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Abstract

Resonant magnetic perturbations (RMPs) are realised to effectively mitigate
edge localised modes (ELMs) in tokamak H-regimes. Linear theory however pre-
dicts that RMPs are strongly shielded at the mode-specific resonant surfaces.
In this thesis, the penetration of RMPs into a tokamak plasma with JET-like
parameters is modelled in kinetic approximation. The quasilinear evolution of
the plasma parameters and their sensitivity to the RMP field is studied self-
consistently by a linear wave code and a 1-D balance code. Model results show
that the perpendicular electron fluid velocity becomes zero around the resonant
surface and shielding is modified but not removed. In a separate study, the
impact of momentum and energy conservation of the collision operator on the
plasma shielding is studied by a linear model of plasma shielding using ASDEX-
Upgrade parameters for the tokamak plasma. For this purpose a particle con-
serving Fokker-Planck collision operator in Ornstein-Uhlenbeck approximation
is supplemented by two separate integral collision operators ensuring the con-
servation of energy and momentum, respectively. It is shown how to solve the
resulting integro-differential kinetic equation in terms of linear combinations of
moments of the Green’s function of the purely differential problem. Two recur-
sions relating moments of the Green’s function are derived. By application of
one of these recursions, the diffusion matrix of the generalised model is analyti-
cally shown to be Onsager symmetric. At the electron fluid resonance and the
electric resonance, respectively shielding is found to be strongly reduced or even
made void, i.e. an amplification of the radial magnetic field perturbation rela-
tive to its vacuum value is observed. It is shown that energy conservation in the
electron collision operator is important for the quantitative descrition of plasma
shielding effects at the resonant surface, while the results are not considerably
modified by momentum conservation in the ion collision operator.
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Conventions and Notation

Throughout this thesis Gaussian CGS-units are used. One exception is the
thermal energy denoted by temperature T , Boltzmann’s constant being absorbed
into T , which is common practice in plasma physics. Consequently T has the
dimension of energy and is measured in [T ] = eV.

Abstract, i.e. non-projected vectors and tensors are printed boldface, tensors
being indicated by sans serif fonts in addition. This convention however does
not apply to the matrix representation of a tensor, which e.g. in the case of the
diffusion tensor D here is simply written as D = (Dij). Variables are printed
italic, no matter which rank (scalar, vector, tensor-rank 2, etc.) they have.

It is unavoidable that some quantities share the same symbol, however, when-
ever possible, subscripts or a direct explanation in the text help to distinguish
their meaning. E.g. the symbol p is mostly used for the canonical momentum
and pkin for the kinematic momentum apart from few situations, where this no-
tation is unusual, while capitalised P denotes macroscopic pressure and power
in the context of reactor physics, respectively.

Unit vectors and normalised basis vectors are indicated by a hat on top
as in ĥ, êr, êϑ, . . . , while a hat on top of vector components, e.g. Âr, Âϑ,
Âz indicates that they represent physical coordinates in order to distinguish
them from covariant ones. Covariant and contravariant basis vectors are either
indicated by ei and ei, respectively or by their direct definitions as tangent and
reciprocal basis vectors as ∂r/∂ui and ∇ui, respectively.
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Introduction

From the early second half of the last century the achievement of controlled
thermonuclear fusion has been considered a valuable aim in the need of covering
the world’s growing energy demands and has been pursued with great efforts ever
since. Physical and technological issues have however been underestimated in the
beginning and it was soon recognised that research results had to be declassified
and that only by joint efforts further milestones towards a commercial fusion
reactor could be achieved.

Several confinement concepts have been considered, from inertial fusion to di-
verse magnetic confinement geometries. Of the latter, the tokamak is at present
the best understood and has been intensely studied theoretically and experi-
mentally, the Joint European Torus (JET) located in Abingdon, UK being the
largest scale experiment at the present moment. JET has been operating since
1983, having been the first reactor ever to produce a fusion plasma delivering D-
T fusion energy in 1991, see e.g. [71, p. 579ff]. High expectations are raised for
the International Thermonuclear Experimental Reactor (ITER) which is aimed
at achieving a gain factor of Q ≈ 10, i.e. providing 10 times the net thermal
output power of the input power that is consumed for heating the plasma.

Towards that goal several issues concerning the plasma confinement and its
stabilisation are addressed in transport simulations and experiments like JET,
ASDEX-Upgrade in Garching, Germany and DIII-D in San Diego in the United
States. Experiments at JET and ASDEX-Upgrade provide valuable fundamental
research for the design of ITER. One key aspect is the mitigation of type-I edge
localised modes (ELMs) that, if left uncontrolled, are a source of possible damage
to the first wall and to the divertor by giving rise to rapid radial transport of
particles and heat. On the other hand, high confinement modes without ELM-
activity were found to return to low-confinement regimes [54], since the occurring
steep edge gradients are not flattened out by a moderate release of particles [71,
p. 382ff]. In addition, helium ash from nuclear reactions and ions resulting
from sputtering at the wall accumulate in the plasma that not only dilute the
D-T fuel but also lead to radiative energy loss [54]. In order to control ELMs,
resonant magnetic perturbations (RMPs) are presently considered as an effective
means to ergodize the edge layer at specifically chosen resonant surfaces and
thereby making it possible to influence the plasma edge transport at will. ELM
mitigation by RMPs was accomplished in experiments like DIII-D [12], JET [42],
ASDEX-Upgrade [30] and is considered also for ITER [4].

The interaction of RMPs with a plasma is an extensive area of research. In
a layer around the surfaces where the magnetic perturbations resonate, plasma
response currents are excited that, due to the diamagnetic nature of the plasma,
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have a tendency to shield the plasma from the perturbation field, see e.g. [70].
For the mitigation of ELMs it is therefore a major concern to find conditions
that suppress shielding and allow the penetration of RMPs into the plasma.

The thesis at hand is intended to further investigate such operational limits
with the help of a wave-code [33] and a balance code [26, 30] that have been
developed in the plasma physics division at the Institute of Theoretical and
Computational Physics at TU Graz, simulating linear and quasilinear RMP-
driven transport. In contrast to previous studies conducted by our work group,
this thesis is intended to generalise the RMP-plasma interaction model by con-
sidering an integro-differential collision operator that remedies the fact that the
differential Fokker-Planck collision operator in the Ornstein-Uhlenbeck approx-
imation alone ensures the conservation of particles only but does not account
for momentum and energy conservation of the plasma species. We will see that
energy conservation – once implemented in the code – is mandatory for further
studies suppressing fake heat fluxes in our model, while momentum conservation
serves the purpose of making the model directly comparable to MHD models
neglecting toroidal effects or shear viscosity. If, on the other hand, only energy
but not momentum conservation is enforced, the model effectively simulates the
momentum loss to the trapped particles.

The structure of this thesis is as follows: Chapter 1 is intended to give a brief
overview of fundamental topics of plasma physics research, listing the fundamen-
tal thermonuclear reactions in a burning plasma as well as the key requirements
that have to be met to start ignition and to finally achieve the desired break-
even condition. Subsequently, the tokamak device is introduced without going
into whatsoever of the vast engineering details as they will not be of concern
in what is following. Finally, an important means for plasma stabilisation and
confinement – the mitigation of ELMs by RMPs, is discussed.

Chapter 2 on Methods sets the framework for the studies conducted in course
of this thesis. The kinetic equation of plasma physics as well as one of its most
important approximations – the guiding centre approximation – is derived in
detail. This effort is warranted by the fact that the whole wave-plasma inter-
action model used here is based on the gyrokinetic equation, so that its origin
and the assumptions it is based upon are of relevance for the comprehension of
the analysis to follow. The quasilinear model of perturbation-induced transport
presented here also in its Hamiltonian form, together with the linear wave-model
[25, 26, 33, 27, 30] provides the basis for the investigations undertaken in this
work. The chapter concludes with a presentation of the quasilinear balance
equations in toroidal geometry and the necessary relations for conversion of the
RMP field evaluated in cylindrical geometry to a real tokamak geometry. Fi-
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nally, shielding factors are introduced, which are an effective measure for to what
extent the perturbation field may penetrate or is shielded from the plasma.

In the final Chapter 3 on Results, first an application of quasilinear mod-
elling with a JET-like tokamak plasma is presented and the sensitivity of the
plasma profiles on the RMP-field in the quasilinear evolution is discussed. Fur-
thermore, RMP penetration for various amplitudes of the perturbation field is
studied. Secondly, an integro-differential collision operator is introduced and
shown to fulfil the desired conservation properties of energy and momentum of
the particle species. It will be demonstrated how to solve the linearised integro-
differential gyrokinetic equation by constructing a Green’s function of moments
of the Green’s function of the original, purely differential problem. In the fol-
lowing section two formulæ are derived that allow to recursively relate moments
of the generalised Green’s function. They are used to almost effortlessly nu-
merically evaluate higher moments needed for the computation of transport
coefficients. It is further shown that the collisionless limit of the moments co-
incides with the results obtained by application of the Green’s function in the
collisionless limit case. From the solution of the kinetic equation the transport
matrix is obtained for the general collisional case and the collisional limit and
shown to be Onsager symmetric. For both, the check of the collisionless limit of
the moments as well as the Onsager proofs, use is made of the second recursion
formula. Finally, a numerical model of the linear response of a plasma with
ASDEX-Upgrade parameters to a single perturbation mode is presented and
various combinations of collision models for the electron and ion component are
studied.

In Appendix A, the purely differential kinetic equation with Ornstein-Uhlen-
beck Fokker-Planck operator is solved by the method of characteristics. The
solution represents no new finding, being presented with by far less details con-
cerning the solution method already in [33]. Nonetheless, due to its huge signifi-
cance also for the generalised model studied here, it is included so that the model
calculations may be fully retraceable from first principles. Appendix B contains
some intermediate calculations provided for the diligent reader wishing to follow
the various steps needed for the construction of a momentum conserving colli-
sion operator. These are migrated from Chapter 3 such that the reading flow is
not impeded. In Appendix C explicit evaluations of the diffusion coefficients in
the collisional case as well as in the collisionless limit can be found. Finally, in
Appendix D it is shown how to determine the plasma response current density
in lowest order FLRE.
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Chapter 1

Basics

The following sections are intended to set the framework for the investigations
carried out in course of this thesis. They cover aspects of thermonuclear fusion, a
survey of the structure of a tokamak, the geometry of the tokamak vacuum field
and finally some remarks on confinement as well as the role of Resonant Magnetic
Perturbations (RMPs) in influencing the plasma edge transport. This introduc-
tory part outlining the necessary fundamentals for what follows is based fully
on meanwhile well-established textbook knowledge for which I refer to Chap-
ter 1, p. 1–31 and Chapter 3, p. 105–142 of the standard handbook Tokamaks
by J. Wesson [71] in the contexts of fusion power and the tokamak equilibrium
magnetic field, respectively, Chapter 4, p. 55–99, on “Magnetic-Field-Structure
related Concepts” of Flux Coordinates and Magnetic Field Structure by W. D.
d’Haeseleer et al. [10], as well as Plasma Physics edited by R. Dendy and the
handbook Fusion Physics edited by M. Kikuchi et al. [36], for which separate ref-
erences to the relevant chapters are given. For the case of RMPs which represent
an up-to-date area of research, original literature has been used.

Contents
1.1 Thermonuclear Fusion . . . . . . . . . . . . . . . . . . 6

1.2 The Tokamak . . . . . . . . . . . . . . . . . . . . . . . 10

1.2.1 Magnetic Field Geometry . . . . . . . . . . . . . . . . 11

1.2.2 Particle Orbits . . . . . . . . . . . . . . . . . . . . . . 14

1.2.3 Plasma Confinement . . . . . . . . . . . . . . . . . . . 14

1.2.4 Resonant Magnetic Perturbations . . . . . . . . . . . . 16
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6 CHAPTER 1. BASICS

1.1 Thermonuclear Fusion

The world energy consumption by the year 2100 is expected to be at least twice
the present usage [22]. The challenging problem of covering the fast-growing
energy demands along with the necessity of reducing the release of greenhouse
gases is omnipresent in the media. It is the present belief that such ambitious
goals can only be achieved by large investments in renewable energy sources
along with overcoming the many remaining engineering and scientific issues still
unsolved for a steady-state fusion power plant operation. At present, due to –
though not exclusively – various plasma instabilities, only a short-term, pulsed
operation is possible and only a fraction of the input power is regained. Not
surprisingly, a big part of research activity is devoted to plasma confinement
and macroscopic stability of tokamak plasmas. Only recently a record was set
at the JET1 experiment in Abingdon, UK, where a stabilisation of the fusion
plasma was achieved for 15 minutes [3, p. 96].

In order for a nuclear reaction to take place two light nuclei have to overcome
the electrostatic repulsion of their positive charges. If the relative velocity of the
nuclei is low, the particles suffer a deflection from their orbits and are hindered to
approach each other closely. With increasing kinetic energy the particles spend
less time within the interaction region and thus get diverted from their paths
to a lesser extent. Increasing the kinetic energy even further, at some point
the nuclei can either overcome the Coulomb barrier or become ever more likely
to penetrate that barrier due to quantum mechanical tunnelling, given that
impact parameters are small enough. From there the short range, attractive
nuclear strong force is dominant and a fusion reaction is initiated. For light
element fusion, the mass of the resultant nucleus is less than the masses of the
separate nuclei, resulting in a release of binding energy in form of kinetic energy
of the reaction products. In case of the deuterium-tritium reaction this energy
is E = ∆mc2 ≈ 0.01875mp c

2 ≈ 17.59 MeV, see e.g. [71], where mp denotes a
proton mass.

Several fusion reactions are being considered feasible for energy production
in a fusion reactor, the by far most promising reaction being the fusion of a 2

1D

deuterium with a 3
1T tritium nucleus, Eq. (1.3). This is due to D-T having the

highest cross section σ at the lowest energies [71] as is shown in Fig. 1.1. The

1Joint European Torus at the Culham Centre for Fusion Energy
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Figure 1.1: Cross section σ (left) and 〈σv〉 (right) for the reactions given in (1.3)
to (1.5). Source: Wesson, Tokamaks [71].

total thermal energy content in the plasma of volume V is by definition

W = 3

ˆ
V

d3r nT = 3nTV , (1.1)

assuming an equal number of electrons and ions ne = ni = n/2, each species
holding an average kinetic energy of T/2 per degree of freedom and so in total
3nT per unit volume [71]. The actually relevant measure is the total reaction
rate, given by the integral of σ(v′)v′f1(v1)f2(v2) over both particles’ velocity
space [71],

R =

ˆ
R3

d3v1

ˆ
R3

d3v2 σ(‖v′‖) ‖v′‖ f1(v1)f2(v2)
(D−T)

= nDnT〈σv〉, (1.2)

which in the case of a D-T reaction can be shown to give the right-hand side of
Eq. (1.2). Here v′ = v1−v2 is the relative velocity and fi(vi) is the distribution
function of the particular particle species. This rate reaches its maximum value
if the ion particle densities are equal, nD = nT [71]. The product 〈σv〉 for
the D-T, D-D, and D-32He reaction respectively is shown on the right graph of
Fig. 1.1.

In the following, the three most important reactions for controlled fusion are
listed, see e.g. [71, 35]:

2
1D + 3

1T→ 4
2He + 1

0n (1.3)
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2
1D + 2

1D→
{

3
1T + 1

1p
3
2He + 1

0n
(1.4)

2
1D + 3

2He→ 4
2He + 1

1p (1.5)

When, as shown in (1.3), the hydrogen isotopes deuterium and tritium are
brought to react with each other, an α-particle and a neutron are produced,
their kinetic energies being distributed as follows: 3.5 MeV (4

2He) and 14.1 MeV
(1
0n) [71, 35], thus yielding in total 17.6 MeV per reaction. The neutron that
carries approximately 4/5 of the released energy leaves the plasma without in-
teraction. It is intended to become absorbed in the blanket such that its kinetic
energy can be converted into heat and conducted outside by means of a coolant
generating electric power in a conventional way [71]. The charged α-particle on
the other hand, which is confined by the magnetic field only receives the small
remaining fifth part of the reaction energy. This small energy fraction then con-
tributes mainly to sustain the plasma at a high enough temperature to allow for
further nuclear reactions to occur. The thermonuclear power per unit volume
ptn is directly proportional to the species’ particle densities, the product 〈σv〉
and the energy release per single reaction E [71],

ptn = nDnT〈σv〉E (1.6)

and, in the optimum case where nD = nT = n/2, gives for the α-particle heating
per unit volume pα = 1/4n2〈σv〉Eα or, in total [71],

Pα =

ˆ
V

d3r pα =
1

4
n2〈σv〉EαV . (1.7)

Deuterium is plentifully available in form of heavy water D2O [35], while tritium
does not occur naturally being unstable to β-decay [35]. It has to be bred from
Lithium according to one of the two following reactions of a neutron, which is
generated in a fusion process, together with one of the two lithium isotopes 6

3Li

and 7
3Li with substantial occurrence in the Earth’s crust and in the oceans [35],

6
3Li + 1

0n→ 4
2He + 3

1T, (1.8)
7
3Li + 1

0n→ 3
1T + 4

2He + 1
0n. (1.9)

The first reaction releases 4.8 MeV and requires a slow neutron for the reaction
to occur, while the second consumes 2.5 MeV and a fast neutron [22]. While
breeding tritium in a lithium-blanket is considered for the first generation fusion
reactors, the focus for the second generation reactors will also be laid on the
D-D reaction [35], which requires substantially higher energies as can be seen
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from Fig. 1.1.
In order for a net positive energy balance to occur, the nuclei have to react be-

fore they lose their energy due to bremsstrahlung on occasion of electron-electron
and electron-ion encounters, synchrotron radiation due to the confinement of the
plasma by a magnetic field and various transport processes. The power loss PL

defined by means of the energy confinement time τE as PL = W/τE [71] has to
be balanced by external heating of the fusion plasma and the intrinsic α-particle
heating, PH + Pα = PL, giving the power balance equation [71]

PH +
1

4
n2〈σv〉EαV =

3nT

τE

V . (1.10)

The so called power gain, defined by Q = Pout/Pin = Pfusion/Paux apparently
has to exceed one, the minimum criterion Q = 1 being called “break-even con-
dition” [35]. For this purpose a D-T plasma has to be heated to ∼ 10 keV [35]
corresponding to ∼ 108 K. At so high a temperature the plasma can be con-
sidered completely ionised. Furthermore it is then the high-energy tail of the
Maxwellian-distributed assumed reactants, i.e.

fi(vi) = ni

( mi

2πT

)3/2

exp

(
−miv

2
i

2T

)
(1.11)

that contributes most to the nuclear reactions [71].
When the burning process becomes self-sustaining and no further energy

has to be supplied for further fusion reactions to occur, ignition is reached. In
order for ignition to set in, the so called “triple product” of electron density and
temperature and energy confinement time has to exceed a threshold value, see
e.g. [71, 35],

neτETe > 1.5× 1015 cm−3 s keV, (1.12)

this criterion being based on the original work by Lawson [39]. The energy
confinement time τE in steady-state is often obtained experimentally from τE =

W/PH [71], i.e. the the ratio of the total energy content in the plasmaW and the
power supplied by heating, assuming that the thermonuclear power in present
day experiments is low and thus external heating balances energy losses in steady
state, i.e. PH ≈ PL [71].

Most importantly, fusion power is considered safe: in contrast to nuclear
reactions in a fission power plant the operation is bound to cease without a
continuous supply of fuel, while the mass of fuel at any instant of time in a
reactor corresponds to no more than “the weight of several postage stamps” [22].
In case of an accident, the fusion material would allow energy production to
continue for no more than a few seconds [35].
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1.2 The Tokamak

In contrast to inertial confinement, where high density plasmas are generated
during very short nanosecond time intervals, magnetic confinement is aimed at
constraining a low density plasma to closed magnetic field lines for much longer
time scales. Since the threshold value for self-sustaining burning scales with
both the density and temperature, Eq. (1.12), there must be a strong enough
magnetic field present to counteract the required plasma pressure in a reactor.
Present technological limits allow the generation of magnetic fields of about
1.2 × 105 G, while it seems likely that coils generating a ∼ 1.6 × 105 G field
are engineered in the future [71]. Considering the inverse radial dependence of
the toroidal field on the major radius R, this corresponds to a field strength of
(6 . . . 8)× 104 G at the plasma centre [71].

Being originally developed in the Soviet Union in the late 1950s, today’s
largest scale tokamak experiment is the Joint European Torus located at Cul-
ham Laboratory in Abingdon, UK which started operation in 1983. Tokamak
performance has improved significantly over the last decades, the first devices
featuring a confinement time of no more than few milliseconds [71]. With heat-
ing methods such as neutral beam injection and RF heating at the ion cyclotron
resonance, ion temperatures could be improved from originally several hundreds
of eV to a few keV in the 1980s [71]. While JET holds the world record for fu-
sion power, in recent years it also served in carrying out experiments specifically
aimed at design studies for the next larger-scale experiment, the International
Thermonuclear Experimental Reactor (ITER) to be built in Cadarache, France.

The tokamak plasma is surrounded by a blanket, a shield, and finally the
coils generating the toroidal field. A significant role is played by the blanket,
which

• absorbs neutrons from the D-T reaction whose thermal energy of 14.1 MeV

is removed by a liquid or gaseous coolant and transformed to electrical
power in the conventional way by a turbine and a generator

• shields the superconducting coils, which have to be protected from damage
and kept at very low temperatures

• provides the conditions for the breeding of tritium according to either of
the processes (1.8) or (1.9).

While most of the neutrons are absorbed in the blanket, the energy flux of the
remaining neutrons is still by a factor of 106 . . . 107 too high to be let pass to
the superconducting coils; a further reduction is accomplished by a roughly 1 m
shield of material with high atomic number Z, such as steel [71].
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1.2.1 Magnetic Field Geometry

Before discussing the magnetic field geometry, a few remarks on the coordinates
used are indicated. While R is used to measure the distance of a particular point
from the major axis, R0 is the radius of the magnetic axis (also minor axis) which
lies at the centre of the set of nested flux surfaces. Here, the plasma pressure
P and the current density j reach their maximum values. The distance of an
arbitrary point r = (x, y, z) under consideration from that axis is given by the
radial coordinate r, that together with the poloidal angle θ and toroidal angle
φ form the set of toroidal coordinates (u1, u2, u3) = (r, θ, φ) linked to Cartesian
coordinates by the relations, see e.g. [10],

x = (R0 + r cos θ) sinφ,

y = (R0 + r cos θ) cosφ, (1.13)
z = r sin θ,

where r ∈ R+ and θ, φ ∈ [0, 2π). For (êr, êθ, êφ) to form a right-handed system,
the toroidal angle φ has to be measured clockwise as opposed to the usual
convention, see Fig. 1.2.

φ

r

R0

P (r, θ, φ)R

θ

Figure 1.2: Toroidal coordinates for the tokamak geometry.

In a tokamak, the toroidal magnetic field Bφ is generated by external super-
conducting field coils. As already mentioned before, the toroidal field strength
varies characteristically with 1/R in radial direction. This is easily realised by
applying Ampère’s law to a circular toroidal path inside the toroidal field coils,
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neglecting the small contribution from the poloidal plasma current [71],
ˆ
S

dS · ∇ ×B =

˛
∂S

dr ·B ≈ 2πRBφ =
4π

c

ˆ
S

dS · j =
4π

c
Icoil, (1.14)

and hence, Bφ ∝ 1/R. In toroidal direction, the ideally constant field strength is
slightly rippled due to the field coils being placed at discrete angles around the
torus. In a purely toroidal magnetic field electrons and ions would drift apart
vertically in opposite directions, giving rise to a vertical electric field and hence
an undesired radial E×B-motion. For this purpose a weaker poloidal field Bθ is
put in place by a transformer action inducing a toroidal electric field and hence
a toroidal plasma current2. The toroidal together with the poloidal field forms
a helically wound magnetic field geometry as depicted in Fig. 1.3. The tokamak
vacuum field can be approximated as follows [54],

B = (0, Bθ(r), B0)T

(
1− r

R0

cos θ

)
. (1.15)

The poloidal field leads to particle trajectories that prevent the formation of such
a vertical electric field, allowing for particle orbits constrained to magnetic flux
surfaces albeit small deviations are inherent due to ∇B- and magnetic curvature
drifts.

An infinite set of nested flux surfaces is traced out by a series of magnetic field
lines. In equilibrium, the plasma pressure is exactly balanced by the magnetic
force, j × B = ∇P , a relation often referred to as “magnetostatic equation”3

[38]. Hence it follows that the current flows within the flux surface, j · ∇P = 0

and pressure is a constant on a flux surface, B · ∇P = 0. In this simple picture
neither of effects like resistivity, viscosity, finite flow velocities or finite Larmor
radius are considered [10]. The variation of the gradient of the filed lines as one
traverses the flux surfaces radially leads to global magnetic shear [41],

s =
r

q

dq

dr
, (1.16)

the pitch of the field line being measured by the safety factor q(r). Marking
the point in an arbitrary poloidal cross section where the field lines pierces the
plane and measuring the toroidal angle ∆φ covered until it will return to that

2In contrast to the tokamak, in a stellerator the poloidal field is generated by helical field
coils.

3together with the further field equations ∇×B = 4πj/c and ∇ ·B = 0.
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position provides another way of defining the safety factor as [71]

q =
∆φ

2π
. (1.17)

Especially for the case of rational surfaces q ∈ Q, i.e. m, n ∈ Z, the field line
closes upon itself having helically traversed the flux surface m times in toroidal
and n times in poloidal direction. In all other cases of irrational surfaces where
q ∈ R\Q, the field line traces out the whole surface. The safety factor derives
its name from the fact that plasma stability improves with higher q-values [71].

If one considers the field line equation, see e.g. [10]

B × dr = 0⇒ Bφ

R dφ
=
Bθ

ds
= const, (1.18)

where ds is an infinitesimal path element in poloidal direction, isolates dφ and
substitutes the expression to the definition of q in Eq. (1.17) one obtains [71]

q =
1

2π

˛
C

ds
1

R

Bφ

Bθ

≈ r

R0

Bφ

Bθ

(1.19)

as an approximation for the safety factor for large aspect ratio R/r and circular
cross section. In the so-far considered case of circular poloidal cross-sections and
large aspect-ratio, one can further find an expression for the radial q-profile by
applying Ampère’s law again, this time considering a poloidal cross-section Stor

of a flux surface at r and its boundary ∂Stor, respectively [71],
˛
∂Stor

dr ·B = 2πrBθ =
8π2

c

ˆ r

0

dr′ r′j(r′). (1.20)

For non specified current density profile j(r) the current flowing within 0 ≤ r′ ≤
r is I(r) = 2π

´ r
0

dr′ r′j(r′) and from (1.19) the radial q-dependence is obtained
as

q(r) ≈ cr2Bφ

2R0I(r)
, (1.21)

giving q(a) ≈ ca2Bφ/2R0Itor at the plasma edge and q(0) ≈ cBφ/2R0πj(0) at
the magnetic axis, having used limr→0 I(r) = limr→0 r

2πj(0) [71]. The simple
approximation for q at the plasma edge is no longer valid in the case of a divertor
due to the domination of contributions coming from the vicinity of the X-point,
q being ∝ 1/Bθ, see Eq. (1.19), since there the poloidal field is zero.
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Density (cm−3) Ion temperature (keV) Bφ (104 G) R/a

∼ 1013 . . . 1014 ∼ 10 . . . 30 ∼ 1 . . . 5 ∼ 4

Table 1.1: Typical tokamak plasma parameters. Data from O’Brien, M. R.
and Robinson, D. C.: Plasma Physics [54, Chapter 8: Tokamak experiments,
p. 189ff].

1.2.2 Particle Orbits

Particle orbits in a tokamak will be studied in great detail in Sect. 2.2 on the guid-
ing centre approximation. However some general remarks on the orbits of two
classes of particles, namely the trapped and passing particles, are indicated here.
While particles with a sufficiently large parallel velocity component traverse the
whole torus and hence are called passing, a fraction of the particles cannot cir-
cle the whole flux surface but is trapped to the low field region. A particle’s
adiabatic moment µ = mv2

⊥/2B and kinetic energy K = m(v2
⊥ + v2

‖)/2 being
constant, the perpendicular velocity is bound to rise as the particle moves into
regions with higher magnetic field strength. Consequently v‖ decreases accord-
ingly until, for the trapped particle species, the whole momentum is transferred
to the perpendicular motion and the particle is mirrored at a particular poloidal
angle θc while precessing toroidally [23]. Projecting the gyromotion to a poloidal
cross section shows the typical shape of a banana orbit. In a collisional plasma
trapped particles are scattered out of the trapping cone in velocity space. For
the electrons such a collision typically leads to a displacement of the order of the
electron banana width. The essential point here is that this length is larger than
the electron Larmor radius %e. Although only a fraction of particles is trapped,
these dominate the transport, their associated random-walk step size exceeding
the length scale for classical diffusion [71]. For an isotropic distribution, the
velocity space geometry determines the ratio of trapped to passing particles be-
ing ∼ (2r/R)1/2 on any magnetic surface [23]. It considerably influences the
transport e.g. by affecting the plasma conductivity and pressure-driven currents
[54].

1.2.3 Plasma Confinement

A deliberate induction of radial electric fields at the edge plasma gives rise to an
abrupt transition from a low (L-mode) to a high confinement regime (H-mode)
associated with considerably better confinement times. This coincidence was
first observed at the ASDEX tokamak featuring a divertor to separate the plasma
from the first wall and operating at high temperature. With the H-mode plasma
edge confinement improved and steep gradients of density and temperature were
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Plasma/Device Parameters
ne (1 . . . 4)× 1013 cm−3

Te . 5 keV
Ti . 3 keV
Bφ (1.3 . . . 3.4)× 104 G
R 296 cm
a 125 cm
R/a 2.38
q 2.3 . . . 10

Iφ ∼ 2× 1016 statA

Table 1.2: Parameters of the Joint European Torus. Data from Rebut, P. H. et
al. (1985) [57] and Wesson, J.: Tokamaks [71, p. 581ff]

Figure 1.3: Idealised Tokamak geometry: Flux surface with circular cross-
section. A helical magnetic field (indicated here by a red field line) is accom-
plished by exterior superconducting coils generating a toroidal field and the
toroidal plasma current Iφ superimposing a poloidal field.
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found to occur at the separatrix [54]. Many an H-mode is accompanied by edge
localised modes (ELMs) which, being a burst of MHD activity degrade energy
and particle confinement. If on the other hand an H-mode lacks ELM-activity,
the density rises until a transition back to the L-mode is triggered. In order to
stabilise the density it is therefore desired to control ELMs and thereby transport
characteristics at the plasma edge. Local studies of particle-, momentum- and
energy transport have shown that transport coefficients, e.g. thermal diffusivities
are low, e.g. D ∼ 3× 103 cm2/s for q . 1, rising gradually until r ≈ 0.8 a, while
at the edge with increasing turbulent characteristics, a strong increase up to
D ∼ 104 cm2/s is observed [54].

While increasing the energy confinement time is a core technological issue for
the plasma centre, this is not true for the outer layer where impurities resulting
from material sputtering of the first wall and helium ash have to be constantly
removed. Ion impurities reduce the performance already in small concentration
due to the radiative power loss being ∝ Z2

i , while alpha particles resulting from
either the D-T or the D-He reaction quickly dilute the plasma. A measure for
the acceptable impurity content is the effective charge Zeff =

∑
i niZ

2
i /ne which

must be kept low, Zeff . 2 in order not to critically reduce the fusion power
density [54].

One way to get rid of impurities resulting from plasma-wall interactions are
magnetic divertors which, at the plasma edge divert magnetic field lines and
thus also the charged particles that follow them to an external chamber, where
they are neutralised and extracted.

1.2.4 Resonant Magnetic Perturbations

An important means to increase the radial transport at specifically chosen layers
of the edge plasma is to intentionally perturb the equilibrium magnetic flux sur-
faces by imposing a perturbation field that is resonant at flux surfaces such that
the ratio of toroidal to poloidal wave number coincides with the safety factor
at the particular plasma radius, i.e. q(r) = m/n. For this purpose an antenna
current exciting the perturbations is induced parallel to the field lines on the
resonant equilibrium flux surface. Resonant magnetic perturbations (RMPs)
interacting with a static plasma lead to the formation of magnetic islands by af-
fecting the magnetic field topology and giving rise to magnetic reconnection [58].
Thereby transport is enhanced as particles move around the islands following the
perturbed field lines and steep gradients at the plasma edge are flattened. Hence
undesirable type-I ELMs that cause a substantial heat load on the wall and the
divertor, thereby stressing the material can be mitigated by RMPs. Besides
externally applied magnetic field perturbations a typical tokamak suffers from
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non-axisymmetric resonant field errors of the order δB/B ∼ 10−4 [58]. Analo-
gous to RMPs also these non-purposed aberrations from axisymmetry lead to
pronounced island formation of widths w ∝

√
|Br(rres)| as is shown by Reiman

and Monticello [58]. Their numerical studies [58] have shown that those island
widths scale as

√
δB/B. With increasing size islands start to overlap, thereby

forming ergodic regions that enable fast radial transport. The formation pro-
cess, however was found to be suppressed when the plasma is rotating [15, 17]
in which case the perturbation decelerates the plasma rotation by exertion of
a braking force. This effect of plasma shielding is not desirable if one deliber-
ately wants to ergodize the plasma edge for ELM mitigation. It has been shown
that RMPs may be shielded by the plasma response currents flowing in a thin
layer at the resonant surfaces and are reduced by several orders of magnitude
[25, 26, 33]. Waelbroeck [70] studied the effect of diamagnetic drifts on the
shielding of RMPs by plasma rotation. He showed that the force exerted by
the perturbations affects the electrons such that they are brought to rest in the
frame of the perturbation. In [70] it is also shown that the force induced by
the perturbations at the resonant layer as a function of the rotation frequency
has three minima and that between these minima there are two so-called locked
states where the force is resonant. In Heyn et al. [30] yet another resonance
associated with the equilibrium field reversal point Er = 0 is studied, which
is shown to even possibly amplify the perturbation field. Here the shielding is
suppressed, allowing the formation of magnetic islands.
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Chapter 2

Methods

The study at hand is based on a linear and quasilinear, respectively kinetic
model of the interaction of resonant magnetic perturbations (RMPs) with a
tokamak plasma, described as a straight cylinder with rotational transform [25].
In Sections 2.2 to 2.3 a detailed derivation of the gyrokinetic model of RMP-
driven transport is given. When discussing the guiding centre approximation in
Section 2.2, an analysis of the motion of a single charged particle in prescribed
electromagnetic fields is developed. Taylor-expanding fields and potentials in
small gyroradii, one finally obtains the drift equations of motion, thereby limiting
oneself to gyro-averaged orbits. The connection between the orbit of such a test
particle and its associated guiding centre velocity with the dynamics of average
properties of the whole plasma is manifested in the kinetic equation, which is
the subject of the following Section 2.1. Sections 2.4 to 2.5 are devoted to the
derivation of the plasma response to the perturbation field. In Sections 2.6 and
2.7, the key equations underlying the linear model and the quasilinear balance
code, respectively are presented.

As in the preceding chapter, the contents presented here do not represent
original research by the author but theoretical fundamentals derived here in great
detail as well as a description of the transport model that was developed in our
work group at the ITP/CP at TU Graz. Nonetheless, the methods introduced
here provide the framework in which the original results, obtained in course of
this thesis and discussed in Chapter 3, are embedded.
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2.2.4 Symmetries of the Guiding centre Lagrangian . . . . . 39

2.3 The Gyrokinetic Equation . . . . . . . . . . . . . . . 43

2.4 Quasilinear Response Model . . . . . . . . . . . . . . 44

2.4.1 Fluxes and the Diffusion Tensor . . . . . . . . . . . . . 51

2.4.2 The Collisionless Limit . . . . . . . . . . . . . . . . . . 51

2.4.3 The General Collisional Case . . . . . . . . . . . . . . 53

2.5 Hamiltonian Quasilinear Model . . . . . . . . . . . . 58
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2.1 Plasma Kinetic Equation

In plasma kinetic theory the motions of all the particles which make up the
plasma are considered, though not necessarily by an exact description of all the
particles’ orbits in phase space but by a statistical description of these which
still enables one to determine average properties of the plasma. Although not
of direct value for the computational modelling of a plasma, Klimontovich’s
exact equation of the spatial and temporal evolution of a plasma is one possible
starting point for the derivation of the kinetic equation. A detailed derivation of
the kinetic equation based on either the Klimontovich or the Liouville equation
can be found in Nicholson’s “Introduction to plasma theory” [51], chapters 3 to
5, while here only a sketch of the derivation of the probably most fundamental
equation of plasma physics pursuant to [51] is given.

The density of particles of a two-component plasma, made up by N electrons
and ions, each in 6-D phase space P with coordinates (r,v) is [51]

n(r,v, t) =
∑

σ=e,i

N∑

i=1

δ(r −Ri(t))δ(v − Vi(t)), (2.1)

with Ri(t) and Vi(t) denoting the actual particle position and velocity, respec-
tively. One should mention here that while the Klimontovich equation is an
exact description of a particle ensemble in the sense that no statistical averages
over particle trajectories are applied, already in this first step, Eq. (2.1) a simpli-
fication has been made in that the particles have been assumed point-like. For a
plasma made up by electrons and protons this assumption does not seem to be
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severe, while for complex dusty plasmas such an ansatz would be questionable.
The trajectories and velocities of each particle obey equations of motion,

Ṙi(t) = Vi(t), (2.2)

V̇i(t) =
qσ
mσ

{
Em[Ri(t), t] +

Vi(t)

c
×Bm[Ri(t), t)]

}
, (2.3)

Em and Bm being the self-consistent microscopic fields that include externally
applied fields as well as the fields that originate from the particles themselves.
The particles’ charge and current densities are sources

%m(r, t) =
∑

σ=e,i

qσ

ˆ
R3

d3v nσ(r,v, t), (2.4)

jm(r, t) =
∑

σ=e,i

qσ

ˆ
R3

d3v v nσ(r,v, t) (2.5)

of the electromagnetic field. Together with Maxwell’s equations

∇ ·Em(r, t) = 4π%(r, t), (2.6)

∇ ·Bm(r, t) = 0, (2.7)

∇×Em(r, t) = −1

c

∂Bm(r, t)

∂t
(2.8)

∇×Bm(r, t) =
4π

c
j(r, t) +

1

c

∂Em(r, t)

∂t
, (2.9)

the equations of motion form a closed set of equations, meaning that provided
initial conditions for particle positions and velocities are given, the complete
state of all particles in phase space, i.e. ri(t) and vi(t) (i = 1, . . . , N) can be
determined along with the fields that couple with the equations of motion via
Eq. (2.3).

The Klimontovich equation is obtained by taking the time derivative of the
density of particles in phase space, Eq. (2.1),

∂nσ(r,v, t)

∂t
= −

N∑

i=1

Ṙi · ∇R δ(r −Ri(t))δ(v − Vi(t))

−
N∑

i=1

V̇i · ∇V δ(r −Ri(t))δ(v − Vi(t))

= −
N∑

i=1

Vi · ∇R δ(r −Ri(t))δ(v − Vi(t))
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−
N∑

i=1

qσ
mσ

{
Em[Ri(t), t] +

Vi
c
×Bm[Ri(t), t]

}

· ∇V δ(r −Ri(t))δ(v − Vi(t)) (2.10)

Due to property aδ(a−b) = bδ(a−b) of the delta function, one can replace Ri(t)

by r and Vi(t) by v. Also
∑N

i=1 δ(r−Ri(t))δ(v−Vi(t)) can again be identified
as nσ(r,v, t), Eq. (2.1), so that (2.10) can be written further as

∂nσ(r,v, t)

∂t
+ v · ∇rnσ +

qσ
mσ

(
Em(r, t) +

v

c
×Bm(r, t)

)
· ∇vnσ = 0, (2.11)

which is the famous Klimontovich equation, see e.g. [37, 11, 51]. This equation
describes the exact orbits of each and every particle in the plasma. Provided
given initial conditions and initial fields, together with Maxwell’s equations (2.6)
to (2.9) the set of equations is closed and in principle allows the evaluation
of densities and fields indefinitely in a deterministic way. Making use of the
convective derivative in phase space

D

Dt
= ∂t+

dr

dt

∣∣∣∣
orbit

· ∇r +
dv

dt

∣∣∣∣
orbit

· ∇v, (2.12)

the Klimontovich equation can be written compactly as [51]

Dnσ(r,v, t)

Dt
= 0. (2.13)

From a practical computational point of view one can neither process these
equations which are by far too detailed, nor is it necessary to obtain the infor-
mation of each and every particle orbit for the description of the evolution of a
plasma. From here, the much more useful kinetic equation is obtained by taking
an ensemble average of the Klimontovich equation.

The ensemble average 〈. . .〉 over the possible realisations of a plasma is a
means of replacing the spiky functions nσ(r,v, t) by smooth distribution function
fσ(r,v, t) ≡ 〈nσ(r,v, t)〉, being the number of particles of plasma species σ
per unit configuration space and unit velocity space [51]. Letting δnσ(r,v, t),
δE(r,v, t) and δB(r,v, t) be the deviation from the ensemble averaged particle
density and electromagnetic fields, respectively,

nσ(r,v, t) = fσ(r,v, t) + δnσ(r,v, t), (2.14)
Em(r,v, t) = E(r,v, t) + δEm(r,v, t), (2.15)
Bm(r,v, t) = B(r,v, t) + δBm(r,v, t), (2.16)
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so that by definition 〈δnσ〉 = 〈δEm〉 = 〈δBm〉 = 0, substituting (2.14) to (2.16)
into (2.11) and taking the ensemble average, the plasma kinetic equation [51]

∂fσ(r,v, t)

∂t
+ v · ∇rfσ +

qσ
mσ

(
E +

v

c
×B

)
· ∇vfσ = Qσ (2.17)

with source term

Qσ = − qσ
mσ

〈(
δE +

v

c
× δB

)
· ∇vδnσ

〉
, (2.18)

describing the discrete particle effects of the plasma, i.e. the collisions, is ob-
tained. The ensemble averaged fields E andB again satisfy Maxwell’s equations
(2.6) to (2.9), where due to the linearity of the equations, one can simply re-
place the microscopic fields by the ensemble averaged fields. Taking velocity
space moments of the ensemble averaged distribution function fσ instead of the
spiky density function nσ, one obtains the ensemble averaged density and current
[51],

%(r, t) = 〈%m〉 =
∑

σ=e,i

qσ

ˆ
R3

d3v fσ(r,v, t), (2.19)

j(r, t) = 〈jm〉 =
∑

σ=e,i

qσ

ˆ
R3

d3v vfσ(r,v, t). (2.20)

Again, the set of equations is closed.
At this point it is apparent how single particle orbits enter the statistical

description of a whole plasma species. This motivates the close examination
of particle orbits and drifts in a prescribed electromagnetic field in the next
section. The description of the motion of charged particles due to the Lorentz
force will be shown to be somewhat simplified by the so-called guiding centre or
adiabatic approximation. The guiding centre drift velocity Ṙ could be obtained
by gyro-averaging of the equations of motion in such a way that the system
of second order equations is transformed to a first order system with separate
parts for the slow drift motion and the fast oscillatory gyromotion [63]. An
alternative systematic approach is a coordinate transformation to guiding centre
coordinates in the single particle Lagrangian and expanding fields and potentials
in the small parameter ε ∼ %/L [44], L representing the scale length of the
magnetic field. Drifts to various orders of ε are obtained from the Euler-Lagrange
equations of the expanded Lagrangian. The guiding centre drift velocity finally
enters the kinetic equation as the configuration space part of the phase space
velocity żi, giving the gyrokinetic equation. The kinetic equation is simplified
substantially by introducing phase space coordinates that are invariants of the
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motion. Finally, the kinetic equation is formulated for phase space coordinates
made up of velocity components parallel and perpendicular to the magnetic field,
which are the appropriate coordinates for the collision operator. It will be shown
how to solve the linearised gyrokinetic equation by the method of characteristics
[33] for a 1-D Galilean-invariant, hence charge conserving collision operator in
Appendix A.

2.2 Guiding centre Approximation

2.2.1 Single Particle Motion in an Electromagnetic Field

Newton’s equation of motion for a particle with charge q and mass m in an
electromagnetic field is given by

dp

dt
= q

(
E(r, t) +

ṙ

c
×B(r, t)

)
. (2.21)

It follows from the non-relativistic limit of the exact Lagrangian of a charged
particle in an electromagnetic field, see e.g. [20, p. 179],

L(r,v, t) = −mc2

√
1− v(t)2

c2
− q Φ(r, t) +

q

c
v ·A(r, t), (2.22)

which, except for an additive constant −mc2, is, e.g. [18, p. 73],

L(r, ṙ, t)
(v�c)

=
m

2
ṙ2 − q Φ(r, t) +

q

c
ṙ ·A(r, t). (2.23)

The particle’s equation of motion is Euler-Lagrange’s equation d(∂L/∂ṙ)/ dt

= ∂L/∂r, following from Hamilton’s principle,

δ

ˆ t2

t1

dtL(r, ṙ, t) = 0. (2.24)

Evaluated explicitly, the left and right hand sides are

d

dt

∂L
∂ṙ

= mr̈ +
q

c

d

dt
A(r, t) = mr̈ + (ṙ · ∇)A(r, t) +

∂

∂t
A(r, t),

∇L = −q∇Φ(r, t) +
q

c
∇(ṙ ·A(r, t)).

Expressing the fields by their potentials E(r, t) = −∇Φ(r, t) − (∂A/∂t)/c and
B(r, t) = ∇×A(r, t), it immediately follows that the terms where the del op-
erator acts on the vector potential give the magnetic component of the Lorentz-
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force,
q

c
[∇ (ṙ ·A)− (ṙ · ∇)A] =

q

c
ṙ × (∇×A) =

q

c
ṙ ×B,

so that the equations of motion are as expected given by the Lorentz force law,

mr̈ = q

(
E(r, t) +

ṙ

c
×B(r, t)

)
. (2.25)

Integrals of motion can be found if the potentials have symmetries. In cylindrical
geometry (x1, x2, x3) = (r, ϑ, z), the Lagrangian (2.23) becomes

L(r, z, ṙ, ϑ̇, ż, t) =
m

2
gijẋ

iẋj − e Φ(xi, t) +
e

c
gijẋ

iAj(xi, t)

=
m

2

(
ṙ2 + r2ϑ̇2 + ż2

)
− e Φ(xi, t) +

e

c

(
ṙAr + r2ϑ̇Aϑ + żAz

)

=
m

2

(
ṙ2 + r2ϑ̇2 + ż2

)
− e Φ(r, ϑ, z, t) +

e

c

(
ṙÂr + rϑ̇Âϑ + żÂz

)
,

(2.26)

where the over-hat denotes the physical vector components of the vector poten-
tial. If the system has axial symmetry, i.e. Φ = Φ(r, z, t) and A = A(r, z, t), the
azimuth ϑ is a cyclic coordinate and the corresponding canonical momentum is
invariant,

pϑ =
∂L
∂ϑ̇

= mr2ϑ̇+
e

c
rÂϑ = const. (2.27)

If the potentials have no explicit dependency on time, neither has the La-
grangian, in which case the energy is conserved,

H =
∑

i

∂L
∂ẋi

ẋi − L = E

=
m

2

(
ṙ2 + r2ϑ̇2 + ż2

)
+ e Φ(r, ϑ, z) = const. (2.28)
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Lagrangian of a single charged particle in
a steady electromagnetic field Φ(r), A(r)

Coordinate transform to guiding centre vari-
ables (r,v) → (R, φ, µ,H); expansion of poten-
tials and fields A(r) ' A(R)+ε(% ·∇)A(R), . . .

Guiding centre Lagrangian Lgc

Hamilton’s principle: δ
ˆ

dtLgc = 0

Drift equations: Ṙ =
v‖
B∗‖
∇ × A∗,

φ̇ = −ωc, J⊥ = 0, Ḣ = 0

Gyrokinetic equation: ∂tf + Ṙ · ∇f = L̂cf

Linearised kinetic equation

∂tf̃m + im ·Ωf̃m − L̂cf̃m = Q̃m

Solution of the kinetic equation

f̃m(u, t) =

ˆ t

t0

dτ

ˆ
R

du′ G̃D
m(u, u′, t−τ)Q̃m(u′, τ)

Conductivity matrices σkl(n,n′) and diffusion
coefficients Dkl expressible through moments
Wmn of the Green’s function Gm(u, u′, t)

Generalised Ohm’s law

j̃k(r, ϑ, z) =
1

r

N∑
n,n′=0

(−)n
∂n

∂rn

(
r σkl(n,n′) (r,k)

∂n
′

∂rn′
Ẽl(r, ϑ, z)

)

Uploaded pertur-
bation fields Ẽ, B̃

Maxwell’s equations in
cylindrical geometry

∇×Ẽ = iω
c
B̃

∇×B̃ = − iω
c
Ẽ + 4π

c
( j̃a +j̃p)

Wave code KiLCA (Kinetic
Linear Approximation) [33]

Figure 2.1: Schematic diagram of the quasilinear plasma-RMP interaction model
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2.2.2 Guiding centre Lagrangian

The equation of motion for a charged particle in an electromagnetic field (2.25)
can only be solved analytically if the field possesses symmetries or is static [47].
In the general case of an arbitrarily complicated field geometry, approximations
to the exact integrals of motion have to be found.

If the electromagnetic fields vary slowly and have weak variations in space,
or to be more precise, if time scales are large compared to a gyroperiod 2π/ωc

and in addition perpendicular length scales are large compared to a gyrora-
dius % = v⊥/ωc, the necessary conditions for the guiding-centre approximation
are met. In principle, a guiding centre approximation is a method to average
out the fast gyromotion of the equations of motion. What remains are the drift
equations describing the gyroaveraged motion of a single charged particle in pre-
scribed fields. In order to derive these drifts one can either heuristically study
the equations of motion resulting from the Lorentz force law for various field
configurations separately, i.e. for a solely homogeneous magnetic field, an addi-
tional electric field, for curved field lines, inhomogeneous fields, fields varying in
time, etc., separate the slowly varying drift from the fast oscillatory gyromotion
and finally put the parts together. Another approach is to gyroaverage the exact
second order system of equations of motion to a system of first order equations
with a clear separation of drift and oscillatory parts [63, 47]. Alternatively, one
may start from the Lagrangian of a single charged particle, Eq. (2.23), which is
transformed to guiding centre variables and expanded to several orders in the
small parameter ε = %/L. The differences in the methods are subtle and vary
e.g. in the application of Hamiltonian [43] and non-Hamiltonian formulations,
see e.g. the Northrop Lagrangian formulation [52, 9]. In addition, the method-
ology of the separation of the guiding centre motion from the actual particle
motion differs from the application of averaging techniques for second order
differential equations developed by Bogolyubov, see e.g. [6] or Appendix 1 of
[47], to a variational approach for a guiding centre Lagrangian [44], which relies
on fundamental and well known principles from the study of Theoretical Me-
chanics. To explain the method, in the following the guiding centre Lagrangian
and the corresponding Euler-Lagrange equations of motion, i.e. the drift mo-
tion is derived, in close accordance to Littlejohn’s work [44] but for a different
set of generalised coordinates. Here, a complete derivation is given and a lot
more intermediate steps than in the original paper [44] are shown to ease the
reproduction.

In the following we focus on the particle motion in a steady electromagnetic
field. The canonical Hamiltonian of a particle in a steady electromagnetic field
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follows from the Lagrangian (2.23) by the Legendre transformation

H(r,p, t) =
3∑

i=1

piṙi(r,p, t)− L(r, ṙ(r,p, t), t), (2.29)

where p is the canonical momentum

p =
∂L
∂ṙ

= mṙ +
e

c
A(r) (2.30)

being related to the kinematic momentum by

pkin = mṙ = p− e

c
A. (2.31)

Thus it follows for the Hamiltonian of a charged particle, see e.g. [61],

H =
3∑

i=1

pi
m

(
pi −

e

c
Ai

)
− 1

2m

(
pi −

e

c
Ai

)2

+ e Φ− e

mc

3∑

i=1

(
pi −

e

c
Ai

)
Ai

=
1

2m

(
p− e

c
A(r)

)2

+ e Φ(r), (2.32)

which in this case is simply the total energy E = mṙ2/2 + e Φ = const that in
the case of time-independent fields, i.e. A = A(r) and Φ = Φ(r) is a constant
of motion [47]. In the following, the phase space Lagrangian is introduced from
which result the equations of motion in phase space by a variation over all phase
space coordinates and which equals the Lagrangian (2.23) of the configuration-
space variables in value [9],

L(r,v, ṙ, v̇, t) = p(r,v, t) · ṙ −H(r,p(r,v, t), t). (2.33)

Here, no new symbol for this Lagrangian has been introduced, and in the follow-
ing L shall denote the phase space Lagrangian, if not explicitly said otherwise.
For this choice of non-canonical phase space coordinates (r,v), the phase space
Lagrangian consequently is [44]

L(r, ṙ,v) =
(
mv +

e

εc
A(r)

)
· ṙ −

(
mv2

2
+ e Φ(r)

)
, (2.34)

where an adiabatic ordering parameter ε has been introduced for the electro-
magnetic potential. At this point one should not identify ṙ by v, coordinates
and velocities being independent of each other.1

1“This is because the variational principle selects the physical motion, out of all conceivable
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In the following, the particle velocity is decomposed into its components par-
allel and perpendicular to the magnetic field v = v‖ĥ+v⊥ĉ and a transformation
to guiding centre variables is performed [44],

r = R+ % = R+ ε
v⊥
ωc

â. (2.35)

Here, (v⊥/ωc) â is the gyroradius %, i.e. the particle position relative to the
guiding centre R and ĥ = B/ ‖B‖ is a unit vector along the magnetic field line.
The unit vectors â, ĥ and ĉ form an orthonormal basis, â = ĥ × ĉ rotating
relative to a fixed orthonormal basis ê1 × ê2 = ĥ, see Fig. 2.2, where one can
read off the relation between the bases depending on the gyrophase φ:

â = cosφ ê1 − sinφ ê2, (2.36)
ĉ = − sinφ ê1 − cosφ ê2. (2.37)

The gyrofrequency ωc(r), being itself a function of coordinates through the
magnetic field thus has an implicit time dependence and is expanded also in
small gyroradii, though, for readability, this functionality is suppressed in the
following.

Here, z = (R, φ, J⊥,H) are chosen as phase space coordinates, differing from
Littlejohn’s phase space coordinates in so far that not the Hamiltonian but the
parallel velocity is used as an independent variable. By substitution of Eq. (2.35)
into the phase space Lagrangian one obtains2

L(R, Ṙ, φ, J⊥,H) =

[
m
(
v‖ĥ+ v⊥ĉ

)
+
e

εc
A

(
R+ ε

v⊥
ωc

â

)]

·
(
Ṙ+ ε

d

dt

v⊥
ωc

â

)
−H. (2.38)

The potentials are expanded around the guiding centre in small Larmor radii
using ‖%‖ � ‖R‖,

A

(
R+ ε

v⊥
ωc

â

)
=
∞∑

n=0

(
ε
v⊥
ωc

â · ∇
)n
A(R)

= A(R) +

(
ε
v⊥
ωc

â · ∇
)
A(R) +O(ε2), (2.39)

motions, as the one to make its action integral stationary. Although v = ẋ on the physical
motion, this will not be true along all conceivable paths through (x,v) space.” [44]

2Here the invariance of the Lagrangian under reversible coordinate transformations is used,
which is discussed in detail below.
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ê1

ê2

â(t)

â(t+ dt)

ĉ

da

φ

ĥ

B

y

z

x

R

r

%(t)

Figure 2.2: Geometry of the gyromotion. Particle position r, guiding centre
position R and local orthonormal field-aligned bases (ê1, ê2, ĥ), the fixed frame,
and (â, ĥ, ĉ). The gyration is clockwise (so in the mathematical negative sense),
giving da = φ̇ ĉ dt and for the pseudo-vector dφ/ dt = ωc ∝ −B, wherefrom
follows ωc = −eB/mc.
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Φ

(
R+ ε

v⊥
ωc

â

)
= Φ(R) + ε

v⊥
ωc

(â · ∇)Φ(R) +O(ε2). (2.40)

Inserting the expanded potentials into (2.38) gives

L(R, Ṙ, φ, J⊥,H) =

[
m
(
v‖ĥ+ v⊥ĉ

)
+
e

εc
A(R) +

(
v⊥
ωc

â · ∇
)
e

c
A(R)

+ O(ε)

]
·
(
Ṙ+ ε

d

dt

v⊥
ωc

â+O(ε2)

)
−H. (2.41)

One should note that for O(ε) terms also B = B(R+ ε%) as well as v‖(R+ ε%)

is expanded, which for the sake of clarity is suppressed in the notation. Since
for the choice of guiding centre variables z = (R, φ, J⊥,H) the Hamiltonian is
considered an independent variable as indicated in Eq. (2.41) but the parallel
velocity is not, one has to consider

v‖ = ±
{

2

m

[
H− µB(R)− µεv⊥

ωc

(â · ∇)B(R)

− eΦ(R)− eε
v⊥
ωc

â · ∇Φ(R) +O(ε2)

]}1/2

. (2.42)

To lowest order ε−1, the guiding centre Lagrangian is simply

Lε−1 =
e

cε
A(R) · Ṙ. (2.43)

The O(1) Lagrangian, according to Eq. (2.41) is

Lε0 =
[
m
(
v‖ĥ+ v⊥ĉ

)
+
mv⊥
B
â · ∇A(R)

]
· Ṙ

+
d

dt

(mv⊥
B
â
)
·A(R)−H. (2.44)

The equations of motion are invariant under gauge transformations which me-
diate between equivalent Lagrangians,

L∗ = L+
df(z, t)

dt
. (2.45)

In fact, the transformed Lagrangian does not leave the action functional S[z] =´ t2
t1

dtL(z, ż, t) invariant,

S∗[z] =

ˆ t2

t1

dtL∗(z, ż, t) =

ˆ t2

t1

dtL(z, ż, t) + f(z(t2), t2)− f(z(t1), t1)

= S[z] + f(z(t2), t2)− f(z(t1), t1) 6= S[z], (2.46)
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but its variation with the phase space trajectory z(t), e.g. [18, p. 119],

δS∗ = δS +

f∑

i=1

(
∂f

∂zi

)

t2

δzi(t2)−
f∑

i=1

(
∂f

∂zi

)

t1

δzi(t1) = δS, (2.47)

where δzi(t1) = εηi(t1) = 0 and δzi(t2) = εηi(t2) = 0 has been used since the
boundaries are held fixed during the variation. Such a total derivative of an
arbitrary function of phase space variables and time, f(z, t) can be identified in
(2.44) as

f(z, t) = −mv⊥
B
â ·A(R), (2.48)

see [44], so that adding the terms

df(z, t)

dt
= − d

dt

(mv⊥
B
â
)
·A(R)− mv⊥

B
â · (Ṙ · ∇)A(R)

= − d

dt

(mv⊥
B
â
)
·A(R)− mv⊥

B
â ·
[
(∇A) · Ṙ− Ṙ× (∇×A)

]

(2.49)

to the O(1) Lagrangian leaves the equations of motion invariant. The last term
of (2.49) can be identified with

mv⊥
B
â · Ṙ×B = mv⊥â · Ṙ× ĥ = −mv⊥Ṙ · ĉ, (2.50)

i.e. the second term of Eq. (2.44). Thus, the O(1) Lagrangian simplifies to

Lε0 = mv‖ĥ · Ṙ−H. (2.51)

To O(ε) the guiding centre Lagrangian is

Lε = ε

{[
−mv

2
⊥

ωcB2
∇B(â · ∇)A(R) · â

]
· Ṙ+

(
mv2
⊥

ωcB
â · ∇A · ĉ+

mv2
⊥

ωc

)
φ̇

+

(
mv⊥
ωcB

â · ∇A · â
)
v̇⊥

}
, (2.52)

where use has been made of ˙̂a = φ̇ ĉ, see Fig. 2.2. For this order also a total
derivative df(z, t)/ dt can be found [44],

f(z, t) = −ε mv
2
⊥

2ωcB
â · ∇A · â (2.53)
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with

df(z, t)

dt
= −εmv⊥v̇⊥

ωcB
â · ∇A · â+ ε

mv2
⊥

ωcB2
(∇B · Ṙ)â · ∇A · â

− εmv
2
⊥φ̇

2ωcB
ĉ · ∇A · â− εmv

2
⊥φ̇

2ωcB
â · ∇A · ĉ+O(ε2) (2.54)

Expanding the third term on the right hand side of Eq. (2.54) by using the
dyadic identity A · ∇B · C − C · ∇B ·A = (A × C) · (∇ ×B), see e.g. [10],
this term is rearranged to

ĉ · ∇A · â = â · ∇A · ĉ+ ĥ ·B. (2.55)

Altogether, the gauge transformation leaves only the term

Lε =
mv2
⊥

2ωc

φ̇ = J⊥φ̇, (2.56)

where the perpendicular adiabatic invariant J⊥ = mv2
⊥/2ωc has been introduced.

It is a result of the resulting Euler Lagrange equations that J⊥, at least within
this O(ε) approximation, is an invariant. Of course, doing the expansion up to
higher orders this invariance is no longer exact, yet still very accurate, being
adiabatic.

Terms which result from the expansion of v‖ (R+ ε(v⊥/ωc)â), i.e.

ε
v⊥
ωcv‖

â · [µ∇B(R) + e∇Φ(R)]ĥ · Ṙ+O(ε2) (2.57)

have been intentionally left out since they lead to second order drifts only, see
[44]. Collecting all orders from O(ε−1) to O(ε), one obtains the guiding centre
Lagrangian (to order ε) [9],

Lgc(R, Ṙ, φ, J⊥,H) =
[
mv‖ĥ+

e

c
A(R)

]
· Ṙ+ J⊥φ̇−H (2.58)

At this point it is advantageous to notice that this Lagrangian, which fol-
lowed from the transformation to guiding centre variables in the phase space
Lagrangian (without the need of calculating a single explicit gyroaverage) is not
a completely new result, if one compares this expression with the Lagrangian for
the drift approximation of Morozov and Solev’ev [47], which has already been
found in 1966 by the method of averaging,

LMor =
e

c
Ṙ ·A∗, A∗ = A+

mcv‖
eB

B. (2.59)
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Evidently,
Lgc(R, Ṙ, φ, J⊥,H) = LMor(R, Ṙ) + J⊥φ̇−H, (2.60)

LMor(R, Ṙ) being the configuration space part of the phase space Lagrangian
Lgc, already yields the drift equations, see next section, apart from the con-
servation law for J⊥, which in principle can also be found by considering sep-
arately the constancy of the magnetic moment of a current loop µ = IS/c =

(eωc)/(2πc) · π%2 = (eωc)/(2πc) · πv2
⊥/ω

2
c = ev2

⊥/(2cωc) = mv2
⊥/2B for a gyrat-

ing particle with charge e (or the constancy of magnetic flux ΦB =
´
B · dS =

π%2B = πm2v2
⊥c

2/(e2B) through a gyrocircle). Such a separation of Lagrangians
as in (2.60) is always possible if all terms of the full (in this case the phase space)
Lagrangian are either dependent on the one or the other set of variables but no
terms mixing these sets are present, see e.g. [18, p. 132].

Symbol Physical Quantity/Function
r = R+ % Particle position
% Gyroradius
R Guiding centre position
Ṙ Guiding centre velocity
φ Gyrophase
J⊥ = mv2

⊥/2ωc Perp. adiabatic invariant
Lgc(R, Ṙ, φ, J⊥,H ) Guiding centre Lagrangian
LMor(R, Ṙ) Drift Lagrangian [47]
S[R] =

´
dtLgc Guiding centre action functional

H(r,p, t) Charged-particle Hamiltonian
Φ∗ = Φ+ (µ/e)B Effective scalar potential
A∗ = A+ (c/e)mv‖ĥ Effective vector potential

Table 2.1: Symbols used for the description of the guiding centre motion.

2.2.3 Drift Equations

The drift equations are the Euler-Lagrange equations of the guiding centre La-
grangian Lgc(R, Ṙ, t). Formally, Fréchet’s functional derivative of the action
functional w.r.t. variations of the guiding centre coordinates R has to vanish
for the action S[R] to be stationary,

δS[R]

δR(t)
≡ ∂Lgc

∂R
− d

dt

∂Lgc

∂Ṙ
= 0. (2.61)
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The derivation of the guiding centre drift equation is straight forward if one
considers that the potentials and fields are now evaluated at the guiding centre
position R, not at the particle position r, and that the nabla-operator also acts
on this coordinate, ∇ ≡ ∇R. Evaluating explicitly the left and right hand sides
of the Euler-Lagrange equation, gives

∂Lgc

∂R
= m(∇v‖)ĥ · Ṙ+mv‖∇(ĥ · Ṙ) +

e

c
∇(A · Ṙ), (2.62)

d

dt

∂Lgc

∂Ṙ
=

d

dt

(
mv‖ĥ+

e

c
A
)

= mv̇‖ĥ+mv‖(Ṙ · ∇)ĥ+
e

c
(Ṙ · ∇)A. (2.63)

Since in the second and third term of (2.62)∇ acts on ĥ andA, respectively (and
not on Ṙ) one can simply apply the BAC-CAB rule here giving −e/cṘ×(∇×A)

in the first case and an analogous term in the second, so that one obtains the
Euler-Lagrange equation of motion for the guiding centre variable R,

mv̇‖ĥ−mv‖Ṙ× (∇× ĥ)− e

c
Ṙ× (∇×A)−m(∇v‖)ĥ · Ṙ = 0. (2.64)

Anticipating that ĥ ·Ṙ = v‖ (this will be shown below) and explicitly evaluating
the gradient of the parallel velocity Eq. (2.42),

∇v‖ = − 1

mv‖
(µ∇B + e∇Φ), (2.65)

the Lagrange equation for R is simplified to

mv̇‖ĥ−mv‖Ṙ× (∇× ĥ)− e

c
Ṙ× (∇×A) + µ∇B + e∇Φ = 0. (2.66)

The guiding centre velocity Ṙ can be isolated from this equation by taking the
vector product with ĥ [9], giving

mv‖ĥ×
[
Ṙ× (∇× ĥ)

]
+
e

c
ĥ×

[
Ṙ× (∇×A)

]
+(µ∇B+e∇Φ)×ĥ = 0. (2.67)

Again using v‖ = ĥ · Ṙ and expanding the double-vector products yields

mv‖Ṙ
[
ĥ · (∇× ĥ)

]
−mv2

‖∇× ĥ+
e

c
Ṙ
[
ĥ · (∇×A)

]
− v‖

e

c
(∇×A)

+ (µ∇B + e∇Φ)× ĥ = 0, (2.68)
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wherefrom Ṙ can be isolated,

Ṙ = v‖
∇×A+ c

e
mv‖∇× ĥ− 1

v‖

c
e
∇(µB + e Φ)× ĥ

c
e
mv‖ĥ · (∇× ĥ) + ĥ · (∇×A)

. (2.69)

The second and third term in the numerator can be combined as follows

c

e
mv‖∇× ĥ−

1

v‖

c

e
∇(µB + e Φ)× ĥ = ∇×

(c
e
mv‖(R)ĥ(R)

)
(2.70)

due to vector identity ∇× (fA) = f∇×A+∇f ×A [10] and analogously the
first term in the denominator can be expanded as follows,

c

e
mv‖(∇× ĥ) · ĥ =

{
∇×

[c
e
mv‖(R)ĥ(R)

]
+

1

v‖

c

e
∇(µB + e Φ)× ĥ

}
· ĥ

= ∇×
(c
e
mv‖ĥ

)
· ĥ. (2.71)

Substituting these simplifications into the expression for Ṙ, Eq. (2.69) yields

Ṙ = v‖
∇×

(
A+ c

e
mv‖ĥ

)

∇×
(
A+ c

e
mv‖ĥ

)
· ĥ

= v‖
∇×A∗

∇×A∗ · ĥ
= v‖

B∗

B∗‖
(2.72)

This famous result can be found in [47, 44] and (similarly) in [9]3. Here, the
“effective electromagnetic fields”

E∗ = −∇Φ∗, B∗ = ∇×A∗ (2.73)

and “effective electromagnetic potentials”

e Φ∗ = e Φ+ µB, A∗ = A+
c

e
mv‖ĥ, (2.74)

first introduced by Morozov and Solev’ev in 1966 [47] have been used, which
allow to write the equation of motion in a very compact form. One should
note however, that all relevant drifts (apart from the polarisation drift since
steady-state fields have been assumed from the very beginning) are contained in
Ṙ = v‖B

∗/B∗‖ , being hidden in the effective electromagnetic fields and potentials.
Up to here, the guiding centre velocity is exact to O(ε) of the adiabatic or-

dering parameter. However at this point a subtlety arises if one compares this

3There, a local frame of reference was chosen moving with VE = cE × B/B2 giving an
additional term cE∗ × ĥ/B∗‖ in the expression for Ṙ.
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expression with the expression for the guiding centre velocity most commonly
used, namely v‖B∗/B. In the original paper of Morozov and Solev’ev [47] the
authors claim that the drift equations are found if they limit themselves to the
case ĥ · (∇× ĥ) = 0 without giving physical reasoning for this step, while obvi-
ously the guiding centre velocity becomes a lot simpler to handle by omitting the
projection of curl ĥ onto the field line itself. Also Boozer shows in his famous
paper on guiding centre drifts of 1980 [7], how one can arrive from the elemen-
tary expressions for single particle drifts in a plasma at the much more elegant
vgc = (v‖/B)[B +∇× (v‖/ωc)B], yet pointing out that neglecting the first or-
der term in the averaged Jacobian J from the transformation d3v = J dE dµ dφ,
〈J〉 = (B/m2v‖)(1+(v‖/ωc)ĥ·∇×ĥ) results in an incorrect first order correction
to vgc · ĥ. In this context Boozer also refers to the result for the guiding centre
velocity of Northrop and Rome on “Extensions of guiding centre motion to higher
order” [53], which is equivalent to Eq. (2.72) and Littlejohn’s Eq. (11) in [44],
given there without derivation for the special choice of generalised coordinates
(R,H, φ, µ). This gives at least some insight that the neglect of ĥ · (∇× ĥ) is
equivalent to neglecting a first order Larmor radius correction in the Jacobian
from Cartesian velocity coordinates to the generalised coordinates E (or equiv-
alently H), µ (or J⊥) and φ. In our model B∗‖ is also simplified in favour of B
because in transport theory, corrections to the parallel velocity of the order of
the guiding centre drift should be ignored [30].

The drifts are now obtained straight forward

Ṙ =
v‖
B∗‖
∇×A∗ ≈ v‖

B
∇×

(
A+

v‖
ωc

B

)
=
v‖
B
B

︸︷︷︸
=Ṙ‖

+
v‖
B
∇× mcv‖

e
ĥ

︸ ︷︷ ︸
=Ṙ⊥

(2.75)

with the cross field drifts

Ṙ⊥ =
v‖
ωc

∇× (v‖ĥ) =
v‖
ωc

(
v‖∇× ĥ+∇v‖ × ĥ

)

=
v2
‖
ωc

∇× ĥ+
cB

eB2
× (µ∇B + e∇Φ), (2.76)

the second and third term on the right hand side being obviously the ∇B and
VE = c(E×B)/B2 drifts, while the first term needs some further manipulation
to show that it is the curvature drift. For this purpose, two vector identities for
unit vectors are given,

ĥ · ∇ĥ = −ĥ× (∇× ĥ) and ∇×B = B∇× ĥ− ĥ×∇B, (2.77)
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Figure 2.3: Particle comoving Frenet-Serret frame and osculating circle with
tangent normal vector t̂ = ĥ, n̂ ∝ κ and vd ∝ b̂ for helically wound B-field.

which together give [7]

ĥ× (ĥ · ∇ĥ) =
ĥ×∇B +∇×B

B
. (2.78)

So the first drift on the right hand side of (2.76) can be written as

v2
‖
ωc

∇× ĥ =
mcv2

‖
eB
∇× ĥ (2.77)

=
mcv2

‖
eB2

(
∇×B + ĥ×∇B

)

=
cB

eB2
×mv2

‖ĥ · ∇ĥ =
cB

eB2
×mv2

‖κ, (2.79)

being the curvature drift. In the last line it was used that the curvature κ,
according to the first of Frenet-Serret’s formulas, is given by

dt̂

ds

∣∣∣∣
along t̂

= κn̂ = κ =
dĥ

ds

∣∣∣∣∣
along ĥ

, (2.80)

where t̂ is the tangent vector to the curve corresponding to ĥ in the case of our
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magnetic field line and s is the arc length, measured along the curve. d/ ds|along ĥ

is the directional derivative, i.e. the projection of the del operator onto ĥ [10]

ĥ · ∇ =
∂

∂s
=

d

ds

∣∣∣∣
along ĥ

(2.81)

and thus κ = (ĥ · ∇)ĥ = ĥ · ∇ĥ, which was used in (2.79). The radius of
curvature Rc is by definition [10] κ = −Rc/R

2
c pointing from the local centre

of curvature to the field line. In terms of Rc, the curvature drift is given by the
more familiar expression

vd =
cB

eB2
×mv2

‖ĥ · ∇ĥ =
cmv2

‖
‖Rc‖ eB2

R̂c ×B. (2.82)

Altogether it has been shown that Littlejohn’s expression for the guiding
centre velocity, resulting from the guiding centre Lagrangian toO(ε) is equivalent
to Morozov and Solev’ev’s formulation of the drift equations resulting from an
averaging procedure, which upon approximating v‖B∗/B∗‖ ≈ v‖B

∗/B simplifies
to the standard expression for the guiding centre drifts, which can be found in
any introductory plasma physics text book, e.g. [5, p. 96],

Ṙ = v‖
B

B
+
cB

eB2
×
(
µ∇B + e∇Φ+mv2

‖ĥ · ∇ĥ
)
, (2.83)

the terms on the right hand side describing (i) the parallel motion and the
perpendicular drifts, namely (ii) the grad-B drift, (iii) the E × B drift, and
(iv) the curvature drift.4

2.2.4 Symmetries of the Guiding centre Lagrangian

The guiding centre Lagrangian possesses symmetries, from which follow conser-
vation properties. First, obviously the gyrophase is a cyclic coordinate so that
the associated canonical momentum pφ is a constant of motion,

pφ =
∂Lgc

∂φ̇
= J⊥

(2.56)
=

mv2
⊥

2ωc

= const. (2.84)

4Having assumed a steady electromagnetic field from the very beginning of the derivation
no polarisation drift is present here.
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The canonical momentum of the azimuth angle φ is obviously connected to the
constant angular momentum of the gyromotion, being

` = % ê% ×m%φ̇ êφ = −m%v⊥ĥ (2.85)

and pφ = m%v⊥/2 = ‖`‖ /2. The adiabatic invariant J⊥ is the action integral
[61] evaluated along a closed gyroorbit:

J⊥ =
1

2π

‰
p · dq =

1

2π

‰
(mv +

e

c
A) · dr

=
1

2π

ˆ 2π

0

mv · ∂%
∂φ

dφ+
e

c

1

2π

‹
∇×A · dS. (2.86)

Decomposing the velocity v into its parallel and phase-dependent perpendicular
part, v = v‖ ĥ+ v⊥ ĉ and using Eqns. (2.36) and (2.37)

v · ∂%
∂φ

=
[
v‖ ĥ+ v⊥(− sinφ ê1 − cosφ ê2)

]
· v⊥
ωc

(− sinφ ê1 − cosφ ê2) =
v2
⊥
ωc

and considering the surface normal directed in the mathematical positive sense,
so that dS = − dS ĥ, one gets

J⊥ = m
v2
⊥
ωc

− e

c

1

2π
B · ĥ %2π = m

v2
⊥
ωc

− m

2

v2
⊥
ωc

=
mv2
⊥

2ωc

. (2.87)

This invariant is equivalent to the magnetic moment µ = mv2
⊥/2B and to the

magnetic flux through a gyroorbit ΦB within a constant: J⊥ = (mc/e) · µ =

e/(2πc)·ΦB. Here, a remark is indicated, that the constancy of the first adiabatic
invariant is strictly valid only in first order of the gyromotion. An expansion of
the adiabatic invariant to higher orders can be found e.g. in [47] and is a central
issue in Northrop’s paper of the extension of the guiding centre motion to higher
orders [53].

Secondly, there is no explicit time dependency in the Lagrangian Lgc, where-
from follows that the Hamiltonian function also is time independent,

− ∂Lgc

∂t
=

d

dt

(
6∑

i=1

∂Lgc

∂żi
· żi − Lgc

)
=

dH
dt

= 0. (2.88)

Finally, the already used relation v‖ = ĥ·Ṙ shall be shown. For this purpose a
theorem for Lagrangians is applied, see e.g. [61, p. 95], which says that if zi(t) is a
solution of the Lagrange equations for the Lagrangian L(zi, . . . , zf , żi, . . . żf , t),
then a diffeomorphism G : zi → z̃i : zi = gi(z̃

1, . . . , z̃f , t), i = 1, . . . , f with
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g = G−1 and f , the number of degrees of freedom, which is at least C2 differ-
entiable and has a non-singular Jacobian determinant det(∂gl/∂z̃k) 6= 0 gives a
transformed Lagrangian L̃

L̃ = L ◦G−1

= L
(
g1(z̃, t), . . . , gf (z̃, t),

f∑

k=1

∂g1

∂z̃k
˙̃zk +

∂g1

∂t
, . . . ,

f∑

k=1

∂gf

∂z̃k
˙̃zk +

∂gf
∂t

, t

)

for which δL/δzk = 0 is equivalent to δL̃/δz̃k = 0. The proof of this theorem
can be found e.g. in [61, p. 96]. To put it in simple words, the coordinate
independence of the Lagrangian allows to transform the Lagrangian by carrying
out the substitutions z(z̃, t) and ż = ∂tz +

∑
i

˙̃zi∂z/∂z̃i [9]. In contrast, in
Hamiltonian mechanics coordinate transformations are restricted to the class of
canonical transformations zi → z̃i, which require the Jacobian Jβα = ∂z̃β/∂zα to
be symplectic, i.e. the Jacobian has to satisfy the relation J · σ · J† = σ with
the fundamental symplectic matrix [9]

σ =

(
0 δij

−δij 0

)
. (2.89)

From the trivial coordinate transform H 7→ v‖ follows the equivalent guiding
centre Lagrangian

L̃gc(R, Ṙ, φ, J⊥, v‖) =
(
mv‖ĥ+

e

c
A
)
· Ṙ− m

2
v2
‖ − e Φ, (2.90)

which allows to formulate the Euler Lagrange equation for the parallel velocity,

d

dt

∂L̃gc

∂v̇‖
= 0 =

∂L̃gc

∂v‖
= mĥ · Ṙ−mv‖, (2.91)

confirming v‖ = Ṙ·ĥ, which “dictates that v‖ is the velocity of the guiding centre
in the direction of the magnetic field at the guiding centre” [9] rather than being
a mere definition of v‖.

In the following, the equations of motion for the parallel and perpendicular
velocity shall be derived. Returning to the Euler-Lagrange equation for the
guiding centre coordinate R, Eq. (2.66) and taking the projection onto Ṙ yields

mv̇‖v‖ + eṘ · ∇Φ+ µṘ · ∇B = 0
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Figure 2.4: Cylindrical model with rotational transform of a tokamak with az-
imuthal symmetry and radial inhomogeneity. The relation to the toroidal angle
ϕ is given by z = Rϕ with R the major radius of the torus. The cylindrical and
toroidal wave number of the perturbation field is linked by kz = m/R. Likewise,
the poloidal background field is related to the z-component by Bϑ

0 = Bz
0/qR.

Here q = q(r) = m/n is the safety factor or winding number, i.e. the ratio of the
toroidal to poloidal winding, which e.g. in the case of the above sketch equals
1/2.

and thus [30]

v̇‖ = − e

mv‖
Ṙ · ∇Φ− v2

⊥
2v‖B

Ṙ · ∇B. (2.92)

The equation of motion for v‖ is obtained by isolating v2
⊥ from the perpendicular

kinetic energy

K⊥ =
mv2
⊥

2
= ωcJ⊥ (2.93)

and taking the total time derivative. One obtains [30]

v̇⊥ =
eJ⊥
m2v⊥c

Ḃ =
v⊥
2B
Ṙ · ∇B. (2.94)
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2.3 The Gyrokinetic Equation

Recapitulating the last section, by Hamilton’s principle the guiding centre La-
grangian leads to the drift equations, which in compact notation are

Ṙ ≈ v‖
B∗

B
, φ̇ = −ωc, J̇⊥ = 0, Ḣ = 0.

In addition, the equations of motion for the parallel and perpendicular velocity
have been found in Eqns. (2.92) and (2.94).

Now, the kinetic equation (2.17) is formulated for the guiding centre variables
z = (R, φ, J⊥,H),

∂tfσ + żi
∂fσ

∂zi
= L̂cfσ (i = 1, . . . 6), (2.95)

where in the following the plasma species index σ is dropped. Due to z4, z5 and
z6 being integrals of the motion, the kinetic equation simplifies to the gyrokinetic
equation, see e.g. [30],

∂tf + Ṙ · ∇f = L̂cf. (2.96)

The collision operator is an integro-differential operator,

L̂cp = L̂cD + L̂E
cI, (2.97)

where the differential part, L̂cD is a 1-D Fokker-Planck collision operator in the
so-called Ornstein-Uhlenbeck approximation [69],

L̂cDf =
∂

∂u
D

(
∂

∂u
+

u

v2
T

)
f, (2.98)

with u = v‖ − V‖0 a, by the bulk parallel velocity shifted, parallel velocity,
vT =

√
T0/m the thermal velocity and D = νv2

T , a constant diffusion coefficient
in velocity space. While this collision operator ensures Galilean invariance and
thus conserves the number of particles (and hence, the charge), it does not con-
serve momentum and energy of the plasma species. Together with the integral
operator [30]

L̂E
cIf(v⊥, u) =

ν√
2πvT

exp

(
− u2

2v2
T

)(
u2

v2
T

− 1

) ˆ
R

du′
(
u′2

v2
T

− 1

)
f(v⊥, u

′)

(2.99)
also the conservation of energy for each particle species is ensured. This issue
will be dealt with in detail in Section 3.2.
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2.4 Quasilinear Response Model

Since the collision operator is preferably formulated in the v‖ and v⊥ variables,
we introduce a phase space coordinate transformation z = (R, φ, J⊥,H) 7→ z̃ =

(R, φ, v‖, v⊥), such that v‖ and v⊥ are now independent variables, and expand
the drift velocity and the distribution function to first order of an externally
applied perturbation field5

Ṙ = Ṙ0 + Ṙ1 + . . . , v̇‖ = v̇‖0 + v̇‖1 + . . . , v̇⊥ = v̇⊥0 + v̇⊥1 + . . . , (2.100)

f = f0 + f1 + . . . , (2.101)

with f0, the distribution function of the unperturbed system being an inhomo-
geneous drifting Maxwellian normalised to momentum space [33, 30]

f0(r, v‖, v⊥) =
n0(r)

(2πmT0(r))3/2
exp

{
−m

[
v2
⊥ + (v‖ − V‖0)2

]

2T0(r)

}
. (2.102)

The parameters n0, T0, and V‖0 for each plasma species, as well as the equilibrium
electrostatic potential Φ0 are computed from given radial input profiles of the
unperturbed density, temperature, parallel fluid velocity and safety factor q(r),
so that to first order Larmor radius expansion the quasi-neutrality condition is
satisfied and the parameters differ from the actual equilibrium profiles only by
first order Larmor radius corrections [25, 33]. The kinetic equation formulated
for phase space coordinates z̃i in steady-state is [30],

Ṙ · ∇f + v̇‖
∂f

∂v‖
+ v̇⊥

∂f

∂v⊥
= L̂cf. (2.103)

Substituting the expansions (2.100) and (2.101), the following hierarchy of equa-
tions (0th and 1st order in the perturbation field) is obtained [30],

Ṙ0 · ∇f0 + v̇‖0
∂f0

∂v‖
+ v̇⊥0

∂f0

∂v⊥
− L̂cf0 = 0, (2.104)

Ṙ0 · ∇f1 + v̇‖0
∂f1

∂v‖
+ v̇⊥0

∂f1

∂v⊥
− L̂cf1 = −Ṙ1 · ∇f0 − v̇‖1

∂f0

∂v‖
− v̇⊥1

∂f0

∂v⊥
,

(2.105)

5This is in contrast to neoclassical theory, where instead of the perturbation field the radial
drift velocity plays the role of the expansion parameter [30]. Compared to the neoclassical
toroidal viscosity theory (NTV) this expansion is carried out w.r.t. the unperturbed magnetic
surfaces [30, 62, 56] .
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where the sources (thermodynamic driving terms towards the equilibrium as
will become apparent below) have been put on the right hand side of the above
equation, constituting the inhomogeneity of the partial differential equation.

The solution of the 0th-order equation is given by the drifting Maxwellian
(3.88) with [30]

Ṙ0 = v‖ ĥ0 + VE, v̇‖0 = 0, v̇⊥0 = 0, (2.106)

where ĥ0 = B0/B0 is the unit vector of the unperturbed magnetic field and the
E ×B-drift velocity VE as already specified before in Eq. (2.76) in Sect. 2.2.3,

VE = c
B0 ×∇Φ0

B2
0

. (2.107)

In order to rearrange the first order kinetic equation (2.105), the terms on the
right hand side are explicitly evaluated. Taking the gradient of the equilibrium
distribution function ∇f0 = ∂rf0∇r with ∇r = er = n̂ψ, the contravariant
radial basis vector and also the normal unit vector n̂ψ of an undistorted nested
flux surface ψ, one obtains

∇f0 =

{
1

n0

∂n0

∂r
− 3

2T

∂T

∂r
+
m
[
v2
⊥ + (v‖ − V‖0)2

]

2T 2

∂T

∂r

}
f0∇r. (2.108)

Introducing the thermodynamic forces [24]

A1 =
1

n0

∂n0

∂r
+
e

T

∂Φ0

∂r
− 3

2T

∂T

∂r
, A2 =

1

T

∂T

∂r
, (2.109)

∇f0 can now be written compactly as

∇f0 = (a1A1 + a2A2) f0∇r −
e

T
f0∇Φ0 (2.110)

with coefficients [30]

a1 = 1, a2 =
m

2T

[
v2
⊥ + (v‖ − V‖0)2

]
. (2.111)

For the second and third term on the right hand side of the first order kinetic
equation (2.105) one is referred to the expressions (2.92) and (2.94), that have
been obtained in course of the derivation of the drift equations from the guiding
centre Lagrangian. By referring to a system moving with parallel fluid velocity
V‖0, one has to replace v‖ → v‖ − V‖0 =: u in the expression for v̇‖. Expanding



46 CHAPTER 2. METHODS

the expressions to first order in the in the perturbation field, one obtains

v̇‖1 = − e

mu

(
Ṙ0 · ∇Φ̃1 + Ṙ1 · ∇Φ0

)
− v2

⊥
2uB

(
Ṙ0 · ∇B̃1 + Ṙ1 · ∇B0

)
, (2.112)

v̇⊥1 =
v⊥
2B

(
Ṙ0 · ∇B̃1 + Ṙ1 · ∇B0

)
. (2.113)

Evaluating the second and third term on the r.h.s. of Eq. (2.105), the four terms
containing either Ṙ0 · ∇B̃1 or Ṙ1 · ∇B0 cancel each other, leaving

v̇‖1
∂f0

∂v‖
+ v̇⊥1

∂f0

∂v⊥
=
ef0

T

(
Ṙ0 · ∇Φ̃1 + Ṙ1 · ∇Φ0

)
. (2.114)

Thus one can write the first order steady-state kinetic equation as

Ṙ0 · ∇f1 − L̂cf1 = − (a1A1 + a2A2) f0Ṙ1 · ∇r −
ef0

T
Ṙ0 · ∇Φ̃1. (2.115)

By denoting the perturbation distribution function [30]

f̃ = f1 + f0
eΦ̃1

T
, (2.116)

the second term of the first order kinetic equation becomes

Ṙ0 · ∇f1 = Ṙ0 ·
(
∇f̃ − eΦ̃1

T
∇f0 −

ef0

T
∇Φ̃1 +

ef0Φ̃1

T 2
∇T
)

= Ṙ0 · ∇f̃ −
ef0

T
Ṙ0 · ∇Φ̃1. (2.117)

Here, it has been used that the directional derivative Ṙ0 · ∇ is a derivative
within a constant flux surface, perpendicular to ĥ and so gives zero acting on f0

or T , which are axial symmetric and have concentric cylinders as equipotential
surfaces f0(r0), T (r0).

For the perturbation distribution function f̃ the first order steady-state ki-
netic equation is thus [30]

Ṙ0 · ∇f̃ − L̂cf̃ = −
[
A1 +

m (v2
⊥ + u2)

2T
A2

]
f0 Ṙ1 · ∇r. (2.118)

In the following, the contravariant radial component Ṙ1 · ∇r = Ṙi,1∇xi · ∇r =

Ṙr,1g
rr = Ṙr

1 of the first order drift velocity, arising in (2.118) is further evaluated
in cylindrical coordinates (x1, x2, x3) = (r, ϑ, z). Note that subscript “1” refers to
the first order in the perturbation field, while i and r are co- and contravariant
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indices, respectively. Here, expression (2.75), already obtained in Sect. 2.2.3 for
the guiding centre drift velocity is applied,

Ṙr
1 = Ṙ1 · ∇r =

[
v‖
B
∇×

(
A+

v‖
ωc

B

)]

1

· ∇r

=

[
v‖
B
B · ∇r +

v2
‖

ωcB
∇×B · ∇r +

v‖
B
∇
(
v‖
ωc

)
×B

]

1

. (2.119)

The three terms are evaluated separately in the following,

v‖
B
B · ∇r =

v‖
B
Bi∇xi · ∇r =

v‖
B
Br, (2.120)

v2
‖

ωcB
∇×B · ∇r =

v2
‖

ωcB

εijk√
g
∂iBjek · ∇r =

v2
‖

ωcB

εijk√
g
∂iBjgkk∇xk · ∇r

=
v2
‖

ωcBr
(∂ϑBz − ∂zBϑ) , (2.121)

v‖
B
∇
(
v‖
ωc

)
×B · ∇r =

v‖
B
∇



σ

√
2

m
(H− eΦ(r)− ωcJ⊥)

ωc(r)


×B · ∇r

= − 1

B

(
c∇Φ+

v2
⊥

2ωc

∇B +
mv2
‖c

eB
∇B

)
× ĥ · ∇r

= − 1

B

(
c
εijk√
g
∂iΦhj

∂r

∂xk
+
v2
⊥ + 2v2

‖
2ωc

εijk√
g
∂iBhj

∂r

∂xk

)
· grr ∂r

∂xr

= − c

Br
εijk∂iΦhjδ

r
k −

v2
⊥ + 2v2

‖
2ωcBr

εijk∂iBhjδ
r
k

= − c

Br
εijrhj∂iΦ−

v2
⊥ + 2v2

‖
2ωcBr

εijrhj∂ih ·B

= − c

Br

(
hz
∂Φ

∂ϑ
− hϑ

∂Φ

∂z

)

−
v2
⊥ + 2v2

‖
2ωcBr

(
hz

∂

∂ϑ
h ·B − hϑ

∂

∂z
h ·B

)
. (2.122)
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ê‖

ê⊥

êr

êϑ

êzz

y

x

Figure 2.5: Field-aligned local orthonormal basis (ê‖, êr, ê⊥) and local cylindri-
cal basis (êr, êϑ, êz). The perpendicular direction ê⊥ = ĥ0×êr = ê‖×êr lies per
definition within an unperturbed flux surface spanning a tangent plane together
with ê‖ at the point in consideration.

Thus, the first order radial drift velocity is [30]

Ṙr
1 =

v‖
B0

B̃r
1 +

v2
‖

ωc0B0r

(
∂B̃1z

∂ϑ
− ∂B̃1ϑ

∂z

)
− c

B0r

(
hz
∂Φ̃1

∂ϑ
− hϑ

∂Φ̃1

∂z

)

−
v2
⊥ + 2v2

‖
ωc0B0r

(
hz
∂h ·B̃1

∂ϑ
− hϑ

∂h ·B̃1

∂z

)
. (2.123)

In the following, the perturbation fields, the perturbed distribution function and
the radial contravariant component of the radial drift velocity are expanded in
Fourier series,

B̃1 = <
∑

m

B̃mei(mϑϑ+kzz), Φ̃1 = <
∑

m

Φ̃mei(mϑϑ+kzz), (2.124)

f̃ = <
∑

m

f̃mei(mϑϑ+kzz), Ṙr
1 = <

∑

m

vrmei(mϑϑ+kzz). (2.125)

By evaluating the perpendicular and parallel components of the wave vector k
and of the Fourier amplitude of the perturbed magnetic field Bm, the Fourier
amplitudes vrm can be expressed in terms of perpendicular and parallel field
amplitudes.

k‖ = gijk
ihj = gϑϑm

ϑhϑ + gzzk
zhz = mϑh

ϑ + kzh
z, (2.126)

k⊥ = k × ĥ · ∇r = ki∇xi × hj∇xj · ∇r
= ∇r · ∇ϑ×∇z (hzmϑ − hϑkz)

=
1

r
(hzmϑ − hϑkz) , (2.127)
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where it has been used that ĥ has no radial component and ∇r · ∇ϑ × ∇z =

1/J = 1/
√
g. The components of the field amplitudes are obtained analogously,

B̃m‖ = h ·B̃m = B̃mϑh
ϑ + B̃mzh

z, (2.128)

B̃m⊥ =B̃m × ĥ · ∇r =
1

r

(
hzB̃mϑ − hϑB̃mz

)
. (2.129)

Finally, explicit expressions for the covariant ϑ and z-components of the wave
vector and field amplitude are needed for the evaluation of vrm. In order to get
an expression for mϑ, Eq. (2.127), multiplied by rhz and Eq. (2.126), multiplied
by hϑ are added,

rhzk⊥ + hϑk‖ = mϑ(hϑh
ϑ + hzh

z) = mϑ. (2.130)

kz is obtained by multiplying (2.127) by −rhϑ and (2.126) by hz and adding
them up,

− rhϑk⊥ + hzk‖ = kz(hϑh
ϑ + hzh

z) = kz, (2.131)

and analogously for the perpendicular and parallel components of B̃m,

rhzB̃m⊥ + hϑB̃m‖ = B̃mϑ(hϑh
ϑ + hzh

z) = B̃mϑ, (2.132)

− rhϑB̃m⊥ + hzB̃m‖ = B̃mz(hϑh
ϑ + hzh

z) = B̃mz. (2.133)

Having expressed the cylindrical covariant components through the field-aligned
and perpendicular components, all preliminaries are set to determine vrm. First,
the Fourier expanded field and electrostatic potential is substituted in Eq. (2.123),

Ṙr
1 = <

∑

m

vrmei(mϑϑ+kzz)

=
v‖
B0

<
∑

m

B̃mei(mϑϑ+kzz) · ∇r

+
v2
‖

ωc0B0r

(
imϑ

∂r

∂xz
− ikz

∂r

∂xϑ

)
· <
∑

m

B̃mei(mϑϑ+kzz)

− c

B0r
(imϑhz − ikzhϑ)<

∑

m

Φ̃mei(mϑϑ+kzz)

−
v2
⊥ + 2v2

‖
2ωc0B0r

(imϑhz − ikzhϑ) ĥ · <
∑

m

B̃mei(mϑϑ+kzz), (2.134)
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so that for the Fourier amplitude one obtains

vrm =
v‖
B0

B̃r
m +

iv2
‖

ωc0B0r

(
mϑB̃mz − kzB̃mϑ

)
− ic

B0r
(mϑhz − kzhϑ) Φ̃m

− i
v2
⊥ + 2v2

‖
2ωc0B0r

(mϑhz − kzhϑ) B̃m‖.

After substitution for mϑ, kz, B̃m,ϑ, and B̃m,z, the Fourier amplitude of the
radial drift velocity reads [30]

vrm =
v‖
B0

B̃r
m −

ick⊥
B0

Φ̃m −
ik⊥v2

⊥
2ωc0B0

B̃m‖ −
ik‖v2

‖
ωc0B0

B̃m⊥. (2.135)

The first term describes the parallel motion of particles along perturbed mag-
netic field lines. The second term is the E×B-drift due to the violation of
equipotentiality on the unperturbed flux surface. These two terms have an ef-
fect only in the resonance layer, where ideal MHD is not valid. The third and
fourth term are magnetic drifts, or to be more precise, the gradient B and cur-
vature drift, respectively.6 They are small in the resonant layer where [30]

k‖vT . k⊥VE (2.136)

due to
k‖ =

mϑ +mϕq

qR
� k⊥ ∼

mϑ

R
. (2.137)

In the following magnetic drifts are no longer considered being smaller than the
E ×B drift by a factor of the order of the aspect ratio [30].

The Fourier expansion of the directional derivative Ṙ0 ·∇ gives (v‖ĥ0 +VE) ·
∇ = iv‖ĥ0 · k + ic(E ×B0 · k)/B2

0 = iv‖k‖ + iVE⊥k⊥, i.e.

F
{
Ṙ0 · ∇

}
= i(k‖v‖ + ωE) (2.138)

with
ωE = k⊥VE⊥ =

ck⊥
B0

∂Φ0

∂r
. (2.139)

Referring again to a system moving with velocity parallel fluid velocity V‖0, the

6It is discussed in [30] that this results agrees with the canonical Hamiltonian formalism
in action-angle variables, where the first three terms correspond to the first order perturbed
Hamiltonian H̃ = −e/cv0 · Ã = ie/ω v0 · Ẽ = ie/ωΩiEi [25, 32], valid in the radiation gauge
Φ1 = 0 via vrm|v‖=−ωE/k‖

= −ick⊥/eB0Hm, while the fourth term, i.e. the curvature drift

belongs to the second order Hamiltonian e2/2mc2 Ã
2
.
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Fourier expansion of the first order kinetic equation (2.118) hence is [30]

L̂f̃m = i
(
k‖u+ ωE

)
f̃m − L̂cf̃m = Q̃m, (2.140)

where the inhomogeneity, the transport driving gradients are combined to the
source term

Q̃m = −
[
A1 +

m (v2
⊥ + u2)

2T
A2

]
f0v

r
m. (2.141)

2.4.1 Fluxes and the Diffusion Tensor

In the following fluxes of particles and heat through a flux surface S are deter-
mined from the perturbed distribution function f̃ as follows [30],

Γ ≈ 1

S

ˆ
S

dS

ˆ
R3

d3p f̃ Ṙ1 · ∇r, (2.142)

Q ≈ 1

S

ˆ
S

dS

ˆ
R3

d3p (H− eΦ)f̃ Ṙ1 · ∇r. (2.143)

In this approximation, by substituting the Fourier series one obtains

Γ =
1

2πrL
r

ˆ π

−π
dϑ

ˆ L

0

dz

ˆ
R3

d3p <
∑

m

f̃meimϑϑ+ikzz <
∑

m′

vrm′e
im′ϑϑ+ik′zz

=
1

2
<
∑

m

ˆ
R3

d3p f̃mv
r∗
m (2.144)

and analogously for the heat flux

Q =
1

2
<
∑

m

ˆ
R3

d3p
m

2

(
v2
⊥ + u2

)
f̃mv

r∗
m, (2.145)

as is shown in [30].

2.4.2 The Collisionless Limit

In the collisionless limit, formally L̂c → 0 and the linearised, Fourier expanded
kinetic equation (2.140) becomes algebraic and one obtains [30]

f̃m =
ivrm

k‖u+ ωE − i0+

[
A1 +

m

2T

(
v2
⊥ + u2

)
A2

]
f0. (2.146)

The solution f̃m of the kinetic equation is substituted into the expressions
for the particle and heat fluxes (2.144) and (2.145), again shown here explicitly
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for the particle flux,

Γ =
1

2
<
∑

m

ˆ
R3

d3p f0
i |vrm|2

k‖u+ ωE − i0+

2∑

i=1

aiAi

= −π
2

∑

m

ˆ
R3

d3p f0 δ(k‖u+ ωE)|vrm|2
2∑

i=1

aiAi, (2.147)

where Plemelj’s formula has been applied. From the fluxes Γ and Q the dif-
fusion tensor D is obtained, whose coefficients are related to the fluxes via the
thermodynamic forces, see [24], as follows,

Γ = −n0(D11A1 +D12A2),

Q = −n0T (D21A1 +D22A2).

By comparison with the computed fluxes, the matrix elements of the diffusion
tensor D are seen to be [30]

Dkl =
π

2n0

∑

m

ˆ
R3

d3p δ(k‖u+ ωE) |vrm|2 akalf0, (2.148)

with the coefficients ak(v⊥, u) being

a1 = 1, a2 =
m

2T

(
v2
⊥ + u2

)
. (2.149)

In the following, the diffusion coefficients are evaluated explicitly according to
Eq. (2.148). Since the integrand is expressed in parallel and perpendicular ve-
locity components, the integrals are evaluated over velocity space in cylindrical
coordinates,

d3p = 2πm3v⊥ dv⊥ du

with ˆ
R3

d3p = 2πm3

ˆ ∞
−∞

du

ˆ ∞
0

v⊥ dv⊥, (2.150)

see Fig. (2.6). Explicit evaluation of e.g. coefficient D12 gives

D12 =
π

2n0

∑

m

ˆ
R3

d3p δ(k‖u+ ωE)|vrm|2
m

2T
(v2
⊥ + u2)f0

=
πm3

4n0v2
T

∑

m

ˆ
R

du e−
mu2

2T |vrm|2
δ(u+ ωE/k‖)

k‖

ˆ ∞
0

2πv⊥ dv⊥
n0(v2

⊥ + u2)

(2πmT )3/2
e−

mv2⊥
2T
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u

v⊥
dv⊥

2πv⊥

du

Figure 2.6: Momentum space volume element d3p = 2πm3v⊥ dv⊥ du

=

√
π

25/2k‖v5
T

∑

m

|vrm|2u=−ωE/k‖e
−ω2

E/2k
2
‖v

2
T

×
(ˆ ∞

0

dv⊥ v
3
⊥e−mv

2
⊥/2T +

(
ωE
k‖

)2 ˆ ∞
0

dv⊥ v⊥e−mv
2
⊥/2T

)

=

√
π|Z|

4|ωE|
e−Z

2|vrm|2u=−ωE/k‖

(
2 +

1

v2
T

ω2
E

k2
‖

)
(2.151)

with Z = −ωE/
√

2k‖vT . From analogous calculations for the remaining coeffi-
cients the symmetric diffusion matrix for particle and heat flux is obtained,

D =

√
π|Z|

2|ωE|
e−Z

2
∑

m

|vrm|2u=−ωE/k‖

·




1
1

2

(
2 +

1

v2
T

ω2
E

k2
‖

)

1

2

(
2 +

1

v2
T

ω2
E

k2
‖

)
2

v5
T

(
v5
T +

ω2
Ev

3
T

2k2
‖

+
vTω

4
E

8k4
‖

)



. (2.152)

2.4.3 The General Collisional Case

Considering now the collisional case, the solution of the linearised kinetic equa-
tion (2.140) with the purely differential collision operator L̂c = L̂cD for t > t0
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can be written as [33]

f̃m(u, t) =

ˆ t

t0

dτ

ˆ
R

du′ G̃D
m(u, u′, t− τ)Q̃m(u′, τ) (2.153)

with G̃D
m(u, u′, t), the Green’s function for the purely differential problem that

is given by [33]

G̃D
m(u, u′, t) =





0 t ≤ 0

1√
4πã

exp

[
i
k‖
ν (u− u′)− c− 1

4ã(u− u′e−νt + ib̃)2

]
t > 0

(2.154)
with

ã(t) =
v2
T

2

(
1− e−2νt

)
, b̃(t) =

2k‖v2
T

ν

(
1− e−νt

)
, c(t) =

(
iω` +

k‖v2
T

ν

)
t.

(2.155)
The Green’s function G̃D

m(u, u′, t), being the inverse operator of L̂ has to satisfy
the relation

L̂G̃D
m = δ(t− t0)δ(u− u′). (2.156)

A complete derivation of the Green’s function by the method of characteristics is
presented in Appendix A. In the following mainly its temporal Fourier transform

G̃D
ωm(u, u′) =

ˆ ∞
0

dt eiωtG̃D
m(u, u′, t) (2.157)

is used.

Now the solution of the full integro-differential problem, i.e. the linearised
kinetic equation with right hand side L̂cf̃m = L̂cDf̃m + L̂E

cIf̃m is [30]

f̃m(u) =

ˆ
R

du′ G̃ωm(u, u′)Q̃m(v⊥, u
′)

= −
ˆ
R

du′ G̃ωm(u, u′) [A1 + a2(v⊥, u
′)A2] f0(v⊥, u

′)vrm(v⊥, u
′), (2.158)

where the new Green’s function G̃ωm(u, u′) is given in terms of moments of the
original Ornstein-Uhlenbeck Green’s function G̃D

ωm(u, u′) as follows [30]

G̃ωm(u, u′) = G̃D
ωm(u, u′) +

νC−1
m√

2πvT

×
ˆ
R

du′′′ G̃D
ωm(u, u′′′) exp

(
−u

′′′2

2v2
T

)(
u′′′2

v2
T

− 1

)
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×
ˆ
R

du′′
(
u′′2

v2
T

− 1

)
G̃D
ωm(u′′, u′) (2.159)

with constant Cm being

Cm = 1− ν√
2πvT

ˆ
R

du′′
(
u′′2

v2
T

− 1

)

×
ˆ
R

du′ G̃D
ωm(u′′, u′) exp

(
− u′2

2v2
T

)(
u′2

v2
T

− 1

)
. (2.160)

The details of obtaining the solution of the integro-differential equation is de-
ferred to Chapter 3, where the solution of the kinetic equation with an even
more extended collision operator, additionally conserving momentum for each
species is discussed. Since the purely energy conserving calculation on which
we focus here is a special case of the solution with the full integro-differential
operator, the results presented here will be derived as limit cases of the more
general calculation presented later.

Substitution of the formal solution (2.158) into the formulas for the particle
(2.144) and energy fluxes (2.145) gives the diffusion coefficients formally as [30]

Dkl =
πm3

n0

<
∑

m

ˆ ∞
0

dv⊥ v⊥

ˆ
R

du

ˆ
R

du′ G̃ωm(u, u′)

× vr∗m(v⊥, u)vrωm(v⊥, u
′)ak(v⊥, u)al(v⊥, u

′)f0(v⊥, u
′). (2.161)

If one evaluates the integral over perpendicular velocity, one can express the
diffusion coefficients in terms of moments Imn of the Green’s function, defined
by [30]

Imn(x1, x2)
def
=

ν√
2πvm+n+1

T

ˆ
R

du

ˆ
R

du′ G̃ωm(u, u′) exp

(
− u′2

2v2
T

)
umu′n

(2.162)
with the dimensionless parameters

x1 =
k‖vT
ν

and x2 = −ωE
ν

(2.163)

as follows [30],

D11 =
1

2νB2
0

∑

m

[
c2|Ẽm⊥|2<(I00) + 2cvT <(Ẽ∗m⊥B̃

r
m)

× <(I10) + v2
T |B̃r

m|2<(I11)
]
, (2.164)
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D12 = D21 =
1

2νB2
0

∑

m

[
c2|Ẽm⊥|2<(I00 + 1/2I20)

+ 2cvT <(Ẽ∗m⊥B̃
r
m)<(I10 + 1/4I30 + 1/4I21)

+ v2
T |B̃r

m|2<(I11 + 1/2I31)
]
, (2.165)

D22 =
1

2νB2
0

∑

m

[
c2|Ẽm⊥|2<(2I00 + I20 + 1/4I22)

+ 2cvT <(Ẽ∗m⊥B̃
r
m)<(2I10 + 1/2I30 + 1/2I21 + 1/4I32)

+ v2
T |B̃r

m|2<(2I11 + I31 + 1/4I32)
]
. (2.166)

The moments for the full integro-differential problem, Imn are related to the
moments of the Ornstein-Uhlenbeck Green’s function via [30]

Imn = ImnD +
(Im0

D − Im2
D ) (In0

D − In2
D )

1− I00
D + 2I20

D − I22
D

, (2.167)

where ImnD can be explicitly derived from [33, 30]

ImnD (x1, x2) =

{
∂m+n

∂αm∂βn

ˆ ∞
0

dτ exp

[
(ix2 − x2

1)τ

+ (α + ix1)(β + ix1)(e−τ − 1) +
(α + β)2

2

]}

α,β=0

. (2.168)

With the solution (2.158) one can finally determine the parallel linear re-
sponse current density in terms of the thermodynamic forces and moments of
the Green’s function [30]

j̃m‖ = e

ˆ
R3

d3p uf̃m

= −em3

ˆ ∞
0

2πv⊥ dv⊥

ˆ
R

duu

ˆ
R

du′Gωm(u, u′) [A1 + a2(v⊥, u
′)A2]

× f0(v⊥, u
′)vrm(v⊥, u

′)

= −n0evT
νB0

{[
(A1 + A2) I10 + 1/2A2I

21
]
cẼm⊥

+
[
(A1 + A2) I11 + 1/2A2I

31
]
vT B̃

r
m

}
. (2.169)
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Quasilinear Transport Model

Collisionless Case

L̂c → 0

f̃m = − i

k‖u+ ωE − i0+
Q̃m(v⊥, u)

=
ivrm

k‖u+ ωE − i0+

×
[
A1 +

m

2T

(
v2
⊥ + u2

)
A2

]
f0

Dkl =
π

2n0

∑

m

ˆ
R3

d3p δ(k‖u+ ωE)

× |vrm|2 ak(v⊥, u)al(v⊥, u)f0(v⊥, u)

Collisional Case

L̂c = L̂cD + L̂E
cI

f̃m(u) =

ˆ
R

du′ G̃ωm(u, u′)Qm(v⊥, u
′)

= −
ˆ
R

du′ G̃ωm(u, u′)vrm(v⊥, u
′)

×
[
A1 +

m

2T

(
v2
⊥ + u′2

)
A2

]
f0(v⊥, u

′)

Dkl =
πm3

n0

<
∑

m

ˆ ∞
0

dv⊥ v⊥

ˆ
R

du

×
ˆ
R

du′ G̃ωm(u, u′)vr∗m(v⊥, u)vrm(v⊥, u
′)

× ak(v⊥, u)al(v⊥, u
′)f0(v⊥, u

′)

Figure 2.7: Comparison of the collisional case and the collisionless limit case of
the quasilinear model.
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2.5 Hamiltonian Quasilinear Model of RMP-driven
Transport

Formulation of the Kinetic Equation in Action-Angle Vari-
ables

Kinetic theory in action-angle variables has been introduced in the 1960’s by
Kaufmann [34] and later by Mahajan and Chen [45]. Our model of RMP-
plasma interaction has been formulated with action-angle variables by Heyn et
al. (2006) [25] and improved w.r.t. a Galilean invariant collision operator by
Ivanov et al. (2011) [33]. Action variables are defined by, see e.g. [61, p. 153],

J(E)
def
=

1

2π

˛
ΓE

p dq, (2.170)

where ΓE is a periodic orbit corresponding to energy E. If a canonical transfor-
mationG2(q,J , t) from the original phase space coordinates (p, q) to coordinates
(J ,Θ) is found, such that the new Hamiltonian

H′ = H +
∂G2(q,J , t)

∂t
(2.171)

is independent of Θ, the new variables are denoted action J and angle Θ vari-
ables7. An integrable system for which action-angle variables have been found
is described by a Hamiltonian H0(J). Hamilton’s equations of motion for the
canonical variables J and Θ are

Θ̇ = Ω =
∂H0(J)

∂J
, J̇ = −∂H0(J)

∂Θ
= 0. (2.172)

The independence of the unperturbed (background) Hamiltonian of Θ and thus
the constancy of J is the main motivation for the coordinate transformation to
action-angle variables. The Hamiltonian of a charged particle in the background
field, expressed by its potentials is given by [33]

H0(r,p) =
1

2m

(
p− e

c
A0(r)

)2

+ eΦ0(r).

By the application of perturbations, the Hamiltonian of the perturbed system

7The index “2” refers to the special class of generating functions that depend on the old
configuration space variables q and the new momenta J , e.g. [18].
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−êr

ê⊥ = ĥ× êr

φ

ĥ

%

Figure 2.8: Gyroorbit in frame positioned atR(t) and spanned by êr and ĥ×êr.

is given by, see e.g. [61],

H(J ,Θ, ε) = H0(J) + εH1(J ,Θ, ε), (2.173)

where ε is a measure for the strength of the perturbation.

The unperturbed motion is an integrable system with orbits r = R + %, or
expressed in contravariant components

xic(J ,Θ) = xigc(J) + %i(J ,Θ), (2.174)

where the guiding centre coordinates are independent of the gyrophase [25] and
the index “c” denotes “curvilinear”. The gyroorbit is given by

% = ‖%‖
(

sinφ ĥ× êr − cosφ êr

)
, (2.175)

see Fig. (2.5), where ‖%‖ = % =
√

2J⊥/mωc. Considering ĥ ⊥ êr, one can
evaluate (2.175) in contravariant cylindrical coordinates,

% = %
[
sinφ

(
ĥϑêϑ + ĥzêz

)
× êr − cosφ êr

]

= %
[
sinφ

(
ĥzêϑ − ĥϑ êz

)
− cosφ êr

]

= %

[
sinφ

(
hz

eϑ√
gϑϑ
− hϑ√

gϑϑ
ez

)
− cosφ er

]
,
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so that [33]

%r = −% cosφ, %ϑ =
%

r
hz sinφ, %z = −%

r
hϑ sinφ. (2.176)

Having obtained the orbit of a particle in the unperturbed system, the next task
is to formulate the kinetic equation for the background distribution function f0

in action-angle variables. For Cartesian phase-space variables p0 and r, where
p0 denotes the canonical momentum of the unperturbed system, i.e. p0 =

mv + (e/c)A0 and r is the Cartesian configuration space vector, it is [33]

v · ∂f0

∂r
+ F 0 ·

∂f0

∂p0

= L̂cf0 + S, (2.177)

where internal sources and sinks are considered in the source term S and F 0 is
the zeroth-order Lorentz force F 0 = eE0 + (e/c)v ×B0. The kinetic equation
is covariant under the transformation (p0, r) → (J ,Θ), so that for the new
velocities V i0 and forces F0i it reads [33]

V i0
∂f0

∂Θi + F0i
∂f0

∂Ji
= L̂cf0 + S. (2.178)

In the following, the velocities and forces for the background system in the new
action-angle phase space are determined. First we consider that substituting
K = pj and K = xj into the expression for a Poisson bracket of two arbitrary
observables,

{F,K} =

f∑

i=1

(
∂F

∂xi
∂K

∂pi
− ∂F

∂pi

∂K

∂xi

)
(2.179)

where the index f = 3 is the number of degrees of freedom of our particle, gives

{F, pj} =
∂F

∂xi
δji =

∂F

∂xj
, {F, xj} = −∂F

∂pi

∂xj

∂xi
= −∂F

∂pi
δji = −∂F

∂pj
, (2.180)

so that ∇rF = {f,p} and ∇pF = {r, F} = −{F, r}. We will also make use of
the Poisson brackets

∂Θi

∂r
= {Θi,p0} =

∂Θi

∂Θj

∂p0

∂Jj
− ∂Θi

∂Jj

∂p0

∂Θj =
∂p0

∂Ji
, (2.181)

∂Θi

∂p0

= {r, Θi} =
∂r

∂Θj

∂Θi

∂Jj
− ∂Θi

∂Θj

∂r

∂Jj
= − ∂r

∂Ji
. (2.182)

Now the left hand side of the kinetic equation in its original form (2.177) can
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be written
df0

dt
= ṙ · {f0,p0}+ ṗ0 · {r, f0}, (2.183)

and due to the invariance of Poisson-brackets under canonical transformations
also as

df0

dt
= {r,H0} ·

(
∂f0

∂Θi

∂p0

∂Ji
− ∂f

∂Ji

∂p0

∂Θi

)
+ {p0,H0} ·

(
∂r

∂Θi

∂f0

∂Ji
− ∂r

∂Ji

∂f0

∂Θi

)
.

(2.184)
Since in the action-angle formalism H0 = H0(J) only, the special Poisson-
brackets for ṙ and ṗ0 simplify as follows,

ṙ = {r,H0} =
∂r

∂Θi

∂H0

∂Ji
− ∂r

∂Ji

∂H0

∂Θi = Ωi ∂r

∂Θi , (2.185)

ṗ0 = {p0,H0} =
∂p0

∂Θi

∂H0

∂Ji
− ∂p0

∂Ji

∂H0

∂Θi = Ωi ∂p0

∂Θi . (2.186)

Substituting these two expressions into (2.184), reordering terms and considering
(2.181) and (2.182) shows that the left hand side of the kinetic equation simplifies
considerably,

df0

dt
=
∂f0

∂Θi

(
∂p0

∂Ji

∂r

∂ΘjΩ
j − ∂r

∂Ji

∂p0

∂ΘjΩ
j

)

+
∂f0

∂Ji

(
∂r

∂Θi

∂p0

∂ΘjΩ
j − ∂p0

∂Θi

∂r

∂ΘjΩ
j

)

=
∂f0

∂Θi δ
i
jΩ

j =
∂f0

∂ΘiΩ
i, (2.187)

where it has been used that the Jacobian determinant of a canonical transforma-
tion |∂(p0, r)/∂(J ,Θ)| ≡ 1. The left hand side of the kinetic equation (2.177)
can also be written as

df0

dt
= v ·

(
∂f0(J ,Θ)

∂Ji

∂Ji
∂r

+
∂f0(J ,Θ)

∂Θi

∂Θi

∂r

)

+ F 0 ·
(
∂f0(J ,Θ)

∂Ji

∂Ji
∂p0

+
∂f0(J ,Θ)

∂Θi

∂Θi

∂p0

)

=

(
v · ∂Θ

i

∂r
+ F 0 ·

∂Θi

∂p0

)
∂f0

∂Θi +

(
v · ∂Ji

∂r
+ F 0 ·

∂Ji
∂p0

)
∂f0

∂Ji

=

(
v · ∂p0

∂Ji
− F 0 ·

∂r

∂Ji

)
∂f0

∂Θi +

(
−v · ∂p0

∂Θi + F 0 ·
∂r

∂Θi

)
∂f0

∂Ji
(2.188)

so that by comparison with (2.178) one can identify V i0 and F0i as the coefficients
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of ∂f0/∂Θ
i and ∂f0/∂Ji,

V i0 = v · ∂p0

∂Ji
− F 0 ·

∂r

∂Ji
and F0i = −v · ∂p0

∂Θi + F 0 ·
∂r

∂Θi , (2.189)

cf. [33]. But in the Hamiltonian formulation it is also true that

df0

dt
=
∂f0

∂t
+ {f0,H0} =

∂f0

∂Θi

∂H0

∂Ji
− ∂H0

∂Θi

∂f0

∂Ji
= Ωi ∂f0

∂Θi (2.190)

and by comparison with (2.178) again one finds that [33]

V i0 =
∂H0

∂Ji
= Ωi, F0i = −∂H0

∂Θi = 0. (2.191)

If we consider f0 Maxwellian, such that L̂cf0 = 0 and ignore the source term S,
Ωi∂f0/∂Θ

i = 0 implies that f0 = f0(J) [33].

Let us now consider the full kinetic equation for the perturbed motion in
action-angle variables as given in [33],

∂f

∂t
+ V i ∂f

∂Θi + Fi
∂f

∂Ji
= L̂cf. (2.192)

For this purpose the distribution function, the fields and their potentials, re-
spectively are expanded as follows,

f = f0 + f̃ , (2.193)

Φ(r, t) = Φ0(r) + Φ̃(r, t), A(r, t) = A0(r) +Ã(r, t) (2.194)

E(r, t) = E0(r) + Ẽ(r, t), B(r, t) = B0(r) + B̃(r, t), (2.195)

where Ẽ = −∇Φ̃ − (1/c)∂Ã/∂t, B̃ = ∇ × Ã and F̃ = e[Ẽ + (1/c)v × B̃]

is the Lorentz force, first order in the perturbation. We can reuse (2.188) by
substituting f for f0 and F = F 0 + F̃ for F 0 to determine velocities and forces
in action-angle variables, being

V i = V i0 − F̃ ·
∂r

∂Ji
, Fi = F0i + F̃ · ∂r

∂Θi . (2.196)

In order to obtain the linearised kinetic equation, the expansions in background
and perturbation parts are substituted into the kinetic equation (2.192) and the
background kinetic equation (2.178) is subtracted, giving

∂f̃

∂t
+ F̃ · ∂r

∂Ji

∂f0

∂Θi +V i0
∂f̃

∂Θi − F̃ ·
∂r

∂Ji

∂f̃

∂Θi + F̃ · ∂r
∂Θi

∂f0

∂Ji
+F0i

∂f̃

∂Ji
= L̂cf̃ . (2.197)
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Neglecting terms quadratic in perturbed quantities and considering f0 = f0(J),
F0α = 0 and V i0 = Ωi, as was found earlier, the linearised kinetic equation as
formulated in [33] is obtained,

∂f̃

∂t
+Ωi ∂f̃

∂Θi + J̇i
∂f0

∂Ji
= L̂cf̃ , (2.198)

where J̇i is the perturbation force in action-angle variables, which is obtained
from the force in curvilinear coordinates by the transformation J̇i = F̃ ·∂r/∂Θi,
considering that J̇i transforms like a covariant vector,

J̇i = eẼ t
i = e

[
Ẽ +

v

c
× (∇× Ã)

]
· ∂r
∂Θi

= eẼi −
e

c
Ωj

(
∂Ãi
∂Θj −

∂Ãj
∂Θi

)
. (2.199)

Here

Ẽi = − ∂Φ̃

∂Θi −
1

c

∂Ãi
∂t

(2.200)

and the second line in (2.199) follows from the first by considering

Ωj

(
∂Ãi
∂Θj −

∂Ãj
∂Θi

)
= Ωj ∂Ãk

∂xlc

(
∂xlc
∂Θj

∂xkc
∂Θi −

∂xlc
∂Θi

∂xkc
∂Θj

)

=
∂Ãk

∂xlc

(
vlc
∂xkc
∂Θi − vkc

∂xlc
∂Θi

)

k↔l
=

(
vlc
∂Ãk

∂xlc
− vlc

∂Ãl

∂xkc

)
∂xkc
∂Θi

=
√
gεlmkv

l
c

(
εmnp√
g

∂Ãn
∂xpc

)
∂xkc
∂Θi

= (δnk δ
p
l − δnl δpk) vlc

∂Ãn
∂xpc

∂xkc
∂Θi

=

(
vpc
∂Ãk
∂xpc
− vnc

∂Ãn

∂xkc

)
∂xkc
∂Θi

= −
(
vc × (∇× Ã)

)
k

∂xkc
∂Θi , (2.201)

where the index “c” denotes “curvilinear” in this context. Here, the coordinate
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transformations

Ãi =
∂xkc
∂Θi Ãk and vlc =

∂xlc
∂ΘjΩ

j (2.202)

have been considered in lines 1 and 2, summation dummy indices have been
renamed in the second term in parenthesis in the second line and use has been
made of the identity (v× (∇×E))i = vj∂iEj − vj∂jEi. Thus, the total force in
action-angle variables, as specified in [33], is given by

Fi = J̇i = −e ∂Φ̃
∂Θi −

e

c

[
∂Ãi
∂t

+Ωj

(
∂Ãi

∂Θj −
∂Ãj

∂Θi

)]
. (2.203)

Now expanding the perturbed quantities in Fourier series as follows,

f̃(J ,Θ, t) =
∑

m

f̃m(J , t) eim·Θ, (2.204)

Φ̃(J ,Θ, t) =
∑

m

Φ̃m(J , t) eim·Θ, (2.205)

Ã(J ,Θ, t) =
∑

m

Ãm(J , t) eim·Θ, (2.206)

...

and substituting the expansions into the linearised kinetic equation (2.198), the
linear kinetic equation for the Fourier amplitudes f̃m is obtained [33],

∂f̃m
∂t

+ im ·Ωf̃m − L̂cf̃m = Q̃m (2.207)

with the Fourier amplitudes of the source term being given by

Q̃m(J , t) = e
∂f0

∂Ji

{
imiΦ̃m +

1

c

[
∂(Ãi)m
∂t

+ iΩj
(
mj(Ãi)m −mi(Ãj)m

)]}
.

(2.208)
In this model a 1-D Fokker-Planck collision operator in the Ornstein-Uhlenbeck
approximation [69, 33] is considered,

L̂cf̃m(J) =
∂

∂u
D

(
∂

∂u
+

u

v2
T

)
f̃m(J). (2.209)
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With the frequencies [25, 32]

Ωφ = ωc, Ωϑ = hϑv‖ +
chz
r0B0

dΦ0

dr0

, Ωz = hzv‖ −
chϑ
r0B0

dΦ0

dr0

(2.210)

and the modes numbers m = (`, kϑ, kz), one obtains

m ·Ω = `ωc + kϑ

(
hϑv‖ +

chz
r0B0

dΦ0

dr0

)
+ kz

(
hzv‖ −

chϑ
r0B0

dΦ0

dr0

)

= `ωc + k‖v‖ + k⊥VE⊥, (2.211)

using the already derived relations for the parallel and perpendicular wave num-
bers k‖ = kϑh

ϑ + kzh
z and k⊥ = (hzkϑ − hϑkz)/r0. Using the definition of the

electrical particle drift frequency ωE = k⊥VE⊥ and defining the Doppler-shifted
frequency ω` = `ωc + k · V = `ωc + ωE + k‖V‖ as the cyclotron frequency plus
electric particle drift frequency, the kinetic equation can be written explicitly
as [33]

[
∂

∂t
+ i(ω` + k‖u)−D ∂

∂u

(
∂

∂u
+

u

v2
T

)]
f̃m(u, t) = Q̃m(u, t), (2.212)

where the shifted parallel velocity u = v‖ − V‖ and the constant diffusion co-
efficient D = νv2

T have been introduced. A formal solution of this equation in
terms of a Green’s function was obtained by Ivanov et al, 2011 [33],

f̃m(u, t) =

ˆ t−t0

0

dτ

ˆ
R

du′ G̃D
m(u, u′, τ)Q̃m(u′, t− τ) (2.213)

where the Green’s function is given by

G̃D
m(u, u′, t) =





0 t ≤ 0

1√
4πã

exp

[
i
k‖
ν (u− u′)− c− 1

4ã(u− u′e−νt + ib̃)2

]
t > 0

(2.214)
with

ã(t) =
v2
T

2

(
1− e−2νt

)
, b̃(t) =

2k‖v2
T

ν

(
1− e−νt

)
, c(t) =

(
iω` +

k‖v2
T

ν

)
t.

(2.215)
Since this Green’s function plays an essential role in determining the solution of
the linearised kinetic equation with the more complicated energy and momentum
conserving, integro-differential collision operator studied in detail in Chapter 3,
its derivation is given in detail in Appendix A.
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Coordinate transformations
Curvilinear coordinates Action-angle coordinates

ẋic =
∂xic
∂Θj Θ̇

j =
∂xic
∂ΘjΩ

j Θ̇i = Ωi = ∂Θi

∂xjc
ẋjc = ṙ · ∂Θ

i

∂r

ẋci = ∂Θj

∂xic
Ωj = Ω · ∂Θ

∂xic
Ωi =

∂xjc
∂Θi ẋcj = ṙ · ∂r

∂Θi

F̃i = ∂Θj

∂xic
J̇j = J̇ · ∂Θ

∂xic
J̇i =

∂xjc
∂Θi F̃j = F̃ · ∂r

∂Θi = F̃ · ∂Ji
∂p

Ẽi = ∂Θj

∂xic
Ẽj = Ẽ · ∂Θ

∂xic
Ẽi =

∂xjc
∂Θi Ẽj = Ẽ · ∂r

∂Θi = Ẽ · ∂Ji
∂p

Ẽi =
∂xic
∂Θj Ẽ j = Ẽ · ∂x

i
c

∂Θ
E i = ∂Θi

∂xjc
Ẽj = Ẽ · ∂Θ

i

∂r

∂Φ̃
∂xic

= ∂Θj

∂xic

∂Φ̃
∂Θj

∂Φ̃
∂Θi = ∂Φ̃

∂xjc

∂xjc
∂Θi = ∇Φ̃ · ∂r

∂Θi

Ãi = ∂Θj

∂xic
Ãj =Ã · ∂Θ

∂xic
Ãi =

∂xjc
∂Θi Ãj = Ã · ∂r

∂Θi = Ã · ∂Ji
∂p

∂Ẽi
∂xjc

∂Ei
∂Θj =

∂xkc
∂Θi

∂xmc
∂Θj

∂Ẽk
∂xmc

+ Ẽk ∂2xkc
∂Θi∂Θj

[
vc × (∇× Ẽ)

]
i

Ωj

(
∂Ei
∂Θj −

∂Ej
∂Θi

)
= − iω

c (vc × (∇× Ẽ))j
∂xjc
∂Θi

vic0 V i0 = v · ∂p0
∂Ji
− F 0 · ∂r∂Ji

F0i F0i = −v · ∂p0

∂Θi + F 0 · ∂r
∂Θi

vic V i = V i0 − F̃ · ∂r∂Ji = V i0 + F̃ · ∂Θ
i

∂p

Fi Fi = F0i + F̃ · ∂r
∂Θi = F0i · ∂Ji∂p

Invariants

H̃ = ie
ω vc · Ẽ H̃ = ie

ωΩ
iEi

Ẽi{xic, f0} = Ẽ · {r, f0} Ẽi{Θi, f0} = Ẽ · {Θ, f0}

Table 2.2: Relations between covariant and contravariant indexed quantities in
curvilinear and action-angle variables.
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2.6 Linear Model

2.6.1 Maxwell’s Equations in Cylindrical Geometry

We consider Maxwell’s equations

∇ · Ẽ(r, t) = 4πρ(r, t), ∇× Ẽ(r, t) = −1

c

∂B̃(r, t)

∂t
, (2.216)

∇× B̃(r, t) =
4π

c
j(r, t) +

1

c

∂Ẽ(r, t)

∂t
, ∇ · B̃(r, t) = 0, (2.217)

where for a plasma the induced contribution of the plasma particles of the two
species as well as external sources have to be considered for the sources ρ and
j. In the case of the linear response model the current density in Ampère’s law
consists of the antenna current at r = ra plus the response current obtained
from kinetic theory, j = jant + j̃(Ẽ). In tensor index notation, the divergence
equations follow from index contraction of the covariant derivatives of the fields,

DkẼ
k = Ẽk

‖k = Ẽk
|k + Γ k

ikẼ
i = 4πρ, DkB̃

k = 0, (2.218)

and the curl equations are

Eijk∂iB̃j =
εijk√
g
∂iB̃j =

4π

c
jk +

1

c
∂tẼ

k,
εijk√
g
∂iẼj = −1

c
∂tB̃

k, (2.219)

where Eijk, the permutation tensor for the non-Galilean case, i.e. the gener-
alisation of the Galilean case to curvilinear coordinates, is connected with the
antisymmetric Levi-Civita pseudo-tensor by Eijk = (1/

√
g)εijk. The Christoffel

symbols for cylindrical coordinates are

(Γ r
ij) =




0 0 0

0 −r 0

0 0 0


 , (Γ ϑ

ij) =




0 1/r 0

1/r 0 0

0 0 0


 , (Γ z

ij) =




0 0 0

0 0 0

0 0 0


 ,

(2.220)
with i, j ∈ {r, ϑ, z}, which are, see e.g. [21], obtained from

Γ r
ϑϑ = er · ∂eϑ

∂ϑ
=

1

2
grn
(

2
∂gnϑ
∂ϑ
− ∂gϑϑ
∂xn

)

= −1

2
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∂r

=
1

2
(−2r) = −r, (2.221)
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=
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gϑϑ

∂gϑϑ
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=
1
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2r

r2
=

1

r
. (2.222)

Hence, the divergence of the vector field Ẽk is given by

DkẼ
k = ∂kẼ

k + Γ ϑ
rϑẼ

r = ∂rẼ
r + ∂ϑẼ

ϑ + ∂zẼ
z +

1

r
Ẽr (2.223)

and the divergence equations become
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∂r
+
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∂ ˆ̃Eϑ
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+
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= 4πρ, (2.224)
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= 0, (2.225)

where only the physical ϑ-vector component ˆ̃Eϑ =
√
gϑϑẼ

ϑ = Ẽϑ/
√
gϑϑ differs

from the contravariant and covariant one, respectively. The curl equations are

1

r

∂ ˆ̃Bz

∂ϑ
− ∂ ˆ̃Bϑ

∂z
=

4π

c
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and
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Considering wave solutions of the form ∝ exp(ik̂ϑϑ + ik̂zz − iωt), Maxwell’s
equations become

1

r
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∂r
+

ik̂ϑ
r

ˆ̃Eϑ + ik̂z
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1

r
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+
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r

ˆ̃Bϑ + ik̂z
ˆ̃Bz = 0,

(2.232)
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(2.234)

Equations (2.233) to (2.234) are integrated numerically w.r.t. radius as a set
of ordinary differential equations for the RMP field by the kinetic wave code
KiLCA (Kinetic Linear Cylindrical Approximation), developed by Ivanov et al,
2011 [33, 25, 26] for a straight periodic cylinder under the assumption that the
plasma equilibrium parameters are known. Although the geometry is simplified,
the kinetic physical model is accurate. Appropriate boundary conditions at the
magnetic axis and at the ideally conducting outer wall have to be satisfied. The
plasma and vacuum solutions, respectively, obtained inside and outside of the
antenna have to be matched at the antenna position. This turns out to be com-
plicated because due to the stiffness of the problem the initially orthogonal cho-
sen state vectors for individual modes become collinear, so that a Gram-Schmidt
procedure has to be executed after a certain number of steps to re-orthogonalise
the state vectors. The final solution is obtained by a linear combination of the
individual modes. The coefficients have to be rescaled radially backwards ac-
cording to the information that has been stored during the re-orthogonalisation
procedure. It has been found that the solutions are insensitive to the variation of
the positions of the antenna and the ideal wall, increasing only the perturbation
amplitude, which is a free parameter of the linear problem. Considering a finite
conductivity instead of the ideal wall also has no implications on the results [49].

For a single spatial harmonic of the perturbation field the perturbation cur-
rent density is linked to the perturbation electric field by a differential conduc-
tivity operator, which results from carrying out a finite Larmor radius (FLR)
expansion of the exact integral conductivity operator. In order to obtain the
conductivity operator, the linearised kinetic equation has to be solved. The de-
tails of the derivation of the conductivity operator can be found in [33, 32], here
only the relation between the perturbed current density j̃i ∝ exp(imϑϑ + ikzz)
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Figure 2.9: Poloidal cross section showing plasma and vacuum regions matched
at r = ra.

and the perturbation electric field is shown,

j̃k(r, ϑ, z) =
1

r

N∑

n,n′=0

(−)n
∂n

∂rn

(
rσkl(n,n′)(r,k)

∂n

∂rn′
Ẽl(r, ϑ, z)

)
, (2.235)

the derivatives occurring due to the FLRE of the exact integral conductivity
operator. It is based on the full kinetic equation and thus also the gyromotion
and polarisation currents are taken into account, reproducing all kinds of plasma
oscillations, as e.g. resistive wall modes that have been obtained from this model
[49, 48].

The conductivity operator elements σkl(n,n′) were first derived by Heyn et al.,
(2006) [25] from the collisionless and the Krook collision model. In a later study
based on the improved Ornstein-Uhlenbeck Fokker-Planck operator ensuring
Galilean invariance for a transformation to a moving frame the elements were re-
evaluated also w.r.t. a more compact FLR expansion. The equations connecting
the the moments of the Green’s function with the elements of the conductivity
operator are not altered by the improved collision operators ensuring also energy
and momentum conservation, derived and applied in the most recent studies
[30, 40]. The linear model has also been used to study the influence of RMPs
on the α-particle confinement in ITER, Heyn et al. [28].
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2.7 The Quasilinear Balance Equations

The equilibrium plasma parameters are computed within the quasilinear model.
The slow evolution of the electron density ne, the flux surface averaged ion
toroidal rotation frequency V ϕ

i and thermal energy densities 3/2ne,iTe,i under
the action of the RMP field are described by the electron continuity equation
(2.236), the toroidal momentum balance (2.237) and the respective species’ heat
balance equation (2.238), formulated here in toroidal geometry [26, 30],

∂ne

∂t
+

1

S

∂

∂r
S
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e + ΓA
e

)
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ne
, (2.236)
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(
QEM

e,i +QA
e,i +QNEO

i

)
= −ee,iΓ

EM
e,i + SA

nT ; e,i + SAUX
nT ; e,i,

(2.238)

where S is the flux surface area and 〈gϕϕ〉 ∝ R2 is the flux surface averaged
covariant toroidal component of the metric tensor for symmetry flux coordinates
and µA

ϕ is the anomalous shear viscosity coefficient. The fluxes denoted by index
“EM” are the electron and ion particle and heat fluxes, which are driven by the
perturbation field, i.e.

ΓEM
e,i = −ne,i(D11A1 +D12A2),

QEM
e,i = −ne,iTe,i(D21A1 +D22A2),

repeated here for convenience, with the diffusion coefficients given in (2.164) to
(2.166) in Sect. 2.4.3. The sum over species in the toroidal momentum balance
equation (2.237) is the toroidal torque density TEM

ϕ of electrons and ions, for
each species given by [30]

TEM
ϕ; e,i = −ee,i

c

√
gBϑ

0Γ
EM
e,i . (2.239)

The upper index A denotes anomalous particle and heat fluxes, modelled by

ΓA
e,i = −D⊥

∂ne,i

∂r
, QA

e,i = −3

2
D⊥

∂ne,iTe,i

∂r
, (2.240)
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Figure 2.10: Self-consistent model consisting of equilibrium and wave code.

which is described in detail in [26]. The ion neoclassical heat flux appearing in
Eq. (2.238) is given by the low-collisionality limit of Eq. (6.131) of [31],

QNEO
i = −1.32ni

(
R

r

)3/2 q2v2
Ti

ω2
ciτi

∂Ti

∂r
, (2.241)

with τi = 3
√
miT

3/2
i /(4

√
πe4

i niΛ) and Λ, the Coulomb logarithm.

The particle and energy sources SAUX
ne

, SAUX
nT ; e,i and the equilibrium torque

density SAUX
pϕ are chosen such that a steady state for the equilibrium parameters8

is achieved in the absence of the perturbation field [50, 26].

Finally, a comment concerning the equilibrium radial electric field E0r is
indicated, since it enters the balance equations at the right hand sides of (2.237)
and (2.238) and also the thermodynamic force A1. Its value is determined such
that the poloidal ion velocity V ϑ

i coincides with the equilibrium neoclassical
velocity [24],

V ϑ
i =

ckB0ϕ

e
√
g〈B2

0〉
∂Ti

∂r
, (2.242)

with a coefficient k computed by the code NEO-2. According to this condition,
it is given by [30]

E0r = −∂Φ0

∂r
=

√
gBϑ
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c

(
V ϕ

i − qV ϑ
i

)
+

1

niei

∂niTi

∂r
.

The balance equations (2.236) to (2.238) are solved by the FORTRAN code
QL-BALANCE [26, 30] by tracing the time evolution of the background param-
eters. The code is based on a conservative finite difference scheme. The model
is self-consistent insofar that the RMP-field is updated at each time step by the
wave code KiLCA, see Fig. 2.10.

8corresponding to experimental profiles that serve as an input to the self-consistent mod-
elling
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2.7.1 Tokamak Geometry

In order to convert the RMP field to a real tokamak geometry, the total magnetic
field B = B0 +B̃1 is expressed through the vector potential in symmetry flux
coordinates (x1, x2, x3) = (ψtor, ϑ, ϕ) [26, 32, 28, 30],

B0 = ∇ψpol ×∇ϕ+B0ϕ∇ϕ, (2.243)

B̃1 = ∇Ã1ψ ×∇ψtor +∇Ã1ϑ ×∇ϑ, (2.244)

where ψtor and ψpol are, within a factor of 2π, the toroidal and poloidal magnetic
fluxes of the axisymmetric background magnetic field B0. Only the covariant
ϑ-component of the perturbed magnetic potential determines the magnetic field
topology and quasilinear effects in the resonant layer [30]. This component is
expanded in a Fourier series over angles,

Ã1ϑ = 2<
∞∑

n=1

∞∑

m=−∞
Ãϑ;m,n(ψtor)e

imϑ+inϕ, (2.245)

where m = mϑ and n = nϕ. In this expansion, the Fourier amplitudes in
vacuum, which are determined by Biot-Savart’s law from the coil currents are
replaced by shielded amplitudes [26, 30]

Ãϑ;m,n(ψtor) = Ãvac
ϑ;m,n(ψtor)Tm,n(ψtor), (2.246)

which for each modem, n and effective radius r (or the corresponding flux surface
ψtor) are obtained from the linear model in terms of form factors Tm,n, given by
the ratio of the Fourier amplitudes of the radial magnetic field component in
plasma and in vacuum, respectively [26, 32, 33, 30],

Tm,n(ψtor) =
B̃
r (plas)
m (r)

B̃
r (vac)
m (r)

. (2.247)

The shielding factors introduced already in [26] and used further in [28, 30, 40]
are a measure of the shielding of the magnetic field by the perturbation field.

The transport coefficients in the tokamak geometry are gained for each sep-
arate mode m by affixing spectral weights [30]

Wm =

∣∣∣∣∣
kzÃ

vac
ϑm,n

rB̃
r (vac)
m

∣∣∣∣∣

2

(2.248)

during the summation. Here, the cylindrical wave number kz is related to the
toroidal wave number by mϕ/R.
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Chapter 3

Analytical and Numerical Results

The results presented here have been published for the most part in either of
the two lead-author articles:

• P. Leitner, M. F. Heyn, I. B. Ivanov, S. V. Kasilov, and W. Kernbichler:
Effect of energy and momentum conservation on fluid resonances for reso-
nant magnetic perturbations in a tokamak. Physics of Plasmas 21, 062508
(2014)

• M. F. Heyn, I. B. Ivanov, S. V. Kasilov, W. Kernbichler, and P. Leitner:
Quasilinear Modelling of RMP Penetration into a Tokamak Plasma. Prob-
lems of atomic science and technology/Series Plasma Physics (2013)

Section 3.1 on quasilinear kinetic modelling of RMP penetration with energy
conserving collision operator covers results published in the latter proceeding
report [29], while the remaining sections 3.2 to 3.6 refer to the publication in
Physics of Plasmas [40]. Permission for inclusion of this article in this disser-
tation was granted by Physics of Plasmas. This said, references to those two
articles are given again only for reproduction of figures and literal quotations,
thereby following the guidelines for proper quotation practice of the TU Graz.
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3.5.3 Linear Plasma Response . . . . . . . . . . . . . . . . . 113

3.6 Numerical Modelling of Plasma Shielding . . . . . . 118

3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . 138

3.1 Quasilinear Kinetic Modelling of RMP Pen-
etration into a Tokamak Plasma

RMPs are nowadays realised an effective remedy for uncontrolled ELM activity
in tokamak H-regimes. Especially type-I ELMs that represent short bursts of
large-amplitude activity release high-pulsed heat load on the divertor plates
and are therefore to be avoided [22, p. 504ff]. On the other end of the ELM
classification scheme are type-III ELMs that continuously release pressure at the
edge thereby however undermining the advantages of H-mode confinement [22].
Type-II ELMs are considered an acceptable compromise allowing for a moderate
removal of impurities and guaranteeing confinement times well above L-mode
operation [22]. RMPs have proven to successfully mitigate ELMs in tokamak
experiments like DIII-D in San Diego in the United States [12], JET in the
UK [42], and ASDEX-Upgrade in Garching, Germany [30].

A strong shielding of RMPs, however, is predicted by linear theory [16, 25].
From MHD theory it is known that shielding can be circumvented by adjust-
ing the RMP amplitude to a certain threshold value; the RMP driven plasma
torque effectively slows down the electron fluid motion across the magnetic field
lines and the penetration of RMPs becomes possible [15]. Here, the penetration
of RMPs was studied within quasilinear theory in the kinetic approximation.
An energy conserving collision operator (2.99) is used to avoid the occurrence
of artefacts such as fake heat fluxes in the limit of ideal MHD. The resulting
transport matrix was shown to be Onsager symmetric, the proof being deferred
to Section 3.5.2, where Onsager symmetry is studied for the even more gen-
eral model with additional momentum conserving collision operator. The basic
equations of this quasilinear modelling as well as the linear wave code KiLCA
[33] and the balance code [30] used for the computation of the evolution of the
plasma background are discussed in detail in the preceding chapter on Methods,
leaving the focus on the application of the model to a numerical experiment for
a single perturbation with JET-like plasma parameters.

From the solution of the kinetic equation particle and heat fluxes were deter-
mined1. This allowed for the further computation of the quasilinear evolution

1This quasilinear transport was realised to be attributed to the mismatch between per-
turbed magnetic flux surfaces and perturbed equipotential surfaces [30].
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Figure 3.1: Profile of |Br| for linear and quasilinear evolution and two scaling
factors, 0.8 and 1.0 of the toroidal rotation velocity. Source: [29].

of the following plasma parameters: electron density ne, toroidal ion rotation
velocity V φ

i , and electron and ion temperatures Te,i according to the balance
equations (2.236) [26, 30]. The modelling was done for the single perturbation
mode (−3, 1) of the C-coil spectrum and two values for the anomalous diffusion
coefficient, namely 104 and 5× 103 cm2/s.

The radial profiles of |Br| obtained before and after quasilinear relaxation,
see Fig. 3.1, show that quasilinear effects do not necessarily reduce the shielding
but may even increase it, although the parallel electron current in the resonant
zone is reduced, see Fig. 3.2. The profiles that were found to be affected by the
perturbations are the electron temperature, Fig. 3.3, and, to a lesser extent, the
toroidal rotation velocity, Fig. 3.4, in contrast to earlier MHD theories [33]. The
electron density- and ion temperature profiles however were not altered by the
RMP-field. At the resonant surface, the perpendicular electron fluid velocity
was found to become zero, which, as can be seen from the bottom of Fig. 3.2,
is mostly due to the effect of RMPs on the electron diamagnetic velocity. This
agrees with a quasilinear modelling based on Drift-MHD theory [50], where the
electron diamagnetic velocity was also observed to be the most affected quantity.
A zero perpendicular electron fluid velocity as found here for all cases would lead
to field penetration according to MHD theory. In kinetic theory however, the
radii of maximum radial magnetic field and zero toroidal torque do not coincide
as can be seen in Fig. 3.5, why the plasma shielding is not necessarily reduced.
The results were found to be insensitive to the chosen values of the anomalous
diffusion coefficient.
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Figure 3.2: Evolution of the quasilinear heat conductivity (top panel), parallel
electron current density (middle), and components of the perpendicular electron
fluid velocity (bottom). Solid lines for the current and perpendicular velocity
show the profiles after quasilinear evolution, dashed lines represent initial pro-
files. The thin lines show results for the reduced value of the anomalous diffusion
coefficient. Source: [29].
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Figure 3.3: Quasilinear evolution for different RMP amplitudes of mode (−3, 1).
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3.2 Momentum Conserving Collision Operator

In Heyn et al. (2014) [30] the kinetic model of RMP-plasma interaction has been
extended by an advanced collision operator with an integral part that in addition
to particle- and thus charge conservation also ensures the conservation of energy,
see Sect. 2.4.3. In the following it will be shown how to further extend this
operator by an additional integral part, so that for the plasma species considered,
particles, energy and momentum are conserved. While, due to the mass ratio
of protons to electrons of mp/me ≈ 1 836.2 the energy transfer during a single
Coulomb collision from the electron to the ion or vice versa is only ∼ O(me/mi)

and so energy conservation of both plasma species should be considered, that
argument does not apply to the momentum transfer of electrons colliding with
ions.

Keeping the overall electron momentum artificially at a constant value ob-
viously is not justified on physical grounds, therefore for electrons the same
collision operator as in Ref. [30] is used in the modelling. For the ions however
a closer examination is indicated: In contrast to our cylindrical model, where
the equilibrium parallel ion flow is a free parameter2, in a tokamak, due to
poloidal viscosity, the equilibrium parallel ion flow is restricted to a neoclassical
value and momentum is transferred to the trapped particles. In MHD models
[4] this effect is considered by taking parallel viscosity into account. The flow
braking is described in terms of parallel viscosity in the long mean free path
regime and as the product of collision frequency and the fraction of trapped
particles for a kinetic estimate, the former overestimating the flow braking rate.
The loss of momentum to the trapped particles is simulated in our model, when
we restrict the collision operator to conserve particles and energy only. If, on
the other hand, momentum conservation on the ion component is enforced, the
model results are comparable to MHD model results neglecting toroidal effects
and shear viscosity, since parallel momentum conservation in a cylinder model is
incompatible with parallel flow braking due to the toroidicity of real tokamaks.

For the details of our linear and quasilinear model, the reader is referred
to Chapter 2, while here the focus is laid on the differences that arise when
a momentum conserving collision operator is applied regarding the solution of
the kinetic equation and derived quantities such as diffusion coefficients and the
linear response current. Starting point of the discussion of the response model is
the kinetic equation linearised w.r.t. an equilibrium described by a distribution
function f0, an electrostatic field E0 and a magnetic field B0, formulated here

2when neglecting radial transport or shear viscosity



82 CHAPTER 3. RESULTS

in action-angle variables (Θ,J) and repeated here for convenience [33],

∂f̃

∂t
+Ωi ∂f̃

∂Θi − L̂cf̃ = Q̃(t,Θ,J)

with source term

Q̃(t,Θ,J) = −e
(
Ẽ +

1

c
v × B̃

)
· ∂r
∂Θi

∂f0(J)

∂Ji
.

As was explained in detail in Section 2.5, the equilibrium is an integrable
Hamiltonian system, see Eqns. (2.172), with distribution function f0(J) sat-
isfying the steady state kinetic equation. Action-angle variables in the straight
periodic cylinder with length L = 2πR were chosen Θ = (φ, θgc, zgc) and
J = (J⊥, pϑ, pz). The generalised momenta, however are not used directly but
re-expressed through more physical variables (r0, v‖, v⊥) as follows,

pϑ,z =
(
mh(r0)v‖ +mVE(r0) +

e

c
A0(r0)

)
ϑ,z
. (3.1)

A basis aligned to the local equilibrium field composed of (er,h = B0/B0, e⊥ =

h × er), as introduced in Section 2.5 and depicted in Fig. 2.8 is used. By
Fourier-series expansion of the perturbed quantities in the angle variable, e.g.

f̃(t,Θ,J) =
∑

m

f̃m(t,J)eim·Θ,

the linear kinetic equation for the Fourier amplitude fm(t,J) is obtained [33],

∂f̃m
∂t

+ im ·Ωf̃m − L̂cf̃m = Q̃m. (3.2)

In previous studies, the collision term was modelled by a Krook term [25],

L̂cf = ν
[
f0

(
r,p− e

c
Ã1

)
− f(t, r,p)

]
, (3.3)

being a crude approximation for the collision integral based on the assumption
that since L̂cf is vanishing for f ≡ f0, the collision term for small deviations
of the distribution from the equilibrium f = f0 + δf should be proportional to
−δf , see e.g. [19].

Later, it had been substituted by an improved Galilean invariant Fokker-
Planck collision operator [33]

L̂cDf =
∂

∂u
D

(
∂

∂u
+

u

v2
T

)
f. (3.4)
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Just recently, the operator has been further extended to an integro-differential,
energy conserving operator in 2014 [30],

L̂cpf(v⊥, u) = L̂cDf(v⊥, u) +
ν√

2πvT
exp

(
− u2

2v2
T

)(
u2

v2
T

− 1

)

×
ˆ
R

du′
(
u′2

v2
T

− 1

)
f(v⊥, u

′). (3.5)

Missing is still the derivation of the solution of the linearised kinetic equation
with integro-differential collision operator L̂c = L̂cD + L̂E

cI + L̂M
cI , which includes

the solution to the case with energy conservation only as a limit case.

Construction of a Momentum Conserving Collision Opera-
tor

For the equilibrium distribution function f0 a local drifting Maxwellian nor-
malised to momentum space,

f0(r, v‖, v⊥) =
n0(r)

(2πmT0(r))3/2
exp

{
−m

[
v2
⊥ + (v‖ − V‖0(r))2

]

2T0(r)

}

is chosen with the density n0, the temperature T0 and the parallel flow velocity
V‖0 being free parameters of the model describing parallel (but ignoring radial)
transport as a consequence of the respective particle, energy, and momentum
conservation in collisions. The freedom in parameters results in a linearly mod-
ified Maxwellian δfM for the equilibrium solution of the unperturbed kinetic
equation with linearised Coulomb collision operator, given by

δfM = CnfM + CvfMv‖ + CTfMv
2, (3.6)

with Cn, Cv, and CT being arbitrary functions of r0, describing infinitesimal
changes in density, flow velocity, and temperature, respectively. In this study
collisions are not modelled by the exact linearised Coulomb collision operator
but by a simple model collision operator simulating collisional scattering over
the parallel velocity component that keeps the equilibrium solution (3.6) intact,
thereby conserving particles, parallel momentum, and parallel energy.

Integration of f0 over momentum space using (2.150) again should give the
equilibrium density distribution, which can be easily shown,

ˆ
R3

d3p f0(r, u, v⊥) = 2πm3

ˆ ∞
0

dv⊥ v⊥

ˆ
R

du f0
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=
n0√
2πv3

T

ˆ ∞
0

dv⊥ v⊥e−v
2
⊥/2v

2
T

ˆ
R

du e−u
2/2v2T

=
n0√
2πv3

T

v2
T

√
2πvT = n0(r). (3.7)

In the following, also the parallel component V‖ of the flow velocity

V =

ˆ
R3

d3v v f
ˆ
R3

d3v f

(3.8)

is expanded to first order V‖ = V‖0 + V‖1. Now, the Ornstein-Uhlenbeck Fokker-
Planck collision operator L̂cD acting on f = f0 + f1 gives

L̂cD(f0 + f1) = νv2
T

∂

∂v‖

[
∂

∂v‖
(f0 + f1) +

v‖ − (V‖0 + V‖1)

v2
T

(f0 + f1)

]

≈ νv2
T

∂2

∂v2
‖
f0 + νv2

T

∂2

∂v2
‖
f1

+ ν
∂

∂v‖

[
(v‖ − V‖0)f0 + (v‖ − V‖0)f1 − V‖1f0

]

= νv2
T

∂2

∂v2
‖
f0 + ν

∂

∂v‖
(v‖ − V‖0)f0

︸ ︷︷ ︸
=L̂cDf0

+ νv2
T

∂2

∂v2
‖
f1 + ν

∂

∂v‖
(v‖ − V‖0)f1

︸ ︷︷ ︸
=L̂cDf1

− ν ∂

∂v‖
V‖1f0,

by restricting oneself to the linear order in perturbations. The first two terms
on the right hand side are the separate actions of L̂cD on f0 and f1 and the
remaining term is now defined as the action of a new collision operator L̂M

cI on
f1, i.e. L̂M

cIf1 = −νV‖1∂f0/∂v‖, such that

L̂cD(f0 + f1) = L̂cDf0 + L̂cDf1 + L̂M
cIf1 = (L̂cD + L̂M

cI )f1. (3.9)

For this operator, the first order parallel bulk velocity has to be obtained by
explicitly evaluating this fluid velocity by taking the first moment,

V‖ =

ˆ
R

dv‖ v‖(f0 + f1)
ˆ
R

dv‖ (f0 + f1)
=


1 +

ˆ
R

dv‖ f1ˆ
R

dv‖ f0




−1 ˆ
R

dv‖ v‖(f0 + f1)
ˆ
R

dv‖ f0
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≈


1−

ˆ
R

dv‖ f1ˆ
R

dv‖ f0




ˆ
R

dv‖ v‖(f0 + f1)
ˆ
R

dv‖ f0

.

Considering the moments n0 and V0, zeroth order in the perturbation field,

n0 =

ˆ
R

dv‖ f0, V‖0 =
1

n0

ˆ
R

dv‖ v‖f0 (3.10)

V‖ can be evaluated further to

V‖ = V‖0 +
1

n0

ˆ
R

dv‖ v‖f1 −
1

n2
0

ˆ
R

dv‖ v‖(f0 + f1)

ˆ
R

dv‖ f1

≈ V‖0 +
1

n0

ˆ
R

dv‖ v‖f1 −
V‖0
n0

ˆ
R

dv‖ f1

= V‖0 +
1

n0

ˆ
R

dv‖ f1(v‖ − V‖0) = V‖0 + V‖1 (3.11)

and hence
V‖1 =

1

n0

ˆ
R

dv‖ f1(v‖ − V‖0). (3.12)

With determined V‖1, the action of operator L̂M
cI on f1 is

L̂M
cIf1 = −ν ∂f0

∂v‖
V‖1

= ν
v‖ − V‖0
v2
T

f0
1

n0

ˆ
R

dv′‖ (v′‖ − V‖0)f1(v⊥, v
′
‖)

=
ν√

2πvT
e−u

2/2v2T
u

vT

ˆ
R

du′
u′

vT
f1(v⊥, v

′
‖), (3.13)

where the shifted velocity u = v‖ − V‖0 in the co-moving frame has been sub-
stituted. Now it is shown that L̂cDf0 is indeed zero, which has been used in
(3.9):

L̂cDf0 = νv2
T

∂

∂v‖

(
∂f0

∂v‖
+
v‖ − V‖0
v2
T

f0

)

= νv2
Tf0

(
v‖ − V‖0
v2
T

)2

− νf0 + νf0

[
1− (v‖ − V‖0)2

v2
T

]
= 0 (3.14)
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Also for the constructed operator L̂M
cI , the condition L̂M

cIf0 = 0 holds,

L̂M
cIf0 = − ν√

2πvT
e−u

2/2v2T
u

vT

ˆ
R

du′
u′

vT

n0√
2πvT

e−u
2/2v2T = 0,

the integrand being an odd function integrated over R. Thus, the total operator
L̂cD + L̂M

cI , denoted L̂cp, acting on f0 gives zero, thereby conserving the number
of particles and hence also the charge,

L̂cpf0 = (L̂cD + L̂M
cI )f0 = 0. (3.15)

For momentum to be conserved, the same argument has to hold for the total
operator L̂cD +L̂M

cI acting on uf0. The differential Ornstein-Uhlenbeck part gives

L̂cD(uf0) = −νf0u, (3.16)

see Appendix B, and the remaining part

L̂M
cI (uf0) = νv2

T

∂2

∂u2
(uf0) +

∂

∂u
(u2f0).

Considering the derivatives

∂

∂u
(uf0) =

[
1− u2

v2
T

]
f0 (3.17)

∂

∂u
(u2f0) =

[
2− u2

v2
T

]
uf0 (3.18)

∂2

∂u2
(uf0) =

[
u2

v2
T

− 3

]
u

v2
T

f0 (3.19)

as shown in Appendix B, this gives further by comparison with the first line of
Eq. (3.13)

L̂M
cI (uf0)

(3.13)
= −ν ∂f0

∂u

1

n0

ˆ
R

duu2f0 = −ν ∂f0

∂u
v2
T

= νf0u. (3.20)

Thus indeed also the total operator L̂c + L̂M
cI gives zero acting on uf0,

L̂cp(uf0) = (L̂cD + L̂M
cI )f0 = 0, (3.21)

whereby also the momentum for the respective plasma species under consider-
ation is conserved. The momentum conserving collision operator (3.13) can be
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written in a compact form by introducing the functions

αM(u)
def
=

ν√
2πvT

u

vT
e−u

2/2v2T , (3.22)

βM(u)
def
=

u

vT
, (3.23)

so that

L̂M
cIf(v⊥, u) = αM(u)

ˆ
R

du′ βM(u′)f(v⊥, u
′). (3.24)

In an analogous way, an energy conserving collision operator can be constructed,
which, together with the differential part, satisfies (L̂cD + L̂E

cI)u
2f0 = 0. Without

repeating the alike derivation, L̂E
cI is found to be, see [30]

L̂E
cIf(v⊥, u) =

ν√
2πv2

T

(
u2

v2
T

− 1

)
e−u

2/2v2T

ˆ
R

du′
(
u′2

v2
T

− 1

)
f(v⊥, u

′)

= αE(u)

ˆ
R

du′ βE(u)f(v⊥, u
′), (3.25)

with functions

αE(u)
def
=

ν√
2πvT

(
u2

v2
T

− 1

)
e−u

2/2v2T , (3.26)

βE(u)
def
=

u2

v2
T

− 1, (3.27)

defined for convenience. The operators are constructed such that the action
of the momentum conserving operator on the phase space energy density gives
zero, L̂M

cIu
2f0 = 0, and thus also the whole, now integro-differential operator,

constituted of the tree parts L̂cp = L̂cD + L̂M
cI + L̂E

cI gives zero when acting on
u2f0,

L̂cp u
2f0 = (L̂cD + L̂M

cI + L̂E
cI)u

2f0 = 0. (3.28)

Analogously, since the energy conserving operator acting on uf0 gives zero,
L̂E

cIuf0 = 0, the same applies to the whole operator,

L̂cp uf0 = (L̂cD + L̂M
cI + L̂E

cI)uf0 = 0. (3.29)

The proof of these relations, in particular the actions of each individual operator
on f0, uf0 and u2f0 can be found in Appendix B.

The model operator L̂cp does not consider the scattering of perpendicular ve-
locity components, which leads to classical cross-field transport. This transport
is ignorable in favour of parallel transport and E ×B-rotation [30].
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Collision operator Description

L̂cKf = −ν δf(r,p, t) Krook term, e.g. [19]

L̂cDf = νv2
T∂u(∂u + u/v2

T )f Ornstein-Uhlenbeck operator [33]

L̂E
cIf = αE

´
R du′ βEf Energy conserving integral operator [30]

L̂M
cIf = αM

´
R du′ βMf Momentum conserving integral operator [40]

L̂cp =





L̂cD + L̂E
cI

L̂cD + L̂M
cI

L̂cD + L̂E
cI + L̂M

cI

Integro-differential collision operators [30, 40]

L̂ = ∂t + i(ω` + k‖u)− L̂cp Differential operator of the kinetic eqn. [30]

Table 3.1: Summary of collision operators

The conservation of momentum and energy is valid in zero order w.r.t. Lar-
mor radius, since the distribution function in L̂E

cIf and L̂M
cIf is evaluated not at

the actual particle position r = R+% but at the guiding centreR. However, the
error introduced here as compared to the exact Coulomb operator is of the same
order as the effects of classical cross-field transport of energy and momentum,
which is not taken into account anyway.

3.3 Solution of the Linearised Gyrokinetic Equa-
tion

In this section the method for obtaining the analytic solution of the kinetic
equation with full integro-differential collision operator is presented. As it was
shown in Sect. 2.5, the first order linearised kinetic equation, Fourier transformed
w.r.t. canonical angles is given by

[
∂

∂t
+ i(ω` + k‖u)− L̂cp

]
f̃m(u, t) = Q̃m(u, t), (3.30)

where the purely differential collision operator has now been replaced by the full
collision operator L̂cp = L̂cD + L̂E

cI + L̂M
cI . In Ivanov et al., 2011 [33], the solution

for the purely differential Fokker-Planck Ornstein-Uhlenbeck operator is given
in terms of a Green’s function,

f̃m(u, t) =

ˆ t

t0

dτ

ˆ
R

du′ G̃D
m(u, u′, t− τ)Q̃m(u′, τ), t > t0. (3.31)
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The temporal Fourier transform of the Green’s function is denoted

G̃D
ωm(u, u′) =

ˆ ∞
0

dt G̃D
m(u, u′, t)eiωt. (3.32)

The Green’s function Fourier-transformed w.r.t. time inherits the adjointness
property of G̃D

m(u, u′, t), shown in [33], which shall be used extensively in the
following,

G̃D
ωm(u, u′) exp

(
−u

′2

v2
T

)
= G̃D

ωm(u′, u) exp

(
−u

2

v2
T

)
. (3.33)

The solution of the fully integro-differential problem can be constructed in
terms of parallel velocity moments of the Green’s function GD

m(u, u′, t) of the
purely differential problem. The solution method is similar yet extended as
compared to Ref. [30].

Introducing the the differential operator L̂ = ∂t + i(ω` + k‖u) − L̂cD of the
kinetic equation, Eq. (3.30) can be written as

L̂f̃m − L̂M
cI f̃m − L̂E

cIf̃m = Q̃m, (3.34)

or explicitly
[
∂

∂t
+ i(ω` + k‖u)− ν ∂

∂u

(
∂

∂u
+

u

v2
T

)]
f̃m(u)− αM(u)

ˆ
R

du′ βM(u′)f̃m(u′)

−αE(u)

ˆ
R

du′ βE(u′)f̃m(u′) = Q̃m,

(3.35)

cf. Eq. (30) of Heyn et al. (2014) [30], being extended here by the oper-
ator L̂M

cI (second term on the left hand side) and the thermodynamic force
A3 = (1/vT ) ∂V‖0/∂r associated with the parallel momentum gradient in the
source term Q̃m. Formally, if one applies the inverse operator L̂−1 to the kinetic
equation one gets

f̃m − L̂−1L̂M
cI f̃m − L̂−1L̂E

cIf̃m = L̂−1Q̃m (3.36)

or explicitly

f̃m − L̂−1αM(u)

ˆ
R

du′ βM(u′)f̃m(u′)

− L̂−1αE(u)

ˆ
R

du′ βE(u′)f̃m(u′) = L̂−1Q̃m(u). (3.37)

Here, f̃m in the first term has been expressed explicitly by application of L̂−1,
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while in the second and third term on the left hand side it is still buried under
the integral sign. One can find expressions for x ≡

´
R du′ βE(u′)f̃m(u′) and

y ≡
´
R du βM(u′)f̃m(u′) by multiplying Eq. (3.37) by βE(u) and integrating over

u and separately by βM(u) and subsequent integration over u. This gives a set
of two linear equations in x and y. Substitution of the solution for x and y

back into Eq. (3.37), the solution of the full integro-differential equation (3.35)
is obtained. This procedure is demonstrated in detail in the following.

By multiplication by βE(u) and βM(u), respectively and subsequent integra-
tion over u, the two equations

(
1−
ˆ ∞
−∞

du βX(u)L̂−1αE(u)

)ˆ ∞
−∞

du′βE(u′)f̃m(u′)

−
ˆ ∞
−∞

du βX(u)L̂−1αM(u)

ˆ ∞
−∞

du′ βM(u′)f̃m(u′)

=

ˆ ∞
−∞

du βX(u)L̂−1Q̃m(u), (3.38)

are obtained, where X denotes either E or M. Now since the Green’s function G̃D
m

solves the kinetic equation (3.30) via (3.31), the inverse operator is represented
by the integral kernel (L̂−1)u,u′ ≡ G̃D

m(u, u′, t), which is demonstrated by the
identities

L̂G̃D
m =

[
∂t + (iω` + k‖u)− ν ∂

∂u

(
∂

∂u
+

u

v2
T

)]
G̃D
m = δ(t− t0)δ(u− u′) (3.39)

and [i(ω` + k‖u− ω)− ν∂u(∂u + u/v2
T )]G̃D

ωm = δ(u− u′), respectively. By intro-
ducing the following definitions

A :=1−
ˆ ∞
−∞

du βE(u)

ˆ ∞
−∞

du′ G̃D
ωm(u, u′)αE(u′), (3.40)

B :=

ˆ ∞
−∞

du βE(u)

ˆ ∞
−∞

du′ G̃D
ωm(u, u′)αM(u′), (3.41)

C :=

ˆ ∞
−∞

du βE(u)

ˆ ∞
−∞

du′ G̃D
ωm(u, u′)Q̃m(u′), (3.42)

AM :=1−
ˆ ∞
−∞

du βM(u)

ˆ ∞
−∞

du′ G̃D
ωm(u, u′)αM(u′), (3.43)

BM :=

ˆ ∞
−∞

du βM(u)

ˆ ∞
−∞

du′ G̃D
ωm(u, u′)αE(u′), (3.44)

CM :=

ˆ ∞
−∞

du βM(u)

ˆ ∞
−∞

du′ G̃D
ωm(u, u′)Q̃m(u′), (3.45)
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Eqns. (3.38) can be written compactly as
( A −B
−BM AM

)(
x

y

)
=

( C
CM

)
. (3.46)

Eq. (3.46) is solved by

x =
1

∆

(
AMC + BCM

)
, (3.47)

y =
1

∆

(
BMC +ACM

)
(3.48)

with determinant
∆ = AAM − BBM. (3.49)

Substitution of this result into (3.37), the Green’s function G̃ωm(u, u′) of the full
integro-differential problem is found,

G̃ωm(u, u′) = G̃D
ωm(u, u′) +

1

∆

ˆ
R

du′′
ˆ
R

du′′′ G̃D
ωm(u, u′′) G̃D

ωm(u′′′, u′)

×
[
BMαM(u′′)βE(u′′′) +AαM(u′′)βM(u′′′)

+ AMαE(u′′)βE(u′′′) + BαE(u′′)βM(u′′′)

]
. (3.50)

Having obtained G̃ωm(u, u′), the solution of the kinetic equation can be obtained
from

f̃m(v⊥, u) =

ˆ
R

du G̃ωm(u, u′)Q̃m(v⊥, u
′). (3.51)

This solution for the perturbed distribution function will be used for the trans-
port model in Sect. 3.5 to determine mass- and parallel momentum transport as
well as the energy flux due to the perturbation field Ẽωm⊥, B̃r

ωm.

For the following evaluation of the transport coefficients velocity moments
of the Green’s function G̃ωm(u, u′) are defined by multiplication of Eq. (3.50)
by umu′n exp(−u′2/2v2

T ) and subsequent integration over all possible values of u
and u′,

Wmn = Wmn
D +

ν√
2πv2

T

1

∆

ˆ
R

du

ˆ
R

du′
ˆ
R

du′′
ˆ
R

du′′′ G̃D
ωm(u, u′′) G̃D

ωm(u′, u′′′)

× e−u
′′2/2v2T e−u

′′′2/2v2Tumu′n
[
BMu

′′

vT

(
u′′′2

v2
T

− 1

)
+Au

′′

vT

u′′′

vT

+ AM

(
u′′2

v2
T

− 1

)(
u′′′2

v2
T

− 1

)
+ B

(
u′′2

v2
T

− 1

)
u′′′

vT

]
. (3.52)
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As well as the purely differential Ornstein-Uhlenbeck problem is solved by the
Green’s function G̃D

ωm(u, u′), the special functions Wmn
D are the particular mo-

ments in that case, cf. Ivanov et al. (2011) [33],

Wmn
D (k‖, ω) =

ˆ
R

du

ˆ
R

du′ G̃D
ωm(u, u′) exp(−u′2/2v2

T )umu′n. (3.53)

With the parameters x1 = k‖vT/ν and x2 = (ω − ω`)/ν one can also define
dimensionless moments,

ImnD (x1, x2) =
ν√

2πvm+n+1
T

Wmn
D (νx1/vT , νx2 + ω`). (3.54)

In terms of these moments, Eq. (3.52) becomes

Imn = ImnD +
1

∆

[
BMIm1

D

(
I2n

D − I0n
D

)
+AIm1

D In1
D

+ AM
(
Im2

D − Im0
D

) (
I2n

D − I0n
D

)
+ B

(
Im2

D − Im0
D

)
I1n

D

]
, (3.55)

again being constructed by the solution of the purely differential part ImnD and
an integral part consisting of particular moments of ImnD . Explicit evaluation of
the coefficients A, AM, B and BM yields

A = 1−
ˆ
R

du

(
u2

v2
T

− 1

) ˆ
R

du′ G̃D
ωm(u, u′)

ν√
2πvT

e−u
′2/2v2T

(
u′2

v2
T

− 1

)

= 1− ν√
2πvT

ˆ
R

du

(
u

vT

)2 ˆ
R

du′ G̃D
ωm(u, u′)e−u

′2/2v2T

(
u′

vT

)2

+
ν√

2πvT

ˆ
R

du

ˆ
R

du′ G̃D
ωm(u, u′)e−u

′2/2v2T

(
u′

vT

)2

+
ν√

2πvT

ˆ
R

du

(
u

vT

)2 ˆ
R

du′ G̃D
ωm(u, u′)e−u

2/2v2T

− ν√
2πvT

ˆ
R

du

ˆ
R

du′Gωm(u, u′)e−u
′2/2v2T

= 1 +
ν√

2πvT

(
1

v2
T

W 02 +
1

v2
T

W 20 −W 00 − 1

v4
T

W 22

)

= 1− I00
D + 2I20

D − I22
D , (3.56)

where the adjointness property of the Greens function Imn = Inm has been used.
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Similarly one obtains for the remaining coefficients

AM = 1−
ˆ
R

du
u

vT

ν√
2πvT

ˆ
R

du′ G̃D
ωm(u, u′)e−u

′2/2v2T
u′

vT

= 1− ν√
2πvT

1

v2
T

W 11

= 1− I11
D , (3.57)

B =

ˆ
R

du

(
u2

v2
T

− 1

)
ν√

2πvT

ˆ
R

du′ G̃D
ωm(u, u′)e−u

′2/2v2T
u′

vT

=
ν√

2πvT

(
1

v3
T

W 21 − 1

vT
W 01

)

= I21
D − I01

D , (3.58)

BM =
ν√

2πvT

ˆ
R

du
u

vT

ˆ
R

du′ G̃D
ωm((u, u′)e−u

′2/2v2T

(
u′2

v2
T

− 1

)

=
ν√

2πvT

(
1

v3
T

W 12 − 1

vT
W 10

)

= I21
D − I01

D , (3.59)

and the determinant

∆ = AAM − BBM = (1− I00
D + 2I20

D − I22
D )(1− I11

D )− (I21
D − I01

D )2

= ∆1(1− I11
D )−∆2

2. (3.60)

From the evaluation of the coefficients in Eqns. (3.58) and (3.59) one immediately
sees that B ≡ BM.



94 CHAPTER 3. RESULTS

In the following we consider two important limits, namely the two cases
where particles and either momentum or energy are conserved.

• Setting βE = 0, we arrive at the limit where the integral collision opera-
tor L̂E

cI in L̂cp vanishes and only momentum and particles are conserved.
From the definitions of the coefficients we see further that in this limit the
coefficients reduce to A = 1, B = BM = 0 and ∆ = AM. By substitution
in Eq. (3.55) and (3.50), the solution formulated in terms of the moments
Imn simplifies considerably,

Imn = ImnD +
1

AM
Im1

D In1
D . (3.61)

• The more important limit case of only energy and particle conservation is
obtained by setting βM = 0, in which case L̂M

cI vanishes. Here AM = 1,
BM = B = 0 and ∆ = A. Analogous to the prior case it immediately
follows that

Imn = ImnD +
1

A(Im2
D − Im0

D )(I2n
D − I0n

D ). (3.62)

This result reproduces the moment equation already obtained earlier by
application of an exclusively energy conserving integral operator by Heyn
et al. (2014) [30] and Heyn et al. (2013) [29].

3.4 Recursion Formulæ

A further relevant part of this thesis has been the derivation of recursion rela-
tions between the moments Imn. These relations proved valuable for the numer-
ical evaluation of diffusion coefficients, reducing the computational effort to the
evaluation of few lower moments and obtaining higher ones recursively.

As shown in Ref. [33], the moments of the Green’s function can be derived
from

ImnD k (x1, x2) =

[
∂m

∂αm
∂n

∂βn

ˆ ∞
0

dτ eAτ+B(α,β)e−τ+C(α,β)−kτ
]

α,β=0

(3.63)

such that for k = 0 the functions ImnD in Eq. (3.54) are recovered. The parameters
used above are defined as

A = ix2 − x2
1, (3.64)

B = (α + ix1)(β + ix1), (3.65)

C =
1

2
(α2 + β2)− ix1(α + β) + x2

1. (3.66)
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By explicit evaluation and numerical integration of Eq. (3.63), the moments as
functions of x1 = k‖vT/ν and x2 = (ω−ω`)/ν have been obtained, see Fig. 3.6. It
is clear from their definition that the computational effort increases considerably
the higher m and n become. The recursions derived below significantly reduce
the workload by allowing to compute higher moments practically for free, once
a set of lower moments is obtained.

For the sake of notational convenience one can also define the integral part
of (3.63) separately as a function

Jk(α, β) =

ˆ ∞
0

dτ exp(Aτ +B(α, β)e−τ + C(α, β)− kτ). (3.67)

This function is the starting point for the derivation of two recursions derived
below.

First Recursion

By explicitly evaluating a single derivative w.r.t. β in expression (3.63), one
obtains

∂m

∂αm
∂n

∂βn
Jk(α, β) =

∂m

∂αm
∂n

∂βn

ˆ ∞
0

dτ exp(Aτ +Be−τ + C − kτ)

=
∂m

∂αm
∂n−1

∂βn−1

ˆ ∞
0

dτ exp(Aτ +Be−τ + C − kτ)

×
[
(α + ix1)e−τ + (β − ix1)

]

=

[
(α + ix1)

∂m

∂αm
∂n−1

∂βn−1
+m

∂m−1

∂αm−1

∂n−1

∂βn−1

]
Jk+1

+

[
(β − ix1)

∂m

∂αm
∂n−1

∂βn−1
+ (n− 1)

∂m

∂αm
∂n−2

∂βn−2

]
Jk, (3.68)

where
∂n

∂βn
(ab) =

n∑

j=0

(
n

j

)
∂jb

∂βj
∂n−ja

∂βn−j
(3.69)

has been used. In the limit α, β = 0 this expression reduces to

Imnk = ix1I
m,n−1
k+1 +mIm−1,n−1

k+1 − ix1I
m,n−1
k + (n− 1)Im,n−2

k . (3.70)

Second Recursion

The obtained recursion (3.70) so far is not of much use, relating moments with
different integer values k. It will however be applied in the course of the following
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Figure 3.6: Real and imaginary parts of a few representative moments ImnD as
obtained by direct numerical integration of Eq. (3.63).
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derivation of yet another recursion, allowing the evaluation of Imnk from the
moments Im,n−1

k and Im,n−3
k , i.e. independently of index k.

Again expression (3.63) is considered, which shall now be integrated by parts
to obtain

∂m

∂αm
∂n

∂βn
Jk =

∂m

∂αm
∂n

∂βn

[
B

A− kJk+1 −
eB+C

A− k

]

=
1

A− k
∂m

∂αm
∂n

∂βn
(
BJk+1 − eB+C

)

=
1

A− k
∂m

∂αm

(
B
∂n

∂βn
Jk+1 + n

∂B

∂β

∂n−1

∂βn−1
Jk+1 −

∂n

∂βn
eB+C

)

=
1

A− k

{
B
∂m

∂αm
∂n

∂βn
Jk+1 +m

∂B

∂α

∂m−1

∂αm−1

∂n

∂βn
Jk+1

+ n
∂B

∂β

∂m

∂αm
∂n−1

∂βn−1
Jk+1 + nm

∂2B

∂β∂α

∂n−1

∂αn−1

∂n−1

∂βn−1
Jk+1

− ∂m

∂αm
∂n

∂βn
exp

[
(α + β)2

2

]}
, (3.71)

Here, rule (3.69) has been applied twice in order to move functionB(α, β) in front
of the derivatives. For the evaluation of the last term in the above expression in
the limit of α, β = 0 another function is defined,

Hm def
=

{
(m− 1)!! m even
0 m odd

(3.72)

or, alternatively

H2n = (2n− 1)!! =
1

2n
(2n)!

n!
n ∈ N, (3.73)

by which one can write

∂m

∂αm
∂n

∂βn
exp

[
(α + β)2

2

]∣∣∣∣
α,β=0

= Hm+n. (3.74)

Thus, in this limit the recursion

Imnk =
1

A− k
[
ix1

(
ix1I

mn
k+1 +mIm−1,n

k+1

)

+ n
(
ix1I

m,n−1
k+1 +mIm−1,n−1

k+1

)
−Hm+n

]
(3.75)
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is found. Now recursion (3.70) obtained previously can be rearranged to

ix1I
m,n−1
k+1 +mIm−1,n−1

k+1 = Imnk + ix1I
m,n−1
k − (n− 1)Im,n−2

k . (3.76)

Using this relation twice in (3.75) yields

(A− k)Imnk = ix1I
m,n+1
k + (n− x2

1)Imnk − n(n− 1)Im,n−2
k −Hm+n. (3.77)

Replacing n by n− 1 and A+ x2
1 by ix2, the final recursion formula is obtained

Imnk =
1

ix1

[
(ix2 + 1− n− k)Im,n−1

k

+ (n− 1)(n− 2)Im,n−3
k +Hm+n−1

]
,

(3.78)

which is valid for all k and in particular for k = 0.

The equivalence of the two expressions (3.72) and (3.73) used for the defini-
tion of H2n is a well known identity that is easily verified by taking advantage of
the relation (2n+ 1)!! = (2n+ 1)!/(2nn!) between regular and double factorials
that can e.g. be found in the standard textbook by Arfken and Weber [2, p. 505]
and by setting n→ n− 1,

(2n− 1)!! =
(2n− 1)!

2n−1(n− 1)!
=

2n(2n− 1)!

2nn(n− 1)!
=

(2n)!

2nn!
. (3.79)

In Fig. 3.7 the moments I23
D and I33

D , obtained from the sets of lower moments
{I20

D , I
22
D } and {I30

D , I
32
D } by application of recursion formula (3.78) are shown.

Collisionless limit

In the following, the obtained recursion formula (3.78) is used to determine the
collisional limit of the moments. Returning to their dimensional definition Wmn

and substituting the actual physical parameters for x1 and x2, one obtains

Wmn =
ν

ik‖vT

[(
i
ω − ω`
ν

+ 1− n
)
vTW

m,n−1 + (n− 1)(n− 2)v3
TW

m,n−3

+

√
2π

ν
vm+n+1
T Hm+n−1

]

=
ω − ω`√

2k‖vT

√
2vTW

m,n−1 +O(ν) +

√
2π

ik‖
vm+n
T Hm+n−1 (3.80)
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Figure 3.7: Real and imaginary parts of the moments I23
D and I33

D as obtained
from recursion formula (3.78).



100 CHAPTER 3. RESULTS

In the collisionless case ν → 0, denoted “nc” (no collisions) in the following, this
expression becomes

Wmn
nc = lim

ν→0
Wmn = z

√
2vTW

m,n−1
nc +

√
2π

ik‖
vm+n
T Hm+n−1, (3.81)

where the dimensionless parameter

z =
ω − ω`√

2k‖vT
(3.82)

has been introduced. The same result can be obtained by evaluation of the
Green’s function (3.32) in the collisionless limit that reduces to

G̃D,nc
ωm (u, u′) =

i

ω − ω` − k‖u+ i0+
δ(u− u′) (3.83)

and so gives the moments

Wmn
nc =

ˆ
R

du
i

ω − ω` − k‖u+ i0+
δ(u− u′) exp

(
− u′2

2v2
T

)
umu′n

=

ˆ
R

du
i

ω − ω` − k‖u+ i0+
exp

(
− u2

2v2
T

)
um+n. (3.84)

Setting u/
√

2v2
T = y, one can evaluate this expression further,

Wmn
nc =

π

k‖
(
√

2vT )m+n i

π

ˆ
C

dy
e−y

2

z − yy
m+n

=
i

k‖
(
√

2vT )m+n

ˆ
C

dy

(
z

z − y − 1

)
e−y

2

ym+n−1

= z
√

2vTW
m,n−1
nc +

√
2π

ik‖
vm+n
T Hm+n−1, (3.85)

by considering ˆ
R

dy ym
e−y

2

z − y =
√
π
Hm

2m/2
. (3.86)

This expression for Wmn
nc (3.85) is identical to (3.81) obtained above by taking

the limit ν → 0 in the recursion relation. The lowest moment in the collisionless
limit is related to the complex probability integral, (k‖/π)W 00

nc = w(z) that, for
instance, is defined in Akhiezer et al. (1975) [1],

w(z) =
i

π

ˆ
C

dy
e−y

2

z − y = e−z
2

(
1 +

2i√
π

ˆ z

0

dy ey
2

)
. (3.87)
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3.5 Transport Model

The model at hand is aimed at describing particle, parallel momentum and
energy flux driven by the perturbation field. Simple early transport models
assumed a flux of particles being mainly driven by a gradient of the particle
density, i.e. Γ ∝ −∇n. Similarly, the flow of heat has been attributed to a
gradient of the temperature, Q ∝ −(1/T )∇T . If there is more than one trans-
port process taking place at the same time, these processes were realised to
affect one another, which lead to phenomenological transport relations of the
type Xi = RijJj, where the Xi are forces that drive current and heat flow Ji,
respectively and the coefficients Rij denote electrical and heat resistance. These
empirical relations date back to the early findings of W. Thomson on thermo-
electric phenomena [55]. Density and temperature gradients drive both, particle
and heat fluxes and cross terms are likely to be of comparable importance to
the direct terms [8]. Onsager showed in 1931 [55] that whatever the choices for
fluxes Γi and conjugated thermodynamic forces Ai are, their product must give
the entropy production ṡ =

∑
i AiΓi and the resultant transport matrix has to

be symmetric. While also Thomson assumed R12 = R21 to hold, his early as-
sumption was based entirely on experimental data and a rigorous derivation from
fundamental principles was left for times to come. It is the following canonical
form A1 = (1/n0) dn0/ dr+ (e/T ) dΦ0/ dr− (3/2T ) dT/ dr, A2 = (1/T ) dT/ dr,
and A3 = (1/vT ) dV‖0/ dr that shall be used for the driving forces due to density,
energy, and momentum fluxes in the following. In linear transport theory the
fluxes are related to the thermodynamic forces via the transport matrix (Dij):
Γi =

∑
j DijAj. Thermodynamic forces Ai occur whenever a thermodynamic

system is out of equilibrium and drive the transport of continuous extensive
quantities in order to restore the system to an equilibrium state. Their conju-
gate fluxes Γi are a measure of the rate at which a certain continuous quantity
is transported.

The question of the importance of Onsager symmetry of the transport equa-
tions has been revived mainly in the 1990’s and has been discussed by many
authors [59, 46, 65, 68, 60, 66, 67]. It is the general opinion that the violation
of Onsager symmetry of the transport matrix strongly indicates an inconsistent
theory. In Sec. 3.5.2 Onsager symmetry will be proven for the transport matrix
obtained from this model.

3.5.1 Diffusion Matrix

It has already been discussed in detail in Sect. 2.4 how the transport source
term Q̃m is connected to the gradient of the equilibrium distribution and the
thermodynamic forces, respectively, see e.g. Eqns. (2.105) and (2.118). For the
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extended transport model considering also parallel momentum transport, ∂rf0

with f0, the inhomogeneous drifting Maxwellian already introduced earlier,

f0(r, v‖, v⊥) =
n0(r)

(2πmT (r))3/2
exp

{
−m

[
v2
⊥ + (v‖ − V‖0(r))2

]

2T (r)

}
, (3.88)

is given by a linear combination of the thermodynamic forces extended here by
a force A3,

A1 =
1

n0

∂n0

∂r
+
e

T

∂Φ0

∂r
− 3

2T

∂T

∂r
, A2 =

1

T

∂T

∂r
, A3 =

1

vT

∂V‖0
∂r

, (3.89)

∇f0 = (a1A1 + a2A2 + a3A3)f0∇r −
e

T
f0∇Φ0. (3.90)

The dimensionless coefficients ai, needed for the evaluation of the source term
are obtained from direct evaluation of

1

f0

∂f0

∂r
=

1

n0(r)

∂n0(r)

∂r
− 3

2T (r)

∂T (r)

∂r
+

1

T 2(r)

m

2

[
v2
⊥ + (v‖ − V‖0(r))2

] ∂T (r)

∂r

+
m

T (r)
(v‖ − V‖0(r))

∂V‖0(r)

∂r

!
=

[
a1

(
1

n0(r)

∂n0(r)

∂r
+

e

T (r)

∂Φ(r)

∂r
− 3

2T (r)

∂T (r)

∂r

)
+ a2

1

T (r)

∂T (r)

∂r

+ a3
1

vT

∂V‖0(r)

∂r

]
− e

T

∂Φ0

∂r
, (3.91)

⇒ a1 = 1, a2 =
m
[
v2
⊥ + (v‖ − V‖0)2

]

2T
, a3 =

m(v‖ − V‖0)

T
vT . (3.92)

In Sect. 2.4.1 it has been shown how to arrive from the general expression for
the flux densities, e.g. the particle flux density Γ = (1/S)

´
dS
´

d3p f̃Ṙ1 · ∇r
at the corresponding formula for the Fourier amplitudes, see Eq. (2.142). Hav-
ing determined the Green’s function G̃ωm(u, u′) for the full integro-differential
problem with momentum conservation, the flux densities and the components
of the transport matrix can be derived.

From the formal solution of the kinetic equation

f̃m(u) = −
ˆ ∞
−∞

du′ G̃ωm(u, u′) (a1(v⊥, u
′)A1 + a2(v⊥, u

′)A2 + a3(v⊥, u
′)A3)

× f0(v⊥, u
′)vrm(v⊥, u

′) (3.93)
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and the expressions for the flux densities

Γ =
1

2
<
∑

m

ˆ
d3p f̃mv

r∗
m, (3.94)

Q =
1

2
<
∑

m

ˆ
d3p

m

2

(
v2
⊥ + u2

)
f̃mv

r∗
m, (3.95)

Γ‖ =
1

2
<
∑

m

ˆ
d3pmuf̃mv

r∗
m (3.96)

together with the definition of the diffusion matrix3

Γ = −n0(D11A1 +D12A2 +D13A3),

Q = −n0T (D21A1 +D22A2 +D23A3),

Γ‖ = −n0mu(D31A1 +D32A2 +D33A3). (3.97)

the components of the diffusion matrix D = (Dij) are obtained [30],

Dij =
πm3

n0

<
∑

m

ˆ ∞
0

dv⊥ v⊥

ˆ
R

du

ˆ
R

du′ G̃ωm(u, u′)

× vr∗m(v⊥, u)vrm(v⊥, u
′)ai(v⊥, u)aj(v⊥, u

′)f0(v⊥, u
′). (3.98)

The moments of the Green’s function can be expressed through the dimension-
less Imn functions defined above. The tedious explicit evaluation of the diffusion
coefficients is deferred to Appendix C.1, while here only the results are sum-
marised.

D11 =
1

2νB2
0

<
∑

m

[
c2I00|Ẽm⊥|2 + cvT

(
B̃r∗
mẼm⊥ + Ẽ∗m⊥B̃

r
m

)
I10

+ v2
T |B̃r

m|2I11
]
, (3.99)

D12 = D11 +
1

4νB2
0

<
∑

m

[
v2
T |B̃r

m|2I31 + cvT (Ẽm⊥B̃
r∗
mI

21 + Ẽ∗m⊥B̃
r
mI

30)

+ c2|Ẽm⊥|2I20
]
, (3.100)

D13 =
1

2νB2
0

<
∑

m

(
v2
T |Br

m|2I21 + cvT (Ẽm⊥B̃
r∗
mI

11 + Ẽ∗m⊥B̃
r
mI

20)

3It would seem more natural to define the diffusion matrix with its second line containing
the coefficients of momentum- instead of heat flux density. The choice with interchanged order
of moments is justified by the attempt not to modify the original definitions of the reduced
transport model with 2× 2 transport matrix.
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+ c2|Ẽm⊥|2I10
)
, (3.101)

D21 = D11 +
1

4νB2
0

<
∑

m

(
v2
T |B̃r

m|2I31 + cvT (Ẽm⊥B̃
r∗
mI

30 + Ẽ∗m⊥B̃
r
mI

21)

+ c2|Ẽm⊥|2I20
)

= D12, (3.102)

D22 = 2D11 +
1

4νB2
0

<
∑

m

(
2v2

T |B̃r
m|2I31 + cvT Ẽm⊥B̃

r∗
m(I30 + I21)

+ cvT Ẽ
∗
m⊥B̃

r
m(I21 + I30) + 2c2|Ẽm⊥|2I20 +

v2
T |B̃r

m|2
2

I33

+
cvT
2
I32(Ẽm⊥B̃

r∗
m + Ẽ∗m⊥B̃

r
m) +

c2|Ẽm⊥|2
2

I22

)
, (3.103)

D23 =
1

2νB2
0

[
v2
T |B̃r

m|2
(
I21 +

I32

2

)
+ cvT Ẽm⊥B̃

r∗
m

(
I11 +

I31

2

)

+ cvT Ẽ
∗
m⊥B̃

r
m

(
I20 +

I22

2

)
+ c2|Ẽm⊥|2

(
I10 +

I21

2

)]
, (3.104)

D31 =
1

2νB2
0

<
∑

m

[
v2
T |B̃r

m|2I21 + cvT (Ẽm⊥B̃
r∗
mI

20 + Ẽm⊥B̃
r
mI

11)

+ c2|Ẽm⊥|2I10
]

= D13, (3.105)

D32 =
1

2νB2
0

<
∑

m

[
v2
T |B̃r

m|2
(
I21 +

I23

2

)
+ cvT Ẽm⊥B̃

r∗
m

(
I20 +

I22

2

)

+ cvT Ẽ
∗
m⊥B̃

r
m

(
I11 +

I13

2

)
+ c2|Ẽm⊥|2

(
I10 +

I12

2

)]
= D23, (3.106)

D33 =
1

2νB2
0

<
∑

m

[
v2
T |B̃r

m|2I22 + cvT

(
Ẽm⊥B̃

r∗
mI

21 + Ẽ∗m⊥B̃
r
mI

12
)

+ c2|Ẽm⊥|2I11
]
. (3.107)

These diffusion coefficients are an extension to the coefficients presented in [30]
as also parallel momentum is included in the transport model.

Figures 3.8 and 3.9 show numerically evaluated ion diffusion coefficients ob-
tained from the linear model with and without momentum conservation enforced
in the collision operator for two different RMP frequencies close to the electric
resonance that is described in detail below. As one can see, tiny structures well
below the ion Larmor radius develop as one advances to the electric resonance.
Strictly speaking the model leaves its range of validity as one closely approaches
this resonance.
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Figure 3.8: Ion Diffusion coefficients for f = 3.65 kHz with (below) and without
(above) momentum conservation.
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Figure 3.9: Ion diffusion coefficients for f = 3.6 kHz with (below) and with-
out (above) momentum conservation. One should notice that the scale on the
vertical axis differs by an order of magnitude.
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Diffusion Matrix in the collisionless limit

In the collisionless limit the kinetic equation is algebraic and solved by

f̃m =
ivrm

k‖u+ ωE − ω − i0+

[
A1 +

m

2T

(
v2
⊥ + u2

)
A2 +

u

vT
A3

]
f0. (3.108)

Following the same argumentation as before, the diffusion coefficients are ob-
tained as [30]

Dij =
π

2n0

∑

m

ˆ
R3

d3p δ(k‖u+ ωE) |vrm|2 aiajf0. (3.109)

In contrast to the collisional case where one has to distinguish between primed
and unprimed shifted parallel velocities u and u′ in the coefficients ai(v⊥, u),
in the collisionless limit, where GD,nc

ωm ∝ δ(u − u′) the diffusion coefficients Dij

are immediately seen to be symmetric upon i ↔ j. The explicit evaluation of
the diffusion coefficients is deferred to the Appendix C.2. The six independent
components are given by

D11 =

√
π|Z|

2|ωE|
e−Z

2
∑

m

|vrm|2u=−ωE/k‖ , (3.110)

D12 =

√
π|Z|

2|ωE|
e−Z

2
∑

m

|vrm|2u=−ωE/k‖

(
1 +

1

2

ω2
E

k2
‖v

2
T

)
, (3.111)

D13 =

√
π|Z|

2|ωE|
e−Z

2
∑

m

|vrm|2u=−ωE/k‖(−)
ωE
k‖vT

, (3.112)

D22 =

√
π|Z|

2|ωE|
e−Z

2
∑

m

|vrm|2u=−ωE/k‖

(
2 +

ω2
E

k2
‖v

2
T

+
1

4

ω4
E

k4
‖v

4
T

)
, (3.113)

D23 =

√
π|Z|

2|ωE|
e−Z

2
∑

m

|vrm|2u=−ωE/k‖(−)

(
ωE
k‖vT

+
1

2

ω3
E

k‖v3
T

)
, (3.114)

D33 =

√
π|Z|

2|ωE|
e−Z

2
∑

m

|vrm|2u=−ωE/k‖
ω2
E

k2
‖v

2
T

, (3.115)

with Z = −ωE/
√

2k‖vT .
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Thus, the diffusion matrix reads

(Dij) =

√
π|Z|

2|ωE|
e−Z

2
∑

m

|vrm|2u=−ωE/k‖

·




1
1

2

(
2 +

1

v2
T

ω2
E

k2
‖

)
− ωE
k‖vT

1

2

(
2 +

1

v2
T

ω2
E

k2
‖

)
2

v5
T

(
v5
T +

ω2
Ev

3
T

2k2
‖

+
vTω

4
E

8k4
‖

)
1

2v3
T

(2uv2
T + u3)

− ωE
k‖vT

1

2v3
T

(2uv2
T + u3)

1

v2
T

ω2
E

k2
‖




.

(3.116)

3.5.2 Onsager Symmetry

In order for Onsager symmetry being satisfied the antisymmetric part of the
diffusion tensor Das = D −Ds,

(Das
ij ) =

1

2




0 D12 −D21 D13 −D31

D21 −D12 0 D23 −D32

D31 −D13 D32 −D23 0


 (3.117)

has to vanish. Substitution of the diffusion coefficients requires the following
linear combinations of moments of the Green’s function to vanish:

=(I12 − I30) = 0 (Das
12 = Das

21 = 0), (3.118)
=(I11 − I20) = 0 (Das

13 = Das
31 = 0), (3.119)

=(I31 − I22) = 0 (Das
23 = Das

32 = 0). (3.120)

In the following for all three models under consideration, i.e. (i) energy con-
servation, (ii) momentum conservation and (iii) energy and momentum con-
servation an analytic proof will be given that the particular diffusion matrix is
Onsager symmetric.

Onsager symmetry for the energy conserving collision operator

According to Eq. (3.62) I12 − I30 for the energy conserving collision operator is
given by

I12 − I30 = I12
D − I30

D

+
1

∆1

[(I12
D − I10

D )(I22
D − I20

D )
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− (I32
D − I30

D )(I20
D − I00

D )], (3.121)

where ∆1 = 1 + I20
D − I00

D + I20
D − I22

D . Substitution of the following combinations
of moments

I12
D − I10

D =
ix2

ix1

(I20
D − I00

D ), (3.122)

I12
D =

ix2

ix1

I20
D +

1

ix1

I30
D =

ix2

ix1

I20
D −

2

ix1

I20
D +

2

ix1

I00
D +

1

ix1

⇒ I12
D − I30

D =
2

ix1

(I20
D − I00

D ) (3.123)

I32
D − I30

D =
1

ix1

[(ix2 − 2)(I22
D − I20

D ) + 2 + 2(I20
D − I00

D )] (3.124)

yields

∆1(I12 − I30) =
I20

D − I00
D

ix1

[2(1 + I20
D − I00

D + I20
D − I22

D )

− ix2(I20
D − I22

D ) + (ix2 − 2)(I20
D − I22

D )

− 2− 2(I20
D − I00

D )] = 0 (3.125)

and Onsager symmetry is proven.

Onsager symmetry for the momentum conserving collision operator

In the following it will be shown that I11−I20 = 0 for the momentum conserving
collision operator. According to Eq. (3.61)

I11 − I20 = I11
D − I20

D +
1

1− I11
D

(I11
D I

11
D − I12

D I
10
D ).

After rearranging terms (I11
D )2 cancels and we are left with

(1− I11
D )(I11 − I20) = I11

D − I20
D + I20

D I
11
D − I12

D I
10
D .

Substitution of the following identities from the recursion,

I20
D =

ix2

ix1

I10
D −

1

ix1

I10
D , I11

D =
ix2

ix1

I10
D , (3.126)
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I12
D =

1

ix1

[(ix2 − 1)I11
D + 1] =

(
ix2

ix1

)2

I10
D −

1

ix1

ix2

ix1

I10
D +

1

ix1

, (3.127)

this gives further

(1− I11
D )(I11 − I20) =

ix2

ix1

I10
D −

ix2

ix1

I10
D +

1

ix1

I10
D

+

(
ix2

ix1

I10
D +

1

ix1

I10
D

)
ix2

ix1

I10
D

−
[(

ix2

ix1

)2

I10
D −

1

ix1

ix2

ix1

I10
D +

1

ix1

]
I10

D = 0, (3.128)

and Onsager symmetry is proven again.

Onsager symmetry for the energy and momentum conserving collision
operator

By application of (3.55), Eq. (3.118) is expressed as follows:

I12−I30 = I12
D − I30

D

+
1

∆
(I12

D − I10
D )[I11

D (I22
D − I20

D )− I31
D (I20

D − I00
D )]

+
1

∆
∆1(I11

D I
12
D − I31

D I
10
D )

+
1

∆
(1− I11

D )[(I12
D − I10

D )(I22
D − I20

D )

− (I32
D − I30

D )(I20
D − I00

D )]

+
1

∆
(I12

D − I10
D )[(I12

D − I10
D )I12

D − (I32
D − I30

D )I10
D ], (3.129)

where ∆ = ∆1(1− I11
D )−∆2

2, ∆1 = 1 + I20
D − I00

D + I20
D − I22

D and ∆2 = I12
D − I10

D .
It was already shown for the energy conserving collision operator that

∆1(I12 − I30) = ∆1(I12
D − I30

D ) + (I12
D − I10

D )(I22
D − I20

D )

− (I32
D − I30

D )(I20
D − I00

D ) = 0, (3.130)

which serves as a major simplification for the general case, if we compare this
result with the fourth line of (3.129). After substitution of the following combi-
nations of moments

I12
D − I10

D =
ix2

ix1

(I20
D − I00

D ), (3.131)

I12
D =

ix2

ix1

I20
D +

1

ix1

, I30
D =

ix2

ix1

I20
D −

2

ix1

I20
D +

2

ix1

I00
D +

1

ix1

(3.132)
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⇒ I12
D − I30

D =
2

ix1

(I20
D − I00

D ) (3.133)

I32
D − I30

D =
1

ix1

[(ix2 − 2)(I22
D − I20

D ) + 2 + 2(I20
D − I00

D )] (3.134)

I11
D =

ix2

ix1

I10
D , I31

D =
ix2

ix1

I30
D (3.135)

⇒ I12
D I

11
D − I31

D I
10
D =

2

ix1

ix2

ix1

(I20
D − I00

D )I10
D (3.136)

I12
D =

ix2

ix1

I20
D +

1

ix1

, I10
D =

ix2

ix1

I00
D +

1

ix1

(3.137)

the remaining terms of (3.129) are

∆(I12 − I30) =
1

ix1

(I20
D − I00

D )

{
−2∆2

2 +
(ix2)2

ix1

I10
D (I22

D − I20
D )

− (ix2)2

ix1

(
ix2

ix1

I20
D +

1

ix1

)
(I20

D − I00
D )

+ 2
ix2

ix1

(I20
D − I00

D )

(
ix2

ix1

I20
D +

1

ix1

)
− 2

ix2

ix1

I10
D (I20

D − I00
D )

+ 2

(
ix2

ix1

)
I10

D + 2

(
ix2

ix1

)
I10

D (I20
D − I00

D )

+ 2

(
ix2

ix1

)
I10

D (I20
D − I22

D ) + ix2

(
ix2

ix1

I20
D +

1

ix1

)
(I20

D − I00
D )

− (ix2)2

ix1

I10
D (I22

D − I20
D ) + 2

ix2

ix1

I10
D (I22

D − I20
D )

− 2I10
D

ix2

ix1

− 2
ix2

ix1

(
ix2

ix1

I00
D +

1

ix1

)
(I20

D − I00
D )

}

= − 2

ix1

(
ix2

ix1

)2

(I20
D − I00

D )3 +
2

ix1

(
ix2

ix1

)2

(I20
D − I00

D )3 = 0

(3.138)

and thus Onsager symmetry is proven,

I30 − I21 = 0⇔ Das
12 = Das

21 = 0. (3.139)

Secondly, it is required that Das
13 = Das

31 = 0, which corresponds to

I11 − I20 = I11
D − I20

D

+
1

∆
(I12

D − I10
D )[I11

D (I12
D − I10

D )− I12
D (I20

D − I00
D )]
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+
1

∆
∆1((I11

D )2 − I12
D I

10
D )

+
1

∆
(1− I11

D )[(I12
D − I10

D )2 − (I22
D − I20

D )(I20
D − I00

D )]

+
1

∆
(I12

D − I10
D )[I11

D (I12
D − I10

D )− I10
D (I22

D − I20
D )]. (3.140)

This time let us refer to the result for the momentum conserving collision oper-
ator, i.e.

(1− I11
D )(I11

p − I20
p ) = (1− I11

D )(I11
D − I20

D )

+ (I11
D )2 − I12

D I
10
D = 0. (3.141)

As a consequence, after multiplication with ∆ = ∆1(1 − I11
D ) − ∆2

2, the third
term together with ∆1(1−I11

D )(I11
D −I20

D ) of the first term of the r.h.s. of (3.140)
cancels and we are left with

∆(I11 − I20) = (I12
D − I10

D )2(1 + I20
D )

+ (I12
D − I10

D )[−I12
D (I20

D − I00
D )− I10

D (I22
D − I20

D )]

− (I22
D − I20

D )(I20
D − I00

D )(1− I11
D ). (3.142)

After substitution of the following linear combinations of moments from the
recursion,

I20
D =

ix2

ix1

I10
D −

1

ix1

I10
D , I11

D =
ix2

ix1

I10
D (3.143)

⇒ (I11
D − I20

D ) =
1

ix1

I10
D (3.144)

I22
D − I20

D =
ix2

ix1

(I12
D − I10

D )− 1

ix1

(I12
D − I10

D ), (3.145)

I12
D − I10

D =
ix2

ix1

(I20
D − I00

D ), (3.146)

I12
D =

(
ix2

ix1

)2

I10
D −

1

ix1

ix2

ix1

I10
D +

1

ix1

, (3.147)

one gets

∆(I11 − I20) =
ix2

ix1

(I20
D − I00

D )2

{
ix2

ix1

+

(
ix2

ix1

)2

I10
D −

1

ix1

ix2

ix1

I10
D

−
(

ix2

ix1

)2

I10
D +

1

ix1

ix2

ix1

I10
D −

1

ix1

−
(

ix2

ix1

)2

I10
D +

1

ix1

ix2

ix1

I10
D
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− ix2

ix1

+
1

ix1

+

(
ix2

ix1

)2

I10
D −

1

ix1

ix2

ix1

I10
D

}
= 0. (3.148)

Thus it follows
I11 − I20 = 0⇔ Das

13 = Das
31 = 0. (3.149)

Finally, Das
23 = Das

32 = 0 requires that

I31 − I22 = I31
D − I22

D

+
1

∆
(I12

D − I10
D )[I31

D (I12
D − I10

D )− I21
D (I22

D − I20
D )]

+
1

∆
∆1(I31

D I
11
D − I21

D I
21
D )

+
1

∆
(1− I11

D )[(I32
D − I30

D )(I12
D − I10

D )

− (I22
D − I20

D )(I22
D − I20

D )]

+
1

∆
(I12

D − I10
D )[I11

D (I32
D − I30

D )− I21
D (I22

D − I20
D )] (3.150)

is zero. Substitution of (3.135), (3.145), (3.147) and

I31
D − I22

D =
ix2

ix1

(I30
D − I21

D ) +
1

ix1

I21
D (3.151)

leads to

ix1∆(I31 − I22) = ix2∆(I30
p − I21

p ) + [∆1(1− I11
D )− (I12

D − I10
D )2]I12

D

+ I12
D (I12

D − I10
D )2 + (1− I11

D )(I22
D − I20

D )(I12
D − I10

D )

− (I12
D − I10

D )(1− I11
D )(I22

D − I20
D )

+ ∆1(I11
D − 1)I12

D (3.152)

which is identical zero if the earlier result I30
p − I21

p = 0 is used:

I31 − I22 = 0⇔ Das
23 = Das

32 = 0. (3.153)

3.5.3 Linear Plasma Response

For the discussion of shielding and penetration of RMP modes, respectively
below, the linear plasma response shall now be quantified. As was discussed
earlier, the RMP current density for a single spatial harmonic is linked to the
RMP electric field by a differential conductivity operator, Eq. (2.235). For the
details concerning the evaluation of the conductivity operator, the reader is
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Resonances
Ve⊥ = Vdia,e + VE Electron fluid resonance
Vi⊥ = Vdia,i + VE Ion fluid resonance
VE Electric resonance

Table 3.2: Resonances occurring where fluid velocities become zero at the reso-
nant surface.

referred to Ivanov et al. (2011) [33]. It is worth mentioning however, that the
conductivity operator for the improved energy and momentum conserving model
is obtained by substituting the energy and momentum conserving momentsWmn

for the original moments in Eq. (46) of that reference.
In the lowest order FLRE the parallel RMP plasma current density can

be obtained from j̃ωm‖ = e
´

d3p uf̃m. From the solution f̃m of the kinetic
equation it can be evaluated in terms of the moments Imn of the Green’s function
G̃ωm(u, u′),

j̃ωm‖ = e

ˆ
d3p uf̃m

= −n0evT
νB0

{[
(A1 + A2)I10 +

1

2
A2I

21 + A3I
11

]
cẼm⊥

+

[
(A1 + A2)I11 +

1

2
A2I

31 + A3I
21

]
vT B̃

r
m

}
. (3.154)

For the derivation of the response current the reader is referred to Section D in
the Appendix.

The following graphs 3.10 to 3.12 show the electron and ion contributions
to the linear response current as one sweeps over the electric resonance with
RMP frequencies 3 kHz, 3.5 kHz, and 4 kHz. The response current flows in a
thin layer around the resonant surface. Interestingly, the ion contribution to
the shielding current seems to become important close to the electric resonance,
Fig. 3.11 and becoming again less significant as one leaves this resonance again
in the direction of higher RMP frequencies.
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Figure 3.10: Parallel current density j̃ωm‖ and integrated response current I for
f = 3 kHz, i.e. just below the electric resonance, as function of radius in the
vicinity of the resonant zone.
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Figure 3.11: Parallel current density j̃ωm‖ and integrated response current I for
f = 3.5 kHz, i.e. very close to the electric resonance, as function of radius in the
vicinity of the resonant zone.
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Figure 3.12: Parallel current density j̃ωm‖ and integrated response current I for
f = 4 kHz, i.e. after passing the electric resonance, as function of radius in the
vicinity of the resonant zone.
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3.6 Numerical Modelling of Plasma Shielding with
and without Momentum Conservation in the
Ion and Electron Collision Operators

For the numerical modelling, the linear plasma response has been computed for
single modes (m,n) with poloidal mode number m and toroidal mode number
n = kz/R0. The model input profiles (density, temperature of electron and ion
species, q-factor and toroidal rotation velocity) are shown in Fig. 3.15. Linear
temperature profiles and a cubic q-profile have been chosen since a high or-
der FLR expansion requires high derivatives of these profiles. The profiles are
typical for medium sized tokamak experiments like ASDEX-Upgrade. Further
parameters used for the modelling are summarised in Table 3.3. Making use of
a zero poloidal ion flow condition, the static radial electric field E0r is obtained
from the diamagnetic velocities of electrons and ions.

Model parameters
Magnetic field at the magnetic axis B0 2.12× 104 G
Major radius R 170 cm
Plasma radius rplas 68.0 cm

Table 3.3: Numerical values for the parameters used in the modelling.

In the following, solutions for the radial magnetic field perturbation ampli-
tude are shown for different RMP frequencies f = ω′/2π, where ω′ = ω − kzVz.
For these calculations ω was set to zero and kept constant, while scaling the
toroidal velocity profile Vz. Form factors are given by the ratio |Br,plas| / |Br,vac|
of the radial magnetic field moduli at the resonant surface for plasma and vac-
uum, respectively. Form factor values larger than one indicate an amplification
of the Br field component. A basic solution of the vacuum and plasma radial
magnetic field perturbation amplitude for a perturbation with f = 10.3 kHz is
shown in Fig. 3.16, illustrating the attenuation of the field component due to
the parallel plasma response current.

Frequencies, where the perpendicular electron or ion fluid velocities Ve⊥ and
Vi⊥ as well as the E×B-fluid velocity VE are zero at the mode-specific resonant
surface are expected to be resonant, see Table 3.4. The significance of the
electron diamagnetic fluid velocity is well known and already exploited for ELM-
mitigation shots that are set-up such that the electron fluid velocity zero occurs
at the top or even inside the pedestal region. For mode penetration to occur, the
perturbation spectrum must consist of modes whose particular resonant surface
coincides with that location. The latter resonance, occurring when the radial
electric equilibrium field changes sign at the resonant surface has been discussed
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in [25, 33], though its importance for RMPmode penetration has been recognised
only recently [30]. These fluid velocities for mode (−10, 2) as a function of radius
and frequency, respectively are shown in Fig. 3.13. To the right one can read off
the specific resonant frequencies, where the zeros of Ve⊥, Vi⊥ and VE sweep over
the resonant surface of mode (−10, 2).
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Fluid velocities as a function of frequency form mode (−10, 2). From Leitner et
al. 2014 [40].
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Form factors have been computed for three different collision operator models
for the electron and ion species, namely (i) particle conservation, denoted (n),
(ii) particle and energy conservation (n,E) and (iii) particle, energy and mo-
mentum conservation (n,E,M). In addition, calculations have been performed
for the single perturbation modes (−10, 2), (−9, 2), and (−8, 2) being resonant
at flux surfaces with decreasing plasma radius r, see Table 3.4. Results for these
calculations, specifically for collision operator models (n) and (n,E) applied to
the electron component and (n), (n,E), (n,E,M) applied to the ion component,
respectively are shown in Figures 3.17 and 3.18. Resonant behaviour indeed is
found for the electric resonance, where Er changes sign, i.e. zero E ×B-fluid
velocity at f ≈ 3.6 kHz and at the electron fluid resonance, where Ve⊥ changes
sign at f ≈ 10.3 kHz but not at the ion fluid resonance. The results also show
that the form factors depend sensitively on the electron collision operator model
why energy conservation should be considered in the electron component when
studying the plasma shielding of RMPs. On the other hand the RMP field is
not significantly affected by enforcing momentum conservation on the ion com-
ponent. It is the electron component that shields the RMP field for the most
part, only at the electric resonance ion dynamics seems to become relevant.

Mode number Res. surface Resonant frequencies
(m,n) rres (cm) f ∗i + fE (kHz) fE (kHz) f ∗e + fE (kHz)

(−10, 2) 59.76 −3.789 3.5519 10.393
(−9, 2) 56.72 −4.441 2.2790 8.5427
(−8, 2) 53.31 −5.175 0.9741 6.7056

Table 3.4: Resonant frequencies for the three modes considered in the numerical
modelling.

Remarkably, neither energy nor ion momentum conservation in the ion colli-
sion operator visibly affects the RMP penetration, neither in the neighbourhood
nor away from the resonances as is illustrated in Fig. 3.18. This remains true if
the transition to the collisionless limit is considered, Fig. 3.19. One can see that
by reducing the collisionality the exact collisionless limit is smoothly approached
independently of whether momentum conservation is considered in the ion com-
ponent or not. From Fig. 3.21 one can see further that the collisionless model
predicts only a single resonance, namely the electron fluid resonance, that, as
compared to the collisional case is shifted towards lower frequencies and has a
reduced amplitude. The shift towards lower frequencies has been recognised a
kinetic effect earlier, Heyn et al. (2006) [25]. The electric resonance is expected
to disappear in the exact collisionless limit. Again, by reducing the collisionality
ν, this trend can be observed in the lower panel of Fig. 3.19, although some noise
results from the singular structure of the kinetic equation at that resonance.
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Figure 3.17: Form factors as a function of RMP frequency for modes (m,n)
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Figure 3.18: Form factors versus RMP frequency for different collision operator
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“The position of the electron fluid resonance can be analysed with
help of the lowest order current density [. . . reference to j̃ωm‖ as given
in Eq. (3.154)] ignoring the perpendicular electric field and the small
thermodynamic force A3 (it is of the next order in Larmor radius
when compared to A1 and A2),

j̃ωm‖ ≈ −
nev2

T

νB0

(
(A1 + A2)I11 +

1

2
A2I

13

)
B̃r
ωm. (30)

As shown in [. . . reference to Heyn et al. 2014 [30]] using the “constant-
psi” approximation where B̃r

ωm is approximately constant in the reso-
nant layer, in the collisionless limit the total parallel current is deter-
mined by the radially integrated moments I11 and I13. The current
is proportional to ∂ln(neTe)/∂r + e∂Φ0/(Te∂r) − 0.5∂lnTe/∂r and,
therefore, the shielding is lost if this factor is zero. This resonance is
shifted with respect to the zero of electron fluid velocity in the pertur-
bation rest frame if a finite electron temperature gradient is present.
On the other hand, it is known from fluid theory that such a shift is
absent in the opposite, high collisionality limit. This can be seen as
follows. In the high collisional limit, [. . . reference to Eq. (3.63) in
the limit k = 0] can be integrated because x1 � 1, i.e., the mean free
path is much smaller than the parallel scale of the perturbation field
and x2 � 1, i.e., the rotation frequency is much smaller than the
collision frequency. The parameter x1 should be kept only in the first
term in the argument of the exponent which determines the conver-
gence of the integral. The exponent e−τ can also be ignored because
the main contribution comes from τ � 1. The integration then gives

ImnD (x1, x2)→ 1

x2
1 − ix2

{
∂m+n

∂αm∂βn
exp

[
(α− β)2

2

]}

α,β=0

=
(−1)n

x2
1 − ix2

{
∂m+n

∂αm+n
exp

[
α2

2

]}

α=0

. (31)

Since all moments with odd m + n are zero, energy conservation
alone (Eq. (56) of [. . . reference to Heyn et al. 2014 [30]]) does not
modify the moments with odd m or n, i.e., I11 = I11

D and I13 = I13
D .

Due to I13
D = 3I11

D which follows from (31), we see that the current
density (30) is proportional to ∂ln(neTe)/∂r+ e∂Φ0/(Te∂r), i.e., the
current and consequently the plasma shielding vanishes if the electron
fluid velocity Ve⊥ is zero in the rest frame of the perturbation field
(dotted vertical line in [. . . reference to upper graph in Fig. 3.19 and
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Fig. 3.21]). At the electric field resonance, the situation is different
because in this case not the behaviour of the thermodynamic forces but
rather the behaviour of the momenta is responsible for the resonance.
In the high collisional limit it can be seen from (31) that the momenta
ImnD become singular at the resonant surface in case of an electric field
resonance, i.e., x2 = 0 at the surface where k‖ = 0 or, equivalently,
where x1 = 0. If one implements momentum conservation in the
electron collision operator (removing resistivity but retaining parallel
electron viscosity) using [. . . reference to Eq. (3.55)], this singularity
will vanish. Indeed, since all moments with odd m + n are zero it
follows that B = BM = 0. The only non-zero term inside the square
brackets in [. . . again referring to Eq. (3.55)] for I11 and I31 is the
second term,

I1n = I1n
D +

1

AM
I11

D I
1n
D =

I1n
D

1− I11
D

= − nI00
D

1 + I00
D

= − n

1 + x2
1 − ix2

≈ −n, n = 1, 3. (32)

Therefore, momentum conservation in the electron collision operator
will remove the singular behaviour of the momenta Imn and such the
resonant behaviour of the response current at the rational surface.
This correlates with the removal of the Er = 0 resonance in the form
factors ( [. . . reference to Fig. 3.21]).” (From Leitner et al. 2014 [40,
p. 6f] This paragraph motivated by the referee’s report originates
from a discussion with my supervisor Martin Heyn and Sergei Kasilov
and is intended to give a more detailed insight into the origin of the
electron fluid and electric field resonance, respectively.

For the case where momentum conservation is enforced in both the electron
and the ion component a large sensitivity with respect to collisionality is ob-
served, see Fig. 3.20. Again the collisionless case is approached in the limit of
low collisionality but in a non monotonic manner. Reducing the collisionality
continuously, a resonant amplification of the radial magnetic field perturbation
by a factor of ≈ 30 and 20, respectively at ν ≈ 0.3 and 0.075 is found.

Magnetic field amplification at the electric resonance

In the following the radial magnetic field amplification at the electric reso-
nance Er = 0 shall be discussed in more detail. We consider the two collision
models where particles and energy for the electron component are conserved,
e: (n,E), and for the ions momentum conservation is switched off i: (n,E) and
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on i: (n,E,M). For a detailed examination of the resonance, the radial electric
field structure and the local dispersion have been computed for three frequency
points being located closely left, directly at, and closely right to the electric
resonance, see Fig. 3.22. The electric field structure at the three particular fre-
quency points is shown in Fig. 3.23 for the i: (n,E) model and in Fig. 3.24 for
the i: (n,E,M) model, respectively. It can be observed that at frequency points
(2) and (3) some kind of standing drift wave is formed. When moving from the
low frequency point (1) to (2), the dispersion changes from an evanescent mode
with = kr > < kr to a travelling mode = kr < < kr, when passing the Er = 0 res-
onance. Regarding the corresponding radial electric field plot, a standing wave
with λ = 2π/kr is observed.

Figures 3.23 and 3.24 show the radial electric field and the local dispersion
for mode (−10, 2) at three consecutive frequencies located closely around the
electric resonance without and with parallel momentum conservation in the ion
collision operator. Comparing the two sets of figures, a significant modification
with the ion collision operator model is observed, indicating that close to the
electric resonance in addition to the electron also the ion dynamics gains influ-
ence. When one approaches the resonance, oscillations in the radial electric field
amplitude which are of the order of the ion Larmor radius become smaller. This
is even more pronounced for the model with parallel momentum conservation
enforced for the ion collision operator. The tiny structures well below the ion
Larmor radius that develop in the vicinity of the electric resonance and vanish
as one moves farther away from E0r = 0 can be attributed to the singularity
of the kinetic equation at that resonance. Although interesting phenomena like
the formation of drift waves are indicated here, strictly speaking the model as-
sumptions break down at the resonance and no further reliable conclusions can
be drawn from the present model.
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Figure 3.19: Collisionless limit for mode (−10, 2) at the electron fluid resonance
(top) and the electric resonance (bottom). The results have been obtained for
both collision models (n,E) (solid line) and (n,E,M) (dashed line) applied to
the ion component by setting the collision frequency ν → ν ′ = αν. The exact
collisionless case (dashed-dotted line) is approached for continuous reduction of
the collisionality ν. For the electrons the standard collision model (n,E) has
been used. Upper figure from Leitner et al. 2014 [40].
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Figure 3.21: Form factors for the collision operator models (n,E) (solid line)
and (n,E,M) (dashed line) in the electron component as well as for the exact
collisionless limit case (dashed-dotted line) for mode (−10, 2). From Leitner
et al. 2014 [40].
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Figure 3.22: Amplification of the radial magnetic field near the electric resonance
with (bottom) and without (top) momentum conserving ion collision operator.
At the three indicated points, the radial electric field and the local dispersion
are shown in Figs. 3.23 and 3.24. Upper figure (slightly modified) from Leitner
et al. 2014 [40].
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Figure 3.23: Radial electric field and local dispersion for the three frequency
points in the vicinity of the electric resonance as indicated in Fig. 3.22. Lower
left figure slightly modified from Leitner et al. (2014) [40].
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Figure 3.24: Same as Fig. 3.23 but with ion momentum conserving collision
operator. Lower left figure slightly modified from Leitner et al. (2014) [40].
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In the following it is discussed to what extent the input profiles influence the
results. For this purpose the original profiles have been rescaled and their par-
ticular gradients modified according to Q → Q′ = αQ + Qr,res(1− α), where Q
denotes the particular quantity under consideration. For these modified inputs
form factors in the vicinity of the electron fluid resonance have been recom-
puted, shown in Figures 3.25, 3.26 and 3.27 for the density, ion and electron
temperature.

From Fig. 3.25 it is apparent that a reduction of the density shifts the fluid
resonance to higher frequencies. This is due to the density reduction effecting an
increase of the electron and ion diamagnetic velocity. The maximum form factor
value on the other hand is not affected thereof. Rescaling the electron tempera-
ture profile and modifying its gradient leads to a shift of the fluid resonance to
lower frequencies in combination with an increase of the maximum form factor
values, see Fig. 3.27. In addition to the sensitivity of the form factor value on
the electron temperature at the fluid resonance it also varies significantly with
the collision frequency as can be seen from the form factor graphs in the upper
panel of Fig. 3.19. No variation of the form factor amplitude with a reduction
of the ion temperature or a modification of the ion temperature gradient could
be observed, see Fig. 3.26 while the fluid resonance location is shifted to lower
frequencies, considering that the varied ion diamagnetic drift velocity also af-
fects the E ×B-velocity when the poloidal ion velocity is kept at zero. It can
be concluded that at the electron fluid velocity it is the electron species that
dominates the wave-particle interaction.
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Figure 3.25: Influence of the input parameters density n = ne + ni and ∇n
on the form factors. For the gradient, the original profiles have been modified
according to n→ n′ = αn+ nr,res(1− α). From Leitner et al. 2014 [40].
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Figure 3.26: Influence of the input parameters ion temperature Ti and∇Ti on the
form factors. For the gradient the original profiles have been modified according
to Ti → T ′i = αTi + Ti,r,res(1− α). From Leitner et al. 2014 [40].
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Figure 3.27: Influence of the electron temperature Te and electron temperature
gradient ∇Te on the form factors. For the gradient the original profiles have
been modified according to Te → T ′e = αTe + Te,r,res(1− α). From Leitner et al.
2014 [40].
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3.7 Conclusions

The interaction of the single RMP mode (−3, 1) with a JET-like tokamak plasma
was studied with a self-consistent quasilinear model in kinetic approximation.
RMPs are predicted to be strongly shielded within linear theory [16, 25]. From
MHD-theory it is known that an RMP-generated torque on the plasma slows
down the electron fluid motion across the magnetic field lines and for a cer-
tain threshold value of RMP amplitude penetration is permitted. This kinetic
modelling showed that the perturbation field modifies the electron temperature
profile for the most part but not so much the toroidal rotation velocity. The
perpendicular electron fluid velocity was found to become zero at the resonant
surface, the electron diamagnetic velocity component being the most affected.
The zero of electron fluid velocity implies field penetration according to MHD
theory [50], which is not the case in kinetic theory however, the radial posi-
tions of maximum radial field at the resonance zone not coinciding with zero
toroidal torque. It was found that the shielding was modified, though not com-
pletely removed. The observed sensitivity of the electron temperature on RMPs
in quasilinear modelling was confirmed by recent quasilinear models based on
Drift-MHD theory [50].

Furthermore, an additional parallel momentum conserving integral operator
was introduced and it was shown how to solve the resulting integro-differential
kinetic equation. From that solution particle, momentum, and heat fluxes were
computed and the corresponding diffusion matrix was obtained. A detailed ana-
lytical proof of Onsager symmetry for the full energy and momentum conserving
collision model was given. For that purpose recursive relations between the mo-
ments of the Green’s function of the kinetic equation were derived that proved
useful for showing that the combinations of the moments occurring in the anti-
symmetric part of the diffusion tensor cancel each other, leaving Das = 0. The
recursions furthermore allow the evaluation of higher moments of the Green’s
function practically for free, once a set of lower moments is obtained.

In a numerical modelling of the linear plasma response for a single (but
varying) perturbation mode and ASDEX-like plasma profiles several collision
operator models were compared and their impact on the form factors was stud-
ied. By switching on energy conservation the induced plasma currents at the
resonant surface are modified and the form factors are considerably affected.
The conservation of the species’ energy is therefore preferably to be considered.
Enforcing parallel momentum conservation on the ions in the straight cylinder
model is inconsistent with parallel flow braking occurring due to poloidal or par-
allel viscosity in a real toroidal tokamak geometry where parallel momentum is
lost to the trapped particles at a rate of the collision frequency times the frac-
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tion of trapped particles. If momentum conservation is not considered in the
kinetic model, the momentum loss to trapped particles is simulated [33], while
in the opposite case model results are comparable to MHD models not consid-
ering toroidal effects or shear viscosity. The fact that momentum conservation
for the ion component does not have a significant effect on the RMP field inside
the plasma shows that the flow braking by trapped particles can be neglected
in the cylindrical tokamak model while still being a valid description for RMP
shielding at the resonant surface also for a real tokamak geometry. If momen-
tum conservation is enforced on the electrons on the other hand, a plasma with
finite parallel viscosity and finite parallel heat conductivity but no resistivity is
considered. For this condition the electric resonance is eliminated which is also
in agreement with the collisionless model, where that resonance does not occur
either. At the electron fluid resonance the amplification is highly sensitive with
respect to the collisionality showing a non-monotonic limit to the collisionless
case with resonant amplification up to a factor of ≈ 30.

No resonant behaviour was observed attributable to the zero of the ion per-
pendicular fluid velocity at the resonant surface. The plasma response, shielding
RMPs in a distance of the electric resonance is caused by the electrons for the
most part, while the ion dynamic seems to play an important part directly at
that resonance.

A variation of density- and temperature profiles of the electrons shifts the
position of the maximum form factor as well as its amplitude. For the ions, a
variation of the temperature and temperature gradient profile alters the radial
electric field whereby only the position of the maximum form factor is shifted.

Close to and at the electric resonance electrostatic oscillations are observed
indicating the formation of drift waves. Due to the singularity of the kinetic
equation at that particular resonance no further conclusions can be drawn about
the phenomena occurring there within the scope of the present model.
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Appendix A

Solution of the Linearised Kinetic
Equation

In this appendix it is shown how to solve the kinetic equation for the differential
Fokker-Planck collision operator in Ornstein-Uhlenbeck approximation. While
the solution was already found and discussed by Ivanov et al. [33], here a
complete derivation by the method of characteristics is given due to its significant
importance also for the more general integro-differential kinetic equation that is
studied in this thesis.

Starting point is the kinetic equation after expansion of perturbed quantities,
Eq. (2.207),

[
∂

∂t
+ im ·Ω −D ∂

∂u

(
∂

∂u
+

u

v2
T

)]
f̃m(u, t) = Q̃m(u, t), (A.1)

where m · Ω = ω` + k‖u with the Doppler-shifted frequency ω` that can be
further decomposed into a sum of the cyclotron frequency plus electric particle
drift frequency, ω` = `ωc +k ·V = `ωc +k⊥VE⊥+k‖V‖ and D = νv2

T , a constant
diffusion coefficient. The kinetic equation

[
∂

∂t
+ i(ω` + k‖u)−D ∂2

∂u2
− D

v2
T

∂

∂u
u

]
f̃m(u, t) = Q̃m(u, t), (A.2)

so far a partial differential equation in velocity space is transformed to k-space
by consideration of the following trivial Fourier transformations,

f̃m(k) = F{f̃m(u)} =
1√
2π

ˆ
R

du f̃m(u) exp(−iku), (A.3)
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F

{
d

du
f̃m(u)

}
=

1√
2π

ˆ
R

du

(
d

du
f̃m(u)

)
exp(−iku)

= − 1√
2π

ˆ
R

du f̃m(u)
d

du
exp(−iku)

=
ik√
2π

ˆ
R

du f̃m(u) exp(−iku) = ikF{f̃m(u)}, (A.4)

F{uf̃m(u)} =
1√
2π

ˆ
R

duuf̃m(u) exp(−iku)

=
1√
2π

ˆ
R

du i
∂

∂k
exp(−iku)f̃m(u)

= i
∂

∂k
F{f̃m(u)}, (A.5)

F

{
∂

∂u
uf̃m(u)

}
=

1√
2π

ˆ
R

du
∂

∂u
(uf̃m(u)) exp(−iku)

=
1√
2π

ˆ
R

du ikuf̃m(u) exp(−iku)

=
1√
2π

ˆ
R

du iki
∂

∂k
exp(−iku)f̃m(u)

= −k ∂
∂k

F{f̃m(u)}. (A.6)

For convenience the unaffected time dependence has been suppressed in the
notation. The Fourier transforms of f̃m(u, t) and Q̃m(u, t) are denoted by their
functional dependence on k, i.e. f̃m(k, t) and Q̃m(k, t). In k-space the equation
then reads

(
∂

∂t
+ iω` − k‖

∂

∂k
+Dk2 +

D

v2
T

k
∂

∂k

)
f̃m(k, t) = Q̃m(k, t). (A.7)

A.1 Application of the Method of Characteristics

After reordering terms,

∂f̃m(k, t)

∂t
+ (νk − k‖)

∂f̃m(k, t)

∂k
+
(
iω` +Dk2

)
f̃m(k, t) = Q̃m(k, t), (A.8)

the method of characteristics, see e.g. [14, p. 186ff], is applied by which one
obtains an ordinary differential equation that is valid along the characteristics:
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d

ds
f̃m(k(s), t(s)) = 0 (A.9)

df̃m(k)

ds
=
∂f̃m(k)

∂k

dk

ds
+
∂f̃m(k)

∂t

dt

ds

The characteristic equations are:

dt

ds
= 1,

dk

ds
= νk − k‖ (A.10)

Along the characteristic lines k(s) and t(s) dfk/ ds = const, i.e. f̃m(k(s), t(s)) =

f̃m(k0, t0). Since the coefficient of ∂fk/∂t in Eq. (A.8) is 1, the relation between
t and s is trivial and together with the initial condition t(0) = 0 one obtains

dt

ds
= 1⇒ t(s) = s+ const, t(0) = 0⇒ t = s.

The second characteristic equation

dk

dt
= −k‖ + νk (A.11)

is easily rearranged to
dk

k − k‖/ν
= ν dt

and integrated by a change of variables v := k − k‖/ν,
ˆ

d ln v =

ˆ
ν dt

yielding

k(t) =
k‖
ν

+ k0eνt ⇒ k0 =

(
k − k‖

ν

)
e−νt.

f̃m(k0, t0) = f̃m

((
k − k‖

ν

)
e−νt, 0

)

Next f̃m(k(t), t) is evaluated by integrating ˙̃fm(k(t), t),

d

dt
f̃m(k(t), t) =

∂f̃m(k(t), t)

∂t
+
∂f̃m(k(t), t)

∂k
k̇

=
∂f̃m(k(t), t)

∂t
−
[
iω` +Dk(t)2

]
f̃m(k(t), t)− ∂f̃m(t, k(t))

∂t

= −
[
iω` +Dk(t)2

]
f̃m(k(t), t)
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= p(t)f̃m(k(t), t), (A.12)

where the homogeneous equation has been used and the coefficient of f̃m(k, t)

in the kinetic equation (A.8) has been denoted p(t). From Eq. (A.12) follows

f̃m(k(t), t) = f̃m(k(0), 0) exp

{
−
ˆ t

0

dτ

[
iω` +D

(
k0eντ +

k‖
ν

)2
]}

. (A.13)

The exponent, upon integration, is

−
ˆ t

0

dτ

[
iω` +D

(
k2

0e2νt + 2k0eνt
k‖
ν

+
k2
‖
ν2

)]

= −iω`t−
Dk2

0

2ν

(
e2νt − 1

)
− 2Dk0k‖

ν2

(
eνt − 1

)
−D

k2
‖
ν2
t

= −iω`t−
v2
T

2

(
k − k‖

ν

)2 (
1− e−2νt

)
− 2v2

Tk‖
ν

(
k − k‖

ν

)(
1− e−νt

)

−
v2
Tk

2
‖

ν
t

= −ã(t)

(
k − k‖

ν

)2

− b̃(t)
(
k − k‖

ν

)
− c(t), (A.14)

where in the second line (k − k‖/ν)e−νt has been substituted for k0 and the
coefficients of the various powers of (k− k‖/ν) have been assigned the functions

ã(t) =
v2
T

2

(
1− e−2νt

)
, (A.15)

b̃(t) =
2v2

Tk‖
ν

(
1− e−νt

)
, (A.16)

c(t) =

(
iω` +

v2
Tk

2
‖

ν

)
t (A.17)

in accordance with [33]. With

k(0) =
k‖
ν

+ k0 =
k‖
ν

(
1− e−νt

)
+ ke−νt

Eq. (A.13) is further evaluated to

f̃m(k(t), t) = f̃m

(
k‖
ν

(
1− e−νt

)
+ ke−νt, 0

)
e
−ã(t)

(
k−

k‖
ν

)2

−b̃(t)
(
k−

k‖
ν

)
−c̃(t)

.

(A.18)
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Considering the initial condition f̃m(u, 0) = δ(u− u′) and its Fourier transform
f̃m(k, 0) = (1/

√
2π)e−iku′ one finds

f̃m

(
k‖
ν

(
1− e−νt

)
+ ke−νt, 0

)
=

1√
2π

e
−i

[
ke−νt+

k‖
ν (1−e−νt)

]
u′

and hence the homogeneous solution of the kinetic equation in k-space,

f̃m(k(t), t) =
1√
2π

e
−i

[
ke−νt+

k‖
ν (1−e−νt)

]
u′

e
−ã(t)

(
k−

k‖
ν

)2

−b̃(t)
(
k−

k‖
ν

)
−c̃(t)

. (A.19)

The inhomogeneous linear ODE of first order

df̃m
dt
− p(t)f̃m = Q̃m (A.20)

with p(t) = −(iω`+Dk2) can be solved by the method of variation of constants,
e.g. [13, p. 269], by making an ansatz out of the homogeneous solution f̃m =

α exp(
´ t
t0

dt′ p(t′)) ≡ α expP (t) and letting α vary with t,

f̃m = α(t) exp(P (t)) (A.21)

where α(t0) is set to zero. Substituting the total time derivative of f̃m,

˙̃fm = α̇eP + αṖ eP = α̇eP + αpeP

into the ODE (A.20) yields

α̇eP + αpeP = pαeP + Q̃m.

Isolating α̇ = Q̃me−P and integrating gives

α(t) =

ˆ t

t0

dt′ Q̃m(t′)e−P (t′).

Inserting this function into the ansatz (A.21) one obtains the solution of the
inhomogeneous equation in k-space

f̃m(k, t) =

ˆ t

t0

dt′ Q̃m(k(0), t′)eP (t)−P (t′). (A.22)
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By taking the inverse Fourier transform of f̃m(k, t), one obtains [33]

f̃m(u, t) =

ˆ t

t0

dτ

ˆ
R

du′ G̃D
m(u, u′, t− τ)Q̃m(u′, τ) (A.23)

with Green’s function

G̃D
m(u, u′, t) =

1√
2π

ˆ
R

dk eiku 1√
2π

e
−i

[
ke−νt+

k‖
ν (1−e−νt)

]
u′

e
−ã(t)

(
k−

k‖
ν

)2

−b̃(t)
(
k−

k‖
ν

)
−c(t)

=
1

2π

ˆ
R

dk e
−ãk2+

(
iu−iu′e−νt−b̃+

2ãk‖
ν

)
k+

[
−c−i

k‖
ν (1−e−νt)u′−

k2‖
ν2
ã+

k‖
ν
b̃

]

=

∣∣∣∣
ˆ
R

dk eαk
2+βk+γ =

√
π

−αeγ−β
2/(4α)

∣∣∣∣

=
1

2π

√
π

ã
e

[
−c−i

k‖
ν (1−e−νt)u′−

k2‖
ν2
ã+

k‖
ν
b̃

]
−
(

iu−iu′e−νt−b̃+
2ãk‖
ν

)2

/(−4ã)

=
1√
4πã

e

[
−c−i

k‖
ν (1−e−νt)u′−

k2‖
ν2
ã+

k‖
ν
b̃

]
−u2

4ã
+uu′

2ã
e−νt+ iu′

2ã
b̃e−νt+

iuk‖
ν
−u′2 e−2νt

4ã

× e−
i
2ã
ub̃−iu′

k‖
ν

e−νt+ b̃2

4ã
−
b̃k‖
ν

+
ãk2‖
ν2

=
1√
4πã

exp

[
−c+ i

k‖
ν

(u− u′)− 1

4ã

(
u− u′e−νt + ib̃

)2
]
, (A.24)

which corresponds to Eq. (25) of Ivanov et al. [33].

A.2 The Collisionless Limit

Finally, the collisionless limit case is considered. In this limit, ν → 0, the initial
PDE in k-space, Eq. (A.7) reads

[
∂

∂t
+ iω` − k‖

∂

∂k

]
f̃m(k, t) = Q̃m(k, t). (A.25)

Applying again the methods of characteristics, the homogeneous equation can
be written as

d

ds
f̃m(k(s), t(s)) = −iω`f̃m(k) (A.26)

with df̃m(k(s), t(s))/ ds = ∂f̃m/∂k · dk/ ds+∂f̃m/∂t · dt/ ds. From Eq. (A.25)
one can read off

dt

ds
= 1,

dk

ds
= −k‖, (A.27)
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that with initial condition t(0) = t0 = 0 allows one to identify t = s, whereupon
the second equation reads dk/ dt = −k‖ and thus

k = −k‖t+ k0 (A.28)

with k0 = k(t0) = const. Eq. (A.26) is integrated by separation of variables,

d ln f̃m = −iω` dt

f̃m(k(t), t) = f̃m(k0, 0) e−iω`t = f̃m(k + k‖t, 0) e−iω`t. (A.29)

The Fourier transform f̃m(k0, 0) of the initial condition f̃m(u, 0) = δ(u− u′) is

f̃m(k0, 0) =
e−ik0u′

√
2π

=
e−i(k+k‖t)u

′

√
2π

.

One obtains the the Green’s function in the collisionless limit by taking the
inverse Fourier transform

G̃D
m(u, u′, t) =

1√
2π

ˆ
R

dk eiku 1√
2π

e−i(k+k‖t)u
′
e−iω`t

=
1

2π

ˆ
R

dk eik(u−u′)e−i(k‖u
′+ω`)t

= δ(u− u′)e−i(k‖u
′+ω`)t. (A.30)

Letting t0 → −∞ and Fourier transforming w.r.t. time, the solution of the
kinetic equation is

f̃m(u, ω) = lim
h→∞

1√
2π

ˆ
R

dt eiωt

ˆ h

0

dτ

ˆ
R

du′ G̃D
m(u, u′, τ)Q̃m(u′, t− τ)

= lim
h→∞

ˆ h

0

dτ

ˆ
R

du′ G̃D
m(u, u′, τ)eiωτ 1√

2π

ˆ
R

dt eiω(t−τ)Q̃m(u′, t− τ)

= lim
h→∞

ˆ h

0

dτ

ˆ
R

du′ G̃D
m(u, u′, τ)eiωτ Q̃m(u′, ω). (A.31)

Substituting the collisionless Green’s function (A.30), the solution of the kinetic
equation in the collisionless limit is obtained,

f̃m(u, ω) = lim
h→∞

ˆ h

0

dτ

ˆ
R

du′ ei(ω−ω`−k‖u′)τδ(u− u′)Q̃m(u′, ω)

= lim
h→∞

ˆ h

0

dτ ei(ω−ω`−k‖u)τ Q̃m(u, ω),
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f̃m(u, ω) =
i

ω − ω` − k‖u+ i0+
Q̃m(u, ω), (A.32)

where

lim
h→∞

ˆ h

0

dτ eiωτ = −1

i

[
P

1

ω
− iπδ(ω)

]
=

i

ω + i0+

and Plemelj’s formula, see e.g. [64, p. 678], has been used.



Appendix B

Momentum- and Energy
Conserving Collision Operators

B.1 Construction of a Momentum Conserving Col-
lision Operator

Here, some intermediate calculations needed for the derivation of operator L̂M
cI

in Section 3.2 are collected:

∂

∂u
(uf0) = f0 + u

∂f0

∂u

=

[
1− u2

v2
T

]
f0 (B.1)

∂

∂u
(u2f0) =

[
2− u2

v2
T

]
f0 (B.2)

∂2

∂u2
(uf0) =

∂

∂u

[(
1− u2

v2
T

)
f0

]

=
∂f0

∂u

(
1− u2

v2
T

)
− 2f0

u

v2
T

= −f0
u

v2
T

(
1− u2

v2
T

)
− 2f0

u

v2
T

=

(
u2

v2
T

− 3

)
f0
u

v2
T

(B.3)
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L̂cD(uf0) = νf0
u3

v2
T

− 3νf0 + 2νf0u− νf0
u3

v2
T

= −νf0u (B.4)

B.2 Conservation properties of the constructed
integro-differential operators

In this section, the vanishing of L̂cpf0, L̂cpuf0, and L̂cpu
2f0 shall be proven. The

Fokker-Planck operator L̂cD in the Ornstein-Uhlenbeck approximation by itself
conserves the number of particles, as was already pointed out by [33]. Here, it
has to be shown that also the full operator that finally is applied to the kinetic
equation, L̂cp, conserves the number of particles, i.e. the integral operators must
not give a contribution when acting on f0.

In a similar fashion, for momentum conservation to hold, it will be shown
that L̂M

cIuf0 compensates exactly what remains when the differential part acts
on uf0 alone, i.e. (L̂cD + L̂M

cI )uf0 = 0. The energy conserving operator must not
contribute when acting on uf0, such that also L̂cp = (L̂cD + L̂M

cI + L̂E
cI)uf0 = 0.

The same argument holds for energy conservation. L̂M
cI only compensates the

term arising from L̂cDuf0, but does not give a contribution acting on u2f0. Again,
L̂cp = (L̂cD + L̂M

cI + L̂E
cI)u

2f0 is shown to be zero, so that energy conservation is
proven to hold.

To start with, L̂cpf0 = 0 shall be shown:

L̂cDf0 = νv2
T

∂

∂u

(
∂f0

∂u
+

u

v2
T

f0

)

= νv2
T

∂

∂u

(
− u

v2
T

f0 +
u

v2
T

f0

)

= 0, (B.5)

L̂M
cIf0 = αM(u)

ˆ
R

du′ βM(u′)f0(v⊥, u
′)

=
ν√

2πv2
T

e−u
2/2v2T

u

vT

ˆ
R

du′
u′

vT

n0

(2πv2
T )3/2

e−v
2
⊥/2v

2
T e−u

′2/2v2T

=
ν√

2πv2
T

f0
u

vT

ˆ
R

du′
u′

vT
e−u

′2/2v2T

= 0, (B.6)
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L̂E
cIf0 = αE(u)

ˆ
R

du′ βE(u′)f0(v⊥, u
′)

=
ν√

2πv2
T

e−u
2/2v2T

(
u2

v2
T

− 1

) ˆ
R

du′
(
u′2

v2
T

− 1

)
n0

(2πv2
T )3/2

e−v
2
⊥/2v

2
T e−u

′2/2v2T

=
ν√

2πv2
T

f0

(
u2

v2
T

− 1

) ˆ
R

du′
(
u′2

v2
T

− 1

)
e−u

′2/2v2T

=
ν√

2πv2
T

f0

(
u2

v2
T

− 1

)(√
2πv3

T

v2
T

−
√

2πvT

)

= 0. (B.7)

Thus, the particle number is conserved for the full integro-differential operator,

L̂cpf0 = (L̂cD + L̂M
cI + L̂E

cI)f0 = 0. (B.8)

Secondly, also L̂cpuf0 = 0 must hold:

L̂cDuf0 = νv2
T

∂

∂u

(
∂uf0

∂u
+
u2

v2
T

f0

)

= νv2
T

∂

∂u

(
f0 −

u2

v2
T

f0 +
u2

v2
T

f0

)

= −νuf0, (B.9)

L̂M
cIuf0 = αM(u)

ˆ
R

du′ βM(u′)u′f(u′)

=
ν√

2πv2
T

e−u
2/2v2T

u

vT

ˆ
R

du′
u′2

vT
f0(u′)

=
ν√

2πv2
T

u

v2
T

f0(v⊥, u)

ˆ
R

du′ u′2e−u
′2/2v2T

=
ν√

2πv2
T

u

v2
T

f0

√
2πv3

T

= νuf0, (B.10)

L̂E
cIuf0 = αE(u)

ˆ
R

du′ βE(u′)u′f0(v⊥, u
′)

=
ν√

2πv2
T

(
u2

v2
T

− 1

)
e−u

2/2v2T

ˆ
R

du′
(
u′2

v2
T

− 1

)
u′
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× n0

(2πv2
T )3/2

e−v
2
⊥/2v

2
T e−u

′2/2v2T

=
ν√

2πv2
T

(
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)
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v2
T
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ˆ
R
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)
= 0. (B.11)

So again for the full operator momentum is conserved,

L̂cpuf0 = (L̂cD + L̂M
cI + L̂E

cI)uf0 = −νuf0 + νuf0 + 0 = 0. (B.12)

Finally, we turn towards energy conservation and determine the action of the
individual operators on u2f0:

L̂cDu
2f0 = νv2

T

∂

∂u

(
∂u2f0

∂u
+
u3

v2
T

f0

)
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T
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T
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)
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T

(
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T

)
f0, (B.13)

L̂M
cI u

2f0 = αM(u)

ˆ
R

du′ βM(u′)u′2f0

=
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R
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= 0, (B.14)

L̂E
cI u

2f0 = αE(u)

ˆ
R

du′ βE(u′)u′2f0(v⊥, u
′)

=
ν√
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)

=
ν√
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(
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2
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T
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= 2νv2
T

(
u2

v2
T

− 1

)
f0. (B.15)

We see that also the full operator conserves energy,

L̂cpu
2f0 = 2νv2

T

(
1− u2

v2
T

)
f0 + 0 + 2νv2

T

(
u2

v2
T

− 1

)
f0 = 0. (B.16)

This particle-, momentum- and energy conserving operator L̂cp is applied to the
kinetic equation in Sect. 3.3.
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Appendix C

Explicit Evaluation of the Diffusion
Matrix

C.1 Diffusion Coefficients for the Collisional Case

In Section 3.5.1 the resulting diffusion coefficients for the collisional case are
given. Here one can find their full derivation based on the general formula
Eq. (3.98).

D11 =
1√

8πvTB2
0

<
∑

m

ˆ ∞
−∞

du

ˆ ∞
−∞
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r
m + c2|Ẽm⊥|2

)

=
1√

8πvTB2
0

<
∑

m

(√
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, (C.1)
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= D11 +
1√

8πvTB2
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r
m + c2|Ẽm⊥|2
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C.1. DIFFUSION COEFFICIENTS FOR THE COLLISIONAL CASE 159
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2

)

= 2D11 +
1

4νB2
0

<
∑

m

(
2v2

T |B̃r
m|2I31 + cvT Ẽm⊥B̃
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C.2 Diffusion Coefficients in the Collisionless Limit

Here, the explicit evaluation of the diffusion coefficients in the collisionless limit
case, based on Eq. (3.109) and discussed in Section 3.5.1, is given.
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Appendix D

Linear Plasma Response

The parallel RMP plasma response current density in the lowest order FLRE
as obtained from j̃ωm‖ = e

´
d3p uf̃m is discussed in Section 3.5.3. Here, the

detailed explicit evaluation is given.
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Reordering terms one finally obtains
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(D.1)
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