
Dipl.-Ing. Johannes Loinig Bakk.techn.

Security and Performance Veri�cation

of Secure Embedded Systems

�������������

Dissertation

vorgelegt an der

Technischen Universität Graz

zur Erlangung des akademischen Grades
Doktor der Technischen Wissenschaften

(Dr.techn.)

durchgeführt am Institut für Technische Informatik
Technische Universität Graz

Vorstand: O.Univ.-Prof. Dipl.-Ing.Dr. techn.Reinhold Weiÿ

Graz, im Oktober 2012

EIDESSTATTLICHE ERKLÄRUNG

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als
die angegebenen Quellen/Hilfsmittel nicht benutzt und die den benutzten Quellen wörtlich
und inhaltlich entnommenen Stellen als solche kenntlich gemacht habe.

Graz, am .
(Unterschrift)

STATUTORY DECLARATION

I declare that I have authored this thesis independently, that I have not used other than
the declared sources/resources and that I have explicitly marked all material which has
been quoted either literally or by content from the used sources.

. .
date (signature)

Kurzfassung

Moderne Eingebettete Systeme erfordern für gewöhnlich ein hohes Maÿ an Informations-
sicherheit. Unglücklicherweise ist diese in einem System weder sichtbar noch messbar. Sie
muss als Gesamtkonzept im System und auch im Entwicklungsprozess berücksichtigt wer-
den. Sorgfältige Systemveri�kation ist notwendig um sicherzustellen, dass alle Sicherheits-
anforderungen implementiert wurden. Solche Veri�kationen auf Systemebene sind bei der
Komplexität heutiger Systemen sehr aufwändig und deswegen besonders teuer.

Die Berücksichtigung von Sicherheitsanforderungen während eines Hardware/Software Co-
design Prozesses hat einen groÿen Vorteil: Die Anforderungen können von Beginn des
Entwicklungsprozesses an berücksichtigt werden und somit fortlaufend mit dem Rest des
Systems bezüglich Kriterien wie der Ausführungsgeschwindigkeit optimiert werden. Aller-
dings ist darauf zu achten, dass Optimierungen Verletzungen von Sicherheitsanforderungen
zufolge haben können. Deswegen ist eine fortlaufende und automatisierte Sicherheitsveri-
�kation in einem iterativen Codesign-Prozess unumgänglich.

Diese Arbeit beschreibt einen innovativen und iterativen Entwicklungsprozess. Dieser er-
laubt die fortlaufende Optimierung und Veri�kation des Systems. Der Entwicklungsprozess
basiert auf einem Systemmodell welches iterativ verfeinert und optimiert wird. Dies wird
wiederholt bis alle Systemanforderungen erfüllt sind. Jede Iteration beinhaltet dabei ihre
eigene Veri�kation aller Sicherheitsanforderungen. Dies stellt sicher dass Verletzungen von
Sicherheitsanforderungen unverzüglich bemerkt und behoben werden.

Der wissenschaftliche Beitrag dieser Dissertation ist ein innovativer Hardware/Software
Codesign-Ansatz inklusive der Veri�kation von Sicherheitsaspekten basierend auf einer
systemweiten Simulation. Die nahtlose Integration von (informationstechnischen) Sicher-
heitsanforderungen in das System sowie auch in den Entwicklungsprozess erlaubt eine re-
gelmäÿige Optimierung und automatisierte Veri�kation des Systems. Das Konzept beruht
auf ergänzende Informationen (sogenannte Meta-Informationen) die im Model bzw. in der
Implementierung des Systems eingebettet sind. Diese Informationen können zur Laufzeit
oder während einer Simulation ausgewertet werden und helfen das System zu Analysieren,
zu Optimieren und auch zu Veri�zieren. Unter anderem wurde eine solche Veri�kation im
Zuge dieser Dissertation mittels Formalen Methoden durchgeführt.

Abstract

Modern embedded systems very often need to provide a certain level of information secu-
rity. Unfortunately the security of a system is not very visible or measurable. Security is
not only system wide concept; it has also to be integrated into the development process.
Careful security veri�cation has to be done to evaluate if the system ful�lls all security
requirements. Such veri�cation is a system wide task and for systems with modern com-
plexity typically a very time consuming and expensive task.

Adding security aspects during hardware/software codesign has the great bene�t that they
can be considered from the beginning of the development process. They can be continu-
ously optimized with the remaining system. However, this raises the question how to avoid
an unrecognized violation of security requirements along optimizations. Consequently se-
curity veri�cation has to be integrated into the iterative re�nement loops of the codesign
process. Accordingly veri�cation has to be an automated task.

This thesis explains a novel iterative development process that allows continuous system
optimization, security veri�cation, and functional veri�cation. It is based on a system
model that is iteratively re�ned and optimized until all functional requirements are met.
Each iteration contains a simulation based security veri�cation. This ensures that any
appearing security violation is immediately recognized.

The novel approach in this thesis is based on additional information (so called meta-
information) in the model or implementation of the system. This meta-information can
be evaluated during runtime or system simulation time and is used to analyze, optimize,
and verify the system. For security veri�cation the meta-information represents functional
security requirements. During simulation this data is evaluated to determine the dynamic
dependencies of system modules and security requirements. Based on that a security ver-
i�cation is performed e.g., by using a formal tool like a model checker.

Thus, the main contribution of this thesis is a novel hardware/software codesign method-
ology which allows simulation based security veri�cation. The seamless integration of
security requirements in the development �ow allows continuous optimization and veri�-
cation of the system. This is combined with a model checking approach to gain from the
bene�ts of formal veri�cation while staying applicable for industrial development of secure
embedded systems.

Acknowledgements

First, I would like to thank my supervisor Prof. Dr. Reinhold Weiÿ for his helpful advice
and mentoring throughout my dissertation research and writing processes at the Institute
for Technical Informatics at the Graz University of Technology. I would also like to thank
Dr. Christian Steger for his technical and organizational support during the runtime of
the project and beyond. In addition, a great thanks to all of my colleagues at the institute,
and above all, a sincere thanks to Silvia Reiter who patiently helped me with most of the
organizational formalities at the university.

I would like to thank Andreas Mühlberger at NXP Semiconductors Austria, who along with
Dr. Christian Steger made this project possible. My very special thanks goes to Ernst
Haselsteiner who was always a great mentor and even in di�cult times always found some
time to help me with my work at NXP and at the university. Also, many thanks to all the
colleagues at NXP in Gratkorn and in Hamburg who never failed to provide a helping hand
when I needed one.

Last, but not least, I would like to thank my family. I would heartily like to thank my wife
Brigitte and my daughter Anna for their patience when I had to work instead of spending
time with them. I would also like to thank my parents, my grand parents, and my parents-
in-law for their tremendous support in the last years.

Lannach, October 2012 Johannes Loinig

Extended Summary

Modern embedded systems provide services for communication and information exchange,
entertainment, education, and much more. Almost all of these use cases come with one
key requirement that has shown to be extremely important in recent years: embedded
systems need to provide a high level of information security. The main reason for this
lies in the nature of embedded systems. They are placed (embedded) wherever they are
needed, which makes them easily accessible not only for users but also for attackers.

Information security is a moving target. Attack methodologies and technologies are con-
stantly improving continuously. Early smart card attack methods, for example, strategi-
cally interrupted the power supply in order to cause system inconsistencies. Smart cards
(which are typical secure embedded systems) need to provide a so called anti-tearing mech-
anism to counteract such an attack. Now, only few years later attackers use much more
sophisticated ways such as power glitches and laser attacks, to attack secure systems. De-
velopers of secure embedded systems have to take under consideration that ways to coun-
teract attacks might have to change even before development is �nished. Consequently,
the development process of secure embedded systems has to be �exible enough to react
e�ectively to constantly changing security requirements.

Unfortunately, security is not a very visible or measurable property. In order to verify the
security level of a system, it has to be carefully evaluated. Speci�cally, it has to be eval-
uated wether the level of security is capable of countering all potential attacks. Security
is a system wide concept. It has to be considered in every part of the entire system and
from the very beginning of the development process. Accordingly, security veri�cation is
a system wide task.

Hardware/software codesign proved to be highly applicable for optimization of systems on
an architectural level. Taking information security into account during hardware/software
codesign allows development of secure and highly optimized systems. However, it also
raises some questions. How can developers make sure that the security level is not com-
promised by mistake during optimization? How could a developer recognize such a case
early enough in the development process? This thesis aims to discuss possible solutions
for these problems.

This dissertation is the result of the HiPerSec project, funded by the Austrian Federal
Ministry for Transport, Innovation, and Technology under contract FFG 816464. Project
partners include the Institute for Technical Informatics, Graz University of Technology,
and NXP Semiconductors Gratkorn, Austria. HiPerSec was started in order to investigate
new hardware/software codesign methodologies that provide su�cient information for per-
formance and security evaluations of secure embedded systems.

Common security veri�cation methodologies are either performed manually or based on
formal models. Manual veri�cation is typically used in industrial environments, while for-
mal veri�cation is mainly used in research studies. The reason for this discrepancy is that
formal methods are not yet applicable for systems with industrial complexity because of
their immense computational e�ort. Furthermore, manual veri�cation is a rather docu-
mentation centric approach. During veri�cation, documentation is �rst checked against
the speci�cation. Then, the implementation has to be veri�ed against the documenta-
tion. On the contrary and as shown in Figure 1, the methodology discussed in this thesis
proposes an implementation centric approach1. Veri�cation is embedded in an iterative
hardware/software codesign process. It becomes automated, it is performed on system
level and is considering all necessary system components, and it is also independent of the
abstraction levels used during development.

System
Development

Process

System
Specifciation

Common
Documentation Centric
Verification Process

Novel Implementation
Centric Verification

Approach

Implementa-
tion

Design
Documenta-

tion

Figure 1: Common Documentation Centric Veri�cation Approach vs. Novel Implementa-
tion Centric Veri�cation Approach. Common documentation centric veri�cation approaches are based on
documents which describe the mapping between system speci�cation and system implementation. Conversely, in an
implementation centric approach the implementation itself is veri�ed automatically against the speci�cation.

This thesis explains a novel iterative development process that allows continuous system
optimization, security veri�cation, and functional veri�cation shown in Figure 2. Func-
tional and security speci�cations are used to create a system model. The model is then
re�ned and veri�ed iteratively. This process consists of (a) modeling the functional parts of
the system as well as the security architecture, (b) a model based simulation to gather sys-
tem parameters, (c) an analysis and veri�cation of the simulation results, and (d) re�ning
and optimizing the system. Iterations are repeated until the system meets all functional
and security requirements. Each iteration includes a simulation based security veri�ca-
tion2, which ensures that the previous re�nement or optimization step did not cause any
violation of security requirements. Analysis showed that smart card hardware systems

1J. Loinig, C. Steger, R. Weiss, and E. Haselsteiner, Towards formal system-level veri�cation of security
requirements during hardware/software codesign, in SOC Conference (SOCC), 2010 IEEE International,
pp. 388-391, Sept. 2010.

2J. Loinig, C. Steger, R. Weiss, and E. Haselsteiner, Idea: Simulation Based Security Requirement
Veri�cation for Transaction Level Models, in Engineering Secure Software and Systems (ESSoS), vol. 6542
of Lecture Notes in Computer Science, pp. 264�271, Springer Berlin / Heidelberg, 2011.

include dozen of applied security requirements where 70 to 90 percent of them could be
veri�ed by demonstrated simulation based and automated veri�cation approaches. This
implies a signi�cant reduction of e�ort during the development process of a system.

Furthermore, simulation based functional veri�cation3 allows detailed functional veri�ca-
tion of system-states that are di�cult to reproduce in �nal implementations. A simulation
based veri�cation of anti-tearing mechanisms of smart cards shows an improvement of 20%
and more in veri�cation performance.

Iterative
Development
Process for

Secure
Embedded Systems

Model

Analysis and
Verification

SimulationRefinement and
Optimization

Functional
Specification

Security
Specification

Final Product

Figure 2: Overview of Iterative Development for Secure Embedded Systems. Functional and
security speci�cations are implemented in a system model. This model is simulated, analyzed, veri�ed, re�ned, and
optimized in an iterative process until all requirements are met.

The novel approach in this thesis is based on evaluating meta-information during system
simulation. Meta-information is machine readable textual data added to the source code
of system modules. This additional data does not in�uence the model's functional be-
havior, but it can be evaluated by the executing or simulating environment. We used
meta-information to analyze, optimize, and verify systems. A meta-information based
analysis of a smart card operating system showed4 that 60% of the implemented software
functions have to be security veri�ed. Furthermore, it identi�ed software functions which
are important for system veri�cation. This knowledge makes system veri�cation more e�-
cient and lowers the risk of overlooking some functions. In addition, the analysis revealed
that 50% of these functions do not need all the security mechanisms every time they are

3J. Loinig, C. Steger, R. Weiss, and E. Haselsteiner, Fast simulation based testing of anti-tearing
mechanisms for small embedded systems, in Test Symposium (ETS), 2010 15th IEEE European, p. 242,
May 2010.

4J. Loinig, C. Steger, R. Weiss, and E. Haselsteiner, Identi�cation and Veri�cation of Security Relevant
Functions in Embedded Systems Based on Source Code Annotations and Assertions, in Information Se-
curity Theory and Practices. Security and Privacy of Pervasive Systems and Smart Devices, pp. 316-323,
Springer, 2010.

used. This implies great potential for performance optimizations.

A meta-information based system optimization5 of an anti-tearing mechanism showed a
reduction of costly (time and power) write-operations to non-volatile memory. 25% to
70% of write-operations in embedded systems can be prevented when appropriate meta-
information is evaluated during runtime of the system. Research6 has shown that this can
improve the execution time of smart card payment applications by more than 17%.

As shown in Figure 3, meta-information derived from the system's security speci�ca-
tion is used to represent functional security requirements for security veri�cation. Meta-
information is then added to its respective system model module. This information is not
dependent on how a requirement is implemented, consequently allowing enough �exibil-
ity for a codesign process. Speci�cally, when a functional module description is altered,
meta-information can remain unchanged. A complete model simulation is performed to
understand the dynamic dependencies of all the system modules. The functional module
descriptions de�ne this dynamic behavior. In order to perform security veri�cation, any
dynamic dependencies of present security requirements need to be resolved by evaluation
of mata-information during a simulation.

Analysis and
Verification

Simulation

Model

Specification

Simulation Environment

System
Module

Functional
Description

Meta-
Information

System
Module

Functional
Description

Meta-
Information

Functional
Specification

Security
Specification

Dynamic Functional
Dependencies

Dynamic
Meta-Information

Dependencies

Functional Verification
Result

Security Verification
Result

Figure 3: Simulation Based Meta-Information Evaluation. While the functional speci�cation
is modeled by functional descriptions, the security speci�cation is represented by additional information (meta-
information). Together the functional description and the meta-information are evaluated during the simulation of
the system model to verify the functional behavior as well as the correct implementation of the security speci�cation.

5J. Loinig, P. Glatz, C. Steger, and R. Weiss, Performance Improvement and Energy Saving Based on
Increasing Locality of Persistent Data in Embedded Systems, in Systems (ICONS), 2010 Fifth International
Conference on, pp. 175-180, April 2010.

6J. Loinig, C. Steger, R.Weiss, and E. Haselsteiner, Java Card Performance Optimization of Secure
Transaction Atomicity Based on Increasing the Class Field Locality, in Secure Software Integration and
Reliability Improvement. SSIRI 2009. Third IEEE International Conference on, pp. 342-347, July 2009.

In addition the veri�cation approach presented in this thesis includes a new way of ap-
proaching for formal veri�cation of modeled security architecture7. Security speci�cation
is not only used to add meta-information to the system model, as previousely described,
but it is also used to de�ne a set of formal rules also known as a formal security policy.
After simulation of a system, simulation output which contains any dynamic dependencies
of the security requirements, is veri�ed against such a security policy. This is done by
using a formal model checker as depicted in Figure 4. Automated simulation-based formal
veri�cation of a sample smart card, which includes hardware and software components and
di�erent abstraction levels, takes less than 90 seconds when performed on a conventional
personal computer with a security policy that includes multiple interdependent security
requirements. This constitutes acceptable veri�cation performance for an iterative devel-
opment process, such as described in this dissertation.

Analysis and
Verification

Simulation

Model

Specification

System Model including
Meta-Information

Security Specification

Security Policy

System Simulation
evaluating

Meta-Information

Formal Model Checking
Dynamic

Meta-Information
Dependencies

Formal Security
Verfication Result

Figure 4: Formal Simulation Based Security Veri�cation Concept. The security speci�cation is
formalized in a security policy. The simulation results of the system model are veri�ed by model checking against
this formal policy. This allows proving that the requirements in the security speci�cation are correctly applied in
the system model.

Overall, the main contribution of this thesis to the research of secure embedded systems
is a novel hardware/software codesign methodology which allows simulation based secu-
rity veri�cation. Seamless integration of security requirements into the development �ow
allows continuous optimization and veri�cation of any given system. Because of contin-
uous veri�cation, optimization can be done without risk to violate security requirements.
Additionally, another key contribution of this thesis is the concept of simulation based
formal veri�cation approach, which allows fast formal veri�cation of security requirements
in system models independently from the abstraction level of a model. The main purpose
of this approach is to make formal approaches applicable for industrial development of
secure embedded systems.

7J. Loinig, C. Steger, R. Weiss, and E. Haselsteiner, Security Veri�cation on Mixed Level SystemModels
based on Event Calculus Model Checking, Journal of Systems Architecture (under review), Elsevier B.V

Contents

Table of Contents x

1 Introduction to Security and Performance Veri�cation of Secure Systems 1

1.1 Motivation . 1
1.2 A De�nition of Information Security and System Security 2
1.3 Problem Statement . 4
1.4 The HiPerSec Project . 4
1.5 Contribution and Signi�cance . 5
1.6 Overview of this Thesis . 5

2 State of The Art Development and Veri�cation Methodologies 6

2.1 Secure Embedded Systems . 6
2.2 Smart Cards and Java Cards . 7
2.3 Common Criteria for Security Evaluation . 8
2.4 Hardware Software Codesign . 9
2.5 System Level Veri�cation . 10
2.6 Event Calculus . 11
2.7 Summary . 12

3 Novel Codesign Methodology for Veri�cation of Secure Embedded Systems 13

3.1 Methodology Overview . 13
3.2 System Security Speci�cation . 14
3.3 Secure System Model . 18
3.4 Simulation Based Veri�cation . 20
3.5 System Optimizations . 22

4 Methodology Evaluation and Case Studies 24

4.1 Common Basics for the Case Studies . 24
4.2 Simulation Based Functional Veri�cation . 25

4.2.1 Java Card Anti-Tearing Mechanism . 26
4.2.2 Case Study 1: Veri�cation of an Anti-Tearing Mechanism 27

4.3 Evaluation of the Concept of Meta-Information . 27
4.3.1 Case Study 2: System Optimization based on Meta-Information 28
4.3.2 Case Study 3: Identi�cation of Security Relevant System Components . . . 29

4.4 Simulation based Security Veri�cation . 30
4.4.1 Case Study 4: Simulation based System Security Veri�cation 31
4.4.2 Case Study 5: A (Semi-) Formal Event Calculus based Model Checking

Approach . 32
4.5 Evaluation Summary . 37

ix

5 Conclusion and Future Work 39

5.1 Conclusion . 39
5.2 Future Work . 40

6 Publications 42

6.1 Security Veri�cation on Mixed Level System Models based on Event Calculus Model
Checking . 43

6.2 Identi�cation and Veri�cation of Security Relevant Functions in Embedded Systems
Based on Source Code Annotations and Assertions 58

6.3 Idea: Simulation Based Security Requirement Veri�cation for Transaction Level
Models . 66

6.4 Towards Formal System-Level Veri�cation of Security Requirements during Hard-
ware/Software Codesign . 74

6.5 Performance Improvement and Energy Saving based on Increasing Locality of Per-
sistent Data in Embedded Systems . 78

6.6 Java Card Performance Optimization of Secure Transaction Atomicity Based on
Increasing the Class Field Locality . 84

6.7 Fast simulation based testing of anti-tearing mechanisms for small embedded systems 90

References 97

A Additional Information 101

A.1 Axioms of the Event Calculus Domain Description 101
A.2 Call Graph of the Java Card Application JavaPurse 102
A.3 Event Calculus Symbols of Security Requirements 103

List of Tables

4.1 Number of Security Functional Requirements in Smart Card Hardware Platform
Security Targets of di�erent Vendors . 31

4.2 Security Policy Rules . 33
4.3 Veri�cation Times with split Trace File . 37

A.1 Event Calculus Domain Descriptions of Security Veri�cations 102
A.2 Symbols and Explanations of Functional Security Requirements 104

xi

List of Figures

1 Common Documentation Centric Veri�cation Approach vs. the Novel Implementa-
tion Centric Veri�cation Approach . v

2 Overview of Iterative Development for Secure Embedded Systems vi
3 Simulation Based Meta-Information Evaluation . vii
4 Formal Simulation Based Security Veri�cation Concept viii

3.1 Overview of the Novel Codesign Methodology . 14
3.2 Extraction of Rules from a Security Speci�cation 15
3.3 Relationships of SFR Dependency Predicates: (a) requires/implements and (b) ful-

�lls/expects . 16
3.4 Abstraction Levels of the Novel Codesign Methodology 18
3.5 Simulation Based Veri�cation Approach with Meta-Information 21
3.6 Overview of the (semi-) formal Simulation based Security Veri�cation Approach . . 22

4.1 Java Card Overview . 25
4.2 The Tearing Problem . 26
4.3 Performance of Functional Veri�cation of an Anti-Tearing Mechanism with and with-

out Test Vector Compaction . 27
4.4 Performance Gain for an Anti-Tearing Mechanism with Meta-Information based

Data Allocation . 28
4.5 Performance Optimization Results of using Meta-Information with an Anti-Tearing

Mechanism . 29
4.6 Results of Meta-Information based Analysis . 30
4.7 Evaluation of Meta-Information in SystemC during Simulation 32
4.8 Security Requirement Traces of BAC Authentication in a High Level Model 34
4.9 Complete Security Requirement Trace of BAC Authentication in a High Level Model 35
4.10 Shortened Security Veri�cation Output with f2lp 35
4.11 Smart Card Models under Re�nement and Veri�cation 36
4.12 Veri�cation Performance . 36

A.1 Call Graph of JavaPurse . 103

xii

List of Abbreviations

APDU Application Protocol Data Unit
API Application Programming Interface
BAC Basic Access Control
BP Backup Phase
CC Common Criteria
EAL (Common Criteria) Evaluation Assurance Level
EC Event Calculus
EEPROM Electrically Erasable Programmable Read-Only Memory
ES Embedded System
F(L)M Functional (Level) Model
FPGA Field Programmable Gate Array
FR Functional Requirement
GC Garbage Collector
JCVM Java Card Virtual Machine
LPI Logical Page Identi�er
MCIF Model-to-Checker Interface
NVL New Value Logging
OS Operating System
OVL Old Value Logging
PPI Physical Page Identi�er
PSL Property Speci�cation Language
RFID Radio Frequency Identi�cation
RP Restore Phase
SA Security Annotation
SAF(L)M Security Annotated Functional (Level) Model
SC Security Constraint
SDL Spatial Data Locality
SF(L)M Secure Functional (Level) Model
SFR (Common Criteria) Security Functional Requirement
ST (Common Criteria) Security Target
ST(L)M Secure Transaction (Level) Model
SIL Secure Implementation Level
TB Transaction Bu�er
TDL Temporal Data Locality
TLM Transaction Level Model
TM Transaction Mechanism
TOE (Common Criteria) Target of Evaluation
TV Test Vector
UML Uni�ed Modeling Language
VM Virtual Machine

Chapter 1

Introduction to Security and

Performance Veri�cation of Secure

Systems

This chapter introduces the topic of security and performance veri�cation of secure systems.
More precisely, in all case study examples of this work Java Cards as typical representatives
of secure systems are veri�ed. It also shows the necessity for new design and veri�cation
methodologies to be developed for future secure systems. To arrive at a common under-
standing of the term secure system, and in order to provide a contextual background for
this work, Section 1.2 of this thesis de�nes the terms information security and system
security.

Furthermore, this thesis is a summary of the HiPerSec project and its results. HiPerSec
is presented in more detail in Section 1.4. The underlying problem statement for this
research project is given in Section 1.3. The contribution and signi�cance of this thesis are
explained in Section 1.5. Finally, Section 1.6 gives a detailed overview of all other chapters
in this work.

1.1 Motivation

Taking a through look at today's embedded systems, it became apparent that a clear
de�nition of such systems does not exist. Technological advancements such as the Internet
and mobile communication cause almost every system to be somehow embedded in a
broader system. Even very pure functions such as mobile multimedia systems (like MP3
players), are equipped with sensors and interfaces in order to remain connected with the
reset of the world. Perhaps that is why they became so popular and have �nally even
reached the end-user marked.

Embedded systems are used on a very broad spectrum of use cases. For example, they
are used for mobile communication, information exchange, education, entertainment, and
much more. These use cases come with one common feature: a high number of items sold.
The high pro�t potentials made them interesting for the industry, but it also made them
very interesting for attackers. The more people use a certain system, the more pro�table it
can be to exploit a certain vulnerability of that system. This becomes even more relevant

1

1. Introduction 2

when a system, in the hands of an end user or an attacker, obviously gives them more
desirable or undesirable control over the system.

Practice has shown that if it is pro�table to exploit vulnerabilities (in some cases even
if it is not pro�table), people will try to do so, and in some cases they will succeed.
Consequently the number of attacks, their quality, and their e�ciency is continuously
growing in correspondence with the number of existing embedded systems, use cases, and
users. This requires the industry, and also the research community, to work not only
on more sophisticated countermeasures against attacks but also on better methodologies
to develop and evaluate systems with respect to security and other functional and non
functional properties.

This work explains and discusses such a novel methodology for security and performance
veri�cation of embedded systems. Systems which are not considered in this work are PC-
like or server based systems for example ones providing distributed computing, information
hosting or processing, web applications, and so on. None of the fundamentals of this work
are restricted to embedded systems. Thus, they could be applied to more complex systems
as well. However, additional aspects which are not directly essential for the security of
a certain embedded system (i.e. protocol security) have to be considered as well. Even
though it has not been shown that these aspects can't be handled by the methodology
explained in this work, additional case studies would be needed to prove its applicability.

1.2 A De�nition of Information Security and System Security

Brie�y looking up the terms information security and system security shows that there is no
explicit de�nition for them. Taking into account all the di�erent use cases of systems that
need security, it quickly becomes obvious why there can't be such a de�nition. Precisely,
di�erent use cases mean di�erent potential attack scenarios. This further means di�erent
countermeasures are necessary, but not only do the countermeasures de�ne if a system is
su�ciently secure, other aspects have to be considered as well. The following sections of
this thesis discuss and de�ne the meaning of security in the context of our research.

Attacks, Countermeasures, and Risks

Con�dentiality, integrity, and availability are typically used to explain information security.
Con�dentiality means that information is protected from being read and understood by
unwanted entities. Integrity protects data against undetected changes. Availability ensures
that a system can be used whenever needed. Even though there are well de�ned, and much
more detailed, explanations for these properties, they have a very theoretic nature and are
not universally applicable for di�erent systems. The following example should explain this
argument.

Considering an MP3 player, a user would most probably not really care if a person is
able to unintentionally read the data on the device (con�dentiality issue). Even unwanted
changes to the data (integrity issue), although surely unpleasant for the user, would prob-
ably be acceptable for them if the device was cheap enough. As long as data availability is
not signi�cantly reduced by an attack, the customer would probabbly consider the product
as secure enough. Considering a banking card, the situation obviously becomes completely
di�erent, even though from a technical point of view the underlying technology of both

1. Introduction 3

devices is not that di�erent. The price of the device cannot be the reason for the di�erent
meaning of security, as most banks charge less money for a banking card as than the cost
of a typical MP3 player. From this simplistic, but plausible example, we can easily derive
the �rst part of a de�nition for system security:

De�nition 1. If a system is secure or not, depends on potential risks that come with the
system's use cases. Speci�cally, security mechanisms implemented in the system's hardware
and software have to e�ectively reduce the risk caused by potential attacks to an acceptable
degree

The Life Time Cycle of Secure Systems

Industry, researchers, evaluation laboratories, and attackers are continuously investigating
how secure systems can be attacked. This includes developing new attacks, making them
more e�cient, and making them easier and respectively cheaper to apply. This has to be
taken into account when countermeasures are developed and when the life time cycle of a
system is being de�ned. Again, this is explained by a short example.

Around 1998, �rst attacks based on disturbances in a processor were successfully ex-
ecuted [1, Chapter 8.2]. First, this was done by using very intense �ash lights, but soon
very expensive laser cutters had to be used to overcome the shields and sensors of a secure
micro controller. The attacks had a very theoretic nature as only a few organizations world
wide had the necessary equipment and know-how to perform such attacks. However, laser
technology improved signi�cantly and become comparatively cheap in recent years, mainly
due to the use of diode lasers. Today, 13 years later, every organization that seriously
works on secure embedded systems owns a laser attack setup that can automatically scan
a chip's surface for vulnerable points. Multiple laser attacks are easily possible, even if
performed at di�erent places on the chip, and at di�erent time points.

One may argue that 13 years of investigation of better attacks and laser technology is
not a short time. However, we have to look at this relatively and take into account the life
cylce of secure systems. Banking cards are valid for a few years, credit cards even longer,
and electronic government documents, such as passports can have a life cycle of a decade
and longer.

In sum, security is a fast moving target which, has to be ahead of it's times. In other
words, it is not su�cient if a countermeasure is only able to protect against an attack
today. The countermeasure should be able to protect the system during it's complete life
cycle.

De�nition 2. A system is secure if its countermeasures can be considered to be adequate
for the full life time of a given system.

Of course it is possible that new attacks, methods, or technologies get invented that
brake a security mechanism. This makes it even more important for the industry to have
methodologies in place that allow appropriate and fast reaction to such cases.

Veri�able Security

While it is rather easy to verify if a system is able to functionally cope with a use case,
this does not hold for most of the security mechanisms. Typical security mechanisms are

1. Introduction 4

invisible during a regular operation. Their strengths and weaknesses only show up when
the system is under attack. Performing an attack for veri�cation reasons is like applying a
test vector to a device under test. Like testing cannot show that there is no bug, applying
certain attacks cannot show that there are no vulnerabilities. Instead, the development
and veri�cation methodology has to be able to give evidence that all requirements are
ful�lled to provide the necessary countermeasures.

De�nition 3. A system can only be considered as secure if its countermeasures are suc-
cessfully veri�ed against all known attacks with respect to the system's use cases.

Security veri�cations are done by internal stakeholders, typically within the develop-
ment or quality assurance team, and external stakeholders. Latter ones can be customers,
laboratories, researchers, and other evaluation organizations. For high secure applications
security veri�cations can be explicitly required by customers or governmental regulations.

1.3 Problem Statement

It is known that a system cannot be made secure by taking certain system components into
account only [2] while ignoring others. Instead, security has to be a system wide concept
that is considered from the very �rst beginning of the design and development phases.

Hardware/software codesign has shown to be well applicable for the development of
devices which have to be optimized [3] for system parameters such as execution perfor-
mance, chip size, or power consumption. Regarding such parameters security mechanisms
can be optimized like other functionalities of a system but when doing so an additional
risk of decreasing the security has to be expected.

To solve this, security veri�cation has to �nd its way to the hardware/software codesign
concept. This has to be achieved without restricting it to certain components, abstraction
levels, or implementation layers. Furthermore, it should not signi�cantly reduce �exibility
or agility of the underlying hardware/software codesign idea.

1.4 The HiPerSec Project

This thesis is the summarized result of the HiPerSec project. HiPerSec was funded by the
Austrian Federal Ministry for Transport, Innovation, and Technology under contract FFG
816464. Project partners are the Institute for Technical Informatics at the Graz University
of Technology and NXP Semiconductors Gratkorn Austria. The project funding mode is
a dissertation grant (German: Dissertationsstipendium).

Project Goals

The project partners already had experience with hardware/software codesign method-
ologies and secure embedded systems. They recognized a �aw for designing, modeling,
implementation, and veri�cation of security mechanisms in existing development method-
ologies. The HiPerSec project was started to investigate in future methodologies without
this de�ciency. The main research goal in the accepted FFG project proposal was formu-
lated as:

1. Introduction 5

[...] Develop a Hardware/Software codesign methodology that is able to provide
su�cient information for a design space evaluation with respect to security and
performance. [...]

This was split in following sub goals:

• A hardware/software codesign approach should be used to allow concurrent develop-
ment of hardware and software of secure embedded systems - especially smart cards
and Java Cards.

• The codesign methodology should allow early architectural optimizations and the
veri�cation of

� system performance and

� system security.

1.5 Contribution and Signi�cance

This thesis comprises following major contributions:

1. The thesis describes a concept of a hardware/software codesign methodology that
allows simulation based veri�cation of system parameters. The main novelty is the
embedded veri�cation of security requirements in all design phases and abstraction
levels [4, 5]. This allows optimization of security mechanisms in a system wide ap-
proach without the risk of unwanted reduction of the system's security level.

2. To do so, meta-information is included into system models and implementations.
Such meta-information is shown to be suitable for system optimization [6, 7] and
system veri�cation [7�9].

3. Furthermore, a novel veri�cation approach is discussed that combines the hard-
ware/software codesign methodology with a formal Event Calculus model checking
approach [4, 5, 10]. This is used to continuously perform formal and semi-formal
security veri�cation during the iterative hardware/software codesign process.

1.6 Overview of this Thesis

The remainder of this thesis is organized as follows: Chapter 2 describes related work and
the state of the art of secure embedded systems, security evaluation, hardware/software
codesign, and system level veri�cation. Chapter 3 explains the proposed novel codesign
methodology for secure embedded systems. This starts with a methodology overview, con-
tinues how to specify secure systems, and describes system models and their simulation and
veri�cation. The chapter is closed by summarizing optimization strategies. Chapter 4 ex-
plains how the novel codesign methodology was evaluated. This includes simulation based
functional veri�cation, security veri�cation, and formal veri�cation. Chapter 5 concludes
this thesis and provides an outlook on possible future work. Finally, Chapter 6 lists the
publications related to this dissertation.

Chapter 2

State of The Art Development and

Veri�cation Methodologies

2.1 Secure Embedded Systems

Security has to be a system wide concept. According to [2], making a system secure is
a design problem that needs an integrated approach in order to be solved. It has to be
handled on all abstraction levels such as the protocol level, algorithm level, architecture
level, and the implementation levels below. In clear text, security is much more than
just adding certain security mechanisms like cryptographic processors or virus scanners.
One has just to think about secret cryptographic keys stored in an embedded system
and used by a cryptographic processor. Even if the cryptographic processor is designed
and developed in a perfect way, this is of no use if the keys are handled in an insecure
way. Obviously, the security concept which may be based on the secret keys is a�ected
by system wide components that are not directly related to the cryptographic processors.
Several examples are the memory (like ROM or EEPROM where the keys are stored) and
parts of the software which copy the keys from ROM to the cryptographic processor.

In addition, security has to be embedded deeply in the development process and con-
sidered as early as possible in the design life cycle [11]. Very often, security experts are the
only people in the development team that understand all necessary security requirements.
However, the system cannot be developed only by security experts who might only do the
system architecture. In fact, the implementation of the system has to make the security
concept to become real. This is typically done by a number of hardware and software
developers who often do not know all the security background. The design and develop-
ment process has to close the gap between the secure design done by security experts and
its implementation in order to overcome the risk that the security concept is damaged by
wrong implementation decisions or mistakes.

Di�erent approaches to handle the development of a secure embedded system were
investigated. The Common Criteria (CC) [12�14] de�nes the de-facto process for security
evaluation. However, it does not de�ne in detail how the development or veri�cation of the
system has to happen in order to guarantee the necessary system security. It seems that
there is a lack of clear relationship between the CC process and the system development
approach [15]. The CC will be discussed in more detail in Section 2.3. Security veri�cation

6

2. State of The Art Development and Veri�cation Methodologies 7

methodologies are summarized in Section 2.5.
Especially when thinking about embedded systems, where resources like a chip's foot-

print or the available power or energy are strongly limited, optimizations are essential in
making a system comply with the requirements of its use cases. It has to be ensured
that undesirable tradeo�s between security and other constraints do not happen [11]. The
authors of [2] propose a codesign of domains instead of a codesign of implementations
where security is one of the domains (and e.g., graphics and networking are others). Vari-
ous types of security are discussed and described as elements of a security pyramid: user
authentication, con�dentiality, privacy, and much more. However, [2] also states the hard-
ware/software codesign problem to �nd a valid mapping between the implementation of
the system and these elements.

One of the smallest secure embedded systems are smart cards, used in high secure
applications like banking and e-government. The next section summarizes some related
work around smart card development.

2.2 Smart Cards and Java Cards

Smart cards are pocket sized computers. Around the 1970s the idea of placing integrated
circuits on a plastic card to provide processing capabilities was born [1, 1.1 The History
of Smart Cards]. Since that time, on the one hand, a lot of improvements have been
done. Today's smart cards are equipped with contact and contactless interfaces, non-
volatile memory, cryptographic co-processors, operating systems like MULTOS [16] and
Java Card [17], and much more. On the other hand, mainly caused by their very small
footprint, most commonly used smart cards are still based on an old 8-bit 8051 architecture
with some few kBytes of RAM and some few hundred kBytes of non-volatile memory
(typically EEPROM or FLASH). Obviously this signi�cantly limits the computational
power of these systems.

While MULTOS [16] is a native operating system where the smart card applications
are programmed with a native programming language like C or assembler and executed di-
rectly on the processor on the smart card, Java Cards provide a Java Runtime Environment
including a Java Virtual Machine. Java Card applications (so called applets or cardlets)
are programmed in the object oriented high level language Java and compiled to an in-
termediate representation (e.g., bytecodes). Thus, applets are executable on any smart
card, ful�lling the Java Card speci�cation - independently from the underlying hardware
or its vendor. The Java Runtime Environment is an additional software layer providing
functional features like an API and many security improvements [18] like strong typing of
variables (handled during compile time of the applications) and checks of access rights to
data stored on the card (executed during the runtime of the applet).

Schneier states in [19] that the main problem of secure embedded systems like smart
cards is that the person who is carrying the card is typically not the owner of the data on
the card. In other words, the card holder is not the card or data owner. For example, the
card holder can be the legal holder of a credit card, or it can be a fraud who is trying to
misuse a stolen card. Consequently, the card holder must not be able to access data on
the card without restrictions. Notice, that in detail much more entities are involved in the
smart card business: the card holder, the card terminal, the data owner, the card issuer,

2. State of The Art Development and Veri�cation Methodologies 8

the card and terminal manufacturer, software manufacturer... The security system on the
smart card must ensure that only the card or data owner is under control of the card.
In addition, Schneier discusses the technical di�erences between smart card systems and
other typical computers [19]. The functionality of a smart card system is split unusually,
as the card is unable to interact with the world (it has no outside peripherals).

Attacks, security mechanisms, and standards are evolving very rapidly [11]. Even
though smart cards are very small systems, their complexity is far too high to prove com-
plete implementations. In order to have a methodology for security evaluation, the Com-
mon Criteria (CC) were developed. The next section gives a summary of the idea behind
a CC evaluation. Formal methods to prove the system are discussed later in Section 2.5.

2.3 Common Criteria for Security Evaluation

Common Criteria [14] is the de-facto standard for security evaluation. This thesis does
not include a full documentation of the CC process. Instead, it describes the basic concept
of Security Functional Requirements (SFRs) which is in common with the methodology
discussed in this dissertation. Details of the complete CC evaluation process can be looked
up in [12] and [14].

The CC evaluation is a manual and very time consuming task. Based on documentation
it is �rst evaluated to see whether Security Mechanisms are able to encounter threats
against the system successfully. Then, it has to be evaluated whether these Security
Mechanisms are implemented correctly.

Security Mechanisms are de�ned by Security Functional Requirements. A set of SFRs
is given in the CC standard but this set can be extended if necessary. The CC Security
Target (ST) documents the security architecture of a secure product, the so called Tar-
get of Evaluation (TOE), by explaining (among other things) the SFRs provided by the
implementation.

In addition, the CC standard de�nes seven Evaluation Assurance Levels (EALs). They
contain developer action elements and evaluator action elements. These actions have to
be performed (during the development respectively during the evaluation) in order to
gain a CC certi�cate for the TOE. EAL 1 is the minimum level of assurance. For a
veri�cation point of view, it is required to perform functional testing of the TOE. EAL 6,
in contrast, requires a semi-formal veri�cation and EAL 7 (the maximum level of assurance)
a formal veri�cation. However, the CC speci�cation does not state how the (semi-) formal
veri�cation has to be done.

The authors of [15] state that the CC process needs a better integration into the
engineering processes. CC documents do not support requirement engineering very well.
In other words, the documents are good for evaluating a well de�ned system (which is
the purpose of the CC), but they are not very useful in early development phases like the
speci�cation phase. However, the security requirements obviously need to be an essential
part of this phase when developing a secure system.

The authors of [20] also state a lack of methodological support for development pro-
cesses in the CC standard. To overcome this, the authors propose a CC based security
requirement engineering process which supports the systematic treatment of security re-
quirements in the software development life cycle. The methodology is based on an ex-

2. State of The Art Development and Veri�cation Methodologies 9

tended version of UML (UMLSec), which is able to represent security related information.
This UML based representation is used to model the system and to discuss conclusions
with experts. A manual requirement inspection phase is used to evaluate the results, e.g.,
CC documents.

Additionally the authors of [20] state that the security problem is solved when a Security
Requirement Rationale Document was written and successfully evaluated - which can be
done by their proposed methodology. Contrary to that, in this thesis, the security problem
is considered as solved when additionally the implementation was shown to ful�ll the
speci�ed security architecture. To achieve this, the security veri�cation has to be embedded
in a complete development process. As in this work hardware and software development
is considered the security veri�cation was embedded in a Hardware/Software Codesign
process. HW/SW codesign is discussed in the next section.

2.4 Hardware Software Codesign

In a HW/SW codesign process hardware and software is developed in parallel. This allows
optimizations like shorter development cycles, less expense, maximized processing power
and component reuse [3]. Key phases of a HW/SW codesign process are (1) speci�cation,
(2) modeling, (3) simulation and veri�cation, (4) modi�cation and re�nements, (5) model
mapping, and (6) implementation and prototyping. Hardware and software are modeled
and simulated together in order to gain detailed information about the system's behavior.
According to the results, the system components are re�ned to achieve optimized results.
In very early development phases it is even not de�ned which system modules will be
implemented in hardware or in software. This decision is typically done as late as possible
during the mapping phase.

In order to use a codesign approach, a system level model that provides on one hand
side su�cient �exibility for re�nement and mapping and provides on the other hand side
enough details to estimate system parameters has to be used. A Transaction Level Model
(TLM) as described in [21] can be used to do so. In a TLM the system's communication
is separated from the system's computational tasks. Such models can be implemented
on di�erent abstraction levels like the speci�cation level, component-assembly level, the
bus-arbitration level, or the bus functional level. Di�erent abstraction levels allow di�erent
accuracy of estimations, e.g., of the computation time or communication time. The authors
of [22] have shown that TLMs can be even accurate enough to perform energy estimations
of di�erent bus architectures.

As already mentioned, [2] states that other domains like security shell be considered
in a codesign process as well. In [23] this was done to use HW/SW codesign to develop
an FPGA based secure hardware component. This hardware allows fast decryption of
executable software code. An appropriate compiler automatically generates encrypted
and unencrypted code depending on the required security level of the code. With this
mechanism, the hardware is able to recognize tampered executables. This is a good example
for the optimization potentials of security aspects in codesign approaches but it does not
yet consider co-veri�cation of security aspects. Security veri�cation has to be done on a
system level and is thus well placed in HW/SW codesign as well as optimization activities.
System level veri�cation is explained in the next section.

2. State of The Art Development and Veri�cation Methodologies 10

2.5 System Level Veri�cation

System level veri�cation can be performed on system level models [21]. This can help iden-
tifying design problems in early development stages and thus reduces cost and development
time. In [24], functional veri�cation of a system is explained by usage of transactors. These
transactors are modules that connect the system modules during simulation. In this work,
the transactors (which are commonly used to �t incompatible module interfaces) are able
to perform checks to the outputs of the connected system modules. Thus, internal states of
the system can be easily veri�ed during system simulation. The authors of [25] propose the
usage of the Property Speci�cation Language (PSL) to de�ne the properties to be checked
during the simulation. PSL is a language for meta-information that can be added to the
system model and evaluated by the simulation environment. Such meta-information is also
called an annotation. The authors of [26] use such annotations to verify power require-
ments during system level simulation. The annotations describe the power consumption
of all modules in their di�erent power states. Use cases are simulated in order to compute
the associated system's power consumption.

Annotations can also be used to increase security as explained in [27]. A Java Card
software developer adds Java annotations to the source code if the application. These an-
notations are evaluated by the virtual machine to detect fault attacks. As this is executed
during runtime of the system, this method comes with a performance penalty. In [28],
security annotations are used to trace security requirements through all software develop-
ment phases. The annotations are available at the �nal software code but are used to check
if the security properties de�ned in the requirement phase are still valid in the veri�cation
phase. The authors of [28] explain this as a light weight alternative to formal methods.

Formal methods allow proving certain properties to verify the system. Obviously to
prove the right behavior of the system would be the ultimate veri�cation method. Unfortu-
nately, formal methods are very computational intense. Thus, today's system complexity
is too high to prove complete implementations [11]. To use formal methods very abstract
system models are used. In [29] a design speci�cation on highest abstraction level is used
together with linear temporal logic to prove selected system constraints. Also on speci�ca-
tion level but with respect to security constraints the authors of [30] used the Z-notation
and a theorem prover to verify CC criteria. To do so, the authors modeled states and
operations. Similarly in [31], a state transition model was used to represent and formally
verify the secure hardware design of a microprocessor.

Instead of theorem provers, model checking is used in [32], [33], and many more pub-
lications. In model checking, it is shown that two models are formally equivalent with
respect to certain properties. Typically, one of the models represents the system; the other
one represents the speci�cation. Thus, it can be proved if the system model ful�lls the
speci�cation. In [32], a veri�cation of a security policy was done. In [33], a SystemC model
was converted into an abstract formal model in order to �nally execute the model checking
and prove the SystemC model's correctness.

Besides formal methods, other ways to perform system level security veri�cation exist.
In [34], simulated fault injection is used to verify the impact of stuck-at faults, optical fault
induction attacks, and power glitches. All faults are injected to memory or bus components
of the system. Similarly, the authors of [35] propose (simulated) model based testing where
the test vectors are automatically generated form an UMLSec model. The authors of [36]

2. State of The Art Development and Veri�cation Methodologies 11

explain automated static security code checks by searching for a prede�ned set of patterns
and rules in the source code of the system. One di�culty of this approach is that the code
checker has to take compilation, synthesis, and optimization techniques of other tools into
account. While local analysis of small functions can be relatively easy, global analysis of
system wide patterns (potentially spread over hardware and software components) is much
more challenging.

The Event Calculus [37,38] is an action formalism that can be used for security veri�-
cation as well. In this thesis the Event Calculus is used to perform a model checking based
system wide security veri�cation. Thus, it is explained in the next section in more detail.

2.6 Event Calculus

The Event Calculus and Commonsense Reasoning (based on the Event Calculus) are ex-
plained in [37] and [38]. The Event Calculus (EC) is an action formalism based on a �rst
order predicate calculus. The main idea of the EC is to setup a solid theoretical basis for
actions and their temporal e�ects. The EC is able to represent phenomena like actions
with direct, indirect, and non-deterministic e�ects. It can be used to formalize compound
and concurrent actions as well as continuous change.

The EC can be used for three di�erent reasoning tasks. A (1) deductive task is used
when "what happens when" and "what actions do" are given while "what's true when"
is required. In other words, the outcome of a known set of actions is searched. An (2)
abductive task searches for "what happens when" while "what's true when" and "what
happens when" are given. This is equivalent to searching for actions that lead to a cer-
tain result. An (3) inductive task takes "what's true when" and "what happens when"
and results in "what actions do". This means searching for general rules that describe a
temporal behavior.

The EC is based on actions (or events), �uents (whose values are changing over time),
and time points. It includes a set of axioms for following predicates. Notice that there are
more predicates described in [37,38] which are not used in this thesis.

• Initiates(α, β, τ): the event α at time point τ causes the �uent β to hold.

• Terminates(α, β, τ): the event α at time point τ causes the �uent β to cease.

• Happens(α, τ): the event α happens at time point τ .

• HoldsAt(β, τ): the �uent β holds at time point τ .

EC is strongly based on handling non-e�ects and non-occurrences. This means that
(1), unless explicitly de�ned, actions do not have e�ects and (2), unless explicitly de�ned,
actions do not occur. These are fundamental rules of the EC and solved by so called
circumscription or completion. The decreasoner [39] tool and the f2lp [40] tool provide
commonsense reasoning based on EC.

The author of [41] used EC for formal analysis of security requirements. The author
performed threat analysis based on an abductive commonsense reasoning task. A system's
security requirements and their dependencies were modeled by EC axioms. Using the
decreasoner performing an abductive task results in sets of actions (if existing) which
illustrate unwanted vulnerable e�ects of the system.

2. State of The Art Development and Veri�cation Methodologies 12

The authors of [42] use the EC and abduction to �nd solutions how security require-
ments can be satis�ed. From the set of potential solutions (reported by the decreasoner
tool) the developer identi�es (technically) unrealistic solutions. The developer re�nes the
EC model by adding further information. This reduces the design space for the system
under investigation. The EC axioms to be used for abduction are generated automatically
from of a meta-model used for requirement engineering.

Similar approaches without using the EC exist. In [43], a framework for representing
and reasoning of abstract security properties is discussed. The described approach allows
the user to de�ne own properties on a very high abstraction level like "knows", "send",
and "receive". Similar to the EC, objects and axioms are de�ned and a theorem is to be
proofed. To perform the formal veri�cation the Coq interactive proof assistant is used.
The proof has to be developed by the user and is veri�ed by Coq. Thus, contrary to using
the EC, the veri�cation is a manual task.

2.7 Summary

Security has to be a system wide concept of embedded systems. Huge technical di�erences
exist between secure embedded systems and "normal" embedded systems. Developing a
secure embedded system requires security aspects to be integrated in

• the design,

• the development process, and the

• system veri�cation methodology.

The design has to ensure that security requirements are ful�lled accordingly. To e�ciently
manage rapidly evolving attack methodologies and techniques, the development process has
to be able to react appropriately to changing security requirements. Finally, the system
veri�cation must be able to reveal if the implementation actually makes the security concept
real.

The Common Criteria process de�nes the de-facto process for security evaluation of
information systems. However, it appears that this documentation based process needs to
be better integrated into development methodologies. Security has entered the codesign
methodology as its own design domain and as cross-domain veri�cation target. Today's se-
curity veri�cation is done on high abstraction levels (e.g., the requirement level). Abstract
system models without clear relation to the system's implementation are often veri�ed by
formal methods. However, there still exists a gap in security veri�cation of system models
and their implementations.

The goal of this thesis is to close this gap by

• seamless integration of functional security requirements in a hardware/software code-
sign process.

• This includes automated veri�cation and detection of unwanted security violations

• in all development phases and abstraction levels

• while performing system wide optimization.

Chapter 3

Novel Codesign Methodology for

Veri�cation of Secure Embedded

Systems

As mentioned in the problem statement in Section 1.3, security veri�cation must be in-
cluded in the a design and development process. This was done in the methodology dis-
cussed in this thesis. The present chapter summarizes how security veri�cation for em-
bedded systems was included in an existing codesign methodology. Section 3.1 gives a
high level view on the methodology discussed in this thesis. Subsequent sections explain
several methodology aspects. The detailed descriptions are done in separate publications
appended in Chapter 6.

3.1 Methodology Overview

The main �ow of the discussed methodology is shown in Figure 3.1. It can be split into
four phases: speci�cation, modeling, simulation, and veri�cation. The �rst two phases are
described in separate subsequent sections. Simulation and veri�cation are combined into
one subsection. Figure 3.1 includes the chapter numbers of the corresponding publications
in 6. Reprints of the related publications are given in this chapter.

A system's behavior is de�ned by its speci�cation. As shown in Figure 3.1, for this thesis
this is split into a functional speci�cation and a security speci�cation. While functional
speci�cations are not the focus of this thesis, security speci�cations are because they are
one outstanding initial point when developing a secure embedded system. The split into
two separate speci�cations was done because this seemed natural for secure embedded
systems: while the functional speci�cation is directly de�ned by use cases, the security
speci�cation is derived from a security analysis (as for example described in the Common
Criteria process in Section 2.3). Section 3.2 gives more details about security speci�cations.

Both speci�cations are used in an iterative process to develop the system. Development
starts with a pure functional high level model; iterations are used to verify, re�ne, and op-
timize the system until it is in a state where it can be used for production. When re�ning
a system's module, its abstraction level is changed to a more detailed level. The most
detailed level is the implementation level which can be used for production of the system.

13

3. Novel Codesign Methodology for Veri�cation of Secure Embedded Systems 14

Specification

Model

Simulation

Verification

Publication
6.1, 6.3, 6.4

optimization/refinement needed

Publication
6.1, 6.5, 6.6

Publication
6.1, 6.2, 6.3,

6.4

Publication
6.1, 6.3, 6.4,

6.7

Publication
6.1, 6.3, 6.4,

6.7

System Security
Specification

System Production

Evaluation of Verification
Results.

System Optimization.

System Analysis and
Verification based on
Simulation Results

Functional System
Specification

Secure Model/System
Implementation.

Model Refinement.
Adding Meta-Information.

Simulation and Meta-
Information Processing

Figure 3.1: Overview of the Novel Codesign Methodology

The model includes a functional simulatable description and additional meta-information
are applied to system modules. Such meta-information can be processed during (1) compi-
lation time, (2) simulation time, (3) or execution time. The methodology does not de�ne
syntax or semantic for used meta-information, as this depends on the development envi-
ronment as well as on veri�cation and optimization goals. Section 3.3 explains modeling,
meta-information, re�nement, and abstraction levels. Section 3.5 describes system opti-
mization approaches.

Both functional veri�cation and security veri�cation are based on a simulation ap-
proach. The system's model is simulated to verify its parameters. These parameters are
deducted from the functional model itself and from the examination of included meta-
information. If the resulting system parameters do not match the expected requirements,
a re�nement iteration respectively an optimization iteration must be done. Simulation
based system veri�cation is explained in Section 3.4.

3.2 System Security Speci�cation

A security speci�cation can be given in di�erent manners. It can be done in a purely
formal way by a model, in a textual description, or by usage of tools such as DOORS1.

1http://www-01.ibm.com/software/awdtools/doors/

http://www-01.ibm.com/software/awdtools/doors/

3. Novel Codesign Methodology for Veri�cation of Secure Embedded Systems 15

However, a security veri�cation methodology has to be independent from the modality and
the content of the security speci�cation. The one which was used for this thesis is given
in parts of the Common Criteria Security Target (ST) covering functional aspects of the
system. However, the methodology is not restricted to using an ST. The ST was already
explained in Section 2.3.

A security speci�cation consists of security requirements. For an ST, this is a set of
Security Functional Requirements (SFRs). These requirements have to be ful�lled by the
system in order to provide the security mechanisms that were chosen to provide coun-
termeasures against identi�ed attacks. Consequently, some system modules rely on such
requirements, others provide these requirements.

Section 6.3 describes how an ST can be used to formulate such dependencies in a
manner that they can be used as meta-information for security veri�cation. The concept
of meta-information is describedin detail in the subsequent Section 3.3. At this point, it is
only important to understand that meta-information is a textual description of parameters
embedded in source code of a model or a system's implementation. The concept is also
shown in Figure 3.2.

Common Criteria de�nes that an ST has to include de�nitions and dependencies of
security mechanisms and SFRs. Security speci�cations which follow this idea of an ST can
be used (1) to extract a list of SFRs which have to be used in a system and (2) to extract
security veri�cation rules to evaluate the SFR dependencies. The security requirements can
be formulated as meta-information and applied to system modules in the corresponding
source �les. Together with the veri�cation rules, a simulation based security veri�cation
can be performed, as described later.

Notice that SFRs are abstract de�nitions. Like the ST, they are independent from their
certain implementation. Thus, using meta-information instead of concrete implementations
is a valid approach.

Simulation

Model

Specification

System Security
Specification

(e.g., a CCST)

Simulation Based Verification

Security Functional
Requirment Dependencies

Security Functional
Requirements

(SFRs)

Use as Meta-Information in
System Modules Use as Verification Rules

Figure 3.2: Extraction of Rules from a Security Speci�cation

3. Novel Codesign Methodology for Veri�cation of Secure Embedded Systems 16

SFR Dependencies

SFR dependencies are mapped to a requires/implements scenario where one system module
requires an SFR and another module provides the SFR's implementation. Consequently,
system modules are annotated with appropriate meta-information holding these SFR de-
pendency predicates requires and implements for a certain SFR. Obviously, such a rule is
only ful�lled if modules that require an SFR access modules that provide the same SFR. As
explained in Section 3.4 this temporal access information is generated during the system
simulation.

Section 6.4 extends the idea of requires and implements by more predicates. The
essential ones are ful�lls, and expects. As requires and implements, ful�lls and expects
build a logical pair. However, for latter ones, the access direction is reversed: a module
annotated with expects has to be accessed by a module that is annotated with ful�lls while
latter module implements the SFR. The relationships of these predicates are drafted in
Figure 3.3.

System Module A
Meta-Information:
requires SFR #1 accesses

System Module B
Meta-Information:

implements SFR #1

provides
SFR #1

System Module B
Meta-Information:
expects SFR #2accesses

System Module C
Meta-Information:

fulfills SFR #2

provides
SFR #2

Figure 3.3: Relationships of SFR Dependency Predicates: (a) requires/implements and (b)
ful�lls/expects

Using Formal Security Speci�cations

In Section 6.1 SFR dependency rules are formalized to a formal security policy. Such a
policy can be used by formal approaches to show that certain system properties are valid.
Section 3.4 explains how this can be used for a (semi-) formal simulation based security
veri�cation approach.

The underlying formal mechanism used is the Event Calculus. As explained, the Event
Calculus is a formal description of temporal actions and reactions. It is based on abstract
properties respectively predicates instead of concrete implementation artifacts. Thus, the
veri�cation process is independent from the implementation or abstraction level. This
allows using the Event Calculus in an iterative re�nement approach as described in this
thesis.

The Event Calculus de�nes generic events, generic properties (so called �uents) and
modules. As it does not de�ne any concrete relation between these components, a domain
description had to be de�ned. Section 6.1 describes a domain that de�nes dependencies
between SFRs without usage of certain SFRs and system modules. This is done in a similar
but generic and formal way as described before with SFR dependency rules. Thus, it is
possible to use the domain description for security veri�cation of any arbitrary system -
independent from the use cases or its security architecture.

Axioms 3.1 and 3.2 describe the most important rules in the domain description.
initiates and terminates are de�ned by the Event Calculus. M can be any system module

3. Novel Codesign Methodology for Veri�cation of Secure Embedded Systems 17

and R stands for an SFR. T represents a concrete but abstract time point. requestsR and
satisfy are events, while unsatisfied is a �uent.

Axiom 3.1 states that if a moduleM requests an SFR R it immediately becomes unsat-
is�ed (because it requires an SFR but does not implement it). As de�ned in Axiom 3.2 a
satisfy event has to happen in order to terminate the unsatisfying system state. Obviously,
any unsatisfying system state must be resolved in a secure system. This is the underlying
veri�cation principle in the formal veri�cation approach described in Section 6.1.

initiates(requestsR(M,R), unsatisfied(M,R), T). (3.1)

terminates(satisfy(M,R), unsatisfied(M,R), T). (3.2)

Axioms 3.3 and 3.4 describe the necessary circumstances for the satisfy event. The
basic meaning is straight forward but the axioms are a bit tricky to read. Axiom 3.3 can
be read as: Module M1 has to be unsatis�ed with SFR R1. M1 has to be connected to a
second module M2 while this module has to provide the SFR R1 which is needed by M1.
In addition, M2 must not be unsatis�ed with any other SFR. If all these �uents hold at a
time point T , then the satisfy event happens at T .

(holdsAt(unsatisfied(M1, R1), T) &

holdsAt(connected(M1,M2), T) &

holdsAt(provides(M2, R1), T) &

−?[R2] : (holdsAt(unsatisfied(M2, R2), T))

)→ happens(satisfy(M1, R1), T).

(3.3)

Axiom 3.3 does not explicitly forbid other scenarios also to lead to a satisfy event.
This is done in Axiom 3.4. Together, both axioms build a bi-implication which is split
into two separate implications. Axiom 3.4 can be read as: if satisfy happens on module
M1 with SFR R1, there must exist a second module M2 which is connected to M1, which
provides R1, and which is not unsatis�ed with respect to any other SFR.

happens(satisfy(M1, R1), T)→ (

holdsAt(unsatisfied(M1, R1), T) &

?[M2] : (

holdsAt(connected(M1,M2), T) &

holdsAt(provides(M2, R1), T) &

−?[R2] : (holdsAt(unsatisfied(M2, R2), T))

)

).

(3.4)

The complete domain description of Section6.1 consists of 26 axioms. Appendix A.1
lists a textual version of all of them.

As mentioned, the domain description is independent from the system to be developed.
Thus, it is also independent from the security architecture respectively from a security

3. Novel Codesign Methodology for Veri�cation of Secure Embedded Systems 18

speci�cation. A concrete formal speci�cation (a security policy) has to be developed (e.g.,
as explained before from an ST) in order to verify the system. Such a security policy con-
sists of Event Calculus axioms. In contrast to the domain description, the security policy
refers to concrete SFRs to describe their dependencies. Axiom 3.5 gives one example to un-
derstand the concept. It states that if the module M1 enables the SFR r_master_key, it
requires another module to provide the SFR r_derived_key or the SFR r_key_storage.
Explanations for the SFRs and a more comprehensive security policy are given in the case
study in Section 4.4.2.

happens(enables(M1, r_master_key), T)→ (

happens(requestsR(M1, r_derived_key), T) |
happens(requestsR(M1, r_key_storage), T)

).

(3.5)

3.3 Secure System Model

As mentioned, the development process discussed in this thesis is an iterative model based
approach. The starting point is a purely functional model. This model is continuously
re�ned until the modules are implemented in a level of detail which can be used for pro-
duction. While doing so, the system model passes di�erent abstraction levels which all have
their own intent and necessity. The abstraction levels with section numbers of the related
publications are depicted in Figure 3.4. The Security Annotated Functional Level Model
(SAFLM) and the Secure Functional Level Model (SFLM) are novel in the development
process described in this work.

Figure 3.4: Abstraction Levels of the Novel Codesign Methodology

Abstraction Levels

As described in Section 6.4 modeling starts with a pure Functional Level Model (FLM).
This model does not provide any security mechanisms. It is used only for functional
veri�cation of the system's de�ned use cases.

3. Novel Codesign Methodology for Veri�cation of Secure Embedded Systems 19

However, it was shown that security concepts should be included in the earliest stages
of a system's development. Thus, meta-information concerning the system's security spec-
i�cation is added to the FLM in order to get the SAFLM. Such meta-information does
not in�uence the functional behavior of the model, as it is a pure textual description (e.g.,
of SFRs). But, this meta-information can be evaluated by the simulation environment
as described in Section 3.4. Having the functional model and the security related meta-
information allows analyzing the model with regard to where security mechanisms have to
be included in the system.

As a next step the security mechanisms are modeled as well. This results in the SFLM
(also described in Section 6.4). The SFLM is the starting point for all optimization work,
because the model includes all security relevant and non security relevant aspects. Subse-
quent re�nement iterations can be done similarly to common hardware/software codesign
processes, as these processes do not need to distinguish between security and non security
mechanisms.

Because the meta-information is still available, the complete design space exploration
can be done without risk of security violations caused by incorrect optimizations. With
every iteration, a simulation based veri�cation ensures a consistent security architecture.
As described in Section 6.3, the next detailed abstraction layer in the Secure Transaction
Level Model (STLM) where hardware/software partitioning takes place.

Further re�nement is done in order to get the system's �nal implementation (Secure
Implementation Level, SIL). This is not an abstract model level anymore as modules are
represented by concrete implementations. As the meta-information is maintained and
re�nement as well during the iterations, it can be used to verify the �nal implementation
as described in Section 6.2. The meta-information does not need to stay in the �nal
product if it was used for veri�cation purposes only. Thus, it has no negative impact
on the product cost (e.g., due to bigger code size) and cannot reveal any information to
potential attackers. However, as shown in Section 3.5 such meta-information can be used
for optimization purposes during runtime as well.

Vertical Transactors

In practice, the abstraction levels are not that strictly separated as described before. In-
stead, the change from one level over to the next one is a continuous process, again per-
formed as particular iterations. As each iteration is �nalized with a system veri�cation,
the risk of recognizing errors too late is reduced. In addition, if every design decision is
handled by its own iteration, the resulting consequences (e.g, with respect to performance)
can be immediately detected and corrected if necessary.

This re�nement concept makes it necessary for system modules modeled or implemented
on di�erent abstraction levels to interact. Obviously, this is nothing which will be included
in the �nal system for production. Thus, this should not be handled by the common
system module interfaces. Instead, Section 6.1 describes novel Vertical Transactors which
are used to provide a tool for interfacing between di�erent abstraction levels. Unlike
common transactors, vertical transactors do not connect incompatible system modules but
provide a �short cut� between modules on incompatible abstraction levels. As a matter of
course, when the system is �nished for production, all system modules are on one and the
same abstraction level (the SIL) and vertical transactions are no longer needed.

3. Novel Codesign Methodology for Veri�cation of Secure Embedded Systems 20

3.4 Simulation Based Veri�cation

Simulation based veri�cation has many bene�ts for secure embedded system development.
In contrast to a veri�cation on a hardware platform (e.g., with emulator boards or FPGAs),
a simulation provides better observability and controllability. Both are very important and
critical when developing secure systems, because the �nal system should neither provide
one nor the other to a potential attacker. Thus, the system is developed in a way which
reduces observability and controllability.

A simulation provides both aspects without adding potential back doors to a system
meant to be secure as the system stays unchanged. Section 6.7 explains how this can be
used to verify security mechanisms which are otherwise di�cult to test. Simulated fault
injection provides test vectors that would be di�cult or even impossible to apply. Fur-
thermore, higher controllability allows applying the test vectors directly to the simulation
environment. This allows a better veri�cation performance.

Applying and Evaluation of Meta-Information in System Models

On its own the simulation environment cannot extract enough information from the sys-
tem module descriptions to perform an analysis for a useful veri�cation or optimization.
Additional information has to be placed in the source code of the system modules by the
developer. This meta-information can be evaluated during compile time, simulation time,
or run time of the system. The semantics are not pre-de�ned by the underlying modeling
language. This makes meta-information so useful for veri�cation and optimization reasons
(optimization explained in Section 3.5) because the meta-information can represent any
parameters related to the system under development.

Simulation based security veri�cation with meta-information added to system modules
is described in Section 6.4 and shown in Figure 3.5. Meta-information about required and
implemented security requirements (as described before in Section 3.2 is added to system
modules. During simulation, the simulation environment is used to extract the dynamic
behavior of the system model. This is done based on the functional descriptions of the
system modules. This dynamic behavior is veri�ed against the functional speci�cation
but also together with the meta-information against the security speci�cation. Section 6.4
shows how this is done for the SAFLM and the SFLM.

Section 6.3 applies this concept to STLMs containing hardware and software compo-
nents. In such a case the simulation environment needs to extract call graphs for the
software components and data �ow graphs for the hardware components. Based on these
graphs, the security veri�cation rules as explained before can be evaluated.

(Semi-) Formal Simulation Based Veri�cation

Section 6.1 explains a formal way of a security veri�cation. One can argue that it is in
fact a semi-formal veri�cation, as some of the veri�ed parameters are generated during
the system's simulation. Thus, the veri�cation result still depends on the choice of useful
input data during the simulation.

Simulation based veri�cation has one big advantage over purely formal methods. Typ-
ically, purely formal methods are either based on highly abstracted models without any
incorporation to any real implementation, or restricted to very small parts of a system

3. Novel Codesign Methodology for Veri�cation of Secure Embedded Systems 21

Analysis and
Verification

Simulation

Model

Specification

Simulation Environment

System
Module

Functional
Description

Meta-
Information

System
Module

Functional
Description

Meta-
Information

Functional
Specification

Security
Specification

Dynamic Functional
Dependencies

Dynamic
Meta-Information

Dependencies

Functional Verification
Result

Security Verification
Result

Figure 3.5: Simulation Based Veri�cation Approach with Meta-Information

(due to the veri�cation complexity). Thus, purely formal methods are not applicable for
iterative system wide concepts as proposed in this thesis. In contrast, a simulation based
approach is. Even if a pure formal approach would theoretically give a more precise and
exhaustive veri�cation, one can argue that a fast and �exible but semi-formal approach
is more helpful during system development today. Once pure formal methodologies have
improved signi�cantly, this might change.

Figure 3.6 shows an overview of the security veri�cation approach of Section 6.1. The
security speci�cation is formulated as a formal security policy using Event Calculus axioms.
Additionally, meta-information related to SFRs is added to the system modules. During
simulation, the simulation environment generates trace �les with respect to module and
SFR activities. These trace �les are formally model checked against the security policy. It
id immr�szrlx recognized if any use case causes a behavior out of the security speci�cation.

In addition, the formal security policy is used in a formal model �nding process. To
do so, the Event Calculus is used in an abductive task, while model veri�cation is a
deductive task. This veri�es the consistency of the security policy itself. If no model that
matches the security policy can be found, it is impossible for any system to ful�ll the
policy. Consequently, the security policy has to be revised.

Furthermore the concept in Section 6.1 includes adding platform constraints to the
veri�cation process. To keep the illustration simple, this is not shown in Figure 3.6.
Platform constraints narrow the design space because they describe certain limitations of
a chosen hardware platform. Such constraints include Event Calculus axioms that explicitly
forbid relying on hardware features which do not exist on the selected platform.

3. Novel Codesign Methodology for Veri�cation of Secure Embedded Systems 22

Specification

Verification

Simulation

Model

Security Specification
e.g., a CC Security
Target defining the
necessary SFRs

System Simulation
Simulation of Use Cases
and Evaluation of Meta-

Information

Trace Files
Module Activities and SFR

Activities

Formal Model Checking
Against the Security Policy

Model Verification Results

Formal Policy Verification
Model Finding to verify if

Policy can be fulfilled

Policy Verification Results

Source Files of System
Modules

Including Meta-Information
regarding SFRs

Formal Security Policy
Formal Description of SFR

Dependencies

Figure 3.6: Overview of the (semi-) formal Simulation based Security Veri�cation Approach

3.5 System Optimizations

Section 6.6 explains one successful cross abstraction level optimization for secure embed-
ded systems. Software properties that result from the most abstract software representa-
tion (the application) are applied together with low level hardware platform properties to
archive an execution performance optimization: meta-information describing which data in
memory is frequently used is added to the according source �les. This can be done by the
software developer, as he or she is typically able to estimate the memory access behavior
of the application under development very well. In contrast to the security veri�cation
described before, this meta-information is evaluated by the runtime environment (instead
of the simulation environment). With respect to the meta-information, the runtime envi-
ronment allocates the memory at locations where the hardware platform supports faster
memory accesses.

Notice that the same optimization could be done without meta-information if the run-
time environment is able to provide the estimations done by the developer. However, for
small embedded systems this can be a not achievable task due to resource restrictions.

The concept explained in Section 6.5 automatically generates meta-information to per-
form an execution performance optimization similar to the one described above. In con-
trast, a static analysis of software components is used to do so. Based on this analysis
the meta-information causes the runtime environment to increase the temporal locality
of multiple data �elds. This is based on grouping data �elds which are used temporally
closely together very often.

Using meta-information during the system's runtime for optimizations has a big bene�t:

3. Novel Codesign Methodology for Veri�cation of Secure Embedded Systems 23

the evaluating system can react adequately to such meta-information. One optimization
strategy can perform very well on one hardware platform but does not necessarily work as
well on other platforms. Adding a static optimization would reduce the re-usability and
�exibility of the optimized modules. In contrast to that, meta-information can easily be
ignored or even removed whenever needed, as the meta-information has no impact to the
functional description of the module.

The mentioned optimizations are just examples to show that cross abstraction level op-
timization can work by using meta-information. The methodology discussed in this thesis
does not limit any optimization approaches or targets. Using multiple meta-information in
system modules does not cause them to in�uence each other. Thus, the concept of using
meta-information for veri�cation and optimization goals is well applicable for development
of secure embedded systems.

Chapter 4

Methodology Evaluation and Case

Studies

The novel codesign methodology discussed in this thesis could be split into three di�erent
concepts: (1) simulation based functional veri�cation, (2) usage of meta-information, and
(3) simulation based security veri�cation on di�erent abstraction levels. These concepts
are evaluated in di�erent case studies summarized in this chapter.

First, Section 4.2 describes the functional veri�cation of an anti-tearing mechanism
(described in more detail in Section 4.2.1. Section 4.3 evaluates the concept of meta-
information in a codesign process. Finally, Section 4.4 summarizes case studies for simu-
lation based security veri�cation approaches. Before stepping into the methodology evalu-
ation details, Section 4.1 explains some basics which all the case studies have in common.

4.1 Common Basics for the Case Studies

All case studies are based on smart card systems. Smart cards are typical secure embedded
systems. Their integrated design allows them to be used for high secure use cases such as
banking and e-government. Originally intended to be pocket sized plastic cards, today they
are also used as secure elements embedded in more sophisticated systems such as smart
phones. The secure use cases, the small chip size, and the power constraints (smart cards
are very often powered externally by an electromagnetic �eld) of smart cards - parameters
which are typically rather contradicting - make smart card development a good application
area for optimization and security veri�cation methodologies. Thus, it seemed obvious to
select such systems for the evaluation of the novel codesign methodology in this thesis.

To give an idea of the computational capabilities of smart cards the most important
hardware parameters should be mentioned here. Typically, smart cards are still based on
an 8-bit or 16-bit micro controller with some few kByte of RAM and some few hundred
kByte of non-volatile memory (e.g., EEPROM). Due to size limitations, most smart cards
do not have their own power supply. They are powered externally by the smart card
reader. This can be done by a contact interface or by a contactless interface (inductive
coupling) which results in strict power consumption limitations. To support cryptographic
algorithms with an appropriate execution performance one or multiple co-processors are
added to the system. More details about smart card systems can be found in [1].

24

4. Methodology Evaluation and Case Studies 25

Nevertheless, smart card use cases have very strict limits for maximal execution times.
One has just to think of a queue of people at the subway entrance or passport check point
to understand why. In addition, extra computational overhead is added by security mecha-
nisms. The Java Card [17], for example is a smart card system which provides a full version
of a software virtual machine. Interpreting bytecodes instead of direct execution of native
instructions enhances the security level, but obviously also increases the computational
e�ort. Nevertheless, Java Cards are more popular than ever before. Figure 4.1 gives an
overview of a Java Card. Applications, implemented in a subset of the Java Language,
are separated by a �rewall and executed on a virtual machine. The Java Card Runtime
Environment provides an API tailored for smart card use cases. A native operating system
provides the low level software layers which, among other things, interacts with the smart
card hardware (e.g, interfaces).

Figure 4.1: Java Card Overview

Typically, security features are spread allover the entire Java Card system. Some of
them are implemented in applications; others are de�ned by the Java Card speci�cation
and implemented in the Java Card Runtime Environment or the native operating system,
and again others are implemented on the hardware layer. As already mentioned, all of
them have to be seen together as a system-wide security concept instead of single punctual
secure solutions.

4.2 Simulation Based Functional Veri�cation

First, let's clarify the di�erence between functional veri�cation and a security veri�cation
which is evaluated later in the thesis. Functional veri�cation gives information if functional
features behave in their de�ned way. A functional feature is mainly de�ned by its input,
its output, and possibly a resulting internal state change. Thus, a functional veri�cation
can be done by applying an action (or in other words a test vectors) to the system and
checking its reaction.

In contrast to that, security mechanisms cannot necessarily be de�ned by their resulting
output - respectively, it could be de�ned in a way which is di�cult or important to verify.
This should be explained by an example: one typical security mechanism is to provide

4. Methodology Evaluation and Case Studies 26

reliable random numbers. Such random numbers are used in cryptographic algorithms.
Thus, they must not be predictable or manipulable by an attacker. Smart cards typically
provide a hardware random number generator which performs statistical tests and is phys-
ically protected (e.g., against laser attacks). Obviously a functional veri�cation of these
parameters is hardly possible.

Section 4.2.2 summarizes the functional veri�cation of the anti-tearing mechanism of a
Java Card. This mechanism is explained beforehand in Section 4.2.1. The case study in
Section 4.2.2 shows that a functional veri�cation on the basis of a system simulation is not
only possible but also can be highly e�cient.

4.2.1 Java Card Anti-Tearing Mechanism

The Java Card anti-tearing mechanism is one of the most important security mechanisms
of Java Cards. As mentioned, smart cards (and Java Cards as well) do not have their
own power supply. Instead, they have to rely on an external powering by the smart card
reader. If the smart card reader switches o� the power supply or the card is torn out of
the reader during a write operation into the non-volatile memory on the smart card, this
obviously immediately aborts the write operation. As the write operation was not �nished,
the data in the memory can be inconsistent. Anti-tearing provides a mechanism to write
into non-volatile memory without the risk of data inconsistencies caused by unexpected
power loss [18].

Figure 4.2 depicts such a scenario. A smart card changes from system state A to
system state B because of a write operation to non-volatile memory. Notice, that this is a
persistent system state that remains in case of a reset. Another write operation is aborted.
Consequently, the card stays in an inconsistent system state.

System
State A

NVM Write Operation
Inconsistent State

System
State B

NVM Write Operation
Inconsistent State

Incons.
State

Tearing Event
(Reset due to Power Loss)

Figure 4.2: The Tearing Problem

Oestreicher explains two di�erent approaches for anti-tearing mechanisms in [44]: Old
Value Logging makes a backup of data in non-volatile memory before it is going to be
overwritten. New Value Logging stores the new data into a bu�er before the old data is
overwritten. If a tearing event happens, the card is able to restore a consistent version of
the data at the next power up phase. Each tearing-save write operation to non-volatile
memory is split into several particular write operations. Each of these write operations
change the internal state of the Java Card. Thus, each of these write operations have to
be veri�ed carefully if there is a risk that the card stays in an inconsistent state after a
tearing event.

4. Methodology Evaluation and Case Studies 27

4.2.2 Case Study 1: Veri�cation of an Anti-Tearing Mechanism

Section 6.7 explains a simulation based veri�cation approach of an anti-tearing mecha-
nism described in Section 4.2.1. The veri�cation is based on simulated fault injection.
The simulated fault is a tearing event that is injected for every write operation to non-
volatile memory during execution of use cases. The veri�cation methodology is tailored to
a functional veri�cation of arbitrary anti-tearing mechanisms.

The veri�cation is split into two phases. In the �rst phase, a test case (a piece of
software which is using the anti-tearing mechanism in a certain way) is executed without
fault injection. This phase is used to collect memory access data (for non-volatile write
operations). This data is used to generate test vectors which are �nally applied in a loop
one after another in the second phase.

As explained in Section 6.7 and shown in Figure 4.3(a), a signi�cant veri�cation per-
formance gain can be archived in comparison to a common fault injection approach. The
time values are normalized: the shortest veri�cation time is set to 1. 16 test cases were
executed, which resulted in 70 write operations in total and a performance gain of 20% in
comparison to a common fault injection.

Furthermore, the approach allows compaction of test vectors which reduces the number
of write operations. Figure 4.3(b) shows additional performance gain of 17% for the test
cases chosen in Section 6.7.

0

1

2

3

4

5

6

7

8

9

10

0 20 40 60 80
Number of Write Cycles

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

Fault Injection Approach

Test Vector Approach

(a) Veri�cation Performance without Test Vector
Compaction

0

2

4

6

8

10

12

0 5 10 15
Number of Test Cases

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

Fault Injection Approach

Test Vector Approach

Test Vector Approach with
Compaction

(b) Veri�cation Performance with Test Vector
Compaction

Figure 4.3: Performance of Functional Veri�cation of an Anti-Tearing Mechanism with and
without Test Vector Compaction

4.3 Evaluation of the Concept of Meta-Information

As explained, the usage of meta-information is a key concept of the codesign methodology
discussed in this thesis. The big advantage of using meta-information, is that it is indepen-
dent from the annotated functional module as well as independent from the modeling or
programming language. In this thesis, meta-information is used for system optimization
and system analysis. The �rst one is explained in Section 4.3.1, the latter one is sum-
marized in Section 4.3.2. Together, these sections should demonstrate the applicability of

4. Methodology Evaluation and Case Studies 28

0%

20%

40%

60%

80%

100%

120%

0 50 100 150
Size of Cache in Slots

N
u

m
b

er
 o

f
E

E
P

R
O

M

W
ri

te
 C

y
cl

es
 i

n
 %

Field Access

Object Access

Object Access with Factory

Object Access with Annotated Fields

Figure 4.4: Performance Gain for an Anti-Tearing Mechanism with Meta-Information
based Data Allocation

meta-information in a codesign methodology.

4.3.1 Case Study 2: System Optimization based on Meta-Information

Section 6.6 and Section 6.5 describe system optimizations performed on the basis of
meta-information. Again, the anti-tearing mechanism explained in Section 4.2.1 was se-
lected for the use cases. As mentioned, anti-tearing splits up single non-volatile write
operations which have to be tearing save to several particular write operations. Such write
operations are very time consuming. This makes the anti-tearing mechanism one of the
most performance consuming security mechanisms. The optimization approach in this case
study targets the reduction of costly write operations.

Section 6.6 explains how frequently used data can be marked with meta-information
and consequently allocated on one EEPROM page. EEPROM is usually organized in pages
where the page is written in one write operation - independent from how many bytes of
a page have changed. Thus, allocating data �eld frequently used in one use case on one
dedicated EEPROM page reduces the write operations during anti-tearing.

The resulting performance gain is shown in Figure 4.4. The optimization uses a cache.
Di�erent cache sizes up to 150 cache slots (each slot has some few bytes depending on
the implementation) were evaluated. Using the cache without meta-information resulted
in a performance gain of 16% to 50%. With meta-information the performance gain was
increased by 26% to 70%.

Section 6.5 extends the optimization of Section 6.6 by grouping frequently used data
�elds. This is done on the basis of a static analysis of the Java Card application. Data
�elds are grouped in a way so that during regular use cases the necessary write operations
to EEPROM are minimized.

Equation 4.1 shows the number of necessary write operations for an anti-tearing mech-
anism based on the Old Value Logging approach. n is the number of elements (data �elds)

4. Methodology Evaluation and Case Studies 29

to be protected from tearing. sTB is the size of the data to be written in the tearing bu�er,
while sNEW is the size of the new data to be written. p is the EEPROM page size.

COV L =
n∑

i

⌈
sTB
i

p

⌉
+ n+

n∑

i

⌈
sNEW
i

p

⌉
+ 1 (4.1)

Using the optimization in Section 6.5, the most time consuming write operations to
EEPROM could be reduced to the number calculated in Equation 4.2. fb gives the number
of write operations to the transaction bu�er (the intermediate bu�er needed for the anti-
tearing mechanism). As one optimization, this number is reduced by usage of a cache. A
second optimization reduces the sum in the remainder of Equation 4.1 to a value typically
1. A more detailed explanation is given in Section 6.5.

C ′′′
OV L = fb(n, s

TB) +

⌈
n
sNEW

p

⌉
+ 1 (4.2)

Figure 4.5 summarizes the achieved performance optimization results. Figure 4.5(a)
depicts Equation 4.1 and Equation 4.2 comparing di�erent numbers of variable assignments
within one transaction (which have to be protected against tearing) and di�erent amount
of data to be protected.

Figure 4.5(b) shows the reduction of normalized execution time for a Java Card appli-
cation (called JavaPurse) for di�erent APDUs (commands sent to the application). The
total execution time of the Java Card application was reduced by 17%.

5
10

15
20

2468

5

10

15

20

25

30

Data Size

Number of
Assignments

per Transaction

N
um

be
r

of
 n

ee
de

d
W

rit
e

C
yc

le
s

C´: OVL
C´´: Buffered OVL
C´´´: Locality Improvement

(a) Performance Comparison with Respect to
Equations in Section 6.5

APDU 1 APDU 2 APDU 3 APDU 4 Total
0

20

40

60

80

100

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

OVL
Locality Improvement

(b) Reduction of time consuming Write Operations
in a Java Card Application

Figure 4.5: Performance Optimization Results of using Meta-Information with an Anti-
Tearing Mechanism

4.3.2 Case Study 3: Identi�cation of Security Relevant System Compo-
nents

Section 6.2 describes a meta-information based analysis of a Java Card operating sys-
tem. Not all software functions in an operating system need to have the same security level

4. Methodology Evaluation and Case Studies 30

- some of them are security related, others are not. The main di�erentiator, as explained
before, is that security related functions need to provide functional security requirements.

To analyze a real Java Card operating system, security related functions in a Java Card
application were annotated with meta-information. This meta-information indicates that
the annotated function has to be executed in a security sensitive context. Consequently, all
called sub functions are also security related. Figure A.1 in the appendix of this work shows
a call graph of the analyzed application. This �gure should indicate how complex manual
analyzing of such call graphs could become. The methodology discussed in Section 6.2
does the same in an automated way based on simulation of use cases. b The result of
the meta-information based analysis in Section 6.2 is shown in Figure 4.6. Figure 4.6(a)
shows that 63% of all called functions were executed in a security sensitive context while
49% of these functions are also used in a non-secure context. The method in Section 6.2
easily identi�ed the 63% of function calls that have to be considered for a security review.
Furthermore, the method indicated that some functions are used in a security relevant and
a non-security relevant context. Latter ones could be implemented twice for the security
related and the non-security related context. Depending how often these functions are
used, this opens a potential performance optimization.

Similarly, Figure 4.6(b) shows the executed function calls (instead of the number of
called functions). 68% of all function calls were executed in a secure context while 39%
of these function calls were, again, also used when no certain security requirement was
required.

 0

 20

 40

 60

 80

 100

 120

 140

Total Native
OS

Java
OS

Java
Application

N
u
m

b
er

 o
f

C
al

le
d
 F

u
n
ct

io
n
s

Software Layer

(a)

Total Functions
Secured Functions
Shared Functions

 0

 500

 1000

 1500

 2000

 2500

Total Native
OS

Java
OS

Java
Application

N
u
m

b
er

 o
f

F
u
n
ct

io
n
 C

al
ls

Software Layer

(b)

Total
Secured Calls
Shared Calls

(a) Number of called Functions

 0

 20

 40

 60

 80

 100

 120

 140

Total Native
OS

Java
OS

Java
Application

N
u
m

b
er

 o
f

C
al

le
d
 F

u
n
ct

io
n
s

Software Layer

(a)

Total Functions
Secured Functions
Shared Functions

 0

 500

 1000

 1500

 2000

 2500

Total Native
OS

Java
OS

Java
Application

N
u
m

b
er

 o
f

F
u
n
ct

io
n
 C

al
ls

Software Layer

(b)

Total
Secured Calls
Shared Calls

(b) Number of Function Calls

Figure 4.6: Results of Meta-Information based Analysis

In sum, the results in Section 6.2 show that meta-information evaluated during simu-
lation time of a system is highly applicable for analysis of a system. The analysis can be
performed for both security reasons and optimization goals.

4.4 Simulation based Security Veri�cation

An analysis in Section 6.3 motivates the necessity of automated security veri�cation. Dif-
ferent Common Criteria Security Targets were examined with respect to the number of

4. Methodology Evaluation and Case Studies 31

Security Functional Requirements in hardware platforms for smart cards of di�erent ven-
dors. The number of Security Functional Requirements can be seen as an indication how
complex and time consuming a security veri�cation can be, since every applied security
requirement has to be veri�ed.

Table 4.1 summarizes the results more precisely explained in Section 6.3: 15 to 21
Security Functional Requirements are totally applied 26 to 60 times (they are usually used
more often than once in a system) in the selected smart card micro processors. Notice, that
these numbers only include the hardware part of a system. Considering the software com-
ponents as well the resulting veri�cation e�ort justi�es the need for automated veri�cation
methodologies. In this thesis, the automation is done by simulation based approach.

STMicrosystems NXP Samsung In�neon Fujitsu

SFRs 15 16 18 21 19
applied SFRs 40 60 26 35 26

Table 4.1: Number of Security Functional Requirements in Smart Card Hardware Platform
Security Targets of di�erent Vendors

The main bene�t of simulation based methodologies is that the veri�cation is indepen-
dent from the manner of module implementations or their abstraction levels. Furthermore,
the veri�cation is easy and e�cient to apply. Successive sections summarize case studies
about the applicability of simulation based veri�cation. First, in Section 4.4.1, the simu-
lation based approach for security veri�cation is evaluated. After that, in Section 4.4.2,
results of a method which extends the concept by a formal Event Calculus model checking
approach are summarized.

4.4.1 Case Study 4: Simulation based System Security Veri�cation

Sections 6.1, 6.4, and 6.3 use SystemC1 as a modeling language. In all these case studies
a smart card was modeled and a simulation based veri�cation was applied.

Section 6.4 covers the functional abstraction levels. Because SystemC is based on
C++ it does not provide any prede�ned construct for meta-information. Pre-processor
based macros were implemented to overcome this drawback. These macros are applied in
system modules and compiled with the entire system to function calls to a model-to-checker
interface. These function calls are executed during the simulation time and report the
necessary data to the checker interface as shown in Figure 4.7. The interface is connected
to one or more arbitrary checker instances. Depending on the checker instance (and the
associated meta-information), di�erent checks can be performed to execute a simulation
based veri�cation.

First, experiments with pre-processor based meta-information are done in Section 6.4.
Section 6.3 evaluates the same principle on a transaction level model consisting of hard-
ware and software components. Section 6.1 applies the methodology on a mixed abstraction
level model including purely functional modules, hardware modules, and software modules.
Vertical transactors are used to connect functional components of a Java Card application

1http://www.systemc.org

http://www.systemc.org

4. Methodology Evaluation and Case Studies 32

Figure 4.7: Evaluation of Meta-Information in SystemC during Simulation

to low level software implementations executed on the simulated processor. Di�erent exe-
cution performance optimizations were done in case studies in Section 6.3 and Section 6.1
while performing simulation based security veri�cation successfully.

Summarizing the results in mentioned sections, applying the meta-information has
shown to be easy to use and �exible enough for an iterative development process. Fur-
thermore, the simulation time was not reduced signi�cantly by the processing of the meta-
information. However, the veri�cation quality strongly depends on the quality of the
checker instance which is independent from the simulation environment. Successive sec-
tions explain how the veri�cation quality could be increased by using formal methods in
the checker instance.

4.4.2 Case Study 5: A (Semi-) Formal Event Calculus based Model
Checking Approach

Section 6.1 describes a simulation based formal approach for security veri�cation embedded
in an iterative hardware/software codesign process as described before. The formalism is
based on the Event Calculus also discussed before. A mixed abstraction level model of a
smart card, including an application and software components of the smart card operating
system, is continuously re�ned to evaluate some execution performance optimizations. At
the same time, a simulation based model checking ensures that the formal security policy
is not violated.

The Security Policy

A textual version of the security policy used in this case study is shown in Table 4.2. The
policy does not yet contain all rules for a complete smart card system. Instead, 8 axioms
which are needed to security verify a BAC authentication (Basic Access Control, typically
used for machine readable documents such as e-passports) [45] were formulated. Together
with the domain description explained in Section 3.4 and listed in Appendix A.1, the smart
card model was veri�ed with the f2lp2 Event Calculus tool.

2http://reasoning.eas.asu.edu/f2lp/

http://reasoning.eas.asu.edu/f2lp/

4. Methodology Evaluation and Case Studies 33

Axiom Nr. Description

1 A key storage is either protected by blinding or keys are stored encrypted.
A key storage holds the secret keys. To protect the keys against side channel attacks the
keys must be blinded or encrypted. This ensures that leaked information is useless for an
attacker.

2 If keys are encrypted, a master key is needed.
Encrypting keys requires a system wide secret key. This is the master key.

3 A master key can be derived or stored in a key store.
A master key is a secret key. Thus, it has to be protected against unwanted access by an
attacker. Derived keys are not stored directly in persistent memory but calculated when they
are needed. A key store can also be used but notice the circular dependency.

4, 5, and 6 Whenever a key is used it has to be read, used with a cryptographic operation,
and deleted.
Usage of a key consists of three phases: (1) read the key from where it was stored and store
it temporally at a location where it can be used by the crypto- subsystem. This can be
skipped when the crypto-subsystem supports in-place operations for keys. (2) use the key
with a cryptographic operation. (3) delete the temporary stored key. This rule is split in
three separate axioms.

7 A secure read operation for keys must provide a key store, a key bu�er, and a
secure bus or a secure copy routine.
A secure read has to be performed from a secure storage for keys - the key store. The key
must not be stored temporary at any arbitrary location. A dedicated crypto-bu�er has to be
in place to handle keys securely. The copy routine itself must not leak information through
side channels. Either this is done by hardware countermeasures (e.g, a secure bus) or by a
secure copy routine in software.

8 A secure copy routine requires reliable random numbers.
A secure copy routine requires reliable random numbers to hide information about the secret
data to be copied. These random numbers need to be created and tested in a special way so
that an attacker cannot predict or manipulate them and thus reduce the security of the copy
routine.

Table 4.2: Security Policy Rules

The main goal of the security policy in Table 4.2 is to protect secret keys in the
smart card system. During the BAC authentication, secret keys are used which are stored
in a key store. The key store is part of the operating system. It handles the storage,
encryption, and decryption of secret keys. The BAC application requests a key at the key
store and copies it to a bu�er for cryptographic operations. After that, the cryptographic
operation can be performed. Finally, the key is deleted in the bu�er by overwriting it
with random numbers. Notice, that this only describes the key handling of the BAC
authentication. This is repeated several times during one authentication process. Details
about the authentication are described in [45].

The Simulation Output

Figure 4.8 shows a sequence of traces of security requirements when simulating the BAC
authentication in an abstract high level model. As seen by the x-axis, no real timing
information is available, as the model's components do not model timing behavior. Instead,

4. Methodology Evaluation and Case Studies 34

a sequence of activations and deactivations of security requirements can be seen. The y-axis
shows di�erent acronyms of security requirements which are explained in the Appendix A.3
in this document. In time point (1) a key usage starts. Two secret keys are read from
the key storage in (2) and (8) and stored in a temporary bu�er. The copy operation is
performed by a secure copy routine which provides countermeasures against side channel
attacks. This is done in (3) and (9). The mentioned countermeasure requires reliable
random numbers which are fetched in (4) and (10). After the cryptographic operations
in (5) and (11) the key is deleted from the temporary bu�er in (6) and (12). To do so,
random numbers are used to overwrite the key. The random numbers are generated in (7)
and (13). Please notice that not all requirements needed to ful�ll the policy and shown in
the �gure are explicitly mentioned in this explanation.

r_crypto_key_buffer

r_derived_key

r_master_key

r_enc_keys

r_key_storage

r_rng

r_sec_copy

r_read_key

r_crypto_key

r_delete_key

r_key_usage

1 2 83 94 105 11

6
12
137

Se
cu

ri
ty

 R
eq

ui
re

m
en

ts

Sequence of Security Events
(activation or deactivation of Security Requirements)

Figure 4.8: Security Requirement Traces of BAC Authentication in a High Level Model

The Security Veri�cation

Using the complete trace of the BAC authentication shown in Figure 4.9 the security veri-
�cation was split in �ve steps indicated as (I), (II), (III), (IV), and (V) in the �gure. Phase
(I) is the decryption of the incoming APDU command. Phase (II) is the preparation of the
session key generation. As seen, key objects in the key store are used but no cryptographic
operations are done. Phases (III) and (IV) are the creation of the session keys. Finally,
Phase (V) is the encryption of the APDU response. Splitting up the veri�cation in smaller
portions increases the veri�cation performance as explained later.

A demonstration of the veri�cation can be seen in Figure 4.10. As can be seen, the f2lp
tool is used with a couple of other tools. Please consult the manual of the f2lp tool for details
how to use it. The veri�cation is performed with the domain description domain.fo, the
security policy policy.fo, the platform constraints cons.fo, the traces (e.g., trace_I.fo
for phase (I)), and the Event Calculus description DEC.lp which comes with the f2lp tool.
The f2lp tool returns with Answer: 1 which indicates that a solution was found. This

4. Methodology Evaluation and Case Studies 35

r_crypto_key_buffer

r_derived_key

r_master_key

r_enc_keys

r_key_storage

r_rng

r_sec_copy

r_read_key

r_crypto_key

r_delete_key

r_key_usage

I II III IV V

Se
cu

ri
ty

 R
eq

ui
re

m
en

ts

Sequence of Security Events

Figure 4.9: Complete Security Requirement Trace of BAC Authentication in a High Level
Model

means that the security veri�cation with respect to policy.fo was successful. In addition
the tool returns the found solution. Notice that due to space limitations, the output in
Figure 4.10 is shortened, indicated by the

$./f2lp.exe ../domain.fo ../policy.fo ../cons.fo ../trace_I.fo ./DEC.lp |

sed 's/_NV_/NV_/' | ./gringo.exe -c maxstep=49 | ./claspD-1.1.exe -n 1

Warning: trajectory/4 is never defined.

Warning: antiTrajectory/4 is never defined.

Warning: releases/3 is never defined.

claspD version 1.1. Reading...done

Answer: 1+

happens(enables(epassport,r_key_usage),0) happens(enables(copykeytocryptobuffer,r_read_key),2)

...

Figure 4.10: Shortened Security Veri�cation Output with f2lp

System Optimizations

Several system optimizations were done in order to perform a design space exploration
in the case study described in Section 6.1. The starting point was the already described
high level module where all system components were implemented in C++ or provided
by external libraries (library for cryptographic operations, Crypto++3. This model was
re�ned partly by adding a transaction level model of an 8051 micro processor. In addition,
some of the operating system functions were ported C for the 8051 processor. This allowed
an early estimation of execution performance critical components of the system.

3http://www.cryptopp.com

http://www.cryptopp.com

4. Methodology Evaluation and Case Studies 36

During the design space exploration, a hardware random number generator and a secure
bus were added to the transaction level model. Figure 4.11(a) shows the starting point
of the re�nement iterations - the high level model. Figure 4.11(b) shows the mixed level
model where operating system components were ported to C for 8051 and new hardware
components were added. Section 6.1 explains the optimizations and their impact to the
execution performance results in detail.

BAC
Application

Card
Manager

Smart Card Operating
System

API

Crypto++
Library

C++

(a) High Level Model of a Smart Card
System in C++

BAC
Application

Card
Manager

Smart Card Operating
System

API

Crypto++
Library

Smart Card Hardware
Components

C++

C++ and
C for 8051

SystemC
Random Number

Generator Secure Bus

(b) Mixed Level Model of a Smart Card
System in C++/C/SystemC

Figure 4.11: Smart Card Models under Re�nement and Veri�cation

During all re�nement and optimization iterations, a security veri�cation as described
above was performed while the security policy was constant. This demonstrates how
�exible the security veri�cation and the security policy are.

Veri�cation Performance

The performance of the security veri�cation using the f2lp tool has shown to be strongly
dependant on the number of trace entries to be veri�ed. Figure 4.12 shows measurement
results and an extrapolated curve. As seen, it makes sense to split up security reports with
many trace entries into smaller parts as the veri�cation time per trace entry increases with
the total number of entries.

0

2

4

6

8

10

12

14

16

0 20 40 60 80 100 120
Number of Trace File Entries

V
er

ifi
ca

tio
n

Ti
m

e
pe

r T
ra

ce
 F

ile

En
try

 [s
]

Measured
Extrapolated

Figure 4.12: Veri�cation Performance

4. Methodology Evaluation and Case Studies 37

The security report from the BAC authentication to be veri�ed contains 116 trace
entries. According to the extrapolated curve in Figure 4.12, a veri�cation of 116 traces
would lead to a veri�cation time per trace of approximately 14.4 seconds. Multiplied by
116 log entries, this would result in a veri�cation time of almost half an hour! Splitting
up the security reports in as small portions as possible as shown in Table 4.3, the same
veri�cation can be done in less than 87 seconds. This is a increase of 95% without the
negligible time for splitting up traces.

Number of Traces Veri�cation Time Comment

38 67,9s
14 5,3s 3 times
8 0,9s 3 times
2 < 0,1 6 times

Total: 116 traces Total: < 87s

Table 4.3: Veri�cation Times with split Trace File

Overall, it has to be mentioned that the computational performance and the memory
consumption of the f2lp showed some room for improvement. It has to be mentioned that
the tool was implemented as a proof of concept Event Calculus prover and was not meant
to be used with models of the magnitude similar as in this work. However, the results in
Section 6.1 show that a (semi-) formal security veri�cation based on the Event Calculus
can be done e�cient enough to be applicable for �exible iterative development processes
such as hardware/software codesign.

4.5 Evaluation Summary

To evaluate the novel design �ow, with respect to security and performance veri�cation, it
was split into three main concepts: simulation based functional veri�cation, usage of meta-
information (for optimization and veri�cation), and simulation based security veri�cation.

Simulation based functional veri�cation was shown to be highly e�ective for security
mechanisms. This was demonstrated on the anti-tearing mechanism - one of the most
important security mechanisms of Java Cards. Controllability and observability are es-
sential when verifying security mechanisms but di�cult to achieve with �nal products or
prototypes. Simulating systems, however, demonstrated to increase controllability and
observability to execute automated functional veri�cation.

Meta-information can be used for system optimization and veri�cation as well. With
meta-information additional information is added to system modules. Such information
is easy to apply by developers and can be evaluated during the system's runtime or sim-
ulation time depending on its dedicated purpose. During runtime, meta-information has
shown to increase e�ciency of memory management; during simulation time it was used to
automatically partition a system in security critical and non security critical modules. As
meta-information is independent from the modules abstraction level and has no impact to
their functional behavior it is highly applicable for �exible and iterative design processes.

Simulation based security veri�cation has shown to be �exible, abstraction level inde-
pendent, and e�cient for system wide security architectures. This is a great advantage in

4. Methodology Evaluation and Case Studies 38

comparison to purely formal veri�cation methodologies which can only be performed on
very abstract models or small parts of a system. The simulation based security veri�cation
was successfully integrated into an iterative hardware/software codesign process without
any reduction of �exibility during the design space exploration. Furthermore, it was suc-
cessfully extended to a (semi-) formal approach by usage of model checking methodologies.

Together, these evaluation results show that the novel concept of security and perfor-
mance veri�cation discussed in this thesis is applicable for development of secure embedded
systems.

Chapter 5

Conclusion and Future Work

This chapter concludes this work by recapitulating the goals and summarizing the concept
to ful�ll them. Furthermore, it highlights the bene�ts of the novel approach in this thesis
and discusses possible future work in codesign methodologies for secure embedded systems.

5.1 Conclusion

Driven by a gap between security veri�cation of abstract models and security veri�cation
of implemented systems, this work focuses on the seamless integration and veri�cation
of functional security requirements into a hardware/software codesign methodology. The
codesign approach allows system wide optimization by performing design space exploration.
This allows best results in the most important parameters of modern embedded systems
such as footprint (equivalent to price) and execution performance. Functional security
requirements are considered in the development process as soon as possible. This allows
taking them into account when performing the system optimizations. This is one of the
advantages of the approach described in this work, as security features are known to cause
signi�cant performance impact.

To perform the required seamless integration of the security requirements into all develop-
ment phases and abstraction levels, they are represented as additional information in the
system's model respectively in its implementation. This so called meta-information can be
automatically evaluated during development time, e.g., for system veri�cation, or at run
time e.g., for system optimization. An automated system security veri�cation based on
system simulation including evaluation of this meta-information can be performed. The
automatism proposed in this work allows doing so in each iteration of a codesign process.
This allows recognizing security violations as soon as they happen in the development pro-
cess. This is one of the major bene�ts of this approach.

Based on the simulation based evaluation of meta-information representing security re-
quirements, formal system veri�cation can be done. A simulation environment evaluates
the meta-information of the system and generates a formal model of dependencies between
security requirements. These dependencies are veri�ed against a formal set of rules (a so
called security policy) which de�nes the security architecture of the system. To do so, the

39

5. Conclusion and Future Work 40

Event Calculus, a formalism to represent temporal actions and their e�ects, is used. The
formal veri�cation is performed by model checking using an Event Calculus reasoning tool.

One great bene�t of using meta-information for security veri�cations is that they are in-
dependent of the security requirement's implementations. Thus, meta-information can be
applied very early in the design process. They are independent of the implementation
domain (e.g., hardware or software). In addition, they can be re�ned with the remaining
system during design space exploration, are easy to apply by system developers without a
lot of security or veri�cation background, and can be evaluated automatically by existing
tools. Using meta-information in system models and implementations for veri�cation gives
su�cient �exibility to be used in iterative codesign methodologies. Additionally, they allow
e�cient management of rapidly changing security requirements.

The development methodology in this work was evaluated in di�erent experiments and a
case study. In the case study, a smart card system was modeled including the hardware,
the operating system in software, and a smart card application. The system model was a
mixed abstraction layer model which combined di�erent abstraction levels in one model.
The hardware was modeled in SystemC, while the operating system and the smart card
application were implemented in C for the targeted smart card hardware platform. By
adding meta-information representing di�erent security requirements automated security
veri�cation across all these abstraction layers was possible. The veri�cation was executed
continuously when performing di�erent system optimizations in hardware and software.
Overall, the methodology in this work has shown to be highly applicable to be used in
industrial development of secure embedded systems even though improvements, especially
in the areas of formal veri�cation tools and support are possible.

5.2 Future Work

This work concentrated on development and evaluation of technical concepts for a hard-
ware/software codesign process for secure embedded systems. It was evaluated by experi-
ments and a case study. During this work it was attempted to stay in close contact with
an industrial partner to develop concepts which are highly applicable in industrial environ-
ments on short term. However, it could not be a target of this dissertation to evaluate the
secure codesign methodology in an industrial project. Nevertheless, to de�nitely answer
the question of industrial applicability, especially by meaning of cost and savings, this
needs to be done as future work. The codesign methodology has to be implemented for
an industrial project and a system with realistic complexity. In any case, the veri�cation
costs have to be compared to cost of projects without the approach in this thesis.

The concepts in this work are following the requirements described by the Common Criteria
process. Before using this codesign methodology for systems that need a security evalua-
tion according to Common Criteria, the methodology has to be discussed with Common
Criteria experts and evaluators. It has to be noted, that even if this development process
was not accepted by external evaluators, it will pay o� for internal security veri�cation.
However, if re�nements in the process were needed for acceptance the bene�ts during de-

5. Conclusion and Future Work 41

velopment and evaluation are bigger.

Within the context and working period of this thesis two follow-up research projects
were worked out and proposed to funding partners (Österreichische Forschungsföderungs-
gesellschaft1). Both projects were accepted and are currently running. CoCoon is working
on novel security concepts for user centric ownership Java Cards. Modern high-end Java
Cards will have to allow post issuance installation of Java Card applications. This en-
ables to perform new attacks on these secure embedded systems. CoCoon investigates in
novel defensive execution environments and application veri�cation methods to overcome
these threats. Hardware and software concepts will be evaluated. Therefore a codesign
methodology will be developed. This methodology will be strongly based on the approach
in this work. DAVID investigates scalable secure software systems for low-end use cases.
Smart card platforms with very restricted capabilities are targeted by this research project.
On the one hand, this means that software has to be highly e�cient and scalable to �t
onto such a platform. On the other hand, a certain level of security is required. Thus,
development and veri�cation has to be done very carefully, which is the focus of DAVID.

1htpp://www.ffg.at

htpp://www.ffg.at

Chapter 6

Publications

Publication 1 (under review): Security Veri�cation on Mixed Level System Models
based on Event Calculus Model Checking, Preprint submitted to Journal of Systems Archi-
tecture, Embedded Software Design, Elsevier B.V

Publication 2: Identi�cation and Veri�cation of Security Relevant Functions in Embed-
ded Systems Based on Source Code Annotations and Assertions, Workshop in Information
Security Theory and Practices, WISTP '10, Passau, Germany, 12-14 April 2010, Informa-
tion Security Theory and Practices. Security and Privacy of Pervasive Systems and Smart
Devices, Lecture Notes in Computer Science, 2010, Volume 6033/2010, 316-323

Publication 3: Idea: Simulation Based Security Requirement Veri�cation for Transaction
Level Models, International Symposium on Engineering Secure Software and Systems, ES-
SOS '11, Madrid, Spain, 9�10 February 2011, Engineering Secure Software and Systems,
Lecture Notes in Computer Science, 2011, Volume 6542/2011, 264-271

Publication 4: Towards Formal System-Level Veri�cation of Security Requirements dur-
ing Hardware/Software Codesign, 23rd IEEE International SOC Conference, SOCC '10,
Las Vegas, USA, 27�29 September 2010

Publication 5: Performance Improvement and Energy Saving based on Increasing Lo-
cality of Persistent Data in Embedded Systems, 2010 Fifth International Conference on
Systems, ICONS '10, Menuires, France, 11�16 April 2010

Publication 6: Java Card Performance Optimization of Secure Transaction Atomicity
Based on Increasing the Class Field Locality, Third IEEE International Conference on Se-
cure Software Integration and Reliability Improvement, SSIRI '09, Shanghai, China, 8�12
July 2009

Publication 7a and b: Fast simulation based testing of anti-tearing mechanisms for small
embedded systems, 2010 15th IEEE European Test Symposium (ETS), ETS '10, Prague,
Czech Republic, 24�28 May 2010

42

Security Verification on Mixed Level System Models
based on Event Calculus Model Checking

Johannes Loiniga, Christian Stegera, Reinhold Weissa, Ernst Haselsteinerb

aGraz University of Technology, Institute for Technical Informatics, Graz, Austria
bNXP Semiconductors Austria, Gratkorn, Austria

Abstract

Security verification is going to be increasingly important in the development of future embedded systems. The
complexity of systems, attack scenarios, and countermeasures are going to force development processes to include
formal or semi-formal approaches. In model based development methodologies, such as hardware/software codesign,
models contain components implemented on different abstraction levels. A system security verification approach has
to be able to include all of these different abstractions.

A predicate based security verification approach, such as discussed in this work, can fulfill these requirements.
Event Calculus, a formalism of temporal logic is utilized to define formal security policies which are then used in a
model checking approach to verify system security properties.

Keywords:
Security, Event Calculus, Formal Verification, Model Checking, Hardware/Software Codesign, Simulation

1. Introduction

Information security is a major feature of modern sys-
tems. Adequate security verification is a crucial element
during development of them. This is especially impor-
tant for embedded systems, which are often difficult, ex-
pansive, or even impossible to access for maintenance,
particularly when already delivered to the field. Unfor-
tunately, unlike other typical requirements of embedded
systems such as performance or power consumption, se-
curity is a requirement which is difficult to be expressed
by meaningful metrics. Too many completely different
aspects, which are spread all over the complete system,
would have to be considered. In addition, external fac-
tors, which are not directly related to system design or
implementation (i.e. how easy it is for an attacker to ac-
cess the system, or how beneficial it is to hack it) have to
be taken into account. Typically, they lead to extensive
manual security verification, which is time consuming,
expensive, and often needs to be redone when parts of
the system are altered due to changes in use or function,
or in attack scenarios.

Various research projects investigate different ap-
proaches that make the lives of secure embedded sys-
tem developers easier. Verification methodologies and
tools have been developed which allow defining and

verifying security properties in models and implemen-
tation of systems. Formal verification seems to be very
promising both from both the technical and marketing
view. First of all, proving the system’s security prop-
erties helps system architects and developers manage
the necessary level of security. Second, proven secu-
rity of a product is an essential differentiating factor on
the highly competitive embedded system market.

As a result of the immense complexity of modern em-
bedded systems, formal verification is typically either
done on a very high abstraction level, or on selected
parts of the final implementation. This is dependent on
a vast amount of functional features mainly provided by
software modules, the capability of the underlying hard-
ware components, the ability of potential attackers, and
the practicality of recent attacks. Nevertheless, it is ob-
vious that security has to be considered in a very broad
perspective, specifically as a system-wide concept ap-
plied and verified in all design phases, and on all ab-
straction levels and implementation layers. Most exist-
ing security verification approaches fail to handle the
flexibility of the applied development methodology, es-
pecially, when an iterative development approach such
as hardware/software codesign is used. Nevertheless,
flexible codesign approaches are very powerful because
they allow the development of systems with optimal in-

Preprint submitted to Journal of Systems Architecture September 3, 2012

Publication 1: Journal of Systems Architecture (under review) 43

teraction between hardware and software components.
The motivation for this research was to develop and

evaluate a verification methodology that combines the
advantages of formal verification and flexible hard-
ware/software codesign methodologies. The problem
statement we want to address is that formal verification
aspects must do not have to hinder, but support iterative
development processes. Thus, verification must be (1)
flexible enough to handle effective design space explo-
ration, (2) simple to apply in order to keep verification
efforts and costs minimal, and (3) able to cover secu-
rity requirements independently on various abstraction
levels or implementation layers.

Our methodology accomplishes the aforementioned
criteria by combining flexibility of simulating mixed
abstraction level models with aspects of formal Event
Calculus reasoning. In our approach, Event Calculus is
used to define a formal domain description and a secu-
rity policy. The domain defines properties for a secure
embedded system while remaining independent from
any system under development. The security policy de-
scribes properties of the system’s security architecture.
Formal reasoning is used as the first step to prove the
consistency of a policy. Then, iterative simulation based
model checking is executed in order to verify the con-
tinuously refined system against the security policy.

The remainder of the article is structured as follows:
Section 2 summarizes basics and work related to em-
bedded system development and security verification.
Section 3 describes our concept, including model based
development, simulation based model checking, and
Event Calculus based verification. We applied our ap-
proach in a case study described in Section 4 and we
discuss the results in Section 5. This includes system
optimization with respect to execution speed of a smart
card application, the verification’s performance, and a
summary of our experiences with Event Calculus tools.
Finally, in Section 6, we provide a conclusion.

This work is a result of a project which is funded by
the Austrian Federal Ministry for Transport, Innovation,
and Technology (contract FFG 816464).

2. Basics and Related Work

This work is based on some concepts that have not
been directly addressed in recent research work. How-
ever, we explain them in this section to provide the
reader of this article with better understanding of field
of research where this work was done.

2.1. Secure Embedded Systems and Smart Cards

In this work we discuss very small embedded sys-
tems (even though the presented concept is not nec-
essarily restricted to small embedded systems) with a
main focus on security. A typical example of a small
embedded system is a smart card, or more precisely, a
smart card micro controller which nowadays comes in
different packages. Smart card micro controllers often
need to be wrapped in pocket-sized plastic cards (bank-
ing, credit card, electronic identification), but other use
cases require placement in more powerful devices such
as smart phones. Most smart card use cases have two
things in common: (1) smart cards appear in items that
sell in high numbers, which is interesting for the market,
but also generates pressure for keeping prices compet-
itive, and (2) smart cards require a very high security
level.

First of all, the type of use defines the required level
of security. Moreover, security is a moving target. Lab-
oratories (e.g., security evaluation labs) and attackers
continuously work on developing new attack strategies
and ways to make already known attacks more powerful
and efficient. The longer the development of a system
takes, the higher the risk becomes, that new security re-
quirements have to be taken into account as well. This
happens because new attacks present themselves or be-
cause known, but earlier inapplicable attacks, become
threats due to better tools. Until recently, for example,
laser attacks have been a purely theoretical risk because
of the expensive equipment required. However, nowa-
days, labs can afford several lasers, which perform fast
sequential light attacks in different places on a chip. De-
velopment teams and methodologies have to be able to
react adequately to the rapidly evolving theoretical and
practical attacker community. They need to adapt their
systems according to new circumstances and they need
to do it fast.

In the semiconductor industry, the product’s price is
still mainly defined by the size of a chip. This means
that new features, including security features, cannot be
added at free will. Every design decision has to be de-
liberated very carefully, even though the embedded se-
curity market seeks trade offs between price and system
security. A prominent example of that is the Java Card
Connected [1] specification, which has been developed
for years by the Java Card Forum1. Unfortunately, semi-
conductor manufacturers had to recognize that the smart
card market was not willing to pay for the size of the
chip which was consequently needed to provide all the

1http://www.javacardforum.org

2

Publication 1: Journal of Systems Architecture (under review) 44

new fancy but pricey features defined in the Java Card
specification.

To give the reader an idea of the size of smart card mi-
cro controllers: they are typically still based on an 8-bit
8051 derivate with some few kByte of RAM and some
few hundred kByte of non-volatile memory (EEPROM
or Flash). However, one should not underestimate the
complexity of such a system. Java Cards, for example,
provide a full virtual machine, including: an applica-
tion firewall, reams of security features implemented in
software and hardware, garbage collection, a very com-
prehensive API for cryptographic algorithms, and lots
more. A very extensive and costly security evaluation,
(e.g. according to the Common Criteria [2]) is neces-
sary to guarantee a security level that is needed during
the product’s life cycle, which can last years.

2.2. The Common Criteria Process

Common Criteria [2] is the de-facto standard for se-
curity evaluation. In this work we do not describe the
whole process but only the basic concept of Security
Functional Requirements which corresponds with our
methodology. For details about the complete evaluation
process please consult the book [3] which gives a good
explanation of the complete process or the specification
in [2].

The Common Criteria process is a rather documenta-
tion centric approach. To provide a minimal description,
an analysis identifies potential threats, which then have
to be countered by Security Mechanisms implemented
in the system. Behavior of the Security Mechanisms
is in turn defined by Security Functional Requirements.
A set of Security Functional Requirements is given by
the Common Criteria standard but can be extended if
necessary. The Security Target documents the security
architecture of a certain system by explaining (among
other things) which Security Functional Requirements
need to be implemented. A security evaluation typically
includes the verification if an implementation and the
according documentation in the Security Target corre-
spond. This is a manual and very time consuming task.

Seven Evaluation Assurance Levels, or EALs, are de-
fined in the standard. They contain, for example, de-
veloper action elements and evaluator action elements
that have to be performed to gain a Common Criteria
certificate for a product. EAL 1, the minimum level of
assurance, requires functional testing, whereas EAL 6
refers to semi-formal verification and EAL 7 to a for-
mally verified design. The Common Criteria process
does not specify how or on which abstraction level the
(semi-) formal verification has to be done.

In common with the authors of [4] and [5] we argue
that the Common Criteria process is missing a clear ref-
erence to the development process. Our methodology
aims to close the gap between supporting the verifica-
tion of a system’s model and implementation against
Security Targets.

2.3. Security Functional Requirements
In our approach we re-use the idea of Security Func-

tional Requirements. As previously described, they are
the very basic components of a system’s security archi-
tecture. Notice however, that Security Functional Re-
quirements do not describe in detail how the require-
ment has to be implemented in a system. Instead, they
only designate certain requirements which have to be
fulfilled because other system components rely on them.
Considering the early development phase, this is an irre-
placeable advantage. In this phase, the shape of final im-
plementation has often not yet been defined. However, it
might already be important to identify essential security
components, which provide certain Security Functional
Requirements.

The analysis in [6] shows that a smart card hardware
platform can easily consist of 60 Security Functional
Requirements. This already large number includes nei-
ther the software layers of the smart card application
nor the operating system. Notice that, verification ef-
fort typically increases exponentially with the complex-
ity of the system. We understand this as an indicator
that future system development will rely on automated
security verification tools.

Our approach aims to provide the link between a for-
mal description of how Security Functional Require-
ments and system modules are interrelated to achieve
the necessary system security. To do so, we use meta-
information for Security Functional Requirement in the
source code of the system’s model, as well as in the
source code of its implementation.

2.4. Related Work
Although formal verification is not a very new topic

in research, it recently received a lot of attention, es-
pecially in the area of security verification. One of the
main reasons for this attention is unfortunately, also one
of the main drawbacks. The continuously growing com-
plexity of modern systems makes it necessary to use
comprehensive verification methods. Unfortunately, the
complexity of today’s systems is already much too high
to run a complete formal system verification, which in-
cludes all the hardware and software components.

A rather non-technical classification of verification
methods splits them into approaches that (1) use very

3

Publication 1: Journal of Systems Architecture (under review) 45

abstract high level models and (2) approaches that prove
certain low level implementation details. The problem
we identified is that proving properties of very abstract
models does not necessarily increase the security of a
real implementation. That’s the reason why these ap-
proaches are often only used to verify specifications.

Modeling languages such as the Z Notation [7] or
UML [5, 8] for high level models, typically used with
theorem provers or model checkers [9], are too abstract
to be compiled or synthesized into real systems that
provide sufficient performance and are cost effective
enough to produce. In addition, these languages can not
yet be used for typical design space exploration tasks
in which the architect or developer tries to optimize es-
sential parameters (like execution performance, power
consumption, etc.) of a system. This very often leads
to a separate implementation of security and functional
models. The security model is typically generated and
verified first, whereas the functional model is used to re-
fine the system components afterwards. All changes in
the functional model have to be re-integrated into the se-
curity model and checked again to be sure that no secu-
rity violation happened during the refinement process.

Low level verification methods for system level mod-
els, hardware, and software are described in [10, 11, 12,
13] and many other publications. Even though, some of
them use high level languages like SystemC for hard-
ware, or Java for software, the verification is based on
low level representations like netlists or bytecodes. The
computational effort is usually extremely high and can
even be too high to be executed on today’s computers
(e.g., as a consequence of the state space explosion).
Such low level representations are typically generated
by tools such as compilers or synthesis tools. However,
this can be very time consuming. Consequently, gen-
erating low level representations requires a steady im-
plementation of the modules. In early design phases
mock-up modules are often used during design space
exploration because the developer might not yet know
if or how the final module will be implemented in hard-
ware or software. Implementing these mock-ups in a
detailed way so that they can be processed by appropri-
ate tools and so that their low level representations can
be verified is an unwanted expense.

Our approach fits somewhere in the middle of these
aforementioned processes. Instead of low level details,
our approach uses predicates for Security Functional
Requirements in a system. Such abstract descriptions
are implementation independent and their verification is
flexible enough for hardware/software codesign meth-
ods.

Using abstract properties or predicates for security

verification is already described in [14, 15] and [16].
Event Calculus, a formalism of temporal logic, is of-
ten used to define and verify a meta-model of a sys-
tem. Like above, we argue that there is a missing link
between verification of these meta-models and the real
systems to be implemented.

A detailed description of the Event Calculus is given
in [17, 18] and [19]. Basic principle is that the Event
Calculus defines predicates like Happens(α(γ), τ) and
HoldsAt(β(γ), τ), where α is an event (also called ac-
tion) that happens at time point τ. β is a property (a
so called fluent) that holds at time point τ. Events and
fluents are not pre-defined by the Event Calculus. They
can be defined in an appropriate domain description and
can be used with typed arguments (γ in the examples
above). Such predicates are used to define axioms that
can be formally checked with tools such as the decrea-
soner2 or f2lp3.

An example is given in Axiom 1 which states that if
John wants to walk through Door, the door has to be
open. It does not yet define if the door is open or not,
but additional axioms can describe events that can cause
the door to be opened. All axioms combined together
can be used in three ways: (a) in an abductive way -
to find necessary events (so that John can, for example,
walk through the door), (b) in a deductive way - to find
the result of events (i.e. if the door is open or closed),
(c) in an inductive way - to find rules (John can’t walk
through the door if it is closed).

Happens(walk through(John,Door),T)→
HoldsAt(open(Door),T).

(1)

In [14] and [15] abduction problems are used to find
potential abuse in attack scenarios. We use the Event
Calculus to formally define a domain of rules for Secu-
rity Functional Requirements and a policy that describes
the relations of Security Functional Requirements. The
policy is first verified against the domain in an abduction
task in order to find potential solutions. Afterwards, the
system model can be checked against the policy by us-
ing deduction. We will explain in more detail how the
Event Calculus is used in Section 3.3.

3. Event Calculus based Model Checking

Our development process is based on three corner
stones: (1) model based development, (2) simulation

2http://decreasoner.sourceforge.net
3http://reasoning.eas.asu.edu/f2lp/

4

Publication 1: Journal of Systems Architecture (under review) 46

based model checking, and (3) Event Calculus based
verification. Model based development means that we
start with a very abstract pure functional model. This
model is continuously refined until it meets all require-
ments and the system’s modules can be ported to a real
implementation. This implementation can be seen as
refinement of a model as well. Simulation based model
checking uses traces generated during simulation of use
cases to verify system parameters. In case of our work
these parameters are Security Functional Requirements.
Event Calculus based verification is used to verify these
traces against a formal description of a security policy.
Following subsections describe these methods in more
detail.

3.1. Model based Development

The basic principle of model based development is a
top-down approach and depicted in Figure 1. The start-
ing point is a pure functional high level model. This
model is refined iteratively. With every refinement cycle
a simulation is used to analyze the system’s properties.
These properties can be functional properties as well as
security properties.

Input from specification

Implemented System

Requirements
met

Requirements not met

Figure 1: The Iterative Process

As described in [20], the model passes different ab-
straction levels. It is essential for security concepts to
be considered and reflected in a model as soon as possi-
ble in the development process. Thus, after completing
a pure functional model, the model needs to be extended
through security requirement’s meta-information. From
this point in time security verification can be performed
with every refinement cycle (the verification methodol-
ogy is described in the following subsections). Then,
models of security mechanisms and functional compo-
nents of the system are created. This is necessary, as

they are also needed for partitioning, mapping, and opti-
mization procedures of the hardware/software codesign
process. Abstraction levels and their purposes are sum-
marized in Figure 2.

C
on

tin
ou

s
fu

nc
tio

na
l a

nd
 s

ec
ur

ity
 re

fin
em

en
t

C
on

tin
ou

s
fu

nc
tio

na
l a

nd
 s

ec
ur

ity
 v

er
ifi

ca
tio

n Pure Functional
Level

Model Functional
Requirements,
Annotate Security
Requirements

Secure Functional
Level

Model Security
Requirements

(Secure) Transaction
Level Level

Partitioning,
Mapping,
Optimization

RTL/Gate Level/SW
Level

Implementation

Figure 2: Abstraction Levels

The refinement from one abstraction level to the next
one is a continuous task. During design space explo-
ration some modules are more interesting than others.
To generate more accurate analysis results these mod-
ules have to be refined on a more accurate level. Other
modules currently under development, however, are not
that interesting and would be very time-consuming to
refine as well. Notice, that refinement is often used to
“try out” a design decision (this is typical in the design
space exploration). Because design decisions can be
withdrawn when the analysis shows improper results,
refinement should be as effortless as possible. This
means that the model based development approach has
to be able to handle different modules on different ab-
straction levels. A model that follows this concept we
call a mixed (abstraction) level model. Co-simulation
allows simulation of such mixed level models.

Since modules use a communication channel appro-
priate to their own abstraction level, a module on a
higher abstraction level cannot directly interact with a
lower level one. Functional modules, for example, of-
ten use function calls, while the lowest level modules
typically use bus accesses or other hardware interfaces.
Thus, an appropriate communication channel between
abstraction levels is necessary.

Usual transactors (shown in Figure 3) connect mod-
ules with incompatible interfaces. The transactor han-
dles data transformation to make communication possi-
ble. Transactors are a modeling tool; they are usually
not needed in the final product. To handle mixed level
models this concept needs to be extended by vertical
transactors.

Vertical transactors as shown in Figure 4 provide an

5

Publication 1: Journal of Systems Architecture (under review) 47

ModuleTransactorModule

Figure 3: Usual Transactors

interface between modules on different abstraction lev-
els. Such modules do not have an appropriate interface
that could be connected through a usual transactor. One
example shown later in the case study, is a software
module implemented on the functional level in C++

(running directly on the simulation machine). It is con-
nected to a low level software module implemented in C
for a smart card processor (and executed on a simulated
smart card CPU). These modules are implemented with
various tools (e.g., compilers) and executed in different
simulation environments. The vertical transactor gives
the developer a tool to refine one module to a lower ab-
straction (e.g., because it is critical for performance and
has to be modeled in more detail) while other modules
are not critical, and it is sufficient for them to stay more
abstract.

Functional Level

Transaction Level

Low Abstraction/
Implementation
Level

Module

Module

Module

Module

Module

Module Module

V
er

tic
al

Tr

an
sa

ct
or

V
er

tic
al

Tr
an

sa
ct

or

V
er

tic
al

Tr

an
sa

ct
or

Module

Figure 4: Vertical Transactors

3.2. Simulation based Model Checking
In a mixed level model a detailed verification of the

model’s source code makes no sense. First, the veri-
fication effort is too high. High level modeling lan-
guages like SystemC use complex data structures and
pointers which are difficult to verify. Lower levels are
even worse to formally verify in detail. Concurrent pro-
cesses, interrupts, and a lot of potential side effects (e.e.
caused by global variables, such as special function reg-
isters in assembler) make detailed verification impracti-
cal today. Second, a detailed verification is not needed
during iterations of refinement cycles. We argue that
there is no good reason for a detailed but costly formal
proof of an abstract module that will never be a part of

the final product as we know it. Instead, the verifica-
tion has to be appropriate for the abstraction level of
the modules. As discussed in [6] and [20], we strongly
believe an informal, but efficient, simulation based se-
curity verification performed during design space ex-
ploration is more promising than an expensive formal
verification.

In conventional hardware/software codesign pro-
cesses use cases are applied during the simulation of
the model. The model respectively the simulation en-
vironment creates a report that is used to analyze the es-
timated parameters (like the performance) of a system.
The analysis results obviously depend on the quality of
the use case scenarios, which generate the stimuli for a
given simulation.

We extend this methodology by adding a security
aspect. This is shown in Figure 5. Security re-
quirements are added to the model of the system as
meta-information (so called annotations). This meta-
information does not influence functional behavior of
the model and it can be used on all abstraction levels. It
is evaluated by the simulation environment and used to
do a security analysis.

Simulation
Environment

System Model

Use
Cases

Fault
Injection

Functional
Requirements

Security
Requirements

A
nn

ot
at

e

Generate
Stimulus

Functional
Report

Security
Report

Im
pl

em
en

t

Figure 5: Simulation Based Security Verification

Notice, that security requirements are also imple-
mented during the refinement cycles (this is not shown
in Figure 5) as described in the previous section. This,
however, does not mean that these requirements are
not depicted by meta-information. Instead, the meta-
information is refined as well, for example, to indicate
that a module provides a certain functional security re-
quirement. This allows for the verification to become
more accurate with each refinement cycle.

Again, the quality of each verification depends on
simulated use cases. Now, these use cases alone are not
able to stimulate scenarios where all security require-
ments are involved. The concept has to be extended

6

Publication 1: Journal of Systems Architecture (under review) 48

through attack scenarios. Fault injection during simu-
lation provides a convenient way to simulate the system
in conditions outside of a normal use case.

To keep it very simple, verifying whether to models
are compliant with one another is performed through
conventional model checking. One model is a formal
description of the behavior as it should be - this is the
system specification whereas the second model repre-
sents the system to be verified. The model checker
checks if the system’s model can lead to states that are
not defined in the specification. This is shown in Fig-
ure 6(a). The problem with this approach is that the
model to be verified has to be in a representation which
corresponds with the model checker. This could mean
that it is either implemented in a certain, very abstract,
formal language, or that it is a generated intermedi-
ate representation from a concrete implementation (e.g.,
generated from a hardware netlist).

In case of simulation based model checking the out-
put of a system simulation is used as representative data
for the system. In Figure 6(b) log files are checked
against a formal security policy. The log files contain
traces of security requirements. The verification itself is
also done by a formal model checker.

In such a case, only one of two input models of the
model checker can be formally defined (the security pol-
icy). One can argue that this is a semi-formal approach
as some input data for model checking is generated by
a simulation, but the verification itself is done formally.

Specification

Model Checker
Verificatin

ResultModel

(a) Common Model Checking

Model Checker
Verificatin

Result

Model Security Policy

Simulation

Log Files

(b) Simulation based Model Checking

Figure 6: Common versus Simulation based Model Checking

3.3. Event Calculus based Verification

We use the Event Calculus to formulate rules in the
security policy. Using the Event Calculus, temporal in-
teractions of events and properties, or so called fluents,
can be formally described. However, the detail mean-
ing of events and fluents is not defined by the Event
Calculus itself. In our approach, the fluents represent
Security Functional Requirements and events indicate
when system modules support and respectively require
appropriate security mechanisms. This is defined in our
domain description. Security requirements and their in-
teractions are defined in the security policy. The secu-
rity policy thus describes the abstract security behavior
of a system without a relationship to a concrete design
or implementation. Platform constraints define the ca-
pabilities of a target platform with respect to the secu-
rity requirements of a policy. This allows a certain re-
finement of the security policy as platform constraints
reduce the design space for the security architecture.

As a first step, the domain description, security pol-
icy, and platform constraints (if a target platform has
already been selected) can all be verified in a model
finding process (in an abductive task). In this process
the solver tries to find scenarios of events that match the
domain, policy, and the constraints. If a model is indeed
found, it describes a potential architecture of modules
and related security requirements which fulfill the secu-
rity objectives on the target platform. If more than one
model is found, they provide information about what
the target design potentially looks like. If no model is
found, a contradiction shows up in the descriptions. In
that case, the security policy either is invalid or the it
cannot be implemented on the target platform, because
the domain description is fixed.

As a second step, the security reports (a trace of se-
curity requirements) from mixed level simulations, do-
main descriptions, security policies, and the platform
constraints, are used in a model checking process (a de-
ductive task). If a non-contradicting set of properties
results from the events in the security report, the report
along with the simulated model fulfill the formally de-
fined security architecture. However, if a contradiction
is found, the implementation includes a security viola-
tion.

3.3.1. The Domain Description
The domain description of our concept is general

enough for any suitable security verification, and can be
reused for the development of different systems. It con-
tains 26 axioms in total which all work independently of
concrete security requirements as well as system mod-

7

Publication 1: Journal of Systems Architecture (under review) 49

ules. The main concept of our domain description can
be explained with the following axioms:

initiates(requestsR(M,R), unsatis f ied(M,R),T). (2)

Axiom 2 states that when module M requests a re-
quirement R, M becomes unsatisfied with respect to R.
Furthermore, initiates is defined by the Event Calcu-
lus, and requestsR (an event) and unsatsi f ied (a flu-
ent) are defined by our domain description. The axiom
means that the module relies on a security requirement
which is not implemented by the module. T stands for
the point in time whereas it is not bound by this axiom.
This means that the axiom holds true for every point in
time.

Obviously, the requirement has to be fulfilled some-
where in the system. Thus, Axiom 3 defines how a
module can be satisfied: an event satis f y has to hap-
pen on the same module M with the same requirement
R (terminates is defined by the Event Calculus). Again,
this axiom holds true for every existing point in time
- so whenever satis f y happens. However, we have to
be more restrictive with respect to points in time where
satis f y is allowed to happen because we need it to hap-
pen when certain conditions are met. Additional ax-
ioms 4 and 5 formulate these restrictions. The restric-
tions can be summarized in the following way: a mod-
ule becomes satisfied if and only if it is connected to a
module that provides the right requirement and is not
unsatisfied with respect to another requirement. The
reminder of this section explains the necessary Event
Calculus axioms to express this rule. The other ax-
ioms in our domain description mainly describe nec-
essary events and unwanted side effects; for example
events causing modules to become connected and dis-
connected to other modules. An example side effect is
that a module cannot be connected to itself.

terminates(satis f y(M,R), unsatis f ied(M,R),T). (3)

Axiom 4 describes a logical combination of four flu-
ents (unsatis f ied for M1, connected, provides, and
unsatis f ied for M2 in combination with an existential
quantifier). If this logical conjunction holds true, the
satis f y event happens. In other words: satis f y happens
when module M1 is unsatisfied and connected to module
M2, while M2 provides the same requirement R1 which
caused M1 to become unsatisfied. In addition, M2 must
not be unsatisfied. Notice, that there must not exist any
requirement R2 (read −?[R2] as @R2) that makes M2 to
become unsatisfied at the same time point T .

(holdsAt(unsatis f ied(M1,R1),T) &
holdsAt(connected(M1,M2),T) &
holdsAt(provides(M2,R1),T) &
−?[R2] : (holdsAt(unsatis f ied(M2,R2),T))

)→ happens(satis f y(M1,R1),T).

(4)

However, the implication in Axiom 4 does not forbid
satis f y from happening in different cases (it only states
that if the axiom holds true satis f y has to happen). We
have to define a second rule in Axiom 5, which com-
bined with Axiom 4, builds a bi-implication, because
we want that satis f y only happens when certain fluents
are valid. Axiom 5 can be read as: satis f y for M1 hap-
pens if M1 is unsatisfied with respect to requirement R1,
and if there exists a module M2 that is connected to M1
and does provide R1. Again, M2 must not be unsatisfied
with respect to a different requirement R2 at the same
point in time T .

happens(satis f y(M1,R1),T)→ (
holdsAt(unsatis f ied(M1,R1),T) &
?[M2] : (

holdsAt(connected(M1,M2),T) &
holdsAt(provides(M2,R1),T) &
−?[R2] : (holdsAt(unsatis f ied(M2,R2),T))

)
).

(5)

3.3.2. The Security Policy
The security policy defines the Security Functional

Requirements of a system and how they are interrelated
to fulfill its security objective. Informally this is typ-
ically documented in a Common Criteria Security Tar-
get. A formal description, such as the one in our security
policy, has to be used for EAL6 and EAL7.

As we only performed an abstract verification we did
not need to describe the detailed properties of the re-
quirements. There are no restrictions for the semantics
of axioms in the security policy, so long as they do not
contradict the domain description.

Axiom 6 describes an example policy rule for mas-
ter key handling. Master key handling (r master key)
means that the system uses a master key e.g., for se-
curing confidential data within a system. Such a master
key must be either derived (r derived key) or securely
saved in a key store (r key store). Both requirements
are represented in the disjunction, in Axiom 6. Please

8

Publication 1: Journal of Systems Architecture (under review) 50

notice, that in security policy axioms the requirements
are concrete values, while modules and points in time
are unbound variables.

happens(enables(M1, r master key),T)→ (
happens(requestsR(M1, r derived key),T) |
happens(requestsR(M1, r key storage),T)

).

(6)

Axiom 6 can be read as: when any module M1 pro-
vides master key handling at any time point T , it re-
quires either a derived key handling mechanism or a
key storage. Notice, that the rule does not state where or
how often in the system this has to happen. Neither does
it state how this should be implemented. It also does not
state that there must only be one module that provides
the security requirement. This flexibility is essential for
best results during design space exploration.

We do not describe a complete policy in this work,
because the security policy is anyway system depen-
dent.

3.3.3. Platform Constraints
Platform constraints allow the reduction of the de-

sign space if a certain target platform has already been
selected or at least some limiting factors of a platform
are known already. These limiting factors are described
as Event Calculus axioms. They reduce the number of
models that match the formal system description. Pri-
marily, this is useful during the model finding process
where the security policy is verified, but it also helps
developers keeping platform limitations in mind when
doing design space exploration.

One typical platform constraint states that a cer-
tain security requirement is provided by one module
only. Not doing so allows multiple instances of secu-
rity mechanisms which has negative impact on the size
and price of a system. Axiom 7 is another example.
It states that there is no T where any module M pro-
vides blinding for keys stored in the system. Blinding
is a known countermeasure against side channel attacks.
Secret data is masked so that leaked data becomes use-
less for an attacker.

: −holdsAt(provides(M, r phys blinded),T). (7)

If blinding is not supported automatically (e.g., by the
bus), either hardware or software components have to
take care of secret key confidentiality. This can be en-
sured by an axiom in a security policy such as Axiom 8

specifically: keys have to be encrypted (r key enc).
Similarly, for security policies, as long as there are no
contradictions in the domain description, there are no
restrictions for the semantics of platform constraints.

happens(enables(M1, r key storage),T)→ (
happens(requestsR(M1, r phys blinded),T) |
happens(requestsR(M1, r enc keys),T)

).

(8)

4. Case Study

In our case study we developed a model of a smart
card system that includes applications, operating system
components, and hardware components. As previously
described, we started with a pure functional model and
refined modules that were important for design space
exploration. A security policy was defined and used dur-
ing modeling and refinement in order to ensure a con-
sistent security architecture.

4.1. The Mixed Abstraction Level Model

Figure 7 shows a snapshot of the model we used for
the case study. The model supports different smart card
applications that access the operating system features
through an application programming interface (API).
Two applications were of certain importance for our
case study: a card manager application and a Basic Ac-
cess Control (BAC) [21] application. The card man-
ager application handles the setup of other smart card
applications. We used the card manager to install a
BAC application. Basic Access Control defines authen-
tication and communication for machine readable docu-
ments like e-passports. We used the BAC authentication
procedure for our analysis in this case study.

All applications in our case study are written in pure
C++. Microsoft Visual Studio 2008 was used to de-
velop the C++ modules. Obviously, C++ is not used
to being executed on a smart card platform. The appli-
cations in our model were simulated only - they were
executed directly by the (simulating) host PC.

The smart card operating system provides basic func-
tionality for memory management (key objects), crypto-
graphic support, and utility functions such as copy rou-
tines for arrays. Some operating system components are
implemented in C++ (and thus simulated only); others
are implemented in C for 8051 and executed on the sim-
ulated hardware platform. This allows an early estima-
tion of performance critical operating system functions.

9

Publication 1: Journal of Systems Architecture (under review) 51

BAC
Application

Card
Manager

Smart Card Operating
System

API

Crypto++
Library

Smart Card Hardware
Components

C++

C++ and
C for 8051

SystemC

Figure 7: Mixed Level Model for the case study

Keil4 embedded development tools were used for func-
tions implemented in C.

Vertical transactors interface between the C++ and C
components. The transactors are explained in the next
section. As indicated in Figure 7 cryptographic sup-
port was not yet been refined to the hardware layer. In-
stead, the Crypto++5 library was used whenever cryp-
tographic functions were needed.

Smart card hardware was modeled in SystemC6. The
architecture was based on an 8051 derivate which is typ-
ical for smart card systems. The hardware model was
a timed transaction level model which provided an in-
struction set simulator for the 8051 CPU. All SystemC
components were developed with Microsoft Visual Stu-
dio 2008.

Meta-information was added by using macros in the
C/C++ files. Macros were mapping to function calls,
which were executed directly by the simulation envi-
ronment or passed through a special hardware inter-
face from C level to the simulation environment. This
hardware interface was used for meta-information only
and was not relevant for the final implemented system.
Log-files were created for processing by Event Calcu-
lus tools for model checking and are described in the
following sections of this chapter.

4.2. Vertical Transactors

Vertical transactors were used to pass data between
the C++ and the C layer. The C++ layer was directly
executed by the simulating host PC while the C func-
tions were executed by the instruction set simulator em-
bedded in the transaction level model, representing the
8051 environment. Thus, when a C function was called
in the C++ layer (1) the memory of the PC and the sim-
ulated micro controller had to be synchronized, (2) the

4http://www.keil.com
5http://www.cryptopp.com
6http://www.systemc.org

program counter of the 8051 had to be set to the address
of the C function to be executed, and (3) the transaction
level model had to be started while the high level ab-
straction model has to be set to idle until the C function
returned. Finally, (4) memory had to be synchronized
again in order to reflect memory changes in the C++

layer.
Memory synchronization and program counter han-

dling was done by transactor instances that could be in-
stantiated in the high level model. Process synchroniza-
tion of high and low level processes was handled by the
SystemC simulation environment. A mapping file, gen-
erated by Keil development tools during compilation of
the C function, contained RAM addresses of data seg-
ments and ROM addresses of C functions. The former
ones were used for memory synchronization; the latter
ones were used to set the program counter of the instruc-
tion set simulator, so that it can execute the C functions.

4.3. The Security Policy

The used security policy contained 8 axioms. To
achieve better readability, instead of Event Calculus
syntax, a textual description is provided in Table 1. As
we restricted our case study to BAC authentication pro-
cessing the security policy only described the key confi-
dentiality of cryptographic keys stored in the smart card
system. These keys were used for the authentication
process. The policies included rules for key loading, key
storage, key usage, and secure destroying of keys with
respect to side channel attacks. Among other things,
this means that keys must not be stored or transferred
within the system without protection against informa-
tion leakage (e.g., through power profiles or electromag-
netic emission).

4.4. Tools and Flow

We used the f2lp Event Calculus solver described
in [17]. Using f2lp in an abductive task required choice
rules for certain events defined in our domain. Ax-
iom 9 shows the choice rule for accesses. It allows the
model solver to automatically generate accesses events
on its own to find a matching model. Choice rules
for accesses, f rees, releasesR, enables, and disables
were necessary. Notice, that there was no choice rule
for satis f y as the occurrence of this event was strictly
defined by other axioms (described in 3.3.1). Without
choice rules, f2lp assumes that no events happen with-
out an explicit rule in the domain description. Other
tools, such as the decreasoner do not need choice rules
but generate necessary events automatically. Circum-
scription, if supported by the tool, makes sure that only

10

Publication 1: Journal of Systems Architecture (under review) 52

Axiom Nr. Description

1 A key storage is either protected by blinding or keys are stored encrypted.
A key storage holds the secret keys. To protect the keys against side channel attacks the keys must be blinded or encrypted.
This ensures that leaked information is useless for an attacker.

2 If keys are encrypted, a master key is needed.
Encrypting keys requires a system wide secret key. This is the master key.

3 A master key can be derived or stored in a key store.
A master key is a secret key. Thus, it has to be protected against unwanted access by an attacker. Derived keys are not
stored directly in persistent memory but calculated when they are needed. A key store can also be used but notice the
circular dependency.

4, 5, and 6 Whenever a key is used it has to be read, used with a cryptographic operation, and deleted.
Usage of a key consists of three phases: (1) read the key from where it was stored and store it temporally at a location where
it can be used by the crypto- subsystem. This can be skipped when the crypto-subsystem supports in-place operations for
keys. (2) use the key with a cryptographic operation. (3) delete the temporary stored key. This rule is split in three separate
axioms.

7 A secure read operation for keys must provide a key store, a key buffer, and a secure bus or a
secure copy routine.
A secure read has to be performed from a secure storage for keys - the key store. The key must not be stored temporary at
any arbitrary location. A dedicated crypto-buffer has to be in place to handle keys securely. The copy routine itself must
not leak information through side channels. Either this is done by hardware countermeasures (e.g, a secure bus) or by a
secure copy routine in software.

8 A secure copy routine requires reliable random numbers.
A secure copy routine requires reliable random numbers to hide information about the secret data to be copied. These
random numbers need to be created and tested in a special way so that an attacker cannot predict or manipulate them and
thus reduce the security of the copy routine.

Table 1: Security Policy Rules

necessary events are created in order to match the rules
in the model [19].

happens(accesses(M1,M2),T). (9)

Our SystemC simulation environment generated a se-
curity report that could not directly be used with f2lp
because SystemC uses a different time base (pico sec-
onds) than f2lp (time points without defined units start-
ing at zero). A tool was implemented, which converted
SystemC time stamps to f2lp time points. Such Conver-
sion is a valid procedure, because for the verification the
elapsed time between the events is irrelevant as long as
the sequence of events does not change.

For the abductive model finding process, f2lp was
used with (1) the domain description, (2) the secu-
rity policy, (3) the platform constraints, (4) the choice
rules, and (5) an initial condition that had to be ful-
filled. Each of these 5 components were stored in sep-
arate textual files to make them easily replaceable. Fig-
ure 8 shows a demo call of the f2lp tool. In this demo,
sec_copy_demo.fo was used which included an initial
condition. This initial condition initiated the usage of a
secure array copy function. Without such an initial con-
dition only one empty model without any events would

$./f2lp.exe ../domain.fo ../policy.fo ../cons.fo
../choice.fo ../sec_copy_demo.fo ./DEC.lp |
sed ’s/_NV_/NV_/’ | ./gringo.exe -c maxstep=3 |
./claspD-1.1.exe -n 1

claspD version 1.1. Reading...done

Models : 0
Time : 0.359 (Parsing: 0.359)

Figure 8: Demo Run of the f2lp Tools with too short Time Range

be found. Notice, that such an empty model would in
fact match the domain description and the security pol-
icy as without events no contradictions would be found.

As can be seen in Figure 8, the tool had to be used
with a set of other tools (sed, gringo, and claspD). For
details please consult the documentation of f2lp. The
tool was used with a maximum time range of 4 time
points (maxstep=3) from 0 to 3 for resulting mod-
els. This time range was too short: the abductive pro-
cess was not able to find any models within this range
(Models : 0).

For Figure 9, the time range was extended by one
time point, from 0 to 4. At that time the tool was able to
find models. The number of models to return was lim-

11

Publication 1: Journal of Systems Architecture (under review) 53

$./f2lp.exe ../sec_copy_demo.fo ../domain.fo
../policy.fo ../choice.fo ../cons.fo ./DEC.lp |
sed ’s/_NV_/NV_/’ | ./gringo.exe -c maxstep=4 |
./claspD-1.1.exe -n 1
claspD version 1.1. Reading...done
Answer: 1
happens(enables(module1,r_sec_copy),0)
holdsAt(provides(module1,r_crypto_in_place_key),1)
holdsAt(provides(module1,r_crypto_key),1)
holdsAt(provides(module1,r_derived_key),1)
holdsAt(requires(module1,r_rng),1)
...
happens(enables(module2,r_delete_key),4)

Models : 1+
Time : 0.421 (Parsing: 0.421)

Figure 9: Demo Run of the f2lp Tools with sufficient big Time Range

ited to 1 in Figure 9 but the tool reported that other mod-
els might exist (Models : 1+). Unfortunately, Figure 9
does not show a complete found model; it had to be
shortened (indicated by the ...), because of space lim-
itations in this paper.

For deductive model checking f2lp was used with (1)
the domain description, (2) the security policy, (3) the
platform constraints, and (4) the SystemC security re-
port (with converted time stamps). The tool’s call was
very similar to that shown in Figure 8 and 9. The tool
created a model when the security verification was suc-
cessful. If there were any security violations with re-
spect to the used policy, no model was produced.

5. Results and Discussion

In the next subsections we discuss the results of our
case study. This includes examples of system opti-
mizations which show the potential of our proposed
methodology. This section also includes a summary of
the achieved verification performance with the imple-
mented Event Calculus approach. Finally, it comments
on experiences of using Event Calculus tools.

5.1. System Optimization Results

The starting point for our optimization was a
functional high level model which included meta-
information about security requirements. This was the
first model in our case study that was used for secu-
rity verification. All modules of the model were im-
plemented in C++. During one BAC authentication
we traced the activation and deactivation of security re-
quirements. One section of the traced security require-
ments is demonstrated in Figure 10. As can be seen
on the x-axis of the diagram, there is no real timing in-
formation provided by the functional model. Instead, a

r_crypto_key_buffer

r_derived_key

r_master_key

r_enc_keys

r_key_storage

r_rng

r_sec_copy

r_read_key

r_crypto_key

r_delete_key

r_key_usage

1 2 3 4 5 6 7

Sequence of Security Events
(activation or deactivation of Security Requirements)

Se
cu

rit
y

R
eq

ui
re

m
en

ts

Figure 10: Traces of Security Requirements of the High Level Model

sequence of activated and deactivated security require-
ments can be seen.

Marked time point (1) shows the beginning of key
usage (r key usage) in the BAC authentication. Two
keys were read (r read key) in this phase marked with
(2) and (5), and preceded cryptographic operations
(r crypto key) in (3) and (6). After that, the key was
deleted (r delete key) in (4) and (7). A secure array
copy function (r sec copy) was used during the read op-
eration of the keys. This copy routine required reliable
random numbers (r rng).

During all of the following optimization steps we
used such requirement traces to verify them against the
security policy. In fact, none of the optimizations per-
formed failed our security verification.

We started refinement by adding a transaction level
model for the 8051 micro controller. To utilize these
hardware components secureArrayCopy() (which
provides r sec copy) was implemented among other
functions in C for 8051. According to our security
policy we were able to use an appropriate implemen-
tation of this function to copy keys without leaking
information about the key through side channels. As
this function required reliable random numbers (r rng),
we added a hardware random number generator to the
transaction level model. By reliable random numbers
in this context we refer to numbers that were generated
by a true random number generator and which were sta-
tistically tested. Notice that generation and testing of
random numbers is very time consuming.

A corresponding section of the requirement trace of
the mixed level model can be seen in Figure 11. Timing
information exists in the requirement trace (see the x-
axis in Figure 11), since the transaction level model con-
tains a timed instruction set simulator and some timed
hardware modules. The most time consuming blocks
were r sec copy at (1) and (3) and r delte key at (2) and
(4). The reason for such high time consumption were

12

Publication 1: Journal of Systems Architecture (under review) 54

10 15 20 25 30

r_crypto_key_buffer

r_derived_key

r_master_key

r_enc_keys

r_key_storage

r_rng

r_sec_copy

r_read_key

r_crypto_key

r_delete_key

r_key_usage

1 32 4

Se
cu

rit
y

R
eq

ui
re

m
en

ts

Execution Time in us

Figure 11: Mixed Level Model

the generation and testing of random numbers. Notice,
that cryptographic operations did not consume time be-
cause they were implemented on a very abstract level.
Furthermore, please notice that according to the security
policy in Table 1, r delete key did not require the use of
reliable random numbers. However, the implementation
overwrote the key with random numbers from the ran-
dom number generator as this was the only source for
random numbers in the modeled system. Thus, r rng
appeared in the trace files.

The secureArrayCopy() implementation required
many reliable random numbers because it is based on
random permutation of bytes to be copied. In our first
mixed level model 28% of the time required for BAC
authentication was consumed by random number gener-
ation. Although this is not a very accurate result because
too many essential modules had not yet been refined and
do consequently not consume time at all. For our case
study we decided to increase the system’s execution per-
formance by using a more efficient, and less expensive
random number generation method.

Consequently, we tried to take advantage of random
numbers that do not need to have such a high security
level. The time consuming statistical test for such num-
bers could be skipped. As mentioned, deleteKey() is
one function that does not need reliable random num-
bers. Thus, we decided to change the model in a way,
that deleteKey() cold use untested random numbers.

To do so we refined the hardware random number
generator. We implemented a mode for tested, but time
consuming generation of random numbers, and another
mode for untested, and fast generation of random num-
bers. This was a crucial design decision. Great care had
to be taken, so that random numbers did not get gen-
erated in the wrong mode, specifically so that untested
random numbers would not be used where tested ran-
dom numbers were needed. Furthermore, security veri-

10 15 20 25 30

r_crypto_key_buffer

r_derived_key

r_master_key

r_enc_keys

r_key_storage

r_rng

r_sec_copy

r_read_key

r_crypto_key

r_delete_key

r_key_usage

1 32 4

Se
cu

rit
y

R
eq

ui
re

m
en

ts

Execution Time in us

Figure 12: Key Deletion Optimization

fication had to show that the random number generator
was used in the right mode whenever needed.

However, with our security verification methodol-
ogy we were able to show that, with respect to the
security policy, tested random numbers were used for
secureArrayCopy(). The requirement trace is shown
in Figure 12. The secure copy routine still used tested
random numbers in (1) and (3), but the deletion of keys
in (2) and (4) did not (r rng does not appear in these
cases anymore). This reduced the time consumed by
random number generation to 14% and the total authen-
tication time by 9%.

The last system optimization discussed in this work
as our attempt to get rid of the time consuming
secureArrayCopy() function. Similarly to random
number generation, we added a mode to the micro con-
troller’s bus that enabled hardware blinding for all trans-
mitted data that. When the bus worked in the new
added mode, it automatically blinded the transmition of
data with a random number. The hardware now pro-
vided a countermeasure against side channel attacks,
and secureArrayCopy() was not needed anymore.

Again, verification against the security policy ensured
that the bus was used in the right mode, whenever it was
needed. The requirement trace in Figure 13 shows that
r sec copy was not used anymore. Instead, r bus key
was active whenever keys were copied. (r read key).

Running the bus in the blinding mode caused an ad-
ditional communication overhead for every bus transac-
tion. Several simulations with an overhead of 1, 5, 10,
20, and 50 clock cycles were performed to evaluate the
impact on the system’s execution performance. In addi-
tion the clock rate was varied between 8 to 48 MHz. The
comparison to the previous multi level model (with the
hardware random number generator) is shown in Fig-
ure 14. For a typical overhead of up to 10 clock cycles,
a performance gain of 40% can be achieved when com-

13

Publication 1: Journal of Systems Architecture (under review) 55

10 15 20 25 30 35

r_crypto_key_buffer

r_derived_key

r_master_key

r_enc_keys

r_key_storage

r_bus_key

r_read_key

r_crypto_key

r_delete_key

r_key_usage

Se
cu

rit
y

R
eq

ui
re

m
en

ts

Execution Time in us

Figure 13: Without Secure Copy

pared to the performane of secureArrayCopy() with
a modified random number generator.

0%

20%

40%

60%

80%

100%

120%

0 20 40 60
CPU Frequency [MHz]

Ex
ec

ut
io

n
Ti

m
e

C
om

pa
re

d
to

So

ftw
ar

e
So

lu
tio

n

1 Cycle Overhead
5 Cycles Overhead
10 Cycles Overhead
20 Cycles Overhead
50 Cycles Overhead

Figure 14: Performance Comparison with previous Model

5.2. Verification Performance

The verification performance of the f2lp tool strongly
depends on the number of trace entries in the SystemC
security report. We assume that this is caused by longer
temporal sequences, which need to be verified, and by
the respectively higher number of potential events that
can happen. Hence, it is useful to split up the trace files
containing security reports into small independent por-
tions, which can be verified separately.

Figure 15 shows some measurement results of the
verification performance and the extrapolated curve.
The security report from the last multi level model has
116 trace entries. According to the extrapolated curve in
Figure 15 this would result in a verification performance
of approximately 14,4 seconds per trace entry for a con-
ventional developer PC. This results in almost half an
hour for verification of the entire security report.

Table 5.2 shows how we split the trace file to increase
the verification performance. The split was done in a
very rudimentary way: blocks of traces which are inde-
pendent from each other were split into separate files.

0

2

4

6

8

10

12

14

16

0 20 40 60 80 100 120
Number of Trace File Entries

V
er

ifi
ca

tio
n

Ti
m

e
pe

r T
ra

ce
 F

ile

En
try

 [s
]

Measured
Extrapolated

Figure 15: Verification Performance

More sophisticated ways to split up the trace files might
exist. As shown in Table 5.2 the entire verification was
completed in less than 87 seconds. Without the negligi-
ble time to split up the trace file, this is a performance
gain of almost 95%.

Number of Traces Verification Time Comment

38 67,9s
14 5,3s 3 times
8 0,9s 3 times
2 < 0,1 6 times

Total: 116 traces Total: < 87s

Table 2: Verification Times with split Trace File

5.3. Event Calculus Tools
Based on our experience with Event Calculus tools

we have to say that the user friendliness of those tools
leaves room for improvement. The decreasoner showed
better performance in the model finding process, espe-
cially because it did not require choice rules and used
circumscription to generate a minimum set of necessary
events. However, f2lp showed a better overall perfor-
mance and needed less memory. Overall, memory con-
sumption as high for both tools. It strongly depended on
the number of involved modules and time points. Dur-
ing our case study we did not manage to verify more
than 55 time points at a time. Fortunately, the security
reports can easily be split into smaller portions.

Additionally, we have to report very restricted ways
to debug axioms. In most cases an error in an axiom lead
to a contradiction during verification. In such cases the
decreasoner returned partly matching models for debug-
ging purposes, but f2lp did not provide any debugging
support. Thus, the main part of the domain description
in this work was developed with decreasoner while the
security verification was performed with f2lp.

14

Publication 1: Journal of Systems Architecture (under review) 56

Overall, we have shown that Event Calculus based
verification is possible with today’s tools. However, it
turned out that todays tools need improvement before
they can be used in an industrial context or similar com-
plex verification scenarios. Memory consumption, exe-
cution performance, and user friendliness should be tar-
geted in future versions of Event Calculus tools.

6. Conclusion

Development of future embedded systems will hardly
be done without any security verification. Complexity
of these systems has reached a point where both con-
ventional and formal verification techniques have their
limitations. Manual verification, as it is done today, will
soon become too time consuming and to prone to er-
ror. However, existing formal verification methodolo-
gies still suffer from computational overhead needed for
complete system verification. Thus, an appropriate ab-
straction is needed; one which is able to cover issues
related to design and implementation decisions.

We showed a development and verification method-
ology that is capable of working on different abstraction
levels at the same time. Depending on developers’ de-
cisions, modules can be refined sooner or later in the
development process. Furthermore, meta-information
about security requirements is used to support auto-
mated simulation based formal verification. Model de-
velopment, functional verification, and security verifi-
cation are fully supported by the discussed novel con-
cepts of vertical transactors and model checking based
formal security verification utilizing the Event Calculus.

To explain the practicality of our concept we demon-
strated a case study based on a smart card system, which
included applications, a smart card operating system,
and smart card hardware. Model components were im-
plemented on different layers of abstractions, but veri-
fied all together against a formal security policy to argue
for the system’s over-all security.

Even though existing Event Calculus tools show
room for improvement, we believe that a formal predi-
cate based approach such as discussed in this work, can
help system architects and developers deliver products
with security levels appropriate for future use cases and
attack scenarios.

References

[1] Sun Microsystems Inc., Java card platform specification 3.0.1,
2009.

[2] Common Criteria Recognition Arrangement, Common criteria
for information technology security evaluation - part 1-3, 2009.
Version 3.1 Revision 3 Final.

[3] D. S. Herrmann, Using the Common Criteria for IT Security
Evaluation, CRC Press, Inc., Boca Raton, FL, USA, 2002.

[4] F. Keblawi, D. Sullivan, Applying the common criteria in sys-
tems engineering, Security Privacy, IEEE 4 (2006) 50–55.

[5] D. Mellado, E. Fernández-Medina, M. Piattini, A common cri-
teria based security requirements engineering process for the de-
velopment of secure information systems, Comput. Stand. In-
terfaces 29 (2007) 244–253.

[6] J. Loinig, C. Steger, R. Weiss, E. Haselsteiner, Idea: Simula-
tion based security requirement verification for transaction level
models, in: Engineering Secure Software and Systems, volume
6542 of Lecture Notes in Computer Science, Springer Berlin /

Heidelberg, 2011, pp. 264–271.
[7] S. Morimoto, S. Shigematsu, Y. Goto, J. Cheng, Formal ver-

ification of security specifications with common criteria, in:
SAC ’07: Proceedings of the 2007 ACM symposium on Applied
computing, ACM, New York, NY, USA, 2007, pp. 1506–1512.

[8] S. Motre, C. Teri, Using B method to formalize the Java Card
runtime security policy for a Common Criteria evaluation, in:
23rd National Information Systems Security Conference.

[9] V. Lotz, V. Kessler, G. Walter, A formal security model for
microprocessor hardware, Software Engineering, IEEE Trans-
actions on 26 (2000) 702–712.

[10] D. Ghindici, G. Grimaud, I. Simplot-Ryl, Y. Liu, I. Traore, Inte-
grated security verification and validation: Case study, in: Local
Computer Networks, Proceedings 2006 31st IEEE Conference
on, pp. 1000–1007.

[11] R. Drechsler, D. Grosse, Reachability analysis for formal ver-
ification of SystemC, in: Proceedings of the Euromicro Sym-
posium on Digital Systems Design, IEEE Computer Society,
Washington, DC, USA, 2002.

[12] K. L. Man, Enhancing formal methods for systemc designs, in:
Proc of 4th Process Symposium on Embedded Systems.

[13] E. Clarke, D. Kroening, K. Yorav, Behavioral consistency of
C and verilog programs using bounded model checking, in:
Proceedings of the 40th annual Design Automation Conference,
DAC ’03, ACM, New York, NY, USA, 2003, pp. 368–371.

[14] N. Amalio, Suspicion-driven formal analysis of security require-
ments, in: Emerging Security Information, Systems and Tech-
nologies, 2009. SECURWARE ’09. Third International Confer-
ence on, pp. 217–223.

[15] T. T. Tun, Y. Yu, C. Haley, B. Nuseibeh, Model-based argument
analysis for evolving security requirements, in: Secure Software
Integration and Reliability Improvement (SSIRI), 2010 Fourth
International Conference on, pp. 88–97.

[16] A. Mana, G. Pujol, Towards formal specification of abstract
security properties, in: Availability, Reliability and Security,
2008. ARES 08. Third International Conference on, pp. 80–87.

[17] J. Lee, R. Palla, Classical logic event calculus as answer set
programming, in: Working Notes of the Workshop on Answer
Set Programming and Other Computing Paradigms.

[18] M. Shanahan, The event calculus explained, in: Artificial in-
telligence today, Springer-Verlag, Berlin, Heidelberg, 1999, pp.
409–430.

[19] E. T. Mueller, Commonsense Reasoning, Morgan Kaufmann,
2006.

[20] J. Loinig, C. Steger, R. Weiss, E. Haselsteiner, Towards formal
system-level verification of security requirements during hard-
ware/software codesign, in: SOC Conference (SOCC), 2010
IEEE International, pp. 388–391.

[21] T. A. F. Kinneging, PKI for Machine Readable Travel Docu-
ments offering ICC Read-Only Access Version 1.1, Technical
Report, International Civil Aviation Organization, 2004.

15

Publication 1: Journal of Systems Architecture (under review) 57

Identification and Verification of Security
Relevant Functions in Embedded Systems Based

on Source Code Annotations and Assertions

Johannes Loinig1, Christian Steger1,
Reinhold Weiss1, and Ernst Haselsteiner2

1 Institute for Technical Informatics, Graz University of Technology, Graz, Austria
{loinig,steger,rweiss}@tugraz.at

2 NXP Semiconductors Austria GmbH, Gratkorn, Austria
ernst.haselsteiner@nxp.com

Abstract. Most modern embedded systems include an operating sys-
tem. Not all functions in the operating systems have to fulfill the same
security requirements. In this work we1 propose a mechanism to iden-
tify and maintain functions that have to meet strict security needs. This
mechanism is based on annotations representing security constrains and
assertions to check these security annotations during the verification
phase of the system under development.

1 Introduction

Every modern operating system (OS) is split in hundreds of functions. Not every
function has to fulfill the same security requirements. For example, some of
them must not leak secrets such as cryptographic keys. Others must be timing
invariant for all kinds of inputs. Finally, every OS has many functions that do
not need to fulfill special security requirements. Of course they have to work
properly and must not open back doors to potential attackers (e.g. by buffer
overflows) but actually we do not regard this as a special security constraint. In
fact, wee consider this property as normal. In the remainder of this work we call
them security neutral functions.

Implementing all functions on the highest security level (with respect to all
possible security countermeasures) is not feasible and not necessary.The devel-
opment cost would be too high as implementing secure functions is more time
consuming. The performance of a system would be too slow as additional security
usually causes a computational overhead. To compensate this faster hardware
would be necessary which again increases the costs. Finally, the executable code
would increase which is a significant cost factor if the code is masked into the
ROM.

If a function has to meet a selected security constraint (SC), e.g. to check
program flow integrity, it must be ensured that every subfunction which is called
also has to meet the same SC. If not, this may raise a weak point in the chain

1 This paper is a result of the HiPerSec project which is funded by the Austrian Federal
Ministry for Transport, Innovation, and Technology under the contract FFG 816464.

P. Samarati et al. (Eds.): WISTP 2010, LNCS 6033, pp. 316–323, 2010.
c© IFIP International Federation for Information Processing 2010

Publication 2: WISTP 2010 58

c©2010 Springer Verlag. Reprinted, with permission, Lecture Notes in Computer Science,
2010, Volume 6033/2010

Identification and Verification of Security Relevant Functions 317

of trust representing the call hierarchy of the functions. As the security of the
system can only be as strong as the weakest point, the developers must take
care that they do not use security neutral functions for operations which are
expected to provide security.

The aim of our work is to provide a mechanism to differentiate between func-
tions that have to fulfill security requirements and functions that do not. To
do so, we use in-line source code annotations to mark security relevant parts of
the source code. Our proposed mechanism allows a design tool to verify these
security annotations during the development process and thus helps developers
to increase and maintain the security and performance of complex embedded
systems.

2 Related Work

Security has to be considered from the beginning of the product life cycle. The
implementation of security elements have to be done in a well organized way [1].
Kocher et al. state in [2] that it is a problem that the implementation is very
often done by security experts who are the only people in a development team
that really understand the security requirements. The reason is that a system’s
security is deeply rooted in the complete development process and cannot be
implemented by covering some few selected points that were identified to have
to be secure. A cryptographic function, for example, can be implemented in a
perfect way but will be simply useless if the private keys are handled in an
insecure way while loading them from memory.

Furthermore, [2] states that a formal verification of programs with realistic
complexity is not feasible today. Good engineering practice which covers all
software artifacts as security objectives is necessary to develop secure products.
Analysis tools and techniques to map security requirements to solutions and
explore trade-offs are needed.

In [3] existing static code analysis tools for security checks are summarized.
There exist a lot of tools checking for vulnerable constructs, proper usage of
types and values, race conditions, and so on. However, the authors state that
there is still a deficit for checkers that include relationships between functions.

A model-based planning strategy for security requirements is described in [4].
A high-level model instead of source code is used to verify the formal properties
of functional and security requirements.

Source code annotations are declarative information for runtime entities and
are supported by several modern programming languages [5] and software frame-
works [6]. They can be evaluated by tools during the development process or by
the runtime environment during execution time. One example is @deprecated
in Java which defines that a function should not be used anymore. The Java
compiler generates a warning if a deprecated function is used. In this work we
use annotations to define which SCs were considered during the implementation
of the annotated software functions.

Our proposed mechanism can be used to analyze the final source code of the
product. It verifies chains of trust through the whole software of an embedded
system across boundaries of functions and software layers. To do so, we use well

Publication 2: WISTP 2010 59

c©2010 Springer Verlag. Reprinted, with permission, Lecture Notes in Computer Science,
2010, Volume 6033/2010

318 J. Loinig et al.

known and established tools like source code annotations and assertions during
the development process.

3 Identification and Verification of Security Relevant
Functions

The basis of our proposed concept is that a developer of a security relevant
function does not need to think about the security status of called subfunc-
tions. The developer knows which SCs are defined for a function that has to be
implemented. He or she can implement the function without risk that used sub-
functions will not be able to provide the necessary SCs. Thus, the development
process is widely concentrated on the new function which makes development
easier, faster, and more secure.

Figure 1 shows the basic workflow of our proposal. Different developers imple-
ment functions according to their functional requirements and security require-
ments. They annotate the newly implemented functions with appropriate SCs.
We define the meaning of SCs in more detail in Section 3.2. When the system’s
modules become integrated a design tool checks the security properties of all
used functions, including functions in external libraries. The design tool reports
security violations if security properties of functions can not be fulfilled by called
subfunctions.

Annotated
External
Library

functionC()
functionD()functionA()

Functional
Requirements

Security
Requirements

functionB()

Functional
Requirements

Security
Requirements

Executable Security
Report

implement, annotate implement, annotate

compile, link check security annotations

Developer 1 Developer 2

Integrator

Fig. 1. The workflow of our proposed concept

Furthermore, our proposed concept allows identification of subfunctions that
may have a too high security status. Such a function implements SCs that are
not required by the calling function. This may be the case intentionally, if the
subfunction requires the SC, or by accident if a subfunction was reused. In latter
case, the appropriate usage of a function with a lower security status instead,
can increase the system’s performance without security drawbacks.

Publication 2: WISTP 2010 60

c©2010 Springer Verlag. Reprinted, with permission, Lecture Notes in Computer Science,
2010, Volume 6033/2010

Identification and Verification of Security Relevant Functions 319

3.1 Assigning Security Constraints

Every function is annotated with the SC it implements. The same SC is supposed
to be provided by called subfunctions. If not, the chain of trust which is implicitly
given by the function call hierarchy is broken. This is an indication for a potential
security gap in the system. If the subfunction provides a higher security level
this is an indicator for potential performance optimizations.

The concept is shown in Figure 2. As can be seen functionB() breaks the
chain of trust and functionC() provides a higher security status which may
cause unnecessary performance reduction because the additional but unnecessary
security may slow down the function’s execution.

functionA()
SC_TIMING
annotated

call
call

call

functionB()
functionC()
SC_TIMING,

SC_SPA
annotated

functionD()
SC_TIMING
annotated

Fig. 2. Simple example of functions which are annotated with security constraints

3.2 Definition of Security Constraints

The proposed concept is not restricted to a certain number or nature of security
constraints. A threat model or attack tree can be used to deduce necessary SCs
at the beginning of the system’s design phase. We derived a list of SCs for the
software implementation of a smart card from attacks described in [7,8,9,10].
The list below is not exhaustive but should indicate how the concept of SCs
works.

Timing Attack (SC TIMING): A function which is annotated with this an-
notation has to provide timing which is independent from any input data to
avoid timing attacks.

Simple/Differential Power Analysis (SC SPA, SC DPA): Changes of the
system’s power state can be observed externally and must be avoided.

Differential Fault Analysis (SC DFA): Fault injection can not be prevented
by software but the function can provide e.g. recalculation and comparison of
results to detect potential injected faults.

Perturbation Attacks (SC PERT): An annotated function must check the
integrity of data and the integrity of the program flow to detect disturbances
of the normal software behavior (e.g. caused by laser beam attacks).

The detailed meaning and implementation of an SC can vary between different
systems and different functions. In a real development process the SCs have to
be clearly defined and communicated to the developers. Assigning SCs should
be followed by a code review done by a different developer to ensure that the
system is not corrupted by miss-assigned annotations.

Publication 2: WISTP 2010 61

c©2010 Springer Verlag. Reprinted, with permission, Lecture Notes in Computer Science,
2010, Volume 6033/2010

320 J. Loinig et al.

3.3 Annotation Based Identification of Security Relevant Functions

The basis of our proposed mechanism is a function call tree. A call tree shown in
Figure 3 (a) is extended to a tree representing the chains of trust of the calling
functions, shown in Figure 3 (b). When the call tree is transformed to the tree
of trust chains each node is replaced by a node including all SCs assigned to the
corresponding function.

Fig. 3. A call tree in (a) and after its transformation to a tree of trust chains in (b)

A tool runs through all the nodes in the extended call tree. Every node must
include all SCs of its parent. If a broken chain of trust is found the tool reports
the security constraint violation.

The generation of the call tree can be done by static code analysis or during
execution of a use case. It may be difficult in some situations to setup a capable
code analysis if different layers of software are used. If, for example, the system
is based on a virtual machine (VM), it may be difficult to maintain function
calls from the software running on the VM to the underlying software layers. An
example is a Java Card [11], a smart card including a Java VM. Such a system
can easily be split in four different software layers: the Java application, the Java
OS, the native hardware-independent software written in C, and the assembler
functions. In such a case, an execution based generation of a call tree may be
more promising than a static code analysis through software layers implemented
in different programming languages.

3.4 Assertion Based Verification of Security Relevant Functions

For system verification we propose an assertion based mechanism that checks the
security constraints during the verification of the system. When a subfunction
is called, all SCs of the calling function are passed to the subfunction to be
checked. The subfunction provides an assertion and verifies if all necessary SCs
are implemented.

The SCs are only used during the system development and verification process.
They are not needed anymore when the system operates in the field. Therefore,
neither annotations nor assertions have to be included in the final product.

Publication 2: WISTP 2010 62

c©2010 Springer Verlag. Reprinted, with permission, Lecture Notes in Computer Science,
2010, Volume 6033/2010

Identification and Verification of Security Relevant Functions 321

4 Implementation

We implemented our concept on the basis of a real but simulated Java Card op-
erating system. As application we chose the JavaPurse application included in
the Java Card Development Kit [12]. So far, the OS does not provide any anno-
tations of SCs. Thus, we annotated the security relevant high-level functions of
the JavaPurse processVerifyPIN(), processInitializeTransaction(), and
processCompleteTransaction(). All three methods are called in process()
which is called for every command that is received by the JavaPurse applica-
tion. We identified these three functions as security relevant because they check
if the card holder is able to provide the right PIN and initialize respectively
complete the payment transaction.

The used simulation environment is a SystemC [13] model of the smart card
hardware. We executed one payment transaction and recorded the broken chains
of trust which emerge from our annotations in the JavaPurse application. As only
functions of the Java Card application were annotated, the mechanism reports
all functions in the OS that are called during the payment transaction.

The SystemC model uses an annotation stack which is filled with annotations
that have to be implemented by the current called function. All entries of the
stack are checked for every simulated function call. Annotations of functions
are passed via a Java API to a special function register in the SystemC model
of the smart card. The evaluation of the annotations is done in the simulated
call-instructions and return-instructions.

5 Experimental Results

Figure 4 (a) shows the number of functions which were called during one payment
transaction of the JavaPurse application. 125 functions were called in total, 91 of
them are in the native OS layer, 26 in the Java OS layer, and 8 in the application
layer. 63% of them were noted as included in a broken chain of trust, which means
that these 79 functions should be checked if they fulfill the security requirement.
Notice that for our proof of concept evaluation there was no need to define this
requirement in detail. 49% of the functions that have to fulfill special security
requirements are also used in a context where the security requirement is not
needed (named as shared functions in the diagram). This opens a significant
potential for performance optimizations.

Additionally, Figure 4 (a) shows the partitioning of the used functions in the
software layers. As expected, most security relevant functions are implemented in
the native OS layer. We think that identification of these functions is especially
important as they are naturally not secured by the Java VM.

Figure 4 (b) shows the function calls which were executed during the payment
transaction. 2124 function calls were executed in total, 2046 in the native OS, and
respectively only 67 and 11 function calls in the Java OS and application layer.
68% of all function calls were marked as security relevant by our mechanism.
39% of them were also done in a security neutral state of the system. As can be
seen in the diagram the number of Java function calls is minimal in comparison
to the native function calls. Therefore, we can argue that the overhead from our

Publication 2: WISTP 2010 63

c©2010 Springer Verlag. Reprinted, with permission, Lecture Notes in Computer Science,
2010, Volume 6033/2010

322 J. Loinig et al.

 0

 20

 40

 60

 80

 100

 120

 140

Total Native
OS

Java
OS

Java
Application

N
u

m
b

er
 o

f
C

al
le

d
 F

u
n

ct
io

n
s

Software Layer

(a)

Total Functions
Secured Functions
Shared Functions

 0

 500

 1000

 1500

 2000

 2500

Total Native
OS

Java
OS

Java
Application

N
u

m
b

er
 o

f
F

u
n

ct
io

n
 C

al
ls

Software Layer

(b)

Total
Secured Calls
Shared Calls

Number of Called Functions Number of Function Calls
Total Secured Shared Total Secured Shared

Total 125 79 39 2124 1447 559
Native OS 91 56 36 2046 1395 552
Java OS 26 17 3 67 46 7
Java Application 8 6 0 11 6 0

Fig. 4. Results Diagrams and Table. (a) The number of function calls, (b) the number
of called functions.

 0

 50

 100

 150

 200

 250

 300

 350

 400

1000 2000 3000

E
x
ec

u
ti

o
n
 T

im
e

Number of Function Calls

Annotations Disabled
4 Annotations
8 Annotations

Fig. 5. Simulation Performance of the Annotation/Assertion Mechanism

additional Java API, passing the annotations through the VM to the SystemC
model, is irrelevant.

Our modification of the SystemC model, checking the functions’ annotations,
did not cause any significant performance reduction. This is shown in Figure 5.
A simple demo program executed 1000, 2000, and 3000 function calls with 4
annotations, 8 annotations, and disabled annotation mechanism. We normalized
the results to 100% for 1000 functions without annotations. According to the re-
sults in Figure 5 we can argue that the simulation based verification performance
does not suffer drastically from our proposed assertion mechanism.

Publication 2: WISTP 2010 64

c©2010 Springer Verlag. Reprinted, with permission, Lecture Notes in Computer Science,
2010, Volume 6033/2010

Identification and Verification of Security Relevant Functions 323

6 Conclusion

In this work we proposed an annotation based method to identify security rele-
vant functions in complex software of embedded systems. This ensures that se-
curity constraints of functions are not violated by their called subfunctions and
hence increases the system’s security. In addition we presented how the same
mechanism identifies functions which should be considered for performance op-
timizations as they do not have to fulfill special security constraints all the time.
49% of all called functions in our demo application were potential targets for
such optimizations.

We verified our concept by a proof-of-concept implementation checking asser-
tions for security constraints during simulation time of a SystemC model. Our
tests showed that this can be done without significant performance overhead
during the simulation of complex systems.

Summarizing this, our approach can be used to optimize the trade-off between
security and performance of a complex embedded system.

References

1. Schaumont, P., Verbauwhede, I.: Domain-specific codesign for embedded security.
Computer 36(4), 68–74 (2003)

2. Kocher, P., Lee, R., McGraw, G., Raghunathan, A.: Security as a new dimension
in embedded system design, pp. 753–760 (2004)

3. Chess, B., McGraw, G.: Static analysis for security. IEEE Security & Privacy 2(6),
76–79 (2004)

4. Bryl, V., Massacci, F., Mylopoulos, J., Zannone, N.: Designing Security Require-
ments Models Through Planning. In: Dubois, E., Pohl, K. (eds.) CAiSE 2006.
LNCS, vol. 4001, pp. 33–47. Springer, Heidelberg (2006)

5. Ernst, M.D.: Type Annotations Specification (JSR 308) (November 2008)
6. Newkirk, J., Vorontsov, A.: How .NET’s custom attributes affect design. IEEE

Software 19(5), 18–20 (2002)
7. Eagles, K., Markantonakis, K., Mayes, K.: A comparative analysis of common

threats, vulnerabilities, attacks and countermeasures within smart card and wire-
less sensor network node technologies. In: Sauveron, D., Markantonakis, K., Bilas,
A., Quisquater, J.-J. (eds.) WISTP 2007. LNCS, vol. 4462, pp. 161–174. Springer,
Heidelberg (2007)

8. Sere, A.A., Iguchi-Cartigny, J., Lanet, J.L.: Automatic detection of fault attack and
countermeasures. In: WESS 2009: Proceedings of the 4th Workshop on Embedded
Systems Security, pp. 1–7. ACM, New York (2009)

9. Rankl, W., Effing, W.: Smart Card Handbook. John Wiley & Sons, Inc., New York
(2003)

10. Common Criteria: Application of Attack Potential to Smartcards Version 2.7 Re-
vision 1 (March 2009)

11. Sun Microsystems, Inc.: Java Card Platform Specification 2.2.2
12. Sun Microsystems: Java Card Development Kit (March 2006),

http://java.sun.com/javacard/devkit/

13. IEEE: Open SystemC Language Reference Manual (December 2005)

Publication 2: WISTP 2010 65

c©2010 Springer Verlag. Reprinted, with permission, Lecture Notes in Computer Science,
2010, Volume 6033/2010

Idea: Simulation Based Security Requirement

Verification for Transaction Level Models

Johannes Loinig1, Christian Steger1,
Reinhold Weiss1, and Ernst Haselsteiner2

1 Institute for Technical Informatics, Graz University of Technology, Graz, Austria
{johannes.loinig,steger,rweiss}@tugraz.at

2 NXP Semiconductors Austria GmbH, Gratkorn, Austria
ernst.haselsteiner@nxp.com

Abstract. Verification of security requirements in embedded systems is
a crucial task - especially in very dynamic design processes like a hard-
ware/software codesign flow. In such a case the system’s modules and
components are continuously modified and refined until all constraints
are met and the system design is in a stable state. A transaction level
model can be used for such a design space exploration in this phase.
It is essential that security requirements are considered from the very
first beginning. In this work we1 demonstrate a novel approach how to
use meta-information in transaction level models to verify the consistent
application of security requirements in embedded systems.

1 Introduction

A lot of modern embedded systems need to provide security functionality. Faults
in design and implementation of a system can cause serious security issues. Thus,
careful security verification is needed. This is a considerable cost factor. Exter-
nal Common Criteria security evaluation (described later) can cost $100k and
more and usually takes months. Finally discovered vulnerabilities in such a late
development phase cause serious project delay and cost.

Security has to be considered from the beginning of a development process and
in all abstraction levels [6,10]. To support this we propose a methodology to use
meta-information in transaction level models (TLMs) for early and continuous
security verification in a hardware/software codesign flow. TLMs are abstract
functional models of the system. Iterative refinement is used for design space ex-
ploration until all system constraints are met. In each iteration our methodology
supports security verification appropriate to the model’s abstraction level.

The contribution of this work is a novel design and development approach
that allows continuous security verification. System designers and developers
will gain a better security understanding of the system which reduces the risk
for a costly failed Common Criteria security evaluation.

1 This paper is a result of a project which is funded by the Austrian Federal Ministry
for Transport, Innovation, and Technology (contract FFG 816464).

Ú. Erlingsson, R. Wieringa, and N. Zannone (Eds.): ESSoS 2011, LNCS 6542, pp. 264–271, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Publication 3: ESSOS 2011 66

c©2010 Springer Verlag. Reprinted, with permission, from Lecture Notes in Computer
Science, 2011, Volume 6542/2011

Idea: Simulation Based Security Requirement Verification for TLMs 265

2 Related Work

Our proposed methodology is based on the Common Criteria (CC) security
verification process. It applies the basic CC practices to verify TLMs. Thus,
to explain our approach, we first summarize the needed CC and TLM basics.
After that we shortly list advantages and disadvantages of formal verification
methodologies to motivate our contrary simulation based approach.

2.1 The Common Criteria Process

The Common Criteria [3] is the de-facto standard for security evaluations of
IT products. The entire process is too extensive to be described here. However,
some basics should be clarified to understand our proposed approach.

CC is a rather documentation centric approach. Threats against the IT prod-
uct are analyzed. Security Objectives are defined to counter these threats. Secu-
rity Functions provide the functionality for them. Notice that Security Functions
are rather a concept and not a concrete implementation. Each Security Function
is composed of Security Mechanisms implemented in hardware or in software. Se-
curity Functional Requirements (SFRs) describe their functional requirements.
These SFRs must be provided by the system to achieve the security objectives.
The CC Security Target (ST) describes the relations of security threats, ob-
jectives, mechanisms, and functions. It is a design document for the security
architecture of one certain IT product. In combination with design documenta-
tion an external CC evaluator uses the ST to judge if the security architecture
is able to counter threats. This is a manual and extensive process.

The authors of [8] mention a lack of a clear relationship between the CC pro-
cess and a system development approach. However, security engineering should
be integrated in the system development process. [8] describes a CC conform
UML based approach for security requirement engineering in a software engi-
neering process. In comparison to that, our approach covers system development
(hardware and software) and is not restricted to UML. Instead, we support im-
plicit security modeling in a TLM of the system.

2.2 Transaction Level Modeling

Transaction level modeling allows development and analysis of system models [2].
The main concept is the abstraction and separation of the computational part of
the system and the communication part of the system. In our approach we extend
this by the security part of the system. Meta-information in TLMs allows an early
estimation of e.g., the system’s performance and power/energy consumption [11].
At the time of writing we were not able to find related work considering security
requirements in TLMs.

2.3 Formal System Verification

There is no doubt that a formal verification (FV) would be preferable in com-
parison to our proposed simulation based verification. However, we think that

Publication 3: ESSOS 2011 67

c©2010 Springer Verlag. Reprinted, with permission, from Lecture Notes in Computer
Science, 2011, Volume 6542/2011

266 J. Loinig et al.

today one main aspect still acts against FV: FV is very costly [6] if applied on
systems with realistic complexity.

As a consequence, FV can be applied on selected parts of a system only or it
can be applied on very abstract meta-models of the system. This has been shown
for software [4], for hardware [7], and on system level [1]. FV of selected parts
only is unacceptable as system security can not be achieved by single separate
modules in a system [10]. A meta-model based approach can be difficult to apply
in a dynamic design process. The developer would need to work on both, the
functional model and the meta-model.

Meta-models are typically written in special modeling languages and can be
created manually as a first design step [4,1] or translated from other models by
a verification tool [5]. Manual adaptation of the meta-model would be costly
and error-prone. FV of a translated model means, that in a strict sense, not the
system’s model is verified but a model that was generated by the tool. The quality
of the verification strongly depends on the translation tool and the capabilities
of the modeling language of the meta-model.

The authors of [9] created formal templates for CC SFRs. These templates
can be used for FV of the system’s security specification. Again, not the system
model itself is verified but its specification. In contrast to that our proposed
simulation based methodology allows verification of the relationships of Security
Mechanisms and SFRs against the functional system model under development.

3 Simulation Based Security Requirement Verification

In comparison to the work described in Section 2 our contribution is (1) the
consideration and verification of security requirements in early design phases,
(2) a verification on the basis on a TLM under development instead of a meta-
model, and (3) a fast simulation based verification applicable for iterative design
processes instead of a complete but extensive formal verification approach.

3.1 Iterative TLM Verification

Figure 1 shows the basic concept of simulation based verification in an iterative
refinement process. A pure functional level is the basis for a TLM. In multiple
iterations the TLM’s modules become refined. During simulation of the TLM,
when the test cases are applied, an automated verification generates a func-
tional report and a security report. The reports are the basis for further design
decisions. Another refinement cycle is necessary if not all constraints are met.

Different actions can be performed during TLM refinement: modules can be
split in several smaller modules, combined to bigger modules, and mapped to
software or hardware components of the system. All these actions require con-
sideration of SFRs if the modules are related to Security Functions. To do so,
the developer annotates the Security Mechanisms with meta-information about
related SFRs. These annotations are evaluated during simulation and verifica-
tion. If module modifications cause security violations this is reported during
the simulation/verification and the developer can react immediately.

Publication 3: ESSOS 2011 68

c©2010 Springer Verlag. Reprinted, with permission, from Lecture Notes in Computer
Science, 2011, Volume 6542/2011

Idea: Simulation Based Security Requirement Verification for TLMs 267

refinement

check

Funct.
Model

TLM

simulation/
verification

HW Design SW Design

Test
Cases

Sec.
Requ.

Spec

Functional
Report

Security
Report

Functional Level
Transaction Level

not ok

ok

Target Architecture

Fig. 1. Simulation based verification

TLM

Peripheral HWCPU

HW1

HW3

m
ai

n

S
W

2

S
W

5

B
us

SFR Verification

S
W

3S
W

1

S
W

4

HW2

HW4

HW5

Fig. 2. TLM verification

3.2 HW/SW Verification Approaches

Figure 2 shows a very simple example of a TLM consisting of software modules
(embedded in a CPU module) and peripheral hardware modules. Two things
should be noted in this figure: the software is shown as a sequence of function
calls whereas the hardware is modeled as a set of concurrent hardware blocks.
Having sequential software and concurrent hardware is typical for TLMs. Thus,
a verification approach has to be able to handle both concepts.

Requirement verification on sequential software is rather straight forward. A
call graph clearly shows the dependencies of the security requirements of the
software functions. This is not the case if hardware is modeled. Concurrent
hardware processes do not provide a call graph as hardware functions usually
never terminate. Additionally, hardware exceptions can interrupt the software at
any time. This behavior is very difficult to describe in formal models. This is an
essential reason why we chose a simulation based approach for our methodology.

Instead of a call graph, a data flow driven approach can be used for hardware
verification. Data is passed from one process to another one. This can be done
asynchronously - the data producer often has no influence if the receiver con-
sumes the sent data or decides to ignore it. This might depend on the internal
state of the receiving hardware module.

In a data flow driven approach data is annotated with SFRs instead of func-
tions or modules. If this data is consumed, the annotated SFRs have to be
evaluated by the simulation environment to verify the security capabilities of
the module. As shown in the figure, software and hardware interact naturally
(sketched as a bus connecting the CPU with the peripheral hardware blocks).
As a consequence, SFRs have to be mapped from the call graph to the data flow
graph and vice versa.

In our simulation based approach function calls and data generation respec-
tively data consumption is reported to a security verification module. The re-
porting includes the annotated SFRs of the acting software or hardware modules.

Publication 3: ESSOS 2011 69

c©2010 Springer Verlag. Reprinted, with permission, from Lecture Notes in Computer
Science, 2011, Volume 6542/2011

268 J. Loinig et al.

The verification module evaluates the relationship of the reported SFRs and is
able to report occurring security violations.

3.3 Verification Rules

Yet we have not discussed the rules our proposed verification module should
apply to the reported SFRs. Different sets of rules according to the abstraction
level of the TLM are imaginable.

A straight forward approach is a requires/implements scenario. Modules that
require SFRs are annotated with the SFR’s identifier (e.g., a unique number)
and a requires-flag. Modules that provide the functionality described by the SFR
are annotated by the SFR’s identifier and an implements-flag. The verification
module checks if every call graph’s node with a requires-flag leads to nodes with
the according implements-flag; respectively if data that has a requires-flag is
handled in modules that provide the implements-flag.

A more sophisticated approach is to annotate software and hardware modules
that represent a Security Function and also modules implementing SFRs. The
ST can be used to extract the relationship of (1) SFRs required by the Security
Functions and (2) SFRs that have dependencies on other SFRs to create veri-
fication rules. The transaction level model consists of modules assigned to the
software and the hardware domain. It represents the functional behavior and
the security behavior of the embedded system. Certain modules might be imple-
mented on different abstraction levels. Communication interfaces, for example,
can be modeled on very high abstraction levels as they are usually not security
relevant. The software model reports information to the verification module to
generate call graphs for Security Functions. Similarly, the verification module
generates data flow graphs for data in the hardware model. Call graphs and
data flow graphs are verified against the rules extracted from the ST. This is
shown in Figure 3.

TLM SW Model HW Model

Call Graph Extraction Data Flow Graph Extr.

Call
Graph

Data
Fl. Gr.

Rule Checker

Security
Target

Rule Extraction

SF/SFR
Relations

SFR/SFR
dependencies

Security Report

V
erification M

odule

Fig. 3. Verification of rules extracted from a Security Target

Publication 3: ESSOS 2011 70

c©2010 Springer Verlag. Reprinted, with permission, from Lecture Notes in Computer
Science, 2011, Volume 6542/2011

Idea: Simulation Based Security Requirement Verification for TLMs 269

4 Proof of Concept Implementation

We implemented a proof of concept verification library for SystemC2 TLMs.
The library provides (1) macros for annotating functions, data, and SystemC
processes with SFRs, and (2) the verification module. The macros cause function
calls of the static verification module instance. These function-calls cause the
verification module to compute the call graphs and data flow graphs and to store
the annotated SFRs. The rule set for verification is static and provides checks for
requires, implements, and supports flags for SFRs. Modules that require SFRs
have to utilize modules that implement according SFRs. Supporting SFRs can
be used if interconnecting modules are needed.

So far, we have not evaluated our approach on a use case with realistic com-
plexity. Instead, we first evaluated the general applicability by verification of
different smart card STs from different vendors: STMicrosystems ST23YR80A,
NXP P5Cx081V1A, Samsung S3CC91A, Infineon SLE66CX680PE, and Fujitsu
MB94RS403. These STs are public3.

In addition we implemented a very small use case example based on some
few hardware modules: a CPU, a memory, a DES crypto co-processor, and a
CRC co-processor. The software model reads DES key data from the mem-
ory and sends it to the DES co-processor. We chose the FDP SDI.1.1 SFR
from the Common Criteria standard [3] - it basically defines, that the DES key
has to be integrity protected. The setDESKey() function was annotated to re-
quire FDP SDI.1.1. Two different implementations to fulfill the security require-
ment were evaluated: (1) a software implementation calling checkIntegrity()

within setDESKey() and (2) a hardware implementation connecting the DES
co-processor with the CRC co-processor.

5 Results and Discussion

Table 1 shows the summarized evaluation results of the STs: the total number
of defined Security Functions, the number of selected SFRs, the number of ap-
plied SFRs, and the SFRs we think that can be checked automatically by our
proposed approach. Notice, that each SFR can be applied on several Security
Functions. Thus, the number of applied SFRs can be higher than the number
of SFRs. In a strict sense, this number should be even higher than the numbers
depicted in Table 1 (third row) because each Security Function consists of sev-
eral mechanisms. However, the number of Security Mechanisms is depending on
the concrete implementation and not given in public STs. Therefore, we took
the number of Security Functions as an estimator for our evaluation (we assume
that each of them consists of one mechanism in minimum).

26 to 60 SFRs were applied in the selected smart card microprocessors. This
should give a feeling about the verification complexity: 26 to 60 applied SFRs
means that 26 to 60 times a module has to be verified if it provides the

2 www.systemc.org
3 www.commoncriteriaportal.org/products/

Publication 3: ESSOS 2011 71

c©2010 Springer Verlag. Reprinted, with permission, from Lecture Notes in Computer
Science, 2011, Volume 6542/2011

270 J. Loinig et al.

Table 1. Security Target evaluation results

STMicrosystems NXP Samsung infineon Fujitsu

Number of Security Functions 10 9 5 9 10
Number of SFRs 15 16 18 21 19
Number of applied SFRs 40 60 26 35 26
Potentially automated check 90% 85% 73% 77% 73%

appropriate SFR. Notice, that the selected STs describe smart card hardware
only. If the software has to be verified as well even more Security Functions and
SFRs will emerge and the verification effort will be even higher.

We do not expect that all applied SFRs can be verified with our proposed
approach. Thus, we checked which used SFRs can be verified by our method. To
do so, we evaluated the meaning of used SFRs in the selected STs and checked
if we could define rules for our approach that are able to verify the SFRs auto-
matically. Because of the limited space in this publication we can not explain
this process in details here. The results are shown in Table 1 in the last row.

We think that 73% to 90% of the used SFRs could be checked with our pro-
posed approach. Accordingly, the verification effort could be reduced by approx-
imately 80%. Of course this is a very optimistic estimation as verification does
not only mean to check if a module provides the right SFRs. However, we think
that this clearly shows the potential of an automated verification approach.

From our very small case study we can summarize the following results. With-
out going into the implementation details we can note that the usage of our an-
notations is very intuitive and fits very well into the iterative design flow of an
hw/sw codesign flow. However, we also have to mention that a puristic requires/
implements rule-set seems not to be sufficient. At least an additional ignores-flag
was needed to avoid miss-leading incorrect security violations. However, we think
that such an ignores-flag can come with a high risk of erroneous miss-usage.

In addition, we have to note that the implemented solutions are not identical
from a security point of view. If the integrity check is performed in software,
sending the sensitive key material to the DES block is unsecured. On the one
hand we think that this could be automatically reflected in our verification result
(e.g., as the ’distance’ of a module that requires the SFR to the module that
implements the SFR). This could help the developer during the design space
exploration phase. On the other hand, if needed, there exist certain SFRs that
reflect such requirements. FDP ITT.1.1, for example, requires system module
intercommunication to be protected as well.

As a summary we have to conclude that much more use case studies have to
be done to extract a rule set that allows a sufficient verification of the SFRs.

6 Conclusion and Future Work

In this work we described a simulation based verification methodology for secu-
rity requirements in transaction level models of embedded systems. The basic

Publication 3: ESSOS 2011 72

c©2010 Springer Verlag. Reprinted, with permission, from Lecture Notes in Computer
Science, 2011, Volume 6542/2011

Idea: Simulation Based Security Requirement Verification for TLMs 271

idea has its roots in the Common Criteria process where Security Functions
and according Security Functional Requirements are defined. We showed that
our proposed approach is able to verify such requirements by evaluating meta-
information in the model during the simulation of its functional behavior. Fur-
thermore, we showed that gained cost savings can be significant.

However, we have to say that our work is in an early stage. More case studies
are needed to evaluate the applicability of our methodology. Especially the ver-
ification rules have to be refined and their influences on the design have to be
evaluated.

References

1. Balarin, F., Passerone, R., Pinto, A., Sangiovanni-Vincentelli, A.L.: A formal ap-
proach to system level design: metamodels and unified design environments. In:
Third ACM and IEEE International Conference on Formal Methods and Models
for Co-Design. IEEE, Los Alamitos (2005)

2. Cai, L., Gajski, D.: Transaction level modeling: an overview. In: Proceedings of the
1st IEEE/ACM/IFIP International Conference on Hardware/Software Codesign
and System Synthesis. ACM, New York (2003)

3. Common Criteria. Common Criteria for Information Technology Security Evalua-
tion - Part 1-3. Version 3.1 Revision 3 Final (July 2009)

4. Deng, Y., Wang, J., Tsai, J.J.P., Beznosov, K.: An approach for modeling and
analysis of security system architectures. IEEE Transactions on Knowledge and
Data Engineering 15(5), 1099–1119 (2003)

5. Garavel, H., Helmstetter, C., Ponsini, O., Serwe, W.: Verification of an industrial
SystemC/TLM model using LOTOS and CADP. In: 7th IEEE/ACM International
Conference on Formal Methods and Models for Co-Design. IEEE, Los Alamitos
(2009)

6. Kocher, P., Lee, R., McGraw, G., Raghunathan, A.: Security as a new dimension in
embedded system design. In: Proceedings of the 41st Annual Design Automation
Conference. ACM, New York (2004)

7. Lotz, V., Kessler, V., Walter, G.H.: A formal security model for microprocessor
hardware. IEEE Transactions on Software Engineering 26(8), 702–712 (2000)

8. Mellado, D., Fernández-Medina, E., Piattini, M.: A common criteria based secu-
rity requirements engineering process for the development of secure information
systems. Comput. Stand. Interfaces 29(2), 244–253 (2007)

9. Morimoto, S., Shigematsu, S., Goto, Y., Cheng, J.: Formal verification of security
specifications with common criteria. In: Proceedings of the 2007 ACM Symposium
on Applied Computing. ACM, New York (2007)

10. Schaumont, P., Verbauwhede, I.: Domain-specific codesign for embedded security.
Computer 36(4), 68–74 (2003)

11. Trummer, C., Kirchsteiger, C.M., Steger, C., Weiss, R., Pistauer, M., Dalton, D.:
Automated simulation-based verification of power requirements for systems-on-
chips. In: 13th International Symposium on Design and Diagnostics of Electronic
Circuits and Systems. IEEE, Los Alamitos (2010)

Publication 3: ESSOS 2011 73

c©2010 Springer Verlag. Reprinted, with permission, from Lecture Notes in Computer
Science, 2011, Volume 6542/2011

TOWARDS FORMAL SYSTEM-LEVEL VERIFICATION OF SECURITY

REQUIREMENTS DURING HARDWARE/SOFTWARE CODESIGN

Johannes Loinig1, Christian Steger1, Reinhold Weiss1, and Ernst Haselsteiner2

1
 Institute for Technical Informatics

Graz University of Technology, Graz, Austria

2
 NXP Semiconductors Austria GmbH

Gratkorn, Austria

ABSTRACT

Today’s embedded systems have to fulfill so-

phisticated security requirements. They have a

deep impact into the system’s design. Security

can only be achieved if security requirements are

considered during the system-wide design and de-

velopment process. In this concept work
1
 we pro-

pose a hardware/software codesign approach that

addresses functional security requirements during

all design and development phases of a system.

I. INTRODUCTION

The authors of [1] state that securing a system

requires more than adding single secure modules

like cryptographic processors. Security require-

ments have to be implemented in an organized

way. For secure embedded systems this is crucial.

Different security verification approaches exist but

suffer from too high effort for complex systems.

Nevertheless, security critical products have to be

security evaluated. Usually, this is done in a docu-

mentation-centric approach which suffers form a

missing link between the security specification and

its implementation. Today, this linking is done with

manually written design documents.

In this work we propose a more implemen-

tation-centric approach considering security requi-

rements in a hardware/software codesign process.

It allows adding security relevant meta-information,

representing security requirements, to a system’s

model. These annotations can be verified during

all development phases.

II. RELATED WORK

The authors of [1] describe a security pyramid

containing different levels of security from protocol-

level down to circuit-level implementations. This

clearly shows that security cannot be implemented

1
This paper is a result of a project which is funded by the Aus-

trian Federal Ministry for Transport, Innovation, and Technology
(contract FFG 816464).

on one certain level of a system. Implementing

security requires a system-wide approach like a

hardware/software codesign process where the

system’s functionality is modeled independently

from the final implementation.

Hardware/Software Codesign (HSC) is a well

known process for development of hardware and

software in parallel [9]. Typical benefits of a HSC

are shorter development cycles, less expenses

and better system performance. In our proposal

we show how security verification fits into a HSC

process for high secure embedded systems.

Common Criteria (CC) defines a process for

verification of security relevant IT systems [8]. CC

is the de-facto standard for security certification of

IT products. Security Functional Requirements

(SFRs) are defined in the CC standard and applied

in a Protection Profile (PP) in a very general way.

These requirements are specified in detail in a Se-

curity Target (ST) for one certain product. A CC

certificate claims that all SFRs in an ST are imple-

mented. The CC verification process is documen-

tation centric as shown in Fig. 1. Design docu-

ments describe the implemented SFRs. A CC

evaluator first checks the consistency of the docu-

ments. Then, these documents are the basis of a

manual verification of the system’s implementation.

In comparison to that, we propose an imple-

mentation centric verification methodology where

SFRs are included as meta-information into the

system‘s source code.

Formal verification in a codesign approach is

explained in [2, 3, 4], and many other publications.

Two different concepts are used: stateless model

checking and translation based approaches. State-

less model checking suffers from limited schedul-

ing capabilities of modeling languages [4]. An ab-

stract meta-model is used in [2] and [3] to describe

the functional behavior and architectural model of

the system separately. A special meta-model lan-

guage has to be used to do so. However, the gen-

388978-1-4244-6683-2/10/$26.00 ©2010 IEEE

Publication 4: SOCC 2010 74

c©2010 IEEE. Reprinted, with permission, from Proceedings of 2010 IEEE International
SOC Conference (SOCC)

erated meta-models are far away from a concrete

implementation which can be used for the product.

Translation of the model into a verification lan-

guage is explained in [4]. The state space explo-

sion problem restricts this approach to a few hun-

dred lines of code. In addition, the verified model

is not the model that was developed and executed.

Annotated source code was already proposed

for security verification in [11]. However, this was

used for security verification of embedded soft-

ware.

Smart cards are very small embedded systems

that have to provide a highly secure environment

for use cases like e-government and banking.

Typical hardware platforms of smart cards are still

based on 8-bit microprocessors. However, modern

smart cards have to provide very complex func-

tionalities. A typical example is the Java Card [5],

a smart card which provides a Java runtime envi-

ronment. A huge set of security requirements have

to be provided by such a system [6, 7]. The verifi-

cation of the security requirements is a non-trivial

task. Today, for most Java Card products a CC

certificate is needed to guarantee the necessary

security for the customer’s use cases.

III. VERIFICATION OF SECURITY REQUIRE-

MENTS DURING CODESIGN

The basic concept of our proposed secure

HSC (SHSC) is that SFRs are included in the

model as meta-information called annotations (as

described later). These annotations state where in

the system-level model SFRs are required respec-

tively implemented. This allows consideration of

SFRs from the beginning of the development proc-

ess and a verification of the SFRs’ propagation in

the system.

Furthermore, SHSC includes an additional ab-

straction layer – the secure functional level (SFL)

which includes the first model in the development

process that implements SFRs.

A. A Novel Security Codesign Approach

Figure 2 shows the details of the topmost

SHSC levels: the functional level (FL) and the se-

cure functional level. More detailed abstraction

levels and their role in the SHSC are very similar to

the regular HSC and are out of scope of this paper.

The starting points of the SHSC are separate

functional requirement (FR) specifications and SFR

specifications. This separation is done because

the SFRs are usually defined independently form

the FRs in a CC ST, as explained before.

The FRs are modeled on the functional level

model (FLM). This results in a very abstract be-

havioral model that primary serves simulation-

based evaluation of the system’s use cases. As a

next step, modules of the FLM are annotated ac-

cording to SFRs that are related to the modules.

These security annotations (SAs) do not change

the functional behavior of the FLM. We will explain

below how SAs can be used to verify the security

of the system. The result of this SHSC step is a

security annotated functional model (SAFM) which

is the starting point for the SFL.

In the SFL all SFRs get implemented on a very

abstract level. The result is a complete model of

the system including early implementations of the

SFRs, the secure functional model (SFM). The

SFM is used in further stages of the SHSC process

like partitioning and mapping to hardware platform

components. SAs can be used similarly at models

in these abstraction levels. However, they are not

topic of this paper.

Figure 2: The Functional Level and Secure Functional Level of

the proposed SHSC

C
C
 V
erification P

rocess

Im
p
le
m
en
ta
tio
n
C
en
tr
ic
 V
er
ifi
ca
tio
n

Figure 1: The CC verification process is documentation centric.

The implementation is verified against a set of CC documents.

389

Publication 4: SOCC 2010 75

c©2010 IEEE. Reprinted, with permission, from Proceedings of 2010 IEEE International
SOC Conference (SOCC)

B. Security Annotations

Security annotations are syntactic meta-in-

formation included into the source code of the

model. SAs do not change the functional behavior

of the model but they define the expected/required

security of modules on system-level.

Each SA is related to exactly one SFR and

thus defines that the annotated module has to con-

sider the SFR in its implementation. How this im-

plementation is done is not defined by the SA. The

SA is not used to verify the exact implementation

of the SFR. In early design phases a detailed veri-

fication of the implementation is not necessary as

the model is still very abstract.

The reason for using SAs in the FL is to evalu-

ate the propagation of SFRs in the model. If a

module has to provide an SFR, sub-modules and

interacting modules may be affected by the SFR as

well. During the refinement process in the FL the

model is split into smaller modules. An automated

SA verification process allows identification of

modules that also have to be aware of the related

SFR. As the model is still on a high abstraction

level the SA verification is rather simple and can be

done on source code basis or simulation basis.

C. The Secure Functional Level

The SFL is the first level where SFRs are im-

plemented. This allows consideration of security

relevant implementation details in early develop-

ment phases.

As the SFM includes now the implementation

of SFRs, more detailed verification is possible. To

do so an SA includes more details about the SFR.

Different types of annotations are used: requires,

implements, supports, fulfills, and expects. Thus,

when the FL is refined to the SFL, the SAs have to

be refined as well to fit to the abstraction level of

the SFM. We define following types for SAs in the

SFL that are also depicted in an example in Fig. 3.

Requires/Implements SFR: the annotated mo-

dule requires the SFR but does not implement it.

All modules accessed by the annotated module

must implement the SFR.

Fulfills/Expects SFR: if passive modules (like

variables), have to provide an SFR but are ac-

cessed by modules instead of accessing other

modules on their own, requires/implements is not

applicable. In such a case the passive module

expects that an active module fulfills the SFR.

Supports SFR: if a module is accessed via one

or more other modules, these modules have to

support the annotated SFR (requires or expects).

This means that the modules do not violate secu-

rity conditions related to the according SFR.

The refinement process on the SFL will, again,

cause to split existing modules into smaller parts.

Similar to the FL, the verification of the SAs en-

sures a consistent propagation of the SFRs in the

system. Furthermore, the verification of the

SA-types ensures a valid system-wide integration

of all SFR implementations.

IV. IMPLEMENTATION

The codesign development process is a very

iterative. This requires that an implementation of

our SHSC approach must be very flexible. Utiliza-

tion of SAs must not cause big overhead during im-

plementation or evaluation of the system. In addi-

tion, the implementation has to ensure that ac-

cessed annotated modules must not be used, by

mistake, without respect to the SA. In practice this

means, that a developer must not have to care

about, if a module was annotated before or not.

We decided to use SystemC [10] to implement

our SHSC. SystemC allows abstract modeling in

C++ which is a good starting point for a functional

model. Unfortunately, SystemC does not provide

any mechanism for annotations. Thus, it was nec-

essary to define a concept for annotations in C++.

As the SA verification should not slow down

the refinement process of a codesign approach

significantly, we decided to go for simulation based

verification. A formal approach would be to trans-

late the model into a language which can be used

for pure formal verification. However, we think

that, especially for complex systems, this transla-

tion is not applicable for an iterative design proc-

ess. Indeed, a formal verification would provide

Figure 3: A simple example of SA types in the SFL.

390

Publication 4: SOCC 2010 76

c©2010 IEEE. Reprinted, with permission, from Proceedings of 2010 IEEE International
SOC Conference (SOCC)

better verification results but especially in very

early development phases a rapid check would be

of better benefit than a complete but slow verifica-

tion.

Fig. 4 shows the logical concept of a simulation

based verification approach. If an annotated mod-

ule is used, the simulation environment reports that

usage via a model-to-checker interface (MCIF) to

an SFR checker. Hence, the checker is notified

which SAs are applied to the module.

We implemented a set of C++ preprocessor

macros that allow annotation of modules. When

applying an annotation, the developer replaces the

module definition by the macro. Additional macros

to access the module are defined because SAs

have to be reported to the MCIF at every module

usage. To be sure that the developer is not using

the module without these functions by mistake, the

original module is hidden by renaming.

V. DISCUSSION

So far we only tried the HSCD on very small

examples but did not apply it on a system with real-

istic complexity. However, the overhead of the

SA-reporting mechanism does not cause serious

computational overhead. The quality of the verifi-

cation results depends on the SFR checker imple-

mentation which is out of scope of this work. A first

SA-stack-based checker prototype was implemen-

ted. It is able to verify described SAs on func-

tion-level and variable-level. For the FL and SFL

this seems to be sufficient, however for a model

including hardware modules (and thus concurrent

processes) a stack-based approach will not be ap-

plicable anymore.

The proposed preprocessor based annotations

are very intuitive to use, easy to apply, and efficient

to evaluate. No special knowledge about verifica-

tion methodologies is required for the developer

who works on the model. SystemC allows a very

fast simulation based verification of the FRs and

the SFRs. Thus, we can argue that our proposed

methodology is applicable for high-level security

verification of embedded systems.

VI. CONCLUSION

In this concept proposal we have shown a

methodology for semi-formal verification of fun-

ctional security requirements in an embedded sys-

tem. The methodology is included in a secure

hardware/software codesign approach. Security

requirements are considered and verified from the

beginning of the development phases. The con-

cept allows refinement of the security requirements

with the remaining system to achieve best system

security and performance.

Furthermore, we have shown how an imple-

mentation of our concept can be done for SytemC.

This implementation is based on preprocessor

macros which allow an easy application and verifi-

cation of security annotations and fast and flexible

refinement of the system.

REFERENCES

1. Schaumont P. and Verbauwhede I, “Domain-specific

codesign for embedded security”, Computer, IEEE, Volume

36, pp.68-74, 2003.

2. Sangiovanni-Vincentelli A. and Martin G. “Platform-based

design and software design methodology for embedded

systems”, Design & Test of Computers, IEEE, Volume 18,

pp.23-33, 2001.

3. Balarin F., Passerone R., Pinto A., and Sangiovanni-

Vincentelli A. “A formal approach to system level design:

metamodels and unified design environments”,

MEMOCODE 2005, pp.155-163.

4. Garavel H., Helmstetter C., Ponsini O., and Serwe W. “Veri-

fication of an industrial SystemC/TLM model using LOTOS

and CADP”, MEMOCODE 2009, pp.46-55.

5. Sun Microsystems, Inc., “Java Card Platform Specification

2.2.2”, 2006.

6. Sun Microsystems, Inc., “Java Card™ Platform Security”,

2001.

7. Sun Microsystems, Inc., “Java Card™ Protection Profile

Collection”, Version 1.1, 2006.

8. Common Criteria, “Common Criteria for Information Tech-

nology Security Evaluation - Part 1-3”, Version 3.1, 2009.

9. Gupta P. “Hardware-software codesign”, Potentials, IEEE,

Volume 20, pp.31-32, 2001.

10. IEEE Computer Society, “Open SystemC Language Refer-

ence Manual IEEE Std 1666™-2005”, 2006.

11. Loinig J., Steger C, Weiss R., and Haselsteiner E., “Identifi-

cation and Verification of Security Relevant Functions in

Embedded Systems Based on Source Code Annotations

and Assertions”, WISTP 2010, pp.316-323

Figure 4: A logical view on our simulation based verification.

391

Publication 4: SOCC 2010 77

c©2010 IEEE. Reprinted, with permission, from Proceedings of 2010 IEEE International
SOC Conference (SOCC)

Performance Improvement and Energy Saving based on Increasing Locality of
Persistent Data in Embedded Systems

Johannes Loinig, Philipp Maria Glatz, Christian Steger, and Reinhold Weiss
Institute for Technical Informatics

Graz University of Technology
Graz, Austria

Email: {johannes.loinig, philipp.glatz, steger, rweiss}@tugraz.at

Abstract—The performance of embedded systems often suf-
fers from strict cost/size and power/energy limitations. This is
especially important for very small systems that are sold in a
high number of items like smart cards and RFID controllers.

On one hand, small hardware platforms are developed to
minimize cost and power consumption. On the other hand,
applications have to fulfill strict performance demands.

We1 introduce a high-level performance optimization for
EEPROM-based embedded systems. Writing to persistent
memory is known to be very costly in the meaning of time
and energy consumption. Our proposal shows how to reduce
the number of write operations. We introduce an approach to
increase spatial data locality without losing reliability of data
that has to be stored persistently.

Keywords-Persistent Memory; Memory Management; Per-
formance Improvement; Energy Consumption Improvement;
Data Locality

I. INTRODUCTION

Even very small embedded systems (ES) are widely used
today. ESs have either a battery based power supply, which
restricts the energy consumption for a given endurance, or
they even do not have an own power supply. Latter ones are
completely powered by an external device like a contactless
smart card reader. This restricts the maximum power drain
of the system. A second limitation is the price of the ES -
especially if a high number of sold systems is aimed.

As a consequence, the hardware complexity is reduced as
far as possible. This has significant negative effects on the
performance achieved. However, even very small embedded
systems have to meet strict performance limits.

Due to the lack of an own power supply or due to energy
saving reasons, ESs are frequently switched off between
operation cycles. This requires that data which must not
get lost has to be stored in persistent memory. Writing
into persistent memory is costly in the meaning of time
and energy consumption. Thus, minimizing persistent write
operations will reduce energy consumption and increase the
performance of the system.

Our approach is based on combining consecutive write
operations to an electrically erasable programmable read-
only memory (EEPROM) to fewer write operations. This is
done by increasing the spatial data locality based on static

1This paper is a result of the HiPerSec project which is funded by the
Austrian Federal Ministry for Transport, Innovation, and Technology under
the contract FFG 816464.

analysis of the system. EEPROMs are organized in pages.
All data on one page can be written with one write cycle
only. Thus, the basic idea is to organize selected persistent
data segments in a way so that they are located on a smallest
possible number of EEPROM pages.

First, we discuss related work and motivate the approach
proposed. Next, we explain the three basic characteristics of
embedded systems which are important for our approach:
spatial data locality, temporal data locality, and atomicity.
Based on these characteristics we then introduce our method
to increase spatial data locality. Next, we explain an example
implementation on the basis of a Java Card and evaluate
our proposed approach in terms of needed EEPROM write
cycles. Finally, we present our results and conclude the
work.

II. RELATED WORK AND MOTIVATION

A basic approach for saving costly write cycles is to
buffer values in a random access memory (RAM) and
only write them to the EEPROM if needed. This may be
implemented in software or in the EEPROM hardware. The
method described by Choi et al. in [1] proposes a software
implementation of a buffer when taking advantage of the
high locality of Java class fields. Two buffers in RAM
increase the performance when writing data into EEPROM.
However, if the system cannot fully rely on the power supply,
this is not an appropriate solution. The system must provide
a store operation which ensures data consistency even in case
of sudden power loss. Typical logging approaches for smart
cards are described in [2], but they are general enough to
be used in other ESs as well. A common mechanism is Old
Value Logging (OVL), where the old data is backed up in a
persistent buffer before being overwritten by new data. The
mechanism requires multiple write cycles to the EEPROM
and is thus not very performance and power efficient.

The idea of improving the memory layout to gain better
performance is not new and is described in [3] for em-
bedded Java. Cache misses are analyzed dynamically to
gather information for a better performance of accessing
multidimensional arrays. Furthermore, Kim et al. propose
two approaches for better memory performance of embedded
Java applications in [4]. First, frequently used objects are
allocated in local memory instead of external memory.
Second, for achieving better caching results, the garbage

2010 Fifth International Conference on Systems

978-0-7695-3980-5/10 $26.00 © 2010 IEEE

DOI 10.1109/ICONS.2010.37

175

Publication 5: ICONS 2010 78

c©2010 IEEE. Reprinted, with permission, from Proceedings of 2010 Fifth International
Conference on Systems (ICONS)

collector moves objects during the compaction phase. Both
approaches use a static study based on tracing executed
bytecodes of the application. Utilizing locality-awareness for
persistent memory was also described before by Lee et al.
in [5] for NAND flash-memory disks in general purpose
computers. A Flash-Translation-Layer was introduced that
exploits sequential locality and temporal locality of the file
accesses.

Motivation of our Proposed Approach: Dynamic meth-
ods are hardly feasible for very small ESs: first, the dynamic
overhead is too high and second, because there is too few
space in RAM to store the intermediate results. Additionally,
very often the application does not run long enough to
extract sufficient information. For example, if the memory
access patterns for persistent memory should be analyzed
dynamically, the application has to run at least once to gather
information. For taking advantage of the results either the
application has to be executed again before shutting down
the system, or the results have to be stored persistently.
This is in contradiction to our goal to reduce costly write
operations.

On very small ESs based on Java, running the garbage
collector (GC) automatically is avoided because of the
nondeterministic performance side-effects. Therefore, Java
Cards, for example, provide a GC, but it is only executed,
if the application explicitly requests for it [6]. Moving
persistent objects during the GC’s compaction phase is very
time and energy consuming, thus it is very unlikely that such
an approach would cope with our goal.

Our proposal is based on increasing the spatial locality
of data fields in EEPROM when they are allocated. We
will show that the needed information can be easily ex-
tracted (e.g., from the source code) before compilation of
the software. The proposed approach can be applied on
ESs to improve the performance and energy consumption
significantly.

III. CONCEPT AND APPROACH

Our concept is based on three characteristics of embedded
software: the spatial data locality, the temporal data locality,
and atomicity. Next we will explain these characteristics with
simple source code examples of embedded Java.

A. Data Characteristics

Spatial Data Locality: The basic principle of our
concept is that EEPROMs are organized in pages. All data
located on one page can be written with only one write cycle.
Thus, to save costly write cycles it is desirable to have the
data to be written on only one page - in other words it is
desirable to have a high spatial data locality (SDL). The SDL
of a system strongly depends on its implementation. The
locality of certain allocated variables can be influenced by
the developer and compiler. In object oriented systems fields
within objects have shown to have a high SDL because they
are allocated ’at once’ within one data block representing
the class instance. This may not hold for static class fields,

because they are not part of one certain class instance and
are thus allocated in a separate data area for static fields. The
SDL of multiple objects depends on the implementation of
the object allocation mechanism of the underlying operating
system (OS).

Listing 1 A simple Java code example to explain data
locality.

1: Object a = new PersistentObject();
2: Object b = new PersistentObject();
3: // ...
4: Object z = new PersistentObject();
5:
6: a.field1 = 0x01;
7: a.field2 = calculateSomething();
8: z.field1 = 0x03;

Temporal Data Locality: It is unrealistic to have all
potentially written persistent data on one and the same page.
Small platforms provide EEPROMs with a page size of 64
or 128 bytes only. Embedded Java object instances have
a typical size of 10-20 bytes. For taking advantage of the
spatial data locality, it is necessary that the write operations
are temporally close to each other, which means a high
temporal data locality (TDL). In case of copying arrays,
for example, this may be obvious but it is not that clear
for object oriented assignments to class fields as shown in
Listing 1. The data written in Lines 6, 7, and 8 have a
high TDL as the assignments are executed consecutively.
However, only the data written in Line 6 and 7 may have a
high SDL as the written fields are located in the same object.
For Line 8 we do not know this, because object z might be
allocated on a different EEPROM page. The TDL depends
on the program flow of the application. It may change during
different execution phases.

Atomicity: So far, we have not yet considered that an
unexpected power loss might happen at any point in time
during execution. An application developer may expect that
the assignment in Line 6 of Listing 1 was completely and
correctly executed even if the power supply drops during ex-
ecution of Line 7. Even if a.field1 and a.field2 have
a high TDL and SDL, it must not be assumed that the sepa-
rate write operations can be combined to save time and en-
ergy. Notice that the method calculateSomething()
in Line 7 may take a while until it returns. The longer the
method takes, the higher the risk for data inconsistencies
will be, if write cycles are combined. Therefore, for not
violating atomicity requirements, arbitrary write operations
with high TDL and/or SDL can not be used for combining
write operations.

B. Increasing Spatial Locality
Our proposed approach is to find and group persistent

write operations that do not violate atomicity requirements.
The basis is a static analysis of the system. It is shown
in Figure 1. A loop searches for potential groups of write

176

Publication 5: ICONS 2010 79

c©2010 IEEE. Reprinted, with permission, from Proceedings of 2010 Fifth International
Conference on Systems (ICONS)

�������	
�����
������

����
�����
����
�

��������

�����

�

����
�

��
 �����������
�

���������!��"�

#��
�$���
�	���
�

�������""�

�
��

%
��

��!��
����
��

	
 �&

�
��
����
����
����

���
����

�

����
��

$�
��
�
�

�
�$�
��
�
�

Figure 1. The algorithm of our proposed approach.

operations. Each finding is checked if a merge would cause
any atomicity violations. If not, the group is set up and
assigned to a Logical Page Identifier (LPI). LPIs are mapped
to Physical Page Identifiers (PPI) - it would be a trivial
mapping to use one PPI for each LPI. However, it might
happen that a written data variable is included in more than
one LPI. Such conflicts have to be resolved before the final
PPIs can be assigned. As a consequence more than one LPI
might be mapped to one single PPI as shown in Figure 2.

Notice that a PPI doesn’t necessarily have to be a concrete
physical page in the EEPROM. The concrete physical page
can be selected by the OS during runtime. In such a case the
PPI can be seen as an annotation for data fields. It provides
information about which data fields should be allocated on
the same EEPROM page - independent from the page which
will be chosen by the OS.

The static analysis can be done on different representative
data sets, for example the source code of the application
and/or memory traces. Usually dynamic persistent data is not
allocated with levity on small ESs as the cost for allocation
and deallocation is very high and the OS cannot ensure that
there is enough persistent memory left when the system
operates in the field. The latter is especially critical if the
system’s end user cannot easily react to failures that may
happen during runtime (e.g., for wireless sensor nodes or
smart cards). Therefore an embedded application allocates
the memory needed during installation when the system is
in an environment which can react to potential failures.

Our approach benefits from these quasi-static data, be-
cause they are easier to handle. However, real dynamic
allocations can also be handled if the system can reserve
physical EEPROM pages for future allocated data that was
identified to be in the same PPI. If the OS provides a garbage
collector it must be ensured that the spatial locality achieved
remains after the compaction phase.

�"�'()

�*�+

"�
�����,�
!

!��
���

!��
��+

!��
��-

!��
���

!��
���

!��
���

�"�'.)

-*��

�"�'/)

�*��

""�'()

�*��*�+

""�'.)

-*��

00"#12

""�'()

�*��*�+

""�'.)

-*��

��
�
��
��
�

��
�

�$
��

�

�
	�
��

�

��
�

��

�
�

�
��

��

�
�
����������� � �
���

�
�$��
�
������

 ��&�2��
��

00"#12�"����

3
 �&�����

Figure 2. Mapping assignments to LPIs, PPIs, and physical EEPROM
pages.

For primitive data values (byte, short, ...) an assignment to
an LPI is trivial. The situation is more complex for bigger
blocks of data like whole objects or arrays. Not all data
within a big data block may be changed and, even worse,
different parts of one data block may be assigned to different
LPIs. In theory an arbitrary high granularity is obtainable
by our method but the implementation specific overhead
of splitting data blocks in parts and dereferencing them in
different EEPROM pages may overcome the achieved time
and energy savings.

IV. IMPLEMENTATION

We have chosen an implementation of a Java Card [6]
to evaluate our approach. Java Cards are small embedded
systems (smart cards) including a Java virtual machine.

Java Cards include a ’natural’ group of assignments that
do not violate atomicity requirements if combined: trans-
actions. All other assignments to persistent data fields are
atomic and therefore cannot be combined. Transactions like
shown in Listing 2 are a group of assignments where either
all of them are executed completely and correctly or none
of them - so they can be seen as one atomic assignment.

Listing 2 A simple code example using Java Card transac-
tions.

1: JCSystem.beginTransaction();
2: a.field1 = 0x01;
3: a.field2 = calculateSomething();
4: z.field1 = 0x03;
5: JCSystem.commitTransaction();

A. Java Card Transactions with Old Value Logging

We have chosen the Old Value Logging because it is a
common way to implement the logging mechanism for Java

177

Publication 5: ICONS 2010 80

c©2010 IEEE. Reprinted, with permission, from Proceedings of 2010 Fifth International
Conference on Systems (ICONS)

Card transactions. We will now discuss the OVL’s cost in
terms of numbers of EEPROM write cycles needed.

As described in [2], OVL requires the steps shown in
Listing 3 to be executed. Each described step requires costly
EEPROM write cycles. For each assignment, at least three of
them are needed: First, the backup of the old data is written
to the transaction buffer (TB). Second, the TB becomes
validated to signal that after a potential card reset the data in
the TB must be restored. Finally, the old data is replaced by
the new values. When the transaction ends, the TB becomes
invalidated.

Listing 3 Basic steps of the OVL mechanism.
1: // After JCSystem.beginTransaction()
2: for All assignments in the transaction do
3: writeToTransactionBuffer(oldData)
4: validateTransactionBuffer()
5: writeToDataArea(newData)
6: end for
7:
8: // After JCSystem.commitTransaction()
9: invalidateTransactionBuffer()

How many write operations are actually needed strongly
depends on:

• n: the number of assignments within the transaction.
• sTB : the size of each backup written to the TB.
• sNEW : the size of the new data.
• p: the EEPROM page size.

More implementation specific parameters are the location of
the transaction buffer in the EEPROM, the address length of
data stored in the persistent memory and the location of the
data to be overwritten, but they are out of scope of this work.
Therefore, later presented equations can be interpreted as a
lower boundary for the number of write operations needed.

B. Java Card Code Analysis and Annotation

Java Card’s transactions always begin with the command
JCSystem.beginTransaction() and end with the
command JCSystem.commitTransaction(). There-
fore, the source code of the Java application can be used
for our static analysis. Java is a fully object oriented pro-
gramming language. Each data field is stored somehow in
a class (static fields) or object instance (non-static fields).
Local function variables are allocated on the Java stack in
RAM and thus are out of interest for this work. As a result
of the analysis process, complete object instances or certain
object fields which are modified within one transaction are
assigned to one LPI. Because transactions are atomic as a
whole, there is no need to check for violations of atomicity.

Class fields can be provided with Runtime Retention Java
Annotations [7] including the PPI. Thus the PPI is stored
within the field definition in the Java executable and is
evaluated by the virtual machine (VM) during runtime. The
VM allocates the affected object or field on a physical page

related to the PPI. This concept for Java Cards is shown
in Figure 3. Java source files are searched for transactions.
LPIs and PPIs are extracted and used to create new annotated
Java source files. Finally, these files are compiled. This is
done off-card during development of the Java Card applica-
tion. After installation the annotations are evaluated during
runtime on the smart card (on-card).

1		'���&

1�'���&

4�$���
 ���)
�������	�
����

�����
������������������

���������
�����

�����
������������������

������

���������
�����

�����
������������������

���������������	
��
������
�

	���� !"�
�#$#"��

	���� !%�
�

������	 �& 	�������'�������

����� !"�
�#$#(�

����������������	
��
������
�

,��&�

�������
�
��

������
���"��5

""��

����
��

���

�
�
��

4�$���
 ���)
)��*��

�������	�
�����

������������������

���������
�����

������������������

������

)��*��

���������
�����

������������������

����

�
�����

���

�
�&

4�$�

0���
�-��

�������
�
��()

1-6��
���*�+ ""�'()

1-6��
���*�+

4�$�����&�

7��
 ���

2������

00"#12

���

�
�&

4�$�

0���
�-��
�����

��	
��
�����

#�� ����%�
�)

1-6��
��-888�

�$�� �
��

���

�
�
���

��&����
��
�

���
���

����
�

00"#12�"����

3
 �&�����

Figure 3. An example of our proposed Java Card work flow.

C. Proof of Concept Example Implementation

We implemented our proposed mechanism on a memory
accurate Java Card simulation including a fully implemented
Java Card OS. Class fields can be annotated in the source
file of the Java Card application. If so, they are allocated on
a reserved page in the EEPROM. This increases the SDL
of the selected fields. So far, we have not implemented the
annotation of entire objects or arrays.

The OVL in the Java Card OS is modified so that data
is not written to persistent memory immediately but not
until the commitTransaction() call. A similar buffered
logging mechanism was already mentioned in [8]. For that
purpose a very small cache (some few bytes) in RAM is used
to hold the data in the meantime. The implementation fulfills
all atomicity requirements of the Java Card specification.

We chose the JavaPurse example implementation of an
electronic purse, which can be downloaded from the Java
Card website [9], as a test application. For our observation

178

Publication 5: ICONS 2010 81

c©2010 IEEE. Reprinted, with permission, from Proceedings of 2010 Fifth International
Conference on Systems (ICONS)

only the code part listed in Listing 4 is of importance.
Multiple assignments are executed within one single trans-
action. In Line 3, a short value is written, Lines 5 and 6
modify byte arrays. Finally, Line 7 calls a method which
again includes field assignments in a different object in-
stance. We annotated the field TN and two fields written
in updateNewLogRecord() to be allocated at one and
the same physical EEPROM page.

Listing 4 A code part of the JavaPurse example implemen-
tation.

1: // The following few steps have to be performed atom-
ically!

2: JCSystem.beginTransaction();
3: TN = transientShorts[TN IX];
4: // Update balance
5: Util.setShort(balancesRecord, START, newBalance);
6: Util.arrayCopy(buffer, START, theRecord, START,

TRANSACTION RECORD LENGTH);
7: transactionLogFile.updateNewLogRecord();
8: JCSystem.commitTransaction();

V. EVALUATION

In general, the number of write cycles COV L for the
OVL can be represented as shown in Equation 1. The
first summand represents the writing of the backups to the
transaction buffer, the second one the TB’s validation, the
third one the writing of the new data, and the constant +1
is the final invalidation of the TB.

COV L =

n∑

i

⌈
sTB
i

p

⌉
+ n +

n∑

i

⌈
sNEW
i

p

⌉
+ 1 (1)

As the summands are related to different phases of the
OVL, we will not summarize them in the following equa-
tions. To partially simplify the equation, let’s assume that the
size of the new data SNEW , and thus also the size of the
backup STB , is constant for all assignments. This is shown
in Equation 2.

C ′
OV L = n

⌈
sTB

p

⌉
+ n + n

⌈
sNEW

p

⌉
+ 1 (2)

As described before, the transaction buffer and the original
data area are both written alternating for each assignment
in the transaction. As both data areas usually have a very
poor SDL we have to separate their write operations before
we can apply our proposed approach. For example, the
backups can be buffered in the RAM before writing them
to the TB. Equation 2 changes to Equation 3 where fb is an
implementation dependent function for writing the values to
the TB more efficiently.

C ′′
OV L = fb(n, s

TB) + n

⌈
sNEW

p

⌉
+ 1 (3)

What remains costly is the term representing write opera-
tions of the new data values. As the TB naturally has a high
spatial data locality, the newly written data usually has not.

After applying our approach each transaction is located
on pages with a maximum of SDL. Equation 3 changes to
Equation 4. Because in common applications sNEW and n
are rather small (some few bytes per assignment and some
few assignments per transaction), we can further assume that
n sNEW

p < 1. This means that most of the transactions will
only need one constant write cycle for all new values.

C ′′′
OV L = fb(n, s

TB) +

⌈
n
sNEW

p

⌉
+ 1 (4)

VI. EXPERIMENTAL RESULTS

Figure 4 shows a qualitative comparison of the write
cycles needed for the OVL mechanism, an ideally buffered
OVL mechanism, and our approach with increased SDL for
transactions. These results are deduced from the equations
described above. The data size is assumed to be equal for
the backup into the TB and the new values. As can be seen,
the number of write cycles needed for the OVL is strictly
monotonic increasing with the number of assignments in a
transaction and the size of the written data.

This does not hold for the two optimized variants of
the anti-tearing mechanism. The buffered OVL does not
require writing the TB with every new assignment within
a transaction. Only, if the buffer in RAM is full, the TB has
to be modified. However, in such a case, several write cycles
for the new data values might be needed.

In contrast to that, with a high SDL, not only the number
of write operations to the TB but also the write operations
for new values can be reduced. Therefore, the characteristic
in Figure 4 becomes more flat. In comparison to the buffered
OVL our approach reduces the number of write cycles by
20% to 50% for 2 ≤ n ≤ 5, 10 ≤ s ≤ 20, and p = 64
bytes.

We expect that our approach results in unused data areas,
because physical EEPROM pages are reserved for PPIs
which do not require a full page. LPIs may be mapped to
PPIs in a more sophisticated and memory-saving way. A
discussion and evaluation of such mapping algorithms and
their memory consumption overhead is out of scope of this
work.

A. JavaPurse Simulation Results

One payment with JavaPurse is spread over 4 commands
(APDUs) sent to the Java Card. Only the last APDU causes
EEPROM write operations (saving the new balance and
some logging information). In total, our simulation reported
16 EEPROM write cycles with the unchanged OVL mecha-
nism. Our implemented mechanism reduces this to only 10
write cycles. This is a reduction of 37.5% of costly write
operations.

The execution time of the APDUs is shown in Figure 5.
The precise execution time is strongly dependent on the

179

Publication 5: ICONS 2010 82

c©2010 IEEE. Reprinted, with permission, from Proceedings of 2010 Fifth International
Conference on Systems (ICONS)

5
10

15
20

2468

5

10

15

20

25

30

Data Size

Number of
Assignments

per Transaction

N
u

m
b

e
r

o
f

n
e

e
d

e
d

 W
ri
te

 C
y
c
le

s

C´: OVL

C´´: Buffered OVL

C´´´: Locality Improvement

Figure 4. A qualitative comparison of needed write operations.

choice of the hardware platform and its configuration. There-
fore, we normalized the measurement results to the total
execution time of the not optimized system. As only the
4th APDU causes EEPROM write cycles, the execution
time of APDU 1 to APDU 3 stay unchanged. However, the
4th APDU causes the longest execution time and is thus a
worthwhile target for optimizations.

Due to our proposed mechanism the execution time of
APDU 4 is reduced considerably by 33.8%. Even including
the unchanged APDUs, the total execution time of the
payment process is reduced by 17.2%. This was basically
achieved just by adding some bytes of cache in RAM and
increasing the SPL.

Reducing EEPROM write cycles has direct impact to
the energy consumption. However, for Java Cards the total
energy consumption is not essential and thus not considered
in our measurements.

APDU 1 APDU 2 APDU 3 APDU 4 Total
0

20

40

60

80

100

N
o
rm

a
liz

e
d
 E

x
e
c
u
ti
o
n
 T

im
e

OVL

Locality Improvement

Figure 5. Execution time for the JavaPurse application.

VII. CONCLUSION AND FUTURE WORK

Write cycles to persistent memory in small embedded
systems are necessary but costly in terms of power and time
consumption. Properties that have to be taken into account
when the number of write cycles becomes reduced are being
discussed. Furthermore, we have proposed an approach to
increase spatial data locality depending on given temporal
data locality. Finally, we have evaluated this method for
Java Cards. We have shown that costly write cycles can be
reduced considerably by just increasing spatial data locality
for fields that are modified within transactions. However our
approach is general enough to be used for other embedded
applications and operating systems as well.

Ongoing work is to investigate in the granularity in which
data is assigned to LPIs and in the overhead of memory
holes which are a consequence of PPIs that are smaller than
physical EEPROM pages.

REFERENCES

[1] W.-H. Choi, H.-Y. Jeon, R. Rosholt, G. Jung, and M.-S. Jung,
“A Novel Buffer Cache Scheme Using Java Card Object with
High Locality for Efficient Java Card Applications,” Advances
in Hybrid Information Technology, vol. Volume 4413, pp. 500–
510, 2007.

[2] M. Oestreicher, “Transactions in Java Card,” in ACSAC ’99:
Proceedings of the 15th Annual Computer Security Applica-
tions Conference. Washington, DC, USA: IEEE Computer
Society, 1999, p. 291.

[3] F. Li, P. Agrawal, G. Eberhardt, E. Manavoglu, S. Ugurel, and
M. Kandemir, “Improving memory performance of embedded
Java applications by dynamic layout modifications,” April
2004.

[4] S. Kim, S. Tomar, N. Vijaykrishnan, M. Kandemir, and M. Ir-
win, “Energy-efficient Java execution using local memory and
object co-location,” Computers and Digital Techniques, IEE
Proceedings, vol. 151, no. 1, pp. 33–42, Jan. 2004.

[5] S. Lee, D. Shin, Y.-J. Kim, and J. Kim, “LAST: locality-
aware sector translation for NAND flash memory-based storage
systems,” New York, NY, USA, 2008.

[6] Java Card Platform Specification 2.2.2, Sun Microsystems,
Inc., March 2006. [Online]. Available: http://java.sun.com/
javacard/specs.html

[7] M. D. Ernst, “Type Annotations Specification (JSR 308),”
November 2008. [Online]. Available: http://groups.csail.mit.
edu/pag/jsr308/

[8] J. Loinig, C. Steger, R. Weiss, and E. Haselsteiner, “Java Card
Performance Optimization of Secure Transaction Atomicity
Based on Increasing the Class Field Locality,” in Secure
Software Integration and Reliability Improvement, 2009. SSIRI
2009. Third IEEE International Conference on, July 2009, pp.
342–347.

[9] “Java Card Website.” [Online]. Available: http://java.sun.com/
javacard/

180

Publication 5: ICONS 2010 83

c©2010 IEEE. Reprinted, with permission, from Proceedings of 2010 Fifth International
Conference on Systems (ICONS)

Java Card Performance Optimization of Secure Transaction Atomicity
based on Increasing the Class Field Locality

Johannes Loinig, Christian Steger, and Reinhold Weiss
Institute for Technical Informatics

Graz University of Technology
Graz, Austria

Email: {johannes.loinig, steger, rweiss}@tugraz.at

Ernst Haselsteiner
NXP Semiconductors Austria GmbH

BU A&I, BL ID
Gratkorn, Austria

Email: ernst.haselsteiner@nxp.com

Abstract

Java Cards are embedded systems, very often implemented
as smart cards. They are used in banking, e-government,
telecommunication, and ticketing. Due to these use cases
they have to provide a wide range of security mechanisms
and a high performance in relation to the available hard-
ware cost. One of these security features is the transac-
tion mechanism. It ensures that data in persistent memory
stays consistent in case of the execution of the application
is interrupted unexpectedly by e.g. loss of power. Such
transaction mechanisms are very time consuming. Therefore,
we1 propose a caching mechanism for transactions. The
mechanism uses a buffer located in RAM and reduces costly
write cycles into persistent memory without any loss of
security. In order to further increase the performance of
this caching mechanism, we additionally introduce a concept
to maximize the locality of selected Java fields which are
written very often.

1. Introduction

Java Cards are small platforms (usually smart cards)
that provide a runtime environment (JCRE) and a virtual
machine (JCVM) [1]. Sun Microsystems defined them and
a subset of the Java programming language in [2]. The
embedded implementation of a smart card and the security
mechanisms of a Java Card allow the execution of highly
secure applications directly on the card. Typical use cases
are transport, ticketing, banking, telecommunication, and e-
government applications. In comparison to other smart card
systems without any computational capability (e.g. memory
cards), these cards achieve a much higher security level
based on integrity, authentication and confidentiality. All of
these use cases come with a high number of issued cards
which leads to a price pressure for the manufacturers. This
results in a small footprint for the microchip. Smart cards

1. This paper is a result of the HiPerSec project which has been supported
by the Austrian government under grant number 816464.

are very often based on the old 8-bit 8051 CPU architecture.
In order to achieve specified execution time, maximum
performance of these embedded devices is necessary. For
Java Cards, this performance condition is even tightened
because of the included virtual machine which provides
additional security features but represents a computational
overhead in comparison to native smart cards which execute
machine instructions instead of Java bytecodes.

In the next sections we will introduce a method how to
accelerate transaction atomicity significantly. In Section 2
we summarize related work to optimize the performance of
Java Cards. Furthermore Section 2 gives the basics of Java
Card’s transaction atomicity and how this can be achieved.
Section 3 introduces our methodology to gain better perfor-
mance for transactions. First, our hash table based cache is
described, and then a optimization using Java annotations
is proposed. Section 4 describes the simulation environment
and the achieved results. Finally Section 5 summarizes this
paper and lists related further work.

2. Related Work

The virtual machine (executing the compiled Java pro-
gramming language) is not the only security feature of Java
Cards. An applet firewall provides a secure border between
multiple installed applications. Cryptographic classes pro-
vide algorithms for user- and data authentication and con-
fidentiality. Transaction atomicity (more detailed explained
below) ensures that all necessary assignments to persistent
memory are executed completely and correctly - or not at all
if the execution was aborted [3]. All of these features cause
a computational overhead which was tried to overcome in
different approaches. To accelerate the virtual machine the
authors of [4] (and others as well) propose a Java processor
executing Java bytecode directly instead of interpreting and
’converting’ them to native machine instructions. Another
approach to accelerate bytecode execution is to use instruc-
tion folding [5] [6] to combine Java bytecodes and eliminate
redundant sequences of machine instructions. Optimizations
executed during runtime like dynamic compilation [7] are

2009 Third IEEE International Conference on Secure Software Integration and Reliability Improvement

978-0-7695-3758-0/09 $25.00 © 2009 IEEE
DOI 10.1109/SSIRI.2009.39

330

2009 Third IEEE International Conference on Secure Software Integration and Reliability Improvement

978-0-7695-3758-0/09 $25.00 © 2009 IEEE
DOI 10.1109/SSIRI.2009.39

342

2009 Third IEEE International Conference on Secure Software Integration and Reliability Improvement

978-0-7695-3758-0/09 $25.00 © 2009 IEEE
DOI 10.1109/SSIRI.2009.39

342

2009 Third IEEE International Conference on Secure Software Integration and Reliability Improvement

978-0-7695-3758-0/09 $25.00 © 2009 IEEE
DOI 10.1109/SSIRI.2009.39

342

2009 Third IEEE International Conference on Secure Software Integration and Reliability Improvement

978-0-7695-3758-0/09 $25.00 © 2009 IEEE
DOI 10.1109/SSIRI.2009.39

342

2009 Third IEEE International Conference on Secure Software Integration and Reliability Improvement

978-0-7695-3758-0/09 $25.00 © 2009 IEEE
DOI 10.1109/SSIRI.2009.39

342

SS 2009 Short Paper

2009 Third IEEE International Conference on Secure Software Integration and Reliability Improvement

978-0-7695-3758-0/09 $25.00 © 2009 IEEE
DOI 10.1109/SSIRI.2009.39

342

IRI

Publication 6: SSIRI 2009 84

c©2009 IEEE. Reprinted, with permission, from Proceedings of Third IEEE International
Conference on Secure Software Integration and Reliability Improvement (SSIRI)

Object o1 = new Object();
// ...

JCSystem.beginTransaction();
o1.setState(...)

// b1 is a class field located
// in EEPROM
b1 = (byte) 0xFF;
JCSystem.commitTransaction();

// Either both (o1 and b1) are
// changed or none.

Figure 1. Java Card Code Example with Transactions

not yet applicable for smart cards because they have too
little RAM to store intermediate results.

Another well known performance bottleneck of smart
cards is writing data to persistent memory. In general,
smart cards do not have their own power supply. They are
powered by the smart card reader via the contact- or the
contactless interface. Therefore smart cards include usually
an EEPROM which is able to store data that must not get
lost between sessions. Writing into EEPROM is about 1000
times slower than writing into RAM.

2.1. Transaction Atomicity

Furthermore, the application execution can be aborted
at any time if, for example, the reader shuts down the
power supply or the card is removed from the reader.
Transaction atomicity guarantees in such a case that one
or multiple variable assignments are executed completely
and correctly or not at all. This guarantees data integrity in
case of an unexpected interruption of the executed program.
Transaction atomicity is performed by multiple consecutive
EEPROM write cycles what decreases the performance of a
Java Card additionally.

The Java Card specification [2] defines two mechanisms
for transaction atomicity: atomic writes and transactions.
Atomic writes are used implicitly if a single field assignment
is executed and the field is located in persistent memory.
Transactions can include several assignments. Either all
of these assignments are executed or none. Transactions
start with a JCSystem.beginTransaction() and
end with a JCSystem.commitTransaction() or a
JCSystem.abortTransaction(). A simple example
is shown in Figure 1.

2.2. Transaction Mechanisms

Two different approaches for implementing a transaction
mechanism in software are described in [8] and referred to as

Old Value Logging (OVL) and New Value Logging (NVL).
OVL backups the old data values altered within a trans-

action before overwriting them: For each assignment within
a transaction, the old value is stored into a reserved area in
the persistent memory - the transaction buffer (TB). After
checking and validating the TB the variable is overwritten
in the persistent heap with the new data value. Finally the
new value is checked. After commitment of the transaction
the data in the TB is not needed anymore and the TB
gets marked as invalid again. If the execution is interrupted
before commitment of the transaction (or the transaction was
aborted), the old values are restored from the TB.

NVL stores the new values at a different location and
updates the reference to the fields: For each assignment in
a transaction a new variable is allocated and filled with
the new value. After checking the data the reference of
the Java field is updated to the new location. When the
transaction is committed all new data values are copied
to their primary location. After checking the values the
additional allocated memory is freed again and the variable
references are changed back to the primary location. If
the transaction is interrupted it has to be ensured that the
references point to the old unchanged values.

OVL needs a minimum of 1+3n EEPROM write cycles,
NVL needs a minimum of 2+n write cycles where n is the
number of assignments within one transaction.

3. Annotation Based Methodology to Acceler-
ate Transactions

Our proposal is based on two steps. First, in Sections 3.1
and 3.2 we show how class field locality can be used to
optimize the performance of transactions. In the second
step we propose to annotate class fields that are written
often within transactions. An annotation as described later
in Section 3.4 signals the virtual machine to allocate the
needed memory on a reserved EEPROM page instead of the
regular persistent heap. Figure 2 shows the resulting memory
layout. This ensures a higher locality for often used class
fields. The additional performance gain happens implicitly
in the caching mechanism described in the first step.

3.1. Utilizing Class Field Locality

OVL and NVL have their own advantages and disad-
vantages which are described in detail in [8]. The big
advantage of the NVL is that a buffer in RAM can accelerate
transactions. However, it must be ensured that no data
becomes corrupted when it is copied from RAM to the
primary location in EEPROM. Therefore a mixed approach
consisting of OVL and NVL is used as shown in Figure 3.
Lines 1 to 8 belong to the NVL. Lines 8 to 15 belong to
the OVL. Line 8 is both, NVL and OVL.

331343343343343343343

Publication 6: SSIRI 2009 85

c©2009 IEEE. Reprinted, with permission, from Proceedings of Third IEEE International
Conference on Secure Software Integration and Reliability Improvement (SSIRI)

Figure 2. Proposed Memory Layout

1: if transaction is active then
2: for all variable assignments into EEPROM do
3: Allocate a new variable in RAM.
4: Store the new value into the new variable.
5: Update the reference to the new variable.
6: end for
7: else if transaction commit then
8: Copy the content of the new variables in the RAM

into transaction buffer.
9: Check the content of the transaction buffer.

10: Validate the transaction buffer.
11: Overwrite all old variables in persistent heap with

their new content in RAM.
12: Check the new content in the persistent heap.
13: Invalidate the transaction buffer.
14: Free the allocated memory in RAM.
15: end if

Figure 3. A Buffered Transaction Mechanism.

The better transaction performance is reached when
the RAM buffer is copied into the transaction buffer in
EEPROM (Line 8). EEPROMs are usually organized in
pages. One write cycle affects one page, independent of the
number of changed bytes. If the content of the RAM buffer
fits into one EEPROM page, only one write cycle is needed
to fill the transaction buffer. In an unbuffered OVL or NVL
sequential write cycles would be needed instead.

3.2. A Hash-Table based Cache for Transactions

EEPROM pages can be utilized to accelerate transactions.
Java Card class fields have a high locality: they are located

Figure 4. Our Proposed Cache Structure

close together in the memory. A reason for this lays in
the Java Card specification. Instance fields, for example, are
stored in one memory area which size is defined in the CAP
file (Class component declared_instance_size, see
JCVM specification [2] for more details). As described later
in Section 3.5 CAP files are the binary representation of Java
classes. The individual instance fields are represented by
consecutive 16-bit slots which are numbered serially by their
tokens. These tokens are used as references to the variables.
Therefore the probability that class fields are located in the
same EEPROM page is very high.

To accelerate transactions we propose a software cache
located in RAM. It is a modification of the buffered mecha-
nism described above. New values of a transaction are stored
in a hash table. A hash value is used to lookup the right entry
in this table. The lower bits of the accessed class field’s
address are used as a hash value. How many bits are used
depends on the size of the cache. The entries of the cache are
shown in Figure 4. They store information of the class field’s
address (to detect hash collisions), the new value, and some
status information. Only field accesses within transactions
are handled over this cache.

One transaction is executed as shown in Figure 5. This
algorithm takes advantage of EEPROM page writes at two
positions. In the for-loop starting at line 9 multiple values
are written into the transaction buffer instead of only one. As
usually only a few bytes are written, the probability that this
affects only one EEPROM page is very high. In the second
for-loop starting at line 14 multiple values are stored into
their primal position. As only these entries which refer to
the same page were selected before, this can be done in one
EEPROM page write as well.

As usual for NVL mechanisms, reading variables within
transactions is more costly than for OVL mechanisms be-
cause the buffer has to be checked. However, this lookup
into RAM is much faster than a EEPROM write cycle into.
Thus, saving write cycles overcomes the lookup overhead
by far. To minimize this overhead, we have chosen a hash
table as a buffer which allows a lookup in constant time.

The proposed algorithm does not violate the Java Card
specification. New values are located in the RAM first. In
case of an interruption of the execution, the content of RAM
is invalid but as the transaction is not committed and the
old values in EEPROM are not changed, this is not an

332344344344344344344

Publication 6: SSIRI 2009 86

c©2009 IEEE. Reprinted, with permission, from Proceedings of Third IEEE International
Conference on Secure Software Integration and Reliability Improvement (SSIRI)

1: if transaction active then
2: for all variable assignments into EEPROM do
3: Calculate hash using the address of the variable.
4: Select entry in hash table with the hash value.
5: if selected entry is not marked as dirty then
6: Store the new value and the EEPROM address

into selected entry.
7: Set entry’s dirty-bit.
8: else
9: for all dirty entries whose variable is located in

the same page as the selected one do
10: Write the old value into the transaction buffer.
11: Check the value.
12: end for
13: Validate the transaction buffer.
14: for the same entries as before do
15: Overwrite the old value with the new content

in the hash table.
16: Mark entry as not dirty.
17: end for
18: Write the new value in selected entry.
19: Mark entry as dirty.
20: end if
21: end for
22: else if transaction commit then
23: while entries are marked as dirty do
24: Select next dirty entry.
25: Repeat line 9 to 17.
26: end while
27: Invalidate transaction buffer.
28: end if

Figure 5. A Cached Transaction Mechanism Based on
a Hash Table

issue. In case of a hash value collision, or a transaction
commitment the values in RAM are stored in EEPROM.
The old values were backed up before into the transaction
buffer like in an OVL. As the OVL is compliant to the Java
Card specification, our proposed algorithm is as well.

3.3. Increasing Java Field Locality

The performance of our proposed caching algorithm de-
pends strongly on two criteria. First, the performance is
higher if the accessed fields are in the same EEPROM page.
And second, collision of the hash value may occur and
decrease the performance.

Increasing the locality of Java class fields will influence
both criteria beneficially: If class fields are located consecu-
tively in the memory, maximum locality is achieved. For our
cache, this results in adjoining hash values where collisions
only can happen if the number of assignments does not fit
into the cache. Furthermore, write cycles can be reduced

@Target(ElementType.FIELD)
@Retention(RetentionPolicy.RUNTIME)
public @interface TMCached {}

Figure 6. The Proposed Annotation

because a lot of class fields are located in one and the same
page.

An analysis of Java Card Applets of different application
domains has shown that during one ordinary session just
a few Java fields in EEPROM change their value. These
few fields can fit easily into one EEPROM page which
has usually a minimum of 64 bytes. As for single object
instances the probability is very high that all accessed class
fields are in one page, this is not the case if more than one
object instance is used. Creating multiple object instances
is common for object oriented programming languages and
can increase the clearness of an application.

Java Card encapsulates the hardware platform completely.
The application developer has no influence where the Java
fields are going to be stored in the card’s memory. One
method against this is to store all data into one array in
one object. This reduces the clearness of the application and
prohibits dynamic data growth. We propose a methodology
such that the developer can annotate fields to store them
on a reserved page, independent which object instance they
belong to. We assume that a developer knows which fields
will be written very often during usage. Thereby, the locality
for selected fields can be increased.

3.4. Java Annotations

The Java Language Specification [9] defines annotations
for different Java targets like classes, methods, and fields.
These annotations can be evaluated during compile-time,
when processing the class file, or during runtime. Annota-
tions can be pre-defined (e.g. @deprecated) or defined by
the Java developer. They can include fields that are assigned
during compile-time. Runtime and class-file annotations are
represented as attributes [10] [11] and stored in the constant-
pool of a class.

We propose a new annotation shown in Figure 6. The
target is set to ElementType.FIELD. This is eval-
uated during compile time and restricts the appliance
of the annotation to class fields. The retention policy
RetentionPolicy.RUNTIME causes the Java compiler
and class loader not to eliminate the annotation. Thus, it
will be available during runtime for the virtual machine.
Our proposed annotation does not need fields.

Runtime annotations can be accessed by the Java appli-
cation via the reflection-API. However, they can also be
evaluated by the virtual machine itself. Virtual machines,
which do not support annotations or the used type of

333345345345345345345

Publication 6: SSIRI 2009 87

c©2009 IEEE. Reprinted, with permission, from Proceedings of Third IEEE International
Conference on Secure Software Integration and Reliability Improvement (SSIRI)

annotation, have to ignore them and execute the application
if it would not be annotated. That is why runtime annotations
give application developers the possibility to use features
of virtual machines with special capabilities without losing
compatibility with common virtual machines.

3.5. Annotations for Java Cards

Annotations are not defined for Java Cards. However, as
Java for Java Card is a subset of the Java programming
language [2] [9], the common Java compiler can be used
for Java Cards as well. This allows usage of annotations
with following considerations:

• For Java Cards an own API is defined in the speci-
fication [2]. This API does not include the necessary
java.lang.annotation package. The package
has to be ported to Java Card.

• Java Cards do not execute class files. The JCVM is split
into an off-card and an on-card part. The off-card VM is
a converter which loads and pre-processes the class file.
This results into the CAP file which is uploaded to the
smart card. A common CAP file converter may delete
annotations as they are not defined for Java Cards. An
extended converter is needed.

• The CAP file does not support attributes and thus also
not annotations. The CAP file does not leave a lot of
space for extensions. However, the annotated CAP file
must be fully compatible with Java Cards that do not
support annotations.

4. Experimental Results

Our implementation is based on two simulators: a low-
level Java Card simulator and a high level cache simulator.
The low-level simulator is accurate enough to provide oc-
currence of EEPROM accesses and the related addresses.
The simulation results were used as input for the cache
simulator to investigate the performance for different cache-
parameters.

Selected applets were run on the Java Card simulator to
determine representative EEPROM access patterns for Java
Cards. Only a few fields are usually written within transac-
tions (2-5 fields). Arrays are also copied in transactions, but
as Utils.arrrayCopy() is mapped to a native function,
these accesses are not considered here. The class fields can
be defined in one class or can be spread over several objects.

To benchmark the caching mechanism a Java Card applet
was implemented that accesses fields randomly in single
objects or in an array of objects. Latter one was implemented
in two variants. Variant one is straight forward with all fields
in the concerning objects. The second one uses a factory
class that allocates members at once. The idea was to try
if a factory pattern in Java suffices to achieve a higher
field locality. The factory class provides arrays which are

0%

20%

40%

60%

80%

100%

120%

0 50 100 150
Size of Cache in Slots

N
um

be
r

of
 E

E
PR

O
M

W

ri
te

 C
yc

le
s

in
 %

Field Access
Object Access
Object Access with Factory
Object Access with Annotated Fields

Figure 7. Achieved Performance Gain

all created at the same time. This increases their locality.
Objects that need an array, request it at the factory instead
of using an array annotated with @TMCached.

Our existing Java Card simulator was extended by the
proposed annotation. During instantiation of a new object,
the system checks if a field is annotated. Annotated fields
are allocated in a reserved area which exactly fits into one
EEPROM page. Not annotated fields are allocated as before.

4.1. Simulation Results

Figure 7 shows the results in performance gain in com-
parison to an OVL. Different access patterns were executed.
The shown values are an average of 255 test runs writing
to 5 fields (per transaction) in a set of 16 fields respectively
16 objects. Even with a small cache size of only 2 entries
16% of write cycles can be saved if the fields are located in
one and the same object. A maximum performance gain of
more than 50% can be achieved with 32 entries. A bigger
cache size has no positive influence anymore because the
entire transaction fits into the cache. For fields in multiple
objects a performance gain of 20-30% can be achieved. The
gain is lower because the variables are spread over multiple
pages. The factory pattern performs better than a pure object
based approach but does not catch up with pure field access.
As can be seen in Figure 8 the factory pattern causes more
collisions of the hash values than the other access patterns.

The usage of annotated fields shows the most significant
performance gain of more then 26% for only 4 cache slots
(see Figure 7). A maximum of almost 70% can be achieved
with 32 cache slots.

Figure 8 furthermore shows that the change from a one-bit
hash to two bits never reduces the number of collisions. The
reason for this is the Java Card memory structure defined
by the Java Card specification [2]. All primitive data types
(except of integers) are represented by 16 bits. This means
that the addresses of two consecutive primitive type fields

334346346346346346346

Publication 6: SSIRI 2009 88

c©2009 IEEE. Reprinted, with permission, from Proceedings of Third IEEE International
Conference on Secure Software Integration and Reliability Improvement (SSIRI)

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

0 2 4 6 8 10

Hash Size in Bits

A
ve

ra
ge

 N
um

be
r

of
 H

as
h-

C
ol

lis
io

ns
 p

er
 T

ra
ns

ac
tio

n

Field Access
Object Access
Object Access with Factory
Object Access with Annotated Fields
Field Access, Bits 1-3

Figure 8. Hash-Collisions Depending on Hash Size

0%

20%

40%

60%

80%

100%

120%

0 50 100 150
Size of Cache in Slots

N
um

be
r

of
 E

E
PR

O
M

W

ri
te

 C
yc

le
s

in
 %

Field Access Array, Bits 0-2
Field Access, Bits 0-2
Field Access Array, Bits 1-3
Field Access, Bits 1-3

Figure 9. Performance Gain with Bits 1-3 for Hash

in an 8-bit architecture vary in the second bit but not in the
lowest one. Figures 9 and 8 show the performance gain and
number of collisions if bits 1 to 3 of the EEPROM address
are used for the hash value instead of bits 0 to 2.

The performance gain of field access increases from 16%
to 45% for a buffer with two entries. This comes with
a reduction of performance gain for accesses into byte
arrays, also shown in Figure 9. Byte arrays are not 16-bit
oriented. Ignoring the lowest bit of the address reduces the
performance gain from 44% to 35%. Figure 8 shows that
the number of collisions is reduced for field accesses that
are not targeted to arrays.

5. Conclusion and Future Work

Java Cards are commonly used for secure applications.
Therefore they provide a lot of security features that cause
a computational overhead. We have shown that one of
the performance bottlenecks, the transaction mechanism,
can be accelerated significantly. By using of a buffer in
RAM transactions with Java fields in objects can be ac-

celerated by 20%-30%. Furthermore we have shown that
Java annotations can help to utilize special features of
certain virtual machines without losing compatibility. Using
our proposed @TMCached annotation for selected fields in
objects increases their locality in persistent memory and
accelerates transactions by 60% with moderate costs of some
few additional bytes in RAM.

Investigation can be done to find other caching algorithms
reducing the number of costly collisions. Atomic assign-
ments which use transactions implicitly do not benefit from
our proposed cache. As these atomic writes appear very
often, it should be considered if they can be accelerated
by using annotations for selected fields as well.

References

[1] Z. Chen, Java Card Technology for Smart Cards: Architecture
and Programmer’s Guide. Boston, MA, USA: Addison-
Wesley Longman Publishing Co., Inc., 2000.

[2] Java Card Platform Specification 2.2.2, Sun Microsystems,
Inc. [Online]. Available: http://java.sun.com/javacard/specs.
html

[3] Java Card Platform Security, Sun Microsystems, Inc.
[Online]. Available: http://java.sun.com/products/javacard

[4] Z. Jianjie, L. Feihui, G. Yuanqing, Y. Zhenwu, and Y. Zhilian,
“A Java processor suitable for applications of smart card,”
ASIC, 2001. Proceedings. 4th International Conference on,
pp. 736–739, 2001.

[5] A. Azevedo, A. Kejariwal, A. Veidenbaum, and A. Nicolau,
“High performance annotation-aware JVM for Java cards,”
in EMSOFT ’05: Proceedings of the 5th ACM international
conference on Embedded software. New York, NY, USA:
ACM, 2005, pp. 52–61.

[6] H. McGhan and M. O’Connor, “PicoJava: a direct execution
engine for Java bytecode,” Computer, vol. 31, no. 10, pp.
22–30, Oct 1998.

[7] M. Debbabi, A. Mourad, C. Talhi, and H. Yahyaoui, “Accel-
erating embedded Java for mobile devices,” Communications
Magazine, IEEE, vol. 43, no. 9, pp. 80–85, Sept. 2005.

[8] M. Oestreicher, “Transactions in Java Card,” in ACSAC ’99:
Proceedings of the 15th Annual Computer Security Applica-
tions Conference. Washington, DC, USA: IEEE Computer
Society, 1999, p. 291.

[9] J. Gosling, B. Joy, G. Steele, and G. Bracha, The
Java Language Specification. ADDISON-WESLEY, 2005.
[Online]. Available: http://java.sun.com/docs/books/jls/

[10] T. Lindholm and F. Yellin, The Java Virtual Machine
Specification, 2nd ed. Prentice Hall PTR, 1999.
[Online]. Available: http://java.sun.com/docs/books/jvms/
second edition/html/VMSpecTOC.doc.html

[11] M. D. Ernst, “Type Annotations Specification (JSR 308),”
November 2008. [Online]. Available: http://groups.csail.mit.
edu/pag/jsr308/

335347347347347347347

Publication 6: SSIRI 2009 89

c©2009 IEEE. Reprinted, with permission, from Proceedings of Third IEEE International
Conference on Secure Software Integration and Reliability Improvement (SSIRI)

242

Fast Simulation Based Testing of Anti-Tearing
Mechanisms for Small Embedded Systems

Johannes Loinig, Christian Steger, and Reinhold Weiss
Institute for Technical Informatics

Graz University of Technology, Graz, Austria
Email: {johannes.loinig, steger, rweiss}@tugraz.at

Ernst Haselsteiner
NXP Semiconductors Austria GmbH, Gratkorn, Austria

Email: ernst.haselsteiner@nxp.com

Abstract—Small embedded systems are often powered by
unreliable power supplies like energy harvesting systems or
external power supplies. For secure embedded systems a sudden
loss of power can violate data integrity. The power has just to
drop when data is written to non-volatile memory. In order
to guarantee data integrity, a secure embedded system has to
provide an anti-tearing mechanism. In this work we1 summarize
a fast simulation based test method for such mechanisms.

I. INTRODUCTION, RELATED WORK, AND MOTIVATION

Small embedded systems (ES) have often no reliable power
supply. However, it is important that a system is able to
guarantee integrity for data written to persistent memory. To
ensure this in case of sudden power loss, ESs provide an anti-
tearing mechanism, or so called transaction mechanism (TM).
Testing a TM can be very difficult and may require a lot of
knowledge about implementation details. The basic concept of
most TMs is a backup strategy. A backup of important data
is made before overwriting it with new data. In [1] different
backup strategies are explained in detail. Other approaches are
based on memory redundancy [2].

In [3] a black box test for TMs is described. An atomic
operation is interrupted at multiple specified points in time ti.
After each interruption it is checked if the system is still in a
consistent state. In detail, it may be difficult to determine the
’right’ values for ti.

A simulated fault injection is a promising approach to
overcome this drawback. Simulated fault injection [4] allows
observing a complex system in situations which are difficult
to reproduce on real hardware. A remaining drawback is that
a lot of code has to be re-executed for every test case.

II. A TEST VECTOR BASED FAULT INJECTION APPROACH

If the repeated execution of embedded code leads to the
same write operations to persistent memory, there is no need
to run it several times for testing purposes. The TM would
perform anyway the same operations as before. Therefore, we
run code only once without any fault injection and record the
write operations to generate test vectors (TV). Because the
TVs are independent it is possible to skip and merge TVs
which are identified to cause execution of identical code. A
compaction process identifies such TVs.

1This paper is a result of a project which is funded by the Austrian Federal
Ministry for Transport, Innovation, and Technology (contract FFG 816464).

To apply a TV, its associated write operations are performed
by the simulation environment. Afterwards the simulated sys-
tem starts up, the TM is executed, and the consistency check
can be done. This is repeated for each TV and is equivalent
to the model’s simulation after an injected tearing event.

This method requires less code to be executed. The TVs are
generated out of recorded write operations and are therefore
created without any knowledge of the TM’s implementation.

III. IMPLEMENTATION, EVALUATION, AND RESULTS

We implemented our test environment for the TM of a Java
Card [5]. The software runs on a memory accurate simulation
implemented in SystemC [6]. The test cases are implemented
in a Java Card application.

A theoretical evaluation of our method has shown that the
TV approach is faster than a regular fault injection approach
if
∑xB−1

i tBi
+
∑xR−1

i tRi
> 0 holds, where xB and xR are

the numbers of needed write operations for backup and restore
of data, and tB and tR are the execution time until the i-th
tearing event. This equation holds for all of our known TMs.

A measurement of the execution time of our TV based
mechanism shows a linear behavior which scales much better
than the regular fault injection method. For 16 test cases with
more than 70 write operations, we achieved a performance
gain of more than 20% without TV compaction. For a basic
compaction method we achieved up to 13% faster execution
times in comparison to the approach without compaction.

IV. CONCLUSION

We explained a test vector based fault injection method for
testing anti-tearing mechanisms. The approach reduces code
re-execution during testing without loss of test coverage. A
proof of concept implementation achieved a performance gain
of more than 20%. Furthermore, our approach allows reducing
the number of test cases by test vector compaction.

REFERENCES

[1] M. Oestreicher, “Transactions in Java Card,” in ACSAC ’99 . Washington,
DC, USA: IEEE Computer Society, 1999, p. 291.

[2] G. Lisimaque and P. Paradinas, “Method and device for updating infor-
mation elements in a memory,” US Patent 5,479,63, Dec. 26, 1995.

[3] W. Rankl and W. Effing, Smart Card Handbook. New York, NY, USA:
John Wiley & Sons, Inc., 2003.

[4] K. Rothbart et al., “High level fault injection for attack simulation in smart
cards,” Test Symposium, 2004. 13th Asian, pp. 118–121, Nov. 2004.

[5] Java Card Platform Specification 2.2.2, Sun Microsystems, Inc.
[6] Open SystemC Language Reference Manual IEEE Std 1666-2005, IEEE.

978-1-4244-5833-2/10/$26.00 ©2010 IEEE

Publication 7a: ETS 2010 90

c©2010 IEEE. Reprinted, with permission, from Proceedings of 2010 15th IEEE
European Test Symposium (ETS)

Fast Simulation Based Testing of Anti-Tearing
Mechanisms for Small Embedded Systems

Johannes Loinig, Christian Steger, and Reinhold Weiss
Institute for Technical Informatics

Graz University of Technology
Graz, Austria

Email: {johannes.loinig, steger, rweiss}@tugraz.at

Ernst Haselsteiner
NXP Semiconductors Austria GmbH

Gratkorn, Austria
Email: ernst.haselsteiner@nxp.com

Abstract—Small embedded systems are often powered by
unreliable power supplies like energy harvesting systems (e.g., for
sensor nodes) or external power supplies (for smart cards). For
secure embedded systems a sudden loss of power can violate
data integrity. The power has just to drop when data is written
to non-volatile memory. Thinking about a byte array in a smart
card representing some digital money of an e-purse, this becomes
obvious. In order to guarantee data integrity a secure embedded
system has to provide an anti-tearing mechanism. Testing this
mechanism is very difficult, extensive, and requires deep inside
knowledge into its implementation details.

In this work we show how a simulation of an embedded
system can be used to test the anti-tearing mechanism. High-level
test cases are used to generate test vectors automatically. The
proposed approach allows a fast and comprehensive test of the
anti-tearing mechanism. We1 explain our proposed mechanism
on the basis of a case study of a smart card system. However, the
mechanism is general enough to be used for secure embedded
systems of any kind.

I. INTRODUCTION

Small embedded systems have often no reliable power sup-
ply. Typical examples are sensor nodes with energy harvesting
systems and smart cards which are externally powered by
the smart card reader. In the first case the gained power is
dependent on the environment wherein the system operates,
e.g., the lighting conditions in case of photovoltaic cells. In the
case of smart cards, the user may just remove the card form the
reader. In both cases the execution of the embedded application
will be aborted immediately. Consequently, the application can
not rely on its execution to its regular end.

However, it is important that a system is able to guarantee
integrity for information stored in persistent memory. This
is especially important if the system is used for secure use
cases as banking cards or e-government applications. For
example, the amount of digital money stored on a banking card
must stay consistent in any case of operation. To guarantee
the necessary data integrity in case of sudden power loss
most smart cards have to support atomic write operations to
persistent memory. Anti-tearing mechanisms, or also called
transaction mechanisms (TM), provide this functionality.

1This paper is a result of a project which is funded by the Austrian Federal
Ministry for Transport, Innovation, and Technology (contract FFG 816464).

A TM is usually part of the operating system (OS). There-
fore, an application does not need to take care about tearing-
events on its own. For example, in case of Java Cards [1]
(a smart card system including a Java virtual machine) each
assignment to a variable located in the persistent memory is
defined to be atomic.

Testing a TM can be very difficult and may require a
lot of deep knowledge about the implementation details.
Additionally, the TM runs on an embedded system which is
supposed to be a secure environment. Hence, observability and
controllability of the system for testing purposes is strongly
limited. Having a reliable, implementation-independent, and
rapidly executed test in place would be a great benefit.

In this work we propose an approach which fulfills these
requirements. Test vectors are generated automatically from
high-level test cases which are independent from the TM’s
implementation. A fast simulation based execution allows a
rapid and simple test setup and execution. Furthermore, we
evaluate the performance of the test mechanism in comparison
to a common fault injection based testing approach.

The remainder of this paper is structured as follows. First,
we summarize related work, explain anti-tearing mechanisms,
and give our motivation. Then, we describe a simulation
based fault injection method which is the basis for further
comparison. After that, we propose our test vector based
approach including test vector generation and compaction.
Finally, we introduce our proof of concept implementation
and evaluate our proposed approach on theoretical basis and
simulation results.

II. RELATED WORK AND MOTIVATION

The requirement to write data atomically to persistent
memory is well known for smart cards. However, as already
mentioned, it is not restricted to them. Smart cards are very
small embedded devices with limited computational resources:
some few hundred bytes of RAM and some few hundred kilo-
bytes of ROM and persistent memory (typically EEPROM).
Smart cards are usually powered via inductive coupling by
the smart card reader what raised the need for reliable and
efficient TMs.

In the following section we explain some published TMs
for smart cards. This list is not complete, there are more

Publication 7b: ETS 2010 91

c©2010 IEEE. Reprinted, with permission, from Informal Proceedings of 2010 15th IEEE
European Test Symposium (ETS)

mechanisms published especially in patents. Afterwards, we
summarize related work about verification methods for atom-
icity.

A. Anti-Tearing Mechanisms
The basic concept of the introduced anti-tearing mech-

anisms is a backup strategy. Simply overwriting values in
persistent memory is very insecure [2]. If the execution is
interrupted (e.g., caused by a breakdown of the power supply),
the old value may be deleted, but the new value may not
yet be in a consistent state. Thus, the basic principle is to
make a backup of important data before writing the new data.
When the system boots up it searches for existing backups. If
a backup exists (in case of a tearing event) the system restores
the data to bring the memory back to a consistent state. For
the remainder of this paper we call these phases the Backup
Phase (BP) and the Restore Phase (RP).

Oestreicher explains two basic mechanisms in [3]: Old
Value Logging (OVL) and New Value Logging (NVL). Both
mechanisms use a transaction buffer (TB) in the persistent
memory to store the backup information. In the BP OVL saves
the old value going to be overwritten, its type, and its address
to the TB. This is a roll-backward strategy as the old value
can be restored in case of a tearing event. NVL saves the new
value, type, and address to the TB. Thus, the RP is able to
finalize the write operations if necessary. This is a roll-forward
strategy.

The patent [4] describes a different concept based on mem-
ory redundancy. The persistent memory is split into multiple
parts. Each data field is allocated in all these parts. A write
operation does not overwrite the old data directly but stores
the new values in an according data field on a different
memory part. If the write operation was successful the field’s
reference is changed to the new location. The old data field
may be overwritten with the next atomic write operation. The
critical write operation in this mechanism is the update of
the reference. As the reference to persistent data fields is also
located in the persistent memory it can not be overwritten
without tearing countermeasures. An OVL or a NVL may be
used to update the reference in a secure way.

B. Verification of Atomicity
Verification and testing of software in small embedded

systems is very crucial. The software (e.g., the operating
system) is often stored in the ROM during fabrication. Thus,
it is practically impossible to update the software in case of
a bug that should be fixed [5, page 574]. Additionally, highly
secure use cases require a fully trustworthy implementation
which makes testing even more important.

In [5, page 586] it is mentioned that testing the TM is a
typical black box test. An atomic operation is executed and
interrupted at multiple specified points in time. After each
interruption it is checked if the system is still in a consistent
state. This is explained in more detail in Section III. However,
it is mentioned that the number of needed tests is fairly large.

There exists a lot of related work around the TM for
Java Cards [1], [6]. The authors of [7] and [8] used the

Java Modeling Language to model the Java Card TM. The
concepts allow formal verification of atomicity of Java Card
applications. However, a fully functional and reliable TM
is assumed to be in place when the verified application is
executed.

In [9] the author introduces a method to formally prove em-
bedded C code of anti tearing mechanisms. First, a transition
system is extracted automatically from a formal specification
of the atomic function to be verified. Then, a program verifica-
tion tool (Caduceus) is used to evaluate if the implementation
fulfills the transition system. The verification tool requires that
the C code is annotated with functional properties like the pre-
condition and the post-condition.

Simulation based testing is common for hardware develop-
ment. Simulated fault injection allows observing the system in
situations which are difficult to reproduce on real hardware.
Rothbart et al. has proposed a high-level fault injection ap-
proach for smart cards in [10]. The system was modeled in
SystemC [11]. Faults can be injected into functional blocks
and interconnections without recompilation of the model.

A simulation based test environment must provide a suitable
performance if it should be used during the development
process. Misera et al. describes how to achieve higher testing
performance for SystemC based fault injection [12]. The basic
principle of the performance increase is to parallelize tests for
rather low level modules.

C. Motivation of our Work

We were not able to find related work about fast and
reliable verification of transaction mechanisms. The found
formal verification methods are done on a high abstraction
level. As great parts of operating systems are implemented
at least partially in assembler these approaches may not be
applicable for verification during development. In addition
these approaches require additional high-level information like
functional properties. This information may not always be
available during a development process.

Fault injection is a promising approach. A tearing event
does not need a complicated fault model and can be easily
applied on a simulated embedded system. However, we will
show in this work that a fault injection based approach only
may not be the best choice. First, we explain the basics of the
fault injection based approach. After that, we explain how the
test performance can be increased by reduction of code that is
executed by the simulated system. Furthermore, our approach
allows a reduction of test cases which is not easily possible
with a basic fault injection based approach.

III. A SIMULATION BASED FAULT INJECTION APPROACH

In this section we explain how to move a common test for
anti-tearing mechanisms for smart cards explained in [5] to
a simulation based environment. Furthermore, we identify the
advantages and disadvantages of this proposed test method.

A. Fault Injection Without Simulation

As mentioned before, [5] describes a black box test for
anti-tearing mechanisms of smart cards. Figure 1 shows this

Publication 7b: ETS 2010 92

c©2010 IEEE. Reprinted, with permission, from Informal Proceedings of 2010 15th IEEE
European Test Symposium (ETS)

basic test approach. The host system sends a command that
causes the smart card to start execution of the application. The
host turns off the power supply of the smart card at multiple
points in time ti. This aborts the execution on the smart card’s
application. The implementation of the test seems to be trivial.

In detail, it may be difficult to determine the ’right’ values
for ti. Notice that a secure embedded system is designed not
to leak information which may be used for attacks. Thus, the
choice of values for ti can be, in the worst case, more or less
just guessing. Additionally, as this is a pure black box test,
not only the right values have to be guessed, the right number
of tests is also difficult to determine.

It should be mentioned that just switching off the reader
may turn up as not so easy as expected. A commercial smart
card reader may not provide a command to switch of the
power supply. Furthermore, smart card readers do usually
not provide a mechanism to define exact arbitrary timing for
commands as the timing is defined by the underlying protocol
like ISO 14443.

Host/Reader Smart Card

send command

wait(ti)

switch off reader power

switch on reader power

read data command

check consistency

increment ti

start atomic method

reset

read data

restore phase

tearing event

Fig. 1. Fault Injection Approach Without Simulation

B. Simulation Based Fault Injection
Applying the fault injection to a simulation avoids the

difficulties to choose appropriate time values because the
simulation provides full observability and controllability of
simulated system. A memory accurate model is able to identify
write operations to persistent memory. The simulation can
notify a fault injection block which decides if a tearing event
has to be executed. The basic principle is shown in Figure 2.
The hardware model can be implemented with a language like
SystemC. SystemC allows modeling in different abstraction
levels. A suitable abstraction level that allows a simulation
speed that is fast enough for testing in an appropriate time
should be chosen. The requirements to a model that provides
the proposed fault injection mechanism are minimal. It only
must be able to report the persistent memory’s write opera-
tions, and it must have a mechanism to simulate the loss of
the power supply on a rather high abstraction level (e.g., by
enforcing a system reset).

In detail, the explained approach is more complex. The fault
injection module as shown in Figure 2 must be able to decide

Test Bench System Simulation

start test application

wait for simulated

tearing event

read data

check consistency

increment ti

start atomic method

reset

read data

restore phase

Fault

Injection

Module

report write

operations decision

reset

generation
reset

tearing

event

Fig. 2. Simulation Based Fault Injection Approach

if a fault injection should be executed. Therefore, it has to
identify the write operations and distinguish between:

• write operations that have to cause a tearing event,
• write operations that already have caused a tearing event

and are thus tested,
• and write operations that should not cause a tearing event

because they are out of scope of the active test case.

Latter ones are, for example, write operations in the RP. Notice
that an interrupted BP is followed by a RP and the RP also
includes write operations which may be necessary to be tested
in a separated test case.

C. Estimation of the Test Effort

The number of test cases strongly depends on the im-
plementation of the embedded system. Different data types
which can be written in an atomic way may have different
implementations in the TM. Thus, they have to be tested
separately. Additionally, the system can provide different kinds
of atomic write operations. Java Cards, for example, provide
atomicity for single variable assignments and for groups of
assignments. Latter ones are called transactions [1] and are en-
capsulated within the JCSystem.beginTransaction()
and JCSystem.commitTransaction() function calls.
Finally, there may be functions like arrayCopy() that are
atomic by definition. Each of these write operations for Java
Cards are conceptually different. It is obvious that they may
be implemented at least partially independently and that they
require different test cases.

Furthermore, these test cases consist of multiple write
operations and each of these write operations results in a
simulated tearing event. Last but not least, each test case starts
again from the beginning after a tearing event (after the RP).
Thus, huge parts of the system are simulated again and again.

Therefore, the test effort can be very high in total. This is a
clear drawback of the proposed approach. We describe a more
efficient test mechanism in the next section.

Publication 7b: ETS 2010 93

c©2010 IEEE. Reprinted, with permission, from Informal Proceedings of 2010 15th IEEE
European Test Symposium (ETS)

IV. A TEST VECTOR BASED APPROACH

For our proposed test vector based approach we define the
internal state of the embedded system by the content of the
TB. The state is evaluated during the RP. Both, BP and RP
are modifying the state during their execution. Figure 3 shows
the state diagrams for the BP and the RP. The BP always
starts in the invalid state and ends in the invalid state if the
BP is executed to its end without occurred tearing event. The
RP may start at any state because it must be assumed that a
tearing event has interrupted an atomic write operation. If the
RP is executed without interruption invalid is the final state.

The state diagram in Figure 3 includes the state written and
partially valid. Latter state is needed if more than one data
field must be written like for mentioned Java Card transactions.
In such a case the backups are written and validated sequen-
tially one after another. However, the state diagram is very
general and does not include states for different data types.

invalid

written but
invalid

written and
valid

written and
partially

valid

backup

validate

next backup

validate

invalidate

invalid

written but
invalid

written and
valid

written and
part. valid

nothing to do

restore restore

nothing to do

Fig. 3. TB-States during a) the RP and b) the BP

As shown, the BP does not depend on the state of the TB.
The executed instructions in the BP only depend on the data
which has to be written. This data is defined by the test case.
In the strict sense the BP also depends on the initial state of the
persistent memory. This initial state can easily be pre-defined
and is therefore out of interest for our test approach.

Contrary to the BP, the RP depends on the state of the TM
only. The test case can only influence the RP by the content
of the TB. This is obvious as the RP runs at startup of the
system before a test case is executed.

A. Test Vector Generation

In our proposed vector based test approach we take advan-
tage of these two properties. If the repeated execution of code
leads to the same write operations, and therefore to the same

TB state, there is no need to run it several times. The RP would
perform anyway the same operations as before. Therefore,
we run code that is modifying the TB’s state only once and
record the write operations. These records represent the TB’s
state changes. Afterwards we use the obtained write operations
to create test vectors. Each test vector contains addresses of
persistent values and related new values to be changed before
the test is executed. An overview is shown in Figure 4 a).

Test Bench System Simulation

start test application

wait for response

start atomic method

send response

Test Vector

Generation

report write

operations
record write

operations

test vector

generation

test vector

compaction

Test Bench System Simulation

start test applicaton start simulation

restore phase

read data

check consistency

select test vector

apply test vector save values to memory

read data

a)

b)

Fig. 4. A Test Vector Based Approach. a) Test Vector Generation b) Test
Execution

The test case is executed only once. All write operations
to the persistent memory are reported by the simulation. One
tearing event may be simulated to run the RP and to store its
write operations as well (not shown in the figure). Afterwards
the stored write operations are combined cumulatively to test
vectors as shown in Figure 5. This is done to generate test
vectors that are independent from each other.

Because the test vectors are independent it is possible to run
them in any arbitrary order. This also allows to skip or merge
test vectors which are identified to cause execution of identical
code parts. The compaction process shown in Figure 4 runs a
static analysis on the test vectors and identifies test vectors that
can be skipped. This may require that the compaction process
considers implementation details of the TM.

B. Test Execution

To apply a test vector, its associated write operations
are performed by the simulation environment like shown in
Figure 4 b). Notice that these write operations are executed
by the simulation environment and not by the simulated
model. Therefore, this can be performed very fast. Afterwards
the simulated system starts up, the RP is executed, and the
consistency check can be done. This is repeated for each test

Publication 7b: ETS 2010 94

c©2010 IEEE. Reprinted, with permission, from Informal Proceedings of 2010 15th IEEE
European Test Symposium (ETS)

t=1

t=2

t=3

t=4
backupinvalid

backupvalid

backupvalid

backup

old data

old data

new data

Persistent Data AreaPersistent
Transaction Buffer

Backup Phase

0x1010

0x1000

0x2000

0x2000

0x2000

0x1010

0x1000 0x1010

0x1000 0x1010

[0x1010] = backup

[0x1000] = valid

[0x2000] = new data

[0x1000] = invalid

[0x1010] = backup

[0x1000] = valid
[0x1010] = backup

[0x1000] = valid
[0x1010] = backup
[ox2000] = new data

[0x1000] = invalid
[0x1010] = backup
[ox2000] = new data

Recorded Write Operations Generated Test Vectors

backup old data

validate TB

write new data

invalidate TB

0x2000
new data

Fig. 5. Example for Generation of Test Vectors for the OVL’s BP

vector and is equivalent to the model’s simulation after an
injected tearing event described in Section III.

This proposed test method requires less code to be executed
in the simulated system. The simulation environment must be
able to record write operations to the persistent memory and it
must provide a mechanism to write data to selected addresses
without running the model. Both requirements are independent
from the TM. Therefore, the test vectors can be generated and
applied without knowledge of implementation details of the
TM.

V. IMPLEMENTATION

We implemented our test environment for the anti-tearing
mechanisms of a complete Java Card OS. The OS runs on a
cycle accurate and memory accurate instruction set simulation
and provides NVL and OVL functionality. However, cycle ac-
curacy is not needed for our proposed approach. The simulated
smart card was modeled with SystemC.

The test cases are implemented in a Java Card application.
Furthermore, this application also includes the consistency
checks after the RP. Several test cases for different types
(byte, short ...) and atomic write operations (transactions,
arrayCopy() ...) are implemented.

The fault injection module described in Section III and the
record functionality and test vector generation explained in
Section IV are implemented in the EEPROM module of the
smart card’s SystemC model. Test vectors are stored byte-
wise in a file. So far, the appliance of the test vectors is done
manually.

The test vector compaction is just done rudimentarily as
the detailed compaction process is out of scope of this work.
Only test vectors that are identical (e.g., if the TB is erased)
are combined in our proof-of-concept implementation.

VI. EVALUATION AND EXPERIMENTAL RESULTS

First, we want to evaluate if our proposed test vector based
approach is in general faster than a simple fault injection based

approach. Equation 1 describes the time tfi which is needed
to execute test cases with the fault injection approach where:

• n is the number of test cases emerging from the different
data types and write operations,

• xBP and xRP are the number of write cycles during BP
and RP,

• tBPi
and tRPi

are the execution time of BP and RP until
the i-th tearing event is injected,

• and tBP and tRP are the execution time of BP and RP
in total.

The two sums in the equation represent the partially executed
(interrupted by a tearing event) test runs for the BP and the
RP. The last term represents the execution of the RP for every
injected tearing event.

tfi = n ·
(

xBP∑

i

tBPi
+

xRP∑

i

tRPi
+ (xBP + xRP) · tRP

)
(1)

Equation 2 describes the time ttv which our proposed test
vector based approach needs for execution. In this equation v
is the number of generated test vectors. The worst case is that
v = xBP +xRP if no test vector compaction is performed and
all test vectors are used. For the further evaluation we assume
this case.

ttv = n · (tBP + tRP + v · tRP) (2)

If we use these equations to evaluate tfi > ttv we come
to the result shown in Equation 3. This equation holds for all
known TMs based on backup strategy. Therefore, we can argue
for all TMs based on a backup strategy, that our test vector
based mechanism is in general faster than a fault injection
mechanism.

xBP−1∑

i

tBPi
+

xRP−1∑

i

tRPi
> 0 (3)

Publication 7b: ETS 2010 95

c©2010 IEEE. Reprinted, with permission, from Informal Proceedings of 2010 15th IEEE
European Test Symposium (ETS)

We executed both of our proposed testing approaches with
the test environment described in Section V. The experimental
results are shown in Figure 6. Notice that the absolute simu-
lation times are out of interest as they are anyway strongly
depended on the abstraction level of the model and the
performance of the simulation environment. Therefore, we
have normalized the values in the graphs: the shortest time
value for the fault injection approach is normalized to 1. All
other values are relative to this basis value.

0

1

2

3

4

5

6

7

8

9

10

0 20 40 60 80
Number of Write Cycles

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

Fault Injection Approach

Test Vector Approach

Fig. 6. Normalized Values of Required Testing Time for Fault Injection
Approach and Test Vector Approach

The graph in Figure 6 shows the expected linear behavior
explained in Equation 1 and Equation 2. As can be seen, our
test vector based approach scales much better than the regular
fault injection method. For 16 test cases with more than 70
write operations, respectively simulated tearing events or test
vectors, we achieved a significant performance gain of more
than 20%.

Figure 7 shows the measured and normalized execution time
for testing after the test vector compaction. As compaction
reduces the number of test vectors, and thus the number of
write cycles, we chose the number of test cases for the x-
axis. However, these results have to be interpreted with care.
The result of the test vector compaction strongly depends on
the choice of test cases. Thus, it would have been possible
to construct or select test cases with better or worse results
as shown in the graph. Therefore, the graph is just given
for seek of completeness to show that even a very simple
compaction method results in a notable performance gain. For
our very basic compaction method we achieved up to 13%
faster execution times in comparison to the test vector based
approach without compaction.

VII. CONCLUSION

In this work we explained the importance of anti-tearing
mechanisms for embedded system without reliable power
supply. Furthermore, we summarized existing mechanisms and
common basics. These basics were used to propose two testing
approaches: a simulation based fault injection approach educed

0

2

4

6

8

10

12

0 5 10 15
Number of Test Cases

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

Fault Injection Approach

Test Vector Approach

Test Vector Approach with
Compaction

Fig. 7. Normalized Values of Required Testing Time with and without Test
Vector Compaction

from a very similar black box test, and an implementation
independent test vector based approach.

The test vector based approach reduces unnecessary code re-
execution during testing without loss of test coverage. Thus,
it is able to achieve better performance for a large number of
test cases. The applied test vectors are generated implicitly by
the system under test. This allows implementation independent
testing of the TM. Furthermore, our approach allows reducing
the number of test cases by test vector compaction.

We evaluated our proposed mechanism on a theoretical
basis and by usage of a proof of concept implementation of
a Java Card test environment based on a SystemC simulation.
The results show that a significant performance gain can be
achieved without loss of test coverage.

REFERENCES

[1] Java Card Platform Specification 2.2.2, Sun Microsystems, Inc.
[2] Z. Chen, Java Card Technology for Smart Cards: Architecture and

Programmer’s Guide. Boston, MA, USA: Addison-Wesley Longman
Publishing Co., Inc., 2000.

[3] M. Oestreicher, “Transactions in Java Card,” in ACSAC ’99: Proceed-
ings of the 15th Annual Computer Security Applications Conference.
Washington, DC, USA: IEEE Computer Society, 1999, p. 291.

[4] G. Lisimaque and P. Paradinas, “Method and device for updating
information elements in a memory,” US Patent 5,479,63, Dec. 26, 1995.

[5] W. Rankl and W. Effing, Smart Card Handbook. New York, NY, USA:
John Wiley & Sons, Inc., 2003.

[6] Java Card Platform Security, Sun Microsystems, Inc.
[7] C. Marche and N. Rousset, “Verification of JAVA CARD Applets

Behavior with Respect to Transactions and Card Tears,” in Software
Engineering and Formal Methods, 2006. SEFM 2006. Fourth IEEE
International Conference on, Sept. 2006, pp. 137–146.

[8] E. Hubbers and E. Poll, “Reasoning about card tears and transactions
in Java Card,” Tech. Rep., 2004.

[9] J. Andronick, “Formally Proved Anti-tearing Properties of Embedded
C Code,” in Leveraging Applications of Formal Methods, Verification
and Validation, 2006. ISoLA 2006. Second International Symposium on,
Nov. 2006, pp. 129–136.

[10] K. Rothbart, U. Neffe, C. Steger, R. Weiss, E. Rieger, and
A. Muehlberger, “High level fault injection for attack simulation in smart
cards,” Test Symposium, 2004. 13th Asian, pp. 118–121, Nov. 2004.

[11] Open SystemC Language Reference Manual, IEEE, December 2005.
[12] S. Misera, H. T. Vierhaus, and A. Sieber, “Simulated fault injections

and their acceleration in SystemC,” Microprocess. Microsyst., vol. 32,
no. 5-6, pp. 270–278, 2008.

Publication 7b: ETS 2010 96

c©2010 IEEE. Reprinted, with permission, from Informal Proceedings of 2010 15th IEEE
European Test Symposium (ETS)

Bibliography

[1] W. Rankl and W. E�ng, Smart Card Handbook. New York, NY, USA: John Wiley &
Sons, Inc., 2003.

[2] P. Schaumont and I. Verbauwhede, �Domain-speci�c codesign for embedded security,�
Computer, vol. 36, pp. 68�74, April 2003.

[3] P. Gupta, �Hardware-software codesign,� Potentials, IEEE, vol. 20, pp. 31�32, January
2001.

[4] J. Loinig, C. Steger, R. Weiss, and E. Haselsteiner, �Idea: Simulation Based Security
Requirement Veri�cation for Transaction Level Models,� in Engineering Secure Soft-
ware and Systems (l. Erlingsson, R. Wieringa, and N. Zannone, eds.), vol. 6542 of
Lecture Notes in Computer Science, pp. 264�271, Springer Berlin / Heidelberg, 2011.

[5] J. Loinig, C. Steger, R. Weiss, and E. Haselsteiner, �Towards formal system-level ver-
i�cation of security requirements during hardware/software codesign,� in SOC Con-
ference (SOCC), 2010 IEEE International, pp. 388�391, September 2010.

[6] J. Loinig, P. Glatz, C. Steger, and R. Weiss, �Performance Improvement and Energy
Saving Based on Increasing Locality of Persistent Data in Embedded Systems,� in
Systems (ICONS), 2010 Fifth International Conference on, pp. 175�180, April 2010.

[7] J. Loinig, C. Steger, R. Weiss, and E. Haselsteiner, �Java Card Performance Optimiza-
tion of Secure Transaction Atomicity Based on Increasing the Class Field Locality,�
in Secure Software Integration and Reliability Improvement, 2009. SSIRI 2009. Third
IEEE International Conference on, pp. 342�347, July 2009.

[8] J. Loinig, C. Steger, R. Weiss, and E. Haselsteiner, �Identi�cation and Veri�cation of
Security Relevant Functions in Embedded Systems Based on Source Code Annotations
and Assertions,� in Information Security Theory and Practices. Security and Privacy
of Pervasive Systems and Smart Devices, pp. 316�323, Springer, 2010.

[9] J. Loinig, C. Steger, R. Weiss, and E. Haselsteiner, �Fast simulation based testing
of anti-tearing mechanisms for small embedded systems,� in Test Symposium (ETS),
2010 15th IEEE European, p. 242, May 2010.

[10] J. Loinig, C. Steger, R. Weiss, and E. Haselsteiner, �UNPUBLISHED.�.

[11] P. Kocher, R. Lee, G. McGraw, and A. Raghunathan, �Security as a new dimension
in embedded system design,� in DAC '04: Proceedings of the 41st annual Design
Automation Conference, (New York, NY, USA), pp. 753�760, ACM, 2004.

97

[12] D. S. Herrmann, Using the Common Criteria for It Security Evaluation. Boca Raton,
FL, USA: CRC Press, Inc., 2002.

[13] Common Criteria, �Common Methodology for Information Technology Security Eval-
uation - Evaluation methodology,� July 2009. Version 3.1 Revision 3 Final.

[14] Common Criteria, �Common Criteria for Information Technology Security Evaluation
- Part 1-3,� July 2009. Version 3.1 Revision 3 Final.

[15] F. Keblawi and D. Sullivan, �Applying the common criteria in systems engineering,�
Security Privacy, IEEE, vol. 4, pp. 50�55, March 2006.

[16] MAOSCO Limited, MULTOS Developer's Reference Manual.

[17] Sun Microsystems, Inc., Java Card Platform Speci�cation 3.0.1, March 2009.

[18] Sun Microsystems, Inc., Java Card Platform Security.

[19] B. Schneier and A. Shostack, �Breaking up is hard to do: Modeling Security Threats
for Smart Cards,� in Proceedings of the USENIX Workshop on Smartcard Technology
on USENIX Workshop on Smartcard Technology, p. 19, USENIX Association, 1999.

[20] D. Mellado, E. Fernández-Medina, and M. Piattini, �A common criteria based security
requirements engineering process for the development of secure information systems,�
Comput. Stand. Interfaces, vol. 29, no. 2, pp. 244�253, 2007.

[21] L. Cai and D. Gajski, �Transaction level modeling: an overview,� in CODES+ISSS
'03: Proceedings of the 1st IEEE/ACM/IFIP international conference on Hard-
ware/software codesign and system synthesis, (New York, NY, USA), pp. 19�24, ACM,
2003.

[22] U. Ne�e, K. Rothbart, C. Steger, R. Weiss, E. Rieger, and A. Muhlberger, �Energy
estimation based on hierarchical bus models for power-aware smart cards,� in Design,
Automation and Test in Europe Conference and Exhibition, 2004. Proceedings, vol. 3,
pp. 300�305, February 2004.

[23] J. Zambreno, A. Choudhary, R. Simha, B. Narahari, and N. Memon, �SAFE-OPS: An
approach to embedded software security,� ACM Trans. Embed. Comput. Syst., vol. 4,
no. 1, pp. 189�210, 2005.

[24] S. Park and S.-I. Chae, �A C/C++-based functional veri�cation framework using the
SystemC veri�cation library,� in Rapid System Prototyping, 2005. (RSP 2005). The
16th IEEE International Workshop on, pp. 237�239, June 2005.

[25] N. Bombieri, A. Fedeli, and F. Fummi, �Extended abstract: on the property-based
veri�cation in SoC design �ow founded on transaction level modeling,� in Formal
Methods and Models for Co-Design, 2005. MEMOCODE '05. Proceedings. Third ACM
and IEEE International Conference on, pp. 239�240, July 2005.

[26] C. Trummer, C. Kirchsteiger, C. Steger, R. Weiÿ and, M. Pistauer, and D. Dal-
ton, �Automated simulation-based veri�cation of power requirements for Systems-on-
Chips,� in Design and Diagnostics of Electronic Circuits and Systems (DDECS), 2010
IEEE 13th International Symposium on, pp. 8�11, April 2010.

[27] A. A. Sere, J. Iguchi-Cartigny, and J.-L. Lanet, �Automatic detection of fault attack
and countermeasures,� in WESS '09: Proceedings of the 4th Workshop on Embedded
Systems Security, (New York, NY, USA), pp. 1�7, ACM, 2009.

[28] E. Kylikowski, R. Scandariato, and W. Joosen, �Using Multi-Level Security Annota-
tions to Improve Software Assurance,� in High Assurance Systems Engineering Sym-
posium, 2008. HASE 2008. 11th IEEE, pp. 471�474, December 2008.

[29] F. Balarin, R. Passerone, A. Pinto, and A. Sangiovanni-Vincentelli, �A formal ap-
proach to system level design: metamodels and uni�ed design environments,� in For-
mal Methods and Models for Co-Design, 2005. MEMOCODE '05. Proceedings. Third
ACM and IEEE International Conference on, pp. 155 �163, July 2005.

[30] S. Morimoto, S. Shigematsu, Y. Goto, and J. Cheng, �Formal veri�cation of secu-
rity speci�cations with common criteria,� in SAC '07: Proceedings of the 2007 ACM
symposium on Applied computing, (New York, NY, USA), pp. 1506�1512, ACM, 2007.

[31] V. Lotz, V. Kessler, and G. Walter, �A formal security model for microprocessor
hardware,� Software Engineering, IEEE Transactions on, vol. 26, pp. 702�712, August
2000.

[32] J. Ma, D. Zhang, G. Xu, and Y. Yang, �Model Checking Based Security Policy Ver-
i�cation and Validation,� in Intelligent Systems and Applications (ISA), 2010 2nd
International Workshop on, pp. 1�4, May 2010.

[33] D. Kroening and N. Sharygina, �Formal veri�cation of SystemC by automatic hard-
ware/software partitioning,� in Formal Methods and Models for Co-Design, 2005.
MEMOCODE '05. Proceedings. Third ACM and IEEE International Conference on,
pp. 101�110, July 2005.

[34] K. Rothbart, U. Ne�e, C. Steger, R. Weiss, E. Rieger, and A. Muehlberger, �High
level fault injection for attack simulation in smart cards,� in Test Symposium, 2004.
13th Asian, pp. 118�121, November 2004.

[35] E. Fourneret, M. Ochoa, F. Bouquet, J. Botella, J. Jurjens, and P. Youse�, �Model-
Based Security Veri�cation and Testing for Smart-cards,� in Availability, Reliability
and Security (ARES), 2011 Sixth International Conference on, pp. 272�279, August
2011.

[36] B. Chess and G. McGraw, �Static analysis for security,� Security & Privacy, IEEE,
vol. 2, pp. 76�79, December 2004.

[37] M. Shanahan, �The event calculus explained,� in Arti�cial intelligence today (M. J.
Wooldridge and M. Veloso, eds.), ch. The event calculus explained, pp. 409�430,
Berlin, Heidelberg: Springer-Verlag, 1999.

[38] E. T. Mueller, Commonsense Reasoning. Morgan Kaufmann, 2006.

[39] E. T. Mueller, �Discrete Event Calculus Reasoner Documentation,� tech. rep., IBM
Thomas J. Watson Research Center, March 2008.

[40] J. Lee and R. Palla, �Classical logic event calculus as answer set programming,� in
Working Notes of the Workshop on Answer Set Programming and Other Computing
Paradigms, 2008.

[41] N. Amalio, �Suspicion-Driven Formal Analysis of Security Requirements,� in Emerg-
ing Security Information, Systems and Technologies, 2009. SECURWARE '09. Third
International Conference on, pp. 217�223, June 2009.

[42] T. T. Tun, Y. Yu, C. Haley, and B. Nuseibeh, �Model-Based Argument Analysis for
Evolving Security Requirements,� in Secure Software Integration and Reliability Im-
provement (SSIRI), 2010 Fourth International Conference on, pp. 88�97, June 2010.

[43] A. Mana and G. Pujol, �Towards Formal Speci�cation of Abstract Security Proper-
ties,� in Availability, Reliability and Security, 2008. ARES 08. Third International
Conference on, pp. 80�87, March 2008.

[44] M. Oestreicher, �Transactions in Java Card,� in ACSAC '99: Proceedings of the 15th
Annual Computer Security Applications Conference, (Washington, DC, USA), p. 291,
IEEE Computer Society, 1999.

[45] K. T. A. F., �PKI for Machine Readable Travel Documents o�ering ICC Read-Only
Access Version 1.1,� tech. rep., International Civil Aviation Organization, 2004.

Appendix A

Additional Information

A.1 Axioms of the Event Calculus Domain Description

The list in Table A.1 is the complete set of Event Calculus axioms in the domain used
in Section 6.1. enables and disables are events indicating activation and deactivation of
a Security Functional Requirement (SFR). The associated �uent is provided. The events
requestsR and releasesR indicate begin and end time points where a certain SFR is needed
by a module while requires is the related �uent. The �uent unsatisfied is set whenever
a module requires an SFR. It requires the event satisfy to happen to reset unsatisfied.
accesses and frees represent events that setup respectively abort connections between
modules. The related �uent is connected.

Axiom Nr. Description

1 enables initiates provides.

2 disables terminates provides.

3 requestsR initiates requires.

4 releasesR terminates requires.

5 requestsR initiates unsatisfied.

6 satisfy terminates unsatisfied.

7 accesses initiates connected.

8 frees terminates connected.

9 requestsR only happens if a modules does not already require an SFR.
A module must only require one SFR at a time.

10 releasesR only happens if a module actually requires the same SFR.

11 releasesR only happens if the module is not unsatis�ed.
If a module is still unsatis�ed it must not release the requirement. Only solved requirements
are released.

12 Every requestsR needs an releasesR with the same SFR.

Continued on next page

101

Axiom Nr. Description

13 accesses only happens if the module is not already connected.
Only one connection is allowed at a time.

14 accesses only happens when provides and requires are not active and
enables does not happen.
Modules which are currently active are not accessed. If SFR processing is currently in progress
the module cannot handle a new incoming connection.

15 enables only happens when the module is not connected and not mo-
mentarily performing an accesses.
Avoids circular connections.

16 frees only happens if the module is connected to another module.

17 frees(M1,M2) only happens if M2 is not unsatis�ed.
If a connected module is not satis�ed the SFR might still in progress.

18 frees(M1,M2) only happens if M1 is not unsatis�ed.
A module cannot give up a connection before it is satis�ed. This avoids accessing several
modules sequentially where the last one provides the SFR.

19 A module does never access itself.
20 There are no multiple connections to a module at one time point.

A module cannot handle multiple SFR requests at a same time.

21 enables happens only if the requirement is not already enabled.

22 disables happens only if the requirement is already enabled and if the
module is not unsatis�ed.

23 and 24 satisfy happens if a module is connected to a module that provides
the right requirement and is not satis�ed (2 axioms, see Section 3.2 for
details).

25 A module does never provide its own requirement.

26 A module does never access a connected module.

Table A.1: Event Calculus Domain Descriptions of Security Veri�cations

A.2 Call Graph of the Java Card Application JavaPurse

Figure A.1 shows the call graph of the JavaPurse Java Card application. JavaPurse is a
demo e-purse application in the Java Card Development Kit1. Figure A.1 shows the appli-
cation method calls and the Java Card API calls only. Obviously the API functions also
call operating system functions which are not shown in the �gure. The �gure should indi-
cate how complex call graphs for Java Card applications can be and how time consuming
a manual veri�cation of such a call graph could become.

1http://java.sun.com/javacard/devkit/

http://java.sun.com/javacard/devkit/

������

����	
����
��������

����	
��������������

�����

����	
����
������������	
�����

����	
����
������������	����

����	
����
�����������������������������

����	
����
���������
�����������������

��	������ �������!
�����"���

�	������#
������

�����������������

�������#������

������������
������������

�	������
��������!���!��

�	����������������!$��������

 %���	����&��'��

����	
�����&��'��������������
����

 %���	���������!���!��

���������&�����

���������&�����

������(���������%"��$����!��

������(����

!�����%"��$����!��

����������(��������������

�������������
�����

���������)�����������������

������������
���

���������������������������

��������������!$������

Figure A.1: Call Graph of JavaPurse

A.3 Event Calculus Symbols of Security Requirements

Functional requirements are represented as meta-information in the methodology of this
work. This means that additionally to the modeling or implementation of these require-
ments (in the system's modules) textual information is added to the module's source code.
This textual information includes a machine readable symbol uniquely identifying the se-
curity requirement. The requirements themselves are not bound to the methodology but
can be de�ned for every system under development depending on use cases and threat
scenarios. Table A.2 lists and explains the security requirements used in the case study
discussed in Section 4.4.

Symbol Explanation

r_key_usage A secure cryptographic key has to be used to ensure con�-
dentiality of any kind of data.

r_delete_key After usage the cryptographic key it must not stay in the key
bu�er (see r_crypto_key_bu�er). This requires to remove
the key from the bu�er which can be done by overwriting it
with random data.

r_key_usage The cryptographic key has to be used in an secure way that
does not leak information about the key. In addition, the
integrity of the key has to be ensured.

Continued on next page

Symbol Explanation

r_read_key The cryptographic key has to be read from a key store. Con-
�dentiality and integrity of the key has to be ensured.

r_sec_copy A copy routine that does not leak data while moving data in
memory. This can be achieved by using a randomized and
permuted order of memory accesses.

r_rng Reliable random numbers have to be used. This random
numbers must be true random numbers (no pseudo random
numbers). They shall be statistically tested to ensure an
applicable entropy.

r_key_storage Cryptographic keys need to be stored in a key storage (e.g.,
in EEPROM). This key storage provides con�dentiality while
the keys are not actively used.

r_enc_keys To provide con�dentiality for keys themselves they need to
be encrypted as well.

r_master_key For any kind of encryption a cryptographic key is needed.
For encryption of keys (r_enc_keys) a master key is needed.

r_derived_key If a master key is used (r_master_key), this key is highly
security sensitive if it is shared between di�erent systems.
To avoid that many systems are compromised if one secret
master key gets known by attackers, master keys have to be
derived. This ensures that each system has its own master
key.

r_crypto_key_bu�er Cryptological operations shall have their dedicated memory
area for cryptological keys.

Table A.2: Symbols and Explanations of Functional Security Requirements

	Table of Contents
	1 Introduction to Security and Performance Verification of Secure Systems
	1.1 Motivation
	1.2 A Definition of Information Security and System Security
	1.3 Problem Statement
	1.4 The HiPerSec Project
	1.5 Contribution and Significance
	1.6 Overview of this Thesis

	2 State of The Art Development and Verification Methodologies
	2.1 Secure Embedded Systems
	2.2 Smart Cards and Java Cards
	2.3 Common Criteria for Security Evaluation
	2.4 Hardware Software Codesign
	2.5 System Level Verification
	2.6 Event Calculus
	2.7 Summary

	3 Novel Codesign Methodology for Verification of Secure Embedded Systems
	3.1 Methodology Overview
	3.2 System Security Specification
	3.3 Secure System Model
	3.4 Simulation Based Verification
	3.5 System Optimizations

	4 Methodology Evaluation and Case Studies
	4.1 Common Basics for the Case Studies
	4.2 Simulation Based Functional Verification
	4.2.1 Java Card Anti-Tearing Mechanism
	4.2.2 Case Study 1: Verification of an Anti-Tearing Mechanism

	4.3 Evaluation of the Concept of Meta-Information
	4.3.1 Case Study 2: System Optimization based on Meta-Information
	4.3.2 Case Study 3: Identification of Security Relevant System Components

	4.4 Simulation based Security Verification
	4.4.1 Case Study 4: Simulation based System Security Verification
	4.4.2 Case Study 5: A (Semi-) Formal Event Calculus based Model Checking Approach

	4.5 Evaluation Summary

	5 Conclusion and Future Work
	5.1 Conclusion
	5.2 Future Work

	6 Publications
	6.1 Security Verification on Mixed Level System Models based on Event Calculus Model Checking
	6.2 Identification and Verification of Security Relevant Functions in Embedded Systems Based on Source Code Annotations and Assertions
	6.3 Idea: Simulation Based Security Requirement Verification for Transaction Level Models
	6.4 Towards Formal System-Level Verification of Security Requirements during Hardware/Software Codesign
	6.5 Performance Improvement and Energy Saving based on Increasing Locality of Persistent Data in Embedded Systems
	6.6 Java Card Performance Optimization of Secure Transaction Atomicity Based on Increasing the Class Field Locality
	6.7 Fast simulation based testing of anti-tearing mechanisms for small embedded systems

	References
	A Additional Information
	A.1 Axioms of the Event Calculus Domain Description
	A.2 Call Graph of the Java Card Application JavaPurse
	A.3 Event Calculus Symbols of Security Requirements

