u1, . . . , ud)

uj
,

which holds since assumption (6.13) implies thatC(u1,...,ud)
uj

is non-increasing inuj for all uj ∈
[0, 1], (u1, . . . , ud) ∈ [0, 1]d.
LetC(u1, . . . , ud) > 0 then

C(u1, . . . , ud)uj−C(u1, . . . , uj−1, uj ∧ uj, uj+1, . . . , ud)

≤
d∑

i=1
i 6=j

∂iC(u1, . . . , ud)
(
ujui −Ci,j(u

j , ui)
)

C(u1, . . . , ud)uj−C(u1, . . . , uj−1, uj ∧ uj, uj+1, . . . , ud)

≤
d∑

i=1
i 6=j

C(u1, . . . , ud)

ui
(
ujui − Ci,j(u

j , ui)
)
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(d− 2)uj+
C(u1, . . . , uj−1, uj ∧ uj , uj+1, . . . , ud)

C(u1, . . . , ud)
≥

d∑

i=1
i 6=j

Ci,j(u
j , ui)

ui

which is true by assumption (6.14). The caseC(u1, . . . , ud) = 0 follows by the fact that
C(u1,...,ud)

ui
≤ 1 for all (u1, . . . , ud) ∈ [0, 1]d. �

Remark 6.3 Note that in the two-dimensional case, assumption(6.13) is equivalent to the left
tail increasing property which implies a positive quadrantdependence of the copulaC. Loosely
speaking this means that the components ofC are more likely to be simultaneously small or
simulatneously large than in the independent case. More information on different dependence
properties can be found in [60] and [80].

In the following two remarks we give examples of copula distributions which satisfy the as-
sumptions of Theorem 6.3.

Remark 6.4 Consider a multi-dimensional, one-parametric extension of the Farlie-Gumbel-
Morgenstern (FGM) copula given by

C(u1, . . . , ud) =

(
d∏

i=1

ui

)(
α

d∏

i=1

(1− ui) + 1

)

whereα ∈ [−1, 1]. Simple calculations show that the assumption(6.13) is true if α ∈ [0, 1].
Now consider the right hand-side of(6.14)

d∑

i=1,i 6=j

Ci,j(u
j , ui)

ui
=

d∑

i=1,i 6=j

ujui

ui

= (d− 1)uj .

Finally assumption(6.14)holds since

C(u1, . . . , uj−1, uj ∧ uj, uj+1, . . . , ud)

C(u1, . . . , ud)

=min

(
1,
C(u1, . . . , uj−1, uj , uj+1, . . . , ud)

C(u1, . . . , ud)

)

=min


1,

(∏d
i=1,i 6=j u

i
)
uj
(
α
∏d
i=1,i 6=j(1− ui)(1− uj) + 1

)

(∏d
i=1 u

i
)(

α
∏d
i=1(1− ui) + 1

)




=min


1, uj

(
α
∏d
i=1,i 6=j(1− ui)(1− uj) + 1

)

uj
(
α
∏d
i=1(1− ui) + 1

)



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≥uj

for α ∈ [0, 1].
Note that the independence copulaC(u1, . . . , ud) =

∏d
i=1 u

i is the special case of the FGM
copula withα = 0, therefore Theorem 6.3 holds also for the independence copula.

Remark 6.5 A multi-dimension version of the Ali-Mikhail-Haq (AMH) copula is given by

C(u1, . . . , ud) =

∏d
i=1 u

i

1− α
∏d
i=1(1− ui)

whereα ∈ [−1, 1]. As in the previous example it is easy to see that(6.13)is fullfilled if α ∈ [0, 1].
To prove(6.14)consider again the term on the right hand-side

d∑

i=1,i 6=j

Ci,j(u
j , ui)

ui
=

d∑

i=1,i 6=j

ujui

ui

= (d− 1)uj .

Furthermore Theorem 6.3 applies since

C(u1, . . . , uj−1, uj ∧ uj , uj+1, . . . , ud)

C(u1, . . . , ud)

=min

(
1,
C(u1, . . . , uj−1, uj , uj+1, . . . , ud)

C(u1, . . . , ud)

)

=min


1, uj

(∏d
i=1,i 6=j u

i
)(

1− α
∏d
i=1(1− ui)

)

(∏d
i=1 u

i
)(

1− α
∏d
i=1(1− ui)(1− uj)

)




≥uj

6.4 Application to option pricing

In this section we illustrate the effectiveness of Latin hypercube sampling with dependence
in basket option pricing problems. The derivatives which weconsider are Asian and lookback
basket options. Let(St)t≥0 be ad-dimensional vector of asset price processes and let(Sjt )t≥0

denote itsj-th component. Then the price of an Asian basket call option is given by

ABC = E

[
e−rT

( 1

m

m∑

j=1

1

d

d∑

i=1

Sitj −K
)+]

,

whereK > 0 denotes the fixed strike price,d is the number of underlying assets,0 = t0 < t1 <
t2 < . . . < tm = T denote the observation points,T is the maturity of the option andr denotes
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the risk free interest rate. Similarly, the price of a discrete lookback basket call option is given
by

DLC = E

[
e−rT

(
max

j=1,...,m

1

d

d∑

i=1

Sitj −K
)+]

.

As a model for the asset price process(Sjt )t≥0 of each assetj = 1, . . . , d, we use

Sjt = Sj0e
(wj−r)t+Xj

t , j = 1, . . . , d, t ≥ 0,

wherewj ∈ R are constants,Sj0 > 0 denote the constant initial asset values andXj
t are variance

gamma (VG) processes forj = 1, . . . , d. The VG process(Xj
t )t≥0 with parameters(θj, σj , cj),

which was first introduced by [75], is defined as a subordinated Brownian motion by

Xj
t = Xj

t (θ
j , σj , cj) = Bj

Gj
t (c

j ,1)
(θj, σj), j = 1, . . . , d, t ≥ 0, (6.15)

whereBj
t (θ

j, σj) are independent Brownian motions with drift parametersθj and volatility
parametersσj, j = 1, . . . , d, andGjt (c

j , 1) are independent gamma processes independent of
Bj, j = 1, . . . , d with drift equal to one and volatilitycj > 0. To ensure that the discounted
value of a portfolio invested in the asset is a martingale, wechoose

wj = log(1− µjcj − (σj)2cj/2)/cj , j = 1, . . . , d.

By [74] a VG process can also be represented as the differenceof two independent gamma
processes, ieXj

t = G+,j
t − G−,j

t , j = 1, . . . , d. Let (µj+, ν
j
+) and(µj−, ν

j
−) denote the param-

eters of the gamma processesG+,j , G−,j , respectively. These pairs of parameters can be easily
calculated from the parameters in equation (6.15) through

µj± = (
√

(θj)2 + 2(σj)2/cj ± θj)/2, νj± = (µj±)
2cj , j = 1, . . . , d.

Due to the fact that a gamma process has non-decreasing paths, G+,j
t corresponds to the posi-

tive movements ofXj
t andG−,j

t corresponds to the negative movements ofXj
t . Our assumption

is that all positive movements of components ofXt = (X1
t , . . . ,X

d
t ) are dependent and all

negative movements of components ofXt are dependent, but positive (negative) movements
of the j-th component are independent of negative (positive) movements of all other compo-
nents, for allj = 1, . . . , d. The dependence structure between positive and negative movements
will be modelled by copulaeC±, respectively. Summarising, the increment of thed-dimensional
gamma processes in the interval[ti−1, ti] given by(G±,1

ti
−G±,1

ti−1
, . . . , G±,d

ti
−G±,d

ti−1
) has cumula-

tive distribution functionC±(F−1
1,±, . . . , F

−1
d,±), whereF−1

j,± is the inverse cumulative distribution
function of a gamma distribution with the specific parameters of thej-th asset.

6.4.1 Numerical results

In this subsection, we compare the performance of LHSD with astandard Monte Carlo method
in option pricing problems.
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Parameters of the numerical examples

VG parameters:
µj, j = 1, . . . , d -0.2859
σj, j = 1, . . . , d 0.1927
cj, j = 1, . . . , d 0.2505
Option parameters:
number of assetsd 10
maturityT 1
initial asset priceSj0, j = 1, . . . , d 100
risk free interest rater 0.05
number of monitoring pointsk 4
time between monitoring pointsti − ti−1, i = 1, . . . , k 0.25
Simulation parameters:
number of simulated option prices per estimatorn 8000
number of simulations of the estimatorsm 100
choice of parametersηji,n, j = 1, . . . , d, i = 1, . . . , n 0.5

Table 6.1: Parameters sets for the VG processes, the optionsand the simulations.

The parameters of the underlying VG processes are stated in Table 6.1 and are the same for all
components of(St)t≥0. The parameter values are taken from a calibration of the VG process
against options on the S&P 500 index by [56]. We observed in price valuations, which we do
not state here in detail, that the computation of one LHSD estimator took about1.4 times of
the computation time of a corresponding Monte Carlo estimator. Nevertheless in our concrete
implementation the most time consuming part was the transformation of uniformly distributed
random variables into gamma distributed random variables.This has to be done only once for all
LHSD estimations since by (6.2) whereηji,n = 1/2, j = 1, . . . , d, i = 1, . . . , n one only needs
fixed quantiles of the gamma distribution. Therefore computation of 4000 LHSD estimators was
about five times faster than the computation of 4000 Monte Carlo estimators. One the other
hand for the Monte Carlo estimator, one has to perform the transformationdn times for each
estimator.
Using the parameters of Table 6.1, the evaluation of each of the option values included the
computation of an80-dimensional integral. Standard deviation and variance were computed
based on them = 100 runs of the LHSD and MC estimators. The ratios in columns 6 and7 of
each table were computed as the quotient of MC value and LHSD value.
It is obvious that the effectiveness of LHSD compared to MC decreases with increasing strike
priceK. The same phenomenon was also observed by [88] in a multi-dimensional Black-Scholes
model for the LHSD estimator and by [42] for the standard LHS estimator.
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Prices of Asian basket call options with varying strike priceK

α K LHSD MC SD. LHSD SD. MC SD. ratio Var. ratio

0.5 80 22.0542 22.0448 0.00071 0.00748 10.419 108.575
0.5 90 12.5511 12.5419 0.00080 0.00748 9.270 85.944
0.5 100 3.79294 3.78732 0.00241 0.00621 2.577 6.642
0.5 110 0.17227 0.17210 0.00119 0.00140 1.174 1.379
0.5 120 0.00024 0.00024 0.000040 0.000041 1.009 1.018

Table 6.2: Prices of Asian basket call options, where the dependence structure of positive and
negative movements are modelled by a FGM copula with parameterα.

Prices of Lookback basket call options with varying strike price K

α K LHSD MC SD. LHSD SD. MC SD. ratio Var. ratio

0.5 80 25.662 25.658 0.00294 0.00839 2.850 8.125
0.5 90 16.151 16.147 0.00294 0.00839 2.850 8.125
0.5 100 6.893 6.890 0.00322 0.00760 2.356 5.553
0.5 110 1.192 1.192 0.00305 0.00406 1.332 1.775
0.5 120 0.060 0.060 0.00086 0.00089 1.029 1.060

Table 6.3: Prices of Lookback basket call options, where thedependence structure of positive
and negative movements are modelled by a FGM copula with parameterα.
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Lookback options in the HEJD model
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Chapter 7

Pricing and hedging of lookback
options in the HEJD model

7.1 Introduction

It has been known for many years that the classic Black-Scholes model suffers from many short-
comings and is not capable of explaining many important stylised facts of financial markets, like
skewed and heavy tailed return distributions, or the thereby introduced volatility smile/skew.
Thus, despite the superior analytical tractability of the geometric Brownian motion model, many
authors proposed the more general class of Lévy processes asunderlying model for prices of fi-
nancial quantities. Most definitely we cannot do justice to the vast literature in this field and
we limit ourselves to cite just three classics related to ourwork, namely [10], [20] or [64], and
refer the reader to those and references therein for more details on the use of Lévy processes
in finance. However, the extra flexibility of Lévy driven financial models often comes at the
cost of more complicated pricing algorithms for exotic path-dependent options. The purpose of
this article is thus to contribute to the development of moreefficient pricing algorithms for cer-
tain popular exotic derivatives. More precisely, we will calculate the (time-)Laplace transformed
price of different kinds of lookback options and propose andtest an efficient inversion algorithm
for this transform.
Loosely speaking, there are three approaches for pricing derivatives related to the maximum
or minimum of the asset price: Monte Carlo methods, Partial (integro)-differential equations
(PIDE) schemes, and Laplace transform based methods, wherethe latter ones, if applicable, are
in general preferable in terms of performance. Focusing on the Laplace transform approach we
would like to mention the very nice theoretical discussion regarding this kind of methods for gen-
eral Lévy processes by Eberlein et al. [31], where very general formulae for the (multi)-Laplace
transformed prices of many different option types were derived. For general Lévy processes
these formulae have the drawback that the inversion of the Laplace transform is typically quite
involved and for a numerical evaluation several numerical integrations need to be performed.
However, for some particular Lévy processes these formulaesimplify significantly and option
prices can be calculated by applying just a standard one-dimensional inversion. For example,
Kou [64] proposed a financial market model (typically calledKou model), in which the logarith-
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mic asset price process is described by a jump diffusion withtwo-sided exponential jumps and
showed that in this setting, the Laplace transform of several exotic options, including lookback
options, can be given in an analytic way (see [65]). Notably,for the same class of processes,
Sepp [95] presents a PIDE approach for the pricing of lookback options.
The Kou model also sets the basis for the more general hyper-exponential jump diffusion model
(HEJD), where the up- and downward jumps are not modeled by a single exponential random
variable, but by a mixture of several exponential random variables with different parameters.
Apart from the obvious advantage of more flexibility the mainmotivation for considering this
kind of models was established by Jeannin and Pistorius [59], who showed that many frequently
used Lévy based financial models can be approximated arbitrarily well by HEJD processes.
More precisely, any process in the class of the so-called general hyper-exponential Lévy pro-
cesses, that includes e.g. the normal inverse Gaussian (NIG) [10], or the CGMY process [20] to
name only two, can be represented as a limit of a sequence of HEJD processes. Moreover, Jean-
nin and Pistorius also derived the time-Laplace transformsprices of barrier and digital options,
and some sensitivities, within the framework of HEJD models. Pricing of double barrier options
in HEJD models was discussed by N. Cai et al. [17] where also formulae for the first passage
time and related identities of HEJD processes are given. Those two papers also form the basis of
this work, where we slightly extend the existing results to apply them to the problem of pricing
lookback options.
Apart from applications in asset pricing jump diffusion models, in particular models with expo-
nentially distributed jump sizes, are frequently used in ruin theory, see e.g. Albrecher et al. [6].
A detailed overview on this topic can be found in the book of Asmussen and Albrecher [7].
The rest of the paper is organised as follows: in Section 2 we give a brief introduction to HEJD
processes and the Wiener-Hopf factorisation for HEJD processes. In the third section, we derive
prices and sensitivities for different types of lookback options and in Section 4 we justify the
approximation of lookback option price under a NIG process by corresponding prices under a
HEJD process. A numerical analysis of our methods concludesthe paper in Section 5.

7.2 Introduction to HEJD models and preliminary results

We will consider lookback options and similar derivatives on an underlying asset, the price
process of which,(St)t≥0, is given asSt = S0e

Xt , whereS0 > 0. We assumeE[eXt ] = ert

for all t ≥ 0, wherer denotes the risk free interest rate and(Xt)t≥0 to be a Lévy process with
X0 = 0 a.s.
To valuate a lookback option we have to analyse the supremum and infimum process of the asset
price process. Let us hence define

X t = sup
0≤s≤t

Xs, X t = inf
0≤s≤t

Xs

and recall the well-known Wiener-Hopf factorisation.

Theorem 7.1 (Wiener-Hopf factorisation) Let (Xt)t≥0 be a Lévy process inR and (X t)t≥0

and(X t)t≥0 its supremum and infimum process, respectively. Furthermore, letθ be an exponen-
tially distributed random variable with parameterq. Then the characteristic function of(Xt)t≥0
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at the random timeθ can be factorised in the following way:

E[eizXθ ] = E[eizXθ ]E[eizXθ ], ∀z ∈ R,

or equivalently
q

q − log(φX(z))
= φ+q (z)φ

−
q (z), ∀z ∈ R,

whereφ(z) is the characteristic function ofX1, φ+q (z) = E[eizXθ ] andφ−q (z) = E[eizXθ ].

Additionally, formulae for the Wiener-Hopf factorsφ−q andφ+q can be given (see e.g. Sato [93]).
For general Lévy processes, however, the actual computation of the factors affords numerical
evaluations of high-dimensional numerical integrals. Of course, for some particular types of
Lévy processes it is possible to give explicit formulae forφ−q andφ+q (see e.g. Kyprianou [67,
Chapter 6]).
A class of Lévy processes, which is well suited for asset price models and allows for consid-
erably simplified formulae for the Wiener-Hopf factors and other identities are jump diffusions
with phase-type distributed jumps (cf. Asmussen et al. [8]). Here, at least in the first sections,
we concentrate on a special kind of the this last category of Lévy processes, more precisely on
so called hyper-exponential jump-diffusions.

Definition 7.1 (Hyper-exponential jump-diffusion) Let Xt be a Lévy process withX0 = 0
a.s. , thenXt is called hyper-exponential jump-diffusion (HEJD), if it has the following repre-
sentation

Xt = µt+ σWt +

N+∑

i=1

Y +
i +

N−∑

j=1

Y −
j , t ≥ 0,

whereW is a Wiener process,N+, N− are Poisson processes with parametersλ+ > 0 and
λ− > 0, respectively and(Y +

j ), (Y −
j ) are i.i.d. families of mixed exponential random variables,

i.e.

Y +
j =

n+∑

i=1

p+i Z
+
i , Y −

j =
n−∑

i=1

p−i Z
−
i ,

where
∑n+

i=1 p
+
i =

∑n−

j=1 p
−
j = 1, p+i > 0, i = 1, . . . , n+, p−j > 0, j = 1, . . . , n− andZ+

i , Z
−
i

are exponentially distributed with meansα+
i > 0 and α−

i > 0, respectively. Moreover, all
random variables and processes are assumed to be independent.

By the Lévy-Khinchin formula (see e.g. Sato [93]), the characteristic exponent of a HEJD can
be written as

φ(u) = log(E[eiuX1 ]) = uiµ− σ2

2
u2 + λ+

n+∑

k=1

p+k

( α+
k

α+
k − ui

− 1
)

+ λ−
n−∑

j=1

p−j

( α−
j

α−
j + ui

− 1
)
. (7.1)
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The functionφ(u) can be extended analytically (cf. e.g. Sato [93, Chapter 9])to the whole
complex plane except for the finite sets{−iα+

i , for i = 1, . . . , n+}, {−iα−
i , for i = 1, . . . , n−}

and we will denote the roots of the Cramér-Lundberg equation−q + φ(−is) = 0 with positive
and negative real part, byρ+i (q), i = 1, . . . , n+ + 1 andρ−i (q), i = 1, . . . , n− + 1, respectively.
Applying the formulae for general two-sided phase-type distributed jumps on HEJD processes,
we find

φ+q (u) =

∏n+

k=1

(
1− ui

α+
k

)

∏m+

k=1

(
1− ui

ρ+k (q)

) and φ−q (u) =

∏n−

k=1

(
1 + ui

α−
k

)

∏m−

k=1

(
1− ui

ρ−k (q)

) .

Moreover, the time-Laplace transforms of the distributions of Xt andX t can be calculated
explicitly (cf. Mordecki [79])

∫ ∞

0
e−qtP (Xt ≤ z)dt =

1

q

(
1−

m+∑

k=1

A+
k (q)e

−ρ+k (q)z
)
, z ≥ 0 (7.2)

∫ ∞

0
e−qtP (−Xt ≤ z)dt =

1

q

(
1−

m−∑

k=1

A−
k (q)e

ρ−k (q)z
)
, z ≥ 0 (7.3)

where the coefficientsA+
k (q) andA−

k (q) are given by

A+
k (q) =

∏n+

v=1

(
1− ρ+k (q)

α+
v

)

∏m+

v=1,v 6=k
(
1− ρ+k (q)

ρ+v (q)

) , (7.4)

A−
k (q) =

∏n−

v=1

(
1 +

ρ−k (q)

α−
v

)

∏m−

v=1,v 6=k
(
1− ρ−k (q)

ρ−v (q)

) . (7.5)

Let us shortly note here, that another way to understand the above formula is that for any ex-
ponentially distributed random variableθ,Xθ andXθ are hyper-exponential distributed random
variables.
With the notable exception of the Kou model (for whichn+ = n− = 1) the roots of the Cramér
Lundberg equation cannot be calculated analytically. However, due to favorable structural prop-
erties of the Cramér Lundberg equation the numerical computation of the roots is not diffi-
cult and can be efficiently implemented. The following Lemma2.1, which is a slight extension
of [16, Lemma 1], states the precise result.

Lemma 7.1 (Characterisation of the moment generating function of Xt) The functionφ(−is)
is a convex function fors ∈ (−α−

1 , α
+
1 ). Furthermore:

• If σ > 0, the equation−q + φ(−is) = 0 for q ∈ R+ has rootsρ+k , k = 1, . . . , n+ + 1 =
m+ andρ−j , j = 1, . . . , n− + 1 = m−, which satisfy the condition

−∞ < −ρ−
n−+1

(q) < −α−
n− < −ρ−

n−(q) < . . . < −ρ−2 (q) < −α−
1 < −ρ−1 (q) < 0,

0 < ρ+1 (q) < α+
1 < ρ+2 (q) < . . . < ρ+

n+(q) < α+
n+ < ρ+

n++1
(q) <∞.
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• If σ = 0 and µ > 0, the equation−q + φ(−is) = 0 for q ∈ R+ has rootsρ+k , k =
1, . . . , n+ + 1 = m+ andρ−j , j = 1, . . . , n− = m−, which satisfy the condition

−∞ < −α−
n− < −ρ−

n−(q) < . . . < −ρ−2 (q) < −α−
1 < −ρ−1 (q) < 0,

0 < ρ+1 (q) < α+
1 < ρ+2 (q) < . . . < ρ+

n+(q) < α+
n+ < ρ+

n++1
(q) <∞

• if σ = 0 and µ < 0, the equation−q + φ(−is) = 0 for q ∈ R+ has rootsρ+k , k =
1, . . . , n+ = m+ andρ−j , j = 1, . . . , n− + 1 = m−, which satisfy the condition

−∞ < −ρ−
n−+1

(q) < −α−
n− < −ρ−

n−(q) < . . . < −ρ−2 (q) < −α−
1 < −ρ−1 (q) < 0,

0 < ρ+1 (q) < α+
1 < ρ+2 (q) < . . . < ρ+

n+(q) < α+
n+ <∞.

• if σ = 0 and µ = 0, the equation−q + φ(−is) = 0 for q ∈ R+ has rootsρ+k , k =
1, . . . , n+ = m+ andρ−j , j = 1, . . . , n− = m−, which satisfy the condition

−∞ < −α−
n− < −ρ−

n−(q) < . . . < −ρ−2 (q) < −α−
1 < −ρ−1 (q) < 0,

0 < ρ+1 (q) < α+
1 < ρ+2 (q) < . . . < ρ+

n+(q) < α+
n+ <∞.

Proof:
For simplicity of notation, we setψ(s) = φ(−is). Note that in every case,ψ(s) is a convex
function on(−α−

1 , α
+
1 ), because it is a sum of convex functions on this interval.

Furthermore,ψ(s) has poles on on the sets{α+
i , for i = 1, . . . , n+}, {α−

i , for i = 1, . . . , n−}.
For a positive poleα+

i it follows ψ(α+
i −) = +∞ andψ(α+

i +) = −∞ and for a negative pole
α−
i it follows ψ(α−

i −) = −∞ andψ(α−
i +) = +∞. Furthermoreψ(s) is continuous between

two poles, so that there is always at least one root of the equation −q + φ(−is) = 0 between
two such poles. From the fact thatψ(0) = 0 and the convexity ofψ in (−α−

1 , α
+
1 ), we conclude

that there is exactly one root on each of the intervals(−α−
1 , 0) and (0, α+

1 ). While all of the
observations so far hold in every of the four cases, we will now consider different combinations
of σ andµ separately.
If σ > 0, it follows by simple transformations that the equation−q + ψ(s) = 0 has two more
roots thanψ(s) has poles and thatlims→+∞ ψ(s) = lims→−∞ ψ(s) = +∞. Because of these
facts, there is exactly one root in(−∞, α−

n−) and(α+
n+ ,+∞). Hence there is exactly one root

in each of the intervals(α+
i , α

+
i+1) for i = 1, . . . ,m+ − 1, (α−

i+1, α
−
i ) for i = 1, . . . ,m− − 1,

(α+
n+ ,+∞) and(−∞, α−

n−).
The argumentation is similar in the three remaining cases, whereσ = 0. If µ 6= 0, then
−q + ψ(s) = 0 has one more root thanψ(s) has poles. Because oflims→+∞ ψ(s) = +∞ if
µ > 0 andlims→−∞ ψ(s) = +∞ if µ < 0, there must be a root on(α+

n+ ,+∞) and(−∞, α−
n−),

respectively. The caseµ = 0 andσ = 0 follows directly from the above considerations. �

86



CHAPTER 7. Pricing and hedging of lookback options in the HEJD model

7.3 Prices and Greeks of lookback options

In this section we will give pricing formulae for different lookback options on an underlying
asset, that is modeled by the exponential of a HEJD. More precisely, we will assume the asset
priceS to be given as:

St = S0e
Xt ,

whereXt is a HEJD process withα1 > 1. This last assumption guarantees that the expectation
of the stock price is finite.
We consider two classes of lookback options, namely floatingand fixed strike lookback options.
Denoting the maturity byT and the strike price byK, the payoff of fixed strike calls and puts
are defined by(max0≤t≤T St−K)+ withK ≥ S0 and(K−min0≤t≤T St)+ with 0 < K ≤ S0,
respectively. The prices of these options are given by

LCfixed(T, S0,K) = E[e−rT ( max
0≤t≤T

St −K)+], K ≥ S0, (7.6)

and

LPfixed(T, S0,K) = E[e−rT (K − min
0≤t≤T

St)
+], 0 < K ≤ S0,

respectively. In the same manner the prices of puts and callsof floating strike lookback op-
tions are defined as expectations of their payoffs(max{M,max0≤t≤T St} − ST ) and (ST −
min{N,min0≤t≤T St}), respectively, whereM ≥ S0 ≥ N . Thus

LPfloat(T, S0,M) = E[e−rT (max{M, max
0≤t≤T

St} − ST )]

= E[e−rT (max{M, max
0≤t≤T

St})]− S0

= E[e−rT ( max
0≤t≤T

St −M)+] + e−rTM − S0

= LCfixed(T, S0,M) + e−rTM − S0 (7.7)

and

LCfloat(T, S0, N) = E[e−rT (ST −min{N, min
0≤t≤T

St})]

= S0 − E[e−rT (min{N, min
0≤t≤T

St})],

= S0 − e−rTN + E[e−rT (N − min
0≤t≤T

St)
+]

= S0 − e−rTN + LPfixed(T, S0, N) (7.8)

It follows by (7.7) and (7.8) that the price of a floating strike lookback put option is just the sum
of the price of a fixed strike lookback call option and a constant with respect toXt. An analogous
statement applies to floating strike lookback call options.We will use these facts frequently in
the proofs of the following theorems and corollaries.
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7.3.1 Prices of lookback options

As mentioned before the aim is to calculate the Laplace transform of prices of lookback options
and the following lemma will prove useful for this.

Lemma 7.2 LetXt be a HEJD. Then

lim
y→∞

ey P[XT ≥ y] = 0, and lim
y→−∞

ey P[XT ≤ y] = 0, ∀T ≥ 0.

Proof:
Observe that(eθXt−φ(−iθ)t)t≥0 is a martingale for anyθ ∈ (−α−

1 , α
+
1 ). Sinceα+

1 > 1, φ is
continuous andφ(−i) = r > 0, there exists someβ ∈ (1, α+

1 ) such thatφ(−iθ) > 0. Hence

ey P[XT ≥ y] = e(1−β)yeβy P[τy ≤ T ],

whereτy denotes the first passage time of the processX over a levely. By the optimal sampling
theorem the second term can be dominated by

eβy P[τy ≤ T ] ≤ E[eβX(τy∧T ) ] ≤ eφ(−iβ)T E[eβX(τy∧T )−φ(−iβ)(τy∧T )] = eφ(−iβ)T , (7.9)

where the second inequality follows from the fact thatE[eφ(−iβ)(T−(τy∧T ))] > 1 and the required
result follows sinceβ > 1. The second limit result follows by applying the same arguments on
the dual reflecting process−Xt. �

Theorem 7.2 Let A+
k (q) andA−

k (q) be given as in(7.4) and (7.5) and let the negative and
positive roots of the equationφ(−is)−q = 0 be given byρ−k (q), k = 1, . . . ,m− andρ+k (q), k =
1, . . . ,m+, respectively. Then the Laplace transform of the price of a fixed strike lookback call
is given by

∫ ∞

0
e−αT LCfixed(T, S0,K)dT = S0

1

α+ r

m+∑

k=1

A+
k (α+r)

e− log(K/S0)(ρ
+
k (α+r)−1)

ρ+k (α+ r)− 1
K ≥ S0,

while for a fixed strike lookback put option we have

∫ ∞

0
e−αT LPfixed(T, S0,K)dT = S0

1

α+ r

m−∑

k=1

A−
k (α+r)

e− log(K/S0)(ρ
−
k (α+r)−1)

1− ρ−k (α+ r)
K ≤ S0.

Proof:
We need to calculate the Laplace transform ofE[e−rT (S0eXT −K)+],K ≥ S0. Defining

z = log(K/S0) ≥ 0,

we have
E[e−rT (S0e

XT −K)+] = S0 E[e
−rT (eXT − ez)1{XT≥z}]. (7.10)
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Applying integration-by-parts and Lemma 7.2 yields

E[e−rT eXT 1{XT≥z}] = −e−rT
∫ ∞

z
eydP[XT ≥ y]

= −e−rT
(
−ez P[XT ≥ z]−

∫ ∞

z
ey P[XT ≥ y]dy

)

= E[e−rT ez1{XT≥z}] + e−rT
∫ ∞

z
ey P[XT ≥ y]dy.

Hence

S0 E[e
−rT (eXT − ez)1{XT≥z}] = S0e

−rT
∫ ∞

z
ey P[XT ≥ y]dy

and for allα > 0
∫ ∞

0
e−αTS0 E[e

−rT (eXT − ez)1{XT≥z}]dT = S0

∫ ∞

0
e−αT e−rT

∫ ∞

z
ey P[XT ≥ y]dydT

= S0

∫ ∞

z
ey
∫ ∞

0
e−(α+r)T P[XT ≥ y]dTdy,

where changing the order of integration in the last step is justified by Tonelli’s theorem.
Note that the inner integral in the above is exactly the Laplace transform of the distribution of
the supremum processX and is hence given by equation (7.2), i.e. we have

∫ ∞

0
e−(α+r)T P[XT ≥ y]dT =

1

α+ r

m+∑

k=1

A+
k (α + r)e−ρ

+
k (α+r)y .

By Lemma 7.1 andφ(−i) = r we havemink ρ
+
k (α + r) > mink ρ

+
k (r) = 1 for α > 0 and

therefore,

∫ ∞

0
e−αTS0 E[e

−rT (eXT − ez)1{XT≥z}]dT = S0

∫ ∞

z

1

α+ r

m+∑

k=1

A+
k (α+ r)ey(1−ρ

+
k (α+r))dy

= S0
1

α+ r

m+∑

k=1

A+
k (α+ r)

e− log(K/S0)(ρ
+
k (α+r)−1)

ρ+k (α+ r)− 1
,

which proves the first statement.
The second result follows from similar reasoning. �

Corollary 7.1 Let 0 < N ≤ S0 ≤ M and letA+
k , A−

k , ρ+k andρ−k be as in Theorem 7.2, and
denote the maturity byT . Then we have

∫ ∞

0
e−αT LPfloat(T, S0,M)dT = S0

1

α+ r

m+∑

k=1

A+
k (α+ r)

e− log(M/S0)(ρ
+
k (α+r)−1)

ρ+k (α+ r)− 1
+

M

α+ r
− S0

α
,

(7.11)
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∫ ∞

0
e−αT LCfloat(T, S0, N)dT =

S0
α

+ S0
1

α+ r

m−∑

k=1

A−
k (α+ r)

e− log(N/S0)(ρ
−
k (α+r)−1)

1− ρ−k (α+ r)
− N

α+ r
.

(7.12)

Proof:
The proof follows immediately from Theorem 7.2, (7.7) and (7.8). �

7.3.2 Greeks of lookback options

In this subsection, we use the results of the previous subsections to give formulae for the Laplace
transforms of sensitivities of lookback options. We deriveexpressions forΘV , ∆V andΓV ,
which are defined by

∆V =
∂V

∂S0
, ΓV =

∂2V

∂S2
0

, ΘV =
∂V

∂T
,

whereS0 denotes the initial price of the underlying asset,T is the maturity of the option andV
is the price of an option on the underlying asset.

Theorem 7.3 SupposeXt is a HEJD process withσ > 0 and letα > 0. Then the Laplace
transforms of∆LCfixed andΓLCfixed are given by

∆̂LCfixed(α) =
1

α+ r

m+∑

k=1

A+
k (α+ r)ρ+k (α+ r)

e− log(K/S0)(ρ
+
k (α+r)−1)

ρ+k (α+ r)− 1
, 0 < S0 ≤ K,

(7.13)

Γ̂LCfixed(α) =
1

α+ r

1

S0

m+∑

k=1

A+
k (α+ r)ρ+k (α+ r)e− log(K/S0)(ρ

+
k (α+r)−1). 0 < S0 ≤ K.

(7.14)

The Greeks of fixed strike lookback put option are given by

∆̂LPfixed(α) =
1

α+ r

m−∑

k=1

A−
k (α+ r)ρ−k (α+ r)

e− log(K/S0)(ρ
−
k (α+r)−1)

1− ρ−k (α+ r)
, 0 ≤ K ≤ S0,

(7.15)

Γ̂LPfixed(α) = − 1

α+ r

1

S0

m−∑

k=1

A−
k (α+ r)ρ−k (α+ r)e− log(K/S0)(ρ

−
k (α+r)−1), 0 ≤ K ≤ S0.

(7.16)

Proof:
First note that∆V andΓV exist and are continuous, sinceLPfixed andLPfixed can be understood
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(viewed as function ofS0) as convolution of the continuous density ofXT and the function
f(x) = (x − c)+, the second derivative of which in the sense of distributions is given by the
Dirac-Delta measure.
Formulae (7.13) – (7.16) all directly follow by interchanging differentiation and the Laplace
transform. So we only have to show that changing the order is in fact justified. To this end note
that

∂

∂S0

∫ ∞

0
e−αT LCfixed(T, S0,K)dT

= lim
ǫ→0

1

ǫ

∫ ∞

0
e−αT

(
LCfixed(T, S0 + ǫ,K)− LCfixed(T, S0,K)

)
dT.

Now the aim is to apply the dominated convergence theorem on the difference quotient. Observe
that

1

ǫ
e−αT

∣∣∣LCfixed(T, S0 + ǫ,K)− LCfixed(T, S0,K)
∣∣∣

=
1

ǫ
e−(α+r)T E

[(
(S0 + ǫ)eXT −K

)
1{eXT ≥K/(S0+ǫ)} −

(
S0e

XT −K
)
1{eXT ≥K/S0}

]

=
1

ǫ
e−(α+r)T E

[
ǫeXT 1{eXT ≥K/S0} +

(
(S0 + ǫ)eXT −K

)
1{K/(S0+ǫ)≤eXT ≤K/S0}

]

≤ e−(α+r)T
(
E[eXT 1{eXT ≥K/S0}] +

K

S0

)

≤ e−(α+r)T
(
E
[
max(eXT ,K/S0)

]
+
K

S0

)
.

Furthermore we have that
∫ ∞

0
e−(α+r)T

(
E
[
max(eXT ,K/S0)

]
+
K

S0

)
dT

=

∫ ∞

0
e−(α+r)T E

[
max(eXT ,K/S0)

]
dT +

K

(α+ r)S0
,

where the first term on the right hand-side was already calculated and shown to be finite in the
proof of Theorem 7.2. Thus the dominated convergence theorem can be applied to justify the
interchange of integration and differentiation and we have

∂

∂S0

∫ ∞

0
e−αT LCfixed(T, S0,K)dT =

∫ ∞

0
e−αT

∂

∂S0
LCfixed(T, S0,K)dT

=

∫ ∞

0
e−αT∆LCfixeddT = ∆̂LCfixed(α).

The argumentation in the case ofΓLCfixed is similar. Again we consider the differentiation quo-
tient and again we want to apply the dominated convergence theorem. First note that

1

ǫ2
e−αT

∣∣( LCfixed(T, S0 + ǫ,K)− 2LCfixed(T, S0,K) + LCfixed(T, S0 − ǫ,K)
∣∣
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=
1

ǫ2
e−(α+r)T

∣∣∣E
[
ǫeXT1{eXT ≥K/S0} + ((S0 + ǫ)eXT −K)1{K/(S0+ǫ)≤eXT ≤K/S0}

]

− E

[
ǫeXT 1{eXT ≥K/(S0−ǫ)} + (S0e

XT −K)1{K/S0≤eXT ≤K/(S0−ǫ)}

]∣∣∣

≤ 1

ǫ2
e−(α+r)T E

[
ǫeXT |1{eXT ≥K/S0} − 1{eXT ≥K/(S0−ǫ)}|

]

+
1

ǫ2
e−(α+r)T E

[
ǫeXT1{K/(S0+ǫ)≤eXT ≤K/S0}

]

+
1

ǫ2
e−(α+r)T E

[∣∣(S0eXT −K)(1{eXT ≥K/S0} − 1{eXT ≥K/(S0−ǫ)})
∣∣
]

≤ 1

ǫ
e−(α+r)T E

[
eXT1{K/(S0+ǫ)≤eXT ≤K/(S0−ǫ)}

]

+
1

ǫ2
e−(α+r)T E

[∣∣S0eXT −K
∣∣1{K/(S0+ǫ)≤eXT ≤K/(S0−ǫ)}

]

≤ e−(α+r)T K + 1

S0 − ǫ

P
[
K/(S0 + ǫ) ≤ eXT ≤ K/(S0 − ǫ)

]

ǫ
.

Hence the dominated convergence theorem can be applied, if

∫ ∞

0
e−(α+r)T P

[
K/(S0 + ǫ) ≤ eXT ≤ K/(S0 − ǫ)

]

ǫ
dT <∞,

for any sufficiently smallǫ > 0. In fact, this is easily seen to be the case, if the distribution of
XT admits a density.
Hence, finally, we have to argue why the density of the distribution ofXT exists. For this pur-
pose, we use a result of Chaumont [22, Theorem 2], who states thatXT is absolutely continuous
for T > 0 with respect to the Lebesgue measure onR+ if and only if the potential measure
of XT is absolutely continuous with respect to the Lebesgue measure onR+ and0 is a regular
point for (−∞, 0) and(0,∞). Sinceσ2 > 0, 0 is a regular point for both intervals in our case
and following Bertoin [12, Theorem II.16] we get that the absolute continuity of the potential
measure is equivalent to ∫

R

ℜ
( 1

q + φ(x)

)
dx <∞, (7.17)

whereφ(x) is the characteristic exponent ofXT given in (7.1). Using Lemma 7.1, we conclude
that all singularities and roots ofq + log(φ(x)) have non-zero imaginary part and sinceσ2 > 0,
φ(x) is a polynomial of degreen+ + n− + 2 divided by a polynomial of degreen+ + n−, thus
it follows that integral in (7.17) is finite.
The equations (7.15) and (7.16) follow by similar arguments. �

Corollary 7.2 Under the assumptions of Theorem 7.3, the first and second order derivatives of
prices of floating strike lookback options with respect toS0 are given by

∆̂LPfloat(α) =
1

α+ r

m+∑

k=1

A+
k (α+ r)ρ+k (α+ r)

e− log(M/S0)(ρ
+
k (α+r)−1)

ρ+k (α + r)− 1
− 1

α
, 0 < S0 ≤M,
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Γ̂LPfloat(α) =
1

α+ r

1

S0

m+∑

k=1

A+
k (α+ r)ρ+k (α+ r)e− log(M/S0)(ρ

+
k (α+r)−1). 0 < S0 ≤M,

∆̂LCfloat(α) =
1

α
+

1

α+ r

m−∑

k=1

A−
k (α+ r)ρ−k (α + r)

e− log(N/S0)(ρ
−
k (α+r)−1)

1− ρ−k (α+ r)
, 0 ≤ N ≤ S0,

Γ̂LCfloat(α) = − 1

α+ r

1

S0

m−∑

k=1

A−
k (α+ r)ρ−k (α+ r)e− log(N/S0)(ρ

−
k (α+r)−1), 0 ≤ N ≤ S0.

Proof:
The corollary follows directly by Corollary 7.1, Theorem 7.3, (7.7) and (7.8). �

Theorem 7.4 SupposeXt is a HEJD process withσ and letα > 0. Then the Laplace transforms
of the sensitivities of fixed strike lookback options with respect to the maturityT are given by

Θ̂LCfixed(α) = αL̂Cfixed(α) = S0
α

α+ r

m+∑

k=1

A+
k (α+ r)

e− log(K/S0)(ρ
+
k (α+r)−1)

ρ+k (α+ r)− 1
, K ≥ S0,

(7.18)

Θ̂LPfixed(α) = αL̂Pfixed(α) = S0
α

α+ r

m−∑

k=1

A−
k (α+ r)

e− log(K/S0)(ρ
−
k (α+r)−1)

1− ρ−k (α+ r)
, K ≤ S0.

(7.19)

Proof:
Note that the first equations in (7.18) and (7.19) are classicfor Laplace transforms, given that
LCfixed andLPfixed are differentiable (with respect toT ). Here we will show that both are Lip-
schitz continuous and thus almost everywhere differentiable, which is sufficient for the before-
mentioned results to apply.
Thus let us turn to the proof of the Lipschitz continuity and note that

|LCfixed(T + ǫ, S0,K)− LCfixed(T, S0,K)|
=
∣∣∣E
[
e−r(T+ǫ)(S0e

XT+ǫ −K)+
]
− E

[
e−rT (S0e

XT −K)+
]∣∣∣

≤
∣∣∣E
[
e−r(T+ǫ)S0e

XT+ǫ
]
− E

[
e−rTS0e

XT
]∣∣∣

=
∣∣∣E
[
e−rTS0(e

XT+ǫ − eXT )
]
+ E

[
S0e

XT+ǫ(e−r(T+ǫ) − e−rT )
]∣∣∣

=
∣∣∣e−rTS0

(
E
[
eXT (eXT+ǫ−XT − 1)

]
+ (e−rǫ − 1)E

[
eXT+ǫ

])∣∣∣

≤c1
∣∣∣E
[
eXT (eXT+ǫ−XT − 1)

]∣∣∣+ c2(e
−rǫ − 1)

≤c1
∣∣∣E
[
eXT

]
E
[
(eXǫ − 1)

]∣∣∣+ c3ǫ

≤c4
∣∣∣E
[
(eXǫ − 1)

]∣∣∣+ c3ǫ,
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where theci’s denote some constants and we used the independence of the increments of the
Lèvy processX, the fact thatE[eXT ] <∞, and the local Lipschitz continuity of the exponential
function.
Furthermore for any1 < β < α1 we have

∣∣E
[
(eXǫ − 1)

]∣∣ ≤
(
E
[
(eXǫ − 1)β

])1/β

≤ β

β − 1

(
E
[
(eXǫ − 1)β

])1/β

=
β

β − 1

(
eǫφ(−iβ) − 1

)
< c5ǫ

where we applied Jensen’s inequality, Doob’s martingale inequality, and again the local Lips-
chitz continuity of the exponential function.
This completes the proof of the Lipschitz continuity ofLCfixed. The second result in (7.18) fol-
lows by similar arguments. �

Corollary 7.3 Let 0 < N ≤ S0 ≤ M , α > 0 and let the assumptions of Theorem 7.4 be
satisfied. Then the Laplace transforms ofΘLPfloat andΘLCfloat are given by

Θ̂LPfloat(α) = αL̂Pfloat(α) = S0


 α

α+ r

m+∑

k=1

A+
k (α+ r)

e− log(M/S0)(ρ
+
k (α+r)−1)

ρ+k (α+ r)− 1
− 1


 +

αM

α+ r
,

(7.20)

Θ̂LCfloat(α) = αL̂Cfloat(α) = S0


1 +

α

α+ r

m−∑

k=1

A−
k (α+ r)

e− log(N/S0)(ρ
−
k (α+r)−1)

1− ρ−k (α+ r)


− αN

α+ r
,

(7.21)

respectively.

Proof:
By (7.7) it follows that the price of a floating strike lookback put option is the sum of the price
of a fixed strike lookback call option and an exponential function with respect toT . Thus by
the proof of the previous theorem the price of a floating strike lookback put option is the sum
of two Lipschitz continuous functions and therefore Lipschitz continuous, which proves (7.20).
The second statement (7.21) follows analogously. �

7.4 Estimation of infinite activity processes via HEJD processes

Having seen that lookback options can be priced efficiently in HEJD-model markets the goal
is now to apply these results to more general Lévy processes.While a direct generalisation is
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due to the lack of explicit formulae for the Laplace transforms of the supremum and infimum
processes typically not possible, for so-called generalised hyper-exponential processes, there is
another possibility, which we will discuss now.

Definition 7.2 (Generalised hyper-exponential Lévy process) A Lévy process is called gen-
eralised hyper - exponential Lèvy process (GHE), if its Lévymeasure admits a densityk of the
formk(x) = k+(x)1{x>0} + k−(−x)1{x<0}, wherek+, k− are completely monotone functions
on (0,∞).

Obviously the class of hyper-exponential jump diffusions is a subclass of the GHE processes,
since their Lévy density can be written as

kHEJD(x) = λ+
n+∑

i=1

p+i α
+
i e

−α+
i x1{x>0} + λ−

n−∑

j=1

p−j α
−
j e

−α−
j x1{x<0}. (7.22)

Another well-known member of the GHE class is the NIG processwhich has the following
representations of its Lévy densities:

kNIG(x) =
δα

π
eβx

K1(αx)

x
1{x>0} +

δα

π
eβx

K1(−αx)
−x 1{x<0}, (7.23)

whereα > |β| > 0, δ > 0 andK1 is the McDonald function

K1(x) = x

∫ ∞

1
e−vx(v2 − 1)1/2dv.

Jeannin and Pistorius [59] show, that for every processX in GHE, a sequence of HEJD processes
(Xn)n≥0 can be constructed which converges weakly toX in the Skorokhod topology on the
space of real-valued cadlag functions onR+. They also show that the sequence of maximum
processes(X

n
)n≥0 converges in distribution to the maximum processX . The next theorem

states that also the sequence of lookback option prices converges in distribution to the lookback
option price underX.

Theorem 7.5 LetX be a GHE process, which is not a compound Poisson process, letthe price
process be given asSt = S0e

Xt and letLCfloat(S0,K, T ) be the pricing function of a floating
strike lookback call option. Let(Xn)n≥0 be a sequence of HEJD processes, withXn → X
for n → ∞. Then the sequence of floating strike lookback put option pricesLCnfloat under the
approximated processesXn converges toLCfloat.

Proof:
Following the proof of Theorem 7.2, by using equation (7.10)it is sufficient to show

lim
n→∞

E[e−rT (eX
n
T − ez)1{Xn

T≥z}] = E[e−rT (eXT − ez)1{XT≥z}],

which is, by the arguments used in the proof of Theorem 7.2, equivalent to

lim
n→∞

∫ ∞

z
ey P[X

n
T ≥ y]dy =

∫ ∞

z
ey P[XT ≥ y]dy.
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By using inequality (7.9) from Lemma 7.2, we can dominateey P[X
n
T ≥ y] and apply the dom-

inated convergence theorem, thus the proof is complete. �

Remark 7.1 The convergence of prices of fixed strike lookback options and floating strike look-
back put options follows by similar arguments.

7.5 Numerical results

In this last section we give numerical values of prices and Greeks of lookback options, which
result by applying the Gaver-Stehfest algorithm for numerical Laplace transform inversion (see
e.g. [40]) to the formulae given in the Theorems 3.1 - 3.3 and Corollaries 3.1 - 3.3. These results
are compared to corresponding values derived via Monte Carlo integration. The main advantage
of our method is that computing the numerical Laplace inversion of prices and Greeks takes only
1 second per option while the Monte Carlo simulation values takes several minutes.
The numerical analysis is divided into three subsections: in the first subsection we analyse
the numerical error of the Gaver-Stehfest algorithm, by comparing results from the presented
Laplace inversion method with a Monte Carlo (MC) simulationof a HEJD process. In the sec-
ond subsection we give prices of lookback options under a HEJD process which is fitted to a
NIG process and compare them to a Monte Carlo simulation of the original NIG process. In
the last section, we compare sensitivities resulting from our technique with the corresponding
simulated values of a NIG process. All computations were done in Mathematica.
The problem of fitting a HEJD process to a NIG process is considered in the articles of Crosby,
LeSaux and Mijatovic [24] and Jeannin and Pistorius [59]. Inboth papers, a HEJD process is
fitted to a NIG process with parametersα = 8.858, β = −5.808, δ = 0.176. All methods use
a mixture of seven exponentially distributed upward jump variablesZ+

i and a mixture of seven
exponentially distributed downward jump variablesZ−

i to model the jumps of the logarithmic
price process. In [59] the parametersα±

i , i = 1, . . . , 7 are fixed in the beginning and the remain-
ing parametersλ±, σ andp±i , i = 1, . . . , 7 are derived by a least squares approximation. The
parameterµ follows from no-arbitrage considerations. Crosby, LeSauxand Mijatovic present
several fitting methods which use more complicated optimisation techniques. In the following
numerical examples we use the parameter set corresponding to method c) in [24] because it
showed the best performance. These parameters are given in Table 7.1.
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Parameter set CLM

Parameter Value
σ;λ+;λ− 0.04062; 3.09468; 4.55662
p+ {0.07858, 0.15033, 0.20017, 0.22039, 0.20704, 0.14327, 0.00022}
p− {0.05004, 0.12865, 0.22579, 0.21569, 0.18166, 0.13097, 0.06717}
α+ {70.53135, 64.58179, 54.96035, 43.32801, 31.69567, 22.07423, 16.12466}
α− {4.58662, 10.85414, 20.98976, 33.24374, 45.49773, 55.63335, 61.90087}

Table 7.1: Parameters of the calibrated HEJD process fitted to a NIG process with parameters
α = 8.858, β = −5.808, δ = 0.176 (method by Crosby, LeSaux and Mijatovic [24]).

7.5.1 Error of the Gaver-Stehfest algorithm

As a benchmark for our analysis, we use an unbiased Monte Carlo simulation method for the
HEJD, which applies to general jump diffusion processes. The number of simulated paths is
100.000 and the computation time for one price is about 5 minutes. The results for prices of
fixed strike lookback call and put options are given in the Tables 7.2 and 7.3, respectively. The
numerical errors in the approximation of sensitivities of fixed strike lookback put options are
given in Table 7.4.
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Prices of fixed strike lookback call options in the HEJD model

S0 MC Price 95%-conf.int. CLM
70 0.00116 (0.00048; 0.00185) 0.00088
75 0.00387 (0.00227; 0.00546) 0.00322
80 0.00953 (0.00722; 0.01185) 0.01071
85 0.03632 (0.03091; 0.04174) 0.03253
90 0.09638 (0.08842; 0.10435) 0.09083
95 0.24363 (0.23116; 0.25609) 0.23522

100 0.56749 (0.54821; 0.58677) 0.56626
105 1.25536 (1.22719; 1.28353) 1.26059
110 2.53137 (2.49160; 2.57114) 2.56846
115 4.78483 (4.73138; 4.83828) 4.74117
120 7.93318 (7.86722; 7.99914) 7.90993

122.5 9.83583 (9.76352; 9.90814) 9.86508
125 12.03170 (11.95470; 12.10870) 12.0539

127.5 14.44220 (14.36186; 14.52254) 14.4661
128 14.98910 (14.90728; 15.07092) 14.975

128.5 15.57960 (15.49714; 15.66206) 15.4928
129 16.00890 (15.92693; 16.09087) 16.0197

129.5 16.55780 (16.47508; 16.64052) 16.556
130 17.01520 (16.93203; 17.09837) 17.102

Table 7.2: Prices of fixed strike lookback call options with varying initial asset priceS0, strike
priceK = 130 and maturityT = 1.
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Prices of fixed strike lookback put options in the HEJD model

S0 MC Price 95%-conf.int. CLM
70 6.52566 (6.47190; 6.57942) 6.53762

70.5 6.13835 (6.08455; 6.19215) 6.17411
71 5.85091 ( 5.79742; 5.90440) 5.88262

71.5 5.63913 ( 5.58548; 5.69278) 5.62039
72 5.39465 ( 5.34158; 5.44772) 5.37709

72.5 5.12923 ( 5.07689; 5.18157) 5.14933
75 4.16099 ( 4.11118; 4.21080) 4.19454

77.5 3.43517 ( 3.38830; 3.48204) 3.46899
80 2.92254 ( 2.87822; 2.96686) 2.90436
85 2.03532 ( 1.99668; 2.07396) 2.09797
90 1.57349 ( 1.53832; 1.60866) 1.56554
95 1.19229 ( 1.16122; 1.22336) 1.19899

100 0.95105 ( 0.92272; 0.97937) 0.93796
105 0.72813 ( 0.70269; 0.75356) 0.74684
110 0.56268 ( 0.53989; 0.58548) 0.60358
115 0.47751 ( 0.45603; 0.49899) 0.49407
120 0.39429 ( 0.37399; 0.41458) 0.40891
125 0.33014 ( 0.31157; 0.34870) 0.34171
130 0.26002 ( 0.24218; 0.27786) 0.28801

Table 7.3: Prices of fixed strike lookback put options with varying initial asset priceS0, strike
priceK = 70 and maturityT = 1.

The prices derived by our method are located in almost all cases in the95%-confidence interval
of the Monte Carlo estimator. Therefore, we conclude that numerical error resulting from the
Gaver-Stehfest algorithm is very small, especially when the difference between the initial asset
price and the strike price is not too large.
The Monte Carlo sensitivities in Table 7.4 are estimated by unbiased central finite difference
estimators as described in Glasserman [42, Chapter 7]. To derive unbiased MC estimators for
the sensitivities, we use the same set of random paths for each price computation, therefore a
comparison of the MC prices with prices resulting from our method is omitted.
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Greeks of fixed strike lookback put options in the HEJD model

S0 MC ∆ MC Γ CLM ∆ CLM Γ ∆ diff. in % Γ diff. in %
70 -0.86616 0.43778 -0.87705 0.90464 1.26% 106.64%

72.5 -0.44270 0.05355 -0.44126 0.05496 -0.33% 2.64%
75 -0.32967 0.04057 -0.33031 0.03604 0.20% -11.16%

77.5 -0.25327 0.02434 -0.25452 0.02544 0.49% 4.52%
80 -0.19952 0.02035 -0.20002 0.01862 0.25% -8.50%

82.5 -0.15964 0.01346 -0.15965 0.01396 0.00% 3.68%
85 -0.12936 0.00842 -0.12911 0.01065 -0.19% 26.58%

87.5 -0.10584 0.00736 -0.10563 0.00826 -0.20% 12.15%
90 -0.08711 0.00741 -0.08731 0.00649 0.23% -12.43%

92.5 -0.07259 0.00568 -0.07283 0.00516 0.33% -9.23%
95 -0.06109 0.00363 -0.06126 0.00414 0.28% 14.25%

97.5 -0.05159 0.00346 -0.05192 0.00336 0.64% -2.87%
100 -0.04420 0.00268 -0.04430 0.00275 0.23% 2.80%

Table 7.4: Prices of fixed strike lookback put options with varying initial asset priceS0, strike
priceK = 70 and maturityT = 1.

The relative differences in the last two columns are calculated using the following formulae:

∆diff. =
CLM ∆−MC ∆

MC ∆
, Γdiff. =

CLM Γ−MC Γ

MC Γ
. (7.24)

The numerical error in the computation of the sensitivitiesis relatively small, although the values
of the error of the second derivative vary quite a lot. Especially, whenS0 is close to the strike
price the Monte Carlo estimator and the Laplace inversion values differ.

7.5.2 Error of the parameter fit

The next step is to compare prices derived by our numerical Laplace inversion method with a
Monte Carlo simulation of the corresponding NIG process. The paths of the NIG process were
simulated on an equidistant grid, which of course introduces a bias, but numerical experiments
show that a simulation of 100.000 simulated paths with 1.000grid points provides a reasonable
accuracy.
The computation times are about one hour for the Monte Carlo method and 1 second for the com-
putation of one price together with the corresponding sensitivities using the presented Laplace
inversion method. Our first example (see Table 7.5) is a fixed strike lookback call option. In
Table 7.6, prices of floating strike lookback put options arecompared.
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Prices of fixed strike lookback call options in the NIG model

S0 MC Price 95%-conf.Int. CLM
70 0.00116 (0.00051; 0.00182) 0.00088
75 0.00438 (0.00273; 0.00603) 0.00322
80 0.01202 (0.00931; 0.01474) 0.01071
85 0.03254 (0.02776; 0.03733) 0.03253
90 0.08844 (0.08092; 0.09595) 0.09083
95 0.21810 (0.20634; 0.22987) 0.23522

100 0.54534 (0.52699; 0.56369) 0.56626
105 1.23040 (1.20301; 1.25779) 1.26059
110 2.52913 (2.49046; 2.56780) 2.56846
115 4.60783 (4.55722; 4.65844) 4.74117
120 7.78941 (7.72576; 7.85306) 7.90993

122.5 9.64449 (9.57600; 9.71298) 9.86508
125 11.9014 (11.8273; 11.9754) 12.0539

127.5 14.3110 (14.2333; 14.3886) 14.4661
128 14.83000 (14.7516; 14.9083) 14.975

128.5 15.3338 (15.2547; 15.4128) 15.4928
129 15.8319 (15.7524; 15.9113) 16.01972

129.5 16.3457 (16.2658; 16.4255) 16.556
130 16.9719 (16.8910; 17.0527) 17.102

Table 7.5: Prices of fixed strike lookback call options with varying initial asset priceS0, strike
priceK = 130 and maturityT = 1.
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Prices of floating strike lookback put options in the NIG model

S0 MC Price 95%-conf.Int. CLM
70 56.1569 (56.0765; 56.2372) 56.1588
75 51.1523 (51.0661; 51.2384) 51.1611
80 46.1821 (46.0902; 46.2739) 46.1686
85 41.1983 (41.1016; 41.2949) 41.1906
90 36.1890 (36.0873; 36.2906) 36.2488
95 31.3931 (31.2864; 31.4997) 31.3932

100 26.7064 (26.5971; 26.8156) 26.7242
105 22.3340 (22.2236; 22.4443) 22.4185
110 18.6218 (18.5126; 18.7309) 18.7265
115 15.8606 (15.7538; 15.9673) 15.8990
120 13.9640 (13.8601; 14.0678) 14.0679

122.5 13.3252 (13.2226; 13.4277) 13.5231
125 13.0204 (12.9178; 13.1229) 13.2119

127.5 12.9782 (12.8746; 13.0817) 13.1239
128 12.9709 (12.8670; 13.0747) 13.1330

128.5 12.8558 (12.7526; 12.9589) 13.1509
129 13.0367 (12.9317; 13.1416) 13.1778

129.5 12.9958 (12.8911; 13.1004) 13.2141
130 13.0514 (12.9466; 13.1561) 13.2599

Table 7.6: Prices of floating strike lookback put options with varying initial asset priceS0, initial
maximumM = 130 and maturityT = 1.

The fitting procedure for HEJD processes is accurate and robust in the case of vanilla options, see
[24]. Nevertheless, especially for values ofS0 nearK andM , respectively, there is a remarkable
difference between the corresponding prices. A possible improvement could be to consider a
fitting method which concentrates more on the tail behavior of the distribution of the increments
of the underlying process. See [9], for a fitting method whichtakes that into account in the case
of fitting a HEJD to a CGMY process.

7.5.3 Overall error of the sensitivity estimators

The purpose of this subsection is to compare sensitivities of prices of fixed strike lookback op-
tions computed with a Monte Carlo method with our method, using the parameter set CLM. The
last two columns in every of the following tables are calculated via (7.24).
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Greeks of fixed strike lookback call options in the NIG model

S0 MC ∆ MC Γ CLM ∆ CLM Γ ∆ Diff. in % Γ Diff. in %
70 0.02012 0.00471 0.0215133 0.005021 6.92% 6.61%

72.5 0.03534 0.00781 0.0379496 0.008369 7.38% 7.16%
75 0.06035 0.01230 0.0647412 0.013370 7.28% 8.71%

77.5 0.10287 0.01968 0.10642 0.020297 3.45% 3.14%
80 0.16421 0.02750 0.1677 0.028963 2.13% 5.32%

82.5 0.24754 0.03792 0.251891 0.038380 1.76% 1.21%
85 0.35310 0.04624 0.358668 0.046664 1.58% 0.92%

87.5 0.47680 0.05184 0.482484 0.051717 1.19% -0.24%
90 0.60902 0.05424 0.613796 0.0527 0.78% -2.84%

92.5 0.73850 0.05136 0.743544 0.050765 0.68% -1.16%
95 0.86106 0.04752 0.866602 0.047605 0.64% 0.18%

97.5 0.97660 0.04320 0.982458 0.045664 0.60% 5.70%
100 1.09440 0.04800 1.10199 0.052875 0.69% 10.16%

Table 7.7: Prices of fixed strike lookback call options with varying initial asset priceS0, strike
priceK = 100 and maturityT = 1.

Greeks of fixed strike lookback put options in the NIG model

S0 MC ∆ MC Γ CLM ∆ CLM Γ ∆ Diff. in % Γ Diff. in %
70 -0.87740 0.31746 -0.87704 0.90464 -0.04% 184.96%

72.5 -0.44139 0.05647 -0.44126 0.05496 -0.03% -2.67%
75 -0.32881 0.03777 -0.33031 0.03604 0.46% -4.58%

77.5 -0.25198 0.02701 -0.25452 0.02544 1.01% -5.81%
80 -0.19713 0.01994 -0.20001 0.01861 1.46% -6.63%

82.5 -0.15679 0.01551 -0.15964 0.01395 1.82% -10.02%
85 -0.12624 0.01051 -0.12911 0.01065 2.28% 1.36%

87.5 -0.10313 0.00858 -0.10562 0.00825 2.42% -3.75%
90 -0.08494 0.00425 -0.08730 0.00648 2.78% 52.64%

92.5 -0.07081 0.00436 -0.07282 0.00515 2.85% 18.28%
95 -0.05947 0.00340 -0.06125 0.00414 3.01% 21.87%

97.5 -0.05034 0.00291 -0.05191 0.00336 3.13% 15.54%
100 -0.04280 0.00293 -0.04430 0.00275 3.51% -6.06%

Table 7.8: Prices of fixed strike lookback call options with varying initial asset priceS0, strike
priceK = 70 and maturityT = 1.

Note that the computation of the Greeks (∆,Γ) means almost no additional computational effort
as one can see for example by comparing the formulae in Theorem 3.1 and 3.2. As in Subsection
7.5.1, the error of theΓ values is relatively high, especially nearS0 = K.
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7.6 Conclusion

In this paper, we present explicit formulae for the Laplace transforms of prices and sensitivities
of lookback options in a hyper-exponential jump diffusion model. Since a wide class of expo-
nential Lévy processes can be approximated arbitrarily close by HEJD processes, these results
give the possibility to efficiently approximate prices of lookback options for a vast class of pro-
cesses used in financial modelling. The effectiveness of theinversion of the Laplace transformed
values was illustrated in several numerical examples.
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