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Abstract

The physical world is composed of three-dimensional objects. The usual way for people to dig-
itize these environments is via photographs or videos, which map the three-dimensional world
onto two-dimensional images and image sequences. In this momentary sampling process infor-
mation is lost, which limits further use of this data. Tasks like measuring distances, comparing
sizes, or viewing objects from other directions are simply not possible in a two-dimensional
representation. In contrast, within a static three-dimensional representation, information loss
is reduced and these tasks become possible, but this representation still remains a momentary
snapshot of the physical world. By further incorporating semantic information, which includes,
among others, symmetries and repetitions, the information loss can be reduced to a minimum
and variations of the recorded object can be visualized. Unfortunately, acquiring these superior
three-dimensional representations is a much harder task.

Nevertheless, three-dimensional content is already used in a great variety of applications.
From motion pictures and games, to websites and PDF documents, three-dimensional data has
been integrated in all of them. Three-dimensional data is used to show variations of reality
and make complex situations understandable in an intuitive way. This data, however, is usually
generated by specialized experts and not all established tools provide an easy way to generate
three-dimensional content data for the regular user. This creates a hurdle for common users
to create such content for their own purposes. For them to utilize three-dimensional content
creation efficiently, simplified and more accessible tools are needed.

As mentioned before, it is important what kind of content is created to reduce the informa-
tion loss. While static content is well-suited for applications that do not require any changes of
the model, models that are used for example in planning tasks, mass generation, or changing
environments need to encapsulate semantic information to provide a proper editable descrip-
tion. Especially in models of man-made shapes, this information can be exploited to generate
such descriptions, which allow generation of a whole family of related shapes. The key to
accomplish this is the understanding of shape. This is, however, no trivial task.

The creation of editable object descriptions is one possible way to allow everyone to create
three-dimensional content. This vision motivates research to reach an editable, digital represen-
tation of the physical world, which will simplify the use and generation of three-dimensional
data. To implement this in a feasible way, techniques beyond laser scanning and manual mod-
eling are necessary. One very promising way to realize this is procedural modeling.

The world, however, is so vast and versatile that describing all object categories in the con-
text of one thesis is simply not feasible, but, fortunately, a lot of experience on procedural
modeling has been available in our research group. Thus, this thesis can take a first step on the
road to realize this vision by exploring representative, sufficiently complex and comprehensive
problems in the domain of man-made shapes. These problems are mainly analyzed on an ap-
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plication level to identify requirements for developed methods in an early step. The problems
analyzed in this thesis can be grouped into three major problem areas, which have been care-
fully selected. These are: the understanding of shape, the reconstruction of architecture, and
interactive procedural modeling. I developed new techniques in these areas to ease and guide
the construction of procedural models for everyone. These techniques include a generic method
for creating procedural models from a set of exemplars, improvements of the state of the art of
split grammars in the domain of procedural architecture, and methods for interactive creation
of animated procedural environments.



Kurzfassung

Unsere reale Welt besteht aus dreidimensionalen Objekten. Die für Menschen übliche Art
und Weise, Teile dieser Welt zu digitalisieren, ist das Aufnehmen von Fotos oder Videos.
Diese Techniken bilden die dreidimensionale Welt auf zweidimensionale Bilder und Bilder-
sequenzen ab. Durch diesen Prozess werden nur Momentaufnahmen gewonnen und dadurch
wird Information verworfen. Dies limitiert die weitere Verwendung dieser Daten. In einer
zweidimensionalen Abbildung sind Tätigkeiten wie Abstandmessen, Größenvergleiche oder
Betrachten von anderen Blickwinkeln nicht möglich. Eine statische dreidimensionale Re-
präsentation dieser Daten ist hingegen von weniger Verlusten behaftet und die zuvor erwähnten
Tätigkeiten können durchgeführt werden. Es handelt sich jedoch weiterhin nur um eine Mo-
mentaufnahme. Durch das zusätzliche Einbetten von semantischen Informationen, wie zum
Beispiel Symmetrien oder Wiederholungen, kann der Verlust an Information auf ein Minimum
reduziert werden und Variationen des aufgenommenen Objekts können visualisiert werden.
Unglücklicherweise sind diese überlegenen dreidimensionalen Repräsentationen viel aufwen-
diger zu generieren.

Nichtsdestotrotz werden dreidimensionale Inhalte bereits vielseitig eingesetzt. Einsatzge-
biete beinhalten zum Beispiel Filme, Videospiele, aber auch Webseiten und PDF-Dokumente.
Dreidimensionale Daten werden verwendet, um Variationen der Wirklichkeit zu visualisieren
und komplexe Sachverhalte verständlich darzustellen. Üblicherweise werden diese Daten von
spezialisierten Experten erstellt. Für nicht spezialisierte Benutzer hingegen bieten die Software-
Werkzeuge, die in diesem Prozess verwendet werden, keinen einfachen Weg, solche Daten zu
generieren. Diese Hürde erschwert diesen Benutzern die Generierung von dreidimensionalen
Daten für ihre eigenen Zwecke. Einfachere und leichter zugängliche Werkzeuge sind notwen-
dig, um diesen Benutzern die effiziente Erstellung solcher Daten zu ermöglichen.

Wie zuvor erwähnt, ist es wichtig, den richtigen Typ an dreidimensionalen Inhalten zu gene-
rieren, um den Informationsverlust gering zu halten. Statischer, unveränderlicher Inhalt ist gut
geeignet für Anwendungen, in denen keine Änderungen an den Modellen vorgenommen wer-
den müssen. Modelle, die unter anderem für Planungen, Massengenerierung oder veränderliche
Umgebungen genutzt werden, müssen semantische Informationen beinhalten, um eine ange-
messene editierbare Beschreibung zu ermöglichen. Besonders für Objekte, die von Menschen-
hand geschaffen wurden, kann diese Information ausgenutzt werden, um solche Beschreibun-
gen zu generieren. Unter Einhaltung der semantischen Bedingungen erlauben es diese Be-
schreibungen, eine ganze Familie an verwandten Modellen zu erzeugen. Der Schlüssel für all
dies ist das Formverstehen. Diese Aufgabe ist jedoch kein einfaches Unterfangen.

Die Erstellung von editierbaren Objektbeschreibungen ist ein möglicher Weg durch den
jedem das Erzeugen von dreidimensionalen Inhalten zugänglich gemacht wird. Diese Visi-
on motiviert die Forschung, eine editierbare, digitale Beschreibung der physischen Welt am
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Computer zu erreichen, um die Verwendung und Generierung dreidimensionaler Daten zu ver-
einfachen. Für eine realistische Umsetzung dieser Vision sind Techniken notwendig, die über
Scanning und manuelles Modellieren hinaus gehen. Ein sehr vielversprechender Weg, dies zu
realisieren, ist prozedurales Modellieren.

Die Welt ist jedoch so groß und vielfältig, dass das Beschreiben aller Objektkategorien im
Kontext einer Dissertation nicht realisierbar ist. Glücklicherweise besteht viel Erfahrung im Be-
reich prozedurales Modellieren in unserer Forschungsgruppe. Daher kann diese Arbeit, durch
das Untersuchen von repräsentativen, ausreichend komplexen und reichhaltigen Problemen,
basierend auf von Menschen geschaffenen Objekten, den ersten Schritt, um diese Vision um-
zusetzen, tätigen. Diese Probleme werden in dieser Arbeit größtenteils auf Anwendungsebene
analysiert, um Anforderungen für die entwickelten Techniken früh zu erkennen. Die unter-
suchten Probleme lassen sich in drei Hauptgruppen gliedern, welche sorgfältig ausgewählt
wurden. Diese sind Formverstehen, Rekonstruktion von Architektur und interaktives proze-
durales Modellieren. Ich habe neue Techniken in diesen Bereichen entwickelt, um den Kon-
struktionsprozess von dreidimensionalen Modellen zu vereinfachen und den Benutzer dabei zu
unterstützen. Diese Techniken beinhalten eine generische Methode, um prozedurale Modelle
aus einer Menge von Exemplaren zu erstellen, sowie Verbesserungen des Stands der Technik
von Split-Grammatiken im Bereich der prozeduralen Architektur und Methoden zur interakti-
ven Generierung von animierten prozeduralen Umgebungen.
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Abstract. The vision for everyone to process and generate three-dimensional content to realize
their tasks directly leads to the desire to reach a digital and editable representation of the real
world on the computer. This ambition has been formulated as the goal of the research field vi-
sual computing, which combines the fields of computer graphics and computer vision. Through
a comparison with other established modeling techniques, this section motivates that procedu-
ral modeling is a viable approach for the realization of this goal. The world, however, is so vast
and versatile that its whole extent cannot be captured in the context of one thesis. Therefore,
to take the first step in this direction, this thesis inspects a variety of representative problems
concerning the generation of procedural models of man-made shapes. These problems can be
appointed to three major problem fields, which include the problem of understanding shape
spaces, the reconstruction of architecture, and interactive procedural modeling.

1



2 1 Introduction

1.1 Motivation

The world around us is composed of three-dimensional objects and humans are used to in-
teract with these objects in a natural way. However, data that is taken from this world and
transferred to computers is mainly two-dimensional. This is mostly due to the fact that two-
dimensional data, like a photograph, is easier to acquire. However, this two-dimensional data
is only a momentary projection of the three-dimensional truth, and information is lost in this
sampling process. This loss of information is of course acceptable for certain applications, such
as portrait photos, but without this complete information further use is limited. It is, for exam-
ple, not possible to generate further views of the photographed object, even simple tasks like
measuring distances becomes impossible in the two-dimensional representation. As an exam-
ple, take a photograph of a façade from a street. The single photograph provides a single view,
from which relations between sizes can be estimated, but direct measurements are impossible.
Furthermore, a lot of information is not available because of objects occluding one another. In
a static three-dimensional representation of this façade, which is still just a momentary snap-
shot of the world, distances and sizes of elements can be measured directly and the façade
can be looked at from arbitrary directions to reveal more information. However, to reduce the
information loss to a minimum, semantic information – such as repetitions, symmetries and
orthogonalities – need to be embedded into this representation. This allows further use of this
data, e.g. using this façade with different proportions in a virtual street. Unfortunately, such
representations are much harder to acquire than simple photographs.

Nevertheless, for the last twenty years, three-dimensional content has been continuously and
successfully integrated all around us. Computer graphics are gradually spreading over from
specialized domains into applications for the regular user, but for them to efficiently create
their own three-dimensional content, work has still to be done. We can observe that websites
increasingly rely on three-dimensional data for visualizing their content. The ability to dis-
play three-dimensional content has also been introduced to the PDF file format that is widely
used. The smart phone trend has also revealed a new market for three-dimensional applica-
tions. Geographical applications like Google Maps [Goo13b] have reached an important posi-
tion, especially on mobile platforms, and are now shifting from two-dimensional representa-
tions to three-dimensional ones. This paradigm shift indicates that three-dimensional structures
and shapes are understood intuitively if they are presented in the correct way. However, there
are still established software tools such as Microsoft Office [Mic13c], which do not incorpo-
rate three-dimensional content in an efficient way. Especially in a presentation software like
Microsoft Powerpoint, displaying three-dimensional content would be desirable in many cir-
cumstances. Nevertheless, by following this trend it becomes possible that three-dimensional
content will be displayed and available everywhere in the future.

However, the problem of how regular users can create their own three-dimensional content
still remains. There are many applications that concern altering the real world, such as fur-
nishing and planning the own home. It is not always possible and feasible to carry out such
tasks in the real world from the start. To realize work like this efficiently, support from three-
dimensional software is needed. These planning and modeling tasks are usually carried out
by specialized experts. The tools these experts use are available for everyone, but are too spe-
cialized to appeal and be accessible to everyone. However, especially tasks like furnishing an
apartment is something that many people like to do on their own. For this, means to create
appropriate three-dimensional content are necessary.

Independent from the way the content is created, it is important that the loss of information
is kept low. Thus, the generated content should not be static, but editable. Static content, like
a model acquired by a laser scanner, cannot adapt to changing environments. In the example
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of furnishing the own home, three-dimensional cupboard models should scale to fit the avail-
able space by introducing additional drawers and shelves. To efficiently generate an editable
three-dimensional representation of a real world (man-made) object, inherent properties that
users want to exploit should be represented explicitly. This semantic information prevents in-
consistencies in the model and allows modifications and the reuse of parts in a consistent way.
This allows an efficient generation of a whole family of similar and related shapes that is repre-
sented by one common description. Furthermore, the data necessary to describe the elements of
this shape family is reduced by a substantial amount. Incorporating this semantic information
to enable a proper editable representation, however, requires understanding of the underlying
shapes, which is not an easy task.

The potential that lies within three-dimensional content is huge, but by far not exhausted and
utilized in a way that fulfills this potential. Three-dimensional content allows the modification
of the world inside the computer to visualize different hypotheses without realizing them first in
the real world. However, with the technological standpoint we have today it is not yet possible
to process three-dimensional content with the same ease as two-dimensional content. Conse-
quently, the technology is not developed far enough for everyone to process three-dimensional
data, but by providing editable object descriptions, three-dimensional content creation can be
made more accessible. This vision for everyone to process three-dimensional data motivates
research to reach an editable three-dimensional representation of the physical world on the
computer, which in turn will lead to new techniques that simplify the use and creation of three-
dimensional content.

1.2 Visual Computing and its Long-Term Vision

Parallel to computer graphics, which mainly focuses on image synthesis, is the field of computer
vision for image analysis. Those two fields are viewed as separate domains, but are closely re-
lated to each other. Computer graphics traditionally solve forward problems, such as rendering
a three-dimensional scene to a two-dimensional image, or creating or editing digital represen-
tation of shapes and surfaces. This way three- or multi-dimensional data is conveyed to human
beings. Computer vision on the other hand focuses more on inverse problems, like producing
a three-dimensional digital representation out of two-dimensional image data. Approaches in
one field can profit from approaches from the other field. The relations between both fields can
be understood as traversing from three-dimensional data to two-dimensional data and back (see
Figure 1.1). The research field that emerged through the combination of both is called visual
computing.

3D
data

2D
data

computer vision

computer graphics

geometry 
processing

image
processing

Fig. 1.1 Overview of the domain of visual computing. The research fields of computer vision and graph-
ics are closely related to each other. Three-dimensional data is rendered to two-dimensional images in
computer graphics and two-dimensional images are analyzed to create three-dimensional data in com-
puter vision. (image adapted from Fellner [Fel92])



4 1 Introduction

As a result of this ongoing convergence of the fields of computer graphics and computer
vision, Hans Peter Seidel, the head of the computer graphics department of the Max Planck
institute in Saarbrücken, Germany, prominently formulated during his Leibniz award speech in
2003 that the goal of visual computing is to generate an editable digital representation of the
real physical world. So, the field of visual computing can be understood as to connect the real
world with its corresponding digital counterpart. To fulfill the aforementioned goal, there are
several ways to map the real world to a digital representation, but what techniques are really
feasible to describe the whole physical world?

Three-Dimensional Laser Scanning.
Through the introduction of the Microsoft Kinect Sensor [Mic13b] scanning hardware has
become available for a reasonable price on the market. Laser scanning is a way how the
world can be sampled. Just like audio signals, a surface can be understood as a signal that
can be sampled. With a higher sampling frequency a more detailed scanned model can be
obtained. Scanning, however, does not produce a proper editable representation. Planar sur-
faces, for example, are represented by a vast number of points, even though a small set of
points would suffice. In terms of being an editable representation there are too many degrees
of freedom because each single point can be altered. This gives the user control over posi-
tion of all vertices, but due to the missing semantics there is no control for high-level editing
of the model. Furthermore, through scanning it is only possible to digitize objects that al-
ready exist and it is thus mostly suitable for documentation purposes. Just imagine a scanned
representation of a chair. A reasonable editing operation would be varying the width of the
chair, which in turn influences the width of the backrest as well as the position of the legs of
the chair. Applying this change to a scanned chair is very costly. To enable such changes in
an easy way, a procedural description is more appropriate than a scanned model. With just a
small amount of parameters, a procedural model can describe a set of different chairs more
efficiently than individual scans, where each has millions of surface points.
Scanning is useful for obtaining digital representations of objects that need no change or
editing, for example artifacts for museum exhibitions, but the world is just too vast and
manifold to consider scanning as a viable alternative for the goal of visual computing.

Manual Modeling.
The approach of manual creation of geometric models does not suffer from the shortcomings
of the scanning approach. Manual modeling gives total control over the modeling process,
so, for example, planar surfaces can be efficiently represented by as many points as are nec-
essary. Therefore, the editability is not as restricted as with the scanning approach. However,
in terms of editing, the possibilities are limited. Early modeling steps may not accessible any
more in the later modeling process. Furthermore, the generated shapes contain no semantic
information and are only based on geometric primitives. Post processing steps like mesh
simplification may destroy invariants like symmetry because of the lack of semantics. A
single triangle, which is part of a triangle soup, simply has no information to which part
of the model it belongs. The main issue is, above all, the effort necessary to create mod-
els manually. The amount of modeled details is directly proportional to the amount of used
modeling operations. The hours needed to create a model define the model’s price. The time
needed to create a single fairly complex model may be too high to consider making different
variations of this model. Considering the amount of highly detailed geometric models that
are needed for feature movies and computer games, a purely manual creation process is no
longer feasible.
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Structured Shape Editing.
The main focus of structured shape editing lies within structure-preserving shape manipula-
tions. Within the space of man-made shapes structural invariants are, for example, symmetry,
co-planarity, orthogonality, or regular arrangements. Novel shapes are either created by edit-
ing an input shape while maintaining the structure or by assembling parts from shapes out
of an existing collection while retaining the initial structure. Through the latter – so-called
data-driven methods – existing three-dimensional models (from on-line repositories such as
Trimble 3D Warehouse [Goo13d]) can be reused and combined to create entirely new shapes
and span a design space. However, to recombine parts automatically, a viable segmentation
of different reusable parts is necessary.
However, there are two main drawbacks of this method. On the one hand the basic pop-
ulation of all shapes cannot be learned by machine learning techniques. So far only very
small sets have been automatically analyzed, which leads to a very small freedom in vari-
ability. In many situations multiple examples to learn from are not available and learning
approaches based on single instances are not productive. The second drawback from reusing
pre-modeled parts is the artifacts that come from non-uniform scaling. Scaling parts non-
uniformly leads to distortion of these. This way, for example, circular segments become
elliptical, which is not always desirable. For a correct adaptation to scaling, the parts need
to be described entirely, which is not possible with automatic methods. Structured shape
editing methods are discussed in more depth in Section 2.6.

Procedural Modeling.
Shapes should react to scaling appropriately and should exhibit great variability to describe
shapes from a common family. To realize this, a procedural approach is the most appropri-
ate alternative. Look, for example, at the images in Figure 1.2. They depict different objects
from chairs to beds, which, however, all share common features. In comparison to paramet-
ric modeling, which only allows changing of parameters, procedural modeling also allows
complete structural changes as seen in the different designs of the beams between the chair
legs. It is important to extract the essential information out of similar objects. This informa-
tion is represented in the differences between these objects, in case of the example before,
differences lie for example in the height of the legs, area between the legs, or the angle of
backrest. To find a shared parametrization of similar objects, each of the objects in question
has to become a marginal case or rather a special case of this parametrization. Interpolation
– and in some cases extrapolation – of the parameter values, that describe models, yield
further valid results.
The main problem with procedural techniques lies in the conceptual complexity of the un-
derlying task: shape understanding. Furthermore, shapes are, ideally, represented through
a description of minimal length providing only the essential degrees of freedom. The Kol-
mogorov complexity KC(b) of a bit sequence b is the length of the shortest computer pro-
gram that (re-)produces b. This measure, however, is not computable. Consequently, it is not
possible to say for sure that the shortest procedural description has been found. Properties
as well as drawbacks of the procedural approach are discussed in detail in the upcoming
Section 1.3.

Visual Computing, therefore, can be seen as the sum of procedural approaches in computer
graphics and computer vision. We can, furthermore, expand visual computing’s ideal by taking
our imagination into account. There is far more we can imagine than what actually exists.
Revolutionary movies such as The Matrix (1999), or Minority Report (2002) inspired research
in several fields. Video games show us the same, things that do not yet exist, or will simply
never exist, but can be conceived by the human mind. We should therefore reformulate the
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Fig. 1.2 A family of objects that are similar to chairs. All of these objects share similar features and
can therefore be characterized by a single procedural description with different parameters. Each object
can then be represented by a parameter assignment. Interpolation – and in some cases extrapolation – of
these parameter values will yield further objects of this family. Structural changes that are not encoded
in a basic model, such as the beams between the chair legs, are not possible with parametric modeling
alone, procedural modeling is necessary to achieve such changes.

goal of visual computing to map the magnitude of things we can imagine to an editable digital
representation. This, however, implies that techniques need to become more flexible to allow
describing objects and shapes that we can only imagine so far.

Nevertheless, the world, as well as our imagination, is so vast and versatile, that it is hard to
capture its whole extent. There is no real starting point for this endeavor, but we have to start
somewhere; therefore, the first step is taken by inspecting a variety of representative problems
in the domain of man-made shapes in scope of this thesis.

1.3 The Promise of Procedural Modeling

A procedural model is no three-dimensional object or set of objects itself, it is the program
that describes the blueprint of these objects and generates them. Procedural modeling means
creating things by coupling several procedures together. These procedures – small programs
with a well-defined input and output – are executed in a clearly defined order.

The advantages of procedural modeling are manifold when compared to traditional manual
modeling:

• High-Level Representation: With appropriate procedures it is not necessary to resort to
low-level operations, such as moving vertices. In many cases only a few essential degrees of
freedom are required to describe the essence of a shape. These degrees of freedom, however,
are always dependent on the interpretation

• Database Amplification: Procedural models have a very small memory footprint compared
to the data of the model they produce. Therefore, it is not necessary to store the full data of
the produced outputs. Highly complex models can be acquired from a relatively small set of
construction rules.

• Variability: Procedural models are versatile and variable. Arbitrary many variations of one
prototype object can be generated by changing the parameters and by using the same set of
rules.

• Semantic Description: Entirely different models and entire model families can be generated
by one procedural model. Once the high-level structure is understood a lot of special cases
can be described.

• Level of Detail: With the appropriate rule design, different level of detail can be produced
for any procedural model.
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To utilize procedural modeling techniques, planning is very important. You have break down
the tasks into manageable procedures and have to define the rules and steps, together with the
corresponding parameters. The final outcome, however, is never specified directly. It is impor-
tant that the exact same result can always be reproduced with the procedures and parameters
available. In contrast, for the case of traditional manual modeling this is not the case. Here
craftsmanship skill is required instead of a logical mind and careful planning. The exact same
result cannot be reproduced, not even by the same person.

In general, for procedural modeling much more planning effort is necessary, but the amount
of time for building and fine-tuning is less than for manual modeling. However, for each ad-
ditional model from the same family you want to represent, the time needed for planning is
reduced. Observations from the objects addressed before can be reused to describe further ob-
jects. Manual mesh modeling is like a complement to procedural modeling, the planning effort
is minimal, but a lot of time is spent in the modeling and fine-tuning part. Figure 1.3 illustrates
this comparison.

Manual Modeling

tunebuildplan

tunebuildplan

tunebuildplan

(a)

Procedural Modeling

tune

plan

buildplan

plan

build

build

tune

tune

(b)

Fig. 1.3 With manual mesh modeling (a) the planning effort is minimal, but a lot of time is spent
during building and fine-tuning of the model. No benefit is gained by modeling more similar models.
With procedural modeling (b) there is a big initial planning effort, however, because of the similarity
of the related objects the planning effort for further objects is decreased and the overall time needed is
reduced.

The potential of procedural modeling approaches is immense. However, it is not easy to
make use of all the mentioned advantages. There are two important application areas that utilize
procedural modeling approaches in a big way:

Product Development. There is no room for traditional modeling in the field of product de-
velopment; each model features a lot of different parameters to describe its shape. These
parameters are fine-tuned until all constraints are met and simulations are satisfactory. The
main tool here is computer-aided design software, which is used in all stages of product
development from conceptualization and design to manufacturing and engineering.

Video Games and Movies. The scale of video games and movies today is getting bigger
and bigger. The amount of three-dimensional models in domains like vegetation and urban
structures, for which satisfactory detail is produced, is so high that it is not feasible to create
all these models manually anymore. The positioning of all these models is also guided by
procedural techniques.

However, a very important question remains: Can everything be described procedurally?
(discussed in detail in Section 7.1) The abundance of shapes within object families sometimes
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feel endless and not parametrizable, which leads to difficulties in mapping the real underlying
structure of a family of objects into a procedural description. This is also due to problems in
understanding or finding the underlying structures. Hope in this regard lies within factorization.
One example here is the universal applicability of profiles on man-made shapes. Sweeping of
profiles is an important modeling tool with a lot of variability and expressiveness. By factoring
out profiles, complicated parametrization problems can suddenly become manageable. For ex-
ample, by removing profiles from windows, pillars, and other façade elements. In many cases
only simple geometric entities remain that can be easily described by procedural means. Hope
here is that there are a lot of similar operations that can be factored out, so that the problems
get smaller and a whole parametrization can be found. There is, however, no proof that factor-
ization is the solution to overcome the huge variety within man-made objects, but it is at least
a way to ease the problem. In general, as long as rules to describe a shape exist it is possible to
exploit them to reach a procedural description.

1.4 Representative Problems

The field of applications for procedural techniques is huge, but to explore the advantages and
limitations of procedural techniques – in particular procedural modeling – different represen-
tative problems in the field of the reconstruction of man-made shapes and structures will be
examined in this thesis. Structural symmetry lies in the nature of man-made shapes; almost
all man-made shapes contain parts that are similar in shape, style, detail, function or purpose.
These observations are very important to generate procedural descriptions of these shapes.

This thesis presents complex problems that are suitable for the procedural approach. Applied
research allows to identify requirements that remain hidden in a theoretical approach. To fulfill
a majority of these requirements, I will analyze most of the the discussed problems on an appli-
cation level. In this introductory part, all problems that are discussed in this thesis are grouped
into three major problem areas, which are discussed in the following three sections. These
representative areas are: the understanding of shape (see Section 1.4.1), the reconstruction of
architecture (see Section 1.4.2), and interactive procedural modeling (see Section 1.4.3).

Collaborations in the Field of Procedural Modeling. Even though I have dedicated my
work to these three areas, these large domains contain difficult problems, which are hard to
work on alone. Besides developing new solutions, I have also used technologies that existed
or are in development at our institute. This, of course, leads to tight collaborations with my
colleagues at the institute. I, especially, did a lot of my work in cooperation with Krispel [Kriar]
and Thaller [Thaar]. As we all work in the same domain, we share the ambitions for developing
new and improved ways of procedural modeling and pursue the goal of understanding shapes.

My focus of research lies in application-level procedural modeling, where I concentrate my-
self on the application and practical suitability of the developed techniques. I explore to what
degree the techniques can be used, what the limitations are and what extensions are needed on
the application-level. For this cause, I developed extensions and improvements for established
techniques. Krispel’s focus is in the field of geometry processing for procedural modeling. In
context of his research he developed a robust modeling vocabulary based on convex polyhe-
dra, which has been extensively used by me in the domain of procedural reconstruction of
architecture. Thaller concentrates his research on the concepts of language and structure within
procedural modeling. He developed the foundation for an interactive procedural modeling tool
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named the GML Compositor. I used and extended this tool for projects in the domain of inter-
active procedural modeling.

1.4.1 Understanding Shape Spaces

Procedural models are often obtained from analyzing a set of exemplars, which span an entire
shape space. The exemplars serve as marginal cases for the procedural model and through
interpolation of these new shapes can be derived from the procedural description. The acquired
procedural models can be used to fit a three-dimensional model to real life objects. This field
is known as Generative Surface Reconstruction (see Section 2.4.1).

The foundation for formulating a shape space lies within inductive reasoning. In comparison
to deductive reasoning, which takes general statements to make assumptions about something
special, inductive reasoning tries to make general assumptions based on observations of single
special elements. Naturally, inductive reasoning is the much harder task, but this is exactly what
is necessary to obtain a procedural description. Based on the idea of inductive reasoning, the
Generative Fact Labeling method, which is demonstrated in Section 5.2.1, has been developed
by our research team to organize the process to reach a procedural description based on a set
of given exemplars.

Shapes spaces can either be closed or open. One example for a closed shape space would be
the space spanned by wedding rings available from a single manufacturer. Throughout these
rings, all available features are demonstrated, and the recombination of those creates entirely
new shapes that are within the manufacturing capabilities. This field is comprehensive enough
to demonstrate the way to formulate a shape space and this is demonstrated in Section 6.1.

An open shape space is, for example, spanned by the multitude of different architectural
elements that occur often in slightly varied ways in other pieces of architecture. These parts in-
clude, among other things, windows, doors, pillars, and staircases. Creating procedural models
of such elements is very advantageous in terms of re-usability. In comparison to a closed shape
space, where all possible variations are known, these fields are far more comprehensive because
the whole extent of variability of these elements cannot be captured entirely. An example for
this is demonstrated in the domains of windows in Section 5.2.

1.4.2 Reconstruction of Architecture

Sometimes it is necessary to understand a single high-quality example in its entirety. The task
is to describe a complex model efficiently, namely with the minimal amount of operations
necessary. However, as stated before, it is not possible to find the shortest procedural descrip-
tion, so at least an improvement to existing methods should be found to describe models more
efficiently.

City modeling is a very generic task. The state of the art for describing cities procedurally are
split grammars (see Section 2.3.4). Through split grammars entire cities can be generated by a
single click. High-quality examples in this context are monumental buildings. To describe these
monuments more efficiently and to increase the expressiveness of split grammars in general,
the state of the art of split grammars needs to be improved.

Split grammars are based on applying split and replacement operations, which are most
commonly applied to box-formed shapes. Boxes are very simple shapes and are easy to deal
with. However, there are many architectural parts, which are very hard to express with boxes
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and splits only in major axis directions alone. As buildings blocks are inherently convex shapes
it is a obvious thing to consider splitting shapes in arbitrary directions. This leads to the use of
the generalization of boxes, namely convex polyhedra, as basic shapes for split grammars. This
extension to split grammars is discussed in Section 4.2.

Additionally, curved and deformed buildings are very hard to describe in a short efficient
way through split grammars. In curved building designs, repetitions of elements follow the
course of the building and to achieve this, a lot of manual fine-tuning is necessary. However,
this fine-tuning conflicts with the desire to describe the building with the minimal amount
of operations possible. In this thesis I will present an extension to the state of the art that
incorporates free-form deformations in the split grammar formalism in Section 4.3.

In the context of this thesis several high-quality building examples have been analyzed, these
include, for example, the Louvre (see Section 5.1 and 6.2.1) and the famous Rialto bridge in
Venice (see Section 6.2.2). Furthermore, a simplified version of the Great Wall of China (see
Section 6.2.3) has been realized to highlight the strengths and advantages of the inclusion of
free-form deformations into the split grammar formalism. A procedural description through
split grammars of regular buildings and building parts is presented in Section 6.3.

1.4.3 Interactive Procedural Modeling

Many designers and artists are experts in designing complex shapes and can therefore profit
from procedural technologies. There are many different ways to obtain a formal description of
such shapes, but procedural modeling is tightly connected to programming and programming is
rarely an expertise of artists and designers. These non-expert users need a way to convey their
implicit knowledge to other people by transferring it into explicit knowledge. Procedural mod-
els are an explicit description of procedures and interrelations and are therefore an ideal way
for expressing complicated implicit knowledge. To allow these users the creation of procedural
models, an intuitive modeling interface is needed that creates code automatically in the back-
ground and supports navigation without the need to display complex graphs that represent the
scene. For modeling to be most intuitive, interactions should be based on direct manipulations
on the explicit three-dimensional model only.

In the Ambient Assisted Living project called V2me the need arose to create animated en-
vironments for virtual coaching applications interactively. In course of this project, I extended
the GML Compositor, a tool that supports direct manipulations and incorporates several mod-
eling vocabularies, to create scene graphs procedurally in an interactive way (see Section 6.5).
Procedural scene graphs have been, furthermore, utilized in this system to create interactive
animated exhibits for museums in a Cultural Heritage context (see Section 6.4). Within this
system, split grammar inspired modeling operations have been successfully applied to recon-
struct façades of the Louvre (see Section 5.1 and 6.2.1). The foundations and capabilities of the
GML Compositor are explained in Section 4.4.

Especially, the two applications of procedural scene graphs show that procedural techniques
can be applied successfully in domains that are not necessarily tightly connected to computer
graphics. This way, non-expert user groups are enabled to create procedural models.
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1.5 Structure of this Document

Before providing solutions for the variety of problems presented in this introductory chapter
important procedural approaches in visual computing are reviewed in Chapter 2. Afterwards,
technical building blocks that are necessary for the realization of the provided solutions are
provided in Chapter 3. As foundation for the solutions provided, procedural techniques that
were utilized in realizing the tasks are presented in Chapter 4. Chapter 5 provides a case study
on how to formalize a new shape domain by presenting a generic method to do so. Finally, the
solutions for the examined problems will be presented in Chapter 6. This thesis will conclude
in Chapter 7, which discusses the limits and potentials of procedural modeling techniques and
gives an outlook on further work to pursue the long-term goal of visual computing.

Synopsis
We have identified procedural modeling as the most promising way to obtain an editable
digital representation of the world as well as of the magnitude of things we can imagine. In
comparison to other methods, procedural modeling is superior in the domain of man-made
shapes because a concise and semantic description can be provided. Through this high-
level representation only few degrees of freedom are required to describe the essence of a
shape. These advantages, however, come at a price. The main drawback of the procedural
approach is the conceptual complexity of the underlying task, namely understanding shapes.
A big initial planning effort is necessary to describe a shape. This effort, however, becomes
profitable as soon as variations of this analyzed shape are required.

In this thesis problems that belong to three representative problem areas are analyzed to
pursue the goal of reaching an editable digital representation of world. These three areas
are the understanding of shape spaces, the reconstruction of architecture, and interactive
procedural modeling. The main contributions for these three areas are the formalization of a
method to acquire procedural building blocks from a set of shape exemplars, extensions to
the state of the art of split grammars, and a method to describe procedural animated scenes
in an interactive way.
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Abstract. Procedural techniques are more and more used in all kinds of applications. This sec-
tion provides an overview on what has been done in relation to the term “procedural modeling”.
Despite the vast field of applications in the field of visual computing, the whole potential of
procedural modeling has not been exhausted so far. The sum of works done, however, shows
the usefulness of this approach. In visual computing, the most common utilization of procedu-
ral techniques is creating three-dimensional shapes by describing the modeling process itself.
Aside from modeling, procedural techniques can furthermore be used for example for shaders,
textures, simulations, particle systems and animations. Procedural techniques are not just lim-
ited to the domain of visual computing, however, usage in other domains is very fragmentary,
but the trend is increasing continuously. Even though no common theory exists so far, this de-
velopment indicates a deep change that is happening in the way mankind is embracing new
domains. It is infeasible to start from zero, so this section will focus on the use of procedural
techniques in visual computing with major interest in fundamentals of procedural modeling by
reviewing popular techniques and systems.
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2.1 Fields of Application

It is important to distinguish between the terms parametric modeling, procedural modeling and
generative modeling.

Definition 2.1 Parametric modeling describes the process of creating shapes by combining
specific shapes, from which each has a set of well-defined parameters, each with its own range
of valid values.

Definition 2.2 Procedural modeling describes shapes through coupling procedures with well-
defined in- and outputs together. These procedures are executed in a clearly defined order and
have a set of parameters that influence the outcome.

Definition 2.3 In generative modeling shapes are generated through a sequence of geometry-
generating modeling operations, called operators. Shapes are specified through the construc-
tion process, which consist of all applied modeling operations.

In terms of generality, parametric modeling is a subset of procedural modeling, which is
again a subset of generative modeling. In parametric modeling shapes are parametric, but object
creation is done manually. Parametric shapes can be combined to form complex parametrized
shapes. A central term in this regard is the concept of the so-called feature. A feature is repre-
sented by geometry with attached parameters and is influenced by parameter changes.

Within procedural modeling the creation of parametric shapes can be automated. This is
done by defining the parameter flow through a script or a special type of graph. Procedural
modeling is therefore equivalent to programming itself. Through this approach it is possible to
introduce structural changes to the models, which is not possible with parametric modeling.

Finally, the generative approach is the most universal. Generative modeling introduces a
paradigm shift by using geometry-generating operations instead of object primitives. Through
this, the creation of procedural shapes can be automated by automatic code generation. This
way it is possible to describe entire editors with different modeling tool sets for procedural
models, where the whole construction process saved instead of the final three-dimensional
model. It is important that the set of provided operators is closed, which means that further
modeling operations can be applied to any valid shape, resulting again in a valid shape. Snyder
and Kajiya [SK92] provided a generative modeling interface for three-dimensional curves, sur-
faces, and solids, which inspired Havemann [Hav05] to pursue the same principle for meshes.

An example to illustrate the difference is the following. Let us imagine a shape that is de-
signed to have drill holes. In a parametric modeling context the positions of a pre-defined
number of holes can be changed through parameters. In a procedural modeling context the
amount and position of the drill holes can be arbitrary and is not limited as within a parametric
context. In the universal generative modeling context, for example, a drill hole shape editor for
these models can be described and used through the same underlying scripting language.

Use Case for Parametric Modeling: Computer-Aided Design. Parametric modeling tech-
niques are already in use in a lot of commercial and non-commercial products. The most
important category of such products is computer-aided design (CAD) software. Computer-
aided design software is used in a huge variety of fields such as architecture, engineering and
construction. The main goal of using computer-aided design software is parametric product
development. Products are generated through parametrized two-dimensional vector plans or
parametrized three-dimensional solids and surfaces, which encapsulates the core idea of para-
metric modeling. The amount of computer-aided design software on the market is huge and
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there are specialized versions for every domain. The most prominent pieces of software are
probably AutoCAD [Aut13b] from Autodesk and CATIA [DS13] from the French developer
Dassault Systemes.

General and Domain Specific Modeling Tools. There are also general three-dimensional
modeling tools that feature procedural techniques to some extent like the commercial Maya
[Aut13c] and 3D Studio Max [Aut13a] from Autodesk. Both, 3D Studio Max and Maya, fea-
ture their own internal scripting language to enable procedural modeling. Maya, in contrast to
3D Studio Max, is completely built upon its scripting language and is therefore more suited
to create objects procedurally. The free software Google Sketchup [Goo13c] is an easy to use
modeling tool set with intuitive controls. It discards all the information necessary for procedural
modeling during the modeling process because it simply has not been designed for procedu-
ral creation of objects. In contrast to the general modeling tools, domain specific procedural
modeling environments are also present. Most notably here are Esri CityEngine [Esr13] in the
modeling domain of cities and buildings and Xfrog [Xfr13] for modeling of organic objects
like trees and plants.

Procedural Techniques in Computer Games. Procedural techniques are increasingly used
in computer games and movies. This is due to the high database amplification, the ease with
which whole families of objects can be described and other advantageous features like ed-
itability and re-useability. In particular, video games use procedural techniques, but not only
for three-dimensional content generation. Procedural textures and procedural animations are
just but two of different fields of application. Games that are worth mentioning for utilizing
procedural animations are Spore and the Assassin’s Creed series. In Spore the users can create
their own creature species in an editor. Based on the amount and position of the extremities
each creature has its own set of unique animations. In Assassin’s Creed the walking, running
and climbing animations of the characters adapt to different terrains of the game world.

Also worth mentioning here is the game .kkrieger [.th13a] from the German developer .the-
produkkt. This game makes extensive use of procedural techniques and was developed using
their tool called .werkkzeug [.th13b]. All content – from textures over sound effects and mu-
sic to three-dimensional models – is created procedurally. The entire game uses only 97.280
bytes of disk space in contrast to other modern games that take up several gigabyte of storage.
This difference is, of course, biased because the graphics and model quality is different, but
it remains a fact that through describing content procedurally a lot of storage space is saved.
There is, however, one major drawback of this approach: the extensive loading time. All con-
tent has to be generated before use. Therefore, a trade-off between time and space is necessary.
A screenshot of this game is shown in Figure 2.1. Another game that relies heavily on procedu-
ral generation of environments is the recently announced game No Man’s Sky by Hello Games
[MDDR13]. In their game planets, together with all lifeforms on it, are created procedurally
and are therefore unique.

2.2 Scripting Languages

Three-dimensional modeling software packages like Autodesk Maya [Aut13c], or Google
Sketchup [Goo13c] provide a set of modeling tools to ease the modeling process. Complicated
and repetitive tasks are, however, not always suited to a three-dimensional graphical model-
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Fig. 2.1 Screenshot from the fully procedural game .kkrieger [.th13a]. The graphics and details are not
up to par with state of the art video games, but at its release date in 2004 the procedural generation of
all in-game content was quite an achievement.

ing interface. Therefore scripting languages are utilized in procedural modeling environments.
Some systems use common scripting languages like Python or Ruby, but the need of differ-
ent features introduced several new scripting languages or scripting language dialects. Such
scripting languages include for example OpenSCAD [Mar13] for creating three-dimensional
computer-aided design models procedurally, Processing [Ben13], a scripting language for vi-
sual artists, or domain specific languages like CGA Shape [MWH∗06] or G2 [KPK10], which
are used in the domain of split grammars. Processing, for example, started out with the goal to
teach students programming, but due to its comprehensive library of visual elements it turned
into a tool used by visual artists. Processing is used to realize a great number of interactive art
installations today. The limits of processing lie within mesh modeling because the scripting of
mesh operations tends to become difficult to handle.

The scripting language used for procedural modeling throughout this thesis is the Generative
Modeling Language (GML) by Havemann [Hav05]. The GML is inspired by Adobe PostScript
but with the focus on describing three-dimensional shapes. The GML was specifically designed
for generative modeling and features automatic code generation to avoid the problem of man-
ual programming. This makes this scripting language ideal for the tasks of procedural and
generative modeling. The GML will be explained in detail in Section 4.1.

The Persistent Naming Problem. Within three-dimensional modeling it is always necessary
to refer to an element out of a set of objects. If this is done in a static way – on an index-basis
– this reference is valid as long as the size of the set remains the same. However, procedural
modeling describes many different variations of a model and therefore deals with highly dy-
namic sets of elements. An index-based reference introduces the so-called persistent naming
problem.

Persistent naming problems are also rooted within history-based modeling systems. Com-
mercial modelers like Maya [Aut13c] and AutoCAD [Aut13b] from Autodesk feature their
own embedded languages, namely the Maya embedded language (MEL) for Maya and Au-
toLisp for AutoCAD, to add specialized modeling functionality through scripting. Through
these languages modeling can be sped up, but the main problem lies within the combination of
modeling done by scripting or changing parameters and manual modeling.
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The problem is that geometric and topological features, like displaced vertices, need to be
characterized and identified again when the model is re-evaluated with new parameters. Ref-
erencing such entities on a per-index basis creates the aforementioned problem. Primitives in
Maya, for example, have their own parameters, like the degree of tessellation. If a vertex is
displaced by manual modeling and the tessellation is changed afterwards, then this displace-
ment cannot be retained at that position. This is due to the fact that the displacement is saved
in correspondence to a vertex index and through the re-tessellation the indices of the vertices
are changed. To avoid these problems the identity of geometric and topological features needs
to be retained by other means like ray casting.

The persistent naming problems associated with features in parametric modeling are dis-
cussed in chapter 21 of the “Handbook of Computer Aided Geometric Design” [HJA02]. Ad-
ditionally, Marcheix and Pierra provide a survey on of existing approaches on persistent naming
in parametric systems [MP02].

Alternatives for Scripting Procedural Models. Scripting is not the ideal way to approach
procedural modeling for everyone. Artists may not be fond of learning how to use scripting
languages to realize their ambitions. This led to procedural modeling environments with the
goal to reduce the coding effort to a minimum. The modeling packages Houdini [Sid13] and
Grasshopper [Rob13a] (an extension to the modeling tools of Rhinoceros [Rob13b]) utilize
graphs as an extension to clarify and create the model’s hierarchy; scripting is not necessary.
In this data flow graph, data is passed from node to node and so parameters of different entities
are filled with values. By evaluating these graphs, the necessary scripting code is generated
automatically. These graphs in these visual programming languages, however, tend to become
very huge and confusing for complicated models. Therefore, they are not necessarily easier to
read than textual programs as stated by Green and Petre [GP92].

2.3 Grammar-Based Procedural Modeling Approaches

An obvious way for procedural top-down modeling is a hierarchical replacement scheme.
Coarse objects, which approximate the final shape, are replaced by finer and more detailed
objects until the desired level of detail is reached. Computer science features a very powerful
tool to achieve such replacement schemes: grammars.

Within grammars, symbols (or shapes) that are identified by a label are replaced by other
entities that again carry labels. By executing these replacement steps, a sequence of symbols is
reached starting from a single start symbol. This conceptual simplicity is the biggest advantage
of grammar-based systems. There exist several trade-offs between expressiveness and limita-
tion to determine the power of different grammar types. These reach from very restricted types
that are not Turing complete to types that are as powerful as programming itself.

In procedural modeling, grammars are a useful tool to describe structures and configura-
tions of complex shapes. Especially hierarchical structures like façades are easily expressed
by grammars. This section first gives an introduction to formal grammars (see Section 2.3.1)
and then explores applications of grammars in the field of procedural modeling, among which
are Lindenmayer systems (see Section 2.3.2), shape grammars (see Section 2.3.3) and graph
grammars (see Section 2.3.5).
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2.3.1 Formal Grammars

In formal language theory a formal grammar, as introduced by Chomsky in 1956 [Cho56], is a
set of rules that generates a string of symbols.

Definition 2.4 A formal grammar G is a tuple (N,Σ ,P,S) where:

• N denotes a finite set of non-terminal symbols,
• Σ denotes a finite set of terminal symbols (the alphabet or vocabulary),
• P denotes a finite set of production (or replacement) rules α → β where each side consists

out of these symbols, and
• S ∈ N is a distinguished non-terminal symbol, which acts as the start symbol.

A production rule α → β can be applied by replacing an occurrence of the symbols on the
left-hand side (α) with the symbols on the right-hand side (β ). A sequence of applications of
replacements rules is called a derivation. A sequence of terminal symbols that is created by
a derivation from the starting symbol is called a word or a string. The empty word is usually
represented by an ε .

A non-terminal symbol, which is usually represented by a capital letter, in a produced string
indicates that a production rule can still be applied. A terminal symbol, which is commonly
represented by a lower case letter, on the other hand, means that no production rule can be
applied to this symbol alone. When there are no non-terminal symbols present in the produced
string, no rule can be applied any more.

A formal grammar, furthermore, defines a formal language.

Definition 2.5 The formal language L(G) of a grammar G = (N,Σ ,P,S) is the (usually infi-
nite) set of all words that can be derived in finite amount of steps from the start symbol S by
application of the rules from the set P.

Chomsky classified formal grammars into types known as the Chomsky hierarchy [Cho56].
Each level of this hierarchy includes grammars with increasingly strict production rules, which
results in fewer formal languages that can be expressed. The following levels form this hierar-
chy:

• unrestricted grammars (Type 0) can generate any language that is capable of being expressed
by a Turing machine. There are no restrictions for the rules of the form α → β , except that
α 6= ε .

• context-sensitive grammars (Type 1) contain rules of the form αAβ → αγβ with A ∈ N and
α,β ,γ ∈ (N∪Σ)∗ (string of terminal and non-terminal symbols), where for a set A, the Keen
closure A∗ is the set which contains all strings of elements from A and additionally the empty
word ε . The string γ must not be empty.

• context-free grammars (Type 2) contain rules of the form A→ γ , with A ∈ N and γ ∈ (N ∪
Σ)∗.

• regular grammars (Type 3) are the most restrictive grammars in the hierarchy. It only accepts
rules of the form A→ ε , A→ a and A→ aB with A,B ∈ N and a ∈ Σ .

Of particular interest in procedural modeling are regular, context-free, and context-sensitive
grammars. Figure 2.2 shows examples for rule sets of these grammar types, in which non-
terminal symbols are written in upper case and terminal symbols in lower case. Figure 2.2(a)
shows a regular grammar, Figure 2.2(b) a context-free grammar, and Figure 2.2(c) a context-
sensitive grammar. The respective languages are {an|n≥ 1}, {anbn|n≥ 1}, and {anbncn|n≥ 1}.
The starting symbol for these grammars is always the non-terminal symbol S. Even though
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the languages are quite similar, producing exact the same amount of different symbols is a
constraint that affects the complexity of the corresponding grammar.

S → aS
S → a

L = {a,aa,aaa, . . .}
(a)

S → aSb
S → ab

L = {ab,aabb,aaabbb, . . .}
(b)

S → aSBC aB → ab
S → aBC bB → bb cC → cc

CB→ BC bC → bc

L = {abc,aabbcc,aaabbbccc, . . .}
(c)

Fig. 2.2 Examples for rule sets of regular (a), context-free (b), and context-sensitive grammar (c). Non-
terminal symbols are written in upper case and terminal symbols in lower case. The starting symbols
is always the non-terminal symbol S. The respective languages are {an|n ≥ 1} in (a), {anbn|n ≥ 1} in
(b), {anbncn|n ≥ 1} in (c). Constraints, like producing the same amount of symbols throughout words,
affects the complexity of the grammar.

2.3.2 Lindenmayer Systems

An Lindenmayer system (or L-system) is a parallel rewriting system named after their inventor
Lindenmayer [Lin68]. An L-system is a variant of a formal grammar and is very similar to a
semi-Thue grammar. They are most famously used to model growth processes of plants, but
can also be used to describe self-similar fractal forms [Pru86], which are also very common in
nature [Man82].

Definition 2.6 A parametric L-system is a tuple (V,ω,P), where

• V is a set containing all symbols that can be replaced (the alphabet),
• ω is a string of symbols of V that marks the initial state of the system (the axiom), and
• P is a set of production rules α→ β , α,β ∈V ∗. Those rules are used to replace a predeces-

sor (α) with a successor (β ).

For elements A ∈ V for which no production rule exists, an identity rule A→ A is assumed.
Symbols with such identity rules are called constants (or terminals).

The main difference to the other grammars mentioned so far is, that at each iteration as
many rules as possible are applied simultaneously. The set of possible derivations from the
starting symbol is a strict subset of the language that would be generated if each rule would be
applied once at a time. This is the most distinguishing feature between a formal language and
an L-system.

L-systems are very powerful tools in the domain of plant modeling because they are very
close to biological simulations. The produced results are, furthermore, very plausible. However,
it is not easy to predict the outcome and therefore the final shape of the plant. Moreover, L-
systems are very complex and there is only little control over the rewriting process.

Variations of L-Systems. There are many variations and extensions to the basic L-system
formalism. An L-system is called an context-free L-system when the predecessor consists out
of one single element. Deterministic L-systems contain for each symbol in the alphabet exactly
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one production rule and consequently always reaches the same result when starting from the
same axiom. L-systems are called indeterministic or stochastic otherwise. Rules have to be cho-
sen randomly based on probabilities for each rule application. In context-sensitive L-systems
rules are not only chosen based on the predecessor, but also of the context in which the prede-
cessor resides. Parametric L-systems add a condition to each rule, which needs to evaluate to
true for the rule to be applied. These systems are more expressive and are commonly used.

Visualization of L-Systems. L-systems are often visualized using turtle graphics, which is
a method for generating vector graphics. The cursor (or the turtle) has three attributes: a loca-
tion, an orientation and a “pen”, which itself carries attributes like color and width. The turtle
executes commands like “move one unit forward”, or “turn right 90 degrees” always drawing
a line along the path it moved. To increase the expressiveness, stacks of the turtle’s attributes
can be used. A stack of turtle positions, for example, can be used to simulate more turtle paths
at once.

Consider an L-system (V,ω,P), with V = {0,1,+, [, ]}, ω = 0 and the following rules in the
set P:

1 → 11
+→ ++
0 → +1[0]0

Starting with the axiom ω all applicable production rules are used simultaneously to generate
the next step. Starting with the axiom ω = 0, the following strings are derived for for the first
three recursions:

axiom : 0
step 1 : +1[0]0
step 2 : ++11[+1[0]0]+1[0]0
step 3 : ++++1111[++11[+1[0]0]+1[0]0]++11[+1[0]0]+1[0]0

To visualize these strings, each symbols needs to be interpreted by a turtle graphic. For this
example, one set of instructions for the turtle can be:

• 0: draw a green line segment of length one unit
• 1: draw a line segment of length two units
• +: increase the width of the pen
• [: push a new turtle position, rotate the current position by 45 degrees to the left and reset

the pen width
• ]: pop the current turtle position, rotate the position by 45 degrees to the right and reset the

pen width

The first four iterations visualization of this L-system with the presented instruction set is
illustrated in Figure 2.3(a).

Applications of L-Systems for Growth Processes and Plants. In the field of automatic
plant and tree generation two important persons pioneered by using L-systems: Lindenmayer
and Prusinkiewicz [Lin68, PL90]. Plants can be efficiently represented by L-systems and thus
leading to a high database amplification. L-systems were extended by several authors by differ-
ent formal grammar aspects like parameters, stochastic rule application, and context-sensitivity
[Smi84, PHHM97]. Furthermore, environmental effects such as pruning or insect attacks can
be considered as well (as in Prusinkiewicz et al. [PJM94]). Environmental factors like the com-
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(a) (b)

Fig. 2.3 Visualization through turtle graphics of generations 0 to 4 of an L-system that describes simple
plant-like structures (a). In comparison a more complex three-dimensional model (b) can be realized
through the technique of Runions et al. [RLP07].

petition for light and space above the surface and competition for water between the roots in the
soil were introduced to L-systems by Měch and Prusinkiewicz in 1996 [MP96]. This new kind
of L-system incorporating all these extensions is called open L-system and is the foundation of
state of the art plant modeling. Open L-systems led to the introduction of the plant modeling
language cpfg [PHM00, PKMH00]. In 2001 it was furthermore extended to also take positional
information like posture or silhouettes into account [PMKL01].

Runions et al. [RLP07] pursued the competition for resources further by using space col-
onization algorithms that determined the growth by distributing resources in the environment
(see Figure 2.3(b)). Bornhofen et al. [BL09] utilize L-systems to define a plant model targeting
evolutionary experiments involving environmental constraints. L-systems are also applied by
Krecklau et al. in their introduction to their scripting language G2 [KPK10]. They use a turtle
that applies free-form deformations to generalized cylinders to model plants.

Further Applications of L-Systems. With modeling of growth processes of plants being the
main application of L-systems there are some other approaches worth mentioning. In 2001 L-
systems were used by Parish and Müller [PM01] to procedurally model cities with the main
focus on the underlying street network. Interpreting a street layout as a mathematical tree,
which is an implication of using a hierarchical replacement scheme such as L-systems, how-
ever, is not necessarily the correct representation as Alexander pointed out in his article “A City
is not a Tree” [Ale65]. He states that for a representation of cities in their entirety – including
all systems among which are water pipes, postal services, and society – the generalization of a
tree, namely a semi-lattice, is more appropriate.

Applying L-system rules to meshes leads to mesh-based parametric L-Systems in the context
of procedural mesh growing [Mai02, TMW02, MDH∗10]. They are an extension to parametric
L-systems that replace connected symbols (faces of a mesh). With this mechanism highly tes-
sellated complex geometry can be inserted into meshes where fine detail is needed. Menz et al.
[MDH∗10] also presents an interactive graphical user interface in this field.
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2.3.3 Shape Grammars

A shape grammar is very similar to a standard context-free (in some cases a context-sensitive)
formal grammar. However, instead of being defined over an alphabet of symbols and generating
one-dimensional strings of symbols, shape grammars are defined over an alphabet of shapes of
arbitrary dimension creating other shapes of any dimension. But what exactly are these shapes
in the context of shape grammars? The understanding of the term “shape” changed over time.
At first shapes were defined just as a set of lines, but they evolved into complex structures
carrying various labels, attributes, and forms of geometry in state of the art shape grammars.

Classical Shape Grammars. The idea of a shape grammar originated in the paper “Shape
Grammars and the Generative Specification of Painting and Sculpture” by Stiny and Gips in
1972 [SG72]. This concept was formulated later by Stiny [Sti77, Sti80] leading to definitions
of shapes and shape grammars respectively.

The definition of a shape context of a classical shape grammar is the following.

Definition 2.7 A shape (in a classical shape grammar) is a limited arrangement of straight
lines defined in a Cartesian coordinate system with real axes and an associated euclidean
metric.

This simplistic shape representation is realized through a set of non-collinear lines in Eu-
clidean space. For rule application in shape grammars it is very important to detect a given
shape as a sub-shape in another shape and replace it. This shape representation helps to ease
the definition of identity and sub-shape relations. Boolean operations (union (+), intersection
(∩) and difference (-)) between two shapes are also a necessary tool for replacing parts of
shapes. Shapes can also be transformed using compositions of affine transformations.

Labels on points are used to realize features of non-terminals within a shape. A labeled point
p = {v,A} is a point v with a symbol A associated to it. Two labeled points are the same if, and
only if, the two points and the two symbols coincide. A labeled shape σ , on the other hand,
is a pair 〈s,P〉 of a shape s and a set of labeled points P. Two labeled shapes are the same if,
and only if, both shapes and sets of labeled points are the same. A labeled shape 〈s, /0〉 has no
labeled points nor symbols attached to it and is therefore a terminal shape. For two labeled
shapes σ1 and σ2 Boolean operations, identity, and sub-shape relations always take the shapes
s1 and s2 as well as the sets of labeled points P1 and P2 into account.

The definition of the classical shape grammar follows the definition of a context-free gram-
mar:

Definition 2.8 A (classical) shape grammar SG is a tuple (S,L,R, I), where

• S is a finite set of shape elements,
• L is a finite set of symbols,
• R is a finite set of shape rules, and
• I is the initial shape consisting out of elements from S∗∪L.

The set S∗ is formed by finite arrangements of elements ti ∈ S, for 0 < i≤ |S|. Any element
ti can be contained multiple times in any arrangement with different position, orientation, and
scale. Elements of S∗ are called terminal shape elements, therefore S∗ is the vocabulary of a
shape grammar.

The set R of shape rules defines rules α → β , in which a labeled shape α gets replaced by
another labeled shape β . A shape rule can be applied to a labeled shape σ when the shape on
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the left-hand side (α) of the rule is geometrically similar to a part of σ . The rigid transformation
that transforms the shape α to match the similar occurrence of α in σ , needs to be applied to
the shape of the right-hand side (β ) before substituting the similar occurrence of α for β in σ .
In short, for a rule α → β , if a similarity transformation ϕ exists such that ϕ(α) occurs in the
shape σ currently processed, the rule can be applied by replacing ϕ(α) by ϕ(β ) yielding the
new shape.

Finally, the language L(SG) of a shape grammar SG = (S,L,R, I) is the potentially infinite
set of all shapes containing no symbols from L, that can be derived from I. The analogy to
formal grammars is trivial.

For understanding classical shape grammars better, an example is provided in Figure 2.4.
Consider a shape grammar SG = (S,L,R, I) with S = {�}, L = {•}, R as in Figure 2.4(a), and
I as in Figure 2.4(b). Some shapes in L(SG) are shown in Figure 2.4(c). A derivation of one of
these shapes is illustrated in Figure 2.4(d). The identifier of the applied shape rules is shown
above the arrows.

→2 :

→1 :

(a) (b) (c)

2
−→

2
−→

2
−→

1
−→

(d)

Fig. 2.4 A simple shape grammar that inscribes squares into squares (inspired by the guiding example
of [Sti80]). For a shape grammar SG = (S,L,R, I) with S = {�} and L = {•}, (a) describes the shape
rules R and (b) describes the initial shape I. Some shapes of the language L(SG) are shown in (c). A
derivation of one terminal shape is illustrated in (d) with following rule application sequence: 2-2-1.

Parametric Shape Grammars. Stiny, furthermore, introduced parametric shape grammars
[Sti77, Sti80], which are the foundation of the shape grammars most used today. By parametriz-
ing labeled shapes, a whole family of shapes can be expressed. Such a parametrized labeled
shape is obtained by allowing the coordinates of labeled points and lines within shapes to be
variables. A member of such a family can be determined by a variable assignment g of real
values.

Definition 2.9 A parametric shape grammar PG = (S,L,RS, I) is a shape grammar G =
(S,L,R, I) (see Definition 2.8) where the set of shape rules R is replaced by a set of rule defining
rule schemata RS.

A shape rule schema can be understood as a family of specific rules replacing parametrized
labeled shapes. A rule schema α → β for parametrized labeled shapes α and β generates a
specific rule g(α)→ g(β ) for a variable assignment g that yields specific labeled shapes g(α)
and g(β ). This generated shape rule can be used in the usual way.

The formalism of parametric shape grammars (see Definition 2.9) is still valid for state of
the art examples of shape grammars. The definitions of parametric labeled shapes and shape
rule schemata are the ones that undertook several changes over the years.
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Shape Grammar Examples. Shape grammars have since been used for describing various
design spaces such as chairs [Kni80], coffee machines [AC98], floral ornaments [WZS98],
plant ecosystems [DHL∗98], and Harley-Davidson motorcycles [PC02].

Shape grammars, furthermore, found their application in the field of architectural analysis.
The Palladian grammar from Stiny et al. [SM78] provides the rules to recreate the ground
plans of Palladio’s villas. Further shape grammars on prominent architecture are the recreation
of Frank Lloyd Wright’s prairie houses by Koning et al. [KE81], the bungalows of Buffalo by
Downing et al. [DF81], Queen Anne houses by Flemming [Fle87], Christopher Wren’s city
churches by Buelinckx [Bue93], and Alvaro Siza’s houses at Malagueira by Duarte [Dua02,
Dua05]. Duarte et al. [DRS07] also used a shape grammar to describe the structure of the city
Medina of Marrakech.

2.3.4 Split Grammars

In case of computer implementation of shape grammars, the before mentioned sub-shape
matching procedures are difficult to implement. A more amenable approach to computer im-
plementation are set grammars [Sti82], in which shapes are treated as symbolic objects that can
be replaced by matching their label only. Shapes are no longer just the (parametrized) geometry
with an assigned label, but more a structure of different elements representing a non-terminal
shape.

Definition 2.10 A scope is a reference frame that is part of a non-terminal shape description.
Shape rules take the scope into account when calculating measurements for their application.

Definition 2.11 A non-terminal shape is a tuple (L,S,C,G,A) consisting of

• an arbitrary label L,
• a shape S describing the scope,
• a local coordinate system C,
• a geometry G, and
• a set A of attributes (name-value pairs).

In the formulation of a non-terminal shape the separation of scope and geometry does not need
to be explicit. Geometry can also be created from the shape of the scope when the non-terminal
shape is finally replaced by a terminal shape.

Shape grammars are well-suited for describing hierarchical structures such as many forms
of architecture or particularly buildings. This leads to a coarse-to-fine procedural modeling
approach using split operations on shapes with, for example, their (axis-aligned) bounding box
as scope. Using box-shaped scopes for modeling architecture is quite obvious because most
architectural elements can be encapsulated in a building block that is shaped like a box. By
using axis-aligned boxes as scope the local coordinate system is defined implicitly through the
three major-axes directions defined by the scope. In this thesis this concept will be referred to
as a split grammar, which have been introduced by Wonka et al. [WWSR03].

Definition 2.12 A split operation is a decomposition of a shape a into several other disjunct
shapes a1, . . .an,n≥ 1. The arrangement of those new shapes fills the same volume as the shape
a did.
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Definition 2.13 A split grammar is a shape grammar that supports two different kind of rules:

• A split rule, i.e. a rule α → β where α is a non-terminal shape, and β contains one or
more shapes which are the result of a split operation applied to α . For these shapes the
containment property has to be fulfilled (the union of the shapes representing β fills the
same volume α did).

• A conversion rule is a rule α → β that substitutes one shape for another, i.e. α is a non-
terminal shape, and β is a different shape as α . That shape in β has to be contained in the
volume of the replaced shape in α .

The limitations introduced by box-based split grammars and a transition to a more general
class of objects, the convex polyhedra, are discussed in Section 4.2.

Split Operations for Boxes. Specific split operations are subdivide and repeat (see Fig-
ure 2.5) that operate on the three principal axes of the local coordinate system of the shape they
are applied to. The subdivide operation splits a shape along a direction into a fixed number of
parts with specified lengths. Lengths can be given in absolute (lengths do not scale) and relative
(lengths do scale) values. With relative values it is possible to fill remaining space and to split
a shape into specific proportions. The repeat operation, on the other hand, splits a shape along
a direction into a variable number of shapes with length of at least the given value. For these
operations the so-called containment property is fulfilled, meaning that the union of the shapes
resulting from the split operation fills the volume that the shape, on which the split operation
was used, had.

a b c
(a)

a
(b)

Fig. 2.5 The subdivide operation (a) splits a shape along a direction into a fixed number of parts with
specified lengths. By using relative measurements the remaining space can be padded, or a shape can be
split into specific proportions. The repeat operation (b), however, splits a shape along a direction into a
variable number of shapes with length of at least the given value.

Development of the Concept of Split Grammars

With split grammars it seems that a consensus has emerged on how to apply shape grammars
on procedural modeling of buildings. The following papers will provide extensions to this
common core concept to gain more expressivity but also to introduce mechanisms to deal with
the shortcomings of this original formalism. These shortcomings will be discussed first before
the presentation of the developed concepts. The advances of our research group in the domain
of split grammars are explained in Section 4.2 and 4.3.
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Shortcomings of Split Grammars. The concept of these context-free split grammars, which
are mainly used for building generation and reconstruction, shares its limitations with standard
grammars, of course, but also introduces new difficulties.

An inherent problem of split grammars is their context-free nature. Connections between
elements deep down in the hierarchy is only possible with non-context-free means. Dependen-
cies between different levels, predecessors, or branches are hard to resolve using the depth-first
evaluation usually done by grammars. This way, not even objects in the same level of the hier-
archy can react or address to each other.

The combining of objects that are realized through split grammars often introduces the prob-
lem of overlapping structures. Structures can occlude other structures and make further refine-
ment steps unnecessary or wrong. Imagine two or more three-dimensional shapes that touch
it other and together form a building complex. By partitioning each side of these shapes into
parts for windows it will happen that some of these spaces are partially or complete occluded
by another shape. Inserting a window at these occluded spaces is certainly wrong. Additionally,
through the use of modeling operations, which do not fulfill the containment property, like ex-
trude operations, structures can overlap and occlusions can be generated, which are very hard
to detect.

Split grammars, furthermore, introduce the problem of crossing structures. Especially, when
modeling façades vertical and horizontal intersect with each other, which introduces the ques-
tion of which to split first. An illustrative problem in the case of façades is the question in
what direction the original shape is split first: horizontally into floors or vertically into window
axes? The problem even increases when decorative elements like ledges begin to intersect in
the absence of a clear rule that resolves how two ledges interact. There can be, for example,
one superior structure, where the inferior runs over the dominating ledge, or both ledges can be
“equal”, which results in combination of both. In special cases, there can even be completely
unrelated additional decorations at the intersection point.

Finally, there is the problem of exception handling. Split grammars are ideally to cover
repeating structures and elements. However, elements do not necessarily have to be exactly the
same. A simple example is the exception of a door in a row of windows in the ground floor, but
also in an repetition of recurring design elements, some may introduce slight differences to the
otherwise identical shapes.

The Origin of Split Grammars. Wonka et al. [WWSR03] were the first to utilize a split
grammar approach to computer generated architecture. For better control of the derivation pro-
cess and to allow exceptions they applied an attribute system to their grammar. Attributes are
either defined at the start symbol, propagated from parent shapes to children shapes, or are set
by rules via a special control grammar. This separate grammar defines attributes dependent
on spacial locators. So it is possible, for example, to give the second floor windows a differ-
ent style, or to ensure that there is a door at the ground floor. Attributes are used, on the one
hand, to carry material information at different granularities and, on the other hand, to steer the
derivation process by selecting one specific rule out of a set of matching rules.

The Split Grammar CGA Shape. In 2006 Müller et al. [MWH∗06] introduced CGA Shape,
a split grammar for modeling building shells procedurally to obtain large scale city models.
This split grammar led to the commercial product Esri CityEngine [Esr13]. This grammar
focuses on generating mass models of buildings, which are then further refined using split
operations. Stochastic rules are applied to create unique buildings based on footprints on a
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large scale (see Figure 2.6(a)). An important contribution of their work is the component-split,
their basis for modeling with shapes of different dimension. Three-dimensional shapes, such as
loaded meshes, can be partitioned into shapes of lesser dimension, such as faces and edges. The
expressiveness of their grammar is enhanced because these lower-dimensional shapes can then
be split and extruded for further refinement. To utilize operations like the component-split it is
necessary to distinguish between scope and geometry explicitly. They furthermore build upon
the before mentioned control grammar from Wonka et al. [WWSR03] by combining it with
stochastic replacement rules.

Further important contributions are occlusion queries to deal with the problem of overlap-
ping structures, and the snapline mechanism to provide a simple solution for context sensitivity.
To illustrate the occlusion queries, imagine a building that is composed out of a union of differ-
ent shapes. Further refinement of a non-terminal shape can be halted dependent of its occlusion
level – “none”, “partial” or “full” – to, for example, place windows on a façade. Through the
snapline mechanism splitting planes can be snapped to prominent planes in the model to, for
example, ensure same floor levels throughout the building. These techniques become possible
because replaced non-terminal symbols do not get deleted, but are just rendered invisible to
maintain the information on the whole hierarchy of the model.

Müller et al. [MVW∗06] furthermore used their approach to reconstruct Puuc buildings that
are present in Xkipché. Based on the work of Müller et al., Whiting et al. [WOD09] built a split
grammar for structurally-sound masonry buildings, which can be manipulated in physically
simulated environments.

(a) (b)

Fig. 2.6 An interpretation of Pompeii (a) reconstructed based on real building footprint by 190 hand-
written CGA Shape rules by Müller et al. [MWH∗06]. The city model is a composition of 36 different
terminal objects. The roller coaster (b), which is defined by a spline, demonstrates the ability to handle
interconnected structures by Krecklau and Kobbelt [KK11]. To avoid intersection of the pillars with the
roller coaster a ray is cast before generating the geometry.

Interconnected Structures in Split Grammars. Later, Krecklau et al. [KPK10] introduced
their split grammar G2. It provides further refinements to the split grammar concept such as
supporting different non-terminal shapes to encapsulate different modeling strategies. Besides
boxes, they support free-form deformations as a new non-terminal shape class to overcome the
limitation of loading meshes that are scaled to the scope they are inserted to. This new class,
however, can only be used to deform shapes and to not allow further refinement. To address
this problem I will present an extension to the split grammar formalism in Section 4.3.
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A solution for problem of missing context sensitivity was presented by Krecklau and Kobbelt
in 2011 [KK11]. Their solution for interconnected Structures is based on so-called containers –
nested arrays – that are passed to the grammar rules. Potential connecting points are appended
to these containers and are later processed to generate connecting geometry (see Figure 2.6(b)).
These connections are realized with deformable beams and rigid chains featuring several inde-
pendent parts, whose correct position and orientation is calculated through inverse kinematics.

Further Applications of Split Grammars in the Domain of Architecture. Applications of
split grammars are mostly in the domain of architecture. Larive et al. [LG06] use a simple split
grammar to describe exteriors of buildings they have created by extruding arbitrary ground
plans. Their simplified grammar only has a set of five rules: two repetition rules (“wall grid”
and “wall list”), two position rules (“extruded wall” and “bordered wall”) and one terminal rule
for texturing. Hohmann et al. [HHKF10] use a split grammar to entirely describe specific office
buildings (with interiors) at Graz University of Technology. They only use axis-aligned boxes
and two different terminal symbols: fill the box with a material or render the box invisible.
While generating the model all measurements have been approximated and due to the procedu-
ral description of the reconstruction, real measurements can be incorporated later. The result of
their reconstruction (see Figure 2.7) has been later used for surveillance applications. Thaller et
al. [TKH∗11] use split grammars to describe families of buildings through parametric building
templates. These templates are then used to optimize the energy footprint for these buildings.

Fig. 2.7 Reconstruction of the office buildings in the Inffeldgasse 16 at Graz University of Technology
using split grammars based on axis-aligned boxes. Terminal symbols are just filled or invisible boxes,
no terminal geometry is loaded. (image source: Hohmann et al. [HHKF10])

Leblanc et al. [LHP11] were one of the first to try to realize interiors with split grammars.
Interiors, especially, are a very hard problem to describe with split grammars. Room arrange-
ments can become quite complex by featuring several non-convex rooms which are hard to
describe by continuous splits. An especially ambiguous problem of realizing interiors through
split grammars, which is the interpretation of the walls, is briefly discussed in Section 7.1.
Leblanc et al. use split operations for façades and connections for decorations placements (like
doors and windows). To realize the space partitioning of the interior Boolean operations are
used on shapes. They, however, only touched the underlying problem by providing examples
of low to medium complexity. Our research group also tackled this problem, which is – among
other problems – discussed in Section 4.2.
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Interactive Split Grammar Systems. The split grammars presented so far all heavily rely
on scripting languages to produce their results. Artists with little computer science background
may find it hard to use such tools. To simplify the process and make coding less mandatory for
modeling with shape grammars, several interactive shape grammar systems have emerged to
ease the modeling process.

The first to provide a real-time visual editing system was Lipp et al. [LWW08]. They provide
visual representations for their operations, such as split operations, where the dividing planes
are visualized. These elements can then be clicked and dragged for interactive editing of the
grammar. Furthermore, to represent the hierarchical structure of the model, a tree-view is uti-
lized in the graphical user interface. A similar system, with the main focus on façade modeling,
has been presented by Krispel et al. [KHF10].

Recently, Krecklau et al. [KK12] introduced three-dimensional manipulators for any param-
eter in a procedural split grammar model. To overcome the massive amount of visual represen-
tations of parameters they use camera views to either concentrate on large scale parameters or
detail parameters.

Patow [Pat12] introduced another paradigm for editing shape grammars. Instead of writing
code, or editing directly at the three-dimensional model, he focuses on providing user friendly
tools to edit the underlying graph, which represents the model generated through the grammar.
He also provides methods for model verifications and full model editing through graph rewrit-
ing systems. Musialski et al. [MWW12] introduced a system in which modeling of façades is
done based on photographs. They incorporate photograph analysis techniques to help and guide
the user by providing an automatic initial placing of splitting lines. The GML Compositor, a
tool that features a direct manipulation interface that has been created by our research group,
is presented in Section 4.4.

2.3.5 Graph Grammars

Shape grammars usually operate in a context-free domain, but it is often necessary to take the
immediate neighborhood into account. In shape grammars dependencies are usually expressed
by a hierarchical tree data structure, but if more sophisticated dependencies are present, a tree
is not sufficient anymore. This information flow problem is inherent, for example, in Gothic
churches, where pillars, which are all at the same level in the hierarchy, need to be connected
to ensure a structurally sound building. However, such constraints do not always need to involve
structural design. Especially in churches, there are also constraints across the whole building
in terms of design, or room layouts. Such context-sensitive dependencies can ideally expressed
by graphs (see Section 3.2.1).

In comparison to shape grammars, graph grammars are a more general and powerful con-
cept. Replacement rules replace a sub-graph, which feature labeled nodes and edges, and re-
places it with another graph. These rules are mostly context-sensitive. However, finding a given
sub-graph within another graph is a generalization of the maximum clique problem, which is
NP-complete. Therefore appropriate data structures are necessary to improve the matching.

Graph rewriting systems are very common in software engineering to layout algorithms, but
their applications in the context of visual computing have been sparse. Graph grammars have
been used so far on meshes, which are graphs themselves, to realize basic modeling operations
such as for example an extrude operation. Dormans et al. [Dor10] presented an application of a
graph grammar to generate meshes. Based on an abstract graph definition of a (botanical) tree
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the corresponding mesh can be generated by applying the graph grammar to the acyclic graph
describing the tree.

Christiansen et al. [CB12] use graph grammars in combination with shape grammars for
level generation for action adventure games. A level of a game (or dungeon) is represented
by two different structures: the space and the mission. The space is the geometrical layout of
the level, which can be abstracted to a network of nodes (rooms) and their connections. The
mission, on the other hand, is the series of tasks the player has to complete to progress to the end
of the level. The mission can be represented by a directed graph in which a completion of a task
makes other, new tasks available. There is a mapping between mission and space, but those two
structure are in general independent because the same mission can be mapped to other spaces
too. They analyzed famous action adventure games, such as games from “The Legend of Zelda”
series, to define an alphabet of tasks (for example: “find key”, “open lock”, “defeat boss”, etc.)
that are essential to action adventure games. Based on these they designed a graph grammar
that is able to generate missions and additionally provide a shape grammar that interprets the
mission to generate an appropriate space.

Grasl and Economo [GE10] utilize a graph grammar to automate the Palladian grammar
by Stiny et al. [SM78]. Later they improved their approach to create a system [GE11], which
implements classical shape grammars (see Section 2.3.3) using graph grammars. Through the
graph representation they can efficiently extract shapes that are generated by other overlapping
shapes and can apply rules to them. Their system, however, handles all rules symbolically and
no visual editing tools for rules are provided.

2.4 Inverse Procedural Modeling

Recently, inverse approaches in procedural modeling have become very popular. However, in-
verse problems are often ill-posed due to ambiguities and uncertainties and are therefore, in
general, more difficult to solve. There are a lot of different approaches to inverse procedu-
ral modeling, such as fitting procedural models to three-dimensional point clouds, identifying
shape grammars for rebuilding façades from photos, or finding repetitions in meshes for gener-
ating a procedural model. In general there is always the problem that some low-level shape is
given and the procedural description that generates it is unknown. Therefore, a forward proce-
dural modeling task is always a prerequisite for inverse procedural modeling. With a sufficient
detailed procedural model given, the inverse task is responsible for finding the right parameters
for fitting the procedural model to the available data. However, due to nature of inverse prob-
lems often being ill-posed, typically there is no unique best solution. It may be even so that
there is no solution that generates an acceptable result.

2.4.1 Generative Surface Reconstruction

As before mentioned in Section 1.4.1, generative surface reconstruction focuses on understand-
ing specific shape spaces through inductive reasoning. Once the shape is understood, inverse
techniques can be applied for specific reconstruction tasks.

Already in 1999 Ramamoorthi and Avro [RA99] applied inverse techniques in the procedu-
ral modeling domain. In their work they generate short programs for describing railed, lofted,
or swept surfaces from curves that are generated from scanned geometry. Ullrich and Fellner
[UF07] use a genetic algorithm to find the best fit of a family of procedural models to a three-
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dimensional point cloud obtained from three-dimensional scans. Robustness against missing
parts is important and is solved by a smooth localized distance metric for the one-sided dis-
tance between the procedural model and the point cloud. In 2008 their approach was further
improved by the use of spatial data structures [USF08]. Ullrich et al. fitted a parametric model
of an arcade (represented by a sequence of arches) to a three-dimensional scan of a cathedral
in Pisa (see Figure 2.8). Further research by this group [UF11a] shows that using a probability
distribution instead of a concrete shape for the formulation of the procedural model improved
the early stage fitting performance. The later fitting steps for fine details are accelerated by
using automatic differentiation (taking the derivative of a program) of the procedural model.
Furthermore, the error to be minimized – the distance between the input data and the fitted
model – can be estimated reliably by a constant number of samples [UF11b]. This number is
independent of the complexity of the model as long as it is above a certain threshold. Ullrich et
al. [USSF11], furthermore, provide an application for shape segmentation. The input mesh is
assigned semantics during the fitting process. An offset texture is provided for the rough pro-
cedural model to approximately resemble the actual input mesh. The offsets are applied using
displacements in a shader. Andrews et al. [AJS12] provide a system where they extract a pli-
able geometry description out from unstructured input data, such as meshes. They then apply
forward modeling techniques to allow the extracted geometry to be further edited.

(a) (b)

Fig. 2.8 The parametric description of circular arcades (a) used to fit generative models to a laser scan
of the Duomo of Pisa (b). This circular arcade description features nine parameters: the origin (x,y,z),
two radii R and r for the alignment and the columns, the number of columns n, an offset angle α , an
opening angle β , and finally the height of the columns h. For this parametric description two instances
can be found in the laser scan. (image source: Ullrich et al. [USF08]).
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2.4.2 Grammar-Based Inverse Procedural Modeling

Aside from urban reconstruction, which will be discussed in Section 2.4.3, grammars are uti-
lized in domains like detection of symmetric and repeated parts or contour fitting of procedural
models.

Controlling grammar-based approaches (see Section 2.3), however, is often difficult. Slight
changes of the grammar can result in unanticipated changes in the produced geometry. The re-
cursive behavior of grammars is at fault for this unexpected behavior. The Metropolis approach
from Talton et al. [TLL∗11] solves this issue by turning it into an inverse problem. The desired
outcome can be sketched by a contour which is used to generate a context-free grammar that
fits objects, such as trees, buildings and cities in that contour.

Similarly, Bokeloh et al. [BWS10] take synthesizing context-free shape grammars as their
goal. In a given input shape, they search for partial symmetries so that they can derive building
blocks that can be recombined to generate new models out of parts of the input model (see Fig-
ure 2.9). Consequently, based on one model they span a design space of all models that can be
generated by combining parts of this model. They further pursued their goal of parametrizing
arbitrary input shapes by detecting partial symmetries and repetitions. In their paper in 2011
[BWKS11] they used free-form deformations to automatically adapt the model structure. Dis-
crete (repetitions of elements) and continuous regularities (straight lines) are maintained while
adapting the model through user-defined handles. However, sometimes undesirable distortions
are introduced in the results. In 2012 they presented another approach in high-level shape edit-
ing [BWSK12] that does not suffer from the limitations of their publication in the year before.
The input shape is analyzed for regular patterns and possible degrees of freedom are derived
from that. Adjacent patterns are linked using linear constraints leading to a huge, but sparse
linear system to be solved. Modifications of patterns always lead to a consistent shape in their
representation.

Fig. 2.9 Based on the input shape (red) Bokeloh et al. [BWS10] synthesize new variations (grey) with
the help of detecting partial symmetries. Detected symmetric parts of the input shape are recombined to
create variations.

A related approach by Lau et al. [LOMI11] analyzes furniture models available on the inter-
net. Using shape grammars they partition these static models into parts and connectors neces-
sary for fabrication. Application of the shape grammars also add inside parts, which are usually
not present in static models.
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2.4.3 Inverse Procedural Modeling for Urban Reconstruction

Urban reconstruction is a very prominent topic in inverse procedural modeling. A lot of ap-
proaches use shape grammars (see Section 2.3.3) because they are ideal for the analysis, de-
scription and construction of architectural elements, however, there are also approaches that
do not use a grammar-related approach. Musialski et al. [MWA∗12, MWA∗13] provide an
overview on urban reconstruction techniques in their recent survey and state of the art re-
port. Low resolution building reconstructions in applications like Google Earth [Goo13a] or
Bing Maps Platform [Mic13a] motivate the development of inverse procedural modeling of
buildings and building parts from (aerial) image data.

Inverse Façade Reconstruction. One of the first attempts to replace low-resolution textures
from aerial imagery to represent façades has been done by Müller et al. in 2007 [MZWVG07].
They use image analysis on a single view of a façade to meaningfully subdivide the correspond-
ing photograph. Furthermore, they detect repetitions of façade elements (windows and doors)
to extract shape grammar rules, which produce a three-dimensional model of the façade upon
execution. This, however, is not done fully automatically. For an image with strong perspective
effects of the target façade they can provide a first automatic approach [VGZVdBM07]. For-
mulating rule applications as statistical interference problems and using numerical approxima-
tion methods is a common approach to this problem. In the field of façade reconstruction such
methods were first used by Alegre et al. [AD04] in 2004. Reversible jump Markov Chain Monte
Carlo (rjMCMC) methods are another kind of such stochastic approaches and are used by Rip-
perda and his colleagues in several papers [RB07, Rip08a, Rip08b, RB09]. They aim to derive
structural description of façades from range and image data automatically. Koutsourakis et al.
[KST∗09] use split grammars and a Markov Random Field to generate three-dimensional mod-
els out of rectified images from façades. Teboul et al. [TSKP10] use a context-free grammar
to partition rectified building façades into semantic image segmentations. The shape grammar
in use is, however, limited to a simple style of split combinations. They have applied their ap-
proach to façades that contain highly regular structures, namely Hausmannian and skyscraper-
style façades. In contrast to their approach, Riemenschneider et al. [RKT∗12] recently used
irregular lattices, which preserve the logical structure of a façade. Their approach is better
suited to represent less regular, but still highly structured façade layouts. Their matching algo-
rithm supports detecting of repetitions and symmetries in façades (see Figure 2.10).

Inverse Building Reconstruction. Inverse procedural methods are also used to re-model
or detect entire building models from different available data, such as photographs or three-
dimensional point clouds. Cornelis et al. [CLCG06] combine algorithms for city reconstruction
using a video recorded by a car and a car detection algorithm using a cognitive loop to over-
come the individual limitations. Cars could be matched reliably using the three-dimensional
information obtained by the reconstruction algorithm. This way, cars could be removed from
the reconstruction and be replaced by actual car models. Mathias et al. [MMWVG11] ap-
ply inverse procedural modeling to buildings and landmarks. Through structure from motion
techniques they acquire a three-dimensional point cloud from a series of images. They use a
machine learning-based asset detector that aids the shape grammar interpreter, which drives
the reconstruction process. Their use cases are crumbled Greek Doric temples. Toshev et al.
[TMT10] extract buildings from raw three-dimensional point clouds and parse them in geo-
metric and semantically meaningful parts via a grammar. They view a building as a tree which
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(a) (b) (c) (d)

Fig. 2.10 From an orthophotograph of a façade (a) pixels are segmented to belong to different classes
such as windows, doors, walls and sky. Based on this segmentation a grammar refines the result (b).
Symmetry and repetitions are detected in the parsed structure (c) to ensure coherence throughout the
related parts. The parse tree can then be automatically transformed into a three-dimensional model (d).
(image source: Riemenschneider et al. [RKT∗12])

consists of neighboring volumetric parts that are next or above to each other and are covered by
planar patches representing the roofs. To extract the planes that make up these parts they use a
RANSAC-based plane detection algorithm. Based on the Manhattan-world assumption, namely
that in each scene there is a predominance of three mutually orthogonal directions, Vanegas et
al. [VAB10] produce a single, coherent, and complete model of a building using calibrated
aerial textures. They use a grammar to sequentially refine a coarse initial model (e.g., a box).
Nan et al., on the other hand, have developed their own method called smartBoxes for recon-
struction of building based on sampled point clouds. In their system the user loosely defines
and manipulates building blocks, which then automatically snap to their proper location adjust
their size and orientation. Li et al. [LZS∗11] have combined photographs and three dimen-
sional LiDAR scans to drive this idea further. Through combination of two-dimensional and
three-dimensional data they can reduce they noise and remove outliers from the point clouds.
Their information transfer is bidirectional: depth information is transferred to the photos and
afterwards information of the augmented photograph is transferred back. Through several as-
sumptions on a planar façade, free form buildings are ill-suited for their approach.

2.5 Specific Procedural Modeling Approaches

Several techniques for procedural modeling have been explored by now, however, there are still
some methods worth mentioning. This section focuses on methods which did not fit into the
sections before.

2.5.1 Procedural Modeling of Cities and Buildings

Procedural Modeling of East Asian Architecture. A work worth mentioning in this regard
is the unifying mathematical model that is able to describe the structures of East Asian buildings
by Tenou et al. [Teo09]. They describe different building types, such as palace halls, commoner
houses, temples, pagodas and pavilions of Chinese, Japanese and Korean culture. They intro-
duce a graphics modeling library supporting this large range of traditional East Asian styles
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and structures. Similarly, Huang and Tai [HT13] provide an interactive procedural modeling
tool for the generation of Chinese ting.

Procedural Modeling through Floor Plan Extrusions. A common way to model entire
buildings in computer-aided design software is to generate a floor plan and extrude it for each
separate floor. In the architectural point of view, a three-dimensional representation of a house
complete with interior is often used for simulations like light and heat propagation before
construction. For virtual applications like computer games, on the other hand, just the visual
appearance and soundness of the produced building matters.

Yin et al. [YWR09] provides a survey of different floor plan extrusion techniques up to
2009. They look into computer-aided design-based methods as well as methods that take ras-
terized images of floor plans as input, where algorithms for denoising and text removal are
used to extract the actual floor plan. Horna et al. [HMDB09] propose a semi-automatic method
for generating three-dimensional buildings from two dimensional vector plans. They utilize a
formal description of constraints to provide a generic representation of geometry, semantics
and topology of architectural indoor environments. Generalized maps (G-maps) are used as a
topological basis to represent their buildings through volumetric cells.

Merrell et al. [MSK10], on the other hand, do not rely on predefined building plans. Through
a set of high-level specifications, like the number of bedrooms, or specific room adjacencies,
they generate an architectural program. These programs specify each room in the building
together with its adjacencies and approximate dimensions through a Bayesian network trained
on real world data. A detailed set of floor plan is generated using these architectural programs
through statistically optimizing over the space of possible floor plans. These set of floor plans
can then be used to generate a full three-dimensional building using extrusions. Their method,
however, has problems with roof parts overlapping windows in the upper floors.

In contrast, Kelly and Wonka [KW11] focus just on the exterior shell of the building. A
profile describing the course of the wall and the roof can be defined for each side of the ground
plan of the building. During the extrusion each side of the building follows the path defined in
the associated profile. A straight skeleton [AAAG95, EE98] algorithm is utilized to correctly
merge the different profiles. Elements like meshes of windows and chimneys can be placed af-
terwards by specifying their locations in the ground plan and the wall profiles (see Figure 2.11).

Procedural Modeling for Street Networks and City Planning. For generating realistic
cities the underlying street network needs to be designed too. Chen et al. [CEW∗08] propose
a method based on tensor fields. For a given water map, the user generates a tensor field that
guides the generation of the street graph. The tensor field marks the directions in which the
main roads are placed. The tensor field can still be edited before placing the minor road pat-
tern. Parks and building geometry is added in the last step.

Vanegas et al. [VKW∗12] offer a method to create parcels within city blocks procedurally.
They propose a combination of two different subdivision techniques that generate spatial par-
cel configurations with a high similarity to those observable in real cities. They also provide
an editing system where roads as well as block parameters can be tuned interactively. Their
algorithms have been implemented in Esri’s CityEngine [Esr13].
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Fig. 2.11 In the work of Kelly and Wonka [KW11] buildings are realized by profile extrusions using a
straight skeleton algorithm. Profiles can be defined for each edge of the ground layout polygon. Archi-
tectural elements like windows or dormers can be placed by specifying their location in the ground plan
as well as the profile.

2.5.2 Procedural Modeling of Trees and Plants.

L-systems (see Section 2.3.2) are not the only technique used in procedural modeling of trees
and plants. This section intends to give a rough overview on different approaches to procedural
plant modeling.

Computer modeling of trees and plants can be traced back to the origins of two differ-
ent approaches. On the one hand there was Ulam [Ula62], who considered trees as self-
organizing structures, where branching patters emerge dependent on competition for light and
space (space-oriented). On the other hand, Honda [Hon71] considered trees as explicit recur-
sive structures (structure-oriented). These structures are characterized by parameters such as
branching angles or internode lengths. These two different views led to a multitude of papers
on both sides.

Structure-Oriented Methods for Procedural Plant Modeling. Honda’s view is ideally
suited to be realized using recursive generative algorithms which have been used by Aono and
Kunii [AK84], Bloomenthal [Blo85], and Oppenheimer [Opp86]. These early recursive models
only allow control over local features such as branching angles. More control is supported by
the approach of Reeves and Blau [RB85] and has been further developed by Weber and Penn
[WP95], Lintermann and Deussen [LD99], and Prusinkiewicz [PMKL01]. In these approaches
features like tree silhouettes and density of branches can be specified which leads to highly real-
istic models. Especially the approaches from Lintermann and Deussen [DL97, LD99] received
much attention for developing the Xfrog [Xfr13] modeling technique. For all these representa-
tions, however, it is not possible to dynamically react to changes in their environment.
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Space-Oriented Methods for Procedural Plant Modeling. In contrast, Ulam’s idea has
been first expressed using two dimensional cellular automata and has been extended to three
dimensional voxel spaces by Arvo and Kirk [AKC88], Greene [Gre89], Beneš and Millan
[BM02], and Palubicki et al. [Pal07, PHL∗09]. The aspect of competition for resources is
the guiding topic of these papers. De Reffye et al. [dREF∗88] present a description of plant
modeling adhering to botanic laws. Their model is based on the different fates of buds: some
buds may begin to bloom and become fruits, where others produce new branches or just
abort. Afterwards, others also incorporated the different fates of buds into their representa-
tions [PJM94, MP96, BM02, CSR∗08, PHL∗09]. These are some the most physically-faithful
growth models for plants. They incorporate influences of the surrounding environment as well
as biological mechanisms such as competition for resources, such as light, space and water.
Pirk et al. [PSK∗12] present a system where trees interactively adapt to their surrounding envi-
ronment. Their system allows import of any tree model independent of the system it has been
created with. They analyze the tree structure to extract the tree skeleton and leave clusters on
which calculations are made (see Figure 2.12).

Fig. 2.12 Trees imported into the system of Pirk et al. [PSK∗12] are analyzed and then appropriately
pruned and bent based on obstacles that are introduced to the surrounding environment in which that
tree grows.

2.5.3 Procedural Shading and Textures

Procedural techniques are not only used to generate three-dimensional content. Procedural
shading techniques are used to decorate shapes in an appropriate realistic way without rep-
etition and resolution artifacts from texturing. This sections indents to give a rough overview
of this domain without going into too much detail.

Procedural Textures Learned from Images. Procedural textures are used to ensure a con-
stant transition within the texture without visible borders. This is realized through stitching
together small patches of existing images in the work of Efros and Freeman [EF01]. Hertzman
et al. [HJO∗01] process pairs of images, where one image is purported to be a filtered version
of the other. The filtered image is used as training data to learn the applied filter. This learned
filter kernel is then applied to the second image. This process allows many applications among
which are:
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• Traditional image filters, like blurring or embossing.
• Super-resolution filters, where a high-resolution image is inferred from a low-resolution

source.
• Texture transfer, where a texture from one image (an oil painting) is transferred to another

image (a photograph).

Three-Dimensional Procedural Textures. To realize highly realistic models made of wood
or marble, three-dimensional textures are used to simulate the process of production. These
textures are described by mathematical means. To provide more realism, a three-dimensional
noise texture is applied to the texture.

Location-Dependent Procedural Textures. Procedural textures are, furthermore, used to
decorate three-dimensional content corresponding to their shape and environment. Procedural
textures for mountains, for example, have several parameters that may change based on the
elevation of the surface; on higher parts there will be less grass and a rockier surface, and
even higher up there will be snow and ice. The technique of Lasram et al. [LLD12] visualizes
all such possible appearances in procedural textures in a single image with limited resolution.
Legarkis et al. [LDG01] concentrate on cellular texturing of architectural models. Textures of
cellular patterns, like in brick walls, often do not match at corners. They present a technique
based on three-dimensional cell entities, which are placed at the surface of the model to texture.

2.6 Structured Shape Editing

The domain of structured shape editing is closely related to procedural modeling. The goal
of structured shape editing is to edit existing shapes and reassemble parts obtained from a
collection of objects into new shapes. This section will provide a rough overview over the
approaches in the domain of structured shape editing of man-made shapes. A more detailed
survey where key concepts and their methodological approaches are summarized and organized
is available in the state of the art report by Mitra et al. [MWZ∗13] titled “Structure-Aware Shape
Processing”.

Structured shape editing algorithms mainly consist of two phases: an analysis phase, where
structural information is extracted from input data, and a processing phase, where the extracted
information is used to create new shapes.

Analysis Phase. The analysis phase is characterized through the task of understanding shapes
and structures. At the core of this phase lies the part analysis, which is a classical segmentation
problem. Detecting symmetry plays a very important part when processing man-made shapes.
Inverse procedural modeling techniques as well as shape grammars help in this task.

In general, a shape is a collection of parts, their parameters and the relations between them.
A part is a logical entity of a shape with semantic importance. Parts are not necessarily disjoint
and can therefore overlap. Each part has a finite set of parameters that define the appearance of
that part. A part in this sense does not need to be a surface patch resulted from the segmenta-
tion; it is more an abstraction of a region of a shape and acts as a proxy for that semantic part.
Relations between objects define how parts, together with their parameters, correlate. The un-
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derlying structure of the shapes is described by these relations, which are realized by constraint
function that evaluate to zero for valid shapes.

There are mainly three different ways for identifying parts, parameters and their relations:

User Specified Segmentation.
In the simplest case the user specifies parts, parameters and constraints. Through procedural
modeling custom parameters can be defined by scripts or shape grammars. Constraints can
also be specified and be checked automatically to validate the constructed shapes. This is
especially common within computer-aided design and sketch interfaces. Shapes described
this way can adapt to various circumstances that cannot be foreseen by automatic methods.

Fixed Model Related Segmentation.
For models with properties known a priori, a fixed segmentation model can be constructed
and applied to obtain the necessary parts. An example for this is the work of Bokeloh et al.
[BWS10], where just static parts are extracted from a fixed model (see Figure 2.9). There are
many methods where the set of parameters are fixed beforehand. The arrangement of parts
is done, for example, using rigid transformations or the usage of fixed geometric primitives,
which feature a well-known set of parameters. The same can be said about relations. Phys-
ical constraints such as balance (position of the center of mass), or connectivity of parts are
known beforehand and can be maintained while editing. Umetani et al. [UIM12] use such
constraints for furniture design.

Segmentation Learned From Data.
Lastly, instead of a model based on a priori assumptions, a machine learning approach is
used to extract all information. This method is certainly the most general, but also has pre-
requisites such as the requirement of a set of training data. These methods can either be
supervised (with user annotations) or unsupervised (completely autonomous). Parts are usu-
ally extracted using segmentation methods. For parameters and relations the degrees of free-
dom need to be extracted from the training data. Common models for learning parameters
are dimensionality reduction techniques, like the principal component analysis (PCA). Con-
straints can be for example learned with the help of shape grammars, which are based on
local similarity (like in the work of Bokeloh et al. [BWS10]).

It is not necessary to use the same method for for each identifying task. Different methods
can be combined for the determination of parts, parameters and their relations. Kalogerakis
et al. [KCKK12], for example, use manually labeled input shapes with fixed parameters, but
extracts the relations from these input shapes for the recombination of the labeled parts.

Processing Phase. The processing phase is for editing existing shapes and the synthesis of
new shapes with the data acquired from the analysis phase. For editing existing structures free-
form deformations [SP86, Coq90] are a commonly used tool because they preserve structure.
The iWires system by Gal et al. [GSMCO09] detects crease lines (called wires) in triangle
meshes, which define the characteristics of the shape. The user can generate handles to deform
the wires, which also deforms the shape. Afterwards the system tries to restore the mutual
relationships (parallelism, orthogonality, symmetry) between the wires to generate a shape that
meets the user constraints and better preserves the original structure.

New shapes can be generated by assembling different parts from input shapes. These ap-
proaches are also referred to as data-driven methods. Single input shapes as in the work of
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Bokeloh et al. [BWS10] (see Figure 2.9), as well as shape collections can be used. Xu et al.
[XZCOC12] use concepts from evolution theory to generate new models starting from a set
of structured models belonging to the same class (e.g. chairs in Figure 2.13(a)). As mentioned
before, Kalogerakis et al. [KCKK12] recombine parts of pre-segmented shapes with the help
of probabilistic models to generate new ones (see Figure 2.13(b)).

(a) (b)

Fig. 2.13 Examples for data-driven structured shape editing methods. In the work of Xu et al.
[XZCOC12], evolutionary processes lead to the generation of a new chair (a), that shares parts with
chairs from an initial generation. Kalogerakis et al. [KCKK12] use probabilistic methods to recombine
parts from pre-labeled existing shapes (green) to generate new shapes (blue) (b).

Finally, reconstruction tasks can also be performed from structured shape editing techniques.
Shen et al. [SFCH12] retrieve and assemble parts taken from a shape collection to reconstruct
shapes from three-dimensional scans taken with the Microsoft Kinect Sensor [Mic13b].

Future Challenges for Structured Shape Editing. As mentioned before, so far work in this
field has only be demonstrated on small to medium sized data sets of the same object family.
The scalability of these approaches has not been sufficiently investigated so far, as has been
stated in the report of Mitra et al. [MWZ∗13]. Furthermore, for all the data-driven approaches
there is also the problem of the sparse availability of high quality shapes and shape collections.
To provide high quality results, these algorithms need high quality input.

Training sets that are used for the presented methods are in the most cases manually labeled.
Results are influenced positively by a qualitative manual labeling, however, this approach does
not scale when larger data sets are used.

Structured shape editing is not considered to be a variant of procedural modeling, but the
combination of both methods is promising. With parts that are procedural models itself or are
extracted from such, many issues from current structured shape editing can be solved.

Synopsis
In this chapter I presented fields and ways of application of procedural techniques with a
focus on procedural modeling. The grammar-based approaches are of particular interest for
this thesis. Split grammars are the established state of the art in modeling and generation
of digital cities and architecture, which is one of the representative areas this thesis is fo-
cused on. Split grammars follow a coarse-to-fine modeling approach build upon rule-based
replacements. Labeled shapes are partitioned into smaller parts by rules that match the as-
signed label to increase the detail of the model. This approach makes it ideal to describe
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hierarchical structures, such as buildings or façades. One major drawback of split grammars
is their context-free nature, which makes it hard to connect shapes from within the grammar.
Split grammars have been subject to many extensions that address limitations or enhance
their expressiveness, among which are the extensions featured in this thesis.

Another important message of this chapter is the necessity of procedural forward model-
ing techniques. Inverse procedural modeling is very popular technique for the reconstruction
of shapes based on point clouds or photographs. However, these techniques require proce-
dural models, as well as modeling techniques, for fitting shapes to the available data. It is
often neglected that a procedural analysis of the shape is necessary to make these inverse
techniques work.
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Abstract. Procedural modeling techniques create shapes in various ways. But before one can
utilize these techniques it is necessary to know, understand, and distinguish different low-level
shape representations and structuring mechanisms, which are then used to produce shapes pro-
cedurally. These low-level shape representations include first and foremost different represen-
tation of geometry, like meshes, subdivision surfaces, or implicit surfaces, which all can be
created procedurally through sets of well-defined operators. Shapes for industrial parts are of-
ten described by combining several low-level primitives together. These primitives can easily
be parametrized and thus the whole combined shape is parametrized too. These structuring
mechanisms combine low-level representations to describe hierarchies, dependencies and rela-
tions within procedural models. This chapter focuses on these low-level shape representations
and structuring mechanisms to provide the theoretical foundation for the chapters to come.
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3.1 A Hierarchy of Shape Representations

To differentiate between established shape representations, this section will assign them into
three levels based on their purpose and usage. These levels are: low-level shape representa-
tions, which are used to describe the surface of shapes, structuring methods, which take shapes
expressed by the methods before and set them into a context, and, finally, procedural methods
that are used to describe and create the above mentioned structures. This hierarchy provides
an overview on how established methods can be combined to create different shapes. In the
following, each of the three levels of this hierarchy will be explained.

Low-Level Shape Representations. Many different shape representations have been in-
vented during the years of research in the field of computer graphics. These representations
are just different ways to describe shapes and are based on the available data as well as a spe-
cific application area. It is important that none of these representations have been invented with
procedural modeling in mind, but all of them can be used to create shapes procedurally. There
exist a wide range of low-level shape representations for different domains, among which are

Surface Sampling.
The sparsest representation of three-dimensional data is a simple point cloud, which samples
of the outer surface of an object. In point clouds no information on connectivity of the single
vertices is stored. Point clouds are often used in digital documentation processes and are
commonly obtained by a laser scanner in a very high density.
Surfaces can also be sampled through a connected set of points, which span planar regions
on the shape’s surface. These so-called polygonal meshes are the most commonly used rep-
resentations. These representations include many different types, among which are for ex-
ample triangle meshes and quad meshes, but also general boundary representations, which
include faces of arbitrary degree. Polygonal meshes are the topic of Section 3.3.

Free-Form Surfaces.
Curved surfaces need a great number of vertices and faces to be represented exactly by
polygonal meshes. Free-form surfaces, on the other hand, are able to describe curved sur-
faces in a mathematical way and are therefore more exact than mere polygonal meshes.
Non-Uniform Rational Basis Splines (NURBS) are one of the most commonly used free-
form surface representation. NURBS curves and surfaces are both generalizations of Bézier
splines and B-splines. Subdivision surfaces, on the other hand, refine a coarse polygonal
mesh over many iterations to reach a smooth surface. The Catmull-Clark subdivision proce-
dure for subdivision surfaces is examined in Section 3.4.

Volumetric Shapes.
Instead of sampling the surface of a shape, volumetric shape representations use volumet-
ric entities to approximate the volume of a shape. Convex polyhedra, for instance, describe
shapes by the intersection of half spaces. Naturally, only convex shapes can be described this
way. To express non-convex shapes, sets of convex polyhedra are necessary. This shape rep-
resentation is explained in Section 3.5. Other representations approximate a volume through
the union of a set of different sized spheres. This method is called “union of spheres”. In the
metaballs approach, ball-like shapes interact with each other by merging together over time.
This way, organic surfaces can be described easily.
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This list of domains and corresponding shape representations is not intended to be complete
and it will also grow with the years of research to come. The important task is to make these
shape representations accessible to a procedural modeling approach. This is done by a set of
operators to describe the generation of these shapes. In his Ph.D. thesis, Havemann [Hav05]
demonstrated this in case of meshes, which will also be reviewed in Section 3.3.2. If an operator
interface can be provided in the case of meshes, other low-level shape representations can also
be analyzed to see whether an operator interface can be provided for them or not. In this chapter
additional to polygonal meshes (see Section 3.3), subdivision surfaces (see Section 3.4) and
convex polyhedra (see Section 3.5) are explained to provide the theoretical background for
the upcoming chapters. These explanations eventually lead to operator interfaces for all these
low-level shape representations.

Structuring Methods. There are also methods that do not describe a shape itself, but can
take shapes independent of their representation and process them further. This can either be by
bringing them into relation with other shapes or by changing the overall appearance. The most
prominent of these methods are scene graphs (see Section 3.6) as well as constructive solid
geometry methods (see Section 3.7). In addition to these, free-form deformations (see Sec-
tion 3.8), which alter the appearance of a shape, are discussed too. In this chapter an operator
interface is provided for these structuring methods to make them available for the procedural
approach.

Procedural Methods. At the highest level are the procedural methods. These are the most
general methods because they characterize three-dimensional shapes semantically. A proce-
dural representation cannot be visualized directly, but through execution it generates shapes,
which can be described by low-level shape representations and may be set into context by struc-
turing mechanisms. To create a procedural representation for the above mentioned structures
and representations, the design of an operator interface is necessary. This set of operators need
to encapsulate the generation and modification of these shapes.

All the methods presented in the preceding Chapter 2 belong to these procedural methods.
The focus of the upcoming Chapter 4 will be entirely on the specific procedural methods that
have been used and realized in context of this thesis. These methods include scripting lan-
guages, split grammars, and data flow graphs.

3.2 Foundations of Basic Data Structures

Before the chosen low-level shape representations can be presented, important theoretical back-
ground is reviewed to provide the information necessary to understand all concepts that are
presented from this point onward.

3.2.1 An Introduction to Graphs

It is important to discuss the abstract mathematical structures named graphs because they are
the foundation of for several of the low-level shape representations and structuring methods that
have been mentioned above, in particular polygonal meshes (see Section 3.3). Consequently,
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procedural techniques that describe these representations need to offer operators, which (indi-
rectly) build graph structures. A graph can also be used to represent interconnections within
a set of objects. Graphs are, therefore, very important in the domain of procedural modeling
because hierarchies, procedures, dependencies and thus structuring techniques, such as scene
graphs (see Section 3.6) and constructive solid geometry (see Section 3.7), can be described
as graphs. This section will cover the most important facts about graphs; further more detailed
information on graphs in general is available in the book by Diestel [Die05].

Definition 3.1 A graph G is a tuple (V,E), with V as a set of nodes (or vertices) and E as a set
of edges. An edge e = {u,v}, u,v ∈V,e ∈ E describes a connection between two nodes. Nodes,
as well as edges, may carry any label.

For a graph G = (V,E), two nodes u and v, u,v ∈ V are called adjacent if there is an
edge e = {u,v},e ∈ E that connects u and v. A path of length n is a sequence of n edges
e0 = {v0,v1},e1 = {v1,v2}, . . . ,en−1 = {vn−1,vn},v0, . . .vn ∈ V,e0, . . .en−1 ∈ E that allows a
transition from a node v0 to a node vn. The degree of a node is the number of edges that involve
that node.

Edges are used to traverse between nodes and can be interpreted differently based on the
properties of the graph:

Connected Graphs.
If there are no disjoint graph components a graph is called connected, otherwise it is called
disconnected. A disconnected graph can always be split into connected components.

Directed Graphs.
A graph G = (V,E) can either be directed or undirected. If a graph is not marked directed, it
is undirected by default. Undirected and directed edges can be distinguished by the notation.
For undirected edges the set notation with curly brackets is used, but for directed edges
parenthesis are used. In undirected graphs the edges e = {u,v} and e′ = {v,u} are redundant
because one single edge allows the traversal between the two corresponding nodes in any
direction. For directed graphs, however, e = (u,v) and e′ = (v,u) are different; e only allows
to move from the node u to the node v, but not in the other direction.

Acyclic Graphs.
When for all nodes vi ∈V,0≤ i < |V | of a graph G = (V,E), no path that starts and ends in
vi exists, the graph is called acyclic. A cycle is a path starting and ending in the same vertex,
where each two consecutive edges ei = {u,v} and e j = {v,w},u,v,w ∈ V,ei,e j ∈ E in the
path end, respectively start, in the same node v. In an undirected graph there is per default
always a cycle of length two because edges are bidirectional.

Weighted Graphs.
Edges can additionally carry weights as attributes that might represent costs, lengths, or ca-
pacities. The values of these weights can, for example, be probabilities or just the Euclidean
distance between the corresponding nodes. They can also be completely unrelated to the
position of the nodes, which means that the triangle inequality, which states that for any
arbitrary triangle the sum of the lengths of any two sides must be greater than the length of
the remaining side, does not need to be fulfilled by the weights.

Multigraphs.
Multigraphs feature multiple edges between two nodes. Even loops, edges e = {u,u} that
connect a node with itself, may be permitted based on the application.

Hypergraphs.
In hypergraphs an edge connects instead of two vertices two different sets of vertices with
each other.
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Infinite Graphs.
In general, for a graph G = (V,E), V and E are finite sets. If one or both sets are infinite
in size, the graph is called infinite. If not mentioned otherwise, graphs are always finite by
default.

Graphs have many applications in mathematics and computer science. Based on the appli-
cation, the used graphs have different properties. Markov chains, for example, are weighted
directed graphs with probabilities as edge weights, and finite automata are examples for di-
rected multigraphs with edge labels.

An important graph type is the so-called tree, which is ideal to describe hierarchical struc-
tures.

Definition 3.2 A tree T = (V,E) is a connected acyclic graph where any two nodes are con-
nected by exactly one single path. Nodes of degree one are called leaves. A unconnected union
of trees is called a forest.

Definition 3.3 An oriented tree T = (V,E) is a variant of a directed acyclic graph (DAG). The
underlying undirected graph is a tree. In such an oriented tree there is one designated node that
has only outgoing edges, called root node. Nodes with only incoming edges are leaf nodes. A
node is called a parent node for all nodes that are adjacent to it. These nodes are the child
nodes of their parent.

There are special variants of trees, for example, binary trees where each node has at most two
children. Directed acyclic graphs are utilized in many ways within procedural modeling. Prime
examples here are scene graphs (see Section 3.6) and data flow graphs (see Section 4.4.1).

3.2.2 Topological Foundations of Meshes

Graphs can be used to approximate a three-dimensional surface. These so-called meshes sam-
ple the surface in question and contain – in addition to vertices and edges – faces, which are
surrounded by a closed sequence of vertices and edges. This section will introduce topological
foundations and features of meshes leading up to Definition 3.10 of a valid mesh. It is impor-
tant to adhere to these features while designing an operator set to procedurally generate valid
meshes (see Section 3.3) because otherwise these meshes may cause problems if further pro-
cessed, for example for three-dimensional printing. A more in-depth discussion of this topic is
available in the book by Botsch et al. [BKP∗10] titled “Polygon Mesh Processing” as well as
in the Ph.D. thesis of Havemann [Hav05].

Definition 3.4 A polygonal mesh M is a tuple (V,E,F), where

• V is a finite set of three-dimensional points, called vertices,
• E is a finite set of edges, which connect two vertices, and
• F is a finite set of polygons called faces, which consist of vertices and the respective edges

that describe the corresponding polygon. All vertices of a face lie within one plane.

The valence of a vertex is the number of edges incident to that vertex. An edge e∈E is described
by a tuple of two vertices: (v,v′),v,v′ ∈ V . The boundary of a face f ∈ F is described by a
sequence of vertices and edges: (v0,e0,v1,e1,v2, . . . ,vn,en) where ei = (vi,vi+1), for vi ∈V,ei ∈
E,0 ≤ i ≤ n. Since this sequence is cyclic, it means that the index i is always taken modulo n,
and the edge en connects vertex vn to vertex v0.
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Meshes feature different topological properties. This section will examine important topo-
logical mesh properties that will lead to the definition of a valid mesh. I will start with the
property that defines whether a mesh is closed or not.

Definition 3.5 A mesh is called closed if all edges corresponding to this mesh are incident to
at least two faces.

If an edge in a mesh has only one incident face it is called a boundary edge; this edge is
consequently incident to a hole in the mesh, which is therefore not closed. A sequence of
boundary edges is called a border. From here on only closed meshes are considered because
each hole in a mesh can be filled by inserting additional faces. Consequently, each mesh that is
not closed can be transformed into a closed mesh.

An important topological measure of a mesh is its Euler characteristic, or genus. The genus
of a mesh is an integer value counting the number of topological holes in the mesh. So a sphere
has genus zero, while a torus has genus one. Holes formed by boundary edges are no topologi-
cal holes, so a cylinder with missing top and basement faces has still genus zero.

Another important topological property of a mesh is its orientability.

Definition 3.6 A mesh is called orientable if and only if that mesh does not contain a Möbius
band. Otherwise it is called a non-orientable surface.

In an orientable mesh all edges incident to a face can be oriented in a consistent way. By
following the orientation of the edges, a cycle around the boundary of the face is formed. Two
adjacent faces incident to an edge traverse this common edge in opposite directions.

A Möbius band (see Figure 3.1(a)) is a surface with only one side and one border, leading
to the fact that the interior and exterior cannot be distinguished. A solid object, however, has
a clearly defined finite interior, infinite exterior, and the surface separating those. Other non-
orientable surfaces are Klein bottles (see Figure 3.1(b)) and real projective planes. From this
point onward only orientable surfaces are considered.

(a) (b)

Fig. 3.1 Non-orientable surfaces: the Möbius band (a) and a Klein bottle (b). These surfaces have only
one side and one border, meaning that the interior and the exterior cannot be distinguished from another.

The following property of a mesh defines whether it is called manifold or not. This property
is important to guarantee consistent mesh traversal without ambiguities.

Definition 3.7 The relative neighborhood of a point on a three-dimensional surface is the
intersection of the surface with an infinitesimal small three-dimensional sphere centered at
that point.
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Definition 3.8 A three-dimensional mesh is called manifold if and only if each point on the
surface fulfills the following two constraints:

• First, the relative neighborhood of each point needs to be topologically equivalent to a two-
dimensional open disc. This mapping between the relative neighborhood and the open disc
has to be bijective and continuous.

• Second, the relative neighborhoods of two distinct points need to be disjoint.

This definition can be expanded to arbitrary dimensions. An n-dimensional manifold is a
topological space in which every point has a relative neighborhood that is topologically equiv-
alent to an n-dimensional open disc. A mesh with that properties is therefore a two-manifold
(see Figure 3.2).

Fig. 3.2 For a two-manifold mesh the relative neighborhood of each point on the surface of the mesh
needs to be equivalent to a two-dimensional disc. This is illustrated with points on the surface of a cube.
The colored segments in the discs correspond to the equally colored faces of the cube.

The following properties, which are important for navigation on meshes, can be derived of
the definition of a two-manifold mesh:

Manifold Edge Property:
Each edge is incident to exactly two faces.

Manifold Vertex Property:
For each pair of two faces incident to a vertex, a transition between those faces is possible
by traversing to neighboring faces over edges incident to that vertex.

If those criteria are not met a mesh is called non-manifold. Examples for meshes violating
those criteria are shown in Figure 3.3.

For a manifold mesh the Euler-Poincaré formula provides a topological invariant.

Definition 3.9 For a manifold mesh M = (V,E,F), let v = |V |, e = |E|, f = |F | be the number
of vertices, edges, and faces respectively. Furthermore, let s be the number of connected com-
ponents (shells), h the number of topological holes (which is the genus), and r the number of
edge rings (loops) in faces.
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(a) (b) (c)

Fig. 3.3 Meshes that violate the properties of a two-manifold mesh. In a double cone (a) one vertex
is part of both cones. The neighborhood of this non-manifold vertex cannot be embedded into a two-
dimensional disc. When two blocks share the same or part of an edge (b) all points along the shared part
are non-manifold. Sharing parts of faces (c) leads to the same problem. All points within the shared part
of the faces are non-manifold.

Then the Euler-Poincaré formula states that

v− e+ f = 2 · (s−h)+ r

This formula can be used to determine if the shape is topological invalid. If this equality
does not hold, then something is wrong in the representation. However, for a topological valid
shape it is necessary, but not sufficient that this equality holds.

Finally, this leads us to the definition of a valid mesh:

Definition 3.10 A mesh is called valid if and only if it is two-manifold, closed, and orientable.

3.3 Polygonal Meshes

It is very common in computer graphics to approximate a shape’s surface with a polygonal
mesh (see Definition 3.4). Consequently, to generate and modify meshes procedurally, mesh
data structures need to be designed appropriately. Characteristic and commonly used polygo-
nal meshes are triangle meshes and quadrangle (quad) meshes, which only exist of triangles,
respectively quadrangles, as faces. More general boundary representations or short B-reps con-
tain faces of arbitrary degree. These three types of meshes are explained in short in the follow-
ing. For more detailed information please consult the books by Mäntylä [Män88], de Berg et al.
[dBvKOS00], or Botsch et al. [BKP∗10].

This section will then proceed with an overview on mesh data structures for storing and
editing that are used and maintained in procedural generation and modification of meshes (see
Section 3.3.1). This section concludes with a discussion on the operators needed for mesh
navigation as well as mesh generation and editing. These operators are necessary to reach a
procedural mesh description (see Section 3.3.2).
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Triangle Meshes.
A triangle is the smallest two-dimensional polytope. Due to this, it is possible to approximate
any three-dimensional surface up to arbitrary precision through triangles. Consequently, tri-
angles are the basic primitive for describing surfaces with polygonal meshes and modern
graphic card hardware is optimized for rendering triangles.
Interesting properties about triangle meshes are that there are in average three times as many
edges as vertices and in average twice as many faces as vertices. For a manifold triangle
mesh M = (V,E,F), let v = |V |, e = |E|, f = |F | be the number of vertices, edges, and faces
respectively. In such a mesh, 3 f = 2e by counting the edges of faces. By inserting this in the
Euler-Poincaré formula (see Definition 3.9), we reach f ≈ 2v and e≈ 3v. Consequently, the
amount of vertices and faces together approximate the number of edges in a triangle mesh.
Another interesting property is that the average valence of vertices is 6. The average valence
can be computed by 2e/v, which is approximately 6 for large v.

Quadrangle (Quad) Meshes.
Quadrangles, on the contrary, do not share the topological features of triangles. Four points
in general position do not necessarily need to be in one plane or in convex position. However,
in a sense it feels much more natural to express a shape’s surface with near quadratic patches.
To generate a quad mesh of a surface it is important to know that each point on a surface
exhibits two orthogonal tangent directions of principal curvature [Eul67]. One characterizes
the rate of maximum bending and the other the rate of minimum bending. These directions
can be used to represent a surface by quadrangular patches, hence by a quad mesh.
Quad meshes are also often used for free-form architecture that features glass façades. These
façades should consist of planar quadrangular window patches. Planarity is an important
factor here because bent glass panes are very expensive to fabricate.
The topic of quadrangulation of meshes received much attention recently. Tarini et al.
[TPC∗10], for example, presented a simplification-based approach. They first convert a tri-
angle mesh into a quad mesh by pairing triangles and simplify it afterwards using specific
mesh operations.

Boundary Representations (B-reps).
Triangle meshes and quad meshes are special variants of the more general class of meshes:
the so-called boundary representations, or short B-reps. B-reps allow faces of arbitrary de-
gree and those faces do not need to be regular nor convex. Furthermore, it is a good idea to
allow edge rings within faces. Through edge rings (or loops) additional borders are added
to a face. A representation with edge rings can be transferred to one without by connecting
these two borders with a pair of edges.

3.3.1 Mesh Data Structures

To efficiently store meshes it is not necessary that all information of a mesh (see Definition
3.4) is stored explicitly. Depending on the application, a trade-off between required space to
store the mesh information and time to query information is necessary. In this section different
data structures to save and operate on mesh data are explored. Data structures for saving are
concise and store information only implicitly; therefore, they need to be converted to other
more explicit data structures for mesh editing. These data structures for editing allow to define
a set of operators for procedural generation and modification of meshes (see Section 3.3.2).
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Mesh Data Structures for File Storage. There exist many different file formats for storing
mesh data. In this part I examine the most common variants. A primitive solution to describe
triangle meshes was taken within the .stl file format. Each line in the file features nine floating-
point values – three coordinates for three vertices – and therefore represents one triangle. While
this file format is intuitively simple, it has one major drawback: there is a lot of redundant infor-
mation. Vertices that are shared by triangles appear multiple times and adjacency information
can only be retrieved by comparing floating-point values. To prevent redundancies within the
vertices, a vertex list with unique entries is necessary. Vertices are then only referred to by their
unique identifier.

Another way to store triangle meshes efficiently is via so-called triangle strips that interpret
a list of vertex indices in a special way. Starting from an initial triangle, which is encoded
by the first three vertices, each further vertex generates a new triangle together with the two
preceding vertices. This is very efficient because each vertex (except the first two) generates
a new triangle. However, it is necessary to resort to creating degenerated triangles by using
vertices multiple times to express arbitrary triangle meshes this way (see Figure 3.4). By this
means, it is possible to gap holes and continue the triangle strip at another position. Even though
this creates additional triangles with no surface area that no not contribute to the surface of the
mesh, this method is ideal for rendering purposes and is used in OpenGL and DirectX because
it can be processed very fast and efficiently.

a c

b d

e

f

g i

h j

Fig. 3.4 These triangles are represented as a triangle strip by the vertex list “abcdeffdgghhij”. Each
subsequent triplet of vertices represents a triangle. The triangles abc, bcd, cde, and def are represented
by the list “abcdef”. To traverse from triangle def to triangle fdg, the vertex f needs to be used twice
to insert the degenerated triangles eff and ffd. Afterwards, the triangle fdg can be created. The same
method can be used to relocate the triangle strip to the triangle hij by using the vertices g and h twice.

A way to describe arbitrary meshes are the so-called indexed face sets (see Figure 3.5). Out-
going from a list of vertices, faces are defined by a list of vertex indices. Different file formats
use different delimiters to signal the ending (or beginning) of a new face. File formats that use
indexed face sets are for example the Wavefront OBJ file format (.obj), the Object File Format
(.off), or the Virtual Reality Modeling Language (VRML) file format (.wrl). Furthermore, this
representation is widely accepted by modern graphics hardware, therefore no conversion of the
data is necessary before rendering, which makes this representation ideal to store render data.
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v0 (0,0,0)
v1 (1,0,0)
v2 (1,1,0)
v3 (0,1,0)
v4 (0,0,1)
v5 (1,0,1)
v6 (1,1,1)
v7 (0,1,1)

f0 v0,v3,v2
f1 v0,v2,v1
f2 v0,v5,v4
f3 v0,v1,v5
f4 v0,v6,v5
f5 v1,v2,v6

f6 v2,v7,v6
f7 v2,v3,v7
f8 v3,v4,v7
f9 v3,v0,v4
f10 v4,v5,v7
f11 v5,v6,v7

v0
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v6
v7
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Fig. 3.5 In an indexed face set data structure vertices are stored in a list without redundant entries. Faces
are represented by a list of vertex indices.

Mesh Data Structures for Editing. Meshes that are saved to files store adjacency informa-
tion only implicitly to save storage space. However, should a mesh be subject to editing then
this adjacency information is important. The adjacency information can be extracted in O(n)
time from such a representation, but for editing purposes this takes too much time. Therefore,
a trade-off between time and space, which is a conversion to another representation, namely
a halfedge representation, is necessary. In contrast to indexed face sets, which are ideally for
storing mesh data, the halfedge representation is ideally suited for interactive modeling, where
changes to the mesh are done locally. The ability to navigate on the mesh freely enables dynam-
ically changing the mesh easily, thus the mesh can be described through procedural modeling
(see Section 3.3.2). This representation allows to query the adjacency information in O(1), but
also requires a lot of space, which can be a problem for very large meshes.

The halfedge representation is the successor of winged-edge meshes by Baumgart [Bau75]
and is the one of the most flexible representations in terms of editing. The entire vertex and face
information is stored and, additionally, directed halfedges are stored for each face to represent
the orientation of that edge in that specific face. This amounts to two halfedges per edge, so
twice the amount of space is needed for storing the edge information.

Halfedges can be used to encode adjacency information of a mesh. Figure 3.6 provides an
overview on the entire adjacency information that can be stored in halfedges. Aside from the in-
formation stored in vertices and faces, it is not always necessary to store the whole information
that is shown in Figure 3.6 in the halfedges. Triangles meshes, for example, can be efficiently
represented through a list of halfedges. In this list, triplets of halfedges always encode one tri-
angle in counter-clockwise direction. Consequently, for a given halfedge with index i the index
of the triangle can be computed by bi/3c, and the index of the halfedge within the triangle can
be computed by i (mod 3). This way, the information to navigate around a triangle is stored
implicitly. To enable navigation over the whole mesh each halfedge needs to store the infor-



54 3 Digital Shape Representations for Procedural Modeling

1. each vertex references
one outgoing halfedge

2. each face references one half edge
of its boundary

3. each halfedge references:

a. the vertex it is pointing to
b. the adjacent face
c. the next halfedge

(of the corresponding boundary)
d. the opposite halfedge (mate)
e. optionally the previous halfedge

1 2 ab
c

d

e

Fig. 3.6 Illustration of the halfedge data structure and the complete information that can be stored within
halfedges.

mation about their edge mate explicitly. Additionally, information of the vertex the halfedge is
pointing to is necessary for mesh editing purposes.

In case of the more general B-reps, halfedges need to be stored differently because faces
do not necessarily have the same amount of edges. In B-reps the edge mate information is
saved implicitly, which means that the list of halfedges consists of pairs of halfedges that are
each other’s mates. For a halfedge with index i the mate has index i+ 1 if i is even and i− 1
otherwise. To enable navigation around the mesh, the index of the next halfedge in counter-
clockwise orientation is stored explicitly for each halfedge. Again it is necessary to store a
reference to a vertex explicitly in the halfedges.

3.3.2 Mesh Editing and Navigation Operations

Meshes are usually stored in files as indexed face sets, but when meshes are to be changed
interactively the underlying mesh information (once loaded into the software) is usually con-
verted to a halfedge representation. The advantages of the halfedge representations are the
ability to navigate the mesh freely, which enables changing the mesh dynamically. For saving
the mesh, which has been edited this way, a conversion to another format is necessary because
the halfedge data structure is not space efficient. The halfedge representation is the standard
representation for editing polygonal meshes. This section focuses on the available operations
to navigate and edit a mesh, which is represented through halfedges. Through the combination
of navigation and edit operations, procedural generation and modification of polygonal meshes
is possible.

Mesh Navigation Operators for Procedural Modeling. Halfedges can be seen as mesh iter-
ators that can be used for traversing meshes based on the information they store. The following
operators are used for navigation on any polygonal mesh and operate in constant time:

faceCCW and faceCW
Traverse the edge cycle of a face’s boundary in either counter-clockwise (CCW) or clockwise
(CW) direction.

vertexCCW and vertexCW
Traverse the edge cycle around a vertex in either counter-clockwise (CCW) or clockwise
(CW) direction.
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mate
For a given halfedge get the opposite halfedge of the neighboring face.

Outgoing from an arbitrary halfedge on a valid mesh each other halfedge (on the same
connected component) can be reached through application of these five operations. Any path
between two vertices on the same connected component can be realized through application of
these navigation operations.

Mesh Editing Operators for Procedural Modeling. A mesh can be seen as a graph of
vertices that are connected by edges, which again enclose faces. With a polygonal mesh given,
one might desire to edit it by adding or deleting vertices, edges, or faces. This way, the original
mesh is transformed into a new mesh.

Basic editing and generation operations for triangle meshes of constant genus have been
introduced by Hoppe [Hop96] in the context of reversible mesh simplification. Additional to a
make triangle operation that creates an initial triangle, he introduced a pair of mutually inverse
operations.

• The vertex split operation takes a vertex and divides it into two by introducing a new edge
connecting the two vertices. By introducing this new edge, two existing edges, which are
incident to the split vertex, are split too. These edges span – together with their original
counterpart and the new edge connecting the split vertices – two new faces as illustrated in
Figure 3.7 from left to right.

• The edge collapse operation takes an edge and deletes it by merging the connected vertices
into one single vertex. This operation consequently deletes two faces and merges two pairs
of existing edges as illustrated in Figure 3.7 from right to left.

vertex split

edge collapse

a

c

b

a

c d

b

Fig. 3.7 Illustration of the mutually inverse operations vertex split and edge collapse. The vertex split
operation (left to right) splits the vertex c into two generating the new vertex d. This way, three new edges
and two faces (in orange) are created. The inverse, the edge collapse operation, merges two vertices into
one by deleting the vertex d together with the two orange faces and three edges.

The three operations make triangle, vertex split, and edge collapse can be generalized to
describe the generation of an arbitrary polygonal mesh. This complete set of operations, the
so-called Euler operators, can be used to describe a mesh procedurally as discussed in the
work of Havemann [Hav05]. During the process of mesh editing with Euler operators the mesh
does not necessarily be valid all the time. However, at each step the Euler-Poincaré formula
(see Definition 3.9) holds. These operators are the foundation of modeling with the scripting
language GML, which in introduced in Section 4.1.
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There are two groups of Euler operators: the make group and the kill group, whereas for
each operation in the make group the corresponding inverse operation is in the opposite kill
group and vice versa. Figure 3.8 illustrates all Euler operators.

First, three operators are introduced to create objects of genus zero:

makeVFS (↔ killVFS): Make Vertex, Face, and Shell
This operation creates the connected component (shell) together with one face and one ver-
tex for initializing the modeling process. At this step the shell and the face are infinitely
small. As the model will be generated with further steps, this initial face will always be the
face that closes the mesh. The inverse deletes a shell together with the last vertex and face.

makeEV (↔ killEV): Make Edge and Vertex
Based on one vertex this operation generates another vertex and the connection between
these two. Hence, this operation either creates a dangling vertex with valence one, or it
splits the original vertex, together with its incident edges, into two. The inverse operation
removes an edge and the two end points become one.

makeEF (↔ killEF): Make Edge and Face
This operation is dual to the makeEV operation as it splits a face into two introducing a
new edge and a new face. Therefore, it is a face split. Either it creates a face loop within an
existing face by taking the same vertex as start and end of the edge, or it splits a face in two
pieces by connecting two different vertices of that face. The inverse is also called face join.

These three pairs of matching operators can be used to create any object, which is topo-
logical equivalent to a sphere. In a forward modeling process one would always start with an
initial makeVFS to create the shell together with first vertex and a face. Modeling continues
by application of makeEV and makeEF operators. A sequence of makeEV operators is used to
create all vertices with the corresponding edges. The faces are then finished by inserting the
last edge that is missing for each face with the makeEF operator.

In comparison to the mesh editing operations on triangle meshes, the Euler operators oper-
ate on a lower level. A vertex-split operation, for example, which introduces one new vertex,
two new faces, and three new edges, amounts to one makeEV and two makeEF operations.
Therefore, on triangle meshes the Euler operators are equivalent to the vertex-split and edge-
collapse operations. The latter, however, do not provide facilities to introduce genus changes to
the mesh. To grant the flexibility of topological changes, such as making holes or connecting
two components, the following two pairs of operators, which are based on the concept of edge
rings within faces, are added to the list of Euler operators.

makeEkillR (↔ killEmakeR): Make Edge, Kill Ring
This operator is used to connect one isolated edge ring with the face on which the ring is
positioned. The newly inserted edge connects two points of the same face, one on the outer
boundary and one of the ring. Through this connection, the ring vanishes. In case of forward
modeling, the inverse killEmakeR operator is used to create a ring within a face.

makeFkillRH (↔ killFmakeRH): Make Face, Kill Ring and Hole
This last operation is used to turn a ring into a face of its own. Again in case of forward
modeling, the inverse killFmakeRH operator is used and is easier to illustrate. With the
inverse operator, a face is turned into a ring of another face. This can be used to change
the genus of a mesh. On the one hand, it can be used to connect two shells with two coplanar
faces touching each other, and, on the other hand, it can be used to create topological holes
when two faces of the same shell are coplanar.

The operators makeEkillR and makeFkillRH can be used to convert faces to rings and vice
versa.
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makeVFS
−→

killVFS
←−↔

←−↔ ↔ ↔
makeEV
−→

killEV

↔ ↔ ↔
makeEF
−→

killEF
←−

↔ ↔ ↔
makeEkillR
−→

killEmakeR
←−

←−+↔
makeFkillRH
−→

killFmakeRH

Fig. 3.8 Illustration of the Euler operators in two-dimensions. The make operators on the left correspond
to their counterpart kill operators on the right. Each row shows different situations for applying the
operator. The make operators are applied from left to right, and the kill operators from right to left. With
the first three operators, any genus zero shapes can be generated. The last two operators are concerned
with rings and building higher-genus objects. (image source: Havemann [Hav05])

It is important to notice that the Euler-Poincaré formula from Definition 3.9 does never fails
after application of one of the mentioned Euler operators. Figure 3.9 shows the contribution of
each operator to the values used in the formula.

Euler Operator v e f s r h
makeVFS +1 +1 +1
makeEV +1 +1
makeEF +1 +1
makeEkillR +1 -1
makeFkillRH +1 -1 -1

Fig. 3.9 Table showing the contribution of each Euler operator of the make group to the values used in
the Euler-Poincaré formula (see Definition 3.9). The contributions of the operators from the kill group
are the negative values of the corresponding counterpart from the make group. No operator would cause
the Euler-Poincaré formula to fail.

Euler operators form a complete set of modeling operations, which can be utilized by pro-
cedural modeling techniques, for manifold solids. More precisely, from an initial topologically
valid mesh each other topologically valid mesh can be constructed by a finite sequence of Euler
operators.
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3.4 Subdivision Surfaces

Describing highly tessellated curved surfaces procedurally through the aforementioned Euler
Operators (see Section 3.3.2) is inefficient due to the high amount of faces needed to generate
a smooth surface. Consequently, we want to find a method to allow a more efficient procedural
description of curved surfaces.

Subdivision surfaces bridge the gap between polygonal models and spline surfaces. They
approximate a free-form surface through a infinite process of subdividing faces of any two-
manifold polygonal mesh into smaller pieces. A smooth surface can so be represented by a
coarse polygonal mesh. With the appropriate subdivision rules a cube can be refined to become
a sphere with infinite subdivision steps (see Figure 3.10). Subdivision surfaces are an important
modeling tool within the scripting language GML, which is introduced in Section 4.1.

(a) (b) (c) (d) (e)

Fig. 3.10 Catmull-Clark subdivision steps applied to a base mesh formed like a cube (a). The subdivi-
sion steps up until subdivision depth three are seen from (b) to (d). After infinite subdivision steps the
limit shape is reached. In this example the limit shape is a sphere (e).

Terminology of Subdivision Surfaces. A subdivision surface is defined by a base mesh M0

with its vertices being called the control points cp0 and a set of subdivision rules. By applying
the subdivision rules to a mesh Mn the next iteration of the mesh Mn+1 and control points cpn+1

are reached. The index n is called the subdivision depth.
Mathematically, the approximated smooth surface is the limit of a recursive subdivision

process of each face into smaller faces that better approximate a surface. The smooth surface is
therefore called limit surface L(M0) = limn→∞ Mn. The limit surface is no parametric surface,
but can be evaluated directly for most subdivision schemes. Thus, the recursive refinement
steps become unnecessary.

To subdivide a face of a mesh, an affine combination of neighboring elements of that face
are used to calculate the positions of the new vertices. Subdivision methods can either be inter-
polating or approximating. With interpolating methods, control points are placed on the limit
surface. Thus, the original positions of the vertices are required to stay the same in the whole
subdivision process. In contrast, with approximating methods control points are typically not
placed on the limit surface. The position of control points can therefore vary from iteration to
iteration.

Independent of the subdivision scheme, subdivision surfaces are either refined uniformly or
adaptively. When a base mesh is subdivided sufficiently often it becomes a good approximation
of the limit surface. For a uniform refinement, subdivision rules are applied for a number of
iterations to all faces in each iteration; so there is a overall constant subdivision depth. This,
however, leads to an exponential memory consumption and to subdivisions on faces where a
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refinement produces almost no accuracy gain. Adaptive refinements, on the other side, vary the
subdivision depth, but ensure a constant accuracy. Parts with high curvature will be subdivided
more often, whereas flat parts will hardly be refined. To ensure a coherent result, it is necessary
to use limit points for the connection of mesh parts with different subdivision depths.

Properties of Subdivision Surfaces. Subdivision surfaces have many positive features. Ar-
bitrary topology can be described and processed with subdivision surfaces. Due to the recur-
sive refinement, level of detail can be obtained very easily by setting the maximum subdivision
depth. The recursive definition also leads to an easy and structured implementation.

However, problems with the curvature occur at irregular vertices and faces. Irregular vertices
are points where the mesh is not regular. In quad meshes, an irregular vertex is a vertex with
valence unequal to four. Depending on the subdivision algorithm curvature is hard to control at
these points (see Figure 3.11). Irregular faces are faces that are not suited for the subdivision
algorithm. For a subdivision procedure that is defined on quad meshes, faces of other degree
than four are considered irregular. Sometimes, faces are also considered irregular if they contain
an irregular vertex. There are several papers dedicated on how to control and handle irregular
vertices and faces. For example, Augsdörfer et al. [ADS06] analyzed artifacts of subdivision
schemes to tune them for the best possible behavior near irregular vertices with respect to
curvature variation.

(a) (b)

Fig. 3.11 Influence of irregular points on the curvature. The images show on the left side the control
points and on the left side the curvature is visualized by reflecting a texture of parallel black lines on a
white background. In regions with no irregular points (a) the curvature is smooth, but around an irregular
point (b) the curvature is disturbed, which leads to artifacts in reflections. (image courtesy of Andreas
Riffnaller-Schiefer)

Catmull-Clark Subdivison Procedure. The Catmull-Clark subdivision algorithm [CC78]
by Catmull and Clark is an approximating scheme as a generalization of bi-cubic uniform
B-spline surfaces. This subdivision algorithm is one of the most commonly used and is also
realized within the implementation of subdivision surfaces in the GML (see Section 4.1.2).

Each control point of a mesh Mi+1 can be associated with a face, edge or vertex of the mesh
Mi of the previous iteration; these points are therefore called face points, edge points, or vertex
points. These points are calculated and then form the control points of the mesh for the next
iteration.
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For a mesh Mi at the ith iteration with control points Pi a subdivision step proceeds as
follows:

1. For each face Fj a face point f i+1
j is created. This point is the average of all control points

Pi
k that belong to that face – the centroid. So

f i+1
j =

1
n

n

∑
k=1

Pi
k, (3.1)

where n is the amount of vertices Pi
k of that face

2. For each edge E j an edge point ei+1
j is created by taking the average of both end points (Pi

a

and Pi
b) and the newly created face points of the neighboring faces Fk and Fl .

ei+1
j =

Pi
a +Pi

b +F i+1
k +F i+1

l
4

. (3.2)

3. For each control point Pi
j a vertex point vi+1

j is created. To compute the position of this vertex
point all neighboring face points and edge midpoints from adjacent edges and faces are taken
into account. Let R be the average of all n face points created from faces incident to Pi

j and
let, furthermore, Q be the average of all n edge midpoints of edges incident to Pi

j, then

vi+1
j =

R+2 ·Q+(n−3) ·Pi
j

n
; (3.3)

which is the barycenter of Pi
j, Q and F with respective weights (n−3), 2 and 1.

4. Edges for the new mesh are formed by connecting each face point with all edge points that
belong to the edges that are incident to the face the face point was derived from. Further-
more, for each created vertex point vi+1 from a control point Pi, all edge points of edges
incident to the old control point Pi are connected to vi+1.

5. The faces of the subdivided mesh Mi+1 are enclosed by the edges described by all the face
points, edge points and vertex points from the new control points Pi+1.

Independent from the start mesh Mi, Mi+1 will always be a quad mesh. Extraordinary points
emerge from faces that were no quads to begin with. Due to the fact that a quad mesh is created,
the amount of extraordinary vertices remains constant over successive refinements. Repeated
subdivision yields a smoother mesh. At the limit surface C1 continuity can be guaranteed at
extraordinary vertices and C2 continuity everywhere else. In the example of Figure 3.10 the
above described subdivision steps were used.

Stam [Sta98] presented a method where a Catmull-Clark surface can be evaluated with-
out the refinement process. He reformulated the subdivision process into a matrix exponential
problem. Such problems can be solved directly by matrix diagonalization methods.

Creases for Catmull-Clark Surfaces. Catmull-Clark subdivision always creates smooth
continuous surfaces. To add more versatility to subdivision surfaces, DeRose et al. [DKT98]
from Pixar Animation Studios introduced sharpness and creases to Catmull-Clark surfaces (see
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Figure 3.12). To handle these new features new subdivision rules for sharp edges and vertices
need to be defined. An integer sharpness value n is assigned to each edge. This value defines
whether the edge is processed as a smooth edge (n = 0) or a sharp, respectively crease edge
(n > 0). Smooth edges are processed with the ordinary subdivision rules, but for crease edges
modified rules are used. Furthermore, each time a crease edge is processed its sharpness value
n is reduced by one for the next iteration.

For crease edges the calculation for edge points is changed to the midpoint of the edge. So
for an edge point ei+1

j is obtained by

ei+1
j =

Pi
a +Pi

b
2

, (3.4)

where Pi
a and Pi

b are the respective endpoints of the edge.
The calculation of vertex points are modified dependent on how much crease edges are

incident to a specific vertex. Vertices that have exactly one incident sharp edge are called dart
vertices, vertices with exactly two incident sharp edges are called crease vertices, and all other
vertices with more than two incident sharp edges are called corner vertices. Those three vertex
types are processed differently:

Dart Vertex
Dart vertices are processed like smooth vertices with the formula provided in Equation 3.3.

Crease Vertex
For the two sharp edges from Pi

k to Pi
j and from Pi

j to Pi
l the new vertex point vi+1

j is positioned
at

vi+1
j =

Pi
k +6 ·Pi

j +Pi
l

8
. (3.5)

Corner Vertex
Corner vertices do not move in the subdivision process, so the vertex point vi+1

j for the next
iteration is equal to the control point Pi

j of the current iteration, so

vi+1
j = Pi

j (3.6)

Fig. 3.12 Influence of sharp edges in a control point mesh formed like a cuboid on the Catmull-Clark
subdivision surface. Green edges represent smooth edges and red edges represent edges with sharpness
infinity.
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An Operator Interface for Subdivision Surfaces. Subdivision procedures refine manifold
polygonal meshes to reach smooth surfaces. Therefore, the Euler operators (see Section 3.3.2)
can be utilized to create any base mesh to which the subdivision algorithms are applied to.
Additional operators are needed that assign sharpness values to edges and vertices to procedu-
rally facilitate creases in subdivision surfaces. These additional operators take a halfedge and
a sharpness value as input and assigns the latter to the corresponding edge, respectively vertex.
Subdivision surfaces are used within combined B-reps in the GML (see Section 4.1.2)

3.5 Convex Polyhedra

So far only surface representations have been discussed. Within these representations it is im-
portant that the corresponding mesh is always closed and valid. This can be ensured through
appropriate use of the Euler Operators (see Section 3.3.2). On the contrary, in a volumetric
representation of a shape there is always a well-defined inner and outer part and the surface
of the shape is the boundary between them. Consequently, the surface is always closed and
needs no maintenance. In the focus of this section is an accurate volumetric shape representa-
tion based on convex polyhedra, which, furthermore, provides a higher-level operator set than
Euler Operators for the procedural creation of shapes.

A polytope is a geometric object with straight boundary elements that can be defined in ar-
bitrary dimensions. In two dimensions a polytope is called polygon and in three dimensions it
is called polyhedron. A convex polyhedron is a special case of a polyhedron, where all points
on its surface are in convex position. Platonic solids (see Figure 3.13) are special convex poly-
hedra, which have congruent faces of regular polygons and the same number of faces meeting
at each vertex.

Fig. 3.13 The five Platonic solids are special convex polyhedra. All faces are congruent regular poly-
gons and the same number of faces meets at each vertex. From left to right there are the tetrahedron
(four triangles), the cube (six quadrangles), the octahedron (eight triangles), the dodecahedron (twelve
pentagons), and the icosahedron (twenty triangles). These five solids are the only shapes that fulfill the
mentioned properties.

Representing convex polyhedra through meshes is feasible when accuracy does not play an
important role. Calculations on a mesh represented by vertices with floating-point coordinates
always involve errors. Due to the inexact representation of floating-point values, it is, for ex-
ample, not possible to guarantee that three lines (or four planes) that should intersect in one
common point will do so when represented through floating-point coordinates. This also com-
plicates testing on which side of a given plane a given point lies because, in general, vertices of
faces with higher degree practically never lie in the same plane. So for an accurate representa-
tion of convex polyhedra another description is necessary.
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An important observation is that a convex polyhedron can be described by intersections of
half spaces.

Definition 3.11 A half space H is described by a tuple (~n,d), where~n is the normal vector of
a plane and d is its offset. Thus a half space is the set of points p that satisfy the inequality
〈~n, p〉< 0. This set of points is said to be in the interior of H.

The complement H of a half space H is simply obtained by reversing the normal vector, so
for H = (~n,d), H = (−~n,d). The points p that satisfy the equality 〈~n, p〉= 0 lie on the boundary
of the half space and define an oriented plane in space, which in turn can be used to define a
half space. A convex polyhedron can now be defined as an intersection of half spaces.

Definition 3.12 A convex polyhedron P can be defined by a set of half spaces {H1,H2, . . .Hn}
and is the set of all points that lie in the interior of all these half spaces.

An intersection of half spaces can be empty which yields in an empty polyhedron. Since half
spaces are convex, the intersection of half spaces remains convex too.

A Fast and Exact Representation for Convex Polyhedra. To provide a shape representa-
tion that can be processed and refined further without loss of accuracy, operations need to be
designed in an appropriate way. In the work of Krispel et al. [KUF14] they present a fast and
exact plane-based representation for polygonal meshes. Instead of representing vertices with
three floating-point values, they follow the approach from Sugihara et al. [SI90], where a ver-
tex, which is the result of intersecting planes, can be exactly represented by the set of three
planes that intersect at that point. The conversion to floating-point values should only be done
when no further processing is necessary, for example for rendering purposes, and should not
be used in any calculations.

To avoid inaccuracies in plane-based mesh modification operations, they restrict the reso-
lution of the coefficients of planes, which in turn limits the space of available planes. In their
work they present a trade-off between the available resolution of planes and fast calculations
based on them. This allows the resolution to be adapted and optimized to guarantee fast calcu-
lations for any target platform. Further details are available in their work [KUF14] and in the
Ph.D. thesis of Krispel [Kriar].

An Operator Interface for Convex Polyhedra. A natural operation for this kind of repre-
sentation is the trimming of a convex polyhedron with a plane. By adding one additional plane
to a polyhedron the parts of the polyhedron inside the half space corresponding to this plane
remains and the part outside is discarded. So adding a plane to a polyhedron means cutting off
a piece of this polyhedron. This add-plane operation is the basic operator for creating convex
polyhedra procedurally. Any convex polyhedron can be expressed by a list of applied add-
plane operations. Of course, an inverse remove-plane operation is also necessary to provide a
complete set of operations.

Essentially, the add-plane is enough to describe any convex polyhedron, but for convenience
further operators can be imagined. A split operation amounts to an intersection of a polyhedron
P with a half space H and its complement H, which are both defined by the same plane. There-
fore, both results of the split operation are non-overlapping and fill the same volume as the orig-
inal polyhedron P. The two resulting polyhedra are formed be the half spaces of P, as well as
H and H respectively. To realize such a split operation efficiently, a duplicate-polyhedron and
flip-halfspace operator can be introduced. Moreover, operators for placement of half spaces can
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be envisioned that ease the construction process. Essential operators of the interface by Krispel
[Kriar] for modeling with convex polyhedra in the GML are explained in Section 4.1.2.

A Suitable Procedural Method for Convex Polyhedra: Split Grammars. Split grammars
are a suitable application for these robust operations (see Figure 3.14). This way models in
split grammars are described by a set of non-overlapping convex polyhedra achieved through
the split operations. Each polyhedron is a single closed object and their touching faces are su-
perfluous geometry when the model is exported. To generate a surface mesh of the generated
model, the outer surface of a set of touching polyhedra can be extracted, which removes unnec-
essary geometry on the inside. Section 4.2 focuses on split grammars achieved through convex
polyhedra. For a detailed explanation on how to prepare convex polyhedra as a modeling prim-
itive and how to use them for split grammars please refer to the work of Krispel [Kriar].

Fig. 3.14 The plane-based description of convex polyhedra is robust to the application of continuous
plane splits and is consequently suited for the application of split grammars. In this example, detail (hole
with border) is generated through several splits and displacing of boundary planes (extrusion). Adding
an additional splitting plane is always always possible as indicated on the right.

3.6 Scene Graphs

So far only low-level shape representations have been reviewed and an operator interface for
them was presented. Now the focus shifts from single objects to ways to set these objects into
context. The first structuring method that is discussed in this chapter is a scene graph, which
allows for procedural placement, animation and interconnection of three-dimensional data. A
detailed introduction to scene graphs and their use within computer games can be found in the
book of Eberly [Ebe06].

Scene graphs are used for spatial arrangement of data and are realized as directed acyclic
graphs. Like other graphs, it is composed of a collection of nodes and directed connections
between them. In scene graphs these connections define a “parent-child” relationship. All ef-
fects applied to a node in a scene graph influence all children of this node – the sub-graph
adjacent to this node – as well. Nodes are generally used to carry all kinds of information from
geometric data to information about materials or transformations. The relationships between
nodes are often used for grouping of several objects, so that all objects behave as one. In this
case a transformation would affect all nodes, not just one. Another use case for this relation is
to map dependencies (see Figure 3.15). A vase of flowers is standing on a table. The vase itself
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can be moved on the table, but moving the table moves the vase too. Scene graphs have been
included in the scripting language GML (see Section 4.1.2) and have been made accessible for
interactive modeling in a separate tool (see Section 4.4.4).

(a) (b)

(c) (d)

Fig. 3.15 Without scene graphs all objects can be moved independently. Let us take a setup with a
flower vase on a table (a). The flower vase can be moved on top of the table (b) without influencing
the position of the table, and the table can be repositioned (c) without affecting the vase. With scene
graph systems a hierarchical relation between objects can be established. The table enters a parent-child
relationship with the vase. Consequently, moving the table moves the flower vase too (d), while the vase
can still be moved independently (b).

A Simple Operator Interface for Scene Graphs. Operators for building a graph are nec-
essary to create scene graphs procedurally. Such operators would include operators such as
create-node and add-child (and, of course, the inverse remove-node and delete-child opera-
tors). With these operators any graph can be constructed. To gain the functionality of a scene
graph, it is necessary to assign certain properties to specific nodes. To achieve the basic func-
tionality of a scene graph, an add-transformation operator and an add-geometry operator
would be sufficient. To provide a complete set of operators, an inverse reset-node operator
is necessary as well. In Section 4.1.2 the realization of an operator set for procedural modeling
of scene graphs by Hecher [Hec12] in GML is presented. These procedural scene graphs have
been used to create procedurally animated environments (see Section 6.4 and 6.5).

3.6.1 Applications of Scene Graphs

The concept of a scene graph appears in many different fields of application, but it is rarely
called a scene graph. Graphs are often used internally in software to define, for example,
groups, a hierarchy, or the visibility of objects. All of these applications can be interpreted as
a usage of a scene graph. The main fields of application of scene graphs are two-dimensional
graphic design tools and three-dimensional applications, such as simulations or games.



66 3 Digital Shape Representations for Procedural Modeling

Grouping in Two-Dimensional Graphic Design Tools.
Graphics tools, in which scene graphs are utilized, include vector graphic tools, computer-
aided design tools, as well as general graphics programs for rasterized images. Leaf nodes
of scene graphs represent atomic units in these systems. These atomic units are for example
lines, circular arches, splines, or images. Scene graphs are utilized to group these objects and
transform and edit them as they were one single object. The layer concept is very similar to
this grouping approach. Layers act as sheets in which objects can be placed. These sheets
can then be triggered visible, invisible, or locked. Essentially this is no different from the
before mentioned group concept, it is just utilized in another way. So groups and layers are
all nodes of the same scene graph.

Relations in Three-Dimensional Applications and Games.
In games, scene graphs are used to describe the structure of worlds and levels. All entities
and objects in these worlds are part of a scene graph. Again here, the grouping and depen-
dency mechanisms are used, so moving a single house should also move the interior and
furniture with it. Scene graphs in games are in no way static. The game may define a rela-
tionship between an item and the character that is holding it. So when the character moves
through the game world, so does the item that he holds. However, the item may be trans-
ferred to another character in the game, which removes the relation to the first character and
adds a relation to the new owner of the item.
Usually scene graphs are just mathematical trees, however, in the increasingly large worlds
of games memory requirements are an important factor. Due to this many scene graphs use
instancing to reduce the space requirements. For example in a car model realized by a scene
graph (see Figure 3.16), each wheel has it’s own scene graph node, however, the graphical
representation – the mesh, the textures and shaders – are only stored once and are referenced
by all these individual nodes. So the mathematical tree becomes a directed acyclic graph.
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Fig. 3.16 Two scene graph representations of a car. Each wheel has its own transformation node for
defining the position and orientation of them within the car mode. While the scene graph in (a) is a
mathematical tree, it has a major drawback: the wheel geometry is stored for each wheel separately. The
scene graph in (b) is a directed acyclic graph, where all wheel transformation nodes refer to the same
geometry of the wheel stored in one node.
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Alternatives To Scene Graphs. Especially in computer games, scene graphs are a tool that
is often only used for the initial distribution of objects in a scene editor. While the game simu-
lation is running, the scene graph is not maintained any more. Instead the parent-child relation-
ships are defined implicitly though a physics engine and collision detection. This way relations
between objects do not need to be updated in a graph, e.g. if an object falls from a table, it has
no longer a relationship to the table because it is not touching it any more.

3.6.2 Scene Graph Libraries

Scene graph packages are for example OpenSG [RVN13] or Open Inventor [VSG13], which
both realize the before mentioned instancing of objects in another way. This part will mostly
focus on the scene graph concept realized by OpenSG 2, for which Hecher [Hec12] designed
an operator set for the scripting language GML (see Section 4.1.2).

In OpenSG a different approach is taken in comparison to other scene graph systems. The
functionality of a node is separated into two parts: a node and a node core. Nodes are only
used to define the hierarchy and topology of the graph. So nodes store all children – if they
have any – and have at most one parent. In the core, however, the important information, such
as geometry or transformations, is stored. So the core actually describes the type of the node.
Every node needs to have exactly core, but one specific core can be shared over many different
nodes. This core sharing is for example used for the instancing of objects. In the example of the
car (see Figure 3.17), the wheels are represented by different individual nodes, which all have
the same core that is storing the graphical representation of the wheel object. This node and
core concept does allow an easy realization of an operator interface for OpenSG scene graphs,
which is discussed in context of procedural modeling with GML in Section 4.1.2.
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Fig. 3.17 Scene graph representation of a car in OpenSG. In OpenSG a node has additionally a core,
which defines its type, attached to it. As in Figure 3.16(a), the scene graph has individual nodes for the
wheel transformation and geometry. The transformations are all different, thus each node has its own in-
dividual core. However, the geometry nodes all share the same core, so that the graphical representation
is only stored once, like in the example from Figure 3.16(b).
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Managing Data in OpenSG. OpenSG is designed to handle multi-threaded data in an easy
way. Copies of data are created on demand if that data is modified by multiple threads. This
means, when more threads work on the same data, this data is simply shared; all threads refer-
ence the same data. However, at the time a thread modifies this data, a new independent copy
of that data is created for this specific thread. So each thread carries its private copy (called
aspect) of data to work on. At some point it is necessary to synchronize these different copies,
to transfer all changed parts from one aspect to another. To do that, the system needs to keep
track of all that has changed through the concept of fields and field container.

In OpenSG almost all data types are derived from field containers. These field container
store data in the so-called fields. There are two distinct types of fields, single fields and multi
fields. A single field, as the name suggests, stores a single value, whereas multi fields are
comparable to dynamically resizing arrays. A node, for example, is a field container with a
multi field for storing all children and a single field for storing the parent. The field container
is the basic unit used for multi-thread safety. To keep track of all changes happening within a
field container, each field container defines a constant for all fields it contains. These constants
are used to create masks (by bitwise or), which then are provided to special beginEdit and
endEdit functions, that keep track which fields have changed. By using this information data
can be synchronized between multiple threads. For detailed information how these concepts
have been translated to GML, please refer to the Master’s thesis of Hecher [Hec12].

3.7 Constructive Solid Geometry (CSG)

Constructive solid geometry is another structuring method that brings shapes into a context.
By combining several solids with Boolean operations complex objects can be achieved. A
procedural description of the involved shapes and how they interact with each other increases
the expressiveness even further. An in-depth introduction to the topic can be found in the book
of Mäntylä [Män88].

The basic operations for CSG are Boolean operations on sets: union (+), difference (−) and
intersection (∩), which are illustrated with two simple shapes in Figure 3.18. Of course, these
operations do not operate on the surface of shapes alone; they also need to take the interior of
the shapes into account. Therefore, to ensure a coherent result, it is important that all shapes,
which are combined with CSG, have a closed surface.

CSG methods can be applied in two or three dimensions and are often used by three-
dimensional computer graphics and computer-aided design applications within the context of
procedural modeling. CSG methods, together with free-form deformations (see Section 3.8),
have been utilized in context of this thesis to describe curved and cartoonish buildings through
split grammars (see Section 4.3 and 6.3.3). Furthermore, wedding rings have been procedurally
described through the use of CSG operations (see Section 6.1).

The objects combined in through CSG are called primitives. Primitives can either be shapes
that can be described by relatively simple parametric mathematical formulas like cuboids,
cylinders, spheres, etc. or can also be complex shapes like arbitrary meshes that may have been
created procedurally. In general, all primitives can either be procedural or not, but they need
to be closed. By combining these primitives, objects with high complexity can be described by
using only simple shapes to start with. Objects realized through CSG can be represented by
a binary tree (see Figure 3.19). Leave nodes of this tree represent primitives and intermediate
nodes represent the Boolean operations that combine the corresponding two sub-trees. Affine
transformations can also be performed in each tree node.
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(a) (b) (c) (d)

Fig. 3.18 Constructive solid geometry (CSG) operations between a blue cube A and a red sphere B: the
union A+B (a), the intersection A∩B (b), and the differences A−B (c) and B−A (d). Parts that belong
to the cube are always colored blue and parts that belong to the sphere are colored red respectively.
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Fig. 3.19 A solid described by CSG operations can also be represented by a binary tree. Primitives
are stores in leave nodes and the intermediate node represent the Boolean operations that combine the
corresponding two sub-trees. The final object is illustrated at the root of the binary tree. The colored
parts belong to the corresponding primitive: red for the sphere S, blue for the cube C and green for the
cylinders Cz, Cx, Cy. The corresponding CSG formula is (C∩S)− (Cz +Cx +Cy).

Fig. 3.20 Pistons of engines realized by combining procedural parts through CSG operations. Varying
parameters and changing the positions of elements allows the generation of different results from one
common description. (model courtesy of Johannes Edelsbrunner)
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Properties of CSG. One of the advantages of CSG is that it is easy to determine whether the
object is water-tight or not. If all underlying primitives are water-tight, then the combined shape
has to be water-tight too. Such a check is of course important for manufacturing or engineering
tasks. For arbitrary meshes, on the other hand, topological data or additional checks are required
to assure that a given object is water-tight.

Another convenient property of CSG representations is that it is relatively easy to determine
whether a point lies inside or outside a given object. The point is classified against all primitives
that belong to the shape. By evaluating the corresponding Boolean expression the location of
the point can be determined. The same way ray intersections can be done. The ray is intersected
with all primitives and entry and exit point are calculated for these objects. This leads to one-
dimensional intervals for each primitive along the ray, for which the Boolean expression can be
evaluated easily. These properties are desirable qualities for applications like collision detection
or ray tracing.

Computing the Results of CSG. To achieve CSG there are two different approaches: Object
space approaches (see Section 3.7.1) and image space approaches (see Section 3.7.2). Object
space approaches are for example analytic intersections of objects. Object space methods al-
ways yield a geometric primitive as result, which can be further used. Image space (or screen
space) methods, on the other hand, do not create geometric primitives as a result. Image space
methods are used to render the correct image on the screen. Common image space methods
are ray-casting, scan-line or z-buffer algorithms. While calculations with object space methods
have only to be done once, image space calculations have to be done frame by frame. However,
the cost of object space method calculations is typically higher than frame by frame computa-
tions. When the relative position between objects used in Boolean operations change relatively
often, it is wiser to use an image based approach. However, static models achieved through
CSG can be precomputed using object space methods.

Procedural Modeling with CSG. In many domains CSG operations have significant advan-
tages over traditional modeling methods. One such domain is computer-aided design. Objects
manufactured through processes like milling or grinding are ideally described by Boolean op-
erations. Here material is removed from initial created pieces, which are often cylinders or
cuboids. A piston of an engine is an example where from initial pieces (cylinders) material is
removed to form the final shape. Figure 3.20 illustrates the advantages of a procedural descrip-
tion of the separate parts. By varying parameters and changing spatial arrangements different
results can be achieved from the same description.

Parameters are often changed within procedural modeling tasks. So if a procedural model
consists of CSG operations, quick previews to see the changes in the model are desirable.
For such tasks image space methods are more favorable than objects space methods because
image space methods take less time to produce a visual result. Once the final model has been
generated, object space methods can be used to produce a three-dimensional mesh that can be
processed further.

An Operator Interface for CSG. An operator interface for CSG is quite trivial. An interface
needs to support the three basic Boolean operations on sets: union, intersection, and difference.
By combining simple shapes through application of these operators, shapes of high complex-
ity can be described procedurally. These operators have been realized by Krispel [Kriar] for
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volumetric primitives, namely convex polyhedra (see Section 3.5), within the GML (see Sec-
tion 4.1.2). Furthermore, I implemented operators for image space CSG methods in the GML,
which have been used to visualize procedural deformed cartoonish buildings (see Section 4.3
and 6.3.3) and wedding rings (see Section 6.1) interactively.

3.7.1 Object Space CSG Methods

To calculate the a mesh of a procedural model involving CSG operations, object space CSG
methods are necessary. However, while Boolean operations on objects, which are described
by mathematical formulas, can be calculated accurately, Boolean operations on meshes suffer
from accuracy issues due to the floating-point representation of the vertices. Accuracy errors are
introduced at the moment a calculated vertex is expressed through floating-point values. How-
ever, predicates, such as whether a point lies above or below a certain plane, can be calculated
exactly with appropriate data structures and computational effort. Bernstein and Fussel [BF09]
implemented a fast, reliable method to compute Boolean operations on three-dimensional poly-
hedra using BSP-trees. Nevertheless, Boolean operations of two meshes always lead to a high
computational effort, so a trade-off between speed and accuracy is necessary.

To obtain results as accurate as possible it is necessary to choose a fitting representation
for the results obtained from the Boolean operations. A common representation for the mesh
primitives used for Boolean operations are cellular structures, like binary space partition (BSP)
trees, or convex polyhedra represented by half spaces (see Section 3.5).

The smallest family of solids that are closed under Boolean operations are Nef polyhedra
[Nef78, BN88]. These are obtained from Boolean operations of half spaces. In contrast, convex
polyhedra are obtained just by the intersection of a set of half spaces and are therefore a subset
of Nef polyhedra. Nef polyhedra are very general because they are also able to express non-
manifold solids as well as unbounded solids. This generality, however, is needed to describe
Boolean operations between arbitrary meshes because non-manifold situations can occur for
intersecting meshes. An implementation of Nef polyhedra by Granados et al. [GHH∗03] is
available within the Computational Geometry Algorithms Library (CGAL) [Cga13].

Further cellular structures that are able to express Boolean operations between arbitrary
meshes with different strengths and weaknesses are presented by Rossignac and O’Connor
[RO89] and Gursoz et al. [GCP90]. A detailed overview on other related methods is also pre-
sented in the paper of Granados et al. [GHH∗03].

3.7.2 Image Space CSG Methods

Image space methods are ideal for a quick visualization of parameter changes within proce-
dural models that involve CSG operations. All image space methods are view dependent. In
contrast to view independent object space methods, the CSG operations need to be evaluated
for each frame anew. These per-frame calculations are generally done much quicker than view
independent object methods. This section reviews two different techniques for image space
CSG methods, namely ray casting and depth buffer methods.
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Ray Casting for CSG

Solving the logic of the Boolean operations can be simplified by only considering a ray in
space at a time. For a ray, the closest visible surface that satisfies the CSG logic needs to be
determined. This amounts to evaluating the Boolean operations of one dimensional intervals,
which are spanned by the entry and exit points of the ray for the CSG primitives. The advantage
of ray casting is that ray-object intersection can be calculated for a multitude of objects, ranging
from mathematical descriptions to arbitrary boundary representations. Rays are generated for
each pixel of the image to render. These rays can then be processed in parallel by the graphics
hardware.

Depth Buffer Methods for CSG

Primitives are clipped by a multi-pass algorithm using the depth and stencil buffer. The main
technique is based upon the algorithm introduced by Goldfeather et al. [GMTF89]. Their ap-
proach to render arbitrary CSG trees is based on three concepts: surface parity, tree normaliza-
tion, and surface clipping using the depth buffer. An operator set for this depth buffer method
has been developed by me for the GML. These operators have been used to describe deformed
cartoonish buildings (see Section 4.3 and 6.3.3) and wedding rings (see Section 6.1) procedu-
rally.

Determining the Surface Parity per Pixel. The surface parity for a pixel indicates whether
a given primitive p is inside or outside of another given volume v. The parity value is achieved
by counting the number of surfaces of p in front of the first surface of the volume v. The surface
parity is calculated for each pixel using the depth buffer and is stored within the stencil buffer.
Usually the volume v is first rendered to the depth buffer. Afterwards the primitive p is rendered
without updating the depth buffer; instead for each pixel it is counted how many times the depth
test would succeed. For regions of even parity the primitive p is outside of the volume v, which
means that a ray cast through the volume of p enters and leaves p the same amount of times
before hitting v. For regions of odd parity the intersection of p and v is not empty; the ray cast
through p would hit v before leaving p.

There are several assumptions on p and v. First of all, all boundaries need to be closed. Miss-
ing triangles, due to an incomplete representation or clipping, yield wrong results. Additionally
all participating surfaces should not be self-intersecting.

CSG Tree Normalization. Not every CSG tree is directly usable for image space CSG ren-
dering. Most trees have to be converted into a suitable format first. A Boolean union operation
that is combining primitives is called a sum and Boolean difference and intersection operations
are called a product. A CSG tree that is in a “sum of products” form is said to be normalized.
Normalized trees have the following characteristics:

• Union nodes (if there are any) appear only at the top of the tree.
• No node representing a Boolean operation is right of an intersection or difference node.
• No union node is a child of an intersection or difference node.

Tree normalization converts any CSG tree into a manageable format for depth buffer-based
algorithms. The advantage of this normalization is that each product can be rendered by com-
paring the current result to one additional primitive instead to a whole sub-tree. Furthermore all
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union nodes can be neglected because the depth buffer automatically combines the correspond-
ing products in the right way using the standard “depth less than” depth test. The normalized
tree of the CSG tree in Figure 3.19 is shown in Figure 3.21(a).

Detecting the Pixels that Satisfy the CSG Logic. The process of rasterizing primitives into
the depth buffer and detecting the pixels that satisfy the CSG logic of the products is referred
to as surface clipping. After the tree normalization all intersection and difference operations
are done sequentially, and at each step one new primitive is tested against all the ones that form
the current state. Dependent on the operations, pixels of certain parity are retained. In case of
intersection operations, depth buffer regions of odd parity, where the depth buffer values are
volumetrically inside the primitive, are kept and all other regions are neglected. The inverse
is happening for difference operations. Regions of even parity are retained and the remaining
regions are discarded.

The orientation of the primitive surfaces is important when combining all clipped surfaces
to a result. For image space methods only visible surface parts are considered and they form
the result within depth and color buffer. The front or back faces of primitives are selected to
be visible dependent on the operations the primitives take part in. For subtracted primitives the
back faces are considered visible and for the other primitives the front faces are retained.

Figure 3.21(b) shows the clipped surfaces for all primitives (for the tree in Figure 3.21(a)),
which are assembled within the depth and color buffer. The visible parts (front faces) are col-
ored and invisible parts (back faces) are shown in black. Note that the orientation of the faces
of the subtracted cylinders has been reversed.

Handling CSG with Non-Convex Shapes. The algorithm proposed by Goldfeather et al.
[GMTF89] further introduces a way to deal with non-convex shapes. The problem of non-
convex shapes is that overlapping parts may be cut away and no information about the geometry
behind is available in the depth buffer. A shape is called k-convex if a ray can enter and exit the
shape at most k times. A 1-convex shape is convex in the usual sense; a torus, for example, is a
2-convex shape. To process a k-convex shape, it has to be divided into up to k front facing and
k back facing surfaces (dependent of the view direction less than k pairs might be necessary).
These surfaces need to be processed individually. In each pass a portion of the shape’s surface
is retained and assembled into the final color and depth buffers. This process is also called
depth peeling.

Optimizations of CSG Algorithms. Goldfeather et al. also discuss advantages of pruning the
CSG tree while normalization. Normalization of CSG trees may increase the size and amount
of leaf nodes. In most cases whole sub-trees do not contribute to the final image because prim-
itives within them do not intersect. To minimize the tree growth during normalization they use
bounding boxes to determine whether primitives intersect or not. In large scenes this yields a
big performance boost.

One inherent problem of this approach is that the contents of the depth buffer need to be
saved and restored. This is not optimized in many hardware rendering environments. Steward
and Leach [SLJ98] introduced an optimization by taking advantage of depth complexity. In
general, each intersection and difference operation needs one rendering pass, which includes
saving and restoring depth buffer content. However, often primitives do not overlap and can
thus be clipped and rendered at the same time. By using this information, the number of passes
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Fig. 3.21 Illustrations for rendering CSG in image space. The union of cylinders that is present in the
CSG tree in Figure 3.19 has been split to normalize the tree (a). In normalized trees operations always
add one additional primitive to the current state. This eases the rendering because no sub-trees have
to be compared. The CSG formula changed to C∩ S−Cx−Cy−Cz, which is equivalent to the one in
Figure 3.19. Based on surface parity and operations, the surfaces are clipped (b) and assembled within
depth and color buffer. Not visible surfaces (back faces) are rendered in black. The orientation of the
cylinder faces has been inverted because they take part in a difference operation, so the back faces
become visible.

needed for rendering can be reduced. Concerning a single pixel, the term depth complexity
refers to the number of primitives that cover this pixel. Based on the maximum depth complex-
ity for a given view, they extract layers of primitives that can be processed at the same time.
For n primitives the algorithmic complexity of the algorithm proposed by Goldfeather et al. is
O(n2); the performance of the algorithm of Steward and Leach is O(kn) for the maximum depth
complexity k. There has been, however, no improvement for the worst case scenario (n = k).

3.8 Free-Form Deformations

Structuring methods do not always need to combine more shapes; they can also alter the ap-
pearance of a single shape. A way to change the appearance of a shape is to apply a deformation
to it. Applying deformations to a mesh is an easy way of creating curved surfaces, provided
that the surface has been tessellated sufficiently beforehand. Since deformations are simple
parametric functions that can be applied to arbitrary meshes, they can be utilized within pro-
cedural modeling. In contrast to subdivision surfaces (see Section 3.4), deformed meshes are
easier to handle, but require more computational effort, due to the higher tessellation required.
In context of this thesis, free-form deformations have been utilized to describe curved architec-
ture (see Section 6.2.3 and 6.3.2) and, together with constructive solid geometry methods (see
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Section 3.7), cartoonish buildings (see Section 6.3.3) procedurally. This extension to the split
grammar formalism is detailed in Section 4.3.

The Free-Form Deformation Algorithm. Based on an earlier technique by Barr [Bar84],
the free-form deformation, introduced by Sederberg and Parry [SP86], is an approach where
the space around a given model is deformed. The main idea is to envelop the mesh, which is
subject to be deformed, with a geometrically easy to describe volume. Within this volume each
point of the surface to deform can be parametrically defined explicitly. After the deformation
of the enveloping volume, the new position of each point of the mesh to be deformed can be
calculated by using the parameters describing the deformation and the initial parametrization
of the vertices of the mesh. Consequently, the mesh gets deformed indirectly by deforming the
space that surrounds it (see Figure 3.22).

(a) (b) (c) (d)

Fig. 3.22 The principle of a free-form deformation illustrated by a sequence of images. The axis-aligned
bounding box of a straight tube (a) serves for the generation of a grid that envelops the tube (b). The
control points (red) of this grid can be arbitrarily displaced (c) which leads to a deformation of space,
which affects the shape of the tube (d).

In the algorithm of Sederberg and Parry this volume is described by a three-dimensional grid
forming a cuboid, which is often the bounding box of the object to deform. This grid enables
the use of a local Cartesian coordinate system to describe each point of the enveloped surface.
The origin of this system usually lies within one corner point and the three outgoing edges of
the cuboid are used as the axes. The amount of grid cells in each direction of the cuboid’s axes
define the degrees of freedom of the deformation. The algorithm of Sederberg and Parry was
furthermore extended by Coquillart [Coq90] to support different hull objects such as cylinders
and prisms.

Let us assume a three-dimensional coordinate system, like the one in the algorithm of Seder-
berg and Parry, with origin O, with the three normalized basis vectors~x,~y, and~z, as depicted in
Figure 3.23. The deformation grid is composed of l×m×n cells and has dimensions X×Y×Z.
Each point P inside the grid can be described uniquely by:

P(s, t,u) = O+ s ·~x ·X + t ·~y ·Y +u ·~z ·Z, for 0≤ s, t,u≤ 1. (3.7)

For points outside of the grid at least one of the parameters s, t, or u has to be either less
than zero or greater than one respectively. The parameters s, t, and u can be calculated for each
point P by solving three linear equations, which amounts to normalizing each coordinate of the
distance vector between P and the origin O with the respective extent of the deformation grid
in each direction:
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Fig. 3.23 A free-form deformation is a deformation of space achieved through displacement of control
points that are initially placed on a regular grid around the object to deform. In this case the object to
deform is a straight tube and the deformation grid is based on the axis aligned bounding box of the tube.
The grid of dimensions X×Y ×Z has its origin in O and is composed of 1×1×3 cells.

The deformation approach is based upon Bézier splines [Far97] and their generalization to
the third dimension. The basis functions are the so-called Bernstein polynomials.

Definition 3.13 The Bernstein polynomials of degree n are defined by

Bi,n(t) =
(

n
i

)
· t i · (1− t)n−i (3.9)

for 0≤ i≤ n and 0≤ t ≤ 1.
These polynomials have following properties:

• The sum of all Bernstein polynomials evaluates to one:

n

∑
i=0

Bi,n(t) = 1. (3.10)

• Each single polynomial has a value between zero and one:

0≤ Bi,n(t)≤ 1. (3.11)

The deformation grid is described by control points Ki, j,k that are used to describe the grid
cells. In a one dimensional case, the position of a point on a Bézier curve is defined by a
weighted sum of control points Ki with the weights being the corresponding Bernstein polyno-
mials Bi,n:

P(s) =
n

∑
i=0

Bi,n(s) ·Ki, for 0≤ s≤ 1. (3.12)

This formulation can be easily extended to arbitrary many dimensions. For our cause three
dimensions is sufficient. This leads to:
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P(s, t,u) =
l

∑
i=0

m

∑
j=0

n

∑
k=0

Bi,l(s) ·B j,m(t) ·Bk,n(u) ·Ki, j,k, for 0≤ s, t,u≤ 1. (3.13)

A point P on the mesh to deform is therefore expressed by a linear combination of basis
functions and control points. If the control points Ki, j,k are not altered, then the formula in
Equation 3.13 is an identity transformation.

However for a free-from deformation to achieve suitable results the tessellation of the source
mesh has to be quite high to realize a smooth surface after deformation. Free-from deformations
do not introduce new points while deforming, but adaptive refinement methods can use used
to tessellate the surface in specific regions for local deformations or overall to meet certain
accuracy conditions.

Properties of Bézier Splines. As free-form deformations are a generalization of Bézier
splines in three dimensions they inherit all limitations and advantages from them. Important
properties of Bézier splines are that the number of control points can be increased without
changing the curve. This can be used to split one spline into two different curves. These fea-
tures allow local control of deformations.

Depending on the layout of the control points, Bézier splines can join with any continuity.
Two distinct Bézier splines, however, cannot in general be fused into a single curve, even if
they join with high continuity. Let us take two splines f and g, with control points f1, . . . , fi and
g1, . . . ,g j. For C0 continuity the end point of the first curve fi needs to coincide with the starting
point of the second curve g1. To reach C1 continuity additionally the tangents (first derivative)
of the curve at the touching point fi = g1 need to coincide. This amounts to the three points fi−1,
fi = g1, and g2 being collinear and equidistant. Finally, to reach Cn continuity on the boundary
between two curves, the first to nth derivative needs to coincide at the touching point fi = g1.
Reaching high continuities does impose much on the control point design, especially for free-
form deformations because these constraints must be met for two touching three-dimensional
grids (see Figure 3.24).

An Operator Interface for Free-Form Deformations. An operator interface to create free-
form deformations of shapes procedurally basically needs to provide only two kinds of op-
erators. First, an operator for encapsulating shapes with control point grids is needed. This
operator has to define the origin, the dimensions, as well as the amount of cells in all three
major axis directions of the control point grid. Second, an operator is needed that allows dis-
placing of control points. With these two operators it is possible to apply deformations (that
can even be nested) to shapes. An operator interface for free-form deformations that has been
included in the scripting language GML is explained in Section 4.1.2. Free-form deformations
have, furthermore, be introduced in the split grammar formalism (see Section 4.3) to describe
curved architecture (see Section 6.2.3 and 6.3.2) and cartoonish buildings (see Section 6.3.3)
procedurally.
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(a)

(b)

Fig. 3.24 Two deformed shapes can only join with a continuity higher than C0 through an appropriate
control point grid design. The naı̈ve approach (a), in which only the points of the grid coincide at the
transition point, leads to artifacts in form of creases. Without loss of generality let us assume that we
want to reach a transition with C1 continuity in x direction. To achieve this, the control point grids need
to be positioned in a way that the points, which are adjacent to the coinciding points in x direction, need
to be collinear (b). This assures that the first derivatives of both deformations are the same at all the
touching points, which ensures a smooth transition.

Synopsis
In this chapter I introduced a hierarchy of shape representations. At the lowest level are
the low-level shape representations, which include – among others – point clouds, different
kinds of meshes, subdivision surfaces, spline surfaces, or volumetric representations such as
convex polyhedra or union of spheres. All these representation are used to describe the shape
itself. On the next level are structuring methods, which either set shapes into context or alter
their appearance. Out of this group scene graphs, constructive solid geometry, and free-form
deformations have been discussed in this chapter. On the top of this hierarchy are procedural
methods, which use representations from the lower levels to create shapes procedurally.

The goal of this chapter was to show how shape representations can be made amenable
to the procedural approach. This is done by providing a set of operators, which describe the
generation of shapes and structures of the corresponding representations. In this chapter I
introduced potential operator sets for all discussed shape representations, which are utilized
by the procedural techniques that are presented in the upcoming chapter.
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Abstract. This chapter focuses on procedural technologies that have been used and developed
in the context of this thesis. These technologies make use of the low-level shape representations
and structuring mechanisms discussed in the previous chapter. This chapter features an intro-
duction to the generative modeling language GML, as well as important modeling vocabularies
of that language. Additionally, the split grammar formalisms, which have been an extension of
the state of the art of procedural architecture, are explained in detail in this chapter. This in-
cludes split grammars based on a more general class of shapes, namely convex polyhedra, and
split grammars that incorporate free-form deformations into the split grammar formalism in a
way that rules can adapt to them. Furthermore, the GML Compositor, an interactive procedural
modeling tool, is presented together with several applications in different modeling domains.
This tool provides a procedural modeling context without the need of scripting and visualizing
the underlying data flow graph.
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4.1 The Generative Modeling Language – GML

This section introduces the Generative Modeling Language (GML), which was presented by
Havemann in his Ph.D. thesis [Hav05] in 2005. It is inspired by Adobe PostScript (see Chap-
ter 3 from the PostScript Language Reference [Ado99]), but is rather for describing three-
dimensional shapes than two-dimensional images and has been designed for procedural mod-
eling. Thus, the GML can also be efficiently used as file format for low-level shape descriptions.
It, furthermore, comes with an integrated visualization engine. Due to these features, the fact
that GML is developed at our institute, and the rich catalog of existing procedural modeling
libraries (see Section 4.1.2), GML has been used for procedural modeling in this thesis.

Executables for interpreting the language and software demos are available at the homepage:
http://www.generative-modeling.org/. Furthermore, a full list of available oper-
ators is available at the GML Wiki [Ins13].

4.1.1 Introduction to the Generative Modeling Language

The GML is a simple stack based scripting language. A GML program is not parsed but inter-
preted as a stream of tokens that are evaluated sequentially. A token is either a literal, which
represent data that is pushed onto the stack, or is an operator, which is executed. The stack –
more precise, the operand stack – is used to provide the inputs for every operation executed.
These functions pop their inputs from the stack and push their results onto the stack after ex-
ecution. These results then serve as inputs for the next operations. So the job of the GML
interpreter is just to provide data that was output from one function to the next function exe-
cuted. The GML offers two different kinds of operations, on the one hand, atomic operators,
which are built-in and are implemented in C++, and composed operators, which consist of data
and calls to atomic operators and other composed operators. Just like Adobe PostScript gener-
ates bitmaps with side effects of operations, GML uses these side effects to manipulate internal
states and generate three-dimensional shapes.

GML Tokens and the Tokenizer. In GML almost any string can be tokenized. The tokenizer
generally uses white spaces as delimiters. There are a variety of different atomic data types:
integer values (10), floating point values (0.5), strings (”test”), two- and three-dimensional
vectors ((1.0,1.0) and (1.0,1.0,1.0)), and literal names (/name) that are identified by their
respective slash prefixes. There are also special marker literals [, { and }, which are used to
produce different kind of arrays.

New tokenizer rules can be added on C++ level. Other built-in token types are dictionaries,
arrays, operators, path names, and executable names. These token types will be explained later
in detail. Tokens have a fixed internal size of 16 bytes; consequently, for big data, or data with
variable size, only a reference to the actual data can be stored within the token.

Execution and Notation of GML Code. Instead of the familiar infix notation ((3 + 4) · 6
and func(a,b,c) respectively), a postfix notation (3 4 add 6 mul and a b c func respectively)
is used because this notation is a natural fit for a stack based language. Infix notations need
brackets to make up for the precedence of the multiplication over the addition, which is used to
resolve ambiguities within that notation. In postfix notations all operations are equally treated

http://www.generative-modeling.org/
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and therefore an expression can be resolved uniquely. This feature made postfix-based notations
popular; first of all pocket calculators used this notations.

Take the program 3 4 add 6 mul as an example. When this code is tokenized, five tokens
are generated, which are executed one after another. The first two tokens 3 and 4 are literals,
so they are pushed to the stack. The next token add is an executable name, which is looked
up in the dictionary stack. There the atomic add-operator is referenced under this name. The
add-operator pops two tokens (3 and 4) from the stack and pushes the result (3 + 4 = 7) onto
the stack when executed. Afterwards the literal 6 and the executable name mul are processed
which leads to the result 7 · 6 = 42 that remains on the stack after execution of this program.

Dictionaries and the Dictionary Stack of GML. The GML features another kind of token,
namely dictionaries. A dictionary is a list of key and value pairs, where the key – being the
unique identifier – is represented by a literal name, and the value can be represented by any
kind of token.

The GML also utilizes a dictionary stack, which is, as the name states, a stack of several
dictionaries that is used for look-up purposes. An executable name is a name which serves as
key within these dictionaries. At the time when an executable name is interpreted, the corre-
sponding value of the topmost dictionary on the dictionary stack, which contains this name as
key, is executed. Dictionaries can be pushed to this stack with the begin operator; the topmost
dictionary is popped from the stack with the end operator. The dictionary stack is never empty;
there is always a global dictionary, which is used for look-up of the atomic operators.

Dictionaries can also be used to realize object-oriented programming within GML. A dic-
tionary can be interpreted like a class that is editable and extensible during runtime. Dictionary
hierarchies can be traversed using path names that are represented by their dot prefix. The dot
prefix simply pops a dictionary from the stack and pushes the one found under the name follow-
ing the dot. This enables traversing dictionary hierarchies like body.head.face, as it is common
in C++.

Array Types in GML. The [ marker literal indicates the beginning of an array. In contrary,
the closing bracket ] is not a literal, but an operator that creates a literal array from all tokens
that were pushed to the stack after the last [ literal. Arrays are heterogeneous and, therefore, the
carried literals are not bound to any type constraint. Consequently, a valid array is for example
[ 1.0 /two ”three” (4,5,6) [7] ].

The { and } literals are used to create another kind of array, namely executable arrays
respectively functions. The { marker sets the interpreter to deferred mode so that all tokens are
treated as literals and pushes them to the stack. Operations are not executed, but their executable
name is pushed to the stack. The matching }marker ends this mode and the resulting executable
array is pushed to the stack, but not executed. Executable arrays can also be nested.

The difference between these two array types is that normal arrays only carry the tokens
that are on the stack at the moment when the ] operator is executed. Executable arrays on the
other hand carry the information on how these tokens are generated. As comparison the code
[ 1 1 add ] yields [ 2 ] on the stack, whereas the code { 1 1 add } yields the same executable
array { 1 1 add } on the stack, which when executed pushes 2 to the stack. Executable arrays
can therefore be used as function which take inputs from the stack, for example { dup mul }
implements a simple power of two function.

For arrays a special aload operator is provided, which pushes each element of the array
separately onto the stack. The flatten operator, on the other hand, is used to resolve nested
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arrays. All elements in a hierarchy of arrays are transferred to a single array in respect to their
order.

The Register Extension of GML. A serious disadvantage of Adobe PostScript as program-
ming language is the fact that it is hard to keep track of the stack. In Adobe PostScript two ways
of storing variables are supported. One way is on the stack, where keeping track can become
very tedious, and in dictionaries, which is relatively slow. The GML offers a third alternative to
overcome these shortcomings, namely registers. They are, compared to dictionaries, very fast
and efficient. The main purpose of registers is to provide functions with fast local variables.
Thus, registers are only valid in the scope, respectively function, within they are defined.

Registers are enabled with the usereg operator at the beginning of a function. Values are
stored within a name register with an ! as prefix, and are retrieved with either ; or : as prefix.
The difference between ; and : is that the prefix ; just pushes the value on the stack, while the
prefix : also executes the token stored within the register. Therefore the program { usereg !x :x }
is equivalent to { usereg !x ;x exec }. The distinction between ; and : is only important when
executable arrays are stored within registers, otherwise there is no difference.

Program Flow Control in GML. Conditional branches and loops are a necessity for any
programming language. In the GML it is no different, but no special syntax or keywords are
required like in other programming languages like C++. In the GML special flow control oper-
ators are used instead.

For example the branching operator (if) works just like any other ordinary atomic operator
and operates on token of the stack. The signature is flag procedure if. It works like anybody
would expect: the operator takes two tokens from the stack, and executes the first one (the
procedure) if and only if the second one (the flag ) is a value different to zero. It is important
that the token representing the procedure does not necessarily needs to be an executable array;
it can be any kind of token.

The complete list of available control flow operators is presented below.

flag procedure if −→
The token procedure is executed if and only if flag 6= 0.

flag procedure1 procedure2 ifelse −→
The token procedure1 is executed if and only if flag 6= 0, procedure2 is executed otherwise.

procedure loop −→
The token procedure is continuously executed until the exit operator is called from within
procedure.

amount procedure repeat −→
The token procedure is executed amount times.

from by to procedure for −→
The values from + i · by , for i≥ 0 are pushed to the stack as long these values are all < to
(for by > 0), or > to (for by < 0). The token procedure is executed each time. These values
are on top of the stack upon execution and are used to imitate the control variable of usual
for loops.

array procedure forall −→
Each element from array is pushed to the stack and the token procedure is executed for each
separately.
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array1 procedure map −→ array2
Each element from array1 is pushed to the stack, afterwards processed by executing the
token procedure, and then the result is popped from the stack. The result array2 contains
the processed values and is pushed to the stack afterwards. It is important that the token
procedure must push a result to the stack for each processed value, so that the token array2
can be constructed.

It is important to notice that only the map operator has an official return value, but any
procedure token used with a control flow operator may leave values on the stack.

To create the flag values common comparison operators are provided. For the sake of com-
pleteness, these are: “equal” (eq), “not equal” (ne), “greater than” (gt), “greater or equal” (ge),
“less than” (lt), and “less or equal” (le). If the expression evaluates to true an 1 is pushed to the
stack and 0 otherwise.

4.1.2 Procedural Modeling with the GML

The GML can be used to model all kinds of geometry procedurally. Internally the GML is
composed of so-called resources, modules that encapsulate certain domains and provide op-
erators for them. This section focuses on important ways for modeling within the GML. The
GML provides, among many others, resources for combined B-reps, which combine classical
polygonal meshes and free-from surfaces, convex polyhedra, which are used for example for
split grammars, and scene graphs, which are used to describe hierarchical scenes. In addition,
an extension to utilize convex polyhedra in combination with free-form deformations will also
be presented. The following parts will focus on how to create procedural models using these
different modeling vocabularies in the GML by explaining the most important operators. An
explanation of all operators is available within the GML Wiki [Ins13].

Procedural Modeling with Combined B-Reps in GML

Combined B-reps use triangulations to represent polygonal faces and use subdivision surfaces
for the representation of curved parts and have been implemented in GML by Havemann. So
a shape can consist of polygonal parts and free-form parts. At the core, the low-level Euler
operators (see Section 3.3.2) are utilized. As modeling with these operators is very tedious
and unintuitive, a set of high-level modeling operators that speed-up the modeling process are
provided additionally within the GML. These high-level operators combine the low-level Euler
operators into a set of intuitive modeling operations. Due to the high number of modeling
operators an explanation of each is infeasible at this point.

The modeling toolkit focuses on combining subdivision surfaces with polygonal meshes.
Polygonal meshes constructed with the available tools can be traversed using a halfedge data
structure (see Section 3.3). Halfedges on the stack are visualized by arrows (as in Figure 4.1).
The halfedge, which is on top of the stack, is shown as a red arrow. The mesh traversal opera-
tions like faceCCW or vertexCCW are all available in GML and take a halfedge as input and
leave a new halfedge on the stack to highlight the current position on the mesh.

To achieve subdivision surfaces (see Section 3.4) a polygonal mesh is used as control mesh.
Creases are set per edge in this mesh. In Figure 4.1 green edges symbolize soft edges and red
edges symbolize hard edges. If just hard edges are present in the mesh, the output mesh is
identical to the control mesh.
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Modeling Example with Combined B-Reps in GML. To illustrate the handling of the op-
erators presented in this section, a small code example is discussed here. The following code
example (which is taken from [Hav05]) is augmented by the images in Figure 4.1, which illus-
trate the modeling process step by step. For a better understanding of the code, the following
paragraph explains the separate code lines.

1: /stdCyan setcurrentmaterial
(0,0,−2) (1,1,0) 2 quad

2: 5 poly2doubleface
3: (0,1,1) extrude
4: (0,0,1) (1,0,1) normalize

project ringplane
5: (2,0,0) (0,1,−1) 2 quad
6: /stdYellow setcurrentmaterial

5 poly2doubleface
7: 0 bridgerings

1: First the default color is set to cyan, so all objects modeled after this are colored in cyan.
The quad operator reads as first parameter a mode flag 2 which determines the amount and
interpretation of additional parameters. In this case the further parameters are the midpoint
(0,0,-2) and the extent (1,1,0) of the quad.

2: With poly2doubleface a double-sided face is generated out of a polygon (array of points)
and a mode flag, which defines the sharpness of the edges. A halfedge of the generated mesh
is pushed to the stack (red arrow).

3: The extrude operator extrudes this face along its normal. As input it takes a halfedge and
an offset vector, which contains horizontal and vertical offset as well as an sharpness flag.
This operator pushes the halfedge of the extruded face to the stack.

4: The face vertices are moved by projecting it in z-direction (0,0,1) onto a plane (defined by
normal and offset) by the project ringplane operator.

5, 6: A second double-sided face in color yellow is generated on another position in the same
way as in the lines 1 and 2.

7: The quad faces that are represented by the halfedges on the stack are connected with
smooth edges by the bridgerings operator, which takes the two halfedges and a sharpness
flag as input.

Fig. 4.1 Example for modeling with Combined B-Reps in the GML. The separate images illustrate the
step by step execution of the code example provided in this section. (image source: Havemann [Hav05])
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Complex Examples with Combined B-Reps Realized in GML. Aside from the toy ex-
amples, complex examples are presented in Figure 4.2. The cathedral in Cologne (Germany)
together with corresponding gothic windows can be described efficiently with the GML. One of
the important operators is the extrudestable operator, which implements a straight skeleton al-
gorithm [AAAG95] and is able to extrude any face along of a profile with a different sharpness
for each segment. This way, different profiles can be applied to the borders of the procedural
Gothic window.

(a) (b)

Fig. 4.2 Two examples for modeling with combined B-Reps in the GML. The procedural Gothic win-
dow (a) is constructed using intersections of circle segments and styles are inserted recursively into
the constructed sub-parts. Different styles of moldings are achieved with profile extrusions based on a
straight skeleton algorithm. Windows like these were used in a procedural description of the cathedral
in Cologne (Germany) (b). This cathedral is modeled using high-level GML operators. This amounts to
the use of roughly 44.000 Euler operators. (image source: Havemann [HF04, Hav05])

Procedural Modeling with Convex Polyhedra in GML

Convex polyhedra as presented in Section 3.5 are used within the GML and were integrated
by Krispel [Kriar]. This section will elaborate the most important operators necessary to create
convex polyhedra in the GML.

All operations provided for modeling with convex polyhedra share the prefix cp- and also a
second specialization prefix whether they operate on planes (pl-) or polyhedra (po-).

Basic Operators for Convex Polyhedra in GML. To avoid rounding errors that would occur
with floating point values used for representing normals and points, the resolution of both is
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reduced. The operators for the conversion between the floating point representation and the
reduced integer representation are cp-world2int and cp-int2world respectively.

Plane Operators for Convex Polyhedra in GML. A convex polyhedron is defined by a set
of planes, of which each separately defines a half space. So, to provide a set of functions for
generating convex polyhedra procedurally, operators for generating and operating on planes
are necessary. There are two plane registering operators: cp-pl-register and cp-pl-regptnormal.
The first creates a plane out of three vertices that are arranged in counter-clockwise order and
the latter uses one explicit point with a normal to register a plane.

After a plane has been registered, it can be further used as reference to create new planes or
be modified. Most important here is the cp-pl-flip operation, which takes a plane and pushes
the flipped plane, which represents the inverse half space, onto the stack. The operators cp-pl-
movept and cp-pl-movedist both calculate a new plane based on the provided one. The first
returns a new plane with the same normal vector which goes through an additionally provided
point; the latter creates a new plane with the same normal vector which is moved a given
distance along the normal vector. Additionally, query operators are provided to retrieve infor-
mation stored in planes such as cp-pl-getnormal to push the plane’s normal vector onto the
stack.

Polyhedron Operators for Convex Polyhedra in GML. With operators defined for han-
dling planes, convex polyhedra can be created by providing an array of planes. The cp-po-
register operator takes an array of planes and creates a convex polyhedron from it. For con-
venience there also exist operators like cp-po-registerbox, which create an axis-aligned box-
shaped polyhedron based on two extremal points. Polyhedra can be further edited by adding
planes (cp-po-addplane), which is equivalent to a trimming operation, or by removing planes
(cp-po-removeplane), which enlarges the polyhedron. Duplicates of a polyhedron can be cre-
ated with the operator cp-po-dup. By adding a plane and its flipped counterpart to two instances
of the same polyhedron, a split can be achieved.

For polyhedra there is also a set of query operations, such as cp-po-getplanes, cp-po-
getvertices, or cp-po-getfaces to return an array of planes, vertices, or polygons, respectively.
More specialized query operations, for example, take a plane as input to retrieve the vertex with
minimal signed distance to this plane (cp-po-getnearest).

Due to the plane-based representation Boolean operations of convex polyhedra can be han-
dled robustly. The operations cp-csg-difference, cp-csg-union, and cp-csg-intersection each
take two arrays A and B of polyhedra as input and return an array that is either the difference
A−B, the union A+B, or the intersection A∩B of those input arrays. For an example see
Figure 4.3.

Modeling Example with Convex Polyhedra in GML. The handling of convex polyhedra is
illustrated by a simple code example that splits a polyhedron in two disjunct convex polyhedra.
The example is explained step by step in the following paragraph.
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Fig. 4.3 Successive use of constructive solid geometry operations based on convex polyhedra in the
GML. Starting from a cube trimmed by a plane, first smaller, then larger cylinders are intersected suc-
cessively with the remainder of the cube. A union of three colored crossing pipes is created as a result.
The representation is robust to not create any kind of artifacts.

1: (−2,0,0) (2,1,1) cp-po-registerbox !box1
;box1 cp-po-dup !box2

2: ;box1 /stdBlue (0,0,0) 1 1 1 cp-po-setproperties
;box2 /stdRed (0,0,0) 1 1 1 cp-po-setproperties

3: (0.5,0,0) (1,1,0) cp-pl-regptnormal !plane

4: ;box1 ;plane cp-po-addplane
;box2 ;plane cp-pl-flip cp-po-addplane

1: An axis-aligned box-shaped convex polyhedron is generated between the points (−2,0,0)
and (2,1,1) by the cp-po-registerbox operator. A copy of this polyhedron is generated by
the cp-po-dup operator and is saved in another register.

2: With the operator cp-po-setproperties internal properties can be set for different convex
polyhedra. These properties are in order: face material, outline color, an integer to save
arbitrary references, and two Boolean flags that either enable or disable outlines and faces.
Here one polyhedron is rendered red and the other blue; both have a black outline.

3: Based on a point and a normal vector a plane is registered.
4: The before created plane is added to both polyhedra, but once it is flipped before. This

way, the original polyhedron is split into two (see Figure 4.4).

Fig. 4.4 The convex polyhedra created by splitting an initial polyhedron into two. This is the result
produced by the code example presented in this section.

Procedural Modeling with Free-Form Deformations in GML

Free-form Deformations (as described in Section 3.8) have been integrated into the GML by
me. This section covers the most important operators necessary to utilize free-form deforma-
tions in the GML.
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At the core of the implementation lies a deformer, an object that carries the geometry to de-
form (which is usually composed of convex polyhedra), and a set of modifier, which define the
visualization of the geometry. There are two different kinds of modifier: affine transformations
and deformations, which are all applied – in order they were added to the deformer – to the
geometry.

The basic operator for the use of deformations in the GML is the st-addDefomer operator,
which takes an array of convex polyhedra as input. These polyhedra compose the geometry;
further polyhedra can be added by the st-insertPolyhedron operator, which takes the deformer
and the new polyhedron as input.

Modifiers are added to the deformer with the st-addModifier operator. The different mod-
ifiers for this operator are generated with st-registerDeformation and st-registerAffineTrans,
respectively. Deformations are registered by a vector, which specifies the dimensions of the
deformed space with origin in (0,0,0), and three integers that specify the amount of control
points in all three axis directions. Offsets can be applied to these control points through the st-
deformAll operator, which takes a deformation token as well as an array of three-dimensional
offsets for all individual control points as input.

Affine transformations, on the other hand, do not need any inputs for registration. Trans-
formations can be set by the st-addTranslation, st-addRotation, and st-addScale operators.
Additionally to the affine transformation token, translations are specified by a vector, rotations
by a vector and an angle, and scales by a vector, respectively. Alternatively, the st-mulMatrix
operator can be used to apply any transformation matrix. This operation takes – additionally
to the modifier token – an array that carries 16 floating-point values. These values need to be
specified in column-major order.

Another important operator is the st-deformPoint operator, which applies all modifiers ap-
plied to a deformer to a single point. This way, single points can be deformed for more delicate
calculations.

Modeling Example with Free-Form Deformations in GML. To illustrate the usage of the
aforementioned operators a small code example is presented. Again this example is discussed
step by step in the following paragraph and intermediate results and the final result are shown
in Figure 4.5.

1: [ (0,0,0) (8,4,2) cp-po-registerbox ]
0 st-addDeformer !deformer

2: (8,4,2) 2 4 2 st-registerDeformation !deformation1
(8,8,2) 2 4 2 st-registerDeformation !deformation2

3: [
(0,0,0) (0,0,0)
(0,0,1) (0,0,1)
(0,0,1) (0,0,1)
(0,0,0) (0,0,0)

(0,0,0) (0,0,0)
(0,0,1) (0,0,1)
(0,0,1) (0,0,1)
(0,0,0) (0,0,0)

] !d
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4: ;deformation1 ;d st-deformAll
;deformation2 ;d st-deformAll

5: st-registerAffineTrans !trans
; trans (0,4,0) st-addTranslation

6: ;deformer ;deformation1 st-addModifier
;deformer ;trans st-addModifier
;deformer ;deformation2 st-addModifier

1: First the deformer is created by the st-addDeformer operator. It takes an array of convex
polyhedra and an additional flag, which would invert the geometry, as input. The geometry
in this case is composed of a single box-shaped polyhedron. (see Figure 4.5(a))

2: Two deformations of different dimensions (8,4,2) and (8,8,2) are created here. Both,
however, share the same amount of control points in all three axis directions, which are two
in x and z direction and four in y direction.

3: The offsets for all the individual control points are defined in an array.
4: The same offsets are applied to the two deformations of different sizes.
5: An affine transformation is registered and a translation by (0,4,0) is applied to it.
6: The three different modifiers are added to the before created deformer. First the small

deformation is applied (see Figure 4.5(b)), then the geometry is transformed by the affine
transformation (see Figure 4.5(c)), and finally the second, larger deformation is applied to
the geometry (see Figure 4.5(d)). The final result is shown in Figure 4.5(e).

(a) (b) (c) (d) (e)

Fig. 4.5 Illustration of the separate steps of the code example in this section. A convex polyhedron (a)
is first deformed with a deformation (b), whose dimensions match the axis-aligned bounding box of the
polyhedron. Afterwards the deformed geometry is translated upwards (c) and deformed with another
deformation with larger dimensions (d). Application of all these modification steps yields image (e).

Procedural Modeling with Scene Graphs in GML

The scene graph package OpenSG [RVN13] has been integrated into the GML in the context
of the Master’s thesis of Hecher [Hec12]. With the help of this resource, scene graphs (see
Section 3.6) can be described within the GML. The important extension is introduction of a
new node core type: the GML context. With this, standalone GML scripts can be placed within
a node of the scene graph and are evaluated at the position of this specific node. This enables
the positioning of separate GML models within a scene without the need to adapt code.
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Scene Graph Traversal Operators in GML. But first to basic operators for building a scene
graph. To retrieve the token of the scene graph root node the operator osg-getroot is provided.
With a scene graph node token on the stack several informations can be queried. For example
osg-parent retrieves the parent node, and osg-child retrieves a child node based on an index.

Nodes can be assigned a name with osg-setname. To find nodes again in the scene graph,
it can be traversed in search of this name with the operator osg-find, which takes a node and a
name as input. Traversal is started at the specified node and only the sub-graph starting at that
node is traversed in search of a node with the assigned name.

Scene Graph Building Operators in GML. As explained before in Section 3.6.2 in OpenSG
a scene graph node is composed of a specific core and the node itself. A node together with
a core can be created by the osg-corednode operator, which takes a name, which specifies the
type of the core, as input. This operator returns a token for the node as well as one for the node
core. For a given node, the node core can also be retrieved by osg-getcore. For a given core, a
node encapsulating this core can be generated with the operator osg-makenodefor.

Based on the core type different actions are possible. A transformation core, for example,
provides specifying and retrieving its transformation information. The operators osg-translate,
osg-rotate, and osg-scale are used for specifying this information and for retrieving, the opera-
tors osg-gettranslate, osg-getrotate, and osg-getscale are provided. A newly created node can
be added to scene graph as a child of an existing node that is already in the scene graph with
the osg-addchild operator.

GML Contexts for Procedural Scene Graphs. GML contexts are provided by a separate
resource. A standalone GML program can be specified in these contexts. Each context has
its own interpreter and manages its own tokens. Therefore, programs from different contexts
cannot share any information with each other. An empty context token is created with the
command /gmlcontext node-create. A context can be filled with program code using the node-
begin and node-end operators. The node-begin operator takes a GML context token from the
stack and activates it. All code specified between node-begin and node-end is then interpreted
in this context.

To bridge the gap between this resource and the scene graph resource the osg-ctx2core op-
erator is introduced. This operator takes a context token and generates a scene graph node core
from it. The previously mentioned osg-makenodefor operator can then be used to create a scene
graph node, which can then be inserted into the scene graph.

Modeling Example with Scene Graphs in GML. The usage of the scene graph capabilities
that include GML contexts are illustrated in the upcoming example. This example is again
discussed in a step by step manner.
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1: /Transform osg-corednode !transC !transN
;transC (10,0,0) osg-translate

2: /gmlcontext node-create !gmlCtx
;gmlCtx node-begin

%code for any GML model
node-end

3: ;gmlCtx osg-ctx2core !gmlC
;gmlC osg-makenodefor !gmlN

4: osg-getroot ;transN osg-addchild
; transN ;gmlN osg-addchild

1: A transformation node is generated. The osg-corednode operator returns core and node
separately. The translation is applied to the core because the core resembles the transforma-
tion and the node is only an encapsulation necessary to insert it into the scene graph.

2: First a token for an empty GML context is created, which is then filled with code between
node-begin and node-end. The code for the procedural GML model is interpreted in the
before created context.

3: To place the GML model in the scene graph, a core needs to be created from the cor-
responding context with the osg-ctx2core operator. A node for a core is created with the
osg-makenodefor operator.

4: All that is left is to integrate the newly created node into the scene graph. The before
created transformation node is used to define an offset to an existing node in the scene graph
(in this case the root acquired through osg-getroot). With the osg-addchild operator the
desired hierarchy can be defined in the scene graph.

4.1.3 Split Grammars for Architectural Models in the GML

Split grammars (see Section 2.3.4) are very successful techniques for describing architectural
buildings. This is mostly due to their conceptual simplicity and the suitability of recursive
replacement. Rectangular patterns are very common in classical architecture and are easily de-
scribed using recursive box splits with boxes as non-terminal shapes, as introduced by Wonka et
al. [WWSR03]. Through further publications in this field [MWH∗06, HHKF10, KK11] differ-
ent extensions are added to a common core concept, which will be referred to as box grammar
from now on.

Split grammars are usually realized within a scripting language. Since the necessary data
structures can be easily mapped to the GML, the extensions to split grammars presented in the
upcoming sections all use GML as underlying scripting language. This section, in particular,
will focus on the realization of split grammars within GML done by our research group.

The split grammar extensions presented in the following two sections include a generaliza-
tion of box-based split grammars to one that utilize convex polyhedra instead in Section 4.2,
and an extension to include free-form deformations into the grammar formalism in Section 4.3.
In the former it will be discussed how established split grammar operations are generalized to
the use of convex polyhedra and what new operations become possible through this general-
ization. The latter describes a method to describe curved architecture and presents adaptions of
established split operations that operate on curved surfaces.
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Split Grammar Syntax within the GML

As mentioned before, a replacement rule in a (context-free) shape grammar replaces the shape
that corresponds to the label on the left-hand side through one or more shapes that correspond
to labels on the right-hand side. In the GML, a split grammar rule is defined with the following
syntax:

< Non−Terminal Name {Condition (optional)} {Rule} [Non−Terminal List] >

The Non-Terminal Name is a unique literal name that corresponds to the non-terminal
shape that is replaced by this rule. Followed by the name is an optional condition block, which
is realized as an executable array. The rule is only executed if this condition block evaluates to
true. If no condition block is present the rule is always executed. The replacement rule is de-
scribed in the following executable array. The GML code in this executable array can assume
that the shape to replace is pushed to the stack beforehand. For the refinement of the input
shape several different operations are provided within the framework. The majority of these
operations are discussed in the following two Sections 4.2 and 4.3. Finally, a list of new non-
terminal shape labels is required. The amount of different labels provided in this array must
coincide with the amount of different shapes produced by the refinement rule. Each of this new
non-terminal labels is followed by an executable array that can be used to define individual
attributes to these newly generated shapes.

An Introductory Example of GML Split Grammars. Rules that refine a shape with the
label Box may look like this:

< /Box { index 2 gt }
{ 1 LCS.PX op-repeat-size }
[[ /Part1 { / first 1 def } ]]

>
< /Box

{ [−1 1] LCS.PX op-split-interval }
[[ /Part1 { / first 0 def } ][ /Part2 {/ first 0 def } ]]

>

There are two replacement rules for shapes with the label Box. Rules are checked whether
they are applicable or not in the order of their appearance. In this case, only if the first rule
cannot be applied the second one is checked. The second rule is a fallback rule because it has
no condition statement and can therefore always be applied.

In this example, the first rule is only applied if the corresponding shape with the appropriate
label carries an attribute called index, which has a value greater two. If this is true, a repeat
operation with size one is applied in x-direction and all elements of the resulting repetition get
the new label Part1. Additionally a new attribute called first is defined explicitly for all these
shapes. Later rules may reference this attribute. Some attributes may also be defined implicitly
such as the index attribute for repetitions produced by repeat operations.

The second rule is only applied if the condition of the first fails. This rule performs a sim-
ple subdivide with an interval of [ -1 1 ]. Negative values in this formalism indicate relative
measurements and positive values stand for absolute measurements. So in this case the shape is
split into two pieces along the x-axis, whereas the right one has width one and the left one fills
the rest of the shape. In contrast to the repeat operation before, the amount of resulting shapes
is here defined and each one can be assigned an individual label.
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Context-Sensitivity for GML Split Grammars. The syntax also facilitates a way to deal
with interconnected structures. Within a rule it is possible to define an arbitrary number of
sub-rules, which are executed after the derivation tree starting from the parent rule, which
hosts the sub-rules, has finished executing. The sub-rules can be applied to all non-terminal
shapes created by the parent rule, which have no associated replacement rule. By applying
the sub-rules a new grammar derivation is triggered. The syntax of the sub-rules is a little bit
different. Non-context-free rules can be specified by stating one or more non-terminal names.
The replacement rule then takes more inputs accordingly.

A simple example looks like the following. An initial Start rule divides a shape through
several rule applications into shapes with label Part1 and Part2. After rule derivation of the
Start has finished, the sub-rule registered in Start is executed. This rule takes two shapes from
which one carries the label Part1 and the other the label Part2. To avoid unexpected behavior
the amount of parts with label Part1 and Part2 should be the same. By executing the sub-rule
new shapes with label NewPart are generated, which can then be further processed in the usual
way.

< /Start
{ 1 LCS.PX op-repeat-size }
[[ /Parts { } ]]

< /Part1 /Part2
{ ... }
[ [ /NewPart { } ] ]

>
>

< /Parts
{ [−1 1] LCS.PX op-split-interval }
[[ /Part1 { } ][ /Part2 { } ]]

>

< /NewPart
{ op- fill }
[ ]

>

Alternatively, by adding a ∗-suffix to the non-terminal name in the sub-rule, instead of single
elements whole arrays can be processed. A sub-rule like the following would take two arrays as
input. The first array consists of all shapes with label Part1 and the second consists of all shapes
with label Part2. Thus, instead of executing the sub-rule several times for pairs of shapes, this
way the rule is only executed one time dealing with all shapes at once.

< /Part1∗ /Part2∗
{ ... }
[ [ /NewPart { } ] ]

>
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A Compact Notation for Split Grammars. To provide a compact notation for split grammar
rules throughout this thesis, the notation from Müller et al. [MWH∗06] has been adapted. The
introductory example from before translates to this notation in the following way:

Box ; {index > 2}
Repeat(X, A∗, 1)
{Part1}

Box ; Subdivide(X, 1r, 1)
{Part1, Part2}

To incorporate different variations of repetitions in this notation, the repeat operation uses
a regular expression to determine the interpretation of the split. The usual repeat operation
that splits a shape in parts of same size uses the regular expression A∗ as parameter. Another
conceivable interpretation is a split in parts of alternating size. Such a split has A(BA)∗ as the
regular expression and needs – besides the sizes for the separate parts – a further parameter to
determine among which group the remaining space of the shape is distributed.

Another important difference to notice is that relative size measurements are here indicated
by an r-suffix instead by a negative value. Furthermore, non-context-free rules that gather
shapes together are indicated by a ∗-suffix and are meant to be executed after all shapes carrying
the respective labels have been generated.

4.2 Split Grammars on Convex Polyhedra

Box-grammars only feature splitting along the three main axes which span their scope. Splitting
boxes only by principal planes, however, is very restrictive. Thus an exploration on what is pos-
sible with splits in arbitrary directions naturally let to replacing the box-shaped non-terminal
shapes through their generalization: convex polyhedra (see Section 3.5). This section on split
grammars on convex polyhedra is based on our work [TKZ∗13b] and takes a majority of figures
and definitions from this paper. Through this generalization, a more general class of complex
shapes is made amenable to the grammar formalism, which in turn enhances its expressive-
ness. To increase the expressiveness further, additionally to the generalization of the bounding
shape, possibly non-convex geometry can be maintained for each shape. This approach only
replaces the set of operations on the geometry level, thus it is equally usable with any grammar
formalism.

Furthermore, as convex polyhedra are genuinely volumetric, a true mass model can be ob-
tained in contrast to “a collection of paper models” that result from importing meshes. This
volumetric representation allows, among other things, to compute volumes and intersections,
answer point containment queries, or determine the outer surface.

Split grammars on convex polyhedra have been a joint work of Thaller, Krispel and myself.
Contributions in this work are hard to attribute because it was a collaboration of the three of us.
My contribution was mainly composed of generalizing existing operations and exploring new
operations through applied research to make use of the features provided by this generalized
shape representation. These operations are, among others, described in this section. Further-
more, my applied research led to all examples presented in the context of this section. Further
results and applications of this kind of split grammar are discussed among others throughout
Chapter 6.
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Motivating Examples for Split Grammars on Convex Polyhedra. As a simple motivat-
ing example, which shows the advantages gained from using convex polyhedra as new non-
terminal class, consider a picket fence such as the one shown in Figure 4.6(a). This fence is
easy to express through box grammars that support split operations such as the aforementioned
approaches [WWSR03, MWH∗06, HHKF10, KK11]. These split grammar systems all support
box non-terminal shapes along with subdivide and repeat rules (see Section 2.3.4). A fence
like this can be modeled by the following split grammar rules:

Fence ; Subdivide(X, 0.1, 1r, 0.1)
{Post, MidPart, Post}

MidPart ; Subdivide(Y, 1r, 1r)
{Pickets, HBars}

Pickets ; Repeat(X, A(BA)∗, B, 0.1, 0.1)
{void, Picket}

HBars ; Subdivide(Z, 1r, 0.1, 1r, 0.1, 2r)
{void, Bar, void, Bar, void}

Picket ; ...
Post ; ...

(a) (b)

Fig. 4.6 A simple picket fence that can easily be modeled by split grammars based on boxes (a) poses a
challenge when it is slightly modified to include a curved boundary for all the single pickets (b). (image
source: Thaller et al. [TKZ∗13b])

The fence in Figure 4.6(b), however, is slightly different because the space available for each
fence segment is no longer shaped like a box. Each fence segment follows a curved boundary
and the individual pickets have different height, but still the same rounded shape as before. A
sufficiently powerful box grammar can still express this by using a larger bounding box for the
fence segment and calculating the bounding curve of the fence within the Picket rule. This way,
the bounding box loses its meaning and is no longer denoting the space available to be filled by
the shape. Hereby the information of the curved bounding shape is located in two places instead
of one: A bounding box is calculated within the MidPart rule and the exact shape based on that
bounding box is calculated within the Picket rule. How this rounded fence can be implemented
based on convex polyhedra is demonstrated at the end of Section 4.2.4.

The bridge model in Figure 4.7 poses a similar challenge. Again the bridge in Figure 4.7(a)
is easy to model using standard box grammars, but the further two bridges are not. The natural
bounding shape for most parts of the slanted bridges are not boxes, but sheared ones (paral-
lelepipeds). To achieve all bridges with box grammars, information about the slanting angle
has to be propagated to all rules of the grammar. Constructing the bridge like the one in Fig-
ure 4.7(a) and then distorting it using a shearing transformation is not an option, as this proce-
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(a) (b) (c)

Fig. 4.7 Slanted shapes constitute another challenge for split grammars with box-shaped non-terminals.
(image adapted from Thaller et al. [TKZ∗13b])

dure would distort various details, most importantly the circular arches, in unacceptable ways.
By generalizing box-shaped non-terminals to convex polyhedra these problems are solved. The
reconstruction of his particular bridge will be discussed in Section 6.2.2.

4.2.1 Generalization of Non-Terminal Shapes

A convex polyhedron carries more information than a box, but is still simple enough so that
rules can still make reasonable assumption about the shape they are replacing. This allows
operations to insert sub-shapes that can adapt to the parent shape, which is a convex polyhedron.
Similar to how box grammars exploit the simplicity of boxes, grammar rules can exploit the
convexity of the bounding shape as a guiding volume for the sub-shapes.

The generalization of the box-shaped non-terminal shape has some impact on the design
of the non-terminal shape (see Definition 2.11). The shape S describing the scope, is explic-
itly changed to a convex polyhedron. This affects the local coordinate system too, as it is no
longer defined implicitly like in the case of an axis-aligned box as scope. Therefore, a rigid
transformation is taken to describe the local coordinate system C. The geometry is represented
separately from the scope, and does not have to be equal to the scope. In particular, there is
no requirement that the geometry has to be convex. Shape operations operate on the scope and
the geometry together, but their parameters are usually calculated from only the scope. By us-
ing a set of convex polyhedra to represent this geometry, representing non-convex geometry is
possible with practically no added implementation cost.

Low-Level Operations Enabled Through Convex Polyhedra. This generalization of the
non-terminal shape introduced new opportunities to operate on shapes and on attributes of
shapes. As already discussed in Section 3.5, convex polyhedra can be created and modified by
adding arbitrary planes. This add-plane operation (which is in this context renamed to: trim
operation) allows to trim both the scope and the geometry by an arbitrary plane. Building on
this trim operation, the plane-split operation, which encapsulates the main advantage of convex
polyhedra, can be introduced. This operation splits a shape with a plane as an input parameter
in one part on either side of the plane.

Furthermore, operations such as translate, rotate and mirror that operate on the local coor-
dinate system are allowed too. This is due to the fact that, first, the local coordinate system is
no longer fixed and defined implicitly and second, splits in arbitrary directions are permitted.
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Finally, in split grammars parameters that are used for operations can either be hard-coded
or can be calculated directly from properties of the non-terminal shape. In box grammars such
calculated properties would be, for example, the dimensions of the shape. Convex polyhedra, on
the other hand, are more expressive, but such values are also harder to compute. To facilitate
easy access to parameters that are calculated from the scope of the input shape, a collection
of query operations is provided. This collection includes, among others, operations such as the
scope-centroid query, which returns the centroid of the current scope, the extreme-point query,
which takes a direction and returns the extremal point of the current scope in that direction, and
the ray-intersect query, which intersects the current scope with a ray.

Solving Specific Modeling Challenges with Convex Polyhedra. Specific modeling chal-
lenges may require direct use of these low-level operations. In case of the winding staircase
example shown in Figure 4.8, there is a specific rule that defines the shape of the single steps.
This Step rule takes a non-terminal shape, which defines the convex scope for a single step,
as input (see Figure 4.9(a)). By trimming this shape with a plane, the lower side of the step is
chamfered as seen in Figure 4.9(b). Further rules can tend to the shape afterwards to refine the
result (see Figure 4.9(c)).

This does not mean that this specific rule uses hard-coded coordinates to specify this trim-
ming plane. Rather, the extreme-point query operation is used with search directions – speci-
fied in local coordinates – to identify characteristic corners of the scope. These are then used
for specifying the trimming plane independent from the orientation of the shape. Therefore,
the trimming plane, which is calculated from the scope and the corresponding local coordinate
system, can adapt to a range of different shapes.

The shapes of the individual steps inherit their outside boundary planes from the scope
that describes the entire staircase, which was partitioned into smaller parts for single steps
by preceding rules. Consequently, the same rule set for the winding staircase – without any
modifications to any of the rules – can be used to build winding staircases in differently-shaped
starting shapes as demonstrated in Figure 4.8.

(a) (b)

Fig. 4.8 The winding staircase adapts to its surroundings. It can be inserted in any prism-like shape. The
shape of the steps is affected by the surrounding scope. The same Step rule is applied independently of
the step’s shape. A cylindrical scope (a) as well as a box-shaped scope (b) are shown in this example.
(image source: Thaller et al. [TKZ∗13b])
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(a) (b) (c)

Fig. 4.9 A step for a staircase is modeled by calculating a slanted plane based on the convex scope
(a), which is then used to trim the lower side of the step (b). The step is further refined afterwards (c).
(image source: Thaller et al. [TKZ∗13b])

4.2.2 Generalization of Split Grammar Operations

This section describes the generalization of established shape operations for box grammars to
split grammars on convex polyhedra. These include generalizations for subdivide and repeat
operations and extrusions. Furthermore, a volumetric counterpart of the component-split from
Müller et al. [MWH∗06], as well as a non-context-free merge operation, is discussed in this
context.

Generalization of Subdivision and Repeat Splits. The subdivide and repeat operations are
the foundation of split grammars. In box grammars, the results of these operations automat-
ically adapt to the size of the scope, but these operations can only be applied in the major
axis directions of the box-shaped scope. A generalization is necessary to exploit the proper-
ties of convex polyhedra and thus enable the application of subdivide and repeat operations in
arbitrary directions.

Based on the plane-split, the generalization of the subdivide and repeat operations for con-
vex polyhedra can be defined as:

Definition 4.1 The subdivide and repeat operations take a tuple (A,B,~n,~u,S) as input, where

• A and B are two points that define the limits between which the sizes are measured,
• ~n is the normal vector of the splitting planes,
• ~u is the direction along which any absolute measurements in S are measured, and
• S is specifies the sizes for the parts, which is

– a list of sizes for the subdivide operation,
– or a minimum size for the repeat operation.

All parameters are given with respect to the shape’s local coordinate system. The operation
then proceeds as follows: Planes with normal vector ~n are constructed through the points A
and B (Figure 4.10(b)). The distance between these two planes along the direction ~u is calcu-
lated. This distance is then used instead of the “length” of the scope to calculate the relative
placement of the split planes in the same manner as would be done in a box grammar (Figure
4.10(d)). Finally, the shape is split (Figure 4.10(e) and (f)).

The fact that ~n and ~u can be specified separately is useful for situations such as the slanted
balustrade of the bridge example in Figure 4.12(a). The height of the balustrade, for example,
has to be measured along the vertical axis, but for the partition along this vertical direction a
slanted splitting plane is used.
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Fig. 4.10 Illustration of subdivide and repeat. The points A and B are supplied as parameters (a). Planes
with normal vector ~n are then constructed through these points (b). The distance between these planes
along the direction~u is measured (c) and is partitioned in respect to the size specification S (d). Splitting
planes are then positioned (e) and used to split the convex polyhedron (f). (image source: Thaller et al.
[TKZ∗13b])

The limit points A and B can be calculated in various ways. Three useful methods are pro-
vided as pre-defined query operations:

• limits-by-extremes, which determines the farthest points in a given direction~v, i.e. by choos-
ing points A and B such that 〈A,~v〉 is minimal and 〈B,~v〉 is maximal (Figure 4.11(a)),

• limits-by-rays, which casts rays from the centroid of the scope in a direction ~v and in the
opposite direction −~v (Figure 4.11(b)), and

• limits-by-faces, which chooses two “opposite” faces by casting rays from the centroid and
then returns the closest points of those faces along the direction~v (Figure 4.11(c)).

A

B

11

~v

(a)

~vA
C B

11
(b)

C

1 1
A

B

~v

(c)

Fig. 4.11 Different ways of choosing the limit points A and B on a split with sizes (1,1r,1): the extreme
points of the scope along the given direction (a), the points hit by casting rays from the centroid C (b),
or the closest points of the faces hit by the rays (c). (image source: Thaller et al. [TKZ∗13b])

For axis-parallel splits on boxes all three methods are equivalent. The limits-by-extremes
query is the default implementation, which stems from the previous work of Krispel [Kriar].
This method can be understood as building a bounding box along the given direction. The
limits-by-faces query, on the other hand, can be used to “rectify” a scope by cutting off a
slanted face. Finally, the limits-by-rays query represents a compromise between the other two.
Use cases for all three methods are illustrated in Figure 4.12.

These operations make no assumptions about the input shape and yield a defined result
for any input shape. However, these rules are expected to be used in rules that make certain
assumptions. For example, rules that use the limits-by-face query operation will likely assume
that the face found in the search direction is a meaningful feature of the shape, and not a small
face that is part of e.g., an approximated cylinder. Within box grammars there are also rules
that might assume minimum dimensions or certain proportions for a box-shaped scope, so the
situation is no different here.
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(a)

(b) (c) (d)

Fig. 4.12 Use cases for the different ways of choosing the limit points for the subdivide and repeat
operations. The extreme points in the vertical direction were used to split parallel to the slanted scope’s
boundaries in the balustrade (a). Ray casting from the centroid of a scope assures that the windows
always have the same distance to the stairs ((c) and (d)). Finally, using closest point of the faces hit by
the casted ray straightens one side of a scope in a staircase (b) to ensure that there is enough space across
the whole width of the landing. (image source: Thaller et al. [TKZ∗13b])

Extrusion Operations for Convex Polyhedra. Split operations usually fulfill the contain-
ment property, so shapes are replaced by smaller shapes that are contained in the scope of the
original shape. In contrast to split operations, extrusion operations create new shapes outside
the scope of the original shape. Extrusions allow a more efficient modeling process because de-
tails such as moldings can be realized without providing a sufficiently large shape – which has
to contain all shapes that would be extruded otherwise – beforehand. Extrusions that are based
on convex polyhedra can be realized in two different ways, as introduced by Krispel [Kriar]:

Definition 4.2 The move-plane operation takes a plane p that defines a face of the input scope
and a distance d as parameters. It constructs a new scope by moving the plane p outwards by
the distance d (for an example see Figure 4.13(b)).

Definition 4.3 The extrude operation takes a plane p that defines a face f of the input scope
and distance d as parameters. It extrudes the face f to a prism of height d; i.e., it constructs a
new shape, whose scope consists of a copy of the given plane p, which is moved outwards by
the given distance d, the complement of the original plane p, and of normal planes through the
edges of the face f defined by the plane p (for an example see Figure 4.13(c)).

The Frame-Split. Through the generalization to convex polyhedra an operation that splits a
shape into a frame and an inner part can be defined. This so-called frame-split operation, which
has been contributed by Krispel [Kriar], is useful in a variety of applications as demonstrated
in Figure 4.15.
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(a) (b) (c)

Fig. 4.13 Effect of the move-plane and extrude operations illustrated in two dimensions. Given a con-
vex scope, a plane that defines a face of that scope, and a distance (a), the move-plane operation creates
a new shape by modifying the given plane (b), while the extrude operation creates an additional prism
shape by sweeping the face over the given distance (c). (image adapted from Thaller et al. [TKZ∗13b])

Definition 4.4 The frame-split operation takes parameters (F,d), where F is a subset of the
planes that define the input scope and d is a distance. The shape is split into one inner part and
into several bounding parts.

The inner part is created by moving the bounding planes of the scope, which are in the set
F, along their normal direction by the distance d to create a contracted version of the shape;
some bounding planes might not contribute to its surface. A boundary part is created for each
face of the inner part. It is bounded by the original scope, by the face of the inner part, and by
bisector planes constructed through the edges of the inner part (Figure 4.14(a) through (d)).

(a)

HR

(b) (c)

PI

PF

PF

PF

PF

(d) (e)

Fig. 4.14 The frame-split is a versatile operation that decomposes a convex shape into a contracted
(inner) part and parts for selected bounding planes, which is demonstrated on a two-dimensional exam-
ple. First, an input polyhedron (a) is shrunk by offsetting its boundary planes (b); note that the plane
HR (blue) does not contribute to the surface of the shrunk polyhedron. For each vertex (edge in three
dimensions) of the inner polyhedron, a bisector plane is created (c). The final partition (d) consists of the
inner polyhedron PI and a polyhedron PF for each edge (face in three dimensions) of PI which consists
of the corresponding edge (face in three dimensions) and its adjacent bisector planes intersected with
the original polyhedron. By comparison, offsetting using the straight skeleton (e) produces a different
partition. (image source: Thaller et al. [TKZ∗13b])

The subset F of the scope planes can easily be constructed using query operations, or can be
stored in a user-defined attribute.

This operation is inspired by the component-split from Müller et al. [MWH∗06]. In contrast
to the frame-split, which operates on the scope, the component-split operates on the geometry
and generates new (lower-dimensional) shapes for all of its faces. The frame-split operation
yields a non-overlapping subdivision into convex parts of the input scope, hence it is a volu-
metric counterpart of the component-split operation. The outer parts, as well as the interior
part, are available for further refinement.
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(a) (b) (c)

Fig. 4.15 Applications of the frame-split: In the left column (a), a window is created by first splitting a
box into three boxes; frame-split on each box (excluding the front and back plane) is used to create the
crossbar details (the inner part has been voided). Similarly, frame-split can be used on an arch-shaped
scope as shown in the middle row (b), note that the front, back and bottom plane have been excluded. In
the right column (b), the frame-split was consecutively applied to partition a convex building into wall,
room and hallway sections (c). (image source: Thaller et al. [TKZ∗13b])

Merging Shapes. So far all operations have been operating on a single shape only, hence
they have been context-free operations. With an extension to the split grammar formalism that
allows interconnected structures (like the one described in the work of Krecklau and Kobbelt
[KK11]) it becomes possible to implement shape operations that operate on multiple scopes
simultaneously. This allows, for example, an operation that joins multiple shapes together into
a single shape for further processing.

Definition 4.5 The merge operation takes a list of shapes as input and combines them into a
single shape. The scope of the resulting shape is the convex hull of all input scopes, and the
resulting geometry is the union of all input geometries.

The merge operation allows procedural creation of non-convex shapes, like L- or U-shapes,
from single convex parts. These shapes feature non-convex geometry and a convex scope and
are therefore available for further refinement in the same way as entirely convex shapes.
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4.2.3 Shape Operations on Shapes with Non-Convex Geometry

Not all useful partitions yield only convex elements. In the following the consequences of
allowing non-terminal shapes to have geometry that is not necessarily convex is discussed.
This geometry is always independent of the corresponding convex scope.

Operations with Non-Convex Results. Prime example of an operation that generates non-
convex geometry is one that inscribes a cylindrical hole into a convex scope. The volume de-
scribing the hole is convex, but the remaining volume around it is clearly not convex (see
Figure 4.16). It is important how scope and geometry are affected by this operation. For the
“inner” result, geometry as well as the scope are both intersected with the same cylinder. For
the outer result, however, only for the geometry the cylinder is subtracted. The scope of the
outer shape needs to remain convex, so the same difference operation cannot be performed;
instead the original scope is maintained. Thus, the round-hole operation splits a shape into two
shapes with non-overlapping geometry, but overlapping scopes. Furthermore, this operation
can also be provided with its own query operation, which is used to calculate the circle with
maximal radius that fits within the two-dimensional silhouette of the scope. An example where
this query operation is applied is demonstrated later in Figure 4.19(c).

(a) (b) (c) (d)

Fig. 4.16 The round-hole operation. In a convex polyhedron (a) a circular hole is cut leaving two re-
sults (b): A convex inner part (c) and the non-convex surroundings (d). The red border shows the corre-
sponding convex scope, which is equal to the original scope in case of the non-convex geometry. (image
source: Thaller et al. [TKZ∗13b])

Splitting Non-Convex Shapes. All split operations are applied to both the scope and the
geometry. Consequently, all of these operations can automatically be applied to non-convex
geometry as well. After splitting a shape with non-convex geometry, all resulting shapes will
still have a convex scope. It is important to notice that even if the scope of the original shape
was the convex hull of its geometry (see Figure 4.17(a)), the resulting scopes may be larger
than the convex hulls of the geometry of the resulting shapes (see Figure 4.17(b)). With a
separate scope-from-geometry operation the scope can be recalculated as the convex hull of the
geometry (see Figure 4.17(c)). This step is not done automatically because it is possible that the
scope conveys semantic information independent of the geometry. The scope can, for example,
specify the original or ideal shape of an object with missing parts. It is desirable that this
information is not discarded automatically by split operations. In the example of Figure 4.17
one may want to calculate further split operations based on scope that correlates to the complete
cake slice instead on the convex hull of the geometry.
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(a) (b) (c)

Fig. 4.17 Splitting a shape containing non-convex geometry (a) may lead to shapes with a scope that is
larger than the convex hull of the geometry (b). The scope can be recalculated to be the convex hull of
the geometry (c). Scopes that are the convex hull of the geometry are shown in red, otherwise in blue.
(image source: Thaller et al. [TKZ∗13b])

A staircase example is used for demonstrating the application of the scope-from-geometry
operation. This time (see Figure 4.18), the starting geometry is L-shaped and is split into vol-
umes for the individual steps of the staircase. The scopes of the shapes are too large after the
application of the split and are, therefore, an artifact of the convex hull of the original L-shape.
The scopes are, thus, recalculated based on the geometry using the scope-from-geometry oper-
ation to insert the Step rule that was discussed before in Section 4.2.1. The result automatically
adapts to the space provided by the different scopes that describe the available space for the
individual step shapes.

(a)

(b)

(c) (d)

Fig. 4.18 Generation of a staircase in an L-shaped non-convex geometry (a). The step shapes (c) are
generated through splits along a polyline (red (b)). To efficiently process the steps further, their scope is
recalculated as their convex hull. The Step rule (see Figure 4.9) is then inserted for each step (d). (image
source: Thaller et al. [TKZ∗13b])

4.2.4 Special-Purpose Operations for Convex Polyhedra

The operations that have been discussed so far are universally applicable, but besides them a
great variety of special-purpose operations that profit from the generalization to convex polyhe-
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dra can be imagined. These operations can be specific to a certain domain (such as architecture)
or they can encapsulate useful patterns for certain situations. In contrast to pre-modeled assets,
their strengths lie in the re-parametrization and the possibility to be refined further.

Several Examples for Special-Purpose Operations. Examples for useful patterns are the
radial-split and the polyline-split. The former divides a shape into smaller cake slices by rotat-
ing a plane around a central axis at a given point (see Figure 4.19(a) - (c)), and the latter splits
a shape along a series of planes that are placed on a polyline (see Figure 4.19(d)). Distances
between these planes are measured along the polyline itself. The polyline-split is expected to
be used mostly in situation where the planes do not intersect within the geometry, such as the
staircase example in Figure 4.18.

(a) (b) (c)

(d)

Fig. 4.19 Various round window styles can be created using the radial-split operation: An arch-shaped
scope is first split into a lower rectangle and an upper half circle. The half circle is then partitioned into
cake-like pieces using the radial-split (a). Using different rules for the cake pieces allows for a great
variety of window styles (b), (c). The polyline-split (d) splits a given shape with planes that are placed
perpendicular to the given polyline. The planes are placed at specified intervals measured along the
polyline. (image source: Thaller et al. [TKZ∗13b])

Especially when modeling classical architecture, it is very useful to provide operations for
various kinds of arches. Just like the round-hole operation before, the general arch operation
splits a given shape into the (convex) volume below an arch and the (non-convex) remain-
ing shape. To maximize the re-usability of this operations two query operations are provided
that calculate the exact placement of the arch. These operations (as illustrated in Figure 4.20)
maximize the height of the arch such that it still fits within the two-dimensional silhouette
(for a provided direction) of a given scope. The query operations that fit these kind of arches
into silhouettes of given scopes have been developed by me based on an existing operation by
Krispel [Kriar] that takes only the bounding box as guidance.
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Fig. 4.20 To build an arch between points A and B, a circle segment is fit into the silhouette of the scope.
The parameter h is maximized so that the circle segment touches but does not cross the silhouette.
For h < 0, this leads to a segmental arch (a), while for h ≥ 0 the result is a round arch (b). In most
architectural contexts, it makes sense to restrict the parameter h to one of the two cases. (image source:
Thaller et al. [TKZ∗13b])

Implementation of the Motivating Fence Example. The arch operation together with the
corresponding query operations have been the last puzzle piece missing to create the rounded
fence in the motivating example of this section. The challenge in this introductory example was
to change the fence from Figure 4.6(a) to have a rounded overall shape as seen in Figure 4.6(b).
In a grammar based on convex polyhedra, the overall shape – the scope – has just to be changed
to a rounded shape. A single additional rule is necessary to change the rectangular bounding
box to the curved shape that is desired. To this rounded shape, the same unmodified, Pickets
rule is applied. The following split grammar rules highlight the small changes necessary to
achieve the desired result.

Fence ; Subdivide(n=u=X, (A,B)=extremes(X), 0.1, 1r, 0.1)
{Post, MidPart, Post}

MidPart ; Subdivide(n=u=Y, (A,B)=extremes(Y), 1r, 1r)
{Boundary, HBars}

Boundary ; Arch(Y, calcSegmentalArch(Y, h=0.2))
{Pickets, void}

Pickets ; Repeat(n=u=X, (A,B)=extremes(X), A(BA)∗, B, 0.1, 0.1)
{void, Picket}

Picket ; Arch(Y, calcRoundArch(Y))
{fill, void}

HBars ; Subdivide(n=u=Z, (A,B)=extremes(Z), 1r, 0.1, 1r, 0.1, 2r)
{void, Bar, void, Bar, void}

The arch operation is applied to the box-shaped mid-section (see Figure 4.21(a)). The max-
imal segmental arch (with a given height) is fitted into this shape by the Boundary rule as seen
in Figure 4.21(b). The rounded shape is then processed the same way as before. It is split by
subdivide and repeat operations, which have been generalized to convex polyhedra, but are
applied in the same way as in box grammars (see Figure 4.21(c)). The Picket rule here can be
formulated as an arch operation that inserts the maximal round arch into the convex pickets
formed by the bounding planes created by the Boundary rule and the Pickets rule (see Fig-
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ure 4.21(d)). Therefore, there is no need to insert pre-modeled geometry. When the Picket rule
is applied, the scope of the Picket non-terminal shape corresponds exactly to that part of the
original scope that this particular picket should fit in.

(a) (b) (c) (d)

Fig. 4.21 Step by step illustration of the generation of the picket fence with a round boundary. In the
box-shaped mid-section (a) the maximal segmental arch (with a given height) is fitted to create the
rounded bounding shape for the fence (b). The pickets are then generated using a repeat operation (c).
All pickets have a unique, but convex shape due to the round boundary. To complete the fence, round
arches are fitted into these convex pickets (d).

4.3 Deformation-Aware Split Grammars

The expressiveness of architectural models acquired through split grammars, as described be-
fore, are determined by their concrete hierarchical structuring operations. These operations
adapt to planar surfaces, thus models mainly exhibit straight structures or surfaces.

If such architectural models require curved surfaces or curved designs, their creation is very
laborious because curved surfaces need to be approximated by planar geometry or appropri-
ately placed pre-modeled parts. Nevertheless, the domain of models that exhibit curved designs
and parts is well-suited for a grammatical representation because the hierarchical structure of
architectural models is still present.

The typical method to create models that feature curved designs with established procedural
methods is first using straight and planar designs to generate a model that is deformed after-
wards in a meaningful way using free-form deformations. This approach, however, has two
major problems:

• Procedural methods work solely on undeformed geometry. Rules that adapt to available
space will not yield desired results because deformations can be used to create more or less
space.

• When deformations are applied to hierarchical structures, it is hard to control the the behav-
ior for all individual elements.

This section is based on the on our work [ZTK∗13, ZTK∗14], which focuses on an exten-
sion of the split grammar formalism to integrate free-form deformations into architectural split
grammars in a meaningful way. Contribution of this work is mainly attributed to me. Thaller
and Krispel contributed through providing the existing shape grammar on convex polyhedra
formalism and Edelsbrunner explored the design space of this split grammar by providing
some use-case examples. Further results and applications of this extension to split grammars
are discussed in Section 6.2.3 and 6.3.3.
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Categories of Deformed Architecture. In our work [ZTK∗13, ZTK∗14] three categories that
feature curved parts and designs in architectural models have been identified:

Curved Architecture.
There are many buildings and structures that can be understood as having a straight shape
that is distorted to a curved shape (see Figure 4.22) to, for example, adapt to streets or rivers,
which do not necessarily follow a straight path.

(a) (b)

(c) (d)

Fig. 4.22 Split grammar rules can be defined and applied to a straight rectangular building (a) with an
entrance section made of glass segments (b). Relative and absolute measurements between the building
parts are true also after the deformation (c). The number of segments of the entrance section increases
in correspondence to the space provided by the deformation process (d). (image adapted from Zmugg et
al. [ZTK∗13])

Medieval Architecture.
While following the same “straight” ideas as later European architecture, medieval buildings
are often slightly deformed due to the limitations of medieval building materials and tech-
niques. This effect is often emulated in modern computer games with a medieval or fantasy
theme.

Cartoonish Caricatures of Buildings.
Strongly deformed buildings that do not necessarily need to measure up to statics are at
the end of this spectrum. Prime examples here are playful houses from several different
cartoons.

To realize buildings out of these three categories, deformations need to be applied at different
levels of the hierarchical split grammar refinement process. Thus, deformations can neither be a
global post-processing step nor be limited to modeling curved details, but need to be an integral
part of the procedural pipeline.

Introductory Examples for Deformation-Aware Split Grammars. An example of a de-
formed façade can illustrate both aforementioned issues. The number of windows on a de-
formed façade stays the same, even though more or less space may be introduced by the
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applied deformation. Furthermore, a deformation of the façade affects all elements; window
panes, however, should remain straight and consist of planar surfaces.

(a)

(b) (c)

Fig. 4.23 Illustrative example on how split grammars should adapt to deformations. When a segment of
a normal picket fence (a) is deformed the amount of evenly sized pickets should adapt to the deformation
(c). Just deforming yields unacceptable results with distorted pickets (b).

Additionally, I will return to the simple example of a picket fence as illustrative example.
The following example is just for illustrative purposes and has no real application. A picket
fence is composed of equally sized pickets placed at equidistant positions with posts placed
in between the individual segments (see Figure 4.23(a)). If one of the segments is deformed
all pickets are deformed in this process as shown in Figure 4.23(b). The amount of pickets
stays the same even though the segment is stretched and bends to create more space. Due to
the deformation the width of pickets also varies based on their position. This result is hardly
desirable. The result achieved by deformation-aware split grammars (shown in Figure 4.23(c))
is the most suitable. The width of the pickets stays the same and the amount adapts to the space
changes due to the deformation.

4.3.1 Integrating Free-Form Deformations into the Grammar Formalism

Applying deformations should not be a separate post-processing step outside of the actual
grammar derivation. This way, grammar operations would be oblivious to the deformations
and unable to take them into account. Instead, the grammar system has to operate on deformed
shapes. Applying a split operation to a deformed shape has two possible interpretations. A
deformed split cuts the deformed shape along a plane deformed by the same deformation,
while a straight split uses an undeformed, straight plane to cut the deformed shape.

For a seamless integration of free-form deformations into a split grammar system, the free-
form deformations are added as attributes to the non-terminal shape. The rigid transformation
that defines the position of the shape in space is replaced by a list of arbitrary free-form de-
formations. A list of deformations is used instead of a single one in order to support nested
application of free-form deformations as demonstrated in Figure 4.24. Deformations are spec-
ified by rules using a deform operation.
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Definition 4.6 The deform operation takes the parameters (D,C,O) as input, whereas

• D is a three-dimensional vector that defines the dimensions (in local coordinates) of the
space to deform,

• C is a three-dimensional vector (cx,cy,cz) that specifies the amount of control points in x, y
and z direction, respectively, and

• O is an array of size cx · cy · cz, which defines the deformation through specifying all offsets
for all control points.

The shape on which the deform operation is applied on appends the specified deformation
to the list of deformations that define the rigid transformation of that shape. The actual free-
form deformation is not performed right away when it is specified; instead, it is postponed until
either a straight split is made, or the shape needs to be rendered.

(a) (b) (c) (d)

Fig. 4.24 Nested application of free-form deformations in a split grammar. Several deformations are
interacting with each other in a simple shape depicting a wall with a window. The initial wall (a) fea-
tures a slight outwards bending deformation. A further deformation (b) twists this deformed wall. An
additional third deformation rotates the window by 45 degrees (c) in the wall, which still features the
outwards bending and the twist. The effect of the second twisting deformation can also be reversed
while keeping the other two deformations intact (d).

4.3.2 Deformed Splits on Deformed Geometry

Deformed splits are done by planes defined in the local, i.e. undeformed, coordinate space of
the shape they operate on. They can thus be implemented very efficiently by applying a classic
straight split to the undeformed geometry and annotating the resulting shapes with the same de-
formations the input shape has. Operations need to take these deformations into account when
they are applied; if they do not, the behavior matches the one of a classic split grammar with
deformations as a separate post-processing step. From here on this is defined to be the behavior
of the standard split operations subdivide and repeat when applied to deformed shapes.

Deformation-Aware Split Operations. In general, lengths of elements are not preserved af-
ter applying a deformation. It is desirable that certain elements keep their length independently
of the deformation that is applied. Therefore, lengths need to be measured in world space and
transformed back into local coordinate space to perform the split operation. This means that
splits need to behave differently when applied to deformed geometry. A deformation-aware
subdivide operation may yield differently sized parts than the normal operation would generate
on the same shape. A deformation-aware repeat operation, on the other hand, may yield more
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or fewer outputs than the normal operation would produce on this shape because deformations
may provide more or less space.

For a normal subdivide operation, a direction and a list of sizes are all the parameters re-
quired to divide a shape into parts. The lengths are measured between the extreme points in
this direction. However, for a deformation-aware split, the direction is not expressive enough
by itself. In general, different parallel lines are deformed differently. One way to resolve this
ambiguity is to provide an additional point in the deformed space (see Figure 4.25). This point,
together with the direction in which the split should occur, is then used to calculate the distance
between the two extremal points in the deformed space.

(a) (b)

Fig. 4.25 In an undeformed space a direction to measure along is sufficient (a). However, in general, in
a deformed space only a single direction is not enough. An additional point (shown in red) within the
deformed space is needed to clear this ambiguity (b). (image source: Zmugg et al. [ZTK∗13])

This leads to the definition of the deformation-aware subdivideD and repeatD operations.

Definition 4.7 The deformation-aware subdivideD and repeatD operations take an addi-
tional point, which is provided in the local coordinate system of the shape to split, as input.
The extremal points, which are used to measure distances in between, are calculated based on
this point and the given split direction. Distances are measured in the deformed space, which
affects the outputs of both operations. The subdivideD operation may yield different-sized parts
than its regular counterpart and the repeatD operations may yield more or less elements than
its regular counterpart.

An Illustrative Example for Deformed Splits. An application of a repeatD operation on
two objects with the same deformation is illustrated in Figure 4.26. When applied to unde-
formed shapes (see Figure 4.26(a)) this operation yields the same result on both parts inde-
pendent of the point used for measuring, but for deformed shapes (see Figure 4.26(b)) the
operation yields two different results, even though it was provided with the same input size.
The difference between the two situations is that the additional point for measuring was placed
differently. The point is placed by projecting the centroid of the undeformed shape to the back
and the front face, respectively. The left box uses a point on the back face for measuring, which
leads to a result that is equivalent to that of a normal repeat operation because the back face is
not affected by the deformation. The right box, on the other hand, places its point for measuring
on the front face, which is affected by the deformation. Thus, the operation uses the additional
space which leads to more repeated elements.
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Fig. 4.26 For undeformed shapes (a), the repeatD operation yields the same result on both parts. How-
ever, for deformed shapes (b) the same operation yields different results based on the measurement. The
additional point for measuring (red) was placed by projecting the centroid of the undeformed shape to
the outside boundary face (back and front face respectively). (image source: Zmugg et al. [ZTK∗13])

The grammar rules for this example can be written as follows:

Box ; Deform(localBB, (2,4,2), [...])
{DeformedBox}

DeformedBox ; Subdivide(X, 1r, 1, 1r)
{LeftSide, void, RightSide}

LeftSide ; RepeatD(Y, A∗, 2, rayIntersect(Z))
{fill{mat = setMaterial(index % 2)}}

RightSide ; RepeatD(Y, A∗, 2, rayIntersect(−Z))
{fill{mat = setMaterial(index % 2)}}

The label Box refers to a box-shaped (undeformed) starting shape. The deform operation
takes as its input the bounding box (in local coordinates), the number of control points in x, y,
and z-axis direction as well as an array of individual offsets for these control points. The actual
list of offset vectors has been omitted for brevity. Utility functions can be defined to allow
more convenient specification of common deformations. After setting the deformation, one
can either use standard split operations (subdivide in this case) or the new deformation-aware
operations, which are indicated by a D-suffix. The new operations need an additional point as
input, which is in this example calculated by casting a ray from the centroid and intersecting it
with the shape. Finally the fill operation renders the shape with the material set to the attribute
called mat.

A Façade Example using Deformed Splits. Figure 4.27 demonstrates the effect of deformation-
aware operations in an example of a façade. Splits along the width of the façade are done with
respect to the deformation. Note that more windows are placed on the façade using the addi-
tional space that was generated through the deformation. All windows on the deformed façade
have the same width. To cope with the additional space provided by the deformation, more
splits are introduced in the local coordinate space (see Figure 4.27(c)). Note that the windows
in the local coordinate space have varying widths which will be transformed to uniform lengths
by the deformation.
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(a)

(b) (c)

Fig. 4.27 Applying deformations to a straight façade that is defined using a split grammar (a) yields a
different number of windows on the side parts (b) when carried out with deformation-aware operations.
In local coordinate (undeformed) space (c) more splits need to be introduced to cope with the additional
space provided by the applied deformation. (image source: Zmugg et al. [ZTK∗13])

4.3.3 Straight Splits on Deformed Geometry

There are also situations in which deformed geometry needs to be split along straight, unde-
formed planes, i.e., planes given in world coordinates. Window panes, for example, should not
usually follow the curvature of a wall, but should be planar (see Figure 4.28).

(a) (b)

Fig. 4.28 When a façade is deformed as a whole, the windows are deformed as well (a). Straight splits
can be used to insert straight windows (b) in deformed walls. (image source: Zmugg et al. [ZTK∗14])
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To address this issue, a new grammar operation called bake is introduced.

Definition 4.8 The bake operation takes one integer x as input, which defines the number of
innermost deformations of a non-terminal shape that are applied to the shape’s actual ge-
ometry and scope. This certain deformations are then removed from the list of deformations.
The resulting shape is visually equivalent to the shape on which the operation was applied,
but the planes used by subsequent splitting operation will no longer be affected by the baked
deformations.

Unfortunately, applying a free-form deformation to the scope rarely yields a shape that ful-
fills the requirements imposed by the grammar system, meaning in general it is neither a box
nor a convex polyhedron any more. The shape resulting from this bake operation can therefore
only be an approximation of the ideal deformed shape; its scope, in particular, will have to be
a bounding shape of the deformed scope.

For a box grammar this is a serious problem. An axis-parallel bounding box can be a very
poor approximation of the deformed shape and the coordinate axes will no longer have a spe-
cial meaning for the shape, so split operations, which only operate on these axes, will hardly be
applied as desired. Thus, it is necessary to use at least a grammar based on convex polyhedra
(see Section 4.2) to efficiently use this feature. Through a convex polyhedra-based representa-
tion the deformed scope can be approximated by its convex hull, and then be split in arbitrary
directions. This allows to specify splitting planes in the deformed coordinate space, which is –
for the before mentioned use case of planar window panes – necessary to determine the correct
orientation of the window pane according to the wall’s deformation.

Different Use Cases for the Bake Operation. Sometimes it is not necessary to approximate
the deformed geometry at all. It most cases, like the window pane example, it is sufficient to use
the approximated scope as geometry, as this example only relies on the shape of the deformed
scope. However, in cases where the convex hull does not describe the shape accurately enough
for further processing, the geometry itself needs to be approximated too. An example for such
a case will be discussed in Section 6.2.3.

Implementation Details of the Bake Operation. To implement the bake operation, defor-
mations need to be applied to scope and geometry of a shape. The former is achieved by cal-
culating the convex hull of a set of deformed sample points, which are placed uniformly on the
undeformed geometry. However, deforming arbitrary geometry, represented by sets of convex
polyhedra, is a much harder problem, as the result again has to be represented as a set of non-
overlapping convex polyhedra for further processing. Fortunately, the geometry approximation
problem can be solved simply and efficiently for a common class of deformations.

Consider a deformation with a grid of n× 2× 2 control points applied to a convex shape.
It is further required that for each index i, the control points Ci,0,0, Ci,0,1, Ci,1,0 and Ci,1,1 are
coplanar. It follows that any points that share the same x coordinate are transformed to coplanar
points by this deformation. The deformed shape can therefore be approximated by slicing the
undeformed geometry into smaller polyhedral pieces along the x axis, and then calculating the
convex hulls of the deformed vertices of each piece.
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4.3.4 Deformations of Adjacent Objects

When modeling a building, it is useful to specify the deformations for individual walls and
roof segments separately. This has several advantages over using a single global deformation
for the entire building. On the one hand, for non-rectangular buildings, separate deformations
are significantly easier to specify and, on the other hand, in comparison to separate deforma-
tions a single deformation would require a massive amount of control points, which increases
complexity and computation time.

The effect of applying a single global deformation versus separate single deformations is
demonstrated in an example of a simple house (see Figure 4.29). For the global deformation
all façade elements, like windows, are affected by this deformation. In contrast, by using sep-
arate, local deformations the deformation in the tangent plane of the surface is controllable
independently from the neighboring walls. Here the façade elements are not influenced by the
deformations of adjacent walls. To highlight this effect further, an abstract example that fea-
tures straight lines on the walls is provided in Figure 4.29 as well. A global deformation affects
and deforms these lines in the tangent plane, but with separate deformations these lines remain
unaffected by deformations of neighboring walls.

(a) (b)

Fig. 4.29 The walls of a house are deformed by bending each wall in outward direction. When a single
global free-form deformation is applied to this model (a), straight structures on one wall, like windows
in this case, are influenced by the outward bending deformation of adjacent walls. By deforming each
wall separately this effect can be controlled. The windows on the right (b) remain straight in vertical
direction and are not deformed at all in the tangent plane. (image adapted from Zmugg et al. [ZTK∗13])

Connecting Deformed Adjacent Parts. However, deformations of spatially neighboring
parts may lead to problems on the boundaries between these parts, as indicated in Figure 4.30.
Even though there are no issues in the undeformed case (see Figure 4.30(a)), depending on
the deformation, geometry will be missing (see Figure 4.30(b)) or there will be artifacts from
overlapping geometry (see Figure 4.30(c)). Adjacent walls and roof segments thus have to be
connected properly. In this scenario appropriate Boolean operations are used to generate the
correct corner geometry between two separately deformed parts. While it is conceivable to
specify the necessary operations by hand as part of a specific grammar, connecting parts adds a
lot of complexity to even the simplest grammar specifications. Note that this requires extensions
beyond context-free grammars, like the extensions presented by Krecklau and Kobbelt [KK11].

A solution for this problem is offered by the observation that a large class of conventional
buildings can be covered by a few special-purpose operations and non-terminal shape classes
in the split grammar system. These operations are:

• Replace Ground Polygon by Line Segments,
• Replace Line Segments by Wall, and
• Replace Line Segments by Wall and attached tilted Roof Segment.
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(a) (b) (c)

Fig. 4.30 Adjacent local deformations of walls may lead to artifacts. Starting from an undeformed wall
setup (a) different deformations are applied. Depending on the deformation it can happen that there is
missing (b) or surplus (c) geometry. Boolean operations are used to overcome these issues and generate
the correct corner geometry between two deformed walls. (image source: Zmugg et al. [ZTK∗13])

Thus, a building can be specified as a polygon whose sides are annotated with attributes
and informations about the walls and roofs. Through these operations and non-terminal shape
classes modeling a building integrates more seamlessly into the grammar setting as it allows
separate rules to define the behavior of different sides of the building.

Furthermore, when these operations are used, the system can automatically keep track of
all adjacencies between the walls, and the adjacencies between the walls and the correspond-
ing roof segments. The remaining adjacency information – for the neighborhood between the
roof segments – can be by solving the weighted straight skeleton problem [AAAG95, EE98]
for the roof. Knowing the complete adjacency graph between the wall and roof segments al-
lows the system to implicitly specify the Boolean operations necessary to properly connect the
separately deformed parts.

Obtaining the Correct Corner Geometry. To obtain the correct corner geometry through
Boolean operations, the initial geometry of walls and roof segments is first extended in length
and height to infinity. On either side of the wall, a half space that occupies all space that is not
taken by the extended geometry is generated. These minus spaces will later be used to trim the
adjacent parts. Roofs also generate two different minus spaces, one above and one below the
actual roof geometry. The extended geometry can be further refined using split grammar rules.
These rules refer to the original bounding shape not the one of the extended geometry.

After rule processing has finished, deformations are calculated automatically; finally, the
deformed geometry generated for the walls and roof segments is trimmed by the deformed
minus spaces of the neighboring walls and roofs (see Figure 4.31). For roofs and walls alike,
the outer minus space is used for convex corners, and the inner minus space is used for reflex
corners. The resulting corner geometry remains correct even in the presence of completely
independent deformations applied to the individual walls and roof segments. To achieve ledges
– extrusions in the wall shape – that run across a corner, an additional Boolean operation is
necessary that intersects both extended wall geometries with each other.

Let us call the extended parts of a wall A, Al (left side) and Ar (right side). The corresponding
minus spaces placed on the exterior and on the interior of the wall are called Ae− and Ai−,
respectively. The Boolean expression for the convex corner geometry cAB between walls A and
B is the following:

cAB = (Ar∩Bl)+(Ar−Be−)+(Bl−Ae−).



4.4 The GML Compositor 117

In case of a reflex corner, the opposite minus spaces Ai− and Bi− are necessary. The two dif-
ference parts of the Boolean expression maintain the correct shape of the corner, while the
intersection part preserves extrusions across corners, such as ledges.

Ai−

Ae−

Al Ar

(a) (b) (c) (d)

Fig. 4.31 Illustration of the additional parts created for a wall between two endpoints (a). For a wall
A (green) (a) the prolonged parts (blue) are called Al for the left side and Ar for the right side. The
minus spaces (orange) placed on the exterior and on the interior of the wall are called Ae− and Ai−,
respectively. When two neighboring walls meet at different angles (< 90◦ (b), = 90◦ (c), > 90◦ (d))
the minus spaces trim all superfluous parts. In this illustration only convex corners are depicted; for
reflex corners the opposite minus space is used. (image adapted from Zmugg et al. [ZTK∗13])

Implementation of the Minus Spaces. In practice, the minus spaces and the extended walls
necessary for Boolean operations are represented by sufficiently large boxes in order to avoid
having to deal with infinite shapes (see Figure 4.32). As a performance optimization, each
wall is split into central and peripheral parts before the Boolean operations are applied. These
peripheral parts include the extension as well as the part of the wall geometry near the boundary
of the original wall shape. This is where the intersection with the adjacent walls can be expected
to happen. The central part, which usually contains most detail, does not need to be trimmed
by neighboring walls; only the peripheral parts take part in the Boolean operations. All parts,
however, are trimmed by the minus spaces of adjacent roof segments.

Fig. 4.32 The minus space, approximated by a sufficiently large red box, is deformed in the same way
as the corresponding wall and trims the surplus geometry of the neighboring wall. (image adapted from
Zmugg et al. [ZTK∗13])

4.4 The GML Compositor

Creating three-dimensional content is no easy task. Usually this task is very time consuming
and requires expert knowledge. As elaborated before, procedural modeling can be used to ease
this process. Especially for the creating of man-made shapes procedural descriptions are per-
ceived to be the most appropriate because such shapes exhibit a great number of regularities and
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similarities due to a number of reasons. These range from functionality over manufacturability
to aesthetics and style factors.

However, for the creating of procedural descriptions some kind of scripting language is al-
ways required. A text editor for a scripting language is the usual user interface for procedural
three-dimensional content creation. Such a code editor is, however, not accepted by the most
artists because only few of them are good programmers. Data flow graph based visual program-
ming languages like in Houdini [Sid13] or Grasshopper [Rob13a] have emerged to tackle this
problem. These languages feature a data flow graph, which creates the necessary code in the
background, to represent the three-dimensional model. By connecting input and output ports of
nodes in this data flow graph, creating code can – to the most part – be avoided. Another sim-
ilar approach was introduced by Patow [Pat12], who introduced ways to edit shape grammars
through the underlying graph. The drawback of these methods is that such graph-based lan-
guages are not necessarily easier to understand than a normal textual representation, as Green
and Petre discussed in their work [GP92].

The GML Compositor is a system developed by our research group. My contribution in the
development was mainly composed of further extending the system and adapting new modeling
vocabularies to the underlying formalism, which itself had to undergo changes to support fur-
ther modeling domains. These new domains include, among others, scene graphs and deformed
convex polyhedra.

The GML Compositor features direct manipulation of the procedural description on the
concrete three-dimensional model, while retaining the expressiveness of data flow graph-based
methods. To use this system no knowledge of the underlying representation – the code – is
necessary. Data flow graphs tend to grow very large and complex already for medium sized
models. To avoid confusion, the graph, as well as the generated GML code, remains hidden
from the user in the GML Compositor. A screenshot of the user interface is seen in Figure 4.33.

Based on the work of Thaller et al. [TKHF12, TKZ∗13a] this section presents the theoretical
foundations – the use of code graphs – of the GML Compositor. Additionally, common model-
ing domains and their realization within the GML Compositor are described together with the
most important of the corresponding supported modeling operations. The examples discussed
in this section have been realized using direct manipulation on a visible model only. The un-
derlying code graph was never visualized during the modeling process. These examples and
applications were also featured in our work [TKHF12, TKZ∗13a, ZKT∗14, ZTH∗12].

4.4.1 Data Flow Management

To realize procedural interactive modeling editors it is necessary to describe the dependen-
cies and relations that are present in the modeled scene. An appropriate representation allows
changing of parameters and re-evaluating of the model.

Within the procedural modeling editors Houdini [Sid13] and Grasshopper [Rob13a] data
flow graphs are used to visualize the modeling history and dependencies throughout the model.
Each modeling operation is realized as a node in that graph that can be attached interactively in
the system. A slightly different graph concept, namely code graphs, have been utilized in the
the GML Compositor by Thaller [Thaar]. Both of these graph concepts are explained in short
in the following.
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a

c

d

e

b

Fig. 4.33 Graphical user interface of the GML Compositor, which includes the three-dimensional
viewer on the left side (a) and a list of available operations on the right side (b). In the viewer a simple
split grammar model is edited interactively. The selected component (c) is highlighted by a red border
and the last applied split operation to this shape is highlighted by the three-dimensional manipulator
(d). The parameters of this operation can be changed interactively by dragging the middle disc of the
manipulator, or by specifying the sizes manually via the properties menu (e).

Data Flow Graph Basics

A data flow graph represents dependencies between inputs and outputs between a number of
different operations. Data flow graphs are data-driven and are used to simulate data depen-
dencies within programs. They are an essential tool used for compiler optimizations and static
program analysis.

Definition 4.9 A data flow graph G = (V,E) is a directed graph, where

• V is a set of nodes representing operations. Each operation has a set of input and output
ports.

• E is a set of edges (acres) connecting input and output ports of nodes and represent the data
flow within the graph.

Nodes consume data from input ports and produce data, which is provided to its output
ports. The operation the node represents can be executed at the moment when all input ports
have their data available. Many nodes can be ready for execution at the same time.

Each node, which can either represent a single function, whole sub-system, or just a constant
value, is represented as a box within this graph. The activity of each node depends on all the
nodes which are connected to its input ports, so each functional block may has to wait until a
sufficient amount of data is provided before it can process the input. An example for a program
solving a quadratic equation is presented in Figure 4.34.
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Fig. 4.34 The solutions for a quadratic equation a · x2 +b · x+ c = 0 computed with a data flow graph.
The solution formula is shown at the top of the figure. Nodes in the graph represent operations and
edges (acres) connect input and output ports of those operations. Constants are realized as operations
with constant output and, thus, no input ports. An operation can be executed to provide the output ports
with values. This happens if all input values have been computed and are available at the input ports.

Code Graphs for the GML Compositor

A code graph is a hypergraph consisting of nodes and hyperedges. Strictly speaking, a code
graph is a term graph, which features a terminology that is different to those of a data flow
graph. In a data flow graph, nodes are labeled with operations, and they are connected with
edges, which transport values through the graph. In a term graph (see Figure 4.35), however,
values are stored in nodes, which are labeled with a type and represent graphical objects. Hyper-
edges are labeled with operations or literal constants, and connect two sets of nodes, which may
have different sizes. The following code graph definition is reused from Kahl et al. [KAC06]:

Definition 4.10 A code graph over an edge label set ELab and a set of types NType is defined
as a tuple G = (N ,E , In,Out,src, trg,nType,eLab) that consists of:

• a set N of nodes and a set E of hyperedges (or edges),
• two node sequences In, Out: N ∗ containing the input nodes and output nodes of the code

graph,
• two functions src, trg: E →N ∗ assigning each edge the sequence of its source nodes and

target nodes respectively,
• a function nType: N → NType assigning each node its type, and
• a function eLab: E → ELab assigning each edge its edge label, representing the correspond-

ing operation.
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Fig. 4.35 A code graph is a hypergraph consisting of nodes, which correspond to (intermediate) values
and graphical objects, and hyperedges, which represent the operations applied. Nodes are represented
as ellipses and hyperedges are visualized as boxes. This example shows a code graph that carries out a
simple construction: Two points define a straight line; two lines yield an intersection point. The colored
points on the right correspond to the colored nodes in the code graph (left). (image source: Thaller et al.
[TKHF12])

Hyperedges can have any number of source and target nodes. Hyperedges with no source
nodes correspond to constants. Additionally, code graphs (in the context of the GML Compos-
itor) are required to be acyclic.

4.4.2 Executing Code Graphs

Executing a code graph means executing all of its edges, which produce values for their target
nodes. The order in which the edges are executed is only restricted by the data dependencies,
which are explicitly represented in the code graph. So an edge can only be executed when all its
source nodes provide their values. Based on this constraint, the execution order can be chosen
arbitrarily; independent operations can be evaluated at any time.

The ability to reorder the execution of the edges is an essential property to support direct
manipulation graphical user interfaces. When a user edits parameters or parts of a model, only
the operations that are dependent on this changed data need to be re-evaluated; only a part of
the code graph is affected, so only this part is executed anew with changed values. A strict
linear execution order would imply that the entire model is re-evaluated for each change, even
if it’s just a small local adjustment.

This section will explain in the following the concepts necessary to realize the GML Com-
positor. These concepts have been presented in the work of Thaller et al. [TKHF12, TKZ∗13a]
and the design and implementation of those is – to the most part – contributed to Thaller
[Thaar]. I was involved in designing the concept of incremental updates in combination with
scene graphs.

Implementation of Repetitions in the GML Compositor

Code graphs, as used within the GML Compositor, provide no facilities for loops. Basic code
graphs can be extended to support repetitions in various ways. In the GML Compositor it is
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important that cases of repetition that arise in procedural modeling tasks are covered, which
include nested repetitions as well. Furthermore, it is desirable to avoid any explicit looping
constructs within the code graph; operations should be repeated implicitly when applied to a
collection of objects. Lastly, it is important to avoid non-termination and undecidability issues
and thus Turing-completeness.

Existing procedural modeling systems based on data flow graphs use a concept in which a
linear stream of tokens is transported by edges. Tokens all get treated the same by subsequent
operations, without support for nested structures. Within direct manipulation interfaces a linear
token stream is not suited. Imagine a model of a building façade, which consists of several
stories, each of which contains several identical windows, which again consist of a collection
of separate window panes. A user will zoom in to one window for editing purposes. Opera-
tions should behave consistently, independent of whether a model with a single window or a
collection of windows is edited. Either way, the system needs to remember that a collection of
window panes belong to a window. When all window panes are transported in a linear stream
of tokens they loose all connection to their respective windows.

The basic idea behind the repetition concept of the GML Compositor is the following: First,
the set of available types is extended by list types. Therefore, for every type t ∈ NType there
is a type List[t] ∈ NType. This definition also allows nested lists of arbitrary depth. Second,
operations are automatically mapped over lists, which means when an operation is applied to a
list, it is applied to all elements of the list and the resulting values are gathered in an output list.

Operations also need to produce meaningful results when all their inputs or only a subset of
the inputs are of a list type. In case of more lists, the operation is applied to the corresponding
elements of the lists. If one value is not of a list type, then this value is used throughout all
computations with the changing list elements. It is, of course, assumed that lists have been
arranged properly. For example take the makeSegment operation which connects two points.
This operation reacts accordingly whether it is provided with two lists – which have ideally the
same length – or a list and one value (see Figure 4.36). One list can be used twice (once shifted
by an offset) as input for the makeSegment operation too (see Figure 4.37).

To formally describe this behavior, the multiplicity concept is introduced to the code graphs
behind the GML Compositor. This concept is another interpretation of the definitions in the
work of Thaller et al. [TKHF12, TKZ∗13a] and is therefore equivalent to those definitions.

Definition 4.11 The multiplicity m(t) of a node type t ∈NType is defined to be the dimension-
ality of a list type, or 0:

m(t) :=

{
m(t0)+1 if t = List[t0]
0 otherwise

Definition 4.12 The multiplicity m(n) of a node n ∈N is defined to be the multiplicity of its
type nType(n).

Definition 4.13 The excess multiplicity ∆m(e, i) of the i-th source node of an edge e∈ E is the
difference between the multiplicity of the source node and the multiplicity of the corresponding
input type of the edge label:

∆m(e, i) := m(src(e)i)−m(edgeInType(eLab(e))i)

Definition 4.14 The multiplicity m(e) of an edge e ∈ E is defined as the maximum excess
multiplicity of all its source nodes:

m(e) := max
i

∆m(e, i)
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Informally speaking, an edge e ∈ E with positive multiplicity m(e) > 0 is equivalent to an
edge e′ ∈ E with multiplicity m(e′) = 0, whose operation is wrapped into m(e) nested FOR-
loops.

(a)

(b)

(c)

(d)

Fig. 4.36 Two simple procedural models ((b) and (d)) are shown together with their respective code
graphs ((a) and (c)). Points, lines and circles in the models correspond to the equally colored nodes in
the graphs, which represent intermediate results. As for the operations: makeCircle creates a circle out
of a point and a radius, pointsOnCircle creates a list of evenly distributed points on a circle and a straight
line segment between two points is created by makeSegment. Emphasis lies here on the makeSegment
operation that generates the blue segments. This operation reacts accordingly to its inputs (a list of
points and a point in (a) and two lists of points in (c)) and produces the right result. This adaption is
done automatically by the system. Note that multiple graphical elements are represented by single code
graph nodes. (image source: Thaller et al. [TKHF12])

Fig. 4.37 The makeSegment operation applied to an amount of points distributed evenly on a circle
(from left to right: 10 points, 40 points, and 72 points). The list of points – once shifted by an offset – is
used for both inputs of the operation.
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There are a few list-related operations that are convenient to use with the multiplicity mech-
anism:

Link t t→ List[t], t t t→ List[t], . . .
The link operation collects all its inputs to create a list. All inputs have to be from the same
type. All objects that are gathered by the link operation are treated in the same way from
now on.

Specialize List[t] Number→ t List[t]
The specialize operation defines an exception within a repetition. A list and an index is used
to return, on the one hand, the element denoted by the index and, on the other hand, the
remaining objects from the list as a new list. The single item can be processed in a different
way afterwards.
Other specialize operations can be provided with advanced selection mechanisms, like se-
lecting by ray casting or by smallest distance to a given point. In contrast to the index-based
method, these alternative methods do offer a solution to the persistent naming problem.

Finally, there arise two major advantages due to the multiplicity concept. The effort neces-
sary for the construction of objects that exhibit regularities and symmetries is greatly reduced.
Nothing has to be done twice. This, furthermore, allows for easy re-parametrization. Parame-
ters can be changed in an early construction step and changes are applied to all repeated parts.

Handling of Failures and Errors in the GML Compositor

Modeling operations do not always succeed. This is especially true in a procedural modeling
framework; changing one parameter may influence all dependent operations and can violate,
for example, size constraints. Subsequent operations can also depend on the amount of outputs,
like when two circles are intersected with each other, two, one, or no intersection point can arise
and dependent of the expected outcome further operations may become superfluous.

Such failures may have only a local effect and the whole execution does not need to be
aborted because of a failure. When a target node is not filled by its corresponding edge, it
carries an error value, which is propagated through the code graph. Operations that have error
values in their source nodes are not executed. Not influenced operations are executed in the
normal way. This behavior leads in most cases to the expected result; for example: When no
intersection point is available, all constructions based on this points are not continued, or when
there is not enough space to insert a special rule in a split grammar, the rule and all rules that
follow are not applied.

Side Effects of Operations in the GML Compositor

Evaluating an mathematical expression with the same parameters usually denotes the same
resulting value independent of when it is evaluated. However, in most commonly used pro-
gramming languages expressions can have side effects that influence the result every time it is
evaluated. A side effect could for example be a change to a global variable that is included in the
calculations, and is therefore influencing the resulting value. Such side effects may introduce
ordering constraints between operations within the code graph. If a global variable is changed
and accessed by multiple operations, the order of execution becomes important to predict the
outcome. This dependency, however, is not explicitly represented in the code graph, therefore
side effects should be disallowed.
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Consider, on the other hand, two different kinds of operations that are expected to be within a
modeling framework: Creation and refinement operations. Creation operations add new objects
to the scene and refinement operations modify objects in the scene. Such operations can be seen
as to have side effects. They change the scene, which can be interpreted as a global variable.
The two underlying side effects would be: adding an object to the scene and removing an object
from the scene. A refinement operation can be seen as to remove the old object and replace it
with one or more new objects. Objects are never really removed, as the scene is an accumulation
of visible objects, removing an object just means to render it invisible, so that the information
about this object still remains accessible.

There are ways to avoid these side effects. On the one hand, all visible objects can be re-
turned as output of the procedural model. This, however, is not very intuitive as it clutters up
the code graph with a large number of outputs and introduces a gathering operation that is con-
nected to all of these. Even though the code graph is usually not visible to the user this will only
lead to confusion should it be examined once. Houdini [Sid13] and Grasshopper [Rob13a], on
the other hand, do not use any kind of side effects. Users have to explicitly mark nodes, which
represent model parts, in the data flow graph to be visible in the final model. The GML Com-
positor avoids interacting with the underlying graph, so this solution is no alternative.

Incremental Updates of the Code Graph in the GML Compositor

When procedural models are manipulated in an interactive editor, usually, it is only a single
parameter that is being modified. This parameter often only affects a small part of the whole
model, so, for reasons of performance, re-evaluation of the entire model should not be neces-
sary. Therefore, it is desirable to only perform the minimum amount of work that is required,
i.e. only re-evaluate the operations that really depend on the input parameter that has changed.
The straightforward way is to just evaluate all hyperedges that are consuming the changed value
(directly or indirectly), which amounts to undoing all side effects caused by these operations,
before re-executing them with the updated parameter. This method, however, is not sufficient
enough in terms of performance. Our work [TKZ∗13a] focuses on improving this concept in
combination with the introduction of scene graphs (see Section 4.4.4) to the GML Compositor
system.

The Problem of Aggregate Values. Re-evaluation can be very excessive whenever an input
of a hyperedge in the code graph is of an aggregate type, like objects that consist of several
independent parts. A list, for example, consists of a set of independent elements, so when a
change in an input parameter occurs, it is not desirable to undo and recalculate all operations
that use the unchanged elements. Further additional aggregate data types, which can also trig-
ger excessive recalculations, can be added through new modeling vocabularies. Changing the
material of an object should only affect the color of the object, but not its shape; so recalculat-
ing the unchanged geometry through re-evaluation is a lot more expensive than just changing
the material.

The Realization of Scene Graphs in the GML Compositor. In particular, this problem
affects the use of scene graphs (as described in 4.4.4) in the GML Compositor. The main
strength of scene graphs is that it can be efficiently animated by changing the transformation
of a node. This change then affects the transformation of all nodes in the affected sub-graph,
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without requiring a change of a part of that sub-graph. The code graph representation, however,
incorporates dependencies that do not actually exist. Every scene graph node represented in
the code graph is depends on its transformation, and all children nodes depend on their parent.
Thus, a naive evaluation method would reconstruct the whole scene graph and reloads meshes
associated to scene graph nodes every time when the transformation of the parent node is
changed.

Incremental Updates for Individual Operations and Code Graphs. For a partial re-
evaluation of a code graph the side effects of affected operations need to be undone before
the operation can be executed with new parameters yielding again side effects. So for each
modeling operation op, at least two further functions are required: evaluateop and undoop. The
former executes the operation, which potentially causes side effects and the latter reverses those
side effects.

evaluateop (in1 · · · inn)→ (Sop,out1 · · ·outm)

undoop (Sop)→ ()

Additionally to the output values of the modeling operation, the evaluateop function also
returns a state value Sop that serves as information for the undoop function. For operations
without side effects, the undoop function does nothing and the state value Sop contains no
information.

By taking advantage of previous calculations, re-evaluations can be optimized to allow par-
tial updates of aggregate values. To incorporate this feature, modeling operation libraries may
also provide an additional updateop function. Input and output values of the updateop func-
tions are all annotated with a tag, used to identify whether a value has changed or not. Based
on these tags, the updateop function then decides for what outputs a re-evaluation is necessary.
For many data types it is sufficient to just track if the value has changed, but for scene graph
nodes, for example, it is necessary to distinguish between different kinds of changes. A change
that only affects the transformation has other consequences than other changes, which may
trigger a complete re-evaluation of the subsequent operations.

To achieve this, a parametric data type Tag[t] is defined for each data type t. The different
values for the Tag[t] data type are defined in correspondence to the individual requirements of
the data type t. Every Tag data type has at least two special values NEW and UNCHANGED
to support a default behavior. This updateop function is additionally supplied with the outputs
of the previous evaluation of the operation. This is done to provide the tags for the newly
calculated outputs of the corresponding modeling operation. This leads to following signature
of the updateop function:

updateop (Sop, in1 · · · inn,Tag[in1] · · ·Tag[inn],oldout1, · · ·oldoutm)→
(Sop,out1 · · ·outm,Tag[out1] · · ·Tag[outm])

If the updateop function is not defined for a modeling operation, a default implementation
based on the undoop and evaluateop functions is provided, which re-evaluates the whole opera-
tion if one tag carries the NEW value, or skips re-evaluation if all tags carry the UNCHANGED
value.
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For re-evaluation of a code graph there exist the operations evaluateG, undoG, and updateG.
These operations call the corresponding functions for each edge in an arbitrary topologically
sorted order. The individual operations are passed the state values that are returned from the
corresponding functions. A complete traversal for updating a code graph can be avoided based
on the assumption that the individual update functions will return UNCHANGED values when
all their inputs are UNCHANGED.

4.4.3 Interactive Split Grammar Modeling

The GML Compositor was inspired by the domain of split grammars, especially ones based on
convex polyhedra (see Section 4.2). Even though grammars are a different formal language, the
underlying grammar rule set can be mapped to code graphs. Rules with a predefined number of
inputs and outputs directly map to code graph operations. In other cases, where the number of
outputs depends of the size of the input shape the results are collected in an array and further
processed as repeated elements.

Modeling within the GML Compositor usually is done in a top-down manner. It starts off
with a coarse approximation, which is subsequently refined to obtain the desired result. In
the course of the realization of split grammars in the GML Compositor, the volumetric entities
reminiscent of non-terminal shapes carry a local coordinate system and are composed of convex
polyhedra. In this section these volumetric entities are referred to as shapes. This modeling
vocabulary has been introduced by Thaller and Krispel. I extended the library of modeling
operations and procedural assets in collaboration with them.

In classical architecture repetitions and symmetry is common. Thus, it is often necessary to
apply the exact same sequence of operations to several objects. The multiplicity mechanism
(see Section 4.4.2) of the GML Compositor gathers different shapes into an array to treat those
shapes the same and reduce the workload. This array of shapes will be referred to as link group.
Operations applied to an element of a link group are automatically applied to all other shapes in
the group as well. These operations are all applied using the shape’s respective local coordinate
system. All preceding modifying operations (e.g. mirroring operations) on a single shape of
the link group still affect only that single shape. The combination of mirroring one shape and
linking it to another can be used to model symmetry. The main difference here, in comparison
to conventional systems, is that geometry is not simply copied and scaled, but evaluated in the
current shape’s state instead.

Interactive Split Grammar Modeling Operations

The GML Compositor provides a set of twelve basic modeling operations. These operations
are divided into four groups: creation operations (generate new shapes), refinement operations
(create sub-shapes), grouping operations (treat shapes equally) and modification operations
(change shape’s state).

In the remainder of this part these twelve modeling operations are explained in detail (in-
spired by our work in [ZKT∗14]). Most operations are accompanied by a schematic, abstract
illustration as well as a more elaborated example.
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Interactive Creation Operations. The creation group contains operations for shape creation
and removal:

Box.
“Create a box shape”. A box shape (of adjustable dimensions) is created as a starting point
for the modeling process.

Void.
“Make a shape invisible”. The opposite of the box operation. The selected shape is rendered
invisible and cannot be refined further (but it still exists internally).

Interactive Refinement Operations. The refinement group provides operations – some of
which are inspired by standard split grammar operations (see Section 2.3.4) – to partition a
shape in smaller shapes and to add detail.

Subdivide.
“Split a shape into parts with a given list of sizes”. This operation is equivalent to the sub-
divide operation used in split grammars. The selected shape is split along a given direction
into smaller parts. Planes orthogonal to the given direction are used for splitting. The sizes
of the sub-parts are defined by a set of sizes along the split direction. These can be defined
as combinations of relative proportions and absolute measurements. Figure 4.38 illustrates
the usage of this operation.

subdivide

selected

Fig. 4.38 Subdivide. A shape is split into four parts along a given direction through applying the subdi-
vide operation. The size of each part can be defined using relative proportions or absolute measurements.
The (red) discs can be dragged to change the split intervals interactively. This operation can be used to
create arbitrary hierarchical decompositions in three dimensions as shown on the right. (image adapted
from Zmugg et al. [ZKT∗14])

Extrude.
“Displace faces of a shape in a given direction”. The faces of the selected shape with a
normal similar to the given direction are displaced by a certain given amount. A new shape
is created for the extruded part. Figure 4.39 shows the application of the extrude operation.

Diagonal Split.
“Split a shape along one of the diagonals of the shape’s bounding box”. Introduces a diag-
onal split to the selected shape and divides it in two parts. There are six possible cases; the
selected case is specified as a parameter.



4.4 The GML Compositor 129

extrude

selected

Fig. 4.39 Extrude. The selected shape is extruded in the given direction producing a new shape.
Dragging the (blue) discs modifies the extrusion offset interactively. This operation can be used to
enable three-dimensional details like borders as shown on the right. (image adapted from Zmugg et
al. [ZKT∗14])

Repeat.
“Split into linked parts of given size”. As within split grammars, the selected shape is split
into the maximum number of parts along the provided split direction with the given minimal
size. The resulting shapes form a link group (see Figure 4.40).

repeat

selected linked

Fig. 4.40 Repeat. The repeat operation splits a shape into equally sized parts, given a minimum size
and a direction. The space is distributed evenly among the elements. Changing the minimum size can
result in a change of the number of elements. The resulting elements are all contained in the same
link group; therefore modifying any of these will result in modifying all. Dragging the middle (red)
disc modifies the minimum size of the result shapes. A sequence of pillars can be realized using this
operation as seen on the right. (image adapted from Zmugg et al. [ZKT∗14])

RepeatABA.
“Split into alternating sequence of parts A and B of given sizes”. The selected shape is split
along the provided split direction into an alternating sequence of parts. The sizes for each
individual part is determined by the given two sizes for the groups A and B. Either size of
the parts of the group A or B can be set to a fixed size, any remaining space is distributed
evenly among the elements of the opposite group. An additional parameter determines the
latter group. The sequence begins and ends with an element of the group A. The results are
two link groups; all A-parts are treated the same, and so are the B-parts. This can be used,
for example, for an automatic distribution of pillars and gaps in a shape.

Merge.
“Merge shapes into one”. Several selected shapes are joined together to form one new shape.
This is the inverse to the refinement operations.
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Interactive Grouping Operations. Thirdly, the grouping operations provide methods for
processing several shapes at once and are based on the aforementioned operations in connection
to the multiplicity mechanism.

Link.
“Treat these shapes in a similar way”. A link group is created from the selected shapes. Any
operation applied to one shape of the group is automatically applied to the other shapes – in
their respective local coordinate system – as well. Figure 4.41 shows the behavior of linked
shapes.

subdivide

selected linked

Fig. 4.41 Link. The link operation allows applying operations to groups of objects: Two shapes have
been linked, and a subdivide operation is applied to the selected shape. The linked shape automatically
mimics the same split; three pairs of linked shapes are generated from one linked pair. All constructions
are repeated automatically on linked shapes as shown on the right; no redundant work is necessary.
(image adapted from Zmugg et al. [ZKT∗14])

Specialize.
“One (or more) shapes in a link group are exceptional”. This is the inverse of the link
operation. One or more shapes are released from the link group. Formally, the link group is
partitioned into two disjoint link groups. Each group can then be refined in a different way.

It is important to emphasize the difference between the merge and link operation. Figure 4.42
illustrates this difference. Linked shapes behave similarly, so if a linked shape is split in half,
so is each scope in the link group individually. The splitting plane may differ when the shapes
have different sizes. In contrast, merged shapes have become one single shape and consequently
there is only one splitting plane.

selected linked subdivide

subdivide

link

merge

Fig. 4.42 Difference between link and merge operations: A subdivide operation is applied to a link
group of shapes (top row) and to merged shapes (bottom row). In the link group, the split operation is
applied to each shape individually. After merging, the two shapes have become one and consequently
there is only one splitting plane. (image adapted from Zmugg et al. [ZKT∗14])
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Interactive Modifying Operations. Finally, modifying operations do not change the geom-
etry of the shapes, but only its state, e.g. its local coordinate system. All subsequent operations
on the shape are influenced by these changes.

Mirror.
“Mirror the orientation inside a shape”. Modifies the local coordinate system, given a mir-
ror direction (x, y or z-axis of the local coordinate system). Figure 4.43 shows the behavior
of mirrored shapes.

subdivide

selected linked

Fig. 4.43 Mirror. This figure illustrates the behavior of subdivide on mirrored and linked shapes. To
achieve mirrored geometry one part of the link group is mirrored before linking. A subdivide operation
is applied to the selected shape of the link group, resulting in three mirror linked shape pairs. The
symmetry of the right and left parts of a simple model shown on the right was realized by mirroring and
linking the coarse partitioning beforehand. (image adapted from Zmugg et al. [ZKT∗14])

Rotate.
“Rotate the orientation inside a shape”. This rotates the local coordinate system by 90
degrees given a rotation axis (counter clockwise or clockwise).

Procedural Assets for Interactive Modeling. In addition to the low-level modeling opera-
tions described above, the system includes a set of pre-modeled assets, i.e. a set of ready-made
window parts (see Section 5.2.3), arches, and other architectural elements that can be inserted
into a façade. They are, however, not the usual static three-dimensional models, but parametric
models. Thus, they can approximate a wide range of actual architectural elements by adjusting
various parameters and adapt automatically to different sizes and proportions when applied to
shapes with different dimensions.

The distinction between low-level operations and high-level parametric assets is to some
degree arbitrary; some asset operations can also be seen as more sophisticated split operations,
as they partition a shape into parts that can be refined later on. One example is the round-
hole operation as described before in Section 4.2.3. Such parametric partitioning assets can be
very versatile because the inner and outer part can be further refined. The round-hole operation
can be applied subsequently to produce detailed architectural elements such as windows with
borders, or it can be used to produce a round pillar structure (see Figure 4.44 for reference).

Interactive Split Grammar Examples in the GML Compositor

A Simple Interactive Split Grammar Example. Figure 4.45 shows the result of a simple
split grammar with the corresponding (simplified) code graph. This grammar describes a sim-
ple building whose amount of windows and stories adapt to the input shape. To focus on the
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Fig. 4.44 The round-hole operation, as described before in the context of split grammars on convex
polyhedra in Section 4.2.3, can be very versatile because the inner and outer part can be further refined.
So it can be, for example, used sequentially to create a round window with borders, or it can be applied
to create a round pillar structure. (image source: Zmugg et al. [ZKT∗14])

mapping of shape grammars to code graphs, the door tile is split off before the repeat operation
is applied to obtain the different stories. An alternate way of describing this model is to gather
all walls into one array, perform the repeat split into the stories and then define an exception
for the entrance using a specialize operation.

(a) (b) (c)

Fig. 4.45 Split grammars are usually defined by a textual description (a). The hierarchy that results
from the application of the rules can be described by a code graph (b), whose execution leads to a three-
dimensional model (c). Note that the code graph is simplified for brevity, thus no split rules for doors
and windows are shown. (image source: Thaller et al. [TKHF12])

An Example for Interconnected Structures. One major drawback of (context-free) split
grammars is the lack of mechanisms that connect structures across different parts of the top-
down modeling hierarchy. The solution proposed by Krecklau and Kobbelt [KK11] uses nested
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arrays to which potential connecting points are appended as side effect. These points later pro-
cessed to generate connecting geometry. This method can directly be mapped to the multiplic-
ity framework, with the difference that connecting points have to be explicitly linked (using
the link operation). Instead of receiving a container and explicitly adding objects to it, objects
are linked explicitly and are passed as nested list to operations. Advantages here are that, in
contrast to Krecklau and Kobbelt, there is always a visual representation in the system. Fur-
thermore, passing the same container to all operations enforces a linear execution order, which
conflicts with the idea of direct manipulation interfaces as mentioned before. An example of
interconnected structures achieved in the GML Compositor is shown in Figure 4.46.

Fig. 4.46 The pillars of the bridges are constructed using ray casting for obstacle detection. Three
different positions of the lower bridge showcase the interactive specialization within the repetition of
bridge pillars. (image adapted from Thaller et al. [TKZ∗13a])

4.4.4 Interactive Scene Graph Modeling

Three-dimensional scenes with inherent hierarchical structures, which means that individual
objects are placed in relation to a parent object, are usually described by a scene graph (see
Section 3.6). Figure 4.47 shows a scene where pieces of furniture are placed in relation to the
room in which they are located, and the objects on and around a table are placed relatively
to the table. Each scene graph node contains a transformation and, optionally, geometry. By
varying these transformations over time, animations based on the scene graph can be achieved
quite easily. The transformation applied to each piece of geometry is the product of all trans-
formations on the path from the root to the specific node. Information of objects that occur
more than once, like the chairs in the current example, are only stored once in the scene graph,
which makes the scene graph an acyclic graph instead of a tree. The extension of scene graphs
to the GML Compositor is mainly contributed by me and has been discussed in our journal
paper [TKZ∗13a].

Interactive Scene Graph Modeling Operations

To include a scene graph in the GML Compositor, a type Node is needed to represent various
kinds of scene graph nodes. It is assumed that one instance of this type – the root node – is
passed to the code graph as input and is always present in the scene. Child nodes are created by
operations that take a parent node as input. In particular, there is a createNode operation that
creates a node with only transformation information and no visible geometry, and a loadGeom-
etry operation that creates a node with geometry that has been loaded from a file. Finally, to
reference absolute positions in scene graphs, either to set up cameras or to connect objects that
reside in different parts of the scene graph, a toGlobal operation exists, which converts a point
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Fig. 4.47 Scene graphs allow the representation of hierarchical dependencies; as the TV is placed in
dependence of the table, changing the table’s position will also move the TV accordingly. Furthermore,
scene graphs are memory efficient through instancing: the two chairs in this scene refer to the same
geometry with different transformations. (image source: Thaller et al. [TKZ∗13a])

from the local coordinate system of a scene graph node to global coordinates. By combining
the createNode and toGlobal a createNodeAt operation that places a child node at a point given
in global coordinates can be provided. Real world applications may need further node-creating
operations, but the basic structure will remain the same.

For animated scenes, there are also basic operations to define key frame animations, one
of which is called interpolatePose. Hereby a specific scene graph node’s transformation is
interpolated between the two transformations of two other nodes. This all happens in a specific
time frame which is provided additionally. To support different camera views and animated
camera flights, a camera object can also be placed on scene graph nodes, which again can
be animated. Camera objects store a view direction; position and orientation are defined by
the scene graph. With a designated interpolateCamera operation is is also possible to just
interpolate between two distinct camera views.

Figure 4.48 shows a simple scene in the context of virtual museums. This scene is inspired
by our work [ZTH∗12], in which we facilitate the use of scene graphs in the GML Compositor.
This figure shows the corresponding code graph for the scene on the right side. The inputs for
this code graph are the number of museum exhibits to be shown and a list of paths to files
containing the three-dimensional models of the exhibits. The requested number of models is
loaded from the list and placed in correspondence to the scene graph nodes, which are arranged
in a circle.

Interactive Modeling with Scene Graphs. For interactive modeling of a scene graph, a set
of widgets is provided by the GML Compositor. These widgets allow the user interface to
present standard scene graph semantics to the user. Our work [ZTH∗12] describes this from an
application’s point of view.

Scene graph nodes are represented graphically as a widget (Figure 4.49(a)) that consists of
three parts: the cylinder part for moving parallel to the ground, the arrow part for lifting, and
the ball part for rotation. During motion arrows indicate the hierarchy, i.e., the parent node and
the (direct) child nodes (Figure 4.49(e)). To make stacking easier, when lifting a node, it snaps
to the parent level, and to the uppermost plane of the bounding box of the object positioned
at the parent node. To have more control over rotations along all three main axis a separate
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Node List[Point]

List[Node] List[Path]

List[Node]

loadGeometry

createNodeAt

Circle 5

pointsOnCircle

Fig. 4.48 A procedural scene graph: Scene graph nodes with pedestals are placed at points distributed
on a circle (left). On top of each pedestal, a scanned model is placed. The inputs for the code graph
(right) that represents this procedural model are the number of models and a list of file paths to load
the models from. For simplicity, the operations representing the pedestals have been left out in the code
graph. (image source: Thaller et al. [TKZ∗13a])

(a) (b) (c)

(d) (e)

Fig. 4.49 The five widgets used for scene manipulation: scene graph node (a), full rotation widget (b),
drop target (c), motion path widgets for interpolations (animation of objects and camera) (d) scene graph
hierarchy (e). Understanding these five concepts (plus time) is sufficient for constricting animated scenes
in the GML Compositor. (image source: Zmugg et al. [ZTH∗12])

rotation widget is provided (Figure 4.49(b)). A place-holder for not yet available objects is
provided through a special widget called “drop target” (Figure 4.49(c)). Once the necessary
objects become available, these widgets can be filled automatically. In our work[ZTH∗12] they
have been used to define templates for animated museum exhibits. More information on this
is available in Section 6.4. Finally, to visualize animations that have been defined in the scene,
motion path widgets (Figure 4.49(d)) illustrate the path along the objects move.
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Synopsis
In this chapter I presented procedural techniques that were either utilized or developed in
context of this thesis. This includes – first and foremost – the scripting language GML. This
Adobe PostScript dialect has been designed for describing three-dimensional shapes. The
operator sets available in this scripting language can be extended to include arbitrary shape
domains. I used and extended the GML to create all results presented in this thesis.

The core part of this chapter contains the description of two extensions to the state of the
art of split grammars. The first extension describes the generalization of standard box-based
split grammars to split grammars based on convex polyhedra. Through this, a more general
class of complex shapes is made amenable to the grammar formalism without the need to
include pre-modeled geometry. The second extension – my main contribution – describes
how curved and deformed architecture can be described efficiently through split grammars.
Through the inclusion of free-form deformations to the grammar formalism, the amount of
results of replacement rules can adapt to the space provided through different deformations.
I, furthermore, discussed how deformed shapes can be further processed to, for example,
split deformed shapes in correspondence to the deformation or by arbitrary straight planes.

The last section in this chapter discussed an interactive procedural modeling tool, the
GML Compositor. This tool has been designed to create procedural models without the
overhead of programming. It supports different modeling vocabularies, among which are
a split grammar inspired tool set and a scene graph tool set. The latter tool set has been
included by me to enable the creation of animated procedural environments, which have
been featured in our projects.
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Abstract. Before one can start the task of generating a library of procedural models to cover
a certain domain, it is necessary to analyze the chosen domain. As part of the analysis of one
of the most imposing buildings in Paris, the Louvre, a case study on the domain of windows
is performed in this chapter. Windows are not chosen arbitrarily for this case study; they are
among the most salient features of façades and are a combination of different inter-related de-
sign elements, which makes them a prime example for procedural modeling. This chapter first
details the progress in the analysis of the bigger reconstruction task: the Louvre in Paris, and
ultimately concludes in a detail analysis of windows. This analysis eventually leads to the for-
mulation of the Generative Fact Labeling method. Through this method a way is demonstrated
how to formalize a shape domain and generate a library of procedural building blocks.
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5.1 Reconstruction of the Louvre

Fig. 5.1 Aerial photograph of the Louvre Palace in Paris. (photograph copyright by Matthias Kabel,
license: CC BY-SA 3.0)

The Louvre in Paris as shown in Figure 5.1 is a prime example of classical architecture.
It is of non-trivial size and complexity and is a monumental historical building. To evaluate
the scalability, as well as the applicability in the domain of Cultural Heritage, of the GML
Compositor (see Section 4.4), we attempted a partial reconstruction of this building in our
work [ZKT∗14]. The whole façade reconstructions were mainly done in context of the Bache-
lor’s thesis of Pszeida [Psz14] in order to estimate the usability and effectiveness of the GML
Compositor software. Illustrative step-by-step examples have been done by Krispel and me to
showcase the individual tasks that are necessary.

This reconstruction is not the first attempt at a procedural description of parts of the Louvre.
With Esri’s CityEngine [Esr13] Calogero and Arnold [CA11] generated two alternative pro-
posals of Perrault’s Colonnade in east wing of the Louvre using procedural modeling. Their
analysis of the different split layouts in the Le Vau/Perrault/Le Brun design of 1668 of the east
wing as it stands today, served as basis for the reconstruction done with the GML Composi-
tor. The benefit for the Cultural Heritage community is that the GML Compositor scales better
than conventional forward modelers like Google SketchUp [Goo13c], but does not require ac-
tual coding like Esri’s CityEngine [Esr13].

The following sections give an overview of the available source material and use existing
architectural analyses to reconstruct a specific façade of the Louvre step by step as presented
our work [ZKT∗14]. The final reconstruction results are presented in the upcoming chapter in
Section 6.2.1.

5.1.1 Source Material for the Louvre Reconstruction

For a reconstruction of a building it is first necessary to acquire sufficiently accurate source
material. Not accurate enough measurements lead to significant problems with conventional
three-dimensional modeling software packages, as inaccurate measurements can be corrected

http://creativecommons.org/licenses/by-sa/3.0/
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only with excessive time and effort. However, with a parametric model, all parameters can be
changed to the correct values at any time they become known. In case of the Louvre recon-
struction, some of the original building plans, which provide ground layouts as well as façade
layouts for parts of the Louvre had been accessible. In total, our group had access to eight
ground plans and nine façade plans of different parts of the Louvre. They cover parts of the
Cour Napoléon and the Cour Carrée (see Figure 5.2). Although much detail is provided in
these plans, they lack the extrusion depths of the façade elements. These depths were therefore
estimated from photographs. Such incomplete information is typical in such reconstruction
tasks and emphasizes the importance of the procedural approach.

Fig. 5.2 Detailed façade layout of one of the façades of the Cour Carrée. (image source: Archives of the
Louvre)

5.1.2 Stepwise Reconstruction of a Louvre Façade

This part describes the methodology for creating a procedural reconstruction of the pavilion
part of Perrault’s Colonnade on the east side of the Louvre (see Figure 5.3) in the GML
Compositor. This model is based on the split proposal given by Calogero and Arnold in their
work [CA11]. The parametric assets for the windows have been acquired through the analysis
done in the upcoming Section 5.2.

Constructing a Rough Layout.
First, a rectangular block representing the pavilion is partitioned into the vertical structure
of podium, pilastrade, entablature and parapet (see Figure 5.4(a)) using the interval-split
operation. Next, the parts that are not part of the entablature or ledges are split into three hor-
izontal parts, which reflect the coarse horizontal structure of the façade (see Figure 5.4(b)).
Furthermore, the parts on the right side are mirrored and linked to the left parts to reflect the
symmetry of the façade. Consequently, only one side has to be modeled to create the sym-
metric parts. More detail is added to the façade parts by splitting down to the hierarchy level
of windows and pillars (see Figure 5.4(c)). The correlation of the partitions of pilastrade and
parapet was realized with splits that use the same parameters as input.

Reconstruction of the Podium.
The podium part is refined first. The lower podium part is split off and extruded. The upper
part is split into window and wall parts. The window parts are linked, due to the similarity
of the three podium windows. Window detail is added by applying different parametric win-
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Parapet
Entablature

Pilastrade

Podium

Fig. 5.3 Split analysis of Calogero and Arnold [CA11] illustrated in a photograph of the pavilion part
of Perrault’s Colonnade in the Le Vau/Perrault/Le Brun Design of 1668. (photograph courtesy of Erica
Calogero)

dow assets. These include assets for the window top with an inscribed key stone, the window
frame, the window sill, as well as the crossbars (see Figure 5.4(d)).

Reconstruction of the Ledge.
The ledge is modeled using a series of extrusions. First, the vertical partition is split and
extruded to the front and sideways. The corner parts are modeled by again extruding the
sideway parts to the front. The slanted parts are created using diagonal splits; corner parts
are split twice using diagonal split (see Figure 5.5(a)). The intermediate result can be seen
in Figure 5.4(e).

Reconstruction of the Pilastrade.
For the pilastrade part, the pillars are first split vertically into base, column and capital parts.
The base detail is created using diagonal splits, and the fine alternating structure of the
rectangular pillars is created using the repeatABA operation. The windows on the side parts
are created using parametric assets for the border and the top parts (see Figure 5.4(f)). The
ledge above the window is created by linking the space between the pillars and above the
window and applying extrusions and splits to one of the parts of that link group.
The middle part is first split into depth direction, and the front part is voided to create the
depth offset. The big window is again modeled using parametric assets. Additional details
are added using splits and extrusions. The pillars need special handling due to different wall
depth on the left and right side of the pillar. The correct depth is acquired by splitting the
space around the pillar into four parts, setting the according depth and voiding the outer
parts as illustrated in Figure 5.5(b). The intermediate result can be seen in Figure 5.4(g).
The capital part of the pillars is roughly approximated using parametric assets.

Reconstruction of the Entablature and the Parapet.
Finally, the entablature is modeled similarly to the ledge above the podium, just with more
extrusions. The solid parts of the parapet are linked, and their top part is extruded to create
the ledge; the pillar rows are created using the repeat operation. The final result is shown in
Figure 5.4(h).
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This concludes the detailed description of the reconstruction of the pavilion part of Perrault’s
Colonnade. The other façades can be constructed in a similar way in a coarse to fine manner.
The most distinguishing features are the windows featured in these façades. The upcoming
section focuses on the generation of a library of procedural window building blocks that have
been used in the reconstruction of the Louvre façades.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 5.4 Intermediate steps of the reconstruction of the pavilion part of Perrault’s Colonnade on the east
side of the Louvre. The steps range from coarse vertical and horizontal split structure ((a) - (c)), over
work on the podium (d), ledges (e), and pilastrade ((f) - (g)) up to the final result (h). (image source:
Zmugg et al. [ZKT∗14])

5.2 A Library for Procedural Window Building Blocks

Windows are among the most salient features of façades. They are more than just a rectangular
hole in a wall; in classical styles of architecture a window is a combination of different inter-
related design elements, which may derive from a long-standing architectural tradition. This
complexity leads to a significant amount of time needed for the three-dimensional reconstruc-
tion. Therefore, most digital urban reconstructions today suffer from bad window representa-
tions. These windows are either well modeled, but do not match the originals due to insufficient
accuracy with the use of fixed pre-modeled assets libraries, or are simply not modeled at all
and are replaced through the use of a photo-texturing.

Our work [TZK∗13] focuses on these issues and offers an improvement for the quality of
reconstructed windows. This section is mainly based on this publication, in which a method-
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(a) (b)

Fig. 5.5 Ledges (a) are modeled using extrusion, diagonal splits and voiding the unnecessary parts. Note
that the corner part is split twice using diagonal split (left column, top to bottom). This method can be
used to model more complex profiles as shown on the right. For modeling a pillar (b), which is adjoined
to walls with different depth offsets, first, a round-hole operation is applied (upper left). Then, the outer
part is split into two parts (upper right), to which the different depth offsets are applied using another
split operation (lower left). Finally, the outer parts are voided (lower right). (image source: Zmugg et al.
[ZKT∗14])

ological approach to capture a large number of highly structured, similar but not identical
shapes, is presented. This so-called Generative Fact Labeling (GFL) method is composed of
three stages:

Analysis Phase:
To acquire a broad basis of different windows, it is necessary to concentrate not only on the
windows of the Louvre. Thus, a collection of 150 photographs of complex windows in the
city of Graz, Austria, has been gathered. These window exemplars have been structured by
assigning fact labels.

Synthesis Phase:
Through analysis of these windows, a library of combinable procedural assets has been cre-
ated. These procedural building blocks correspond to the elements identified in the analysis
phase.

Verification Phase:
In order to assess the usefulness of the procedural library several well-chosen windows from
this collection have been reconstructed and compared to the original exemplars.

The goal of this method is not only to produce a library of functions that allow reproducing
the limited number of given exemplars, but also to formalize the design space that is spanned
by them. Is is important to be aware that this factorization is only one possible interpretation.
The presented method is more of a guideline how to find – at least – a reasonable procedural
explanation of a complex shape class.

In terms of windows, Chevrier et al. [CCGP10] did related research. They investigated how
practical parametric components in Cultural Heritage reconstruction tasks are. They created
a Autodesk Maya [Aut13c] plugin, where components are instantiated using a first estimate
by a user. This initial estimate is further refined with the help of photographs, plans, and point
clouds. In comparison to our work, they focus more on the modeling process, while our method
focuses more on the analysis aspect.

The Generative Fact Labeling method emerged from discussions within our research group
on the Bachelor’s thesis of Posch [Pos13] on the topic of procedural window building blocks.
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The following sections focus first on a definition of the Generative Fact Labeling method and
then apply the method’s three steps to the domain of windows in separate sections. Further
results and comparisons are discussed in the upcoming Section 5.2.4.

5.2.1 The Generative Fact Labeling Method

The Generative Fact Labeling method (see Figure 5.6) is composed of three stages that are
explained in this section in detail. In the following sections this method is then applied to the
domain of windows, which eventually results in a comprehensive library of procedural window
building blocks.

The Analysis Phase. The starting point of the process of generative shape reconstruction
is, in general, a finite collection of exemplars. An exemplar, which is an indisputable fact,
is associated with a set of observations, which are human interpretations of these facts. To
structure the observations, related observations of different exemplars are grouped together. A
basic observation, for example for a window, is that it consists basically of a hole in the wall.
The shapes of these holes are mutually exclusive; a hole is either rectangular shaped or circular
shaped, but not both. Mutually exclusive observations lead to a set of alternatives, which build
a label group carrying a label. For simplicity reasons capital letters (A,B,C) are used for labels
and enumerate all possible alternatives. The alternatives are then labeled A1, A2, A3, . . . for a
label group A. The ensemble of observations, labels and label groups is called a classification
of the exemplars.

Unfortunately, it is not reasonable to assume that the set of labels in each group, nor the set
of groups, will ever be exhaustive. By following the open world assumption, it is clear that the
set of exemplars is not complete and may always grow. Consequently two special labels for
each group are added. These are not applicable (A−), and not yet expressed (A∗). The former
denotes an observation that that corresponds to a label A is not present, and the latter indicates
that something that corresponds to a label A is there, but none of the available alternatives
apply.

The fact labeling method typically proceeds in a coarse to fine manner. First rough structures,
such as layouts, are determined and fine structures explored afterwards to differentiate between
alternatives more locally. The goal is to decouple the labels, but no hierarchy between the labels
is assumed, but the relation between label groups can turn out to be quite complex.

The Synthesis Phase. After extracting label and label groups and identifying similarities
between different label groups it is necessary to construct procedural assets based on them.
In this step it is important that these assets are designed in a way that they can be combined
and adapt to different size constraints appropriately. The instances of the corresponding variants
that are present in the exemplars should server here as marginal cases of the procedural models.
Transitions between different instances should always produce valid configurations.

The Verification Phase. The final step is then to combine the procedural building blocks
to create instances of the analyzed objects. By reconstructing exemplars and comparing them
to the originals, the usefulness of the procedural building blocks can be assessed. The whole
process is in no way linear: if it becomes clear in the verification phase that a building block
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is insufficiently designed, it may be necessary to go back to the previous phases to perform a
more thorough analysis and adapt the procedural model.

Exemplars Synthesis Phase

Procedural Models

Verification Phase
Analysis Phase

Fig. 5.6 Based on a set of exemplars, the Generative Fact Labeling method first structures observations
to create labels and label groups in the analysis phase. The method then proceeds to the synthesis
phase in which procedural building blocks are created based on these labels and label groups. This
yields procedural models, which are then compared in the verification phase to the set of exemplars to
determine whether the desired accuracy has been achieved or not. The whole process is not linear. It
may be required to return from the synthesis or verification phase back to the analysis phase to perform
a more thorough analysis.

The fact labeling approach is defined very generic, so it can be applied to any domain to cre-
ate a classification scheme. The main distinguishing property of this approach is the procedural
view. The observations are grouped in way that they can be directly mapped to procedures that
can be used to re-create the observed shapes. Consequently, the quality of the classification is
directly proportional to the quality of the results and vice versa.

5.2.2 Window Analysis

The analysis is based on an unordered set of 150 exemplar windows (a selection of which is
shown in Figure 5.7). The window exemplars are from neo-classical buildings erected in Graz,
Austria, in 1860-1890 (Gründerzeit).

Studying Appropriate Literature. At the start of analysis phase, appropriate literature needs
to be studied to acquire the right vocabulary in this domain. Possible architectural configura-
tions and styles are covered in literature like [Chi05, Mit92, DJ08]. Additional to the afore-
mentioned books about architecture in general, special window-related books like that from
Schulze [Sch08] are a necessity to obtain comprehensive information about possible window
element configurations, naming of the individual parts, and how they were composed.

A further very important reference, in particular for windows in Graz, Austria, is the work
of Ortwein [OS93]. His work on the German renaissance, consisting of nine volumes, is still
used as seminal compendium in building restoration due to the high accuracy in the description
of details. Ortwein had much influence in Graz during the 19th century; aside from several
churches he also designed buildings in the famous “Sporgasse”.
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Fig. 5.7 Window exemplars. The full set contains 150 images of windows from neo-classical build-
ings erected in Graz, Austria, in 1860-1890 (Gründerzeit). The complexity and visual dominance of
the windows pose challenges to any digital urban reconstruction. (image adapted from Thaller et al.
[TZK∗13])

It is important to define an abstraction level in the analysis step. Relevant architectural lit-
erature is helpful in the communication with domain experts, which leads to more relevant
observations. However, broad prior knowledge is not mandatory and may even be misleading.
The fact labeling method focuses solely on the geometric aspects of architecture. Experts may
say that two windows have nothing in common in terms of architectural history, but they may
be labeled the same way due to their similar geometrical features.

Analysis of Windows. The analysis step usually starts with more or less obvious observa-
tions such as “this window has a sill” or “next to the window are pilasters”. After some iterative
refinement of these observations the fact labels and label groups shown in Figure 5.8 (labels for
not applicable (−) and other (∗) are omitted) have been attained. Figure 5.9 shows some fact
labels on example windows. Each label group, i.e. each line in the table, can be interpreted as
a question that can be asked about a window.

A.count How many windows are there?
B.side Is the window framed at the side by columns or pilasters? Alternatively, the decoration

above the windows can be symbolically supported by brackets at the side of the window.
C.sill Is there a sill below the window, or is there a sill with additional decorations below it?
D.above Is there a cornice above the window, or a pediment, or a combination of the two?
E.frieze Is there additional space, a frieze, or an architrave below that cornice or pediment?
F.layout Do the pillars at the side and the frieze or architrave between the cornice and the

opening interact in some way?
G.shape What is the shape of the window opening?
H.frame Is there is an added frame around the opening? Does that frame have a visible

keystone at the top?
I.pediment What is the basic shape of the pediment?
J.pediment2 Is there systematic variation of pediment shape, such as extensions to the side?



146 5 Case Study: How to Formalize a New Shape Domain

K.pediment3 Is the pediment open, or is there a keystone?
L.cornice Is the cornice broken in the center?
M.below-cornice Are there brackets that symbolically support the cornice? (This does not

include the “side” brackets (B2)).
N.below-sill Are there brackets that symbolically support the window sill?

Some shapes may have similar features which leads to the same questions that are asked in
the corresponding label groups. In the example of windows this is true for the application of
moldings, which are present throughout different parts of the window.

O.sill2 Is a molding applied to the sill?
P.frieze2 Is a molding applied to the frieze or architrave?
Q.frame2 Is a molding applied to the fame?
R.pediment4 Is a molding applied to the pediment?
S.cornice2 Is a molding applied to the cornice?

L. Label Group 1 X 2 X 3 X
A count single window double window triple window
B side pilaster f3 big bracket
C sill simple sill a4 sill and decoration

below
D above cornice e1 pediment a1 cornice and pedi-

ment
b1

E frieze frieze/architrave
F layout pilasters/brackets

beside frieze
pilasters end below
architrave

crossing

G shape rectangular opening d2 round arch e2 segmental arch a2
H frame frame frame with keystone
I pediment triangle pediment b1 round arch pediment segmental arch ped-

iment
J pediment2 horizontal cornice at

the sides
a1

K pediment3 open h1 keystone g1 stepped
L cornice broken c1 stepped e1
M below-cornice brackets at side a3 many brackets c3 centered brackets b2
N below-sill brackets at side c4 balustrade

Fig. 5.8 This labeling table is the result of the analysis phase. Every label, e.g. A1, is associated with a
set of observations on the given facts (exemplars). Entries in the X-columns refer to the table of images
of procedural assets in Figure 5.11. (table source: Thaller et al. [TZK∗13])

Some questions depend directly on the answers of other questions; if a window has been
labeled as not having a cornice or pediment (D−), all other questions about the shape of the
pediment and cornice, consequently, have to be answered with “not applicable” as well. These
hierarchical relations are obtained from the observations, but the fact labels do not form a
strict hierarchy naturally. The relation between the extracted label groups can be quite com-
plex, especially considering how the side decoration interacts with the frieze or architrave (see
Figure 5.10).

5.2.3 Window Synthesis

The window analysis must eventually lead to the synthesis of three-dimensional window ele-
ments based on the label groups formed in the analysis step. To achieve this, the shapes to be
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Fig. 5.9 Various fact labels, which are derived from observations, applied to five example windows.
The labeling is not intended to be complete for all of these windows. (image source: Posch [Pos13])

(a) (b) (c) (d)

Fig. 5.10 Pilasters, brackets, friezes and architraves, and their possible arrangements. A window with
no side decoration but with a frieze (yellow) is shown in (a). Pilasters (red) bypass the frieze in (b).
Pilasters can be reduced to smaller brackets that support the cornice (c). Finally, pilasters end at the top
of the window opening and support an architrave (d). (image source: Thaller et al. [TZK∗13])

produced have to be factored out into re-usable procedures. The realization of these procedural
window elements has been done by Posch in his Bachelor’s thesis [Pos13].

To illustrate the synthesis process, let us take the pediment window element as an example.
Four label groups have been used to describe the pediment shape. These four label groups
cover the basic shape, optional extensions to the side, detail variations such as keystones or
missing parts, and moldings that are applied to the pediment shape. One single procedural
building block that features many different parameters to achieve all these variations is not
desirable. Ideally, different operations are factored out, which can then be combined to achieve
all these variations. For example, the necessity to apply moldings has been identified in many
different window elements. This an indicator that moldings, which are, technically speaking,
profile sweeps along certain edges of a shape, need to be realized as a standalone pattern,
which can then be re-used in many different places. Even though the detail variations do not
occur in as many places as moldings, it is, nevertheless, advantageous to factor them out too.
By factoring out such features, the construction of the underlying shape becomes easier. In
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case of the pediment shape, the last thing that remains is to describe the basic shape, which
is triangular or round and may be with our without side extensions. The combination of the
operations for the basic shape, the moldings and the details allows to generate a wide variety
of different pediment shapes. This procedure is applied to all label groups to find and map re-
usable patterns to operations, which can then be used to quickly obtain scripted building blocks
for interactive procedural modeling, in this case window elements.

A selection of the realized procedural window elements is illustrated in Figure 5.11, and
some of the operations to create these elements are described in the following. An index like
(a1) refers to an image in the table of images in Figure 5.11.

Fig. 5.11 Samples of procedural assets from the window part library: Cornices and pediments (first
row, a1-h1), window shapes with borders and crossbars (second row, a2-h2), friezes, panels and pilasters
(third row, a3-h3), and window sill and decorations (bottom row, a4-h4). All these assets adapt their size
to the space they are inserted to. (image source: Thaller et al. [TZK∗13])

Procedural Models of Window Shapes and Crossbars. The most common window hole
shapes are supported by the procedural window library. These include the common rectangular
shape (d2), round shape (c2), as well as several arches. Among these arch shapes are round
arches (e2), segmental arches (a2) and lancet arches (b2). Crossbar assets (f2-h2) are realized
independently of the shape of the window itself. The crossbar rules adapt automatically to the
(convex) space that is provided for them.
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Procedural Frames and Moldings. The library utilizes the frame-split operation mentioned
before in Section 4.2.2. This operation is very versatile and is used for frames of the window
pane (a2-e2) and to generate the shape of the pediment (b1-d1,f1-h1). Geometry can addition-
ally also be generated along a polyline for special pediment shapes (a1).

(a)

(b)

(c)

Fig. 5.12 Different moldings applied to assets created with operations through the procedural window
library. Pediment and cornice are generated in a generic way (a), the molding is then applied using a
specific profile (b). The different moldings (c) are defined independently from the assets that they are
applied to. (image source: Thaller et al. [TZK∗13])

The output of these operations can be further refined through different moldings (see Fig-
ure 5.12). To refine a shape through a molding, an extrusion profile is applied along the course
of this shape. This profile is created independently from the asset it is applied to. The cor-
nice and pediment (e1), the architrave, and the window sill (a4) can also be refined by adding
moldings to them.

Procedural Models of Cornices and Pediments. Two basic pediment shapes – triangu-
lar and round – are supported in the asset library, with the possibility of adding customiza-
tions, such as extended end parts (a1), open top sections (h1), the addition of a keystone (g1),
or stepped designs (e1). Open pediments are realized using a Boolean difference operation.
Stepped designs for pediments, cornices and keystones can be achieved by a separate extrusion
step. Keystones, in particular, are inserted by extruding a part of the pediment to the front, as
well as up and down. Broken cornices (a1,c1) are supported besides the regular ones. Moldings
can be applied to further enhance the appearance of the pediment and the cornice.

Procedural Models of Pilasters and Brackets. Two types of pilasters – a round (f3-g3) and
a rectangular pilaster (h3) – are included in the library. Those assets are only equipped with a
basic capital and pedestal. Their usage can be very versatile, from being the essential part of
the balustrade, to various uses in friezes and other decorative elements.

In most cases, pilasters are exchangeable with brackets. The appearance of brackets can be
very detailed and quite diverse, so only a crude approximation is provided in the library to
give the basic idea of the real shape. Especially friezes are often decorated with a multitude of
brackets (a3-c3). Two fundamental types can be identified, pillar-shaped brackets (c4-e4) for
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which the pilaster assets are used, and brackets with a slanted bottom part (a3-c3, f4-h4) that
only support the element above them.

Procedural Models of Friezes and Architraves. Several decorative elements are placed
symmetrically in the frieze (a3-e3). Supporting elements like brackets or decorative panels (d3-
e3) are also used within the frieze. Panels can be achieved by combining different operations,
such as extrusion, frame and bevel operations. Architraves, on the other hand, are often just
decorated with a molding that runs across the width of the window. The before mentioned
profiles can be applied on architraves too.

Procedural Models of Window Sills and the Decorations beneath it. Window sills are
realized by an extruded part, which can have a molding applied to it (a4). The space below the
sill is often decorated like friezes (c4-h4). Brackets then support the sill instead of the cornice.
A decoration unique to this space is a balustrade. The pillar assets described before can be
utilized here as well. The number of pillars automatically adjusts to the space available.

5.2.4 Window Verification

Finally, the procedural assets created in the synthesis phase can be utilized and combined for
reconstruction of windows. The modeling process follows the labeling process in its coarse
to fine manner. To some extent it can be seen as a shape grammar because parts are selected
and replaced by other new parts. With shape grammars, however, crossings of vertical and
horizontal structures are hard to realize, which is sometimes done in the GML Compositor.
Thus, a window is a combination of discrete assets, which, although it is done with a graphical
user interface, can be seen as interactive scripting.

Although the number of different procedural assets appears to be fairly limited, quite a vari-
ety of shapes can be achieved through combining, nesting and repeating the available elements.
Through the versatility of the procedural modeling approach it is possible to cover the archi-
tectural variety of the given exemplars to a good extent.

Reconstruction of Window Exemplars. Figure 5.13 shows reconstructions of five different
windows from the set of exemplars. All of these windows have different layouts to demonstrate
the versatility of the generated procedural library. Some decorations are only approximated by
manually placing variations of other assets at certain positions.

Based on a finished model, other (similar) windows can be realized quickly by manually ad-
justing certain dimensions and exchanging a few assets. The benefit of the procedural approach
is that the parts can adapt flexibly to a wide variety of surroundings. Therefore, in most cases, it
is much more efficient to adapt an existing window than to create a new window from scratch.
This fact encourages the re-use and re-parametrization of models.

Figure 5.14 shows some variations of the two windows in red and blue frames from Fig-
ure 5.13 realized by just exchanging assets and adjusting parameters. In terms of operations
these windows are “close”, which suggests that procedural distance could be a useful shape
similarity measure.
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Fig. 5.13 Synthesis of example windows. The first exercise was to reconstruct five window exemplars
with sufficiently different layouts and decorations. The second task was the variation of the two windows
in the red and blue frames (see Figure 5.14). (image source: Thaller et al. [TZK∗13])

Fig. 5.14 Variations of the two windows in red and blue frames from Figure 5.13. The variations
are derived only by replacing assets and manually adjusting proportions. Assets can be combined to
realize also more challenging configurations (right group, third variation). (image source: Thaller et al.
[TZK∗13])

Step-By-Step Modeling of a Window. For the particular window in Figure 5.15 at first it
is decided what kind of window layout is used. In this case the central part is realized by
partitioning it into four parts: a center part for the window, and two pilaster parts, which support
the final frieze part (see Figure 5.15(b)). All measurements and sizes of specific parts can be
modified by parameters, i.e., the width of the pilaster parts can be adjusted manually. Further
modeling is done by asset insertion steps, which can be executed in any order since each asset
operates on a single selected part (see Figures 5.15(c) - (g)). Some assets create new spaces,
where further different assets can be inserted. Examples for this are the window opening assets,
which allow the insertion of border and crossbar assets to the opening part. Finally, details, such
as moldings and keystones, can be further applied to the inserted assets, which leads to the final
model (see Figure 5.15(h)).
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 5.15 Interactive window modeling using procedural assets. First, the layouts for the individual
sections are chosen ((a), (b)), in this case a single window with decoration above and below the hole.
The order in the asset insertion steps ((c) - (g)) is not important since assets can be inserted independently
from each other. The last step is to apply detail moldings to the window elements and to add the keystone
(h). (image adapted from Thaller et al. [TZK∗13])

5.2.5 Evaluation of the Generative Fact Labeling Method

With the procedural building blocks that have been synthesized based on the assigned fact
labels, more than 80 percent of the acquired windows can be reconstructed in the level of detail
shown in Figure 5.14.

In this section the limitations of the Generative Fact Labeling method, in the context of the
presented examples on windows, will be discussed in three levels. First, challenging window
examples are presented that are hard to synthesize with the current asset library. Afterwards,
shortcomings of the classification are discussed followed by whether or not this invalidates the
fact labeling approach.

Challenging Window Examples. The windows shown in Figure 5.16 are grouped into a set
of difficult but feasible (left) and fundamental problems (right). The left group of windows –
which amount to roughly 10 percent of the set of exemplars – all exhibit features that are not yet
supported, such as new opening shape assets ((c), (d) and (j)) and frame decorations (b). These
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features have been unique to single windows and are not so common throughout the analyzed
shape space, which is the reason why these features have been left out in the initial analysis.
Furthermore, the decorations around windows (a) and (i) are out of scope, since the analysis
was limited to convex partitions. Such decorations require a shape analysis approach of their
own. Nevertheless, all these missing features have a well-defined place within the classification
in Figure 5.8.

Fig. 5.16 Windows that cannot be handled properly by the extracted procedural library. The left group
of windows could be handled by special-purpose assets. The right group reveals more fundamental
issues and problems. (image source: Thaller et al. [TZK∗13])

The problems of the windows on the right side are more of a fundamental nature. The anal-
ysis of these windows led to the classification of the following issues:

General Construction Issue. Windows (e) and (k) exhibit delicate tracery in the top, leading
to bar and hole shapes that require specific geometric constructions which are not found
elsewhere.

Cross Feature Issue. Window (e) also features a ledge that runs along the façade and crosses
the window on a horizontal bar, interacting with various structures of the window along the
way.

Cross Hierarchy Issue. Even more drastic is the cross hierarchy issue; the seemingly inno-
cent example is the top of window (m) where the keystone not just protrudes downwards
and upwards, but actually bridges and breaks the circular profile, then the horizontal frame,
and finally becomes part of the frieze in the top.

Planarity Issue. Window (g) violates one of the implicit assumptions, namely that window
decorations are applied to planar façades. The pediment and the structures at the sides of
this circular window – which are vaguely reminiscent of ionic columns – are part of the
three-dimensional structure of this particular building

Ambiguity Issue. The holes of the multi-windows (h) and (n) are so tightly coupled that the
window classification is ambiguous. Apparently a larger hole was partitioned by bars, so it
makes no sense to treat the sub-windows separately; but the bars are also so prominent the
windows are clearly separated. There exists so many examples of ambiguities in windows
that one might suspect that these ambiguities are introduced intentionally by architects.

Repurpose Issue. The ambiguity issue from before is similar to the repurpose issue of win-
dow (l), where the pediment is not on top of the window, but the window is inside a triangle
pediment.
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Issues with Interacting Parts. By assigning additional labels the fact labeling approach al-
lows making inter-dependencies explicit. For a given window, it is possible to state that there
are pilasters that support the cornice and pediment, and there is an architrave below this cor-
nice. This behavior is covered in an extra label group (F) that describes how these two structures
interact.

The window in Figure 5.17(a) is labeled D3, as it has a cornice and pediment, and E1 because
it has an architrave and frieze. Additionally, it receives the label F3 because both structures
overlap. The problem lies in the geometry generation. The assets must be able to deal with the
interaction of the architrave and the pilaster. However, this interaction depends on the specific
assets that are used for the pilaster and the architrave.

Another example of problematic overlaps are ledges running horizontally over the whole
façade (see Figure 5.17(b)). They either do not interfere with the windows, for example between
stories, or in other cases they are interrupted by windows. Sometimes, such a ledge is re-used as
a window sill in a slightly modified way. The corresponding procedural asset for the window sill
would have to describe a window sill created by modifying an existing ledge in a certain way.
The focus in this analysis was to limit the attention to individual windows and their immediate
surroundings, so this problem for has not been addressed so far.

(a)

(b)

Fig. 5.17 Examples of windows with overlapping structures. The pilaster (red) overlaps the architrave
(yellow). In the overlapping area, the molding of the architrave runs across a continuation of the capital
of the pilaster (a). Other overlaps occur when a ledge that runs across the whole façade also serves the
purpose of a window sill (b). (image source: Thaller et al. [TZK∗13])

Feasibility of the Generative Fact Labeling Approach. Due to the problems mentioned,
the feasibility of the overall approach is necessary. The question arises whether the method
will ever converge and if there is a realistic chance to obtain a reasonably small procedural
function library in the end. This library should be able to synthesize a three-dimensional model
with satisfactory detail resolution for all exemplars.
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A flat list of labels without any hierarchy or other structure emerges from the presented
method. Due to the fact that no a priori assumptions are made, the resulting labels can be arbi-
trarily unorganized. Expectation is that the structural information will be introduced during the
exercise. Over-specialization is a great danger when a more detailed analysis of the exemplars
produces an ever-growing number of observations, labels, and label groups. This implies that a
continuous re-iteration is necessary to identify similarities between labels that can be merged
and mapped to the same generative procedure. This inductive reasoning process is called label
reduction. To illustrate this procedure consider the labels M (below-cornice) and N (below-sill).
They reveal a lot of similarities and both labels certainly share most of their procedures and
can therefore be merged into a single label.

To reduce this complexity arising by the relation between the individual labels, it is intuitive
to follow an approach that decouples the different labels as much as possible. Label dependency
is minimal when every label depends only on a single other label. This leads to a linear label
refinement process and thus, eventually to a (context-free) parametric shape grammar.

Synopsis
Before the results that are acquired through the presented procedural methods are presented,
I wanted take the chance to talk about the analysis required to achieve a procedural repre-
sentation of given shapes.

We designed a methodological approach to capture a large number of highly structured,
similar but not identical shapes. Based on the motivating example of reconstruction the Lou-
vre in Paris, I extended our analysis of a collection of different window shapes in this chapter.
This so-called Generative Face Labeling method is composed of three phases: an analysis
phase, where a sufficiently large collection of exemplars are analyzed and structured by
assigning fact labels, a synthesis phase, in which procedural assets are created based on
the preceding analysis, and finally a verification phase, in which the expressiveness of the
acquired building block is assessed by comparing reconstructed shapes with the original
exemplars.

In this chapter this method was applied to a collection of 150 photographs of windows in
the city of Graz, Austria. The application of our approach led to a library of assets, which can
be used to reconstruct more than 80 percent of these windows to a sufficiently large level of
detail. The remaining 20 percent of windows do either feature shapes that require additional
assets, or are unique in the sense that our basic assumptions on windows are violated by
those exemplars.

In essence, the Generative Face Labeling method is a generic approach to produce a li-
brary of functions that allow reconstruction of given exemplars. It is, however, important
that our method should only be seen as a guideline to find at least one reasonable procedural
explanation of a complex shape space.





Chapter 6
Applications and Results

Contents
6.1 Procedural Design of Wedding Rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

6.1.1 Ring Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
6.1.2 Ring Parametrization and Modeling Operations . . . . . . . . . . . . . . . . . 160

6.2 Procedural Monument Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
6.2.1 Interactive Reconstruction of the Louvre . . . . . . . . . . . . . . . . . . . . . . . 162
6.2.2 A Procedural Model of the Rialto Bridge . . . . . . . . . . . . . . . . . . . . . . 166
6.2.3 A Procedural Wall Model inspired by the Great Wall of China . . . . . 173
6.2.4 A Procedural Model of the Eiffel Tower . . . . . . . . . . . . . . . . . . . . . . . 177

6.3 Procedural Generation of Buildings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
6.3.1 Procedural Staircases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
6.3.2 Procedural Office Buildings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
6.3.3 Procedural Deformed and Cartoonish Architecture . . . . . . . . . . . . . . 184

6.4 Authoring Animated Virtual Museum Exhibits . . . . . . . . . . . . . . . . . . . . . 186
6.4.1 Related Approaches for Authoring Virtual Exhibits . . . . . . . . . . . . . . 188
6.4.2 The Designer Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
6.4.3 The Curator Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
6.4.4 The Presentation Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
6.4.5 Use Cases realized with the GML Compositor . . . . . . . . . . . . . . . . . . 193

6.5 V2me - Virtual Coach Reaches Out To Me . . . . . . . . . . . . . . . . . . . . . . . . . 193
6.5.1 Overview of the V2me Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
6.5.2 Procedural Modeling for Ambient Virtual Coaching Applications . . 198
6.5.3 Evaluation of the V2me System in Terms of Procedural Modeling. 200

Synopsis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

Abstract. So far only methods have been discussed theoretically and only illustrative examples
have been presented. This chapter demonstrates applications and results of the applied research
done with the technologies presented in the two preceding chapters. All applications that will
be discussed in this chapter have been realized using either the GML directly or by using the
GML Compositor, which creates GML code in the background. The examples presented in the
context of the GML mainly focus on the extension of the state of the art of split grammars.
Furthermore, the procedural design of wedding rings – an application close to industry – will
be discussed. The GML Compositor has been utilized for procedural modeling in domains
of monument reconstruction, Cultural Heritage and Ambient Assisted Living. Furthermore,
related results of students that have been supervised by our research group are presented in this
chapter too.
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6.1 Procedural Design of Wedding Rings

People like their belongings personalized and customized. This demands a paradigm shift in
industrial design. Designers do no longer have to create a single static design for a product,
but a design for a whole product family. The basis for mass customization is done in modern
computerized numerical control (CNC) machinery, which allows a variation of parameters for
every single produced item. The trend, however, goes in direction of rapid prototyping through
the use of three-dimensional printers.

The big obstacle in this domain is the verification of the design. Especially in industry every
item needs to be checked for its functionality, durability, manufacturability, aesthetics, and
production cost. The parameter space of the procedural description must therefore be defined
very carefully, which can lead to very intricate problems for complex products. Therefore, to
create a procedural description it has proven very useful to start from a population of valid
items, as already discussed in a use case of windows in Chapter 5.

These demands are especially true for wedding rings. For many people the wedding day
is one the most important days in their lives. For this event couples often choose a unique
individual wedding ring design, which are realized by various workshops where a professional
ring designer guides through the whole production process. This makes wedding rings an ideal
case for industrial mass customization.

Based on a population of real rings (see Figure 6.1) that had been provided by the German
ring manufacturer JohannKaiser [JK13], a procedural description of these was generated sim-
ilar to the presented Generative Fact Labeling (see Section 5.2.1). The results of this project
have been utilized by JohannKaiser ring manufacturing in an online editor that is used by pro-
fessional ring designers in counseling interviews with customers. This piece of software has
been awarded several times and had serious impact on this particular business and showed that
there is a demand for procedural editors in industry.

This section gives an overview on the procedural ring design task performed at our institute.
This task started with the work of Berndt et al. [BSK∗12], which has been extended by me
afterwards. For this task, Berndt was responsible for the main parametrization, Schinko for
the displacement mapping, Settgast for providing appropriate materials and Krispel for the
generation of procedural gemstones. My contribution in this collaboration was providing an
extension to the procedural library to support Boolean operations, so that the capabilities and
expressiveness of the procedural wedding rings can be increased further.

6.1.1 Ring Features

At first, characteristic elements of ring design need to be analyzed from literature and the
provided samples. A ring features:

Profiles.
Profiles are the most dominant feature that defines the appearance and shape of rings. The
classic profiles are:

• Flat section profiles are the traditional wedding ring profiles, which is flat on the in- and
outside.

• D-shaped profiles have a flat surface on the inside and a heavily bent (half circle) profile
on the outside.

• Halo profiles feature a perfectly round cross section.
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Fig. 6.1 Some of the ring samples from the JohannKaiser [JK13] wedding ring design space. The
whole set of 40 rings was used for the creation of a procedural description of weddings rings, which is
both an abstraction as well as a generalization of the given individual designs. (image source: Berndt et
al. [BSK∗12])

• Oxford court profiles feature an oval profile with flat rounded internal and external
facets.

Materials.
Another important characteristic of a ring is its material. The most commonly used materi-
als include noble metals, like rose gold, white gold, silver, and platinum, but also stainless
steel. A ring may feature also multiple different materials, but also the appearance of single
materials can be varied through the finish of the surface. The surface finish can range from
a polished, highly specular surface, over glossy, to abraded or brushed surfaces with a matte
appearance.

Patterns and Engravings.
Rings can be decorated through the use of both engravings and surface patterns. Most wed-
ding rings feature engravings in form of text, but engravings can also realize symbols and
other artistic strokes. Patterns can be used to give the ring a more rough and defined appear-
ance. Furthermore, pieces of the ring can be left or cut out to achieve a more unique look.

Gems.
Typically gemstones used in wedding rings are diamonds, but sapphires, rubies, emeralds,
amethysts and aquamarines are also commonly used. Gems do not only affect the value of
the ring, different distributions of different sized gems can also have their own meaning.
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6.1.2 Ring Parametrization and Modeling Operations

The parameters as well as the modeling vocabulary that has been extracted in the analysis
phase are presented in this section. Examples of finished ring models are provided to illustrate
the different features.

Ring Parameters. Based on a careful analysis of the collection of rings (see Figure 6.1),
following parameters have been extracted to define the base shape of most of the rings:

• a profile polygon,
• the angular step size defined by the number of supporting profiles to be placed around the

rings center,
• the ring’s radius, and
• a vertex transformation function.

By decomposing the design variations into a set of profile transformation functions, the
effects of each function can be combined by simple sequential execution to achieve various
designs. These transformations can all feature individual parameters; the sine transformation
used in Figure 6.2(f), for example, requires three parameters: frequency, amplitude and the
points of the profile polygon to which it is applied to.

Step-by-Step Ring Generation. A step-by-step generation of a basic ring shape is illustrated
in Figure 6.2. First, a basic profile polygon of the ring is designed (see Figure 6.2(a)) and placed
radially several times around the center of the ring (see Figure 6.2(b)). The distance to to center
is defined by the radius of the ring. This covers the first three parameters of the ring parametriza-
tion. By using the GML operator bridgerings these profile polygons can be connected to form
a control polygon (see Figure 6.2(c)) of a subdivision surface (see Figure 6.2(d)). By varying
the sharpness of the edges of the control polygon different ring shapes can be achieved. At this
step the vertex-based profile transformation, which is the fourth parameter, is set to an identity
transformation (see Figure 6.2(e)). By changing it to a selective sine transformation (see Fig-
ure 6.2(f)), which affects only the topmost points of the profile polygon, a decorative wave on
top of the ring’s surface can be achieved (see Figure 6.2(g)). Finally, materials can be set to
different parts to finish the look of this ring (see Figure 6.2(h)).

(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 6.2 Parametric weeding ring construction begins with designing a profile (a), which is then radially
placed several times around the center of the ring (b). These profile polygons are then connected to form
a control polygon (c) of a subdivision surface (d). Instead of a identity transformation (e) the profile
transformation function can be changed to a selective sine function (f), which creates a decorative wave
on the surface of the ring (g). Finally, materials can be applied to the different parts (h). (image source:
Berndt et al. [BSK∗12])
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Patterns and Engravings. Patterns and engravings are applied to a basic ring shape through
the technique of displacement mapping. Displacement mapping can be realized on per-vertex
and per-pixel basis. The latter only affects the resulting image through changing the normal
vectors and thus the lighting calculation. The vertices of the mesh are not affected. The gener-
ated rings are not only created for visualization purposes, but also for rapid-prototyping pur-
poses (e.g. three-dimensional printing). For this, actual geometry is necessary and therefore the
per-vertex approach, where the geometry of the ring itself is adapted, is the only alternative.

For per-vertex displacement mapping sample points on the surface are taken and displaced
in direction of their normal vector. The distance used for the displacement is provided in a
separate height map. Displaced points also feature new normal vectors, which are calculated by
combining the actual surface normal with one provided in a separate normal map. On the fly a
micro-tessellation is created in regions with a surface displacement. The displacement mapping
is done entirely on the GPU to provide efficiency. This method is very flexible and allows even
modeling of irregular shape features that are too cumbersome to model on the control mesh
level. Examples for rings with engravings and surface patterns are shown in Figure 6.3.

Fig. 6.3 Engravings and surface patterns are realized through vertex-based displacement mapping done
on the GPU. (image source: Berndt et al. [BSK∗12])

For special surface features like holes, sockets or cut-aways, displacement mapping is not
the right tool. Through the use of Boolean operations through Constructive Solid Geometry
(see Section 3.7) complex surface features can be realized. Constructive Solid Geometry can
be achieved by screen-space methods and object-space methods. Again, screen-space methods
are not suitable for rapid-prototyping purposes, but necessary for providing quick previews.
Therefore, screen-space methods are used for previewing purposes and an exporter is provided
to calculate the real mesh. Examples for rings created through the use of Boolean operations
are shown in Figure 6.4.

Fig. 6.4 Boolean operations can be used for gem sockets, holes and cut-aways. Those surface features
are hard or not possible to realize with displacement mapping.
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Placing of Gemstones. The gemstone model used for the rings is the brilliant cut type. Like
in the work of Hemphill et al. [HRJS98] gemstones are realized through convex polyhedra (see
Section 3.5). In comparison to Hemphill et al., the parametrization of the gemstones used for
the procedural wedding rings is slightly simplified. Procedural instances of gemstones can be
placed on rings by specifying the apex point, an up-vector, and a scale factor. The position of
the gem is determined by a ray-cast. In Figure 6.5 variations of gemstone placements are shown
in relation to a real ring.

Fig. 6.5 Variations of gemstone placement based on a real ring. Gemstone can be placed procedurally
based on surface features of the ring. (image source: Berndt et al. [BSK∗12])

6.2 Procedural Monument Reconstruction

Being able to reconstruct monuments through generalized techniques is an important feature for
a reconstruction technique. Famous monuments are very special and are usually of non-trivial
size and complexity. If a reconstruction technique is able to process such unique examples of
architecture it furthermore proves that it is suited to process regular architecture and structures
as well. This underlines the importance of the results presented in this section.

These results include the interactive reconstruction of the Louvre through the GML Com-
positor (see Section 4.4), which started in Chapter 5. In the context of split grammars on convex
polyhedra, which have been discussed in Section 4.2, procedural models of the famous Rialto
Bridge in Venice and the Eiffel Tower in Paris have been created. These two models have not
been generated through an interactive tool, but they offer parameters that allow the creation of
variations of these iconic architectural monuments.

6.2.1 Interactive Reconstruction of the Louvre

This section focuses on interactive reconstruction of the Louvre accomplished with modeling
tool that is developed at our institute, the GML Compositor (see Section 4.4). The procedural
window building block library that has been generating in the case study in 5.2 has become an
integral part of modeling tools for monument reconstruction featured within the GML Com-
positor.

The partial reconstruction of the Louvre presented in this section was done in our work
[ZKT∗14]. The modeling operations GML Compositor had been utilized by the student Pszeida
in context of his Bachelor’s thesis [Psz14] to assess the practical applicability and usability of
the GML Compositor prototype. His input was very important to improve the handling of
the system. He was able to approach the task from an end-users perspective, except that the
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prospective end-user will have a background in art history rather than computer science. This
section details the reconstruction progress and shows all results that have been achieved up
until now.

The reconstruction features several façades of the Louvre highlighted in the ground layout
shown in Figure 6.6. These include

• façades of the Cour Carée,
• the arcade section of the Cour Napoléon, and
• Perrault’s Colonnade, the outer façade of the east wing.
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Fig. 6.6 Ground layout plan of the Louvre. The reconstruction covers the façades highlighted in red.
These are façades of the Cour Carée, the arcade section of the connecting wings of the Cour Napoléon,
and Perrault’s Colonnade, the outer façade of the east wing. (original image copyright by Arnaud Gail-
lard, license: CC BY-SA 3.0)

The Reconstruction of the Cour Carée. Based on the available source material, roughly 80
percent of the façades of Cour Carée could be reconstructed so far. Small differences in the
three reconstructed façades have been neglected for the sake of a more efficient reconstruction.
Figures 6.7(a) - (c) show important steps in the split hierarchy of the façade. Different col-
ored spaces indicate linked groups. The obtained level of detail of the final model is shown in
Figure 6.7(d).

Naturally, the speed of the reconstruction depends on the degree of acquaintance with the
modeling system. After some time to get used to the system, Pszeida was able to reconstruct
the façade of the Cour Carrée in roughly twelve hours with a preceding ten hours of planing.
A coarse approximation was achieved faster, in a few hours, and the remaining time was spent
modeling finer details. A rendering of the façades from the Cour Carée is seen in Figure 6.8.

The Reconstruction of the Arcades of the Connecting Wings in the Cour Napoléon. As
for the Cour Napoléon, about 40 percent of the façades are finished. For the remaining parts
a coarse façade layout has been reconstructed. The arcade section of the Cour Napoléon was
done in about nine hours after four hours of planing.

To achieve real three-dimensional models, façades that are reconstructed with the system
can feature more than just extrusions in one direction. Through operations that can be applied
in any of the three major axis directions, more complicated three-dimensional structures can
be achieved as well. The cross-vaults in the arcades are achieved by a combination of two
applications of an arch asset operation (see Figure 6.9).

http://creativecommons.org/licenses/by-sa/3.0/
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(a)

(b)

(c)

(d)

Fig. 6.7 Important steps in the hierarchical decomposition of a façade at the Cour Carée. Same colored
spaces indicate linked groups. First, the symmetry of the facade is achieved (a), then the horizontal (b)
and vertical (c) splits are done. Spaces colored in purple color tones indicate exceptions in repetitions.
At the end details are inserted leading to final level of detail (d). (image adapted from Zmugg et al.
[ZKT∗14])



6.2 Procedural Monument Reconstruction 165

Fig. 6.8 Rendering of the current model of the Cour Carrée reconstruction. (image source: Pszeida
[Psz14])

(a) (b)

Fig. 6.9 The cross-vaults (a) can be achieved through successive application of an arch asset operation
in different directions (b).

To judge the obtained level of detail a comparison between photograph and model is shown
in Figure 6.10. These images show that still some work is needed to achieve the same level
of detail, but that parametric model can be further developed once appropriate measurements
and more detailed photographs or plans become available. In the case in which textures are
not sufficient for representing the fine surface ornaments, a separate analysis is necessary to
describe them procedurally.

The Reconstruction of Perrault’s Colonnade. The reconstruction of the pavilion part of
Perrault’s Colonnade was discussed in detail in Section 5.1.2. It took about eight hours for
Krispel and me to reconstruct the pavilion. A rendering with emphasis on interesting parts is
shown in Figure 6.11.
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(a) (b)

Fig. 6.10 Comparison between a photograph of the arcade at the Cour Napoléon and the current recon-
structed version. (image source: Zmugg et al. [ZKT∗14])

Fig. 6.11 Rendering of the final step of the reconstruction. Special parts such as the round pillars, the
parapet and linked ledges are highlighted. (image source: Zmugg et al. [ZKT∗14])

The whole façade containing the pavilion was reconstructed by Pszeida independently. He
needed about twelve hours with additional ten hours for planing to reconstruct the whole
façade. This façade is a little bit less detailed than the separate pavilion. Figure 6.12 shows
the acquired result.

6.2.2 A Procedural Model of the Rialto Bridge

In course of the research on split grammars on convex polyhedra (see Section 4.2) I attempted
a procedural reconstruction of the famous Rialto Bridge in Venice (see Figure 6.13) because its



6.2 Procedural Monument Reconstruction 167

Fig. 6.12 Rendering of the whole east wing façade, containing the pavilions, the wings and the vestibule
in the middle. (image source: Zmugg et al. [ZKT∗14])

Fig. 6.13 The famous Rialto pedestrian bridge in Venice, Italy. (photograph courtesy of Pia Niederdor-
fer and Michael Schwarz)

design demonstrates the limitation of box grammars and shows the advantages of using convex
polyhedra instead. These advantages of convex polyhedra are demonstrated in the following
ways:

• The bridge’s slope defines the shape of the basic scopes that form the bridge. These scopes
are then split without involving the slope’s angle in any calculations. Further operations
take the shape of the scopes into account and no modifications need to be made for specific
slopes.

• All arches used in this example adapt to their scope. No pre-modeled assets have been used
and scaled to match proportions. Due to this fact all arches are always circle segments and
are never distorted to ellipses.

The detailed explanation of the procedural reconstruction of the Rialto Bridge performed
in this section extends the explanation that has been previously done in our work [TKZ∗13b].
After analyzing the structure of the bridge, this section will demonstrate how the procedural
split grammar model was realized.

Bridge Analysis. The symmetric Rialto pedestrian bridge spans over the Canal Grande and
connects two city parts of Venice. The most important parameters are visualized in top, front
and side view in Figure 6.14. The bridge has a length l of 48 meters, a width w of 22 meters, and
the passageway has a height p of 7.50 meters. Further measurements have not been available
to us, so all relations between the sizes of parts are based upon available photographs. Through
the procedural reconstruction of the bridge, however, real measurements can be incorporated
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Fig. 6.14 Top, front, and side view from a model of the Rialto Bridge depicting the important basic
parameters. Besides the width w, the length l, and the height h of the bridge there is the height of the
passageway p, the base height at the sides b, and the angle of the slope α . Detailed measurements
include the width of the stairs ws and wc, the length of the market stalls wm, the width of the market
stalls lm, and the width of the central gate la.

at any time. Characteristic for the basic shape of the bridge is a slope with an angle α from the
sides with a base height b to the middle part with height h to reach an appropriate height p for
boats to pass through below.

The bridge features two characteristic lines of inward-facing market stalls on the slopes. In
total there are 24 shops with length wm and width lm with six in each of the four distinct parts.
The six shops that belong together share a round roof and are placed along the slope. The space
for each stall is defined through a sheared box in which an arch-shaped entrance is inscribed.

Between these two lines of market stalls, as well as behind, are stairs for pedestrians to
overcome the slope. The width of the stairs in between the shops wc is bigger than the width of
the stairs behind the shops ws. In regular distances these stairs feature longer even parts to ease
the entrance to the shops.
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At the peak of the bridge there is an even area without any shops. Instead of the shops
there are two gates connecting the three different paths to cross the bridge. The height of these
archways is bigger than the height of the part containing the market stalls. Furthermore, the
archways have two pillars that are symbolically supporting the separate triangle-shaped roof.
The arches are inscribed in the convex shape defined by the straight pillars on the side and the
triangle-shaped roof at the top.

The balustrade on both sides of the bridge features one segment containing nine vertical
pillars for each market stall and two segments of nine vertical pillars for the central gates. This
indicates that the width of the archway part la in the middle is twice as wide as the width of
single market stalls lm.

The passageway is realized through a circular segmental arch and is inscribed the the convex
shape defined by the two slopes and the even mid part at the peak of the bridge.

The bridge, furthermore, features a lot of decoration. All borders of arches, which include
the passageway, the archway at the top, and the market stalls, are decorated. The archway,
additionally, features a face-shaped keystone decoration. A decorative line is also placed above
the market stalls and runs across the whole part to which the shops belong. Additionally, the
balustrade features a decoration on the side facing the river.

Reconstruction of the Bridge. Through the parameters length l, width w, height h, base
height b, height of the passageway p, and the slope angle α the shape of the bridge is clearly
over-determined. There are many different parametrizations that express certain parameters
through others. Which parameters are directly accessible depends on the application. For the
reconstruction of the bridge I decided that the parameters b and p and are indirectly expressed
by the parameters l, h and α . Alternatively, the parameters p and α can also be defined by the
parameters h, l, and b.

Although variations of the partitions along the width and length of the bridge and their
relations to each other is easily possible, I decided to keep true to the original bridge because
I did not want to alienate it too much. Therefore, the model is designed to keep the relations
ws : wm : wc and lm : la as close as possible to the corresponding relations of the original bridge.

Decorations of the bridge are approximated through split grammar rules featuring extru-
sions. All these decorations adapt to all size changes without distortions because no detail has
loaded from external meshes.

Varying the width w of the procedural bridge model introduces further lines of market stalls
and gates. The width of the market stall line wm and the width of the outer stair parts ws
are kept the same and the width of the stairs in between wc varies to ensure a continuous
transition. Varying the length l introduces further market stalls in all lines while keeping the
width of the gate the same. Varying the height h indirectly also changes the base height b,
which increases the space below the bridge. Finally, by varying the angle α different slopes, to
which all elements of the bridge adapt automatically, can be achieved. Variations of w and l are
shown in Figure 6.15 and variations of h and α are shown in Figure 6.16.

An intermediate step of the bridge grammar (as seen in the first row of Figure 6.16) demon-
strates the basic structure of the bridge. Up to this step in the refinement, only ten rules are
necessary. The lower rows of Figure 6.16 show how three different variations for the passage-
way under the bridge adapt for different slopes of the bridge. Note that the fourth row inserts
arches into the non-convex geometry surrounding the big arch, which takes guidance from
their scope, which is not set to the convex hull after splitting the non-convex surroundings of
the main passageway. For these variations of the bridge the width w and the length l have been
kept constant.
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Fig. 6.15 Procedural model of the Rialto Bridge that adapts to changes in width with more or less lines
of market stalls and to changes in length with more or less individual shops by keeping the size of the
gates in the middle the same.

Fig. 6.16 Variations of the bridge example. The slope of the bridge varies from zero degrees (left col-
umn) in ten degree steps to thirty degrees (right column). The height of the bridge changes accordingly.
The first row shows an intermediate state of the subdivision process. The convex shapes, in which arches
and other details are inserted to, can be seen at this stage. The remaining three rows show different de-
signs for the passageway beneath the bridge. Note that all arches adapt to their scopes in a procedural
manner. The arches are not scaled or sheared to fit the scopes. (image source: Thaller et al. [TKZ∗13b])
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The input shape for the bridge is a box of appropriate dimensions; parameters for the main
Bridge rule are the slope’s angle α and the height h of the bridge. The ten rules to describe the
basic structure of the bridge begin with the following:

Bridge(α,h) ; Subdivide(n=u=X, (A,B)=extremes(X), 1r, mid-wdt, 1r)
{Side1(α,h), Mid1(h), mirror(X) Side1(α,h)}

Side1(α,h) ; Subdivide(n=(−sinα,0,cosα), u=Z,
(A,B)=extremes(Z−X), h, arcade-hgt, 1r)

{Below, Side2, void}
Mid1(h) ; Subdivide(n=u=Z, (A,B)=extremes(Z), h, arcade-hgt, 1r)

{Below, Mid2, void}
Below∗ ; Merge()

{Passageway}

The Side1 rule introduces the slant of the bridge. It uses the diagonal direction Z-X to pick
the limit points A and B. The point A is therefore the point nearest the center of the bridge on
the bottom of the Side1 shape. The height h is measured upwards (~u = Z) from there.

After execution of Mid1 and Side1, the overall shape of the bridge is set. The later rules do
not refer to the parameters α and h anymore; rather, they take their guidance from the scopes
themselves. The Below∗ rule is a non-context-free rule that collects all shapes with label Below
and merges them into a single shape.

The structure of the bridge is completed with the following rules:

Side2 ; Subdivide(n=u=Y, (A,B)=extremes(Y),
outer-wdt, arcade-wdt, 1r, arcade-wdt, outer-wdt)

{Outer1, Arcade1, Stairs, mirror(Y) Arcade1, mirror(Y) Outer1}
Mid2 ; Subdivide(n=u=Y, (A,B)=extremes(Y),

outer-wdt, arcade-wdt, 1r, arcade-wdt, outer-wdt)
{Outer1, Gate, void, mirror(Y) Gate, mirror(Y) Outer1}

Outer1 ; Subdivide(n=u=Y, (A,B)=extremes(Y), balustrade-wdt, 1r)
{Outer2, Stairs}

Outer2 ; Subdivide(n=raycast(−Z), u=Z, (A,B)=extremes(Z), balustrade-hgt, 1r)
{Balustrade, void}

Arcade1 ; Subdivide(n=raycast(−Z), u=Z, (A,B)=extremes(Z), 1r, deco-hgt)
{Arcade2, DecoAndRoof}

Arcade2 ; Repeat(n=u=X, (A,B)=extremes(X), A∗, arcade-element-wdt)
{ArcadeElement}

The Mid2 and Side2 rules differ only in their use of Arcade1 and Gate as labels for the
resulting shapes. For the sake of simplicity, a template rule (like the ones defined in the work
of Krecklau et al. [KPK10]) has not been used to unify these two rules.

The two Outer rules generate the overall shape of the balustrade without requiring an explicit
angle as a parameter. A ray cast determines the normal of the lower boundary plane, which is
then used to split the shape.

To complete the model of the bridge further rules that are not listed here are necessary. These
rules will refine the remaining non-terminal shapes to achieve more detail. These rules continue
in the following ways:

• The ArcadeElement rule continues by inscribing an arch to the sheared box, which describes
the corresponding shape. To create the borders of the arch frame-split operations in combi-
nation with subdivide operations are applied.



172 6 Applications and Results

• The DecoAndRoof rule creates the roof for the market stalls through an extrude operation
and the decorative line that runs above the market stalls and below the roof. The round roof
is realized through application of arch operations. The creation of the roof is detailed in
Figure 6.17.

• The Balustrade rule creates the balustrade through application of a repeat operation for
the individual balustrade segments and the pillars within them. There is one segment for
each market stall and two segments for the gate. Each segment consists of nine pillars.
The balustrade decoration is achieved through sequential application of extrude operations.
Figure 6.18 illustrates the separate extrusion steps.

• The Gate rule trims its corresponding shape through two planes introducing the triangle-
shaped roof, which is refined by application of frame-split and extrude operations. The top
parts of the pillars are refined through extrusions and the arch is inscribed in the convex
shape, which is bounded by the pillars and the roof. The border of the arch is again realized
through a frame-split operation.

• The Passageway rule fits a segmental arch in the convex shape defined by the slope and the
top part of the bridge. The decoration of this arch is achieved through sequential application
of frame-split and extrude operations.

• The Stair rule is executed at two places: in the Side2 rule for the middle stairs and in the
Outer1 rule for the stairs in between the shops and the balustrade. Stairs are realized through
a repeat operation. Based on the slope the size of the even spaces that are regularly placed in
the stairs is influenced. At steep slopes these even spaces vanish and at low slopes no stairs
are inserted at all.

(a) (b) (c)

(d) (e) (f)

Fig. 6.17 Creation of the roof for the market stalls. Final parts are colored in the greenish roof color and
parts that will be refined further are colored red. First the space for the roof is extruded (a). Afterwards
an arch operation is applied in the slanted direction of the roof (b). To achieve a rounded ending the
affected part is split off (c) and an arch operation is applied along the normal of the plane spanned by
the up-direction and the slanted direction of the roof. (d). The non-convex part of this arch operation is
split in half and the outer part is discarded (e). To finalize the shape of the roof the convex hull of all
separate parts is calculated (f).
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(a) (b) (c)

(d) (e) (f)

Fig. 6.18 The lower balustrade decoration is created through a sequence of extrusions. Final parts are
colored grey and parts that will be refined further are colored red. The lower part of the balustrade is first
extruded forward (a) and the extruded part is then extruded downward (b). Next, the different parts of
the profile are added (c) and split off to achieve steps of different length (d). Finally a repeat operation
is used to partition the lowest part into sections(e), which are refined to obtain the final result (f).

6.2.3 A Procedural Wall Model inspired by the Great Wall of China

Deformation-aware split grammar methods (see Section 4.3) allow to specify objects with
structural regularity that adapt to deformations in space, like the Great Wall of China, which is
a massive building that is even visible from outer space. This wall that spans mountain ranges
and overcomes several elevation differences inspired the example featured in this section to
demonstrate the application of straight splits in deformation-aware split grammars. This is no
attempt to reconstruct the whole wall accurately; the terrain and wall placement is done manu-
ally and there is no relation to the real thing. Figure 6.19 shows the result of this reconstruction,
which I did in cooperation with Edelsbrunner in our work [ZTK∗14]. Wall segments are de-
formed to connect two towers. The repetition of elements adapts to the space provided by the
deformation as seen in the crenelation and bricks of the wall. Measurements are taken along
the deformation to calculate the number of objects to place. Straight splits are introduced in the
deformed wall for realization of level stairs and bricks. This section details the steps necessary
to achieve this result.

Generation of the Basic Wall Model. The highly regular structure of a large stonewall that
stretches across a landscape makes it an ideal candidate for grammatical representation. Its an
especially fitting example for deformation-aware split grammars because its path might follow
a curve and should adapt to elevation differences accordingly.
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Fig. 6.19 Wall model running over a terrain inspired by the Great Wall of China. The repetition of
elements adapts to the space provided by the deformation process as seen in the crenelation and bricks
of the wall. Measurements are taken along the deformation to calculate the number of objects to place.
Straight splits are introduced in the deformed wall for realization of level stairs and bricks. (image
source: Zmugg et al. [ZTK∗14])

The basic model consists of two parts: towers and wall segments. Both are realized through
a split grammar applied to a box shape. For a wall segment, the shape is divided into the outer
parts for the crenelation and bricks and the inner part for the walkway. The crenelation and
the bricks are realized through a deformation-aware repeat operation with the effect that the
amount of bricks and merlons adapt to the applied deformation. The size and color of the bricks
are furthermore randomly generated to ensure that each piece has its unique look. The models
for the towers are slightly tapered and easily generated through the use of convex polyhedra as
shape representation. The same rule for bricks and merlons are also inserted here, but – except
for color and size of the bricks – the amount stays the same for each tower because they will
not be deformed.

The deformation of each wall segment is dependent on the location of the two towers that
will be connected and is realized through three separate deformations steps that are illustrated
on a simple shape in Figure 6.20. The first deformation in Figure 6.20(b) step takes the lower
part of the entire wall segment (without the crenelation part) and introduces a steep, but not
vertical, slope on the side of the wall. The following two deformations are used to connect the
two spatially different located towers. The first deformation in Figure 6.20(c) is used to regulate
the height difference and the second one in Figure 6.20(d) is used to overcome the difference
on the horizontal plane.

(a) (b) (c) (d)

Fig. 6.20 Illustration of a nested application of free-form deformations on a wall to connect two towers
with different locations. Starting from a simple wall shape (a) three steps of deformations are applied.
First only the base (yellow) is affected by a widening deformation (b). For the wall to serve as a con-
nector between two towers, afterwards vertical (c) and horizontal (d) deformations are applied. (image
source: Zmugg et al. [ZTK∗14])
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This basic model of a wall, which connects two towers t1 and t2 with individual positions
and orientations, can be realized by the following split grammar rules:

Wall(t1,t2) ; Deform(localBB, (12,2,2),
calcHorizontalDeformationOffsets(t1,t2))
{DeformedWall1(t1,t2)}

DeformedWall1(t1,t2) ; Deform(localBB, (4,2,2),
calcVerticalDeformationOffsets(t1,t2))
{DeformedWall2}

DeformedWall2 ; Subdivide(Z, 1r, crenelationH)
{Base, Top}

Base ; Deform(localBB,(2,2,2), calcBaseDeformationOffsets())
{DeformedBase}

DeformedBase ; Subdivide(Y, brickW, 1r, brickW)
{BrickWall, Walkway, mirror(Y) BrickWall}

BrickWall ; Repeat(Z, A∗, brickH)
{BrickRow}

BrickRow ; RandomRepeatD(X, A∗ brickW, rayIntersect(Y))
{Brick}

Top ; Subdivide(Y, brickW, 1r, brickW)
{Crenelation, void, mirror(Y) Crenelation}

Crenelation ; RepeatD(X, A(BA)∗, B, merlonW, spaceW, rayIntersect(Y))
{Merlon, MerlonSpace}

Rules are not provided for all non-terminal shape labels that appear. All labels without an
associated rule insert further detail like the shape of the single bricks or merlons. To keep the
code as simple and concise as possible these replacements steps have been skipped in this
listing.

Note that, as with the geometry, deformations are also specified in a coarse to fine man-
ner. This means for the deformations in Figure 6.20 that the horizontal deformation in Fig-
ure 6.20(d) is specified first in the Wall rule, the vertical deformation in Figure 6.20(c) right
after in the DeformedWall1 rule, and the smaller base deformation in Figure 6.20(b) is specified
later in the hierarchy in the Base rule. Furthermore, note that only the first two deformations
are dependent on the location and orientation of the two towers.

Of additional interest is the randomized repeatD operation utilized in the BrickRow rule.
This rule takes a minimum size and then partitions the shape in pieces of at least that size.
The sizes of the pieces are chosen randomly; in case of the bricks this is done to enhance the
impression of the wall.

Introduction of Straight Splits in the Wall Model. Two problems arise within the basic
model, which was been described so far. First, all splits done to realize different levels of bricks
will follow the course of the deformation. This leads to deformed bricks, which are whether
neither practical nor realistic. Second, stairs on the walkway cannot be realized in this model
because the height difference is introduced by the deformation. It is not possible to introduce
splits in the undeformed model that will be transformed to stairs in the deformed model. A
basic wall segment with the corresponding two towers and those mentioned problems is shown
in Figure 6.21(a).

The order and number of hierarchical deformation steps was in no way chosen arbitrarily.
Both aforementioned problems can be solved by baking the deformed geometry at the correct
spot in this deformation hierarchy. Both problems are dependent on the height difference of
the wall, so by baking the geometry of the lower wall after the height deformation step (see
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(a) (b)

Fig. 6.21 Without baking the geometry it is not possible to realize level stairs and bricks in deformed
wall segments (a). Split lines follow the deformations and stairs cannot be realized due to the fact that
the height offset is introduced by a deformation and is not accessible in the original undeformed model.
However, by baking the geometry after the height deformation these level structures can be introduced
easily (b). The amount of stairs and bricks still adapt to all deformations that are applied afterwards.
(image adapted from Zmugg et al. [ZTK∗14])

Figure 4.24(c)) straight splits (through a repeatD operation) can be used to split level stairs
and bricks, which adapt to the remaining deformations, into the wall. It is important that this
baking step and the splits are done before the final deformation step. This final deformation step
introduces the stretching of the wall and therefore, even though the geometry was baked before,
the amount of stairs and bricks can adapt to this deformation. Note that this is not necessary
for the crenelation part, which is not included in the bake operation. The crenelation should
follow and adapt to all deformations. The final model with level stairs and bricks in shown in
Figure 6.21(b).

The updated split grammar is as follows:

Wall(t1,t2) ; Deform(localBB, (12,2,2),
calcHorizontalDeformationOffsets(t1,t2))
{DeformedWall1(t1,t2)}

DeformedWall1(t1,t2) ; Deform(localBB, (4,2,2),
calcVerticalDeformationOffsets(t1,t2))
{DeformedWall2}

DeformedWall2 ; Subdivide(Z, 1r, crenelationH)
{Base, Top}

Base ; Deform(localBB,(2,2,2), calcBaseDeformationOffsets())
{DeformedBase}

DeformedBase ; Subdivide(Y, brickW, 1r, brickW)
{BrickWall, Walkway, mirror(Y) BrickWall}

BrickWall ; Bake(2)
{BrickWall1}

BrickWall1 ; Repeat(Z, A∗, brickH)
{BrickRow}

BrickRow ; RandomRepeatD(X, brickW, rayIntersect(Y))
{Brick}

Walkway ; Bake(2)
{Stairs}
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Stairs ; RepeatD(X, A∗, stairW, rayIntersect(Z))
{Step}

Top ; Subdivide(Y, brickW, 1r, brickW)
{Crenelation, void, mirror(Y) Crenelation}

Crenelation ; RepeatD(X, A(BA)∗, B, merlonW, spaceW, rayIntersect(Y))
{Merlon, MerlonSpace}

Changes are introduced at two locations. First the BrickWall rule has been modified. A bake
operation is applied before the wall is split in z-direction to introduce the individual brick rows.
This operation takes the innermost two deformations – the base deformation and the vertical
deformation – and applies them to the shapes labeled with the name BrickWall. Through this
the repeat operation in the BrickWall1 rule can introduce straight splits to the deformed wall.
The randomized repeatD operation in BrickRow rule still adapts to the horizontal deformation
because this deformation has not been baked. The second change is the addition of stairs. The
Walkway rule also bakes the innermost two deformation to enable the following Stairs rule to
use a repeatD operation – that adapts to the remaining deformation – to split the before unused
Walkway part into single steps.

6.2.4 A Procedural Model of the Eiffel Tower

This section highlights the work done by Eger in context of his Master’s thesis [Ege13] with the
title “Locally Context-Sensitive Shape Grammars”. He developed a variant of a split grammar
on convex polyhedra and generated a procedural model of the Eiffel Tower. Through devel-
oping a formalism that allows intensive use of interconnected structures, aligned struttings
throughout different levels of the tower, the merging of the different pillars, and connecting
parts for different beams have been realized. The model, furthermore, features different levels
of detail from a sparse wire frame model to a highly detailed model that even covers the single
rivets. For more detail on how this model was realized see the associated Master’s thesis.

A rendering of a model with a high level of detail (without rivets) together with zoomed in
detail views is shown in Figure 6.22. Different level of detail with no connecting beams or less
detailed beams are shown in Figure 6.23(a). Since this is a procedural model a change of pa-
rameters leads to variations of the original model. Variations with different height proportions
and angles are shown in Figure 6.23(b).

6.3 Procedural Generation of Buildings

Content creation for the movie and entertainment industry motivated procedural generation of
entire cities. Dependent on the application, buildings are realized within these cities with more
or less detail. These levels of detail can range from simple “paper” models for example for
flight simulations, to buildings with highly detailed façades and interiors for applications like
first-person shooter games.

A building is a collection of different interconnecting design elements, which all deserve
their own analysis, like the one that has been done on windows in Section 5.2. The interiors
of buildings including room arrangements with connecting structures like doors and staircases
are an especially hard and prominent topic. This section shows the results achieved through
split grammars in the domain of procedural generation of buildings. Aside from windows,
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Fig. 6.22 A procedural model of the Eiffel Tower in Paris realized through split grammars based on
convex polyhedra within the GML. Zoomed in detail renderings of important parts are shown on the
right. (image source: Eger [Ege13])

(a) (b)

Fig. 6.23 Different detail levels of the Eiffel Tower model (a) as well as models reached through varia-
tions of certain parameters like height proportions and angles (a). (image source: Eger [Ege13])
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staircases (see Section 6.3.1), office buildings (see Section 6.3.2), and deformed and cartoonish
architecture (see Section 6.3.3) have been explored by me.

6.3.1 Procedural Staircases

When realizing a procedural model of a building with interior staircases are an integral part be-
cause they are necessary for accessing different floors of a building. Dependent on the available
space, staircases need to be realized in different shaped volumes.

To showcase the power of split grammars on convex polyhedra (see Section 4.2) I realized
staircases in various shapes. For realizing staircases in arbitrary, but reasonable, surroundings
step shapes do not necessarily have to stay the same. As within the example of the winding
staircase in Section 4.2.2 the scope for each step may be different, but convex. It is desirable to
provide only one rule for the steps instead of many different rules or geometries dealing with
different situations. This highlights the advantages of split grammars on convex polyhedra. As
explained in detail in Section 4.2.1, query operations are utilized to find important features of
the scope, which are again used to determine the shape of the step.

To show the versatility of this Step rule, staircases have been constructed in various extreme
shapes. These non-convex shapes have been generated from several poly-lines forming letters.
For each of these shapes, one or more ‘walking lines’ – the lines along which all stairs have
the same depth – had been created manually. This line was then used to split the shape into
the individual step shapes with the help of the polyline-split. Finally, the same Step rule was
applied to all of these shapes. The result of this is shown in Figure 6.24 and 6.25.

Fig. 6.24 Stairs inserted into various non-convex geometries forming letters that read “GRAPHS”. For
all of these letter-like shapes, except for the ‘H’, one walking line is sufficient to create the stairs.



180 6 Applications and Results

Fig. 6.25 Closeup views of the step shapes of the staircases shown in Figure 6.24. The shape of the
steps is automatically generated in the correct way based on the available convex scope.

6.3.2 Procedural Office Buildings

Oblong office buildings have a very simple internal structure which allows to demonstrate the
volumetric approach of the frame-split operation, which has been introduced in context of split
grammars on convex polyhedra (see Section 4.2). This section includes extended explanations
from examples that have been realized in context of our work [TKZ∗13b, ZTK∗13, ZTK∗14].

Defining the Structure of Office Buildings. The inner part of the frame-split is used in
the OfficeBuilding rule to design the interior of a simple structured office building (see Fig-
ure 6.26). Each level of the split was used for a different part of the building such as the façade,
rooms, hallway, and courtyard wall. Attributes that are assigned to the scope’s bounding planes
define the way how the parts of the frame-split operation, which originate from these bounding
planes, are processed further. All parts of the sequential application of the frame-split opera-
tion are influenced by these attributes, for example, the side with an entrance has a door in the
façade and this door has a connection to the hallway, which further leads to a staircase.

The OfficeBuilding rule can be applied to any reasonable convex ground plan. Figure 6.26(c)
and (d) show the result of applying this OfficeBuilding rule to several ground plans generated
through a manually constructed street layout.

The interior that has been created through split grammars for these buildings is still pretty
simple. Realization of complex room arrangements involving non-convex rooms through split
grammars is still an open problem.

Alignment of Windows and Interior Walls. Façades and interior walls both follow rules
that can be specified by split grammars. The layout of the façade rarely depends on the place-
ment of interior walls, but the placement of the interior walls need to respect the structures
implied by the façade. Thus, the rules for specifying the façade layout should be created inde-
pendently from the rules for the interior.

With the help of convex polyhedra and interconnected structures, variants of the subdivide
and repeat operations can be defined that shift the split planes up to a specified maximum dis-
tance to avoid intersections between the walls and a list of shapes that is given as an additional
parameter – the so-called avoidance volumes. These operations, which have been developed



6.3 Procedural Generation of Buildings 181

(a) (b)

(c) (d) (e)

Fig. 6.26 Application of the OfficeBuilding rule. The frame-split operation is used sequentially to create
the interior of a simple structured office building. Each level of the split was used for a different part of
the building (a) such as the façade, rooms, hallway, and courtyard wall. These parts can then be further
refined based on initial attributes. For example, the side with an entrance has a door in the façade and
this door has a connection to the hallway, which further leads to a staircase. The OfficeBuilding rule can
be applied to any reasonable convex ground plan ((c) and (d)). A manually constructed street layout (e)
was used to generate a set of ground plans. (image adapted from Thaller et al. [TKZ∗13b])

by Thaller and me, can be considered as complementary to the snap lines and occlusion query
mechanisms of CGA Shape [MWH∗06].

In Figure 6.27 these operations are applied in the office building example. The avoidance
volumes are created by extruding the scopes of the windows inwards (orange). These shapes are
collected and passed to the grammar evaluation tree for the interior, which then respects these
volumes. Thus, each window locally defines a volume that walls, which are defined elsewhere,
will avoid in their placement.

Implementation of City Blocks. Separate houses in one block can also be realized through
splitting the initial building shape into several parts. Attributes define that the planes in between
the neighboring houses are not included in the frame-split operation. Each part of the building
is a separate application of the OfficeBuilding rule and can then be generated with different
parameters. An example for this is shown in Figure 6.28(a). Structures that span more than one
floor, such as staircases, have been also realized in this example (see Figure 6.28(b) and (c)).

Curved Office Buildings. As buildings do not necessarily have to feature straight façades
when they follow the course of a street, office building have also been realized through
deformation-aware split grammars as presented in Section 4.3.
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(a) (b)

(c) (d)

Fig. 6.27 If a normal repeat operation is used to place interior walls independently of the façade,
they will sometimes violate the forbidden space (orange) in front of a window ((a) and (b)). Using
the avoidance volumes mechanism, the walls are shifted sideways from their ideal (equally-spaced)
positions until they no longer intersect a forbidden space ((c) and (d)). (image source: Thaller et al.
[TKZ∗13b])

(a)

(b)

(c)

Fig. 6.28 A city block (a) is realized using multiple execution of the OfficeBuilding rule. The initial
geometry is split into parts and the house generating rule is applied to each part separately with different
parameters (for example the height). Attributes define which sides of the houses have an entrance. Stair-
cases that span over several floors have been realized as well ((b) and (c)). (image adapted from Thaller
et al. [TKZ∗13b])
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(a)

(b)

(c)

Fig. 6.29 A building with room layout, defined using a split grammar approach (a), adapts accord-
ingly under different deformations that approximate circles and circle segments. For these deformations
only the deformation on the course structure of the building has been added to the grammar, the num-
ber of rooms and windows is handled automatically with the repeatD operation on deformed scopes.
The circle segment deformation (b) takes the building as shown in (a). For topological changes (c) the
grammar rules for the roof and the left and right boundary walls of (a) have been adapted and an appro-
priate deformation has been applied to achieve a C1-continuous transition. (image source: Zmugg et al.
[ZTK∗13])

The example features an oblong building which is bent into different shapes using defor-
mations (see Figure 6.29) that approximate circular shapes. The building structure is again
described through the frame-split operation and is split into hallway and office parts, and au-
tomatic positioning of rooms using a repeatD rule. Similarly, windows on façades are spaced
using repeatD. Therefore, the window and room placement adapts automatically under defor-
mations. The number of windows and rooms changes accordingly, although only one deforma-
tion rule has been inserted in an early replacement step that corresponds to the coarse building
layout.

To achieve topological changes, like in the circular building in Figure 6.29(c), the initial
split grammar has to be adapted on the roof and the left and right boundary walls to guarantee a
smooth transition. Furthermore, to achieve a C1-continuous transition at the connection points,
an appropriate deformation is necessary.
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6.3.3 Procedural Deformed and Cartoonish Architecture

Deformation-aware Split Grammars (see Section 4.3) have been designed with the desire in
mind to create architecture that does not necessarily need to feature only straight planar parts.
This section details the generation of several use cases realized with this specific addition to the
split grammar formalism. If not stated otherwise, the examples presented in this section have
been implemented by me in context of our work [ZTK∗13, ZTK∗14].

Fig. 6.30 A pagoda is realized through two layers. The upper one is placed in the hole created by the
roof segments of the lower layer. The curved roof segments that are common in East Asian architecture
can be approximated. (image source: Zmugg et al. [ZTK∗13])

A Procedural Pagoda Model. Many elements of classical East Asian architecture (pavilions,
pagodas, etc.) follow strict rules of hierarchy and symmetry and are therefore naturally suited
for a grammatical representation. For the pagoda in Figure 6.30 the two stories are modeled
separately. The second story is placed in the hole produced by the roof of the ground story. The
main focus here lies on the curved roof parts that are approximated through deformations. Roof
details, like the one realized in the work of Tenou et al. [Teo09] and Huang and Tai [HT13],
cannot be applied at the current state. For this it is necessary to apply rules to results of the
Boolean operations, which is not possible yet.

Procedural Medieval Architecture. Medieval buildings exhibit only slight deformations
(see Figure 6.31(a)). To realize this, each wall is deformed separately, but windows and doors
are not influenced by the deformations of neighboring walls. The roof as well as the timber
framing gives way under the weight and is therefore slightly bent downwards to simulate the
aging process. A second layer of deformations was applied to realize this aging process for
walls and roofs. The chimney was declared as an exception for the Boolean operation, so it is
not trimmed by the minus space of the roof.
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(a)

(b)

(c)

Fig. 6.31 A comparison of undeformed (left column) and deformed (right column) buildings. The
medieval building (a) is only deformed slightly to simulate that the roof and the timber framing give way
under the weight of the used materials. Stronger deformations are applied to the cartoonish caricatures.
The simple rectangular building (b) is made bulkier through deformations, to which roof ridges and
corner decorations adapt. In the third building (c) windows vanish due to the strong deformation, which
reduces the space available in the separate floors. (image source: Zmugg et al. [ZTK∗13])

Procedural Cartoonish Caricatures of Buildings. Cartoonish buildings can be deformed
in various ways as the designer sees fit. In Figure 6.31(b) a simple rectangular building is de-
formed to give it a more bulky shape. More space is created, but not enough to generate more
windows. The edge decoration is applied to the extended wall parts. These are combined by
Boolean operations in a way that a consistent edge decoration can be guaranteed for the de-
formed wall parts. The roof ridge as well is a result of the deformations on both roof segments.

Another example is shown in Figure 6.31(c). The whole building is deformed with a defor-
mation that is stronger than before. Walls are bent inwards and the separate floors are narrowed.
The effect on the entrance wing of the building is that the space available in the individual floors
is reduced. Therefore, all windows vanish from the ground floor and the number of windows
in the second floor is diminished. As before the corner decorations are still placed accordingly
and roof ridges adapt to the deformations of the corresponding roof segments.
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Semantically Consistent Procedural Taverns. The tools for deformed adjacent parts to-
gether with the corresponding Boolean operations have also been integrated in the GML Com-
positor by me. The topic of Schwarz in his Master’s seminar work [Sch14] was to design
semantically consistent cartoonish taverns in this framework under my supervision. After an
analysis of tavern styles that are common within fantasy-themed illustrations and computer
games, he extracted a set of important parameters as well as constraints upon these parameters
that fit to the characteristics of this class of buildings. This led to a semantically consistent para-
metric model of a tavern that has been realized within the GML Compositor. After additional
refinement this model could be used in the future to create cartoonish taverns automatically on
a large scale. Examples of such taverns are shown in Figure 6.32.

Fig. 6.32 Various kinds of taverns realized with the library of Schwarz [Sch14] inside the GML Com-
positor. Characteristic features of taverns in medieval video games are specific ground layouts, half-
timbered constructions and door signs.

6.4 Authoring Animated Virtual Museum Exhibits

In the domain of Cultural Heritage, visualizations of digitalized artifacts can be a great asset
for augmenting museum exhibits. However, single-object viewers only allow a detailed inspec-
tion of one single high quality artifact. Additional information is only brought up by separate
informations points, which present further text or images. Ideally, digital exhibits feature, for
example, interactive animations showing dynamically moving objects, all triggered and con-
trolled by user interaction. Instead of showing a static object that has neither inherent story nor
plot, interactive animations can be used in many different ways; they can, among other things,

• show an object in its context (e.g. excavation site),
• show how objects were utilized and employed,
• show related objects physically residing elsewhere,
• show three-dimensional comparisons with other similar objects,
• explain intricate assemblies with exploding views, or
• show transitions between different hypotheses.

If exhibits and showcases in museums are explained by displays rather than by paper notes,
then these displays can also be used in other ways. Explanations can be far more illustra-
tive when they are done using small three-dimensional animations instead by text. How-
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ever, creating compelling animations is a costly endeavor even without counting the cost of
high quality acquisition of digital artifacts. For the foreseeable future high-end tools like Au-
todesk Maya [Aut13c] will still be used for content creation and the task of game engines like
Unity3D [Uni13] will be presentation purposes. With the massive increase in three-dimensional
digitalization campaigns, which produce a large quantity of high quality museum artifact scans,
the scalability of this established method of generating compelling animations becomes an is-
sue. It is therefore time to research new ways to create interactive animations in a more cost
and labor efficient way. This opens up a place for a new type of authoring tools that create such
animations for museums.

Our work [ZTH∗12] focuses on these aspects and makes a first step in the direction of
streamlining the production of animated Cultural Heritage visualizations. This section is based
on this work. For the task at hand, a variant of the GML Compositor (see Section 4.4) was
developed. This software features two important features for the streamlining of animated vi-
sualizations of digital artifacts. First, besides the procedural modeling engine featured in the
GML Compositor, a direct integration with a digital asset repository – in this case the Repos-
itory Infrastructure (RI) of 3D-COFORM [PBH∗10, DTT∗10] – has been integrated in the
system. And second, the authoring process has been divided into three distinct stages, which
are realized in different modes in the system (see Figure 6.33):

• a designer mode where design-oriented staff create a set of good-looking configurable scene
templates containing the scene backdrop, animations, and placeholders instead of three-
dimensional assets,

• a curator mode where one of the available scene templates is chosen and filled via drag-and-
drop with high quality three-dimensional assets from the repository, and

• a presentation mode for viewing and presentation purposes of the generated scene.

These modes are the main contribution of this system and will be explained in detail in
the following. The contributions of this work has to be attributed to two groups. Hecher and
Schiffer have been responsible for the connection to the digital repository as well as the import
of the models. Thaller and me have been in charge of the realization of the system within
the GML Compositor. There I focused on integrating the scene graph functionality and the
interactions with it. The three modes have been realized in collaboration with Thaller.

Designer Mode Curator Mode Presentation Mode

Fig. 6.33 The production of animated scenes proceeds from the designer mode to the curator mode and,
finally to the presentation mode. The creation task is no linear process, but an iterative one. Changes
can be made at all levels at all times due the procedural basis of the system. (image source: Zmugg et
al. [ZTH∗12])
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6.4.1 Related Approaches for Authoring Virtual Exhibits

The augmentation of selected real exhibits through stunning three-dimensional information,
such as the exploration of an Egyptian mummy at the British museum [BSly], led to an interest
in three-dimensional visualizations in museums. Museums already started to digitalize all their
exhibits, so usually a large pool of high quality virtual artifacts already exists.

Virtual Museums. In terms of virtual museums there are a lot of different publications. Most
notably here are the work done in context of the ARCO project [WMD∗04, WWWC04] and in
the context of exhibition planning [MMPD08, HME∗12]. In those publications similar concepts
are used as in our work [ZTH∗12] (such as exhibition templates), but the focus is different.
While the aforementioned work focus on whole virtual exhibitions, Zmugg et al. focus at the
virtual exhibits. Real museums should not be replaced, but the appreciation of augmenting
physical artifacts with virtual ones should be enhanced. Therefore literature on virtual museums
is only marginally related.

Single Object Viewers for Digital Exhibits. The common way to showcase virtual exhibits
is using a single object viewer. One example here is the VirtualInspector [CPCS08, CPCS06],
a viewer that can be configured with HTML pages and a bit of script code. This viewer has
been used for many complementary exhibits, e.g. visitors can explore the individual chisel
marks on the five meter tall David statue in Florence. In terms of efficiency through custom-
tailoring a presentation software to a comprehensive collection of virtual artifacts, the Colonia
3D project [TSP∗12] takes a rather different approach. The main focus of their work is complete
historical city reconstruction. Their browser supports three interaction modes: findings mode,
reconstruction mode, and comparison mode.

Exhibits visualized in Game Engines. In contrast the the former used X3D viewers much
of the recent work on virtual museums and three-dimensional exhibitions uses game engines
for displaying virtual artifacts. This is mostly due to the superior visual quality, which can be
achieved through the use of such high-end software. Two representative approaches here are,
first, an adaption of the Torque3D engine with scripted interaction and an adapted level editor
for generating the exhibition layouts by Mateevitsi et al. [MSLV08] and, second, the VEX-
CMS from Chittaro et al. [CIR∗10], which is based on OGRE [Tor13] and features a custom
application, which uses game concepts for exhibition planning.

All in all, game engines could be used for streamlining the production of visualizations in
the Cultural Heritage domain, but they have not been developed for such a task and so there
exist some shortcomings:

• their authoring tools are proprietary and not tailored for inexperienced users, which are
common in the domain of Cultural Heritage,

• they have not been developed for displaying high-resolution scanned models with level of
detail mechanics,

• the long- or even mid-term sustainability may become a problem, and
• programming as well as modeling software like Autodesk Maya [Aut13c] is usually required

for content creation.
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6.4.2 The Designer Mode

The designer mode of the GML Compositor (see Section 4.4) incorporates the full set of mod-
eling, scene graph and animation operations available in this system. In this mode, the designer
creates scene templates that are later filled by curators in the curator mode. The tasks to create
a scene template are manifold and will be discussed in this section.

Fig. 6.34 Showcase of the integrated parametric modeling engine of the GML Compositor. Scripted as-
sets like arches and windows are imported from a separate asset library. Step by step a simple parametric
archway is generated with only a few clicks. Such model can serve as backdrop for the visualization of
virtual artifacts. (image adapted from Zmugg et al. [ZTH∗12])

Creating the Scene Backdrop. With the use of the procedural modeling operations of the
GML Compositor (see Section 4.4.3) backgrounds can be created easily. The parametric assets
used for several reconstruction tasks serve for appropriate backgrounds for historical artifacts.
Figure 6.34 shows the application of the integrated modeling engine of the GML compositor
to create a simple parametric building featuring several archways.

Creating the Scene Hierarchy. The main task is of course the creation of the scene layout.
The scene graph concept is ideal to describe hierarchical scenes. The relative positioning of
one object (child) relative to another (parent) results naturally in a hierarchy of transformations.
This hierarchy is best visible in animations.

The scene graph itself can be generated using the operations and interactions described in
Section 4.4.4. Different libraries within the GML Compositor, such as the compass and ruler
library from Wolfang Thaller, can be combined with scene graphs to create regular layouts, e.g.
distributing scene graph nodes sharing the same parent on a circle (see Figure 6.35(a)).

Placing Objects and Cameras. Each scene graph node can be associated with an object.
These objects can either be three-dimensional models from the repository, cameras or special
drop targets, which are for the curator to use. Placing these objects does neither affect the
hierarchy nor the functionality of the node. The node widget just resizes itself dependent on
the size of the inserted object to further allow easy interaction.

Drop targets are numbered attachments for scene graph nodes. They mark spots for the
curator to place assets from the repository. Drop targets can also be created procedurally, so
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that their exact number is configurable in curator mode. Drop targets have been placed in a
scene using compass and ruler functionality in Figure 6.35.

(a) (b) (c) (d)

Fig. 6.35 Procedurally generated drop targets. The specific number of drop targets can be configured
later in curator mode. The n-gon is constructed through the integrated compass and ruler library. (image
adapted from Zmugg et al. [ZTH∗12])

Cameras specify pre-defined views that permit directing the attention of the user. Each cam-
era stores a view direction, which can be set by the user interactively. The position and ori-
entation of the camera are defined through the scene graph. The camera parameters can also
be defined relative to a (parent) object in a way that this object remains in view even when it
moves. A camera setup is shown in Figure 6.36.

Fig. 6.36 Camera placement for pre-defined views. The camera (right) is a child of the pedestal node
(indicated by the red arrow). So the object on the pedestal (drop target number 1) remains in view even
when the pedestal is moved. (image source: Zmugg et al. [ZTH∗12])

Defining Animations of Objects. Animations can be defined for all scene graph nodes as
described in Section 4.4.4. Animating nodes with attached cameras allows for smooth view
transitions. For flight-through animations the system provides splines along which a camera
can move with the view in flight direction. The control points can be edited in curator mode to
adapt the flight path based on the exhibits (see Figure 6.37).

Defining the Functionality of the Curator Mode. The designer has full control over the
scene. The designer can change many things in the scene that the curator would not want to
touch anymore. Especially large scenes have a confusing number of options and parameters.
Therefore, the designer can define which parameters and options are accessible to the curator
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(a)

(b)

Fig. 6.37 Fly-through animations along editable splines. The animation was developed using a modern
architectural site (Frankfurt fair, (a)) with inserted scanned assets. Since the spline is editable, the scene
template could quickly be adapted when the medieval town model (b), which was generated with Esri’s
CityEngine [Esr13], became available. (image source: Zmugg et al. [ZTH∗12])

and which parameters are fixed and inaccessible. Widgets corresponding to inaccessible pa-
rameters are, consequently, rendered invisible to reduce the number of objects on the screen.
Limiting the configuration options not only shields the curator from accidentally doing harm,
but also makes the work of the curator simpler, more targeted and efficient.

The technical basis for this configurability is the central code graph of the GML Compositor
that contains all scene parameters. In essence, a Boolean attachment is added to all the values in
the graph. This attachment defines whether the corresponding widgets that are used for editing
this node are visualized or not.

6.4.3 The Curator Mode

The curator mode shall enable curators, which are not so experienced with handling three-
dimensional content, to produce compelling three-dimensional scenes. Scene templates can
either be very simple or fairly complex. In the simplest case, they contain only a fixed number
of drop targets on which the curator drags artifacts. One can also imagine that such simple
scenes can be filled automatically with information provided in e.g. an external document.
More flexible scene templates may offer more configuration options, giving more freedom and
control to the curator.

There are mainly four tasks for the curator in the curator mode:

• getting hold of three-dimensional assets and deciding which assets are shown,
• describing the desired scene templates to the designer,
• choosing appropriate scene templates for each exhibit, and
• filling templates with assets and configuring the templates.
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Acquiring the Exhibits. Museums usually have a set of assets acquired by them using e.g.
photo reconstructions. However, high-quality three-dimensional acquisition requires trained
personnel from a photographic department or a scanning company. Alternatively, three-dimensional
assets can also be rented or even bought from other museums or companies.

The 3D-COFORM project supports the process of finding the right assets based on a se-
mantic metadata network as described in detail in the work of Doerr et al. [DTT∗10]. The right
assets for the planned exhibition can be found on a semantic basis rather than a purely formal
basis, i.e., not just by period or size, but also by style or manufacturing method. It all depends
on the metadata available. Once a suitable collection is found, it is grouped to facilitate the
further steps of asset production (see Figure 6.38).

Fig. 6.38 Workflow of a curator selecting assets. The system allows navigating through the group
hierarchy of the distributed asset database. The curator chooses the assets for the exhibits and drags
them onto the pre-defined drop targets. (image source: Zmugg et al. [ZTH∗12])

Use of Scene Templates. After deciding which assets are about to be shown it is necessary
to decide how these assets are presented. Depending on the exhibit, different ways for presen-
tation are possible, for example, an explosion view, a small animated story, or a walk-through
animation. The curator defines the required functionality for each exhibit and the designer then
prepares appropriate scene templates that meet the look and feel in terms of color, layout and
design of the real exhibition.

When everything is available, the curator can start filling the scenes to create the digital
exhibits. For each showcase, a suitable scene template is chosen and is filled with the digital
artifacts (see Figure 6.39). Depending on the skill and requirements, the designer can set certain
parameters of the scene to be available for the curator. This way the curator can adapt each
template to his needs, like adapting the amount of drop targets (see Figure 6.35), changing
camera views, or fine-tuning the position of exhibits and other three-dimensional objects in the
scene.

6.4.4 The Presentation Mode

The final step is viewing the result in a separate standalone application that can be executed on
displays throughout the museum. The presentations mode is such a standalone viewer appli-
cation for fullscreen viewing. The viewer is available as Qt widget and can therefore be used
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(a) (b) (c) (d)

Fig. 6.39 A scene template for object comparison is re-used. The scene template with drop targets
(green) was created by the designer (a). It is filled by the curator via drag & drop with helmets (b). It
can be re-used with ceramic pots (c). In the presentation mode users can select a pot from the shelf for
an animated direct comparison of the two shapes (d). (image source: Zmugg et al. [ZTH∗12])

within any Qt-based application and can be embedded in an HTML page in Qt-enabled web
browsers as well.

In terms of user interaction, a generic approach is followed. Besides mouse and keyboard
input, user events can also be triggered over the network by sending strings via a socket con-
nection. This enables a wide variety of input devices, even gesture recognition can be used for
input. Especially gesture recognition using, for example, the Microsoft Kinect Sensor [Mic13b]
is a relevant topic because mouse, keyboard, or even touch screen may not be available in mu-
seums, for example, due to health concerns.

6.4.5 Use Cases realized with the GML Compositor

With the presented system, which is composed of three distinct modes as showcased in Fig-
ure 6.40, three distinct use cases have been realized as proof of concept. First, an animated
fragment reassembly with alternative assembly hypotheses as an example of a custom-made
animation for high-quality content (see Figure 6.41), second, a re-usable scene template for
flythrough animations, used with two different models (as shown in Figure 6.37), and finally
the comparison use case with two similar objects that are brought to the same pose to highlight
the difference (see Figure 6.39).

6.5 V2me - Virtual Coach Reaches Out To Me

The increasing loneliness in Europe’s aging population is a severe problem. The goal of the
V2me project [V2m13] is to combine real life and virtual social network activities to prevent
and overcome exactly this loneliness. Through the activities done within the system the joy of
life should be enhanced for all participants. V2me encourages people to continue their partic-
ipation in in society, to share their experiences and acquired knowledge, and above all, to stay
mobile and cognitively agile. An important part of fulfilling this goal takes the virtual coach,
a three-dimensional avatar that communicates with the user. The target groups are on the one
hand young-old individuals (65-74 years) and on the other hand older generations (75+ years).
In general, the main goals for these two groups differ slightly. The younger target group should
be prevented from feeling lonely and the system should intervene in the loneliness that got hold
of older generations.
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(a) (b)

(c)

Fig. 6.40 A simple scene template illustrating the looks of the separate modes. In the designer mode (a)
drop targets are placed in the scene, which are then filled in the curator more (b) with digital artifacts.
The position and orientation of the artifacts can still be changed, which is indicated by the still visible
widgets. In the presentation mode (c) no changes are possible anymore because it sole purpose is visu-
alization of the created scene. Three different set of artifacts are positioned in the same template, which
emphasizes the re-usability of scene templates.

Fig. 6.41 The Meissen Fountain. The five parts can be arranged in two possible ways (top left, top
right). An animation can show an interesting transition between both hypotheses, as well as close-up
views of the faces. (image source: Zmugg et al. [ZTH∗12])
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V2me is based on another project called A2E2 [A2E13]. This project focuses on virtual
coaching of elderly in general. The character model of the virtual coach is taken from this
project. This section gives an overview of the system and afterwards focuses on the procedural
techniques used to realize the V2me system. The project has also been explained in our work
[BCZ∗14].

6.5.1 Overview of the V2me Project

This section intends to give an short overview of the V2me system by explaining the single
components and how they work together. The V2me system (see Figure 6.42) generally con-
sists of three main components: The Home Platform, the Mobile Platform, and the Web Plat-
form. Furthermore, the system provides two editors for content creation. These editors store
their generated data on the provided servers.

My contributions in this project concentrate on the Home Platform, the content editor, as
well as the user avatars. All of these system parts are based on GML and the GML Compositor.
Thaller provided his assistance in the development of the Home Platform and the content editor.

Fig. 6.42 System architecture of the V2me infrastructure.

The Home Platform.
The Home Platform is a stationary system in the premises of the elderly people. It features a
single big display used for visualizing a three-dimensional scene in which the virtual coach
resides (see Figure 6.43). The main task of the Home Platform is to augment all actions done
by the user.

The Mobile Platform.
The Mobile Platform is a touch enabled hand-held system, usually a tablet, which is used as
input device. This system is the communication interface between the user and the virtual
coach and acts as remote control for the Home Platform. Furthermore, communication with
other users is possible with social network services as well as video call services. Intuitive
touch gestures help the elderly users to get used of the system very fast.
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The Web Platform.
The Web Platform is a web portal that combines multiple web applications into a single view.
The purpose of this platform is to connect the relatives of the user with the user and the care
givers. Through this system relatives and the care givers can add events to the schedule
of the user. The Web Platform, furthermore, hosts all necessary data, such as scripts and
three-dimensional models.

Fig. 6.43 Virtual coach in an environment visualized by the Home Platform. For the creation of these
environments a editor, which is based on the GML Compositor, is used. (virtual coach avatar source: the
A2E2 project [A2E13])

The vision is that elderly people have the Home Platform and Mobile Platform setup in-
stalled at home. Both of these platforms are connected to the Web Platform, to which the users
have no direct access.

The Virtual Coach. The virtual coach is the core of the developed Ambient Assisted Living
solution. The virtual coach is a three-dimensional animated character with text-to-speech abil-
ity. The coach is permanently present on the Home Platform and gets in touch with the user on
demand through the Mobile Platform. He fulfills three main roles:

Mentor. For the virtual coach to become accepted he has to build up a relationship with the
elderly user. The virtual coach acts as the system representation and has more information
about the user than vice versa.

Tutor. The virtual coach guides, motivates and supports the user in various aspects, such as
giving positive feedback for actions of the user.

Expert. The virtual coach also collects information from various sources, such as weather
information. This information is presented to the user in an understandable way.

Facial and body animations as well as the text-to-speech engine of the virtual coach can be
triggered independently by the Mobile Platform. So, for example, upon a successful completion
of a task by the user, the Mobile Platform triggers a motivating animation of the virtual coach
(see Figure 6.44).
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Fig. 6.44 Different animations of the virtual coach that can be triggered by the Mobile Platform based
on actions done by the user. (virtual coach avatar source: the A2E2 project [A2E13])

The Friendship Enrichment Program. One important use case of the system is the so-
called friendship enrichment program [Ste01]. V2me offers a virtual and individual version
of this program through the so-called friendship lessons. These lessons are specially designed
by psychologists to teach people how to make new acquaintances and, above all, friends. Es-
pecially elderly people need these lessons because they are not provided with natural environ-
ments like school or work, where friends are met easily. The friendship lessons include tasks
like “talk to a stranger” to develop the skills needed to succeed. The virtual coach is responsible
for guidance in these lessons.

Editors integrated into the System. The V2me system provides two editors. One editor, the
lesson editor, is designed to create friendship lessons and other daily routines for the elderly
people. The second editor is the so-called content editor, which is based upon the GML Com-
positor. The usage of the GML Compositor in the domain of Ambient Assisted Living will be
the main focus in the upcoming Section 6.5.2.

User Representation within V2me. A very important part is also the way user themselves
are represented in the system. One desired goal was also to examine the acceptance of vir-
tual three-dimensional self-representations of the user. Three-dimensional avatars, as used by
different role play games or consoles, are not suited for a representation in the system. It is
really important that the virtual avatar should look like the human it is impersonating. There-
fore the Microsoft Kinect Sensor [Mic13b] has been used to record small three-dimensional
videos of certain activities of the user. These videos can be recorded for different behavior
slots, like “success”, “hiking”, or “dancing”. This way, every user has their own personalized
set of animations, which are visualized in appropriate situations. Through this, a virtual self-
representation of the user that is interacting with the virtual coach on the Home Platform can
be visualized (see Figure 6.45).

Unfortunately, due to time constraints, this feature did not make it into the first project
prototype. Future ideas include using these personalized animations to send invitations for
activities to other users in the network.
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Fig. 6.45 The self-representation of the user is displayed together with the virtual coach in an environ-
ment in the Home Platform. The user avatar was generated through use of the Microsoft Kinect Sensor
[Mic13b]. (virtual coach avatar source: the A2E2 project [A2E13])

6.5.2 Procedural Modeling for Ambient Virtual Coaching Applications

The content editor is again realized through the GML Compositor (see Section 4.4). The editor
used within the V2me system is essentially the same that has been proposed for the Cul-
tural Heritage domain (see Section 6.4), excluding the digital repository. The goal, however, is
completely different. The content editor should enable non-experts to create three-dimensional
content in form of environments that the elderly persons feel comfortable with. This user group
includes care givers, as well as the elderly persons themselves. The editor provides all the tools
for the procedural modeling engine, the procedural scene graphs and the animations of those.
By combining these tool sets, three-dimensional animated stories, which can be personalized
for individual persons, can be generated to support the friendship lessons. These animated sto-
ries include the virtual coach and his interaction with the elderly person.

Building Non-Static Animated Environments. Initial creation of environments is done us-
ing the designer mode discussed in Section 6.4.2. The procedural modeling engine is used to
create backdrops, while the procedural scene graphs are used to structure the distribution of
objects that are placed in the environment. The focus lies mainly on indoor environments, so a
wide variety of appropriate objects (taken from Trimble 3D Warehouse [Goo13d]) is available.
The avatar model for virtual coach is also part of the scene graph and needs to be positioned in
the scene.

Animations can be defined using the mechanisms described in Section 4.4.4. Additional to
the animations of scene graph nodes, body and facial animations of the virtual coach can be set
for specific time frames too. So if the position of the virtual coach changes in a time frame, the
“walking” animation of the three-dimensional character can be activated to provide a realistic
and consistent story. Cameras can also be placed and animated in the scene. Furthermore,
they be set active for certain time frames to highlight different places or actions in the scene.
Figure 6.46 shows four snapshots of a camera view transition as a part of an animated story
that explains certain tablet functionalities to the user.

Adaption of the Curator Mode. The curator mode can be used in the Ambient Assisted
Living context in a slightly different way. The curator mode was designed to provide a museum
curator with a way to make final changes to the scene layout. The scene is defined through a
scene template beforehand, and the curator can fill the scene with virtual artifacts. For this
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Fig. 6.46 Four snapshots of a camera flight animation that changes from a view of the virtual coach to
a close-up view of the tablet on the table. This is part of an animated story that explains certain tablet
functionalities to the user. (virtual coach avatar source: the A2E2 project [A2E13])

task, the configuration options are deliberately limited so that the curator is shielded from
accidentally doing harm to the scene, and to work in a more targeted and efficient way.

Within V2me there is no curator, who changes positions and adapts exhibits in pre-defined
scenes, but the situation is similar. Care givers can design environments and the animated sto-
ries within them. Afterwards, elderly people may want to change the positions of objects in the
scene to personalize the environment. For the animations, which tell a story through the pro-
cedural environment, to remain the same, the configuration options of story-related animations
and objects are not available. Drop targets could be utilized to provide even more customization
options, i.e. additional paintings could be placed on the walls, or more or less chairs could be
positioned around a table. Figure 6.47 shows three variations of furniture placement of a living
room. Within the V2me system this mode is called the personalization mode.

Fig. 6.47 Three variations of different furniture placement in the living room template for the Home
Platform. Users can arrange the single furniture objects as they like to meet their personal desires.
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The Home Platform and the Interaction with the Mobile Platform. The Home Platform
visualizes the environments created in the editor, which makes it equivalent to the presentation
mode in the context of virtual museums. The Home Platform, additionally, provides a network
interface through which registered animated stories, animations of the virtual coach, as well
as the text-to-speech engine of the virtual coach can be triggered. This interface is used by
the Mobile Platform to trigger specific animations and events based on the user’s actions or at
specific times.

6.5.3 Evaluation of the V2me System in Terms of Procedural Modeling.

An evaluation of this system through a user study with focus on procedural modeling has been
done in Amsterdam by Roelofsma and Moeskops. This section focuses on the results in terms
of procedural modeling of this study.

Setup and Execution of the User Study. Using a living lab setting especially for elderly
persons, seven subjects have been selected for the study with this system. The participants are
living independently and alone. Subjects have been selected based on their score on the De Jong
Gierveld Loneliness Scale [GT06] (scores should be moderate to high) and on their openness
to technology (scores should be high). The participants included three women and four men,
ranging from 64 to 77 years in age. The subjects received an instruction session after the system
was installed in their homes.

The loneliness intervention lasted for two months. Afterwards, they received the loneliness
and openness to technology questionnaires again, and a semi-structured interview was held
about their experiences with the Home Platform. In this interview they had been asked ques-
tions on what they thought of the Home Platform and the interior of the dwelling, and what
they would like to see changed. The functionalities of the personalization mode have not yet
been included in this user study. The goal was to assess the interest in using the procedural
features of such a mode.

Response of the Elderly Participants. This part focuses on the interpretation of the answers
that have been given to specific questions of the questionnaire and what implications these
answers have to the V2me system. Because the participants are usually not used to terms like
procedural modeling, questions had to be designed properly to assess their interest in such
features.

Asked about their general opinion of the Home Platform, the participants liked the system,
although there was a variety in why they liked it. Each participant showed to have their own
preferences when they had been asked how they liked the apartment of the coach. One subject
mentioned that “It is very beautiful, very well made. [...] I like the interior a lot.”, whereas
other comments included “I love how the parquet has been made” and “I like looking at him.
The way he shakes his head.”.

Important are the answers on the question what elements are missing from the virtual envi-
ronment. These answers are the main indicator for an interest in procedural features. The re-
sponses here varied from “The house lacks a lot of stuff.” to “It is too crowded.”; both of these
extremes indicate that the users want to change the environment, may it be through adding or
removing objects. For example, some participants would have preferred the coach to reside in
a more comfortable environment. They would like to add a couch, and a little lamp, so that
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he can sit down and read. Whereas others concluded that “He needs a stereo set, a TV, and a
leather couch.”, or “He could use a fridge, or a stove in his kitchen.”. Based on these answers
it is justifiable to assume that an interest in changing the environment – and therefore in pro-
cedural modeling features – is present and the personalization mode should be considered for
future studies.

Synopsis
In this chapter I presented all results that have been acquired through the use of the presented
procedural modeling techniques. The majority of these results have been achieved by me.
The remaining results were either achieved in collaboration with others or by students I
helped supervising.

The architectural results mainly showcase advantages of the presented split grammar ex-
tensions, by either describing a high quality example such as the Rialto Bridge and the Great
Wall of China, or by describing a more general class of buildings that are suited for mass
generation.

The GML Compositor has been utilized in two ways. The split grammar inspired mod-
eling tool kit has been used to create reconstructions of iconic façades of the Louvre. This
reconstruction was performed to demonstrate and assess the capabilities of the software and
indicate directions of future work. The second application of the GML Compositor, in which
I was heavily involved, has been the generation of animated procedural environments. These
have been utilized to provide animated museum exhibits that can adapt to different situations
and to provide animated environments for story telling purposes to motivate lonely elderly
people to become socially active again.
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Abstract. To conclude this thesis, I will take the chance to discuss potentials and issues of
procedural modeling in this last chapter. This discussion will then proceed and focus on the
three representative problem areas of this thesis, namely the understanding of shape spaces,
the reconstruction of architecture, and interactive procedural modeling. The contributions and
limitations of the presented techniques will be reviewed and possible future work in these
domains is explored. Finally, this chapter gives an outlook on how the vision of Seidel will be
pursued in the future and what importance this thesis has in this regard.
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7.1 Potentials and Issues of Procedural Modeling

Understanding shapes is the key to procedural modeling and consequently the key to fulfill
the vision of visual computing. When a shape is understood, all modeling operations can be
extracted to create infinite valid variations of that shape. Based on the work done in this thesis,
I will take the chance to discuss potentials and issues of procedural modeling in this section.

Refactoring and Reinterpretation. In a procedural model parameters can be defined explic-
itly, meaning there is direct access to the value, or implicitly, which means that the value of this
parameter is dependent on values of others. Some of these implicit dependencies are not even
known beforehand and will only surface during development. An illustrative example for this
is a procedural model of a staircase. For a given room height, giving access to the parameter
that controls the step height implicitly defines the value for the amount of steps and vice versa.
Which parameters are made accessible depends on the application. To find the ideal description
for a procedural model, refactoring is often necessary. However, there is not always an optimal
solution, but a set of alternatives, each with their own advantages and disadvantages. The main
issue here is that it is very hard, and often impossible, to combine two different descriptions
from the same shape family to express all shapes that have been expressed by the single ones.

Imagine a procedural model of a house with indoor environments. A question that may arise
is how to model the walls that separate the individual rooms. Let us imagine a wall that connects
room A with room B. When the wall is realized as a single object belonging to one room it is
adjacent to (without loss of generality let us assume it is room A as in Figure 7.1(a)), placement
of doors, for example, is an easy task when performed outgoing from room A. However, the
placement of objects on one side does influence the other side. Furthermore, objects placed on
the shared wall in room B have to be generated corresponding to a wall, that does not belong to
the room itself, which is contradictory. Another way to realize this is to introduce “half walls”.
The wall between room A and B is split into two parts and to each room one half of the wall
belongs (see Figure 7.1(b)). This way, all objects can be placed on a wall that corresponds to
the right room, but connecting structures like doors need to assure that they are placed exactly
in the same spot on both halves of the wall. Both methods are advantageous in one regard, but
not ideal in another. A combination of both (illustrated in Figure 7.1(c)) is conceivable and
realizable through an appropriate design in this case, but this may not be true for all cases.

To conclude, just taking the first alternative that comes to mind will often turn out wrong.
The problem, as well as all alternatives, need to be analyzed to take the one that meets the
needs best. However, one should always be prepared for refactoring.

A B

(a)

A B

(b)

A B

(c)

Fig. 7.1 Ways of representing a wall between two rooms A and B. The wall can entirely belong to
one room (a) or can be shared between the two (b). Both methods have different behavior in terms of
generating connecting structures (doors and windows) and associating elements (furniture) to the wall
for the separated rooms. A combination of both (c) can be achieved through an appropriate design.
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Importance of Shape Understanding for Inverse Procedural Modeling. Nowadays, in-
verse procedural modeling is a very prominent topic, but it is also a problem that is very hard
to solve. What is actually often forgotten and rarely mentioned is that the design of procedural
models in a forward manner is a prerequisite to make inverse procedural modeling techniques
even work. This important step is necessary to build up knowledge about the modeling domain
and extract the operations necessary to model objects from this domain. Without knowing these
building operations inverse procedural modeling techniques are doomed to fail. Just imagine
the procedural window building blocks that have been designed with the help of the Generative
Fact Labeling method (see Section 5.2). This library of procedural window building blocks
is an ideal stepping stone for inverse procedural modeling of windows from photographs, but
without such a modeling library the task of fitting three-dimensional models to exemplars de-
picted in photographs is far more complex.

Comparison to Structured Shape Editing Techniques. Procedural modeling is a very ver-
satile technique. It is more expressive than data-driven structured shape editing techniques that
only rely on combining parts of a limited data set. A single procedural models can encode a
whole object family on its own. By providing a set of parameters, far more different models
can be achieved than just be interpolating between fixed model instances. However, there is
still the overhead of generating the procedural models, which is no easy task. But the same is
true for structured shape editing techniques, where an appropriate data set needs to be found
and learned.

Another shortcoming of structured shape editing techniques is related to the amount of avail-
able exemplars. While procedural modeling techniques show that describing object families
from a very small set of exemplars is plausible and possible, learning based on very small sets
of exemplars is rarely successful. Procedural modeling techniques can even be applied to sin-
gle instances (as showed in the example of the Rialto bridge in Section 6.2.2), but automatic
learning from single instances does hardly seem worthwhile.

Procedural Modeling Editors in Industry. Another important fact that emerged during the
research done in this thesis is that there is a high demand for procedural models in industry.
Especially the procedural wedding ring task (see Section 6.1) showed that there is a need for
procedural modeling editors for mass customization. Editors, such as the GML Compositor,
may play a huge role in industry in the future. This underlines the importance of forward mod-
eling through procedural descriptions. A lot of manpower is necessary to meet this demand for
procedural models in industry. Aside from wedding rings, there are far more different domains
where people like to have their individual personalized items, among which are furniture items,
car keys, or accessories. For now this may only concern luxurious items, but in the not so far
future this customization should be available for everyone. To realize this procedural modeling
in combination with rapid prototyping through three-dimensional printers is the best answer.

The Limits of Procedural Modeling. Everything that follows order and rules can be realized
by procedural modeling. This usually applies to all man-made objects that can be described by
a manufacturing process. Completely random patterns that do not show any signs of rules are
the limit of procedural techniques. Human products are never just random; they are generated
through ideas and thoughts. This, however, implies that we are able to understand the thought
processes of every human, which is certainly not the case. Especially, for many kinds of art,
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it is hard to convey the implicit knowledge and intuition used to create the artwork to other
people. Even though the foundations of shape grammars lie in the interpretation of art [SG72],
paintings, sculptures, and these kinds of art feature their own kind of randomness that is hard
to describe. These features are often depicted as artistic freedom.

Randomness does actually not exist, it is just a statement that there are mechanisms that
we do not understand yet. As Albert Einstein said: “God doesn’t play dice”. This means for
objects that are not made by man, all of them, even though some may seem completely ran-
dom, underlie the rules of physics and nature and can therefore be represented by mathematical
models once these are understood. However, even though modeling all understood mechanisms
down to a cellular level could describe shapes, it is just too complicated and low-level. Approx-
imations through high-level operations are made to achieve satisfactory results with less effort.

7.2 Conclusion and Future Work

I introduced a desirable concept in the introduction. This concept includes that the three-
dimensional physical world will be step by step realized as digital editable three-dimensional
content, which allows three-dimensional content creation for everyone. This vision has been
formulated as the goal of visual computing by Seidel. To implement this vision, the state of the
art of computer graphics, in particular procedural modeling, has to be advanced further.

In this thesis I have presented new ways and improved established methods to express com-
plex shape domains in a more efficient way. The applied research I have done, in collaboration
with my colleagues Krispel [Kriar] and Thaller [Thaar], in this regard helped in the develop-
ment of these methods and, furthermore, extended the potential of them. The task to map the
real world to a editable digital counterpart is such a big undertaking that is not realizable in the
context of a single Ph.D. thesis, therefore, I focused on three representative problem areas in
the domain of procedural modeling (see Section 1.4). To conclude this thesis, I will discuss the
progress, the improvements, as well as potential for future work in these three categories.

7.2.1 Understanding Shape Spaces – Creation of Procedural Models

The generation of procedural models is a very important task. Procedural models – once created
– save a lot of time for generating selected instances of a shape family. The generation of such
a description is the hard task. This task has been illustrated in Section 5.2 on the domain of
architectural windows together with a formulation of the Generative Fact Labeling method.
This method has been developed by Thaller, Havemann and me and encapsulates the approach
of designing a procedural model out of a set of exemplars in a formal way. A key concept here
is factoring out features. While a use case may seem too complicate for an easy procedural
description, it can become easily manageable through factoring out one feature after another.
This was demonstrated by factoring out profiles and moldings from the domain of windows.
This reduced the complexity of several windows elements, which afterwards could be described
in an efficient manner.

My opinion is that through this extremely generic method a paradigm shift in how procedu-
ral models are generated could happen. This method helps to create procedural libraries with
high-level modeling operations to describe any domain of man-made shapes. However, this
generality is also the weakness of this method. Although the method is effective, but for this
efficiency, however, much sophistication is necessary. Nevertheless, this method is the stepping
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stone for new fields of research and business areas. Together with the upcoming trend of mass
customization, procedural models become more and more important to realize personalized
items for everyone (like the wedding rings in Section 6.1). To meet this demand for procedural
models, efficient techniques and trained personnel are necessary to obtain procedural models
faster. In the not so far future, firms like IKEA will not advertise their products through printed
catalogs anymore; procedural models will take their place to show the different variations of
products more clearly.

7.2.2 Reconstruction of Architecture – Architectural Split Grammars

In this thesis two extensions to the state of the art of split grammars are presented:

• First, split grammars on convex polyhedra (see Section 4.2), which utilizes a new non-
terminal class convex polyhedra. This extension has been a collaborative work of Thaller,
Krispel and me and is an integral part of our theses.

• Second, deformation-aware split grammars (see Section 4.3), which include free-form de-
formations in the split grammar formalism. This work is mainly attributed to me, but has
also been developed in cooperation with Thaller and Krispel.

Grammars, in general, derive much of their power from the ability to re-use rules in different
contexts. In case of split grammars, this context is described by the scope of the non-terminal
shapes. By generalizing to convex polyhedra, rules can adapt to a much wider range of shapes.
Important is that this generalization means never a loss in flexibility, everything that can be done
with boxes, can be done with convex polyhedra too. This means box grammar models can be
translated in a straightforward manner to models based on convex polyhedra. Although through
the volumetric nature of convex polyhedra, volumetric models can be built procedurally without
the need to resort to imported pre-modeled assets.

However, in comparison to simple box grammars with no separate geometry, all this added
flexibility comes at a cost in implementation complexity. Nevertheless, this implementation
overhead is justifiable when compared to the amount of special purpose operations that are nec-
essary to achieve the same expressiveness in box grammars. Furthermore, dealing with convex
polyhedra is no more complicated than splitting non-terminal shapes which have geometry that
is independent of the corresponding scope in a box grammar (as in the work of Müller et al.
[MWH∗06]).

The presented extension to standard split grammars to facilitate use of free-form deforma-
tions in the procedural modeling process allows deformed shapes to be processed in two ways.
The first is a special split operation that calculates distances on the deformed geometry to adapt
to changes in space introduced by the deformation. The second is splitting with a straight plane
after the deformation. Both kinds of split operations have their rightful applications within split
grammars with integrated deformations.

Adjacent walls and roofs of deformed buildings, whose deformations are specified indepen-
dently, have been joined together by suitable Boolean operations. So far, rules cannot adapt
to the results of these operations, which means decorating roof ridges is not possible yet, for
instance. The general Boolean operations involved have a significant impact on performance,
but are necessary to achieve the results shown in this regard.

Both of these extensions opened up way a for a better description of several kinds of build-
ings, while keeping the descriptions as simple as possible; they do in no way clutter up the
descriptive language, they provide an easy way to access the additional features.
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Future Work in Terms of Procedural Reconstruction of Architecture. Interesting future
work lies in finding the ideal geometric representation. Such a representation should allow a
greater variety of deformations and should eliminate any geometric approximations. Convex
polyhedra are here only the first step on a way to the ideal shape description.

The focus of the presented grammar extensions lied in showing single instances of buildings.
The fact that all operations are integrated in a standard context-free split grammar means that
existing methods (e.g., from Müller et al. [MWH∗06]) can be leveraged to create randomized
instances of deformed buildings automatically on a large scale, which is important future work.

Interesting further reconstruction tasks, which have been discussed in our group in this do-
main, include among others a reconstruction of historical Cairo, cargo ships, as well as me-
dieval castles. Further work on procedural descriptions of interiors is also a very prominent
topic because the description of complex room arrangements with arbitrarily shaped rooms
through split grammars is still an unsolved problem.

However, the high-end goal in the domain of split grammars is the description of modern
free-form architecture. This is an example for an especially difficult shape space to describe
with high-level modeling operations. While classical architecture features set structures and
rules, modern architecture does not have to. It is sometimes pointless to formulate high-level
split grammar rules for architecture in general because architects like to violate any rules that
can be interpreted in buildings to create something unique. Therefore, the most realistic way
to describe architecture in general is to group buildings in different classes and provide formal
descriptions and high-level operations for each single one of those. In this regard, great poten-
tial and a challenge lie within a procedural description of the iconic buildings of the famous
Spanish architect Antoni Gaudi.

7.2.3 Interactive Procedural Modeling – Direct Manipulation Editors

The development of the GML Compositor (see Section 4.4) by Thaller and the extensions made
by Krispel and me led to a tool which features direct manipulation of the procedural descrip-
tion on the concrete three-dimensional model. These features are very important to provide
procedural modeling without the need for programming. This is essential for visual artists,
who are not necessarily experts in programming. However, using data flow graphs to visual-
ize the scene’s hierarchy is not ideal either because they do not provide a clear representation
for medium- to large-sized models. Therefore, the GML Compositor features highlighting of
related parts in the three-dimensional scene. This highlighting clarifies the hierarchy without
directly displaying the underlying graph or code that describes the scene. This revolutionary
approach will define how non-experts will create procedural models in the future.

The GML Compositor has been utilized in many domains and applications, such as in a
reconstruction of parts of the Louvre (see Section 6.2.1), in Cultural Heritage (see Section 6.4),
and in an Ambient Assisted Living context within the V2me project (see Section 6.5).

The Louvre use case shows that the GML Compositor enables non-expert users to create
more sustainable three-dimensional reconstructions of historic buildings through the procedu-
ral modeling approach. Aside from the Louvre reconstruction task, the system is anticipated
to be useful for speculating about destroyed and damaged buildings too. New archaeological
findings might require adapting the structure or adjusting parameters of a three-dimensional
hypothesis, which can be carried out much faster and more efficient on a procedural model
than on other model descriptions.
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For the latter two applications, which were the main focus of my work with the GML Com-
positor, hierarchical scene generation through procedural scene graphs was the main topic. To
prepare the tool and to provide different functionalities for different user groups, a trisection
into modes happened. A mode for experts, who provide scene layouts and limit the configu-
ration options for the second group, which usually consists of experts in other domains. This
second group has more experience in how the scene should look in the end, but has, in general,
no experience in using general modeling tools. The animated scene is adjusted and finalized by
this user group. The last mode then visualizes the animated scene and provides an interactive
user interface and is accessible for everyone.

In case of the V2me project, the user study showed that there is a big interest in personalizing
the procedural environments. The answers of the participants indicate that a single environment
is not sufficient because the priorities and preferences of the participants differ vastly. This
shows that procedural modeling needs to be facilitated so that the wishes elderly people have
for virtual coaching systems can be fulfilled with ease.

Future Work in Terms of Interactive Procedural Modeling. The GML Compositor is still
in its prototype phase and large user studies are still pending. The results achieved so far are
promising, but a lot of work is still needed. There are still user interface experiments going on to
evaluate how the modeling hierarchy of the model and the parameters can be displayed ideally
while keeping the underlying data flow graph hidden. The focus so far was on functionality
rather than usability. Therefore, especially with elderly people in mind, all modification options
should be accessible in an intuitive way.

For the Louvre use case it is to say that about two thirds of the reconstruction time is spent
modeling and specifying fine façade details such as extrusions and profiles. This suggests that
there is much potential for improvement. The focus in the development so far has been on a
compact set of basic operations and on means to combine them. For example, all the details
shown in the reconstruction (e.g. profile extrusions) have been modeled mainly using several
single extrude operations that together form the molding running along the façade. While the
basic operations are expressive enough to achieve the results shown, the amount of time spent
modeling details suggests that developing special purpose tools for different situations, such
as profile extrusions, is practical. To create complete reconstructions of historic buildings in
the GML Compositor, further operations are still missing or in development. Among these are
operations for adding roofs or incorporating scanned material (e.g. statues).

The presentation mode utilized in the museum and Ambient Assisted Living context still
misses more realistic rendering, which is planned to be included in the future. The visual quality
of the presented results is definitely not yet up to par with the requirements of a museum
presentation. The focus of the results presented lies within the concepts; high-quality rendering
can be achieved with high-quality scanned artifacts and by using appropriate materials for the
geometry.

7.3 Outlook on Pursuing the Goal of Visual Computing

The potential that lies within procedural modeling is huge, but it is not yet utilized in the way
to fully exhaust this potential. On the one side, procedural modeling techniques have been in-
creasingly used for content creation for games and motion pictures. If this trend continues,
content creation might be entirely procedural in the future. Cities, oceans, forests, all environ-
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ments can be created randomly in a fraction of the time needed for manually modeling, and
every object can be unique and no copied instances will exist. Even animations of characters
can adapt to the environment, without motion capturing every single movement. On the other
side, procedural modeling provides tools that allow everyone to process and generate three-
dimensional content. By following this trend, three-dimensional data will become as easy to
process and create as two-dimensional images are today. The development and research of pro-
cedural modeling techniques has to proceed to realize these ambitious goals, which are both
connected to the vision of visual computing. This thesis is a further stepping stone on the way
to realize this vision. The state of the art of several established procedural models has been
improved and new techniques have been introduced to ease the task of bringing the physical
world into the computer and make procedural modeling universally applicable.

Actually, doing all the analysis during this thesis affected me in how I perceive man-made
objects. For example, when I am walking through a street and look at the façades I cannot
help but start to begin to analyze them and – in my mind – break them down into the parts
they are made of. This implicit knowledge is hard to convey to other people. By transferring
it into explicit knowledge through creating procedural models, the matter can be made more
accessible to others.

Every man-made shape is described by parameters, and through a thorough analysis these
can be found and finally utilized in a procedural model. This, actually, helps me believe that the
vision of Seidel is achievable, however, not in the scope of a single Ph.D. thesis. This thesis,
therefore, prepares the way and is the first in a series of theses that pursue the realization of this
vision.
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novel type of skeleton for polygons. Journal of Universal Computer Sci-
ence 1, 12 (1995), 752–761. [IIG-Report-Series 424, TU Graz, Austria, 1995].
URL: http://www.jucs.org/jucs_1_12/a_novel_type_of, doi:10.
3217/jucs-001-12-0752. See pages 35, 85, and 116.

AC98. AGARWAL M., CAGAN J.: A blend of different tastes: the language of cof-
feemakers. Environment and Planning B: Planning and Design 25, 2 (1998), 205–
226. URL: http://EconPapers.repec.org/RePEc:pio:envirb:v:25:
y:1998:i:2:p:205-226, doi:10.1068/b250205. See page 24.

AD04. ALEGRE O., DELLAERT F.: A probabilistic approach to the semantic interpretation of
building facades. In In Int. Workshop on Vision Techniques Applied (2004), pp. 1–12.
See page 33.

Ado99. ADOBE SYSTEMS INC.: PostScript Language Reference Manual, third ed. Addison-
Wesley, 1999. See page 80.
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MZWVG07. MÜLLER P., ZENG G., WONKA P., VAN GOOL L.: Image-based procedural modeling
of facades. ACM Transactions on Graphics 26, 3 (July 2007), 85:1–85:9. doi:10.
1145/1276377.1276484. See page 33.
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