
ROMAN KERN

A FEATURE ASSOCIATION
FRAMEWORK FOR
KNOWLEDGE DISCOVERY
APPLICATIONS

DISSERTATION

DISSERTATION
zur Erlangung des akademischen Grades

eines Doktors der technischen Wissenschaften
der Studienrichtung

Informatik

Graz, 2012

Institute for Knowledge Management
Graz University of Technology

Graz University of Technology

Supervisor/First reviewer: Univ.-Prof. Dipl.-Inf. Dr. Stefanie Lindstaedt
Second reviewer: Prof. Dr. Michael Granitzer

Copyright c© 2012 Roman Kern

3

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used
other than the declared sources/resources, and that I have explicitly marked
all material which has been quoted either literally or by content from the
used sources.

Graz,

Date Signature

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig
verfasst, andere als die angegebenen Quellen/Hilfsmittel nicht benutzt, und
die den benutzten Quellen wörtlich und inhaltlich entnommene Stellen als
solche kenntlich gemacht habe.

Graz, am

Datum Unterschrift

Abstract

Most knowledge discovery applications employ a processing pipeline where
the knowledge base is transformed into a representation suitable for al-
gorithms to analyse, extract, rearrange and synthesise information. The
mainstream approach is the transformation of textual content into a bags-
of-words representation to build a documents by terms matrix. This simple,
limited representation can be generalised in multiple ways. Documents
and terms can be seen as specialised realisations of a more abstract feature
concept. The matrix representation itself can be transformed into a bipartite
graph structure, which can be generalised as an n-partite graph with nodes
that represent generic feature instances. This more general structure allows
the integration of additional information, for example the sequence order,
the distributional relationships between features and the integration of
external services and knowledge sources. The downside of such a generic
representation is the associated high computational complexity. In this
thesis an algorithmic approach is presented that allows a number of graph
operations with contemporary computer resources even for large scale data
sets. The usefulness of this approach will be demonstrated by a collection
of knowledge management applications with a varying degree of generali-
sations of the feature space and data structures. Among these applications
are recommender systems, information retrieval applications and word
alignment algorithms for machine translation. Finally an unsupervised word
sense disambiguation scenario is presented, where the statistical, semantic
and structural properties of features are exploited for a word sense induction
and discrimination task.

Keywords: Feature Associations, Feature Engineering, Natural Lan-
guage Processing, Machine Learning, Information Retrieval, Social Web

Zusammenfassung

Das Ziel einer Knowledge Discovery Applikationen ist es, aus großen Daten-
mengen maschinell Information und Muster zu extrahieren. Dabei folgen
die meisten Applikationen den gleichen Aufbau. Daten werden eingelesen
und transformiert und dadurch in eine Form gebracht, die es maschinellen
Methoden erlaubt diese auszuwerten, typischerweise organisiert in sogenan-
nten Instanzen und Features. Hier kommt oft das Vector Space Modell zum
Einsatz, in dem die Daten in einer Matrix angeordnet werden. Diese Arbeit
beschreibt einen Ansatz, der diese limitierte Daten-Repräsentation in einer
Reihe von Aspekten erweitert, um die Information innerhalb eines Daten-
Satzes zu extrahieren, im Speziellen jene Information, die in der Beziehun-
gen zwischen Features latent vorhanden ist. Eine zwei-dimensionale Matrix
kann in einen bi-partiten Graphen transformiert werden. Diese Daten-
Struktur kann dann erweitert werden zu einer n-partiten Graph-Struktur, in
der Knoten die Features innerhalb des Daten-Satzes repräsentieren. Zusät-
zliche Flexibilität kann gewonnen werden, indem die Knoten erweitert
werden, um zusätzliche Information aufzunehmen, beispielsweise um ex-
terne Quellen anzubinden. Typischerweise geht eine allgemeinere, Wexiblere
Daten-Struktur mit höheren Laufzeit-Anforderungen einher, die oft einen
praktischen Einsatz unmöglich macht. Der vorgestellte Ansatz erreicht
dieses hohe Maß an Flexibilität, ohne allerdings ein Laufzeitverhalten
aufzuweisen, das durch die theoretische Obergrenze der Laufzeitkomplexität
vorgegeben ist. Um die praktischen Nutzen des Ansatzes zu demonstrieren,
werden eine Reihe von Knowledge Discovery Applikationen vorgestellt.
Diese Applikationen unterscheiden sich in dem Ausmaß an benötigter
Flexibilität und Größe der verwendeten Datensätze. Um die allgemeine Nüt-
zlichkeit des Ansatzes zu unterstreichen, unterscheiden sich die vorgestell-
ten Applikationen auch hinsichtlich ihrer Domäne. Diese sind Social Web,
Information Retrieval und Natural Language Processing. Startend mit einem
Recommender System, das eine einfache Daten-Repräsentation verwendet,
steigert sich die Flexibilität bis zu einer komplexen Applikation aus dem
Bereich der Sprach-Technologien. Hier werden statistische, semantische
und strukturelle Informationen ausgewertet um mehrdeutige Wörter mittels
eines unüberwachten Lernverfahrens aufzulösen.

Acknowledgements

I would like to thank my supervisor and reviewers Michael Granitzer and
Stefanie Lindstaedt.

Furthermore I want to thank my colleagues at the Know-Center and
the Knowledge Management Institute at the Technical University in Graz.
Especially I want to thank my co-authors (semi-sorted by co-authorship
count): Markus Muhr, Andreas JuXnger, Mario Zechner, Markus Strohmaier,
Christian Körner, Christin Seifert, Vedran Sabol, Werner Klieber, Viktoria
Pammer, Matthias Lux, Hans-Peter Grahsl, ...

Special thanks go to my family and friends for their support and pa-
tience!

Everything I know about true bugs I learnt from Thomas Frieß. StuU,
relevant for everyday life, for example the caliber of a Sinn 656, I know due
to Rainer. My table tennis skills improved tremendously thanks to Mimo,
obviously. // TODO: Add thanks to all relevant people

Contents

Introduction 19
Motivation . 19
Overview . 19
Contributions . 20
Publications . 21
Methodology . 24
Feature Association Process . 26
Example . 28
Structure . 29

Knowledge Discovery 31
Knowledge Discovery Applications 31
Feature Association Framework . 37

Feature Engineering 39
Role of the Feature Association Framework 39
From Data to Features - Preprocessing 40
Feature Extraction . 46
Properties of Features . 49
Feature Transformation . 52
Feature Associations . 58
Data-Mining Algorithms . 62

Concepts 65
Overview . 65
ConVguration & Design Decisions 66
Calculate Feature Associations . 75
Feature Association Functions . 98
Distributed Environment . 137
Feature Association Retrieval . 145

Implementation 153
Introduction . 153
Functional Requirements . 153
Data Structures & Runtime Environment 160
Design & Main Components . 166
Extended Functionality . 177
Performance Evaluation . 182

Applications 189
Introduction . 189
Social Web . 191
Information Retrieval . 208
Natural Language Processing . 221

Conclusions 243
Discussion . 244
Summary & Outlook . 249

Bibliography 255

List of Figures

1 Application Domains Used for the Evaluation 22
2 The Spiral Development Model 25

3 Overview of the Processing Steps of the KDD Process 32

4 Examples from the Handwritten Digits Data Set 43
5 Growth of the Feature Count in Relation to the Instances of the

Brown Corpus . 50
6 Occurrence Count of English Words in the Wikipedia 51
7 Example of the Force Directed Placement for the Reuters-21578

Data Set . 56
8 Visualisation of an Exemplary SVD Output 63

9 Example of an Input Graph of the Feature Associations 76
10 Sequence of the Execution Phases 78
11 Overview of the Output Collection Phase 82
12 Exemplary Output of the Sort Phase 84
13 Example of a Simple Feature Association Graph 88
14 Example of an Input for the Association Phase 90
15 Example for Contextual Feature Associations 91
16 Example for the Recursive Association Phase 93
17 Topology of the Storage Phase 96
18 Sequence of Execution of Functional Blocks 108
19 Log-Log Diagram of a Feature Frequency Histogram 128
20 Log-Log Diagram of a Smoothed Feature Frequency Histogram 128
21 Output of the Simple Good-Turing Smoothing Algorithm . . . 129
22 Overview of the MapReduce Framework 141
23 Integration of the Feature Association Framework into MapRe-

duce . 144

24 Example of the Mapping of the Input Features for the Brown Cor-
pus . 163

25 Example of the Output Feature Association Graph Mapping . 164
26 Overview of the Sequence of the Phases with Multiple Cycles 179

27 Popular Tags on Flickr.com 193
28 Screen-shot of the Tagr System 195
29 Compontents of the Tagr System 196
30 Visualisation of the Spreading Activation within the Flickr As-

sociation Network . 204
31 Results of the Prediction Evaluation on the Flickr Data Set . . 207
32 Example of an Ambiguous Word in WordNet 210
33 Processing Pipeline of the Cross-Language Queries 211
34 Overview of the Retrieval System for CLEF 2008 212
35 Baseline Performance of the CLEF 2008 System 214
36 Performance of the CLEF 2008 System Using WSD Information 215
37 Performance of the CLEF 2009 System for English Queries . . 215
38 Performance of the CLEF 2009 System for Spanish Queries . . 216
39 Overview of the Combined System for Plagiarism Detection . 224
40 List of Grammatical Dependencies for an Example Sentence . 238
41 Phrase Tree for an Example Sentence 239
42 Results of the SemEval-2 WSID Evaluation 241

List of Tables

1 Size of the Input Feature Graph of the Wikipedia Data Set . . 28
2 Main Characteristics of the Output Association Network of the

Wikipedia Contextual Collocations 28
3 Top Wikipedia Categories for a Sample Collocation 29
4 Frequency of Wikipedia Articles for a Sample Collocation . . 29

5 Overview of Components for Automatic Spam Filtering 34

6 Main Roles and Tasks of the Feature Association Framework . 39
7 Example for the Feature Selection via Information Gain 54
8 Example for the Topics Generated by the LDA Algorithm . . . 62

9 Execution Strategies Depending on Data Set Size 79
10 Typical Operations of a Storage Backend 96
11 DiUerences of the Two Types of Components of the Feature As-

sociation Function . 98
12 Number of Instances in the Wikipedia Data Sets 100
13 Number of Features in the Wikipedia Data Sets 101
14 Average Out-Degree of the Instance Nodes in the Wikipedia Data

Sets . 102
15 Examples of Infrequent Features in the English Wikipedia . . 103
16 Examples of Frequent Features in the English Wikipedia . . . 103
17 Contingency Table for the Distribution of Two Features in Re-

lation to the Instances . 123
18 DeVnition of Symbols to Reference the Cells Within the Con-

tingency Table . 124
19 Co-occurrence Matrix of a Source and a Target Feature 124
20 Matrix of the Expected Frequencies for Independent Features . 124
21 Contingency Table Used as Input for the Mutual Information . 131

22 List of Functional Requirements Depending on the Data Sets Size 158
23 Mapping of the Input Features to the Lucene Data-Structures . 162
24 Mapping of Output Features onto the Lucene Data-Structures 164
25 Example of Common Pruning Parameters 167
26 Overview of the Methods of the Feature Association Function

Class . 171
27 Overview of the Attributes of the Feature Class 180
28 Main Properties of the Brown Corpus Features 183
29 Output Feature Association Graph of the Brown Corpus . . . 184
30 Performance of the Feature Association Calculations for the Brown

Corpus . 184
31 Relative Times of the Processing Phases for the Brown Corpus 185
32 Main Properties of the Features for the Reuters RCV-1 Data Set 185
33 Output Feature Association Graph of the Reuters RCV-1 Cor-

pus . 185
34 Performance of the Feature Association Calculations for the Reuters

RCV-1 Corpus . 186
35 Main Properties of the Wikipedia Data Set 186
36 Output Feature Association Graph of the Wikipedia Corpus . 186
37 Performance of the Feature Association Calculations for the Wikipedia

Corpus . 187

16

38 Overview of the Application Scenarios 190
39 Overview of the Key Advantages for Integration into the Tagr

Application . 197
40 Size of the del.icio.us Data Set 200
41 Size of the Flickr Data Set . 201
42 Overview of the Main Characteristics of the Flickr Extended Folk-

sonomy . 203
43 Results of the Overlap Evaluation for the Flickr Folksonomy . 204
44 Results of the Leave-One-Out Evaluation for the Flickr Folkson-

omy . 205
45 Statistics of the Wikipedia and Europarl multilingual indices . 213
46 Baseline Performance on the CLEF 2009 Test Collection 219
47 Performance on the CLEF 2009 Test Collection Using Query Ex-

pansion . 220
48 Evaluation of the Block Retrieval Stop of the PAN 2010 System 227
49 Overall performance of the PAN 2010 System 227
50 Overview of Selected WSD Algorithms 231
51 Weights of the Grammatical Features for the WSID System . . 238

List of Algorithms

1 Overview of the Typical Computation of Word Co-Occurrences 59
2 Overview of the Main Processing Steps in the Collect Phase . 84
3 Overview of the Main Processing Steps in the Sorting Phase . 86
4 Overview of the Association Phase when Building Global As-

sociations . 89
5 Overview of the Association Phase for Relative Contextual Fea-

tures . 92
6 Overview of the Association Phase for Recursive Contextual Fea-

tures . 94
7 Pseudo-Code for the Map Function as DeVned by the MapRe-

duce Framework . 139
8 Example of a Simple Implementation of a Reduce Function . . 140

Introduction

This chapter gives an overview of the feature association frame-
work. The list of contributions as well as the related publications
are presented. The development process of iterative generalisations
will be highlighted. To illustrate the usefulness of the approach,
an example is discussed. Finally the structure of the work is pre-
sented.

Motivation

In recent times, terms like data mining and especially knowledge discovery
have gained popularity, in the industry as well as in the research commu-
nity. Even in the mainstream media these terms occasionally start to occur.
One might ask what has spurred this interest. The answer is hidden in an-
other question: What is the currency of the digital age? When trying to Vnd
answers this question, one quickly gets the main theme of the opinion raised
by many people: it is data. Modern technologies make it easy to collect,
store and manage huge amounts of data. But its not the data directly, it is
the information contained in the data, which carries the true value. The
aim of the knowledge discovery process is to help to automatically extract
valuable information out of huge amounts of data.

Knowledge discovery summarises a common processing pipeline con-
sisting of a collection of techniques and algorithms. Within this process
the input data is reVned and converted into so called features. These fea-
tures are then fed to data mining algorithms and components that visualize
the data to the user. Due to limited processing power traditionally the re-
lationship between the features has not been in the focus of research. In
some naive approaches, it was even assumed that features are completely
independent from each other.

With the increase of processing power and the progress made on the
algorithmic side, one can start to exploit the intra feature information. The
goal of the feature association analysis is to put features into relation to
each other to extract information not directly accessible from processing
individual features on their own. Due to the size of the available data and
computational complexity of such an analysis, the exploitation of feature
relationships proves to be a challenging task on its own. Taking one step
further, one may ask on how to improve this process and how to enrich
the extraction process to optimise the transformation from plain data into
valuable information.

Overview

The feature association framework is a set of algorithms that are tightly
integrated to extract information contained in the relationship between
features. These features are generated during the life-cycle of a knowledge
discovery application. The role of the feature association framework is then

20 a feature association framework for knowledge discovery applications

to improve the knowledge discovery process by transforming the features
to reWect the extracted information. There are two main use-cases for the
feature association framework:

• To analyse the characteristics of the relationships between features. This
allows to detect previously unknown characteristics and patterns within
the data.

• To synthesise new features that explicitly represent the information that
previously has been only implicitly contained in the relationships. This
way the intra feature information can by utilised even by algorithms that
treat features as being completely independent from each other.

These two use-cases are highly related in terms of their technical real-
isation, as both are faced by similar challenges. Furthermore the feature
association framework has been developed to serve two diUerent target
audiences:

Researcher The analysis gives the researcher a better insight into the
nature of the data at hand. This knowledge helps in selecting the appro-
priate algorithms employed within a knowledge discovery process. Here
the main focus is to discover new properties and patterns.

Developer When building a knowledge discovery application, the devel-
oper is relieved from the need to have an intimate knowledge of the
underlying algorithms to make use of the information contained between
features. Instead, the feature association framework can be plugged into
existing solutions to transform this information into a representation
suitable for many existing algorithms.

These two target audiences are not strictly disjoint, as in many cases
people will serve more than one role. For example, researches need to
develop applications to help them to uncover empiric evidence for their
hypotheses.

Contributions

The main contribution of this work is an approach to extend the traditional
way on computing feature associations. This approach allows to integrate
and apply various additional algorithms within the process of computing the
association network. This opens up a wide array of diUerent ways on how
to enrich the processing.

Contribution I: The feature association framework goes beyond the
traditional approach to compute feature associations. Its Wexible nature
allows to integrate additional processing steps to be applied to enable
new ways of research.

The downside of the feature association analysis is its computational
complexity, as each feature needs to be set into relation with each other
feature. As features are typically associated with instances, for example doc-
uments, these relationship needs to be honoured as well. Therefore for many
larger data sets such an analysis has required considerable computational
resources or were not possible at all.

Contribution II: Novel algorithmic approaches enable the feature association
framework to make the computation of feature associations feasible for a wide
range of large data sets.

A common life-cycle of empirical research starts with an intuition. To
test whether this intuition holds true in real life, one needs real-world data
sets. The researcher therefore needs to analyse the properties of the data set.
The conVdence in the Vndings are directly linked with the size of the data.

introduction 21

Contribution III: The feature association framework is a tool for the
researcher to gain insights into the properties of features and their relation to
each other.

Especially in the Veld of applied science, one has to rely on existing tech-
nologies to answer research questions. In such a scenario often established
algorithms are combined to create novel solutions. For example a knowledge
discovery pipeline may consist of components developed in the Velds of
natural language processing or machine learning.

Contribution IV: The feature association framework can be used within
existing knowledge discovery solutions to enhance their performance.

In the process of extracting the information between features, it might
be important that additional sources of information are integrated as well.
Thus not only the properties of the relationships, but also properties of the
features themselves are of interest.

Contribution V: The feature association framework proposes a method to in-
tegrate a wide variety of external sources of information into the computation
of feature associations.

Once the information has been extracted one has to address the question
on how to encode, store and manage them. Furthermore, one would want
to apply additional processing steps upon the extracted data. Therefore the
extracted data needs to conform to data-structures typically found within
knowledge discovery applications.

Contribution VI: The result of the feature association computations is
transformed into a representation suitable for further processing using
existing algorithms.

Finally, the feature association framework is not only an abstract de-
scription of algorithms. A reference implementation of the algorithms has
been developed. This implementation does not only serve as a prove-of-
concept, but has been developed to conform to quality levels demanded by
production systems.

Contribution VII: The reference implementation is distributed under an
open-source license, thus making it available to every interested party.

Publications

It has been one of the main objectives of the feature association framework
to enable and accelerate improvements in the Veld of applied science.
Therefore following an in vivo approach for the evaluation appears to be a
natural match. A number of use-case scenarios are presented, where feature
associations have been used. Each of these use-cases diUer in the way the
framework is utilised. The knowledge discovery applications were selected
from three diUerent domains: Information Retrieval, Social Web and Natural
Language Processing The feature association framework can be seen as a
link between these disciplines, as indicated in Vgure 1.

For each of these domains at least two diUerent application scenarios are
presented. Each of the covered scenarios is accompanied by peer reviewed
academic publications.

Social Web

Recommender System

22 a feature association framework for knowledge discovery applications

 S

ocial W
ebInformation

Retrieval

 N
atural

 Lang uage
 P

roc essing

Figure 1: Domains of the applications,
which are the base for the evaluation of the
feature association framework.

Publication #1: S. Lindstaedt, V. Pammer, R. Moerzinger, R. Kern, H. Mül-
ner, and C. Wagner. Recommending tags for pictures based on text,
visual content and user context. In Proceedings of the Third International
Conference on Internet and Web Applications and Services (ICIW 2008),
pages 506–511. IEEE Computer Society Press, 2008

Summary: The feature association framework has been utilised to compute
recommendations based on the well known collaborative Vltering ap-
proach. The contribution of the feature association has been to determine
to which extend users tend apply the same tags to tag images.

Tagging Structure Analysis

Publication #2: M. Lux, M. Granitzer, and R. Kern. Aspects of Broad
Folksonomies. In 18th International Conference on Database and Expert
Systems Applications DEXA 2007, pages 283–287. Ieee, 2007

Summary: In this paper the distribution of tags, resources and users have
been studied. The hypothesis that tags follow a power-law distribution
has been found to be true for a large amount of tags. This Vnding helps
improving algorithms dealing with tagged data, for example information
retrieval applications.

Publication #3: R. Kern, M. Granitzer, and V. Pammer. Extending Folk-
sonomies for Image Tagging. InWIAMIS 2008 , Special Session on
Multimedia Metadata Management & Retrieval. IEEE Computer Society,
2008

Summary: Based on a subset of the data available on Flickr, the relation-
ship between tags and other types of meta-data has been studied. Tags
have been set in relation to words used in the title, description and com-
ments. It has been found that tags encode information not found in any
other type of meta-data. Another Vnding has implications on the imple-
mentation of recommender systems, as as baseline for the performance of
the tag recommendation process is presented.

Information Retrieval

Query Expansion

Publication #4: A. JuXnger, R. Kern, and M. Granitzer. Exploiting Cooccur-
rence on Corpus and Document Level for Fair Crosslanguage Retrieval.
InWorking Notes for the CLEF 2008 Workshop, 17-19 September, Aarhus,
Denmark, 2008

introduction 23

Summary: This paper tries to answer the question: Does explicit disam-
biguation of ambiguous words lead to an improved information retrieval
performance? Based on a retrieval system based on the TFIDF approach,
improvements were small and not found to be signiVcant. Thus one can
conclude, that for a basic retrieval system, the explicit disambiguation
information does not help. This insight is relevant, as most of the infor-
mation retrieval systems in production today follow the basic TFIDF
approach.

Publication #5: R. Kern, A. JuXnger, and M. Granitzer. Application
of Axiomatic Approaches to Crosslanguage Retrieval. In CLEF 2009
Workshop, pages 142–149, 2009

Summary: The existing TFIDF based retrieval application has been ex-
tended to include state-of-the-art retrieval techniques, namely the BM25
and an axiomatic approach. This lead to a signiVcant improvement of the
retrieval performance, similar to the best published performance num-
bers for the used data set. Next word sense disambiguation information
has been integrated using a query expansion technique. We observed
a slight increase in performance. Then we compared the inWuence of
explicit word sense disambiguation information with a query expansion
technique based on the distributional semantics of words within a corpus.
We found that this approach works more eXciently than exploiting the
explicit word sense disambiguation information, but the best performing
conVguration has been achieved by combing both approaches.

Query Translation

Publication #6: A. JuXnger, R. Kern, and M. Granitzer. Crosslanguage
Retrieval based on Wikipedia Statistics. In Proceedings of 8th Workshop
of the Cross-Language Evaluation Forum, CLEF 2008, 17-19 September,
Aarhus, Denmark, 2008

Summary: In cross-lingual information retrieval a user types in a query
in one language, while the searched documents are written in another
language. By exploiting the cross-lingual links between the multiple
editions of Wikipedia we developed such a system. To assess the impact
of the cross-lingual query processing we apply the precessing also
on queries written in the same language as the document set. The
evaluation showed that our approach works eUectively and the cross-
lingual information of Wikipedia can be successfully utilized for retrieval
applications.

Publication #7: R. Kern, A. JuXnger, and M. Granitzer. Evaluation of
Axiomatic Approaches to Crosslanguage Retrieval. In Multilingual
Information Access Evaluation Vol. I Text Retrieval Experiments, 2009

Summary: We extended our existing cross-lingual retrieval system in two
regards. First we added another source of cross-lingual information,
namely the Europarl corpus, which oUers a higher granularity in terms
of aligned text fragments. Secondly we introduced two alternative ways
to compute the candidates that are then submitted to search engine. The
added information helped to improve the overall performance of the
retrieval system. For the candidate selection we were able to identify an
approach that consistently outperformed the other two approaches.

Natural Language Processing

Cross-language Plagiarism

24 a feature association framework for knowledge discovery applications

Publication #8: M. Muhr, R. Kern, M. Zechner, and M. Granitzer. External
and Intrinsic Plagiarism Detection using a Cross-Lingual Retrieval
and Segmentation System Lab Report for PAN at CLEF 2010. In 2nd
International Competition on Plagiarism Detection, 2010

Summary: Plagiarism is not only bound to a single language, but might
occur across diUerent languages. We have developed an algorithm
that extends traditional monolingual plagiarism detection methods to
detect cases where the source document has been written in a diUerent
language. Therefore a sentenced aligned corpus is processed by applying
a word alignment algorithm. The crucial part of our approach is to use
more than one translation candidate for each word in the suspicious
document. This approach deviates from the mainstream approaches that
utilises existing translation systems. The evaluation demonstrates that
our algorithm works eXciently while keeping the overhead for cross
lingual plagiarism detection reasonable low.

Word Sense Induction & Discrimination

Publication #9: R. Kern, M. Muhr, and M. Granitzer. KCDC: Word Sense
Induction by Using Grammatical Dependencies and Sentence Phrase
Structure. In Proceedings of SemEval-2, Uppsala, Sweden, ACL, 2010

Summary: The task of word sense induction and discrimination is to learn
the individual senses of ambiguous words without explicit training
data. Based on exploiting distributional properties one tries to detect
the number of senses and assign the correct sense to unseen usages. Our
approach is based on the output of parser components that produces
the parse tree of a sentence as well as the grammatical relationships
between words within a sentence. Our aim has been to use few, highly
discriminative features as possible to allow a better understanding
of the diUerences that set diUerent senses apart. For this we utilised
unsupervised machine learning techniques in combination with a model
selection strategy to detect the correct number of senses. In contrast to
the mainstream approaches we focused on verbs instead of nouns. In the
evaluation we found that our approach delivered satisfying results for a
set of verbs. The feature association framework provided the necessary
Wexibility and performance to achieve this result.

The base for all the presented publications has been the algorithms
developed within the feature association framework.

Methodology

The development of the feature association framework has been conducted
as an iterative process. Each of these iterative steps has been done based
on existing use case scenarios. This way the continuous improvement of
existing functionality has been ensured. This type of software development
is known as the spiral model, popularised by Boehm1 and depicted in

1 B. W. Boehm. A spiral model of software
development and enhancement. Computer,
21(5):61–72, 1988

Vgure 2.
Alongside this path of development not only functional requirement

has been addressed. Other factors, especially the run-time complexity and
the necessary computational resources to process the data sets have been
guidelines alongside the development cycles.

The feature association framework started out as a simple tool to process
a transposed document by term matrix2. Many text based knowledge 2 This data-structure records the relation

between documents and words, which
are stored within the documents. The
documents are represented as rows, while
the terms (usually simply the words) are
represented as columns within this matrix.

discovery applications utilise such a data-structure. By transposing this
matrix the main viewpoint on the data set is transformed. All algorithms

introduction 25

Figure 2: Overview of the spiral develop-
ment model. The development process
consists of a series of iterations to improve
and enrich the functionality.

developed to take an document by terms matrix as input are eligible to be
applied on the transformed matrix.

While transposing a matrix is mathematically a simple operation, for
large scale data sets the realisation of such an functionality poses a num-
ber of challenges. As soon as the data out-grows the storage capacity of
the main memory of a single machine, the development eUort is steeply
increased. Strategies to retrieve only the most relevant subset of the whole
data set need to be implemented. Naive approaches will no longer work for
this amount of data. The feature association framework is equipped with a
number of techniques to cope with large data sets, while still preserving a
relatively low computational eUort.

Soon it became clear that the simple transpose operation of a matrix can
be generalised without sacriVcing the scalability properties of the feature
association framework. Instead of only applying the transpose operation on
the input matrix, the output of this operation is additionally multiplied by
the original matrix. Thus the input matrix is transposed and multiplied by
itself within one invocation of the feature association framework.

The generalisation steps are iteratively repeated by cautiously adding
more Wexibility to the way the framework processes the data. Real world
application thereby served as a driving factor for these adaptations. During
the development phase not only the algorithmic side of the framework has
been improved. The data-structures has also been modiVed to a allow a
more Wexible input as well as output of the computations.

Starting with a simple matrix, the input for the feature association has
been generalised to graphs. A matrix can also be seen as a bi-partide graph.
Using this viewpoint, the input data-structures have been generalised to
cope with n-partide graph structures.

The output of the feature association framework has also undergone
modiVcation to allow a greater Wexibility. While in the Vrst iteration of the
framework the output data-structure has been a matrix, in later versions
this data-structure has been made more Wexible. The output of the feature
association calculations are stored as graph structures, without restrictions
on the topology of these graphs. For example this graph may be a directed
graph or the relationships between the graph node may be undirected,
depending on the requirements of the knowledge discovery application.

Finally the computation of the feature association itself has undergone
an evolution starting with the simple copy of values from the input matrix
into the transposed output matrix. The feature association function has
been steadily reVned to allow more sophisticated algorithmic approaches.

26 a feature association framework for knowledge discovery applications

The Vnal implementation of the framework deVnes a number of factors
and functional blocks. To integrate a feature association algorithm into the
framework it need to be decomposed into these structures. This requirement
is a direct consequence to ensure that the execution of the association will
scale to the amount of data at hand.

Although this constrains upon the feature association function appear
to be strict, it has been shown that a wide variety of existing algorithms
can be transformed into a representation suitable for the feature association
framework. Among these functions are textbook approaches from the area
of information retrieval, for example TFIDF, BM25 and the well known
cosine similarity. Other examples are from the Veld of statistics, like various
statistical tests for independence.

Feature Association Process

Although the algorithmic part of the feature association framework as
well as the implementation will be covered in great detail in the following
chapters, a short overview of the process is given here.

Main Properties

The theoretical upper bound of the computational complexity of the feature
association computations is: O(n2m), where n is the number of features
andm denotes the number of instances3. Thus the main challenge is to 3 The number of instances is usually

identical to the number of entries within
the data set.

introduce measures to make the computation feasible even if the theoretical
upper limit does not indicate its usefulness for larger data sets. In order to
achieve this, a range of techniques needs to be applied. These techniques try
to make optimal use of contemporary computing infrastructure and, more
importantly, try to exploit speciVc properties of the underlying data sets. For
example, many features will not be entirely random. In fact, in many data
sets, features follow the power law distribution. This property is exploited to
reduce the number of computations dramatically.

Furthermore, the feature association framework allows to apply heuris-
tics to discard features, which carry little information or are too rare to
provide reliable statistics. This approach is known as feature selection. Gen-
erally it is expected that the features will be sparse on a global level, but
locally highly connected. The algorithms and data-structures of the feature
association framework are optimized for such a scenario.

Finally, the processes have been developed to allow the computations
to be done in a distributed manner. For example, the feature association is
compatible with the map-reduce paradigm.

Feature Association Function

The framework allows the usage of diUerent functions to compute the
strength of the associations4. To keep the computations feasible, a number 4 The strength of the association is just

one possible property of the information
contained between features.

of constraints are imposed on these functions. The function need to be
decomposed into a set of factors and functional blocks, where each of them
is responsible for a part of the computations.

More formally, the association strength between two feature nodes in the
input graph (nodei and nodej) is computed by the function f(nodei, nodej):

f(nodei, nodej) = wglobal(a(nodei, nodej),G) (1)

a(nodei, nodej) = waggregate({wcombine(l(i), l(j))}) (2)

l(nodex) = wlocal(nodex,L) (3)

Thus, the overall association function needs to be decomposed into the
functional blocks wglobal, waggregate, wcombine and wlocal. Each of these

introduction 27

functional blocks is responsible for a subset of the overall functionality.
Thereby the functional block may use the aforementioned factors. These
factors allow the integration of additional information, for example global
statistics as well as information retrieved from external knowledge bases.
As factors are designed to have a minimal set of dependencies, they can be
eXciently re-used or computed in advance.

The function arguments that carry this information are denoted as G,
for the global statistics of the data set and L for data about the two features
in focus. The framework is responsible to invoke the individual functional
blocks, as well as managing the computation of the factors, so that an
optimal throughput is achieved. Although the decomposition scheme appear
to be strict, there are many examples of functions that have been mapped
to this scheme. Among them are the Cosine Similarity, Mutual Information,
χ2, Poisson, Windows Co-Occurrence and many more, which are presented
in the following chapters.

Contextual Feature Associations

The integration of global, as well as local statistics is the Vrst way on how
the feature associations computations are enriched. The second enhance-
ment relates to the algorithmic aspect. Due to the Wexible nature of the
feature association framework, one may integrate additional processing
steps. Thus, in such a scenario, one can introduce an additional layer to the
feature associations.

Starting with a single feature all related instances are collected and
passed to a supplied processing pipeline. Within this context all further
association calculations are done. For example one may choose to apply a
dimensionality reduction algorithm on the context of the feature in focus.
The computation of the association strength of all related features is then
done in the low dimensional space.

Another, more complex, scenario is to use the contextual processing
to invoke another feature association computation. This can be utilised if
one is not only interested in the relationship between pairs of features, but
on the relationship between three or more features at the same time. For
example, if the data contains features which appear to be independent when
compared to each other, but correlate for speciVc states.

The output of the contextual feature associations can be chosen to suit
the needs of the other components within the applications. Whether the
contextual information is present or not also depends on the requirements.

Reference Implementation

The reference implementation serves two purposes. At Vrst it should
demonstrate, that the algorithms do not only work in theory, but also in
practice. And secondly the implementation helped developing a series of
knowledge discovery applications. These applications did contribute to
research in the domains of information retrieval, social web and natural
language processing.

The implementation itself has been developed tailored towards contem-
porary computer architecture. The access times to the main memory have
been steadily decreasing in the last years, which is unfortunately not the
case for disk access times. Therefore the implementation has been designed
to optimise the balance between memory access and storage access5. 5 Currently the implementation is CPU

bound as well as IO bound, which can be
seen as indicator that a good compromise
has been found.

The individual stages of the algorithm will be presented in the following
chapters, therefore an in depth description of the components is omitted
here. The most important aspect of the implementation is the design deci-
sion, that the computations are split into two branches, one responsible to
process local sub-graphs of the input data and one responsible to gather the

28 a feature association framework for knowledge discovery applications

information on a global level. This procedure is similar to many distributed
processing frameworks, for example MapReduce6. 6 J. Dean and S. Ghemawat. MapReduce:

SimpliVed data processing on large clusters.
Communications of the ACM, pages 1–13,
2008Example

This example demonstrates how the feature association framework can be
used to integrate additional information. Here not only two features are re-
lated to each other, but this relationship is further enriched by exploiting the
meta-data available in the data set. This meta-data serves as contextual in-
formation and represent one possible way on how the traditional approach
of computing feature association can be elevated. In this scenario the fea-
ture association represent collocations, phrases of two adjacent words, that
typically represent a concept, which cannot be deducted from the individual
words themselves.

The collaboratively created online encyclopedia Wikipedia7 is used as 7 http://en.wikipedia.org

data set to build a feature association network. The words contained in
each Wikipedia article are mapped as source features, which are the set of
features being associated with each other. The Vnal association network will
then contain word collocations, where a the Vrst word takes the role of a
source feature and the second word is a target feature.

Each Wikipedia articles also carries additional information in the form
of meta-data. One additional structural information are the Wikipedia
categories, which are also collaboratively created and organised. Each
article may be assigned to one or more of these categories. The Wikipedia
categories serve as proxy for the topics of an article and are therefore can be
used as contextual features. Table 1 gives an overview of the main statistics
of the feature graph used as input for the contextual feature association
calculations.

Node Type Avg. In-Degree Count

Instance Wikipedia Article 0 3,450,941
Source Feature English Words 477.0 10,839,070
Context Feature Wikipedia Category 3.6 460,559

Table 1: Overview of the size of the input
feature graph for the collocation detection.
Each article consists on average of little less
than 500 words and is assigned to about
3.5 categories. The are over 5 billion edges
within the graph.

In order to cut down the number of calculation, a number of pruning
heuristics need to be applied. For example, categories that are connected
to only a handful of articles have been ignored8. Words, that occur too 8 Statistical signiVcance test need a minimal

sample sizes in order to be applicable.
Therefore this step is not only necessary
to cut down the run-time of the algorithm,
but is also a prerequisite to build reliable
statistics.

frequently or too rarely within the set of all articles were also removed. The
computation was executed on a single desktop class machine using a single
threaded execution strategy. The whole computation, including storing the
results, took 212,939 seconds (2 and a half days). An analysis of the resulting
association network is given in table 2.

Node Type Avg. In-Degree Count

Source Feature First Word 0 324,145
Target Feature Second Word 196.96 315,574
Context Feature Wikipedia Category 1.21 259,906

Table 2: Main characteristics of the output
association network of the Wikipedia con-
textual collocations. A total of 62,154,056
associations are found for about 250,000
contexts. There are a total of 36,028,078
pairs of category and collocations.

The Vnal collocation association graph can be seen as hyper-graph,
where each hyper-edge connects a source feature with an context feature
while traversing over a single target feature node. In this graph there are
about 36 million of such hyper-edges. As an example, in table 3 a list of
the Wikipedia categories in which the words “freak” and “wave” build a
statistically signiVcant collocation. These categories deVne the context in

http://en.wikipedia.org

introduction 29

which the two constituents carry a new distinct meaning if they are used as
a phrase.

Wikipedia Category Association Weight

Disappeared ships 0.233
Water waves 0.095
Rogue wave incidents 0.095

Table 3: Top 3 Wikipedia categories for
the collocation “freak wave”. Both
individual words of the collocation are
common in general English. The term
“freak” occurs 4,432 times and the term
“wave” 30,685 times in all Wikipedia
articles. The combination of the two
words describes a distinct concept and the
Wikipedia categories describe the context
this collocation is used. The association
weight is calculated using the normalized
Pointwise Mutual Information.

The actual method how the contextual output data-structure is exploited
depends on the application. Many collocation are shared between multiple
topics and therefore a post-processing step to aggregate the hyper-edges
may reveal common collocations when no explicit context information is
available.

Optional Information Additional to the association weight, each edge
within the output graph may be equipped with a custom payload. Within
this payload any information that is necessary for the application can be
stored. Therefore the actual content of the payload varies depending on the
settings and the implementation.

One example for an payload that could be useful for a real-world ap-
plication is a list of the instances that contributed the most to the Vnal
association weight between two features. The weight of an association
is aggregated over all shared instances, but some instances have a higher
inWuence than others. The list of the instances with the highest inWuence
may be stored within the association payload. This information can then be
exploited to build better tools especially if the association are directly pre-
sented to the users. Table 4 gives an overview of how a list of top instances
may look like.

Wikipedia Article Frequency

Rogue wave 26
Draupner wave 4
MS Bremen 2

Table 4: List of exemplary Wikipedia
articles in which the collocation “freak
wave” occurs in and which contribute to
the Vnal association weight between the
two words. By adding this information to
a visualisation of the output graph a user
might gain a better understanding of the
feature relationships within the data set.

Structure

The remainder of the work is structured as follows:

Knowledge Discovery This chapter gives an overview of the common
process of knowledge discovery and its main challenges. A formal
deVnition of the process is given, as well as a number of examples to
illustrate the task of knowledge discovery applications. Readers familiar
with the main concepts of knowledge discovery are free to skip this
chapter.

Feature Engineering Within the knowledge discovery process, feature
engineering plays a major role. This chapter presents an overview
of feature extraction, feature transformation and feature association
techniques. Furthermore an overview of common properties of features
found in many data sets is given. The role of the feature association
framework within this process is described.

Concepts A detailed description of the core concepts of the feature asso-
ciation framework is given in this chapter. Its algorithmic approach as

30 a feature association framework for knowledge discovery applications

well as the computational properties are presented in a comprehensive
manner.

Implementation This chapter gives an overview on how the main concepts
are implemented together with a reasoning why speciVc decisions have
been made. On a detailed level the algorithms are analysed and their
performance aspects are measured. This is of particular interest for
those who wish to integrate the feature association framework into their
knowledge discovery applications.

Applications The individual knowledge discovery applications, which
serve as a base for the publications are presented. The role of feature
associations within these applications as well as the achieved results are
reported.

Conclusion The Vnal chapter summarizes the results and gives the answer
to the main research questions in a concise manner. It Vnishes with a
short outlook on the future work and possible future research directions.

Knowledge Discovery

The majority of knowledge discovery applications aim at extracting
valuable information out of huge amounts of unstructured data.
The anatomy of such applications has been studied in the past and
it has been found that many of these applications share a common
structure.

Knowledge Discovery Applications

As computers grow more and more ubiquitous in the way people conduct
their work, the amount of digital data. This also gave rise to a new breed
of applications which extract valuable information out of the data.. To
refer to this new family of applications, the term knowledge discovery from
databases (KDD) has been introduced in 19899. This initiative had a big 9 G. Piatetsky-Shapiro. Knowledge Discovery

in Real Databases: A Report on the IJCAI-89
Workshop. AI Magazine, 11(5)(5):68—-70,
1991

impact, spawned a lot of research and Vnally founded a new Veld in the area
of computer science. Originally the suXx “from databases” has been used
to signify the importance of addressing the issue of increasingly larger data
sets.

Previously little attention have been given to fact that algorithms should
also cope with amounts of data which exceeds the capacity of the available
main memory. Furthermore the Internet has gained momentum and thus
became a source for valuable data sets on its own. Therefore algorithms
needed to be designed to handle large amounts of data.

Today large data sets are common. These data sets easily exceed the
storage capacity of single machines. Therefore the scalability aspect of
algorithms and systems is given appropriate attention in the mean time.
Traditional databases have been in part replaced by dedicated system
to store data in a distributed manner, for example BigTable10 or Hive11. 10 F. Chang, J. Dean, S. Ghemawat, W. C.

Hsieh, D. A. Wallach, M. Burrows, T. Chan-
dra, A. Fikes, and R. E. Gruber. Bigtable: A
distributed storage system for structured
data. Proceedings of the 7th USENIX Sym-
posium on Operating Systems Design and
Implementation OSDIâĂŹ06, 26(2):1–26,
2006
11 http://hive.apache.org/

Furthermore the paradigm of relational databases have been extended by
a new class of structured storage methods, the so called NoSQL databases.
These systems have been developed mainly motivated to increase scalability.
Because of fact that big data-set have become commonplace, the suXx
“from databases” is now often omitted, and the Veld is just referred to as
knowledge discovery.

In 1996 a seminal paper has been published by Fayyad et at.12, which
12 U. Fayyad, G. Piatetsky-Shapiro, and
P. Smyth. From data mining to knowledge
discovery in databases. AI magazine,
17(3):37, 1996

summarises the main goals of knowledge discovery. Furthermore it gives
an overview of the anatomy of a knowledge discovery application together
with the biggest challenges that this new research Veld has to face.

There have have been many alternative names used to refer to the same
or similar tasks addressed by the knowledge discovery process. Among
them are knowledge extraction, information discovery, information har-
vesting, data archaeology, data pattern processing and data mining. While
the Vrst couple of terms are rarely used anymore, the last term is still being
commonly used. But data mining is generally seen only as a single part of
the overall knowledge discovery processing sequence.

http://hive.apache.org/

32 a feature association framework for knowledge discovery applications

Knowledge Discovery DeVnition Data mining is the process of extract-
ing pattern out of unstructured data, by applying algorithms to analyse the
data. Pattern extractions represents the core aspect of a knowledge discov-
ery application. Knowledge discovery extends the data mining aspect in
many areas. Thus the deVnition of the whole process can be given as:

Knowledge discovery in databases is the non-trivial process of identifying
valid, novel, potentially useful, and ultimately understandable patterns in
data13. 13 U. M. Fayyad, G. Piatetsky-Shapiro, and

P. Smyth. From data mining to knowledge
discovery: an overview. In U. Fayyad,
G. Piatetsky-Shapiro, and P. Smyth, editors,
Advances in Knowledge Discovery and Data
Mining, chapter 1, pages 1–34. American
Association for ArtiVcial Intelligence, 1996

The deVnition can be further reVned, by making the main concepts more
explicit:

Data A set of facts, that can be processed by algorithms

Pattern An expression in a language describing facts, which are contained
in the data

Process Knowledge discovery process consisting of multiple steps, which
involve processing of the data, data mining and interaction with users

Valid The extracted patters need to have a certain predictive power, they
need to generalise

Novel The patterns must not be known in advance

Useful The extracted information needs to serve a purpose

Understandable In order to produce knowledge, the users need to be able
to interpret the results of the process

The term interestingness has also been used as an umbrella term for
validity, novelty, usefulness and simplicity14. Thus the pattern extracted by 14 A. Silberschatz and A. Tuzhilin. On

Subjective Measures of Interestingness in
Knowledge Discovery. In U. M. Fayyad and
R. Uthurusamy, editors, Evaluation, pages
275–281. AAAI Press, 1995

the knowledge discovery should fulVl the requirement of interestingness to
the target audience.

Another important aspect of knowledge discovery its interdisciplinary
nature. Multiple research Velds are combined in order to cover the entire
knowledge discovery process. Knowledge discovery applications usually
require a variety of skills.

Knowledge Discovery Process Within the deVnition of knowledge
discovery special emphasis is laid on the fact, that knowledge discovery
itself is a process. This process is similar for many applications and can
be formalised as a sequence of multiple consecutive steps. An overview of
these steps and their relationships is presented in Vgure 3. Starting point is a
collection of data and the deVnition of a goal which should be solved by the
knowledge discovery application.

Figure 3: Overview of the process-
ing steps of the KDD process as out-
lined by Fayyad et al. The transfor-
mation step has been highlighted to
indicate that the feature association
framework is invoked during this step.

[Image taken from the respective publication]

knowledge discovery 33

1. The data is then Vrst selected to come up with a selection or sub-set of
the complete data on which the processing should be conducted

2. The target data is then cleaned and preprocessed

• Building a model to assess the amount and characteristics of noise
within the data

• Removal of noise and identiVcation of outliers

• Implementing measures to handle missing or incomplete data

• Developing strategies to cope with the dynamics and evolution of the
data

3. The preprocessed data is then transformed into data-structures suitable
for data mining algorithms. Usually these data-structures are called
feature-spaces, which themselves consists of features. These features
encode the information contained within the data15. 15 The feature association framework is

applied during this step to analyse the
relationship between features and to create
features capturing these relationships.

• Identify useful features

• Analyse the properties of the features and expose this information
again as features

• Algorithms are applied to reduce the complexity of the data, for
example dimensionality reduction and projection

4. Choose the data mining task

• Depending on the overall goal of the application, select the corre-
sponding data mining approach

• For example choose a clustering approach if no training data is
available

5. Select the data mining algorithms

• Choosing the appropriate algorithm for the data and the overall task

• Together with the method its parameters algorithms need to be
deVned

6. Apply the data mining algorithms

• Processing the data with the selected algorithms will produce an
output speciVc to the chosen method

7. Interpret the results

• Present the results of the processing to the user

• This step often requires the development of custom tailored visualisa-
tions

8. Consolidation of the results from all processing steps

In the most simple case these steps will be executed in a Vxed sequence.
In typical scenario there will be cycles within the processing chain. This is
especially true for application which provide mechanism to allow users to
interact with the system.

Examples of Knowledge Discovery Applications

Given the deVnition of the knowledge discovery process, a number of
exemplary application are presented. These examples should give an under-
standing of the scope of problems being addressed by knowledge discovery
applications. In addition an overview if given of the most common data
mining approaches and algorithms.

34 a feature association framework for knowledge discovery applications

Recommender Engine Recommender systems are arguably the most
prominent example for a knowledge discovery system. These have been
pioneered by many on-line retailers, mostly motivated to increase their
sales volume. The term basket analysis hints at the most common mode
of operation of these recommender systems. The main principle can be
summed up to: “People, who have bought item X, also bought item Y”
Therefore people interested in item X are also given the recommendation to
also buy item Y.

Usually these on-line retailers add additional processing steps to this
simple principle to increase the likelihood of people following their sug-
gestions. Given the amount of additional revenue these recommendations
generate, this kind of knowledge discovery application is probably the
most successful, at least commercially. For example, the on-line retailer
Amazon16 reports, that about 35% of product sales are due to recommenda- 16 http://www.amazon.com

tions17. It is reported, that in the case of NetWix18, a company that provides 17 http://www.webcitation.org/

62wPepYSA (accessed on 2011-11-04)
18 http://www.netflix.com/

on-demand video streaming, about 60% of views are result of personalized
recommendations19.

19 http://www.webcitation.org/

62wPlcr9x (accessed on 2011-11-04)

There are multiple alternative ways, in which data mining algorithms
can be employed while computing recommendations. The most popular
approach is known as collaborative Vltering. Out of these algorithms, the
so called item-to-item approach has been chosen by Amazon.com as base
for their recommender system. An alternative method is based on the k-
nearest neighbourhood method, where similar items are search via shared
properties.

Spam Detection Another example for a knowledge discovery application,
that has found its way into most mainstream e-mail clients, is the detection
of Spam. Sending e-mails is cheap, which allows to send out commercial
e-mails in bulk to millions of recipients. The vast majority of these will
consider this kind of e-mail as Spam, thus not being not relevant for them.
Machine learning techniques help to automatically detect this kind of
misuse and relieve the user of having to deal with these e-mails in a manual
way.

Usually a combination of techniques is applied to automatically detect
unsolicited commercial e-mails. This combination typically consists of a
number of manually assembled rules and components that automatically
learnt how such an e-mail looks like. The most popular type of automatic
Spam Vltering is to use a Bayesian classiVer algorithm. In table 5 the output
of a Spam detection software20 is given for an e-mail that has been classiVed 20 http://spamassassin.apache.org/

as Spam.

pts rule name description

-0.0 RCVD_IN_DNSWL_NONE RBL: Sender listed at http://www.dnswl.org/, no trust
3.3 BAYES_99 BODY: Bayes spam probability is 99 to 100 [score: 0.9966]
-1.5 SPF_PASS SPF: sender matches SPF record
0.3 HTML_MESSAGE BODY: HTML included in message
0.8 MPART_ALT_DIFF BODY: HTML and text parts are diUerent
0.5 MIME_HTML_ONLY BODY: Message only has text/html MIME parts
1.7 MIME_BASE64_TEXT RAW: Message text disguised using base64 encoding
0.0 LOTS_OF_MONEY Huge... sums of money
0.0 MIME_HTML_ONLY_MULTI Multipart message only has text/html MIME parts

Table 5: Output of a Spam Vlter software
for a single e-mail. The Vnal decision of
the system is a combination of manually
crafted rules and a machine learning
component.

Web Search Another application of knowledge discovery technologies is
web search, were many diUerent data mining activities are being applied.

http://www.amazon.com
http://www.webcitation.org/62wPepYSA
http://www.webcitation.org/62wPepYSA
http://www.netflix.com/
http://www.webcitation.org/62wPlcr9x
http://www.webcitation.org/62wPlcr9x
http://spamassassin.apache.org/

knowledge discovery 35

Users take it as given, that they just have to type in a few words and are
automatically directed to a web pages there were looking for. In the back-
ground an array of algorithms is responsible to produce the result the users
are looking for in a short amount of time.

While there are multiple aspects of web search, only a small part of the
whole web search process is picked out here. One of the challenges, a web
search engine faces is the fact, that web pages are often copied or duplicated.
Additionally the same web page might be available via multiple addresses.
Usually multiple version of the same web page are not exactly identical, but
minor modiVcations are present. For example, the header and footer are
diUerent, or sometimes some navigational content is added.

Unsupervised machine learning algorithms can be applied to automat-
ically detect near-duplicates and group them together. This technique is
called clustering. In contrast to supervised methods, no training examples
are required in this setting. In the use-case of web search, all copies of a web
site are clustered together and then presented to the user as a single search
result.

Main Challenges for Knowledge Discovery Applications

This section highlights some of the main challenges, that need to be over-
come when developing a knowledge discovery application. Of course
not every single application will need to address all of these issues. The
challenges are not all technical in nature.

Multi-Domain A knowledge discovery application is hardly ever de-
veloped by a single person. Usually there will be many people involved,
usually experts in certain Velds. Because of the interdisciplinary nature of
knowledge discovery, it is necessary to gather input from diUerent domains
in order to solve the problem setting.

Even when looking at the data-mining aspect alone, it might be nec-
essary to bring together experts with diUerent backgrounds, for example
machine learning and information retrieval. Naturally the input of domain
experts will be required, not only during the starting phase of the develop-
ment, but also throughout the whole development cycle to provide feedback
and sample data-sets.

Because experts from diUerent Veld speak their own language, use their
own vocabulary, it is necessary to agree on a common terminology.

Tool Selection Another issue that needs to be solved early on in the
development process is the selection of the tools and algorithms. In the
beginning of a knowledge discovery project it is often unclear which
approach will work the best.

Having gained experience in previous projects help to avoid the tedious
and time consuming process of trial and error. This is not limited to the
development of knowledge discovery applications. Nevertheless the perfor-
mance of the algorithms are hard to predict, even for experts, making the
planning and development a hard task.

Scalability - Big Data - Distributed Computing When it comes to huge
amount of data, automatic methods do have their advantages in relation to
human work. But there are limits. When the size of a data-set exceeds the
available memory, there might be the need to adapt algorithms. Sometimes
an algorithmic approach is even infeasible in such a setting, for example an
algorithm that requires random access to the whole data-set, at any given
time during the processing.

36 a feature association framework for knowledge discovery applications

Given the growth of data, this problem is no longer aUecting only a few
knowledge discovery applications. The term “big data” is has raised much
interest in recent times. To cope with rising data-sets, traditionally the
answer has been to build increasingly bigger machines.

In recent years, an alternative approach has become popular - distributed
computing. Instead of using one big machine, multiple commodity ma-
chines are tied together and the workload is distributed among them. The
cluster of machines is connected via networking infrastructure. Among the
challenges in the management of such network topologies is to deal with
failures of single machines in a graceful manner and the optimisation of the
throughput.

The management of clusters has become a business case on its own. For
example Amazon has begun to invested into this business a few years ago
and is now one of the leading provides of cluster services. One of their
customers recently set-up a cluster consisting of 30,472 cores, 26.7TB of
RAM and 2PB (petabytes) of disk space21. 21 http://www.webcitation.org/

63BwX6DNs (accessed on 2011-11-14)This movement it not only driven by commercial interest. The open-
source community does also provide tools to allow distributed computing,
for example Apache Hadoop. This software is for example used by Yahoo,
where Hadoop is used to manage a cluster of 45k nodes within 3 data-
centers22. 22 http://www.webcitation.org/

63Bwg0cQT (accessed on 2011-11-14)

Keep the User in the Loop There are cases, where automatic methods
achieve a better performance than humans. But these cases are still consid-
ered to be the exception. Usually trained humans out-perform even well
tuned algorithms, especially for complex problem settings. Because of the
huge amount of data, manual processing is often not feasible.

It is one of the challenges of knowledge discovery application to combine
the strength of the automatic methods and the high precision of human
decisions. Therefore the application should be designed to process the bulk
of data using automatic algorithms and to detect corner cases, which are
then manually processed.

Another diXcult aspect is to reach a certain level of acceptance of the
information extracted by data mining algorithms. Users of an knowledge
discovery application need a level of trust in the system. Therefore it is
important, that the inner workings of the application are presented in a way
that can be interpreted by humans.

http://www.webcitation.org/63BwX6DNs
http://www.webcitation.org/63BwX6DNs
http://www.webcitation.org/63Bwg0cQT
http://www.webcitation.org/63Bwg0cQT

knowledge discovery 37

Feature Association Framework

Having deVned the main concepts behind knowledge discovery, the role of
the feature association framework within this process can now be presented.
As the name implies that it is not a standalone application by itself. Instead
it is an algorithmic framework to enable the analysis and synthesis of
features. The framework itself deals with the management of the data in
order to allow an eXcient overall computation.

Within the knowledge discovery process (see Vgure 3), the feature
association computations take place in the transformation step, just before
the data mining activities are started. Generally speaking, the aim of the
feature association framework is to help in the task of feature engineering.

The input to the feature association computations is the data set already
transformed into features. The output of the feature association computa-
tions depends on the main use-case:

Feature Analysis The relationship between the features from the data-
set are analysed. In this use-case, the features are not modiVed. The
output of the analysis is either stored alongside the features, or directly
visualised for the manual inspection by expert users.

Feature Synthesis As in the Vrst use-case, the relationship between fea-
tures are analysed. But in this mode of operation, the result of the
analysis step is transformed into a set of new features. These new fea-
tures may either be added to the existing set of features, or may replace
the old features entirely. In this use-case the newly created features are
treated by the succeeding data-mining algorithms as if they were they
part of the input data-set.

Feature Engineering

Features are the smallest conceptual entity within a knowledge
discovery application. The input data is transformed into struc-
tured features, usually by manually crafting a mapping from the
raw data to a representation suitable for the domain and used al-
gorithms. In this chapter the task of feature engineering will be
presented. Common properties of features will be described and how
these can be exploited to efficiently compute feature associations.

Role of the Feature Association Framework

The task of feature engineering is to prepare the data to be processed by
data-mining algorithms. Only if the data is transformed into a suitable
representation, the results will be optimal. The main challenge in this phase
is to uncover and emphasise those aspects, which carry the most valuable
information.

The main role of the feature association framework here is to support the
process of feature engineering. In table 6 an overview is given of the various
strategies that can be applied in this phase. For each of these strategies its
main aim and the main role of the feature association framework is listed.
Which of these tasks is invoked depends on the data-set and the overall goal
of knowledge discovery application.

Name Task Main Role

Preprocessing Prepare data-set Support NLP tasks
Feature extraction Generate features Provide analysis
Feature normalisation Modify feature values Provide global statistics
Feature selection Modify feature space Provide measures
Dimensionality reduction Transform feature space Support computation
Feature associations Generate new features Provide associations

Table 6: Overview of the tasks within the
feature engineering phase. For each task
the main role of the feature association
framework is highlighted.

40 a feature association framework for knowledge discovery applications

From Data to Features - Preprocessing

Selecting the data is the Vrst step in the life-cycle within the development
of a knowledge discovery application. First the data-sources need to be
analysed to deVne where the most relevant data can be found. Methods to
collect the input from these sources need to be developed. In the following
step, the data set is pre-processed and cleaned. Finally the data set is trans-
formed into features, organised in feature spaces23. This step is crucial as 23 Unfortunately the term feature space is

sometimes used interchangeably with the
term vector space, while the latter one can
be seen as just one possible instance of a
feature space.

the data-mining algorithms will only work as good as their input allows
them to do24.

24 This is sometimes referred to as “garbage
in, garbage out”.

Select the Data-Sources

The development of a knowledge discovery application usually starts with
selecting the data-sources which should be then used to extract information.
In the most cases, these data-sources will be heterogeneous and contain data
in multiple formats. How this data is organised and how the data is being
collected, depends largely on the setting. In the following, a few example
settings will be presented.

Example: Enterprise Typically companies manage their documents using
internal document management systems (DMS) or content management
systems (CMS). These documents are mostly textual documents, images and
other unstructured format. Additionally the company runs a set of database-
systems, were the data is stored in a highly structured, but proprietary
format.

Given this scenario the main challenges in this phase of the knowledge
discovery application are:

• Document management systems do not always allow easy access to the
stored documents. Often the producers of such system artiVcially try to
avoid making the transition to a competing product too easy. In addition
security restriction and limited access to parts of the data are among the
common problems that need to be sorted out during this phase.

• Although many Vle-formats are touted to be standardised and openly
documented, in reality most formats other than plain text will cause
considerable eUort to process. Software manufactures are keen to keep
exiting users locked into using their products. Unfortunately this will
cause many sources of valuable information to remain untapped.

• Database systems often use an proprietary, often home-grown, scheme.
Domain knowledge is necessary to select and transform the data into
data-structures suitable for further processing. SuXcient documentation
and knowledge on how the data should be accessed cannot be taken as
given.

• Combining the unstructured with the structured data can be a chal-
lenging task. Aligning multiple sources of information requires often a
custom build processing pipeline. Detecting duplicated information and
noisy data are among the problem to overcome during this stage.

Most of these problems lie outside of the responsibility of a knowledge
discovery application. Still, the quality of the result of the knowledge
discovery process may be seriously hampered by some of these problems.
There are ongoing initiatives to address these issues25. 25 It should be noted, that the improvement

of the results of a knowledge discovery
process is not always the major driving
force behind these activities.

The rise of open-source solutions did also contribute to a change in
attitude in regard to the computing ecosystem. The importance of open in-
terfaces and open standards are slowing gaining the awareness of a greater
audience. Initiatives like the Open Document Format for OXce Application

feature engineering 41

provide Vle-formats that are openly documented26. This enables documents 26 And free of patents and other trickery to
achieve a vendor lock-in.being exchanged by programs from diUerent vendors. In addition this

will allow the Vle-formats to be processed by future software generations,
allowing cultural heritage to exist also in the digital domain.

The standardisation of meta-data, for example the Dublin Core Metadata
Initiative27, ease the alignment of documents from diUerent sources. Instead 27 http://dublincore.org/

of developing custom database schema from the ground up, organisations
have started re-using existing schema. Increase in the processing power
now allow the additional overhead caused by storing the data in a more
structured way, for example using RDF and triple-stores instead of relational
databases.

Example: User Generated Content The World Wide Web and asso-
ciated technologies have undergone a transformation in the last decade.
The changes associated with the Web 2.0 did allow more and more user to
contribute. Today a large degree of the information found on the Internet
can be categorised as user generated content. A diverse set of Blogs, Wikis,
Forums and other types of Web platforms allow people to post their opinion,
share their photos or simply inform the world of their current mood. These
platforms have been recognised to be valuable source of information. For
example to detect upcoming trends or to mine the opinion about products.

Because of the abundance of data and its varying degree of quality28, 28 In this context, the term quality just
reWects whether the content is suitable
for the task at hand. Even terrible written
rants might be a valuable source for some
analysis.

algorithms need to be developed to automatically extract the relevant
information. In this setting the Web can be seen as corpus to build the base
for a knowledge discovery applications.

But before any algorithms can be applied, the data needs to be obtained.
Because of the volatility of the Web this is a challenging task by its own.
Not only does the data change, but also the technologies evolve at a fast
pace. Usually the Web pages are scraped by dedicated tools, so called web
crawler. In the simplest case, a web crawlers starts with a given web-page,
downloads the content, analyses the content for hyper-links and adds the
found links to the list of web-pages to visit.

Of course, such a naive algorithm would not work suXciently well
in real life. The crawling process needs to be thoughtfully deVned and
speciVcally tailored towards the target web-pages29. There are a number of 29 A. JuXnger, T. Neidhart, A. Weichsel-

braun, G. Wohlgenannt, M. Granitzer,
R. Kern, and A. Scharl. Distributed Web2.0
crawling for ontology evolution. In Proc 2nd
International Conference on Digital Infor-
mation Management ICDIM 07, volume 2,
pages 615–620. Ieee, 2007

questions that need to be addressed in such a setting:

• Where does the crawling process start?

• What is the strategy to follow outgoing links?

• When to stop the crawling process?

• How to deal with changes of the already visited sites?

Once all relevant web-pages have been collected, the data needs to
be processed to extract only the relevant content. Usually a web-pages
contain a lot of additional content. For example links for navigational
purpose, decoration and advertisements. Methods have been developed to
automatically strip away these adorning elements30.

30 P. Fankhauser and W. Nejdl. Boilerplate
Detection using Shallow Text Features. Text,
2010

Often only parts of a web-page are of interest, which can be a challeng-
ing task, given the volatile nature of the web. The process of extracting parts
of a web page is called wrapper generation31 ,32.

31 N. Ashish and C. A. Knoblock. Semi-
automatic wrapper generation for internet
information sources. In coopis, page 160.
Published by the IEEE Computer Society,
1997

32 J. R. Gruser, L. Raschid, M. E. Vidal, and
L. Bright. Wrapper generation for web
accessible data sources. In coopis, page 14.
Published by the IEEE Computer Society,
1998

Example: Research Corpora Seen from the perspective of the necessary
eUort to obtain the raw data33, research corpora lie at the other end of the

33 To clarify, this is only relates to the
technical eUort to harvest the data. Unfor-
tunately, many research corpora are kelp
behind “paywalls” which is a burden not
only for open-source projects but also for
many research institutions, for instance in
development countries.

spectrum. They are deliberately constructed to be easy to parse and easy to
process.

http://dublincore.org/

42 a feature association framework for knowledge discovery applications

Their aim is to create a common platform to compare methods and
algorithms. Therefore the data stored in these corpora is expected to be
clean and easy to parse. In addition, usually these data-structures have been
well documented. Examples for such corpora are:

Natural Language Processing The British National Corpus34, the Brown 34 BNC Consortium. The British National
Corpus. Distributed by Oxford University
Computing Services on behalf of the BNC
Consortium, 2007

corpus35, the American National Corpus36

35 W. N. Francis and H. Kucera. Brown
Corpus Manual. Brown University, 1979
36 N. Ide and C. Macleod. The American
National Corpus: A Standardized Resource
of American English. In Proceedings of
Corpus Linguistics 2001, pages 274–280.
Citeseer, 2001

Machine Learning Reuters-2157837, 20 Newsgroups38

37 D. D. Lewis. Reuters-21578, distribution
1.0. 1997
38 K. Lang. 20 Newsgroups

Information Retrieval The CranVeld collection, TREC collections39

39 D. K. Harman. The TREC test collections.
TREC: Experiment and evaluation in
information retrieval, pages 21–52, 2005

Still, there is often a non-negligible eUort associated with adopting such
a corpus to a knowledge discovery application. Like in the other presented
scenarios, it is important to remove any unnecessary content, while keeping
the main data intact.

The main task of the Vrst phase of knowledge discovery application is to
collected data from various sources and various formats. The output of the
this phase is a data-set, which is independent from its original source and
free of proprietary Vle-formats. This data-set is organised in data-structures
appropriate for further processing.

Pre-Process the Data

Once the data-sources have been agreed upon and a pipeline to align the
input formats have been established, the next step within the knowledge dis-
covery application life-cycle can begin. In this step the data-set is analysed
to detect outliers40 and to remove noise and to Vnd appropriate strategies 40 I. Ben-Gal. Outlier detection for high

dimensional data. ACM Sigmod Record, 2001to handle missing data. If the data-source has been a clean research corpus,
this step can be sometimes skipped entirely. Unfortunately this is not the
case for the majority of applications.

Depending on the nature of the data and the scope of the application,
diUerent approaches are applied in this phase. A number of examples should
serve as demonstrations which processing steps need to be conducted to
pre-process the data-set.

Example: Handwriting Recognition The recognition of handwritten
text has been a popular introductory example in textbooks about machine
learning41. In this example only the recognition of written letters is covered. 41 P. Harrington. Machine Learning in

Action. Manning Publication Co., 2012The input data-set in this case is collection of scanned in handwritten digits.
The output should be a cleaned data-set, which should be easy to process by
succeeding stages.

For the task of recognition of handwritten digit the natural approach is to
starts with scanned in samples of written text. The collected samples of text
are stored as images, usually using a high resolution and often only in black
and white. These images need to be pre-processed before any data mining
algorithms can be applied on them.

The scans will contain a number of visual artifacts. For example caused
by dust, unevenness of the paper and many other causes of noise. Further-
more the scans may vary in size, the text has been written by diUerent
pen of varying thickness. Inevitably diUerent writers will apply diUerent
pressure, causing the saturation of the written text to vary. These are among
the challenges that need to be resolved during the pre-processing phase.

Once the images have been undergone a cleaning stage, the digits need to
be aligned to comparable sizes. This alignment step has been already been
done for the MNIST data-set42. They applied a number of steps to allow a 42 Y. LeCun and C. Cortes. The MNIST

Database of Handwritten Digitsfain comparison of handwritten digit classiVcation algorithms:

• The digits have been scale to cover a box of 20x20 pixels, preserving the
aspect ratio

feature engineering 43

Figure 4: Examples of handwrit-
ten digits from the MNIST data-set.
These samples represent instances
that have been miss-classiVed us-
ing a machine learning approach.

[Image taken from: http://www.cs.

berkeley.edu/~smaji/projects/digits/]

• While the original images were bi-colour, grayscale colours were intro-
duced during the scaling process

• The digits have been centred according to their centre of mass within an
area of 28x28 pixels

Examples of the cleaned and pre-processed can be seen in Vgure 4. These
examples represent samples that were not successfully recognised using
custom SVMs for classiVcation43. 43 S. Maji and J. Malik. Fast and accurate

digit classiVcation. Technical report, Citeseer,
2009

The authors of the MNIST data-set state that the selection of a diUerent
alignment approach does inWuence the performance of the machine learning
algorithms. When the images are centred not by centre of mass, but by
applying a bounding box, some algorithms, for instance SVMs and k-NN,
improve in performance. This demonstrates that the Vnal output of a
knowledge discovery application also depends on the interplay between the
individual stages.

Example: Authorship Attribution from E-Mails The base data-set for
the next example of a pre-processing pipeline is a collection of E-Mails col-
lected from employers of Enron44 ,45. The use-case here is to automatically 44 B. Klimt and Y. Yang. Introducing

the Enron Corpus. Machine Learning,
stitutep1:wwceasccaers2004168, 2004
45 B. Klimt and Y. Yang. The Enron Corpus
: A New Dataset for Email ClassiVcation
Research. In Machine Learning ECML 2004,
volume 3201 of Lecture Notes in Computer
Science, pages 217–226. Springer, 2004

assign the E-Mails to one of the authors. As E-Mails are either plain-text
or HTML, the data-collecting phase is relatively easy46. The pre-processing

46 Usually in E-Mails only a subset of HTML
is used, making the parsing of the content
easier.

appears to simple as well - at Vrst glance.
The Vrst step when pre-processing E-Mails is to distinguish between

cited text and the main content of the message. A number of heuristics will
handle this task suXciently well, for example to mark each line starting
with a ’>’ character as quote.

Person names and names for organisations need to be masked out. This
is motivated by the apprehension that named entities would cause the
machine learning algorithms to “learn” the wrong properties. In the task
of authorship attribution the writing style of individual authors should be
learnt. Named entities, like location names, will also by highly correlated
with speciVc authors. In the presence of entities the algorithm would solely
focus on these words47. This will ultimately to lead to a problem known as 47 The model that is created by machine

learning algorithm would just contain
of these words. This will cause problem
known as over-Vtting.

http://www.cs.berkeley.edu/~smaji/projects/digits/
http://www.cs.berkeley.edu/~smaji/projects/digits/

44 a feature association framework for knowledge discovery applications

over-Vtting, where the algorithms are tuned for only one data-set, but fail to
work for other data-sets.

The next step in the pre-processing pipeline is the segmentation of
the E-Mail according to is layout. People diUer in the way they organise
and style their E-Mail messages. Some authors try to keep paragraphs
short and others just type in their text without taking formal aspects into
consideration. This steps provides additional clues not only for classiVcation
algorithms, but also for other pre-processing steps. Other algorithms also
proVt from the layout information, for example components to split the text
into sentences and individual words.

Example: Similarity of Textual Documents Typically when dealing
with textual data, the layout does not provide much beneVcial information.
The semantics of the text is the most value resource in this case, especially
documents are compared whether they cover the same topics.

The research Veld of Natural Language Processing (NLP) tries to develop
methods and tools to uncover semantic and syntactic information out of
human language. Some of these tools can be seen as knowledge discovery
application on their own. More commonly NLP algorithms are applied in
the pre-processing phase to analyse the documents.

There are many open-source and commercial tools available to parse text,
for example OpenNLP, GATE and UIMA. Each of these tools come with a
wide array of methods to extract information out of written text. The output
of these methods can later been used to build appropriate features. Among
the most commonly used NLP methods are:

Token Splitter Given a sequence of characters, the task of the token splitter
to identify boundaries between word. Although this may sound like a
trivial task, but the quality of the tokenisation process may indeed have
an impact on the performance of the overall system. For some corner
cases, even linguists do not agree whether speciVc language constructs
should be counted as a single word, or multiple, for example “isn’t” can
be either be interpreted as “is not” or a single word48.

48 Many modern token splitter split this
word into two tokens: “is” and “n’t”.

Sentence Splitter Instead of identifying individual words, the task of the
sentences splitter it to detect sentence boundaries. Again a task, which
requires little eUort for humans, but to produce a robust sentence splitter
takes considerable eUort. These methods need to be robust and produce
usable results, even if some preconditions are not met, for example the
text does not contain sentences, but for instance only tables of data.

POS Tagger Once individual sentences have been extracted, the grammati-
cal function of each word within each sentences should be detected. This
is the task of the Part-of-Speech Tagger. Various approaches have been
proposed in the past49 ,50 ,51. Today an accuracy of over 90% is expected,

49 E. Brill. A simple rule-based part of
speech tagger. In Proceedings of the third
conference on Applied natural language
processing, pages 152–155. Association for
Computational Linguistics, 1992

50 H. Schmid. Probabilistic Part-of-
Speech Tagging Using Decision Trees. In
Proceedings of International Conference
on New Methods in Language Processing,
volume 12 of Studies in Computational
Linguistics, pages 44–49. Manchester, UK,
1994
51 A. Ratnaparkhi. A maximum entropy
model for part-of-speech tagging. Proceed-
ings of the conference on empirical methods
in natural language processing, 1:133–142,
1996

given clean data and grammatical correct sentences.

Chuncking & Phrase Detection Sequence of words within a sentences can
be grouped as they serve a common function within the sentence52. For

52 K. Hacioglu. A lightweight semantic
chunking model based on tagging. In
Proceedings of HLT-NAACL 2004: Short
Papers on XX, pages 145–148. Association
for Computational Linguistics, 2004

example a noun phrase consists of a head noun and may contain other
nouns as well as adjectives. The output of such a parser component is a
sentence parse tree, where phrases are hierarchically organised.

Grammar Dependencies Given a sentence the main grammatical rela-
tionships between its constituents are extracted53. Out of a Vxed set

53 J. Nivre, J. Hall, and J. Nilsson. Malt-
Parser: A data-driven parser-generator for
dependency parsing. In Proceedings of
LREC, volume 6, pages 2216–2219. Citeseer,
Citeseer, 2006

of grammatical dependency types, pairs of words are connected. For
example, the main verb of a sentence is connected to the subject noun.

Named Entity Recognition Deep parsing is associated with a high com-
putational complexity and its performance is still may not suXcient for
many applications. Another approach is to identify only parts of the

feature engineering 45

text. For example, the task of Named Entity Recognition (NER) is to
identify person names, location names and other types of proper nouns54. 54 J. R. Finkel, T. Grenager, and C. Manning.

Incorporating non-local information into
information extraction systems by Gibbs
sampling. Proceedings of the 43rd Annual
Meeting on Association for Computational
Linguistics ACL 05, 43(1995):363–370, 2005

Traditionally the entities are known in advanced and stored in so called
gazetteer lists. Recently machine learning algorithm have been applied
on this problems.

Hearst Patterns Due to the unsatisfying performance of NLP components,
alternative approaches have been used by many applications. For exam-
ple, to extract information out of text, one can start with using manually
assembled list of patterns55. This approach can then be enhanced by 55 M. A. Hearst. Automatic acquisition

of hyponyms from large text corpora. In
Proceedings of the 14th conference on
Computational linguistics, volume II of
COLING ’92, pages 539–545. Association
for Computational Linguistics Morristown,
NJ, USA, Association for Computational
Linguistics, 1992

semi-automatic methods.

Stemming For to grammatical reasons many human language use inWec-
tions, which often alter the suXx of a word. As the semantic content
does not change (or only slightly), one can remove such suXces and
reduce the word to its stem. Various approaches for stemming have been
proposed in the past56 ,57. Whether stemming does improve the perfor-

56 M. F. Porter. Snowball: A language for
stemming algorithms, 2001
57 C. D. Paice. Another Stemmer. SIGIR
Forum, 24(3):56–61, 1990

mance of a knowledge discovery application can often only be assessed
by trial and error.

To sum up, during the pre-processing phase the data-set is cleaned and
prepared for further processing. Therefore the data-set is analysed and
the output is stored alongside the data58. The individual algorithms being 58 This step is also called enrichment, as

the the data-set now contains additional
information.

applied here depend on speciVc properties of the data at hand. Furthermore,
this step is not completely decoupled from the succeeding steps, as changes
in the cleaning phase might have implications for the performance of the
overall system.

Finally the data is ready to be transformed into features. Until this point
the data is organised in data-structures that match the requirements of the
data-source and formats. The representation of the data as features is due
to the requirements of the data mining algorithms. These algorithms hardly
ever allow unstructured input, but require their input data to be structured
in a speciVc manner. This is the task of the feature extraction phase and can
be seen as part of the overall feature engineering process.

46 a feature association framework for knowledge discovery applications

Feature Extraction

In the context of knowledge discovery applications the task of feature engi-
neering starts with a pre-processed data-set and ends with a set of features,
appropriate for the further processing using data mining algorithms. During
this process, features are generated, analysed, and transformed. Before the
task of feature engineering can be discussed, at Vrst a few terms that relate
to features need to be deVned: feature space, feature set and instance.

A feature space is a general description of a type of feature using within
a knowledge discovery application. The feature space restricts the possible
range of values of its features. Thus each feature can only be related to just
a single feature space.

A feature set is a collection of features, used to organise multiple features.
Usually a feature set will contain features from just a single feature space.
This is not a strict requirement, but it generally considered to be a best
practice approach. Only few data mining algorithms can cope with features
of diUerent types. Thus mixing diUerent features might hamper getting the
optimal performance from the application.

An instance is a collection of feature sets. In many cases an instance will
only consist of a single feature set. Furthermore, all instances of a data-set
will typically contain the same set of features.

To sum up, in the initial feature generation process, the data-set will
be transformed into instances and features. Often there will be a simple
mapping scheme, where a single input document is represented as a single
instance and the data contained within this document will be transformed
into features stored within the instance. The exact scheme, how instances
and features are generated naturally depends on the application and its
algorithms.

Types of Features

There is not a single representation on how a feature is structured. But
there are a number of common types of features. In general a single feature
simply consists of a identiVer and a value. The type of the identiVer can be
freely chosen, often a integer number of a character sequence is used. The
value of a feature is usually one of these:

Binary The value of the feature can take one of two states, true or false.
For example, each pixel in a black and white image can be transformed
into a binary feature.

Nominal The value is one out of a given set of predeVned values. Other
names for this type of feature are: categorical, enumeration. For example,
a weekday can have one out of a closed set of pre-deVned values.

Numeric The feature value is a number, either a integer value or a Woating
point number. This type of feature value is the most common type.

But the possible type of values are not limited to the types presented here.
For example, the value might just be a character sequence or even a complex
data-structure. But in this cases the succeeding data-mining algorithms need
to be capable to deal with this kind of features.

Example: Vector Space Model

The Vector Space Model (VSM) is one of the most important techniques on
how to extract and manage features out of textual resources. The feature
value types in this scheme are typically numeric.

In the following, this naive assumption is being made - all words that
occur in the data-set are all know in advance. The collection of words is

feature engineering 47

called vocabulary. The feature space deVnes and describes the properties
of its features. In the basic vector space model, the feature space restricts
the feature identiVers to be one of the words from the vocabulary, and the
feature values to be a positive integer.

Each document in the data-set is represented as a single instance. These
instances contain a single feature set. From the documents the features are
generated. For each unique word within the document a single feature is
produced, and its value is the number of times the word occurs within the
document. The sequence information of the words is lost in this process.
The term bag of words is also used for this approach.

The feature space itself can also be seen as a high dimensional space,
where each feature - unique words in this case - represents a single di-
mension. Thus the feature space will have as many dimension as there are
words in the vocabulary. A single instance can therefore be seen as a single
vector. Naturally the instances will be sparse, as document usually only
contain a small subset of the complete vocabulary. In this case all missing
dimensions are assumed to be zero.

Using this approach, it is easy to compare document with each other.
The distance between the two points which represent two document is a
common way, as is the angle between the vectors.

There are many extensions to the basic vector space model. For example,
the dimensionality of the feature space does not need to be Vxed. It is more
common to incrementally increase the number of dimensions as new words
are introduced.

The scheme, that is used to assign a value to each feature can be made
more sophisticated. This process, often referred to as term weighting, may
involve complex computations and is some application this step is essential
to optimise the performance of the overall system.

Pre-Processing for a Vector Space Model The individual steps within
a knowledge discovery application are often tightly linked. In the pre-
processing step needs to be modelled to extract all necessary information
which are required to build suitable features. For example, when a vector
space model is build, simply using words will often not be suXciently.

Instead of producing a single feature for each word, one can choose
to build more complex features. A common approach to combine a se-
quence of multiple words as a single feature. In this case, feature reWect
word n-grams59. The most common approach is to generate bi-grams, a 59 In this case, the number of dimension will

be very high.combinations of two consecutive words.
Often one does not want to include all words or bi-grams in the feature

space. Only the features with high discriminator power should be generated,
as the size of the feature space will have implications on the run-time
performance of the whole system. A common approach is to eliminate
the most frequent terms, as they do not carry semantics, but serve only a
grammatical function. This can be either done by via manually assembled
stop-word lists, or by computing the most frequent term in the vocabulary
of the data set.

In the case of n-grams, a similar approach can be taken to avoid a
combinatorial explosion of the number of dimensions. These n-grams are
selected, that actually occur more often than their individual distributions
would predict them to occur in a sequence by chance.

Example: Web-Graphs

Due to its vastness, the World Wide Web can no longer be eXciently be
navigated without the help of web search engines. The task of a web search
engine is to Vnd the most relevant web-page for a given query. There are

48 a feature association framework for knowledge discovery applications

many types of factor, that contribute to the relevancy given a speciVc query.
Many of them are subjective, but some can be made more explicit.

The popularity of a web-page does in the many cases can be seen as
an indicator for its relevance for a greater audience. Unfortunately the
popularity cannot be measures directly, therefore it needs to be assessed in
an indirect manner. The number of web-pages that link to a certain web-
page can be seen as an approximation of its relevance. This is the base of the
PageRank algorithm, which did help Google to improve its search results.
The HITS algorithm is another well known representative of this family of
algorithms.

In the case of PageRank, the incoming links are not directly counted,
instead the originating web-pages of these links are also weighted. The
relevance of web-pages is therefore propagated throughout the link graph.

To compute the PageRank, each web-page can be transformed into a
instance. Its features are the links to the out-going links. The identiVer of
these features are the target-URL. The feature value can either be binary or
may reWect the number of times a web-site is references60. 60 Often external web-pages are only linked

once, even if there are mentioned multiple
times within the text.

For the PageRank algorithm the feature values need to be normalised.
This normalisation needs to be done to ensure that the sum of all incoming
links sum to one. This step is done during the feature transformation stage.

feature engineering 49

Properties of Features

There is a high degree of variations in the properties of features for knowl-
edge discovery applications. Still, there are a number of common properties
that appear in many feature-spaces and their features. These common
properties can be exploited to improve the quality of the results as well as
to speed up the computations. The properties can be categorised into four
groups:

• Number of features (size of the feature-space)

• Number of features per instance (size of the feature-sets)

• Distribution of the feature values

• Distribution between the feature values

Sparse vs. Dense A feature space can be classiVed as being either sparse
or dense. This is an important property as it has an inWuence on which
data-structures and algorithms are eligible for the data-mining task. If the
feature-space is dense, there is a feature value for each feature of every
instance. Thus if there arem features for a single feature-space and the data-
set consists of n instances, the number of feature values will be n×m. For
many scenarios this number exceeds the available storage capacity making
any processing infeasible.

Therefore it is desirable to have sparse feature-spaces. In this case the
feature-set of the instances do not contain all features. Instead, the majority
of features are missing. The data-mining algorithms need to be adapted
to cope with missing features and feature values. It is important that the
semantics for left out features is deVned in advance. For example, for
numeric features, a missing feature value is often assumed to be zero.

Even if the original data-set is dense, the feature-space will often be
artiVcially kept sparse to allow eXcient computations. For example, if the
value of a feature falls below a pre-deVned threshold, the feature is removed
from the feature-set and treated as it were missing.

In other cases, the data-set is inherently sparse. A vector space model is
commonly build by mapping each unique word to as a feature. As only a
few words out of the complete vocabulary occur in a single document, the
resulting feature-space will be very sparse. For textual data-sets one can
expect less than 10% of all features to be linked to each instance61. 61 For example, each Wikipedia article

contains on average less than 2% of the
entire vocabulary.

Heaps’ Law For many data-sets one can Vnd a relationship between the
number of features and the number of instances. The number of features
does not grow linearly with the number of instances. Instead the growth of
the size of the feature-space gets slower with a high number of instances.

Originally this relationship has only been observed for textual docu-
ments, where features are words and the feature-space is the vocabulary62. 62 H. S. Heaps. Information retrieval:

Computational and theoretical aspects,
volume 60. Academic Press New York, NY,
1978

In this context the Heaps’ law, the size of the vocabulary V in relation to the
number of instances - n - can be formalised as:

V (n) = Knβ (4)

There are 2 free parameters,K and β which depend on the data-set.
For data-set consisting of English text documents,K has been found to
be between 10 and 100 and β to be found in the range between 0.4 to 0.6.
In Vgure 5 the growth of the vocabulary for the Brown corpus is given in
relation to the number of sentences.

50 a feature association framework for knowledge discovery applications

Figure 5: Growth of the size of the feature-
space in relation to the number of instances
for the Brown corpus. The x-axis reWects
the number of sentences and the y-axis
shows the number of unique words.

Zipf’s Law, Power Law Another well known empirical law has been
proposed by Zipf in 1935. It has been Vrst discovered in copora of natural
language. It only applies to sparse data-sets as it relates to the distribution of
frequencies of features. The frequency of a feature is the number of times a
feature occurs within a feature-set of an instance. In the case of documents
and words, the frequency of a word is the number of documents in which
the word does occur. Therefore this number is usually called document
frequency. The number of times a word is using in total is usually referred
to as collection frequency.

The list of all words can be sorted according to their frequencies, starting
with the most frequent one. The rank of a word in this context is the
position within this list. According to the Zipf’s law, the rank is inverse
proportional to its frequency. More formally, the document frequency df
can be derived from its rank r and two free parameters α and β63: 63 Strictly speaking, the Zipf’s law only

applies to cases, where β = 1, but it is has
common practice to use the term for the
whole class of distributions

df = αrβ (5)

By applying the logarithm, the relation between the rank and the fre-
quency become more obvious:

log df ∝ β log r (6)

Thus, on a log-log plot the relationship between the rank and the fre-
quencies is expected to be a straight line. In Vgure 6 the according plot is
presented for the English Wikipedia. One can see that the Wikipedia data
can be closely matched by two lines, where all terms up to rank 10,000 very
closely follow the Zipf’s law (β = 1).

The Zipf’s law does not only apply to natural language resources. The
relationship between a feature frequency and its rank can also be observed
for other data as well. Probably the best know case of such a relationship
has been published 1913 by Felix Auerbach. The population size of cities can
be expressed using equation 5 (and a β of 1.07).

This type of feature distribution is also known a power law. A feature
features are very common, and many features are highly infrequent. The
term long tail has been established for the high number of low-volume
features64. From a knowledge discovery point of view, the features, that can 64 C. Anderson. The Long Tail. Wired,

12(10):170–177, 2004be found in the middle of the distribution, are often the most important. The
most valuable features have a high discriminative power and a suXciently
high frequency at the same time.

The power law is related to the Pareto distribution, which is also known
as the 80/20 rule. For example, the distribution of wealth within a society

feature engineering 51

Figure 6: Word frequencies for the En-
glish Wikipedia as log-log plot. On
the x-axis words are sorted according
to their rank and the y-axis indicates
the collection frequency of the words.

[Copyright Victor Grishchenko]

is assumed to follow this distribution. The main property of a power law
distribution is its scale invariance, also termed scale free.

Small World Phenomena The power law can also be found in networks,
or graphs. The web graph, which consists of web-pages and their links in
between, does also follow such a distribution. Within these graph there
can be found other types of regularities, which apply to the relationships
between the nodes within a graph.

In the context of features-spaces, one can observe that for many data-sets
there are common patterns in the way features are connected to each other
via instances. Among these patters is the so called small world phenomena,
where each node within a network can be reached by any other node within
a minimum number of hops, although most of the nodes are not directly
connected. More generally, the typical distance between nodes d (mean
shortest path) can be put into relation of the overall size of the network
n65 ,66: 65 D. J. Watts. Six Degrees: The New Science

of Networks. Vintage, 2004
66 A.-L. Barabási. Linked: The New Science of
Networks, volume 71. Perseus, 2002

d ∝ log n (7)

Within such networks, a number of certain phenomena will typically
occur:

Cliques While the overall graph may not be highly connected, there are a
number of sub-graphs, that are highly connected. These nodes tend to
form clusters with a many connection within the cluster, but only a few
that lead to the outside. For example, within a social network one can
observe the emerging nature of communities of people.

Hubs Not all nodes are evenly distributed in regards to the number of
connection with other nodes. There are nodes with a high degree of
neighbour nodes. These nodes are called hubs and their presence is the
main reason for the small path length between nodes within the network.

These properties pose additional challenges when applying knowledge
discovery algorithms67. The algorithms and data-structures should be 67 These data-sets will typically be globally

sparse, but locally dense.designed to allow eXcient computation, especially within a distributed
computing scenario.

52 a feature association framework for knowledge discovery applications

Feature Transformation

Directly after the features have been extracted, these features may be fur-
ther processed, before the data-mining activities take place. This process is
called feature transformation. The feature association framework will typi-
cally be invoked in this phase. To exploit the relationship between features
is just one strategy that may be applied during feature transformation. Some
selected alternative methods are brieWy discussed.

Feature Value Normalisation

Some algorithms require their input values to be of speciVc types and to
fall within a pre-deVned range. For example, some algorithms may only
cope with nominal feature values. Therefore all numeric values need to be
converted Vrst.

For this purpose data-mining algorithms may applied. For example,
clustering algorithms can be applied for vector quantiVcation68. Such an 68 F. Curatelli and O. Mayora-Ibarra.

Competitive learning methods for eXcient
vector quantizations in a speech recognition
environment. MICAI 2000: Advances in
ArtiVcial Intelligence, pages 108–114, 2000

approach groups similar feature values into a smaller collection of coherent
clusters.

In reverse, some algorithms require a numeric feature values. While
binary feature values are easily mapped to a numeric representation, for
nominal features this may be a hard task. For example given the names of
colours one could use the corresponding wavelength instead.

The optional normalisation step of the feature values also depend on
the succeeding algorithms. The feature normalisation may require to
scan over the whole data-set, which may cause this computation to be
expensive. For example, if the feature values need to be normalised into
a pre-deVned range. Here the highest and lowest occurring feature value
has to be determined. This is often the case, when feature values should
represent probabilities. For instance the PageRank algorithm expects the
weights of all incoming links to sum to 1. Therefore the corresponding
features need to be normalised accordingly.

Another normalisation strategy applies to feature-sets that represent
a vector within a vector space model. As the features represent a single
vector within a high dimensional space it is common practice to apply a
scaling to unit length. This allows the eXcient computation of the cosine
similarity69, which is common for many knowledge discovery applications. 69 For two unit vectors, the cosine similarity

can be computed via their dot-product.The succeeding algorithms need to be made aware to make use of this
property. This highlights the close relationship between the diUerent stages
of the knowledge discovery life-cycle.

Feature Weighting

The feature weighting is even more closer linked with the data-mining
algorithms than feature normalising. In this case one tries to optimise the
performance of the knowledge discovery process by applying a weighting
scheme on the features. This method does only apply to numeric feature
values. As with the feature normalisation, no new features are introduced
by this approach.

The motivation for the weighting scheme is to boost features, which are
supposed to be more helpful than others. For the feature weighting to be
eUective it has to work hand in hand with the data-mining algorithms.

Example: TF-IDF In the Veld of Information Retrieval feature weighting
has a long tradition and is used in combination with the vector space model.
In such a setting the individual features represent words as they occur in
documents. The feature weighting is conducted in multiple steps. At Vrst,

feature engineering 53

the number of times a word occurs within a document is counted. This term
frequency builds the base for the Vrst part of the weighting scheme.

Next the document frequency of the terms is collected, which contributes
to the second part of the weighting. The number of documents is set in
(inverse) proportion to the total number of document in the data-set. Finally
the two frequencies are combined to form the TF-IDF70 term weighting 70 Term Frequency - Inverse Document

Frequencystrategy. There are a multiple diUerent ways on how this basic scheme
can be applied. Their impact on the performance is typically assesses by
conduction evaluation runs on test data-sets.

Another prominent example of a feature weighting algorithm rooted in
Information Retrieval is BM2571. This retrieval function can be regarded 71 S. Robertson and M. Gatford. Okapi at

TREC-4. In Proceedings of the Fourth Text
Retrieval Conference, pages 73–97, 1996

as the state-of-the-art in ad-hoc Information Retrieval. Other feature
weighting strategies are based on similar probabilistic approaches. They also
integrate the average length of all instances within a data set72 ,73 ,74. 72 G. Amati and C. J. Van Rijsbergen.

Probabilistic models of information
retrieval based on measuring the divergence
from randomness. ACM Trans. Inf. Syst.,
20(4):357–389, Oct. 2002
73 A. Singhal, C. Buckley, and M. Mitra.
Pivoted document length normalization.
In Proceedings of the 19th annual interna-
tional ACM SIGIR conference on Research
and development in information retrieval,
SIGIR ’96, pages 21–29, New York, NY, USA,
1996. ACM
74 K. W. Church and W. A. Gale. Poisson
mixtures. Natural Language Engineering,
1(02):163–190, 1995

Another set of feature weighting function stems from the Veld of corpus
linguists. The Juilland-F75 has been developed based on the observation

75 Juilland A., D. R. Brodin, and C. Davi-
dovitch. Frequency dictionary of french
words. 1970

that the occurrence of function words is relatively even across and within
textual documents. Whereas content words tend to occur in bursts, so
that when they occur, they occur often. Juilland combined the variance
and the mean of the frequency of words to create a measure that reWects
this property76. In recent times this intuition has been picked up again

76 This property is sometimes described as
burstiness.

and various measures have been developed to exploit this77. Among these

77 S. Gries. Dispersions and adjusted
frequencies in corpora. International Journal
of Corpus Linguistics, 13(4):403–437, 2008

measures also the so called dispersion measure has been proposed, which
has been successfully applied in a number of applications78 ,79 ,80. In the

78 R. Kern and M. Granitzer. EXcient linear
text segmentation based on information
retrieval techniques. In MEDES ’09:
Proceedings of the International Conference
on Management of Emergent Digital
EcoSystems, pages 167–171, 2009
79 R. Kern and M. Granitzer. German Ency-
clopedia Alignment Based on Information
Retrieval Techniques. In M. Lalmas, J. Jose,
A. Rauber, F. Sebastiani, and I. Frommholz,
editors, Research and Advanced Technol-
ogy for Digital Libraries, pages 315–326.
Springer Berlin / Heidelberg, 2010
80 R. Kern, C. Seifert, and M. Granitzer. A
hybrid system for German encyclopedia
alignment. International Journal on Digital
Libraries, 11(2):75–89, Sept. 2011

context of feature association this property of natural language has been
used for model the re-occurrence of terms based on a Bayesian mixture
model81.

81 A. Sarkar, P. H. Garthwaite, and A. De
Roeck. A Bayesian mixture model for term
re-occurrence and burstiness. In Proceedings
of the Ninth Conference on Computational
Natural Language Learning, CONLL ’05,
pages 48–55, Morristown, NJ, USA, 2005.
Association for Computational Linguistics

Feature Selection

In contrast to the two previous feature transformation strategies, in the
case of feature selection, not individual feature values are modiVed, by the
feature-space itself. Out of the set of features, a minimal sub-set of features
is computed with still captures the main properties of the data-set. The
feature values themselves are not changed in this process. Feature selection
is motivated by three main reasons:

• Having fewer features might help to avoid over-Vtting. This problem is
mostly related to classiVcation and regression problems. If the model,
which is generated by machine learning techniques, to closely follows the
training data, its predictive power may suUer.

• The assessment of the inWuence of individual features can prove helpful
in the selection of algorithms and their parameter. Having a better
understanding of the available data-set may contribute to optimise the
quality of the results.

• The computation time can be considerably be shortened, as the search
scope is reduced. This is especially important for algorithms that do not
scale well with the number of features.

It is important to note that feature selection does not provide beneVts for
all data-sets and use-cases. Whether it is suited for a given setting needs to
be assessed by conducting experiments.

Some classiVcation algorithms already implicitly implement a feature
selection stage. For example the family of decision tree algorithms82 ,83 82 J. R. Quinlan. Induction of decision trees.

Machine Learning, 1(1):81–106, 1986
83 J. R. Quinlan. C4. 5: programs for machine
learning. Morgan kaufmann, 1993

employ such strategies during the training phase. These type of algorithms
are among the most commonly used classiVcation algorithms84.

84 G. Seni and J. F. Elder. Ensemble Methods
in Data Mining: Improving Accuracy
Through Combining Predictions. Statistics,
2(1):1–126, 2010

54 a feature association framework for knowledge discovery applications

For other algorithms one can conduct a feature selection stage as a
separate task. Probably the best known approach to assess the usefulness
of features is to compute the Information Gain. It can be formulated as the
reduction in entropy for a given class by subtracting the conditional entropy.
Here the feature is denoted as f and the class to predict by the classiVcation
algorithm as c:

IG(f, c) = H(c)−H(c|f) (8)

The information gain values for the individual features can then be
sorted and the top features are selected. In table 7 the features of the contact
lenses data-set85 are listed, according to their information gain values. To 85 J. Cendrowska. PRISM: An algorithm

for inducing modular rules. International
Journal of ManMachine Studies, 27(4):349–
370, 1987

compare the impact of the feature selection, the J48 classiVcation algorithm
has been applied two times. The Vrst time using all features and for the
second run only the two top ranked features are used (tear-prod-rate,
astigmatism). To assess the classiVcation result, a 10-fold cross-validation
has been conducted. The F-measure for the J48 classiVcation algorithm rises
from 0.84 for all features to 0.88 when using just two features.

Feature Information Gain

tear-prod-rate 0.5488
astigmatism 0.377
spectacle-prescrip 0.0395
age 0.0394

Table 7: Ranked list of feature from
the contact lenses data-set, sorted by
information gain.

Another approach for feature selection is the correlation feature selection
(CFS) measure. This method is based on the intuition86: 86 M. A. Hall. Correlation-based Feature Se-

lection for Machine Learning. Methodology,
21i195-i20(April):17, 1999Good feature subsets contain features highly correlated with the classiVcation,

yet uncorrelated to each other

A data-set containing cases of diabetes87 serves as base for the demon- 87 J. W. Smith, J. E. Everhart, W. C. Dickson,
W. C. Knowler, and R. S. Johannes. Using
the ADAP Learning Algorithm to Forecast
the Onset of Diabetes Mellitus. Proceedings
of the Annual Symposium on Computer
Application in Medical Care, pages 261–265,
1988

stration of the CFS feature selection. By applying the feature selection, the
size number of features drops from 8 to 4. When using the Naive Bayes
classiVer, again within a 10-fold cross validation, the F-measure rises from
0.76 to 0.77.

The CFS feature selection approach indicates that the relationship be-
tween features may help to improve the quality of the output of knowledge
discovery application. The feature association framework has been devel-
oped to allow an eXcient analysis of the correlation between features and
thus can be applied for feature selection.

Especially in the domain of textual features, where the number of
dimensions can be very large, to single out the most distinctive features
is essential for many algorithms. An overview of several diUerent feature
selections metrics for multiple textual data sets is given by Forman88.

88 G. Forman. Choose Your Words Carefully
: An Empirical Study of Feature Selection
Metrics for Text ClassiVcation document
Choose Your Words Carefully : An Em-
pirical Study of Feature Selection Metrics
for Text ClassiVcation. In Proceedings of
the 13th European Conference on Machine
Learning (ECML ’02), number August, 2002Furthermore there are a number of pruning strategies used for textual

document with natural language features89 ,90. These are also applied as 89 J. Fürnkranz. A study using n-gram
features for text categorization. Austrian
Research Institute for ArtiVcial Intelli-
gence Technical Report OEFAI-TR-98-30
Schottengasse, 3(1998):1–10, 1998
90 L. Jing, H. Huang, and H. Shi. Improved
Feature Selection Approach TFIDF in
Text Mining. In Proceedings of the First
International Conference on Machine
Learning and Cybernetics, volume 4, page 5,
2002

feature selection for classiVcation problems91.

91 Y. Yang and J. O. Pedersen. A comparative
study on feature selection in text catego-
rization. In In Proceedings of ICML-97,
14th International Conference on Machine
Learning, pages 412–420, 1997

Especially for textual features there exists a list of relatively simple
heuristics:

High Document Frequency Words should be removed that are contained
in almost all documents. This is based on the observation, that function
words tend to occur in nearly all suXciently long documents. These
words serve a grammatical function, but do not carry any semantics
and thus are the prime candidates to remove from the set of features.
Using the statistical properties of words is a common alternative to
manually pre-compiled stop-word lists. There exist many examples

feature engineering 55

which demonstrate the usefulness of this approach, for example 92 where 92 T. Joachims. A probabilistic analysis
of the Rocchio algorithm with TFIDF for
text categorization. In Machine learning:
proceedings of the fourteenth International
Conference (ICML’97), 1997

also low frequent words are pruned away.

Low Document Frequency Words, that only occur in very few documents,
should be pruned. Very rare words also tend to be less useful, because
they often arise from spelling errors, are noise or artifacts of text process-
ing algorithms. For example, token splitting implementation sometimes
do not correctly split two consecutive words and thus create an artiVcial
compound word.

Punctuation As with words that serve solely a grammatical function,
punctuation characters also play a minor role in knowledge discovery
applications. Depending on the actual processing pipeline, punctuations
may have been removed prior to the feature selection processing step. If
they are still part of the feature set, they should be pruned away because
of their frequent usage that cause many unnecessary calculations. Typ-
ically punctuations are detected by specialised parser components, for
example the Brill tagger93 and the TreeTagger94. The parser annotates 93 E. Brill. A simple rule-based part of

speech tagger. In Proceedings of the third
conference on Applied natural language
processing, pages 152–155. Association for
Computational Linguistics, 1992
94 H. Schmid. Probabilistic Part-of-
Speech Tagging Using Decision Trees. In
Proceedings of International Conference
on New Methods in Language Processing,
volume 12 of Studies in Computational
Linguistics, pages 44–49. Manchester, UK,
1994

all words with a part of speech tag. These tags vocabularies contain
dedicated symbols for punctuations. For the English language the Penn
Treebank Tagset95 is the most popular choice.

95 M. P. Marcus, M. A. Marcinkiewicz, and
B. Santorini. Building a large annotated
corpus of English: The Penn Treebank.
Computational linguistics, 19(2):330, 1993

Numbers & Time All words that are not listed in a dictionary are can-
didates to be removed from the feature set. Unfortunately a naive
implementation of this scheme is not feasible. Named entities, like person
and company names as well as location names, are not always found in
common dictionaries. These named entities tend to play an important
role in knowledge discovery applications96 ,97 ,98, therefore leaving them

96 T. Mandl and C. Womser-Hacker. The
eUect of named entities on eUectiveness
in cross-language information retrieval
evaluation. In Proceedings of the 2005 ACM
symposium on Applied computing, SAC ’05,
pages 1059–1064, New York, NY, USA, 2005.
ACM
97 W. Klieber, V. Sabol, M. Muhr, R. Kern,
G. Öttl, and M. Granitzer. Knowledge dis-
covery using the KnowMiner framework. In
IADIS International Conference Information
Systems, 2009
98 W. Klieber, V. Sabol, R. Kern, M. Muhr,
and M. Granitzer. Using Ontologies For
Software Documentation. In Proc Malaysian
Joint Conference on ArtiVcial Intelligence
MJCAI2009, 2009

out does not appear to be a valid option.
Other types of words, that are not listed in dictionaries, could be

removed without reducing the usefulness of the knowledge discovery
application. Numbers for example are used to quantify, but they do
not carry a semantic information in the majority of cases. Additionally
numbers can be easily detected using simple rule based approaches.

The second class of words that can be ignored are date and time
speciVcations. The requirements to reliably detect dates and time are
higher then for simple numbers, especially for complex constructs like
date ranges. In fact, a workshop series99 has been established not only

99 http://timeml.org/tempeval/

to improve detection of temporal expressions, but also to extract events
and discover temporal relations. For the task of pruning the features set
without losing too much valuable associations between features, a simple
approach to detect the most common date and time speciVcations seems
suXcient.

Long Words Very long words are rare in natural languages and therefore
they are likely to be artifacts of previous processing steps. The value
of the length threshold for this type of heuristic depends on the actual
language the documents are written in. Polysynthetic languages are
a special class of languages where long words are commonly used.
In so call agglutinating languages a new word can be composed by
concatenating multiple words to create a new meaning derived from
the meaning of the individual words. The most prominent example of
an agglutinating language is Japanese, although there exist many more.
Furthermore the is another group of language that uses long words, this
is the family of fusional languages. In these languages not entire words,
but morphemes are combined to construct words with a distinct meaning.
Most of the European languages can be attributed as fusional languages,
especially Latin, German and Dutch.

URLs Another simple but eUective pruning strategy is to Vlter out all URLs,
Vle names and other resource names. These kind of character sequence

http://timeml.org/tempeval/

56 a feature association framework for knowledge discovery applications

is likely to be introduced by the way digital documents are converted to
their textual representation. Footnotes and headers commonly contain
the name of the Vle on the local storage. HTML documents frequently
contain of URLs that do not provide any beneVt for the application. Like
numbers these URLs and other resource references are relatively easy to
detect and to extract.

Dimensionality Reduction

The aim of feature selection is to reduce the size of the feature-space by
removing individual features. Dimensionality reduction also decreases
the number of features, but in this case a completely new feature-space is
spawned, which replaces the original one. As with feature selection, the
goal of dimensionality reduction is to encode the most valuable information
with the help of fewer features.

Figure 7: Example of a high-dimensional
feature-space build from the Reuters-
21578 data set, which is projected into a
2-dimensional space.

One reason for the popularity of dimensionality reduction is its use
to visualise complex data sets. Often a high-dimensional feature-space is
reduced to two or three dimensions and then visualised for inspection of a
user.

The best known approach to dimensionality reduction is the principal
component analysis (PCA). Given a square matrix, the axis of the highest
variation are identiVed. These can be sorted and only the Vrst dimensions
are kept. The data-set is then projected onto the reduced space giving a
new reduced feature-space. The PCA method for dimensionality reduction
can be improved by applying non-linear approaches100. Singular value 100 B. Scholkopf, A. Smola, and K.-R. Muller.

Nonlinear Component Analysis as a Kernel
Eigenvalue Problem. Neural Computation,
10(5):1299–1319, 1998

decomposition (SVD) is in many ways similar to PCA. But SVD can also be
applied on non-square input matrices. Therefore this approach is suitable for
a broader range of data-sets.

Another common technique is force directed placement (FDP)101. This 101 T. M. J. Fruchterman and E. M. Reingold.
Graph drawing by force-directed place-
ment. Software Practice and Experience,
21(11):1129–1164, 1991

approach models the forces of particles in physical space to layout the
instances, for example gravity. Finally feature vectors which are close
to each other in high-dimensional space will end up being close to each
other in the low-dimensional projection as well. In Vgure 7 a sophisticated
visualisation of a high-dimensional data-set is depicted102. This visualisation 102 C. Seifert, V. Sabol, and W. Kienreich.

Stress Maps: Analysing Local Phenomena
in Dimensionality Reduction Based
Visualizations. In European Symposium
Visual Analytics Science and Technology
(EuroVAST), 2010

gives the feature engineer clues on the distribution of the instances within
the data-set.

feature engineering 57

Language Models

Language models provide valuable information when dealing with features
generated out of natural languages. These models can be build indepen-
dently of the knowledge discovery application using frameworks like
SRILM103 or GIZA++104. Language models are typically build for a speciVc 103 A. Stolcke. SRILM-an extensible language

modeling toolkit. In Seventh International
Conference on Spoken Language Processing,
volume 3, pages 901–904. Citeseer, 2002
104 F. J. Och and H. Ney. A Systematic
Comparison of Various Statistical Align-
ment Models. Computational Linguistics,
29(1):19–51, 2003

language and in some cases for a speciVc domain. Sophisticated algorithms
have been build to exploit this information, for example in the Veld of
information retrieval105.

105 J. M. Ponte and B. W. Croft. A language
modeling approach to information retrieval.
In Proceedings of the 21st annual interna-
tional ACM SIGIR conference on Research
and development in information retrieval,
pages 275–281. ACM, 1998

58 a feature association framework for knowledge discovery applications

Feature Associations

The opposite approach to dimensionality reduction is to create features
in addition to the existing ones. This may sound counter-intuitive at Vrst,
but this step can already be seen as part of the data-mining process itself.
Information, that is contained in the relationship between feature should be
extracted and made explicit. The main motivation is to improve the overall
quality of the results and to improve the traceability of the computations.

Recommender systems are an example where feature associations are
an inherit part of the algorithms. Especially in the case of collaborative
Vltering, where the extracted associations can be directly mapped to recom-
mendations.

Some of the algorithm used within recommender systems stem from the
family of association rule mining algorithms. The best known representative
of these algorithms is the apriory algorithm106. Alternative approaches 106 R. Agrawal and R. Srikant. Fast

Algorithms for Mining Association
Rules in Large Databases. In J. B. Bocca,
M. Jarke, and C. Zaniolo, editors, Journal
of Computer Science and Technology,
volume 15 of VLDB ’94, pages 487–499.
Morgan Kaufmann Publishers Inc., Morgan
Kaufmann Publishers Inc., 1994

try to learn Vrst-order logic rules107. Among the use-case scenarios for

107 P. A. Flach and N. Lachiche.
ConVrmation-Guided Discovery of
First-Order Rules with Tertius. Machine
Learning, 42(1):61–95, 2001

association rule learning algorithms are Vnding patterns in the shopping
behaviour108.

108 http://www.webcitation.org/

63F1NhYFs (accessed on 2011-11-16)

Word Co-Occurrences

Computing feature associations has a long tradition in the domain of com-
putational linguistics and methods have been studied by corpus linguists.
In the Veld of natural language feature associations are mainly restricted to
word co-occurrences. Given a collection of textual documents, one tries to
uncover regularities in the sequence of words.

Researching the relationship between words have been motivated by two
well known hypotheses:

• The distributional hypothesis, Vrst described by Harris in 1954, which
states that words which tend to occur together are semantically related.
Firth describes this intuition as “a word is characterised by the company
it keeps”.

• The strong contextual hypothesis, proposed by Miller and Charles in 1991,
says that the more similar the contexts of words the more semantically
related the words are.

Many approaches have been proposed in the past and here only a brief
overview can be given. The mainstream approach to compute word co-
occurrences is presented in pseudo-code as algorithm 1.

The diUerent approaches to compute word co-occurrences mostly vary
in the way, how the context is deVned and how the association strength is
computed.

Context The context in this setting deVned as the text that surrounds an
occurrence. The common approaches to construct a context can be classiVed
as:

Fixed sized window The most common approach is to use a window of
Vxed size around the occurrence. Thus a Vxed number of words are
included in the context. The size of the window plays an important role
on the association strength109 ,110. DiUerent types of windows, where the

109 E. Terra and C. L. A. Clarke. Frequency
estimates for statistical word similarity
measures. In Proceedings of the 2003
Conference of the North American Chapter
of the Association for Computational
Linguistics on Human Language Technology
- Volume 1, NAACL ’03, pages 165–172,
Morristown, NJ, USA, 2003. Association for
Computational Linguistics

110 J. A. Bullinaria and J. P. Levy. Extracting
semantic representations from word co-
occurrence statistics: A computational
study. Behavior Research Methods, 39(3):510,
2007

inWuence of a word depends on the distance to the target words plays a
role, have been studied as well111. 111 M. Patel, J. A. Bullinaria, and J. P. Levy.

Extracting semantic representations from
large text corpora. In Proceedings of the
4th Neural Computation and Psychology
Workshop, pages 199–212. Citeseer, 1998

Sentence All words, that are found within a sentence are added to the
context. The context will be of diUerent size. Therefore measures need to
be developed to allow the association strength to remain comparable112.

112 C. Willners and A. Holtsberg. Statistics
for sentential co-occurrence. Working Pa-
pers, Lund University, Dept. of Linguistics,
2001

http://www.webcitation.org/63F1NhYFs
http://www.webcitation.org/63F1NhYFs

feature engineering 59

Algorithm 1 Overview of the typical computation of word co-occurrences.
Require: Textual Corpus - C
Require: Vocabulary of Words - V
procedure buildWordCooccurrences

for all wi ∈ V do . Iterate over all words
Ci ← ∅ . Initialise the context

for all dk ∈ C do . Iterate over all documents
Oi,k ← getOccurrences(wi, dk)

for all owi,d ∈ Oi,k do . Iterate over all occurrences
ci,k ← createContext(owi,d, dk)

Ci ← Ci + ci,k . Add the context of each occurrence
end for

end for

Ai ← ∅
for all {wj |wj ∈ V and wj 6= wi } do

. Compute the association strength
ai,j ← computeAssociation(wi, wj , Ci)

. Based on the collected context
Ai ← Ai + ai,j

end for

yield(wi, Ai) . Report co-occurrences for wi
end for

end procedure

60 a feature association framework for knowledge discovery applications

Discourse To reliable detect a discourse structure of a document is still an
active research topic. Thus the discourse structure is approximated by
including a Vxed number of sentences that precedes and succeeds the
occurrence are included in the context.

Document Often textual corpora are already organised in documents,
where each of them is focused on a single topic. In such a setting, a
context that contain the complete document may be the best choice.

Which type of context is best suited depends on the corpus and the
method to compute the association strength between co-occurring words.

Association Strength To measure the association strength between co-
occurring words researchers have proposed a huge variety of functions.
From these diUerent measures, no single function has emerged which can
be considered to be the best overall choice. As with the deVnition of the
context, the function to compute the association strength does depend on
the data-set and the application scenario.

Many diUerent functions will be covered in a later chapter in detail.
Furthermore, comparisons between diUerent functions can be found in the
literature113 ,114. Therefore just an enumeration of some of the most popular

113 P. Pecina and P. Schlesinger. Combining
association measures for collocation extrac-
tion. In Proceedings of the COLING/ACL
on Main conference poster sessions, pages
651–658, Morristown, NJ, USA, 2006.
Association for Computational Linguistics
114 S. Evert. The statistics of word cooccur-
rences: word pairs and collocations. Stuttgart,
2005

choices is given here:

Similarity measures Measures that have been traditionally used in many
knowledge discovery applications. For example: Cosine similarity,
Jaccard coeXcient115, Dice coeXcient

115 L. Lee. Measures of Distributional
Similarity. In Proceedings of the 37th
annual meeting of the Association for Com-
putational Linguistics on Computational
Linguistics, pages 25—-32, 1999

Distance metrics Metrics that measure the distance between two points in
(typically high-dimensional) space. For example: Euclidean distance116,

116 U. QuasthoU and C. WolU. The poisson
collocation measure and its applications.
2002

city-block distance117

117 R. Rapp. The computation of word
associations: comparing syntagmatic and
paradigmatic approaches. In Proceedings
of the 19th international conference on
Computational linguistics-Volume 1,
number 1992, pages 1–7. Association for
Computational Linguistics Morristown, NJ,
USA, 2002

Statistical signiVcance tests Measures that have been developed in the
Veld of statistics to assess whether two outcomes are signiVcantly diUer-
ent. For example: χ2, poison signiVcance measure118 ,119, Odds ratio120

118 U. QuasthoU and C. WolU. The poisson
collocation measure and its applications.
2002
119 S. Bordag. A comparison of co-occurrence
and similarity measures as simulations
of context. In Proceedings of the 9th
international conference on Computational
linguistics and intelligent text processing,
CICLing’08, pages 52–63, Berlin, Heidelberg,
2008. Springer-Verlag
120 W. Lowe and S. McDonald. The direct
route: Mediated priming in semantic
space. In Proceedings of the 22nd Annual
conference of the Cognitive Science Society,
pages 675–680. Citeseer, 2000

Information theoretic measures DiUerences between distributions based
on methods to assess the amount of information. For example: Mu-
tual information121, Kullback-Leibler divergence122, Jensen-Shannon 121 K. W. Church and P. Hanks. Word

association norms, mutual information, and
lexicography. Computational linguistics,
16(1):22–29, 1990
122 I. Dagan, F. Pereira, and L. Lee. Similarity-
based estimation of word cooccurrence
probabilities. In of the 32nd annual meeting
on, pages 272–278, 1994

Divergence123 and pointwise mutual information124

123 G. Hirst. Distributional Measures as
Proxies for Semantic Relatedness. 2005
124 E. Terra and C. L. A. Clarke. Comparing
query formulation and lexical aXnity
replacements in passage retrieval. In
Proceedings of the ACM-SIGIR workshop
on methodologies and evaluation of
lexical cohesion techniques in real-world
applications (ELECTRA 2005), pages 11–17.
Citeseer, 2005

The impact of combining multiple functions has been studied as well125.

125 P. Pecina and P. Schlesinger. Combining
association measures for collocation extrac-
tion. In Proceedings of the COLING/ACL
on Main conference poster sessions, pages
651–658, Morristown, NJ, USA, 2006.
Association for Computational Linguistics

Another approaches utilise the web as corpus and web search engines to
compute the similarity between words126.

126 P. D. Turney. Mining the Web for
Synonyms: PMI-IR versus LSA on TOEFL.
In Proceedings of the twelfth european
conference on machine learning (ecml-2001),
pages 491–502, 2001

Corpus Size The inWuence of the size of the corpus on the quality of the
extracted association has been studied. When computing the association
strength between features it is crucial to have suXciently many samples. If
only a few co-occurrences are available in the corpus, the statistics will be
less reliable.

It has been found, that an increase in size of the corpus also correlates
with an improvement in the quality of the results127 ,128. At a certain point,

127 J. A. Bullinaria and J. P. Levy. Extracting
semantic representations from word co-
occurrence statistics: A computational
study. Behavior Research Methods, 39(3):510,
2007
128 E. Terra and C. L. A. Clarke. Frequency
estimates for statistical word similarity
measures. In Proceedings of the 2003
Conference of the North American Chapter
of the Association for Computational
Linguistics on Human Language Technology
- Volume 1, NAACL ’03, pages 165–172,
Morristown, NJ, USA, 2003. Association for
Computational Linguistics

adding more information does not longer contribute much to an increase in
performance.

First and Second Order Co-Occurrences The algorithm listed in 1
directly puts a target word with its surrounding words in context. Thus
the associations created by this approach will be restricted to words that
jointly occur in documents. Their association strength will be according to
their shared distribution. This approach does follow intuition behind the
distributional hypothesis. Word associations based on this algorithm can be
categorised as Vrst order co-occurrences.

feature engineering 61

But the strong contextual hypothesis is not addressed by this procedure.
The direct word co-occurrences can be seen as a Vngerprint of a word, but
they do not yet allow a comparison between the contexts of two words.
Thus additional computation is necessary. The computation of the the
second order co-occurrences is based on the output of the Vrst order co-
occurrences. Words associations for each pairs of word are transformed into
a representation which allows comparisons. Thus the Vngerprints of two
words are compared. Following the strong contextual hypothesis, word pairs
with a high similarity can be considered to be semantically similar.

The inWuence of the order of the co-occurrence on the type of similarity
has been studied, making the distinction between paradigmatic and syntag-
matic models129 ,130. Co-occurrence of higher order have also been studied

129 R. Rapp. The computation of word
associations: comparing syntagmatic and
paradigmatic approaches. In Proceedings
of the 19th international conference on
Computational linguistics-Volume 1,
number 1992, pages 1–7. Association for
Computational Linguistics Morristown, NJ,
USA, 2002

130 B. Riordan and M. N. Jones. Comparing
semantic space models using child-directed
speech. Entropy, 20:200, 2000

in the past and their usefulness has been hinted131 ,132.

131 A. Kontostathis and W. M. Pottenger.
Detecting Patterns in the LSI Term-Term
Matrix. Workshop on the Foundation of Data
Mining and Discovery IEEE International
Conference on Data Mining, 2002

132 B. Lemaire and G. Denhière. Incremental
construction of an associative network from
a corpus. In Proceedings of the 26th Annual
Meeting of the Cognitive Science Society,
pages 825–830. Citeseer, 2004

Applications of Word Co-Occurrences Of course, word co-occurrences
are not only computed to test linguistic hypotheses. Feature associations in
the form of word co-occurrences have been used in many application sce-
narios. Only a small fraction of these are covered here to give an impression
of the versatility of the information contained in the relationship between
features.

Information retrieval In a typical information retrieval scenario a user
issues a query to a search system. This query will usually contain
just a few words. Therefore there will be a low semantic redundancy
and much of the desired information is expected to be encoded in
the relationship between the words. Naturally this domain has been
addressed by multiple approaches. For example: Query expansion133,

133 J. Xu and W. B. Croft. Query expansion
using local and global document analysis.
Proceedings of the 19th annual interna-
tional ACM SIGIR conference on Research
and development in information retrieval
SIGIR 96, (Zurich, Switzerland):4–11, 1996

query processing134, passage retrieval135.

134 E. Terra and C. L. A. Clarke. Scoring
missing terms in information retrieval
tasks. In Proceedings of the thirteenth ACM
international conference on Information
and knowledge management, pages 50–58.
ACM, 2004
135 E. Terra and C. L. A. Clarke. Comparing
query formulation and lexical aXnity
replacements in passage retrieval. In
Proceedings of the ACM-SIGIR workshop
on methodologies and evaluation of
lexical cohesion techniques in real-world
applications (ELECTRA 2005), pages 11–17.
Citeseer, 2005

Natural language processing Various tasks in the area of processing hu-
man language appear to proVt from the added information gained by
co-occurrences. For example: Keyword extraction136, thesaurus gener-

136 Y. Matsuo and M. Ishizuka. Keyword
extraction from a single document using
word co-occurrence statistical informa-
tion. International Journal on ArtiVcial
Intelligence Tools, 13(1):157–170, 2004ation137, text summarisation evaluation138, collocation extraction139,
137 H. Schütze and J. Pedersen. A
cooccurrence-based thesaurus and two
applications to information retrieval.
Information Processing & Management,
33(3):307–318, May 1997
138 C. Y. Lin and E. Hovy. Automatic
evaluation of summaries using n-gram
co-occurrence statistics. In Proceedings
of the 2003 Conference of the North
American Chapter of the Association for
Computational Linguistics on Human
Language Technology-Volume 1, pages
71–78. Association for Computational
Linguistics, 2003
139 P. Pecina and P. Schlesinger. Combining
association measures for collocation extrac-
tion. In Proceedings of the COLING/ACL
on Main conference poster sessions, pages
651–658, Morristown, NJ, USA, 2006.
Association for Computational Linguistics

word-sense disambiguation140 ,141

140 D. Freitag, M. Blume, J. Byrnes, E. Chow,
S. Kapadia, R. Rohwer, and Z. Wang. New
experiments in distributional represen-
tations of synonymy. In Proceedings of
the Ninth Conference on Computational
Natural Language Learning, pages 25–32.
Association for Computational Linguistics,
2005
141 A. Sarkar, P. H. Garthwaite, and A. De
Roeck. A Bayesian mixture model for term
re-occurrence and burstiness. In Proceedings
of the Ninth Conference on Computational
Natural Language Learning, CONLL ’05,
pages 48–55, Morristown, NJ, USA, 2005.
Association for Computational Linguistics

62 a feature association framework for knowledge discovery applications

Data-Mining Algorithms

The feature association framework allows the researcher to customise the
association computation. One possible application of this functionality is to
apply the same methods to each association context, which are traditionally
used for the whole data-set. These methods often operate on an input
matrix, which in many cases is a matrix representing documents and terms.
Within the computation of the feature associations, one can create a similar
matrix, but in this scenario not a single matrix for the whole data-set
is created, but a dedicated matrix for each feature. These matrices will
typically be smaller and consist only of these entries of the data-set, which
have a relation with the feature in focus. In the following, a number of
algorithm will be presented, that are currently considered to be state-of-
the-art. These approaches can then be re-used for the contextual matrices
created during the association computations.

Latent Dirichlet allocation (LDA)142 is one of the methods and has gained

142 D. Blei, A. Ng, and M. Jordan. Latent
dirichlet allocation. The Journal of Machine
Learning Research, 3:993–1022, 2003

popularity in recent years. This method is related to clustering in a sense
that LDA can be seen as a fuzzy co-clustering method, where both the
instances and the source features are clustered at the same time. The output
of the LDA algorithm is a set of topics. Topics are connected to the source
features as well as instances via probabilities. See table 8 for an example of 5
topics and the top ranked features143. To generate an association graph these

143 M. Steyvers and T. GriXths. Probabilistic
Topic Models. Handbook of latent semantic
analysis, 427, 2007

topics can serve as output nodes. All source features with a topic probability
that exceed a certain threshold are connected to the corresponding output
nodes. The LDA method is a member of the family of mixture model
based algorithms. A similar approaches is the pLSI method144, which has

144 T. Hofmann. Probabilistic latent semantic
indexing. In Proceedings of the 22nd annual
international ACM SIGIR conference on
Research and development in information
retrieval, pages 50–57. ACM, 1999

been developed to create a probabilistic alternative to the Latent Semantic
Indexing145 method.

145 S. Deerwester, S. T. Dumais, G. W.
Furnas, T. K. Landauer, and R. Harshman.
Indexing by latent semantic analysis.
Journal of the American society for
information science, 41(6):391–407, 1990

Topic #247 Topic #5 Topic #43 Topic #56

drugs (.096) red (.202) mind (.081) doctor (.074)
drug (.060) blue (.099) thought (.066) dr. (.063)
medicine (.027) green (.096) remember (.063) patient (.061)
eUects (.023) yellow (.073) memory (.037) hospital (.049)
body (.019) white (.048) thinking (.030) care (.046)

Table 8: Examples for the features (in this
case words) with the highest probabilities
for four topics. The TASA corpus is used
as input data set. For each topic the top 5
words are selected with their probabilities
in brackets.

The base of the Latent Semantic Indexing approach is the decomposition
of a matrix into its singular values, which is usually referred to as Singular
Value Decomposition (SVD)146. Similar to the Principal Component Analy- 146 G. E. Forsythe, M. A. Malcolm, and C. B.

Moler. Computer methods for mathematical
computations. Prentice Hall Professional
Technical Reference, 1977

sis (PCA) the SVD Vnds an orthonormal base that indicates the orientation
of the largest variance within the data set. In the past the SVD has been
already been employed for the task of feature engineering and related appli-
cations147 ,148. Formally the SVD is deVned as follows, whereM is the input 147 H. Schütze and J. Pedersen. A

cooccurrence-based thesaurus and two
applications to information retrieval.
Information Processing & Management,
33(3):307–318, May 1997
148 J. A. Bullinaria and J. P. Levy. Extracting
semantic representations from word co-
occurrence statistics: A computational
study. Behavior Research Methods, 39(3):510,
2007

matrix for n instances andm source features:

Mn×m = Un×nΣn×mV
∗
m×m (9)

For many application is it not necessary to calculate all singular values.
Instead of calculating the full Σn×m matrix, a rank approximation can be
done which eUectively results in a dimensionality reduction. The reduction
of dimensions is achieved by removing redundancies between correlating
features. If two features share a common distribution among the instances,
they can be represented by a single dimension in the reduced space. In
the case of textual features the reduced SVD should eUectively resolve
synonymous relationships between words because all words that carry the
same meaning should be represented as a single vector within the reduced

feature engineering 63

feature space. This compression of the feature space should also remove
noise and reduce the impact of outliers. The number of features is reduced
to a lower number of dimensions k149. 149 Finding the optimal number of dimen-

sions for a given scenario is a hard task and
often cited as curse of dimensionality.Mn×k = Un×nΣn×kV

∗
k×k (10)

See Vgure 8 for a visualisation of a matrix which has undergone a
dimensionality reduction starting with a few thousand dimensions to only
three dimensions. All instances have been projected to vectors in the low
dimensional space and then projected onto the unit-sphere. The generate
this visualisation the ConceptNet150 corpus was used, from which all 150 http://www.media.mit.edu/~hugo/

conceptnet/sentences that contain the term ’instrument’ were taken. Many of the
point lie close to each other, which can be seen as indicator, that these
instances share many features and thus are similar to each other. Each
of these groups of closely related instances resemble individual senses of
the word ’instrument’. For example individual groups represents string
instruments, wood instrument and medical instruments.

Figure 8: Visualisation of an approximation
of aMatrixinstances×features after the
number of dimensions have been reduced
to 3. Each of the three axis represents one
of the three main dimensions of variations
within the data set. Each dot in the image
represents a single instance as projected
onto the unit-sphere of the reduced feature
space.

The Singular Value Decomposition not only provides a approach to
improve the quality of data and to extract latent structures within the
data, there have also methods developed to improve the eXciency of the
necessary calculation. Therefore the SVD is suited for even large scale data
sets. There exist approaches to eXciently calculate the singular values for
sparse matrices151 ,152, which is common for many real-world data sets. 151 M. Brand. Fast online svd revisions for

lightweight recommender systems. In SIAM
International Conference on Data Mining,
pages 37–46, 2003
152 M. Brand. Fast low-rank modiVcations
of the thin singular value decomposition.
Linear Algebra and its Applications,
415(1):20–30, 2006

The input of the SVD is a matrix build out of the instances within
the current context and the source features. Additionally the number of
dimensions of the reduced feature space must be determined. The result
of the Singular Value Decomposition must then be transformed into an
association network. One of the ways to create this graph is to build a single
target node for each dimension. For each row in the matrix the dominant
dimension is selected, which represents the main characteristic diversion
from the average of all instance within the current context. Thus each
dimension in the reduced feature space is related to a set of instances. This
corresponds to the output of a cluster algorithm, where each cluster consists
of a set of instance. Because of this similarity the Vnal association network
can be generated the same way for both approaches. The output of the SVD
based associations is therefore similar to the example shown in Vgure 15,
but instead of using the clusters, in this case the dominant dimension is
employed as means to partition the data set.

As alternative to using the dominant dimensions one could partition
the input space, as this approach has already been proposed in the area of
clustering of high-dimensional data-sets153. 153 B. L. Milenova and M. M. Campos.

O-cluster: scalable clustering of large high
dimensional data sets. 2002

http://www.media.mit.edu/~hugo/conceptnet/
http://www.media.mit.edu/~hugo/conceptnet/

64 a feature association framework for knowledge discovery applications

Besides the similar input and output data-structures, there is another
connection between the Singular Value Decomposition and clustering
algorithms. The family of spectral clustering methods represent algorithms
that incorporate graph based statistical methods154. In this case the input 154 U. V. Luxburg. A Tutorial on Spectral

Clustering. Technical Report March,
MaxâĂŞPlanckâĂŞInstitut für biologische
Kybernetik, 2007

data to be clustered is represented as a graph. Various properties of this
graph can then be analysed. The spectrum of the graph is an important
source of information on how the data is structured. To exploit this usually
the eigenvalues and eigenvectors of the graph are calculated. Alternative
to using the eigenvalues the singular values can be used to uncover the
intrinsic structure of the data. Various methods based on this idea have
been published in recent times155 ,156 and can easily be integrated into the 155 I. Dhillon, Y. Guan, and B. Kulis. Kernel

k-means: spectral clustering and normalized
cuts. In Proceedings of the tenth ACM
SIGKDD international conference on
Knowledge discovery and data mining,
pages 551–556. ACM New York, NY, USA,
2004
156 S. Y. Jianbo, S. X. Yu, and J. Shi. Multi-
class Spectral Clustering. In In International
Conference on Computer Vision, pages
313–319. In International Conference on
Computer Vision, 2003

calculation of feature associations.

Concepts

The work-flow of feature association computation can be split into
two phases. At first the associations between features need to be
calculated. Then the results of the analysis is made available for
succeeding processing within the knowledge discovery application.

Overview

In this chapter the feature association framework is presented from an
conceptual point of view. Starting with the use-cases a number of design
decisions are derived. The input and output data-structures are deVned,
as well as the conVguration settings. The conVguration determines which
collections of features are selected to build the associations.

The majority of this chapter is reserved for the detail analysis of the
inner workings of the feature association algorithm. Because of the complex
requirements and the necessity to to able to process large scale data-sets, the
design of the algorithms plays an important role. The basic idea to achieve
the desired properties was the decision to split the algorithm into a set of
distinct phases. Each of these phases serves a dedicated task and enables
task-speciVc optimisations. The algorithm allows the execution in parallel
and within a distributed execution environment. Therefore the feature
association framework can be applied on large data-sets with complex
feature interactions.

The role of the association function is to capture the semantics of the
relationships between the features. The properties of this function relies
on the requirements of the application. The feature association framework
already provides a set of feature association functions, which have proven
to be useful in the context of knowledge discovery applications. This list
can be further extended by custom functions, which are tailored towards
speciVc application needs.

The ability to execute the feature associations within a distributed
environment is an important prerequisite for processing large data-sets.
Therefore the integration of the feature association calculations into estab-
lished distributed execution framework is demonstrated. The result of the
feature association calculations can Vnally be retrieved and traversed using
a dedicated component.

In this chapter at Vrst a number of design decisions are presented. Next
the input and output data-structures are described, followed by a detailed
overview of the individual processing phases. The anatomy of the feature
association function, as well as a list of available functions are reported.
The possible modes of traversal within the generated output data-structures
will be discussed. Finally the suitability to execute the feature association
computation within a distributed environment is demonstrated.

66 a feature association framework for knowledge discovery applications

ConVguration & Design Decisions

Derived from the real-world use cases the development of the
feature association framework is guided by a list of 10 design
decisions. These are made explicit in the following section.

Complexity of the ConVguration

The feature association framework oUers an array of possible way on how
features are put in relation to each other. This Wexibility is necessary to
allow the framework to be used in a wide spectrum of knowledge discov-
ery applications. The diversity of applications is coupled with a variety of
possible features and characteristics. In order to oUer a uniVed approach to
calculate and analyse the features associations, the conVguration settings
must be as able to cope with this Wexibility. Depending on the actual ap-
plication and data-set, the framework can be adapted at various levels. For
the majority of real-world scenarios the task of conVguring the framework
should be as simple as possible. If the application is more demanding in
its requirements, then deeper knowledge of the internal workings of the
framework needs to be assumed.

Design Decision 1 To conVgure and apply the feature association frame-
work it should be easy for simple tasks and possible for complex tasks.

According to this decision the input data-structure, the output data-
structure and the conVguration need to be deVned.

Input Data-Structure

At Vrst the input data-structure for the feature association calculations
should be found. A number of requirements serve as starting point for the
decision, which data-structure is best suited to represent the features of a
data-set.

• This data-structure should be Wexible to allow a wide range of diUerent
features to be processed.

• There should be no limitation on the size of the input data, to allow even
large scale data sets to be analysed.

• The input data-structure should be conceptually simple and easy to use.
The last requirement on the data-structure is rooted in the motivation
that the framework should be easy to adapt and integrate into existing
knowledge discovery solutions. Therefore it should be possible and
suXciently easy to transform any existing data-structure to a represen-
tation which can be immediately used as input for a feature association
calculation.

The Vrst requirement certainly is the hardest to fulVl, and appears to
contradict the requirement, that the input data-structure should be easy
to understand and to use. The data-structure has to be generic and should
not pose too many restrictions on way features are represented. When
considering all these requirements, the graph data-structure appears to be
suitable to model the input of the feature association calculation.

Design Decision 2 The input data-structure for the feature association
calculation is a graph. Each node and each edge in this graph may carry any
number of additional meta-data, for a example a weight.

concepts 67

This data-structure is consecutively referred to as feature input graph.
The framework poses no restrictions on the properties or the size of this
graph. It is expected that in the most cases this graph will be an n-partite,
weighted and directed graph157. As this type of graph is the most commonly 157 The input data-structure of many

existing machine learning algorithms can
be directly transformed into this kind of
graph.

used as input to calculate the feature associations, this type will be used to
describe the conVguration of the role mappings.

Example: When computing word co-occurrences, the documents are
represented as nodes in the input graph. The words within these documents
are as well represented as nodes. Each occurrence of a word within a
documents yields an edge between the corresponding nodes.

Role Mappings The next required step to adapt the framework for the
problem at hand is the mapping of the nodes in the feature input graph to
a set of predeVned roles. By using roles and a mapping of these roles to
the input data-structure a decoupling of the semantics from the data itself
can be achieved. This is done because there should be as little limitations
as possible on how the input graph is structured. The downside of this
approach is the need to separately deVne which nodes are assigned to the
speciVc roles.

The roles present the diUerent types on how a node is interpreted and
processed by the framework. For the input graph, these roles for the nodes
are deVned:

Source Feature All nodes that are assigned to the role “Source Feature” are
treated as origin of a feature association relation. Starting with a single
source feature node the algorithm will traverse the input graph to Vnd
associated features.

Target Feature The “Target Feature” nodes are candidates for targets of a
feature association. Only nodes marked as target feature will be included
in the calculation of possible matches for a given source feature.

Instance All nodes mapped as “Instances” are used to Vnd connections
between the source feature nodes and the target feature nodes. Only
pairs of source and target feature nodes that share at least a single
instance node are considered as candidates to be associated. Many
functions that calculate the weight of an association take the number of
shared instance nodes as an evidence of the strength of the association.
The term “instance” is chosen because in many cases the nodes that are
mapped to this role represent individual instances within the original
data-set158. 158 The term “connector node” would also be

suitable as it describes the function of these
nodes, but it is assumed that the developers
of knowledge discovery applications are
more familiar with the concept of an
instance.

Each node can be assigned to one or more of the three roles. Typically
this mapping is not done on the node level, but on partitions of the graph.
For example a tripartite graph can be mapped to the three roles by assigning
each of the three partitions to one of the roles.

A typical knowledge discovery application operates on a data-set that
consists of a set of instances and one or more feature sets159. The natural 159 Alternatively the term feature space can

be used as label for all features of a speciVc
type.

mapping of such a data-set is to build a feature input graph, where each
instance and each individual feature is represented by a single node. For
each occurrence of a feature within an instance, the two corresponding
nodes a connected via an edge. If the occurrence is annotated with an
weight, this weight is then attributed to the edge. Other meta-data can
also be directly added to the edge and is made available to the algorithms
responsible to calculate the associations between the features.

Example: To compute word co-occurrences within documents, one
may start with a bi-partite graph where documents are nodes from one
partition and word make up the other partition. The Vnal goal is to Vnd
associations between words based on the frequency they appear jointly

68 a feature association framework for knowledge discovery applications

within documents. Here the nodes which represent words are mapped to
the source and target feature roles. The document nodes are mapped to
the instance role. In the process of feature association computation all the
word nodes that are connected via at least a single document node are then
candidates for feature associations.

Output Data-Structure

For the output data-structure the requirements are similar to the input
feature graph. The framework should be able to oUer a wide range of
possible output representations. It should be possible to enrich feature
associations with additional meta-data.

In the most basic conVguration a feature association is simply a tuple
of two features and an optional weight. More complex application are
more demanding and require a richer set of output data. For example it
should be possible to model a conditional feature association, where a single
association depends on an external state or context.

Design Decision 3 The output data-structure for the feature association
calculation is a directed graph. Each node represents a feature and each
edge represents an association between features. Edges may carry a weight,
which encodes the strength of the association, and may be annotated with
meta-data.

This data-structure is named output feature association graph in the
following sections.

Role Mappings As with the input graph, there are also a set of roles for the
output data-structure:

Source Feature A nodes marked as source feature serves as the tail of an
directed feature association edge. If the feature association network is
traversed, it may only start at an node mapping with the source feature
role.

Target Feature The head of a feature association relation is marked as tar-
get feature node. Starting with a source feature, all edges are connected
to a target feature node.

In contrast to the roles of the input feature graph, the rules of the output
graph do not need to be externally mapped. There is no need to conVgure
these roles within output graph because there is a direct relationship be-
tween the feature nodes of the two graphs. Each feature node in the output
graph usually corresponds to a single node in the input graph. In a more
complex application setting there might not be a direct relationship between
the nodes of the input graph and output graph. For example multiple target
features in the input graph are merged into a single feature node in the out-
put graph. Still even in such a scenario the roles are assigned by the feature
association algorithms and there is no need for an additional conVguration.

Example: In the case of word co-occurrences the output graph solely
consists of nodes which represent words. The document nodes of the input
graph are no longer needed in the output data-structure. As for the roles,
in the output graph each nodes is both a source feature, as well as target
feature. Hence, a single word may serve as source or as target of a feature
association.

Contextual Features Besides nodes that represent the source and target
features, the output feature association graph may also contain additional
nodes. The semantics of these nodes depends on the application and the

concepts 69

custom processing steps. This is common for applications that use a set of
nodes to represent some sort of context. Examples for contexts are temporal
or causal relationships between the feature associations. The presence of a
third feature in combination with a source and a target feature could also
serve as a context.

Feature Association Function

The overall task is to Vnd which features are associated with each other. In
the most cases this relationship is not binary. There should also be weight,
which represents the strength of the association relation. An example of
such weight is the similarity of two features according to their distributions
over the instance nodes.

The selection of which function should be used to calculate this weight
depends entirely on the application. Because of the wealth of possible
association functions, the limitations imposed on these function should be
minimised. Any restriction on the way which functions might be used to
calculate the weight between features directly harms the general usefulness
of the whole feature association framework. Therefore the algorithms
should be open to allow a wide range of feature association functions.

On the other hand, the computation of the association weight should
be as eXcient as possible, as the execution time of this function has a huge
inWuences on the run-time of the whole process. The feature association
function is invoked for all pairs of features and as any feature might be
associated with all other features in a data set, the run-time complexity is
bounded by On2 for n being the number of features. Therefore any long
running operation is therefore prohibitive for most of the real-world data
sets.

For example a feature association function that queries an external
resource160 for each pair of features will usually yield a bad execution 160 For example a complex look-up in a

databasetime. To resolve the conWict of eXcient computation and the possibility
to incorporate additional information into the computation of feature
associations, strategies to combine these requirements have to be developed.

Starting point for the eXcient integration of complex association func-
tions is the observation that in many cases the individual factors that
contribute to the Vnal association weight only depend on one of the two
features. If the feature association function can be decomposed into a
form, where the majority of factors depend only on a single feature, the
computation be done for more eXciently. By following this approach the
upper bound of the run-time complexity is decreased to O2n, which can
be considered an remarkable improvement, especially for feature rich data
sets. The second advantage of this approach is that it allows to pre-compute
many of the factors in advance, as they no longer depend on the dynamic
relationship between features. Factoring out parts of the computations oUers
a number of advantages:

• By computing some of the factor in advance, the operations can be
executed in bulk. Many systems can be more eUectively used if the
operations are not invoked individually, but if many operations of the
same kind are bundled into one big operation. This is the case for many
database systems, which the query execution plan has to be scheduled
and locks need to be setup to ensure atomic access for any operation.

• Because of the fact that the computation of a single factor and the
computation of the whole association weight is decoupled, the execution
sequence of the factor computations can be reordered. In many cases
a sequential access to the data is far more eXcient then a random on-
demand access. This behaviour is rooted in the way contemporary
computer systems are build. As the data is accessed in the same sequence

70 a feature association framework for knowledge discovery applications

as it is stored, many caching and read-ahead mechanisms are exploited
to ensure an optimal run-time behaviour. Thus a carefully crafted
application will make use of the full potential of modern computing
architectures by choosing the matching execution strategy.

• In a distributed scenario the communication overhead might become the
major limitation. This is one of the reason why all necessary calculations
should be executed as early as possible. An application that is fully
deployed and executed on multiple nodes within a parallel execution
framework, needs additional synchronisation to avoid overlapping and
redundant calculation might lead to reduced performance161. If the some 161 This phenomena is usually referred to as

starvation.of the factors of a feature association function are pre-computed, no such
synchronisation is necessary. The pre-computed data just needs to be
distributed to all participating execution units and made available for the
association function.

The decomposition of the association function and pre-computing of
selected factors not only positive side eUects. There are downsides to the
approach which are twofold:

1. All feature association functions need to be decomposed into indepen-
dent factors. This might be a tedious work for some functions, and even
impossible for other function. For users not familiar with the inner work-
ings of the feature association framework and not aware of the involved
performance issues this could prove be a hard task.

2. There is a risk of pre-computing too many factors. For some feature
association functions not all factors are needed for any given pair of
features. If the factors are pre-computed there is no way to know in
advance which factors are consecutively needed. Thus the computation
and the distribution of these factors could be spared if the factors were
computed on demand.

To overcome the Vrst disadvantage, the framework provides a number
of already decomposed feature association function. A wide array of
various similarity function, statistical tests and entropy measures have
been transformed into a representation usable for the feature association
framework and will be discussed in detail later in this chapter.

Design Decision 4 For each pair of source and target features a weight
can be calculated. The function to calculate this weight should be Wexible
and eXcient at the same time. To optimise both contradicting goals, the
function should be decomposed into various factors, which can individually
computed eXciently. A set of common feature association functions are
already provided by the framework by default.

The decomposed form of the function which calculates the association
weight between two features is called feature association function.

Example: In the case of word co-occurrences, the conditional probability
might be an appropriate choice. The feature association weight between two
words would then be the occurrence probability of the target word, given
the source word already occurs in a document.

Heuristics

For large data-sets with many features the computation may take a long
time caused by the huge amount of potential feature associations. Fortu-
nately most of the real-world applications do not require an exhaustive
list of all associations. Many relationships might be spared as they not
contribute much to the Vnal result. Only the associations with the highest

concepts 71

association strength are needed as one can assume that they already capture
the most relevant information.

In the general case, there is no way to know which associations are
the most relevant in advance. Still one may apply some strategies, like
for example some feature might be excluded entirely from the feature
association calculations. Rare features and high frequent features are
candidates to be pruned, as they tend to carry little statistical evidence.

The actual pruning strategy and the employed thresholds depend on
the application and the data set. For similar features that represent similar
properties one can reuse the same threshold for multiple scenarios.

Design Decision 5 The feature association framework should be equipped
with facilities to prune the feature input space. This should reduce the exe-
cution time while not aUecting the usefulness of the results. To achieve an
optimal compromise the feature association framework should provided
ways to Vne-tune the pruning steps. For common feature types the frame-
work should provide a set of predeVned thresholds to lessen the burden on
the conVguration eUort.

Example: For word co-occurrences it might not necessary to include
words which only serve a grammatical purpose, for example “the”, “for”,
“and”. Therefore these words might be skipped all-together. As these words
are also among the most frequent, as simple heuristic can be applied, which
help to reduce the computation run-time without hurting the quality of the
results.

Additional Customisation

For more demanding application scenarios the need arises to further tweak
the default behaviour of the feature association computations. For example
an application might choose that the output feature association graph
should contain not a single target feature node for each input node, but
multiple nodes. This is might be motivated to capture diUerent aspects of a
feature, which is the case for many real-world data sets.

To make a full customisation possible, the framework allows advanced
user to inject additional algorithms into the processing pipeline. Because
the need for complex task is regarded as needed only for a minority of use
cases, it is completely optional. If such customisation is required a deep
understanding of the inner workings of the framework is a prerequisite.

Design Decision 6 For the majority of use cases, the conVguration should
be easy. For complex applications that require a specialised processing, it
should be possible to customise the algorithms and add application-speciVc
processing steps. Therefore the feature association computations should
support additional custom processing steps within the execution of the
calculations.

Example: For the computation of word co-occurrences one might want
to add an processing step for each word, for example apply a unsupervised
machine learning algorithm. For example, all documents in with a source
term occurs in might be clustered to Vnd separate, distinct topics. Then the
word co-occurrences are speciVc to these topics.

Summary of the ConVguration

To demonstrate the necessary conVguration eUort, two extreme scenarios
will be given. The Vrst scenario requires minimal eUort and represents the
majority of real-world use cases. Thereafter a more complex scenario will be
presented, which requires a more demanding conVguration assembled by an
expert user.

72 a feature association framework for knowledge discovery applications

Simple ConVguration For the most basic conVguration only a minimal
number of parameters are to be conVgured:

• Input Feature Graph: The application has to supply an input graph, and
an additional role mapping. For each of the three input roles there should
be a set of nodes (source features, target features and instances).

• Feature Association Function: The application may supply a function
to calculate the feature association strength. If the application does not
set a association function, a fall-back function will be used instead.

• Output Feature Association Graph: There is no need for any conVgu-
ration of the output graph. The output role mappings are inherited from
the input graph.

• Pruning Heuristics: As the framework is equipped with a predeVned
set of pruning strategies and thresholds for many typical features, the
default setting are already suXcient for the basic use-case.

• Additional Customisation: There is no need for additional processing
steps with the exception of the most complex application scenarios.

No intimate knowledge of the internal workings of the framework is
needed in order to calculate feature associations. Additional insights into
the characteristics of the features and their distribution with the data-set
will help to Vne-tune the calculations. The selection of the matching feature
association function is relevant to uncover the signiVcant relationships
between the features and detect latent structures. The eUects of the pruning
strategies will also help to improve the run-time eUectiveness. Nevertheless,
in an simple application setting even a novice user will generate useful
results. An expert user will be able to tune the calculation for optimal
results.

Complex ConVguration For large data-sets with complex relationships
between features, a higher conVguration eUort will be needed in order to
obtain the desired results.

• Input Feature Graph: Even for complex data-structures the transfor-
mation into a graph like representation is feasible. As in the simple
conVguration example, the nodes of the input graph are mapped to
one of the input roles. The cardinality between nodes and roles is a
many-to-many relationship for maximum Wexibility.

• Feature Association Function: In a complex scenario none of the
predeVned feature association feature might match the requirements.
Therefore a dedicated association function needs to be deVned and
decomposed into a form suitable for the feature association calculations.
Depending on the actual association function the decomposition step is
either trivial or a more demanding challenge.

• Output Feature Association Graph: Even for a highly complex scenario
there is generally no need to change the representation of the Vnal
feature associations. The graph data-structure itself is very Wexible and
can be traversed in multiple ways162. Additionally nodes and edges in 162 Depending on the customisation, the

output feature association graph can also
represent a hyper-graph.

the output graph might be supplemented with additional meta-data.

• Pruning Heuristics: Dedicated heuristics might be necessary for features
with properties that deviate from the most common feature types. Users
that wish to implement their own pruning strategy should be aware of
the complex implications that might be caused by leaving out too many
features.

concepts 73

• Additional Customisation: If needed, users may inject additional
processing steps for individual calculations. There custom methods
not only control, which algorithms are applied on the data, but they
may also manage the output of the feature association calculations. For
example a custom implementation might choose to add new roles into
the output graph. The customisation of the feature graph generation
make it necessary to also adapt the traversal of the output data-structure.

All these task require knowledge in the area of graph structures and
special focus should be kept on the performance implications while working
with large data sets. To sum up, the conVguration setting of the feature
association framework are fairly trivial for simple use-cases and complex,
but still manageable, for complex applications.

Building the Feature Associations

After the conVguration setting have been deVned, the actual execution
of the feature association calculation need to be speciVed. Because of the
required Wexibility a monolithic approach does not seem to be optimal strat-
egy. Therefore a modular and Wexible design is appears to be mandatory for
complex tasks, like the the association computations.

Design Decision 7 The whole process of analysing and calculating feature
associations is executed as a sequence of phases. Each of these phases
servers a single dedicated goal.

Recently many system architects have changed their strategies to achieve
higher performance and throughput. Instead of relying in the increase
in speed of a single, central processing unit, strategies to exploit multiple
execution units have been studied. Hence, it appears to be reasonable to
follow this stream of research in execution environments where multiple
execution units are utilised at once. The actual phases and their purpose is
described in detail later in this chapter.

Design Decision 8 Execution of the phases should be done in parallel as far
as possible to allow eXcient calculations.

As alternative to pack multiple execution units into a single computer
is to use multiple computers wired together via network components. This
execution environment is complex to set up and to manage. Furthermore
applications and algorithms need to be developed in a way to account for
the parallel execution on multiple separate computers.

Design Decision 9 The architecture of the framework should allow the
calculations to be executed in a distributed environment.

An user of the feature association framework does not need to know the
internal workings of the algorithm for many typical application scenarios.
If the user wishes to customise the calculations, the same requirements that
were used to design the algorithm should also apply on the customisations.

Retrieving the Feature Associations

The Vnal component of the feature association framework is the component
to retrieve information from the generated output data-structure. This
module is responsible to traverse the output feature association graph. As
with building this graph, that actual retrieval operation to a high degree
depends on the application as well the data set. In a simple scenario the
application starts at a start node and wants to collect all nodes directly
connected with the start node. More complex scenarios might involve more
sophisticated traversal strategies.

74 a feature association framework for knowledge discovery applications

Design Decision 10 The feature association retrieval component should
allow the traversal of the output feature association graph. The start node
for the traversal can be determined by the application. Additionally the
traversal mode itself is not restricted by framework. A number of common
traversal modes should already supplied by the default implementation.

For most of the common real-world applications the supplied modes
of traversal are suXcient. There is no need for the user to gain a deep
understanding of the output data-structure. With rising demands the
complexity also increases and thus for some applications a customised
traversal of the output feature association graph is required.

Example: In the case of word co-occurrences, complex traversal strate-
gies do not appear to be necessary. In the most cases one is only interested
in the words with the highest association weight. Therefore the output
graph needs to traverse only from the starting to to all directly connected
target nodes and sort these according to the association strength.

concepts 75

Calculate Feature Associations

The feature association calculations are executed in a sequence
of distinct phases, where each processing step serves one dedicated
purpose.

Overview of the Processing Stages

The algorithm to process the features are done in a sequence of 7 phases.
These phases are designed to allow decoupling of the individual processing
steps and to keep dependencies low. Furthermore it is motivated to allow
the whole process to be executed in parallel. Because if two or more process-
ing steps are tightly coupled these no longer can be eXciently be executed
independently from each other. Complex dependencies, especially if they
contain cycles, severely aUect an algorithms ability to scale to large data sets
and multiple execution units.

The relative importance of each phases may diUer depending on the
type of application. The execution order of these stages is common to
all application scenarios. The exact calculations done within each of the
phases may depend on the desired selection of the algorithms applied on the
input features. For example diUerent machine learning approaches can be
integrated. Either supervised methods if manually annotated training data is
available, or unsupervised approaches for unlabelled data.

The individual processing phases of the feature association framework
are:

Preprocess Reads in the input data and prepares the data structures
and execution environment. Depending on the size of the data and the
number of features types diUerent execution strategies are evaluated.
Additionally caching data structures are pro-actively Vlled163. 163 On contemporary computer hardware an

optimal pre-heating strategy is important to
keep the data locally - on the same cluster
node as the calculations are done and
optimally stored within the fast random
access main memory

Prune Apply heuristics on the features to Vlter out noise. To keep the
execution time as low as possible, the majority of unwanted input data
should be Vltered out in an early processing stage. The actual heuristics
largely depend on the data. For textual features (words, stems, ...) derived
from human language these heuristics exploit the well-known statistics
of word frequencies (e.g. Zipf’s law, Heap’s law, ...).

Analyse Gather detailed statistics of the feature distributions over all
the instances. To collect the global statistics all the input data must be
available, thus this step cannot be eUectively executed in a distributed
manner. Therefore this step is executed before the feature association
are calculated. The main advantage over of collecting the statistics on-
demand is the fact that this kind of operation usually beneVts greatly
from batch operation. Thus the overall eXciency rises if the global
statistics are computed once as one of the initial steps.

Collect Iterate over the instances and collect all the features while apply-
ing local weighting strategies. In contrast to the global statistics phase
starting with this step all further calculations can be done in an dis-
tributed execution environment. The focus of locality in this step are the
instances164. For all instances their features are analysed, collected and 164 Locality of reference and sequential

access are among the major impact factors
on the run-time of an algorithm, especially
when dealing with huge amount of data.
Both factors are not reWected in the bigO-
notation, but in an practical application
scenario their inWuence on the run-time
must no be neglected.

weighted according to a local weighting scheme. The collected weighted
features and then fed to the next processing step.

Sort The collected features are sorted according to an internal sorting cri-
terion. The previous processing step produces a collection of weighted
features in a sequence according to the instance sort order. In this phase
the locally weighted features are rearranged and sorted165. The motiva-

165 There exist many sorting algorithms with
diUerent characteristics. For this task the
algorithm must have the ability to scale
with the number of features, instances and
parallel execution environments.

tion for this operation is to arrange the data in such a way that it can

76 a feature association framework for knowledge discovery applications

be consumed by the succeeding calculations in a streaming, sequential
manner.

Associate Starting with a single feature the association weights with all
other connected features are calculated. The input for this step are the
sorted features combined with adorning data. In this stage the main
calculations are performed and it is of paramount importance that all
necessary data166 is readily available and provided by the framework. 166 The algorithm might need the local

feature weight, statistics or external
information

As diUerent applications yield diUerent demands, the actual imple-
mentation of the core algorithms in this phase will vary. Two main
modes of operation are presented, the Vrst scenario where feature as-
sociation are build on a global level and a more complex scenario that
involves additional, more sophisticated, computations.

Global Associations The relationship of the source and target features
are calculated based on all instances within the data set.

Contextual Associations The set of instances is restricted by a list of
contexts. Where a single context is deVned by the presence of a target
feature within an instance. These contexts can be further processing
by two approaches:

Local Associations The source features are associated with diUerent
aspects of the contextual target feature.

Recursive Associations The context is recursively processed and
associations are build based on a subset of instances.

The output of this stage are the Vnal feature association, again sorted in
the sequence according to a deterministic sort criterion.

Store The result of the calculations are stored in a data structure suitable
for fast retrieval. As the stream of feature associations is produced by
the preceding phase these results must be transformed into a dedicated
data structure and stored. After all association have been calculated the
resulting data structure can be eXciently traversed and searched.

Each of these distinct processing phases will be described in detail the
following sections. To demonstrate the inner workings of the algorithms and
data structures a simple example is presented, see Vgure 9. This example
shows a simple graph of three instances and two features sets. The Vrst
feature set (on the left side) contains of four feature values and the second
of two features (right of the instance nodes). Furthermore it is assumed that
the Vrst feature set is conVgured as source and the second of target feature
set. At the end of the processing all associations have been calculated
between all source features and all target features. See Vgure 13 for the Vnal
association network.

InstancesFeature Space I Feature Space II

Instance1

Instance3

Instance2Source Feature2

Source Feature3

Source Feature1 Target Feature1

Source Feature4

Target Feature2

Figure 9: Sample graph, which contains
of three instances and two separate
feature spaces. For example “Instance 2” is
associated with three features, two from the
Vrst feature space and one from the second
feature space.

concepts 77

Execution Order of the Phases

These processing phases will be executed in a Vxed sequence. When viewed
from the perspective of a single feature association computation, each phase
will logically only start if the directly preceding phased has been completely
Vnished. A simple implementation of the algorithm might choose to not
allow two phases to be active at the same time. Up to the sort phase each
phase cannot be started as long as the previous phase has not Vnished. A
more sophisticated implementation might choose to deliver the sorted
results on the Wy and fed them iteratively into the input of the association
phase. Results from the association phase can then be stored as soon as the
pairs of features have been completely processed.

In Vgure 10 the individual phases and their exemplary execution se-
quence is depicted. Most of the phases allow an implementation to choose
a distributed computation of the results. In this example the Vrst three
phases are executed sequentially and the consecutive phases are executed
on multiple execution units. The output of the analyse phase is distributed
to multiple execution units, which collect and calculate the local association
independently from each other. To achieve the a parallel execution scheme
the input feature graph is partitioned into sets of instances. The results of
the collect phase is Vrst sorted locally and then the MergeSort algorithm
is applied to reorder the data-structures. The reorders data structures are
partitioned into sets of target features and distributed among the feature
association workers. The associations are then Vnally collected, merged and
stored to build a single feature association graph.

Preprocessing Phase

Before any data can be processed, the actual settings and conVguration
parameters for the feature association calculation must be parsed and
validated. Any inconsistencies in the data, or failed preconditions for the al-
gorithms should be discovered as early as possible. This is especially true for
calculations on big data sets as may need several days to process and hence
cannot be repeated several times. Because of the required Wexibility, there
are also many causes which might trigger problems in the computations.
Unfortunately many of these settings also in part depend on the actual data
being processed.

One cause of such a conVguration problems are unsuitable thresholds
for the heuristics used for frequency based feature pruning. Because of
the nature of such approaches and their tight coupling with assumed
feature distributions, they may cause excessive pruning or no pruning at.
This might happen if the data set does not match the assumptions. Such a
situation should be detected in the preprocessing stage and the user should
be informed that the current pruning conVguration might not match the
data.

Other problems might arise if there is insuXcient storage space available
or other requirements on the execution environment are not met. Again, the
possible cause of errors should be identiVed and reported to the user as soon
as possible.

After successfully validating the conVguration settings the execution
infrastructure is set up. Depending on the actual settings and the structure
of the data, diUerent execution strategies might be employed. For small
data sets the executing of the computations can be done on one machine
using only a single thread. This type of execution strategy is the most
eXcient way because there is no communication overhead as the data
does not need to be transferred via the network. Additionally there is also
no synchronisation bottleneck because the data is not shared between
processes or threads. Unfortunately this approach does not scale with the

78 a feature association framework for knowledge discovery applications

Preprocess Phase

Prune Phase

Analyze Phase

Collect Phase

Sort Phase

Associate Phase

Store Phase

Partition Data-Structure by Target Feature

Partition Input Graph by Instance

Gather Statistics

Associate Featuresn

Apply Pruning

Preprocess Data− Set

. . .Sort Locally2Sort Locally1

Store Assocationsn

Reorganize Data

Collect Featuresn

Associate Features1 . . .Associate Features2

Input Feature Graph

Store Assocations2 . . .

Output Feature Association Graph

Store Assocations1

Sort Locallyn

MergeSort

Collect Features1 Collect Features2 . . .

Figure 10: Typical execution order of the
phases starting with a feature input graph.
Most of the phases may be executed in
parallel on multiple execution unit. In this
example starting with the collection phase
all calculation are conducted partly in
parallel. The MergeSort algorithm serves
as synchronisation point. Finally a feature
association network is created. See Vgure 9
as an example of an input feature graph and
Vgure 13 for an example feature association
network.

concepts 79

size of the data. Therefore for bigger data sets diUerent more complex
types of execution strategies need to be developed. For huge data sets the
computation is done in parallel on multiple machines using a dedicated
cluster management solution and a distributed Vle system. Table 9 gives an
overview of the main characteristics of various executing strategies that can
be chosen according to the size and the complexity of the data set and the
features.

Data Set Size Execution Units Parallelisation Data Storage Overhead

Small Single Machine Single Thread Local None
Medium Single Machine Multiple Threads Local Synchronisation
Large Multiple Machines Multiple Processes Centralised Network Communication
Huge Multiple Machines Multiple Processes Distributed Cluster Management

Table 9: Overview of possible execution
strategies for data sets of diUerent size. For
larger data sets the complexity and the
overhead of the execution infrastructure
rises.

Regardless of the chosen type of execution strategies, the execution
environment must be prepared for each unit. The data-structures for
the algorithms also need to be allocated and initialised. To improve the
performance of the feature association computations, the data might be
reorganised to optimise the access times167. At the end of the preprocessing 167 The operating system can be instructed

to cache the necessary data to allow faster
retrieval.

phase the conVguration settings are validated, the matching execution
strategy is selected and all data-structures are prepared.

Pruning Phase

The pruning phase is very important to prevent the combinatorial explosion
of feature associations which would make the calculations intractable.
Although the pruning step does not directly alter the upper bound on the
computational complexity168, the eUective run-time of the calculations 168 The big Onotation remains the same

as a whole can be massively aUected by cutting away parts of the feature
space. In order to achieve this, the feature selection process itself must not
be associated with high computational costs. The main challenge is to Vnd
the sweep spot between the run-time improvements gained by the reduced
feature space and the decrease in completeness of feature associations.

There is no general way to select the optimal strategy a-priory and
there is not a single threshold which suits all application scenarios. To
achieve this one would need the complete output of the calculations to know
which associations are of lesser importance, while the notion of importance
depends on the actual application setting. For example, variations of the
stepwise regression algorithmic approach169 cannot be applied in this 169 N. Draper, H. Smith, and E. Pownell.

Applied regression analysis. Wiley New
York, 3rd editio edition, 1998

setting, because of the associated run-time costs. Therefore one has to resort
to heuristics as an alternative. The downside of using heuristics is that most
of them depend on the data and the distribution of features.

Especially if the number of features is very high, one might want to
apply strategies to reduce the number of features. Due to the nature of most
of the feature selection approaches (See page 53) they cannot be integrated
directly into the pruning phase of the feature associations calculation.
These algorithms are often based on the assumption that features carry
redundant information and at least in part depend on each other. These
redundant features are assumed to be superWuous features and are selected
as candidates to been thrown away. But the goal of feature associations is to
analyse and extract the interactions between features and therefore the such
a pruning approach might introduce an unwanted loss of relevant feature
associations.

Feature selection approaches, which are not based on this assumption,

80 a feature association framework for knowledge discovery applications

appear to be more suited. For example, pruning strategies based on feature
frequencies. Additionally the frequency based methods generally provide a
much better run-time complexity and scale well to large data sets.

Common pruning heuristics for textual features include the removal
of common words, infrequently used words, number and other words
that do not carry semantics. Meta-data that usually accompanies digital
documents diUers from features that represent natural language. Examples
for such meta-data are author names, organisation names and creation dates.
DiUerent pruning strategies need to be developed for these kinds of features
in order to be eXcient.

At the end of the pruning phase all features have been Vltered out that do
not contribute to the Vnal results but cause a lot of unnecessary calculations.

Analysing Phase

After the features spaces have been preprocessed and various pruning
strategies have been applied, all individual features values are analysed.
This analysis is conducted not on single instances, but on the data set as a
whole. This corpus wide statistics are therefore also named global statistics
(opposed to local statistics). Global statistics play an important role in many
knowledge discovery algorithms, for example in the Veld of information
retrieval 170. 170 I. Ounis, G. Amati, V. Plachouras, B. He,

C. Macdonald, and C. Lioma. Terrier: A
high performance and scalable information
retrieval platform. In Proceedings of OSIR,
volume 2006. Citeseer, 2006

The global statistics need to be completely calculated prior to any fea-
ture association processing. This requirement is derived from the need to
be able to parallelise the consecutive algorithmic steps. After the global
statistics have been gathered, the data set can be processed in a completely
distributed manner.

Depending on the type of features and the association function, diUerent
statistics need to be provided. Therefore the set of statistics to calculate
needs to be known to the framework. This information may be deduced
from the chosen feature association functions in the majority of cases.

Additional to the feature value statistics, other characteristics of the data
set are gathered in this phase. The properties of the instances can also be
aggregated as they may contribute necessary information for the feature
association algorithms.

External knowledge about the feature values is also collected in the
analysing phase. For example external databases are queried to collect the
necessary information for the feature association computations.

The most common global statistics for feature values and the characteris-
tics of the instances within a data set are:

Instance Count Number of instance within the data set. The amount of
instances can be used as proxy for the total size of the data set. It can be
used as base to determine how many execution units should be spawned
in order to process the data set. Additionally the instance count measure
is often used by algorithms in combination with other statistics.

Instance Frequency The number of instances a single feature value is
referenced. This number is probably the most common global statistic.
In combination with the instance count it is used to calculate the inverse
document frequency (IDF). The IDF represents one part of the TFIDF
weighting scheme171, which has been regarded as the state-of-the-art

171 G. Salton and C. Buckley. Term-weighting
approaches in automatic text retrieval.
Information processing & management,
24(5):513–523, 1988

weighting scheme in information retrieval for a long time.

Average Instance Length The arithmetic mean of the number of features
per instance. Many algorithms base their calculations on the probability
of a feature to occur in the context of a single instance. With the number
of features occurrences per instance this probability also tends to rise,
at least for many common real-word datasets and of course for the

concepts 81

theoretical random case.

Variance & Dispersion If the edges within the input graph is equipped
with additional meta-data, statistics based on these adorning information
can be generated as well. For meta-data which represent numbers, the
variance of the values can be computed. For example for textual features
a meta-data value may reWect the number of times a speciVc word occurs
within a single instance document. The variance then might be suitable
to distinguish between words of varying importance to the knowledge
discovery application.

Position The individual position of an occurrence of a feature within an
instance is used by many feature association functions. This information
might not be available for all types of features. For textual features the
position is derived from the ordered sequence of words within a text.
Depending on the preprocessing this might also include stop-words and
punctuation. The data-structure that hold this kind of information must
be capable of dealing with multiple values as a word may occur multiple
times within a text.

Given the position information of a sequence of features a sliding
windows technique can be applied. Using this scheme each features
is processed together with its the surrounding context. Features that
occur close to each other also tend to be strongly associated. Based on
this intuition multiple applications of feature associations have been
described in the literature172 ,173 ,174. 172 H. Schütze and J. Pedersen. A

cooccurrence-based thesaurus and two
applications to information retrieval.
Information Processing & Management,
33(3):307–318, May 1997
173 B. Lemaire and G. Denhière. Incremental
construction of an associative network from
a corpus. In Proceedings of the 26th Annual
Meeting of the Cognitive Science Society,
pages 825–830. Citeseer, 2004
174 E. Terra and C. L. A. Clarke. Frequency
estimates for statistical word similarity
measures. In Proceedings of the 2003
Conference of the North American Chapter
of the Association for Computational
Linguistics on Human Language Technology
- Volume 1, NAACL ’03, pages 165–172,
Morristown, NJ, USA, 2003. Association for
Computational Linguistics

The position information not only provides a means to improve
the quality of the results, but it also provides means to improve the
run-time. Pairs of features that co-occur within the same instance, but
their respective positions are far apart are candidates to be left out of
the feature association calculations. The cut-oU distance between two
features can be used to tune the desired behaviour - a low threshold for
faster computations or a high threshold for a more complete result. The
optimal value depends on the available processing resources and on the
data set, in particular on the average instance length. Window sizes of 2,
5 and 10 words around a target word are most common settings in the
literature to calculate term co-occurrences.

Sophisticated feature association function do not only exploit the
distances between the occurrences to apply a cut-oU scheme. The relative
distance of two occurrences may be also integrated into the weighting
scheme.

At the end of the analysing phase a dictionary of all feature values of
all feature spaces are build. This look-up data-structure contains the global
statistics and provides methods to eXciently retrieve them. Copies of this
dictionary are provided to all units within the execution environment to
enable a fast access to the needed information in the consecutive phases.

Collect Phase

The goal of the collect phase is to reorganise the data set. Prior to this
phase the data set is sorted by instances, at the end of the phase data-
structures are produced which are ordered according to the target feature.
This data-structure not only contains the target feature, but also a reference
to the instance and all co-occurring source features. Additionally a local
association weight is calculated for all feature combinations. The design
of the algorithm to collect the target features is motivated to allow an
sequential access to the data-set. This is especially crucial in a distributed
environments, where the data is transferred in a streaming manner.

Starting with the collect phase all computations can eUectively been
executed in parallel. Only subsets of the complete data set are available after

82 a feature association framework for knowledge discovery applications

the global statistics have been gathered. These statistics are distributed to all
executing units prior to the collecting phase for faster access.

All instances of the data set are separated into smaller sub-collections
and then sent to one of the execution units. The decision which instance
to include in a speciVc collection is done by the execution framework. The
basic implementation of such a dispatching functionality simple iterates
over all instances in the data set. As soon as a Vxed number of instances
have been collected, these instances are submitted to an (idle) execution
unit. When processing huge data sets this naive algorithm does not pro-
vide the optimal throughput. The locality of the data within a distributed
storage system should be one of the deciding factors on how to manage the
workload.

After a sub-collection is assigned to a single execution unit, the instances
within the collection are sequentially processed. The main task of this
processing phase is to collect all relevant information for each instance.
Depending on the actual conVguration, diUerent feature types may be
selected as either source or target (or both). The input for the feature
collection is an unordered set of features associated with an instance. Each
of these features is connected to the instance via a relation. This relation is
assigned to one of the feature types and may contain a weight. Additionally
each relation may also carry meta-data, for instance a position information.

The collection of features starts by retrieving the list of target feature
types from the conVguration. Starting with the Vrst target type all assigned
source feature types are processed. This is accomplished by a look-up in the
conVguration to acquire the list of source feature types for the current target
type. The source feature type list is iterated and all features of the matching
type are collected. This collection of source features is then combined with
all target features of the current target type. Then the combined result for
each target feature is reported to the framework. These steps are repeated
for all conVgured target types. Algorithm 2 demonstrates the processing
steps of the collection phase in pseudo code.

In Vgure 9 a small sample graph is depicted which serves as an example
to illustrate the reordering of the input graph. The output data-structure of
the collect phase is depicted in Vgure 11. All source features are grouped
together with all target features connected via a shared instance node. The
local weight is additionally stored in the data-structure.

Instance1

Instance2

Instance3

Target Feature1

Source Feature1 Weight(i1, s1, t1)

Source Feature2 Weight(i1, s2, t1)

Source Feature3 Weight(i1, s3, t1)

Target Feature2

Source Feature1 Weight(i1, s1, t2)

Source Feature2 Weight(i1, s2, t2)

Source Feature3 Weight(i1, s3, t2)

Target Feature1

Source Feature2 Weight(i2, s2, t1)

Source Feature3 Weight(i2, s3, t1)

Target Feature2

Source Feature3 Weight(i3, s3, t2)

Source Feature4 Weight(i3, s4, t2)

Figure 11: Output data-structure of the
collection phase. The instances are now
ordered internally by the target features.
Each target feature carries each associated
source feature together with the local
weight.

The run-time complexity of the collection stage is determined by the
number of instances, features and the number of target and source feature
types. In the worst case each feature is conVgured to be associated with all
other features. Thus the upper bound of the collect phase is O(mn2), where
n is the number of features for each of them instances175. The average 175 Although the nested for-each loops in

the pseudo-code might suggest a higher
upper-bound at Vrst glance.

case is expected to be far lower for real-world data sets, because of the
prevalent data sparsity. In hardly any real-word data set all instances are

concepts 83

connected to all features. Especially after many feature connections have
been removed in the pruning phase. For common data sets the limiting
factor of the processing on contemporary computing infrastructures is not
the actual computation itself. Instead the run-time is dominated by the time
it takes to read and write the data from the storage. Therefore any eXcient
implementation of the collection phase should rather be I/O-bound than
CPU-bound.

The size of the data-structures produced during the collection phase
(see yield() function in algorithm 2) may become larger then the input
data-structures itself. That may happen if a source feature is connected with
multiple target features via a shared instance. This is a common scenario
for many applications, for example when building a co-occurrence network.
The worst case estimate of the needed storage is equal to the run-time
complexity estimate - O(mn2).

The feature association function is employed within the collection phase
to calculate the local weight of an association between two features. This is
done in two steps. At Vrst local weights of all features associated with an
instance are calculated. In the second step the source and target weights are
combined into one local association weight, which is then stored together
with the source feature. In both steps the feature association function
has access to all the statistics created in the analysing phase. The local
weighting functions are very frequently invoked thus the implementation
should be as eXcient as possible.

Example The local weighting part of a feature association function that
implements the euclidean distance176 might be realized as: 176 d(p, q) =

√∑n
i (pi, qi)2

localSourceWeight(x) = x (11)

localTargetWeight(y) = y (12)

localWeight(wx, wy) = (wx − wy)2 (13)

An implementation of the collection phase should apply caching tech-
niques to avoid unnecessary and redundant calculations. The storage infras-
tructure should apply sophisticated encoding and compression mechanism
on the collected data to minimise the disk storage overhead.

At the end of the this phase all target features are grouped for all in-
stances. Additionally together with the target features the associated source
features are also aggregated. The source features are accompanied with a
local association weight. Although the results of the collection phase are
generated iteratively, the consecutive phase can only start as soon as all
target features have been fully collected.

Sort Phase

The task of the sorting phase is to sort all grouped target features according
to an internal sorting criterion. Because of the large amount of data that
needs to be processed special dedicated algorithms need to be adopted.
For real-world data sets the data will usually not Vt into main memory,
therefore a sophisticated memory management is required.

An exemplary input for this phase is depicted in Vgure 11 and described
in the collection phase section. The output of the sort phase for this input
data-structure is shown in Vgure 12. While at the start of the sort phase the
primary sort criterion is the sequence of instances, the sorting algorithm
reorders the data in such a way that the target features can be read out
sequentially.

Although an implementation of the sorting phase is free to choose its
own algorithmic approach, a simple but eXcient method is presented here.

84 a feature association framework for knowledge discovery applications

Algorithm 2 Overview of the main processing steps in the collect phase.
Require: Valid conVguration in config
Require: Feature association function in scorer
Require: Collection of instances stored in I
for all i ∈ I do

Fi ← i.getFeatures() . List of all features of i
T ← config.getTargetTypes() . List of all target types
for all t ∈ T do

St ← config.getSourceTypesForTargetType(t)
Fi,t ← {f |f ∈ Fi and type(f) = t}
R← {} . Initialise with empty map
for all fy ∈ Fi,t do

Oy ← []

wy ← scorer.localTargetWeight(weight(fy))
for all s ∈ St do

Fi,s ← {f |f ∈ Fi and type(f) = s}
Os ← []

for all fx ∈ Fi,s do
wx ← scorer.localSouceWeight(weight(fx))
wx,y ← scorer.localWeight(wx, wy)
Os ← Os + [< fx, wx,y >]

end for
Oy ← Oy + [Os] . Append source features

end for
R[fy]← Oy . Add to result map

end for
yield(i, t, R) . Report result map

end for
end for

Target Feature1

Target Feature2

Instance3

Source Feature3 Weight(i3, s3, t2)

Source Feature4 Weight(i3, s4, t2)

Instance1

Source Feature1 Weight(i1, s1, t1)

Source Feature2 Weight(i1, s2, t1)

Source Feature3 Weight(i1, s3, t1)

Instance2

Source Feature2 Weight(i2, s2, t1)

Source Feature3 Weight(i2, s3, t1)

Instance1

Source Feature1 Weight(i1, s1, t2)

Source Feature2 Weight(i1, s2, t2)

Source Feature3 Weight(i1, s3, t2)

Figure 12: Output data-structure of the
sort phase. The target features are used
as primary sort criterion, the instances as
secondary. For each instance all associated
source features and the local association
weights are stored.

concepts 85

This method is based on the merge-sort algorithm, which is well suited for
this purpose as it incorporates the usage of external storage. This property
is mandatory when dealing with large data sets, that do not Vt into main
memory.

The Vrst step of this algorithm is to write out all the data gathered in the
collection phase into a sequence of Vles. The data is generated iteratively
while collecting, and stored in in an in-memory buUer. This buUer has
as upper limit of entries, which is deVned by the actual resources of the
execution environment. Generally speaking, the large this buUer can be
made, the faster and more eXcient the sorting will be. As soon as the buUer
reaches its maximum capacity, the Vrst sort stage is executed.

At the begin of the Vrst sort stage the buUer contains a sequence of local
target to source feature mappings, sorted by instance. Now all the entries
in the buUer are sorted in-place according to the output sorting criterion,
applied upon the target features. Again the actual implementation of the
sorting algorithm is not restricted. Examples of common sorting algorithms
suitable for this task are Quicksort177 and Heapsort178 ,179. As soon as the 177 C. A. R. Hoare. Quicksort. The Computer

Journal, 5(1):10, 1962
178 J. W. J. Williams. Algorithm 232: heapsort.
Communications of the ACM, 7(6):347–348,
1964
179 See http://users.aims.ac.za/
~mackay/sorting/sorting.html for an
in-depth comparison of the algorithms.

buUer has been sorted according to the target feature, the data can be
transferred into secondary storage (on the local hard-drive, a distributed
Vle-system or a centralised storage).

The Vrst stage is repeated as long as the collect phase generates data.
After all instances has been processed by the previous phases, the next
sort processing step is initiated. The stored buUers are now all read in
parallel. Because the buUer are already sorted, they can be consumed in a
streaming fashion, which is the preferred operation mode in a distributed
environment180. The merge-sort picks the buUer with the lowest entry 180 In contrast to a random access read

pattern, where the whole data has to be
available in one place - either locally or in a
centralised storage.

according to the global sorting criterion. This entry is then removed from
the buUer and made available for the later processing phases. As long
as there is at least one data entry in one of the buUers this procedure is
repeated.

The complete algorithm is available as pseudo-code, see 3. Using this
approach all entries can be read out in the desired sequence. Additionally
the consecutive processing phases can start their calculations in parallel due
to the iterative nature of the merge-sort algorithm. After all target features
have been read out, the stored buUers they are no longer needed and can be
safely removed.

Association Phase

Up to the this phase the data has been Vltered and organised in a way
allowing eXcient calculations. The association phase Vnally calculates the
actual feature associations and their association weight. The input of this
phase is a sequence of target features, the relations with the instance nodes
and the associated source features. The results of the sort phase is iteratively
consumed, one target feature and its accompanying data-structure at a time.
By employing this iterative scheme it is possible to execute the association
phase in parallel or distributed among multiple execution units. The output
of this phase are the calculated feature associations including an association
weight181 and additional optional information. As with the sort phase, the 181 The weight of an association can also

be seen as the strength of their relation
(depending on the actual conVguration and
employed feature association functions).

output of this phase is also produced in an iterative manner.
Due to the Wexible design of the framework and the breath of informa-

tion available182, there are multiple strategies on how to implement this
182 During this phase the algorithms have
full access to all the global statistics, which
may include information from various
sources, like for example external resources.

phase. Two diUerent approaches will now be presented:

Scenario I At Vrst a scenario is described that summarises the available
feature data and exploits the global statistics. Associations produced in
this scenario represent the pairwise relation between two features based
on their distributions on the whole data set.

http://users.aims.ac.za/~mackay/sorting/sorting.html
http://users.aims.ac.za/~mackay/sorting/sorting.html

86 a feature association framework for knowledge discovery applications

Algorithm 3 Overview of the main processing steps in the sorting phase,
which is based on the the well known merge sort algorithm.
Require: Sort criterion in f
S ← []

procedure sortingConsumer . Step 1: Write out buUers
B ← []

while hasMoreData() do
Et ← consume . Read data from the collect phase
if sizeof(B) + sizeof(Et) < threshold then

B ← B + [Et]

else
sortInPlace(B, f) . Sort the buUer in-place
flush(B) . Flush the buUer to storage
S ← S + [B]

B ← []

end if
end while
if B 6= [] then

sortInPlace(B, f)
flush(B)
S ← S + [B]

end if
end procedure

procedure mergeSort(S) . Step 2: Read buUers
R← []

for all s ∈ S do
r ← openStreamingReader(s)

R← R+ [r]

end for
while {r|r ∈ R and r.peek() 6= nil} 6= ∅ do

i← min
i

(f(R[i].peek()))

e← R[i].pop()

yield(e) . Report the lowest entry
end while

end procedure
free(S)

concepts 87

Scenario II Then a second scenario is presented, where the associations
are exploited on a local level. In this case the relations of features are
not based on the data set as a whole, but on subsets which represent
individual contexts. An example of such context is the presence of a
speciVc feature, so that all instances are included in the context which
have a connection with a speciVc feature. This scenario also allows to
incorporate machine learning techniques to detect common pattern
within the feature distributions. Additionally this scenario allows a
recursive approach to calculate feature associations, where depending on
a certain context the local distributions of multiple features in relation to
each other can be analysed.

Scenario I: Global Associations This scenario calculates the pairwise
feature associations while iterating over the target features as they are pro-
duced by the sort phase. The feature associations generated in this scenario
are based on the global distribution of the features. The distribution of a
feature is the characterised by the way a feature is related to the instances
within the data set. The initial input data-structure consisting of two types
of roles of nodes - the instance nodes and the feature nodes. All edges that
connect a feature with the nodes that represent instances are included
in the distribution, thereby collecting the weight of the edges. To calcu-
late the global feature association between two features, their individual
distributions are compared.

The actual properties of the distributions and the way the feature associa-
tion weights are calculates depend solely on the feature association function
being used. The feature association function has already been invoked
to calculate the local weight of an association between source and target
features during the collecting phase. This local weight together with the in-
formation of the shared instances is now available in the association phase.
This information is made available to the feature association function,
which is now invoked to calculate the global association weight. This step
is repeated for every source feature that is connected via at least one shared
instance with the current target feature. This way a list of associations is
generated for each target feature. To keep the number of associations low,
this list can be pruned to only contain the most important associations.
This pruning can either be done by applying a threshold on the association
weight or by restricting the number of entries within the list. Which of the
two pruning strategies is chosen, or whether pruning is done at all, depends
on the actual application. Generally speaking the fewer feature associations
are consecutively stored, the better the retrieval performance will be.

By executing this scheme Vnally all feature associations within the data
set are processed and the output is iteratively passed to the next processing
phase.

A simple example is given to illustrate the possible results that may be
generated in the global association scenario. In this example a basic feature
association function is used. This function calculates the number of shared
instances by two features, with Ii being the set of instances in which feature
i occurs in:

wsimples,t = |Is ∩ It| (14)

Figure 13 depicts the output graph for the global association while using
the number of shared instances as weight. The input graph is shown in
Vgure 9.

No global statistics are necessary in this case, as the information gen-
erated during the collection phase is suXcient in this case. Also the local
weight calculations can be skipped entirely. The feature association function
just needs to count the number of occurrence of a source feature in the

88 a feature association framework for knowledge discovery applications

Feature Space I

Feature Space II

1

2

1

1

1

2

2

Source Feature4

Source Feature2

Source Feature3

Source Feature1

Target Feature1

Target Feature2

Figure 13: Final feature association network
for the example input graph. The edges
carry an association weight, which in
this case is the number of shared instance
between a source feature and a target
feature.

list of instances the target feature occurs in. As the association weights
will tend to be high for more frequent features, one might want to add a
additional normalisation step on the weights. A prerequisite for this nor-
malisation is the presence of global statistics of the features. For example,
the total number of occurrences of the features can be taken source for the
normalisation to realise the well known Overlap CoeXcient.

wnormalizeds,t =
|Is ∩ It|

min(|Is|, |It|)
(15)

The basic processing steps of this phase when calculating global associa-
tions is presented in pseudo-code in algorithm 4.

Scenario II: Contextual Associations The global association scenario
compares distribution of features over the whole data set. In the local
association scenario only distribution based upon a restricted subset of the
data set are taken into consideration. This is motivated by the intuition
that strong associations may not only exist on a global level, but also on a
local level. Especially if the data set is heterogeneous, which is a common
property of real-world data sets. Depending on a context, there might be
strong association between two features, that might not be easily detected
when comparing their global distributions.

In the following a context is deVned as the set of instances, in which
a target feature occurs in. An important motivation for this deVnition is
rooted in the implications on the expected run-time complexity. For local
association an increase in computational costs is expected as the sheer the
distributions and statistics do not only need to be computed for all feature
on the data set as a whole, but again again for all contexts. As there are
potentially many contexts within a single data set, the rise in run-time
needs to be considered. In the association phase most of the information
needed to calculate the context speciVc statistics and distributions are al-
ready present. By using the deVnition of a context based on the distribution
of the target feature, the calculation of contextual feature association be-
comes feasible also for large data sets. This is made possible by the fact that
the data-structures in this phase are already sorted according to the target
features.

In Vgure 14 the input data-structure of the association phase is depicted.
For a given target feature, the associated data-structure is the same as the
input data-structure of the whole data set, but restricted to the instances in
which the target feature actually occurs in.

The scenario of local associations can be further sub-divided, based on

concepts 89

Algorithm 4 Overview of the association phase when building global associ-
ations. For each target feature at Vrst the local weights are aggregated over
all instances and then the Vnal global association weight is calculated.
Require: List of input data-structures - T
Require: Feature association function - f
Require: Global statistics - S
procedure buildGlobalAssociations

while T 6= ∅ do
t← consume(T) . Step 1: Read a single target term
I ← InstanceData(t)

A← {}
for all idi ∈ I do

Si ← idi.sourceFeatureData

for all sdj ∈ Si do
sj ← sdj .feature

wlocali,j ← sdj .localWeight

. Step 2: Aggregate all local associations
A[sj]← aggregate(f, A[sj], wlocali,j)

end for
end for

G← {}
for all as ∈ A do

. Step 3: Calculate the global weight
G[s]← associationWeight(f, S, t, as)

end for

yield(G) . Step 4: Report the Vnal associations
end while

end procedure

90 a feature association framework for knowledge discovery applications

Target Feature 2

Target Feature 1

Source Feature1

Normalized−Weight(i1, s1, t2)

Source Feature3

Normalized−Weight(i1, s3, t2)

Source Feature2

Normalized−Weight(i1, s2, t2)

Instance1

Instance2

Instance1

Instance3

Source Feature3

Normalized−Weight(i2, s3, t1)

Source Feature2

Normalized−Weight(i2, s2, t1)

Source Feature2

Normalized−Weight(i1, s2, t1)

Source Feature3

Normalized−Weight(i1, s3, t1)

Source Feature1

Normalized−Weight(i1, s1, t1)

Source Feature3

Normalized−Weight(i2, s3, t2)

Source Feature4

Normalized−Weight(i2, s4, t2)

Figure 14: Input data-structure of the
association phase. For each target feature
all associated instances and source features
are accessible for algorithms and feature
association functions.

how to process these data-structures:

Relative Contextual Associations The spawned context is used to directly
compute association between the current target feature and all associated
source features.

Recursive Contextual Associations The context is used to dynamically
create a new data set, where the feature association computation as a
whole is recursively be applied.

Both approaches are applicable for a number of real-world scenarios183. 183 See the application chapter for examples

The Vrst approach is more eXcient, as all necessary data for the compu-
tations are already prepared and quickly available. On the other hand the
second approach oUers more Wexibility, but at the cost of a higher com-
plexity in terms of computational as well as eUort to set-up. Examples for
both methods are presented in the following section, starting with the less
complex model.

Relative Contextual Associations In the Vrst scenario the output features
are directly derived from the target features used to deVne the context. This
can be achieved by allowing a single target feature to be split into multiple
output target features, where each of these newly created features represent
a diUerent aspect of the target feature. In order to achieve such a mapping
of one target feature into multiple derived target output features, the set of
instances can be partitioned. All instances that are associated with a single
target feature can subsequently be divided into disjoint sets, where each
of these sets represents one of the new target output features. Figure 15
exemplary displays the output of the association phase when using the
targets terms as contexts as well as nodes in the output graph to build the
contextual associations.

Features with multiple aspects are common in many real-world data sets.
An example for this are ambiguous features, where a simple feature value
represents multiple semantics. In the case of human languages, it is quite
common that a single words carries multiple meanings184. For example the 184 D. Klein and G. Murphy. Paper has

been my ruin: conceptual relations of
polysemous senses. Journal of Memory and
Language, 47(4):548–570, Nov. 2002

term ’java’ may refer to an Indonesian island or a popular programming
language.

For this scenario the association phase is divided into two processing
steps. In the Vrst step the various aspects of a target feature are detected and

concepts 91

Feature Space I

Contextual Feature Space

Feature Space II

1

1

1

1

1

1

1

1

1

1

Target Feature1

Target Feature2

Context Target Feature2,2

Context Target Feature1,2

Context Target Feature2,1

Context Target Feature1,1

Source Feature4

Source Feature1

Source Feature3

Source Feature2

Figure 15: Example for the scenario where
the target terms are used to deVne a context
and then split into several nodes, where
each of them resembles diUerent aspects
of the context. In this example each of
the instances represent a diUerent aspect.
The source features are not associated
directly with the target node, but with
the newly introduced contextual target
features. The weight of the association is,
like in the previous example, the number of
shared instances, which is equally 1 for all
associations.

in the second step the source features are associated with the new output
features. While the second step is similar to the association phase of the
scenario for global associations, for the Vrst step new techniques have to be
introduced.

In order to detect the distinct subsets of instances that represent the
individual aspect of the target features techniques from the Veld of machine
learning can be applied. Unsupervised machine learning algorithms that
detect common patterns within a set of instances are especially suitable for
this task. These clustering algorithms usually start with a matrix, which
is partitioned into coherent groups of rows which are similar to each
by detecting pattern within their column values. In the case of feature
associations, the a single instance represents a single row and the feature
weights are stored in the columns. Popular examples of such a cluster
algorithm are agglomerative hierarchical algorithms185 and variations of 185 A. El-Hamdouchi and P. Willett. Compar-

ison of hierarchic agglomerative clustering
methods for document retrieval. The
Computer Journal, 32(3):220, 1989

the K-means clustering algorithm186. Besides hard clustering algorithms,

186 M. Steinbach, G. Karypis, and V. Kumar.
A comparison of document clustering
techniques. In KDD workshop on text
mining, volume 34, page 35. Citeseer, 2000

which partitions the data set into not-overlapping parts, fuzzy clustering
approaches might be taken into consideration, where a single instance can
be assigned to more than one cluster. Both methods are equally suitable for
the task of identifying multiple aspects in a given context. In the case of the
fuzzy clustering approach the weights between the source and contextual
target features should honour the relationship between the identiVed
clusters and the source features.

Another enhancement of the traditional clustering approach are the
algorithms that perform co-clustering187. This clustering scheme does 187 I. S. Dhillon, S. Mallela, and D. S. Modha.

Information-theoretic co-clustering. In
Proceedings of the ninth ACM SIGKDD
international conference on Knowledge
discovery and data mining, pages 89–98.
ACM, 2003

not only partition the rows of the input matrix, but also the columns are
simultaneously organised in groups. The basic scheme of the integration
of a machine learning approach into the calculation of relative contextual
associations is presented as algorithm ??. For each target feature a context
is created. This context consists of all instances in which the current target
feature occurs in. The context is then clustered. The source features are then
associated with an output node, that is derived from the clustering solution.

Besides machine learning approaches there are statistical methods that
can be employed to structure the instances.

Recursive Contextual Associations The second type of local association
presented here is based on a recursive execution pattern. As soon as the con-
text has been established, a new input data set for an association calculation
is dynamically created. In this case, the generated feature associations are
independent from the conVgured target feature type. The target features
are solely used to create contexts within the data set. This scenarios allows
the largest amount of freedom, which emphasises needs a more elaborate
conVguration. The run-time complexity of this scenario is higher than for

92 a feature association framework for knowledge discovery applications

Algorithm 5 Overview of the association phase when building relative
contextual associations by employing a clustering algorithm.
Require: List of input data-structures - T
Require: Feature association function - f
Require: Global statistics - S
Require: Clustering algorithm - c
procedure buildRelativeAssociations

while T 6= ∅ do
t← consume(T) . Step 1: Read a single target term
I ← InstanceData(t)

M ←Matrix(|I|, |S.sourceFeatures|)
for all idi ∈ I do

Si ← id.sourceFeatureData

for all sdj ∈ Si do
sj ← sdj .feature

wj,local ← sdj .localWeight

. Step 2: Fill the context matrix
Mi,j ← matrixWeight(f, S, wlocal)

end for
end for

C ← cluster(c,M) . Step 3: Cluster the context matrix

for all ck ∈ C do
. Step 4: Create an output node for each cluster

tk ← createNode(t, k)

Ak ← {}
for all idi ∈ instances(ck) do

Si ← idi.sourceFeatureData

for all sdj ∈ Si do
sj ← sdj .feature

wlocali,j ← sdj .localWeight

wclusteri,j,k ← clusterWeight(wlocali,j , ck)

. Step 5: Aggregate all cluster associations
Ak[sj]← aggregate(f, Ak[sj], wclusteri,j,k)

end for
end for
Lk ← {}
for all ak,s ∈ Ak do

. Step 6: Calculate the context association weights
Lk[s]← associationWeight(f, S, tk , ak,s)

end for

yield(Lk) . Step 7: Report the local associations
end for

end while
end procedure

concepts 93

the other scenarios, with an theoretical upper bound of O(m2n5)188. 188 It should be noted that this limit is
only of theoretical interest, for real-world
applications the feasibility of this scenario
mainly depends on the conVguration and
the employed thresholds.

The output of the recursive contextual association scheme is an associa-
tion network, which consists of source nodes, as well as set of target nodes
that were created based on the individual contexts. Each context is then
represented a set of newly created output feature nodes. Additionally the
target feature, that was used to build the context, may also be present in the
Vnal output graph. See Vgure 17 for an example output. For this example
the source features are used as origin as well as target of the edges in the
association graph. The basic steps to create such an contextual association
graph are outlined as algorithm 6.

Feature Space I

Contextual Feature Space I

Contextual Feature Space II

Feature Space II

1

1

1

1

1

1

1

12

1
1

1

1

2

Source Feature3

Source Feature2

Source Feature1

Target Feature1

Source Feature3

Source Feature4

Source Feature2

Target Feature2

Source Feature2

Source Feature4

Source Feature1

Source Feature3

Source Feature1

Figure 16: Example for the scenario where
the target terms are used to deVne a context,
which is then used to apply a local feature
association calculation. Each of the two
target features in this example deVne a
context that contains all instances, in which
the corresponding target feature occurs in.
Within the two contexts all source features
are associated with all other source features.
The weight of the relations between the
features is the number of shared resource.

Because of the complexity of this approach and the number of ways on
how to the features are combined the output network may vary depending
on the conVguration. One of the basic settings of this conVguration will
be presented by using a real-world example application. The Vnal goal of
this example is to Vnd contextual collocation. A collocation is deVned as
sequence of words that tends to occur more frequently than expected given
the frequency of the individual words. Usually collocations carry speciVc
semantics that are not contained in the words that build these sequences.
Person names and organisation names are common collocations. The phrase
“New York” is a typical example of such a collocation189. Many collocations 189 Seen from a probabilistic perspective, the

phrase “York New” should be as likely, if
only the frequency of individual words is
taken into account.

are ambiguous and may have diUerent meanings depending on the context.
The words “red hat” may either refer to a company190 or to a hat that just

190 http://www.redhat.com
has a red colour. There also exist collocations that are only meaningful for
speciVc topics. These collocations can only be detected when analysed on
a contextual level. For textual resources the discourse structure has been
studied as one of such context. Collocations have been found to be helpful
in such a setting 191 ,192. 191 D. Yarowsky. One sense per collocation.

In Proceedings of the workshop on Human
Language Technology, HLT ’93, pages
266–271, Morristown, NJ, USA, 1993.
Association for Computational Linguistics
192 D. Martinez and E. Agirre. One sense
per collocation and genre/topic variations.
In Proceedings of the 2000 Joint SIGDAT
conference on Empirical methods in
natural language processing and very large
corpora: held in conjunction with the 38th
Annual Meeting of the Association for
Computational Linguistics - Volume 13,
pages 207–215, Morristown, NJ, USA, 2000.
Association for Computational Linguistics

The feature association framework can be set up to build such contextual
collocations. Two types of features are needed in order to Vnd statistically
salient sequences of words. The Vrst feature type are the words contained
within a collection of texts. The second feature type should identify the
topics that are covered by the texts. Thus the input feature graph can be
created with these node types:

• Each individual text within the collection is represented as instance node.

• Words within a single text are mapped as source feature nodes and

http://www.redhat.com

94 a feature association framework for knowledge discovery applications

Algorithm 6 Overview of the association phase when building local asso-
ciations by recursively calculating the associations. For each target feature
a context graph is created. This graph is then used as input for a recursive
calculation of feature associations. The result of each contextual association
calculation is merged to build one Vnal association network for all contexts.
Require: List of input data-structures - T
Require: ConVguration for building an association graph - C
procedure buildRecursiveAssociations

while T 6= ∅ do
t← consume(T) . Step 1: Read a single target term
I ← InstanceData(t)

. Step 2: Create an empty context graph
Ginputt ← createGraph
for all idi ∈ I do

Si ← id.sourceFeatureData

ni ← createNode(Ginputt , idi.instance)
for all sdj ∈ Si do

sj ← sdj .feature

wj,local ← sdj .localWeight

ns ← createNode(Ginputt , sj)

. Step 3: Fill the context graph
createEdge(Ginputt , ni, ns, wj,local)

end for
end for

. Step 4: Calculate the contextual associations
Goutputt ← buildAssociations(Ginputt , C)

. Step 5: Merge the all contextual associations
yield(Goutputt)

end while
end procedure

concepts 95

are connected to the corresponding instance node. As a single word
can occur multiple times within a single text, the data-structure that
represents the graph must be able to deal with multiple edges between
two individual nodes193. Additionally each edge carries a position 193 The terms multigraph or pseudograph

are commonly used for this type of graph.information, which stores the absolute position of the word within the
sequence of words.

• The topics are represented as target feature nodes. A single text may
cover multiple topics, therefore a single instance node may have multiple
connections with target feature nodes.

The feature association calculations are done in a recursive manner.
At Vrst association calculation collects the context information. Each
context resembles a set of texts that cover a single topic. For each topic
all words within the text instances must be collected. This information
is then again fed into a features association calculation. For the second
association calculation the words are associated with themselves, following
two restrictions:

1. Two words must occur in the same text, because collocation cannot span
multiple documents.

2. DiUerence of the positions of two words must not exceed one. This
restriction eUectively allows only consecutive words to be associated.

The weight of the association between two words can for example be
derived from a statistical signiVcance test. Finally for each topic a network
of signiVcant collocations is generated.

Store Phase

The Vnal phase of the calculation of the feature associations is the storage
of the results. As the associations are iteratively produced by the previous
phases, the storage system should be capable of processing multiple results
continuously and in parallel. The work that needs to be done by the storage
phase can thereby be grouped into two stages, which are sequentially
executed:

1. Collect all incoming results and persist them as fast as possible.

2. Reorganise the feature associations for eXcient retrieval.

Collect Feature Associations In the Vrst stage the storage function receives
the feature associations from the association phase. These associations
should be processed as fast as possible to prevent the association calculation
to prevent any distributions on the overall system. One possible way to
achieve this desired behaviour is a out-of-context execution approach.
This execution strategy is often used in situations where a low latency
is a priority194. In this case the information is received by one module 194 S. Korsholm, M. Schoeberl, and A. P.

Ravn. Interrupt handlers in Java. In 11th
IEEE Symposium on Object Oriented Real-
Time Distributed Computing (ISORC), pages
453–457. IEEE, 2008

and further dispatched to another dedicated storage module, which is
executed in parallel. Using this approach the actual I/O-operations are
decoupled from the feature association calculations. This is made possible
as in contemporary computational architectures the sub-systems which
are responsible for accessing storage devices are autonomous and thus can
operate independently from the central processing units.

For large data sets it is advisable to distribute the collection of feature
association among multiple execution units. The most basic setting of
such an architecture is to use one dedicated server which receives the Vnal
feature associations via a network connection. The data is then managed by
a single server instance. This setting is on the one hand easy to conVgure

96 a feature association framework for knowledge discovery applications

...

Computation Node2

Computation Node1

Single Storage Node

ComputationNoden

Figure 17: Execution topology of the storage
phase for multiple computation units and a
single storage unit. Feature associations are
computed in parallel using multiple nodes,
the results are collected and stored by a
single node. This scenario is typical for a
conVguration where the results are stored
in a database.

and to administer, but on the other hand such a conVguration poses a single
point of failure and thus should not be used for critical computations.

More advanced setting make use of a higher level of distribution. To
facilitate an higher amount of parallelism when storing and loading data,
a variety of diUerent distributed Vle-systems have been proposed and
implemented195 ,196. These storage mechanism allow access from multiple 195 D. Borthakur. The hadoop distributed Vle

system: Architecture and design. Technical
report, 2007
196 S. Ghemawat, H. GobioU, and S. T. Le-
ung. The Google Vle system. ACM SIGOPS
Operating Systems Review, 37(5):29–43, 2003

nodes distributed within a network. The complexities of the management
of the data within the network is hidden from the clients. Distributed Vle-
systems do not provide the same performance as local Vle-systems, but they
scale with the amount of data and are therefore well suited for managing
huge data-sets.

Reorganize Feature Associations In the second stage of the storage phase
the collected feature associations are reorganised to allow fast retrieval. The
actual processing within this stage depends on the storage backend and on
the level of distribution. If the feature association have been collected by
multiple nodes within a distributed execution framework, all individual
results are now merged. Alternatively if the collected data is stored in a
distributed Vle-system, the collected information can new be read out and
further processed by a single instance. For example in such a scenario an
merge-sort algorithm might be employed to create a single sorted repository
of feature associations.

Maintenance operations are also executed during this stage. For example
a dynamic indexing scheme might schedule a reorganisation of the stored
data by applying an logarithmic merge algorithm197. See table 10 for a 197 S. Büttcher and C. L. A. Clarke. In-

dexing time vs. query time: trade-oUs in
dynamic information retrieval systems. In
Proceedings of the 14th ACM international
conference on Information and knowledge
management, pages 317–318. ACM, 2005

brief list of examples of typical maintenance operations for a set of storage
backends.

The choice which backend implementation to use and therefore which
maintenance operation are necessary depends on the application and the
available infrastructure.

Storage Backend Operations

Relational Database Update Table Index, Compact Tables
Object-oriented Database Garbage Collect
Sequential File Sort Entries
Dynamic Index Logarithmic Merge

Table 10: Examples of typical operations
done by diUerent storage backends in the
reorganisation step of the storage phase.

concepts 97

Result

The result of the feature association calculation is a data-structure that rep-
resents the feature association network. The choice which data-structure to
use is up to the implementation, but there are a number of requirements and
mandatory properties of the data-structure. Because of the large number
of feature associations, the data-structure should be lean and should allow
fast and eUective storage. The data-structure has to be able to cope with the
fact that the complete association network is interactively generated. The
output of the association phase are edges between a source feature and a
target feature, and for advanced conVgurations these edges may actually be
hyper-edges. As the head of a direct edge may serve also be the tail of other
feature association. This may for example happen if the source features and
target features originate from the same feature space. The implementation
must be able to correctly map these relationships.

Additionally to the association weight each edge may also be associated
with a payload, which may contain any data needed for further processing
or used for visualisation purpose. To keep the size of the graph small,
one could resort to compression technique developed in the Veld of web
graphs198. Alternatively one could employ relational database or other 198 P. Boldi and S. Vigna. The webgraph

framework I: compression techniques.
In Proceedings of the 13th international
conference on World Wide Web, pages
595–602. ACM, 2004

storage technique, like for example an inverted index. Algorithms developed
in the Velds of social web199 may also be used to manage the association

199 A. Harth and S. Decker. Optimized index
structures for querying rdf from the web. In
Web Congress, 2005. LA-WEB 2005. Third
Latin American, page 10. IEEE, 2006

graph.

98 a feature association framework for knowledge discovery applications

Feature Association Functions

The feature association function is responsible to calculate the
final association weight. The semantics of this weight is not con-
strained by the framework and depend on the function and the
application. Feature association functions themselves need to be
decomposed into factors and functional blocks in order to be used
by the framework.

Overview

The task of a feature association function is to Vnally deliver a weight for
the association of the two features. Although from a technical perspective
the association weight is just another meta-data attached to each edge in the
output feature association graph, it plays an important role in many applica-
tion scenarios. The weight usually corresponds to the association strength,
but application developers might be interested in diUerent interpretations of
the association weight.

In order for the calculations to be eXcient on large data-sets, a feature
association function is decomposed into a set of independent factors and
functional blocks. The factors resemble the smallest entities that make up a
feature association function and are carefully crafted to keep the number of
dependencies low.

Functional blocks are a combination of multiple factors, where each
block serves a distinct purpose. In the execution sequence of the feature
association calculations, each functional block is coupled to an individual
phase. The output of one functional block is then fed into the input of the
next block.

In table 11 an overview of the main diUerences between factors and
functions blocks are given. Both types of components are motivated by two
sets of diUerent use-cases and therefore both types deviate from each other.

Factor Functional Block

Use-Cases & Goals Reuse Common Factors,
Enable Data Caching

Manage WorkWow,
Enable Code Optimisations

Decomposition Type Logical Units Functional Units
Input Feature Input Graph,

External Resources, ...
Factors,
Output of Preceding Block

Output Depends on the Factor DeVned by the Framework
Execution Sequence Free Fixed
Execution Phase All Single
Optimisation Criteria Flexibility EXciency

Table 11: Key diUerences of the two types
of components of a feature association
function. Both types are diUerently
motivated and serve diUerent purposes.Decomposition into Factors

The decoupling of the calculations of individual factors allow diUerent
scheduling techniques in order to determine the factors. For example,
some factors may be based on external resources. Access to the these
resources may be costly and may cause latencies, as the requests need to
be transferred over the network. If the calculations of multiple factors are
submitted in batches, the eXciency of the overall process does rise. These
factors can be categorised into three groups:

concepts 99

Global Factors : Factors that are independent from any feature. Global
factors usually represent statistical measures of the data-set. These
factors only depend on the data-set and need to be re-calculate only if
the data-set has been changed.

Single Feature Factor : Factors that depend on only a single feature.
Examples for such factors are statistics of the distribution of a single
feature. Single feature factors also commonly integrate information
from external resources. This kind of factor allows caching strategies to
improve the run-time of the calculations.

Feature Pair Factor : Factors that depend not only on a single feature,
but a pair of features. This is the most complex form of factor. Feature
pair factor are usually composed of multiple global and single feature
factors. This kind of factor does not lend itself to eUective optimisation
and therefore it should be avoided or decomposed into simpler factors as
much as possible.

Each category allows a diUerent set of optimisation strategies. Among
these strategies is the calculation of the some of the factors at the start of
the feature association calculation. This boast a couple of advantages over
the naive on-demand execution, which would require either redundant
calculations or a synchronisation overhead.

Global Factors Factors that do not depend on a single feature, but there
might still be a dependency on the data set. Using mathematical notation, a
global factor can be written as:

fglobal() (16)

Examples for such global factors are statistics over all features within the
data set. The total number of feature nodes of diUerent type and average
out degree of instance nodes are examples for such statistics. Global factor
also may integrate external information into the calculation of feature
associations.

Additional to the global factors, that take no argument, there are also a
set of global factors that may have dependencies. Such a factor may depend
on an instance node. For example the factor may represent the out-degree
of an instance node, which is equivalent to the number of feature nodes
connected to the instance node. This scheme can be further reVned by
including an additional argument. For example the type of a feature node
can be used to restrict the out-degree to all edges that connect the instance
nodes with feature nodes of a certain type, the factor function then is:

fglobal(i, featureType) (17)

The feature association framework executes the calculation of all global
factors in a dedicated analysis phase. The results of the calculation are then
stored and distribution to all execution units that take part in the actual
association calculations.

Single Feature Factors Factors that only depend on a single feature value
are referred to as single feature factor. The single feature factor takes a
single feature as argument:

fsingle(f) (18)

The type of factor is common for many feature association functions.
The single feature factor typically represent the relationship of feature
nodes in regard to other nodes in the input feature graph. For example a

100 a feature association framework for knowledge discovery applications

basic factor is the number of connections between a feature node and the
instances nodes.

Factors can be calculated for both types of features, source and target
features. There is no need to make any distinctions in the factor calculation.

Single feature factors can be eUectively calculated prior to the main
feature association process. Therefore the single feature factors, as well as
the global factors, can not only be used from within the feature association
function, but they can already been used during the pruning phase. During
the pruning phase all features are removed, that are likely to contribute little
to the Vnal result of the calculations. The decision which feature to leave
out is based on a set of heuristics, which make use of global statistics and
the properties of the features.

Feature Pair Factors The last type of factors are the most complex form
of factor. Feature pair factors depend on two features, usually a source and a
target feature:

fpair(fs, ft) (19)

These features are usually a source and a target feature, although there
are no conceptual restrictions. Feature pair factors are typically a combi-
nation of various global as well as single feature factors. A example for a
feature pair factor is the number of shared instance nodes for a given set of
two feature nodes.

In contrast to the other two factor types, this kind of factor is calculated
on-demand. There is no way to determine beforehand which feature
combinations will be Vnally associated with each other. Therefore any
calculations of feature pair factors should only be done if needed. Due to
this, this kind of factor cannot be used by the pruning algorithms.

Example of Common Factors

To illustrate the concept of a feature association function factor, a number
of examples are given. These examples are based on functions employed
by common knowledge discovery applications. Therefore additional to the
deVnition of the factors the application settings and the mapping to the
input feature graph is given.

Number of Instances This global factor is used in many application
scenarios, it just represents the number of instance nodes in the feature
input graph:

fNI (20)

Usually this factor is used for normalisation purpose, for example to
determine the proportion of a feature in relation to the instances. De-
pending on the application, this factor can also be interpreted as number
of documents or document count, if the data-set consists of document,
which are represented as instance nodes in the input graph. In table 12
a number of examples for this factor is given, based on data-set for the
collaboratively created on-line encyclopedia Wikipedia.

Data Set fNI

English Wikipedia 3,450,942
German Wikipedia 1,403,289
Simple English Wikipedia 81,197

Table 12: Number of instances in Wikipedia
data-sets for various languages. Each
Wikipedia article is mapped as a single
instance node in the input feature graph.
Articles without content (redirects, disam-
biguation pages, ...), category articles and
internal articles have been left out.

concepts 101

The result of applying this factor is a scalar. This number can be easily
be computed at the beginning of the calculations and then distributed
to all execution unit and used within the pruning phase as well as the
association phase. The data-structure that holds the value for this factor
is simply an integer value.

fNI : Z+ (21)

Number of Features This factor is independent from an actual feature, but
there may be an restriction on the feature type. It counts the number of
unique feature nodes within the input graph:

fNF (22)

It can also be seen as the size of the input vocabulary200, if each entry in 200 In mathematical notation: |{f |f ∈
F ∩ type(f) = t}|, for F being the set of
all features and t is a given feature type

the vocabulary is modelled as an feature node. Another interpretation
of the factor is the number of dimensions of a feature space, where
each feature of a type resembles a single dimension in an (typically
high-dimensional) feature space.

This factor is found in many feature association functions. It is easy
to compute and therefore the number of features for all feature types are
usually pre-calculated by default. The result is stored as an associative
array with the feature type as key and the factor result as integer value:

fNF : {featureType 7→ Z+} (23)

Table 13 lists the value for this factor for various Wikipedia data-sets.
The upper limit of possible feature association pairs is O(fNF). For the
English Wikipedia data-set this results in a theoretical upper limit of
feature association calculations that need to be done of 1.16× 1014. This
emphasises the need for a sophisticated pruning strategy in combination
with eXcient algorithms and a stream-lined execution approach.

Data Set fNF

English Wikipedia 10,839,070
German Wikipedia 5,597,398
Simple English Wikipedia 211,063

Table 13: Number of feature nodes in the
input feature graph for three diUerent
language version of the Wikipedia data-set.
The English version is the largest data-set
with the richest set of diUerent features.

Average Out-Degree of the Instance Nodes The next important charac-
teristic of the data-set is the average number of features per instances.
Again this global factor does not depend on the features, but solely on
the features types:

favgoutI (24)

If the input graph represents a sparse document × term matrix, then
this factor represents the average document length. This measure is
commonly used in knowledge discovery application that operate on
textual data. It is needed for a normalisation of the probabilities of an
feature to occur within an instance (or an term within a document). This
motivation is realised in many information retrieval applications201. 201 H. Fang, T. Tao, and C. Zhai. A formal

study of information retrieval heuristics.
In Proceedings of the 27th annual interna-
tional ACM SIGIR conference on Research
and development in information retrieval,
SIGIR ’04, pages 49–56, New York, NY, USA,
2004. ACM

The Wikipedia as textual resource is an example of an sparse docu-
ment × term matrix. In table 14 an overview is given for a selection of
Wikipedia data sets in diUerent languages and diUerent characteristics.
For the English version of the data set each instance nodes is on average
connected to about 500 diUerent feature nodes, giving a total of about
1.65 billion relations within the input feature graph.

102 a feature association framework for knowledge discovery applications

Data Set favgoutI

English Wikipedia 476.98
German Wikipedia 329.44
Simple English Wikipedia 136.36

Table 14: Average out-degree of the
instance nodes for the Wikipedia data sets
in various languages. The input feature
graph for the English Wikipedia is more
dense than the German version and the
relatively sparse Simple English Wikipedia.

The result of this global factor can be computed for all feature types
within the data set. The collected results are then stored in an associative
array, similar to the “Number of Features” factor:

favgoutI : {featureType 7→ R+} (25)

Out-Degree of the Instance Nodes Sometimes for a feature association
function the average out-degree of an instance node is not suXcient. In
this cases the individual out-degree values of a set of instance nodes is
required. The out degree factor also depends on a given instance node,
therefore this factor needs an additional argument:

foutI (i) (26)

This set can either be simply the complete set of instances nodes in
the input graph or a selection of instance nodes. For example the set can
be deVned as all instance nodes that are connected to a speciVc feature
node.

In the case of an input graph that is created by mapping a document
× term matrix, this factor is the document length, with the document
d as argument202. As this factor does not depend on a feature as input 202 The factor represents the number of

terms within a document: docLength(d)variable, this factor can still be categorised as global factor.
In comparison with the other presented global factors, this factor

needs an additional argument - the instance node. Therefore the result
of this factor is more complex than the other global factors. It can be
realised as associative map of associative maps, where the keys of the
maps are the instance nodes and respectively the feature types. The
mathematical notation should clarify this, where i being a single instance
node:

foutI (i) : {i 7→ {featureType 7→ Z+}} (27)

Whether such a complex data-structure should be completely Vlled
out for all instance nodes as part of the initialisation of the calculations
depends on the application scenario. If out-degree of the instance nodes
is used in the pruning phase or is conVgured to be part of the global
statistics, then this factor should be scheduled for computation at the
beginning of the processing.

In-Degree of the Feature Nodes The number of instances for a given
feature node is also common and often used in combination with the
total number of instances factor. This factor depend on a given feature
and is therefore classiVed as single feature factor. Nevertheless it can be
calculated as soon as the input graph is completely generated. The factor
can by used for source as well as target features. The in-degree factor
is equivalent to the number of instance nodes a single feature node is
connected to and deVned as:

finF (f) (28)

Similar to the global factors, the in-degree factor can also be used
within the pruning phase. Some pruning strategies remove features
that are too common or too rare. For example two thresholds can be
used to decide with feature to remove from the calculations. The Vrst

concepts 103

threshold deVnes the lower bound of the in-degree of the feature nodes.
This threshold is an integer number - Z+.

The actual value of the lower threshold depends on the actual data set
and the run-time constraints. If there is a limited amount of computa-
tional resources is available, it is advised to use a higher number for the
lower threshold. Values in the range of 2 to 10 are common for medium
to large size data-sets. Features that occur very rare in the data set might
be random noise or artifacts generated in the processing of the data-set.
In textual corpora, spelling mistakes and parsing errors are the prime
source for features that occur only once or twice in the whole data set.
Example for rare features in an real-world data-set are given in table 15.

Feature finF (f)

blablabla 4
zzz-999 3
brtitish 1
cloos'-ton 1
miso-nikomi 1
printn(a 1

Table 15: Examples for rare features, in
this case low frequent words from the
English Wikipedia. Among these examples
are spelling errors, artifacts generated by
automatic text extraction methods but also
very rare words too.

The lower threshold can be applied on the set of all features F to
create the restricted set of pruned features Fprunedlower .

Fprunedlower = {f |f ∈ F ∩ finF (f) ≥ θlower} (29)

The upper bound is usually not an integer number, but a ratio (R+).
While for the lower bound a constant number is remains a valid choice
for a broad array of data sets, an Vxed upper threshold would highly
sensitive to the size of the data set. Given that in many real-world
scenarios the data set is incrementally build, there would be the need that
the upper threshold is updated each time a new instance is introduced to
the input graph. Therefore the upper bound is deVned as a ratio which
combines the in-degree factor with the number of instances factor.

For real-world application this threshold is usually set to a ratio
less than 0.5, because features that occur in more than the half of all
instances rarely yield meaningful results when analysed using statisti-
cal methods. The mainstream strategy to cope with high frequent, but
relevant feature is to introduce a negation feature, so that each instance
is connected with the new feature which has no relation with the fre-
quent feature. The high-frequent feature can then be removed from the
data-set. In table 16 examples for high frequent features in a real-world
data-set are given.

Feature finF (f)
finF (f)
fN

the 3,032,573 0.879
in 2,919,623 0.846
a 2,903,352 0.841
of 2,888,379 0.837
is 2,639,282 0.765
and 2,634,096 0.763
...

...
...

with 1,703,251 0.494

Table 16: Examples for high frequent
features: Top words from the English
Wikipedia. Most of these words carry no
semantics and serve only a grammatical
purpose. Therefore these words can be
left out of the feature association function
without depriving the quality of the output.
The top ranked word (the) occurs in 88% of
all instances.

104 a feature association framework for knowledge discovery applications

As with the lower bound, the upper threshold can be applied on the
set of all features to generate a limited set of features, which should be
smaller, but still allow the algorithms to detect important associations
within the data set:

Fprunedupper = {f |f ∈ F ∩ finF (f) ≤ θupper
fN
} (30)

Because of the fact that the foutI (i) factor is a valuable source for the
pruning heuristics, the factors for all features should be pre-computed
at the beginning of the computation. The data-structure that holds
the results of this computation is an associative array, which uses the
features as keys an the factors as values:

finF (f) : {f 7→ Z+} (31)

Weight of the Feature-Instance Edges The next factor depends on a
feature as well as on an instance. The factor that reWects the weight of an
edge that connects an instance node with a feature node is referred to as:

fwF (f, i) (32)

This single feature factor represents the weight of an relationship
between a single instance and a single feature. The value of this weight
is determined by the process that created the initial input feature graph.
Therefore the interpretation of the weight varies according to the appli-
cation scenario. Usually this weight will be a scalar and therefore the
data-structure that holds all values of this factor is an associative array of
all features mapped to their factor values:

fwF (f, i) : {f 7→ R} (33)

An application might choose to use a more complex data-structure for
representing the weight between instances and features. In this case the
data-structure that holds the results of the factor calculations needs to be
adapted as well.

This single feature factor depends on a tuple of an instance and a
feature, thus the space requirements to store all factor values for a data-
set is O(nm), for n instances andm being the sum of the source and
target features. Depending on how dense the input graph is connected,
the size requirements might exceed the available resources. Therefore
such a factor is usually not pre-computed and cached203, but calculated 203 Although a sophisticated implementation

does employ caching methods coupled with
adapted eviction strategies.

on-demand.
The weight of a feature-instance relationship is an important source

for calculation feature associations. Therefore this factor is commonly
used by many feature association functions.

One example usage is the Euclidean distance between two points,
which is deVned for n dimensions as:

d(p,q) =

√√√√ n∑
i=1

(qi − pi)2 (34)

If the features are interpreted as dimensions and the instances as
points, then each weight represents the value of a single dimension. In
the two dimensional case the input graph consists at minimum of two
instance nodes. The dimensions are represented by feature nodes (the
Vrst is references the X-axis, while the other one represents the Y-axis)204. 204 The application developer can freely

choose how to map the points and dimen-
sions to the input graph, for example the
points might be encoded as features and the
dimensions as instances

In this bi-partite graph every feature node (point) is connected to all
instances, with an connection that carries a scalar weight. In order to
calculate the Euclidean distance between point i1 and i2 one has to

concepts 105

combine the individual factors by using the features f1 and f2:

d(i1, i2) =

√
(fwF (f1, i1)− fwF (f1, i2))2+
(fwF (f2, i1)− fwF (f2, i2))2 (35)

In many cases the number of dimensions will be rather higher. A
caching strategy can exploit the access pattern to calculate and store
all factors for a given feature in a singe batch operation. Because of
the architecture and execution sequence the access to the factors will
be sequential for both the features, as well as the instances. This prop-
erty boosts the eUectiveness of cache access and was one of the main
motivations when planning the feature association algorithm.

Sum-of-Weights of the Feature-Instance Edges While a factor that de-
pends on a feature and an instance is no candidate to be pre-computed,
but an aggregation of such a factor can be used in that way. The mathe-
matical notation to denote the aggregated weights factor is:

fΣwF (f) (36)

The sum of all weights over all instances for given feature is one such
example. This factor is deVned as sum of the weights of edges between
a given feature and the connected instance nodes and can be calculated
using the feature weight factor:

fΣwF (f) =
∑
i∈I

fwF (f, i) (37)

Because this single feature factor depends on only the feature, the
data-structure that stores the value of the factor is relatively simple. It is
an associative array with the features as keys and the aggregated weights
as values.

{f 7→ fΣwF (f)} (38)

If the weights are scalars, then the pre-computed factors should easily
Vt into main memory. This factor is often used by pruning algorithms
to compute indicators for when to remove a feature from the feature
association processing. Therefore it is usually completely pre-computed
in the initialisation of the feature association calculation.

The sum-of-weights factor is also routinely used within feature
association functions for normalisation purposes. A maximum likelihood
estimate can be decomposed into various factors where one of these
is the sum-of-weights factor. The coin tossing experiment is used as
example to illustrate the use of the factor. The input graph consists of
only a single instance node that in this example represents the coin.
Furthermore the graph contains two feature nodes. The Vrst feature
feature node is labelled ’head’ and the other one ’tail’205. The weight 205 This example is presented to illustrate

the usefulness of the factor, therefore other
outcomes of this experiment are omitted
(coin lands on the rim, coin disappears in a
block hole, ...)

of the edges that connect the instance node with the features is the
number of times each of possible outcomes occurred. In this case the
sum-of-weights factor is equivalent to the number of tosses. The example
estimator for the coin to display ’head’ can be written as206: 206 In this example there is only one instance

node which represents a single coin. One
could therefore remove the variable i
altogether for the sake of brevity.

MLEhead =
fwF (fhead, i)

fΣwF (f)
(39)

If the weight of the relation is not a simple scalar, the aggregation
method needs to be adapted. The data-structure that holds the factor
values has to be re-factored in this case as well.

Squared Sum-of-Weights of the Feature-Instance Edges The Vnal exam-
ple factor is derived from the sum-of-weights factor. For the aggregated

106 a feature association framework for knowledge discovery applications

squared weights the used symbol is:

fΣw
2

F (f) (40)

Instead of aggregating the weight directly, a function is Vrst applied
on the weight. In this case the weight is multiplied by itself.

The data-structure, as well as the pre-computation strategy is the
same as for the sum-of-weight feature. An associative array is suitable
to store the values which have an storage requirement of O(n) for n
features:

{f 7→ fΣw
2

F (f)} (41)

But in contrast to the aforementioned factor the squared weights fac-
tor is not as common and usually not employed by pruning strategies. It
is mainly used by feature association functions for length normalisation,
especially if the data is rooted in the Euclidean space. Finding the magni-
tude or length of an Euclidean vector207 plays an important role in many 207 The length of a vector is deVned as:

‖a‖2 =
√∑

i ai
2, and is also called

Euclidean norm or Minkowski distance (Lp

norm) with parameter 2.

algorithms. Starting point is an input graph which is build from a set of
vectors. Each axis in the Cartesian space is mapped as an instance node
in the input graph and each feature represents a vector. To normalise a
vector (=feature) f to unit length the magnitude is employed, where n is
the total number of axis (=instances):

fnormalized =


a1

a2

...
an

 , ak =
fwF (f, ik)√
fΣw

2

F (f)
(42)

The feature pair factors are similar to the global and single feature
factors, but they depend on a pair of features. Therefore they cannot be
eXciently be pre-computed due to storage constrains in the most cases.
There are also only few feature pair factors that are shared between feature
association functions and therefore these factors will be presented in
conjunction with the function in which they are employed.

Functional Blocks of a Feature Association Function

The task of the feature association function is to determine whether there is
an association relation between two features and determine the weight of
this relationship. In order to use any function within the features association
framework it has to be decomposed into factors and functional blocks. The
factors are the smallest unit of a function. They have a minimum set of
dependencies and should be designed to be reusable in diUerent functions
and diUerent execution phases. The second decomposition layer are the
so called functional blocks. Each feature association function consists of a
deVned set of blocks. The execution sequence of the functional blocks is also
determined by the framework.

Overview of the Functional Blocks The feature association framework
deVnes a set of blocks. Each functional block is assigned to a speciVc
execution phase. The input can be freely deVned by the function, whereas
the output value of a function block is imposed by the framework. These
restrictions by the framework are necessary, because the framework has
to manage the data-exchange between the diUerent blocks of a feature
association function.

The tasks and semantics of the individual blocks are predeVned by the
framework. The framework also invokes the execution of the blocks and
supplies the necessary input values.

concepts 107

At Vrst a short overview of the six diUerent blocks is given, followed by a
detailed description. Examples for the decomposition of feature association
functions in conjunction with the presentation of a list of common feature
association functions later in this chapter.

Local Source Weight This functional block is deVned to calculate a local
weight for a given source feature node and a given instance node. This
block is scheduled for execution in the collection phase for all instances
and their related source feature. s

Local Target Weight Similar to the local source weight block, but instead
of source feature node, a single target feature node is given. This block
type is invoked at the same time as the local source weight block.

Local Association Weight The two local weights are combined into one
weight by the local association weight block. After the local source
and target weight blocks for a single instance have been executed, their
results can be combined.

Normalise The local weight is transformed into a normalised representa-
tion. Therefore not only the weight to be normalised is supplied by the
framework, but also all other local weights for a given target feature
node. The block type is executed in the association phase.

Aggregate For a single target feature all normalised weights for given
associated source features are aggregated into a single weight. The
aggregation starts a soon all normalised weights of a single target feature
are completely calculated.

Global Association Weight The aggregated weight is Vnally transformed
into the global association weight for a pair of source and target feature.
This type of block is also executed during the association phase.

To use a function to calculate the association weights within the feature
association framework, every one of the blocks needs to be implemented.
The most simple way to implement a block is to output the same data that
was used as input. Each implementation of a block has access to all global
statistics as they were constructed during the analysis phase. Furthermore
a block can employ any combination of factors which satisfy the available
dependencies.

In Vgure 18 the diUerent functional blocks are depicted. The charts gives
an overview on how the output of one block is fed as input of the consecu-
tive blocks. If the feature association framework was customised to serve a
more complex application scenario, the actual values exchanged between
the function block will change. An customisation might for example choose
to remove certain feature associations or create new ones, or even introduce
new types of features. The sequence of the block execution will still remain
the same.

In the following paragraphs the individual block types will be presented
in detail. Additionally examples will be given to further illustrate on how
the functional blocks are invoked.

Local Source Weight Block The Vrst job of the collect phase is to iterate
over the instance nodes in the input graph. For each instance node all
connected feature nodes are traversed. The feature nodes are then inspected
to which role they are mapped208. Only nodes that are mapped to the role 208 Please see the “Input Data-Structure”

section of an overview of input graph roles
earlier in this chapter.

“Source Feature” are included in the further processing. During this process
the local source weight block of the conVgured feature association function
is invoked.

108 a feature association framework for knowledge discovery applications

Collect Phase

Sort Phase

Associate Phase

Aggregate

Global Association Weight

Local Target Weight

Local Weight

Input Feature Graph

Output Feature Association Graph

Normalize

Local Source Weight

(Rearrange the Weights)

Figure 18: Overview of the sequence of
execution of the diUerent functional blocks.
The functional blocks are either invoked
in the collect phase (local associations) or
in the association phase. The last block
function determines the Vnal association
weight between a source and a target
feature.

concepts 109

As input for the local source weight block operation the framework
supplies the current instance node, the current feature node, as well as
the edge that connects these two nodes. Additionally all meta-data that is
attached to either the nodes or the weight is made available to the block
implementation.

Formally a local source weight block operation can be written as function
that takes an instance node ik, a source feature fsources and an edge ek,s as
argument:

Bsourcek,s = f(ik, f
source
s , ek,s) (43)

The result of the block operation is a weight, which is usually a scalar.
Alternatively the block might not return a weight at all, which indicates that
the current feature-instance relation should be excluded from any further
feature association calculations. For example if the block implementation
detects that a feature-instance edge in the input graph was erroneously
generated or is just noise. In this case the no weight is produced by the
block and the edge will be ignored.

Within the local source weight block algorithm any global or single
feature factor can be employed. For example a simple realisation of this
block may choose to return the weight the edge that connects the instance
node with the source feature node. A more complex block implementation
puts the weight into relation with the sum of all weights of all edges that
connect any instance node with the current source feature node:

Bsourcek,s =
fwF (fsources , ik)

fΣwF (fsources)
(44)

The numerator of this fraction is the weight of the edge. Operation to
obtain this value is not associated with a high run-time overhead. The input
graph is traversed in an order according to its internal sequence. To read out
the edges and their attached meta-data (and weight) is therefore an cheap
operation in terms of computation209. The denominator represents the sum 209 Sequential access to stored data-

structures is a key element to achieve
a high performance on contemporary
computer infrastructures.

of all weights of a all edges in the graph that connects the given feature with
all nodes mapped to the instance role. As remarked in the factor section, the
value of the weight sums is a valuable input for the pruning phase and is
computed in the initialisation of the processing and then distributed to all
execution units for fast access. The computational costs are therefore just
the look-up operation in an associative array.

Local Target Weight Block The block operation for the local target
weight is similar to the local source weight block type. The only diUerence
is the selection of feature nodes. While for the local source weight all nodes
within the instance graph were selected which are mapped to the source
feature role, for this block types all nodes a processed that are mapped to the
target role.

The distinction between the two local weight blocks is still necessary
because some feature association function are asymmetrical in relation to
the two input feature roles. Therefore it should be possible to use diUerent
realisations for the local source and target weight blocks. The notation used
for the local target weight block is:

Btargetk,t = f(ik, f
target
t , ek,t) (45)

Local Association Block Before describing this functional block type,
the term “local association” has to be deVned Vrst. While a (global) feature
association denotes the relationship of two features within the whole data-
set, the scope of a local association is determined by a single instance node.

110 a feature association framework for knowledge discovery applications

For each instance node a a sub-graph of the feature input graph can be
generated. This sub-graph consists of the instance node and all directly
connected nodes, which are typically nodes that are mapped to the roles
source feature and target feature. The feature associations within this
sub-graph are called local associations.

For each pair of globally associated features there is at least one sub-
graph, that contains the source as well the target feature. Therefore a
shared instance node is a requirement for a pair of features to build an
association. Two features without common instance node will be excluded
from further processing. This is an important constrained imposed by the
feature association framework. This limitation plays hardly any role in
real-world applications, because an association can only exist if two feature
have something in common. For a given application and data-set the feature
inputs graph has to be modelled in such a way, that the instance nodes
represent this commonness.

The local association reWects the shared information on a micro level.
The corresponding weight represents the strength of a local association. To
calculate the weight, the local association block is supplied with the local
source and target weight as produced by their respective functional blocks.
More formally, the local association block can be expressed as function
signature:

Blocalk,s,t

(ik,
fsources , ek,s, B

source(ik, f
source
s , ek,s),

f targett , ek,t, B
target(ik, f

target
t , ek,t)

)
(46)

Implementations of this block function have, like all other block imple-
mentations, access to all global statistics as additional source of information.
If external information should be integrated into the association calculation
one has multiple ways to achieve this. The Vrst method is to gather the
needed information in the initialisation of the processing and make the
collected information available via the global statistics. The seconds alter-
native provide more Wexibility. The collected information can be stored as
additional meta-data at any node or edge in the feature input graph. This
way the external data can be made available to the factors and functional
blocks that contribute to the Vnal feature association calculation. Not only
external information can be expressed a meta-data, but properties of the
data set itself can be encoded as meta-data.

For example, if a relation between a feature and an instance is annotated
with a time-stamp within a data-set, this time information can be added
as meta-data to the connecting edge. If the same feature is assigned to an
instance multiple times with diUerent time-stamp values, the edge meta-
data can be Vlled with an array of time values. The block function can
exploit this information for its calculation of the local association weight.
When considering only the case of a single time-stamp per edge, a function
that Vlters out all association with time diUerences of larger than a day
could be modelled like this 210: 210 Assuming that the time-stamp has a

resolution of seconds.

Blocalk,s,t =

{
1, if |ek,s[timestamp]− ek,t[timestamp]| < 86, 400[s],

∅, otherwise.
(47)

In this example the result value of ∅ indicates that for the current in-
stance sub-graph the local association should be ignored.

The local block functions are invoked by the framework during the
collect phase. All local association as collected and fed into the distributed
sorting algorithm. The collected data is re-organised in such a way that all
necessary information for a single target feature is readily available.

concepts 111

Normalise Block Before the local association weights are merged to form
global association, they can optionally be processed. This is applied on the
sorted data at the beginning of the association phase. The motivation for
the the normalisation process is to level out the local weight in relation to
each other. The normalisation block functionality is invoked for each local
association weight separately. Besides the local weight to be normalised
the function is also supplied with all other local association weights for a
given pair of source and target features. The signature of this function can
by symbolised as211: 211 Please note the change in the sequence of

the indexes of the block function to indicate
the change in the internal ordering. The
local association weights are organised
in sequence of instances, whereas the
normalised weights are stored according to
the sequence of target features.

Bnormt,k,s = f(Blocalk,s,t , {∀hBlocalh,s,t }) (48)

For example the normalisation block can be used to transform all weights
into a predeVned range. This might be needed if any of the succeeding algo-
rithms are only capable to process a limited range of numbers. For example,
many similarity measures assume a weight between 0 and 1. The normal-
isation function can also be used to conduct a discretisation of the local
weight, if for example the value needed to arranged in bins. The χ2 test is
an example for an function that relies on bins of equal sizes, where each bin
spans a range of values. This statistical test of often used to test whether the
distribution of a data sample is equals to an assumed distribution. In many
cases the data is expected to follow a normal-distribution212. 212 If the data indeed resembles an normal-

distribution, the data is suitable for a range
of statistical tests, for example the Student’s
t-test to detect whether a diUerence in the
values can be considered signiVcant

The normalisation block function can also be employed to transform the
data into a representation that suited for a family of algorithms that share
the same input. Many machine learning algorithms assume the input data
to be organised as a matrix. The cells in the matrix represent weights. Some
algorithm impose constraints one the value range of these weights. The
relation of the weights within the matrix sometimes need to follow certain
rules. For example an algorithm that expects a stochastic matrix213 as input, 213 The term Markov matrix is also fre-

quently used for this kind of matrix.where all columns in the matrix need to sum to 1. A column in this matrix
represents the transition probabilities between a state and all other states.
The normalisation block can be implemented to produce such a matrix214. 214 In the algorithm 5 the normalisation

block has be labelled asMatrixWeight
to emphasise the goal of the normalisation
process.

One example for an algorithm that expects the input data to be represented
as stochastic matrix is the well known PageRank algorithm215. The goal

215 S. Brin and L. Page. The anatomy of a
large-scale hypertextual Web search engine.
Computer networks and ISDN systems,
30(1-7):107–117, 1998

of the PageRank algorithm is to identify the most important nodes in a
directed graph that have many in-links from other important nodes. The
PageRank approach has proven to provide usable results and exhibits an
excellent scalability behaviour, which makes is suitable for even large scale
data-sets.

After the local weights for a single target feature are normalised the
implementation of the association phase can start with the processing of the
associations. The input for these processing is a data-structure that contains
all the normalised local weights. Because of the fact that most of the real-
world data-structures are sparsely connected, the employed data-structures
are associative-arrays:

{f targett 7→ {∀k ik 7→ {∀tBnormt,k,s }}} (49)

Aggregate The data-structure created within the association phase for
the normalised local weights is fed into the association algorithms. The
output of this processing is data-structure similar to the input, but the actual
entries within the associative arrays may have changed. For example, if
the PageRank algorithm has been applied on the normalised weights, the
associative arrays holds the individual importance weights of the feature
nodes.

In the case that for each pair of features multiple weights are stored
within the data-structures, these value have to be Vnally merged into
a single global association weight. The aggregate block represents the

112 a feature association framework for knowledge discovery applications

Vrst step in this process. The task of this functional block is to collect all
available information of a pair of target and source features and to group
this information into a single data-structure. If no sophisticated algorithm is
applied on the normalised local weight and the data is just passed through,
the input of an aggregation block function is a single target feature and a
mapping of a source feature to the collected local normalised weights:

Baggregatet = f(f targett , {∀l fsources 7→ {∀k ik 7→ Bnormt,k,s }}) (50)

A single invocation of the aggregate function contains all necessary
information to build all associations for a given target feature. In the
aggregation block function these information are Vrst re-organised based on
the source features. Thus the intermediate data-structure of the aggregation
- baggregatem - can be symbolised as (again assuming that the normalised
local weights are not modiVed by algorithms applied in the association
phase):

baggregatet = {fsources 7→ {∀k ik 7→ Bnormm,t,s }} (51)

This information is then aggregated into a single representation, a single
aggregated weight - waggregatet,s . Although the realisation of the feature
association function is free to choose any aggregation method and any
representation of a weight, usually the aggregation weight simply will be a
single scalar for each tuple of source and target feature. Out of the possible
aggregation methods, the two most common are:

• The sum of all weights: A single scalar is generated by iterating over
all weight values for a pair of target and source feature nodes. Thus the
aggregated feature association weight is the sum of all weights216: 216 In the baseline case there are no modiV-

cation on the local normalised weight.

wΣaggregate
t,s =

∑
k

baggregatet [fsources][ik]︸ ︷︷ ︸
equal toBnorm

t,k,s for baseline case

(52)

To illustrate this aggregation method an example is presented, where
the feature input graph consists of feature nodes which represents
random events. These source events are connected to a number of
instance nodes with an edge that carries the conditional probability of
the instance given the source event - P (ik|fsources). The instance nodes
are additionally connected to a set of target feature nodes, which like
the source features represent a set of random events. The edges of this
relationship may also carry a weight, which in this example is assumed
to uniformly 1 for all connections of this type. There is no limitation on
the number of instance nodes, as well as target feature nodes.

If all functional blocks are implemented to simply pass their input
values to the next block217, the normalised local weight will be Bnormt,k,s = 217 In the local association block the two

local weights (source and target) are
multiplied, or alternatively the local
association block just returns the local
source weight resulting in the same result.

P (ik|fsources) · 1. Again assuming no modiVcation on the normalised
weight are conducted in the association phase, the intermediate block
weights will be baggregatet = {fsources 7→ {∀k ik 7→ P (ik|fsources)}}
for all target features. The sum of all weights aggregation method will
iterate over all normalised weights, while incrementing a summation
value. Formally this can be expressed as:

wΣaggregate
t,s =

∑
k

P (ik|fsources) ≡ P (f targett |fsources) (53)

The Vnal aggregated weight will then be equivalent to the conditional
probability of an target event given a source event.

• The average of all weights: The second common aggregation method cal-
culates the arithmetic mean of the weights218. The resulting aggregation 218 Other functions to calculate an average

value (geometric mean, harmonic mean,
median, ...) are not presented here, but
of course may be used by an feature
association function.

concepts 113

weight can be derived from the wΣaggregate
m,l by introducing an additional

normalisation factor:

wµaggregatet,s =

∑
k b

aggregate
t [fsources][ik]

|baggregatet [fsources]|
(54)

To illustrate this aggregation method, an dice throwing experiment is
presented. The experiment consists of multiple persons and a dice. The
dice which will always yield a number between one and six219. The goal 219 It will never remain standing on an

edge or will suddenly drawn into another
parallel universe.

of this experiment is to Vnd out whether certain people have a tendency
to throw speciVc numbers.

To build a feature input graph, for each individual throw an instance
node will be added. The persons are represented as source feature nodes
and the outcome are modelled as target features. Thus the hyper-edge
that connects a source feature node with single target feature node while
traversing over a selected instance node will represent a single throw
event. The weight values for all the edges are initialised with 1.

The local source weight block and the target weight block will not
be used in further processing, therefore it may safely return 1 for all
invocations. The combined local weight block function also returns a
constant value, regardless of the input value: Blocalk,s,t = 1. The association
phase does not need to change the local weight or trigger any additional
processing. This results in an intermediate aggregation block weight of
baggregatet = {fpersons 7→ {∀k throwk 7→ 1}}.

Finally the aggregation method can be applied on the intermedi-
ate representation, which calculates the arithmetic mean of all local
weights for a combination of person and number. This will result in the
proportion of throws a person has yielded a speciVc outcome number.

wµaggregatet,s ≡ #Throwsnumberperson

#Throwsperson
(55)

Without making any further assumptions it is expected that the
aggregate average weight for all person-weight association will be about
equal, for a suXciently large number of throws. Any deviation from this
distribution indicates that the person might use a special technique to
trigger speciVc outcomes.

The framework triggers the execution of the aggregation functional
block, and also collects a series of aggregation statistics, like for example the
number of instances that are shared between the source and target feature.
Although the result of the aggregation block function appear to be valid as
an Vnal association weight between two features, it will be further relayed
to another functional block.

Global Association Weight The global association weight block is the
Vnal step in the feature association weight calculations. It is invoked in the
association phase after the aggregated weight has been further reVned by
an optional customisation functionality. The task of this function block is
to produce the Vnal association weight between two features. The weight
usually reWects the strength of the association relationship between a source
feature and a target feature.

The global association weight block takes two features and an aggre-
gated weight as argument. Additionally the implementation might access
any global statistics and the aggregation statistics. Formally the global
association weight function can be written as:

Bglobalt,s = f(fsources , f targett , Baggregatet [fsources]) (56)

The output of the global weight calculation is a weight, which will be

114 a feature association framework for knowledge discovery applications

a scalar for most of the use-cases. An application might also choose to use
a more complex form to represent the association strength. The weight is
then used for the edge that connects the source feature with the associated
target feature. If the association between two features should not be part
of the output feature graph, the global association weight function should
return no value at all for this combination of features. The Vnal output data-
structure of the this function block is an associative array. The keys in this
array are the target features, the values is a set of tuples. Each tuple in the
set is consists of the associated target feature together with the association
weight:

{f targett 7→ {〈fsources , Bglobals,t 〉}} (57)

A major use-case of the feature associations is to Vnd all associated
target features for a given source feature. Therefore one would rather
expect that the key of this associative array to be the source feature. For
the construction of the Vnal output feature association graph it does not
matter how the information is organised to create the association edges. The
reason for choosing the target feature as the main access to the association
information is rooted in the design decision to allow a fast retrieval. More
specially the sort criteria employed in the sort phase of the algorithm
determines how the data is internally organised, with the sorting according
to the target feature being the default.

The decision to focus on the target features as primary sort criterion
instead of the source features is motivated by the expected storage technol-
ogy to be used. An eXcient and scalable store data-structure is needed to
manage the output feature association graph. This data-structure does not
only have to store the information which nodes in this graph are connected,
but also needs to account for the association weight and other additional
meta-data220. Out of the possible candidates for the storage of the feature 220 For example a list of instances that

contributed the most to the Vnal association
weight.

association graph, the inverted index appears to be sensible choice, as this
data-structure will also often be the input data-structure. When an inverted
index is used as storage for the association relations, the direction of these
relations is reversed. This is the reason why the global association weight
block produces associations in the reverse direction by default. If another
type of storage technology is employed, which does not reverse the direction
of the associations, the sort criteria needs to be changed and the functional
block executed during the association phase need to be adapted221. 221 Feature association function that

generate symmetric associations are not
aUected by such a change.

The illustrate the way the diUerent functional block interact with each
other, the output of the global association block for a basic conVguration
is presented. Starting with a feature-instance weight of 1 for all edges, all
local functional blocks merely return the input value. The local association
weight function calculates the product of the source and target feature block
weights. Thus the value Blocalk,s,t is equal to 1 for all input values that are
then feed to the normalisation block function, which just further dispatches
this values to the weight aggregation. The aggregation block simply adds
a values for an association and the result is delivered as input to the Vnal
global association weight processing. If the global association weight
function does not modify this value, the Vnal result for the association
weight for all source and target features will be (with I being the set of all
instance nodes and E the set of all edges in the input feature graph):

Bglobals,t = |{ik|ik ∈ I ∩ 〈ik, fsources 〉 ∈ E ∩ 〈ik, f targett 〉 ∈ E}| (58)

For this basic deVnition of the functional groups the Vnal association
weight is equivalent to the number of shared instance node of the source
and target features222. Although the execution sequence of the functional 222 If the average-of-all-weights aggregation

function were used instead of the sum-of-
all-weights function, the Vnal association
weight would be 1 for all associations.

concepts 115

blocks and their input and output data-structures are Vxed, a wide array
of feature association function can be adapted for the feature association
framework.

Examples of the Feature Association Functions

The process of decomposing a feature association function into factors and
functional blocks can be tedious task. This is especially true for novice
users. Therefore the feature association framework provides a collection
of already decomposed feature association functions. This functions are
selected because of their usefulness in various feature association settings.
Many of there have been used in knowledge discovery applications in the
past. A selection of functions are presented in the follow section in detail
with references to the applications they have been used.

Because of the broad spectrum of functions they are grouped into cate-
gories of similar functions. An overview of the groups of presented func-
tions given at Vrst.

• Similarity Measures: The features to be associated are compared by
applying a similarity measure, for example the cosine similarity.

• Distance Metrics: If features are represented as points in an n-dimensional
space, one can calculate various distance metrics.

• Statistical Tests: In the Veld of statistics tests have been developed to
compare diUerent distribution or samples.

• Probability Based Functions: Features can also been seen as random
events and as such their probabilities can be used as base for an feature
association function.

• Entropy Based Functions: Algorithms from the the Veld of information
theory can be applied on the input data-set to generate feature associa-
tions.

Similarity Based Functions

The Vrst set of feature association functions are measures of similarity. In
contrast to the other categories of functions the similarity measures cannot
be attributed to a single discipline or domain. Some were developed in the
Veld of statistics, physics or computational science and some may in fact
be additionally be attributed to any of the other group of functions. But
they all share common semantics, as the result of the function resembles a
similarity value.

Cosine Similarity The cosine similarity is probably the most popular
similarity measure used in knowledge discovery applications223. Therefore 223 P. N. Tan, M. Steinbach, V. Kumar, and

Others. Introduction to data mining. Pearson
Addison Wesley Boston, 2006

this feature association function will be discussed in detail. The function
will serve as an example on the decomposing into factors and functional
blocks.

The cosine similarity is often used in conjunction with the so called
vector space model (VSM), which has been adopted for applications in the
domain of information retrieval (although it is not entirely clear how this
actually happened224). In the vector state model each record in the data-set 224 D. Dubin. The most inWuential paper

Gerard Salton never wrote. Status: published
or submitted for publication, 2004

is interpreted vector in a n-dimensional space, hence the name. Usually
the data-set is sparse, which results in the fact that most of the dimensions
of a record will stay empty (or zero). Traditional approaches to measure
the distance do not work well for such data (for example the Euclidean
distance). Therefore instead of using the distance of two points, the angle
between the vectors that connect the origin with the respective points. Even

116 a feature association framework for knowledge discovery applications

if the vectors vary in length, due to missing dimensions, the angle will be
largely unaUected.

Applying the cosine function on this angle results in a measure, which
produces results in the range of [−1,+1]. For orthogonal vectors the cosine
similarity will be O. If all coordinates are positive the range of the measure
will limited to [0,+1], which is usually the case when the dimensions
represent words and their value is the number of times the word occurs in
the text.

Formally the cosine similarity between two vectors - f1 and f2 - can be
expressed as:

cos θ =
f1 · f2
‖f1‖ ‖f2‖

(59)

If the two vectors are unit vectors225, the denominator can be spared and 225 An knowledge discovery application
might choose to scale all vectors to unit
length at the beginning of the processing.

the cosine similarity can be calculation by calculating the cosine of the dot
product between v1 and v2.

To apply the cosine similarity for calculating of an association weight
between two features, these features need Vrst to be represented as vectors.
In traditional information retrieval applications the documents are vectors,
while the words or terms resemble the dimensions. In the case of feature
associations the roles are exchanged, the features are mapped into a vector
representation and the instances serve as dimensions. For the values of each
dimension the weights of the edges that connect instances and features are
taken. Therefore the weights need to be numbers for the cosine similarity to
be applicable.

Generally speaking the cosine similarity will then high for features
that share many instances, and low for features with non-overlapping set
of instances226. In order to use this similarity measure it Vrst needs to be 226 This is based on the assumption that the

weights are either all equal or at least all
positive.

decomposed into the two components of a feature association function: the
factors and the functional blocks. While the decomposition into factors is
fairly simple in this case, the mapping of the cosine similarity into the block
functions appears to be a bit more complex. The cosine similarity for two
factors - fs and ft- can be expressed by the means of factors like this:

cos θ =

f1f1︷ ︸︸ ︷∑
ik∈I

fwF (fs, ik)fwF (ft, ik)√
fΣw

2

F (fs)︸ ︷︷ ︸
‖f1‖

√
fΣw

2

F (ft)︸ ︷︷ ︸
‖f2‖

(60)

The cosine similarity is now successfully mapped into a combination of
factors227. The next step is to Vnd a partition of the cosine similarity that 227 To improve the performance of the

association calculations, the framework is
conVgured to compute factors in advance
and make the results available to all factors
and functional blocks

matches the sequence of function blocks. The process of mapping a function
onto functional block is not unique, there a multiple ways on how to deVne
the block functions. The decision which mapping scheme is realised is
inWuenced by performance considerations.

The numerator of the cosine similarity as given in formula 60 can be
calculated in part by using the local association blocks. The local source
weight block employs the source weight factor to calculate a weight. The
same is done for the local target weight. These two local weights are then
combined by the local association weight. The local weights of the source
feature fs and target feature ft depend on a single instance node ik and can
be deVned as:

concepts 117

Bsourcek,s = fwF (fs, ik) (61)

Btargetk,t = fwF (fs, ik) (62)

Blocalk,s,t = Bsourcek,s Btargetk,t (63)

The normalisation block could be used to modify the local weight228, but 228 by dividing it by the length of the two
featuresto keep the necessary operations minimal the normalisation calculations are

postponed to an later block processing. To calculate the complete numerator
of the cosine similarity, the sum of all instance speciVc weights needs to be
calculated. This is the task of the aggregation block. More speciVcally, the
sum-of-all-weights aggregation method produces the desired result. The
implementation of the normalisation and aggregation functional blocks can
therefore be expressed as:

Bnormt,k,s = Blocalk,s,t (64)

Baggregatet,s =
∑
k

Bnormt,k,s (65)

After the complete numerator is handled by the aggregation block, the
denominator still remains to be integrated to end up with a correct imple-
mentation of the cosine similarity. The global weight block is responsible to
combine the output of previous blocks and to conduct the normalised to unit
length. The cosine similarity is symmetric in regard to the input vectors,
therefore the global association weight is the same for both association
directions.

Bglobalt,s = Bglobals,t =
Baggregatet,s√

fΣw
2

F (fs)
√

fΣw
2

F (ft)
(66)

The global association weight has been successfully decomposed into
factors and functional blocks. The feature association framework already
provides an implementation of a cosine similarity and therefore any applica-
tion may use this function without further decomposition steps.

Weighted Cosine Similarity The cosine similarity can be further ex-
tended and improved by introducing and additional weighting scheme.
Although the weighting scheme is usually applied outside the feature associ-
ation framework, an example of an integrated weighting will be presented
because of its relevance in real-world applications.

The TFIDF approach has become the de-facto standard for many ap-
plications in the area of knowledge discovery. It is often combined with
the Vector Space Model and serves as the basic implementation of many
information retrieval solutions. In this context the Vector Space Model
is build based on vectors that represent documents and dimensions that
represent terms. Each document consists of a list of terms, where each term
may occur multiple times. The number of times a term is listed within a
document is the local weighting aspect of TFIDF. The global weighting part
is motivated by the intuition that rare terms should have a higher inWuence
on the Vnal weight. To capture this intuition at Vrst the document frequency
is determined, which is deVned as the number of documents a given term
occur in at least once. Although the reciprocal value of the document fre-
quency would be suXcient to satisfy the intuition, it is made robust to
changes in the size of the data-set by adding the total number of documents
as numerator. Finally the logarithmic value of this ratio is taken as Vnal

118 a feature association framework for knowledge discovery applications

global weighting, which is referred to as Inverse Document Frequency.
The combination of the local and global weighting aspects gives the Vnal

TDIDF weighting scheme as deVned in formula 69. In this equation the
document is labelled as ik, which consists of a list of terms which represent
occurrences of the given feature fs.

TF (fs, ik) = |{os,k|os,k ∈ ik ∩ os,k ∈ Occur(fs)}| (67)

IDF (fs) = log(
|I|

|{ik|ik ∈ I ∩ 〈ik, fs〉 ∈ E}|
) (68)

TFIDF (fs, ik) = TF (fs, ik)︸ ︷︷ ︸
Local Weight

IDF (fs)︸ ︷︷ ︸
Global Weight

(69)

When building an input feature graph, the number of occurrences is
mapped as weight of an relation between an instance and a feature. To be
used within the feature association framework the weighting scheme needs
to be decomposed into factors. For the TFIDF weighting the factors already
supplied by the framework can be re-used. With a combination of these
factors a new TFIDF weighting factor can be deVned as:

ftfidfF (fs, ik) = fwF (fs, ik)︸ ︷︷ ︸
TF (fs,ik)

log(
fNI

fNF (fs)
)︸ ︷︷ ︸

IDF (fs)

(70)

To integrate the weighting scheme into a feature association function,
any references to the fwF (fs, ik) factor need to be replaced by the new
weighting factor ftfidfF (fs, ik). Applied in the the global weighting block of
the cosine similarity is an example of the integration of a weighting scheme
into an existing feature association function229: 229 The factor fΣtfidf2

F (fx) is the sum of all
squared TFIDF weights for a given feature
fx

Bglobalt,s = Bglobals,t =

∑
k f
tfidf
F (fs, ik)ftfidfF (ft, ik)√

fΣtfidf
2

F (fs)

√
fΣtfidf

2

F (ft)
(71)

The enhancement of the cosine similarity measure by integrating a
weighting scheme serves as a demonstration the Wexibility of the combina-
tion of factors and functional blocks. For the following feature association
function the decomposition into factors and functional block will be omitted
for sake of brevity.

Jaccard Similarity CoeXcient In contrast to the cosine similarity which
operates on a representation of the feature as vectors in the Euclidean space,
the Jaccard similarity operates on sets. The Jaccard similarity is deVned as
ratio between the size of the intersection and the union of the two sets.

Equation 72 presents the formal deVnition of Jaccard similarity with Is
and It being two sets:

Jaccard(Is, It) =
|Is ∩ It|
|Is ∪ It|

(72)

Due to the deVnition of the Jaccard similarity measure, it only appli-
cable on binary features. The limitation implies that the weight of the
edges which connect an instance with a feature node in the feature input
graph are going to be ignored. The existence of a the edges alone serve as
determining factor whether a instance is included in a feature speciVc set.
Formally these sets can be constructed for each feature fs with I being the
set of all instances and E the set of all edges230: 230 Although only the source feature fs is

listed here, the same applies to the target
features ft as well.Is = {ik|ik ∈ I ∩ 〈ik, fs〉 ∈ E} (73)

concepts 119

The similarity value produced by the Jaccard measure are in the range
[0, 1], where a value of 1 indicates that the two features share exactly the
same instances and a value of 0 is produced if the two features have no
instance nodes in common.

Overlap CoeXcient Similar to the Jaccard similarity measure, the Over-
lap coeXcient operates on sets. The two measures deviate in the choice
of the denominator. The overlap coeXcient puts the magnitude of the
intersection set in relation to the size of the smaller of the two sets:

Overlap(Is, It) =
|Is ∩ It|

min(|Is|, |It|)
(74)

The Overlap coeXcient shares many properties with the Jaccard measure.
The output range of [0, 1], where a higher number reWects a higher degree of
similarity. Like the Jaccard similarity, the Overlap coeXcient only applies to
binary features.

Dice’s CoeXcient Similar to the Jaccard similarity and the Overlap coeX-
cient, the base of the Dice’s coeXcient is the number of shared instances of
two features. To calculate the Dice’s coeXcient the size of the intersection is
multiplied by two and divided by the sum of the number of elements in the
two sets.

Dice(Is, It) =
2|Is ∩ It|
|Is|+ |It|

(75)

The Dice’s coeXcient will be close to 1 for highly overlapping sets and
near to zero, if the two sets share only few elements. Like the other two set
based similarity measures, the Dice’s coeXcient can only be calculated for
binary features. If the input feature graph is weighted, one can apply an
threshold on the weights to transform them into a representation suitable
for this family of similarity measures.

Although the three presented set based similarity measures appear to
be redundant, depending on the application scenario they may provide
diUerent results. A detailed graphical analysis of the diUerent similarity
measure is given by Jones and Furnas231. 231 W. P. Jones and G. W. Furnas. Pictures

of relevance: A geometric analysis of
similarity measures. Journal of the
American society for information science,
38(6):420–442, 1987Pearson’s Correlation The Pearson product-moment correlation co-

eXcient has been developed to compare two variables and to test their
independence. Therefore this measure is well suited for the task of identify-
ing relevant feature associations.

Although the Pearson’s correlation can be applied on distributions, in the
context of the feature association framework the data-set usually resembles
samples.

In this case the necessary input data for the correlation coeXcient need
to be estimated. For both variables the mean and standard deviation need to
be determined. Therefore the Pearson’s correlation can only be calculated, if
the data-set is dense - there are no missing values. Within the input feature
graph there need to be a connection between each instance node and each
feature node. If the weight information is not available for some relations it
needs to be substituted232. 232 Assuming a weight of zero is one way

to achieve this, although for very sparse
data-sets this does not lead to useful results
as the mean and the standard deviations
will be close to zero for the majority of the
features.

Given a feature fs and a set of weighted relations, the estimated mean
is the arithmetic average of all weights. For the standard deviation the
commonly used estimation formula can be expressed via factors as:

120 a feature association framework for knowledge discovery applications

wx =
1

finF (fx)

∑
ik|ik∈I

(fwF (fx, ik)) (76)

sx =

√√√√ 1

finF (fx)− 1

∑
ik|ik∈I

(fwF (fx, ik)− ws)2 (77)

Given the deVnitions of the mean and standard deviation the Pearson
product-moment correlation coeXcient coeXcient is written as:

Pearson(fs, ft) =
1

|I| − 1

∑
ik|ik∈I

[(
fwF (fs, ik)− w̄s

ss

)(
fwF (ft, ik)− w̄t

st

)]
(78)

The Pearson correlation coeXcient produces values in the range of
[−1,+1], where values close to +1 indicate a high degree of dependence
between the two features. This happens if both features share a similar
weight distribution in relation to the instances. In other words, if the weight
of a feature-instance relationship is high for the source feature, it will
be high for the target feature as well. If the two features are completely
independent, the correlation coeXcient will be zero. Negative values
indicate that the two features inversely correlate. This can be observed if the
weight of the source feature is high for a given instance, the weight of the
target feature will be low and vice versa233. 233 The pairs of features represent a kind of

XOR like distribution pattern.The Pearson’s coeXcient can also be interpreted as the angle between the
axis of variation of the two feature distributions. Therefore this measure is
useful to gain a better understanding of the features within a data-set and it
represents a valuable tool for the work of feature analysis234. 234 Unfortunately this only applies to

’fully-connected’ data-sets.Besides the Pearson’s correlation that is a number of other correlation
functions, most notably the Spearmen’s rank correlation coeXcient and the
Kendall τ . These two correlation measures do not operate on the feature
weights directly, but on a ranked list of feature-instance weights235. These 235 The feature-instance relationship with

the highest weight is top-ranked, followed
by the second highest weight and so forth.

type of correlation measures is chosen, if only the absolute ranking of
the variables is known. In the case of feature associations the Pearson’s
correlation is generally preferred to these measures, as the weights contain
more information as the ranking position and the ranking itself might be
non-deterministic (in the case of ties).

Tanimoto Correlation The Vnal example for the family for similarity
function is the Tanimoto correlation. This measure is not as well known as
the other presented measures, but it is included due to its unique properties
and its close relationship to other similarity functions. The Tanimoto
correlation can be either be seen as extension of the Jaccard index, as an
enhancement of the Cosine similarity or as an hybrid version of the Cosine
similarity and the Euclidean distance, which is covered in the following
section.

Formally, the Tanimoto correlation is deVned as relationship between the
distribution of a source feature fs and a target feature ft:

Tanimoto(fs, ft) =

∑
k f
w
F (fs, ik)fwF (ft, ik)

fΣw
2

F (fs) + fΣw
2

F (ft)−
∑
k f
w
F (fs, ik)fwF (ft, ik)

(79)
In contrast to the other presented similarity measures, the range of

possible output values of the Tanimoto coeXcient is not bounded. For
example, the magnitude of the resulting scalar for two identical features
will depend on the actual feature-instance weight values. This can be seen

concepts 121

as one of the reasons why the Tanimoto similarity measure is not a widely
adapted as for example the cosine similarity. The interpretation of the Vnal
feature association weight is less intuitive, but it still might be the preferred
similarity measure for speciVc data sets.

Distance Functions

While the similarity measure in general produce low values for independent
features and high values for features of similar distribution, the values
produced by distance functions follow the reverse logic. They measure
the distance of two points which represent the two features. A higher
distance between the two points indicates a high degree of independence or
dissimilarity.

Euclidean The Euclidean distance has already been covered in this
chapter as an example for the factor that composes the weight of an
feature-instance relationship. The features are interpreted as points in
an n-dimension space, where the number of dimensions is equal to the
number of instance nodes in the input feature graph. Thus each dimension
maps to one instance. The weigh of the edge between an instance node and
a feature node is the coordinate of a point in the n-dimensional space.

The Euclidean distance is also called L2 norm and is formally deVned for
the 2-dimensional space as236: 236 Please refer to the description of the

feature weight factor for detains on the
Euclidean distance.

L2(i1, i2) =

√
(fwF (f1, i1)− fwF (f1, i2))2+
(fwF (f2, i1)− fwF (f2, i2))2 (80)

The distance between two points will be zero for identical features, so
that each of the two features share the same weights for the same instance
nodes. The more the weights deviate, the higher the distance will be. Due to
the deVnition of the distance, the L2 norm will never yield negative results.
Furthermore the Euclidean distance fulVls all requirements of the deVnition
of a metric. DeVnition of a metric:

1. The values are non-negative

2. A result of 0 only if both points are
identical

3. The sequence of points does not matter
(symmetrical)

4. Given three points, the sum of two
distances is always larger (or equal)
then the third distance (triangle
inequality)

The Euclidean distance will be mainly used as feature association func-
tion if the data-set itself resembles point in an n-dimensional space. Al-
though this is not the case for the many of real-world data-sets, the data
may be transformed by preceding processing into an Euclidean space.

An application scenario for the usage of the Euclidean distance is the
family of methods that are based on a k-NN based feature selection. This
feature selection scheme starts with a single feature and tries to Vnd the
most similar related features. Thus starting with the position of the initial
feature the algorithm searches for neighbouring points. A the criteria to
deVne the proximity of points a distance measure is used, in this case the
Euclidean distance. Starting with the closet neighbour the algorithm collects
as many features until a threshold value is reached. This threshold is usually
an upper bound of neighbouring features. Hence the name of this algorithm
- k-nearest neighbours.

L1 Norm The L1 norm is also known as cab distance, Manhattan distance
or city-block distance. These names give a good impression on how the L1

norm operates.
The L1 norm is closely related to the Euclidean distance. Their deVni-

tions are therefore similar. The L1 is deVned for the 2-dimension space
as:

L1(i1, i2) =
(fwF (f1, i1)− fwF (f1, i2))+
(fwF (f2, i1)− fwF (f2, i2))

(81)

122 a feature association framework for knowledge discovery applications

Although the L1 and L2 appear to be nearly identical, they have dif-
ferent properties which makes them suitable for diUerent use-cases. For
example, the L2 is guaranteed to produce positive distance values, the L1

norm may also generate values.

Minkowski Distances The L2 and the L1 norm are examples of the
family of so called Minkowski distances. The Minkowski distance is a more
general deVnition of distance and features an additional parameter p. The
Euclidean distance is equal to the Minkowski distance with p = 2 and for
the L1 norm the parameter is equal to 1. Given two features fs and ft, the
Minkowski distance can be formally described as.

Minkowskip(fs, ft) =

 ∑
{ik|ik∈I}

|fwF (fs, ik)− fwF (ft, ik)|p
1/p

(82)

DiUerent values of p yield diUerent properties. For speciVc applications
an specialised value of p is beneVcial.

Levenshtein Edit Distance Until now all presented feature association
function were based on the weight of the connection between instances
and features. The Levenshtein edit distance serves as an example that other
parts of the feature input graph can be utilised to build meaningful feature
associations. In this case the meta-data of the feature nodes are analysed to
build a similarity between individual features. The algorithm expects that
one of the attached meta-data is a textual representation of the feature. For
textual data-sets with will usually be a single word or phrase.

Starting with two strings, the Levenshtein edit distance calculates the
number of edit steps required to transform the Vrst string into the second.
Each edit step may be an insertion of a character, a removal of a character
or an exchange of a single character. Whereas the Levenshtein edit distance
determines the minimal number of steps, as there inVnitesimal many
possible variations of edit steps. So for example the edit distance between
’mouse’ and ’mice’ is 3 (remove ’u’, replace ’s’ with a ’c’, replace ’o’ with
’i’). A formal representation of the Levenshtein edit distance is omitted here,
but there are many demonstration implementations available online, for
example http://www.merriampark.com/ld.htm (and an open-source
Java implementation is also available: http://www.merriampark.com/
ldjava.htm).

To use the Levenshtein distance as feature association function, one can
create a input feature graph that consists of all features connected to a single
instance node. That way all features will be associated will all other features
in the output feature association graph with the edit distance as association
weight. This is not the most eXcient way to Vnd similar written features,
as the resulting graph is fully connected, which is usually not needed and
takes a considerable time to construct. Alternatively the input feature graph
can be modelled to consist of instances which resemble preVxes, for example
the Vrst character of each word. This way only features that share the
same preVx will be associated with each other. Using character n-grams
or syllables are other possible approaches to group the input features into
categories. The best representation of the input feature graph relies on the
application scenario.

SoundEx The Levenshtein edit distance is way to Vnd similarly written
features. When the SoundEx algorithm is used as feature association func-
tion, features will be grouped according to the way they are pronounced (in
the English language). To use this algorithm the features are expected to be

http://www.merriampark.com/ld.htm
http://www.merriampark.com/ldjava.htm
http://www.merriampark.com/ldjava.htm

concepts 123

annotated with meta-data that resembles a textual representation. Usually
this will be single words or a sequence of words.

The SoundEx algorithm is particularly useful if the features which
identify named entities. Person names, organisation names and location
names a typical examples of such named entities. Especially for entity
names from foreign countries and diUerent languages there is often no
single canonical spelling. Therefore multiple possible ways to write a name
may exist and even in one data-set, diUerent spellings might be used. This
causes problems and inaccuracies in knowledge discovery applications. To
align diUerent spellings into one representation, the sound of a name can be
used as criteria. For real-world data-set the ’reverse’

problem exists too. There are word that are
written equally, but pronounced diUerently.
For example the name ’Berkeley’ is
pronounced diUerently. The surname of the
philosopher George Berkeley (/bαrkli :/) is
pronounced diUerently than a well known
city in California (/bεrkli :/)

The SoundEx transforms a word into a sequence of characters that
uniquely describe the way this word is articulated. Both names yield the
same SoundEx code: G500.

It has been used by the US Census at the beginning of the 20th century
and is still used by genealogists to capture spelling variations of the same
surname. The original SoundEx algorithm has a couple of limitations, for
example the resulting code has a Vxed length regardless of the length of
the input word. Therefore multiple schemes to improve SoundEx have
been proposed, as well as multiple alternative approaches. For example
the NYSIIS237 (New York State IdentiVcation and Intelligence Algorithm), 237 R. L. Taft. Name search techniques.

Bureau of Systems Development, New York
State IdentiVcation and Intelligence System,
1970

Metaphone238 and Double Metaphone239.

238 L. Philips. Hanging on the metaphone.
Computer Language Magazine, 7(12):38–44,
1990
239 L. Philips. The double metaphone search
algorithm. CC PLUS PLUS USERS JOURNAL,
18(6):38–43, 2000

Functions Based on Statistical Tests

Statistical tests are a natural match to capture the strength of feature
associations. They have been developed to measure how likely the output of
an observation is in relation to a predeVned hypothesis. The reference for
the observation is called null hypothesis. The output of a statistical test is
the signiVcance level to which the observation matches the null hypothesis,
or an alternative hypothesis is more likely.

To utilise statistical test within the feature association framework, the
input data must Vrst be transformed into a representation suitable for the
signiVcance tests. A pair of source and target features are assumed to be
two random variables. Each of the variables has two states, which resemble
a binary value that is true, if an instance node is connected to the feature
and false, if not. Using this scheme it is possible to build a contingency
table by counting the number of times each of the states occurs. The Vnal
contingency table is a 2× 2 matrix as in table 17 with I being the set of all
instance nodes. The null hypothesis for the statistical tests is the assumption
that both features, source as well as target, share a common distributed in
regard to the instance nodes. The resulting signiVcance level can then be
seen as strength of the association between the two features.

Source Feature Target Feature

Number of connected
instance nodes

finF (fs) finF (ft)

Number of remaining
instance nodes

|I| − finF (fs) |I| − finF (ft)

Table 17: Contingency table used as input
for the statistical tests. The output of such
an signiVcance test indicates, whether the
two features share a common distribution.

To simplify the formula and the discussion of the presented statistical
test, symbols will be used to refer to the individual cells within the contin-
gency table instead of referring to the factors itself. The symbols are listed
in table 18.

χ2 Test Out of the various possible statistical test, the χ2 test240is one the 240 The χ2 test is also called chi spare test.

124 a feature association framework for knowledge discovery applications

Source Feature Target Feature

Number of connected
instance nodes

a b

Number of remaining
instance nodes

c d

Table 18: Symbols for the cells of the fea-
ture contingency table. These symbols are
using in the equations of the consecutive
descriptions of the statistical tests..

most popular. The general formula to test the independence of two variables
is given as, with Oi,j being the observed count and Ei,j being the expected
counts of the null hypothesis:

χ2 =

r∑
i=1

c∑
j=1

(Oi,j − Ei,j)2

Ei,j
(83)

The feature contingency table can be used as base for applying the so
called fourfold test, which is a special case of the χ2 test. By using the
symbols from table 18 the χ2 test for feature contingency table can be
written as:

χ2 =
(ad− bc)2(a+ b+ c+ d)

(a+ b)(c+ d)(a+ c)(b+ d)
(84)

The result of this formula can be used to look up the signiVcance level for
one degree of freedom.

The signiVcance level of the χ2 test will only be reliable is a number of
requirements are fulVlled. Most importantly there must be a suXcient of
observations for each state. The generally accepted rule of thumb is to have
a minimum frequency of 6 for each cell.

The presented method to use the χ2 test is not the only possibility.
If another null hypothesis is to be tested, the statistical test needs to be
adapted. For this alternative version of the χ2 test the co-occurrences will
used again as base for the observations. Thus the table for the observed
frequencies will be a 2× 2 matrix and given in table 19.

¬Source Feature Source Feature

¬Target Feature none only source
Target Feature only target both

Table 19: Co-occurrence matrix of a source
and a target feature. The Vrst column
represents the number of instance nodes not
connected to the source feature, whereas
for the second column instance nodes are
counted that are connected to the source
feature. The rows are used to denote the
same relationship for the target feature.

To employ a statistical test, a matrix with the expect frequency needs
to be constructed. Within this matrix the counts will be determined by
the estimates based on the null hypothesis. In this case the independence
of the two features is taken as null hypothesis. If the two features are
truly independent, the occurrence of one feature does not inWuence the
occurrence of the other feature. This must be true for every instance node. If two variables are truly independent, their

joint probability p(x, y) is the result of
co-occurrences that are purely caused by
chance and thus p(x)p(y).

Based on this assumptions, the 2× 2 matrix for the expected frequencies
can be constructed, based on the number of instance nodes N and the
probability estimates for the two features, p(fs) and p(ft) as given in
table 20.

¬Source Feature Source Feature

¬Target Feature N(1− p(fs))(1− p(ft)) Np(fs)(1− p(ft))
Target Feature N(1− p(fs))p(ft) Np(fs)p(ft)

Table 20: Matrix of a expected frequency
counts if both features are independent.
To calculate the frequencies an probability
estimate is put in relation with the total
number of instances.

The χ2 test can then be applied on the two matrices. The degrees of
freedom are determined by the size of the matrices, by (|Columns| −
1)(|Rows| − 1). Thus for the 2 × 2 matrices there is one degree of free-

concepts 125

dom. Finally the signiVcance level can be computed that indicates the
independence of the two features.

The χ2 test is a popular choice to measure the association strength
between features. There are many examples for knowledge discovery
application that make use of this statistical test. For example the chi square
test has been employed to identify keywords in text241. 241 Y. Matsuo and M. Ishizuka. Keyword

extraction from a single document using
word co-occurrence statistical informa-
tion. International Journal on ArtiVcial
Intelligence Tools, 13(1):157–170, 2004

Fischer Exact Test The Fisher exact test is an alternative to the χ2 test
as both are targeted at the same problem. One problem of the chi square
test is that is not reliable if the number of counts is low. The Fisher exact
test is more precise if there are a limited number of available observations.
This advantage is coupled with a drawback. The run-time complexity of the
Fisher exact test is higher. Therefore in the past the application of the exact
test was hardly ever feasible. With the increase in computational power in
recent years the Fisher exact test is now a valid alternative to the less precise
χ2 test.

When using the symbols from table 18 the Fisher exact test can be
formally written as:

Fisher =

(
a+c
a

)(
b+d
b

)(
a+b+c+d
a+b

) (85)

From the deVnition one can deduce that the computation of the Fisher
test needs far more processing instructions than the χ2 test. Therefore the
exact test is only conducted for infrequent features, for all other features the
chi square test provides suXciently good results.

Log Likelihood Test As the name implies the log likelihood test operates
on estimates of the probabilities of two hypothesis. The likelihood of the
null hypothesis is put in relation to the alternative hypothesis.

There is a close relationship between the log likelihood test and the
χ2 test. In many cases it is hard to compute the likelihood values. If it is
possible to derive the null hypothesis from the alternative hypothesis, the
the chi square test can be used as an approximation for the log likelihood
test.

LogLikelihood = −2

r∑
i=1

c∑
j=1

Oi,j log(
Oi,j
Ei,j

) (86)

In the case of feature associations the null hypothesis can be deVned as
assumption that two features are independently from each other. Therefore
the number of shared instances are just results of coincidences and does not
signiVcantly deviate from the expected common instances.

When dealing with a small number of observations, the probability
estimate will be low, which could lead to problems in the exact calculation
of the log likelihood test. Therefore schemes have been developed to make
the computation of this test more robust242. 242 S. Evert. The statistics of word cooccur-

rences: word pairs and collocations. Stuttgart,
2005

The log likelihood test has been used in many knowledge discovery
application, especially in the Veld of natural language processing. For
example to detect collocations in textual resources243. 243 P. Pecina and P. Schlesinger. Combining

association measures for collocation extrac-
tion. In Proceedings of the COLING/ACL
on Main conference poster sessions, pages
651–658, Morristown, NJ, USA, 2006.
Association for Computational Linguistics

Poisson Test The binomial distribution is the base of the Fisher exact test,
which is coupled with a high run-time complexity. Therefore it is desirable
to be able to replace the binomial distribution with an approximation. If
the probabilities are suXciently small, the binomial disambiguation can be
approximated by the Poisson distribution.

Following the approach by QuasthoU and WolU244 the Poisson distribu- 244 U. QuasthoU and C. WolU. The poisson
collocation measure and its applications.
2002

tion can be adapted to calculate a signiVcance values:

126 a feature association framework for knowledge discovery applications

λ = |I|p(fs)p(ft) (87)

k = |{ik|ik ∈ I ∩ 〈ik, fs〉 ∈ E ∩ 〈ik, ft〉 ∈ E}| (88)

Poisson =
−log(

∑∞
l=k

1
l!λ

le−λ)

log(|I|) (89)

For smaller probabilities this can further be reduced to:

Poissionapprox =
λ− k log(λ) + log(k!)

log(|I|) (90)

Like the log likelihood test the approach using the Poisson distribution
has been used by several applications. Both measures of association have
also been compared using multiple languages and both perform equally well
when compared with other association measures245. 245 S. Bordag. A comparison of co-occurrence

and similarity measures as simulations
of context. In Proceedings of the 9th
international conference on Computational
linguistics and intelligent text processing,
CICLing’08, pages 52–63, Berlin, Heidelberg,
2008. Springer-Verlag

Probability Based Functions

Some of the presented statistical test imply that a feature is coupled with a
certain probability. How these probabilities are calculated was not covered
in detail in the previous section. The probabilities of the features are not
only useful within a signiVcance test. The probability of a single feature
and more importantly the probability of pairs of features give insights into
the properties of the feature associations. Therefore a selection of feature
association function based on probability estimates are presented.

At Vrst an estimate for the probability of individual features needs to be
established. The number of instances that are connected to a feature is only
possible starting point. As with the similarity measure which operate on
binary representations, a threshold value can also be applied in this scenario.
This instance count can also be seen as feature frequency. Thus the basic
probability estimate for a feature can be deVned, where I denotes the set
of all instance nodes and E is the set of all edges within the input feature
graph:

p(fx) =
|{ik|ik ∈ I ∩ 〈ik, fx〉 ∈ E}|

|I| (91)

This basic maximum likelihood estimate does only consider the number
of instances connected to a feature in relation to the magnitude of the set of
all features. The correct estimation of the probability of features is a central
aspect of the language modelling approach to information retrieval. In this
Veld many alternatives to the basic probability estimation method have been
proposed. Ponte and Croft have integrated a term frequency factor into the
basic formula246. They proposed method can be adapted to the input feature 246 J. M. Ponte and B. W. Croft. A language

modeling approach to information retrieval.
In Proceedings of the 21st annual interna-
tional ACM SIGIR conference on Research
and development in information retrieval,
pages 275–281. ACM, 1998

graph. The weights of the edges between an instance node and feature node
are used instead of the term frequencies:

The presented probability estimates are
tailored towards textual features, but the
same approaches are still valid for other
types of feature with similar properties.
The most important requirements is the
sparseness so that a single feature is only
connected to a relatively small subset of
instances. For dense features the probability
estimates can be directly derived from
the data. More precisely, the features are
assumed to be power-law distributed,
a property shared by many real-world
phenomena.

plocal(fx, ik) =
fwF (fx, ik)∑
f f
w
F (f, ik)

(92)

p(fx) =

∑
ik
plocal(fx, ik)

|{ik|ik ∈ I ∩ 〈ik, fx〉 ∈ E}|
(93)

As these probability estimations are based on the occurrences of features
within a data-set, the quality of the estimates will rise with the amount
of data. Therefore the size of the data-set plays an important role in any
language model based application, as well as for the Vnal feature association
results.

concepts 127

If the available data-set is too small for reliable probability estimates,
the language model can be build using another dedicated data-set. This
approach is valid as long the language used within the data-set is similar
to the general language usage. Examples for big data-sets to build are the
British National corpus247, the Gigaword corpus248 and the Google n-gram 247 L. Burnard. Reference Guide for the

British National Corpus (XML Edition),
2007
248 D. GraU, J. Kong, K. Chen, and K. Maeda.
English gigaword. Linguistic Data
Consortium, Philadelphia, 2003

corpus249. There are also corpora available for speciVc domains, for example

249 http://ngrams.googlelabs.com/

datasets

the Reuters RCV-1250 and RCV-2 for newswire articles.

250 D. D. Lewis, Y. Yang, T. G. Rose, and F. Li.
Rcv1: A new benchmark collection for text
categorization research. The Journal of
Machine Learning Research, 5:361–397, 2004

If the data-set being analysed uses a specialised, domain-speciVc lan-
guage where there is no large corpus available, there are other methods to
improve the quality of the probability estimates. These methods may even
be used for big data-sets, when the number of occurrences for speciVc fea-
tures is low. Some features may occur only a few times, or might not occur
at all. This problem can arise if the data-set is split into a set of training in-
stances and a set of test instances. For example if the application employed a
supervised machine learning algorithm such a splitting might be necessary.

The term smoothing is used to summarise a family of algorithms that try
to correctly estimate the probability of rare and missing features. The basic
form of smoothing is based on the model that all features are connected to a
virtual instance node. So even missing features (features without a relation
to any of the instance nodes) are connected to this additional instance. Thus
the probability estimate becomes:

p(fx) =
|{ik|ik ∈ I ∩ 〈ik, fx〉 ∈ E}|+ 1

|I|+ 1
(94)

This kind of smoothing is also referred to as add one smoothing or
Laplacian smoothing. This scheme can be further reVned by replacing the
constant term 1 by an variable and is then called additive smoothing251. 251 C. X. Zhai. Statistical language models for

information retrieval. Synthesis Lectures on
Human Language Technologies, 1(1):1–141,
2008

Although many diUerent approaches to the problem of smoothing the
probability values for features has been proposed, only a limited selection
can be covered here. The Simple Good-Turing (SGT) method252 is used

252 W. Gale and G. Sampson. Good-Turing
smoothing without tears. Journal of
Quantitative Linguistics, 2(3):217–237, 1995

as an example for one of such sophisticated smoothing techniques. The
SGT smoothing approach is grounded on the information theory. At Vrst
the probability of any missing features is estimated by the ratio of feature
connected to only a single instance in relation to the magnitude to the set of
features F :

p0 =
|fx|fx ∈ F ∩ finF (fx) = 1|

|F | (95)

This estimate assumes that the likelihood of a missing feature is the same
as the probability estimate for a feature having just a single connection to
the set of instance nodes. The probability of the remaining features, two
algorithmic approaches are taken. For low frequent features a recursive
approach is employed, for features with a higher count of instances a
smoothing method is applied.

First the frequency counts for the feature with many instances are
interpolated. In most of the non-synthetic data-sets there will be gaps in
the histogram of number of features per instance count. Especially for
higher instance counts there will not be a single feature representing a
frequency bin. For example there might be a number of features connected
to 100 instances and a few features are connected to 103 instances and some
features are related to 105 instances, but there is not a single feature in the
data-set connected to 101, 102 or 104 instance nodes. These gaps are Vlled
by interpolating over the feature instance-count distribution by using the
available data. The available data is Vrst evenly smoothed, where t and q

http://ngrams.googlelabs.com/datasets
http://ngrams.googlelabs.com/datasets

128 a feature association framework for knowledge discovery applications

are assumed to be the closest available instance-counts:

Zr =
Nr

0.5(t− q) (96)

For example the smoothed frequency of 5 features having an instance
count of 103 is 5

0.5105− 100 = 5
2.5 = 2. This is done for all available

frequencies and the result is plotted as a log-log diagram. Within the log-log
chart one can Vt a linear regression curve, which is then used a smoothing
of the feature frequency counts. The chart in Vgure 19 is an example of a
log-log view of the unsmoothed feature frequencies. The added regression
line does not match the distribution of the data.

Figure 19: Example for a log-log diagram
of a feature count histogram, with textual
features generated from the ConceptNet
corpus. The x-axis represents the bins of
features having a certain instance count.
The y-axis are the counts for each bin.
Additionally a linear regression curve
is Vtted into the data. Clearly the curse
does not reWect the slope of the frequency
distribution.

In Vgure 19 the same data is smoothed. Now the regression line nicely
Vts the available data. Using this regression curve as approximation of the
frequency distribution, the Vnal smoothing can be calculated.

Figure 20: Log-log chart of the smoothed
frequencies of the sample data. The
frequencies have been evened out by using
the index of the neighbouring bins having
a count greater than zero. Now the slope
regression line and the distribution of the
frequency counts are a much closer match.
The regression line can now be used to
substitute the missing frequency bins.

For higher frequencies the linear regression curve is directly used as
approximations. For smaller frequencies a recursive approach is employed
that estimates the frequency of features with a certain number of instances
by using the estimate of the frequency of features having one more instance

concepts 129

relationship as input. This recursive deVnition uses the expectation of a
frequency count E(Nn) for a given bin probability pn and for the next
higher bin.

pn = pn+1
E(Nn+1)

E(Nn)
(97)

By using the number of features that are connected to only one instance
as expected number (E(N1) = |fx|fx ∈ F ∩ finF (fx) = 1|), the recursion
can be iteratively be resolved. At a certain point the recursive approach is
given up and the probability estimates are taken from the regression line.
The decision when to swap the strategies can be based on the diUerence
of the two predicted probability. As long as the two methods produce
signiVcantly diUerent results, the recursive approach is taken. For all higher
frequency counts the regression line based probability estimates are used.
Figure 21 gives an overview of the results of the two methods together with
the counts for the frequency bins.

Figure 21: Overview of the results of the
Simple Good-Turing smoothing algorithm.
The x-axis represents the frequency bins
of the frequency-count histogram. The
Turing estimate captures the results of the
recursive frequency estimation, and the
Linear Good-Turing estimate resembles the
results from using a linear regression line.
Additionally the unsmoothed frequency is
given as curve and the frequency counts
of the histogram are included using the
secondary y-axis. Both smoothing methods
underestimate the frequencies, which is
expected since they both incorporate the
probability of unseen features.

The task of the feature-engineering is to decide whether a smoothing
should be applied at all and which smoothing strategy is a sensible choice.
The optimal decision largely depends on the actual data-set and the knowl-
edge discovery application itself. Therefore the basic smoothing technique,
by simply adding a virtual instance node to the input feature graph, is a
good starting point to assessing whether smoothing is beneVcial in a given
application scenario.

Until now the probability of a feature has been mainly been viewed
from the perspective of instances and relations between instance nodes and
feature nodes. Depending on the scenario, the probability of a feature can
be deVned diUerently. The probability of a feature may be deVned in the
data-set itself or might be calculated by a pre-processing step. In this case
the probability estimate of a feature might be encoded into the weight of
a instance-feature relationship. Alternatively an application might assume
that all features are equally probable, or the probability is retrieved from an
external resource.

For the feature association function the origin of the probability esti-
mate is not relevant. Therefore the scenarios will not be considered in the
description of the probability based feature association functions.

130 a feature association framework for knowledge discovery applications

Joint Probability The probability of a single feature deVnes how likely an
occurrence of this feature will be. So given a new instance node, there will
be an relation to a feature according to its probability.

As long as the features in a data-set are completely independent from
each other they will not interact with each other. The joint probability
captures the frequencies of two features being related to a single instance
node. Thus the joint probability will be relatively high for features with a
high correlation. For completely independent features, the joint probability
is the product of the individual probabilities:

p(fs, ft) = p(fs)p(ft) (98)

Regardless of the correlation of two feature, their joint probability will
be bound by the individual probability. Its range is [0,min(fs, ft)], with
a value of 0 for features that exclude each other. The joint probability is
symmetrical, so the sequence of input parameter has no inWuence on the
result.

The joint probability captures the relationship between two feature and
is therefore good choice for a feature association function. A downside
of this measure is the fact, that two joint probabilities cannot directly be
compared, because its range depends on the smaller probability value. To
compensate for this, the joint probability can be normalised, which results
in the conditional probability.

Conditional Probability The probability of one feature given another
feature is called conditional probability. It captures how much the presence
of a feature indicates the presence of another. It can be also be seen as a
normalisation of the joint probability:

p(ft|fs) =
p(fs, ft)

fs
(99)

Due to the normalisation on one of the input variables (fs in this case),
the conditional probability is not symmetrical. The sequence of input
variables does matter, in the general case: p(ft|fs) 6= p(fs|ft).

For completely independent features the conditional probability is equal
to the probability of the target feature. Thus knowing one feature gives no
information about the presence of other features:

p(ft|fs) = p(ft) (100)

The minimal value of the conditional probability - 0 - is the result of one
feature excluding the other. The joint probability reaches its maximum of 1
if the the presence of one feature always yields the other feature. Although
this does not implicate that p(fs) = p(ft), but it follows that p(ft) ≥ p(fs).

Because of its Vxed output range the joint probability of multiple feature
pairs can be compared with each other. Therefore in the general case the
joint probability is a better choice as feature association function that the
joint probability. Both probabilities can be used in more complex functions
to calculate the strength of an association between two features.

Entropy Based Functions

A family of feature association functions is rooted in the information theory.
The central element of these algorithms is the concept of entropy. The
entropy captures the amount of information and is usually measured in
bits253. It can be interpreted as uncertainty of an event. 253 This depending on the base of the

logarithm. Where a base of 2 yields bits, the
result of using a base of 10 is called dits and
using the natural logarithm yields nats.

More naturally it can also been seen as minimal number of yes/no
answers to needed to answer an information need. One example of such

concepts 131

information need could be: “Given an instance node, is there a relationship
with a speciVc feature?” The number of answers needed to Vnd out whether
this feature is actually related to the instance, depends on the frequency of
the feature. If the feature is connected to all instance nodes, the answer is
obvious and not a single question is needed - thus the entropy is zero in this
case. At the other end of the spectrum - a feature that is not connected to a
single instance. The uncertainty is also zero for features, not being related at
all.

Intuitively there is a link between the probability of a feature and the
entropy. The entropy will be zero for p(fx) = 0 and p(fx) = 1. For all
remaining probabilities the entropy can be deVned as sum of the two events
for the random variable ’feature is related’:

1. The feature is related to an instance - p(fx)

2. The feature is not related - 1− p(fx)

Thus the general entropy formula (which is presented with the complete
background in many textbooks, for example in “Elements of Information
Theory”254) can be rewritten for the existence of an instance-feature rela- 254 T. M. Cover, J. A. Thomas, and J. Wiley.

Elements of information theory, volume 1.
Wiley Online Library, 1991

tionship:

H(fx) = (p(fx) log2 p(fx)) + ((1− p(fx)) log2(1− p(fx))) (101)

But the information of single feature is not suXcient for the task of
Vnding feature associations, so the entropy alone cannot be used as feature
association function. Based on the information theory and the deVnition
of the entropy other measures are more suited and a selection these will be
presented in the following paragraphs.

Mutual Information The mutual information captures the amount of
information contained in a pair of random variables. Given the entropy of
a single feature, the mutual information is the proportion of the uncertainty
shared with a second feature. It will be high for features that have a high
correlation and low of independent features.

Although there is a certain overlap with the joint probability, the mutual
information covers the permutation of all events, not only the joint occur-
rence. Thus the input of the mutual information is basically the same as for
the χ2 test as given in table 19 and .

¬fx fx

¬ft none only source
ft only target both

Table 21: Overview of the contingency
table used as input for the calculation of
the mutual information and other entropy
based feature association measures.

Formally the mutual information (MI) for two features can be written as,
where p(¬fx) denoted the probability of a feature not being related to an
instance (1− p(fx)):

MI(fs; ft) =

p(fs, ft) log(
p(fx,fy)
p(fx)p(fy))+

p(¬fs, ft) log(
p(¬fx,fy)
p(¬fx)p(fy))+

p(fs,¬ft) log(
p(fx,¬fy)
p(fx)p(¬fy))+

p(¬fs,¬ft) log(
p(¬fx,¬fy)
p(¬fx)p(¬fy))

(102)

The output unit of the mutual information is bits like the entropy itself.
A result of zero indicates that the two features are completely indepen-
dent. The mutual information is symmetrical, thus the result is the same
regardless of the ordering of the input variables.

The mutual information has been used in many knowledge discovery
applications to study the properties of data sets. Especially in the Veld of
social tagging systems, the mutual information is applied to detect and
evaluate the commonness of features255 ,256.

255 E. Chi and T. Mytkowicz. Understanding
the eXciency of social tagging systems
using information theory. In Proceedings
of the nineteenth ACM conference on
Hypertext and hypermedia, pages 81–88.
ACM, 2008
256 B. Markines, C. Cattuto, F. Menczer,
D. Benz, A. Hotho, and G. Stumme. Eval-
uating similarity measures for emergent
semantics of social tagging. In Proceedings
of the 18th international conference on
World wide web, pages 641–650. ACM, 2009

Another important aspect of the mutual information is its close relation-
ship to the Kullback-Leibler divergence DKL, which measures the distance

132 a feature association framework for knowledge discovery applications

of two distributions. In the case of the mutual information these distribu-
tions are i) the observed joint distribution of the two features and the ii) the
expected distribution if both features were independent:

MI(fs; ft) = DKL(

Observed distribution︷ ︸︸ ︷
P (fs; ft) || P (fs)P (ft)︸ ︷︷ ︸

Expected distribution

) (103)

This approach allows a diUerent view on the mutual information. It can also
be seen as distance of true distribution to the expected distribution, if an
independence of features is assumed.

If the application requires that the feature association function con-
forms to the deVnition of a metric, the mutual information must be further
transformed. By combining the individual entropies with the mutual in-
formation a measure can be created that satisVes all needed requirements.
Formally this new measure, which is referred to as normalised variation of
information, is deVned as:

D(fs, ft) =
H(fs) +H(ft)− 2MI(fs; ft)

H(fs) +H(ft)−MI(fs; ft)
(104)

This metric produces values in the range of [0, 1], where a value of 1
corresponds to features that are independent from each other.

Pointwise Mutual Information As states in the description of the mu-
tual information it covers the permutation of all possible events of the input
variables. In the case of feature associations of low frequent features, the
aspect of a non-relationship does not seem to be very intuitive. Statisti-
cal speaking the probability of a infrequent feature to be connected to an
instance node is far lower than not being connected. The mutual informa-
tion formula treats all cases equally, thus for many real-world features the
counter-intuitive cases will start to dominate the result. Especially for tex-
tual resources, the majority of features are just connected to a few instance
nodes. For features that follow a power-law

distribution, most of the features will be
found in the so called long tail.

In other words, the correlation of two features based on the observation
of not occurring is not a reliable indicator for their association strength.
Therefore instead of using the complete formula of the mutual information,
just the part that deals with the case where both features are tested on
existence is used. The remaining measure is called pointwise mutual
information (PMI) and deVned as:

PMI(fs; ft) = log(
p(fx, fy)

p(fx)p(fy)
) (105)

The pointwise mutual information will be zero for completely indepen-
dent features. In contrast to the mutual information the PMI may produce
negative results for features co-occurring less frequent as expected by
chance, for example if two features exclude each other. For correlating
features the values will be greater than zero. Like the mutual information,
the PMI is symmetric in regard to the input variable sequence order.

The pointwise mutual information has been Vrst used by Church and
Hanks257. Since then it has been using in many knowledge discovery

257 K. W. Church and P. Hanks. Word
association norms, mutual information, and
lexicography. Computational linguistics,
16(1):22–29, 1990

applications, for example to detect synonym relationships258, represent

258 P. D. Turney. Mining the Web for
Synonyms: PMI-IR versus LSA on TOEFL.
In Proceedings of the twelfth european
conference on machine learning (ecml-2001),
pages 491–502, 2001

word meaning259 and to predict word re-occurrences260. 259 J. A. Bullinaria and J. P. Levy. Extracting
semantic representations from word co-
occurrence statistics: A computational
study. Behavior Research Methods, 39(3):510,
2007
260 A. Sarkar, P. H. Garthwaite, and A. De
Roeck. A Bayesian mixture model for term
re-occurrence and burstiness. In Proceedings
of the Ninth Conference on Computational
Natural Language Learning, CONLL ’05,
pages 48–55, Morristown, NJ, USA, 2005.
Association for Computational Linguistics

Many modiVcations to the basic formula of the pointwise mutual infor-
mation have been proposed. One of these modiVcation is to use only values
larger or equal to zero:

PMIpositive(fs; ft) = max(PMI(fs, ft), 0) (106)

concepts 133

The resulting measure is called positive pointwise mutual information and
has been for example used as lexical association function to measure the
semantic relatedness of words261. 261 B. Riordan and M. N. Jones. Comparing

semantic space models using child-directed
speech. Entropy, 20:200, 2000

Another modiVcation targets the output range of the pointwise mutual
information, which depends on the actual probabilities of the features and is
therefore not comparable across associations of diUerent features. Therefore
the PMI can be normalised by using its maximum as denominator. To Vnd
its upper bound, the p(fx, fy) value needs to be maximised. To achieve
this, the joint probability is Vrst transformed into a conditional probability,
which can be assumed to reach 1. This results in two possible alternatives:
p(fx, fy) = p(fy|fx)p(fx) = p(fx|fy)p(fy). Therefore there are two
diUerent normalisation equations:

PMIsource−normalized(fs; ft) =
PMI(fs; ft)

log(1
p(fs))

(107)

PMItarget−normalized(fs; ft) =
PMI(fs; ft)

log(1
p(ft)

)
(108)

By applying the normalisation on the positive pointwise mutual infor-
mation, the output range becomes [0, 1], where 0 indicates no or negative
correlation and 1 identically distributed features. The normalised variation
of the pointwise mutual information has been successfully applied in the
Veld of information retrieval262 ,263. 262 E. Terra and C. L. A. Clarke. Scoring

missing terms in information retrieval
tasks. In Proceedings of the thirteenth ACM
international conference on Information
and knowledge management, pages 50–58.
ACM, 2004
263 R. Kern, A. JuXnger, and M. Granitzer.
Evaluation of Axiomatic Approaches to
Crosslanguage Retrieval. In Multilingual
Information Access Evaluation Vol. I Text
Retrieval Experiments, 2009

Log Odds Although the log odds measure is not related to entropy, there
are some similarities with the pointwise mutual information. Both can be
derived from the deVnition of the mutual information and then rearranging
parts to match the desired output. While the pointwise mutual information
just uses one cells of the input contingency table, the log odds measure
uses all four cells. The joint occurrence and the joint non-occurrence are
exploited and put in relation to the other two cells. Thus the log odds
measure can be formalised as:

LogOdds(fs, ft) = log(

OddsRatio︷ ︸︸ ︷
p(fx, fy)p(¬fx,¬fy)

p(¬fx, fy)p(fx,¬fy)
) (109)

Like the mutual information and the unmodiVed PMI the log odds
measure produces results in a range that depends on the input values. Thus
the results are hard to interpret and to compare, as indicated by a lively
discussion in the area of medical studies264 ,265. The log odds measure has 264 D. G. Altman, J. J. Deeks, and D. L.

Sackett. Odds ratios should be avoided when
events are common. British Medical Journal,
317(7168):1318, 1998
265 J. Deeks, M. B. Bracken, J. C. Sinclair,
H. T. O. Davies, M. Tavakoli, and I. K.
Crombie. When can odds ratios mislead?
British Medical Journal, 317(7166):1155,
1998

been applied in a wide range of areas and is not limited to computational
science.

In the Veld of feature associations the odds ratio or log odds measure
has been employed multiple times, for instance to measure the distance in
semantic spaces266.

266 W. Lowe and S. McDonald. The direct
route: Mediated priming in semantic
space. In Proceedings of the 22nd Annual
conference of the Cognitive Science Society,
pages 675–680. Citeseer, 2000

Conditional Entropy Like the mutual information the conditional
entropy is the result of the combination of two feature distributions. It
measures the uncertainty of one feature, when knowing the other feature.
So given an instance node with an unknown number of related features,
where one of these features is known. The conditional entropy is the
number of yes/no questions needed to Vnd out whether a speciVc feature is
also connected to the instance node. Intuitively the uncertainty is highest if
the two features are completely independent. As soon as there is a regularity
between the distributions of the two features, the information content will
decline. The conditional entropy can be deVned for the contingency table by

134 a feature association framework for knowledge discovery applications

combining the joint probabilities and the conditional probabilities:

H(ft|fs) =

p(fs, ft) log(1
p(ft|fs))+

p(¬fs, ft) log(1
p(ft|¬fs))+

p(fs,¬ft) log(1
p(¬ft|fs))+

p(¬fs,¬ft) log(1
p(¬ft|¬fs))

(110)

Although the conditional entropy does not appears to be good indicator
for the association strength between two features, due to its properties
there are a number of use cases for this measure. One of these use cases is
compression. The entropy of a sequence of events is the minimal number of
bits required to encode this sequence. Thus it represents the lower bound of
what a compression technique can achieve. A simple application of such a
compression technique is to throw away all features that carry no additional
information. For these features the conditional entropy will be zero for at
least a single association.

Redundancy The redundancy is included as one example of a whole
family of information theoretic measures that capture the relationship
between two features. It is related to the mutual information and is deVned
as:

R(fs; ft) =
MI(fs; ft)

H(fs)H(ft)
(111)

Due to its deVnition the redundancy can also be seen as normalised vari-
ant of the mutual information. The range of the results of the redundancy
measure is [0,min(H(fs), H(ft))]. This property makes the redundancy
itself suitable for further normalisation to give a range of [0, 1]. Whether
this additional normalisation step is conducted depends on the knowledge
discovery application and the nature of the features.

As indicated in the introduction to the redundancy, it is only one repre-
sentative of many proposed alternative modiVcations to the basic deVnition
of the mutual information and the conditional entropy.

Interaction Information While the presented entropy based measures so
far did consider the interaction between a pair of features, some applications
might require insights into the relation of the distribution of more than
two features. For example the mutual information can be extended for
the case of multiple random variables. Instead of describing the extension
an already covered measure to the case of three features, a new measure
is introduced, the interaction information267. This not so well known 267 W. J. McGill. Multivariate information

transmission. Psychometrika, 19:97–116,
1954

measure is sometimes also called co-information268 and boast a number of

268 A. J. Bell. The co-information lattice.
In Proceedings of the Fifth International
Workshop on Independent Component
Analysis and Blind Signal Separation: ICA
2003, 2003

interesting properties.
The interaction information measure how the mutual information of two

features changes in the presence of a third feature. For example two features
appears to be completely independent from each other when observed on a
global level. But as seen from the perspective of a third feature, regularities
in the relationship between the two features begin to arise.

This property can be observed especially in the case of human language,
where the semantics of words and their joint usage depends on the topic or
domain. Generally speaking feature associations might not occur globally,
but only for speciVc contexts. For the formal deVnition of the interaction in-
formation it is Vrst necessary to deVne the conditional mutual information:

MI(fs; ft|fc) = H(fs|fc) +H(ft|fc)−H(fs, ft|fc) (112)

The conditional mutual information is the sum of the two conditional en-
tropy values for the source and target feature given a context feature minus

concepts 135

the conditional entropy of the joint distribution for the given context. This
conditional mutual information is essentially the uncertainty that remains
from the joint entropy of the source and target feature when knowing the
context feature. In other words, the conditional mutual information will be
low if the context “causes” the two features to have something in common
and high if the regularity between the source and target feature is indepen-
dent from the actual context feature. The interaction information II can
now be deVned as:

II(fs; ft; fc) = MI(fs; ft|fc)−MI(fs; ft) (113)

It takes the conditional mutual information and subtracts the mutual
information of the source and target feature. This way the result of the
interaction information can either be negative or positive. If the context
feature has no impact on the relationship between the two features (fs and
ft), the interaction information will be zero.

For the negative case of the interaction information, the context feature
can be seen as causing the correlation of the distribution of the source and
target feature. Its (negative) maximum is reached if the context completely
covers the commonness of the two features with −min(MI(fs; ft),MI(fs; fc),MI(ft; fc)).

The positive results for the interaction information can best understood
if assumed that the mutual information of fs and ft is as if the two features
are independent. The presence of the context feature causes the two feature
to be inversely related, so that the context correlates with either the source
or the target feature.

Because of the nature of the interaction information result range, the
application is advised to handle both cases diUerently. A possible approach
could be to focus on either the positive or the negative result of the interac-
tion information. For example, an application might choose to specialise on
detecting hidden correlations between features and therefore just use neg-
ative results. In this case the feature association function might be deVned
as:

IInegative(fs, ft) =
∑
fc∈F

max(−II(fs; ft; fc), 0) (114)

The result is the sum of all latent correlations between a source and a
target feature.

Alternatively the positive results of the interaction information can
be exploited to detect the correct granularity of contexts. Starting with a
single context feature, it is subdivided into more reVned contextual features
as long as the interaction information produces high results for a certain
number of pairs of features. The usefulness of such a approach largely
depends on the data-set and the actual threshold employed as splitting
criterion.

Sliding Window Based Functions

The Vnal presented approach is not a feature association function per-se,
but a building block for integrating algorithms into the feature association
framework. It also serves as an example, how a data-set that is annotated
with a rich set of meta-data can be used to build feature associations tai-
lored towards speciVc application scenarios.

In this case it is assumed, that the relation between an instance node and
a feature node within the input feature graph is annotated with a meta-data
that encodes the occurrence position of a feature. For textual resources
this will simply be the position of a word within the text. That way each
instance node resembles a textual document, a paragraph or a sentence.
Words are mapped as features and the edges connecting the features to the

136 a feature association framework for knowledge discovery applications

instances are the occurrences.
By adding the absolute position of an occurrence as meta-data it is

possible to conduct a keyword in context (KWIC) analysis. Given a speciVc
feature and instance all co-occurring features can be sorted according to
their distance. For example given the word “instrument” and its position, all
other words within the same sentence can be arranged around this target
word. By using Vve example sentences from the ConceptNet corpus the
KWIC analysis looks like:

A stringed instrument can be tuned.

Learning to play a stringed instrument can be part of a school curriculum.

A barometer is an instrument used to measure air pressure.

A woodwind is a wind instrument .

A wind instrument can produce music.

The feature association framework exposes the position of a feature as
factor and therefore is it possible for any feature association function to cal-
culate the distance of two occurrences. Usually the distance is used to Vlter
out features too far away from an occurrence. For example only directly
adjoining features are selected as candidates for further feature associations.
This could be interpreted as an additional pruning strategy, because the
number of possible candidates for feature associations is reduced. This is
especially eUective if the average number of features per instance is high.

This approach is named sliding window because the selection of which
occurrences to select can be visualised as an window of words around the
position, which is moved by one position for each word. The size of the
window is determined by the application, usually just a few words left
and right of the target word are used. For example Freitag et al. conducted
experiments with various window sizes ranging from 1 to 4269, others used 269 D. Freitag, M. Blume, J. Byrnes, E. Chow,

S. Kapadia, R. Rohwer, and Z. Wang. New
experiments in distributional represen-
tations of synonymy. In Proceedings of
the Ninth Conference on Computational
Natural Language Learning, pages 25–32.
Association for Computational Linguistics,
2005

window sizes up to 32 words270.

270 E. Terra and C. L. A. Clarke. Frequency
estimates for statistical word similarity
measures. In Proceedings of the 2003
Conference of the North American Chapter
of the Association for Computational
Linguistics on Human Language Technology
- Volume 1, NAACL ’03, pages 165–172,
Morristown, NJ, USA, 2003. Association for
Computational Linguistics

The window does not need to be symmetric, so for example only preced-
ing words might be selected for further processing. The distance can also be
exploited, for example as additional weight in the calculation of the feature
association strength.

The sliding window approach can also be used as criteria to dynamically
generate a distribution needed for all probability based feature association
function. For example given a speciVc source feature the mutual informa-
tion with all features is calculated that occur in a predeVned vicinity to the
source feature occurrences. But the sliding window method is not restricted
to a single type of feature association function. For example it can also be
combined with the cosine similarity or any distance measure.

concepts 137

Distributed Environment

Building feature associations is a intensive operation when applied
on big data sets. A single execution unit will usually not sufficient
for this task. This section will present how the feature association
framework can be integrated into existing cluster management
solutions.

The Early Days

When dealing with huge data sets and intensive computations the hardware
as well as the software need to be capable to cope with the amount of data.
The requirements on the employed algorithms are especially high, they need
to be eXcient and provide an optimal throughput.

Since the invention of the Vrst computers the computational power of
the hardware did steadily increase. The famous Moore’s law states that the
number of transistors per processing unit doubles every two years. There-
fore the traditional way to handle huge data sets was to use build bigger
machines. To improve the performance even further multiple machines
were wired together into clusters. Although these clusters theoretically
multiply the available computational resources, the demands on the soft-
ware to distribute and synchronise the workload increase with every added
machine.

In recent years companies and universities started to use commodity
hardware instead of expensive dedicated super-computers. This trend has
started in the last decade of the 20th century as answer to the challenge
of providing retrieval applications that allow users to search the entire
web. As the commodity hardware does not provide the computational
power comparable with modern super-computers, the number of necessary
units increases further. With this increase of hardware the probability of
hardware defects and malfunctions also gets higher.

Therefore the software which is executed on a cluster of cheap commod-
ity hardware needs to be developed to expect single nodes to fail. Even
worse, some units will not completely malfunction, but will produce the
results slower than the rest of the nodes. All these cases need to be detected
and appropriate counter-measures need to be deployed. This not only re-
quires a sophisticated cluster management solution, but the algorithms
themselves need to be designed in such a way that they can be applied in
such a distributed environment.

In the following section a framework for executing algorithms on a clus-
ter of commodity hardware is presented. Thereafter it will be demonstrated
how the feature association framework can be conVgured to be applied in
such a scenario.

MapReduce

The most common approach to manage data sets and execute algorithms on
a cluster of commodity hardware is called MapReduce. MapReduce271 is a 271 J. Dean and S. Ghemawat. MapReduce:

SimpliVed data processing on large clusters.
Communications of the ACM, pages 1–13,
2008

generic framework developed to eXciently execute algorithms on huge data
sets in a distributed environment. It was originally developed to process
and store search indices of massive amounts of web pages crawled on the
Internet. Starting with this implementation it since became synonymous
for a family of approaches tailored towards the eXcient dispatching of
a workload onto a set of computers. An important aspect of MapReduce
and similar methods is that it is not a single algorithm, but a number of
components closely working together.

138 a feature association framework for knowledge discovery applications

Network Layer The base of of all components of the MapReduce frame-
work is the layer that manages the communication between the individual
nodes of the cluster. Typically this layer employs network communication
protocols like UDP/IP and routing techniques like multi-casting. It pro-
vides mechanism to detect failures of individual nodes by regular update
messages, commonly referred to as heartbeat.

Distributed File System The next higher abstract layer is a so called
distributed Vle system. The basic idea behind such a Vle system it so enable
shared access to common data for each participating unit in the cluster.

A common access pattern to this Vle system is:

1. The data set is written and distributed on the Vle system by a dedicated
node

2. All nodes consume parts of the data set and execute their respective tasks

3. The output of the distributed calculations are written into the Vle system
by each node

4. The Vnal accumulated result can then be read out of the distributed Vle
system

The distributed Vle system splits the data into chunks, which are stored
on diUerent nodes as the data will typically too big to be stored on a single
node. To improve the reliability of the system, chunks are not stores on a
single node, but they are redundantly stored on multiple machines. The
distributed Vle system is required to anticipate the access pattern to the
data to optimise the throughput. Therefore the chunks should be stored
on exactly these nodes, that require that part of the data. Although this is
hardly possible for generic applications, still the distributed Vle system is
required to be aware of the network topology. For example, to decrease the
risk of data loss, chunks should not only be stored on separate machines, but
also on separate racks. In the event of an power failure that aUects a part
of the cluster, this storage technique increases the chance that the complete
data is still completely available.

In an conventional Vle system, the data can be randomly accessed.
For example an algorithm might choose to read out the middle part of
any Vle stored within the Vle system. The access order has performance
implications on a local Vle system. Algorithms should be speciVcally
designed in respect to the optimal sequence of operations. In a distributed
scenario the performance implications are more pronounced. If an algorithm
chooses to read a block of data, which is not available locally, it must be
retrieved over the network272. Therefore the random access to the data is 272 The distributed Vle system has to look up

the list of nodes, which store the requested
block. Then the best node has to be selected,
based on the closeness and the load of the
nodes. Then the block has to be transferred
to the requesting node.

usually not possible within a distributed Vle system. The data is managed
by a dedicated algorithm and the individual nodes process the data in a
streaming manner. Therefore the algorithm need to be adapted to consume
the input data in a sequence, as well as writing their output in a Vxed order.

In the case of the MapReduce framework, the Google File System273
273 S. Ghemawat, H. GobioU, and S. T. Le-
ung. The Google Vle system. ACM SIGOPS
Operating Systems Review, 37(5):29–43, 2003

serves as implementation of the distributed Vle system component.

Data Set Split Before the actual execution of the distributed processing
can start, the whole data-set is Vrst split into a sequence of parts. These
parts are then assigned to individual execution units. To allow an optimal
execution strategy, the assignment should honour the topology of the
network.

The size of the individual parts depends on the actual data set and the
applied algorithms. If the size is chosen too small, the communication
overhead will dominate over the actual processing in terms of execution

concepts 139

time. At the other end of the scale, the upper bound of the part size is the
size of the data set divided by the number of available execution units. Any
larger part size will cause some nodes to remain idle and the cluster will
not be fully utilised. The optimal splitting strategy also takes the size of the
chunks within the distributed Vle system in consideration.

For many data sets the splits cannot be done at arbitrary positions.
Usually a data set consists of records and the splitting algorithm has to
separate the data set at the boundaries between two records. Thus an
adaption of the MapReduce framework for speciVc application scenarios is
necessary at this level.

Map Phase After the data set has been partitioned into subsets, the
individual parts are assigned to workers. These workers are started on
all participating nodes and execute the map function. This MapReduce
framework deVnes the interface of this function, the input parameter and
the output. The input data-structure of the map function is a tuple of an
identiVer and a payload. In the case of a web search engine, the identiVer
might be the URL of a web page and the payload is the HTML content.

The task of the map function is to analyse the input data and to trans-
form it into a series of key, value pairs. The MapReduce framework does
not dictate the actual type or semantics of these pairs. For building an in-
verted index the keys are the words, that occur in the text and the values are
weights.

An example implementation of the map function is given in algorithm 7.
In this example the generated keys are words contained in a Web page and
the values are the number of occurrences within the page.

Algorithm 7 Pseudo-code of the map function as deVned by the MapReduce
framework. In this example it is assumed that the map function tokenises a
Web page and reports all occurring words.

procedure map(url, html)
words← tokenize(html) . Split the HTML into words
for all word ∈ words do

. Count the number of occurrences
tf ← termFreq(word, html)

yield(word, tf) . Report each word
end for

end procedure

Collecting the Map Results While the execution of the map functions
the emitted key, value pairs are locally collected. They are stored on the
same node as the map function is executed. For the storage a dedicated
data-structure is needed, which is tailored towards two use cases:

1. Fast writing of the result from the map functions

2. EXcient retrieval of all entries for a given key

Additionally the cluster management collects all keys. In the exemplary
scenario of a web search engine, all occurring words are centrally collected
in a dictionary. Based on the keys, the work-load for the next phase is
generated.

140 a feature association framework for knowledge discovery applications

Reduce Phase Like the data-set is split into packets assigned to the map
workers, the keys are processed and assigned to the reduce workers. These
workers are executed in parallel on multiple machines and invoke the
reduce function.

Before a reduction function is called, the necessary data needs to be
collected. For a given key all values are combined into one data-structure.
The collect values are then passed as input to the reduce function by the
framework.

Inputreduce = 〈key, [value1, value2, ..., valuen]〉 (115)

The MapReduce framework deVnes the reduce function as a transforma-
tion of the input tuple to an tuple that consists of the key and a single value.
This single value then represents the Vnal result for a given key.

In algorithm 8 an example for a reduce function is given. This example is
assumed to work in conjunction with the previously given map example. All
values for a single word are aggregated and then reported to the framework.
Thus the Vnal result of the exemplary MapReduce application is a dictionary
of words with the document frequency and total number of occurrences.

Algorithm 8 Example of a simple implementation of a reduce function. The
function is invoked for each word and is provided with the collected output
of the map phase. Finally the result is reported to the framework, in this
case a tuple of the document frequency and the total term count.
procedure reduce(key, values)

docCount← 0 . Initialise the aggregation variables
termCount← 0

for all tf ∈ values do
docCount = docCount+ 1 . Increment the counters
termCount = termCount+ tf

end for

result← {docCount, termCount}
yield(result) . Report the result

end procedure

Collect the Output The result of the reduce function is stored within
the distributed Vle-system. Depending on the further work-Wow steps
of the application, the result is read out and centrally stored. This step is
necessary for all applications that need fast random access to the result data,
because the distributed Vle-system only oUers streaming access to the data
accompanied with high latencies.

Execution Sequence All phases of the MapReduce framework are ex-
ecuted in a Vxed sequence. In Vgure 22 an exemplary conVguration of a
MapReduce task is depicted. For the actual execution of the distributed ex-
ecute additional components are necessary, which are omitted in the Vgure.
These components are responsible to dispatch the workload, monitor the
health status of the participating nodes and other housekeeping tasks.

Summary of Adaptations To sum up, there are a couple of necessary
steps to adapt an algorithm for the execution within the MapReduce frame-
work. If an algorithm or data set cannot be adapted to conform to the

concepts 141

Input Data

Map Worker Intermediate Data

Reduce Worker Output Data

Output1

Output2

Reduce1

Reduce2

Map2

Map3

Map1
Split1

Split2

Split3

Split4

Split5

Figure 22: Example of a conVguration of
the MapReduce framework. First the data
set is partitioned into 5 parts. Each part is
then assigned to one of three map workers,
which are executed in parallel. The output
of the map functions is locally stored and
then retrieved by both reduce workers. The
result is Vnally stored in the distributed Vle
system.

requirements of the framework, it cannot be executed within the MapRe-
duce framework at all. Only if the algorithm is suitable to be transformed
to match the structure and semantics of the framework, the optimal perfor-
mance can be achieved. Next the requirements will be presented which are
necessary to transform an application or algorithm to make it compatible
with the MapReduce framework.

1. At Vrst the data set needs to be prepared to be managed and accessed
in a distributed manner. Therefore the data has to be partitioned into
segments, which can be processed independently from each other. If
this requirement cannot be fulVlled and the complete data-set has to
be available to all participating nodes at all times, the performance will
severely drop due to the network overhead274. The size of the partitions 274 Based on the assumption that the data-

set is too large to be locally stored on all
nodes of the cluster.

and the boundaries of the split are to be deVned beforehand and have
an inWuence on the overall throughput of the calculations. Each of these
splits contain a number of entries, which consist of an identiVer and a
payload. The application is responsible on how these data is encoded and
organised.

2. The framework dispatches the workload among the nodes and feeds the
data to the map workers, which represent the second required adaptation
step. An implementation of the map function must be supplied to the
MapReduce framework. This implementation has to fulVl the interface
requirement of the map function. Additionally the function should
not rely on any external data not supplied by the framework as this
will usually deter the performance275. This requirement arises from 275 Technically speaking the implementation

of the map function should be idempotent
and thus should be state-free and have no
side eUects.

the distributed execution on commodity hardware, where defects and
hardware faults are likely. Therefore the map function should be work
exactly the same way, even when invoked multiple times with the same
input variables.

3. The output of the map function can be freely chosen by the application,
as long as there as it consists of a key and an value. For the management
of the keys the application has to provide a comparator function to the
framework. This comparator is then invoked by the framework to Vnd
all matching results when collecting the input for the reduce function.
In many scenarios the keys will simply be strings (URLs, words, names,
...) or other simple data types which are automatically handled by the
framework, which makes the custom comparator function only necessary
for more complex keys.

4. The collected output of the map function is collected by exchanging data
with all participating nodes of the cluster. For a single key all values are
packed into a single data-structure and passed to the reduce function.
The framework deVnes the interface and semantics of this function and

142 a feature association framework for knowledge discovery applications

the application has to provide an implementation. As with the map
function, the same restrictions on the properties on the reduce function
apply, namely it should be idempotent to allow an eXcient execution in a
distributed execution environment.

5. The Vnal task of the adaptation of an application scenario onto the
MapReduce framework is related to the storage of the Vnal result. Each
reduce task is executed on a single node within the cluster and its result
is stored in the distributed Vle system. If the MapReduce calculations are
only an intermediate step, the result data may remain in the distributed
storage. In many scenarios, the output of the reduce workers needs to be
collected and then stored in a centralised data-structure. Therefore the
application has to provide a functionality to transform the result of the
distributed calculations into the desired output format.

The MapReduce is a simple, yet powerful paradigm to perform intensive
computations on large amount of data in a distributed manner. One of its
main advantages is the ability to rely on cheap commodity hardware instead
of dedicated expensive super-computers. But to execute an algorithm on
the MapReduce framework, it has Vrst to be adapted to the suit the require-
ments. Therefore it is only possible for a limited set of application scenarios
and data-sets to be eUectively applied in such a execution environment.

Relationship to MapReduce

The feature association framework is an approach to analyse and compute
the relationships of features within large data-sets. Even when sophisticated
pruning strategies and eXcient data-structures are employed, the necessary
computational resources remain high because of the complex nature of fea-
ture associations276. The MapReduce framework provides the functionality 276 Even in the basic case, the number of

possible feature associations isO(n2) for a
given set of n features.

to execute an algorithm in a distributed manner and is able to handle large
data-sets. In order to use the MapReduce framework a number of require-
ments have to be fulVlled. The following paragraphs cover the main steps
to adapt the feature association framework to the the MapReduce execution
paradigm.

The Vrst phases of the feature association framework are responsible
to analyse the data-set and to gather global statistics, to apply pruning
strategies and to pre-calculate factors for the feature association functions.
These operations are typically of low computational complexity are not
expected to proVt much from being executed in a distributed manner.
Therefore the Vrst steps of the feature association calculations can be
executed independently from the MapReduce execution framework.

The initial adaptation for the distributed executing is the the partitioning
of the input feature graph. Therefore it is necessary to generate sub-graphs
that consists of only a small number of nodes. The smallest collection
of nodes is a single instance node together will all directly connected
feature nodes. Depending on the number of features and the density of the
connections, multiple of such sub-graph can be combined to for a single
input split.

All input splits are then stored in the distributed Vle system. In the map
function the functionality of the collect phase is invoked. The input of the
map function is a single sub-graph, consisting of an instance node and its
features. The MapReduce framework requires the output to be pairs of keys
and values.

The map function is triggered once for each sub-graph, thus the total
number of map function invocation is equal to the number of instances
within the data-set. For a instance node, the map function iterates over
all connected feature nodes. Feature nodes, which are marked as target
nodes are used as keys of the output data-structure. The value for the

concepts 143

target features is a list of all feature nodes marked as source within the
current sub-graph. Thus records that consist of a single target feature
with all locally co-occurring source features are passed to the MapReduce
framework. These records are stored within the distributed Vle system.

The MapReduce framework collects all records for each target feature
and executes the reduce worker. The information passed to a reduce func-
tion is a tuple of a target feature together with all locally co-occurring
source features for all sub-graphs. Now the association phase of the feature
association framework is initiated. Depending on the actual conVguration,
the information is analysed and combined to generate a list of feature as-
sociations. Within a single invocation of the reduce function all feature
associations for a given target feature are produced. Thus the reduce func-
tion needs to be triggered as often as there are feature nodes marked as
target within the input data-set.

The result of the reduce functions is stored in the distributed Vle system.
In order to use the feature associations in in further processing steps, the
information has be extracted and written into a central storage. Once the
result is read out of the distributed Vle system, the feature association calcu-
lations are Vnished. Figure 23 gives an overview of the feature association
computations when executed within the MapReduce framework.

Alternatives to MapReduce

The MapReduce framework is the most prominent representative of an
implementation that manages the distributed execution of algorithms. Many
alternatives have been proposed and implemented in recent years, both as
commercial solutions as well as open-source frameworks.

Out of the available open-source implementation, the Hadoop project277 277 http://hadoop.apache.org/

has drawn a lot of attention, especially from the research community.
Similar to the MapReduce framework itself, the Hadoop project initially
started as part of an system to build a web-scale search infrastructure, called
Nutch278. Since then it has been steadily improved and has successfully 278 http://nutch.apache.org/

been used in many projects.
Its basic operations are very similar to the MapReduce framework. Simi-

lar to the Google implementation, the Hadoop project provides facilities to
organise Vles within the cluster. It is called Hadoop Distributed File System
(HDFS) and is responsible to store and manage the data within a network
of computers. The Hadoop projects is accompanied by a increasingly large
set of enhancements and additions. One example of an application build
upon Hadoop is the Mahout library279. It provides implementation of many 279 http://mahout.apache.org/

machine learning algorithms, which are adapted for the execution within a
Hadoop cluster.

Besides open-source eUorts there are a number of commercially driven
projects to develop frameworks similar to MapReduce. The Dryad project280 280 M. Isard, M. Budiu, Y. Yu, A. Birrell, and

D. Fetterly. Dryad: distributed data-parallel
programs from sequential building blocks.
ACM SIGOPS Operating Systems Review,
41(3):59–72, 2007

is one example of such a framework. Like the other frameworks it uses
its own distributed Vle system, called Cosmos. But unlike the other two
presented frameworks, Dryad tries to be more Wexible and is not limited
to the map and reduce functions. It allows a wider range of distributed
functions. As the company that develops Dryad peruses commercial goals,
the Dryad framework is only available for a single operating system, which
is not commonly used for intensive computations and management of large
data-sets.

Besides the mentioned frameworks there exist many other approaches
for a distributed execution of application. Most of them are tailored to-
wards business and database applications, with Java EE281 being the most 281 http://www.oracle.com/

technetwork/java/javaee/overview/

index.html
prominent example.

http://hadoop.apache.org/
http://nutch.apache.org/
http://mahout.apache.org/
http://www.oracle.com/technetwork/java/javaee/overview/index.html
http://www.oracle.com/technetwork/java/javaee/overview/index.html
http://www.oracle.com/technetwork/java/javaee/overview/index.html

144 a feature association framework for knowledge discovery applications

Map Workers

Reduce Workers

Gather Statistics

Associate Featuresk

Split1 Split2 ... Splitn

Apply Pruning

Collect Featuresm

. . .

P reprocess Data− Set

Associate Features1 . . .Associate Features2

. . .

Input Feature Graph

Output Feature Association Graph

Merge Ouput into Single Graph

Partition Input Graph into Splits

Collect Features1 Collect Features2 . . .

Figure 23: Overview of the sequence
of operations if the feature association
framework is adapted for the MapReduce
paradigm.

concepts 145

Feature Association Retrieval

Computing the association between features is the first part of the
feature association framework. Based on the feature association
calculations the output can be analysed and further processed.
Therefore the framework has to provide facilities to efficiently
retrieve and collect the necessary information.

Overview of the Association Retrieval

The result of the feature association calculations is the output feature
association graph. This network282 contains all relevant relations between 282 Whether the output graph conforms to

the formal deVnition of a network depends
on the actual weights of the relationships
between the features.

the features as determined by the feature association function. This function
decides which pairs of features should be associated and can also generate a
weight. Depending on the actual implementation of the feature association
function, this weight may represent diUerent properties of the relationship
between features. In the most common cases the weight will represent the
strength of an association of an source feature with a target feature.

The output graph is expected contain about as many nodes as there
features in the input data set. Due to the pruning strategies and the actual
implementation of the calculations this number may vary283. As the asso- 283 It will be lower for more aggressive

pruning strategies.ciation phase may introduce new synthetic target features, the number of
nodes in the output network may exceed the size of the input graph. The
relationships between the features are directed and typically weighted, but
there are no more than one edge between each pair of feature nodes284. 284 The output feature association graph is

not a multi-graph.Additionally the edges, as well as the nodes, may carry meta-data. There are
no further constraints imposed on the properties of the output graph.

The output feature association graph is stored in a data-structure, which
has been developed to allow incremental updates. During the execution
of the algorithm, the results are iteratively added to the Vnal output graph.
Once all feature association have been processed this data-structure may
be re-organised and transformed into another representation. This transfor-
mation step might be necessary for the forthcoming operations. After all
associations have been calculated the output graph is not modiVed anymore.
Instead it will be read out and traversed. The actual retrieval operations
depend on the needed information and are presented in the next section.

The feature association framework should provide facilities to traverse
the output feature graph. These operations should not only provide the
necessary functionality, but they must be developed to provide a satisfying
performance. For some operations the retrieval process is as complex as
building the association network in the Vrst place.

Use Cases

One of the main motivations to build a generic feature association frame-
work is the advantage of re-using use the same set of technologies and
algorithms in many knowledge discovery applications. The requirements
imposed by these applications on the retrieval step of the feature associa-
tions are diverse. Some applications just require a minimal set of operations,
while other application scenarios may only serviced by employing so-
phisticated algorithms. For both cases the conVguration eUort should be
minimised.

The diUerent retrieval operations of the feature association framework
are described in the following section. These operations can roughly be
categorised into three classes:

1. The basic operations produce results while traversing over all nodes and

146 a feature association framework for knowledge discovery applications

edges of the graph. The result of these operations are for example global
statistics and properties of the graph.

2. The second set of operations take a single source feature as starting point.
Starting from this point within the graph, the connected feature nodes
are traversed while accumulating the necessary information.

3. The Vnal class of operations gather information for a set of feature nodes.
The traversal of the graph in this case usually requires sophisticated
approaches to avoid excessive processing.

Additionally the application may impose constraints on how the graph is
to be traversed. Some of these constraints are presented in conjunction with
the main use-cases.

Top Associations The Vrst example of an retrieval function that operates
on the whole output feature association graph produces a ranked list of
edges. The ranking is conducted by comparing the weights of the edges.
Thus the Vrst entry in this list will be the connection with the highest
weight in the graph.

Due to its close dependency on the weights the output of this traversal
operation is tightly coupled with the feature association function used
to generate the weights. When the weight is an representation of the
association strength between two feature, the result will list the feature
relationships with the strongest associations bounds.

Assuming that the feature association function implements a measure
of correlation, the result of the top association traversal operation will
contain pairs of highly correlating features. This list can then be used as
base to eliminate redundant features. Thus in this conVguration the feature
association framework can be employed as a means of feature selection.

Global Statistics The retrieval traversal operation is not limited to be
based on the weight of the edges. Other global properties of the feature
output graph can be computed as well. Other forms of graph analysis are
also applicable on the output of the feature association calculations.

The detection of cliques in one example for the analysis of the structure
of a graph. To be able to conducted such an analysis, the directed graph
needs to be transformed into an undirected one, which can be done as long
as the weights are symmetric285. Each identiVed clique then represent a 285 The feature association function does not

depend on the sequence of inputs.closely related group of features.
Other forms of cluster analysis can also be employed to uncover latent

structure within the network of relationships between the features. The
spectral clustering approach286 is well suited for this purpose. These meth- 286 U. V. Luxburg. A Tutorial on Spectral

Clustering. Technical Report March,
MaxâĂŞPlanckâĂŞInstitut für biologische
Kybernetik, 2007

ods transform a graph into its spectrum and tries to detect regularities
within the spectral representation. As soon as coherent groups of features
have been identiVed, each group can be replaced by a single synthetic
feature. That way the number of feature that encode the instance can be
reduced. Other methods of dimensionality reduction can be applied on the
output feature association graph as well.

Another family of algorithms do not aim at reducing the number of
features, but to aggregate information about single features by exploiting
the graph structure. One of the best known of such approaches is the
PageRank algorithm287. In order to utilise this algorithm, the weights 287 S. Brin and L. Page. The anatomy of a

large-scale hypertextual Web search engine.
Computer networks and ISDN systems,
30(1-7):107–117, 1998

but be computed in such a way that the adjacency matrix of the feature
association graph conform to the deVnition of a Markov matrix. As soon as
the prerequisites are fulVlled, the PageRank algorithm can be applied on the
network of feature relationships. The output of this analysis is an ordered
list of features, ranked according to their relative importance288. 288 The notion of relative importance

depends on the application and the way the
feature association function is implemented.

concepts 147

The HITS algorithm289 is similar to the PageRank approach in regard

289 J. M. Kleinberg. Authoritative sources in
a hyperlinked environment. Journal of the
ACM (JACM), 46(5):604–632, 1999

to its basic aim. Instead of arranging the features in a single sequence, the
HITS algorithm generates two lists. These two lists represent the proto-
typical roles of hubs and the authorities. Features identiVed as hubs tend
to connect and link adjacent features, whereas authorities typically are
characterised by many in-links and few out-links.

The aXnity propagation algorithm290 is employs similar techniques 290 B. J. Frey and D. Dueck. Clustering
by passing messages between data points.
Science (New York, N.Y.), 315(5814):972–6,
Feb. 2007

as HITS, but its Vnal goal is to identify clusters within a graph structure.
Therefore it can be seen as connection between the two presented families
of methods to extract valuable information out of a graph.

Top Associated Features The retrieval of the list of associated features
for a single feature is one of the most important use-cases. Therefore
this operation needs to be very eXcient as it is expected to be invoked
frequently.

As a feature might potentially be associated with many or even all other
features, this use-case can be further reVned. Some applications might only
be interested in the list of the top associations. Thus the retrieval function
has to gather all associations, order them according to the sequence of their
weights and then pick out the associations with the highest weight. For
example a visualisation of the features might choose to present only the ten
most strongly connected target features for a single source feature.

If a distance measure is employed as feature association function, the
weights needs to be sorted in increasing order. The result list will then
contain the nearest features for a given input feature. The top association
features retrieval function can therefore be used to conduct a k-nearest
neighbour search. This approach is popular choice for classiVcation tasks,
where each entry should be assigned to one of a set of predeVned classes291. 291 D. W. Aha, D. Kibler, and M. K. Albert.

Instance-based learning algorithms. Machine
learning, 6(1):37–66, 1991

Another reVnement of the main use-case is the introduction of a thresh-
old instead of an upper bound on the list size. In this case all associated
features are included in the result list, where is weight is below a thresh-
old292. 292 Or above a threshold, if the feature

association function is a distance measure.The top associated retrieval function is not only invoked directly by
the application, but it is also employed by other, more complex, retrieval
functions. This underscores its importance and therefore its critical for any
implementation of this function should be as eXcient as possible, both in
terms of performance as well as memory consumption.

Collect Metadata Based on the results of the top associated features
retrieval function, users might be interested why two features are strongly
connected. For example when the feature association framework is em-
ployed as a means to generate automatic recommendations. In this case
additional information why certain features are recommended could be
helpful for the users, to gain a better understanding of the results.

This is the motivation for the collect metadata retrieval function. Starting
with a pair of directly connected features, additional information of the
association between these two can be retrieved. The wealth of the avail-
able information depends on the conVguration and customisation of the
feature association framework. In the aforementioned case, the list of in-
stances that contributed the most to the association strength would fulVl the
requirements.

In the output feature association graph, nodes as well es edged can be
annotated with meta-data. This retrieval function can be used to expose the
information to the knowledge discovery application. It can either be used
as enhancement in an visualisation of the data, or as additional input to
succeeding processing. The meta-data itself can then be used as features for
an machine learning algorithm.

148 a feature association framework for knowledge discovery applications

Like the top associated features function, the collect meta-data func-
tion is invoked by more sophisticated traversal algorithms. Therefore its
performance will have implications on other retrieval functions as well.

Spreading Activation There are several approaches and algorithms to
traverse and search graph structures. One of the most popular of these meth-
ods is the breadth Vrst search. Starting with a given node this algorithm
iteratively visits neighbouring nodes. At each step there is a set of currently
active nodes starting with the single root node. The directly connected
neighbour nodes are the active nodes of the next step.

The are two basic modes of operation for this algorithm. The Vrst is to
Vnd a speciVc target node and the second mode is to explore the vicinity of
the start node. If this algorithm is employed to search for a speciVc target
node, the iteration is stopped as soon this node has been reached. Without a
predeVned target node, another termination criteria need to be speciVed.

The breadth Vrst search serves as technical base for the spreading ac-
tivation retrieval function. The spreading activation approach has been
envisioned by computer scientists as an abstraction to model the informa-
tion Wow within the human brain. Neurons interact with each other via
activation signals and as such a network of neurons can store and recall
memories293. 293 J. R. Anderson. A spreading activation

theory of memory. Journal of verbal
learning and verbal behavior, 22(3):261–295,
1983

In recent times, the spreading activation has been applied in multiple
knowledge discovery applications. It has proven popular to build applica-
tions to Vnd relevant information294 and to combine shallow text data with

294 F. Crestani. Application of spreading
activation techniques in information
retrieval. ArtiVcial Intelligence Review,
11(6):453–482, 1997

semantic networks295.

295 P. Scheir, C. Ghidini, R. Kern, M. Gran-
itzer, and S. N. Lindstaedt. ARS/SD: An As-
sociative Retrieval Service for the Semantic
Desktop. Networked Knowledge-Networked
Media, pages 95–111, 2009

The basic mode of operation of the spreading activation approach is
similar to the breadth Vrst search. Starting with a root node the graph is
traversed the same way as in the breadth Vrst search. While doing so, the
spreading activation not only records the visited node, but keeps track of a
weight for each visited node. The weight of a node is then propagated to all
connected neighbour nodes.

A function can be deVned to determine the activation weight of a neigh-
bour node. The input for the activation function is a source and a target
node, as well as the weight of the source node. For example such a function
could compute the propagation weight by multiplying the weight of the
source node by a normalisation factor. This normalisation factor is the
proportion of the weight of the edge that connects the two nodes by the sum
of all weights of the out-links of the source node:

fout(ni, nj , wi) = wi ∗
weight(ei,j)∑
k weight(ei,k)

(116)

As a single target node can be activated by multiple source nodes,
the activation weights need to be combined. For example, the weight
combination function could simply calculate the average of the incoming
weights:

fin(w1, w2, ..., wn) =

∑n
i wi
n

(117)

The intuition for the combination function is similar to the transfer
function of neural networks. Therefore all methods used as transfer function
can be utilised to combine the activation weights. Popular examples are
sigmoid function, linear combinations and step functions.

Additionally the weights can be optionally be discounted by an decay
function. As the weight is distributed throughout the network, it is de-
creased in each iteration until it peters out. For example the distance from

concepts 149

the start node can be used to achieve such a behaviour:

fdecay(nj , wj , stepCount) =
wj

stepCount
(118)

The initial weight is iteratively processed and passed to connected nodes
until a termination criteria is fulVlled. There are multiple ways to determine
when to stop further traversal, for example:

• The number of hops within the network, to limit the region within the
feature association graph

• A lower bound on the activation weight, as node with low weight will
usually not contribute much to further processing

• Number of nodes visited, to limit the size of the data-structures

• A target node has been reached, where the target nodes can be speciVed
either via their identiVer or their assigned role

Usually a combinations of criteria are used to prevent excessive process-
ing. Finally the result of the traversal has to be reported to the application.
Depending on the application scenario, only the nodes activated in the Vnal
iteration are included in the result or all visited nodes.

Instead of a single result, an realisation of the spreading activation re-
trieval function may implement a callback pattern. This programming
paradigm allows the application to be informed of every step within the
traversal operation. The callback driven approach provides the highest Wex-
ibility, but the application itself has to choose which pieces of information
should be stored for further processing.

The traversal itself can be customised if required by the application. For
example the spreading can be limited to nodes carrying a certain meta-data.
This way the traversal can be steered to include only nodes, which are
relevant for the processing.

Distance Between Features The feature association graph can also be
used to gain information about a pair of features not directed connected
with each other. In this case the two feature are connected via a set of paths.
Each path represents a sequence of feature nodes, starting with a source
feature and an end node, which represents a target feature.

For such a traversal the feature graph is required to fulVl certain prop-
erties. The graph has to contain paths consisting of more than two nodes
in order for this function to generate useful results. The feature association
framework needs to be conVgured to generate such graph structures. One
way to achieve a matching output graph is to label all features as source as
well as target features.

Once the feature association graph can be traversed, the distance of
two features within this graph can be computed. A small distance can be
seen as indicator for a higher relatedness between these two features. The
distance can either be measures by the length of the path or the aggregated
weight. The path length is determined by the number of hops within the
graph to reach the target feature while starting at the source feature. To
compute the aggregated weight, each edge is visited and the weight is added
to the cumulative weight. For feature association function, which represent
distance measure the Vnal aggregated weight will be the distance between
the source and target feature.

Usually one is not interested in all possible paths which connects two
features, but only the shorted path. Computing the shortest path between
two nodes within a graph is a well studied problem in the Veld of graph
theory. The Dijkstra’s algorithm296 is probably the best known approach to 296 E. W. Dijkstra. A note on two problems

in connexion with graphs. Numerische
mathematik, 1(1):269–271, 1959

150 a feature association framework for knowledge discovery applications

this problem. As an additional property this approach requires the weights
of the edges to be non-negative, which is the case for most of the distance
measure provided by the feature association framework.

The run-time complexity of an simple implementation of the Dijkstra’s
algorithm is bounded by the number of features within the output fea-
ture association graph: O(|F |2). For sparse output graphs it is expected
that the actual performance of the algorithm will be faster. Still for many
applications the cost for such a search will be prohibitive.

To increase the performance of the computation of the shortest path,
two basic approaches can be followed. At Vrst, the requirement on the
single shortest path can be relaxed and then to optimise the sequence of
calculations, several heuristics can be applied. For many application it is
suXcient to work with approximations of the length between two features.
For example to present a visualisation of the feature association network
to the user, the exact distances are not required. In this scenario, related
features should be displayed as neighbours and independent features can be
placed far away in the visualisation.

The second strategy to improve the performance of the algorithm is to
employ heuristics. The execution sequence of the graph traversal does not
matter in the theoretical case, where the single best path should be found.
But in a scenario where only an approximation to the optimum is needed,
resorting to heuristics to govern the sequence of the execution is an eUective
strategy. For such an approach it is important that the heuristics actually
match the available data. In the case of an feature association graph, the
heuristics will be most eUective if the weights between three features
comply with the triangle inequality.

The A* algorithm297 is based on the Dijkstra’s algorithm and incorporates 297 P. E. Hart, N. J. Nilsson, and B. Raphael. A
formal basis for the heuristic determination
of minimum cost paths. IEEE transactions
on Systems Science and Cybernetics,
4(2):100–107, 1968

heuristics to speed up the computation. The run-time complexity depends
mainly on the employed heuristics. Because of its good performance the
A* is a popular choice to Vnd the approximate to the distance between two
nodes in a graph. One of the main applications of this algorithm is to Vnd
the “suXciently good” route for navigating within a road network. In such
a scenario the edges represent roads between locations and the weights
encode the length of these roads. The heuristics incorporate the average
expected speed and the direction of road in relation to the goal to guide the
search within the road network.

Paths Between Two Features For some applications it might not be
suXcient to compute the shortest path between two features. They require
more then one path that connects two feature nodes in the association
graph. Due to the sheer number of possible connections between the run-
time complexity of such an algorithm is very high. Therefore usually other
approaches are taken into account to compare two features within the
association graph.

Compare Sub-Graphs Instead of collecting the complete information
shared between two features, one can limit the traversal on the direct
vicinity of the two feature nodes. Two sub-graphs should represents the
context of for the two input features. These sub-graphs are generated by
starting at a feature node and traversing all edges until a threshold count
is reached. If a threshold of one is used, the sub-graph consists of a feature
node and all directly connected features. The context sub-graph can then be
compared to calculate a similarity of the two features.

In order to distance between a source and a target feature the association
graph needs to be build to allow a traversal in both directions. To compare
the contextual sub-graphs of two features this limitation is lifted. Therefore
this method is generally preferred as a means to compare two features.

concepts 151

The contextual sub-graph reWect the relationship of one feature to other
features, typically the associated target features for a given source feature.
Thus the comparison of two contextual sub-graph can also be interpreted
as indirect relatedness. In the Veld of natural language processing this
approach is used to calculate the similarity of words according to their
second order co-occurrences298. 298 R. Rapp. The computation of word

associations: comparing syntagmatic and
paradigmatic approaches. In Proceedings
of the 19th international conference on
Computational linguistics-Volume 1,
number 1992, pages 1–7. Association for
Computational Linguistics Morristown, NJ,
USA, 2002

The choice of the similar measure to compare two sub-graph depends
on the nature of the features and on the application domain. All algorithms
which are applicable as feature association function can be used for this
purpose as well. The number of common associated features is a simple
example for such a similarity function. According to this function, source
features that are associated to the same target features are more similar than
pairs of features that only have a few associations in common.

Recursive Associations Due to the Wexibility of the feature association
framework, the output feature association graph can again be used as input.
That way multiple feature association calculations can be concatenated and
executed as a sequence.

There are a number of scenarios where multiple feature association runs
are the preferred way to solve a problem at hand. Two of these scenarios are
now presented.

• The input to the feature association calculations is a directed graph. The
nodes of this graph are mapped to a set of predeVned roles. Thus the
input graph consists of instance nodes, source feature nodes and target
feature nodes.

Assuming a bi-partide graph with the instance nodes and source fea-
ture nodes as two partitions. The adjacency matrix of the graph will
beMinstances×features. The feature association framework can be
conVgured generate an output graph of which the adjacency matrix is
Mfeatures×instances. EUectively the input matrix has been transposed.

Given an application scenario where the relationships between instances
instead of feature should be calculated. To achieve this at Vrst the input
matrix can be transposed as a Vrst step. In the second step the output of
the transposition operation is used as input for the desired processing.

• The calculation of so called second order co-occurrences is another
scenario which illustrates the potential of using the output of a feature
association run as input for the next. In this scenario, features are com-
pared to each other. As base for the comparison, their relationship to
other features is taken.

The computation of the second order similarities two processing steps are
needed. At Vrst the relationship of all features is computed based on their
distribution within the data-set. This will generate a feature association
graph where features are strongly associated with feature they often
co-occur with.

In the second step, the target features of the Vrst processing step are
taken as instance of the input feature graph. The source feature are
again marked as source, and additionally also as target features. Thus all
feature of the initial input graph are compared to each other by using the
associations of the Vrst step.

The two feature association run can be conducted using diUerent conVgu-
rations. For example, the feature association function does not need to be
the same for the two runs.

The selection of the retrieval function depends on the application and the
amount of information needed for further processing or for an visualisation

152 a feature association framework for knowledge discovery applications

for users. An application might choose to invoke multiple diUerent retrieval
functions, or to invoke the same function with diUerent input values multi-
ple times. For example the feature association graph might be interactively
explored by a user. Regardless of its Vnal use-case, all retrieval function
need to be eXciently implemented and provide the result in a minimal
amount of time.

Distributed Retrieval

The feature association can be computed in a distributed execution envi-
ronment. The same requirement is imposed on the retrieval of the feature
association graph. Multiple clients may access parts of the association graph
at the same time. This section should give a glimpse on how to approach
this requirement. The actual implementation of a distributed retrieval archi-
tecture depends on the available resources and the expected type of retrieval
requests.

No sophisticated execution framework is needed to accomplish a parallel
retrieval of the feature association graph. A distributed Vle system can
by utilised to make the association graph accessible from nodes within a
cluster299. All incoming requests are dispatched to any of the nodes within 299 Alternatively the feature association

graph can be store in a centralised database
or a Network-Attached Storage (NAS).

the cluster. The nodes performs the requested operation and returns the
result to the caller.

The scheme can be improved by various measures. The dispatching
algorithm can implement algorithms to evenly distribute the load among the
participating nodes. Such software components are called load balancers.
The most simple form of dispatching is named round robin, where the
sequence of incoming requests to delegated the nodes organised in a queue.
For each request the Vrst node in the queue is assigned that task and is then
moved to the back of the queue.

The load balancer may also regularly poll the network to detect inactive
of defective nodes. Additionally vital information, for example the amount
of free memory and the processor utilisation of the cluster participants is
monitored. Given the accumulated information the load balancer may use
more sophisticated algorithms than just the round-robin method.

An optimal performance can be reached if the load balancer is made
aware of the storage topology of the feature association graph within the
network. In the distributed Vle system the feature association graph is
partitioned and the individual parts are stored locally on multiple nodes300. 300 Usually multiple node will store copies of

the same part. This redundancy increases
the robustness of the distributed Vle system.

For an incoming request that addresses a certain part of the association
graph, the load balancer might select the node which locally stores that part
of the graph.

Even if a load balancer is not informed of the storage locations of the
graph, there are heuristics to improve the throughout. For example it might
implement a session aXnity scheme. Consecutive request from the same
client are dispatched to the same node within the cluster. This is motivated
by the assumption that two consecutive request are related to each other
and address similar parts of the feature association graph. Due to the
processing of the Vrst request that part is likely to be present locally in any
further retrieval requests.

To sum up, due to the careful design of the feature association frame-
work, the employed algorithms scale well with the size of the data sets.
Small data-sets can be processed on a single execution unit. The feature
association framework can also be integrated into existing distributed ex-
ecution framework for the calculation of the feature association as well as
the retrieval of the Vnal association graph. The input and the output of the
feature association calculations are stored and managed in a distributed Vle
system. Thus even large data-sets can be processed by feature association
framework.

Implementation

The reference implementation of the feature association algorithm
serves as proof of concept of the usefulness of the proposed frame-
work. The implementation has been developed to conform to a set
formal requirements derived from practical and theoretical aspects
of knowledge discovery applications. It has then be used in multiple
real-world scenarios, where it delivered satisfying performance and
demonstrated sufficient flexibility.

Introduction

The algorithms of the feature associations framework were developed and
tested in conjunction with a series of prototypes. These prototypes were
developed to test certain aspects of the framework and to measure the real-
world performance of the algorithms. With each iteration of prototypes
the number of feature did grow, making the framework more general and
Wexible. Thus the Vnal feature association framework is shaped by the
results of tests conducted on real-world data-sets.

Due to the importance of the implementations which accompanies the
development cycle of the framework, the Vnal reference implementation
is presented in an own chapter. This chapter focuses on speciVc properties
of the implementation, without going into details of the programmatic
side, but highlighting certain aspects of the design decisions. Therefore the
implementation serves as an example on how to solve problems which are
not only speciVc to the problem of eXciently computing feature associations.
Many of the challenges which had to be overcome are also found in a
variety of knowledge discovery applications from various domains.

A series of functional requirements were deVned to steer the develop-
ment of the implementation. These requirements are motivated to check
whether the actual code matches the expectations. The majority of the
requirements were derived from practical aspects and experience gained in
the Veld of the knowledge discovery.

The Vnal implementation has then be used to generate and analyse the
relationships between feature in various data-sets. Various knowledge
discovery applications from diUerent Velds has successfully integrated the
feature association framework. These applications proVt from the eUort
invested into the creation of the reference implementation.

Functional Requirements

The functional requirements govern and steer the development
of the reference implementation. As the design decisions which
helped to define and shape the algorithm, the requirements should
motivate the decisions on how to model the properties of the imple-
mentation. The functional requirements are derived from existing

154 a feature association framework for knowledge discovery applications

knowledge discovery applications and from demands posed by the
size of available data sets.

Functionality

The most important aspects of an implementation of an algorithm is that it
follows the concepts and is adheres to the speciVcation of the algorithm. The
same implies to the implementation of the feature association framework.
The proposed framework for the calculation of association between features
speciVes a number of properties and algorithmic approaches that should
be found in the Vnal implementation. Therefore the Vrst and functional
requirement can be stated as:

Functional Requirement 1 All of the speciVed properties of the algorithm
should be present in the implementation. The implementation should be
organised the same way as speciVed. The execution of the individual phases
of the algorithm should be done according to the formal design decisions.

The next three functional requirement are mere reVnements of the Vrst
requirement. There are listed as separate items as they represent diUerent as-
pects of the framework. For the implementation it is important that each of
these aspects is accounted for. The Vrst aspect is the usage of data-structures.
Any application that wished to incorporate the feature associations will
communicate with the framework according to the speciVcation of these
data-structures.

Functional Requirement 2 The data-structures should be implemented as
speciVed by the algorithm, with a graph as basic data-structure for the input
and output of the processing.

As soon as the communication with other components is determined,
the framework needs to be conVgured to produce the desired results. An
important part of the conVguration is the the feature association function.
This function is responsible to calculate the association strength between
two features. In the speciVcation of the algorithm, the feature association
function has been decomposed into a set of factors and functional blocks.
Any function that conforms to this pattern can then by used within the
framework.

Functional Requirement 3 Any function that conforms to the formal
deVnition of a feature association function should be eligible for the usage
within the implementation.

One of the design goals for the framework has been to provide as much
Wexibility as possible to allow the feature association framework to be
integrated in a wide range of knowledge discovery applications. Therefore
the framework provides facilities to customise the execution the algorithm.
Additional processing can be integrated into the work-Wow of the feature
association calculation. The association phase is the prime candidate to
integrate customised processing, for example to incorporate an machine
learning algorithm into the association calculations. The implementation
must therefore oUer the same level of customisation.

Functional Requirement 4 Full support of the proposed customisation
features of the algorithm should also be provided by the implementation.

Only if the implementation faithfully follows the formal scheme, it will
provide all the proclaimed properties of the speciVcation of the feature
association framework. The algorithms are carefully designed to allow the

implementation 155

integration of the feature association calculation into existing frameworks
for distributed calculations, for example MapReduce301. Therefore any 301 J. Dean and S. Ghemawat. MapReduce:

SimpliVed data processing on large clusters.
Communications of the ACM, pages 1–13,
2008

implementation should adhere to the speciVcation in order to provide
an predictive behaviour. This will allow the integration of the feature
association calculation in a number of diUerent knowledge discovery
scenarios.

Flexibility

The implementation should adhere to the speciVcation, and should allow
all operations as proposed by the algorithmic description. Additionally the
implementation might choose to provide even more Wexibility. Due to the
nature of many knowledge discovery applications functional requirements
can be formulated that capture a level of Wexibility which exceeds the
speciVcation. One example for such a Wexibility is the requirement to
compute diUerent conVgurations of the feature association framework
simultaneously.

Functional Requirement 5 The implementation should support multiple
feature spaces within the data-set. Therefore a scheme should be supplied
which allows a mapping of feature spaces of the data set onto the various
roles within the input feature graph. This scheme allows a computation of
multiple diUerent conVgurations on the same data at the same time. Tech-
nically speaking, the implementation should process multiple independent
conVgurations in one pass over the data.

The feature association framework is speciVed to provide a set of re-
trieval function on the output association network. One of the methods is
the recursive invocation of the feature association calculations, where the
output of one invocation serves as input for the next. Therefore the choice
of data-structures for the input and output is constrained.

Functional Requirement 6 The data-structures that hold the input data
should be compatible to the data-structure responsible of storing the result.
This should allow an application to trigger a stacked execution sequence of
feature association calculations.

Scalability

Due to the complexity of the problem of calculating feature associations,
even for small data-sets the number of individual relationships between the
features can be very high302. For larger data sets the calculations are even 302 The theoretical upper bound isO(n2)

for n number of features.more demanding. The requirements on the scalability of the algorithms and
the implementation are of high priority.

In order to be able to assess the degree of scalability and to check
whether the implementation matches the performance demands, a series of
criteria have been established. A number of performance targets were de-
Vned and represent the next series of functional requirements. These targets
depend on the size of the data set to processes. Beside the number of in-
stances and features, the average number of features per instance is equally
important. In the presented scenarios it is assumed, that the bi-partite graph
of instances and features is relatively sparse, hence each instance references
only small subset of all features303. 303 Dense instance-feature networks are as

well eligible to be processed by the feature
association framework, but a) they are
not as frequent in common knowledge
discovery applications and b) they can
often be transformed to sparse networks by
applying pruning strategies.

Small data sets may contain a few thousand instances and about as
many features. The Brown corpus304 is have been for a long time one of the

304 W. N. Francis and H. Kucera. Brown
Corpus Manual. Brown University, 1979

main sources for corpus linguists. It consists of 56,766 sentences and 25,432
individual words. Thus the Brown corpus can seen by today standards as a
relatively small data-set. Such small data-set should pose no problems when

156 a feature association framework for knowledge discovery applications

processed by the feature association framework even when using moderate
computational resources.

Functional Requirement 7 The feature association calculation should be
possible for small data-sets on contemporary commodity hardware305. 305 At the time of writing a typical desktop

PC is equipped with a processor, which
allows two to four independent paral-
lel computations, about 4 gigabytes of
main memory and about one terabyte of
secondary storage.

With the increase of computational resources, the size and number of
available data set rises. The number of features as well as the instance count
is increasing.

A medium size data-set consists of a couple of hundred thousand in-
stances and about as many features. For instance the Reuters RCV-1306 may 306 T. G. Rose, M. Stevenson, and M. White-

head. The Reuters Corpus Volume 1-from
yesterday’s news to tomorrow’s language
resources. In Proceedings of the Third Inter-
national Conference on Language Resources
and Evaluation, pages 29–31. Citeseer, 2002

still be considered as a medium size data-set. This data-set is made up by
articles published by the Reuters new agency in the years 1996 and 1997307.

307 Starting with August 1996 to August
1997.

The Reuters RCV-1 consists of a total of 806,791 articles and about 1.3 mil-
lion individual words in the English language. Such data-sets are common
and therefore their processing should not require a dedicated expensive
computing infrastructure.

Functional Requirement 8 Medium size data set are common for many
knowledge discovery scenarios. Many organisation are not equipped with
dedicated computational resources, for example a cluster of computers.
Therefore the feature association calculation should be implemented in
such a way to allow the eXcient execution of the computations on a single
machine308. 308 Currently a server class machine is

equipped with two to four processors, each
of them about twice as fast as a desktop
class CPU. The main memory size is up to
64 gigabyte and the secondary storage is
typically a RAID with about 1 terabytes of
data.

With the availability of the Web as a resource and the trend of user
generated content, the size of data-set did increase even further. Due to
this, large size data-set have become more common. Their size exceed
the storage resources of commodity hardware. These corpora consist of
millions of instances and millions of features. The collaboratively created
encyclopedia Wikipedia consists of about 3.5 millions articles and roughly
as many terms309. 309 The size of the individual articles vary in

size. Categories, redirects, internal entries
are not counted as articles. The number of
entries in the English Wikipedia data-set is
about 10 millions at the time of writing.

Therefore the feature association framework should not only be eX-
ciently implemented, but the algorithms should have a low computational
complexity. This is an important requirement also to achieve scalability.

Functional Requirement 9 The implementation of the feature association
framework should scale with the data set. Even large data-sets with millions
of instances and features should be eligible to be processed. As these data-
sets do not Vt on a single machine, the implementation should be integrated
into a distributed execution framework. This allows the computation to be
done on a cluster of machines310. 310 The cluster consists of commodity hard-

ware which is similar in their processing
power to desktop class machines.To sum up this series of functional requirement, the implementation

of the feature association calculation should be close to linear in terms of
computational complexity in regard to the size of the data set. In other
words, the number of machines needed for the computation should be rise
equally to the increase of the data set size. For twice as many data one
should require about twice as many machines, but not more.

Performance

Scalability is only one aspect of the run-time behaviour, the eXciency of
the implementation is another. While the computational complexity is
typically expressed using the big O notations, the run-time performance of
an algorithm is typically measured in seconds. Even if two implementations
are equal in their computational complexity, their run-time might vary.

There are many reasons why an implementation is faster than others. To
achieve a high performance, the employed algorithms should be tuned on

implementation 157

the actual problem and the implementation should be tailored towards the
execution environment. For example, on contemporary computers the ac-
cess to the main memory is orders of a magnitude faster than any operation
on the secondary storage. Furthermore the sequence of operation and access
pattern has a huge inWuence on the run-time costs of an algorithm.

The functional requirement related to the performance of the imple-
mentation are as the scalability issued categorised according to the size
of the input data-set. Each of the three functional requirements poses an
upper bound on the execution time of the feature association calculations.
All these upper bound are developed based on speciVc assumption about
the properties of the input data. They are expected to be sparse and it is
assumed that there exist eXcient pruning strategies to eUectively reduce the
number of associations to calculate.

Functional Requirement 10 Small data-sets should be processed within a
time-span of a few minutes. The upper bound for the this category of input
size is one hour311. 311 When executed on a single contemporary

desktop PC.
Sixty minutes might appear to be much in relation to the fact that

contemporary search engine are able to search and rank billions of web-
pages within milliseconds. One reason for the discrepancy is the diUerent
complexity of the two problems. Calculating feature associations is bounded
bymn2 form instances and n features, while a search operation has
run-time complexity of O(m). Heuristics and optimisation strategies will
lead to far better performance in the majority of cases for both problem
settings. Still the feature association calculation cannot be integrated into an
interactive application in the foreseeable future312. 312 This would require the feature associa-

tion operation to last less then ten seconds.
Currently this performance can only be
achieved for very small data-sets or if
aggressive pruning strategies are applied.

Functional Requirement 11 The processing of medium sized data set
should last no longer than a single day. It expected that for the most com-
mon corpora the execution time of the feature association calculation will be
a few hours.

Most of the real-world data-sets will be of medium size. Therefore
the performance of the feature association calculations for such data sets
appears to be critical. Combining the scalability and the performance
requirements leads to an estimated execution time of a few hours when
executed on a single server class machine.

Functional Requirement 12 Large corpora will cause additional overhead
for the pre-processing of the data set, the set-up of the distributed execution
environment and the management of the parallel computations. In reverse
the distributed execution will eUectively speed up the computations by
nearly a factor equivalent to the number of participants within the cluster.
Due to this the computation time can be decreased by adding additional
machines to the cluster. The upper bound for the distributed processing of
large data set has been deVned to be a week.

Although the performance related function requirement deVne a set of
worst case performance Vgures, the execution time is inWuenced by many
factors besides the size of the input data set. The conVguration of the feature
association calculations, especially the employed set of pruning strategies,
has implications on the run-time of the computations. The performance
of the computers will continue to rise in the future, as will the size of the
available corpora. Therefore the computation of the relationships between
features within a data-set will require a sophisticated implementation, even
if the available computational resource will become more powerful.

In table 22 the functional requirements concerning the scalability and
performance are listed. For each category of data-set size an example is
given, including the number of instances and features.

158 a feature association framework for knowledge discovery applications

Data Set Size Data Set # Instances # Features Scalability Performance

Small Brown Corpus 56,766 25,432 Single Commodity PC 1 hour
Medium Reuters RCV-1 806,791 1,366,708 Single Dedicated Machine 1 day
Large Wikipedia 3,450,942 10,839,070 Cluster of Commodity PCs 1 week

Table 22: Overview of the scalability
and performance related functional
requirements. Depending on the size of
the data set upper bounds on the necessary
resources and execution time were deVned.
For the Brown corpus the sentences have
been used as instances instead of articles.

The decoupling of the scalability related and performance related func-
tional requirements is motivated by the fact that they require diUerent
strategies to achieve the goals. While the scalability is mostly determined
by the computational complexity of the algorithms, the Vnal performance is
inWuenced by multiple factors. These factors include the architecture of the
platform, the access patterns on the data and the quality of the implementa-
tion.

Applicability

The Vnal set of function requirements is derived from the fact that the
proposed feature association framework should be applicable for a wide
range of knowledge discovery applications. These application will not only
vary in the way they operate or their usage of diUerent data-structures,
but also on their execution environment. Some applications are developed
to be executed on desktop machines, some are fabricated to be run on
dedicated cluster and some application may be executed on mobile devices.
Additionally no one can foresee which platforms will be available in the
coming years.

Functional Requirement 13 The implementation of the feature association
framework should be compatible with as many execution environments
as possible. This should allow the support of many knowledge discovery
scenarios on multiple platforms. Technically speaking the development of the
implementation should be cross-platform.

It would be theoretically be possible to develop a code base from the
ground up313. This would require enormous amounts of development eUort. 313 This attitude of reinventing the wheel

is shared among many developers and is
commonly referred to as not invented here
syndrome (NIHS).

A better strategy is to re-use existing solutions and to build upon already
developed software components and libraries. A functional requirement
captures this strategy:

Functional Requirement 14 The code for the feature association calcula-
tion should be based on a solid foundation of existing and proven technolo-
gies. This can be achieved by including libraries, which have been developed
in public and have established a Wourishing community. Furthermore the
interfaces of the implementation should conform to existing and established
standards.

The last functional requirement is similar in intuition to the previous
one. But instead of using existing components, the feature association
framework itself should be implementation to serve as a base for further
developments. This should allow researchers and other interested people to
integrate feature association calculated into their projects. Additionally a
community of users should scrutinise the code and collaboratively enhance
the code base.

Functional Requirement 15 The implementation of the feature association
framework should be made available to the public314. This will allow contri- 314 At the time of writing the task of

contributing the implementation to the
pool of open-source code has not been fully
completed.

butions from external developers and feedback from people working in the
domain of knowledge discovery.

implementation 159

The Vnal functional requirements are aimed to increase the practical
applicability of the feature association framework. They are motivated
to develop an implementation that is suitable for a wide array of use-
cases. With the number of participating developers the quality of the
implementation will rise. The gathered feedback from practitioners should
steer the future development of the implementation.

160 a feature association framework for knowledge discovery applications

Data Structures & Runtime Environment

This section covers the technical base and the main libraries of the
reference implementation of the feature association framework. For
each decision alternative approaches are presented and the reasons
for the final decisions are given.

Data Structures

One of the main decisions when developing the implementation is the
choice of storage for the input and the output of the calculations. The input
for the feature association computations is a n-partite directed graph. Node
and edges within the graph may carry additional meta-data and weights.
The output is also a directed graph, but it is not partitioned. The edges carry
a weight and can be annotated with meta-data.

One of the functional requirements states that the input and output
should be the same data-structure. Therefore the Vrst choice to make for the
implementation is the selection of a data-structure to store a directed graph.
This data-structure should provide means to quickly traverse the graph. It
should be Wexible to allow the meta-data to be stored alongside the nodes
and edges.

Tn the association phase of the algorithm parts of the output graph are
iteratively generated. Therefore the graph data-structure must be capable of
inserting sub-graphs into an existing graph.

There are many graph libraries available commercially as well as open-
source implementations. For example WebGraph315 ,316 which employs 315 P. Boldi and S. Vigna. The webgraph

framework I: compression techniques.
In Proceedings of the 13th international
conference on World Wide Web, pages
595–602. ACM, 2004
316 P. Boldi and S. Vigna. The webgraph
framework ii: Codes for the world-wide
web. In Data Compression Conference, 2004.
Proceedings. DCC 2004, page 528. IEEE,
2005

compression technique to keep the storage space of the graph at minimum.
Only few of them provide facilities to transparently load parts of the graph
into main memory. The iterative process of building the output graph is
also on the list of required features, but only a few existing graph libraries
implement such a scheme.

Instead of using a dedicated graph library, the reference implementation
uses an inverted index as basic infrastructure to store and manage the input
as well as output graph structures. This may sound unintuitive at Vrst, but
in fact it provides a number advantages. An inverted index is the basic
data-structure of many search engines. They are well studied and oUer a
satisfying performance for a set of operations. An inverted index can be
build in an incremental manner. Furthermore this data-structure has proven
in many applications to provide a good scalability.

The input to build an inverted index is a list of tuples. Each tuple consists
of a single identiVer and a list of values:

[< id1, [value1, value2, value1, ...] >,

< id2, [value2, value1, value3, ...] >,

...

< idn, [value1, value3, value2, ...] >]

The inverted index rearranges the entries and reverses the direction of
the mapping. The output of building an inverted index is again a list of tu-
ples. But the output tuples consists of a single value and a set of identiVers.

All identiVers which refer to a speciVc value are contained in the ap-
propriate entry. Furthermore the number of times a speciVc value occurs
within a single tuple is recorded and stored together with the identiVer. No
information317 is removed in this operation, just the main axis of how the 317 The information that encodes the

sequence of values is actually removed.
Implementations of an inverted index
may capture this information in dedicated
data-structured stored alongside the entries.

data is organised has been changed:

implementation 161

[< value1, [< id1, 2 >,< id2, 1 >, ..., < idn, 1 >] >,

< value2, [< id1, 1 >,< id2, 1 >, ..., < idn, 1 >] >,

...

< valuem, [< id1, tf1,m >,< id2, tf2,m >, ..., < idn, tfn,m >] >]

The input of the operation can also be seen as matrix, with the identiVers
as rows and the individual values are columns. The occurrence count of a
value for a single identiVer is the cell content. For this matrix the inverted
index can be seen as transposition operation.

Inverted Index

After the basic data-structure for the management of the input and output
graph has been agreed on, an implementation for this data-structure needs
to be selected318. The implementation of the inverted index has to provide 318 Developing an inverted index from the

ground up would go against the functional
requirement 14.

a level of Wexibility to allow the management of the additional information.
As the graph elements might be annotated with meta-data and the edges
may carry a weight, the implementation has to oUer methods to store this
information within the inverted index.

In the case of the feature association graph the input to the inverted
index operation contains an optional weight - wi,j - and an optional data-
structure to encode the meta-data -Mi,j :

[< id1, [< value1, w1,1,M1,1 >,< value2, w1,2,M1,2 >,< value3, w1,3,M1,3 >, ...] >,

< id2, [< value1, w2,1,M2,1 >,< value2, w2,2,M2,2 >,< value3, w2,3,M2,3 >, ...] >,

...

< idn, [< value1, wn,1,Mn,1 >,< value2, wn,2,Mn,2 >,< value3, wn,3,Mn,3 >, ...] >]

There are a number of diUerent implementations of an inverted index
available. Results of an evaluation of the most popular libraries have also
been published319. When restricting the selection of available libraries to the 319 C. Middleton and R. Baeza-Yates. A

comparison of open source search engines.
Technical report, 2008

Java based implementations a list of 4 candidates remains: Lucene, MG4J,
OmniFind and Terrier.

The last one, Terrier, does not support the incremental indexing and
therefore is dropped of the list. The storage demands of the Vnal data-
structure is another criteria for selection. OmniFind produces on-disk
data-structure that exceed in size the storage requirements of the data-
set itself. Out of the remaining two solutions, the MG4J library does not
provide facilities to store the additional information needed to manage the
meta-data annotations.

Therefore the open-source library Lucene320 has been the logical choice 320 http://lucene.apache.org/java/

docs/index.htmlas basic infrastructure to store, manage and retrieve the input as well as
output graph structures.

Lucene Data-Structures The basic entity for the Lucene inverted index
implementation is called document. A single document is made up by
multiple Velds. Each Veld is a tuple of a name and a list of values, called
tokens.

The tokens are again tuples of a name and an optional payload. This
payload can be freely deVned by the client of the library and is treated by
Lucene as a blob of binary data. The structure of a single Lucene document
can be written as:

http://lucene.apache.org/java/docs/index.html
http://lucene.apache.org/java/docs/index.html

162 a feature association framework for knowledge discovery applications

< document >7→< field > ∗
< field >7→< field− name >< token > ∗
< token > 7→< token− name >< payload >?

Input Feature Graph The Vrst part of work to integrate the Lucene
library into the feature association calculations is to deVne the mapping
of the input feature graph onto the Lucene data-structures. The input is a
directed graph with instance and feature nodes. Instances are connected via
edges to the features, where each edge may carry a weight. Furthermore a
feature node is assigned to one of the feature space of the data-set.

For the mapping, the input feature graph is partitioned into overlapping
sub-graphs. Each of these sub-graphs contain a single instance node and all
connected feature nodes. The instance nodes are not shared between the
sub-graphs, hence there are as many sub-graphs as there are instance nodes
within the input feature graph.

The sub-graphs are then mapped to Lucene documents. The Velds of this
document are determined by the feature spaces of the feature nodes within
the sub-graph. Thus the Velds represent the available feature spaces. All
feature nodes within a single sub-graph are then transformed into a single
Veld.

Feature nodes are represented as tokens. The identiVer of the feature
is used as token name. The edge weights and all meta-data is stored as
payloads which accompany the tokens. Table 23 gives an overview of the
mapping of the input feature graph to the Lucene data-structures.

Graph Element Lucene Data-Structure

Instance Node Document
Feature Space Field
Feature Node Token
Edge Weight Payload
Meta-Data Payload

Table 23: Overview of the mapping of the
elements of the input feature graph to the
corresponding Lucene data-structures.

To illustrate the mapping the Brown corpus has been transformed into a
Lucene data-structure. In Vgure 24 an screenshot is presented that displays a
single instance sub-graph. The depicted Lucene document contains a set of
tokens which represent the features connected to the instance.

Applications that utilise the reference implementation of the feature
association framework are responsible to transform the data-set into an
appropriate representation. This will typically require an additional trans-
formation step, which has to be developed once for each data-set. As the
inverted index is a common and well understood data-structure this trans-
formation step can be easily conducted.

Output Feature Association Graph The output data-structure is related
to the way the input data-set is stored. Functional requirement 6 states that
it should be possible to use the output of a feature association calculation as
input of a successive iteration. Therefore the implementation also uses an
Lucene inverted index as data-structure of the output graph.

While the input graph consisted of instance node which are mapped as
single documents, the output feature association graph only contains feature
nodes. Therefore a diUerent mapping scheme needs to be developed, but
the basic strategy stays the same. The complete output feature association
graph is split up into overlapping sub-graph. Instead of using the instance

implementation 163

Figure 24: Example of a data-set trans-
formed into the Lucene data-structure.
Sentences within the Brown corpus are con-
verted into document. The words are taken
as features and the sole feature space has
been labelled ’sentence’. The weights and
meta-data are not shown in this example
screenshot.

nodes, the sub-graphs are created based on the feature nodes labelled as
target features. For each target feature node all connected source features
are collected and resemble a single sub-graph.

Target feature sub-graphs are then mapped as single Lucene documents
in the inverted index. The document is Vlled with the information contained
in the sub-graph. Fields are created for each feature space present in the set
of connected source features. For each source feature node, a token is added
to the appropriate Veld. The token name is derived from the source feature
identiVer. The payload for a single token is holds the association weight
and all meta-data attached to the connection between the target and the
source feature. Table 24 gives an overview of the mapping scheme used to
transform the output feature association graph into data-structure suitable
for the inverted index.

One of the main use-cases for extracting information out of the feature
association graph is the traversal of the graph starting at a source feature.
Given a speciVc source feature the list of all association target features
should be retrieved. Therefore the decision to use the target feature as
criteria to partition the association graph may sound counter-intuitive
at Vrst. The choice of using the source features as main element of the
sub-graphs might appears to be more suited to cater for the main use-cases.

The decision is grounded by the way the inverted index operates. Any
implementation of an inverted index will reverse the direction of the
relationships between the elements of the index. When building a Lucene
index, the relationship between documents and tokens will eUectively
be inverted. Therefore the input data to the index must be organised in
reverse to the expected main retrieval direction. In the case of an feature
association graph, the relationship between the target and source features
will be inverted. Hence in order to achieve to correct traversal direction
one has to Vll the inverted index with data organised in the logically wrong
direction.

The output of a feature association calculation for the Brown corpus is
depicted in Vgure 25. A single Lucene document represents a sub-graph for
a single target feature. All source features, which are associated with the
target features are indexed as tokens.

The Vnal inverted index of an output association feature graph can again

164 a feature association framework for knowledge discovery applications

Graph Element Lucene Data-Structure

Target Feature Node Document
Source Feature Space Field
Source Feature Node Token
Association Weight Payload
Meta-Data Payload

Table 24: Mapping of the elements of the
output feature association graph to the
Lucene data-structures. For each node in
the graph, which is labelled a target feature,
a single Lucene document is created. All
associated source features are written as
tokens of a Veld which is determined based
upon the feature space of the source feature.

Figure 25: Screenshot of an example for a
document that represents a sub-graph of
the output feature association graph. The
sub-graph contains a single target feature
and all associated source features. In this
example the target feature is the word ’cell’.
The weights and the optional meta-data are
not shown in the screenshot.

be used as input for another feature association calculation. Therefore an
appropriate conVguration needs to be speciVed. Due to this choice of input
and output data-structures many complex use-cases can be supported, for
example the computation of second order co-occurrences321. 321 There is no limit on how many times this

recursive iteration is conducted. Therefore
third or fourth order co-occurrences may be
calculated as well.Intermediate Data-Structure The third main data-structure holds the

local associations. In the collection phase all features which share at least a
single instance are jointly stored. The collected data is then sorted according
to the features labelled as target.

The data-structure needs to be eXcient in terms of required memory
space. This requirement is a consequence of the employed merge-sort step
that precedes the association phase. The more local associations Vt into
main memory, the less merge blocks needs to be created. A merge block
consists of a list of already sorted local associations. In the merge step of
the algorithm all blocks are read out in parallel. Therefore the size of the
intermediate data-structure has a direct impact on the performance of the
overall computations.

As this part of the implementation is critical to the whole process, a cus-
tom data-structure has been developed. As no already existing library oUers
the needed Wexibility and speed, all algorithms related to this data-structure
also need to be implemented. This requires custom implementations of
merge-sort algorithm, the block storage logic and the parallel read-out code.
To keep the development eUorts low, the data-structure should be as simple
as possible. The Vnal intermediate data-structure to store the result of the
collection phase is organised as:

implementation 165

< block >7→< block − entry > ∗
< block − entry > 7→< target− feature− id >< instance− entry > ∗
< instance− entry > 7→< instance− id >< feature− space− entry > ∗
< feature− space− entry > 7→< feature− space− name >< feature− entry > ∗
< feature− entry > 7→< source− feature− id >< local − association− weight >< meta− data >

If the feature associations are calculated within a distributed execution
environment, the management of the intermediate data is done by the
execution framework. For example the MapReduce framework already
provides facilities similar to the merge-sort algorithm to eXciently dispatch
the work-load among the participating execution units.

166 a feature association framework for knowledge discovery applications

Design & Main Components

Before any code can be written the overall design and archi-
tecture of a software component has to be developed first. The
software architecture has a huge influence on the performance
and the scalability of the implementation. Additionally the usabil-
ity of the software interfaces contribute to the ease of adaptation
on various application scenarios.

Overview

The design of large software projects requires a array of skills and experi-
ence. An important prerequisite of any design phase is a set of use-cases and
well engineered feature requirements. Additionally a set of implicit assump-
tions and expectations steer the direction of the software design. Among
these soft requirements there is the goal to achieve an aesthetic and elegant
architecture. Such an architecture is accomplished by complying to a set of
properties. The Vnal software design should be consistent, symmetric, self
explanatory and suXciently simple.

The result of the software design process is a speciVcation of a set of
classes322. Each of the classes represents a single entity within the software 322 Although the design process is inde-

pendent from any speciVc programming
language, there is the assumption that the
implementation has to be done using an
object oriented programming language.

architecture. The design also deVnes the interaction between the classes.
Therefore each class provides a set of operations, where each takes a set
of input parameters and produces an output that conforms to a predeVned
structure.

The implementation of feature association framework can be split
into three basic set of classes. These components encapsulate a speciVed
functionality and serve diUerent purposes.

• The Vrst set of classes provide facilities to conVgure the feature asso-
ciation process. For each data-set and application scenario a suitable
conVguration needs to be deVned.

• Given a data-set and a conVguration, the feature association can be calcu-
lated. Dedicated classes process the input data, compute the association
and produce the Vnal output feature graph.

• The Vnal component consists of classes to traverse the output graph.
They provide means to retrieve the feature associations and to collect the
required information.

The relationship between the three components is also predeVned by the
software architecture. The conVguration classes are read out by the the two
other components. There is no direct relationship between the classes that
build the output feature graph and the classes that traverse the graph. Only
the data-structure is shared between these two components.

In the next sections the software components will be presented. The
main classes of the components will be described and the most important
operations are covered. Additionally remarks regarding some aspects of the
implementation are made.

ConVguration

The task of the classes of the conVguration components is twofold. At Vrst
the conVguration is generated by the application and is tailored towards
a speciVc data set. Then the conVguration is read out by the components
responsible to build and traverse the feature association graph.

Although the task of the conVguration is straightforward and may ap-
pear trivial, nevertheless the classes of this component have to be carefully

implementation 167

designed. The conVguration classes are the main interface of the feature
association framework as seen from clients that wish to make use the func-
tionality. Therefore the conVguration should as simple and intuitive to
use as possible. Still the whole range of possible computations should be
accessible.

AssociativeFeature Class Within the implementation of the feature
association framework, a single feature is represented by the class Asso-
ciativeFeature. All information concerning a single type of feature is
captured by an instance of this class. The type of feature is logically equiv-
alent to the feature space. As feature spaces are mapped as Lucene Velds in
the input data structure, the Veld type is equal to the Veld name within the
inverted index.

The AssociativeFeature class is also responsible to manage tuning
parameters. For example the threshold for various pruning strategies are
stored alongside the instances. In table 25 an overview is given of pruning
parameters commonly used for textual data sets. For diUerent kinds of data,
the appropriate classes need to be adapted to cater for a diUerent set of
pruning strategies.

Name Description Examples Default Value

minTermLength Remove all short words Single characters, punctua-
tion marks

2

maxTermLength Remove all long words URLs, tokenisation errors ∞
minDocFreq Remove in-frequent words Spelling errors, pre-

processing artifacts
3

maxDocFreqRatio Remove high frequent words Functional words with low
semantic content

0.5

maxTermDigitRatio Remove numbers Figures, dates 0.5

Table 25: Overview of common pruning
parameters managed by instances of the
AssociativeFeature class. Default values
are given, which can be changed according
to the properties of the actual data-set.

The AssociativeFeature class is abstract therefore no direct instances of
this can be instantiated. Any realisation of such a class additionally encodes
the role of a feature within the input feature graph. Therefore there are two
classes, which are derived from the abstract AssociativeFeature class.

SourceFeature Class The Vrst realisation of the abstract associative
feature class is used to represent features labelled as source within the input
feature graph. The mapping of the roles to the nodes in the graph is done
via the feature spaces. Therefore the identiVer of a feature space is stored
within each instance of the source feature class. This property is inherited
from its parent class, as well as all pruning settings.

Instead of introducing a new dedicated class to encode the role of a
node in the graph, one could have chosen to resort to an attribute of the
AssociativeFeature class. Due to the importance of the information
whether a feature node is labelled as source or target feature a single
property might not be suXcient to indicate this information. Furthermore
this scheme allow separate settings when a single feature space is used as
source as well as target of the associations.

TargetFeature Class The target feature class is similar to the source
feature class. It is inherited from the AssociativeFeature class and is
used to represent target nodes within the input feature graph. Instances of
this class contain a member which identiVes the feature space of all nodes

168 a feature association framework for knowledge discovery applications

labelled as target. The pruning settings are inherited as well and the feature
will be processed and Vltered out according to these parameters.

The feature association calculation uses this information to generate the
appropriate associations. Features identiVed via the TargetFeature class
will then be the target of the association relationships within the output
graph.

Feature Association Calculations

The main component of the feature association framework is responsible to
analyse the data-set and to build the association network. The major chal-
lenge in the design of this component is to create a software architecture
which provides the highest level of Wexibility without sacriVcing scalability
or performance. Many aspects of the design are already predetermined by
the algorithm and the data-structures. Therefore the main task remains to
identify the appropriate mechanism to allow customisations to the basic
work-Wow.

There is a number of sophisticated design patterns which appear to
be suitable for such a use-case. The Java programming language and its
run-time environment are well suited to follow these design patterns. A
combination of interface speciVcations and abstract classes build the core of
the feature association calculation component.

AssociationBuilder Interface At Vrst an interface is deVned, which is
exposed to the clients of the feature association framework. This interface
is kept very simple and provides a single method. It takes a reference to a
data set as input and returns a reference to an association network as output.
The method is once invoked to build the complete feature association graph.
Any internal operations and processing is shielded away from the clients.

In an simple application scenario, the main method of the Association-
Builder interface is the only necessary interaction between a client and
the framework. Therefore the AssociationBuilder interface is all a client
needs to know to be able to create a feature association network. This is a
direct consequence of the design decision 1, which has been made while
developing the algorithm.

Complex scenarios require adaptation work and the implementation is
speciVcally designed to allow diUerent kinds of customisations. In order to
integrate additional functionality and to replace existing code the implemen-
tation provides an abstract base class. This base class has been developed to
allow any derived class to observe the intermediate result and to modify the
process.

AbstractAssociationBuilder Class The AbstractAssociationBuilder
class implements the core functionality of the feature association algorithm.
It serves as base for any custom functionality as well as the default be-
haviour. Therefore it provides several hooks to inject custom code. The Java
programming language allows the deVnition of protected member functions,
which then can be overloaded by derived classes. This constructs has been
used as main means to achieve a Wexible and intuitive architecture.

The AbstractAssociationBuilder class is declared to be abstract and
cannot be instantiated, only derived classes are eligible for being used by a
client. Only clients that wishes to customise the feature association process
need to be knowledgeable about the inner workings of this class.

Because the main functionality is made available via this class, its
design should reWect the properties of the feature association computation.
Therefore its speciVcation is tightly coupled to the algorithm. For each
distinct phase of the algorithm, the AbstractAssociationBuilder class

implementation 169

provides an own method. The input and output variables of these method
are as predeVned by the speciVcation of the algorithm.

The Vrst place for a customisation is to allow clients to gather global
statistics of the instances and feature contained in the data-set. These
statistics can then by used by the feature association function to determine
the association strength.

The global statistics can also be used by pruning algorithms to remove
any features and instances which do not contribute any relevant informa-
tion to the Vnal associations. The pruning strategies depend on the nature of
the features and their distribution within the data set. The implementation
of the feature association framework already provides a set of pruning
approaches. Still it should be possible to plug-in additional customisation
algorithms to remove or retain speciVc features.

The most important phase of the feature association calculations is the
association phase. Therefore this part of the framework is a candidate to be
customised to adapt the feature association process to a given application
scenario. The AbstractAssociationBuilder class provides a two levels of
customisation:

• The Vrst level is tailored towards application scenarios which only
require small changes to the feature association calculations. In the
Vnal part of the association stage sub-graphs are generated for each
target feature. These sub-graphs are then inserted into the output feature
association graph. The implementation allows the integration of an
additional processing of the sub-graph prior to merging it with the rest of
the association network. This can be used for example to remove speciVc
pairs of features. The sub-graph may also be enhanced, for example to
add meta-data to the output feature nodes.

• The second level allows a modiVcation of the code that is responsible to
produce a sub-graph for a single target feature. This part of the algorithm
collects all local association for a given target feature. Then the local
associations are aggregated and in combination with global statistics the
feature association function produces weights for each pair of features.
The source features and the target features are then wired together and
annotated with the association weight as well as optional meta-data.

Clients may choose to skip the default behaviour to build the target
feature sub-graphs. There are no limitations on the kind of functionality
which replaces the implementation of the association phase. It is only
required to conform to the speciVed input as well as the output data-
structures. The output needs to be a valid graph structure, where nodes
represent features.

This level of customisation can be utilised to incorporate a machine
learning algorithm into the feature association calculations. Therefore
the input can be interpreted as matrix, which is the preferred data-
structure for many machine learning techniques. The result of the
additional computations can then be integrated into the process of
Vnding relevant relationships between the individual features.

Although the AbstractAssociationBuilder class encapsulates the
main aspects of the feature association calculations, not all functions are
directly implemented by the class. There a many auxiliary classes which
are responsible for specialised tasks, which are not covered here due to
space limitations. For example a sub-module implements the merge-sort
algorithm.

170 a feature association framework for knowledge discovery applications

DefaultAssociationBuilder Class The basic functionality of the feature
association calculations are implemented by the AbstractAssociation-
Builder class. This class is abstract and some methods are just placeholders
for the optional customisation. Therefore it cannot be directly instantiated
to build the feature associations.

The DefaultAssociationBuilder class is responsible to provide a
complete basic implementation. In an simple application scenario this
default implementation will be the preferred choice. The behaviour of this
class conforms to the formal speciVcation of the algorithm. The results
produced by this implementation are labelled as global associations in the
description of the algorithm.

ContextualAssociationBuilder Class The ContextualAssociation-
Builder class has been created to generate the output graph consisting of
local associations. Global associations reWect the relationship between two
feature based on the whole data set. The data set can be partitioned into
smaller parts, of which each represent a diUerent context. The relationships
between features based on this context are labelled as local associations.

The ContextualAssociationBuilder class is the base for building
local associations. As there is no single best way to calculate local asso-
ciations, this class is abstract and thus an additional adaptation eUort is
necessary. The necessary remaining steps for application scenarios where
the contextual associations should be produced are:

• At Vrst the data set has to be partitioned into distinct contexts. The
partitioning does not need to be static, but may depend on the target
feature. The implementation is free to choose a scheme to deVne the set
of contexts for each target feature within the data-set.

• The context needs to be mapped onto elements of the output feature
association graph. There are two basic approaches to deal with contex-
tual features. In the Vrst approach the target feature nodes are split into
multiple nodes. Each of the new nodes represent a single context. Edges
between the source features and the contextual target feature nodes
denote the local association relationships.

Alternatively the contexts may be mapped as a new type of nodes. For
each context a new context node is introduced into the association
network. The source features are connected to these context nodes via
edges carrying the local association information. The context nodes
are then connected to the target feature node. Edges between these two
nodes types may be annotated with additional information about the
context. The weight of this relationship might reWect the size of the
context.

To generate local association between features the adaption eUort is
higher than for building a feature graph consisting of global associations.
Examples for diUerent scenarios where local associations are generated are
presented in the application chapter.

AbstractFeatureAssociationFunction Class The last presented class
of the feature association component deVnes the interface for the feature
association functions. In table 26 an overview is given of the methods
deVned by this interface.

All feature association function need to be implemented by conform-
ing to the interface speciVcation. The feature association framework is
already equipped with a number of common association functions. Still the
application scenario might require to develop custom feature association
functions, or need to adapt existing ones. Usually this is done in conjunction

implementation 171

Method Phase Description

getLocalSourceWeight Collect Phase Given a source feature and an instance compute a
local weight

getLocalTargetWeight Collect Phase Given a source feature and an instance compute a
local weight

getLocalAssociationWeight Collect Phase Combine the local weight of a source and target
feature which share a common instance

normalizeLocalAssociationWeight Association
Phase

Compute a normalised version of a local weight
based on statistics of all local weights for a target
feature

aggregateLocalWeight Association
Phase

Aggregate the local weights of all instances (of a
single context) for a given target feature

getAssociationWeight Association
Phase

Compute the Vnal association weight between
two features

Table 26: List of methods of the Abstract-
FeatureAssociationFunction class. Each
method is invoked once for either a feature
or a pair of features. All methods may
access global statistics and pre-computed
factors.

with a custom implementation of the association phase and a custom set of
pre-computed statistics and factors.

Feature Association Retrieval

The third component of the reference implementation of the feature associ-
ation framework contains classes to retrieve the feature association graph.
The main challenge when designing an software architecture for this part
of the framework is to take into account all the diUerent use-cases. As the
speciVcation of the algorithm states, there should be multiple ways on how
to traverse the output feature graph.

The most complex use-cases can be seen as a combination of applying
a sequence of basic operations on the association network. Therefore not
all use-cases need to be addressed by the implementation. Only the most
important retrieval operations need to be solved. Among the criteria which
steer the development of implementation, the Vnal run-time performance
plays an important part. The speed of the basic operation will have an huge
inWuence on the execution time of more complex operations.

Two basic approaches to the traversal of the feature association graph
have been identiVed. The Vrst is to collect all directly connected feature
nodes for a given start node. As the association network is a directed
graph, only nodes labelled as source features are eligible as start nodes. The
seconds method of traversal is more complex, but provides much more
Wexibility. In an spreading activation approach the graph is navigated, again
using a source feature as start node. During the traversal all the necessary
information is collected.

SubGraphAssociationSearcher Class The task of the SubGraphAsso-
ciationSearcher class is relatively simple: Given a source feature node,
collect all associated target features. As the output feature graph may be
very large and highly connected, a number of constraints and threshold
should prevent excessive processing. The two main thresholds to limit the
amount of data gathered by the implementation are:

• The Vrst threshold deVnes the upper limit on the number of collected
target features. Simply stopping the collection of target feature as soon
as this threshold is reached will not be suXcient in most of the use-cases.
Usually the desired output is a list of relevant associated features, where

172 a feature association framework for knowledge discovery applications

only the feature with low association weights are ignored. Therefore the
set of all associated target features needs to be gathered. From this list
the top features with the strongest association will be retained, all other
target features will be removed.

To achieve such a behaviour, it is not necessary to entirely sort the list of
top associations, which would be quite computationally expensive. For
example the bounded priority queue algorithm323 can be utilised in such 323 T. H. Cormen, C. E. Leiserson, R. L.

Rivest, and C. Stein. Introduction to
algorithms. The MIT press, 2009

a scenario. The collection algorithm is initialised with an empty list of
target features. While the graph is iteratively read out and all connected
features are collected, the list grows with each visited feature. As soon
as the number of entries of the list is equal to the threshold, an new
feature is only added to the list if its association weight is higher then the
smallest weight in the list. If this is the case, the feature with the smallest
weight is removed to keep the size of list unchanged.

There are multiple ways to implement an priority queue scheme. In
the reference implementation the heap data-structure has been chosen to
collect the top associated features.

• The second threshold does not require a sophisticated implementation.
A Vxed minimal association weight is used to constrain the number
of reported associations. All connected target features with an higher
association weight are included in the result list. This threshold requires
a list implementation, which allows incremental growth. The Java
programming environment already provides a number of matching data
structures.

Although the task of the SubGraphAssociationSearcher class may
appear trivial, it is crucial that the implementation is crafted with emphasis
on high eXciency. This class is used by other, more complex retrieval oper-
ations. The methods of this class are invoked multiple times and therefore
their run-time behaviour has a huge impact on the overall performance of
the framework.

Various techniques have been used in the implementation of the Sub-
GraphAssociationSearcher class to ensure an optimal performance. The
Vrst presented optimisation strategy only applies to small output feature
graphs. The latency and transfer times of secondary storage devices are
orders of a magnitude higher than accessing the main memory. Therefore
the implementation tries to load the complete association network into main
memory. This works for suXciently small feature association graphs.

As soon as the size of the output feature graph exceeds the memory ca-
pacity, other strategies have to be considered. The reference implementation
combines two main approaches for eXcient retrieval: pre-processing and
caching.

By default the output feature association graph is stored within a Lucene
index as presented previously in this chapter. The graph contains all asso-
ciations and all meta-data. Usually only the top associations and a limit set
of meta-data is requested by the client. Therefore the association network
is pre-processed and only the most important information is stored in a
dedicated data-structure324. Before any requests are passed to the Sub- 324 On contemporary computers it is more

eXcient if all requested data is located close
to each other. If the associations are spread
out on the storage area, latencies will be
introduced which will cause noticeable
delays.

GraphAssociationSearcher class, or alternatively on the Vrst request, the
pro-computation is initiated. The pre-computed data consists of each source
feature together with a Vxed number of relevant associated target features.
This number needs to be at least as high as the threshold then passed to
retrieve the associations for a single source feature.

The entries for all source entries is then written as Vle to the secondary
storage. Next the Vle is opened for reading, but instead of using the default
streaming approach of accessing a Vle, an alternative, more eXcient ap-
proach is taken. The content of the Vle is mapped into the address space of

implementation 173

the current processes. This approach allows the operating system to opti-
mise its disk caching algorithms. Therefore the reference implementation
itself does not need to cache any data. Modern operating system are more
eXciently at caching then any application. The system components may
refer to information like the disk geometry, physical storage location and
more. It is the responsibility of an application to organise its data to be
suited for the operating systems’ caching algorithms. The pre-computed
data-structure has speciVcally been designed in such a way.

SpreadingActivationAssociationSearcher Class The Vrst presented
retrieval class is optimised on speed, which is made possible by its narrow
speciVed functionality. The SpreadingActivationAssociationSearcher
class on the other hand has been designed with Wexibility in mind. It
provides a rich set of parameters to tune its behaviour. The basic task it to
traverse the association network in a spreading activation like manner.

The spreading activation is conceptually similar to a breath Vrst search.
But there are a couple of diUerences, for example in the spreading activation
scenario each node may be visited multiple times. The breath Vrst search
does not keep track of an activation strength, whereas the spreading activa-
tion traversal carries an activation weight and hop count for each thread.
Furthermore the spreading activation may incorporate a decay function to
simulate that a activation weight peters out after a couple of hops.

The output of the spreading activation retrieval is the list of nodes
activated in the terminal hop. As the SpreadingActivationAssociation-
Searcher class far designed to provide as high Wexibility, there are a num-
ber of constrains and thresholds to steer the traversal. The main parameters
and input variables will be presented in the following paragraphs.

Start Node The minimal required information to trigger a spreading
activation of the association network is the start node within the graph.
Given an initial source feature the traversal will start and the predeVned
default settings will control the execution of the operations. If no other
parameters are speciVed the result of this operation will be the same as
the basic use-case covered by the SubGraphAssociationSearcher class.

Connected Nodes Threshold For each iteration of the spreading activation
algorithm all nodes connected to the currently activated nodes should be
visited. The output feature association graph might be highly connected.
In the worst case each feature is connected to each other feature of the
data-set. To keep the calculations feasible and the keep the memory
requirement within certain limits additional thresholds are introduced.
The Vrst is the upper limit of nodes visited in the next iteration for each
currently activated node. This threshold is basically the same as the Vrst
presented upper bound of the SubGraphAssociationSearcher class.
Only the feature with the highest association weight will be visited. This
threshold is applied for each hop and each node.

Association Weight Threshold As the previous threshold this parameter
has already been introduced in the description of the SubGraphAsso-
ciationSearcher class. For each hop only those connected nodes are
visited, where the association weight exceeds the passed value. The
actual best value for this threshold depends on the feature association
function employed while building the output graph. DiUerent associa-
tion function produce values of diUerent ranges. Even the direction of
relatedness may be swapped for diUerent functions. For example simi-
lar measure produce high values for similar feature, whereas distance
measures will produce low values for close features.

174 a feature association framework for knowledge discovery applications

Activation Weight Threshold Unique to the spreading activation retrieval
function is the speciVcation of the lower limit on the activation weight.
The activation weight depends on a number of factors, most of them
have already been covered in the previous chapter. This threshold is
similar to the association weight threshold, but it is not applied on the
weight of the association, but on the result of the activation weight
calculation325. If the activation weight is lower than the passed threshold 325 As a node might be activate by more

than one node at the same time, this
threshold can only be applied after all
candidates for the next iteration have been
determined. Therefore this method is less
eUective to increase the computations as the
association weight threshold.

value, the traversal is stopped for the current thread. As soon as all
threads are terminated by this criteria, the retrieval process is Vnished.

Hop Count Like the previous threshold, this parameter controls the point
of termination of the traversal process. Instead of using the current
activation weight, the length of a thread is taken as reference criteria. As
soon as the number of hops for a thread is equal to the speciVed value,
it is terminated. The last activated node is then added to the result list
together with its activation weight.

If an hop count of one is passed to the algorithm, the retrieval will be
equal to the way the SubGraphAssociationSearcher class traverses the
graph. Which hop count to use depends on the structure of the feature
association graph. This threshold can be used in combination with a
lower limit on the activation weight to create a combined termination
criterion.

Middle Node Feature Spaces A data-set may contain features from diUer-
ent feature spaces. In the input feature graph the features are annotated
with the feature space identiVer. These annotations are then copied to the
output feature association graph. This information can then be used to
steer the traversal of the association network.

While spreading the initial activation weight over the network, the
selection of which nodes are taken for further traversal can be made
upon the feature space annotation. Therefore the client may pass a set
of feature spaces to the spreading activation method. This set has no
impact on initial start node and also is not applied to constraint the Vnal
activated node. If the only termination criteria is the hop count - thop -
the restriction on the feature space for middle nodes will be active only
for certain hop counts:

0 < hopCount < thop (119)

The middle node restriction is useful for example for data sets which
consist of more than one feature spaces. Depending on the role mapping
of these feature spaces for the input graph the retrieval of the Vnal
association network can then be constrained.

Stop Node Feature Spaces The stop node restriction can be seen as inverse
of the middle node feature space constrained. Instead of specifying
which feature spaces are valid for further activation, this stop node
restriction deVnes which features should not be used for traversal. The
diUerence between these two restriction is subtle. Nevertheless there are
a couple of usage scenarios which require either one of the two methods.

The stop node restriction can be applied if the same feature asso-
ciation network is the base for multiple diUerent use-cases. Is such a
case, depending on the scenario a diUerent traversal strategy might be
necessary.

Termination Node Feature Spaces The last presented constrain based on
the feature space is applies to the Vnal nodes of a traversal trail. These
nodes are especially important as they are taken as output of the retrieval
operation. The feature association graph may consist of multiple feature
spaces and the spreading activation may halt at any of these features.
Therefore the traversal can be conVgured to stop as soon as certain

implementation 175

features are activated. The implementation oUers the functionality to
specify the feature space identiVer of these features.

The SpreadingActivationAssociationSearcher class does not only
allow to control the traversal process. Equally important are the functions
which calculate the activation weight. In the spreading activation scheme
the weight is computed by two functions: The proportion of the activation
weight which is passed by an node to all connected neighbouring nodes and
the combination of these weights for a single target node. The Vrst function
can be further split up into a part which is responsible for the distribution of
the weight and a part which implements the decay function.

Each of these parts may be customised by clients of the framework.
The default behaviour already provides a basic implementation of the
activation weight calculation. The output activation weight depends on
the current activation weight and the weights of all connected nodes. Each
out-going link is weighted by calculating the relative weight of a connection
in combination with the current activation weight wactivation(n)

i , where n
denotes the step count:

wouti,j = w
activation(n)
i

wi,j∑
k wi,k

(120)

For each outgoing edge of all currently active nodes the out-weight is
computed. Then the set of all active nodes of the next step are collected. For
each of these feature nodes, the input weight is calculated by aggregating
the respective output weights. The default implementation provides two
diUerent basic choices:

win−maxj = max
k

woutk,j (121)

win−sumj =
∑
k

woutk,j (122)

The decay function is dependent on the data-set and the size as well as
complexity of the association network. There is no function which suites
the majority of use-cases. Therefore the reference implementation simply
returns the input value, which eUectively means that the activation weight
does not decrease with the number of hops.

fdecay(w) = w (123)

The set of active feature nodes in step n is symbolised as Fn in the fol-
lowing formula. Assuming the win−sum has been chosen as input weight
function, the Vnal spreading activation function of the SpreadingActiva-
tionAssociationSearcher class can be written as:

w
activation(n+1)
j =

∑
{k|fk∈Fn}

(w
activation(n)
k

wk,j∑
l wk,l

) (124)

The spreading activation retrieval operation does return a set of features
including their activation weights. The traversal and the termination of each
thread are controlled by the input parameters. Some client do not only need
the information which features have been ultimately activated, but they also
require detailed information about the traversal process itself. To cater for
such use-cases, the retrieval component of the reference implementation
provides an additional interface. This interface has been labelled Tracer
and allows a client to observe all parallel threads and their route through
the association network.

The Tracer interface deVnes callback methods for each type of event
of the traversal operation. The client is free to choose which events are

176 a feature association framework for knowledge discovery applications

observed and how much data is recorded during the process. An implemen-
tation of this interface is passed to the SpreadingActivationAssociation-
Searcher class which then invokes the appropriate methods during the
spreading activation process. This way the client can completely reconstruct
the topology of the association network and the structural relationship of
the feature associations.

The framework already provides an convenience implementation of
the Tracer interface. This class stores all traversal events in an internal
graph based data-structure. For complex association networks and high step
counts the memory requirements may become prohibitively high. Therefore
this class has a limited applicability. Its main purpose is to demonstrate
the behaviour of the spreading activation retrieval process, for example for
visualisations.

The SpreadingActivationAssociationSearcher class accepts a set
of parameters to control many aspects of the traversal process. Due to the
Wexibility the performance is not as high as the retrieval of a single sub-
graph. Both approaches can be combined to gather the desired information
from the association network.

implementation 177

Extended Functionality

The reference implementation serves as prove of concept for the
feature association algorithms. All specified functionality is
covered by the implementation. Furthermore additional functions
have been developed which were needed by specific application
scenarios.

Overview

The initial decisions made while developing the reference implementation
of the feature association framework allowed Wexibility for additional
functionality. For example, the usage of an inverted index as main data-
structure for input and output does allow a variety of methods to process
the data set. All operations that may be executed on an inverted index are
now open to be used in the context of feature associations.

Another set of additional functionality where added to the reference
implementation out of necessity. While developing knowledge discovery
applications which use the feature association framework new requirements
did arise. Therefore the reference implementation has been enhanced to
include these additional methods to improve its applicability.

Data Set Partitioning

The Vrst presented additional functionality is a consequence of using an
inverted index as main data-structure. The input feature graph as well as
the output feature association graph are stored in a Lucene index. Not only
does this data-structure provide all necessary properties needed for the
graph storage, it also allows sophisticated retrieval operations, which has
been the main use-case for this kind of data-structure.

By choosing the Lucene library as core for the graph storage, all Lucene
query functions can now be invoked in the context of feature associations.
This applies to the input graph as well as the output association network.

To demonstrate the basic principle a single use-case is presented in detail.
The motivation for this use-case is to restrict the feature associations to a
sub-set of all instance contained in the data-set. For example the association
calculations should only consider instances annotated with a speciVc meta-
data value. In many cases the restriction criteria might not be as simple.
Usually multiple clauses are combined to build a single complex constraint.

As described in the previous section, a single instance is stored as single
Lucene document. The features are transformed into tokens and each
feature space is mapped as a Lucene Veld. The combination of documents
and Velds allows the Lucene library to provide a sophisticated faceted search
functionality. In a faceted search scenario a user searches for documents
while specifying a number of search terms which refer to diUerent aspects of
the documents. The actual content of these aspects depends on the data set.

The Lucene library deVnes a query language which is capable to build
hierarchical combinations of sub-query. A sub-query can either be an
restriction on a single facet or again a combination of sub-queries. The
speciVcation of the restrictions also provide a high level of Wexibility326. 326 The complete query syntax of the

Lucene library is available online: http:
//lucene.apache.org/java/3_0_3/

queryparsersyntax.html

The reference implementation of the feature association framework
allows the client to specify a query for the input feature graph. This query is
then passed to the Lucene library. The search hits for the query are collected.
All instances included in the search result build a subset of the data-set. The
calculation of the feature associations is then restricted to this subset.

Many real-world data sets consist of instances annotated with a rich
set of additional meta-data. For example instances may carry the name of

http://lucene.apache.org/java/3_0_3/queryparsersyntax.html
http://lucene.apache.org/java/3_0_3/queryparsersyntax.html
http://lucene.apache.org/java/3_0_3/queryparsersyntax.html

178 a feature association framework for knowledge discovery applications

the person responsible for a speciVc instance. In a document management
system each document is usually annotated with an author name. In or-
der to restrict the data set to all documents belonging to a single author, a
Lucene query needs to be speciVed to include only the appropriate authors.
This query is then passed as an additional parameter to the feature associa-
tion calculations. The Vnal association network will be build based on the
selection of documents from a single author.

Processing Cycles

The next presented additional functionality is similar to the query based
restriction of the input data set. In this scheme only parts of the the data
set are processed at once. But instead of being motivated to increase the
Wexibility, the processing cycles scheme is born out of necessity.

During the collect phase of the feature association algorithm, the so call
local associations are computed. For each instance and each pair of features
an entry in a data-structure is created. Entries are iteratively collected
and grouped into blocks. The size of a block depends on the available
main memory. As soon as a block has been completely Vlled with entries,
it is stored on secondary storage327. The merge-sort algorithm is then 327 Usually this will be the local hard disk.

In an distributed environment the local
associations are managed by the execution
framework and stored in the distributed Vle
system.

responsible to reorganise the entries to be sorted according to the target
features by reading out the stored block in parallel.

Although the local association data-structure has been carefully devel-
oped to be as eXcient and compact as possible, the sheer number of entries
causes high storage requirements. For large data-sets the number of blocks
will be high and might even exceed the available storage space. Due to the
way the merge-sort algorithm is executed, all blocks must be completely
computed before any further processing might take place.

Of course this problem could be simply solved by adding additional
storage space. Unfortunately this approach sometimes cannot be taken.
For example if the feature associations are computed on a remote data
processing centre and there is no way to increase the number of hard disks
per host328. 328 Similarly, if the computation is done

via cloud computing and the space either
limited or far too expensive.

To overcome this burden, the reference implementation provides a
parameter to control the maximum number of target features. If the total
number of features contained in the data-set exceeds this number, the
computation is split into multiple iterations. The implementation tries
to keep the overhead of the multiple passes over the data-set as small as
possible. For example the gather of the global statistics is only conducted
once. The phases that need to be processed in each processing iteration
are the collect phase, the sort phase and associate phase. In Vgure 26 the
sequence of processing phases for multiple cycles is depicted.

At the beginning of each iteration a set of target feature is deVned.
During the the collect phase only local associations are computed, where the
target feature is found in the predeVned set of features. Thus fewer entries
are generated per instance and the space requirements of the sort blocks is
decreased.

As the data-set is processed in multiple passes, the complete feature
association calculations will take longer than using only a single iteration.
Therefore the maximum number of target features should only be speciVed
if the storage requirement of the local associations exceeds the available
space.

Auxiliary Classes

The last presented example for additional functionality of the reference
implementation did not happen on purpose. While the other examples were
motivated by either by necessities or Wexibility, the Vnal example has been

implementation 179

Prepare

Execute Cycles

Finish

no

yes

Prune PhasePreprocess Phase

Last Cycle?

Analyze Phase

Collect Phase

Input Feature Graph

Associate Phase

Output Feature Association Graph

Sort Phase

Store Phase

Prepare Cycle

Figure 26: Overview of the phases for
multiple passes over the data-set. The main
stages of the algorithm are executed in
cycles. In each cycle a distinct set of target
features are processed. The global statistics
and the cached data are shared between the
cycles.

180 a feature association framework for knowledge discovery applications

developed as a byproduct. To build the reference implementation classes
were developed to represent the model of an data set abstraction. Finally a
class hierarchy has been created which corresponds to many aspects of the
input features and instances. Furthermore it has been necessary to develop
structures and algorithms to process and manage the characteristics of the
data.

The classes responsible for modelling the statistical properties of the data
set are then been re-factored to be usable independently from the rest of
the feature association framework. Therefore the functionality supplied by
the auxiliary classes can now be used as standalone library. The reference
implementation does employ this library for computing the necessary
statistical properties and measures. The library itself does not depend on the
reference implementation any more.

The functionality of the library is centred around features and their
relationship in regard to instances. It can be applied in a number of use-
cases. The main functions of the library of auxiliary classes are:

• One of the most important classes of the library models the properties of
a feature. The complex nature of feature require an Wexible implemen-
tation. A single feature consists of a number of aspects, some of the are
optional. In table 27 the various attributes of a feature are summarised.

Out of the attributes, the role of the weight of an feature diverts from
the other attributes. The value of the weight depends on the context in
with a feature is used. For example the weight might be the result of an
statistical function or an similarity measure.

The main objective of the implementation of this class has been to
minimise the memory requirements. A data set may contain millions of
features. The performance of the calculations depends on the number of
feature which can be simultaneously held within main memory.

Attribute Description

IdentiVer The key for a feature. It must be
unique at least within a speciVc
feature space.

Feature Space IdentiVer If the data set provides multiple fea-
ture spaces, this attribute references
the space for the feature.

Weight The weight of an feature. De-
pending on the context in which
features are used, the weight may
carry diUerent semantics.

Meta-Data A set of additional meta-data. The
structure as well as the semantics
entirely depend on the data-set and
the application. Usually the meta-
data is structured as key-value
map.

Table 27: Overview of the attributes
of a feature. With the exception of the
’identiVer’ all attribute are optional.
Depending on the data set diUerent
attributes may be present.

• Features are usually organised is sets made up of multiple features. For
example an instance can be seen as set of features. Therefore the library
provides a dedicated class for managing a group of features.

The Vrst main purpose of the feature set class is to be able to apply func-
tions not only on a single feature, but on all within a set. By using such

implementation 181

an batch approach, the eXciency of the computation can be increased.
Furthermore the readability of the necessary code is also improved.

The second main use-case involves operations on more than one feature
set. For example, a similarity measure can be used to compare two
feature sets. If these two sets resemble instances, the resultant similarity
value with represent the relatedness of two instances.

• The library is equipped with methods to compute the statistics of features
in regard to a whole data-set. The statistics are then held in specialised
data-structures. Therefore the library deVnes a set of interfaces and
supplies a set of implementations of common statistics.

The aim of the data-structures is to provide a Wexible and eXcient re-
trieval of the statistical properties. Furthermore they have been designed
to allow the statistics to be externally stored. For large data-set the com-
putation of the necessary measures may be time consuming. As long
as the data-set is not modiVed, the statistics may remain valid. Thus
the measure only need to be computed once and thereafter they can be
re-used by importing them from the external storage.

An example usage of this facility is to build so called language models.
Language models are common in the domain of Information Retrieval,
as well as Natural Language Processing. They capture the probabilities
of terms given a large collection of textual documents. A term can
be deVned to be a single word, or a sequence of multiple words. For
example a language model might be build based on bi-gram word
features in order to detect common phrases.

The development of the reference implementation of the feature associ-
ation framework has been conducted in close relationship with real-world
application scenarios. Therefore it provides additional functionality to fulVl
the these demands. Some of the additional methods were inherited from the
employed libraries, for example the Lucene query facilities. Finally a ded-
icated library for dealing with features of large data-sets has been created
while developing the feature association reference implementation.

182 a feature association framework for knowledge discovery applications

Performance Evaluation

The reference implementation has been developed to conform to
the specification of the feature association algorithm. Besides the
functional aspects a number of requirements have been specified
for the run-time behaviour of the calculations. Upper bound were
given for the scalability and performance. In this section a series
of real-world application scenarios are presented to illustrate the
implementation’s performance.

Overview

As stated in the description of the algorithm, the calculations of feature
associations are of high computational complexity. The theoretical upper
bound is O(mn2), form instances and n features. The basic computational
complexity itself cannot be decreased in the general case. The only choice
is to decrease the magnitude of the two parameters. To reduce the number
of instances will most certainly be coupled with a loss of information. Re-
moving features from the data set should be more eUective. Features which
appear to contribute little to the Vnal result are candidates for removal. To
detect those features is the task of pruning strategies.

Even if sophisticated methods are applied to keep the number of input
variables as low as possible, the algorithm remains basically cubic. There-
fore the main criteria of whether feature associations are feasible for a given
application scenario depends on the eXciency of the implementation. Typi-
cally the computation resources are limited in both storage space as well as
processing time.

Before the work on the reference implementation of the feature associa-
tion framework started, a number of requirements have been deVned. For
diUerent classes of data sets threshold on the maximum allows processing
time were speciVed. They have been stated in the beginning of this chapter,
see functional requirement 10, 11 and 12.

Furthermore the implementation should not exhibit an execution be-
haviour worse than the theoretical run-time complexity. In other words, it
should scale with the data set, but not worse then expected. The scalability
aspect of the implementation has been captured by functional requirements
7, 8 and 9.

The Vnal aspect of the run-time behaviour is related to the storage
demands of the reference implementation. Storage capacities of devices
are steadily increasing. Nevertheless in many cases the available storage
space is practically limit. Additionally the storage of retrieval of data is
time consuming, especially if the data needs to be transferred via a network.
Thus the reference implementation should be designed to utilise compact
data-structures which can be eXciently be stored.

To test whether the requirements are met, a series of data sets should
illustrate the typical run-time behaviour of the reference implementation.
The presented numbers should only be seen as guides, as the actual execu-
tion times are greatly inWuenced by many external and internal factors. All
data set have been processed using the same hardware and similar conVg-
urations. Some key aspect of the execution environment together with the
used conVguration are summarised in the following list:

• The speed and number of the processors determines the execution
time of an application. The scalability of an algorithm is not aUected
by the processing power. The reported Vgures were achieved using a
contemporary desktop computer329. 329 The quad core CPU reports itself as:

Intel(R) Core(TM) i7 CPU 860 @

2.80GHz
• A salient characteristic of contemporary computer architectures is the

implementation 183

diUerence in speed between the main memory and the secondary mem-
ory. The access times as well as the throughput of the main memory by
far exceeds the read and write times of even the fastest storage devices.
Therefore the size of the available main memory highly inWuences the
execution speed. The computer used for all the calculations has been
equipped with 8 Gigabytes of main memory. The feature association pro-
cess has only been allowed to access a fraction of the available space. The
small and medium sized data set were processed using only 1 Gigabyte of
memory330. 330 The Java process has been started with

the following parameter: -Xmx1g• The operating system also inWuences the run-time of an application.
Especially the disk caching strategies may impact the execution time.
The Linux operating system is generally regarded to be well suited for
computational intense applications331. 331 The installed version of Linux

has been: Linux kcpc-rkern

2.6.35-22-generic #35-Ubuntu

SMP Sat Oct 16 20:45:36 UTC 2010

x86_64 GNU/Linux

• As the reference implementation has been developed using then Java pro-
gramming language it is executed within a virtual machine. Advances in
the area of just-in-time compilers lead to performance improvements in
the execution of Java applications. Therefore diUerent virtual machines
and diUerent revisions may cause diUerent execution times332. 332 The used Java implementation has been:

Java(TM) SE Runtime Environment

(build 1.6.0_18-b07) Java

HotSpot(TM) 64-Bit Server VM

(build 16.0-b13, mixed mode)

• The way the data sets have been pre-processed may have an inWuences
on the number of instances and features. For example, diUerent parsing
algorithms may yield to diUerent results due to diUerent tokenisation
strategies. Therefore the number of instances and features is reported for
each data set. It has been tried to keep the pre-processing as light-weight
as possible. Only open-source libraries which are publicly available have
been selected for this task.

• Finally the conVguration of the feature association framework itself
highly impacts the processing time. In order to able to reproduce the
results, the default values for the parameters have been used unless
stated otherwise.

Brown Corpus

The Brown corpus has been one of the prime data sets for linguists for
a long time. It consists of 500 textual document which are assigned to
15 diUerent categories. Due to its size it is considered nowadays as an
small data set. To come up with about as many instances as features, the
documents were further split into sentences. The sentences were taken as
instances and the individual words have been mapped as features. The main
characteristics of the input feature graph generated out of the Brown corpus
are given in table 28

Property Value

Instance Nodes 57,350 Sentences
Feature Nodes 47,827 Unique Words
Edges 1,004,827 Occurrences

Table 28: Overview of the main properties
of the input feature graph of the Brown
corpus. Due to is low number of instances
and features can be regarded as a small data
set. There are a few thousand instances and
features and about a million connections
between them.

To evaluate the performance of the reference implementation, the feature
graph of the Brown corpus has been processed. Because of the small size
of the input graph, no pruning strategies have been applied. Therefore the
number of feature node of the output association network is identical to the
number of input features. In table 29

According to feature requirement 10 small data sets should be processed
in less than an hour. This requirement is based on the assumption that
the calculations are done on a desktop class computer. The performance
of the reference implementation has been summarised in table 30333. The 333 The data easily Vts into the cache of the

operation system and therefore the time to
read and write data are minimal.

184 a feature association framework for knowledge discovery applications

Property Value

Features 47,827 Nodes
Feature Associations 5,291,332 Edges

Table 29: Key characteristics of the output
feature association graph for the Brown
corpus. Each feature is associated with
about 100 other features.

reference implementation needed less than one minute and therefore fulVls
the predeVned requirements. On average a single feature associations took
about ten microseconds to compute. Due to the size of the data set the
performance Vgures can be seen as best case.

Measure Quantity

Execution Time 47 Seconds
Input Size 37 Megabytes
Intermediate Data 130 Megabytes
Output Size 48 Megabytes

Table 30: Main performance numbers of the
reference implementation when computing
the feature associations of the Brown
Corpus.

The total execution time can be further dissected and analysed. A soft-
ware proVler has been used to take exact measurements of the individual
invocation times during the processing. Based on this data the time con-
sumed by each of the individual phases can be reconstructed.

In table 31 the phases of the algorithm are listed together with their
relative proportion of their execution times. At Vrst glance the relative
times do not appear to be an important aspect to judge the quality and
usefulness of an implementation. For bigger data sets it might be necessary
to performed the computation in an distributed execution environment.
Some of the phase may be executed in parallel while other should be
processed on a single node to avoid excessive synchronisation overhead.
Out the phases, the collect and associate phase have been speciVcally been
designed to allow the computations to be distributed among separate
machines. These two phases account for over 80% of the total execution
time. The sorting of the local associations and the store phase take far
less time. Depending on the implementation of the distributed execution
environment, the sort phase may also be in part executed in parallel.

The association phase is active for about half of total execution time.
During this phase the source features are associated with the appropriate
target features. For each association a weight is calculated. The feature
association function is responsible to compute the association strength. For
the Brown Corpus the Pointwise Mutual Information has been taken as
association measure. The computation of this function account for little less
than 10% of the total execution duration334. 334 The PMI is a relatively simple formula

and easy to compute. For more complex
feature association functions, the weight
calculations will play a more dominant role.

The performance evaluation based on the Brown corpus should give an
insight into the behaviour of the reference implementation for small data
sets. The computation took less than an minute. Closer inspection of the
scalability aspects of the implementation reveals that the most critical parts
of the computation will beneVt the most from being distributed among
multiple machines.

Reuters RCV-1 Corpus

The Reuters RCV-1 corpus has been selected to asses the performance and
run-time behaviour of the reference implementation on data sets that can
be regarded of medium size. This data set contains of 800,000 news articles,
which were further split up into individual sentences. Each sentence has
been mapped as instance nodes within the input feature graph. The words

implementation 185

Phase Relative Time

Preprocess 0.4%
Prune 0.1%
Analyze 0.5%
Collect 32.5%
Sort 13.5%
Associate 48.5%
Store 4.4 %

Table 31: Overview of the relative execution
times of the individual processing phases.
The collection of the local associations and
the calculation of the global associations
account for over 80% of the total processing
time.

has been taken as features nodes. Words occurring within a sentence were
connected to the appropriate nodes.

An overview of the size of the input feature graph is given in table 32.
The medium size data set contains about 200 times more instance nodes
than the Brown corpus, while the number of feature did grow by the factor
of 10.

Property Value

Instance Nodes 12,488,979 Sentences
Feature Nodes 571,001 Terms
Edges 168,557,387 Tokens

Table 32: Overview of the main properties
of the input feature graph of the Reuters
RCV-1 corpus. By today’s standards the
Reuters corpus can be considered to be of
medium size.

The output feature graph is considerable bigger for the Reuters RCV-1
data set in comparison to the Brown corpus base scenario. No pruning
strategies have been applied and the number of feature nodes in the output
matches the feature count of the input graph. About than ten times more
feature associations have been identiVed for the medium size data set. The
average number of associations per feature did grow as well in comparison
to the Vrst presented data set.

Property Value

Features 571,001 Nodes
Feature Associations 70,936,143 Edges

Table 33: Key characteristics of the output
feature association graph for the Brown
corpus. Each feature is associated with
about 100 other features.

The computation of the feature association of the Reuters RCV-1 corpus
took 90 minutes. As with the Brown corpus evaluation a single desktop class
machine has been used for the calculations. The duration of the computa-
tion is well below the time limit as speciVed in functional requirement 11. In
table 34 the main characteristics of the computation of the Reuters RCV-1
corpus are given.

The medium size data set is similar to the small data set in many aspects.
Sentences are used as instances and words as feature. But the numbers of
nodes in the input feature graph is far higher for the Reuters RCV-1 data set.
Still the reference implementation provides a satisfying performance and
run-time behaviour.

186 a feature association framework for knowledge discovery applications

Measure Quantity

Execution Time 5,178 Seconds
Input Size 5.4 Gigabytes
Intermediate Data 23 Gigabytes
Output Size 635 Megabytes

Table 34: Performance numbers of the
reference implementation when computing
the feature associations of the Reuters
RCV-1 corpus.

Wikipedia Corpus

The Vnal data set of the performance evaluation is generated from the
Wikipedia encyclopedia. This online resource is collaboratively generated
and provides a wealth of information and continues to grow. The range
of covered topics exceed the amount of information found in traditional
printed encyclopedias. The length of the articles within this corpus tremen-
dously vary in size.

For the Vnal performance evaluation run the German version of the
Wikipedia has been used. The German edition is considerably smaller
than its English counterpart. It has been chosen because its smaller size
allows the calculations of the feature association to be conducted on the
same hardware as the Vrst two data sets335. Thus the reported performance 335 The limiting factor is the required

disk space, as the intermediate data for
the English Wikipedia would exceed the
available free space oU the hardware used
for the performance evaluations.

Vgures can be directly compared to gain an understanding of the scalability
characteristics of the reference implementation of the feature association
framework.

In contrast to the other two presented data sets, not sentences, but
whole articles are mapped as instances. Therefore the number of instance
node within the input feature graph is lower than for the Reuters RCV-1
data set. But the number of features is about one order of a magnitude
higher. Additionally the number of connections between instance nodes and
feature nodes twice as high. In table 35 an overview is given of the main
characteristics of the input feature graph for the German Wikipedia data set.

Property Value

Instance Nodes 1,403,298 Articles
Feature Nodes 5,102,921 Terms
Edges 388,384,564 Tokens

Table 35: Size of a input feature graph for
a large data set. In this case the German
Wikipedia serves as source for the data set.

Following the Vrst to evaluation runs, no pruning strategy has been
employed to reduce the number of features. But this time the number of
local associations has been restricted. A sliding window approach has
been integrated into the collection phase. The position of an feature within
an instance determines the association candidates. Only feature within
a window of 50 tokens are collected as local associations. The window is
symmetric and the distance between features within the window is not
integrated into the local association weight calculations.

The Vnal output association graph for the German Wikipedia corpus
contains as many nodes as there are features in the input graph. The to-
tal number of associations is roughly half a billion. In table 36 the exact
numbers are listed.

Property Value

Features 5,102,921 Nodes
Feature Associations 527,853,104 Edges

Table 36: Main characteristics of the output
feature association graph for the German
Wikipedia corpus.

implementation 187

The execution of the feature association calculation took less than 8
hours. The storage requirement of the resultant graph is similar to that the
input graph. Due to the high number of local associations, the intermediate
data-structure requires much more disk space. In table 37 an overview is
given of the main characteristics of the calculations related to the run-time
behaviour.

Measure Quantity

Execution Time 27,170 Seconds
Input Size 6.1 Gigabytes
Intermediate Data 67 Gigabytes
Output Size 4.9 Gigabytes

Table 37: Results of the performance
evaluation based on the German Wikipedia
corpus.

Although there are corpora which exceed the size of the German
Wikipedia, it is still considered to be larger than the most of common
data set in many knowledge discovery applications. This corpus should give
insight into the run-time behaviour of the reference implementation for
larger data sets. The measured performance is satisfactory and well within
the limits deVned by functional requirements 9 and 12.

Results of the Performance Evaluations

Before the work on the reference implementation has begun, a series of
requirements were speciVed. The requirements should give a guide on how
the run-time behaviour depends on the size of the data set. The run-time
behaviour is a blend of two diUerent aspects: performance and scalability.
The Vrst one can be measured in time, the second aspect determines the
number of resources needed for the computation.

Three types of data set have been identiVed. Small data set contain a few
thousand entries. Typically this type of data set is generated out of a bigger
data set. For example such a data set might represent a selection based on
a speciVc users. In such scenario the feature association process will be
repeated many times and therefore needs to be a quick as possible.

The Brown corpus has been taken as representative of a small data set.
The feature associations were computed in less than a minute on commodity
hardware. The execution times depend on the caching strategies of the
operating system and other aspects.

The most common type probably can be classiVed as medium size data
set. The characteristics of such a data set is similar to small data set, but
the number of entries will be higher. Starting with this type of data set, the
scalability aspect starts to be become more important. The data will not Vt
into main memory and therefore such a data set will be a good indicator of
the quality of the implementation.

The Reuters RCV-1 corpus consists of little less than a million articles and
can therefore be regarded as a typical example for a medium size data set.
Although no pruning strategies have been applied, the overall performance
has been satisfactory. The total run-time of the calculations took about one
and a half hour on a desktop class machine. This can be seen as indicator
that for most of the common data sets no dedicated computational resources
will be necessary. Therefore the feature associations can now be computed
for many application scenarios without additional administrative overhead,
like buying expensive server-class machines.

As a Vnal test of the scalability of the reference implementation a large
data set has been taken as analysed. This class of data sets contain millions
of instances and millions of features. Due to the enormous amount of
necessary operations the processing last longer than for smaller input data

188 a feature association framework for knowledge discovery applications

set. This evaluation should test the scalability aspects of the implementation.
Therefore the question might be not how long the processing takes, but if it
possible at all given the available computational resources.

The Wikipedia contains millions of pages and millions of distinct word,
like for example person names and foreign words. Its size is orders of a
magnitude larger than the common medium sized data sets. To put the
performance Vgures of this evaluation in relation to the other runs, the
same hardware has been used. Still the computations have been successfully
conducted within the time-span given by the predeVned requirements.

For even larger data set, a single machine will not be suXcient. The
feature association algorithms has been designed with such a use-cases in
mind. The reference implementation can be adapted to be executed within a
distributed execution environment, for example the map-reduce framework.

The run-time behaviour and the performance of the implementation are
considered as critical aspects of whether feature association are feasible.
Judging by the performance of the reference implementation, the calculation
of feature associations is now an option for many application scenarios.

Applications

The feature association framework has been developed to serve
two purposes. It should support the task of feature engineering
to gain insights into the latent relationships within data-sets.
Furthermore it is designed to be easily integrated into knowledge
discovery applications to extract information contained in the
relationships. In this chapter both scenarios are illustrated by a
series of use-cases.

Introduction

The performance evaluation revealed that feature associations can be
eXciently calculated. Even large data-sets are now eligible to be analysed to
uncover the relationships between the contained features. Now the question
is, whether real-world applications will proVt from building an association
network.

To answer this question a series of application scenarios are presented
in the following sections. Although the feature association framework has
already been used for commercial projects, the focus now lies on supporting
research in the area of knowledge discovery. This is a vast research Veld
which touches many domains. Three of them have been selected as to
represent typical areas of knowledge discovery applications:

Social Web The rise of user generated content is one of the main changes
happened on the Internet in recent years. People now contribute more
to existing web sites and systems. For example they provide product
reviews, share their bookmarks and manage their social network. Many
web platforms are suitable as sources for valuable information for
knowledge discovery tasks.

Because of the dynamics of the social web and its rapid change, the
analysis of the users behaviour is currently a hot research topic. Many
existing algorithms have been adopted to study the user generated
content. Furthermore the social web platforms make use of sophisticated
methods to support their users.

Information Retrieval The area of information retrieval has a long tra-
dition. To quickly Vnd the relevant information of of a large amount
of data has attracted a lot of researchers and still does. Due to the long
history, many approaches has been proposed and information retrieval
systems have been reached a mature level.

One of the main challenges in this Veld is to cope with huge collections
of data. Only with the help of sophisticated algorithms and computing
infrastructure the retrieval solutions are capable to deal with web-scale
data-sets

Natural Language Processing Humans produce and understand natural
languages without eUort. Computers are still not able to reliably extract

190 a feature association framework for knowledge discovery applications

semantics out of text. The task of the natural language processing is to
improve the method to analyse unstructured textual content.

Researcher from diUerent Velds, for example linguists and computational
scientist, work together to gain deeper insights into the structure of
human languages. The main challenges in this area are to Vnd and tune
algorithms to analyse textual resources.

The motivation for building a framework for feature association is
twofold. It should i) help in the process of feature engineering and ii) to
support knowledge discovery applications. This categorisation can be fur-
ther reVned to build a scheme of possible modes of the feature association
framework:

Analysis In this scenario, the goal of feature associations is to get a better
understanding of the data and its intrinsic relationships. The output of
the feature association calculations is analysed to detect pattern within
the relationship network. For example to identify redundant features or
detect mutually exclusive relationships.

Synthesis The feature associations processing can be integrated into an
existing knowledge discovery application. In this scenario the feature
association framework serves as an transformation operation. The output
is then used for subsequent processing steps.

For example, a data set is transformed into an association network,
which is then processed by machine learning techniques. This is mode of
operation is the most common.

Retrieval The third possible scenario of using the feature association
framework is rooted in practical considerations. Here the task is to
retrieve information out of the network similar to an association graph.

In this application mode the framework is seen as an specialised data-
structure accompanied by a set of generic operations. For data sets
similar to an association network, the facilities of the framework can be
utilised for processing.

The presented applications can be categorised according to the two axis,
the domain and the main application mode. In table 38 an overview is given
for the six application scenarios. All applications serve diUerent means and
employ diUerent technologies. But they all have in common that the feature
association framework is a vital part of the applications work-Wow.

Application Main Focus Domain

Recommender System Synthesis Social Web
Tagging Structure Analysis Social Web
Query Expansion Synthesis Information Retrieval
Query Translation Synthesis Information Retrieval
Cross-language Plagiarism Retrieval Natural Language Processing
Word Sense Induction & Discrimi-
nation

Analysis, Synthesis
& Retrieval

Natural Language Processing

Table 38: Categorisation of the presented
application scenarios. There are three
diUerent modes of operation and three
diUerent domains.

applications 191

Social Web

In the beginning of the World Wide Web only a few people could
publish content. With the advances in technology and improved
infrastructure now all user may write blogs, reviews or upload
their photos. The research in domain of the social web is focused
on two main areas: to get a better understanding of the users’
behaviour and to improve existing social web platforms.

Overview

On the World Wide Web many platforms can be found where user may
contribute content. User generated content is now regarded as important
part of the information found on the Internet. Out of diUerent types of
social platforms, a number of groups can be identiVed:

• One of the Vrst community platforms to appear on the Internet provided
facilities to create, manage and share bookmarks. Typically a bookmark
consists of an URL, a description and a number of tags. These tags can be
freely chosen by the user and typically resemble keywords.

• The second category of community platforms are web-logs, or short
blogs. Users post messages which are then displayed in chronological
order. Messages can be assigned to categories and annotated with tags.
Readers of such blogs use dedicated software to be informed as soon as a
new message has been posted.

Although blogs are mostly used to share personal opinions and experi-
ences, there are a number of professional bloggers. Therefore blogging
is sometimes considered as an alternative to traditional journalism. At
the other side of the spectrum so called micro-blogging site allow user to
post short messages. Typically these messages will contain little factual
content, but are mainly used to share a thought or to post the current
mood of an user.

• People may not only share personal stories, but also multi-media content.
There are portals to upload and share photos or videos. Users may attach
text to their uploads, as well as assign tags.

Visitors to these sites are able to browse the multi-media content and
leave comments. Typically such platforms also provide means to rate a
photo or video.

• User may not only exchange messages with each other, but also manage
their contacts online. Therefore various platforms provide tools to
organise and browse the social network of users. The topology of such
social network is of special interest to many research groups.

Countless other social applications can be found on the Internet. Most of
them are designed to allow users to interact and to contribute content. As
the new technology provides new functionality, people make use of the new
opportunities.

One of the Vrst conclusions one can drawn from the current state of
the social web applications is that users tend to prefer systems that are
easy to use. Systems that require the user to follow certain rules or strict
work-Wows have proven to be less successful. A typical example for this
is the popularity of tags. Instead of imposing a classiVcation scheme or a
controlled vocabulary, tagging allows the user to use arbitrary content.

For larger tagging systems an interesting observation can be made. Tags
from many users are not random or chaotic. Usage patterns and dialects

192 a feature association framework for knowledge discovery applications

emerge from the collection of many taggers. Therefore tagging systems have
been chosen to be base for the two application scenarios presented from the
domain of the social web.

applications 193

Recommender System

The Vrst presented application is a tag recommender system for photos336. 336 S. Lindstaedt, V. Pammer, R. Moerzinger,
R. Kern, H. Mülner, and C. Wagner. Rec-
ommending tags for pictures based on text,
visual content and user context. In Proceed-
ings of the Third International Conference
on Internet and Web Applications and
Services (ICIW 2008), pages 506–511. IEEE
Computer Society Press, 2008

There is a common scheme of how people interact with photo sharing
platforms. Users upload their pictures to the site. Then they type in a title
and a description, or leave these Velds blank. Next they add a couple of tags
freely chosen by the user.

Typically tags describe the content of the picture. For example users
select tags like “eiUel tower”, “paris” or “france” for a photo of the EiUel
tower. Tags are also used to add meta-data not directly contained in the
content. The date when the photo was shot is often used as tag or details
of the settings when the picture was taken. Examples for this category of
tags are “2011” and “macro”. Tags may also refer to abstract concepts, like
“nature”, or subjective assessments or mood, for example “beautiful” or
“sleepy”. In Vgure 27 the most popular tags of a photo sharing platforms are
visualised as a tag cloud.

Figure 27: Tag cloud of the most popular
tags at the photo sharing platform Flickr.
Many tags refer to geographical locations
and events. Although user are free to chose
their tags, there is a surprising high overlap
between users.

Related Work The task of a tag recommender system is to support the
user in the process of adding tags to a recently uploaded photo. An algo-
rithm should present the user suggestions which tags would be appropriate
for a given picture. This is an interactive processes as with each tag the user
selects, new recommendations should be made.

Taga are just one example for a possible application scenario of recom-
mender systems. Especially for shopping platforms a good recommender
engine is a vital part of the system337. Therefore recommender systems has 337 K. Wei, J. Huang, and S. Fu. A survey

of e-commerce recommender systems. In
Service Systems and Service Management,
2007 International Conference on, pages 1–5.
IEEE, 2007

been a active Veld of research for many years.
Generally speaking a recommender system consists of a set of user and

items. For a given user a set of items is suggested. Three diUerent main
approaches have been identiVed:

• The Vrst approach is called content Vltering. The properties of the items
are compared to the preference of a user. In order for this scheme to
work, the properties of the items need to be matched to a users proVle.

The proVle needs to be either managed directly by the user or extracted
by sophisticated algorithms. For example this approach has been success-
fully used to recommend articles338. In the case of a tag recommender 338 R. Van Meteren and M. Van Someren.

Using content-based Vltering for recom-
mendation. In Proceedings of the Machine
Learning in the New Information Age:
MLnet/ECML2000 Workshop. Citeseer, 2000

systems for photo sharing sites, tags need to be found for a given image.
The semantics of a tag needs to be matched to the semantics of a photo.

• The second method is referred to as collaborative Vltering. In this
scheme the relationship between users are exploited, whereas these

194 a feature association framework for knowledge discovery applications

relationship need not be explicitly made. This method of recommenda-
tion has been successfully been used in many applications339 ,340. The 339 J. S. Breese, D. Heckerman, C. Kadie, and

Others. Empirical analysis of predictive
algorithms for collaborative Vltering. In
Proceedings of the 14th conference on
Uncertainty in ArtiVcial Intelligence, pages
43–52, 1998
340 P. Resnick, N. Iacovou, M. Suchak,
P. Bergstrom, and J. Riedl. GroupLens: an
open architecture for collaborative Vltering
of netnews. In Proceedings of the 1994
ACM conference on Computer supported
cooperative work, pages 175–186. ACM,
1994

collaborative Vltering approach can be further split into two methods:
User-based collaborative Vltering and item-based collaborative Vltering.

In the user-base recommendation scenario the current user is com-
pared to other users of the system. A similarity between users is calcu-
lated to create a list of related users. In the context of tagging systems,
the similarity could be computed based on the set of tags used by users.
This approach has shown state-of-the-art performance, but also has a
few shortcomings. For example it is hard to compute the similarity of a
new users as there are no data available on with to base the similarity
calculations, a situation known as the cold start problem.

The item-based collaborative Vltering approach is probably the best
known approach. Starting with an user and an item, similar items are
searched. The similarity is deVned by how often other two items are
associated via users. In the case of a shopping platform this approach can
be expressed as: “User who have bought item X also bought item Y”.

• The third approach for recommendation is not as widely known as the
previously presented approaches and is sometimes seen as a speciVc type
of content based recommenders. It is called knowledge-based recom-
mendation and requires additional information about user and items.
This external knowledge needs to be modelled into the recommendation
process341. 341 R. Burke. Knowledge-based recommender

systems. Encyclopedia of Library and
Information Systems, 69(Supplement
32):175–186, 2000

In the case of tag recommendation for photographs, the meta-data
stored alongside the picture can be exploited to suggests tags. Many
camera models annotate pictures with various in-camera settings and
store them within the image Vle. For example the focus distance can
be interpreted and for close-up pictures the tag “macro” might be a
candidate of a tag which might be chosen by users.

The list of approaches is not exhaustive and for many specialised use-
cases, other methods are preferred. Furthermore many of the state-of-the-art
recommender system combine multiple approaches342. 342 R. M. Bell, Y. Koren, and C. Volinsky. The

BellKor solution to the NetWix prize. KorBell
Team’s Report to NetWix, 2007

applications 195

Figure 28: The main user interface of
the Tagr system. The user is presented
with a selection of similar images, users
with shared preferences and a list of tag
suggestions.

System Description The tagr system343 combines multiple approaches 343 S. Lindstaedt, V. Pammer, R. Moerzinger,
R. Kern, H. Mülner, and C. Wagner. Rec-
ommending tags for pictures based on text,
visual content and user context. In Proceed-
ings of the Third International Conference
on Internet and Web Applications and
Services (ICIW 2008), pages 506–511. IEEE
Computer Society Press, 2008

into a single uniVed user interface. The user interface provides facilities to
upload a photo and recommends tags in an interactive manner. A screen-
shot of the Tagr application is shown in Vgure 28

DiUerent recommendation strategies build the core of the Tagr system:

1. The image content is analysed, the colour distribution and texture are
extracted. The gathered information is then classiVed into a predeVned
set of classes. For each of the classes, a set of training instances have
been selected as input to a supervised machine learning algorithm. This
tag recommendation method eUectively implements a content Vltering
approach.

2. Starting with the current photo, other images are searched in the
database. A similarity measure based on the image content is applied
in order to visually Vnd similar images. The top Vve images are then
presented to the user. These images are typically annotated with tags,
which now serve as suggestions for tagging the current photo.

3. The third component exploits the social network of the current user. The
goal of this component is to Vnd users which share the same preferences.
For example if two users share the same home town or the same interest
they are regarded as similar. Tags from similar users are then also
integrated into the tag recommendation mechanism.

4. One can observe that people often start with a speciVc tag and then
add more generic terms. An example of such behaviour has been given
previously in this section. Starting with the speciVc tag “eifel tower”
the more general geographical locations “paris” and “france” have been
added. The fourth component of the tagr systems tries to mimic this
behaviour.

In order to determine more general terms for a given word, the Word-
Net344 resource has been used. This corpus contains a network of words 344 C. Fellbaum. WordNet: An electronic

lexical database. The MIT press, 1998of the English language. The relationships within this graph reWect the
semantical relationships of the connected words. In the WordNet corpus
each word is connected to each synonyms. Words are also organised in a
hierarchical manner. Starting from the root the word are more and more
speciVc.

The tag recommendation component takes the already assigned tags
and searches the WordNet graph for hypernyms. These more general

196 a feature association framework for knowledge discovery applications

terms are then suggested to the user. This kind of tag recommendation
falls into the category of knowledge-based Vltering.

5. The Vnal component of the Tagr system employs the feature association
framework. This part of the system follows an item-based collaborative
Vltering approach. Tags are recommended based on the statistical
distribution. If two tags are jointly used for many images, they are likely
candidates to be used again in conjunction.

The results of the tag recommend approaches is combined and presented
to the user. The user than is free to choose one of the tag suggestions or
simply type in a new tag. In Vgure 29 the components of the Tagr system
are depicted.

Figure 29: Overview of the main com-
ponents of the Tagr system. The core of
the systems is built by the diUerent tag
recommendation strategies. The output of
these approaches is then presented to the
user.

Feature Association Framework The feature association framework has
been integrated into the Tagr application to calculate tag recommendations.
In order to be able to make use of feature associations Vrst the mapping has
to be deVned for features and instances. The feature association functions
needs to be deVned and Vnally the retrieval operation has be selected.

Intuitively the tags are mapped as features as one wishes to Vnd related
tags as suggestions. For the mapping of the instances there are two choices.
Either could the users or the images be represented as instances. For the
Tagr application the photos have been mapped as instance within the input
feature graph. Within this graph all tags assigned to a single image share a
common instance node.

The feature association function determines the relatedness of two tags
based on their shared distribution. The cosine similarity has been proposed
as a means to conduct an item-based collaborative recommendation345. 345 M. Deshpande and G. Karypis. Item-

based top-n recommendation algorithms.
ACM Transactions on Information Systems
(TOIS), 22(1):143–177, 2004

In preliminary tests the cosine similarity did not provide satisfying per-
formance for the test data-set. Therefore a similarity measure has been
speciVcally designed for the use case at hand. Given two tags it puts the
number of shared images in relation to the number of times the tags have
been individually assigned. The set of images which carries a tag - ts -
labeled as Is. The similarity function can be then written as:

STagr(ts, tt) =
|Is ∩ It|

1
2 (|Is|+ |It|)

(125)

This weighting scheme is similar to the Jaccard coeXcient, which has
also been evaluated during the development of the system. Additionally the
performance of other denominators, for examplemax(|Is|, |It|) or simply
using |Is|, has been assessed.

The output of the feature association calculations is a network of tags,
where similar tags are connected to each other. In order to recommend tags

applications 197

parts of the output graph needs to be retrieved. Starting with a single tag, all
associated tags are collected an ordered according to their weights.

If the photo is already annotated with more than one tag, the associated
tags need to be combined. For each of these tags the list of associated tags is
retrieved. Then all lists are merged into a singe ordered list. If a tag is found
in more than one list, the weights are combined:

wout =
∑
in

win,out (126)

Finally the top associated tags are presented to the user as tag sugges-
tions.

Results In the context of tag recommendation application the feature
association framework plays the role of a feature transformation step. For
a given list of input features, a set of output features is generated. To make
use of the feature associations, tags are mapped as features and images as
instances.

The main motivation to integrate the feature association framework into
the Tagr application was to add a collaborative Vltering based recommender
strategy. A statistical approach should complement the existing methods,
like content-based and knowledge-based Vltering. The alternative to using
the feature association framework is to develop a dedicated component
from the ground up. This would require a considerable development eUort.
In contrast to this tedious job, the integration of the feature association
framework just required moderate adaptation work. Other advantages of
the usage of the feature association algorithm is outlined in table 39.

Property Feature Association
Framework

Alternative Implemen-
tation

EUort Adaption work Development from the
ground up

Functionality Inherit all existing
functions

Need to implement each
function

Flexibility High Wexibility Requires eUort

Table 39: Overview of the main advantages
of using the feature association framework
instead of a dedicated implementation.

198 a feature association framework for knowledge discovery applications

Tagging Structure

Usually the feature association framework is integrated as a part of an
existing knowledge discovery application. But it can be also invoked as a
standalone tool, mainly to gain insights into the structure of features. In
this section two scenarios are presented where the feature associations
calculation help to detect patterns and collect characteristics of social
tagging systems346 ,347. 346 R. Kern, M. Granitzer, and V. Pammer.

Extending Folksonomies for Image Tagging.
InWIAMIS 2008 , Special Session on
Multimedia Metadata Management &
Retrieval. IEEE Computer Society, 2008
347 M. Lux, M. Granitzer, and R. Kern.
Aspects of Broad Folksonomies. In 18th
International Conference on Database and
Expert Systems Applications DEXA 2007,
pages 283–287. Ieee, 2007

Social tagging applications have been one of the Vrst widely accepted
systems at the beginning of a movement which is now known as Web 2.0.
User began to share they favourite bookmarks of websites with other users.
These bookmarks are further annotated using tags. As it turned out in the
collection of all annotations speciVc semantic structures emerge. Therefore
the term folksonomy was born to reWect these structures which is generated
by the collaborative way of tagging.

The bookmarking systems diUer from the previously described platforms
in regard to the number of users who may tag a single resource. Photos are
usually only tagged by the people who created and uploaded them. In a
social bookmarking system many users apply tags to the same resources, in
this case bookmarks of websites. To diUerentiate between these two types of
tagging systems, the terms broad folksonomy and narrow folksonomy have
been introduced348. In the previous section a tag recommendation system

348 T. V. Wal. Explaining and showing broad
and narrow folksonomies, 2005

for a narrow folksonomy has been described. Tn this section at Vrst tags
from a broad folksonomy are analysed and then a narrow folksonomy is
used as base for an in-depth analysis.

Related Work The analysis of the tagging behaviour and the emerging
relationships from folksonomies have been tackled from various sides. The
most basic question one might ask is why user tag at all. A number of
researchers tried to identify and then classify the diUerent motivations for
users to use social bookmarking services349 ,350. This stream of research let

349 C. Marlow, M. Naaman, D. M. Boyd, and
M. Davis. HT06, tagging paper, taxonomy,
Flickr, academic article, to read. In U. K.
Wiil, P. J. Nürnberg, and J. Rubart, editors,
Proceedings of the seventeenth conference
on Hypertext and hypermedia HYPERTEXT
06, volume 27 of HYPERTEXT ’06, pages
31–40. ACM, 2006

350 M. Heckner, M. Heilemann, and C. WolU.
Personal information management vs.
resource sharing: Towards a model of
information behaviour in social tagging
systems. In IntâĂŹl AAAI Conference on
Weblogs and Social Media (ICWSM), 2009

to the insight that diUerent types of people also display diUerent tagging
behaviours351 ,352 ,353. 351 M. Strohmaier, C. Körner, and R. Kern.

Why do Users Tag? Detecting UsersâĂŹ
Motivation for Tagging in Social Tagging
Systems. In International AAAI Conference
on Weblogs and Social Media (ICWSM2010),
number Coates 2005, 2010
352 R. Kern, C. Körner, and M. Strohmaier.
Exploring the InWuence of Tagging Motiva-
tion on Tagging Behavior. In Research and
Advanced Technology for Digital Libraries,
pages 461–465, 2010
353 C. Körner, R. Kern, H.-P. Grahsl, and
M. Strohmaier. Of categorizers and
describers: An evaluation of quantitative
measures for tagging motivation. In HT ’10:
Proceedings of the 21st ACM Conference on
Hypertext and Hypermedia, pages 157–166,
2010

Another approach is to try to simulate the users’ behaviour by devel-
oping models which try to mimic the tagging process. The most common
models are the polya urn model354 and the variations of the Yule-Simon

354 S. Golder and B. A. Huberman. The
structure of collaborative tagging systems.
Arxiv preprint cs/0508082, 2005

model355 ,356. These models predict a preferential attachment tagging pro-

355 C. Cattuto, A. Baldassarri, V. D. P.
Servedio, and V. Loreto. Vocabulary growth
in collaborative tagging systems. arXiv, 704,
2007
356 C. Cattuto, V. Loreto, and L. Pietronero.
Semiotic dynamics and collaborative
tagging. Proceedings of the National
Academy of Sciences, 104(5):1461, 2007

cess, such that tags that have been used in the past are likely to be used
again. To validate a proposed model one needs to analyse the observed
tagging behaviour of users of an existing system357 ,358.

357 K. Dellschaft and S. Staab. Understand-
ing the Dynamics in Tagging Systems.
Proceedings of the European Future . . . ,
2009

358 E. Chi and T. Mytkowicz. Understanding
the eXciency of social tagging systems
using information theory. In Proceedings
of the nineteenth ACM conference on
Hypertext and hypermedia, pages 81–88.
ACM, 2008

Furthermore, the usefulness of tags for navigation via automatically
generated hierarchical relationships has been studied359. How this ap-

359 M. Strohmaier, D. Helic, D. Benz,
C. Koerner, and R. Kern. Evaluation
of Folksonomy Induction Algorithms.
Transactions on Intelligent Systems and
Technology (ACM TIST), 2011

proach compares to traditional content based methods to aid hierarchical
navigational360 ,361 remains an open research question.

360 D. Carmel, H. Roitman, and N. Zw-
erdling. Enhancing cluster labeling using
wikipedia. In Proceedings of the 32nd
international ACM SIGIR conference on
Research and development in information
retrieval - SIGIR ’09, pages 139–146, New
York, New York, USA, 2009. ACM Press

361 M. Muhr, R. Kern, and M. Granitzer.
Analysis of structural relationships for
hierarchical cluster labeling. In Proceeding
of the 33rd international ACM SIGIR
conference on Research and development
in information retrieval - SIGIR ’10, page
178, New York, New York, USA, 2010. ACM
Press

applications 199

Broad Folksonomies The Vrst presented analysis of a folksonomy using
the feature association framework did target a so called broad folksonomy.
Not only a single user may tag a resource, but multiple users may add tags
to a single resource. The goal of the analysis is to gain a better understand-
ing of the tagging process by studying the distribution of tags in relation to
users and resources.

Previous work362 has indicated that the frequency of tags follows a 362 C. Cattuto, V. Loreto, and L. Pietronero.
Semiotic dynamics and collaborative
tagging. Proceedings of the National
Academy of Sciences, 104(5):1461, 2007

power law distribution. This type of distribution is found in many natural
and man-made phenomena, for instance the size of cities363. If the collabo-

363 G. K. Zipf. Human Behaviour and the
Principle of Least-EUort. Addison-Wesley,
1949

ratively generated folksonomies would also exhibit this property, this would
allow to re-use existing methods from other domains. For example, many
techniques in the Veld of information retrieval exploit the power-law distri-
bution of words within text. Given that tags follow the same distribution
as word within text corpora do, the search and retrieval methods may be
applied on tagging data.

The process to assess whether the distribution of tags follows the power
law is made up of two steps:

1. At Vrst the parameters of the distribution need to be estimated. The
formal deVnition of the power law combines the coeXcient α and the
exponent β:

y = αxβ (127)

In order to estimate the two parameters, we employed the linear least
squares method (LLS). Therefore a logarithm is applied to the power law
relation:

log(y) = log(α) + β log(x) (128)

2. Once the parameters have been estimated a statistical test is conducted
to asses whether the observed data matches the expected distribution.
For this purpose we employed the well known χ2 test to calculate the
signiVcance level. The chi square test is deVned as:

χ2 =
∑

i∈Bins

(Oi − Ei)2

Ei
(129)

In order to apply the chi square test, the data need to be grouped into
bins. This is rooted in the requirement of the signiVcance test that there
need to be at least 5 samples per bin. Other approaches to estimate the
goodness-of-Vt have been discussed by Goldstein et al364. 364 M. L. Goldstein, S. A. Morris, and G. G.

Yen. Problems with Vtting to the power-law
distribution. The European Physical Journal
B-Condensed Matter and Complex Systems,
41(2):255–258, 2004

In order to analyse the tagging behaviour, at Vrst a data-set needs to
be acquired. The social bookmarking site Del.icio.us365 has been selected

365 http://del.icio.us

as base for the analysis. A crawler has been developed which has been
used to periodically collect any recent activity. Resources which were
bookmarked only by a single user have been ignored in the crawling process.
The complete data set Vnally contains over three million bookmarks. For the
analysis a subset of all bookmarks has been created which covers a speciVc
time-span. In table 40 an overview is given for the full data-set and the
sub-set.

Based on the data set and the method to detect pow-law distributions a
series of analysis have been conducted to answer a set of questions:

• Does the distribution of co-tags follow a power law?

• Does the number of users for speciVc resources follow the power-law?

http://del.icio.us

200 a feature association framework for knowledge discovery applications

Full Data Set Time-Based Sub-Set

Bookmarks 3,234,956 838,804
Tag-Assignments 9,241,878 2,408,935
Tags 365,838 135,473
Users 84,121 26,919

Table 40: Size of the del.icio.us data sets
used to analyse the tag distribution.

• Does the relation between bookmarked resources and users follow a
power-law?

The Vrst analysis is motivated by the proposed Yule-Simon model with
time dependent memory by Cattuto et al366. They showed for a few tags 366 C. Cattuto, V. Loreto, and L. Pietronero.

Semiotic dynamics and collaborative
tagging. Proceedings of the National
Academy of Sciences, 104(5):1461, 2007

that the co-occurring tags follow a power-law distribution. Furthermore the
selected tags have in common that they been used by many users. Therefore
the question arises whether the power-law assumption is also valid for a
whole folksonomy including less frequent tags.

The feature association framework has been employed to conduct the
necessary statistical calculations. For each tag the set of co-occurring tags
has been collected and counted. The frequency counts have then be taken
to build a histogram for each tag to asses its co-tag distribution. Out of
the set of 135,473 tags, about 80% have been identiVed to show a power-
law distribution. This analysis fosters previous observations. Furthermore
deeper analysis reveals that for 90% of all cases, the exponent β falls into
the range of [−1.5,−0.5]367. For the co-occurring tags one can conclude 367 A value of β close to zero indicates a

more even distribution (shallow curve).that the majority of tags follow the power-law distribution with similar
parameters.

To answer the next two questions we split the data-set into two sub-sets.
The Vrst sub-set contains tags used by more than 30 users, while the second
sub-set contains tags used by less than 30 users. The data-set which contains
only the most popular tags has a size of 15,835 (the remaining 341 thousand
tags are found in the second data-set).

We restricted our analysis of the relation between the users and the
resources to the Vrst data-set. For each tag within the data-set we ranked
the resources according to the number of users, who have bookmarked
a site. Next we calculated a ranking of the users based on how many
resources have been tagged by each tag. Thus for each tag we generated two
histograms, one based on resources and the other one based on users. On
each of these histograms we applied our power-law distribution assessment.

Our analysis shows that for 18.4% of all popular tags the frequency of
the resources exhibit a pow-law distribution (using a threshold of 99% for
the statistical signiVcance test). The value of β mostly falls into the range
[−0.5,−0.1]. For only 13% of all tags the histograms of the users reWect
a power-law distribution. The same statistical signiVcance threshold as
for the resource analysis has been applied. The gradient parameters of the
user histograms are found in the similar range as the β parameter of the
resources.

When relying on the overall statistics only we were not able to detect
any correlations between the resource and the user histograms. For the set
of tags where both histograms follow a power-law distribution we made an
more detailed analysis. This is the case for about 5.6% of the most popular
tags. We found these tags to be speciVcally descriptive and of high quality,
for example RFC, Technorati, X86.

Additionally we conducted an analysis of those tags which do not yield
resource and users histograms with a non power-law distribution. Out of
all tags a percentage of about 53% are only used once by a single user for
one resource. Many of these tags are the result of misspellings or a highly

applications 201

speciVc vocabulary. Tags that are only used by a single person, but on
multiple resources, account for 3.95% of the most popular tags and 19% of
the remaining tags. Finally about 12% of all popular tags and 38.7% of all
remaining tags have been used by multiple users, but only a single time.

Based on the results of our analysis the three questions, which have been
stated at the beginning of this section can be answered. For the majority
of all tags, co-tags do follow a power law distribution. This cannot be said
about the relation between the users and resources. But, if a tag yields its
resource and users histograms to follow a power-law distribution, it is likely
to be a high quality tag suitable for retrieval or tag recommendation.

Narrow Folksonomies As previous research has show, most of the tags
within a folksonomy follow a power-law distribution. This is also been
found to be the case for words used within textual documents. Many
algorithms have been developed to exploit this property, for example to
compute the similarity of two texts. Therefore the question arises how tags
and words do relate, as this would allow to apply text based algorithm
on tagging data. Do tags and other types of meta-data cover the same
information or do the user generated tags diUer from other data found
within a folksonomy? This question is the starting point of an detailed
analysis of an existing, real-world folksonomy. The feature association
framework has thereby been used as a tool to get a better insight into the
data.

The base for this analysis has been a so called narrow folksonomy, where
only a single user may add tags to a single resource. We selected the online
photo-sharing platform Flickr as source for our data set368. A focused web 368 Although this platforms allows user to

tag photos of other users, this feature is
hardly ever used.

crawler has been developed to gather pictures from the group fruits &
vegs369. Finally the data set for our analysis consisted of more than ten

369 Flickr allows users to add their photos to
groups. The fruits & vegs group contains
photographs somehow related to fruits and
vegetables.

thousand images. In table 41 the main characteristics of the data-set are
listed.

Amount

Photos 13,651
Users 4,336
Avg. Photos per User 3.14

Table 41: Size of the Flickr data sets used
to compare tags with other meta-data
provided by users.

Additionally to the name of the users and the photos, a number of other
data has been gathered. Finally our data set contained six diUerent types of
data and meta-data:

Photo The actual data of the photo together with an unique id. In the
calculations we only used the id of the photo, the actual content of the
photo is only used when displaying the results.

User The data set contains more then 4000 users. A single user is repre-
sented as a pair of an identiVer and a name. The names of these users
are not used for the computations, they are used when visualising the
association network.

Tag All tags that have been used to annotate the photos were collected. As
the Flicks folksonomy represents a narrow folksonomy, the user who
added the tags is identical to the user who uploaded the photo.

Title When uploading a photo the user is asked to provide a title. Usually
the title will contain a short summary of what is depicted in the picture.

202 a feature association framework for knowledge discovery applications

Description Additionally to the title, the use may also provide a descrip-
tion of the image. Not all photos carry a description, but if present, it will
usually contain more text than the title.

Comments In contrast to the title and description, the comments do not
originate from the same user who has uploaded the photo. Other users
of the Flickr platform may add their personal comments to other peoples
images. These comments are expected to be more noisy in comparison
with the title and descriptions.

The title, description and comments meta-data diUer from the other
meta-data, as they represent textual content. Therefore the content of
this meta-data Velds are Vrst preprocessed. The textual content is split
into individual tokens. The tokenised words are not further processed, no
stemming or stop-word Vltering has been conducted.

A folksonomy is formally deVned as tri-partite graph, consisting of users,
resources and tags370. In the case of the Flickr folksonomy, the resources 370 R. Jäschke, L. Marinho, A. Hotho,

L. Schmidt-Thieme, and G. Stumme.
Tag Recommendations in Folksonomies.
Knowledge Discovery in Databases PKDD
2007, 4702(May):506–514, 2007

are photos. In this graph structure, users are connected to photos and
photos are connected to tags. In contrast to the traditional deVnition of a
folksonomy, our data-set contains additional information. To Vnd out how
textual information and tag relate, we developed an evaluation scenario
using multiple representations of our data set.

The base of our analysis is the output of the feature association frame-
work applied on the crawled data. The raw data from the Flickr crawl was
transformed into a graph-structure, which is suitable to compute the as-
sociations. Depending on the desired output graph, the input graph has
been restricted to contain just those nodes and relations that are needed
to construct the necessary feature associations. The cosine similarity has
been chosen as feature association function. The association graph contains
relations with a weight close to 1 for nodes that share a similar distribution.
For nodes that diUer in their distribution, the weight will be close to zero.
For example, two tags that were exclusively used together will be connected
via an edge with an association weight of one. As the cosine similarity is
symmetric, the feature association network is an undirected graph.

In order to analyse the diUerence between tags and other kinds of meta-
data we build three feature association graphs:

Gt The Vrst graph represents a traditional folksonomy graph. There are
three types of nodes within the graph: the users, the photos and the tags.

Ge This graph is build using all the available information. Additionally to
the users, photos and tag nodes this graph also contains node types for
title terms, description terms and comment terms. Thus this graph is the
most complete.

Gp The last feature association graph consists of all nodes of the Ge with
the exception of the tag nodes. This graph simulates the situation before
tags were introduced to annotate resources.

Thus Ge graph contains nodes build from all available data and meta-
data types together with their relationships. An overview of all relations
within each of the three graph is given in table 42. The “Total Number”
column lists the total number of associations between two nodes. The
arithmetic mean of all weight of a speciVc relation type is given in the
column “Avg. Weight”. In column “Avg. Weight Top-10k” the average
weight of the top the thousand relations, when ordered by weight. The last
column indicates which of of the three graph contains the relation type.

Judging by the average weight for the top ten thousand associations there
are obvious diUerences in the association weights. The relation between

applications 203

Relation Total Number Avg. Weight Avg. Weight Top-10k Graph

Tag↔ Photo 99,911 0.08 0.2 Gt, Ge

Photo↔ User 52,258 0.13 0.3 Gt, Ge, Gp

User↔ Comment 398,023 0.09 0.84 Ge, Gp

Comment↔ Photo 346,535 0.05 0.34 Ge, Gp

Photo↔ Title 27,882 0.16 0.33 Ge, Gp

Photo↔ Description 77,262 0.1 0.34 Ge, Gp

Table 42: Overview of relations within the
association network of the three graphs.

users and comment terms is by far the highest. The connection between
comment terms and photos is much lower. This indicates that there many
terms within comments only by single users, as if users have their own
vocabulary for commenting photos. The relationships between tags and
photos appear to be the weakest. This stirs the question whether tag are
suited for retrieval or navigation of photos. The evaluation section will
address this issue using a more detailed analysis of the properties of the
folksonomy graph.

For the evaluation of the association networks we used a retrieval
method based on a spreading activation scheme. The spreading activation
technique is widely used to query graph based structures371. Starting with a 371 F. Crestani. Application of spreading

activation techniques in information
retrieval. ArtiVcial Intelligence Review,
11(6):453–482, 1997

single node and an initial activation weight the graph is iteratively traversed.
For our analysis we used 1 as initial activation weight. Starting with a single
node all outbound edges are navigated and the target nodes are marked as
activated. Their activation weight is the product of the activation weight of
the start node and the edge weight. The set of activated nodes serve as start
nodes in the next iteration. If a node gets activated via multiple edges, the
highest activation weight is taken. Because of performance considerations,
the set of start nodes is limited to 1024372. 372 Due to the sparseness of the association

graphs, this limit is only infrequently
reached.

In Vgure 30 a screen-shot is shown of a visualisation of the spreading
activation process. In this example the Ge graph has been traversed, starting
with the user node “pizzodisevo”. A total of 5 iterations have been computed.
The nodes with the highest activation weight are selected for the visualisa-
tion. Additionally the path containing the strongest activation from the start
node to the target nodes is shown. In this example it can be seen that some
tag nodes are reached via title and description nodes. For example the tag
“courgette”373 is activated by traversing the node for the title term “falling”. 373 French word for zucchini.

This node has been activated by the photo labelled with the title containing
the term “nocciola”374. 374 Italian term for hazelnut

The main goal of our analysis has been to investigate how the additional
meta-data diUers from the traditional folksonomy data-structure. Addition-
ally we tried to evaluation how the additional meta-data would be helpful
for a recommender system. We split the evaluation into three separate
task. At Vrst we assessed the overlap between the traditional folksonomy
with the association network built using all available information. Next
we tried to Vnd out the importance of single relation typed by following a
leave-one-out approach. Finally we computed the predictive quality of the
relation types to give estimates which then can by used when building a tag
recommender system.

Overlap Evaluation In the Vrst evaluation the overlap between the tra-
ditional folksonomy graph Gt and the extended graph Ge is computed.
Additionally the pruned graph Gp should give further insight into the
information contained in the user supplied tags.

In this evaluation we restricted the set of initial starting nodes just to

204 a feature association framework for knowledge discovery applications

Figure 30: Screen-shot of a visualisation
for a spreading activation within the Ge,
starting with the user node “pizzodisevo”.
From there various path through the
association network are taken. The nodes
with the highest activation weight are
displayed.

nodes that represent users and photos. For each instance of these node
types we started the spreading activation process. The traversal of the
association network stops when reaching a node of the same type as the
initial start node. The result of a single activation run is then a set of
target nodes.

The traditional folksonomy graph Gt serves as base for the comparison
against Ge and Gp. The overlap between two results sets is calculated by
dividing the number of common nodes by the sum of all distinct nodes of
both sets. To complement the overlap Vgure, we also calculated the recall,
which is the number of common nodes in relation to the size of the result
set generated for the Go graph.

Graph Node Type Overlap Recall

Ge Photo 79.8% 100%
Ge User 15.0% 67.5%
Gp Photo 6.0% 11.5%
Gp User 3.8% 24.0%

Table 43: Result of the overlap evaluation
for the Flickr folksonomy. The extended
graph and the pruned graph are compared
against the traditional folksonomy.

In table 43 the result of the overlap evaluation are listed. The Vrst ob-
vious diUerence is that the overlap values for the extended graph are
higher than for the pruned graph. One can therefore infer that the “Tag
↔ Photo” relation plays an important role to associate photos, as well as
users.

The high overlap and recall between Ge and Gt for the photo node type
corroborates that the relation between photos and tags carries a high
information content. The additional nodes for description and title term
do not dramatically change the results of the activated photo nodes.
Between the node types for users and photos there is huge diUerence in
terms of overlap. This can be in part attributed to the comments nodes,
which allow the discovery of many additional user nodes.

The comparison between Gp and Gt shows that there is low overlap
and a relatively low recall. This again stresses the importance of the tag

applications 205

information, as the extended and pruned graph vary only in terms of the
“Tag↔ Photo” relation.

Leave-one-out Evaluation The second evaluation tries to measure the
importance of individual relation types. For this evaluation the extended
association network - Ge - is used.

For all relation types the top 10,000 relations have been selected, based
on their association weight. For each of these relations we run two
spreading activation traversals, starting at each nodes that are connected
via this relation. Thus if a relation connects two nodes - n1 and n2 - at
Vrst an traversal is conducted starting a n1 and the second starts at n2.
In this spreading activation process the relation itself is excluded from
the graph traversal. Thus this analysis measures the necessary detour
needed once a relation is removed from the graph.

Using this approach a number of statistics can be calculated to asses
the importance of the individual relation types. The Vrst is the average
activation weight of the node at the other end of the relation - AAD. If
the traversal started at n1, the association weight of n2 is recorded. As
the initial activation weight is 1, the activation weight of n2 is expected
to fall between 0 and 1. A high value indicates that the relation is mostly
redundant and does only contribute little information content to the
association graph.

The next statistic is the sum oU all weights along the shortest path until
n2 is reached, averaged over all relations of a speciVc type - AW. This
value will be higher than AAD. The diUerence between AW and AAD
should give insights how well the nodes alongside the alternative path
are connected. A large gap between these two statistic would indicate
the the relations cannot be easily reconstructed using the remaining
association graph.

The Vnal statistic is the average length of the alternative path - APL.
The values for this statistic will be mainly inWuenced by the structure
of the association network. This measure should give a baseline for the
information that is represented by the left out relations. The more the
APL of a relation type deviates from the theoretical minimum, the more
relations exists that cannot be recovered once removed.

In table 44 the result of the leave-one-out evaluation are presented. For
each of the relation types within Ge the average of the main charac-
teristics are given. Additionally for the APL measure, the theoretical
minimum is given in brackets.

Relation Type AAD AW APL

Comment↔ Photo 0.13 0.37 2.00 (2)
Photo↔ User 0.08 0.31 2.16 (2)
User↔ Comment 0.06 0.24 2.00 (2)
Photo↔ Title 0.01 0.22 3.16 (3)
Photo↔ Description 0.001 0.16 3.09 (3)
Tag↔ Photo 0.001 0.14 3.04 (3)

Table 44: Result of the leave-one-out
evaluation for the Flickr folksonomy. The
main characteristics of the path once a
relation has been removed from the graph.

From the results of the leave-one-out evaluation one can see that the
relation between comment terms and photos carries the least information.
As already found in previous analysis, the comment terms correlate with
users. The relation between users and photos appears to be at least in

206 a feature association framework for knowledge discovery applications

parts redundant as this relation type scores the second highest values for
AAD and AW. Again the strong connection between comment terms and
user can be attributed to this Vndings. The APL value shows that are a
considerable amount of user/photo combinations which are only found
via longer association chains.

The connection between a user and a comment term is reached within
a minimum number of hops for the majority of cases, but its average
activation it relatively low. This can be interpreted that users who
tend to comment on the same set of photos do not agree on a common
vocabulary. Finally the connections between a photo and the other
types of meta-data (title, description and tags) appear to carry unique
information. Especially the relationship between tags and photos delivers
the lowest values of the average activation weights, although its APL
value is close to the theoretical limit. To summarise, on average the
vocabulary of the title, description and tags meta-data appear to diUer
according to their similarity in regard to the photos.

Prediction Evaluation The previous evaluation run tried to gather insights
into the relation between diUerent relation types. The last evaluation
focuses on the relation between nodes of the same type. Its aim is to pro-
vide a baseline when building a recommendation engine by measuring
the predictive quality of individual node types.

To accomplish this task the data set has been split into two parts, a train-
ing set and a test set. The training set has been generated by randomly
choosing 60% of all photos, the remaining photos are used for testing.
Out of the training set all available data has been used to compute a Ge

feature association network.

The test set has been then used to assess the predictive quality by travers-
ing the feature association network. All photos within the test set are
evaluated by collecting all associated meta-data. For each of the meta-
data types all values are iterated and individually assessed. All other
values of the meta-data type are taken as input to the associated retrieval.
Finally the result of the traversal is compared to the start value.

For example the photo with the id “10547374” carries the tags “2002”,
“tomato” and “nature”. For the Vrst of the three round the tag “2002”
selected as start value and the remaining tags “tomato” and “nature”
are used to build the start nodes for the spreading activation. From this
traversal all tag nodes are collected and their activation weight serve as
sorting criteria. The weight is used to generated an ordered result set
of tags. The position of the tag “2002” within the ranked list is recorded
and the test is repeated for the other two tags. Not only tag relations
are tested this way, but all other meta-data types as well. Although they
will probably be never been used directly in a real-world recommender
system, they still should give a better understanding for the available
data.

The overall results of the prediction evaluation is summarised in Vg-
ure 31. On average the correct tag can be found in the Vrst 10% of the
result set for about 40% of all tests. This can be seen as a baseline perfor-
mance for building a tag recommender system.

Other meta-data types did perform similar to the tag prediction. Espe-
cially good performance can be observed for users. This indicates that
the combination of all available meta-data does help to predict which
users will be interested in photos given their past behaviour. At the other
side of the scale, the title terms yielded the lowest results. This hints that
the combination of term within a single title is more diverse then for
example the words within comments.

applications 207

Figure 31: Results of the prediction evalua-
tion that simulates a recommender system.
On average the desired node can be found
in the Vrst 10% of the result set for about
40% of all nodes (with the exception of the
Photo↔ Description relation)

Results This section covered the analysis of tagging data taken from real-
world folksonomies. The feature association framework has been utilised to
gather statistics about the internal relationships found in the tagging data.
Sophisticated retrieval models allowed a detailed analysis to gain insights
into the usage of this kind of social web applications.

The presented application scenarios highlight the suitability of the
feature association framework to be used for feature analysis. The rich data-
set of the Flickr data set demonstrates that feature associations do not need
to be limited to bi-partite graph structures. In the next section the feature
association framework will be mainly be featured as a way to transform
existing features and to synthesise new features.

208 a feature association framework for knowledge discovery applications

Information Retrieval

Nowadays people are used to follow a search base strategy to
interact with knowledge bases. Many technologies have been
developed to enable and improve this interaction. Therefore the
challenges in field of information retrieval have been tackled by
many researchers and engineers alike. Today many information
retrieval methods and algorithms have reached a mature level.

Overview

Most of the underlying technologies of contemporary search engines have
been proven to work reliably and provide suXcient performance. Therefore
in more recent times the research in the area of information retrieval
has begun to tackle developing solutions for speciVc information needs.
Furthermore another stream of research tries to improve and optimise
existing technologies.

In this section a the feature association framework is featured as a part of
an information retrieval application375 ,376 ,377 ,378. Within this application as- 375 R. Kern, A. JuXnger, and M. Granitzer.

Evaluation of Axiomatic Approaches to
Crosslanguage Retrieval. In Multilingual
Information Access Evaluation Vol. I Text
Retrieval Experiments, 2009
376 R. Kern, A. JuXnger, and M. Granitzer.
Application of Axiomatic Approaches to
Crosslanguage Retrieval. In CLEF 2009
Workshop, pages 142–149, 2009
377 A. JuXnger, R. Kern, and M. Gran-
itzer. Crosslanguage Retrieval based on
Wikipedia Statistics. In Proceedings of 8th
Workshop of the Cross-Language Evalua-
tion Forum, CLEF 2008, 17-19 September,
Aarhus, Denmark, 2008
378 A. JuXnger, R. Kern, and M. Granitzer.
Exploiting Cooccurrence on Corpus and
Document Level for Fair Crosslanguage
Retrieval. InWorking Notes for the CLEF
2008 Workshop, 17-19 September, Aarhus,
Denmark, 2008

sociation network are use to serve two separate purposes, query translation
and query expansion.

Query Translation Associations between features have been utilised to
translate individual query terms from a source language into a target
language. This task is can be seen a special case of machine translation.
Machine translation in general usually deals with whole documents
to translate sentence between diUerent languages. The output of such
a system are grammatically correct sentences. For the task of query
translation, the grammar of a language does not play an important part.
Queries submitted by user to a search engine often consist of just a
few keywords379. We have developed a system based on the Wikipedia

379 C. Silverstein, H. Marais, M. Henzinger,
and M. Moricz. Analysis of a very large web
search engine query log. ACM SIGIR Forum,
33(1):6–12, 1999

online encyclopedia to Vnd corresponding query terms for a cross-lingual
information retrieval system.

Query Expansion As the queries generated by the users tend to be short
and partly omit necessary keywords, strategies have been developed
to cope with this challenge. The focus of these activities has been the
processing of the query string. After an user has issued a query, it is
analysed and modiVed before it is sent to the search engine. Additionally
to the query terms entered by the user, more terms are added to the
query. This technique is known as query expansion. Usually these
terms are semantically related to the original query terms, for example
synonyms. The feature association framework has been adapted to
generate those semantically related query terms.

Robust WSD@ CLEF The retrieval application itself has initially been
developed for the CLEF380 2008 campaign and then reVned and in parts 380 http://clef-campaign.org/

rewritten for the CLEF 2009 campaign. The aim of the CLEF campaigns
has been to evaluate the quality and progress in the Veld related to cross-
language information retrieval. It consisted of multiple tracks, where one
has been dedicated to assess the impact of word sense disambiguation on
cross-lingual retrieval: Robust WSD Task381. This task is motivated by the 381 http://ixa2.si.ehu.es/clirwsd/

intuition that knowing the correct sense of an ambiguous word could im-
prove the performance of an information retrieval application. It consisted
of two separate evaluations, one for a mono-lingual task additionally a
cross-lingual task.

http://clef-campaign.org/
http://ixa2.si.ehu.es/clirwsd/

applications 209

Evaluation Setting The organisers of the Robust WSD task supplied a
data-set consisting of more than 170,000 document. These documents are
a collection of articles from the Los Angeles Times (1994) and the Glasgow
Herald (1995). The articles are all written in English, although there is a
slight diUerence in the vocabularies of these two sources382. 382 A. JuXnger, R. Kern, and M. Gran-

itzer. Crosslanguage Retrieval based on
Wikipedia Statistics. In Proceedings of 8th
Workshop of the Cross-Language Evalua-
tion Forum, CLEF 2008, 17-19 September,
Aarhus, Denmark, 2008

Each article consisted of an short title and the actual textual content.
Both parts have already been tokenised, lemmatised, contained POS tags
and were annotated with senses using WordNet383 synsets. These senses

383 C. Fellbaum. WordNet: An electronic
lexical database. The MIT press, 1998

are computed using two diUerent word sense disambiguation systems -
labeled UBC384 and NUS385. The output of both systems has been added

384 E. Agirre, O. L. D. Lacalle, and B. Coun-
try. UBC-ALM : Combining k-NN with
SVD for WSD Eneko Agirre and Oier Lopez
de Lacalle. Computational Linguistics,
(June):342–345, 2007
385 Y. S. Chan, H. T. Ng, and Z. Zhong.
NUS-PT: Exploiting Parallel Texts for
Word Sense Disambiguation in the English
All-Words Tasks. Computational Linguistics,
(June):253–256, 2007

as annotations to the tokens. These annotations do only contain the most
probable sense according to the system, but may contain multiple senses.
Each of the senses carries the WordNet synset id and a score.

Additionally there have been more than English and Spanish 100
queries386 for training and testing. For each of the training queries a list

386 The actual number of queries varies
between the task held in 2008 and 2009.

of relevant documents have been supplied. The query itself consisted of
three parts: a title, a description and a narrative - with increasing level of
verboseness. The participants of the Robust WSD task were asked to just use
the title and description information. Just like the articles, all parts of the
queries were annotated with word sense disambiguation information.

Relation of WSD and Information Retrieval The intuition that deter-
mining the correct sense of ambiguous words could improve the perfor-
mance of information retrieval systems has generated a lot of research in the
last couple of years. Results in the area of monolingual retrieval could not
life up to the expectations387 ,388. Short queries and the skewed distribution 387 M. Sanderson. Word sense disambigua-

tion and information retrieval. Intelligent
Information Management, 01(02):122–127,
1994
388 E. Voorhees. Natural language processing
and information retrieval. Information
Extraction, page 724, 1999

of senses are among the explanations for the observed results.
Despite moderate results for monolingual retrieval tasks, the question

is still open whether WSD also has minimal impact on other areas of
information retrieval, like for example Question Answering (QA) and Cross-
language Information Retrieval (CLIR). Some researchers389 indicate that

389 D. W. Oard and B. J. Dorr. A Survey
of Multilingual Text Retrieval. Electrical
Engineering, (UMIACS-TR-96-19):1–31,
1996

word sense disambiguation could help in multilingual retrieval.

WordNet Synsets The WordNet corpus has been built to model how
words relate to each other. Therefore word are organised in a graph struc-
ture. There a multiple diUerent types of relations, for example hypernyms
and hyponyms. From the word sense disambiguation perspective there are
two types of relations that are play the most important role.

Each sense of an ambiguous word is organised as a synset within the
WordNet graph. These synsets may carry auxiliary information, for example
the glosses and example sentences. But most importantly synset also contain
synonyms for each individual sense.

For example the noun ’row’ is related to seven diUerent synsets, whereas
for the verb row there is just a single sense. In Vgure 32 the entries of the
WordNet graph for the word ’row’ are shown. For three of these senses,
there are synonyms. For example the sense #2 (an angry dispute) contains
Vve alternative words that capture the same meaning. An in-depth de-
scription of the process of word sense disambiguation is given in the last
presented application scenario within this chapter.

210 a feature association framework for knowledge discovery applications

Figure 32: The ambiguous word ’row’ can
either take the role of a noun or a verb
within a sentence. When used as a noun,
there are seven diUerent distinct senses
according to WordNet.

applications 211

Query Translation

In this section feature associations are highlighted as a way to translate
query terms from a source language to a target language. Therefore an
information retrieval system will be presented which has been used to
participate in the CLEF 2008 Robust WSD task.

System Description The main focus of the information retrieval ap-
plication has been to build a system where each query is treated equally,
regardless of its language. As the language of the corpus is English, one can
assume that there is a natural bias towards English queries. To remove this
bias in order to measure the inWuence of the word sense disambiguation
on the retrieval quality we applied the same pipeline to all input query
languages. In Vgure 33 an overview is given of the main query processing
steps.

Figure 33: Overview of processing Wow of
the queries as issued by users. All queries
are treated the same way, even if the
language of the query matches the language
of the corpus.

Additionally to the query translation we also applied a query expansion,
which will be covered in the next sections. Therefore in this section this part
of the query processing pipeline will only be brieWy covered.

To test the impact of the word sense disambiguation on the performance
of the retrieval we built multiple search indices. We created three diUerent
indices, each of them contains all articles from the data-set. But they vary in
the way they are constructed.

Plain The Vrst index is build using the default Lucene text processing and
indexing chain. The plain text has been tokenised and transformed to
lower-case. The additional annotations for the word sense disambigua-
tion information have been ignored for this index. This index contains
about 600,000 terms.

WSD For the second index we tried to exploit the word sense disambigua-
tion annotations. Therefore we add the synonyms for each token that
carries a Synset annotation. Tokens are often annotated with more than
one sense. In that case we picked the sense with the highest score.

For the highest ranked sense annotation we used the Synset id to identify
the synonyms for a single token. All the found synonyms are then added
to the search index. Additionally we took care that phrase queries still
work with the added terms. For example a document which contains the
token sequence “baby food” will be retrieved by either the phrase query
“baby food” or the phrase query “infant food”.

MST The Vnal index has been built by analysing the noun co-occurrences
within the articles. From these co-occurrence network, the minimum
spanning trees have been computed and stored as tokens within a Lucene
full-text index. As this index conVguration does not directly allow
assessments to whether word sense disambiguation may improve the

212 a feature association framework for knowledge discovery applications

retrieval process, this index will not be taken into consideration in the
results section.

An overview of the overall query processing of the CLEF 2008 system is
given in Vgure 34. English and Spanish queries are both treated equally by
our query translation processing. Depending on the conVguration either the
plain index or the index built using the word sense disambiguation is used.
The query expansion techniques are described and evaluated in the next
section. The Vnal step of the retrieval chain is the search itself using either
the plain index or the index that additionally contains the synonyms of the
highest-scoring sense.

Query
English

Stopword
Removal

Query
Spanish

Query
Expansion

Wordnet
Expansion

Corpus
Query

Associative
Expansion

Query
Multilingual

English
Wikipedia

Corpus
Query

Spanish
Wikipedia

Apply Dis-
ambiguation

CLEF WSD
Index

Search
Result

CLEF Plain
Index

Figure 34: Overview of the retrieval
pipeline for our CLEF 2008 system.

Multilingual Associative Index The goal of the multilingual associative
index is to Vnd the best matching terms in a language that is diUerent to the
original language of an input term using information retrieval techniques.
Within the index data-structure all the entries are made up of multiple
Velds, where each of these Velds corresponds to a single language. The
multilingual associative index can be created using various multilingual
resources. For the CLEF 2008 system we used the Wikipedia390 as a corpus. 390 http://en.wikipedia.org/wiki/Main_Page

The free encyclopediaWikipedia exists in various editions in diUerent
languages that also contain links between corresponding articles. We
exploited this link infrastructure to automatically build a multilingual
index for all query languages, namely English and Spanish. We took the
XML dumps391 provided byWikimedia organization were parsed by the 391 http://download.wikimedia.org/

backup-index.htmlWikipedia Java API392 as our data-source. TheWikipedia multilingual index
392 http://matheclipse.org/en/Java_

Wikipedia_API

http://download.wikimedia.org/backup-index.html
http://download.wikimedia.org/backup-index.html
http://matheclipse.org/en/Java_Wikipedia_API
http://matheclipse.org/en/Java_Wikipedia_API

applications 213

thus Vnally contains aligned articles that are available in the two target
languages.

In the CLEF 2009 system we added an additional source, the Europarl
corpus393. The Europarl corpus394 is created using the proceedings of the 393 http://www.statmt.org/europarl/

394 P. Koehn. Europarl: A parallel corpus for
statistical machine translation. MT summit,
5:12–16, 2005

European parliament taken from the years 1996-2006. This resource again
enables us to build a sentences aligned multilingual associative index.
As the multilingual transcripts Vrst need to be aligned, we applied the
Church and Gale algorithm395. The Europarl corpus contains versions in 395 W. A. Gale and K. W. Church. A Program

for Aligning Sentences in Bilingual Corpora.
Computational Linguistics, 19(1):75–102,
1991

11 European languages, but for our system we used only the English and
Spanish versions.

Table 45 gives an overview of the two multilingual indices. The Wikipedia
index consists of whole articles whereas the Europarl index is build out of
sentences. One can observe that there is huge gap in the number of terms
between the two resources.

Entries English Terms Spanish Terms

Wikipedia 2,896,802 5,139,238 1,365,908
Europarl 1,304,243 88,370 146,537

Table 45: Statistics of the Wikipedia and
Europarl multilingual indices.

The intuition behind our term translation approach is similar to select
terms for query expansion using the top ranked documents in pseudo
relevance feedback methods 396. For each term, which can either be a 396 C. D. Manning, P. Raghavan, and

H. Schütze. Introduction to Information
Retrieval, volume 61. Cambridge University
Press, 2008

single word or a phrase, a query is build. This query is then used to search
for relevant documents in the query source language. From the top hits
of the results - Dtop - the aligned documents in the target language are
retrieved. From the terms contained in these document the term candidates
for translation are calculated.

We Vnally implemented three diUerent scoring algorithms for estimating
the best translation for the input term. The Vrst is based on the well known
TFIDF weighting scheme. For each term the weight wi is calculated using
the score of the most relevant documents Dtop (docFreq is the number of
documents the translation candidate is contained in, N is the total number
of documents):

wTFIDFi = log(
N

docFreqi + 1
+ 1) ∗

∑
d∈Dtop

score(d) (130)

For the CLEF 2009 system we added two additional weighting schemes.
The intuition behind the next scoring algorithm is to maximise the likeli-
hood that a term has caused the document to be relevant. To accomplish
this the same formula that is used to calculate the score of a document in
the source language is applied on all target language terms found in the
most relevant hits. The aggregated diUerence between the actual score and
the reconstructed score serves as base for the weight of a single term:

wreconstructioni =
1∑

d∈Dtop
|tfi,d ∗ idfi − score(d)|+ 1

(131)

idfi = log(
N

docFreqi + 1
+ 1) (132)

The Vnal scoring algorithm is based on the well-known cosine similarity.
The vector of scores for the top scoring documents vS in the result set is
compared with a vector vi, which contains the TFIDF weights calculated
from the aligned document.

http://www.statmt.org/europarl/

214 a feature association framework for knowledge discovery applications

wcosinei =

∑
d∈Dtop

vSd v
i
d

‖vS‖‖vi‖ (133)

vid = tfi,d ∗ log(
N

docFreqi + 1
+ 1) (134)

Results The organisers of the Robust WSD track also provided an exten-
sive set of test queries. By applying our information retrieval system on the
test collection should provides insights mainly in regard to two questions.

• Does the retrieval performance increase by adding synonyms to the
indexing chain?

• How well does our query translation scheme work?

While the Vst question can answered relatively easy, by comparing
the results of the performance on the test collection for the plain and the
synonym index. To measure the quality of the query translation step, we
Vrst run our system on the English queries with the additional translation
step. Next we compare the performance of this conVguration with the
performance without any translation.

First we compare the performance of our system on the CLEF 2008 test
corpus using the plain index and the index that contains the word sense
disambiguation information. In Vgure 35 the performance for the baseline
conVguration is shown. This conVguration does not integrate any synonyms
into the retrieval process.

 0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90% 95% 100%
R−Precision

Ad−Hoc Robust Monolingual English Test Task − Box plot of the Topics of the Experiment

 0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90% 95% 100%
0

10

20

30

40

50

R−Precision

N
um

be
r

of
 T

op
ic

s
of

 th
e

E
xp

er
im

en
t

Ad−Hoc Robust Monolingual English Test Task − Distribution of the Topics of the Experiment

Figure 35: Performance of our informa-
tion retrieval system for the CLEF 2008
campaign without using the word sense in-
formation into account. This conVguration
serves as baseline to assess the impact of
the synonyms on the systems’ performance.

In Vgure 36 the performance of the conVguration using the Synset
information is depicted. The inclusion of synonyms into the search index
does not improve the overall retrieval performance. Instead, the results of
the two conVguration appear to be very similar.

The second main question that should be addressed by the evaluation on
the test collection is the assessment of the quality of our query translation
scheme. Therefore we recorded the results using multiple conVgurations.
The baseline is deVned by the results of using no translation at all for the
English queries. In Vgure 37 the results for the set of English queries is
given.

The various translation schemes provide similar levels of performance.
Only the cosine weighting scheme appears to deviate from the other two
translation weighting functions. When comparing the best performing

applications 215

 0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90% 95% 100%
R−Precision

Ad−Hoc Robust Word Sense Disambiguation Monolingual English Test Task − Box plot of the Topics of the Experiment

 0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90% 95% 100%
0

10

20

30

40

50

R−Precision

N
um

be
r

of
 T

op
ic

s
of

 th
e

E
xp

er
im

en
t

Ad−Hoc Robust Word Sense Disambiguation Monolingual English Test Task − Distribution of the Topics of the Experiment

Figure 36: Performance of our information
retrieval system when integrating the word
sense disambiguation information into
the retrieval process. Clearly the added
information does not improve the overall
performance on the test collection.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

Influence of the Query Translation

Recall

P
re

ci
si

on

No Translation
Reconstruction
Cosine
TFIDF

English −> English

Figure 37: Comparison of the performance
for the English queries using diUerent trans-
lation strategies. There is no pronounced
diUerence in the performance of the various
weighting scheme. All translations provide
a retrieval performance close to using no
translation at all.

translation scheme in relation to using no translation at all one can observe
that the translation does not have a negative impact.

Finally we compared the performance of the diUerent translation weight-
ing function for the Spanish queries. The results are presented in Vgure 38.

For the Spanish queries one can observe a more pronounced diUerence
between the three weighting schemes. Using the wTFIDFi function gives
the best results on the test collection. When comparing the performance
of this weighting function with the results of the English queries one can
observe a drop in performance. When using the CLEF 2009 system in the
baseline conVguration, for the English queries a MAP of 0.4022 is achieved,
while for the Spanish queries the MAP is calculated as 0.2885.

Conclusions The query translation processing demonstrated good perfor-
mance in the CLEF 2008 and CLEF 2009 information retrieval systems. It
is based on the multilingual associative index to Vnd corresponding terms.
This data-structure has been populated using data gathered fromWikipedia
and the Europarl corpus. In the evaluation the performance of the system
when applying the translation step has been found to be similar to using no
translation at all. When using the Spanish queries we observed a more pro-
nounced diUerence in the results when using diUerent translation weighting
schemes.

216 a feature association framework for knowledge discovery applications

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

Influence of the Query Translation

Recall

P
re

ci
si

on

Reconstruction
Cosine
TFIDF

Spanish −> English

Figure 38: Performance of the CLEF
2009 system for the Spanish queries. The
conVguration using the TFIDF weighting
scheme for translation outperforms the
other two conVgurations.

Given that our translation algorithm has not been explicitly developed
as a general machine translation tool the results can be considered to be
satisfying. In a later section the feature association framework will be
presented to eXciently store and retrieve the result of component that has
been deliberately designed to be part of a statistical machine translation
pipeline.

applications 217

Query Expansion

In this section the feature association framework is presented as a tool to
improve the quality of an information retrieval system. Initially we have
developed a system397 to take part in the Robust WSD track of the CLEF 397 A. JuXnger, R. Kern, and M. Gran-

itzer. Crosslanguage Retrieval based on
Wikipedia Statistics. In Proceedings of 8th
Workshop of the Cross-Language Evalua-
tion Forum, CLEF 2008, 17-19 September,
Aarhus, Denmark, 2008

2008 campaign. For the CLEF2009 challenge we customised and improved
the original version of the system398. It has been modiVed to integrate

398 R. Kern, A. JuXnger, and M. Granitzer.
Evaluation of Axiomatic Approaches to
Crosslanguage Retrieval. In Multilingual
Information Access Evaluation Vol. I Text
Retrieval Experiments, 2009

diUerent types of retrieval and ranking functions. The system now contains
multiple TFIDF weighting schemes, the BM25 399 weighting function and

399 S. Robertson and M. Gatford. Okapi at
TREC-4. In Proceedings of the Fourth Text
Retrieval Conference, pages 73–97, 1996

additionally a retrieval function utilising an axiomatic retrieval approach
400. In our experiments we evaluated these diUerent retrieval functions

400 H. Fang and C. Zhai. An exploration
of axiomatic approaches to information
retrieval. Proceedings of the 28th annual
international ACM SIGIR conference on
Research and development in information
retrieval, pages 480–487, 2005

and implemented diUerent strategies to add the WSD information to the
retrieval process.

Feature Associations for Query Expansion By using WordNet and
the annotated sense of ambiguous terms it is possible to determine the
synonyms for a speciVc sense. The relation between synonymous words
are one of many semantic relatedness relationship types between words.
Statistical methods provide unsupervised means to detect word pairs with
a high semantic relatedness without restriction to a speciVc relationship
type. One of these methods is based on the co-occurrence statistics of
words within a corpus. Many algorithms have been proposed to accomplish
this task, using diUerent weighting functions to measure the relationship
between words. The Pointwise Mutual Information (PMI) has been found to
provide good performance in this regard401. 401 P. D. Turney. Mining the Web for

Synonyms: PMI-IR versus LSA on TOEFL.
In Proceedings of the twelfth european
conference on machine learning (ecml-2001),
pages 491–502, 2001

For our system, we use semantically related words to conduct a speciVc
form of query reformulation. Query expansion402 is a technique to extend

402 E. N. Efthimiadis. Query Expansion.
Annual Review of Information Systems and
Technology ARIST, 31(1):121–187, 1996

an user query with additional terms. There are many variation of this
technique, which can be categorised into two groups:

Global Query Expansion When using global query expansion, terms are
added to the query based on external sources. Usually these sources are
knowledge bases like a thesaurus or a dictionary. For instance expand-
ing a query with the synonyms found in WordNet would be a typical
application scenario for a global query expansion approach403. 403 E. M. Voorhees. Query expansion using

lexical-semantic relations. In W. B. Croft
and C. J. V. Rijsbergen, editors, Proceedings
of the 17th annual international ACM SIGIR
conference on Research and development
in information retrieval, pages 61–69.
Springer-Verlag New York, Inc., 1994

Alternatively to resort to external sources, one can also exploit the
document corpus itself. All documents that are stored in the search index
are analysed and serve as base to expand the original query.

Local Query Expansion While the global query expansion can be seen
as an independent pre-processing before the query is submitted to the
search index, the local query expansion technique integrates the actual
retrieval into the query processing itself. At Vrst the original query is
used to retrieve the highest ranked documents. These documents are
assumed to be highly relevant. Out of these documents additional query
terms are extracted. Therefore this technique could also be seen as a type
of pseudo relevance feedback (or blind relevance feedback). In the past
this kind of query expansion did show improvements on the retrieval
performance404 ,405.

404 C. Buckley, G. Salton, J. Allan, and
A. Singhal. Automatic Query Expansion
Using SMART: TREC 3. In In Practice, pages
69–80. NIST, 1994

405 D. Carmel, E. Farchi, Y. Petruschka, and
A. SoUer. Automatic query reVnement using
lexical aXnities with maximal information
gain. Proceedings of the 25th annual
international ACM SIGIR conference on
Research and development in information
retrieval SIGIR 02, page 283, 2002

These two types of query expansion do not exclude each other. In fact
both approaches have already been combined in the past406. In our infor-

406 J. Xu and W. B. Croft. Query expansion
using local and global document analysis.
Proceedings of the 19th annual interna-
tional ACM SIGIR conference on Research
and development in information retrieval
SIGIR 96, (Zurich, Switzerland):4–11, 1996

mation retrieval system we opted for a global query expansion approach.
Therefore we have employed the feature association framework to com-
pute semantically related terms based on the co-occurrence statistics of the
documents’ terms. Exploiting the distributions of terms in relation to other
terms has already been applied for information retrieval tasks407. The co-

407 E. Terra and C. L. A. Clarke. Scoring
missing terms in information retrieval
tasks. In Proceedings of the thirteenth ACM
international conference on Information
and knowledge management, pages 50–58.
ACM, 2004

occurrence statistics based on the CLEF2009 article corpus were calculated
by using a modiVed Pointwise Mutual Information (PMI) measure for all

218 a feature association framework for knowledge discovery applications

words that occur at least 2 times and less than in 50% of all documents. The
similarity between two words wi and wj is deVned as:

SCondPMI(wi, wj) =
log2

P (wi|wj)

P (wj)

log2(1
P (wj)

)
(135)

When processing a query these associations are used to expand the query
by additional terms. For each term in the users query, the top co-occurring
terms are searched and then added to the query.

Using statistically associated terms is just on of three possible query
expansion strategies of our information retrieval system. We tried to include
the word sense disambiguation information into the query processing as
well. Finally our system oUers four possible query processing conVgura-
tions:

None No query expansion, the users input is submitted directly to the
search index.

Synset ID From the word sense disambiguation annotation of the queries,
the Synsets with the highest scores are selected and added to the query.
The search index has been built to also contain this information for all
indexed articles.

Synonyms Again the highest ranked Synset are selected. But not the ID of
the Synset, but the synonyms itself are added to the query.

Co-Occurrence Terms The query terms are submitted to the feature
association framework to retrieve associated terms. These associated
terms are then added to the query.

All All query expansion strategies (Synset ID, Synonyms and Co-Occurrence
Terms) are applied.

The query expansion strategies that exploit the word sense disambigua-
tion annotations can be conVgured to either use the NUS or the UBC anno-
tations. After the query has been processed and optionally been expanded it
is submitted to the search index to retrieve a ranked list of documents.

Retrieval Functions The TFIDF 408 weighting scheme and the BM25 409

408 G. Salton and C. Buckley. Term-weighting
approaches in automatic text retrieval.
Information processing & management,
24(5):513–523, 1988

409 S. Robertson and M. Gatford. Okapi at
TREC-4. In Proceedings of the Fourth Text
Retrieval Conference, pages 73–97, 1996

approach are textbook methods to retrieve relevant document for a given
query. Both demonstrated robust and reliable performance in the past. A
variant of the TFIDF retrieval model did provide good, but not state-of-
the-art performance in the CLEF2008 Robust WSD task410. Many of the 410 A. JuXnger, R. Kern, and M. Granitzer.

Exploiting Cooccurrence on Corpus and
Document Level for Fair Crosslanguage
Retrieval. InWorking Notes for the CLEF
2008 Workshop, 17-19 September, Aarhus,
Denmark, 2008

CLEF2008 participants incorporated the BM25 approach into their retrieval
systems with great success411 ,412. We therefore also report the performance

411 L. Dolamic, C. Fautsch, and J. Savoy.
UniNE at CLEF 2008: TEL, and Persian
IR. Evaluating Systems for Multilingual
and Multimodal Information Access, pages
178–185, 2009
412 J. Guyot, G. Falquet, S. Radhouani, and
K. Benzineb. UNIGE Experiments on Robust
Word Sense Disambiguation. In Evaluating
Systems for Multilingual and Multimodal
Information Access, 2008

our system using an implementation of the BM25 weighting scheme413 (In

413 http://nlp.uned.es/~jperezi/

Lucene-BM25/

the evaluation runs we set k1 to 0.8 and b to 0.5):

SBM25(Q,D) =
∑

t∈Q∩D

tft,D
k1lengthNormBM25

D + tft,D
∗ idfBM25

t

(136)

lengthNormBM25
D = (1− b) + b ∗ docLengthD

averageDocLength
(137)

idfBM25
t = log

N − docFreqt + 0.5

docFreqt + 0.5
(138)

For our main experiments we have chosen to apply Vndings in the
area of axiomatic approaches to information retrieval. Fang and Zhai
presented414 several variations of weighting functions build using a set of 414 H. Fang and C. Zhai. An exploration

of axiomatic approaches to information
retrieval. Proceedings of the 28th annual
international ACM SIGIR conference on
Research and development in information
retrieval, pages 480–487, 2005

http://nlp.uned.es/~jperezi/Lucene-BM25/
http://nlp.uned.es/~jperezi/Lucene-BM25/

applications 219

axioms that constrain the properties of a weighting function. The authors
did recommend one of their derived retrieval functions which has shown
promising performance in their evaluation. We did adapt this function for
our retrieval system. The score of a document D out of N documents given
a set of query terms Q is build using the tuning parameter α and β:

SAxiomatic(Q,D) =
∑

t∈Q∩D
idfAxiot ∗ tft,D

tft,D + lengthNormAxio
D

(139)

lengthNormAxio
D = 0.5 + β

docLengthD
averageDocLength

(140)

idfAxiot = (
N

docFreqt
)α (141)

Using the training topics we found the setting of 0.25 for α and 0.75 for
β to provide a satisfying performance.

Results In the evaluation using the CLEF 2009 test collection we tried
to assess two main questions: a) does incorporating the word sense disam-
biguation information improve the retrieval performance and b) how does
the query expansion using associated terms compare to the other query
expansion methods?

In the Vrst set of evaluation runs the diUerence retrieval functions are
compared to Vnd the best performing conVguration that does neither use
query expansion nor exploits the word sense disambiguation annotations.
This conVguration will then be used as a baseline to measure the impact of
the query expansion strategies. In table 46 the diUerent retrieval functions
are compared using the CLEF 2009 test collection. Although this comparison
gives no insights into the question whether WSD information could improve
the performance, it demonstrates that the results of the axiomatic approach
is indeed a valuable contribution to the arsenal of information retrieval
techniques. The according GMAP measure is improved over the BM25 run,
which indicates that especially low performing topics did improve using the
axiomatic approach.

Retrieval Function MAP GMAP Notes

TFIDF1 0.3083 0.1182 Lucene Boolean Query
TFIDF2 0.3313 0.1331 Lucene Disjunction Max Query
BM25 0.3889 0.1566 Using k1 = 0.8 and b = 0.5

Axiomatic 0.4022 0.1805 Using α = 0.25 and β = 0.75

Table 46: Performance of the monolingual
system without query expansion.For the comparison with the conVgurations that utilise the WSD informa-

tion we only report the performance Vgures achieved using the axiomatic
retrieval function. Table 47 lists the performance measures of the various
query expansion conVgurations.

The best performing conVguration combines the synonym, synset and
term co-occurrence information, labeled “all” in the table. The performance
Vgures do show that integrating the words sense disambiguation data into
the retrieval process of our system does improve performance. Not only
does the baseline conVguration beneVt from the sense annotations, but also
the conVguration that already uses a (successful) query expansion technique
is improved further. The diUerence between the two WSD data sets (NUS
and UBC) and between the Synonym and the Synset features are too small
to allow any conclusions.

220 a feature association framework for knowledge discovery applications

Query Expansion MAP GMAP Wilcoxon Randomized

Synonyms (NUS) 0.4061 0.1849 0.0376 0.0517
Synonyms (UBC) 0.4036 0.1837 0.3286 0.2070
Synset IDs (NUS) 0.4047 0.1856 0.0303 0.0944
Synset IDs (UBC) 0.4070 0.1869 0.0119 0.0147

Co-occurrence Terms 0.4170 0.1864 0.0001 0.0196

All (NUS) 0.4222 0.1947 0.0174 0.0554
All (UBC) 0.4212 0.1942 0.1603 0.0730

Table 47: MAP and GMAP measures of the
monolingual system using a combination
of features together with the p-values of
two signiVcance test. Both signiVcance tests
agree that for most of the conVgurations the
improvement is not achieved by chance.

We conducted two signiVcance test to assess whether the improvement
over the baseline (the axiomatic conVguration for the Vrst Vve runs and
the query expansion using co-occurrence statistics for the last two runs) is
statistically signiVcant. These tests were the Wilcoxon signed rank test and
randomised tests, which according to 415 should be the preferred way to test 415 M. D. Smucker, J. Allan, and

B. Carterette. A comparison of statis-
tical signiVcance tests for information
retrieval evaluation. In Proceedings of the
sixteenth ACM conference on Conference on
information and knowledge management -
CIKM ’07, page 623, New York, New York,
USA, 2007. ACM Press

for signiVcance in information retrieval applications.
The evaluation on the CLEF 2009 test dataset demonstrates that adding

word sense disambiguation information to an existing information retrieval
system can improve its performance. This is also the case for the query
expansion technique which uses the feature association framework to Vnd
semantically related terms.

Conclusions There are a number of conclusions that can be drawn from
the information retrieval system which has been developed for the CLEF
2008 and CLEF 2009 campaign. For example it has been shown that our
query translation algorithm achieves a satisfying performance. The impact
of incorporating words sense disambiguation information into an existing
information retrieval application has been studied. Finally it has been found
that using the co-occurrence of terms to feed a query expansion algorithm
outperformed the baseline on the CLEF 2009 test data set.

The feature association framework did serve as tool for multiple tasks
within this information retrieval application. The focus of this application
scenario has been on the analysis between features and their retrieval. The
Wexibility and wide range of conVguration setting of the feature association
framework helped to build a state-of-the-art retrieval system in a minimum
amount of time.

applications 221

Natural Language Processing

Applications which employ natural language processing are par-
ticularly demanding. In the most cases the amount of data is large
and the data itself tends to be noisy. Furthermore the distribu-
tion of the features vary between data sets and within data sets.
Therefore the requirements on exploiting feature associations are
accordingly high.

Overview

In the majority of cases natural language processing (NLP) is applied
on unstructured plain text. Usually the textual content is organised in
documents or varying length. In this setting features will represent single
words within these documents. Thus the association network often reWects
how word relate to each other.

In this section two natural language processing applications will be pre-
sented. In both cases the feature association framework has been integrated
into these applications.

Cross-Language Text-Reuse Intellectual property has begun to play an
increasingly important part in the global economy. Today patents and
copyrights are considered by many as a vital part of the assets of a
company. Even in the research community these topics have gained
importance. For example, cases of plagiarism have drawn the attention of
mass media towards this topic.

Plagiarism is a speciVc case of text-reuse. Additionally to this kind there
are also alternative, legitimate forms of text-reuse.

The detection of text-reuse poses a number of challenges. The amount of
data that needs to be analysed is huge in the most cases. Paraphrasing
and other types of modiVcation to the text increases the eUort to uncover
the original source of a text. One special case for such a modiVcation is
cross-language text-reuse. Given a text in one language, its content is
simply translated to another language.

In the Vrst application scenario a system to detect such cross-lingual text-
reuse will be presented416. Feature associations between corresponding 416 M. Muhr, R. Kern, M. Zechner, and

M. Granitzer. External and Intrinsic
Plagiarism Detection using a Cross-Lingual
Retrieval and Segmentation System Lab
Report for PAN at CLEF 2010. In 2nd
International Competition on Plagiarism
Detection, 2010

words in multiple languages are utilised to Vnd translated pairs of text
fragments. Within this application setting the focus lies on the eXcient
and fast retrieval of associations.

Word Sense Induction and Discrimination In the second presented
application scenario the feature association framework is used to detect
and identify senses of polysemous words417. This use-case combines all 417 R. Kern, M. Muhr, and M. Granitzer.

KCDC: Word Sense Induction by Using
Grammatical Dependencies and Sentence
Phrase Structure. In Proceedings of
SemEval-2, Uppsala, Sweden, ACL, 2010

major features of the feature association framework, making use of all
available generalisations. It is used for feature analysis as well as feature
synthesis. Furthermore the Wexibility to integrate additional processing
steps into the feature association pipeline is exploited.

The detection of multiple senses of an ambiguous word is one of
the most challenging tasks of natural language processing. Word sense
induction is a speciVc type of word sense disambiguation. In this case
the number of distinct senses are not known, therefore the algorithm
has to induct the diUerent senses in an unsupervised manner. Due to
this approach, the data sets need to be large to contain suXciently many
examples of each sense for the machine learning to deliver meaningful
results. This leads to a set of requirements on the feature association
framework, not only in terms of quality of the results, but as well as on
the run-time needed to compute these results.

222 a feature association framework for knowledge discovery applications

Cross-Language Text-Reuse

In this section the feature association framework will be featured as a part
of an solution to detect cross-lingual text reuse. This solution has been
developed to take part in a competition where multiple plagiarism detection
algorithms are compared against each other. Text reuse is a special form
of plagiarism, where the original author of a text is not given and the text
is not properly quoted. With more data easily available on the Internet,
plagiarism has become an increasingly important topic in research and
industry alike418. Text reuse is not strictly limited to plagiarism, other forms 418 H. Maurer, F. Kappe, and B. Zaka.

Plagiarism - A Survey. Journal Of Universal
Computer Science, 12(8):1050–1084, 2006

have been investigated as well. For example the reuse of text written by
news agencies within newspapers has been studied419.

419 P. Clough, R. Gaizauskas, S. S. L. Piao,
and Y. Wilks. METER: MEasuring TExt
Reuse. Annual Meeting of the ACL, page 152,
2002

PAN 2010 The main goal of the PAN series has been to assess the current
state-of-the-art in the area of plagiarism detection. The PAN initiative
started out as a workshop series and more recently has been accompanied
by a competition. In 2010 this competition has been conducted for the
second time. The organisers of this challenge tried to provide an evaluation
data set which covers multiple settings for plagiarism detection and multiple
types of plagiarism420. 420 M. Potthast, B. Stein, and T. Holfeld.

Overview of the 1st International Compe-
tition on Wikipedia Vandalism Detection.
Notebook Papers of CLEF 2010 LABs and
Workshops, pages 22–23, 2010

External Plagiarism Detection In the external plagiarism detection
setting a collection of documents have been provided, labelled source
documents. Additionally another set of documents have been given to
the participants. The second set were the suspicious documents, which
may contain plagiarised passages from the source documents. The
length of these passages varies between a couple of words to multiple
paragraphs. Furthermore some suspicious documents contain multiple
plagiarised sections, while others contain none.

These suspicious documents were not generated on real cases of pla-
giarism, but were artiVcially generated. This allowed the organisers to
control the level of modiVcation which have been made to the plagiarised
passages. Three diUerent degrees of modiVcations have been applied.

None Some of the plagiarised passages were direct copies from the
source documents. No modiVcation on the text were made. These
type of plagiarism is expected to cause the least eUort to be detected.

Low The next level of modiVcation introduces small changes to the
source passages. They reWect an author who puts little eUort into
concealing the text copy.

High The Vnal type of modiVcation mimics an author who puts consid-
erable amount into changing the original text. The order of the words
within sentences are changed, as well as synonyms are inserted to
replace some words in the source passage. It is expected that this kind
of plagiarism will be the hardest to be detected.

Additionally to the diUerent levels of modiVcations, the organisers
also added multiple documents to the pool of source document in a
language diUerent to the language of the suspicious documents. While
the suspicious documents are all written in the English language, the
source collection contains documents in English, Spanish and German.
The task of the plagiarism detection algorithm is to be able to cope with
this type of cross-lingual plagiarism.

The main challenges to build a system which operates on a given corpus
of source document is to make it scale for huge amounts of data. Even
if only simple algorithms are employed to identify copied text passages,
the number of operations needed is the dominating factor in the systems’
run-time complexity.

applications 223

To group similar source documents and then apply a cluster pruning
technique has been proposed to reduce the number of necessary oper-
ations421. In this section an alternative approach based on information 421 M. Muhr, M. Zechner, R. Kern, and

M. Granitzer. External and Intrinsic
Plagiarism Detection Using Vector Space
Models. In Proceedings of the SEPLN’09
Workshop on Uncovering Plagiarism,
Authorship and Social Software Misuse,
2009

retrieval techniques will be presented.

Intrinsic Plagiarism Detection Often the source document for a plagia-
rised passage might be not available. Humans will still be able to a
certain extend to detect a change in the writing style and to conclude
that a certain text has been written by another author. This setting is
simulated in the intrinsic plagiarism detection setting. In this setting
only a list of suspicious documents is given. The task of the plagiarism
detection algorithm is to be able to spot diUerences in the writing style
within a document.

Due to the success of the Vrst PAN series of workshops and competitions,
the scope has been broadened in recent years. In 2010 the PAN workshop
also incorporated tasks for vandalism detection422. The deliberately manipu- 422 M. Potthast, B. Stein, and T. Holfeld.

Overview of the 1st International Compe-
tition on Wikipedia Vandalism Detection.
Notebook Papers of CLEF 2010 LABs and
Workshops, pages 22–23, 2010

lation of Wikipedia articles serves as use case for this kind of task.
In the following year the PAN competition has been further expanded

to host tasks related to authorship identiVcation. These tasks have been
authorship attribution and authorship veriVcation. Both task are similar to
the intrinsic plagiarism detection setting.

In the case of authorship attribution the algorithm should identify which
author out of a known set of authors has fabricated a given document.
Therefore the organisers provided a set of training documents, where each
of the document has been written by a single author. The test set is made up
of previously unseen document from these authors. The algorithm should
identify the original authors of these documents. A variation of the test set
additionally contained documents from authors who were not present in the
training set.

The authorship veriVcation task just focuses on a single author. In this
scenario the algorithm has to decide whether a given document is written
by a speciVc author or by someone else. Although these tasks appear to be
similar to the intrinsic plagiarism detection, the underlying techniques vary.
For example, the authorship identiVcation setting is suited for an approach
that employs supervised machine learning algorithms423. 423 R. Kern, C. Seifert, M. Zechner, and

M. Granitzer. Vote/Veto Meta-ClassiVer
for Authorship IdentiVcation. In In 3nd
International Competition on Plagiarism
Detection, 2011

System Description In this section a system will be presented which
has been used for the PAN 2010 competition. It consists of algorithms and
modules to tackle all diUerent scenarios and settings as available in the
data-set. The system uses techniques developed in the Veld of information
retrieval to provide a scalable solution to the external plagiarism setting. An
algorithm originally developed for the task of splitting long documents into
shorter coherent parts has been adapted to detect changes in the authorship
within texts.

The feature association framework has been integrated into the module
responsible to search for possible candidates of plagiarised passages. In
this use-case the association network has not been built by the feature
association framework itself. The associations were computed by adapting
tools developed as part of statistical machine translation systems. The
eXcient retrieval technique for associated features is the main focus in this
use-case. The feature association framework thereby provides a method to
compute translation candidates for all words of all documents in the set of
source documents which are not written in English.

The processing pipeline of the plagiarism detection system can be
outlined as:

• The detection of plagiarism from a known sources is reformulated
as an information retrieval task on text blocks. These text blocks are

224 a feature association framework for knowledge discovery applications

created out of the source documents. The output of this stage is a list of
candidate blocks.

• In the post-processing multiple blocks are Vltered out or merged to build
the list of plagiarised passages from known sources.

• Source documents which are not written in the English language are
processed by applying an additional translation step. Within this step the
feature association framework is responsible to retrieve translations for
individual words.

• For the detection of changes of authorship within a single document a
sliding window approach has been adapted.

• Finally the results from the external as well as intrinsic stages are com-
bined to come up with a uniVed list of plagiarised passages

In Vgure 39 the overview of the system is depicted. On the left part
within this picture the processing of the source documents is shown. If
a source document is not written in the English language, all words are
replaced by translation candidates.

Suspicious
Document

Token based sequence
matching

Merge neighboring
sequences

Similarity & heuristics
filtering

Segment document
into coherent segments

Filtering on stylometric
features

Detected
passages

Segment into small
overlapping blocks

Use block terms as
queries & apply heuristics

for fast retrieval

Blocks
found?

No

Yes

If no external passages
are detected

IntrinsicExternal

English? Translate Words
No

Segment into overlapping blocks

 Yes

Block Index

Source
Documents

For each source
document

Add blocks to index

Search block
index

Figure 39: Overview of the processing for
the combination of external and intrinsic
plagiarism detection. For cross-lingual
plagiarism an additional translation
component is integrated.

Word alignment algorithms are commonly used within statistical ma-
chine translation systems. The task of word alignment is for Vnd corre-
sponding pairs of word from two diUerent languages. The source for this
family of algorithms is a corpus which has been aligned on sentence level.
For the PAN system we selected the Europarl aligned corpus (Release 5)424 424 P. Koehn. Europarl: A parallel corpus for

statistical machine translation. MT summit,
5:12–16, 2005

as base to calculate the word alignments. The computation of the word
translation candidates were conducted by adapting the BerkeleyAligner425

425 P. Liang, B. Taskar, and D. Klein. Align-
ment by agreement. In Proceedings of
the main conference on Human Lan-
guage Technology Conference of the North
American Chapter of the Association of
Computational Linguistics, pages 104–111.
Association for Computational Linguistics,
2006

software package426.

426 http://code.google.com/p/

berkeleyaligner/

The output of the word alignment process is a rank list of English align-
ment candidates for each German and Spanish word. The top 5 results from
is list were taken to build an association network. Within this graph the
German and Spanish word are the start nodes connected to the English
translation candidates. The association network is then used during the
processing of the source documents.

The source documents are processed by splitting their content into
overlapping blocks of words, which are then indexed by a full-text search

http://code.google.com/p/berkeleyaligner/
http://code.google.com/p/berkeleyaligner/

applications 225

engine. Each document is Vrst tokenised and a sliding window approach is
employed to traverse of the stream of words. The windows size has been set
to 40 and the increment has been set to 20. For each 20th token within the
source document a new block of 40 consecutive words is generated. Each
block is then passed to the search index as an own document, together with
the id of the originating source document.

If the source document is not written in English, the words are translated
before being passed to the search engine. Each word is selected as start
node within the association network and the top 5 translation candidates
are retrieved. Finally each block will not contain 40 words, but up to 200
English words.

When processing the suspicious document a similar processing is con-
ducted. Again a sliding window approach is taken, but using a diUerent set
of parameters. The window size is 16 words, while the step size is 6 terms.
There parameters have been manually assigned based on the results on a
training data set.

Out of each block from the suspicious document a search query is
formulated. The document frequency of the words within the query is taken
to optimise the retrieval process. Infrequent words, that only occur in few
documents, will generally lead to a faster query execution. Therefore the
words within the query are reordered so that the most frequent terms are
the last to Vlter out the set of matching documents.

To cut down the number of requires search request, a heuristic to discard
certain queries has been developed. Again the document frequency is
evaluated for all terms within a query. If the query does not contain a single
term, which frequency falls below a predeVned threshold, the whole query
is skipped.

For each suspicious block query the search engine returns a ranked list
of source blocks. The score of these results are then used to Vnd a cut point
to prune the list to a minimum number of candidates. After all blocks of a
suspicious document are processed, the candidates are then passed to the
post-precessing component of the system.

In the post-processing step the candidates from the block retrieval
stage are Vltered out and merged. The result of this processing is a list of
passages within the suspicious document together with the corresponding
text in the source documents. To accomplish this task the candidates are
used to create word by word matrices between suspicious documents and
source documents. Within this matrix matching sequences are detected. To
cope with a high obfuscation the matches are allowed to contain gaps and
changes in the sequence of words. Finally the Jaccard similarity is calculated
between a passage within the suspicious document and its corresponding
segment in the source document. If this similarity values exceeds a certain
threshold, this passage is reported as being plagiarised according to our
systems criteria.

Additionally to the cases of external plagiarism, where the source of
the text is known by the system, the PAN data-set contains plagiarised
passages from unknown sources. To detect this kind of text reuse, our
system contains a component to detect changes in the writing style within
a document. Therefore a linear text segmentation algorithm has been
adapted427. This algorithm has been developed to detect topical changes 427 R. Kern and M. Granitzer. EXcient linear

text segmentation based on information
retrieval techniques. In MEDES ’09:
Proceedings of the International Conference
on Management of Emergent Digital
EcoSystems, pages 167–171, 2009

within a document, by tracing the lexical cohesion of words.
The output of the text segmentation algorithm for the suspicious docu-

ments serves as input to the intrinsic plagiarism detection component. To
detect changes in the writing style the words within the documents are
Vrst transformed into features. These features should reWect the stylometric
properties of the authors writing style. In our system we integrated two
types of stylometric feature transformation functions:

226 a feature association framework for knowledge discovery applications

Stop-Words This feature transformation is motivated by the intuition
that diUerent authors tend to resort to diUerent stop-words to construct
grammatically correct sentences. For this transformation function to
work all words need to be annotated as either function word or content
word. This is accomplished by looking up all words in a manually crafted
stop word list. All words that have been identiVed as stop-word are
added to the feature set and their frequency is additionally recorded. The
remaining function words are ignored by this feature transformation
function. As stop word list we took the stop-word lists from the Snowball
stemmer project428. These list are available in a number of languages and 428 http://snowball.tartarus.org/

also contain the set of pronouns.

Stem-SuXx The last characters of words have already been used to iden-
tify speciVc author styles. The motivation for this feature transformation
is the assumption that diUerent authors may diUer in their use of Wec-
tions. One possible approach for this kind of function is to pick the last n
characters of each words, where n is usually set to 3. For our system we
used a Wexible number of suXx characters. The suXx was determined by
the number of characters a stemming algorithm would cut oU or replace
(we utilised the Snowball stemmer for this task). Finally this function
produces a set of word suXxes.

For the detection of plagiarised passages we Vrst build centroid feature
set for the whole document. This is motivated by the assumption that only
parts of the document are actually plagiarised, while the majority of the
document is written by a single author. For each segment as produced by
the text segmentation algorithm a feature set is constructed. These segment
features are then compared to the centroid features via the cosine similarity.
If the distribution of the features for a single segment falls below a threshold
in regard to the similarity measure, the entire segment is marked as being
potentially plagiarised. The Vnal output of the intrinsic plagiarism detection
component is a list of passages which deviate from the writing style of the
complete document.

After applying the external and intrinsic plagiarism detection compo-
nents on the suspicious document, their results are combined. The combined
list is then compared against the test-data set to assess the quality of the
algorithm.

Results During the development of our system we used a subset of the
data set to tune the performance of the algorithms and parameter settings.
A total of 500 suspicious document have been selected as base for this
development corpus. For the competition itself a separate test data-set with
previously unseen documents has been passed to the participants.

At Vrst we investigated the raw performance of the retrieval step to
Vnd the candidate passages within the source documents. This should give
an upper bound on the overall performance of our system on the external
plagiarism setting.

In table 48 the result of this analysis is given. The three diUerent levels of
obfuscation and setting of cross-lingual plagiarism are reported separately.
In the column ’Hit-Count’ the number of passages is listed, which were suc-
cessfully found by at least a single block query. The ’True-Count’ speciVes
the number of real plagiarised passages, while the last column is the ratio
between the two counts. Passages, that are not found in this stage will not
be identiVed as plagiarised in later processing stages. Therefore this ratio is
an indicator for the overall performance of our system.

All but the translated passages are retrieved in more than 90% of all cases.
An additional processing to integrate synonyms into the search index could
prove beneVcial to cope with a high degree of modiVcations.

http://snowball.tartarus.org/

applications 227

Obfuscation Hit-Count True-Count Ratio

high 13,348 14,756 0.9046
low 14,832 14,883 0.9966
none 16,784 16,784 1.0
translated 5,462 6,314 0.8651

Table 48: Results for the evaluation of the
block retrieval step of the PAN 2010 system.
The ratio reWects the upper limit of the
complete system for external task in terms
of recall.

To compare the performance of diUerent systems, the organisers of
the PAN competition proposed a set of evaluation metrics. Starting with
the precision and the recall for identifying plagiarised passages they also
integrated a granularity based measure into the Vnal score. The reported
plagiarised passages should be fragmented as little as possible therefore a
low value for the granularity score leads to a higher score.

Table 49 gives an overview of the performance of our plagiarism detec-
tion system on the evaluation data set. Each type of conVguration and some
selected combinations are reported in a separate row. The various settings
for the external conVguration without any cross-lingual results are then
combined, as well as a combined result for all types of external plagiarism.
Together with the intrinsic conVguration the overall performance of our
system is reported.

Task Precision Recall Granularity Score

non-translated all 0.9299 0.8967 1.0553 0.8785
non-translated high - 0.8122 1.0771 -
non-translated low - 0.9207 1.0968 -
non-translated none - 0.9497 1.0025 -
translated 0.8036 0.6162 2.1655 0.4195
external 0.9053 0.8631 1.1611 0.7949
intrinsic 0.212 0.1566 1.0 0.1802

Overall 0.8417 0.7057 1.1508 0.6948

Table 49: Overview of the overall per-
formance of the PAN 2010 plagiarism
detection system. Each type of plagiarism
is reported separately using the evaluation
metrics proposed by the organisers of the
PAN competition.

Our system was Vnally ranked third out of 18 participating systems based
in the combined score. Furthermore out of all systems that tackled the prob-
lem of cross-lingual plagiarism, our system was the only one not to resort
to Google Translate429. The most striking result of the evaluation is the 429 http://translate.google.com/

diUerence between the external and the intrinsic plagiarism settings. Due to
the missing source documents in the intrinsic task, a gap in performance has
been expected.

In terms of precision and recall the cross-lingual plagiarism did not
achieve the same level of performance as the mono-lingual passages. But
especially in terms of granularity there is a pronounced diUerence. This
implies that the post-processing and merging step may proVt from addi-
tional reVnements. Still 80% of all cross-lingual passages were successfully
identiVed, which can be seen as satisfying given the relative complexity of
the task.

Conclusions For the PAN 2010 plagiarism detection system, the feature
association framework has been used to store and retrieve pairs of word
translation candidates to uncover cases of cross-lingual plagiarism. In this
scenario the feature association themselves were computed by an tool,
which has been developed as an part of a statistical machine translation
system. Therefore the focus lies on the retrieval part of the association
network. Because of the number of documents and their size, the retrieval

http://translate.google.com/

228 a feature association framework for knowledge discovery applications

operation needs be eXcient to allow the algorithm to be executed even on
moderate computational resources.

The plagiarism detection system covered multiple plagiarism settings,
and integrated several approaches to detect this kind of text-reuse. In
the evaluation based on the PAN 2010 data-set it provided a satisfying
performance. The ease of integration of the feature association framework
did contribute to the versatility of the Vnal system.

applications 229

Word Sense Induction and Discrimination

The Vnal presented use-case of the feature association framework combines
all possible modes of operation. In this scenario the feature association serve
as base to analyse the data set, to synthesise new features as well as retrieve
the result of these calculations. Furthermore advanced features of the
framework, for example building contextual local associations by applying
machine learning techniques are explored. The application scenario is
rooted in the domain of Natural Language Processing, where the feature
association framework is used to detect and assign senses of ambiguous
words430. 430 R. Kern, M. Muhr, and M. Granitzer.

KCDC: Word Sense Induction by Using
Grammatical Dependencies and Sentence
Phrase Structure. In Proceedings of
SemEval-2, Uppsala, Sweden, ACL, 2010

The task of word sense induction and discrimination (WSID) is to
identify distinct senses of ambiguous words in a set of text documents.
These documents are not annotated and there are no training examples, thus
WSID algorithms have to learn the senses in a completely unsupervised
fashion. The motivation for developing such algorithms is the assumption
that the detection of senses could help in a number of scenarios, for example
information retrieval and machine translation. In recent years initiatives
have been formed to develop not only test corpora, but also platforms to
compare the quality of diUerent algorithms.

Related Work Natural languages consist of many ambiguous words,
which poses no apparent problems for humans in text understanding. For
machine based algorithms the situation is diUerently. The performance
of many computational tasks that deal with natural languages could be
improved if the sense distinctions could reliably be exploited. Word sense
disambiguation (WSD) is the process of automatically detecting the correct
sense of an ambiguous word within a textual context. Where the context
can be a document, a paragraph or even only a single sentence. Tradition-
ally the individual senses are known in advance and determined by linguists
and lexicographers. Therefore the task of WSD is to Vnd the correct sense of
a word out of the set of predeVned senses. Three main approaches towards
this problem have been developed:

• Supervised methods that are trained on annotated data.

• Unsupervised approaches where no labelled training data is necessary.

• Knowledge-based algorithms integrate external knowledge sources, for
example dictionaries or thesauri.

From these methods the supervised methods provide the best perfor-
mance so far. The disadvantage of the supervised approach is the reliance on
annotated data, which is usually time-consuming and expensive to create.

The unsupervised methods on the other hand no not utilise such training
data, usually only a plain textual corpus is suXcient. Another advantage
of unsupervised methods is their ability to automatically discover the
distinct senses. This property is preferred when the word senses diUer from
the general language, which can be the case for specialised domains, for
example medical records. The main task for this family of algorithm is not
the disambiguation aspect. It is the identiVcation of senses, the term word
sense induction and discrimination (WSID) has been established for this
class of unsupervised methods.

In recent years multiple resources have become available that provide
an overview over the Veld of word sense disambiguation in general. In 2007
a book has been published431, which covers all areas of the WSD research 431 E. Agirre, P. Edmonds, A. KilgarriU,

N. Ide, Y. Wilks, M. Stevenson, J. Gon-
zalo, L. Màrquez, F. Verdejo, G. Escudero,
P. Buitelaar, B. Magnini, C. Strappar-
ava, P. Vossen, P. Resnik, D. Martínez,
M. Palmer, G. Rigau, H. T. Ng, H. T. Dang,
R. Mihalcea, and T. Pedersen. Word
Sense Disambiguation: Algorithms and
Applications. Springer, 2007

Veld. At Vrst the linguistic background on word senses is presented. Each
chapter is written by selected experts in their respective research areas. All
mainstream approaches are covered, the supervised, the unsupervised and

230 a feature association framework for knowledge discovery applications

the knowledge-based approaches. Additionally the domain speciVc WSD is
presented together with an overview of existing applications of WSD.

More recently a survey in the ACM computing surveys journal has been
published432. Again this survey tries to cover all diUerent approaches to the 432 R. Navigli. Word Sense Disambiguation:

A Survey. ACM Computing Surveys (CSUR),
41(2):10, 2009

WSD process. The more specialised word sense induction and discrimina-
tion methods are not described in detail. One important area that is covered
in this survey is the evaluation methodology of WSD and WSID algorithms.

In order to evaluate and compare diUerent word sense disambiguation
systems the SenseEval series has been initiated. In 1998 the Vrst SenseEval
took place, a competition where various approaches were systematically
compared. Furthermore SenseEval also contributed data sets to the research
community, which were very scarce until then. The results of the Vrst
SenseEval together with SenseEval-2 (2001) and SenseEval-3 (2004) are
covered in great detail by Martinez433 and Agirre et al434. 433 D. Martinez. Supervised Word Sense

Disambiguation: Facing Current Challenges.
PhD thesis, 2004
434 E. Agirre, P. Edmonds, A. KilgarriU,
N. Ide, Y. Wilks, M. Stevenson, J. Gon-
zalo, L. Màrquez, F. Verdejo, G. Escudero,
P. Buitelaar, B. Magnini, C. Strappar-
ava, P. Vossen, P. Resnik, D. Martínez,
M. Palmer, G. Rigau, H. T. Ng, H. T. Dang,
R. Mihalcea, and T. Pedersen. Word
Sense Disambiguation: Algorithms and
Applications. Springer, 2007

The scope of the SenseEval series has been broadened to other tasks
similar to the word sense disambiguation, like for example semantic role
labelling. To reWect the new scope the 2007 edition of the competition
was renamed to SemEval. In SemEval-2007 the word sense induction and
discrimination was covered by an own dedicated task435. In this task the

435 E. Agirre and A. Soroa. Semeval-2007 task
02: Evaluating word sense induction and
discrimination systems. Proceedings of the
4rth International Workshop on Semantic
Evaluations, (June):7–12, 2007

participants had to induce senses for 100 words (65 verbs and 35 nouns). The
evaluation was split into two parts:

• An unsupervised evaluation, where none of the participants were able
to outperform the baseline, which was created by assuming that the am-
biguous target words have just one sense (most frequent sense baseline).

• A supervised evaluation, where 3 of the 6 systems did provide a better
performance than the baseline.

Ambiguous words with multiple senses are an intrinsic feature of natural
languages. While humans usually cope with these ambiguities eUortlessly,
the exact distinction and deVnition of these senses is hard, even for lexi-
cographers and linguists. This can be contributed to the varying degree of
granularity of senses distinctions. Linguists have deVned two main levels of
granularity:

• The term homonym is used for words that have more than one sense,
with no semantic overlap. The word “bank” for example has two senses:
a) the Vnancial institute and b) the side of a river. Both senses have
entirely diUerent meanings. These two senses also tend to co-occur with
diUerent words. This observation is the motivation of one the main
approaches to automatically distinguish between meanings.

• The term polysemy is used for Vner grained diUerences between the
senses. In the case of the word “bank”, there are at least two senses: a)
the Vnancial institute as abstract concept and b) a building in which
an instance of a Vnancial institute resides. These distinctions between
the senses depend on the context and the domain. A clear separation
is not always possible as in many cases senses form a continuum. Due
to this property, this type of granularity is very hard to detect with an
algorithmic approach.

The second type of sense granularity is also an area of research in the
linguistic community. One of the results of this research is the insight that
the sense distinction itself can be made starting from diUerent viewpoints.
These viewpoints have been developed while trying to systematically
classify the reasons why words are perceived as similar. The similarity of
words does also apply to the similarity of diUerent senses of a single word.

• Taxonomic - Similarity is deVned via a classiVcation taxonomy, for
example “cat” and “dog” are connected via the “pet” class within a
taxonomy.

applications 231

• Thematic - Similarity is found via the overlap of shared contexts, as for
example the words “doctor” and “nurse” are similar as they are often
used in the same contexts.

• Goal-derived - words become related as they are associated with the
same goal, for example “airplane” and “hotel” are put in relation as they
are required for the goal of going on vacation.

• Radial - Words with diUerent semantics might still be considered similar
as they share common properties in the real word. The distinction of
senses the word term “bank” - Vnancial institute vs. building - is an
example where the word is reused but with a slightly diUerent sense.

The perception of senses by human and the inWuence of the diUerent
viewpoints have been studied by cognitive scientists436. The results of this 436 D. Klein and G. Murphy. Paper has

been my ruin: conceptual relations of
polysemous senses. Journal of Memory and
Language, 47(4):548–570, Nov. 2002

research is encouraging as it appears as if humans do treat polysemous
word similar as homonyms. As a consequence the algorithmic approaches
towards separating the senses of homonyms can serve as a starting point to
develop methods to discriminate Vner sense distinctions.

Many of the diUerent approaches towards word sense induction and
discrimination are based on two well known hypotheses: the distributional
hypothesis and the strong contextual hypothesis (a description of these two
concepts is given on page). In the case of words with multiple senses, the
distributional hypothesis would lead to the assumption that each sense will
diUer by the words it co-occurs with. Based on these assumptions, word
senses can be identiVed via Vnding distinct groups of words that reWect the
context of each of these senses.

The main approaches towards word sense disambiguation can be
grouped into three categories. These are the family of cluster based al-
gorithms, approaches which operate on graph structures and methods
resorting to statistical methods. In table 50 the presented algorithms are
listed and grouped according their type of approach.

Algorithm Category

Automatic Word Sense Discrimination Clustering Based
SenseClusters Clustering Based
I2R Clustering Based
UPV-SI Clustering Based
HyperLex Graph Based
UoY Graph Based
UBC-AS Graph Based
Bayesian Word Sense Induction Statistical

Table 50: Overview of selected word sense
disambiguation algorithms, together with
their classiVcation according to their
approach.

Automatic Word Sense Discrimination One of the most inWuential papers
in the Veld of word sense discrimination is by Schutze in 1998437. This 437 H. Schütze. Automatic word sense

discrimination. Computational Linguistics,
24(1):97–123, 1998

paper introduces the separation of the sense discrimination and the sense
labelling task. The Vrst task is crucial for any application that deals with
multiple senses of words, the second task is often only optional.

The approach presented in this paper is rooted on the Distributional
Hypothesis and the Strong Contextual Hypothesis. Multiple senses of one
word are associated with multiple distinct topical contexts. Identifying
these contexts will lead to the individual senses. Contexts are deVned by
the text surrounding the occurrences of the target word within a textual
corpus. Short documents that consist of a few sentences are generally
regarded as a best practice for these contexts.

232 a feature association framework for knowledge discovery applications

In this approach the target word contexts’ are processed by comput-
ing the so called 2nd order co-occurrences. Next each context word -
all words that occur in the context the target word - are replaced by a
weighted vector, called word vector. The dimensions of this vector rep-
resent words that occur within a certain vicinity of the context word. A
corpus with suXciently many instances of all context words is required
for this computation. The weight of the dimensions is calculated by
exploiting statistical properties of the co-occurrences. The raw number
of co-occurrences is a simple way to represent the strength of the associa-
tion between words. Because of the fact that words are now represented
by a weighted vector, the similarity between two words can be calculated
using standard techniques. The cosine similarity is a very common ex-
ample of these techniques therefore it serves as proxy for the semantic
similarity of two words.

Each context of a target word instance can now be represented via the
context words co-occurrence vectors. The original feature space of each
context is very sparse as it is populated only by the individual words
within the context. By using the co-occurrence vector representation,
the feature space becomes more densely populated and additionally is
also smoothed, as information from the training corpus is integrated.
To honour the fact that not all words are equally suited to discriminate
between topics, a weighting scheme is applied by merging all word
vectors into the context feature space. The inverse document frequency
has proven in many information retrieval applications to provide a good
approximation to the discriminatory power for individual words.

The actual task of identifying individual senses is then transformed
into a machine learning task, more precisely a clustering algorithm
is employed to group the context vectors. The Buckshot algorithm438 438 D. Cutting, D. Karger, J. Pedersen, and

J. Tukey. Scatter/gather: A cluster-based
approach to browsing large document col-
lections. In Proceedings of the 15th annual
international ACM SIGIR conference on
Research and development in information
retrieval, pages 318–329. ACM New York,
NY, USA, 1992

has been selected, which is a combination of an EM algorithm and
agglomerative clustering. Additionally they processed the feature space
by applying Singular Value Decomposition (SVD), where the input space
is compressed by eliminating noise and redundant information. As
training data the New York Times news service was utilised and they
Vnally ended up with a corpus of about 60 million words, together with
a smaller corpus of about 5 million words for testing. Evaluation was
conducted on 10 ambiguous words and additionally on 10 artiVcial words
which were created by concatenating two words with entirely diUerent
semantics. Each occurrence of one of the two words within the corpus
was replaced by the artiVcial word.

In their evaluation they note that methods utilising the SVD into
the processing of the feature space provided the best performance. The
normalisation the feature space is most likely reason for this behaviour
in the authors opinion. They reason that the clustering algorithm can
provide better results if the input data is more uniformly distributed.

SenseClusters One of the most popular software packages for word sense
induction and discrimination is SenseClusters439. This library is im- 439 http://senseclusters.

sourceforge.netplemented in the Perl programming language and released under an
open-source license. SenseClusters supports various options and parame-
ters for tuning the algorithms. In this section only the conVguration used
for SemEval-07 will be covered440. 440 T. Pedersen. Umnd2: Senseclusters applied

to the sense induction task of senseval-
4. Proceedings of the 4th International
Workshop on Semantic Evaluations,
(June):394–397, 2007

This approach taken by SenseClusters is similar to Automatic Word
Sense Discrimination441, were unsupervised clustering of the input data

441 H. Schütze. Automatic word sense
discrimination. Computational Linguistics,
24(1):97–123, 1998

plays the central role. The machine learning community has developed
a wide range of diUerent algorithms for task of Vnding patterns in
data. Probably the best known of these cluster algorithms is k-Means.
This algorithm is well understood by the research community and has
demonstrated in the past to provide good results in a variety of domains.

http://senseclusters.sourceforge.net
http://senseclusters.sourceforge.net

applications 233

Additionally the k-Means algorithms has a low run-time complexity.
The main disadvantage of k-Means and related clustering algorithms
is the number of clusters - k - to be found, which has to be deVned in
advance. Choosing the correct k is crucially important and in the case
of word sense induction it directly correlates with the number of senses
that will be detected. For the estimation of the correct number of senses
for a speciVc word, the SenseClusters packages provides the Adapted Gap
Statistic442. 442 T. Pedersen and A. Kulkarni. Automatic

cluster stopping with criterion functions
and the gap statistic. Proceedings of the 2006
Conference of the North American Chapter
of the Association for Computational
Linguistics on Human Language Technology
companion volume: demonstrations -, pages
276–279, 2006

The conVguration of the SenseClusters algorithms for SemEval-07 are
based on the 2nd order co-occurrences. A window based approach was
chosen as selection criteria for the words that build the co-occurrence
vectors for the context words. All words within a window of 12 words
around the context word instance are selected. For each of them, the
Pointwise Mutual Information (PMI) is calculated and a threshold of
5.0 is applied. The motivation for this lower bound is to Vlter out all co-
occurrences that are not results of an underlying semantic relationship,
but were merely produced by stylistic or grammatical properties of the
training corpus.

Each context of a target words instance is now represented via the
context words co-occurrence vectors. The individual clusters that are the
result of this algorithm should resemble distinct, thematically coherent
contexts. Following the Distributional Hypothesis, each of these found
topical contexts can be interpreted as individual sense of the target word.

In comparison with other approaches of SemEval-07, the SenseClus-
ters approach fares very well. In the supervised evaluation only one
system provided a better performance than SenseClusters. The authors of
SenseClusters conclude443 that the unsupervised approach towards words 443 T. Pedersen and A. Kulkarni. Automatic

cluster stopping with criterion functions
and the gap statistic. Proceedings of the 2006
Conference of the North American Chapter
of the Association for Computational
Linguistics on Human Language Technology
companion volume: demonstrations -, pages
276–279, 2006

sense induction and discrimination requires suXciently many training
instances for the machine learning algorithms to detect distinctions
between the senses.

I2R The I2R system444 takes the same basic approach as the SenseClusters

444 Z.-y. Niu, D.-h. Ji, and C.-l. Tan. I2R:
Three Systems for Word Sense Discrimina-
tion, Chinese Word Sense Disambiguation,
and English Word Sense Disambigua-
tion. Proceedings of the 4th International
Workshop on Semantic Evaluations
(SemEval-2007), (June):177–182, 2007

system. Both are based on the hypothesis, that distinct senses are coupled
with diUerent context they appear in. Again a machine learning algo-
rithm is employed to Vnd these clusters. Like the SenseClusters approach
the number of clusters to be found is the central aspect of their system,
for which they have created a stability criterion.

As features they took a subset of the ones described by Lee and Ng445:

445 Y. K. Lee and H. T. Ng. An Empirical
Evaluation of Knowledge Sources and
Learning Algorithms for Word Sense
Disambiguation. Proceedings of the ACL-02
conference on Empirical methods in natural
language processing, pages 41–48, 2002

• Part-of-speech of words within a window of 3 around the target word,
where the position information is encoded into the feature

• All words from the whole context of the target word

• Words with a window of size 11 around the target word (collocations)

The SenseClusters system employs the k-Means as clustering algo-
rithm, while the I2R system uses the sequential Information Bottleneck
algorithm (sIB)446. The k-Means algorithm is a centroid based method 446 N. Slonim, N. Friedman, and N. Tishby.

Unsupervised document classiVcation using
sequential information maximization. Pro-
ceedings of the 25th annual international
ACM SIGIR conference on Research and
development in information retrieval -
SIGIR ’02, page 129, 2002

and similarities between contexts are usually calculated via the cosine
similarity, whereas sIB estimates the inter-context similarity via their
conditional distribution.

To guess the correct number of clusters and therefore senses, they
adapt the method of cluster validation. A clustering solution with a Vxed
number of clusters is considered valid, if the result is stable if applied to
multiple random sub-samples of the input data. In other words, if the
cluster result varies from run to run the cluster number does not Vt the
nature of the data.

The performance of their system was tested on the SemEval-2007 data
set. For the supervised evaluation their approach performed best of all
participants. The ability of their system to detect rarely used senses was

234 a feature association framework for knowledge discovery applications

attributed to be the main reason for the relatively good performance.

UPV-SI The main idea behind the UPV-SI447 is the enrichment of text by 447 D. Pinto, P. Rosso, and H. Jiménez-
Salazar. UPV-SI: Word Sense Induction using
Self Term Expansion. acl.ldc.upenn.edu,
(June):430–433, 2007

replacing each term by a weighted vector. They refer to this in their
paper as self-term expansion.

For each term in the training corpus they calculated the co-occurrence
statistics. As measure for the strength of the association between two
words they have chosen the Pointwise Mutual Information (PMI). Ad-
ditionally they applied a number of restrictions on the terms and the
co-occurrences:

• Only word are processed that occurred at least 3 times in the corpus.

• A window size of 5 was used for the co-occurrences.

Again a clustering algorithm was employed to Vnd the sense of
the ambiguous target words. For this task they have chosen the KStar
algorithm448. As input for this method the similarity matrix is required, 448 K. Shin and S. Han. Fast clustering

algorithm for information organization.
Computational Linguistics and Intelligent
Text Processing, 2588:221–226, 2003

which was populated using the Jaccard measure. In contrast to other
clustering algorithms, the KStar algorithm is not initialised with a Vxed
cluster count, but a stopping criterion has to be provided. In the UPV-SI
system, this is accomplished by calculating the average similarity of all
sentences.

In comparison with other participants of SemEval-2007 the UPV-PI
system provided a good performance, being the third best system in the
supervised evaluation. The authors conclude that using a term selection
method might further improve their system.

HyperLex Véronis states449 that approaches based on term co-occurrence, 449 J. Véronis. HyperLex: lexical cartography
for information retrieval. Computer Speech
& Language, 18(3):223—-252, 2003

like for example the algorithm proposed by Schutze450 face the challenge

450 H. Schütze. Automatic word sense
discrimination. Computational Linguistics,
24(1):97–123, 1998

of a high variation of the observed frequencies. Especially very rare
event are not detected and are likely to be treated erroneously as noise.
As an alternative the authors propose a method based on word co-
occurrence graphs.

Such a graph can be constructed by inserting all words as nodes
and all co-occurrences as edges between them. This is done for all
words that co-occur with a single target term. Findings from the area
of graph theory can then be applied. As the authors point out, such a
co-occurrence graph exhibits properties of a small-world network. The
World Wide Web is a prominent example of such a network.

For the evaluation they used a search engine to help gather data
for a set of predeVned target words. Only nouns and adjectives were
retained and words with a frequency of less than 10 were Vltered out.
Co-occurrences were restricted to a single paragraph and discarded if
their frequency was below 5.

The weight for the association between two words was based on the
conditional probabilities of their occurrences. Again a threshold was
applied on the weights as otherwise the graph would become too highly
connected making the computation infeasible.

Once the co-occurrence graph has been build, high-density com-
ponents are identiVed and their root hubs are calculated. Each of the
identiVed components represents a single sense of the ambiguous target
word.

Finally they compared the performance of their system with a base-
line, where only most frequent sense was used. In their test the baseline
obtained a precision of 73%, whereas the HyperLex algorithm provided a
precision of 97%.

UoY The authors of the UoY system451 note that graph based word sense 451 I. Klapaftis and S. Manandhar. UOY: a
hypergraph model for word sense induction
\& disambiguation. Proceedings of the
4th International Workshop on Semantic
Evaluations, (June):414–417, 2007

discrimination systems have disadvantages on two regards:

• Words are treated as independent units, so concepts that are repre-
sented as a sequence of multiple words are not detected.

applications 235

• Graph based methods operate on a 2 dimensional space.

To address these problems they propose an extension of existing graph
based methods by using a hypergraph as their main data structure.
Within such a graph the edges, called hyperedges, can carry more
information than edges in a traditional graph. A single hyperedge does
not only connect two nodes, but multiple nodes.

When building such a hypergraph they apply a number of restrictions:

• Only nouns are extracted from the text

• Each of these nouns must occur more often than a predeVned thresh-
old

• Another threshold controls the minimal size of a paragraph

• The size of a hyperedge can only vary between 2 and 4 nodes

• Each potential hyperedge must exceed a minimal frequency

Next a weight is assigned to each hyperedge, which is based on its
frequency in relation to the frequencies of its sub-hyperedges. Finally
hyperedges with a low weight are Vltered out.

Graphs build using the HyperLex algorithm exhibit the small-world
network properties. The same hold true for the hypergraphs of the UoY
systems according to the authors. To identify senses of the ambiguous
target word they modiVed the HyperLex algorithm to detect areas of
high density and to identify the root hub nodes.

In the SemEval-2007 supervised evaluation the UoY was able to
outperform the most-frequent-sense baseline for nouns. When applied on
verbs, the performance of the hypergraph approach and the baseline was
about the same.

UBC-AS The UBC-AS system452 features a two stage clustering approach 452 E. Agirre and A. Soroa. UBC-AS: A Graph
Based Unsupervised System for Induction
and ClassiVcation. Proceedings of the
4rth International Workshop on Semantic
Evaluations, (June):346–349, 2007

that operates on a co-occurrence graph. The initial stage of the algorithm
is the construction of the context co-occurrence graph, where each word
is represented by a node. Each pair of words that occur in the same
context are connected via an weighted edge. The weight if the edge
depends on the strength of the association of the two words.

Co-occurrence graphs are assumed to exhibit small-world properties.
Within these graphs densely connected areas should represent distinct
senses of an ambiguous word. Each of these areas is represented by
a root hub. The UBC-AS system utilises two algorithms to identify
these hubs: HyperLex453 and HITS454. For each of the identiVed hubs a 453 J. Véronis. HyperLex: lexical cartography

for information retrieval. Computer Speech
& Language, 18(3):223—-252, 2003
454 J. M. Kleinberg. Authoritative sources in
a hyperlinked environment. Journal of the
ACM (JACM), 46(5):604–632, 1999

minimum spanning tree is computed from the co-occurrence graph. The
authors note that this procedure is equivalent to a single-link clustering.

The next step is the assignment of the contexts to the hubs. The
minimum spanning trees serve as a base to calculate the assignment
weights. Although the information gained by this step is suXcient to
assign each context to the hub with the highest weight, the authors
remark that based on their experience the number of hub exceeds the
number of senses. Therefore they have chosen to add another processing
on top of the context-hub assignments, again by resorting to a clustering
technique.

The input of the second stage is a context-context similarity matrix.
Each context is represented via its assignment vector, which are then
pairwise compared via the cosine similarity. To keep the matrix sparse
only the top similarity scores for each context are preserved. At this
point external information about the context similarity could be in-
tegrated into the matrix. The matrix is then clustered by the Markov
clustering algorithm455. 455 S. van Dongen. A Cluster algorithm

for graphs. Report - Information systems,
(10):1–40, 2000

For the evaluation runs they used diUerent conVgurations depending
on the word class of the target word. For nouns the HyperLex algorithm

236 a feature association framework for knowledge discovery applications

is used to detect root hubs and the association weight is calculated via
the conditional probability. For verbs the hubs are identiVed by applying
the HITS algorithm and the χ2 test deVnes the association strength. The
higher frequency of verbs in relation to nouns has been cited as reason
for the two diUerent processing methods.

In the SemEval-2007 evaluation the UBC-AS system performed as well
as the most-frequent-sense baseline.

Bayesian Word Sense Induction Brody and Lapata456 proposed to ap- 456 S. Brody and M. Lapata. Bayesian Word
Sense Induction. Computational Linguistics,
(April):103–111, 2009

proach word sense induction via a probabilistic generative model. Each
sense of a word is drawn from a distribution, similar to distribution of
topics in the Latent Dirichlet Allocation (LDA) algorithm457. The as- 457 D. Blei, A. Ng, and M. Jordan. Latent

dirichlet allocation. The Journal of Machine
Learning Research, 3:993–1022, 2003

sumption of this approach is that the underlying distribution of senses
follows a Dirichlet distribution. One potential downside of this algorithm
is the sensitivity to the choice of the initial parameters for the calculation.
As one of the key advantages of their approach they mention that it
is possible to integrate various features into the word sense induction
process.

In their evaluation they studied a range of diUerent features extracted
from the textual content:

• A window based selection of word surrounding the target word (they
use two window sizes, 10 and 5 words).

• Collocations (word with distance of 1 in relation to the target word)

• Word n-grams and part-of-speed n-grams

• Dependency relations

These features were extracted by the RASP system458. For the word 458 T. Briscoe, J. Carroll, and R. Watson. The
second release of the RASP system. Pro-
ceedings of the COLING/ACL on Interactive
presentation sessions -, (July):77–80, 2006

based features they have taken the lemmatised version of the word form.
Their evaluation is conducted on the data set provided by the organisers
of SemEval-2007, based on the Penn Treebank II corpus which is made
up by articles from the Wall Street Journal (WSJ). In this data set each
instance of a target word is surrounded by a short content, usually a few
sentences. They restricted the disambiguation process on nouns only. To
train their model they selected two diUerent corpora:

• The British National Corpus (BNC), were the topics diUer from the
test data set

• The WSJ corpus, but without the articles contained in the test data set

These data sources were processed to Vnally contain about 730 thousand
instances of the target words for each of the two corpora.

In the Vrst part of their evaluation they found that the optimal num-
ber of senses per word diUers between the two training corpora. While
for the WSJ training set the optimal number of senses was 4, which is
about the same as the correct number of senses in the test data set, the
best performance of their algorithm trained on the BNC data was twice
as high.

In their next evaluation the inWuence of the diUerent features were
studied. The dependency relation feature had a negative eUect on the
overall performance. The reason for this unexpected is sparse nature of
the feature according to the authors. The best performing conVguration
of their system has been achieved when only the two window based
features were used for the sense induction.

Finally, they trained their model with the best performing combina-
tion of features and the WSJ corpus to compare its performance with the
results published by the participants of SemEval-2007. They found that
their system did provide better results that both the baseline and the best
systems, although the diUerence between the best performing system of
SemEval-2007 was not found to be statistically signiVcant.

applications 237

System For the second installment of the SemEval competition we devel-
oped a system for word sense induction and discrimination which makes
heavy use of the functionality provided by the feature association frame-
work. In this scenario the associations calculation do not only connect
existing features, but also synthesise new features. For each input feature
a number of nodes in the output graph are generated, where each of these
new nodes represents a singe sense of the input term.

This WSID system exploits syntactic and semantic features based on the
results of a natural language parser component. To achieve high robustness
and good generalisation capabilities, we designed our system to work on a
restricted, but grammatically rich set of features. Based on the results of the
evaluations our system provides a promising performance and robustness.

The goal of the SemEval-2 word sense induction and discrimination
task459 is to identify the senses of ambiguous nouns and verbs in an un- 459 S. Manandhar, I. P. Klapaftis, D. Dligach,

and S. S. Pradhan. SemEval-2010 Task 14:
Word Sense Induction & Disambiguation. In
Proceedings of SemEval-2, Uppsala, Sweden,
ACL, 2010

supervised manner and to label unseen instances of these words with one
of the induced senses. The most common approach towards this task is to
apply clustering or graph partitioning algorithms on a representation of the
words that surround an ambiguous target word460 ,461. We followed this ap- 460 Z.-y. Niu, D.-h. Ji, and C.-l. Tan. I2R:

Three Systems for Word Sense Discrimina-
tion, Chinese Word Sense Disambiguation,
and English Word Sense Disambigua-
tion. Proceedings of the 4th International
Workshop on Semantic Evaluations
(SemEval-2007), (June):177–182, 2007
461 T. Pedersen. Umnd2: Senseclusters applied
to the sense induction task of senseval-
4. Proceedings of the 4th International
Workshop on Semantic Evaluations,
(June):394–397, 2007

proach by employing a clustering algorithm to detect the individual senses,
but focused on generating feature sets diUerent to the mainstream approach.
Our feature sets utilise the output of a linguistic processing pipeline that
captures the syntax and semantics of sentence parts closely related with the
target word.

The base of our system is to apply a parser on the sentence in which
the target word occurs. Contextual information, for example the sentences
surrounding the target sentence, are currently not exploited by our system.
To analyse the sentences we applied the Stanford Parser462 ,463 (Version

462 D. Klein and C. D. Manning. Accurate
unlexicalized parsing. Proceedings of the
41st Annual Meeting on Association for
Computational Linguistics - ACL ’03, pages
423–430, 2003
463 D. Klein and C. Manning. Fast exact
inference with a factored model for natural
language parsing. Advances in Neural
Information Processing Systems, pages
3—-10, 2003

1.6.2), which is based on lexicalised probabilistic context free grammars.
This open-source parser not only extracts the phrase structure of a given
sentence, but also provides a list of so called grammatical relations (typed
dependencies)464. These relations reWect the dependencies between the

464 M. de MarneUe, B. MacCartney, and
C. Manning. Generating typed dependency
parses from phrase structure parses. In LREC
2006, 2006

words within the sentence, for example the relationship between the verb
and the subject. The exploitation of grammatical dependencies for word
sense disambiguation have already been investigated in the past465.

465 P. Chen, W. Ding, C. Bowes, and
D. Brown. A fully unsupervised word sense
disambiguation method using dependency
knowledge. Human Language Technology
Conference, 2009

The phrase structure and the grammatical dependencies are sources for
the feature extraction stage. To illustrate the result of the parser and feature
extraction stages we use an example sentence, where the target word is the
verb “Vle”:

Afterward , I watched as a butt-ton of good , but misguided people Vled out
of the theater , and immediately lit up a smoke .

The feature extract step consists of two separate steps, the Vrst only
takes the typed dependencies into consideration while the second extraction
information out of the parse tree.

Grammatical Dependency Features The Stanford Parser provides 55
diUerent grammatical dependency types. Figure 40 depicts the list of
the grammatical dependencies identiVed by the Stanford Parser for
the example sentence. Only a limited subset of these dependencies
are selected to build the grammatical feature set. This subset has been
deVned based on preliminary tests on the trial data set. For verbs only
dependencies that represent the association of a verb with prepositional
modiVers and phrasal verb particles are selected (prep, prepc, prt).
If the verb is not associated with a preposition or particle, a synthetic
“missing” feature is added instead (!prep, !prt). For nouns the selected
dependencies are the prepositions (for head nouns that are the object of
a preposition) and noun compound modiVers (pobj, nn). If the noun is
associated with a verb the grammatical dependencies of this verb are also

238 a feature association framework for knowledge discovery applications

added to the feature set.

Figure 40: List of grammatical dependencies
as detected by the Stanford Parser for the
example sentence.

The name of the dependency and the word (i.e. preposition or particle)
are used to construct the grammatical features. The diUerent features
are weighted. The weights have been derived from their frequencies
within the trial data set and listed in table 51. For the example sentence
the extracted grammatical features are:

'out', 'of', prep, prt

Phrase Term Features The second set of features are generated from the
sentence phrase structure. In Vgure 41 the parse tree for the example
sentence is depicted.

Again we tried to keep the feature set as small as possible. Starting
with the target word only phrases that are directly associated with the
ambiguous word are selected. To identify these phrases the grammatical
dependencies are exploited. For nouns as target words the associated
verb is searched at Vrst. Given a verb the phrases containing the head
noun of a subject or object relationship are identiVed. If the verb is
accompanied by a preposition, the phrase carrying the object of the
preposition is added as well. All nouns and adjectives from these these
phrases are then collected. The phrase words together with the verb,
prepositions and particles are lemmatised using tools also provided by
the Stanford Parser project.

The weights of the phrase term features are based on the frequency of
the words within the training data set, where N is the total number of
sentences and Nf is the number of sentences in which the lemmatised
phrase term occurs in:

weightf = log(
N

Nf + 1
) + 1 (142)

In our example sentence the extracted phrase term features are:

of, misguided, file, theater, people, out

Feature Weight

prepc, prt, nn, pobj 0.9
prep 0.45
!prep, !prt 0.5
’prepositions’, ’particles’ 0.97

Table 51: Weights of the grammatical
features, which were derived from their
distribution within the trial data set.

applications 239

Figure 41: Phrase tree of the example
sentence. The noun phrase “misguided
people” is connected to the target word via
the nsubj dependency and the phrase “the
theater” is associated with the target verb
via the prep and pobj dependencies.

The feature space of the phrase terms is expected to be very sparse. In
addition phrase terms may have diUerent representations but similar seman-
tics. Therefore the phrase terms are optionally expanded with associated
terms, where semantically similar terms should be associated with the same
terms. Again the feature association framework comes to use for this task.

To calculate the statistics for term expansion we used the training data
set (although other data sets might be more suitable for this purpose). The
data set is split into sentences. Stop-words and rarely used words, which
occur in less than 3 sentences, were removed. The remaining words were
Vnally lemmatised. For a given phrase term the top 100 associated terms are
used to build the feature set. The association weight between two terms is
based on the Pointwise Mutual Information:

weightpmi(ti, tj) =
log2(

P (ti|tj)
P (tj)

)

log2(1
P (tj)

)
(143)

For example the top 10 associated terms for theater are:

theater.n, movie.n, opera.n, vaudeville.n, wnxt-abc.n,
imax.n, orpheum.n, pullulate.v, projector.n, psychomania.n

To detect the individual senses within the training data set we integrated
unsupervised machine learning techniques into the feature association
calculations. For each ambiguous word a matrix -M|Instances|×|Features|
- is created and a clustering algorithm is applied, namely the Growing k-
Means466. This algorithm needs the number of clusters and centroids as 466 M. Daszykowski, B. Walczak, and D. L.

Massart. On the optimal partitioning of
data with K-means, growing K-means,
neural gas, and growing neural gas. Journal
of chemical information and computer
sciences, 42(6):1378–89, 2002

initialisation parameters, where the initial centroids are calculated using a
directed random seed Vnder467. We used the Jensen-Shannon Divergence

467 D. Arthur and S. Vassilvitskii. k-means++:
The advantages of careful seeding. In
Proceedings of the eighteenth annual ACM-
SIAM symposium on Discrete algorithms,
pages 1027–1035. Society for Industrial and
Applied Mathematics Philadelphia, PA,
USA, 2007

function for the grammatical dependency features and the Cosine Similarity
for the phrase term feature sets as relatedness function.

For each cluster number we re-run the clustering with diUerent random
initial centroids (30 times) and for each run we calculate a cluster quality
criterion. The overall cluster quality criterion is the mean of all feature
quality criteria, which are calculated based on the set of clusters the feature
occurs in - Cf - the number of instances of each cluster - Nc - and the
number of instances within a cluster where the feature occurs in - Nc,f :

FQCf =
weightf
|Cf | ∗

∑
c∈Cf

Nc,f

Nc
(144)

QCrun = FQCf (145)

The cluster quality criterion is calculated for each run and the combi-
nation of the mean and standard deviations are then used to calculate a
stability criterion to detect the number of clusters, which is based on the
intuition that the correct cluster count yields the lowest variation of QC

240 a feature association framework for knowledge discovery applications

values:
SCk = mean(QC)

stdev(QC) (146)

Starting with two clusters the number of clusters is incremented until the
stability criterion starts to decline. For the cluster number with the highest
stability criterion the run with the highest quality criterion is selected as
Vnal clustering solution. The result of the sense induction processing is a list
of centroids for the identiVed clusters. Alternative methods to identify the
correct number of clusters rely on external information, not present in the
clustering process468. 468 R. Kern, M. Zechner, and M. Granitzer.

Model Selection Strategies for Author
Disambiguation. In IEEE Computer Society:
8th International Workshop on Text-based
Information Retrieval in Procceedings of
22th International Conference on Database
and Expert Systems Applications (DEXA 11),
pages 155–160. IEEE, 2011

The Vnal processing step is to assign an instance of an ambiguous word
to one of the pre-calculated senses. The sentence with the target word is
processed exactly like the training sentences to generate a set of features.
Finally the word is assigned to the sense cluster with the maximum related-
ness.

Results The system can be conVgured to use a combination of feature sets
for the word sense induction and discrimination calculations:

a) KCDC-GD: Grammatical dependency features,
b) KCDC-PT: Phrase terms features,
c) KCDC-PC: Expanded phrase term features,
d) KCDC-PCGD: All training sentences are Vrst processed by using

the expanded phrase term features and then by using the grammatical
dependency features with an additional feature that encodes the cluster id
found by the phrase features.

In the evaluation we also submitted multiple runs of the same conVgu-
ration to assess the inWuence of the random initialisation of the clustering
algorithm. Judging from the results the random seeding has no pronounced
impact and it inWuence should decrease when the number of clustering runs
for each cluster number is increased.

All conVgurations found on average about 3 senses for target words
in the test set (2.8 for verbs, 3.3 for nouns), with exception of the KCDC-
PT conVguration which identiVed only 1.5 senses on average. In the gold
standard the number of senses for verbs is 3.12 and for nouns 4.46, which
shows that the stability criterion tends to underestimate the number of
senses slightly.

In Vgure 42 the results for three conVgurations are given. In the charts
the y-axis represents the V-Measure469. 469 This measure is biased towards multiple

senses, thus systems that create more Vne
grained senses will proVt.

To compare the performance of the diUerent conVgurations, one can
use the average rank within the evaluation result lists. Judging from the
rankings, the conVgurations that utilise the grammatical dependencies and
the expanded phrase terms provide similar performance. The conVguration
that takes the phrase terms directly as features comes in last, which is
expected due to the sparse nature of the feature representation and the low
number of detected senses.

Comparing the performance of our system with the two baselines shows
that our system did outperform the random baseline in all evaluation runs
and the most frequent baseline (MFS) in all runs with the exception of the
F-Score based unsupervised evaluation, where the MFS baseline has not
been beaten by any system. Although none of our submitted conVgurations
was ranked Vrst in any of the evaluations, their ranking was still better
than average, with the exception of the KCDC-PT conVguration. In addition
the result of our system remains stable in regard to the evaluation method,
which can be seen as an indicator that focusing on a limited set of features
results in a robust behaviour.

Another observation that can be made is the diUerence in performance
between nouns and verbs. Our system, especially the grammatical depen-
dency based conVgurations, is tailored towards verbs. Therefore the better

applications 241

root.v
swim.v

mind.n
address.n

television.n
threat.n

lie.v
happen.v

regain.v

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

KCDC-GD - Grammatical Dependencies

V
-M

e
a
su

re

bow.v
officer.n

analyze.v
gas.n

address.n
chip.n

frame.v
note.n

root.v
wait.v

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

KCDC-PT - Phrase Terms

V
-M

e
a
su

re

presume.v
address.n

pour.v
tour.n
movement.n

lay.v
root.v

display.n
reputation.n

rally.n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

KCDC-PC - Expanded Phrase Terms

V
-M

e
a
su

re

margin.n
cell.n

haunt.v
innovation.n

office.n
body.n

chip.n
edge.n

introduce.v
assemble.v

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

UoY

V
-M

e
a
su

re

Comparison of Ranks

KCDC-GD OuY
root.v 1 55
figure.v 2 93
presume.v 3 96
cheat.v 4 92
bow.v 5 74
level.v 6 95
shave.v 7 53
straighten.v 8 56
weigh.v 9 47

Figure 42: Results of the SemEval-2
evaluation for three diUerent conVgurations
of our system. Additionally a comparison
with a diUerent approach is given.

performance of verbs in the evaluation is in line with the expectations.
When looking at the results of the individual target words one can

notice that for a set of words the quality of the sense detection is above
average. For 16 of the 100 words a V-Measure of more than 30% in at least
one conVguration was achieved (average: 7.8%). The best performing target
words are: root.v, presume.v, figure.v, weigh.v, cheat.v.
This can be seen as indicator that our selection of features is eUective for a
speciVc group of words. When looking at the comparison in Vgure 42 one
can see that the top ranked words of our system do not show up in the top
results of an alternative approach. This results is very encouraging as it
indicates that combining our features extraction with a more traditional
approach should yield better overall results.

Conclusions In this section a word sense induction and discrimination
system has been presented. The feature association framework is a central
part of this system. It is Vrst used to enrich the feature spaces and then
to compute the diUerent senses of ambiguous words. An unsupervised
machine learning has therefore been integrated into the feature association
framework in order to analyse the contextual associations.

This application scenario highlights the versatility of the feature associ-
ation framework. Furthermore its run-time performance and its scalability
properties will allow to apply the system on even larger data-set, which
should prove beneVcial for the quality of the results.

Conclusions

Knowledge discovery applications are diverse in nature. They
vary in a number of areas, for example the amount of data to be
analysed and the complexity of data itself. The feature association
framework has been designed to cope with the high demands of
such applications, while still being able to produce results of
high quality. This chapter summarises the key insights gained from
integrating the framework into real-world knowledge discovery
applications to solve a diverse set of research problems.

In this work the feature association framework has been presented. The
starting point for the development of this framework has been the computa-
tion of associations between features. This process has then iteratively been
extended to allow additional processing as part of the process.

Due to the high theoretical run-time complexity of the feature associa-
tion analysis, special attention has been given to ensure that the computa-
tions are still feasible for large amounts of features. This ensures that the
high degree of Wexibility provided feature association framework is still
applicable for real world data sets.

To evaluate whether the goals have been reached, a number of knowl-
edge discovery applications have been presented, where the feature associa-
tion framework did play a vital part. Given the results from these scenarios
one now can answer the raised research questions, assess the usefulness of
the development approach and measure the run-time performance of the
implementation:

• Do feature associations carry additional information?

• Did the incremental generalisations lead to the desired outcome?

• What are the key beneVts of the feature association framework?

• What are the run-time costs of computing association networks?

• What are the limits of this approach?

244 a feature association framework for knowledge discovery applications

Discussion

In this section the main questions are discussed based in the ex-
perience gained from the evaluations. At the end of this section
is should become clear whether the development of the feature
association has been an worthwhile endeavour.

Do Feature Associations Carry Additional Information?

Feature associations do contain additional information, which is not con-
tained within the features themselves. But it is unclear whether this infor-
mation is of use for today’s knowledge discovery applications, especially
given the additional processing overhead. Therefore this question is not
only a theoretical one, but also practical aspects need to be taken into
consideration.

In this work a number of knowledge discovery applications have been
presented, which utilised the feature association framework. For some
applications the feature association were more vital than for others.

For application within the Natural Language Processing domain it is
more obvious that the additional information did beneVt. While in other
domains shallow approaches and simple features traditionally did work
well, for example information retrieval. But in recent times it has become
increasingly harder to improve information retrieval performance by
tweaking only the algorithms. Exploiting the relationship between the
features need to be taken into consideration if the performance should be
further optimised.

Out of the six scenarios presented in the applications chapter, three di-
rectly make use of feature associations: Tagging Structure, Cross-language
Plagiarism andWord Sense Induction & Discrimination. For these applica-
tions there is no direct alternative approach to using feature associations
as they play a central part within the whole system. To conclude, feature
association do not only theoretically carry information not contained in
the features itself, but also help to solve problems of real-world knowledge
discovery applications.

Did the incremental generalisations lead to the desired outcome?

The assessment of the usefulness of the approach does not allow a trivial
answer. Therefore the question can be reformulated into two separate parts:

• The functional part addresses the aspect of whether the generalisations
provide the expected level of Wexibility. In short, did the generalisations
go far enough?

• The non-functional part includes the justiVcation of the eUorts needed to
map existing problem onto the formal requirements of the framework. In
short, did the generations go too far?

Flexibility Although the iterative generalisations were always driven
by existing problems at hand, there are indicators that the current state of
the framework can be applied on a wide array of unseen use-cases. The
Vrst evidence for this is the fact, that the latest stage of development is still
suitable to solve all previous problems. Thus, in the process of the cyclic
improvements to add more Wexibility no previously existing functionality
has been lost.

In section the constrains imposed on the feature association functions
were discussed. Each function that can be reformulated to match these
constrains is eligible to be used to compute feature associations. Although

conclusions 245

it is clear that there are limits to the number of possible function to be inte-
grated, the most common similarity measures, statistical signiVcance tests
and measures from the Veld of information theory Vt this scheme. Further-
more, the feature association function may access external information, for
instance statistics not provided by the feature association framework itself.

Finally, the feature association framework has been used in applications,
which are not covered here and in applications which has been developed
since this thesis has been written470. Given the more Wexibility is usually 470 For example in an currently unpublished

scenario the BM25 weighting function has
been combined with the cosine similarity as
part of a recommender system

coupled with higher computational costs, it is likely that more Wexibility
will lead to higher run-times making some computations unfeasible.

EUort A higher degree of Wexibility usually correlates with a higher
amount of eUort to accomplish more simple tasks. This rises the entrance
burden of choosing a technology when tackling a problem at hand. For sure
the Wexibility and the high number of parameters of the feature association
framework will discourage its use for Vrst time users.

An application has been presented471, where the feature association 471 See page 199 for a the analysis of
the distribution of tags within a broad
folksonomy.

framework has been integrated by the developers of the application scenario.
During this process no modiVcations to the framework appeared to be
necessary. In addition the provided functionality has proven to be suXcient
to address all issues raised by the application scenario.

Judging by the feedback of the developers of all presented applications,
there integration work did not pose any diXculty, once the basic principles
has been understood. In practice the extraction of features will be the more
tedious work.

What are the key beneVts of the feature association framework?

The feature association framework has been developed with two main use
cases in mind. First to provide a tool to help analyse the available features,
and second to exploit the information contained in the relationship between
features. Both use cases ultimately contribute in the work of a researcher to
solve problems in the area of knowledge discovery.

Assess the potential impact of feature association When tackling a
problem, it is often unclear in the beginning, which feature will prove
beneVcial. This is especially true for the information contained in the
relation graph between the features. It turned out that for many problem
settings, the assumption that features are independent from each other,
does not deter performance. For other problems the most important
information is not directly contained in the features itself, but in the
relation to each other.

Therefore having the possibility to quickly check whether this is the
case for a problem at hand is a clear beneVt. Given the analytical tools
provided by the feature association framework allow for an in depth
evaluation of the network of features.

In the context of narrow folksonomies472 the feature association frame- 472 Starting on page 201 this application is
presented in detail.work has been used to analyse the relationship between diUerent meta-

data of a folksonomy. This analysis has revealed that terms used in
comment to photos often contain words speciVc to the author of the
comment.

Generate new features Traditionally many algorithms in the area of
knowledge discovery operate on data-structures like vectors, matrices
and tensors. Integrating additional information is hard to accomplish in
such a setting. Having a tool at hand where such a information can be
seamlessly integrated into an existing infrastructure is a considerable
asset.

246 a feature association framework for knowledge discovery applications

The information contained in the relations between the feature can
be transformed to build a new set of features. In addition during the
process of computing the association network, external sources and
knowledge bases can be exploited. All these aspects are weld together to
build new features, allowing succeeding processing steps to make use of
this information.

In the case of query expansion473 existing query terms have been used 473 Find a detailed presentation of this
scenario starting with page 217.as input of the traversal of the association network. The result of this

operation is then transformed into features, which are then treated like
the input features by the search engine.

Easy to integrate into existing solutions In order to conduct an addi-
tional analysis or processing step it is mandatory that the necessary
modiVcations are kept at a minimum. This is especially true for the data-
structures as they need to be Wexible and easy to understand. The graph
data-structure is well understood and much research has been conducted
in multiple areas. For instance, the properties of graph like structures has
been investigated. Many algorithms have been proposed that make use
of these structures. It can be therefore assumed that the main input and
output data-structures are suitable in the most cases.

For example, an existing monolingual retrieval application has been
enriched with facilities to conduct cross-lingual query processing474. 474 See page 211 for the description of the

query translation application scenarioDuring this process the necessary adaptations have been kept at a
minimum.

Scaleable and high-performace It is not suXcient that an algorithms
serves its purpose, it equally important that this algorithm satisVes the
requirements in regard to its run-time costs. Ideally the time to perform
the computations is as little dependent on the size of the data. For big
data sets this property of an algorithms may become the deciding factor
whether an approach is feasible or not.

The feature association framework has been developed to cope with
big data sets. Furthermore the framework has been modelled to allow to
be deployed within a distributed environment. For example the feature
association computations are compatible with the map-reduce computing
paradigm.

The most demanding application of the feature association frame-
work has been to discover senses of ambiguous words475. Due to the 475 See page 229U for details on the word

sense induction and discrimination
algorithm.

high amount of data and the heavy processing the presented approach
could only be realised due to the eXcient algorithms and the lean data-
structures.

Feature associations as data-structure The output of the feature associ-
ation can itself be used as data-structure. This way only the retrieval
functionality is utilised. In some scenarios the output of existing tools
need to be adapted to Vt into the processing pipeline. To accomplish this
task, the output data-structure - the feature association network - might
be created not by the feature association framework itself, but might be
Vlled by external sources.

For the detection of cross-lingual text reuse476 a word-alignment 476 See page 222 for a detailed coverage of
this application scenario.algorithm has been used to create a feature association network, with is

then stored and retrieved via the feature association framework. From
the side of the application there has been no need for modiVcations.

Open-Source Although this is not a functional aspect, from an academic
viewpoint it is certainly a beneVt that not only the algorithm itself has
been documented, but also the implementation is openly available.
Making the source code available to the open-source community allows
for external peer-review. In addition external contributors may add
new functionality, as well as provide optimisations and to improve

conclusions 247

the existing code-base. This way the future of the framework is not
dependent on single persons or entity, but is open to input from the
community.

What are the run-time costs of computing association networks?

The previous question as been directed towards functional aspects, while
this question targets the run-time behaviour of the framework. Due to
the multiple ways feature associations can be computed here only a broad
overview is given.

In the most simple case, one is only interested how much information is
contained in the relationship between the features of a data set. For a small
data set, for instance the Brown corpus consisting of a few thousand textual
documents, the run-time is less than one minute477. With larger data-sets, 477 On page 183 the detailed Vgures are

reported.the computational costs rise. The Reuters RCV-1 corpus consists of 800,000
news messages, and about 12 million sentences. For this medium size data
set computing the association network takes about 86 minutes478. 478 See page 184 for more details about the

data-set and the conVguration.The English Wikipedia consists of about 1.5 million articles (m) and
over 5 million individual terms (n). The computational complexity of
the association computations is theoretically bounded to O(mn2). By
exploiting the distribution of the features the amount of operations which
need to be executed can be considerably reduced. Finally the computation of
a feature association graph for the Wikipedia data-set takes 7.5 hours on a
desktop class machine479 for this data set. 479 See page 186 for a complete run-time

analysis.Given that the computation of the feature associations can be conducted
in a distributed manner480, even larger data set are feasible to be processed. 480 The section starting on page 137 is

dedicated on how the feature association
framework can be integrated into existing
distributed execution environments, like for
example map-reduce.

What are the limits of this approach?

This section does not address potential problems of the approach, but tries to
discuss the limits of the feature association framework. These limits can be
categories into two groups:

• Limits of the algorithmic approach

• Limits of the reference implementation of the algorithm

The inherent computational complexity of computing association be-
tween features is at least quadratic. Reducing these computational costs
can only be successful when exploiting characteristics of the nature of the
features at hand. In many cases the features will follow certain distributions.
If the distribution is known, a specialised approach can provide considerable
beneVts in order to reduce the number of necessary operations.

In many knowledge discovery applications the features turn out to be
power-law distributed481. If no such distribution is found for the data, one 481 Please see section starting on page

199, where this property is shown for a
broad folksonomy whereby the feature
association framework has been used for
the computations.

has to resort to a brute force approach or accept a loss of quality, if the data
set exceeds a certain size.

Another potential bottleneck of the feature association computations
may reside outside the main algorithm. One of the key features of the fea-
ture association framework is the ability to integrate external information
sources. If these sources fail to be able to deliver the requested information
in a timely manner, the computation as a whole will suUer.

As discussed in the section dedicated to the feature association func-
tion482, not all functions may be eligible for their use within the feature 482 See pages 98U for an in depth description

of the constrains imposed on the feature
association function

association framework. Certainly such functions do exists, although none
were encountered so far for any given application scenario. Reformulating
an existing function into the structure required by the feature association
functions appears to be the more probable cause to not consider integrating
the feature association framework.

248 a feature association framework for knowledge discovery applications

The limitations of the reference implementation are much less severe,
as they can easily be counteracted by adding the required functionality.
For instance the BM25 weighting function483 has not been supported by 483 S. Robertson and M. Gatford. Okapi at

TREC-4. In Proceedings of the Fourth Text
Retrieval Conference, pages 73–97, 1996

the reference implementation. Therefore the implementation needed to be
adapted.

In addition one is not restricted to use the reference implementation.
For dedicated purpose one might choose to implement just a subset of the
required functionality of the feature association framework.

conclusions 249

Summary & Outlook

This section gives a short overview of the feature association
framework in the context of knowledge discovery applications.
The main concepts behind the algorithms of the framework and its
implementation are highlighted. Finally the main results from the
evaluations are presented.

Many knowledge discovery applications share the same basic structure.
In the beginning plain data is collected and stored. Next this data is pre-
processed, for example Vle-formats are converted and noise is removed.
The output of this step is managed using data-structures, which depend on
the data itself as well as on practical constrains, like for example available
storage space and data access times.

The pre-processed data is then transformed into features. This step is
crucial for many applications, as the features should provide a distilled view
upon the raw data. Due to its importance, usually this feature engineering
step is conducted in multiple stages.

In feature analysis phase one tries to identify patterns within the data,
which may help solving the problem at hand. At the end of the feature
engineering the data set has been transformed into a representation suitable
for knowledge discovery algorithms. The output of these algorithms can
then be either be fed to further processing stages or presented to users.
Therefore visualisation techniques are applied to allow the user to navigate
the results, often allowing interactive interactions. Alternatively reports are
generated which sum up the results of the information extraction processes.

The feature association framework is a tool to analyse the relationship
between features within a data set. It may provide beneVts at two stages
of this processing pipeline. At Vrst, during the feature analysis phase,
it contributes in the processes of gaining a better understanding of the
available information contained in the data. Secondly, the information
encoded in the relationships can be exploited and made available to the
further processing steps. In this scenario, the feature association framework
serves as an additional feature transformation stop within the pipeline of the
knowledge discovery application.

Iterative Generalisations

The feature association framework has been developed in an iterative way.
Guided by increasingly more complex problems, the framework and its
algorithms have been improved to Vnally allow a high degree of Wexibility.
Starting with simple setup to compute the association between features, the
framework has been generalised in three areas:

• Algorithmic

• Input and output data-structures

• Integration of external knowledge sources

The algorithms within the feature association framework have been
iteratively been reworked allowing increasingly more Wexibility. This is
especially true for the functions that are responsible to compute the strength
of the association between two features. There are multiple ways where
custom algorithmic steps can be integrated into the computations. This way
a complete knowledge discovery processing pipelines can be used internally
to build the feature associations.

250 a feature association framework for knowledge discovery applications

The most frequent usage of the feature association framework is it to
integrate it into existing knowledge discovery applications. Therefore it
needs to be Wexible in terms of its input and output data sources. It should
be easy to adapt the speciVc features of a data set to make them suitable to
extract the most relevant relationships between features. The same rationale
can be applied on the output data-structure, as succeeding processing steps
need to access the results of the feature association computations.

The input data-structure originally started out as a simple matrix. In
many knowledge discovery applications, the data is represented as matrix
of instances and features484. This representation is also known as vector 484 For textual data, instances will often be

documents and features are usually words
that occur in the documents.

space model. Although its wide use this data-structure is limited and does
not allow to store additional meta-data. This meta-data may prove to be
beneVcial and therefore the input data-structure has been remodelled to
allow a more richer representation of the data.

A matrix can also be seen as a bi-partide graph. Therefore the logical
generalisation of the input data-structure is to increase the level of ab-
straction of the graph structure. The input data-structure of the feature
association framework is a n-partide graph, where n is not limited to a spe-
ciVc upper bound485. In addition each relation within this graph may carry 485 Alternatively this generalisation step

can also be seen as a transition from 2D
matrices to n-dimensional tensors.

additional meta-data. The structure of this meta-data is up to the knowledge
discovery application and the used feature association functions.

The output data-structure holds the results of the feature association
calculations. This data-structure has also undergone a generalisation step.
In its most simple form, the output consists of pairs of features with an
additional weight, which reWects the strength of the association. This output
structure has been remodelled into a graph. By using this representation it is
possible to eXciently traverse the network of associations.

Application, which integrate the feature association framework, may
now choose to directly work with the association network or make use
of the available retrieval operations. The most sophisticated retrieval
method is based on a spreading activation scheme, where the graph of
features is traversed in order to detect common patterns within the feature
relationships.

The Vnal generalisation aim at integrating external sources into the
association computations. In some scenarios, the statistics gathers from the
data set are not suXcient and one want to exploit existing knowledge bases.
To address this use-case, the feature association functions may choose to
make use of the internal statistics or resort to external sources for additional
information about the features being processed.

EXcient Implementation

The feature association framework does not only exist as an abstract algo-
rithm, but there is also an reference implementation. This implementation
is available as open-source allowing external contributors to improve the
existing code base. During the development the main focus has been to
provide an implementation that is as eXcient as possible without sacriVcing
the quality of the results. Having a eXcient implementation should help to
foster the acceptable of the feature association framework.

The algorithms have already been developed to provide a foundation for
an eXcient implementation. For example the fact the many feature follow
a power law distribution is honoured by the way the input is read-out
by the algorithm. Furthermore the algorithm is compatible with existing
distributed execution paradigms. This should allow the computations to
scale with the size of the data-sets.

A number of approaches has been followed to ensure a low run-time cost,
which can be categorised into groups:

conclusions 251

Heuristics A number of heuristics restrict the search scope to Vnd relevant
feature associations. For example, from a feature, which is just used a
few times, no robust statistical properties can be deducted. The individ-
ual threshold of these heuristics can be controlled by the application and
can therefore be tuned to the speciVc data set at hand.

Algorithmic Approach The central part of the implementation is to
eXciently weld together information from many diUerent parts of the
data set. For contemporary computing infrastructures it is essential
that as much data as possible it kept in memory and disc access should
always be conducted in a sequential manner.

Storage Coupled with the algorithmic approach is the choice of how the
data-structures are managed. The storage should be eXcient and allow
the data to be stored in a distributed manner. Therefore the implementa-
tion make use of existing open-source libraries, which have been used in
many projects and proven to be reliable.

Diverse Applications

To demonstrate the usefulness of feature associations in knowledge dis-
covery applications, a series of evaluation scenarios have been presented.
These scenarios stem from three diUerent domains in the Veld of knowledge
discovery: social web, information retrieval and natural language processing.
For each of these Velds at least two applications have been selected.

Out of the domain of Social Web the application scenarios were:

Tag Recommender The feature association framework is used in this
scenario as an item based recommender system. The data-set consists
of images taken from a popular photo sharing site486. Additionally to 486 http://www.flickr.com/

the photos, additional meta-data like tags and user-ids were acquired.
In this scenario the most basic conVguration of the feature association
framework has been applied.

Broad Folksonomy Analyzis The folksonomy of a popular bookmarking
site487 serves as base for the analysis of a broach folksonomy. In contrast 487 http://del.icio.us/

to narrow folksonomies, these kind of folksonomies allow multiple users
to tag speciVc resources. For the data set the resources are web-sites.

The outcome of this analysis has been that most tags follow a power
law distribution. Furthermore the relationships between resources and
tags has been studied.

Narrow Folksonomy Analysis The relationship between photos and tags
in contrast to the relationship of multiple types of meta-data has been
studied in the next application scenario. A traditional folksonomies is
deVned as a tri-partide graph of users, resources and tags. This folkson-
omy has been expanded to contain other meta-data, for example the title,
description and comments.

One of the key Vnding has been that the words people use for com-
ments are to a large extend more speciVc to the author then to the photo
which has been commented.

The second application domain has been Information Retrieval, where
two application have been covered:

Query Translation In this application scenario, a collaboratively written
encyclopedia serves as base for query translation. The application started
out as an monolingual information retrieval system. The query transla-
tion processing has later been added to allow queries to be formulated in
language other than the language of the document in the search index.

http://www.flickr.com/
http://del.icio.us/

252 a feature association framework for knowledge discovery applications

To assess the impact of the query translation step, it has been also
applied on the original language of the document. Three diUerent
weighting strategies were evaluated and it has been found, that the
additional translation does not seriously deter the information retrieval
performance.

Query Expansion Global query expansion is a standard technique in
the Veld of information retrieval where the original query of a user is
automatically expanded by related terms before sending it to the search
engine. These related terms may be taken from an existing knowledge
base, or alternatively computed by the documents within the search
index. The latter approach has been taken for the presented application.

The feature association framework has been utilised to analyse the docu-
ments and to compute semantically related words. During the retrieval
stage, the input query is taken as starting point in the association net-
work. The words with the highest association weight are then added to
the query.

In the evaluation conVgurations which employ the query expansion step
did outperform the conVgurations without query expansion.

The third domain is Natural Language Processing. Here two appli-
cation have been presented which made use of the feature association
framework.

Cross-Lingual Text Reuse Automatic plagiarism detection has stirred
much interest in recent times. The technical base of such a system is an
algorithm to uncover reuse of passages of text. In such a scenario the
scalability of the system is the most demanding problem to solve. Each
suspicious document needs to be compared with all documents in the
database. This is true even if sophisticated heuristics to limit the search
scope and thus the number of comparison operations needed.

In the case of cross-lingual plagiarism detection one has identify passages
that were lifted from document written in a diUerent language. The fea-
ture association framework has been used for such a system to retrieve
translation candidates. By taking this approach the core algorithms of the
text-reuse system need only be moderately be modiVed.

The evaluation did show that the translation processing is eUective, both
in terms of quality of the results, as of the time needed to retrieve the
translation candidates.

Word Sense Induction and Discrimination The Vnal presented appli-
cation scenario is the most demanding in regard to the requirements
imposed upon the feature association framework. Furthermore word
sense induction and discrimination is a task, where human excel, but
machines still struggle to provide usable results. To tackle this problem
the word sense induction problem has been reformulated into a problem
to Vnd the most signiVcant associations between an ambiguous word and
accompanying function words.

Therefore the computations of the associations has been enhanced by
integrating an unsupervised machine learning algorithm. The input has
been modelled to contain not only the plain textual information, but
also carries a number of meta-data, for example syntactic information
gathered from linguistic analysis tools. In addition external sources have
been adapted to integrate semantic information into the calculations. On
top of the functional requirements, the feature association computations
need to scale to the amount of data available.

conclusions 253

The evaluation of the word sense induction and discrimination showed
that this approach works suXciently well for a number of ambiguous
words. Especially satisfying is the fact that the words which demon-
strated the best performance are complementary to the set of ambiguous
words whose senses are best distinguished using a more traditional
approach.

Future of the Feature Association Framework

There are a number of ways, the feature association framework can be
further developed. On the other hand the generalisation steps appear to
driven the core algorithms to point, where each added Wexibility will have
pronounced side-eUects on the applicability. One of the main advantages
of the feature association framework is its easy integration into existing
applications. Therefore the further expansion of the core algorithms and
data-structures does not appear to be the preferred way for future develop-
ment.

In the area of distributed computing there is still room for improvement.
As the available data-sets grow bigger, the demand for scalable solutions is
growing. Much research will be directed at improving existing algorithms
to cope with big data. Therefore the development of the feature associa-
tion framework should anticipate improvements in the way distributed
computing is conducted.

Relationship between features for certain will have their use in future
applications. Therefore in addition to the presented application scenarios,
there will be multiple use-cases, where the feature association framework
will prove beneVcial. This will be the case for extending existing applica-
tions as well as developing application with feature associations as their
main component.

In the future the feature association framework should also broaden
its scope for domains, which are not yet covered. For example, it will be
integrated into application that are not directly linked with knowledge
discovery. Whether this step will require fundamental changes to the
algorithms remains to be seen.

Bibliography

[1] E. Agirre, P. Edmonds, A. KilgarriU, N. Ide, Y. Wilks, M. Steven-
son, J. Gonzalo, L. Màrquez, F. Verdejo, G. Escudero, P. Buitelaar,
B. Magnini, C. Strapparava, P. Vossen, P. Resnik, D. Martínez,
M. Palmer, G. Rigau, H. T. Ng, H. T. Dang, R. Mihalcea, and T. Ped-
ersen. Word Sense Disambiguation: Algorithms and Applications.
Springer, 2007.

[2] E. Agirre, O. L. D. Lacalle, and B. Country. UBC-ALM : Combining
k-NN with SVD for WSD Eneko Agirre and Oier Lopez de Lacalle.
Computational Linguistics, (June):342–345, 2007.

[3] E. Agirre and A. Soroa. Semeval-2007 task 02: Evaluating word
sense induction and discrimination systems. Proceedings of the 4rth
International Workshop on Semantic Evaluations, (June):7–12, 2007.

[4] E. Agirre and A. Soroa. UBC-AS: A Graph Based Unsupervised System
for Induction and ClassiVcation. Proceedings of the 4rth International
Workshop on Semantic Evaluations, (June):346–349, 2007.

[5] R. Agrawal and R. Srikant. Fast Algorithms for Mining Association
Rules in Large Databases. In J. B. Bocca, M. Jarke, and C. Zaniolo,
editors, Journal of Computer Science and Technology, volume 15 of
VLDB ’94, pages 487–499. Morgan Kaufmann Publishers Inc., Morgan
Kaufmann Publishers Inc., 1994.

[6] D. W. Aha, D. Kibler, and M. K. Albert. Instance-based learning
algorithms. Machine learning, 6(1):37–66, 1991.

[7] D. G. Altman, J. J. Deeks, and D. L. Sackett. Odds ratios should
be avoided when events are common. British Medical Journal,
317(7168):1318, 1998.

[8] G. Amati and C. J. Van Rijsbergen. Probabilistic models of information
retrieval based on measuring the divergence from randomness. ACM
Trans. Inf. Syst., 20(4):357–389, Oct. 2002.

[9] C. Anderson. The Long Tail. Wired, 12(10):170–177, 2004.

[10] J. R. Anderson. A spreading activation theory of memory. Journal of
verbal learning and verbal behavior, 22(3):261–295, 1983.

[11] D. Arthur and S. Vassilvitskii. k-means++: The advantages of
careful seeding. In Proceedings of the eighteenth annual ACM-SIAM
symposium on Discrete algorithms, pages 1027–1035. Society for
Industrial and Applied Mathematics Philadelphia, PA, USA, 2007.

[12] N. Ashish and C. A. Knoblock. Semi-automatic wrapper generation
for internet information sources. In coopis, page 160. Published by the
IEEE Computer Society, 1997.

256 a feature association framework for knowledge discovery applications

[13] A.-L. Barabási. Linked: The New Science of Networks, volume 71.
Perseus, 2002.

[14] A. J. Bell. The co-information lattice. In Proceedings of the Fifth
International Workshop on Independent Component Analysis and
Blind Signal Separation: ICA 2003, 2003.

[15] R. M. Bell, Y. Koren, and C. Volinsky. The BellKor solution to the
NetWix prize. KorBell Team’s Report to NetWix, 2007.

[16] I. Ben-Gal. Outlier detection for high dimensional data. ACM Sigmod
Record, 2001.

[17] D. Blei, A. Ng, and M. Jordan. Latent dirichlet allocation. The Journal
of Machine Learning Research, 3:993–1022, 2003.

[18] BNC Consortium. The British National Corpus. Distributed by Oxford
University Computing Services on behalf of the BNC Consortium,
2007.

[19] B. W. Boehm. A spiral model of software development and enhance-
ment. Computer, 21(5):61–72, 1988.

[20] P. Boldi and S. Vigna. The webgraph framework I: compression
techniques. In Proceedings of the 13th international conference on
World Wide Web, pages 595–602. ACM, 2004.

[21] P. Boldi and S. Vigna. The webgraph framework ii: Codes for the
world-wide web. In Data Compression Conference, 2004. Proceedings.
DCC 2004, page 528. IEEE, 2005.

[22] S. Bordag. A comparison of co-occurrence and similarity measures as
simulations of context. In Proceedings of the 9th international con-
ference on Computational linguistics and intelligent text processing,
CICLing’08, pages 52–63, Berlin, Heidelberg, 2008. Springer-Verlag.

[23] D. Borthakur. The hadoop distributed Vle system: Architecture and
design. Technical report, 2007.

[24] M. Brand. Fast online svd revisions for lightweight recommender
systems. In SIAM International Conference on Data Mining, pages
37–46, 2003.

[25] M. Brand. Fast low-rank modiVcations of the thin singular value
decomposition. Linear Algebra and its Applications, 415(1):20–30, 2006.

[26] J. S. Breese, D. Heckerman, C. Kadie, and Others. Empirical analysis of
predictive algorithms for collaborative Vltering. In Proceedings of the
14th conference on Uncertainty in ArtiVcial Intelligence, pages 43–52,
1998.

[27] E. Brill. A simple rule-based part of speech tagger. In Proceedings of
the third conference on Applied natural language processing, pages
152–155. Association for Computational Linguistics, 1992.

[28] S. Brin and L. Page. The anatomy of a large-scale hypertextual Web
search engine. Computer networks and ISDN systems, 30(1-7):107–117,
1998.

[29] T. Briscoe, J. Carroll, and R. Watson. The second release of the RASP
system. Proceedings of the COLING/ACL on Interactive presentation
sessions -, (July):77–80, 2006.

bibliography 257

[30] S. Brody and M. Lapata. Bayesian Word Sense Induction. Computa-
tional Linguistics, (April):103–111, 2009.

[31] C. Buckley, G. Salton, J. Allan, and A. Singhal. Automatic Query
Expansion Using SMART: TREC 3. In In Practice, pages 69–80. NIST,
1994.

[32] J. A. Bullinaria and J. P. Levy. Extracting semantic representations
from word co-occurrence statistics: A computational study. Behavior
Research Methods, 39(3):510, 2007.

[33] R. Burke. Knowledge-based recommender systems. Encyclopedia of
Library and Information Systems, 69(Supplement 32):175–186, 2000.

[34] L. Burnard. Reference Guide for the British National Corpus (XML
Edition), 2007.

[35] S. Büttcher and C. L. A. Clarke. Indexing time vs. query time: trade-
oUs in dynamic information retrieval systems. In Proceedings of the
14th ACM international conference on Information and knowledge
management, pages 317–318. ACM, 2005.

[36] D. Carmel, E. Farchi, Y. Petruschka, and A. SoUer. Automatic query
reVnement using lexical aXnities with maximal information gain.
Proceedings of the 25th annual international ACM SIGIR conference
on Research and development in information retrieval SIGIR 02, page
283, 2002.

[37] D. Carmel, H. Roitman, and N. Zwerdling. Enhancing cluster labeling
using wikipedia. In Proceedings of the 32nd international ACM SIGIR
conference on Research and development in information retrieval
- SIGIR ’09, pages 139–146, New York, New York, USA, 2009. ACM
Press.

[38] C. Cattuto, A. Baldassarri, V. D. P. Servedio, and V. Loreto. Vocabulary
growth in collaborative tagging systems. arXiv, 704, 2007.

[39] C. Cattuto, V. Loreto, and L. Pietronero. Semiotic dynamics and
collaborative tagging. Proceedings of the National Academy of Sciences,
104(5):1461, 2007.

[40] J. Cendrowska. PRISM: An algorithm for inducing modular rules.
International Journal of ManMachine Studies, 27(4):349–370, 1987.

[41] Y. S. Chan, H. T. Ng, and Z. Zhong. NUS-PT: Exploiting Parallel
Texts for Word Sense Disambiguation in the English All-Words Tasks.
Computational Linguistics, (June):253–256, 2007.

[42] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Bur-
rows, T. Chandra, A. Fikes, and R. E. Gruber. Bigtable: A distributed
storage system for structured data. Proceedings of the 7th USENIX Sym-
posium on Operating Systems Design and Implementation OSDI’06,
26(2):1–26, 2006.

[43] P. Chen, W. Ding, C. Bowes, and D. Brown. A fully unsupervised word
sense disambiguation method using dependency knowledge. Human
Language Technology Conference, 2009.

[44] E. Chi and T. Mytkowicz. Understanding the eXciency of social
tagging systems using information theory. In Proceedings of the
nineteenth ACM conference on Hypertext and hypermedia, pages
81–88. ACM, 2008.

258 a feature association framework for knowledge discovery applications

[45] K. W. Church and W. A. Gale. Poisson mixtures. Natural Language
Engineering, 1(02):163–190, 1995.

[46] K. W. Church and P. Hanks. Word association norms, mutual
information, and lexicography. Computational linguistics, 16(1):22–29,
1990.

[47] P. Clough, R. Gaizauskas, S. S. L. Piao, and Y. Wilks. METER: MEasur-
ing TExt Reuse. Annual Meeting of the ACL, page 152, 2002.

[48] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction
to algorithms. The MIT press, 2009.

[49] T. M. Cover, J. A. Thomas, and J. Wiley. Elements of information
theory, volume 1. Wiley Online Library, 1991.

[50] F. Crestani. Application of spreading activation techniques in
information retrieval. ArtiVcial Intelligence Review, 11(6):453–482,
1997.

[51] F. Curatelli and O. Mayora-Ibarra. Competitive learning methods for
eXcient vector quantizations in a speech recognition environment.
MICAI 2000: Advances in ArtiVcial Intelligence, pages 108–114, 2000.

[52] D. Cutting, D. Karger, J. Pedersen, and J. Tukey. Scatter/gather: A
cluster-based approach to browsing large document collections. In
Proceedings of the 15th annual international ACM SIGIR conference
on Research and development in information retrieval, pages 318–329.
ACM New York, NY, USA, 1992.

[53] I. Dagan, F. Pereira, and L. Lee. Similarity-based estimation of word
cooccurrence probabilities. In of the 32nd annual meeting on, pages
272–278, 1994.

[54] M. Daszykowski, B. Walczak, and D. L. Massart. On the optimal
partitioning of data with K-means, growing K-means, neural gas, and
growing neural gas. Journal of chemical information and computer
sciences, 42(6):1378–89, 2002.

[55] M. de MarneUe, B. MacCartney, and C. Manning. Generating typed
dependency parses from phrase structure parses. In LREC 2006, 2006.

[56] J. Dean and S. Ghemawat. MapReduce: SimpliVed data processing on
large clusters. Communications of the ACM, pages 1–13, 2008.

[57] J. Deeks, M. B. Bracken, J. C. Sinclair, H. T. O. Davies, M. Tavakoli,
and I. K. Crombie. When can odds ratios mislead? British Medical
Journal, 317(7166):1155, 1998.

[58] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and
R. Harshman. Indexing by latent semantic analysis. Journal of the
American society for information science, 41(6):391–407, 1990.

[59] K. Dellschaft and S. Staab. Understanding the Dynamics in Tagging
Systems. Proceedings of the European Future . . . , 2009.

[60] M. Deshpande and G. Karypis. Item-based top-n recommendation
algorithms. ACM Transactions on Information Systems (TOIS),
22(1):143–177, 2004.

[61] I. Dhillon, Y. Guan, and B. Kulis. Kernel k-means: spectral clustering
and normalized cuts. In Proceedings of the tenth ACM SIGKDD
international conference on Knowledge discovery and data mining,
pages 551–556. ACM New York, NY, USA, 2004.

bibliography 259

[62] I. S. Dhillon, S. Mallela, and D. S. Modha. Information-theoretic
co-clustering. In Proceedings of the ninth ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 89–98.
ACM, 2003.

[63] E. W. Dijkstra. A note on two problems in connexion with graphs.
Numerische mathematik, 1(1):269–271, 1959.

[64] L. Dolamic, C. Fautsch, and J. Savoy. UniNE at CLEF 2008: TEL, and
Persian IR. Evaluating Systems for Multilingual and Multimodal
Information Access, pages 178–185, 2009.

[65] N. Draper, H. Smith, and E. Pownell. Applied regression analysis.
Wiley New York, 3rd editio edition, 1998.

[66] D. Dubin. The most inWuential paper Gerard Salton never wrote.
Status: published or submitted for publication, 2004.

[67] E. N. Efthimiadis. Query Expansion. Annual Review of Information
Systems and Technology ARIST, 31(1):121–187, 1996.

[68] A. El-Hamdouchi and P. Willett. Comparison of hierarchic agglomera-
tive clustering methods for document retrieval. The Computer Journal,
32(3):220, 1989.

[69] S. Evert. The statistics of word cooccurrences: word pairs and colloca-
tions. Stuttgart, 2005.

[70] H. Fang, T. Tao, and C. Zhai. A formal study of information retrieval
heuristics. In Proceedings of the 27th annual international ACM SIGIR
conference on Research and development in information retrieval,
SIGIR ’04, pages 49–56, New York, NY, USA, 2004. ACM.

[71] H. Fang and C. Zhai. An exploration of axiomatic approaches to
information retrieval. Proceedings of the 28th annual international
ACM SIGIR conference on Research and development in information
retrieval, pages 480–487, 2005.

[72] P. Fankhauser and W. Nejdl. Boilerplate Detection using Shallow Text
Features. Text, 2010.

[73] U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. From data mining to
knowledge discovery in databases. AI magazine, 17(3):37, 1996.

[74] U. M. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. From data mining
to knowledge discovery: an overview. In U. Fayyad, G. Piatetsky-
Shapiro, and P. Smyth, editors, Advances in Knowledge Discovery
and Data Mining, chapter 1, pages 1–34. American Association for
ArtiVcial Intelligence, 1996.

[75] C. Fellbaum. WordNet: An electronic lexical database. The MIT press,
1998.

[76] J. R. Finkel, T. Grenager, and C. Manning. Incorporating non-local
information into information extraction systems by Gibbs sampling.
Proceedings of the 43rd Annual Meeting on Association for Computa-
tional Linguistics ACL 05, 43(1995):363–370, 2005.

[77] P. A. Flach and N. Lachiche. ConVrmation-Guided Discovery of
First-Order Rules with Tertius. Machine Learning, 42(1):61–95, 2001.

260 a feature association framework for knowledge discovery applications

[78] G. Forman. Choose Your Words Carefully : An Empirical Study of
Feature Selection Metrics for Text ClassiVcation document Choose
Your Words Carefully : An Empirical Study of Feature Selection
Metrics for Text ClassiVcation. In Proceedings of the 13th European
Conference on Machine Learning (ECML ’02), number August, 2002.

[79] G. E. Forsythe, M. A. Malcolm, and C. B. Moler. Computer methods
for mathematical computations. Prentice Hall Professional Technical
Reference, 1977.

[80] W. N. Francis and H. Kucera. Brown Corpus Manual. Brown
University, 1979.

[81] D. Freitag, M. Blume, J. Byrnes, E. Chow, S. Kapadia, R. Rohwer,
and Z. Wang. New experiments in distributional representations
of synonymy. In Proceedings of the Ninth Conference on Compu-
tational Natural Language Learning, pages 25–32. Association for
Computational Linguistics, 2005.

[82] B. J. Frey and D. Dueck. Clustering by passing messages between data
points. Science (New York, N.Y.), 315(5814):972–6, Feb. 2007.

[83] T. M. J. Fruchterman and E. M. Reingold. Graph drawing by force-
directed placement. Software Practice and Experience, 21(11):1129–
1164, 1991.

[84] J. Fürnkranz. A study using n-gram features for text categorization.
Austrian Research Institute for ArtiVcial Intelligence Technical Report
OEFAI-TR-98-30 Schottengasse, 3(1998):1–10, 1998.

[85] W. Gale and G. Sampson. Good-Turing smoothing without tears.
Journal of Quantitative Linguistics, 2(3):217–237, 1995.

[86] W. A. Gale and K. W. Church. A Program for Aligning Sentences in
Bilingual Corpora. Computational Linguistics, 19(1):75–102, 1991.

[87] S. Ghemawat, H. GobioU, and S. T. Leung. The Google Vle system.
ACM SIGOPS Operating Systems Review, 37(5):29–43, 2003.

[88] S. Golder and B. A. Huberman. The structure of collaborative tagging
systems. Arxiv preprint cs/0508082, 2005.

[89] M. L. Goldstein, S. A. Morris, and G. G. Yen. Problems with Vtting
to the power-law distribution. The European Physical Journal
B-Condensed Matter and Complex Systems, 41(2):255–258, 2004.

[90] D. GraU, J. Kong, K. Chen, and K. Maeda. English gigaword. Linguistic
Data Consortium, Philadelphia, 2003.

[91] S. Gries. Dispersions and adjusted frequencies in corpora. Interna-
tional Journal of Corpus Linguistics, 13(4):403–437, 2008.

[92] J. R. Gruser, L. Raschid, M. E. Vidal, and L. Bright. Wrapper generation
for web accessible data sources. In coopis, page 14. Published by the
IEEE Computer Society, 1998.

[93] J. Guyot, G. Falquet, S. Radhouani, and K. Benzineb. UNIGE Experi-
ments on Robust Word Sense Disambiguation. In Evaluating Systems
for Multilingual and Multimodal Information Access, 2008.

[94] K. Hacioglu. A lightweight semantic chunking model based on
tagging. In Proceedings of HLT-NAACL 2004: Short Papers on XX,
pages 145–148. Association for Computational Linguistics, 2004.

bibliography 261

[95] M. A. Hall. Correlation-based Feature Selection for Machine Learning.
Methodology, 21i195-i20(April):17, 1999.

[96] D. K. Harman. The TREC test collections. TREC: Experiment and
evaluation in information retrieval, pages 21–52, 2005.

[97] P. Harrington. Machine Learning in Action. Manning Publication Co.,
2012.

[98] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the
heuristic determination of minimum cost paths. IEEE transactions on
Systems Science and Cybernetics, 4(2):100–107, 1968.

[99] A. Harth and S. Decker. Optimized index structures for querying
rdf from the web. InWeb Congress, 2005. LA-WEB 2005. Third Latin
American, page 10. IEEE, 2006.

[100] H. S. Heaps. Information retrieval: Computational and theoretical
aspects, volume 60. Academic Press New York, NY, 1978.

[101] M. A. Hearst. Automatic acquisition of hyponyms from large text
corpora. In Proceedings of the 14th conference on Computational
linguistics, volume II of COLING ’92, pages 539–545. Association for
Computational Linguistics Morristown, NJ, USA, Association for
Computational Linguistics, 1992.

[102] M. Heckner, M. Heilemann, and C. WolU. Personal information
management vs. resource sharing: Towards a model of information
behaviour in social tagging systems. In Int’l AAAI Conference on
Weblogs and Social Media (ICWSM), 2009.

[103] G. Hirst. Distributional Measures as Proxies for Semantic Relatedness.
2005.

[104] C. A. R. Hoare. Quicksort. The Computer Journal, 5(1):10, 1962.

[105] T. Hofmann. Probabilistic latent semantic indexing. In Proceedings of
the 22nd annual international ACM SIGIR conference on Research and
development in information retrieval, pages 50–57. ACM, 1999.

[106] N. Ide and C. Macleod. The American National Corpus: A Stan-
dardized Resource of American English. In Proceedings of Corpus
Linguistics 2001, pages 274–280. Citeseer, 2001.

[107] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad: distributed
data-parallel programs from sequential building blocks. ACM SIGOPS
Operating Systems Review, 41(3):59–72, 2007.

[108] R. Jäschke, L. Marinho, A. Hotho, L. Schmidt-Thieme, and G. Stumme.
Tag Recommendations in Folksonomies. Knowledge Discovery in
Databases PKDD 2007, 4702(May):506–514, 2007.

[109] S. Y. Jianbo, S. X. Yu, and J. Shi. Multiclass Spectral Clustering. In
In International Conference on Computer Vision, pages 313–319. In
International Conference on Computer Vision, 2003.

[110] L. Jing, H. Huang, and H. Shi. Improved Feature Selection Approach
TFIDF in Text Mining. In Proceedings of the First International
Conference on Machine Learning and Cybernetics, volume 4, page 5,
2002.

[111] T. Joachims. A probabilistic analysis of the Rocchio algorithm with
TFIDF for text categorization. In Machine learning: proceedings of the
fourteenth International Conference (ICML’97), 1997.

262 a feature association framework for knowledge discovery applications

[112] W. P. Jones and G. W. Furnas. Pictures of relevance: A geometric
analysis of similarity measures. Journal of the American society for
information science, 38(6):420–442, 1987.

[113] A. JuXnger, R. Kern, and M. Granitzer. Crosslanguage Retrieval
based on Wikipedia Statistics. In Proceedings of 8th Workshop of
the Cross-Language Evaluation Forum, CLEF 2008, 17-19 September,
Aarhus, Denmark, 2008.

[114] A. JuXnger, R. Kern, and M. Granitzer. Exploiting Cooccurrence on
Corpus and Document Level for Fair Crosslanguage Retrieval. In
Working Notes for the CLEF 2008 Workshop, 17-19 September, Aarhus,
Denmark, 2008.

[115] A. JuXnger, T. Neidhart, A. Weichselbraun, G. Wohlgenannt,
M. Granitzer, R. Kern, and A. Scharl. Distributed Web2.0 crawl-
ing for ontology evolution. In Proc 2nd International Conference on
Digital Information Management ICDIM 07, volume 2, pages 615–620.
Ieee, 2007.

[116] Juilland A., D. R. Brodin, and C. Davidovitch. Frequency dictionary
of french words. 1970.

[117] R. Kern and M. Granitzer. EXcient linear text segmentation based
on information retrieval techniques. In MEDES ’09: Proceedings of
the International Conference on Management of Emergent Digital
EcoSystems, pages 167–171, 2009.

[118] R. Kern and M. Granitzer. German Encyclopedia Alignment Based on
Information Retrieval Techniques. In M. Lalmas, J. Jose, A. Rauber,
F. Sebastiani, and I. Frommholz, editors, Research and Advanced
Technology for Digital Libraries, pages 315–326. Springer Berlin /
Heidelberg, 2010.

[119] R. Kern, M. Granitzer, and V. Pammer. Extending Folksonomies for
Image Tagging. InWIAMIS 2008 , Special Session on Multimedia
Metadata Management & Retrieval. IEEE Computer Society, 2008.

[120] R. Kern, A. JuXnger, and M. Granitzer. Application of Axiomatic
Approaches to Crosslanguage Retrieval. In CLEF 2009 Workshop, pages
142–149, 2009.

[121] R. Kern, A. JuXnger, and M. Granitzer. Evaluation of Axiomatic
Approaches to Crosslanguage Retrieval. In Multilingual Information
Access Evaluation Vol. I Text Retrieval Experiments, 2009.

[122] R. Kern, C. Körner, and M. Strohmaier. Exploring the InWuence of
Tagging Motivation on Tagging Behavior. In Research and Advanced
Technology for Digital Libraries, pages 461–465, 2010.

[123] R. Kern, M. Muhr, and M. Granitzer. KCDC: Word Sense Induction by
Using Grammatical Dependencies and Sentence Phrase Structure. In
Proceedings of SemEval-2, Uppsala, Sweden, ACL, 2010.

[124] R. Kern, C. Seifert, and M. Granitzer. A hybrid system for German
encyclopedia alignment. International Journal on Digital Libraries,
11(2):75–89, Sept. 2011.

[125] R. Kern, C. Seifert, M. Zechner, and M. Granitzer. Vote/Veto Meta-
ClassiVer for Authorship IdentiVcation. In In 3nd International
Competition on Plagiarism Detection, 2011.

bibliography 263

[126] R. Kern, M. Zechner, and M. Granitzer. Model Selection Strategies for
Author Disambiguation. In IEEE Computer Society: 8th International
Workshop on Text-based Information Retrieval in Procceedings of
22th International Conference on Database and Expert Systems
Applications (DEXA 11), pages 155–160. IEEE, 2011.

[127] I. Klapaftis and S. Manandhar. UOY: a hypergraph model for word
sense induction \& disambiguation. Proceedings of the 4th Interna-
tional Workshop on Semantic Evaluations, (June):414–417, 2007.

[128] D. Klein and C. Manning. Fast exact inference with a factored
model for natural language parsing. Advances in Neural Information
Processing Systems, pages 3—-10, 2003.

[129] D. Klein and C. D. Manning. Accurate unlexicalized parsing. Proceed-
ings of the 41st Annual Meeting on Association for Computational
Linguistics - ACL ’03, pages 423–430, 2003.

[130] D. Klein and G. Murphy. Paper has been my ruin: conceptual relations
of polysemous senses. Journal of Memory and Language, 47(4):548–570,
Nov. 2002.

[131] J. M. Kleinberg. Authoritative sources in a hyperlinked environment.
Journal of the ACM (JACM), 46(5):604–632, 1999.

[132] W. Klieber, V. Sabol, R. Kern, M. Muhr, and M. Granitzer. Using
Ontologies For Software Documentation. In Proc Malaysian Joint
Conference on ArtiVcial Intelligence MJCAI2009, 2009.

[133] W. Klieber, V. Sabol, M. Muhr, R. Kern, G. Öttl, and M. Granitzer.
Knowledge discovery using the KnowMiner framework. In IADIS
International Conference Information Systems, 2009.

[134] B. Klimt and Y. Yang. Introducing the Enron Corpus. Machine
Learning, stitutep1:wwceasccaers2004168, 2004.

[135] B. Klimt and Y. Yang. The Enron Corpus : A New Dataset for Email
ClassiVcation Research. In Machine Learning ECML 2004, volume 3201
of Lecture Notes in Computer Science, pages 217–226. Springer, 2004.

[136] P. Koehn. Europarl: A parallel corpus for statistical machine transla-
tion. MT summit, 5:12–16, 2005.

[137] A. Kontostathis and W. M. Pottenger. Detecting Patterns in the LSI
Term-Term Matrix. Workshop on the Foundation of Data Mining and
Discovery IEEE International Conference on Data Mining, 2002.

[138] C. Körner, R. Kern, H.-P. Grahsl, and M. Strohmaier. Of categorizers
and describers: An evaluation of quantitative measures for tagging
motivation. In HT ’10: Proceedings of the 21st ACM Conference on
Hypertext and Hypermedia, pages 157–166, 2010.

[139] S. Korsholm, M. Schoeberl, and A. P. Ravn. Interrupt handlers in Java.
In 11th IEEE Symposium on Object Oriented Real-Time Distributed
Computing (ISORC), pages 453–457. IEEE, 2008.

[140] K. Lang. 20 Newsgroups.

[141] Y. LeCun and C. Cortes. The MNIST Database of Handwritten Digits.

[142] L. Lee. Measures of Distributional Similarity. In Proceedings of the
37th annual meeting of the Association for Computational Linguistics
on Computational Linguistics, pages 25—-32, 1999.

264 a feature association framework for knowledge discovery applications

[143] Y. K. Lee and H. T. Ng. An Empirical Evaluation of Knowledge Sources
and Learning Algorithms for Word Sense Disambiguation. Proceedings
of the ACL-02 conference on Empirical methods in natural language
processing, pages 41–48, 2002.

[144] B. Lemaire and G. Denhière. Incremental construction of an associative
network from a corpus. In Proceedings of the 26th Annual Meeting of
the Cognitive Science Society, pages 825–830. Citeseer, 2004.

[145] D. D. Lewis. Reuters-21578, distribution 1.0. 1997.

[146] D. D. Lewis, Y. Yang, T. G. Rose, and F. Li. Rcv1: A new benchmark
collection for text categorization research. The Journal of Machine
Learning Research, 5:361–397, 2004.

[147] P. Liang, B. Taskar, and D. Klein. Alignment by agreement. In Pro-
ceedings of the main conference on Human Language Technology
Conference of the North American Chapter of the Association of Com-
putational Linguistics, pages 104–111. Association for Computational
Linguistics, 2006.

[148] C. Y. Lin and E. Hovy. Automatic evaluation of summaries using
n-gram co-occurrence statistics. In Proceedings of the 2003 Conference
of the North American Chapter of the Association for Computational
Linguistics on Human Language Technology-Volume 1, pages 71–78.
Association for Computational Linguistics, 2003.

[149] S. Lindstaedt, V. Pammer, R. Moerzinger, R. Kern, H. Mülner, and
C. Wagner. Recommending tags for pictures based on text, visual
content and user context. In Proceedings of the Third International
Conference on Internet and Web Applications and Services (ICIW
2008), pages 506–511. IEEE Computer Society Press, 2008.

[150] W. Lowe and S. McDonald. The direct route: Mediated priming in
semantic space. In Proceedings of the 22nd Annual conference of the
Cognitive Science Society, pages 675–680. Citeseer, 2000.

[151] M. Lux, M. Granitzer, and R. Kern. Aspects of Broad Folksonomies.
In 18th International Conference on Database and Expert Systems
Applications DEXA 2007, pages 283–287. Ieee, 2007.

[152] U. V. Luxburg. A Tutorial on Spectral Clustering. Technical Report
March, Max–Planck–Institut für biologische Kybernetik, 2007.

[153] S. Maji and J. Malik. Fast and accurate digit classiVcation. Technical
report, Citeseer, 2009.

[154] S. Manandhar, I. P. Klapaftis, D. Dligach, and S. S. Pradhan. SemEval-
2010 Task 14: Word Sense Induction & Disambiguation. In Proceedings
of SemEval-2, Uppsala, Sweden, ACL, 2010.

[155] T. Mandl and C. Womser-Hacker. The eUect of named entities on
eUectiveness in cross-language information retrieval evaluation. In
Proceedings of the 2005 ACM symposium on Applied computing, SAC
’05, pages 1059–1064, New York, NY, USA, 2005. ACM.

[156] C. D. Manning, P. Raghavan, and H. Schütze. Introduction to Informa-
tion Retrieval, volume 61. Cambridge University Press, 2008.

[157] M. P. Marcus, M. A. Marcinkiewicz, and B. Santorini. Building a large
annotated corpus of English: The Penn Treebank. Computational
linguistics, 19(2):330, 1993.

bibliography 265

[158] B. Markines, C. Cattuto, F. Menczer, D. Benz, A. Hotho, and
G. Stumme. Evaluating similarity measures for emergent semantics
of social tagging. In Proceedings of the 18th international conference
on World wide web, pages 641–650. ACM, 2009.

[159] C. Marlow, M. Naaman, D. M. Boyd, and M. Davis. HT06, tagging
paper, taxonomy, Flickr, academic article, to read. In U. K. Wiil,
P. J. Nürnberg, and J. Rubart, editors, Proceedings of the seventeenth
conference on Hypertext and hypermedia HYPERTEXT 06, volume 27
of HYPERTEXT ’06, pages 31–40. ACM, 2006.

[160] D. Martinez. Supervised Word Sense Disambiguation: Facing Current
Challenges. PhD thesis, 2004.

[161] D. Martinez and E. Agirre. One sense per collocation and genre/topic
variations. In Proceedings of the 2000 Joint SIGDAT conference on
Empirical methods in natural language processing and very large
corpora: held in conjunction with the 38th Annual Meeting of the
Association for Computational Linguistics - Volume 13, pages 207–
215, Morristown, NJ, USA, 2000. Association for Computational
Linguistics.

[162] Y. Matsuo and M. Ishizuka. Keyword extraction from a single docu-
ment using word co-occurrence statistical information. International
Journal on ArtiVcial Intelligence Tools, 13(1):157–170, 2004.

[163] H. Maurer, F. Kappe, and B. Zaka. Plagiarism - A Survey. Journal Of
Universal Computer Science, 12(8):1050–1084, 2006.

[164] W. J. McGill. Multivariate information transmission. Psychometrika,
19:97–116, 1954.

[165] C. Middleton and R. Baeza-Yates. A comparison of open source search
engines. Technical report, 2008.

[166] B. L. Milenova and M. M. Campos. O-cluster: scalable clustering of
large high dimensional data sets. 2002.

[167] M. Muhr, R. Kern, and M. Granitzer. Analysis of structural rela-
tionships for hierarchical cluster labeling. In Proceeding of the 33rd
international ACM SIGIR conference on Research and development
in information retrieval - SIGIR ’10, page 178, New York, New York,
USA, 2010. ACM Press.

[168] M. Muhr, R. Kern, M. Zechner, and M. Granitzer. External and
Intrinsic Plagiarism Detection using a Cross-Lingual Retrieval and
Segmentation System Lab Report for PAN at CLEF 2010. In 2nd
International Competition on Plagiarism Detection, 2010.

[169] M. Muhr, M. Zechner, R. Kern, and M. Granitzer. External and Intrinsic
Plagiarism Detection Using Vector Space Models. In Proceedings of the
SEPLN’09 Workshop on Uncovering Plagiarism, Authorship and Social
Software Misuse, 2009.

[170] R. Navigli. Word Sense Disambiguation: A Survey. ACM Computing
Surveys (CSUR), 41(2):10, 2009.

[171] Z.-y. Niu, D.-h. Ji, and C.-l. Tan. I2R: Three Systems for Word Sense
Discrimination, Chinese Word Sense Disambiguation, and English
Word Sense Disambiguation. Proceedings of the 4th International
Workshop on Semantic Evaluations (SemEval-2007), (June):177–182,
2007.

266 a feature association framework for knowledge discovery applications

[172] J. Nivre, J. Hall, and J. Nilsson. MaltParser: A data-driven parser-
generator for dependency parsing. In Proceedings of LREC, volume 6,
pages 2216–2219. Citeseer, Citeseer, 2006.

[173] D. W. Oard and B. J. Dorr. A Survey of Multilingual Text Retrieval.
Electrical Engineering, (UMIACS-TR-96-19):1–31, 1996.

[174] F. J. Och and H. Ney. A Systematic Comparison of Various Statistical
Alignment Models. Computational Linguistics, 29(1):19–51, 2003.

[175] I. Ounis, G. Amati, V. Plachouras, B. He, C. Macdonald, and C. Lioma.
Terrier: A high performance and scalable information retrieval
platform. In Proceedings of OSIR, volume 2006. Citeseer, 2006.

[176] C. D. Paice. Another Stemmer. SIGIR Forum, 24(3):56–61, 1990.

[177] M. Patel, J. A. Bullinaria, and J. P. Levy. Extracting semantic repre-
sentations from large text corpora. In Proceedings of the 4th Neural
Computation and Psychology Workshop, pages 199–212. Citeseer,
1998.

[178] P. Pecina and P. Schlesinger. Combining association measures for
collocation extraction. In Proceedings of the COLING/ACL on Main
conference poster sessions, pages 651–658, Morristown, NJ, USA, 2006.
Association for Computational Linguistics.

[179] T. Pedersen. Umnd2: Senseclusters applied to the sense induction
task of senseval-4. Proceedings of the 4th International Workshop on
Semantic Evaluations, (June):394–397, 2007.

[180] T. Pedersen and A. Kulkarni. Automatic cluster stopping with criterion
functions and the gap statistic. Proceedings of the 2006 Conference
of the North American Chapter of the Association for Computational
Linguistics on Human Language Technology companion volume:
demonstrations -, pages 276–279, 2006.

[181] L. Philips. Hanging on the metaphone. Computer Language Magazine,
7(12):38–44, 1990.

[182] L. Philips. The double metaphone search algorithm. CC PLUS PLUS
USERS JOURNAL, 18(6):38–43, 2000.

[183] G. Piatetsky-Shapiro. Knowledge Discovery in Real Databases: A
Report on the IJCAI-89 Workshop. AI Magazine, 11(5)(5):68—-70, 1991.

[184] D. Pinto, P. Rosso, and H. Jiménez-Salazar. UPV-SI: Word Sense
Induction using Self Term Expansion. acl.ldc.upenn.edu, (June):430–
433, 2007.

[185] J. M. Ponte and B. W. Croft. A language modeling approach to
information retrieval. In Proceedings of the 21st annual international
ACM SIGIR conference on Research and development in information
retrieval, pages 275–281. ACM, 1998.

[186] M. F. Porter. Snowball: A language for stemming algorithms, 2001.

[187] M. Potthast, B. Stein, and T. Holfeld. Overview of the 1st International
Competition on Wikipedia Vandalism Detection. Notebook Papers of
CLEF 2010 LABs and Workshops, pages 22–23, 2010.

[188] U. QuasthoU and C. WolU. The poisson collocation measure and its
applications. 2002.

bibliography 267

[189] J. R. Quinlan. Induction of decision trees. Machine Learning, 1(1):81–
106, 1986.

[190] J. R. Quinlan. C4. 5: programs for machine learning. Morgan
kaufmann, 1993.

[191] R. Rapp. The computation of word associations: comparing syn-
tagmatic and paradigmatic approaches. In Proceedings of the 19th
international conference on Computational linguistics-Volume 1,
number 1992, pages 1–7. Association for Computational Linguistics
Morristown, NJ, USA, 2002.

[192] A. Ratnaparkhi. A maximum entropy model for part-of-speech
tagging. Proceedings of the conference on empirical methods in natural
language processing, 1:133–142, 1996.

[193] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl. Grou-
pLens: an open architecture for collaborative Vltering of netnews.
In Proceedings of the 1994 ACM conference on Computer supported
cooperative work, pages 175–186. ACM, 1994.

[194] B. Riordan and M. N. Jones. Comparing semantic space models using
child-directed speech. Entropy, 20:200, 2000.

[195] S. Robertson and M. Gatford. Okapi at TREC-4. In Proceedings of the
Fourth Text Retrieval Conference, pages 73–97, 1996.

[196] T. G. Rose, M. Stevenson, and M. Whitehead. The Reuters Corpus
Volume 1-from yesterday’s news to tomorrow’s language resources.
In Proceedings of the Third International Conference on Language
Resources and Evaluation, pages 29–31. Citeseer, 2002.

[197] G. Salton and C. Buckley. Term-weighting approaches in automatic
text retrieval. Information processing & management, 24(5):513–523,
1988.

[198] M. Sanderson. Word sense disambiguation and information retrieval.
Intelligent Information Management, 01(02):122–127, 1994.

[199] A. Sarkar, P. H. Garthwaite, and A. De Roeck. A Bayesian mixture
model for term re-occurrence and burstiness. In Proceedings of the
Ninth Conference on Computational Natural Language Learning,
CONLL ’05, pages 48–55, Morristown, NJ, USA, 2005. Association for
Computational Linguistics.

[200] P. Scheir, C. Ghidini, R. Kern, M. Granitzer, and S. N. Lindstaedt.
ARS/SD: An Associative Retrieval Service for the Semantic Desktop.
Networked Knowledge-Networked Media, pages 95–111, 2009.

[201] H. Schmid. Probabilistic Part-of-Speech Tagging Using Decision
Trees. In Proceedings of International Conference on New Methods
in Language Processing, volume 12 of Studies in Computational
Linguistics, pages 44–49. Manchester, UK, 1994.

[202] B. Scholkopf, A. Smola, and K.-R. Muller. Nonlinear Component
Analysis as a Kernel Eigenvalue Problem. Neural Computation,
10(5):1299–1319, 1998.

[203] H. Schütze. Automatic word sense discrimination. Computational
Linguistics, 24(1):97–123, 1998.

[204] H. Schütze and J. Pedersen. A cooccurrence-based thesaurus and
two applications to information retrieval. Information Processing &
Management, 33(3):307–318, May 1997.

268 a feature association framework for knowledge discovery applications

[205] C. Seifert, V. Sabol, and W. Kienreich. Stress Maps: Analysing Local
Phenomena in Dimensionality Reduction Based Visualizations. In
European Symposium Visual Analytics Science and Technology
(EuroVAST), 2010.

[206] G. Seni and J. F. Elder. Ensemble Methods in Data Mining: Improving
Accuracy Through Combining Predictions. Statistics, 2(1):1–126, 2010.

[207] K. Shin and S. Han. Fast clustering algorithm for information orga-
nization. Computational Linguistics and Intelligent Text Processing,
2588:221–226, 2003.

[208] A. Silberschatz and A. Tuzhilin. On Subjective Measures of Interest-
ingness in Knowledge Discovery. In U. M. Fayyad and R. Uthurusamy,
editors, Evaluation, pages 275–281. AAAI Press, 1995.

[209] C. Silverstein, H. Marais, M. Henzinger, and M. Moricz. Analysis of a
very large web search engine query log. ACM SIGIR Forum, 33(1):6–12,
1999.

[210] A. Singhal, C. Buckley, and M. Mitra. Pivoted document length
normalization. In Proceedings of the 19th annual international
ACM SIGIR conference on Research and development in information
retrieval, SIGIR ’96, pages 21–29, New York, NY, USA, 1996. ACM.

[211] N. Slonim, N. Friedman, and N. Tishby. Unsupervised document
classiVcation using sequential information maximization. Proceedings
of the 25th annual international ACM SIGIR conference on Research
and development in information retrieval - SIGIR ’02, page 129, 2002.

[212] J. W. Smith, J. E. Everhart, W. C. Dickson, W. C. Knowler, and R. S.
Johannes. Using the ADAP Learning Algorithm to Forecast the
Onset of Diabetes Mellitus. Proceedings of the Annual Symposium on
Computer Application in Medical Care, pages 261–265, 1988.

[213] M. D. Smucker, J. Allan, and B. Carterette. A comparison of statistical
signiVcance tests for information retrieval evaluation. In Proceedings
of the sixteenth ACM conference on Conference on information and
knowledge management - CIKM ’07, page 623, New York, New York,
USA, 2007. ACM Press.

[214] M. Steinbach, G. Karypis, and V. Kumar. A comparison of document
clustering techniques. In KDD workshop on text mining, volume 34,
page 35. Citeseer, 2000.

[215] M. Steyvers and T. GriXths. Probabilistic Topic Models. Handbook of
latent semantic analysis, 427, 2007.

[216] A. Stolcke. SRILM-an extensible language modeling toolkit. In Seventh
International Conference on Spoken Language Processing, volume 3,
pages 901–904. Citeseer, 2002.

[217] M. Strohmaier, D. Helic, D. Benz, C. Koerner, and R. Kern. Evaluation
of Folksonomy Induction Algorithms. Transactions on Intelligent
Systems and Technology (ACM TIST), 2011.

[218] M. Strohmaier, C. Körner, and R. Kern. Why do Users Tag? Detecting
Users’ Motivation for Tagging in Social Tagging Systems. In Interna-
tional AAAI Conference on Weblogs and Social Media (ICWSM2010),
number Coates 2005, 2010.

[219] R. L. Taft. Name search techniques. Bureau of Systems Development,
New York State IdentiVcation and Intelligence System, 1970.

bibliography 269

[220] P. N. Tan, M. Steinbach, V. Kumar, and Others. Introduction to data
mining. Pearson Addison Wesley Boston, 2006.

[221] E. Terra and C. L. A. Clarke. Frequency estimates for statistical word
similarity measures. In Proceedings of the 2003 Conference of the North
American Chapter of the Association for Computational Linguistics
on Human Language Technology - Volume 1, NAACL ’03, pages
165–172, Morristown, NJ, USA, 2003. Association for Computational
Linguistics.

[222] E. Terra and C. L. A. Clarke. Scoring missing terms in information
retrieval tasks. In Proceedings of the thirteenth ACM international
conference on Information and knowledge management, pages 50–58.
ACM, 2004.

[223] E. Terra and C. L. A. Clarke. Comparing query formulation and
lexical aXnity replacements in passage retrieval. In Proceedings of
the ACM-SIGIR workshop on methodologies and evaluation of lexical
cohesion techniques in real-world applications (ELECTRA 2005), pages
11–17. Citeseer, 2005.

[224] P. D. Turney. Mining the Web for Synonyms: PMI-IR versus LSA on
TOEFL. In Proceedings of the twelfth european conference on machine
learning (ecml-2001), pages 491–502, 2001.

[225] S. van Dongen. A Cluster algorithm for graphs. Report - Information
systems, (10):1–40, 2000.

[226] R. Van Meteren and M. Van Someren. Using content-based Vltering for
recommendation. In Proceedings of the Machine Learning in the New
Information Age: MLnet/ECML2000 Workshop. Citeseer, 2000.

[227] J. Véronis. HyperLex: lexical cartography for information retrieval.
Computer Speech & Language, 18(3):223—-252, 2003.

[228] E. Voorhees. Natural language processing and information retrieval.
Information Extraction, page 724, 1999.

[229] E. M. Voorhees. Query expansion using lexical-semantic relations.
In W. B. Croft and C. J. V. Rijsbergen, editors, Proceedings of the
17th annual international ACM SIGIR conference on Research and
development in information retrieval, pages 61–69. Springer-Verlag
New York, Inc., 1994.

[230] T. V. Wal. Explaining and showing broad and narrow folksonomies,
2005.

[231] D. J. Watts. Six Degrees: The New Science of Networks. Vintage, 2004.

[232] K. Wei, J. Huang, and S. Fu. A survey of e-commerce recommender
systems. In Service Systems and Service Management, 2007 Interna-
tional Conference on, pages 1–5. IEEE, 2007.

[233] J. W. J. Williams. Algorithm 232: heapsort. Communications of the
ACM, 7(6):347–348, 1964.

[234] C. Willners and A. Holtsberg. Statistics for sentential co-occurrence.
Working Papers, Lund University, Dept. of Linguistics, 2001.

[235] J. Xu and W. B. Croft. Query expansion using local and global
document analysis. Proceedings of the 19th annual international
ACM SIGIR conference on Research and development in information
retrieval SIGIR 96, (Zurich, Switzerland):4–11, 1996.

270 a feature association framework for knowledge discovery applications

[236] Y. Yang and J. O. Pedersen. A comparative study on feature selection
in text categorization. In In Proceedings of ICML-97, 14th International
Conference on Machine Learning, pages 412–420, 1997.

[237] D. Yarowsky. One sense per collocation. In Proceedings of the
workshop on Human Language Technology, HLT ’93, pages 266–
271, Morristown, NJ, USA, 1993. Association for Computational
Linguistics.

[238] C. X. Zhai. Statistical language models for information retrieval.
Synthesis Lectures on Human Language Technologies, 1(1):1–141,
2008.

[239] G. K. Zipf. Human Behaviour and the Principle of Least-EUort.
Addison-Wesley, 1949.

	Introduction
	Motivation
	Overview
	Contributions
	Publications
	Methodology
	Feature Association Process
	Example
	Structure

	Knowledge Discovery
	Knowledge Discovery Applications
	Feature Association Framework

	Feature Engineering
	Role of the Feature Association Framework
	From Data to Features - Preprocessing
	Feature Extraction
	Properties of Features
	Feature Transformation
	Feature Associations
	Data-Mining Algorithms

	Concepts
	Overview
	Configuration & Design Decisions
	Calculate Feature Associations
	Feature Association Functions
	Distributed Environment
	Feature Association Retrieval

	Implementation
	Introduction
	Functional Requirements
	Data Structures & Runtime Environment
	Design & Main Components
	Extended Functionality
	Performance Evaluation

	Applications
	Introduction
	Social Web
	Information Retrieval
	Natural Language Processing

	Conclusions
	Discussion
	Summary & Outlook

	Bibliography

