
Dipl.-Ing. Roland Mader Bakk.techn.

Computer-Aided Model-Based Safety
Engineering of Automotive Systems

————————————–

Dissertation

vorgelegt an der

Technischen Universität Graz

zur Erlangung des akademischen Grades
Doktor der Technischen Wissenschaften

(Dr. techn.)

durchgeführt am Institut für Technische Informatik
Technische Universität Graz

Betreuer: Em.Univ.-Prof. Dipl.-Ing. Dr.techn. Reinhold Weiß

Graz, im November 2012

EIDESSTATTLICHE ERKLÄRUNG

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als
die angegebenen Quellen/Hilfsmittel nicht benutzt und die den benutzten Quellen wörtlich
und inhaltlich entnommenen Stellen als solche kenntlich gemacht habe.

Graz, am .
(Unterschrift)

STATUTORY DECLARATION

I declare that I have authored this thesis independently, that I have not used other than
the declared sources/resources and that I have explicitly marked all material which has
been quoted either literally or by content from the used sources.

. .
date (signature)

Kurzfassung

Die automotive Industrie erfährt einen Trend hin zur Elektrifizierung von Antriebs-
strängen. Das führt zu neuen Antriebsstrangtopologien wie zum Beispiel Antriebssträngen
für Hybridfahrzeuge. Diese Antriebsstränge enthalten zusätzliche Komponenten wie elek-
trische Maschinen oder Hochvoltbatterien. Diese Komponenten sowie deren Interaktion
werden von eingebetteten Systemen gesteuert. Daraus resultierend, können Fehler oder
Ausfälle dieser eingebetteten Systeme zu schweren Gefährdungen führen. Deshalb sind
die eingebetteten Systeme von Hybridfahrzeugen sicherheitskritisch. Darüber hinaus tra-
gen die zusätzlichen Komponenten von Hybridfahrzeugen dazu bei, dass sich die ohne-
hin steigende Komplexität von automotiven, eingebetteten Systemen weiter erhöht. Die
Entwicklung zunehmend komplexer, sicherheitskritischer eingebetteter Systeme erfordert
geeignete Safety Engineering Workflows, die sich an den funktionalen Sicherheitsstandard
ISO 26262 für die automotive Domäne anlehnen, sowie Werkzeugunterstützung, die es
ermöglicht, mühsame und fehleranfällige Aktivitäten zu automatisieren. Unter den typi-
scherweise werkzeugunterstützten Aktivitäten für die Entwicklung sicherheitsgerichteter,
automotiver eingebetteter Systeme finden sich (a) Frühzeitige Gefährdungsanalyse, (b)
Fehlerbaumanalyse, FMEA (Failure Modes and Effects Analysis) und Allokieren von Si-
cherheitsparametern basierend auf Systemmodellen sowie (c) Generierung von Quellcode
und Modellen. Jedoch ist die Werkzeugunterstützung in Bezug auf (a), (b) und (c) ver-
besserungsfähig.

Der Beitrag dieser Dissertation ist es, den Stand der Technik in Bezug auf (a), (b)
und (c) zu verbessern und beschreibt einen Ansatz zum Model-Based Safety Engineering
of Automotive Systems. Insbesondere umfasst dieser Ansatz Werkzeugunterstützung für
(1) die Erstellung sicherheitsrelevanter Modelle, (2) die Generierung von Fehlerbäumen,
FMEA Tabellen und ASIL (Automotive Safety Integrity Level) Allokierungen sowie für (3)
die Konfigurierung und Codegenerierung. Das Werkzeug OASIS (AutOmotive Analysis
and Safety EngIneering InStrument) stellt eine Implementierung von (1), (2) und (3) dar.
Dieses Werkzeug ist Teil einer Werkzeugkette, die einen automotiven Safety Engineering
Workflow unterstützt. Diese Werkzeugkette wurde verwendet, um den präsentierten An-
satz zum Computer-Aided Model-Based Safety Engineering of Automotive Systems unter
der Verwendung der Fallstudie einer Hybridfahrzeugentwicklung experimentell zu evaluie-
ren. Metriken zeigen, dass Computer-Aided Model-Based Safety Engineering of Automo-
tive Systems zu reduziertem Zeitaufwand sowie zu gesteigerter Produktqualität führt, was
auf die Vereinfachung sowie die Automatisierung von Arbeitsschritten zurückzuführen ist.
Aus diesem Grund kann Computer-Aided Model-Based Safety Engineering of Automotive
Systems die Industrie dabei unterstützen, sichere und leistbare Produkte zu entwickeln.

ii

Abstract

The shift of the automotive industry towards powertrain electrification leads to new
powertrain topologies such as HEV (Hybrid Electric Vehicle) powertrains. HEV power-
trains contain additional components such as electric machines or high voltage batteries.
These components and their interaction are controlled by embedded systems. Conse-
quently, faults and failures of these embedded systems can lead to severe hazards. Thus,
the embedded systems of HEVs are safety-critical. Furthermore, the additional compo-
nents of HEV powertrains pursue the trend of increasingly complex automotive embed-
ded systems. The development of increasingly complex safety-critical automotive embed-
ded systems requires appropriate safety engineering workflows aligned with the functional
safety standard ISO 26262 for the automotive domain as well as tool support for automat-
ing tedious and error-prone activities. Among the typically tool-supported activities re-
quired for automotive safety-critical embedded systems development are (a) Early Hazard
Analysis, (b) FTA (Fault Tree Analysis), FMEA (Failure Modes and Effects Analysis)
and Allocation of Safety Parameters based on System Models as well as (c) Generation of
Source Code and Models. However, tool support for (a), (b) and (c) is improvable with
respect to several aspects.

This thesis contributes by advancing the state of the art with respect to (a), (b) and
(c) and presents an approach to Computer-Aided Model-Based Safety Engineering of Au-
tomotive Systems. In particular, this approach comprises support for (1) Safety-Relevant
Model Creation, (2) Generation of Fault Trees, FMEA Tables and ASIL (Automotive
Safety Integrity Level) Allocations as well as (3) Configuration and Code Generation.
The tool OASIS (AutOmotive Analysis and Safety EngIneering InStrument) constitutes
an implementation of (1), (2) and (3). This tool is part of a tool chain supporting an
automotive safety engineering workflow. The tool chain was used to apply the automo-
tive safety engineering workflow and to experimentally evaluate the presented approach
to Computer-Aided Model-Based Safety Engineering of Automotive Systems using the
case study of an HEV development. Metrics show that Computer-Aided Model-Based
Safety Engineering of Automotive Systems leads to reduced expenditure of time and im-
proved product quality due the simplification and automation of workflow steps. Thus,
Computer-Aided Model-Based Safety Engineering of Automotive Systems can potentially
help the industry to create safe products at affordable prices.

iii

Acknowledgements

The contributions of this thesis were elaborated in course of the MEPAS project that
was financially supported by the ’COMET K2 Forschungsförderungs-Programm’ of the
Austrian Federal Ministry for Transport, Innovation and Technology (BMVIT), the Aus-
trian Federal Ministry of Economics and Labour (BMWA), Österreichische Forschungs-
förderungsgesellschaft mbH (FFG), Das Land Steiermark and Steirische Wirtschaftsför-
derung (SFG). Working on the MEPAS project and completing this thesis involved the
contribution of many people. However, they are too many to list them all. It is, however,
my wish to express my gratitude to a few of them in the following.

Foremost, I want to thank Prof. Reinhold Weiß for offering me the opportunity of
being part of his institute, tackling research problems in an industrial context and facing
the challenge of writing a thesis. Furthermore, I would like to thank him for advising me
how to compose and complete this thesis.

I also would like to thank the MEPAS project leaders of the participating organiza-
tions, Christian Steger and Christian Kreiner (Institute for Technical Informatics), Eric
Armengaud and Peter Reichenpfader (Virtual Vehicle Competence Center) as well as Ger-
hard Grießnig (AVL List GmbH). Whereas they provided a good working environment to
execute this project, they left me a lot of open space to be creative and innovative. Further-
more, I wish to thank all colleagues at the Institute for Technical Informatics, the Virtual
Vehicle Competence Center and AVL List GmbH for a good and fruitful collaboration
during more than three and a half years.

In particular, I would like to thank my colleagues Gerhard Grießnig, Eric Armengaud
and Quentin Bourrouilh at AVL List GmbH for excellent discussions, providing qualified
comments, supporting the experimental evaluation of research results using an industrial
case study and providing an atmosphere of friendship. Thanks to their help, it was possible
to tackle some of the problems of the automotive industry.

I would like to express my greatest gratitude to my parents, Franz Mader and Roswitha
Mader, for their life-long support and their understanding during a challenging, distressful
and exhausting time of elaborating research results, writing publications and completing
this thesis. Finally, I also want to thank my grandmother Gisela Griesmayr for encouraging
me to complete this thesis.

This thesis is dedicated to my grandmother Gisela Griesmayr, who died on the 21st of
November 2011.

Bruck an der Mur/Austria
November, 2012 Roland Mader

iv

Extended Abstract

The shift of the automotive industry towards powertrain electrification leads to new
powertrain topologies such as HEV (Hybrid Electric Vehicle) powertrains. HEVs are an
attempt to combine the advantages of classical ICE (Internal Combustion Engine) cars
and EVs (Electric Vehicles). Thus, besides the primary unidirectional energy converter
(ICE) and the primary power source (petroleum fuel tank), an HEV contains an additional
secondary bidirectional energy converter (electric machine) and an additional secondary
power source (e.g. high voltage battery). The secondary bidirectional energy converter
can be used as an electric motor to support the ICE by providing supplementary or
substitutive torque. Furthermore, the secondary bidirectional energy converter can be
used as a generator for regaining kinetic energy during braking or motoring to charge the
high voltage battery. An HEV supports several operating modes that bring additional
flexibly and can be used to optimize overall performance, efficiency and emissions with
proper configuration and control.

The additional electric machine and the high voltage battery as well as other powertrain
components are controlled by an embedded system consisting of dozens of control units
connected by automotive bus systems. Faults and failures of this embedded system can
lead to severe hazards such as fire/explosion caused by overcharging of the high voltage
battery or unintended vehicle movement caused by the unintended provision of electric
machine torque. Thus, the embedded system of an HEV is safety-critical. The additional
electric machine and the high voltage battery of an HEV also further pursue the increasing
complexity of automotive embedded systems in terms of number of control units and
number of object code instructions. Meanwhile, automotive embedded systems contain
about 70 control units and more than 108 object code instructions.

The development of increasingly complex safety-critical automotive embedded systems
requires appropriate safety engineering workflows aligned with the functional safety stan-
dard ISO 26262 for the automotive domain in order to avoid the introduction of systematic
faults during development. Furthermore, tool support for automating tedious and error-
prone activities is required. Among the typically tool-supported activities required for
automotive safety-critical embedded systems development are (a) Early Hazard Analysis,
(b) FTA (Fault Tree Analysis), FMEA (Failure Modes and Effects Analysis) and Alloca-
tion of Safety Parameters based on System Models as well as (c) Generation of Source
Code and Models.

(a) Early Hazard Analysis denotes hazard analysis techniques that are applied earliest
in the development process in order to systematically identify, assess and classify potential
hazards. In the automotive domain co-called ASILs (Automotive Safety Integrity Levels)
are determined depending on the classification of hazards. Based on the results of Early
Hazard Analysis, (b) FTA, FMEA and Allocation of Safety Parameters based on System

v

Models are required in later development steps. FTA and FMEA are analysis techniques
that allow assessing potential faults and failures of the embedded system, their propagation
and their effects on the vehicle. In line with the results of analyses, an allocation of
ASILs to the components of the safety-critical embedded system is necessary in order to
determine the rigor of the development process as well as necessary runtime fault detection
capabilities of the embedded system’s components. Under consideration of (b), embedded
software is developed. This is often supported by (c) Generation of Source Code and
Models. This comprises source codes determining the behavior of vehicle functions such
as recuperation and braking as well as runtime tests generated in order to detect random
hardware faults during system operation.

However, tool support for (a), (b) and (c) is improvable. There are approaches to (a)
foreseeing the use of structured descriptions that can be subject to automatic checking in
order to identify imperfections. However, present approaches do not support automatic
corrections. The state of the art with respect to (b) foresees the automatic generation of
fault trees and FMEA tables from an underlying model. However, the elaboration of this
underlying model is not supported. The state of the art with respect to (b) also foresees
the allocation of safety parameters using proprietary algorithms or constraint solvers.
However, an approach to the allocation of safety parameters using constraint solvers that
considers the specifics of the automotive domain does not yet exist. There are several
approaches to (c) foreseeing the generation of models from more abstract models, the
generation of source codes from models or the generation of SBSTs (Software-Based Self
Tests). Similarly, approaches supporting the generation of models from a more abstract
model and the computer-aided configuration and generation of SBST functionality from
the same model do not yet exist.

To advance the state of the art with respect to (a), (b) and (c), this thesis presents
an approach to Computer-Aided Model-Based Safety Engineering of Automotive Systems.
The term Computer-Aided Model-Based Safety Engineering of Automotive Systems de-
notes a form of model-based safety engineering emphasizing and advocating the automa-
tion of analysis and synthesis based on computerized models by means of tool support.
Computer-Aided Model-Based Safety Engineering of Automotive Systems comprises the
major contributions of this thesis.

Namely the major contributions of this thesis are (1) Safety-Relevant Model Creation,
(2) Generation of Fault Trees, FMEA (Failure Modes and Effects Analysis) Tables and
ASIL (Automotive Safety Integrity Level) Allocations as well as (3) Configuration and
Code Generation. (1) denotes a technique supporting the automatic checking and auto-
matic correction of models and thus improving (a) and (b). (2) comprises tool support for
the generation of fault trees and FMEA tables from models. Furthermore, (2) comprises
a tool-supported method for the allocation of safety parameters to the components of an
automotive system architecture based on a constraint solver and respects the specifics
of the automotive domain. (3) denotes an approach that allows generating models from
a more abstract model. Based on the same more abstract model, the computer-aided
configuration and generation of so-called safety drivers covering SBST functionality is
supported.

The tool OASIS (AutOmotive Analysis and Safety EngIneering InStrument) was im-
plemented as a plugin for the tool Papyrus for UML and constitutes an implementation of
the major contributions of this thesis. OASIS is a part of a tool chain containing the tools

vi

Figure 1: The tool OASIS is part of a tool chain required for the application of the safety
engineering workflow. OASIS supports the application of this workflow. Its support for
(a) Safety-Relevant Model Creation, its support for (b) Generation of Fault Trees, FMEA
Tables and ASIL Allocations and its support for (c) Configuration and Code Generation
are the major contributions of this thesis.

vii

Papyrus for UML, OASIS, Matlab/Simulink, TargetLink as well as software development
IDEs (Integrating Development Environments). This tool chain supports an automotive
safety engineering workflow that is aligned with ISO 26262’s Concept Phase, System Level
Development Phase and Software Level Development Phase. OASIS and its support for
Computer-Aided Model-Based Safety Engineering of Automotive Systems are able to sup-
port the application of this safety engineering workflow by simplifying and automating
workflow steps. Apart from (1), (2) and (3), OASIS also provides support for Document
Generation, Reuse of Modeling Elements and the Provision of Views as these features
are of utmost importance for the industrial application of Computer-Aided Model-Based
Safety Engineering of Automotive Systems. Figure 1 illustrates the tool chain includ-
ing OASIS. Furthermore, OASIS’ modules constituting the implementation of the major
contributions are illustrated.

The safety engineering workflow was experimentally applied using the tool chain in-
cluding OASIS for the case study of HEV development. During the workflow application,
a model was created representing a part of an HEV powertrain consisting of 3 sensors, 3
actuators and 4 control units. This model consists of 957 modeling elements, although
only a part of an HEV powertrain was modeled. OASIS was used to automatically de-
rive different entities from the model. Among the derived entities are 160 automatically
identified imperfections, 6 fault trees consisting of 245 nodes as well as a safety driver for
a multi-core microcontroller consisting of 4224 lines of code. The numbers illustrate the
value of OASIS. Although the presented approach does not replace the intellectual pro-
cess of safety engineering, its capabilities for simplifying and automating workflow steps
increase product quality (by identifying and correcting imperfections and by automating
error-prone and tedious activities) and reduce required expenditure of time (by rendering
manual creations of entities redundant). Thus, Computer-Aided Model-Based Safety En-
gineering of Automotive Systems can potentially help the industry to create safe products
at affordable prices.

viii

Contents

1 Introduction 1
1.1 Motivation . 1

1.1.1 Safety-Criticality of Embedded Systems in HEVs 2
1.1.2 Development of Safety-Critical Embedded Systems in HEVs 3

1.1.2.1 Early Hazard Analysis . 4
1.1.2.2 FTA, FMEA and Allocation of Safety Parameters based

on System Models . 4
1.1.2.3 Generation of Source Code and Models 5

1.2 Computer-Aided Model-Based Safety Engineering of Automotive Systems . 5
1.2.1 The MEPAS Project . 5
1.2.2 The OASIS Tool . 5
1.2.3 Organization of this Thesis . 6

2 Related Work 7
2.1 Early Hazard Analysis . 7

2.1.1 Systematic Approaches Incorporating Models 7
2.1.2 Incorporation of Diagrammatic Languages 8
2.1.3 Provision of Sophisticated Tool Support 9

2.2 FTA, FMEA and Allocation of Safety Parameters based on System Models 10
2.2.1 Generation of Fault Trees and FMEA Tables from System Models . 10
2.2.2 Allocation of Safety Parameters . 12

2.3 Generation of Source Code and Models . 13
2.3.1 Generation of Source Code and Models From Other Models 13
2.3.2 Generation of Functional SBSTs for Microcontrollers 15

2.4 Potentials for Improvement . 16
2.4.1 Potential for Improvement 1 . 16
2.4.2 Potential for Improvement 2 . 16
2.4.3 Potential for Improvement 3 . 17
2.4.4 Potential for Improvement 4 . 17

2.5 Contribution and Significance . 17
2.5.1 Contribution 1: Safety-Relevant Model Creation 18
2.5.2 Contribution 2: Generation of Fault Trees, FMEA Tables and ASIL

Allocations . 18
2.5.3 Contribution 3: Configuration and Code Generation 18

ix

3 Computer-Aided Model-Based Safety Engineering of Automotive Sys-
tems 19
3.1 Safety Engineering Workflow . 19

3.1.1 Concept Phase . 19
3.1.1.1 Definition of the Analysis Subject 19
3.1.1.2 Identification of Hazards and Hazardous Events 21
3.1.1.3 Derivation of Safety Goals 21
3.1.1.4 Definition of Functional Safety Concept 21

3.1.2 System Level Development Phase . 21
3.1.2.1 Definition of Technical Safety Concept 21
3.1.2.2 Definition of System Architecture 22
3.1.2.3 Investigation and Annotation of Faults and Failures 22

3.1.3 Software Level Development Phase 22
3.1.3.1 Specification of Embedded Software 22
3.1.3.2 Generation of Simulink Models 22
3.1.3.3 Definition of Behaviors . 23
3.1.3.4 Generation of Source Codes 23
3.1.3.5 Generation of Safety Drivers 23
3.1.3.6 Implementation and Integration of Source Codes 23
3.1.3.7 Compilation and Linking of Executable 23

3.2 Supporting Tool Chain . 23
3.2.1 Papyrus for UML . 23
3.2.2 OASIS . 25
3.2.3 Simulink . 26
3.2.4 TargetLink . 26
3.2.5 Software Development IDEs . 26

3.3 Safety-Relevant Model Creation . 26
3.3.1 Support for Property Checking . 26
3.3.2 Support for Model Correction . 27

3.4 Generation of Fault Trees, FMEA Tables and ASIL Allocations 27
3.4.1 Support for Fault Tree Generation 27
3.4.2 Support for FMEA Table Generation 28
3.4.3 Support for Automatic and Optimal Allocation of ASILs 28

3.5 Configuration and Code Generation . 28
3.5.1 Support for Generation of Simulink Models 29
3.5.2 Support for Configuration and Generation of Safety Drivers 29

4 Experimental Evaluation 30
4.1 Case Study of HEV Development . 30
4.2 Complexity of Resulting Model and Derived Entities 30
4.3 Assessment of Benefits . 31

5 Conclusion and Future Work 34
5.1 Conclusion . 34
5.2 Future Work . 35

5.2.1 Safety-Relevant Model Creation . 35

x

5.2.2 Generation of Fault Trees, FMEA Tables and ASIL Allocations . . . 35
5.2.3 Configuration and Code Generation 36

6 Publications 37
6.1 A Computer-Aided Approach to Preliminary Hazard Analysis For Automo-

tive Embedded Systems . 40
6.2 A Computer-Aided Approach to PHA, FTA and FMEA for Automotive

Embedded Systems . 50
6.3 Automatic and Optimal Allocation of Safety Integrity Levels 65
6.4 A Bridge from System to Software Development for Automotive Embedded

Systems . 71
6.5 OASIS: An Automotive Analysis and Safety Engineering Instrument 76

Bibliography 127

xi

List of Figures

1 The tool OASIS is part of a tool chain required for the application of the
safety engineering workflow. OASIS supports the application of this work-
flow. Its support for (a) Safety-Relevant Model Creation, its support for (b)
Generation of Fault Trees, FMEA Tables and ASIL Allocations and its sup-
port for (c) Configuration and Code Generation are the major contributions
of this thesis. vii

1.1 AVL’s Turbohybrid prototype is an example for an HEV based on a BMW
vehicle. It contains a turbocharged engine and a synchronous electric ma-
chine. Figure used with permission of AVL List GmbH. 2

1.2 Components of an HEV powertrain such as the inverter or the high voltage
battery are controlled by a safety-critical embedded system. 3

3.1 The safety engineering workflow is aligned with ISO 26262 and supported
by a tool chain. The tools support the languages required for the annotation
of the work products of the workflow. 20

3.2 The tool OASIS is part of a tool chain required for the application of the
safety engineering workflow. OASIS supports the application of the safety
engineering workflow. Its support for (a) Safety-Relevant Model Creation,
its support for (b) Generation of Fault Trees, FMEA Tables and ASIL
Allocations and its support for (c) Configuration and Code Generation are
the major contributions of this thesis. 24

6.1 The mapping of the five publications onto the tool chain including OASIS
that provides support for (a) Safety-Relevant Model Creation, (b) Gener-
ation of Fault Trees, FMEA Tables and ASIL Allocations as well as (c)
Configuration and Code Generation. 38

xii

List of Tables

4.1 This table presents metrics and values characterizing the complexity of the
HEV use case and automatically derived entities with respect to the major
contributions of this thesis. 31

4.2 Depending on evaluation criteria, the achieved benefits of OASIS’ modules
realizing the major contributions of this thesis were assessed and classified
as high (3), medium (2), low (1) or not applicable (-) based on experience
from the HEV use case. 32

xiii

List of Abbreviations

AADL Architecture Analysis & Design Language
ADL Architecture Description Language
ARP Aerospace Recommended Practice
ASIL Automotive Safety Integrity Level
AVL Anstalt für Verbrennungskraftmaschinen

BMU Battery Management Unit
BMW Bayerische Motoren Werke

CAAM Combined Architecture Algorithm Model
CAN Controller Area Network
CCU Clutch Control Unit
cFMEA Component Failure Modes and Effects Anal-

ysis
COAL Component-Oriented Architecture Language
CPU Central Processing Unit

DAL Design Assurance Level

E/E system Electrical and/or Electronic system
EAST-ADL Electronics Architecture and Software Tech-

nology Architecture Description Language
EMS Engine Management System
EV Electric Vehicle

FHA Functional Hazard Assessment
FMEA Failure Modes and Effects Analysis
FMECA Failure Modes, Effects and Criticality Analy-

sis
FTA Fault Tree Analysis

HAZOP Hazard and Operational Studies
HCU Hybrid Control Unit
HEV Hybrid Electric Vehicle

xiv

I/O Input/Output
ICE Internal Combustion Engine
IDE Integrated Development Environment
IEC International Electrotechnical Commission
IP Intellectual Property
ISA Instruction Set Architecture
ISO International Organization for Standardiza-

tion

MBD Model-Based Development
MCU Motor Control Unit
MEPAS Methods and Processes for Automotive Em-

bedded Software Development, Verification
and Validation

OASIS Automotive Analysis and Safety Engineering
Instrument

OCL Object Constraint Language

PHA Preliminary Hazard Analysis

RAM Random Access Memory
RCM Reliability Configuration Model
RIDL Reliability Imbedded Design Language
ROM Read Only Memory
RTL Register Transfer Level
RTOS Real Time Operating System
RTSC Real Time State Chart

SAA Safety-Aware Architecture
SBST Software-Based Self Test
SCADE Safety Critical Application Development En-

vironment
SFTM Static Fault Tree Model
SIL Safety Integrity Level
SOC State of Charge
SoS System of Systems
STPA Systems Theoretic Process Analysis
SysML Systems Modeling Language

TCU Transmission Control Unit

xv

UML Unified Modeling Language
USART Universal Synchronous Asynchronous Re-

ceiver Transmitter

xvi

Glossary

Application Software
Embedded software determining the behavior of the vehicle functions such as Recu-
perative Braking or Boost.

Basic Software
Embedded software responsible for tasks like hardware abstraction, initialization,
communication, detection of random hardware faults and error-handling.

Computer-Aided Model-based Safety Engineering
A form of model-based safety engineering emphasizing and advocating the automa-
tion of analysis and synthesis based on computerized models by means of tool sup-
port.

Diagrammatic Language [1]
A language whose expressions include syntactic elements such as boxes, ovals, lines,
curves or arrows.

Domain-Specific Language
A programming language or specification language dedicated to a particular problem
domain.

E/E (Electrical and/or Electronic) system [2]
System consisting of electrical and (programmable) electronic elements.

Failure [2]
Termination of the ability of an element to perform a function as required.

Fault [2]
Abnormal condition that can cause an element or item to fail.

FMEA (Failure Modes and Effects Analysis) [3]
Inductive analysis technique starting with individual component failures and deter-
mining the effects on the overall system.

FTA (Fault Tree Analysis) [3]
Deductive analysis technique starting with identified hazards and tracking them back
to possible causative faults.

xvii

Functional Safety [2]
Absence of unreasonable risk due to hazards caused by malfunctioning behavior of
E/E systems.

Harm [2]
Physical injury or damage to the health of persons.

Hazard [2]
Potential source of harm caused by malfunctioning behavior of the item.

Meta Model
Defines frames and rules for modeling a predefined class of problems.

Minimum Cut Set [3]
A set of basic events of a fault tree that cannot be reduced in number and leads to
the top event of the fault tree.

Model-based Safety Engineering
Computerized models are used to support communication, documentation, analysis
and synthesis as part of the safety engineering.

PHA (Preliminary Hazard Analysis) [3]
An analysis technique that is qualitatively applied early in the development process
by a team of people with a wide variety of expert knowledge and skills.

Risk [2]
Combination of the probability of occurrence of harm and the severity of that harm.

Safety [2]
Absence of unreasonable risk.

Safety Driver
Part of the basic software required for initialization, runtime fault detection and
error-handling of microcontrollers.

Safety Parameter
A parameter assigned to functions or components of a system under development in
order to determine development process rigor or runtime fault detection capabilities.

Security
The degree of protection against danger, damage, loss, and crime (must take into
account the actions of people attempting to cause destruction).

Tool Support
A software tool or a set of software tools that can be used to effectively apply a
workflow.

xviii

Unreasonable Risk [2]
Risk judged to be unacceptable in a certain context according to valid societal moral
concepts.

Workflow
Description of a systematic sequence of working steps to solve a class of problems.

xix

Chapter 1

Introduction

1.1 Motivation

The automotive industry has been experiencing a shift towards powertrain electrification.
The automotive industry pursues this shift to achieve better fuel economy, to reduce
emissions and to achieve better drivability. This has led to new powertrain topologies
comprising additional components like electric machines or high voltage batteries. Some
of these new powertrain topologies are for HEVs and can be classified into series hybrid,
parallel hybrid, series-parallel hybrid and complex hybrid depending on their connections
between the components that define the energy flow routes and control ports [4].

HEVs are an attempt to combine the advantages of (a) classical vehicles that solely
contain an ICE and a petroleum fuel tank for propulsion and power supply and (b) EVs
that solely contain an electric machine and a high voltage battery for propulsion and
power supply. Whereas the advantages of (a) are good performance and long operating
range, its disadvantages are poor fuel economy and environmental pollution. Whereas
the advantages of (b) are high energy efficiency and zero environmental pollution, its
disadvantages are performance and poor operation range per battery charge.

To overcome the disadvantages of (a) and (b), HEVs contain two power sources (a
primary, unidirectional power source and a secondary, bidirectional power source) as well
as two energy converters (an unidirectional energy converter and a bidirectional energy
converter). Whereas a petroleum fuel tank and an ICE are used as unidirectional power
source and power converter, a high voltage battery and an electric machine are usually
used as bidirectional power source and power converter. The high voltage battery and the
electric machine are useful (1) for regaining (kinetic) energy by using the electric machine
as a generator and by charging the high voltage battery. Furthermore, the electric machine
is useful (2) for supporting the ICE by providing additive or substitutive torque to the
powertrain by using the electric machine as an electric motor. (1) and (2) are two of several
operating modes of HEVs that provide additional flexibility and can be used to optimize
overall performance, efficiency and emissions with proper configuration and control.

An example for an HEV is AVL’s Turbohybrid [5]. This prototype is based on a
commercial BMW 320i. It contains a 1.6l turbocharged engine and a 20 kW synchronous
electric machine. It was possible to achieve ten percent additional fuel efficiency with
respect to comparable BMW cars. The Turbohybrid prototype is illustrated in Figure 1.1.

1

1. Introduction 2

Figure 1.1: AVL’s Turbohybrid prototype is an example for an HEV based on a BMW
vehicle. It contains a turbocharged engine and a synchronous electric machine. Figure
used with permission of AVL List GmbH.

1.1.1 Safety-Criticality of Embedded Systems in HEVs

The power sources and power converters as well as other vehicle components of HEVs are
controlled by embedded systems. The embedded system of an HEV powertrain consists
of dozens of control units connected by multiple bus systems.

To illustrate the role of the embedded system in an HEV powertrain, a part of a par-
allel HEV powertrain including a part of its embedded system is schematically illustrated
in Figure 1.2. This HEV powertrain is a pretransmission single-shaft torque combination
powertrain [4]. In this configuration, the torques of the engine and the electric machine are
modified by the same transmission. An engine, a clutch, an electric machine, a transmis-
sion, a final (differential) gear and the wheels of the vehicle are mechanically coupled. Fur-
thermore, the electric machine is electrically coupled to the high voltage battery through
an inverter.

The individual powertrain components such as engine, clutch, transmission, inverter
and high voltage battery are controlled by control units such as EMS, CCU, TCU, MCU
and BMU. These control units communicate via a CAN or FlexRay bus. The HCU is a
control unit that coordinates the other control units. For example, the HCU computes
the division of the demanded driver torque into the demanded engine torque and the
demanded electric machine torque depending on the states of the vehicle such as SOC of
the high voltage battery. The demanded torques of the engine and the electric machine
are continuously transmitted via a bus system to the EMS and to the MCU that control
the engine and the electric machine respectively.

The introduction of HEVs has the following impacts on automotive embedded systems.
First, a failure of the embedded system of an HEV can potentially lead to hazards such as
explosion of the high voltage battery (caused by overloading of the high voltage battery)

1. Introduction 3

Figure 1.2: Components of an HEV powertrain such as the inverter or the high voltage
battery are controlled by a safety-critical embedded system.

and unintended vehicle movement (caused by the unintended provision of electric machine
torque). Such potential hazards can harm people, pollute the environment or damage
property. Thus, the embedded system of an HEV is safety-critical [6].

Second, the additional components of an HEV such as electric machine or high voltage
battery require additional control units. This further pursues the ongoing trend of in-
creasingly complex automotive embedded systems in terms of number of control units and
number of object code instructions. For example, the number of control units in vehicles
has increased from about 10 by the end 1980s to about 70 by the end of the 2000s. Also
the number of object code instructions of automotive embedded software has increased
from more than 107 by the end of the 1980s to more than 108 by the end of the 2000s [7].

1.1.2 Development of Safety-Critical Embedded Systems in HEVs

Due to their safety-criticality, the embedded system of an HEV is developed according to
safety standards such as the automotive functional safety standard ISO 26262 [2]. This
standard requires a rigorous development process in order to avoid the introduction of
systematic faults during development. For example, this development process comprises
additional activities such as analyses like FTA or FMEA that usually cannot be found in
standard development processes. Furthermore, the standard ISO 26262 requires embedded
systems to be able to detect random hardware faults during runtime in order to achieve
and maintain a safe state, if necessary. Runtime fault detection is usually achieved using
hardware redundancy, information redundancy or time redundancy.

The development of increasingly complex safety-critical embedded systems requires

1. Introduction 4

structured workflows and adequate tool support in order to cope with the complexity.
Whereas structured workflows allow systematic and comprehensible development, ade-
quate tool support allows supporting, partially automating or fully automating tedious,
time-consuming and error-prone tasks such as the generation of source code. Together,
structured workflows and adequate tool support are considered to increase product quality
and to reduce the required expenditure of time.

Among the tool-supported activities for safety-critical embedded system development
are (a) Early Hazard Analysis, (b) FTA, FMEA and Allocation of Safety Parameters based
on System Models as well as (c) Generation of Source Code and Models. In the following,
the state of the art with respect to (a), (b) and (c) as well as potential improvements are
summarized.

1.1.2.1 Early Hazard Analysis

Development of safety-critical embedded systems requires the early identification, assess-
ment and classification of potential hazards (this process is often denoted as PHA) based
on a functional description of the analysis subject and the according derivation of safety
requirements to mitigate and control the hazards.

Presently, there are many systematic approaches to early hazard analysis that in-
corporate the use of models in order to support the process of hazard analysis. Other
approaches foresee the use of diagrammatic languages to annotate the models required for
hazard analysis. Finally, few approaches foresee the provision of sophisticated tool support
allowing automatic checking of structured descriptions (e.g. models) to support the safety
engineer. Nevertheless, present tool support does not sustain automatic corrections and
is, thus, improvable.

1.1.2.2 FTA, FMEA and Allocation of Safety Parameters based on System
Models

Safety-critical embedded system development requires the annotation of a system model
describing the architecture and the behavior of the system under development. Archi-
tecture and behavior need to be analyzed and verified using analysis techniques such as
FTA and FMEA. Presently, there are many approaches supporting FTA and FMEA by
automatically generating fault trees and FMEA tables from the system model that is
complemented with information about the propagation of the system’s faults, failures as
well as their propagation. However, the approaches do not support the creation of the
underlying model and are, thus, improvable.

In line with the results of analyses, safety parameters like ASILs must be allocated
to the components or functions of the system under development. Once allocated, the
safety parameters define the rigor of the development process as well as required runtime
fault detection capabilities. Tool support exists aiming at automating this allocation
taking minimum cut sets as input. Nevertheless, present approaches do not consider the
requirements of the automotive domain or they lead to many different allocations that must
be investigated manually by the safety engineer. Thus, there is space for improvements.

1. Introduction 5

1.1.2.3 Generation of Source Code and Models

The development of safety-critical embedded systems is often supported by tools allowing
to generate source codes or models required for development. First, there are approaches
allowing to generate artifacts such as source codes (e.g. application software expressed in
C) or models (e.g. Simulink models) from models at higher levels of abstraction. However,
these approaches do not support the generation of SBSTs that can be used for runtime
detection of random hardware faults in microcontrollers from models at higher levels of
abstraction. Thus, these approaches are improvable.

Second, there are approaches foreseeing the generation of SBSTs that can be used for
the detection of random hardware faults in a microcontroller’s programmable resources
like CPU, RAM, ROM or periphery during runtime. Nevertheless, these approaches do
neither generate the SBSTs from more abstract models nor do they support the computer-
aided configuration of these SBSTs based on the same model. Thus, present approaches
are improvable with respect to these points.

1.2 Computer-Aided Model-Based Safety Engineering of
Automotive Systems

1.2.1 The MEPAS Project

This thesis is one of the outcomes of the MEPAS project. The involved project part-
ners were AVL List GmbH, the Institute for Technical Informatics at Graz University of
Technology and the Virtual Vehicle Competence Center. The goal of the project was to
design, implement and evaluate a seamless and systematic development environment for
automotive embedded systems.

Among the challenges were (1) the definition of a seamless and systematic development
process, (2) the optimization of the interactions between the different methods and tools
in order to obtain a seamless development environment, (3) the support of continuous val-
idation during the system development process and (4) the evaluation using an industrial
application.

1.2.2 The OASIS Tool

To advance the state of the art in the field of safety-critical embedded systems development
with respect to the identified potentials for improvement (see Section 1.1.2) and to support
achieving the goals of the MEPAS project (see Section 1.2.1), a tool prototype named
OASIS was designed and implemented. OASIS stands for AutOmotive Analysis and Safety
EngIneering InStrument.

This tool supports the application of a safety engineering workflow aligned with the
automotive safety standard ISO 26262. OASIS provides features for Computer-Aided
Model-Based Safety Engineering of Automotive Systems. These features allow creating
consistent and complete work products and to simplify and automate workflow steps.
More precisely, it provides support for (a) model creation and reuse, (b) analysis and
documentation and (c) configuration and code generation.

1. Introduction 6

OASIS represents an implementation of the major contributions of this thesis and was
used for their experimental evaluation using the case study of HEV development. These
contributions are listed in the following.

� Support for Safety-Relevant Model Creation

� Support for Generation of Fault Trees, FMEA Tables and ASIL Allocations

� Support for Configuration and Code Generation

Furthermore, OASIS supports features that are of utmost importance for industry and
pave the way for the industrial application of the approach, but are not considered to
belong to the major contributions of this thesis. These features are listed thereafter.

� Support for Document Generation

� Support for View Provision

� Support for Reuse of Modeling Elements

1.2.3 Organization of this Thesis

The thesis at hand is organized as follows. Chapter 2 reviews related work, identifies
potentials for improvements and defines this thesis’ major contributions. Chapter 3 de-
scribes the safety engineering workflow aligned with ISO 26262, the tool chain supporting
the safety engineering workflow as well as the tool OASIS that is part of the tool chain
and constitutes an implementation of the major contributions of this thesis. Chapter 4
describes the experimental evaluation of OASIS with respect to the major contributions
of the thesis using the case study of HEV development. Chapter 5 concludes the the-
sis and describes future work. Finally, Chapter 6 contains the publications that contain
descriptions of the major contributions of the thesis.

Chapter 2

Related Work

2.1 Early Hazard Analysis

Development of safety-critical embedded systems requires the identification, assessment
and classification of potential hazards based on a functional description of the analysis
subject (this activity is often denoted as PHA) and the according derivation of safety
requirements to mitigate and control the hazards. This can be done early in the devel-
opment process, even if detailed and quantitative information about the vehicle under
development is available insufficiently.

Section 2.1.1 surveys approaches to early hazard analysis foreseeing the use of models.
Section 2.1.2 surveys approaches to early hazard analysis foreseeing the use of models
that are annotated using diagrammatic languages. Finally, Section 2.1.3 lists approaches
foreseeing the use of sophisticated tool support that allows automatic checking.

2.1.1 Systematic Approaches Incorporating Models

The works described in [8, 9, 10, 11, 12, 13, 14] focus on defining systematic approaches
that support the intellectual process of identifying and classifying hazards and defining
means to mitigate or control them. All of them consider models to be a valuable aid for
the application of hazard analysis techniques. They are described thereafter.

In [8, 9], a technique called Actuator Based Hazard Analysis is proposed that can be
carried out early in the development process, when only little information concerning the
system implementation is available. The approach is based on the assumption that only
the actuators of the system can affect their environment. The method defines three fault
classes (commission, omission and stuck). Each system effect that describes an undesired
enactment of an actuator is defined by a fault class, an analyzed actuator and a user
intent. The method defines four severity classes (Catastrophic, Critical, Marginal and
Negligible). All severity classes are applied to each actuator, and the distribution between
the severity classes is determined. Based on distribution and weighting, a criticality level
can be determined that serves as input to the solvability analysis and the design selection
that allows choosing the design concept most likely to handle the identified hazards.

Another approach to PHA for automotive systems similar to the one required by
ISO 26262 is described in [10]. The approach starts with hazard identification based
on a system model. A PASSPORT diagram with supplementary descriptions is used as a

7

2. Related Work 8

system model. A further step of the approach is hazard classification according to severity,
controllability and exposure.

In [11], an ISO 26262-compatible approach to PHA is presented. The approach in-
corporates an architectural model and starts with (1) scope definition. In this phase,
safety-critical functions of a vehicle are illustrated in a block diagram including control
units, gateways, sensors, actuators and communication systems. The next step is (2)
the definition of a role model. A control unit can contribute to multiple functions. In
the context of different functions, the control unit may have different roles (e.g. actua-
tion, calculation, monitoring). The next step is (3) the creation of a tabular architectural
model. This starts with the mapping of functions onto architectural elements. Subse-
quently, severity, exposure and controllability are evaluated and an ASIL is determined
for each function. Then, roles (depending on functions) are assigned to each architectural
element. Finally, each architectural element has roles with corresponding ASILs.

The work proposed in [12] describes an approach to hazard analysis of safety-critical
software-intensive systems called STPA for early application in the development process.
The approach starts with the identification of hazards and related requirements or con-
straints. Subsequently, inadequate control actions, control flaws and inadequate control
executions that lead to inadequate control actions are identified. This is an input to a
design process aiming at creating new constraints, refining existing constraints, creating
a new design or modifying the existing design until all hazards are eliminated, mitigated
or controlled. This process is iterative. The approach relies on a model describing the
control flow of the system under analysis and causes of accidents. The applicability of the
approach is illustrated using a spaceflight application.

In [13], an approach to hazard analysis of SoS is described that is intended to be
applied early in the development process. This hazard analysis technique is focused on
the interfaces between the particular systems. The approach is based on a model of the
SoS as well as guidewords. Input/Output Analysis as well as Network Analysis are carried
out in the course of the hazard analysis. The probability of the occurrence of accidents
is assessed. A validation framework is established incorporating the definition of goals.
Based on these goals, metrics (e.g. percentage software safety requirements traceable to
hazards) are defined indicating the quality of the conducted hazard analysis. Some of the
defined metrics depend on knowledge gained from previous analyses.

A methodology for safety-critical systems development is proposed in [14]. Amongst
other activities, this methodology requires the identification of those functions that are
safety-critical. Thereafter, hazards are identified, risks are assessed and risk mitigation
means are defined and associated early in the development process. The work proposes
metrics based on the identified hazards. An example is the metric percentage software
hazards defined as number of software safety hazards divided by the number of system
safety hazards. The approach is evaluated using a railway application.

2.1.2 Incorporation of Diagrammatic Languages

In contrast to aforementioned related works, [15, 16, 17] explicitly refer to the use of
diagrammatic languages such as UML, SysML or EAST-ADL to support identification,
assessment and classification of hazards of a system and the derivation of safety require-
ments. The remainder of this section describes these related works.

2. Related Work 9

An approach combining hazard analysis and the use of a diagrammatic language to
create models is described in [15]. A subset of UML (component and deployment diagrams)
is used to support hazard analysis at an early design stage. Boolean logic is used to
formally model hazards and failure propagation. Starting with a component model of the
system to be analyzed, (1) fault trees for all system hazards are derived. Subsequently,
(2) the propagation of component failures is analyzed for each component. Then, (3)
related behavior of deployment nodes and hardware devices has to be derived. Finally,
(4) boolean equations can be used to apply analysis techniques. The approach allows
identifying the most serious hazards and failures and to determine components requiring a
more detailed safety analysis and assumed restrictions to fault propagation. This facilitates
the systematic derivation of safety requirements.

The work described in [16] aims at solving the problems posed by the derivation of
safety requirements and by conducting hazard analysis. The first step is the identification
and description of functions associated with the level under study. UML use cases and
scenarios are used for function description. The second step is the failure identification.
In this step, a technique is applied that is inspired by techniques such as FHA that is
typically applied early in the development process and makes use of guidewords. In the
third step, based on the analysis, new safety-related functional requirements are identified.
The approach was evaluated using an avionics use case.

An approach to PHA using EAST-ADL is proposed in [17]. A workflow is presented
that starts with the description of the functions (e.g. Cruise Control) of the vehicle, their
operation needs and other stakeholder requirements. Thereafter, a feature tree model is
used to structure the vehicle functions. After the allocation of requirements to the features,
the vehicle is well determined in terms of its requirements, functions and modes. This is
the input to the identification and classification of hazards based on the functions and
their related requirements. Finally, safety goals are derived constituting top-level safety
requirements.

2.1.3 Provision of Sophisticated Tool Support

In contrast to aforementioned related works, approaches that allow conducting early haz-
ard analysis in the context of more sophisticated tool support are defined in [18, 19, 20, 21].
These approaches are described in the following.

The authors of [18] describe a prototype tool named HazLog that aims at support-
ing hazard management in accordance with the safety standard Def(Aust) 5679. Hazard
management refers to documenting and tracking hazards and their associated resolutions
across the entire life cycle of a safety-critical system. Hazard management in accordance
with Def(Aust) 5679 requires the application of PHA that is applied early in the develop-
ment process. HazLog is built on the requirements management tool DOORS and makes
use of DOORS’ capability of storing and linking information. HazLog foresees the struc-
tured description of hazards in accordance with a conceptual model similar to a meta
model. Data integrity checks are supported by HazLog allowing to check the consistency
of the structured description.

The work proposed in [17] in combination with the tools [19] and [20] allows the
definition of properties using OCL. The combined approach allows the definition and
checking of properties on demand.

2. Related Work 10

Tools that aim at supporting the safety standard ISO 26262 are reviewed in [21].
Among the reviewed tools is a tool named Medini Analyze following an MBD approach.
It supports the definition of vehicle functions and the application of hazard analysis early
in the development process. The tool allows defining constraints using the OCL language
that can automatically be validated on demand. Besides a predefined set of checking rules,
users can define their own rules.

2.2 FTA, FMEA and Allocation of Safety Parameters based
on System Models

In course of the development of a safety-critical embedded system, a system model needs
to be annotated describing the architecture of the system under development, its interact-
ing environment and its behavior. The system architecture and the system behavior need
to be analyzed and verified using analysis techniques such as FTA and FMEA. Whereas
FTA is a deductive analysis technique, FMEA is an inductive analysis technique. The
techniques complement each other. Their qualitative application is especially useful in
early development phases, when less quantitative information about the vehicle, its em-
bedded system, its sensors and actuators is available. Section 2.2.1 surveys approaches
that attempt to support the application of FTA and FMEA by the generation of fault
trees and FMEA tables from system models.

Various safety standards attempt to quantify functional safety by defining discrete
safety parameters such as SIL (IEC 61508), ASIL (ISO 26262) or DAL (ARP4754a). In
line with the results of analyses, these parameters must be allocated to the functions or
components of the safety-critical embedded system under development. Once allocated,
they define the rigor of the required development process or determine the necessary
runtime fault detection capabilities of the safety-critical embedded system. The allocation
of these safety parameters to the functions or the components of a safety-critical embedded
system is challenging. Thus, tool-supported approaches exist aiming at automating this
allocation taking minimum cut sets as input. Section 2.2.2 presents two methods for the
allocation of safety parameters to functions or components of a system architecture.

2.2.1 Generation of Fault Trees and FMEA Tables from System Models

The approaches explained in [22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35] use
models describing structure and/or behavior of a system (typically of a computer-based
system that shall be dependable, reliable or safe). These models are complemented with
quantitative or qualitative information concerning the behavior of the system in presence
of faults (typically about faults and failures and their propagation). These underlying
models are used by all approaches as input to fault tree generation and/or FMEA ta-
ble generation, supporting the application of FTA and/or FMEA. The approaches are
described thereafter.

In [22], a graphical design language named RIDL for the modeling of digital systems
is presented. This language allows embedding redundancy and failure information within
block schematics. An algorithm is presented that allows generating fault trees from RIDL
models. This capability allows to do design and analysis in parallel.

2. Related Work 11

An approach that combines system architecture modeling and FTA is described in [23].
The approach allows continuous assessment of an evolving system design. A system model
is input to HAZOP. Each component of the system model is analyzed, and component
failure modes are determined. The HAZOP results in a model defining failure modes that
can be observed at the component outputs as results of internal component malfunctions
as well as deviating component inputs. In [24], an extension of [23] is presented that allows
FMEA table generation. In [25], the extended approach is integrated with an EAST-ADL
modeling tool using a model transformation technique. This allows generation of fault
trees and FMEA tables from EAST-ADL models.

In [26], an approach to fault tree generation from system models is presented. The
approach foresees performing reliability analysis in parallel with system design and using
UML to model fault-tolerant, software-intensive systems. A modeling methodology is pre-
sented requiring the use of stereotypes to express concepts such as hardware, redundancy,
spares, dependencies and reconfiguration. A three-pass algorithm is presented that allows
generating fault tree code.

The authors of [27] integrate architectural modeling languages with safety analysis
languages to improve consistency. When a safety-critical software architecture is devel-
oped, an initial architecture is proposed. This architecture is annotated and enriched with
safety-relevant information. Safety analysis of the architecture is carried out. Results in-
fluence the software architecture. This design and analysis process is cyclic. A meta model
for component-based SAAs is available allowing to complement architectural descriptions
with safety-relevant information such as safety objectives and mitigation means. Meta
models for FTA and FMECA are proposed. A tool implementation is presented allowing
the generation of FTA models and FMECA models from an SAA model.

A methodology combining safety analyses and a component-oriented, model-based
software engineering approach is described in [28]. The authors aim at supporting safety
analyses in the earlier stages of development. A hierarchical model for component-based
software engineering is available. The model allows defining a failure specification and a
failure realization as well as a functional specification and a functional realization for each
software component. Fault trees can be generated from the component model.

In [29] tool support for automated FMEA generation is presented. Input to the pre-
sented method is a component model of a system including so-called safety interfaces that
can automatically be generated. Safety interfaces can be seen as formal descriptions of
the components in terms of failures affecting the components. From the safety interface
descriptions, cFMEAs can be created for each component. Subsequently, the cFMEAs are
input to the generation of a system-level FMEA.

In [30], an approach to fault tree generation is described requiring the creation of a
model of the system under investigation. This model describes system structure, system
behavior as well as the flows of information and energy through the system. Moreover, top
events are defined for system parameters such as component inputs or component outputs.
This model is input to a trace-back algorithm generating a fault tree.

The authors of [31] present a novel methodology for the construction of fault trees from
system Simulink models. The methodology foresees the manual creation of a Simulink
model and the according complementation of the model with other information required
for fault tree generation. This model is input to fault tree generation.

The authors of [32] describe a tool set named COMPASS making use of a formal se-

2. Related Work 12

mantics for AADL. The approach foresees the creation of a hierarchical system model
describing the behavior of the system under normal conditions. This model is comple-
mented with an error model expressing how the system can fail. The presented tool set
includes the capability of generating fault trees and FMEA tables from the system model
and the error model. In [33], the COMPASS tool set was evaluated using the case study
of a satellite platform under development. Among other activities, a fault tree consisting
of 66 nodes and an FMEA table were automatically generated in course of this case study.

In [34], an approach to fault tree generation from UML models is presented. The
approach aims at supporting reliability analyses in early design stages, when the overall
system architecture is still subject to refinement. They separate application-independent
information from application-dependent information to sustain reuse and to avoid remod-
eling. To achieve this, separate UML-profiles for architectural models and application
models are used. These models are input to fault tree generation.

In [35], an approach to the automatic generation of static fault trees from system mod-
els that are specified with SysML is described. The authors use internal block diagrams
and sequence diagrams to describe a system. These diagrams are an input the automatic
generation of an RCM. Then, an SFTM is developed to generate static fault trees from
the RCM specifications. The approach is experimentally evaluated using the case study
of a fault-tolerant parallel processor.

2.2.2 Allocation of Safety Parameters

The works presented in [36, 37] address the problem of allocating safety parameters like
ASILs or DALs to the functions or the components of a system architecture under con-
sideration of safety and costs. In the following, these approaches are described.

In [36], an approach to the automatic allocation of SILs to subsystems and components
of complex hierarchical networked architectures is presented. The approach can be used
in the context of development using EAST-ADL. The approach supports ASIL decompo-
sition [2]. Thus, if a component contributes to a failure only in conjunction with other
components, it may receive a lower ASIL than a component directly causing the failure.
ASILs of functions as well as minimum cut sets extracted from fault trees are an input
to an algorithm computing possible allocations of ASILs to the components of a system
architecture. The most economic potential allocations are presented to the user.

In [37], a method and an according tool implementation for the allocation of DALs
to software and hardware functions of an aircraft according to ARP4754a (Guidelines for
Development of Civil Aircraft and Systems) are presented. The allocated DALs deter-
mine the applicable portfolio of techniques for the avoidance of systematic faults during
the development process according to DO178B. Thus, the allocated DALs affect the de-
velopment costs. Input to the presented method are identified and assessed system-level
hazards, minimum cut sets that can lead to the system-level hazards as well as additional
preferences of the safety engineer. Constraints are derived according to a formalization of
the DAL allocation rules and impose two constraint satisfaction problems. These prob-
lems are input to a constraint solver that is part of the presented tool implementation.
The tool implementation can be used to propose economic allocations or to verify existing
allocations.

2. Related Work 13

2.3 Generation of Source Code and Models

The development of safety-critical embedded systems requires the creation of different
kinds of models and source codes in course of the development process. This is often
supported by tools that automate the generation of source codes or models. First, there
are approaches foreseeing the automatic generation of artifacts like source codes or models
from other, more abstract models. For example, there are approaches foreseeing the
automatic generation of Lustre models or Simulink models from more abstract models like
UML models. Section 2.3.1 surveys approaches that attempt to support safety-critical
embedded systems development by automatically generating models or source code from
more abstract models.

Second, other approaches foresee the generation of non-intrusive SBSTs that can be
used for the runtime detection of random hardware faults in a microcontroller’s pro-
grammable resources like CPU, RAM, ROM or periphery by executing test patterns de-
fined using the processor’s instruction set [38]. In the field of safety-critical systems, this
is necessary to achieve and maintain a safe state, if necessary. SBSTs can be divided into
structural and functional SBSTs. Structural SBSTs proved to be more effective. However,
their applicability is limited because they require detailed structural information about the
microcontroller like gate-level net lists. In contrast, more abstract information about the
processor such as the ISA is sufficient to apply functional SBSTs. Thus, functional SBSTs
are more suited to be applied for industrial microcontrollers because vendors usually do
not release detailed structural information such as gate-level net lists to protect their IP.
Section 2.3.2 surveys approaches that aim at generating functional SBSTs for detecting
random hardware faults in microcontrollers.

2.3.1 Generation of Source Code and Models From Other Models

The works in [39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50] describe approaches foreseeing the
automatic generation of source codes from models or the automatic generation of models
from more abstract models to support safety-critical embedded systems development. The
remainder of this section is devoted to the description of these approaches.

In [39], a tool suite named SCADE is described. This tool provides a modeling en-
vironment that can be used to annotate models using a graphical language based on the
language Lustre. These models are input to SCADE’s certified code generator that can
generate source code for safety-critical systems. The author advocates the combination
of SCADE with UML-based languages like SysML and states that SCADE’s graphical
language and SysML complement each other well.

In [40], a layered approach to support the development of safety-critical, distributed
control systems using model and code generation is presented. The approach comprises (1)
a high-level modeling and simulation layer, (2) a middle-level programming and validation
layer and (3) a low-level execution layer. Simulink is used for (1), SCADE/Lustre is used
for (2), and (3) follows the principles of time-triggered architecture. The authors present
algorithms and tool support to traverse from one layer to the next. The extension of the
approach supporting a safe subset of Stateflow is described in [41].

In [42], an approach is outlined that foresees the translation of STATEMATE models
to SCADE/Lustre in order to allow generating source code for safety-critical embedded

2. Related Work 14

systems using SCADE’s certified code generator. STATEMATE allows defining behavior
in terms of activity charts and state charts. A translation strategy is presented. Further-
more, a concept for the verification of the translation is presented based on testing.

An approach to model-driven development of safety-critical real-time systems is pre-
sented in [43]. In this approach, the structure of a safety-critical system is annotated using
UML component diagrams. The behavior of the same system is annotated using RTSCs
that are enhanced UML state machines. A process is outlined that involves the use of a
model checker to verify an annotated system. Furthermore, the process foresees the use of
a code generator in order to generate source code for the safety-critical real-time system
from the UML/RTSC model.

In [44], an approach to the generation of code from models in order to support safety-
critical embedded system development is presented. The approach is user-extensible and
is based on the use of generic templates that cover recurring aspects of safety-critical
embedded software development. The code generator can adapt these templates depending
on the needs of the application annotated by an application engineer in the form of a model.
Furthermore, the application developer needs to develop application code. Finally, the
adapted templates together with the application code form the generated code.

In [45], an embedded software design flow is described foreseeing the use of UML for
the modeling of the whole system. A UML model is input to a model transformation
resulting in an executable and synthesizable Simulink CAAM. The Simulink CAAM is
then input to a code generator to generate source code. The approach supports the
automatic allocation of processors, the automatic mapping of threads onto processors and
the automatic insertion of Simulink modeling elements. Two case studies are presented to
show the applicability of the approach.

In [46], a tool-suite named OCARINA is presented supporting the development of
safety-critical distributed applications using AADL. The tool-suite allows the syntactic
and semantic analysis of AADL models. It supports the generation of ADA code from the
AADL models. Therefore, an ADA subset is used guaranteeing schedulability and safety.
Furthermore, OCARINA is open for tool integration and supports a middleware targeting
high-integrity systems.

In [47], a design approach is described relying on code generation techniques in order
to implement complex, adaptive and critical systems. The approach foresees the repre-
sentation of the system’s dynamic behavior using COAL. COAL allows (a) enumerating
the system’s operational modes, (b) representing mode switches as communicating mode
automata and (c) specifying valid and invalid architecture characteristics for each mode.
Resulting COAL models can be used by MyCCM-High Integrity (a component-based
framework dedicated to critical and adaptive systems) to generate AADL models that can
be further processed by OCARINA in order to generate source code.

The work presented in [48] is focused on component-based development of embedded
systems. A software development process is supported by a tool chain called Save-IDE. The
software development process is a topdown approach with an emphasis on reusability. It
consists of phases for design, analysis and realization. The tool chain allows component-
based design using the component model SafeCCM. For analysis, a Timed Automata
Editor, a simulator and a model-checker are available. Moreover, the Save-IDE allows
synthesizing from SafeCCM towards an abstraction layer that is capable of abstracting
different operating systems and hardware platforms.

2. Related Work 15

The authors of [49] present a software component model named ProCom that aims
at safety-critical real-time embedded systems. This software component model relies on
asynchronous, formal semantics. A code generation strategy is presented that allows
generating source code from models annotated using ProCom. Furthermore, an approach
to formalize the generated source code is presented. This allows using model checking to
prove that the generated code preserves the asynchronous semantics of ProCom.

In [50], an approach integrating diagnosis functionality such as SBST into a holistic
design space exploration of automotive E/E-architectures at system level is presented.
The aim of design space exploration is to support the system designer in finding optimal
system designs. A design flow is proposed that foresees the creation of a model describing
(a) an application representing an algorithmic problem description and (b) an architecture
representing available hardware components. In course of design space exploration map-
pings of (a) onto (b) are automatically generated using system synthesis that makes use of
constraint solvers. These mappings are optimized with respect to multiple and potentially
contradicting design objectives (e.g. test quality and energy consumption) while meeting
all given design constraints. The approach was experimentally evaluated using the case
study of an automotive subnet that requires that application of SBSTs.

2.3.2 Generation of Functional SBSTs for Microcontrollers

The works [51, 52, 53, 54, 55] present approaches to the automatic generation of functional
SBSTs for microcontrollers in order to support the detection of random hardware faults
during runtime. The approaches do not require low level descriptions such as gate level
net lists and are, thus, likely to be applicable for industrial microcontrollers.

In [51], an approach to functional SBST without assuming an a priori fault model
is described. The instruction set of the programmer’s manual is the main input to the
methodology. The instruction set with additional information is transformed to machine-
readable form. Subsequently, this description is input to a code generator that can generate
an instruction sequence enumerating all combinations of operations and systematically
selected operands. Also randomization is supported. In case of closed-loop testing, the
instruction sequences are able to perform SBST of the processor. In that case, signatures
are created from the test responses that can be compared to stored, golden signatures that
were computed offline.

The work described in [52] proposes a methodology for functional SBST of the periph-
erals of systems-on-chip. The approach does not rely on a fault model and exclusively uses
the instruction set of the included processor for testing. The approach uses a signature
compression method to compress test results in order to decrease memory consumption.
Each peripheral communicates with the processor via the system bus. Using this bus,
the processor can issue write commands and read the status of the peripheral. Therefore,
the processor has dedicated instructions to write or read the ports of the peripheral. The
approach was evaluated using a USART peripheral.

The authors of [53] describe another approach to functional SBST of microprocessors.
For testing, the cache of the processor is used. Before testing, a functional test is loaded
into the processor cache, while the processor is in test mode. Then the processor enters
the normal mode, and the test is executed. Finally, the processor enters test mode again,
and the results are unloaded. Test programs are so-called kernels that are able to generate

2. Related Work 16

pseudo-random instructions sequences as well as operands during runtime of the processor.
The test results are observable in the form of memory dumps at the end of the test. Then,
test results can be verified by a comparison with golden responses.

In [54], an approach to functional SBST of microprocessors is proposed. The method
uses an instruction library that describes the assembly language syntax of the micropro-
cessor to be tested by listing each instruction with the correct operands. Additionally, a
simulator is used that can evaluate the effectiveness of test programs with respect to a
coverage metric based on an RTL-level description of the processor. This metric is RTL-
instantiated statement coverage. A genetic algorithm uses the library and the simulator
to iteratively create new test programs and, finally, selects the best test program with
respect to the coverage metric and the test program length. The authors evaluated their
approach using a Leon2 microprocessor including a pipeline to show that the proposed
approach can achieve 100% RTL-instantiated statement coverage.

In [55], an approach to cache-based functional SBST is presented. A testing approach
named Load&Go foresees the insertion of code and data into the internal cache of the
processor and directing the execution flow on a particular code stream. Test results are
emitted as signatures via a serial port of the processor. This approach requires (a) test
programs and (b) knowledge about the cache contents required for the execution of each
test program. For (a), automatically generated, pseudo-random instruction sequences are
used and for (b) a test conversion strategy is defined that incorporates the use of an RTL
simulation. This RTL simulation is used to find out which cache contents need to be
loaded for which test. Thus, an executable RTL specification of the processor is required.

2.4 Potentials for Improvement

Based on the related work that is summarized in the Sections 2.1, 2.2 and 2.3, this sec-
tion identifies potentials for improvement with respect to reviewed related work. In the
following, the potentials for improvement are described.

2.4.1 Potential for Improvement 1

Related work concerning Early Hazard Analysis is presented in Section 2.1. Whereas the
works described in Section 2.1.1 are focused on describing systematic approaches foreseeing
the use of models, the works reviewed in Section 2.1.2 go one step further and define
systematic approaches foreseeing the use of diagrammatic languages such as UML, SysML
or EAST-ADL to annotate models using tool support. The works reviewed in Section 2.1.3
present more sophisticated tool support that allows checking structured descriptions (e.g.
models) of hazards and related artifacts for consistency and completeness to sustain the
safety engineer in identifying imperfections. Nevertheless, a potential improvement is to
support not only the automatic identification of imperfections but also the automatic
identification and application of corrective measures.

2.4.2 Potential for Improvement 2

Section 2.2.1 reviews approaches supporting the application of FTA and FMEA using fault
tree generation and/or FMEA table generation. Input to the generation of fault trees and

2. Related Work 17

FMEA tables are models describing structure and/or behavior of a system (typically of
a computer-based system that shall be dependable, reliable or safe). The models are
complemented with quantitative or qualitative descriptions of the behavior of the system
in presence of faults and failures (typically about faults and failures and their propagation).
However, a potential improvement is to support the application of FTA and FMEA not
only by generating fault trees and/or FMEA tables from a system model, but also to aid
the creation of the system model by the automatic identification of imperfections and the
automatic application of corrective measures.

2.4.3 Potential for Improvement 3

Section 2.2.2 reviews works aiming at providing tool support for the allocation of safety
parameters such as SILs, ASILs or DALs to the functions or components of a system
under development. One work is based on the use of minimum cut sets and makes use
of constraint solvers, but focuses on the aerospace domain and proposes a method for the
allocation of DALs to functions of an aircraft. Thus, this approach is not applicable for
the automotive domain that is constrained by different regulations. Another approach
considers the regulations applying to the automotive domain. However, this approach
is based on a proprietary algorithm requiring minimum cut sets and potentially leading
to many different allocations that must be manually investigated by the safety engineer.
Consequently, a potential improvement is a tool-supported method considering the regu-
lations of the automotive domain while making use of constraint solvers in order to lead
to a single, optimal solution.

2.4.4 Potential for Improvement 4

Section 2.3 reviews works that aim at supporting safety-critical embedded systems de-
velopment by generating source codes and models. The works reviewed in Section 2.3.1
present approaches foreseeing the generation of source codes from models or the gener-
ation of models from more abstract models. Although some of these works consider the
necessity for SBSTs, none consider generating source codes for SBSTs from models. The
works reviewed in Section 2.3.2 support the generation of functional SBSTs to support
runtime detection of random hardware faults in microcontrollers, but they do not con-
sider the computer-aided configuration and generation of SBSTs based on a model. Thus,
a potential improvement is to support safety-critical embedded systems development by
generating models from a more abstract model as well as to support the configuration of
SBSTs and the according generation of source codes for SBSTs from the same model.

2.5 Contribution and Significance

This section describes how this thesis contributes unveiling the potentials for improve-
ment described in Section 2.4. The major contributions of this thesis were implemented
and form the tool OASIS (see Section 3.2.2). OASIS is part of a tool chain (see Sec-
tion 3.2) supporting an automotive safety engineering workflow (see Section 3.1) aligned
with ISO 26262. Furthermore, OASIS’ features support Computer-Aided Model-Based
Safety Engineering of Automotive Systems comprising the following.

2. Related Work 18

2.5.1 Contribution 1: Safety-Relevant Model Creation

Safety-Relevant Model Creation unveils Potential Improvement 1 and Potential Improve-
ment 2. In particular, this contribution constitutes sophisticated tool support for the
elaboration of a model describing a system and complementing artifacts such as hazards,
faults and failures. This is achieved by automatic property checking and automatic model
correction. First, this further improves the application of early hazard analysis. Second,
this improves the application of FTA and FMEA in combination with support for fault
tree generation and FMEA table generation (see also Contribution 2). Contribution 1 is
described in Section 3.3.

2.5.2 Contribution 2: Generation of Fault Trees, FMEA Tables and
ASIL Allocations

Generation of Fault Trees, FMEA Tables and ASIL Allocations unveils Potential Im-
provement 2 and Potential Improvement 3. More precisely, this contribution supports
the application of FTA and FMEA by fault tree generation and FMEA table generation
combined with automatic property checking and automatic model correction (see also
Contribution 1). Furthermore, minimum cut sets can automatically be extracted from the
fault trees and can be input to a tool-supported method for the allocation of ASILs to the
components of an automotive system architecture. This method is based on the interpre-
tation of ASIL allocation as an optimization problem and foresees the use of a constraint
solver to solve this problem leading to a single, optimal ASIL allocation. Contribution 2
is described in Section 3.4.

2.5.3 Contribution 3: Configuration and Code Generation

Configuration and Code Generation unveils Potential Improvement 4. This contribution
constitutes an approach that foresees supporting safety-critical embedded systems devel-
opment by providing support for the generation of models and source code. In particular,
this approach foresees the generation of models from an abstract model in order to sup-
port application software development. Moreover, this approach foresees the computer-
aided configuration of safety drivers covering the functionality of SBSTs and the according
generation of source code based on the same abstract model to support basic software
development. Contribution 3 is described in Section 3.5.

Chapter 3

Computer-Aided Model-Based
Safety Engineering of Automotive
Systems

3.1 Safety Engineering Workflow

This section describes a safety engineering workflow (see Figure 3.1) aligned with the
safety standard ISO 26262. This workflow can be subdivided into multiple phases and
allows iterations. It covers activities required by ISO 26262’s Concept Phase, its System
Level Development Phase and its Software Level Development Phase (other activities and
phases required by ISO 26262 but not covered by the workflow are outside the scope of
this thesis). The remainder of this section describes the phases of the safety engineering
workflow.

3.1.1 Concept Phase

The Concept Phase of the safety engineering workflow foresees the functional description
of the vehicle under development and the application of PHA. PHA is an analysis tech-
nique that is qualitatively applied early in the development process. The application of
PHA aims at the identification, classification and assessment of potential hazards of a
newly developed vehicle. In addition, the derivation of top-level safety requirements and
functional safety requirements is required.

3.1.1.1 Definition of the Analysis Subject

Information about the vehicle under development is collected and modeled. Functions
of the vehicle (e.g. motoring or recuperative braking) are defined. Requirements on the
functions are determined and allocated (e.g. conditions for activation or deactivation). In
addition, relevant modes (e.g. drive, creep or acceleration) are identified for each function
and associated with the requirements.

19

3. Computer-Aided Model-Based Safety Engineering of Automotive Systems 20

Figure 3.1: The safety engineering workflow is aligned with ISO 26262 and supported by
a tool chain. The tools support the languages required for the annotation of the work
products of the workflow.

3. Computer-Aided Model-Based Safety Engineering of Automotive Systems 21

3.1.1.2 Identification of Hazards and Hazardous Events

Based on the definition of the analysis subject, possible malfunctions are identified. Haz-
ards are derived for each malfunction (e.g. unintended acceleration of the vehicle). There-
after, operational situations such as traffic situations (e.g. oncoming traffic on a highway
in a curve) and maintenance situations (e.g. vehicle at lifting ramp) are defined. Moreover,
use cases describing the behavior (e.g. overtaking or changing oil) of the related actors
(e.g. driver or mechanic) are described. Hazardous events are determined for relevant
combinations of hazards, use cases and operational situations. A library of relevant use
cases and operational situations from earlier workflow applications is used as input. If
necessary, this library is updated for future workflow applications. Relevant modes are
identified for each hazardous event. The criticality of each hazardous event is assessed in
terms of controllability, severity and exposure, and an ASIL is determined.

3.1.1.3 Derivation of Safety Goals

For each hazardous event classified as ASIL A, ASIL B, ASIL C or ASIL D, a safety
goal is derived and associated. Furthermore, a safe state is defined (e.g. switch open) for
each safety goal. Alternatively, a safe mode (e.g. limp home mode) is determined. The
determined safety goals are top-level safety requirements.

3.1.1.4 Definition of Functional Safety Concept

The functional safety concept is derived from the safety goals. The functional safety
concept consists of functional safety requirements on the automotive embedded system,
connected sensors and controlled actuators. Traces are created between safety goals and
derived functional safety requirements as well as among functional safety requirements, if
necessary.

3.1.2 System Level Development Phase

The System Level Development Phase focuses on the definition of the system architecture,
the allocation of requirements and the application of FTA and FMEA. The analysis tech-
niques complement each other. Their qualitative application is especially useful in early
development phases when less quantitative information about the vehicle, its embedded
system, its sensors and actuators is available. In line with results of analyses such as PHA
and FTA, an allocation of ASILs to the components of the system architecture must be
carried out. Once allocated, they determine applicable requirements of ISO 26262 and the
necessary safety measures of the system components to avoid unreasonable residual risk.

3.1.2.1 Definition of Technical Safety Concept

The technical safety concept is derived from the functional safety concept. The techni-
cal safety concept consists of technical safety requirements. Traces are created between
functional safety requirements and derived technical safety requirements as well as among
technical safety requirements, if necessary.

3. Computer-Aided Model-Based Safety Engineering of Automotive Systems 22

3.1.2.2 Definition of System Architecture

The system architecture is defined in terms of the embedded system, connected sensors
and controlled actuators. Moreover, the components of the environment interacting with
the sensors and actuators are modeled. Thereafter, functional and technical safety re-
quirements and functions are allocated to the components of the system architecture.

3.1.2.3 Investigation and Annotation of Faults and Failures

Information flows and energy flows through the system architecture and its environment
are investigated. Possible faults and failures are estimated, and their propagation is an-
alyzed and annotated. The estimated faults can either be random hardware faults or
potential process faults introduced during the development process. Moreover, it is in-
vestigated and annotated how the failures lead to the malfunctions of the system. The
system architecture is analyzed and verified using qualitative FTA and FMEA. Finally,
ASILs are allocated to the components of the system architecture.

3.1.3 Software Level Development Phase

The Software Level Development Phase is focused on the derivation of software require-
ments and the according implementation, generation and integration of software. Devel-
oped software must be divided into application software and basic software designed and
implemented in different manners. Whereas application software determines the behavior
of the vehicle functions, basic software fulfills tasks like hardware abstraction, initial-
ization, communication, detection of random hardware faults and error-handling. The
part of the basic software for a component of the system architecture dedicated to safe
initialization, runtime fault detection and error-handling is referred to as safety driver.
Thereafter, the subphases of the Concept Phase, the System Level Development Phase
and the Software Level Development Phase are described.

3.1.3.1 Specification of Embedded Software

It is defined which components of the system architecture are required to execute soft-
ware. Requirements (including safety requirements) on the application software and the
basic software are defined and allocated to these components. Safety drivers are config-
ured for the components of the system architecture that are required to execute basic
software. Traceability links are created if a software requirement is derived from any other
requirements (e.g. from the functional or technical safety concept). A report is generated
that lists software requirements, describes their allocation and the work products of the
preceding workflow phases.

3.1.3.2 Generation of Simulink Models

Simulink models are generated to serve as basis for application software development.
They reflect the structure of the components of the system architecture required to execute
application software.

3. Computer-Aided Model-Based Safety Engineering of Automotive Systems 23

3.1.3.3 Definition of Behaviors

Application software is designed and implemented based on the generated Simulink mod-
els for the components of the system architecture. Allocated software requirements are
considered. The enhanced and refined Simulink models determine the behavior of the
components required to execute application software.

3.1.3.4 Generation of Source Codes

Program code is generated from the enhanced and refined Simulink models for the com-
ponents of the system architecture required to execute the application software.

3.1.3.5 Generation of Safety Drivers

Based on their configurations, safety drivers are generated for the components of the
system architecture required to execute basic software. These safety drivers determine
the random hardware fault detection capabilities and error-handling capabilities of the
components of the system architecture that are required to execute basic software.

3.1.3.6 Implementation and Integration of Source Codes

Program code is manually implemented. Afterwards, program code for application soft-
ware and code for basic software like RTOS, legacy code, I/O-related code or generated
safety drivers is integrated. This is done by considering allocated basic software require-
ments for the components of the system architecture required to execute basic software.

3.1.3.7 Compilation and Linking of Executable

The created software is compiled and linked to form executables for the components of
the system architecture required to execute software.

3.2 Supporting Tool Chain

The safety engineering workflow described in Section 3.1 is supported by a tool chain. The
tools of the tool chain support different languages required for the annotation of the work
products of the workflow. Figure 3.1 maps the phases of the safety engineering workflow
on the tools and languages necessary for the workflow application. The remainder of this
section describes the tools, languages and the mapping.

3.2.1 Papyrus for UML

Papyrus for UML [19] is an Eclipse-based open-source tool that allows UML modeling
as well as the definition of UML profiles. An open-source plugin is available that allows
creating EAST-ADL models. EAST-ADL is a domain-specific language and adapted to
the needs of the automotive domain. It is diagrammatic such as UML. Its abstract syntax
is defined by its meta model, and its semantic domain and semantic mapping are defined
using natural language. EAST-ADL allows (a) describing a system architecture from
different viewpoints and on different levels of abstraction, (b) to express work products

3. Computer-Aided Model-Based Safety Engineering of Automotive Systems 24

Figure 3.2: The tool OASIS is part of a tool chain required for the application of the safety
engineering workflow. OASIS supports the application of the safety engineering workflow.
Its support for (a) Safety-Relevant Model Creation, its support for (b) Generation of Fault
Trees, FMEA Tables and ASIL Allocations and its support for (c) Configuration and Code
Generation are the major contributions of this thesis.

3. Computer-Aided Model-Based Safety Engineering of Automotive Systems 25

and artifacts required by ISO 26262, (c) to describe relations and dependencies and (d)
to structure the resulting information. Papyrus for UML is used to annotate a central
EAST-ADL model in the course of the safety engineering workflow phases defined in the
Sections 3.1.1, 3.1.2 and 3.1.3.1. This central EAST-ADL model reflects all the work
products created in the course of the aforementioned workflow phases in an organized and
structured manner.

3.2.2 OASIS

OASIS is a plugin for the tool Papyrus for UML and supports Computer-Aided Model-
Based Safety Engineering of Automotive Systems. Its modules and its relations to other
tools of the tool chain are illustrated in Figure 3.2. OASIS exploits the central EAST-
ADL model (contains the work products in an organized and structured manner) and
the EAST-ADL meta model (defines rules for the structure of the information) in order
to support the application of the safety engineering workflow. The support is described
thereafter.

� Support for Model Creation and Reuse is provided by the modules Selective Interface,
Property Checker and Model Corrector. They support creation and maintenance of
a complete and consistent EAST-ADL model and are especially useful during the
workflow phases described in the Sections 3.1.1, 3.1.2 and 3.1.3.1. This is achieved by
providing (a) systematic reuse of modeling elements, (b) automatic checking of the
model and (c) automatic suggestion and application of corrective measures. OASIS’
support for Model Creation and Reuse comprises support for Safety-Relevant Model
Creation, which is a major contribution (see Section 2.5.1) of this thesis and is
described in Section 3.3.

� Support for Analysis and Documentation is provided by OASIS’ modules View
Provider, FTA Generator, FMEA Generator, ASIL Allocator and Report Gener-
ator. Taking the EAST-ADL model as input, they support continuous analyses,
communication and reviews and are especially useful during the workflow phases
described in the Sections 3.1.1, 3.1.2 and 3.1.3.1. This is achieved by providing (a)
automatic extraction of views, (b) automatic generation of fault trees, (c) automatic
generation of FMEA tables, (d) automatic and optimal ASIL allocation and (e) auto-
matic report generation. OASIS’ support for Analysis and Documentation comprises
support for Generation of Fault Trees, FMEA Tables and ASIL Allocations, which is
a major contribution (see Section 2.5.2) of this thesis and is described in Section 3.4.

� Support for Configuration and Code Generation is provided by OASIS’ modules
Safety Driver Generator and Simulink Model Generator. They ease design and
implementation of software in consistency with the EAST-ADL model and are es-
pecially useful during the workflow phases described in the Sections 3.1.3.2 and
3.1.3.5. This is achieved by providing (a) computer-aided configuration and auto-
matic generation of safety drivers and (b) automatic generation of Simulink models.
OASIS’ support for Configuration and Code Generation is a major contribution (see
Section 2.5.3) of this thesis and is described in Section 3.5.

3. Computer-Aided Model-Based Safety Engineering of Automotive Systems 26

3.2.3 Simulink

Simulink [56] is tightly integrated with Matlab and is a development environment for
multidomain simulation and model-based design of dynamic systems. A graphical mod-
eling language is available containing sinks, sources, linear blocks, nonlinear blocks and
connectors. Add-ons for Simulink can be built that allow extending Simulink to other
model domains by providing blocksets. Simulink is used for behavioral modeling in the
course of the workflow phase defined in Section 3.1.3.3. The resulting models determine
the behavior of the system components required to execute application software.

3.2.4 TargetLink

TargetLink [57] is an add-on to Simulink supporting a specialized blockset for code genera-
tion. TargetLink allows the generation of C-code from models created using this blockset.
C is a general-purpose programming language frequently used for embedded software de-
velopment. TargetLink allows designing control algorithms and generating production
code for every microcontroller supported by a compiler and a linker. TargetLink is used
in the workflow phase defined in Section 3.1.3.4 to generate C-code.

3.2.5 Software Development IDEs

Software development IDEs support developing C-programs, compilation, linking and de-
bugging. Examples of embedded software development IDEs are Code Composer Studio
[58], Code Warrior [59] or µVision [60]. Typically, IDEs are provided by the vendors of
microcontrollers (e.g. Code Composer Studio or Code Warrior) or provided by third par-
ties (e.g. µVision). Software development IDEs are used in the workflow phases described
in the Sections 3.1.3.6 and 3.1.3.7.

3.3 Safety-Relevant Model Creation

The application of the Concept Phase (see Section 3.1.1), the System Level Develop-
ment Phase (see Section 3.1.2) and the early Software Level Development Phase (see
Section 3.1.3) of the safety engineering workflow requires (a) the capability to describe
a system and related artifacts using the domain-specific language EAST-ADL, (b) the
capability to assess the quality of the resulting model with respect to consistency and
completeness and (c) the capability to consistently maintain the model depending on dis-
cussions, reviews, analyses and changes. These activities are typically performed by the
safety engineer. OASIS provides Support for Property Checking (see Section 3.3.1) and
Support for Model Correction (see Section 3.3.2) to aid these activities.

3.3.1 Support for Property Checking

Contemporary vehicles, their embedded systems, sensors and actuators are complex. This
complexity results in a large set of information that needs to be managed during the
application of the safety engineering workflow. The application of the safety engineering
workflow and the complete and consistent projection of its results on the EAST-ADL
model are challenging, cumbersome and error-prone.

3. Computer-Aided Model-Based Safety Engineering of Automotive Systems 27

OASIS’ Property Checker allows automatically checking for properties that indicate
the quality of the resulting model. This allows the continuous assessment of the model
with respect to completeness and unambiguity. Furthermore, it sustains discussing and
reviewing. The Property Checker is exhaustively described in Section V of Publication 1,
Section 4 of Publication 2 and Section 5.2 of Publication 5, which can be found in Section 6
of this thesis.

3.3.2 Support for Model Correction

If violated, properties unveil an erroneous application of the safety engineering workflow,
the EAST-ADL model needs to be corrected accordingly. To ease the correction of errors,
it is proposed to support the identification and application of proper correction measures.

OASIS’ Model Corrector can take corrective actions if the model is incomplete or
ambiguous. Thus, the creation and the maintenance of a consistent and complete model is
supported. The Model Corrector is exhaustively described in Section VI of Publication 1,
Section 5.1 of Publication 2 and Section 5.3 of Publication 5, which can be found in
Section 6 of this thesis.

3.4 Generation of Fault Trees, FMEA Tables and ASIL
Allocations

The application of the System Level Development Phase (see Section 3.1.2) of the safety
engineering workflow requires (a) continuous analyses as well as (b) communication of
safety engineers, domain experts and other stakeholders based on the contents of the
model. Languages like EAST-ADL are complex, and the evolving model is difficult to
assess. Thus, it is important to support activities like analyzing, discussing and review-
ing. These activities can be aided by OASIS’ Support for Fault Tree Generation (see
Section 3.4.1), Support for FMEA Table Generation (see Section 3.4.2) and Support for
Automatic and Optimal Allocation of ASILs (see Section 3.4.3).

3.4.1 Support for Fault Tree Generation

The qualitative application of FTA is required to analyze and verify the system archi-
tecture. For the application of qualitative FTA, fault trees are required. A manual con-
struction of fault trees that are consistent with the EAST-ADL model (describes PHA
results and system architecture) is cumbersome and error-prone. Furthermore, extracting
the minimum cut sets from the fault trees is challenging. Thus, it is proposed to automate
the construction of fault trees and the extraction of minimum cut sets.

OASIS’ FTA Generator allows the automated generation of fault trees from the model
and the according extraction of minimum cut sets. This supports the application of FTA
and the assessment of the system architecture’s robustness against faults. Furthermore,
it sustains discussing and reviewing. The FTA Generator is exhaustively described in
Section 5.2 of Publication 2 and Section 6.2 of Publication 5, which can be found in
Section 6 of this thesis.

3. Computer-Aided Model-Based Safety Engineering of Automotive Systems 28

3.4.2 Support for FMEA Table Generation

The safety engineering workflow foresees the qualitative application of FMEA to analyze
and verify the system architecture. For the application of qualitative FMEA, an FMEA
table is required. A manual construction of an FMEA table that is consistent with the
EAST-ADL model (contains PHA results and a description of the system architecture) is
cumbersome and error-prone. Thus, it is proposed to automate FMEA table construction.

OASIS’ FMEA Generator allows the consistent generation of FMEA tables based on
information contained in the model. This supports the application of FMEA. Moreover,
a generated FMEA table is valuable for discussions and reviews. The FMEA Generator
is exhaustively described in Section 5.2 of Publication 2 and Section 6.3 of Publication 5,
which can be found in Section 6 of this thesis.

3.4.3 Support for Automatic and Optimal Allocation of ASILs

The safety engineering workflow requires the allocation of ASILs to the components of the
system architecture. The allocated ASILs determine applicable requirements of ISO 26262
and the necessary safety measures to avoid unreasonable residual risk. The requirements
of ISO 26262 affect the rigor of the development process of the system components (e.g.
the portfolio of applicable verification techniques). The necessary safety measures de-
termine the runtime fault detection capabilities of the system components. Thus, the
allocated ASILs strongly affect system safety. Furthermore, the allocated ASILs influence
development costs and costs per piece.

An allocation of ASILs to the components of the system architecture shall, therefore,
(1) assure that the required level of functional safety is achieved and (2) permit an eco-
nomic solution with respect to development costs and cost per piece. Manual elaboration
of an ASIL allocation that fulfills these requirements is complex, cumbersome and should
be tool-supported.

OASIS’ ASIL Allocator allows inspecting the constraints on the allocation of ASILs to
the components of the system architecture based on PHA and FTA results. Furthermore,
it allows the automatic allocation of ASILs to the components of the system architecture.
This makes a manual elaboration superfluous. The ASIL Allocator is exhaustively de-
scribed in Section 5 of Publication 3 and Section 6.4 of Publication 5, which can be found
in Section 6 of this thesis.

3.5 Configuration and Code Generation

The application of the later Software Level Development Phase (see Section 3.1.3) of
the safety engineering workflow requires the design and the implementation of software
for the components of the system architecture. These are challenging tasks, and it is
difficult to design and implement software that is consistent with the EAST-ADL model.
These activities can be aided by OASIS’ Support for Generation of Simulink Models
(see Section 3.5.1) and Support for Configuration and Generation of Safety Drivers (see
Section 3.5.2).

3. Computer-Aided Model-Based Safety Engineering of Automotive Systems 29

3.5.1 Support for Generation of Simulink Models

OASIS’ Simulink Model Generator allows the automated generation of Simulink mod-
els from the EAST-ADL model. This ensures consistency between EAST-ADL model
and Simulink models and is the basis for the subsequent description of behaviors (im-
plementation of the functions). The Simulink Model Generator is exhaustively described
in Section IV of Publication 4 and Section 7.1 of Publication 5, which can be found in
Section 6 of this thesis.

3.5.2 Support for Configuration and Generation of Safety Drivers

OASIS’ Safety Driver Generator allows the computer-aided configuration and generation
of safety drivers for safe initialization, runtime-testing and error-handling of microcon-
trollers. This module extracts information from the EAST-ADL model, guides the safety
engineer, updates the model and generates program code. The Safety Driver Generator in-
cluding its support for the industrial lock-step multi-core microcontroller TMS570LS20216
[58] is exhaustively described in Section V of Publication 4 and Section 7.2 of Publication 5,
which can be found in Section 6 of this thesis.

Chapter 4

Experimental Evaluation

4.1 Case Study of HEV Development

The tool OASIS including its support for (a) Safety-Relevant Model Creation, (b) Gen-
eration of Fault Trees, FMEA Tables and ASIL Allocations as well as (c) Configuration
and Code Generation was designed and implemented as a plugin for the tool Papyrus
as described in the Sections 3.3, 3.4 and 3.5. A tool chain was set up as described in
Section 3.2 (Code Composer Studio was chosen as software development IDE).

The presented approach was experimentally evaluated using the case study of HEV
[4] development. One of the main characteristics of HEVs is the addition of an electric
machine supporting the classic combustion engine providing supplementary or substitutive
torque. If such a vehicle uses its electric machine as an electric motor to support the
combustion engine, it discharges the battery. If the electric machine is used as a generator
to regain energy while the vehicle decelerates (recuperation), it recharges the battery
and/or supplies the auxiliaries with electrical energy.

The application of the safety engineering workflow for the case study of HEV develop-
ment is described in Section VII of Publication 1, Section 6 of Publication 2, Section 6 of
Publication 3, Section VI of Publication 4 and Section 8.1 of Publication 5. Furthermore,
it is described how OASIS’ modules that realize (a) Safety-Relevant Model Creation, (b)
Generation of Fault Trees, FMEA Tables and ASIL Allocations as well as (c) Configu-
ration and Code Generation supported the workflow application and the creation of an
HCU demonstrator based on the multi-core microcontroller TMS570LS20216 [58].

4.2 Complexity of Resulting Model and Derived Entities

While the safety engineering workflow was applied for the case study of HEV development,
an EAST-ADL model was created and different entities were derived from the model. This
section presents metrics together with values characterizing the complexity of the resulting
model and the derived entities. These metrics and values fall into different categories and
are presented in Table 4.1.

Category (1) describes the complexity of the resulting EAST-ADL model. Whereas
the workflow was only applied for a part of the HEV powertrain consisting of 3 sensors, 3
actuators and 4 control units, the resulting EAST-ADL contained 957 modeling elements.

30

4. Experimental Evaluation 31

The large number of modeling elements is not ascribable to EAST-ADL that allowed
appropriately structuring the information and to efficiently express the work products.
On the contrary, the large number of modeling elements is ascribable to the complexity of
an HEV powertrain. This complexity is existent and challenging, regardless whether an
EAST-ADL model is used or not.

The rigor of the information structure of the EAST-ADL model was exploited by OA-
SIS to support the creation of consistent and complete work products and to simplify
and automate workflow steps. The categories (2), (3) and (4) describe the complexity of
the entities automatically derived to support the workflow application thanks to OASIS’
support for (a) Safety-Relevant Model Creation, (b) Generation of Fault Trees, FMEA
Tables and ASIL Allocations as well as (c) Configuration and Code Generation (the ma-
jor contributions of this thesis). The presented numbers underpin the value of OASIS. For
example, a manual identification of 152 improper modeling elements or a manual elab-
oration of fault trees with 245 nodes would have been time-consuming and error-prone
tasks. Thus, (a), (b) and (c) lead to decreased expenditure of time and improved product
quality due to automation and can potentially help the industry to create safe products
at affordable prices. Additional metrics that illustrate OASIS’ value with respect to other
capabilities can be found in Section 8.2 of Publication 5.

(1) EAST-ADL Model Metrics Value

of Modeled Sensors 3
of Modeled Actuators 3
of Modeled Control Units 4
of EAST-ADL Modeling Elements 957

(2) Metrics for Safety-Relevant Model Creation Value

of Property Violations 160
of Violating Modeling Elements 152

(3) Metrics for Generation of Fault Trees, FMEA Tables and ASIL Allocations Value

of Generated Fault Trees 6
of Generated Fault Tree Nodes 245
of Extracted Minimum Cut Sets 45
of Generated FMEA Table Lines 192
of Derived Constraints for ASIL Allocation 43
of Automatically Allocated ASILs 10

(4) Metrics for Configuration and Code Generation Value

of Generated Simulink Model Ports 5
of Requirements from Safety Driver Configuration 44
of Lines of Code of Generated Safety Driver 4224

Table 4.1: This table presents metrics and values characterizing the complexity of the
HEV use case and automatically derived entities with respect to the major contributions
of this thesis.

4.3 Assessment of Benefits

Based on the case study of HEV development, this section systematically evaluates the
major contributions of this thesis with respect to benefits.

4. Experimental Evaluation 32

First, evaluation criteria were defined to allow a systematic evaluation. The criteria
Model Creation and Model Maintenance concern the ability to efficiently elaborate an
EAST-ADL model by creating and manipulating modeling elements. The criteria Model
Consistency and Model Completeness are related to the capability of assessing the model
with respect to particular characteristics indicating quality. The criteria Model Exami-
nation, Application of Analyses, Application of Reviews and Communication concern the
ability of validating the information contained in the model. Finally, the criterion Software
Development describes the capability of bridging the gap between system and software de-
velopment activities. The evaluation criteria are listed in the columns of Table 4.2.

Second, the achieved benefits of the modules Property Checker, Model Corrector (re-
alize support for Safety-Relevant Model Creation), FTA Generator, FMEA Generator,
ASIL Allocator (realize support for Generation of Fault Trees, FMEA Tables and ASIL
Allocations), Simulink Model Generator and Safety Driver Generator (realize support for
Configuration and Code Generation) were assessed. These modules realize the major con-
tributions of this thesis and are listed in the rows of Table 4.2. The achieved benefits were
classified as high (3), medium (2), low (1) or not applicable (-). Each cell of Table 4.2
contains the classification of a module with respect to an evaluation criterion.

M
o
d

el
C

re
at

io
n

M
o
d

el
M

ai
n
te

n
an

ce

M
o
d

el
C

on
si

st
en

cy

M
o
d

el
C

om
p

le
te

n
es

s

M
o
d

el
E

x
am

in
at

io
n

A
p

p
li

ca
ti

on
of

A
n

al
y
se

s

A
p

p
li

ca
ti

on
of

R
ev

ie
w

s

C
om

m
u

n
ic

at
io

n

S
of

tw
ar

e
D

ev
el

op
m

en
t

(a) Safety-Relevant Model Creation

Property Checker 3 3 3 2 2 2 - - 1 16
Model Corrector 3 3 3 1 2 2 - - 1 15

(b) Generation of Fault Trees, FMEA Tables and ASIL Allocations

FTA Generator - - 2 1 3 3 2 2 - 13
FMEA Generator - - 2 1 3 3 2 2 - 13

ASIL Allocator 1 1 2 1 3 3 2 2 - 15

(c) Configuration and Code Generation

Simulink Model Generator - - 3 1 - - - - 3 7
Safety Driver Generator 1 1 3 1 - - 2 - 3 11

8 8 18 8 10 10 8 6 8

Table 4.2: Depending on evaluation criteria, the achieved benefits of OASIS’ modules
realizing the major contributions of this thesis were assessed and classified as high (3),
medium (2), low (1) or not applicable (-) based on experience from the HEV use case.

The best results were achieved with respect to the evaluation criteria (1) Model Con-
sistency, (2) Application and Analyses and (3) Model Examination. Considering the com-
plexity of an HEV powertrain, this is justified by the fact that (1) the elaboration of

4. Experimental Evaluation 33

a consistent model, (2) the manual creation of means supporting analyses and (3) the
examination of particular details are time-consuming and error-prone tasks.

According to the results, the most valuable OASIS modules realizing the major con-
tributions of this thesis were (a) the Property Checker, (b) the Model Corrector and (c)
the ASIL Allocator. Considering the complexity of an HEV powertrain, this is justified
by the fact that (a) and (b) provide support for a lot of phases of the presented workflow
and (c) replaces the manual application of a highly safety-relevant development step with
an automatic and optimal application of the same working step.

An enhanced assessment of benefits comprising an additional evaluation criterion as
well as other modules of OASIS can be found in Section 8.3 of Publication 5.

Chapter 5

Conclusion and Future Work

5.1 Conclusion

The automotive industry experiences a trend towards powertrain electrification to reduce
emissions, improve drivability and improve fuel economy. This trend leads to new pow-
ertrain components such as electric machines or high voltage batteries. An attempt to
combine the advantages of traditional ICE cars and EVs are HEVs.

The sensors and actuators of an HEV are controlled by an embedded system consisting
of dozens of control units that are connected via automotive bus systems. Faults and
failures of this embedded system can lead to severe hazards such as fire or explosion of
the high voltage battery or unintended vehicle movement. Thus, the embedded system of
an HEV is safety-critical. Furthermore, the additional components of an HEV pursue the
complexity increase of automotive embedded systems.

To appropriately develop safety-critical embedded systems for HEVs, the functional
safety standard ISO 26262 for the automotive domain needs to be considered. This stan-
dard requires a rigorous development process to avoid the introduction of systematic faults
during development. Furthermore, the standard requires that safety-critical embedded
systems are capable of detecting random hardware faults during runtime to be able to
achieve and maintain a safe state, if necessary.

Adequate measures to cope with the increasing complexity of safety-critical embedded
systems are the definition of structured workflows to allow systematic and comprehensible
development as well as the provision of adequate tool support in order to automate tedious
and error-prone work steps. Both measures are considered to improve product quality and
reduce the required expenditure of time.

Among the typically tool-supported activities for safety-critical embedded systems
development are (a) Early Hazard Analysis, (b) FTA, FMEA and Allocation of Safety
Parameters based on System Models as well as (c) Generation of Source Code and Models.
Based on reviewed literature, potentials for improvements with respect to (a), (b) and
(c) were identified. This thesis unveils these potentials and provides the following main
contributions:

� Support for Safety-Relevant Model Creation

� Support for Generation of Fault Trees, FMEA Tables and ASIL Allocations

34

5. Conclusion and Future Work 35

� Support for Configuration and Code Generation

The tool OASIS supports Computer-Aided Model-Based Safety Engineering of Au-
tomotive Systems and constitutes an implementation of these contributions. OASIS is
part of a tool chain supporting an automotive safety engineering workflow. Furthermore,
OASIS has features (Document Generation, View Provision, Reuse of Modeling Elements)
that do not belong to the main contributions of this thesis but are of utmost importance
for the industrial application of the approach.

The case study of HEV development was used to experimentally evaluate OASIS with
respect to (1) Support for Safety-Relevant Model Creation, (2) Support for Generation of
Fault Trees, FMEA Tables and ASIL Allocations as well as (3) Support for Configuration
and Code Generation. Although the presented approach did not replace the intellectual
process of safety engineering, it turned out that (1), (2) and (3) lead to decreased ex-
penditure of time and improved product quality due the simplification and automation of
workflow steps. This can potentially help the industry to create safe products at affordable
prices.

5.2 Future Work

This thesis contributes to the state of the art by bringing improvements with respect to
(a) Early Hazard Analysis, (b) FTA, FMEA and Allocation of Safety Parameters based on
System Models as well as (c) Generation of Source Code and Models. This is achieved by
providing (1) Support for Safety-Relevant Model Creation, (2) Support for Generation of
Fault Trees, FMEA Tables and ASIL Allocations as well as (3) Support for Configuration
and Code Generation. Nevertheless, there is space for future work and further improve-
ments. Future work with respect to the major contributions is described thereafter.

5.2.1 Safety-Relevant Model Creation

OASIS provides Support for Safety-Relevant Model Creation. First, OASIS allows auto-
matically checking an evolving EAST-ADL model for properties indicating consistency and
completeness of the model. A potential improvement with respect to property checking
is a multi-level mechanism checking for two different kinds of properties. The violation
of the first category of properties could result in warnings indicating potential or easy
imperfections. The violation of the second category of properties could result in error
messages indicating severe imperfections.

Second, OASIS also supports the automatic proposition and application of corrective
measures. Presently, the suggestion of corrective measures solely depends on the meta
model of the model that is subject to correction. This could be further improved by
incorporating ontologies that describe domain-specific knowledge. The suggested correc-
tions could depend on the meta model and on the ontologies resulting in more precise
suggestions of corrective measures.

5.2.2 Generation of Fault Trees, FMEA Tables and ASIL Allocations

OASIS provides Support for Generation of Fault Trees, FMEA Tables and ASIL Allo-
cations. First, it allows generating fault tress and an FMEA table from an EAST-ADL

5. Conclusion and Future Work 36

model. This supports the verification of the system architecture and the definition of
proper functional and technical safety concepts. The present modeling approach could
be improved by foreseeing the creation of traces from the faults and failures of the error
model to the functional and technical safety requirements. This mapping could define
which requirements aim at detecting or handling of which faults or failures. Further-
more, the generated fault trees could contain information about these safety requirements.
Moreover, the generated FMEA tables could contain an additional column listing safety
requirements that aim at detection or handling causative faults.

Second, OASIS supports automatic and optimal allocation of ASILs. This approach
to ASIL allocation takes minimum cut sets extracted from qualitative fault trees as input.
This method could be enhanced to consider also the probability of occurrence of faults and
failures in order to achieve a more precise ASIL allocation. However, this would require
the use of quantitative fault trees as input.

5.2.3 Configuration and Code Generation

OASIS provides Support for Configuration and Code Generation. First, it allows auto-
matically generating Simulink models from a more abstract EAST-ADL model in order to
support application software development. EAST-ADL is an ADL and has, thus, limited
capabilities for behavioral modeling. Consequently, the generation of Simulink models
is presently limited to structural elements such as containers and ports. This could be
further improved by supplementing the EAST-ADL meta model with behavioral language
constructs for modeling of activities or state-based behavior. Models based on such an
enhanced EAST-ADL meta model could be used to generate Simulink models containing
also behavioral language constructs like state machines annotated in Simulink/Stateflow.

Second, the configuration and generation of safety drivers is supported by OASIS to
sustain basic software development. This could be enhanced in order to configure and
generate also other parts of the basic software such as communication drivers and RTOS
to provide a holistic approach to code generation.

Chapter 6

Publications

This chapter contains five publications by the author of this thesis presenting the approach
described in Chapter 3 and the results illustrated in Chapter 4 in greater detail. Whereas
the Publications 1, 2, 3 and 4 are focused on particular contributions of this thesis, Pub-
lication 5 is an invited paper under review for possible post-conference publication on a
special issue of the Journal of Reliability Engineering & System Safety and provides an
integrated and holistic view on the contributions of this thesis and additional functionali-
ties demanded by industry. In the following, the five publications are listed.

Publication 1: A Computer-Aided Approach to Preliminary Hazard Analysis for Auto-
motive Embedded Systems, 18th IEEE International Conference and Workshops on Engi-
neering of Computer-Based Systems (ECBS), Las Vegas, USA, April 27–29, 2011

Publication 2: A Computer-Aided Approach to PHA, FTA and FMEA for Automotive
Embedded Systems, 30th International Conference on Computer Safety, Reliability and
Security (SafeComp), Naples, Italy, September 19–21, 2011

Publication 3: Automatic and Optimal Allocation of Safety Integrity Levels, 58th Reli-
ability and Maintainability Symposium (RAMS), Reno, USA, January 28–30, 2012

Publication 4: A Bridge from System Development to Software Development for Au-
tomotive Embedded Systems, 38th Euromicro Conference on Software Engineering and
Advanced Applications (SEAA), Çeşme, Turkey, September 5–8, 2012

Publication 5: OASIS: An Automotive Analysis and Safety Engineering Instrument,
Post-Conference Publication on a Special Issue of the Journal of Reliability Engineering
& System Safety (Invited Paper under Review), June 10, 2012

Figure 6.1 illustrates the mapping of the five publications onto the tool chain (see
Section 3.2) including OASIS (see Section 3.2.2) and the automotive safety engineering
workflow (see Section 3.1). Whereas OASIS supports Safety-Relevant Model Creation,
Generation of Fault Trees, FMEA Tables and ASIL Allocations and Configuration and
Code Generation, the automotive safety engineering workflow comprises a Concept Phase,
a System Level Development Phase and a Software Level Development Phase.

37

6. Publications 38

Figure 6.1: The mapping of the five publications onto the tool chain including OASIS that
provides support for (a) Safety-Relevant Model Creation, (b) Generation of Fault Trees,
FMEA Tables and ASIL Allocations as well as (c) Configuration and Code Generation.

6. Publications 39

Publication 1 is focused on the early subphases of the Concept Phase of the automo-
tive safety engineering workflow and describes how OASIS’ support for Safety-Relevant
Model Creation (see Section 3.3) eases the application of these subphases. More precisely,
Publication 1 describes how PHA can be carried out using the diagrammatic language
EAST-ADL, while being supported by automatic checking of the evolving model and the
automatic suggestion and application of corrective measures.

Publication 2 is about the Concept Phase and the System Level Development Phase.
OASIS’ Support for Safety-Relevant Model Creation (see Section 3.3), OASIS’ Support for
Fault Tree Generation (see Section 3.4.1) and OASIS’ Support for FMEA Table Generation
(see Section 3.4.2) are described. More precisely, based on Publication 1, Publication 2
shows, how the diagrammatic language EAST-ADL can be used to derive functional and
technical safety requirements, to define an automotive system architecture and to define
an error model. Furthermore it is described how the automatic checking of the evolving
model and the automatic suggestion and application of corrective measures can support
the Concept Phase and the System Level Development Phase. Finally, Publication 2
shows how fault trees can automatically be generated from the EAST-ADL model, how
minimum cut sets can be automatically extracted from the fault trees and how an FMEA
table can be generated from the same EAST-ADL model to support qualitative FTA and
FMEA, while being consistent with PHA results.

Publication 3 is focused on the final subphase of the System Level Development Phase
and describes how OASIS can ease the application of this subphase using its Support for
Automatic and Optimal Allocation of ASILs (see Section 3.4.3). More precisely, based
on Publication 3, it describes how the problem of finding an optimal (with respect to
an objective function) allocation of ASILs to the components of an automotive system
architecture can be mapped onto an optimization problem that is defined in terms of
constraints and can be solved by constraint solvers. The approach foresees the automatic
derivation of constraints from qualitative FTA results and preferences of the safety engineer
ensuring the consistency of the ASIL allocation to PHA and FTA whereas meeting the
preferences. The solution can be automatically projected on the EAST-ADL model.

Publication 4 is about the effective transition from the System Level Development
Phase to the Software Level Development Phase due to OASIS’s support for Configu-
ration and Code Generation (see Section 3.5). This support allows generating Simulink
models from the EAST-ADL model. Furthermore, the configuration and generation of
safety drivers for microcontrollers from the same EAST-ADL model is supported. These
capabilities ease the development of application software and safety-relevant basic software.
The approach to configure and generate safety drivers is illustrated using the example of
an industrial multi-core microcontroller for safety-critical applications.

Publication 5 provides a holistic and integrated view on the contributions described
in the Publications 1, 2, 3 and 4. It presents some of OASIS’ additional functionalities
that were not subject of the other four publications, but are required by industry. These
additional functionalities are not considered to be major contributions of this thesis and
include support for the selective reuse of modeling elements, document generation and the
provision of views on the work products of the automotive safety engineering workflow.
In addition, Publication 5 presents the experimental evaluation of the presented approach
using the case study of HEV development. Finally, evaluation criteria and metrics are
presented indicating the complexity of the case study and OASIS’ value.

A Computer-Aided Approach to Preliminary Hazard Analysis
for Automotive Embedded Systems

Roland Mader1,2, Gerhard Grießnig1,2, Andrea Leitner2, Christian Kreiner2,
Quentin Bourrouilh1, Eric Armengaud3, Christian Steger2, Reinhold Weiß2

1AVL List GmbH, Austria
2Institute for Technical Informatics, Graz University of Technology, Austria

3Virtual Vehicle Competence Center, Austria

Abstract—Powertrain electrification of automobiles leads to
a higher number of sensors, actuators and control functions,
which in turn increases the complexity of automotive embedded
systems. The safety-criticality of the system requires the appli-
cation of Preliminary Hazard Analysis early in the development
process. This is a necessary first step for the development of
an automotive embedded system that is acceptably safe. Goal
of this activity is the identification and classification of hazards
and the definition of top level safety requirements that are the
basis for designing a safety-critical embedded system that is
able to control or mitigate the identified hazards. A computer-
aided framework to support Preliminary Hazard Analysis for
automotive embedded systems is presented in this work. The
contribution consists of (1) an enhancement for Preliminary
Hazard Analysis to the domain-specific language EAST-ADL,
as well as (2) the identification of properties that indicate the
correct application of Preliminary Hazard Analysis using the
language. These properties and an analysis model reflecting
the results of the Preliminary Hazard Analysis are used for
the automated detection of an erroneously applied Preliminary
Hazard Analysis (property checker) and the automated sugges-
tion and application of corrective measures (model corrector).
The applicability of the approach is evaluated by the case study
of hybrid electric vehicle development.

Keywords-functional safety; ISO 26262; preliminary hazard
analysis; safety goal; automotive embedded system

I. INTRODUCTION

Nowadays cars contain embedded systems that incorpo-
rate up to 70 microcontrollers. These microcontrollers com-
municate via bus systems, gather sensor data or command
actuators of the vehicle. At the same time the shift of
the automotive industry towards powertrain electrification
introduces new automotive sensors, actuators and functions.
Electronic Control Units (ECUs) are responsible for manag-
ing the components (e.g. battery, motor) that can be found
in HEVs (Hybrid Electric Vehicles) and components (e.g.
engine, transmission) that can also be found in traditional
vehicles. Therefore the safe operation of the vehicle depends
on the correct operation of the embedded system.

Safety-critical automotive embedded systems are devel-
oped according to rigorous development processes. A nec-
essary first step in such a development process is the
application of Preliminary Hazard Analysis [1] (PHA) by a
team of people with a wide variety of knowledge and skills.

This analysis technique is applied earliest in the develop-
ment process before neither concrete design solutions are
elaborated nor enough numerical values are defined to allow
the application of other techniques such as simulation or
quantitative analyses. The purpose of PHA is the identifica-
tion, classification and assessment of potential hazards1 of a
newly developed vehicle that are caused by potential failures
of its embedded system. The early knowledge about the
existence of hazards allows the definition of safety goals [2]
(top-level safety requirements to the embedded system), even
if detailed and quantitative information about the vehicle
under development is insufficiently available. Considering
the safety goals, a safety-critical embedded system design
(typically including runtime fault detection capabilities) is
developed that is able to best achieve the defined safety goals
and to control or mitigate the identified hazards. Although
the application of PHA alone cannot ensure safety of a
vehicle, it is a necessary first step in order to eliminate or
control hazards through adequate design, implementation,
integration, verification and validation. Moreover the results
of PHA serve as a baseline for later analyses. The early
application of PHA is required by the safety standard
ISO 26262 [3] for automotive E/E system development. This
safety standard refers to this activity as Hazard Analysis and
Risk Assessment.

Parallel to that, the field of model-based development
(MBD) is rapidly evolving in order to manage product
complexity, process complexity and organization complex-
ity. Major application fields covered are communicating
ideas and design, documenting and managing design infor-
mation, automated model analysis and automated synthe-
sis [4]. Potential benefits of these techniques are reduced
time-to-market, reduction of costs and improved quality.
Consequently, different approaches to early hazard analysis
incorporate the use of diagrammatic languages [5] such as
UML (Unified Modeling Language) in order to facilitate
clear communication and documentation. However, existing
approaches do not fully exploit the potential of diagrammatic
languages for automated model analysis and automated syn-

1A hazard is defined as, "A state or set of conditions of a system (or
an object) that, together with other conditions in the environment of the
system (or object), will lead inevitably to an accident (loss event). [1]"

2011 18th IEEE International Conference and Workshops on Engineering of Computer-Based Systems

Unrecognized Copyright Information

DOI 10.1109/ECBS.2011.43

169

2011 18th IEEE International Conference and Workshops on Engineering of Computer-Based Systems

978-0-7695-4379-6/11 $26.00 © 2011 IEEE

DOI 10.1109/ECBS.2011.43

169

Publication 1 - IEEE ECBS 2011 40

©2011 IEEE. Reprinted, with permission, from Proceedings of IEEE ECBS 2011.

thesis. This hinders the early identification of imperfections
that potentially affect the successful mitigation and control
of hazards. Manual reviews and modifications of the analysis
results are usually complicated and subject to mistake, and
should be computer-aided.

The contribution of this work is a computer-aided ap-
proach to PHA in the development process of an automotive
embedded system that is based on the domain-specific lan-
guage EAST-ADL (Electronics Architecture and Software
Technology-Architecture Description Language) [6]. Based
on a detailed description of the work flow for PHA and
defining safety goals, we propose (1) a language enhance-
ment to EAST-ADL that allows to describe malfunctions
and operational situations [2] in a more systematic way.
Further, (2) we identify properties that indicate the correct
application of PHA in the development process of a safety-
critical automotive embedded system. We propose a tool
implementation that can check these properties based on
an analysis model reflecting the results of the PHA. This
allows to automatically discover omissions that potentially
affect safety of the vehicle under development. In the case
a property is violated, the safety engineer automatically
receives suggested solutions. Subsequently the most proper
proposed solution can be accepted or it can be decided
to solve the problem manually. If a suggested solution is
accepted, the analysis model is automatically corrected.

This work is organized as follows: In Section II, related
work is discussed. Section III describes the computer-aided
approach to PHA including the work flow. In Section IV,
the analysis model that is created in the course of PHA
is described. In Section V and Section VI, our approaches
to computer-aided checking and correction of the analysis
model are described. Section VII outlines the experimen-
tal application of the approach using hybrid drive vehicle
development. Finally Section VIII concludes this work.

II. RELATED WORK

In the following, approaches to hazard analysis that are
intended to be applied early in the development process
are reviewed. The contributions [7], [8], [9], [10], [11],
[12], [13] focus on defining systematic approaches that
support the intellectual process of identifying and classifying
hazards and defining means to mitigate or control them.
All of them consider models to be a valuable aid for the
application of hazard analysis techniques. None of these
approaches refers to the use of diagrammatic languages
to create models. In contrast we use a domain-specific,
diagrammatic language for modeling to support coping with
complexity, communicating ideas and facilitating automated
model analysis and automated synthesis.

In [7] a technique called Actuator Based Hazard Analysis
is proposed that can be carried out early in the development
process, when only little information concerning the system
implementation is available. The approach is based on the

assumption that only the actuators of the system can affect
their environment. The method defines three fault classes
(commission, omission and stuck). Each system effect that
describes an undesired enactment of an actuator is defined
by a fault class, an analyzed actuator and an user intent. The
method defines four severity classes (Catastrophic, Critical,
Marginal and Negligible). All severity classes are applied
to each actuator and the distribution between the severity
classes is determined. Based on distribution and weighting,
a criticality level can be determined that is the major input
to the solvability analysis and design selection that allows
to choose the design concept that is most likely to handle
the identified hazards.

Another approach to preliminary hazard analysis for au-
tomotive systems that is similar to the one required by
ISO 26262 [3] is described in [9]. The approach starts
with hazard identification based on a system model. A
PASSPORT diagram with supplementary descriptions is
used as a system model. A further step of the approach
is hazard classification according to severity, controllability
and exposure.

In [10] an ISO 26262-compatible approach to preliminary
hazard analysis is presented. The approach incorporates an
architectural model and starts with (1) scope definition. In
this phase, safety-critical functions of a vehicle are illus-
trated in a block diagram including control units, gateways,
sensors, actuators and communication systems. The next step
is (2) the definition of a role model. A control unit can
contribute to multiple functions. In the context of different
functions, the control unit may have different roles (e.g.
actuation, calculation, monitoring). The next step is (3) the
creation of a tabular architectural model. This starts with
the mapping of functions to architectural elements. Subse-
quently, severity, exposure and controllability are evaluated
and a resulting ASIL (Automotive Safety Integrity Level)
is determined for each function. Then, roles (depending on
functions) are assigned to each architectural element. Finally
each architectural element has roles with corresponding
automotive safety integrity levels.

The work proposed in [11] describes an approach to
hazard analysis of safety-critical software-intensive systems
called STPA (Systems Theoretic Process Analysis) for early
application in the development process. The approach starts
with the identification of hazards and related requirements or
constraints. Subsequently inadequate control actions, control
flaws, and inadequate control executions that lead to inade-
quate control actions are identified. This is input to a design
process that aims on creating new constraints, refining
existing constraints, creating a new design or modifying the
existing design until all hazards are eliminated, mitigated or
controlled. This process is iterative. The approach relies on
a model that describes the control flow of the system under
analysis and causes of accidents. The applicability of the
approach is illustrated using a spaceflight application.

170170

Publication 1 - IEEE ECBS 2011 41

In [12] an approach to hazard analysis of SoS (System
of Systems) is described that is intended to be applied early
in the development process. This hazard analysis technique
is focused on the interfaces between the particular systems.
The approach is based on a model of the SoS as well as
guidewords. In the course of the hazard analysis they carry
out Input/Output Analysis as well as Network Analysis.
The probability of the occurrence of accidents is assessed.
A validation framework is established that incorporates the
definition of goals. Based on these goals, metrics (e.g. per-
centage software safety requirements traceable to hazards)
are defined that indicate the quality of the conducted hazard
analysis. Some of the defined metrics depend on knowledge
gained from previous analyses.

A new methodology to safety-critical system development
is proposed in [13]. Amongst other activities, this method-
ology requires to identify those functions that are safety-
critical. Thereafter hazards are identified, risks are assessed
and risk mitigation means are defined and associated early
in the development process. The work proposes metrics
based on the identified hazards. An example is the metric
percentage software hazards that is defined as number of
software safety hazards divided by the number of system
safety hazards. The approach is evaluated using a railway
application.

In contrast to aforementioned related works, [14], [15],
[16] explicitly refer to the use of diagrammatic languages
to create models. In contrast to our approach, none of these
approaches uses the annotated model to check for properties
that indicate the correct application of the analysis technique.

An approach that combines hazard analysis and the use
of a diagrammatic language to create models is described
in [14]. The authors consider the use of UML models to be
appropriate in order to handle the increasing complexity of
safety-critical software systems. They use a subset of UML
(component and deployment diagrams) to support hazard
analysis at an early design stage. Boolean logic is used
to formally model hazards and failure propagation. Starting
with a component model of the system to be analyzed, (1)
fault trees for all system hazards are derived. Subsequently
(2) the propagation of component failures is analyzed for
each component. Then (3) related behavior of deployment
nodes and hardware devices has to be derived. Finally (4)
boolean equations can be used to apply analysis techniques.
The approach allows to identify the most serious hazards
and failures and to determine components that require a
more detailed safety analysis and assumed restrictions to
fault propagation. This facilitates the systematic derivation
of safety requirements.

The work described in [15] aims on improving the prob-
lems posed by the derivation of safety requirements and by
conducting hazard analysis. The first step is the identification
and description of functions associated with the level under
study. Use cases and scenarios are used for function descrip-

tion. The second step is the failure identification. In this step
a technique is applied that is inspired by techniques such
as FHA (Functional Hazard Assessment) that is typically
applied early in the development process and makes use of
guidewords. In the third step, based on the analysis new
safety related functional requirements are identified. The
approach was evaluated using an use case from the avionics
domain.

An approach to preliminary hazard analysis using EAST-
ADL is proposed in [16]. The proposed workflow starts
with the description of the functions (e.g. Cruise Control)
of the vehicle, their operation needs and other stakeholder
requirements. Thereafter a feature tree model is used to
structure the vehicle functions. After the allocation of re-
quirements to the features, the vehicle is well determined in
terms of its requirements, functions and modes. This is the
input to the identification and classification of hazards based
on the functions and their related requirements. Thereafter
safety goals are derived that constitute top level safety
requirements.

In contrast to aforementioned related works, approaches
that allow to conduct hazard analysis early in the devel-
opment process in the context of more sophisticated MBD
tool support are defined in [17], [18], [19]. These approaches
provide a framework to support modeling using a domain-
specific, diagrammatic language as well as the definition and
automated checking of properties, but none of them defines
properties that support the conduction of hazard analysis.
In contrast our approach supports computer-aided checking,
based on well defined properties that are presented in this
work and allows the automated correction of the analysis
model.

The work proposed in [16] in combination with the
tools [17] and [18] allows the definition of properties using
OCL (Object Constraint Language). The combined approach
allows the definition and checking of properties on demand.

Tools that aim to support the safety standard ISO 26262
are reviewed in [19]. Among the reviewed tools is a tool
named Medini Analyze following an MBD approach. It sup-
ports the definition of vehicle functions and the application
of hazard analysis early in the development process. The
tool allows to define constraints using the OCL language
that can be automatically validated on demand. Besides a
predefined set of checking rules, users can define their own
rules.

III. COMPUTER-AIDED PRELIMINARY HAZARD
ANALYSIS

The application of PHA early in the development process
of an automotive embedded system when less detailed and
quantitative information about the vehicle under develop-
ment is available is a cornerstone in the development process
of an embedded system that is acceptably safe. The identified
and classified hazards and the derived safety goals determine

171171

Publication 1 - IEEE ECBS 2011 42

Figure 1. Computer-Aided Approach to Preliminary Hazard Analysis.

the design of the safety-critical embedded system including
its fault detection capabilities.

The proposed methodology for PHA is based on the work
described in [16] and is depicted in Figure 1. In this approach
an analysis model is annotated, systematically enhanced and
refined using the domain-specific language EAST-ADL until
the results of the PHA are satisfactory. This analysis model
describes the vehicle under development, the results of the
PHA as well as the derived safety goals. We use EAST-
ADL including an enhancement (see also Section IV-A and
Section IV-B). The proposed methodology is explained in
the following:

1) Definition of the Analysis Subject: First information
concerning the vehicle under development is collected
and modeled. Functions of the vehicle (e.g. motoring
or recuperative braking) are described. In addition, re-
quirements are associated with these functions (e.g. re-

quirements for activation or deactivation). In addition
modes (e.g. drive, creep or acceleration) are associated
with each function and with relevant requirements.

2) Identification of Malfunctions and Hazards: Based
on the definition of the analysis subject, possible
malfunctions of the vehicle are identified. This is
carried out using guidewords (see Section IV-A). Each
function is analyzed with regard to each guideword.
When a guideword applies to a function, the violated
requirements are identified. Thereafter the malfunction
(e.g. unintended positive torque) is described and
associated with the analysis subject and the violated
requirements. Hazards (e.g. unintended acceleration
of the vehicle) are derived for each malfunction and
associated.

3) Definition and Classification of Hazardous Events:
The next step is to identify typical traffic situations
(oncoming traffic on a highway in a curve), main-
tenance situations (e.g. vehicle at lifting ramp) (see
Section IV-B) as well as other operational situations.
Moreover use cases that describe the behavior (e.g.
overtaking or changing oil) of the related actors (e.g.
driver or mechanic) are described. Thereafter haz-
ardous events [2] are determined as relevant com-
binations of hazards, use cases and operational sit-
uations. Subsequently relevant modes are identified
for each hazardous event and associated with it. The
criticality of each hazardous event is assessed in terms
of its controllability, severity and exposure [2] and
an ASIL [3] (Automotive Safety Integrity Level) is
assigned. This is underpinned by the definition of
classification assumptions.

4) Derivation of Safety Goals: For each hazardous
that has a sufficiently high ASIL, a safety goal is
defined and associated. A safe state is defined (e.g.
switch open) for each safety goal. Alternatively a safe
mode (e.g. limp home mode) is determined for each
hazardous event. These safety goals are the top level
safety requirements to the safety-critical automotive
embedded system.

After the completion of these working steps lower-level
safety requirements can be derived from the safety goals and
an embedded system architecture including fault detection
capabilities can be defined. Based on these requirements,
software and hardware of the safety-critical embedded sys-
tem are implemented, integrated, verified and validated.
However, these steps of the development process of a safety-
critical automotive embedded system are beyond the scope
of this paper.

The application of PHA for contemporary vehicles is
challenging. The analysis subject is complex and potentially
contains many sensors, actuators and functions, whose com-
bination can lead to a multitude of hazards caused by failures
of the embedded system. This complexity results in a large

172172

Publication 1 - IEEE ECBS 2011 43

set of information to manage during PHA, and the analysis
model grows in size. The exhaustive application of PHA and
the projection of its results onto an analysis model that is
complete, consistent and allows traceability is cumbersome
and error prone.

Challenges are (1) the thorough understanding of the
system functionalities and environment, (2) the correct ap-
plication of a method for the systematic identification and
classification of the related hazards including the derivation
of safety goals, and (3) the correct modeling using the
domain-specific language.

Therefore we propose to aid the process of applying
PHA and creating the analysis model by automated property
checking (Property Checker) as well as automated correction
(Model Corrector) in order to detect an erroneously applied
PHA and to enable corrections (see Section V and Sec-
tion VI). Although not able to conduct PHA automatically,
this approach strongly supports the process of PHA in
providing a guidance for its application and the reflection of
its results on the analysis model. This guidance allows iden-
tifying omissions, inconsistencies and missing traceability
links during PHA and supports the creation of a consistent
and complete set of safety goals.

IV. ANALYSIS MODEL

In the course of the PHA, results are annotated using
the language EAST-ADL (see Figure 1). This language is
domain-specific and tailored to the needs of automotive
embedded systems development. It is diagrammatic such
as UML and consist of syntactic elements such as boxes,
ovals, lines or arrows. Its abstract syntax is defined by
its meta model and its semantic domain and semantic
mapping [5] are defined using natural language. The EAST-
ADL specification can be found in [6].

EAST-ADL allows to describe concepts relevant to the
application of PHA in accordance with the safety standard
ISO 26262. It allows the definition of a vehicle in terms
of its functions (meta class VehicleFeature), modes (meta
class Mode) and requirements (meta class Requirement).
By using these modeling concepts, the analysis subject can
be described. Furthermore meta classes are available that
allow to describe malfunctions (meta class FeatureFlaw) and
resulting hazards (Hazard). Moreover operational situations
(meta class OperationalSituation) can be defined. The behav-
ior of the relevant actors in the context of the operational
situation can be described with use cases. A combination
of hazard, mode, operational situation and use case defines
a hazardous event (meta class HazardousEvent). Moreover
top level safety requirements (meta class SafetyGoal) can
be defined for hazardous events. Associations between the
aforementioned concepts can be created to precisely define
their relations and assure proper traceability.

We propose an enhancement to EAST-ADL that allows to
define malfunctions and operational situations in more detail.

The enhancement is defined in a similar manner as EAST-
ADL in the following. The relation of the enhancement’s
meta model to EAST-ADL is depicted by Figure 2.

A. Language enhancement: Malfunctions

The use of guidewords has been proved to be beneficial
and is also applied by approaches such as [7], [12], [15].
In our approach, the aim of the use of guidewords is to
systematically identify potential malfunctions of the vehicle.

EAST-ADL does not include predefined guidewords to
classify malfunctions (meta class FeatureFlaw). Therefore
EAST-ADL’s meta class FeatureFlaw has been extended
to support the use of guidewords. Using our enhancement,
malfunctions (meta class GuidedFeatureFlaw) can be char-
acterized by the following guidewords.

• No: The vehicle omits to carry out a function although
it is demanded.

• Unintended: A function is carried out without demand.
• Reverse: The vehicle carries out a function but fails in

applying it in the demanded direction.
• More: The vehicle carries out an intended function but

exceeds the demanded degree of intensity.
• Less: The vehicle carries out an intended function but

falls below the demanded degree of intensity.
• Other: If none of the guidewords above are able to

characterize the malfunction.

B. Language enhancement: Operational Situations

An operational situation is characterized by conditions
external to the vehicle. If a hazard inevitably leads to an
accident depends on the operational situation in context
as well as on the behavior of the involved actors. As an
example, if the vehicle brakes without demand of the driver
(hazard) while the vehicle waits in front of a crosswalk and
a pedestrian crosses, the result is harmless. In contrast if
the same hazard occurs while the vehicle moves at high
speed on a curvy road, the hazardous event can lead to
a lethal accident. From this example it becomes obvious
that an acceptably precise definition of operational situations
is a cornerstone for the estimation of severity, exposure
and controllability of the corresponding hazardous events
since they determine the ASILs of the derived safety goals.
The necessity of precisely describing operational situations
in the context of hazards is also emphasized by other
approaches [11], [15].

EAST-ADL rudimentarily supports the definition of
generic operational situations. Frequently occurring opera-
tional situations are traffic situations (the vehicle is driven)
and maintenance situations (the vehicle is being repaired or
serviced). Therefore we propose an enhancement to EAST-
ADL to facilitate a more accurate definition of traffic situa-
tions and maintenance situations. The meta classes Traffic-
Situation and MaintenanceSituation are derived from EAST-
ADL’s OperationalSituation. Each of these meta classes

173173

Publication 1 - IEEE ECBS 2011 44

Figure 2. Proposed enhancement to EAST-ADL for Preliminary Hazard Analysis (referenced enumerations are textually described).

can be described using attributes. For each attribute an
enumeration is defined. Traffic situations can be coarsely
characterized by following attributes:

• Type of track: The kind of the underlying track the
vehicle is operating on such as highway, road, city
street, mountainous track, crossings, drive-up, descent
or parking area.

• Track arrangement: The geometry of the track the
vehicle is operating on such as curve or straight.

• Road conditions: The road conditions the moving
vehicle is exposed to because of the weather such as
icy, normal, snowy or wet.

• Lighting conditions: The conditions that depend on the
time of the day and the weather such as good visibility,
medium visibility or poor visibility.

• Traffic situation: The conditions caused by other road
users such as stop and go, crashing vehicles, colliding
vehicles, pedestrian crossing, vehicle crossing, vehicle
overtaking, adjacent vehicle, congestion, platoon traffic,
oncoming traffic, no other road users, game crossing or
street workers present.

Maintenance situations (MaintainanceSituation) can be
coarsely defined by following attributes.

• Maintenance position: The position of the vehicle
during maintenance such as lifting ramp or ground.

• Maintenance conditions: The conditions the mainte-
nance operation is exposed to such as no other people
or other people around.

Besides the defined value range, each enumeration con-
tains the value undefined. This allows to express that a
certain attribute is irrelevant in context of a hazardous event.
This helps to collapse the number of traffic situations and
maintenance situations to be dealt with during PHA.

V. AUTOMATED PROPERTY CHECKING

The analysis model that is annotated using EAST-ADL
including the proposed enhancement reflects the results of
the PHA. We propose properties that indicate the correct ap-
plication of PHA, if they are fulfilled by the analysis model.
If these properties are violated, the correct application of

PHA is not assured. Note that the fulfillment of all the
properties does not guarantee the exhaustiveness of the PHA,
since the correct and complete understanding of the system
by the team of people that applies PHA cannot be verified
with this approach. This approach can show the erroneous
application of PHA, but it cannot prove the absence of errors.

The defined properties are automatically checked using
the evolving analysis model (see Figure 3). A property
checker uses the definition of properties to continuously
check the analysis model while PHA is carried out. It auto-
matically identifies modeling elements that violate properties
and presents a list of violating modeling elements and the
properties affected. This information allows to early identify
errors in the PHA before they can affect the definition
of an adequate set of top level safety requirements to the
safety-critical embedded system. Since automated checking
is performed concurrently with the application of PHA and
the creation of the analysis model, the property checker is
also a valuable guide while carrying out PHA.

Input to the definition of these properties was (1) the
domain-specific language EAST-ADL including the en-
hancements defined above and (2) the automotive safety
standard ISO 26262 [3]. This standard defines requirements
to the application of PHA for vehicles. Moreover the stan-
dard defines how the criticality of hazardous events shall be
classified in terms of severity, exposure and controllability
and defines how the required safety integrity level shall be
derived. Moreover it is defined how safety goals shall be
derived from defined hazardous events.

The properties are listed in Table I. Column Meta Class
denotes the meta class of the enhanced EAST-ADL language
(see Section IV) that can violate the corresponding property.
Column Property Definition defines the properties for the
corresponding meta classes in natural language.

Assume M is an analysis model, MMM is the meta model
of the enhanced EAST-ADL language and P is the set of
properties as defined in Table I. Assume e is a modeling
element of the analysis model, t is a type defined by the
meta model of the analysis model and p is a property
(Expression 1).

174174

Publication 1 - IEEE ECBS 2011 45

Property ID Meta Class Property Definition
0 Item A complementary description has been defined
0a Item At least one VehicleFeature has been defined
1 Item At least one Hazard has been identified
2 Item At least one FeatureFlaw has been identified

0b VehicleFeature A complementary description has been defined
0c VehicleFeature Associated with at least one Item
23 VehicleFeature A Requirement is satisfied
21 Requirement An ID is defined
22 Requirement A requirements text is defined
24 Requirement Is satisfied
26 Mode A condition has been defined
3 FeatureFlaw At least one Hazard is identified
4 FeatureFlaw Associated with at least one Item
5 FeatureFlaw A complementary description has been defined
6 Hazard At least one FeatureFlaw is associated
7 Hazard At least one Item is associated
8 Hazard At least one HazardousEvent has been identified
9 Hazard A complementary description has been defined

10 HazardousEvent At least one Hazard is associated
11 HazardousEvent At least one UseCase is associated
12a HazardousEvent At least one SafetyGoal is associated if ASIL greater than QM
13 HazardousEvent Associated with at least one OperationalSituation
14 HazardousEvent ASIL has been correctly derived from Controllability, Severity and Exposure
17 HazardousEvent Classification assumptions have been defined
25 HazardousEvent Associated with at least one Mode
15 SafetyGoal A HazardousEvent is associated
16 SafetyGoal A safe state is defined
18 SafetyGoal The ASIL has been correctly derived from associated HazardousEvents
20 OperationalSituation A complementary description has been defined
27 All A name must be assigned

Table I
PROPERTIES OF THE ANALYSIS MODEL THAT ARE AUTOMATICALLY CHECKED WHILE PRELIMINARY HAZARD ANALYSIS IS APPLIED.

eεM, tεMMM , pεP (1)

Moreover, I(e, t) pertains, if e is of type t, D(t, p)
pertains, if p is defined for type t and H(e, p) pertains if
property p holds for modeling element e. If a model M
indicates the correct application of PHA, Expression 2 is
valid. In this case, no modeling element violates a property.

¬∃e¬∃t¬∃p(I(e, t) ∧D(t, p) ∧ ¬H(e, p)) (2)

If a model M shows the erroneous application of PHA,
Expression 3 is valid. In this case, at least one modeling
element violates a property.

∃e∃t∃p(I(e, t) ∧D(t, p) ∧ ¬H(e, p)) (3)

VI. COMPUTER-AIDED MODEL CORRECTION

If violated properties indicate an erroneous application
of PHA, corrective measures need to be carried out. To
ease the correction of errors, we propose to support the
identification of a proper correction measure. This can be
achieved by consulting the model corrector that suggests
possible solutions depending on the violated property and
the current analysis model. Input to the definition of sugges-
tions are again ISO 26262 and the enhanced language EAST-
ADL. Depending on concerned model elements and violated

properties, the model corrector identifies possible solutions
(see Figure 3). If the user decides to accept a solution, the
model is automatically modified accordingly.

Suggestions depending on the violated property are listed
in Table II. Column Meta Class denotes the meta class of
the enhanced EAST-ADL language that can be subject to the
suggestion of an automated correction. Column Suggestion
defines the possible suggestions for the corresponding meta
classes in natural language.

Assume M is an analysis model, MMM is the meta
model of the enhanced EAST-ADL language, P is the set
of properties as defined in Table I and S is the set of
suggestions as defined in Table II. Assume e1 is a modeling
element of the analysis model, t1 is a type defined by
the meta model, p1 is a property and s1 is a suggestion
(Expression 4).

e1εM, t1εMMM , p1εP, s1εS (4)

Assume that before an automated model correction is
carried out (precondition), e1 is of type t1 and violates p1
that is defined for type t1 (Expression 5).

I(e1, t1) ∧D(t1, p1) ∧ ¬H(e1, p1) (5)

If the user accepts suggestion s1, the analysis model M is

175175

Publication 1 - IEEE ECBS 2011 46

Property ID Meta Class Suggested Solution
0 Item Creation and association of Comment
0a Item Creation and association of VehicleFeature
0a Item Associate one of the VehicleFeatures without Item
1 Item Creation and association of Hazard
1 Item Associate one of the Hazards without Item
2 Item Creation and association of FeatureFlaw
2 Item Associate one of the FeatureFlaws without Item
0b VehicleFeature Creation and association of Comment
0c VehicleFeature Creation and association of Item
0c VehicleFeature Associate one of the Items
23 VehicleFeature Creation and association of Requirement
23 VehicleFeature Associate one of the unsatisfied Requirements
24 Requirement Creation and association of VehicleFeature
24 Requirement Associate one of the VehicleFeatures without Requirement
3 FeatureFlaw Creation and association of Hazard
3 FeatureFlaw Associate one of the Hazards without FeatureFlaw
3 FeatureFlaw Associate one of the Hazards with FeatureFlaw
4 FeatureFlaw Creation and association of Item
4 FeatureFlaw Associate one of the Items
5 FeatureFlaw Creation and association of Comment
6 Hazard Creation and association of FeatureFlaw
6 Hazard Associate one of the FeatureFlaws without Hazard
6 Hazard Associate one of the FeatureFlaws with Hazard
7 Hazard Creation and association of Item
7 Hazard Associate one of the Items
8 Hazard Creation and association of HazardousEvent
8 Hazard Associate one of the HazardousEvents without Hazard
9 Hazard Creation and association of Comment
10 HazardousEvent Creation and association of Hazard
10 HazardousEvent Associate one of the Hazards without HazardousEvent
10 HazardousEvent Associate one of the Hazards with HazardousEvent
11 HazardousEvent Creation and association of UseCase
11 HazardousEvent Associate one of the UseCases
12a HazardousEvent Creation and association of SafetyGoal
12a HazardousEvent Associate one of the SafetyGoals without HazardousEvent
13 HazardousEvent Creation and association of OperationalSituation
13 HazardousEvent Associate one of the OperationalSituations
14 HazardousEvent Correction of the ASIL according to the requirements of ISO 26262
25 HazardousEvent Creation and association of Mode
26 HazardousEvent Associate one of the Modes without HazardousEvent
15 SafetyGoal Creation and association of HazardousEvent
15 SafetyGoal Associate one of the HazardousEvents with ASIL larger than QM and without SafetyGoal
18 SafetyGoal Modification of the ASIL according to the ASIL of the corresponding HazardousEvent
20 OperationalSituation Creation and association of Comment

Table II
POSSIBLE SOLUTIONS TO PROBLEMS THAT ARE AUTOMATICALLY SUGGESTED DEPENDING ON THE ANALYSIS MODEL.

automatically corrected and transformed to analysis model
M ′ by function γ depending on M , e1, t1, p1 and s1
(Expression 6).

γ(M, e1, t1, p1, s1) → M ′ (6)

After the modification (postcondition) e1 is an element of
M ′, e1 is still of type t1 and does not violate p1 any more
(Expression 7).

e1εM
′, I(e1, t1) ∧D(t1, p1) ∧H(e1, p1) (7)

VII. EXPERIMENTAL EVALUATION

An Eclipse-based open source tool named Papyrus [17] is
available that facilitates UML-modeling as well as the defini-

tion of UML profiles. An open source plugin is available for
Papyrus [18] that allows the creation of EAST-ADL models.
This plugin was enhanced to support the creation of analysis
models such as described in Section IV. Another plugin
for the Papyrus tool was developed that facilitates property
checking as well as model correction such as proposed in
Section V and Section VI.

Thereafter the proposed approach to PHA of automotive
embedded systems was experimentally evaluated by the case
study of HEV [20] development. One of the main charac-
teristics of this type of vehicle is the addition of an electric
motor that supports the classic combustion engine providing
supplementary or substitutive positive torque. If such a
vehicle uses its E-motor to support the combustion engine, it

176176

Publication 1 - IEEE ECBS 2011 47

Figure 3. Violated properties are automatically identified and possible solutions are suggested on demand.

discharges the battery. If the E-motor is used as a generator
to regain energy while the vehicle decelerates (recuperation),
it recharges the battery and/or supplies electrical energy
to the auxiliaries. These operations are controlled by an
embedded system. This embedded system is clearly safety-
critical since a failure of this system can cause malfunctions
such as overcharging of the battery that might lead to hazards
such as fire and/or explosion.

For the experimental application of the approach, PHA
was carried out and an analysis model was created in course
of PHA. One of the modeling elements in this analysis model
is a hazardous event named FireExplosionDuringCityTraffic.
The origin of this hazardous event is the hazard FireExplo-
sion that is caused by overcharging of the battery because of
unintended negative torque provided by the electric motor
to the powertrain due to a failure of the safety-critical
embedded system. The unintended negative torque causes
the E-motor acting as a generator that finally unintendedly
overcharges the battery of the vehicle.

No safety goal (top level safety requirement) has been
derived from this hazardous event although it is safety-
critical. This omission leads to the fact that no top level
safety requirement has been derived from the hazardous

event FireExplosionDuringCityTraffic that demands the mit-
igation of the hazard FireExplosion. Thus PHA was applied
erroneously what is reflected by the analysis model. Figure 3
illustrates the property checker (1) that has detected the
erroneous application based on the analysis model and re-
ports that modeling element FireExplosionDuringCityTraffic
violates property 12a.

Due to the erroneous application of PHA, corrective
measures must be carried out and the analysis model needs
to be modified. As illustrated in Figure 3, on demand the
model corrector (2) proposes the creation of a new safety
goal or the association with a safety goal that is already
part of the analysis model. In this case the proper solution
is the creation of a new safety goal and the association with
the hazardous event FireExplosionDuringCityTraffic. Once
selected, the analysis model is automatically modified and
a new traceable safety goal is created. Subsequently the
newly created modeling element can be refined using textual
descriptions.

VIII. CONCLUSION

This work presents a novel approach to Preliminary
Hazard Analysis (PHA) for automotive embedded systems.

177177

Publication 1 - IEEE ECBS 2011 48

The proposed framework comprises (1) an enhancement
to the domain-specific language EAST-ADL, as well as
(2) the identification of properties that indicate the correct
application of PHA. These properties can be automatically
checked based on the analysis model that reflects the results
of the PHA. If properties are violated, the approach supports
the automated identification of possible solutions and the
automated correction of the analysis model. This guided and
computer-aided approach strongly supports the application
of PHA and the creation of an analysis model that properly
reflects the results of PHA. The approach has been evaluated
using the case study of hybrid electric vehicle development.
While the use of the property checker and the model
corrector did not replace the intellectual process of carrying
out PHA exhaustively by a team of people with a wide
variety of knowledge and skills, the automated identification
of an erroneously applied PHA and the guided correction
during the analysis process proved to be highly valuable to
improve the quality of the analysis.

ACKNOWLEDGMENT
The authors wish to thank the "COMET K2 Forschungsförderungs-

Programm" of the Austrian Federal Ministry for Transport, Innovation and
Technology (BMVIT), the Austrian Federal Ministry of Economics and
Labour (BMWA), Österreichische Forschungsförderungsgesellschaft mbH
(FFG), Das Land Steiermark and Steirische Wirtschaftsförderung (SFG) for
their financial support. Additionally we would like to thank the supporting
company and project partner AVL List GmbH as well as Graz University
of Technology. Further information about the MEPAS project can be found
at http://www.v2c2.at/mepas.

REFERENCES

[1] Nancy G. Leveson, Safeware: system safety and computers.
Addison-Wesley Publishing Company, 1995.

[2] International Organization for Standardization, “ISO/DIS
26262-1 Road vehicles - Functional safety - Part 1: Vocabu-
lary,” 2009.

[3] ——, “ISO/DIS 26262-3 Road vehicles - Functional safety -
Part 3: Concept phase,” 2009.

[4] M. Törngren, D. Chen, D. Malvius, and J. Axelsson, “Model-
Based Development of Automotive Embedded Systems,” in
Automotive Embedded Systems Handbook. CRC Press, 2008,
ch. 10.

[5] D. Harel and B. Rumpe, “Meaningful Modeling: What’s the
Semantics of "Semantics"?” IEEE Transactions on Comput-
ers, vol. 37, pp. 64–72, Oct. 2004.

[6] ATESST2 Project Consortium, “EAST-ADL Domain Model
Specification,” 2010, version 2.1, Release Candidate 3.

[7] P. Johannessen, F. Törner, and J. Torin, “Actuator Based
Hazard Analysis for Safety Critical Systems,” in Proc. of the
23th International Conference on Computer Safety, Reliability
and Security, Sep. 2004, pp. 130–141.

[8] F. Törner, P. Johannessen, and P. Öhman, “Assessment of
Hazard Identification Methods for the Automotive Domain,”
in Proc. of the 25th International Conference on Computer
Safety, Reliability and Security, Sep. 2006, pp. 247–260.

[9] P. Jesty, D. Ward, and R. Rivett, “Hazard Analysis for
Programmable Automotive Systems,” in Proc. of the 2nd IET
International Conference on System Safety 2007, Dec. 2007,
pp. 106–111.

[10] H. Schubotz, “Hazard Analysis and Risk Assessment for
Complex EE-Architectures,” in Proc. of the SAE World
Congress & Exhibition, no. 2010-01-0029, Apr. 2010.

[11] M. Stringfellow, N. Leveson, and B. Owens, “Safety-Driven
Design for Software-Intensive Aerospace and Automotive
Systems,” Proceedings of the IEEE, vol. 98, pp. 515–525,
2010.

[12] J. Michael, M.-T. Shing, K. Cruickshank, and P. Redmond,
“Hazard Analysis and Validation Metrics Framework for
System of Systems Software Safety,” IEEE Systems Journal,
vol. 4, pp. 186–197, 2010.

[13] S. Kumar, P. Ramaiah, and V. Khanaa, “A Methodology for
Building Safer Software based Critical Computing Systems,”
in Proc. of the 2nd IEEE International Conference on Ad-
vance Computing (IACC’2010), Feb. 2010, pp. 422–429.

[14] H. Giese, M. Tichy, and D. Schilling, “Compositional Hazard
Analysis of UML Component and Deployment Models,” in
Proc. of the 23th International Conference on Computer
Safety, Reliability and Security, Sep. 2004, pp. 166–179.

[15] K. Allenby and T. Kelly, “Deriving Safety Requirements
Using Scenarios,” in Proc. of the 5th IEEE International
Symposium on Requirements Engineering, Aug. 2001, pp.
228–235.

[16] A. Sandberg, D.-J. Chen, H. Lönn, R. Johansson, L. Feng,
M. Törngren, S. Torchiaro, R. T. Kolagari, and A. Abele,
“Model-Based Safety Engineering of Interdependent Func-
tions in Automotive Vehicles Using EAST-ADL2,” in Proc.
of the 29th International Conference on Computer Safety,
Reliability and Security, Sep. 2010, pp. 332–346.

[17] A. Lanusse, Y. Tanguy, H. Espinoza, C. Mraidha, S. Gerard,
P. Tessier, R. Schnekenburger, H. Dubois, and F. Terrier,
“Papyrus UML: an open source toolset for MDA.” in Proc. of
the Fifth European Conference on Model-Driven Architecture
Foundations and Applications (ECMDA-FA 2009), Jun. 2009,
pp. 1–4.

[18] ATESST2 Project Consortium, “Refined EAST-ADL2 tool
support,” Tech. Rep., 2010, Deliverable D3.2.

[19] D. Makartetskiy, D. Pozza, and R. Sisto, “An Overview of
Software-based Support Tools for ISO 26262,” in Proc. of
the 3rd International Workshop on Innovation in Information
Technologies: Theory and Practice, Sep. 2010, pp. 1–6.

[20] M. Ehsani, Y. Gao, S. Gay, and A. Emadi, “Hybrid Electric
Vehicles,” in Modern Electric, Hybrid Electric, and Fuel Cell
Vehicles Fundamentals, Theory, and Design. CRC Press,
2005, ch. 5.

178178

Publication 1 - IEEE ECBS 2011 49

Computer-Aided PHA, FTA and FMEA for

Automotive Embedded Systems

Roland Mader1,2, Eric Armengaud1,3, Andrea Leitner2,
Christian Kreiner2, Quentin Bourrouilh1, Gerhard Grießnig1,2,

Christian Steger2, and Reinhold Weiß2

1 AVL List GmbH
{roland.mader,quentin.bourrouilh,gerhard.griessnig}@avl.com
2 Institute for Technical Informatics, Graz University of Technology
{andrea.leitner,christian.kreiner,steger,rweiss}@tugraz.at

3 Virtual Vehicle Competence Center (ViF)
eric.armengaud@v2c2.at

Abstract. The shift of the automotive industry towards powertrain
electrification introduces new automotive sensors, actuators and func-
tions that lead to an increasing complexity of automotive embedded sys-
tems. The safety-criticality of these systems demands the application of
analysis techniques such as PHA (Preliminary Hazard Analysis), FTA
(Fault Tree Analysis) and FMEA (Failure Modes and Effects Analy-
sis) in the development process. The early application of PHA allows to
identify and classify hazards and to define top-level safety requirements.
Building on this, the application of FTA and FMEA supports the veri-
fication of a system architecture defining an embedded system together
with connected sensors and controlled actuators. This work presents a
modeling framework with automated analysis and synthesis capabilities
that supports a safety engineering workflow using the domain-specific
language EAST-ADL. The contribution of this work is (1) the defini-
tion of properties that indicate the correct application of the workflow
using the language. The properties and a model integrating the work
products of the workflow are used for the automated detection of errors
(property checker) and the automated suggestion and application of cor-
rective measures (model corrector). Furthermore, (2) fault trees and a
FMEA table can be automatically synthesized from the same model. The
applicability of this computer-aided and tightly integrated approach is
evaluated using the case study of a hybrid electric vehicle development.

1 Introduction

Nowadays automotive embedded systems incorporate up to 70 microcontrollers
that communicate via bus systems, gather sensor data and command actuators
of the vehicle. This complexity still increases. One of the reasons is the shift
of the automotive industry towards powertrain electrification that goes along
with the introduction of new sensors, actuators and functions. The automotive
embedded system is responsible for the management of the components (e.g.

F. Flammini, S. Bologna, and V. Vittorini (Eds.): SAFECOMP 2011, LNCS 6894, pp. 113–127, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Publication 2 - SafeComp 2011 50

©Springer-Verlag Berlin Heidelberg 2011. Reprinted, with permission, from the
Proceedings of SafeComp 2011.

114 R. Mader et al.

high voltage battery, electric motor) that can be found in electrified vehicles and
components (e.g. transmission, engine) which are parts of traditional vehicles as
well. It is obvious that the correct and safe operation of an electrified vehicle
depends on the correct operation of its embedded system.

Due to the safety-criticality of automotive embedded systems, they are devel-
oped according to rigorous development processes such as defined by ISO 26262,
the functional safety standard for the automotive domain. These development
processes incorporate the application of analysis techniques. Among the applied
techniques are the following:

– PHA (Preliminary Hazard Analysis): PHA [12] is an analysis technique
that is qualitatively applied early in the development process by a team of
people with a wide variety of expert knowledge and skills. The purpose of
PHA is the identification, classification and assessment of potential hazards
of a newly developed vehicle, caused by failures. The early knowledge about
these hazards allows to define top-level safety requirements, even if less de-
tailed and quantitative information about the vehicle is available.

– FTA (Fault Tree Analysis): FTA [12] belongs to the group of deductive
analysis techniques. FTA starts with the identified hazards and tracks them
back to possible faults that can lead to the occurrence of the top faults.
Relationships between effect and cause are defined using logical operators
that combine the effects of events. This analysis technique can be applied
to verify a system architecture defining an embedded system together with
connected sensors and controlled actuators.

– FMEA (Failure Modes and Effects Analysis): FMEA [12] belongs
to the group of inductive analysis techniques. Individual failures of system
components are considered and their causes (e.g. fault of a component) are
identified. Then the effects on the complete system in terms of hazards are
determined. This analysis technique can be applied to verify a system archi-
tecture as well.

This work presents a modeling framework with automated analysis and syn-
thesis capabilities. This modeling framework supports an ISO 26262-compatible
automotive safety engineering workflow. Results are annotated using the domain-
specific language EAST-ADL [1]. The contribution of this work is (1) the defini-
tion of properties that indicate the correct application of the workflow using this
language. The properties and a model integrating the work products of the work-
flow are used for the automated detection of errors (property checker) and the
automated suggestion and application of corrective measures (model corrector).
Furthermore, (2) fault trees and a FMEA table can be automatically generated
from the model allowing the qualitative application of FTA and FMEA. The
fault trees and the FMEA table are consistent to the PHA results. Minimum
cut sets can be automatically extracted from the synthesized fault trees.

The remainder of this work is organized as follows. Section 2 reviews related
work. Section 3 describes the ISO 26262-compatible safety engineering workflow.
Section 4 describes how the workflow can be supported by the property checker.

Publication 2 - SafeComp 2011 51

Computer-Aided PHA, FTA and FMEA for Automotive Embedded Systems 115

Section 5 describes how the model corrector can be used to correct errors and
how fault trees and a FMEA table can be automatically generated. Section 6
describes the experimental evaluation of the approach using the case study of a
hybrid electric vehicle development. Finally Section 7 concludes this work.

2 Related Work

Approaches that aim on supporting safety engineering by fault tree generation
and/or FMEA generation are reviewed in this section. An approach that com-
bines system architecture modeling and FTA is described in [14]. The approach
allows continuous assessment of an evolving system design. A system model is
input to HAZOP (Hazard and Operational Studies). Each component of the
system model is analyzed and component failure modes are determined. The
HAZOP result is a model that defines failure modes that can be observed at
the component outputs as results of internal component malfunctions as well as
deviating component inputs. In [13] an extension of [14] is presented that al-
lows FMEA table generation. In [2] the extended approach is integrated with an
EAST-ADL modeling tool using a model transformation technique. This allows
synthesis of fault trees and FMEA tables from EAST-ADL models.

In [4] tool support for automated FMEA generation is presented. Input to
the presented method is a component model of a system including so called
safety interfaces that can be automatically generated. Safety interfaces can be
seen as formal descriptions of the components in terms of failures affecting the
components. From the safety interface descriptions cFMEAs (Component Failure
Modes and Effects Analysis) can be created for each component. Subsequently
the cFMEAs are input to the generation of a system-level FMEA.

A methodology that combines safety analyses and a component-oriented,
model-based software engineering approach is described in [3]. The authors aim
on supporting safety analyses in the earlier stages of development. A hierarchical
model for component-based software engineering is available. The model allows
to define a failure specification and a failure realization as well as a functional
specification and a functional realization for each software component. Fault
trees can be generated from the component model.

In [10] a computer-aided approach to fault tree generation is described. The
approach requires the creation of a model of the system under investigation.
This model describes system structure, system behavior as well as the flows of
information and energy through the system. Moreover top events are defined for
system parameters such as component inputs or component outputs. This model
is input to a trace-back algorithm that generates a fault tree.

The authors of [11] integrate architectural modeling languages with safety
analysis languages to improve consistency. When a safety-critical software archi-
tecture is developed an initial architecture is proposed. This architecture is an-
notated and enriched with safety-relevant information. Safety analysis of the ar-
chitecture is carried out. Results influence the software architecture. This design
and analysis process is cyclic. A meta model for component-based, safety-aware

Publication 2 - SafeComp 2011 52

116 R. Mader et al.

architectures (SAA) is available allowing to complement architectural descrip-
tions with safety-relevant information such as safety objectives and mitigation
means. Meta models for FTA and FMECA (Failure Modes, Effects and Critical-
ity Analysis) are proposed. A tool implementation is presented that allows the
generation of FTA models and FMECA models from a SAA model.

Each of the reviewed approaches uses a system model describing the sys-
tem components complemented with safety-relevant information (typically about
faults and failures and their propagation). This underlying model is used by all
approaches as input to fault tree generation and/or for FMEA table generation,
supporting the application of FTA and/or FMEA. In none of these approaches
the application of the workflow for creation of the underlying model is aided by
automated checking or model correction. Our approach supports this, support-
ing fault tree generation and FMEA table generation and furthermore elabora-
tion of the underlying model that integrates the work products of the presented
workflow. This strongly supports coping with the complexity imposed by the
embedded system of an electrified vehicle.

3 Safety Engineering Workflow

We present an ISO 26262-compatible, automotive safety engineering workflow
that is based on the workflows described in [15] and [9]. The workflow can be
subdivided into multiple phases. Iterations between phases are possible. The pre-
sented workflow is illustrated in Figure 1. In the course of the workflow an EAST-
ADL model is annotated, systematically enhanced and refined using a modeling
framework. The elaborated model integrates the work products (e.g. analysis re-
sults, requirements, system architecture) of the workflow phases. EAST-ADL is a
domain-specific language and tailored to the needs of the automotive domain. It
is diagrammatic [5] such as UML. It consists of syntactic elements such as boxes,
ovals, lines or arrows. Its abstract syntax is defined by its meta model and its
semantic domain and semantic mapping are defined using natural language [5].
The workflow phases are thereafter described:

1. Definition of the Analysis Subject: First information about the vehi-
cle under development is collected and modeled. Functions of the vehicle
(e.g. motoring or recuperative braking) are defined. Requirements to these
functions are determined and allocated (e.g. conditions for activation or de-
activation). In addition relevant modes (e.g. drive, creep or acceleration) are
identified for each function and associated with the requirements.

2. Identification of Hazards and Hazardous Events: Based on the def-
inition of the analysis subject, PHA (for more details see also [9]) is car-
ried out. Possible malfunctions are identified. Hazards are derived for each
malfunction (e.g. unintended acceleration of the vehicle). Thereafter opera-
tional situations such as traffic situations (e.g. oncoming traffic on a high-
way in a curve) and maintenance situations (e.g. vehicle at lifting ramp)
are defined. Moreover use cases describing the behavior (e.g. overtaking or

Publication 2 - SafeComp 2011 53

Computer-Aided PHA, FTA and FMEA for Automotive Embedded Systems 117

Fig. 1. Computer-Aided Safety Engineering Workflow

Publication 2 - SafeComp 2011 54

118 R. Mader et al.

changing oil) of the related actors (e.g. driver or mechanic) are described.
Hazardous events are determined for relevant combinations of hazards, use
cases and operational situations. Moreover relevant modes are identified for
each hazardous event. The criticality of each hazardous event is assessed in
terms of its controllability, severity and exposure and an ASIL (Automotive
Safety Integrity Level) [7] is determined.

3. Derivation of Safety Goals: For each hazardous event that has an ASIL
assigned (ASIL A, ASIL B, ASIL C or ASIL D), a safety goal is derived and
associated. Furthermore, a safe state is defined (e.g. switch open) for each
safety goal. Alternatively a safe mode (e.g. limp home mode) is determined.
The determined safety goals are top-level safety requirements.

4. Definition of Safety Concept: The safety concept is derived from the
safety goals. This safety concept consists of functional and technical safety re-
quirements to the automotive embedded system, connected sensors and con-
trolled actuators. Traces are created between safety goals, functional safety
requirements and technical safety requirements.

5. Definition of System Architecture: The system architecture is defined
in terms of the embedded system, connected sensors and controlled actua-
tors. Moreover the parts of the environment are modeled that interact with
the sensors and actuators. Thereafter the functional and technical safety
requirements are allocated to the components of the system architecture.
Furthermore functions are allocated to the components of the system archi-
tecture.

6. Investigation and Annotation of Faults and Failures: Information
flows and energy flows through the embedded system, connected sensors,
controlled actuators and their environment are investigated. Possible faults
and failures are estimated and their propagation is analyzed and annotated.
Moreover it is investigated and annotated how the failures lead to the mal-
functions that were identified during PHA. Thereafter FTA and FMEA are
applied.

After the completion of these working steps, requirements to software and hard-
ware are derived from the safety concept. Software and hardware are fully spec-
ified, implemented, integrated, verified and validated. However these working
steps are beyond the scope of this work.

Due to the complexity of contemporary vehicles, the application of the work-
flow is cumbersome and error-prone. Therefore we propose to aid the safety
engineering workflow defined above by automated property checking (property
checker), automated model correction (model corrector), automated fault tree
synthesis and automated FMEA table synthesis (see Section 4 and Section 5).
This allows to early identify erroneously applied working steps and enables the
automated suggestion and application of corrective measures. Moreover it is not
necessary to construct fault trees and FMEA tables manually. Instead, they are
consistently generated from the EAST-ADL model. While property checker and
model corrector aid the entire workflow, FTA generator and FMEA generator
are especially useful for the verification of the system architecture defining an

Publication 2 - SafeComp 2011 55

Computer-Aided PHA, FTA and FMEA for Automotive Embedded Systems 119

embedded system together with connected sensors and controlled actuators. The
automated analysis and synthesis capabilities of the modeling framework provide
guidance and strongly support the application of the workflow and the creation
of a complete and consistent set of work products.

4 Computer-Aided Checking

Properties are defined that indicate the correct application of the activities of
the safety engineering workflow (see Section 3). A property checker is part of
the modeling framework (see Figure 1) and continuously checks the evolving
EAST-ADL model and presents violating modeling elements to the user. If no
properties are violated, the EAST-ADL model indicates the correct application
of the workflow. If the property checker identifies violated properties, the erro-
neous application of the workflow is unveiled. The property checker does not
only allow the early identification of errors, it is also a valuable guide, while the
workflow is applied. In addition to properties for the earlier phases of the safety
engineering workflow (see [9]), properties for the later phases are presented in
Table 1.

Assume M is an EAST-ADL model, MMM is the EAST-ADL meta model
and P is the set of properties an EAST-ADL model is expected to hold. Assume
e is a modeling element of the EAST-ADL model, t is a type defined by the
EAST-ADL meta model and p is a property (Expression 1).

eεM, tεMMM , pεP (1)

Moreover, I(e, t) pertains, if e is of type t, D(t, p) pertains, if p is defined for t
and H(e, p) pertains if p holds for e. If M indicates the correct application of
the workflow, Expression 2 is valid. In this case no modeling elements violate
properties.

¬∃e¬∃t¬∃p(I(e, t) ∧D(t, p) ∧ ¬H(e, p)) (2)

If a model M shows the erroneous application of the workflow, Expression 3 is
valid. In this case at least one modeling element violates a property.

∃e∃t∃p(I(e, t) ∧D(t, p) ∧ ¬H(e, p)) (3)

5 Automated Synthesis

5.1 Model Correction

Correction rules are defined that impose possible solutions to problems indicated
by the property checker (see also Section 4). A model corrector is part of the
modeling framework (see Figure 1). Possible solutions are suggested on demand
by the model corrector, based on the evolving EAST-ADL model and the cor-
rection rules. A user can decide to accept a suggestion of the model corrector

Publication 2 - SafeComp 2011 56

120 R. Mader et al.

Table 1. Properties of the EAST-ADL model are automatically checked

ID Meta Class Property Definition

28 SafetyGoal At least one safety requirement is derived

29 QualityRequirement Traceable to a safety requirement or a SafetyGoal,
if it is a safety requirement

30 QualityRequirement Is allocated to at least one
AnalysisFunctionPrototype, if it is a safety
requirement

32 Environment An environmentModel is defined

34 AnalysisLevel A functionalAnalysisArchitecture has been defined

39 FunctionFlowPort Has at most one FunctionConnector to a
FunctionFlowPort of type out or inout associated,
if type in

40 FunctionPort A type is defined

40a FunctionPort Connected by at least one FunctionConnector

40c FunctionPort A complementary description has been defined

40b FunctionConnector Connector is connected to two FunctionPorts

41 AnalysisFunctionPrototype A type is defined

42 AnalysisFunctionPrototype Has a complementary description

42a AnalysisFunctionPrototype An ErrorModelPrototype is defined
for every AnalysisFunctionPrototype

37 AnalysisFunctionType At least one FunctionPort has been defined

42b AnalysisFunctionType An ErrorModelType is defined for every
AnalysisFunctionType

48 FaultInPort Has only one FaultFailurePropagationLink to a
FailureOutPort associated

51 FaultFailurePort A functionTarget path is defined

51a FaultFailurePort A type is defined

52a FailureOutPort Has a complementary description

53 ErrorModelPrototype A type is defined

54 ErrorModelPrototype A functionTarget is defined

55 ErrorBehavior An externalFailure is defined

56 ErrorBehavior The defined failureLogic is legal and recognized

57 ErrorBehavior An owner is defined

58 InternalFaultPrototype Has a complementary description

59 InternalFaultPrototype Is owned by at least one ErrorBehavior

60 VehicleFeature Every function is allocated to at least one
AnalysisFunctionPrototype

62 FeatureFlaw Is mapped onto a FailureOutPort

63 EABoolean A note is defined

64 RangeableDatatype A note is defined

65 EAFloat The lower threshold is defined

66 EAFloat The upper threshold is defined

Publication 2 - SafeComp 2011 57

Computer-Aided PHA, FTA and FMEA for Automotive Embedded Systems 121

Table 2. Possible solutions to problems that are automatically suggested

ID Meta Class Suggested Solution

28 SafetyGoal Creation and association of safety requirement

28 SafetyGoal Associate one of the untraceable safety requirements

29 QualityRequirement Associate to existing SafetyGoal, if it is a safety
requirement

29 QualityRequirement Associate to existing safety requirement, if it is
a safety requirement

30 QualityRequirement Allocation to existing AnalysisFunctionPrototype,
if it is a safety requirement

32 Environment Creation and association of
AnalysisFunctionPrototype

34 AnalysisLevel Creation and association of
AnalysisFunctionPrototype

40 FunctionPort Association of existing EAInteger

40 FunctionPort Association of existing EAFloat

40 FunctionPort Association of existing EABoolean

40c FunctionPort Creation and association of Comment

40b FunctionConnector Remove connector

41 AnalysisFunctionPrototype Association of existing AnalysisFunctionType

42 AnalysisFunctionPrototype Creation and association of Comment

42a AnalysisFunctionPrototype Association of existing ErrorModelPrototype

37 AnalysisFunctionType Creation and association of FunctionPort

42b AnalysisFunctionType Creation and association of ErrorModelType

42b AnalysisFunctionType Association of existing, unassociated
ErrorModelType

51 FaultFailurePort Association of existing AnalysisFunctionPrototype

51a FaultFailurePort Association of existing EAInteger

51a FaultFailurePort Association of existing EAFloat

51a FaultFailurePort Association of existing EABoolean

52a FailureOutPort Creation and association of Comment

53 ErrorModelPrototype Creation and association of ErrorModelType

53 ErrorModelPrototype Association of existing ErrorModelType

54 ErrorModelPrototype Association of existing AnalysisFunctionPrototype

55 ErrorBehavior Association of existing, unassociated FailureOutPort

56 ErrorBehavior Change to and (type OTHER)

56 ErrorBehavior Change to or (type OTHER)

57 ErrorBehavior Creation and association of ErrorModelType

57 ErrorBehavior Association of existing ErrorModelType without
ErrorBehavior

58 InternalFaultPrototype Creation and association of Comment

59 InternalFaultPrototype Association of existing ErrorBehavior

60 VehicleFeature Allocation to existing AnalysisFunctionPrototype

62 FeatureFlaw Allocation to existing FailureOutPort

Publication 2 - SafeComp 2011 58

122 R. Mader et al.

or to solve the problem in another way. If a suggested, possible solution is ac-
cepted, the EAST-ADL model is automatically modified and corrected making
a manual modification superfluous. If a suggestion is rejected the EAST-ADL
model remains unchanged. In addition to correction rules for the earlier phases
of the safety engineering workflow (see [9]), correction rules for the later phases
are presented in Table 2.

Assume M is an EAST-ADL model, MMM is the EAST-ADL meta model, P
is the defined set of properties and S is the set of defined suggestions. Assume
e1 is a modeling element of the EAST-ADL model, t1 is a type defined by the
meta model, p1 is a property and s1 is a suggestion (Expression 4).

e1εM, t1εMMM , p1εP, s1εS (4)

Assume that before an automated model correction is carried out (precondition),
e1 is of type t1 and violates p1 that is defined for t1 (Expression 5).

I(e1, t1) ∧D(t1, p1) ∧ ¬H(e1, p1) (5)

If the user accepts suggestion s1, the EAST-ADL model M is automatically
corrected and transformed to EAST-ADL model M ′ by function γ depending
on M , e1, t1, p1 and s1 (Expression 6).

γ(M, e1, t1, p1, s1) → M ′ (6)

After the modification (postcondition) e1 is an element of M ′, e1 is still of type
t1 and does not violate p1 any more (Expression 7).

e1εM
′, I(e1, t1) ∧D(t1, p1) ∧H(e1, p1) (7)

5.2 Fault Tree and FMEA Table Synthesis

The modeling framework (see Figure 1) contains a FTA generator and a FMEA
generator. The EAST-ADL model that is created in the course of the safety
engineering workflow (see Section 3) is input to them. The FTA generator is
able to synthesize fault trees (see Figure 2). The fault trees show, how each
safety goal can be violated by the faults and failures of the embedded system,
connected sensors or controlled actuators. The FMEA generator is able to syn-
thesize a FMEA table (see Figure 3). The FMEA table shows failure modes
of the components, causative faults for these failure modes and effects of these
failure modes in terms of violated safety goals.

The FTA generator considers the recommendations of IEC 61025 [6]. There-
fore the shapes of the symbols of the fault trees are adapted to the shapes
of the symbols recommended by IEC 61025. Basic events (faults, failures) are
represented by circles, complex events (faults, failures, malfunctions, hazards,
hazardous events, violated safety goals) are represented by rectangles and gates
(and, or) are represented by the corresponding logic symbols. The FTA genera-
tor uses the identified safety goals as top events of the generated fault trees (one

Publication 2 - SafeComp 2011 59

Computer-Aided PHA, FTA and FMEA for Automotive Embedded Systems 123

Fig. 2. Fault trees can be synthesized from the EAST-ADL model

fault tree per safety goal is generated) and adds the causative malfunctions,
hazards and hazardous events that were identified during PHA as offsprings.
Component faults, component failures and gates that were identified during the
definition of the error model are used as offsprings of the malfunctions. Thus the
generated fault trees are consistent to the earlier elaborated PHA results.

It is possible to automatically extract the minimum cut sets from each fault
tree. A minimum cut set [12] is a set of basic events leading to the top event (vi-
olation of the safety goal) that cannot be reduced in number. For every violated
safety goal the minimum cut sets can be displayed on demand (see Figure 2).

Assume M is an EAST-ADL model and S is the subset of M that contains
hazards, hazardous events, safety goals, system architecture and the error model
(see Expression 8).

S ⊆ M (8)

Given that Expression 2 holds for all eεS, FTA generator ρ(S) can generate
graphical fault trees Υ that allow examining how component faults and failures
can contribute to the violation of safety goals (see Expression 9).

Publication 2 - SafeComp 2011 60

124 R. Mader et al.

Fig. 3. A FMEA table can be synthesized from the EAST-ADL model

ρ(S) → Υ (9)

The FMEA generator creates a FMEA table containing four columns denoting
the names of the components (Component), the component failure modes leading
to the violation of safety goals (Failure Mode), faults that potentially cause the
component failure modes (Possible Causative Faults) and the violated safety
goals (Violated Safety Goal). The generated FMEA table is consistent to the
fault trees and the earlier elaborated PHA results, because FTA generator and
FMEA generator use the same model S as input.

Given that Expression 2 holds for all eεS, FMEA generator α(S) can generate
a graphical FMEA table Ξ that allows to examine how component failures can
lead to the violation of safety goals (see Expression 10).

α(S) → Ξ (10)

6 Experimental Evaluation

A plugin for the open source tool Papyrus [8] was created that allows property
checking, model correction, fault tree generation and FMEA table generation
such as described in Section 4 and Section 5. Thereafter the approach was ex-
perimentally evaluated using the case study of a hybrid electric vehicle develop-
ment. This type of vehicle contains an additional electric motor that supplements
the internal combustion engine providing substitutive or additive torque. This
electric motor is controlled by the automotive embedded system. The safety en-
gineering workflow such as defined in Section 3 was carried out for a part of a

Publication 2 - SafeComp 2011 61

Computer-Aided PHA, FTA and FMEA for Automotive Embedded Systems 125

hybrid electric vehicle powertrain being aided by the property checker and the
model corrector.

Although the safety engineering workflow was carried out only for a part of the
hybrid electric vehicle powertrain, the resulting EAST-ADL model contains 457
interconnected modeling elements. Each of them contains numerous attributes.
The property checker identifying erroneously applied activities (see Section 4)
and the model corrector suggesting and applying model corrections (see Sec-
tion 5.1) strongly supported the application of the workflow and allowed coping
with the complexity. Illustrations of property checker and model corrector can
be found in [9].

During PHA the hybrid electric vehicle was identified to be safety-critical,
because its failures can cause malfunctions such as battery overcharging (Bat-
teryOvercharging). This malfunction can lead to hazards such as fire or explosion
of the battery (FireExplosion). Fire or explosion of the battery during vehicle
operation imposes a hazardous event (FireExplosionDuringCityTraffic). There-
fore the safety goal AvoidBatteryOvercharging was defined to control or mitigate
the corresponding hazard.

In later phases of the workflow, a part of the system architecture including
networked ECUs (electronic control unit), connected sensors and controlled actu-
ators was defined. Furthermore the relevant parts of the interacting environment
were modeled. The propagation of faults and failures was estimated and anno-
tated. The failure UnintendedNegativeTorque2 of the component EMotor was
identified to be causative for the malfunction BatteryOvercharging. This failure
can occur due to a failure of the E-motor or faults propagated from a sensor and
networked ECUs such as the BMU (Battery Management Unit).

Fault trees and a FMEA table were synthesized from the annotated model
(see Section 5.2). Figure 2 depicts a fault tree that shows the relations between
safety goal AvoidBatteryOvercharging, hazardous event FireExplosionDuringCi-
tyTraffic, hazard FireExplosion, malfunction BatteryOvercharging as well as the
causative faults and failures of the components. The extracted minimum cut sets
that can cause the violation of the safety goal are also depicted.

Figure 3 shows a part of the synthesized FMEA table. The table shows that
a failure mode of the HCU (Hybrid Control Unit) can lead to the violation of
the safety goal AvoidBatteryOvercharging. Moreover possible causative faults are
listed.

7 Conclusion

This work presents a modeling framework with analysis and synthesis capabil-
ities. This modeling framework supports a safety engineering workflow. In the
course of the workflow a model is annotated using the domain-specific language
EAST-ADL. This model integrates the work products of the workflow phases.
The modeling framework contains a property checker that allows to unveil the
incorrect application of the workflow and a model corrector that suggests and au-
tomatically performs corrections of the evolving model. Moreover fault trees and

Publication 2 - SafeComp 2011 62

126 R. Mader et al.

a FMEA table can be automatically synthesized allowing the application of qual-
itative FTA and FMEA. This tightly integrated approach ensures consistency
of PHA results, fault trees and FMEA table. The approach was evaluated using
the case study of a hybrid electric vehicle development. While the analysis and
synthesis capabilities of the modeling framework did not replace the intellectual
process of applying the workflow, they strongly supported its application.

Acknowledgment. The authors wish to thank the ”COMET K2
Forschungsförderungs-Programm” of the Austrian Federal Ministry for Trans-
port, Innovation and Technology (BMVIT), the Austrian FederalMinistry of Eco-
nomics and Labour (BMWA), Österreichische Forschungsförderungsgesellschaft
mbH (FFG), Das Land Steiermark and Steirische Wirtschaftsförderung (SFG)
for their financial support. Additionally we would like to thank the supporting
company and project partner AVL List GmbH as well as Graz University of Tech-
nology. Further information about the MEPAS project can be found at http://
www.v2c2.at/mepas.

References

1. ATESST2 Project Consortium: EAST-ADL Domain Model Specification, version
2.1, Release Candidate 3 (2010)

2. Biehl, M., DeJui, C., Törngren, M.: Integrating Safety Analysis into the Model-
based Development Toolchain of Automotive Embedded Systems. In: Proc. of the
Conference on Languages, Compilers and Tools for Embedded Systems, pp. 125–
131 (2010)

3. Domis, D., Trapp, M.: Integrating Safety Analyses and Component-Based Design.
In: Proc. of the 27th International Conference on Computer Safety, Reliability and
Security, pp. 58–71 (September 2008)

4. Elmqvist, J., Nadjm-Tehrani, S.: Tool Support for Incremental Failure Mode and
Effects Analysis of Component-Based Systems. In: Proc. of the Design, Automation
and Test in Europe Conference and Exhibition (DATE 2008), pp. 921–927 (April
2008)

5. Harel, D., Rumpe, B.: Meaningful Modeling: What’s the Semantics of ”Semantics”?
IEEE Transactions on Computers 37, 64–72 (2004)

6. International Electrotechnical Commission: IEC 61025 - Ed. 2.0 Fault tree analysis
(FTA) (2006)

7. International Organization for Standardization: ISO/DIS 26262-3 Road vehicles -
Functional safety - Part 3: Concept phase (2009)

8. Lanusse, A., Tanguy, Y., Espinoza, H., Mraidha, C., Gerard, S., Tessier, P.,
Schnekenburger, R., Dubois, H., Terrier, F.: Papyrus UML: an open source toolset
for MDA. In: Proc. of the Fifth European Conference on Model-Driven Architec-
ture Foundations and Applications (ECMDA-FA 2009), pp. 1–4 (June 2009)

9. Mader, R., Grießnig, G., Leitner, A., Kreiner, C., Bourrouilh, Q., Armengaud, E.,
Steger, C., Weiß, R.: A Computer-Aided Approach to Preliminary Hazard Analysis
for Automotive Embedded Systems. In: Proc. of the IEEE International Conference
and Workshops on Engineering of Computer Based Systems (ECBS), pp. 169–178
(2011)

Publication 2 - SafeComp 2011 63

Computer-Aided PHA, FTA and FMEA for Automotive Embedded Systems 127

10. Majdara, A., Wakabayashi, T.: A New Approach for Computer-Aided Fault Tree
Generation. In: Proc. of the 3rd Annual IEEE Systems Conference, pp. 308–312
(2009)

11. de Miguel, M., Briones, J., Silva, J., Alonso, A.: Integration of safety analysis in
model-driven software development. IET Software 2, 260–280 (2008)

12. Leveson, N.G.: Safeware: system safety and computers. Addison-Wesley Publishing
Company, Reading (1995)

13. Papadopoulos, Y., Grante, C.: Evolving car designs using model-based automated
safety analysis and optimisation techniques. The Journal of Systems and Soft-
ware 76, 77–89 (2004)

14. Papadopoulos, Y., Maruhn, M.: Model-Based Synthesis of Fault Trees from Mat-
lab - Simulink models. In: Proc. of the International Conference on Dependable
Systems and Networks (DSN 2001), pp. 77–82 (July 2001)

15. Sandberg, A., Chen, D.J., Lönn, H., Johansson, R., Feng, L., Törngren, M.,
Torchiaro, S., Kolagari, R.T., Abele, A.: Model-Based Safety Engineering of In-
terdependent Functions in Automotive Vehicles Using EAST-ADL2. In: Proc. of
the 29th International Conference on Computer Safety, Reliability and Security,
pp. 332–346 (September 2010)

Publication 2 - SafeComp 2011 64

Automatic and Optimal Allocation of Safety Integrity Levels

Roland Mader, AVL List GmbH
Eric Armengaud, AVL List GmbH
Andrea Leitner, Graz University of Technology
Christian Steger, Graz University of Technology
Key Words: Automotive Safety Integrity Level, Functional Safety, ISO 26262, Integer Linear Programming

SUMMARY & CONCLUSIONS

Powertrain electrification of vehicles leads to a higher
number of sensors, actuators and control functions resulting in
increasing complexity. Due to the safety-criticality of the
functionalities, safety standards must be considered during
system development. The safety standard ISO 26262 defines
discrete ASILs (Automotive Safety Integrity Levels) that must
be identified and allocated to the components of the system
under development. Once allocated, they determine the
applicable requirements of ISO 26262 and the necessary
safety measures to accordingly minimize residual risk.
Furthermore, the allocated ASILs directly influence the
development efforts and the costs per piece of the system
components. Manual elaboration of an ASIL allocation that is
economic and assures functional safety is complex and
cumbersome. This work presents a method that allows the
automatic allocation of ASILs to the system components. In
our approach ASIL allocation is interpreted as an ILP (Integer
Linear Programming) problem. This allows obtaining an ASIL
allocation that is optimal with respect to an objective function
that is subject to constraints. These constraints are derived
from the results of PHA (Preliminary Hazard Analysis), FTA
(Fault Tree Analysis) and preferences of the safety engineer.
The approach is evaluated by the case study of hybrid electric
vehicle development.

1 INTRODUCTION

Powertrain electrification of vehicles transforms
powertrains into complex, mechatronic systems. Due to the
safety-criticality of interconnected ECUs (electronic control
units), connected sensors and controlled actuators they are
developed according to safety standards such as the
automotive functional safety standard ISO 26262 [1].

This standard attempts to quantify functional safety by
defining discrete ASILs (Automotive Safety Integrity Levels).
They are QM (not safety-critical), ASIL A (least stringent),
ASIL B, ASIL C, and ASIL D (most stringent). The ASILs
allocated to the components of the system under development
determine applicable requirements of ISO 26262 and the
necessary safety measures to avoid unreasonable residual risk.
The requirements of ISO 26262 affect the stringency of the
development process of the system components (e.g. the

portfolio of applicable verification techniques). The applicable
safety measures determine the runtime fault detection
capabilities of the system components. Thus the allocated
ASILs heavily influence safety of the system in the context of
its environment (another system that interacts with the sensors
and actuators). Furthermore the allocated ASILs influence
development costs and costs per piece.

An allocation of ASILs to the system under development
shall therefore (1) assure that the required level of functional
safety is achieved and (2) permit an economic solution with
respect to development costs and cost per piece. Manual
elaboration of an ASIL allocation that fulfills the requirements
is complex, cumbersome and should be automated.

In this work a modeling framework is presented that
supports an automotive safety engineering workflow that
includes ASIL allocation. The work products of this workflow
are annotated using the domain-specific language EAST-ADL
(Electronics Architecture and Software Technology-
Architecture Description Language) [2]. The contribution of
this work is an automatic method for the allocation of ASILs
to the system under development. Inputs to this method are
results of PHA (Preliminary Hazard Analysis), FTA (Fault
Tree Analysis) [3] and additional preferences of the safety
engineer concerning the ASIL allocation. We show that the
allocation of ASILs to the components of the system under
development can be interpreted as an ILP (Integer Linear
Programming) [11] problem. If solved, the solution is optimal
with respect to an objective function and is consistent to the
results of PHA, FTA and defined preferences. Furthermore the
solution can be automatically projected on the evolving
EAST-ADL model making a manual model modification
superfluous. The applicability of the approach is evaluated by
the case study of HEV (hybrid electric vehicle) development.

The remainder of the work is organized as follows.
Section 2 reviews related work. Section 3 presents the
automotive safety engineering workflow. Section 4 describes
the modeling framework that allows applying the workflow
including automatic and optimal ASIL allocation. Section 5
describes the approach to ASIL allocation. Finally Section 6
describes the experimental evaluation of the approach.

2 RELATED WORK

In [4] a workflow for embedded systems development is

978-1-4577-1851-9/12/$26.00 ©2012 IEEE

Publication 3 - RAMS 2012 65

©2012 IEEE. Reprinted, with permission, from Proceedings of the RAMS 2012.

presented that aims on integration of functional modeling and
safety analyses. They present a V-model that incorporates the
application of PHA, FTA and FMEA (Failure Modes and
Effects Analysis). Furthermore the workflow includes the
determination of ASILs using a qualitative risk graph method.

In [5] an approach is presented that allows to
automatically prove the correctness and completeness of fault
trees based on a formal model. This is achieved using a model
checking technique. The fault trees are quantitative and their
top events are the PFDs (probabilities for failure on demand)
of SIFs (safety instrumented functions). These quantities are
used to derive the safety integrity levels for the SIFs of a SIS
(safety instrumented system) according to IEC 61508.

In [6] a fuzzy probabilistic technique is presented that
aims on compliance with IEC 61508. The method allows
evaluating the SIL (Safety Integrity Level) of a SIS under
development. In contrast to other quantitative techniques for
SIL determination that highly depend on the credibility of the
used data, the approach is tolerant towards uncertainties about
the component failure probabilities. Failure rates and fuzzy
probabilities are used to evaluate the fuzzy SIS PFD and the
SIL of the SIS.

The works presented in [4], [5] and [6] are focused on the
qualitative or quantitative determination of safety integrity
levels. In contrast this work is focused on the allocation of
ASILs to the components of a system under development.

In [7] an approach to the automatic allocation of SILs to
subsystems and components of complex hierarchical
networked architectures is presented. The approach can be
used in the context of development using EAST-ADL. The
approach supports ASIL decomposition [1]. Thus, if a
component contributes to a failure only in conjunction with
other components it may receive a lower SIL than a
component that directly causes the failure. Minimum cut sets
that were extracted during FTA are input to an algorithm that
computes possible allocations of SILs to the components. The
most promising potential allocations are presented to the user.

The approach presented in [7] potentially leads to lots of
possible ASIL allocations that must be investigated by the
safety engineer to select the preferred allocation. In contrast,
our approach leads to a single allocation that is optimal with
respect to an objective function and considers preferences of
the safety engineer that were defined in advance.

3 SAFETY ENGINEERING WORKFLOW

This section describes an ISO 26262-compatible,
automotive safety engineering workflow that is based on the
work described in [8], [9] and [10]. This workflow is
subdivided into multiple phases and allows iterations, if
necessary. An EAST-ADL model is annotated, systematically
enhanced and refined in course of this workflow. EAST-ADL
is a domain-specific language for the automotive domain. It is
UML-based (Unified Modeling Language) and diagrammatic.
Its abstract syntax is defined by a meta model and its semantic
domain and semantic mapping are defined using natural
language. Control units, sensors, actuators, related concepts
(e.g. requirements, features, hazards, faults and failures), their

relations and their dependencies can be described using
EAST-ADL. Thereafter the workflow phases are described.

3.1 Definition of the Analysis Subject

First information about the vehicle under development is
collected and modeled. Functions of the vehicle (e.g. motoring
or recuperative braking) are defined. Requirements to these
functions are determined and allocated (e.g. conditions for
activation or deactivation). In addition relevant modes (e.g.
drive, creep or acceleration) are identified for each function
and associated with the requirements.

3.2 Identification of Hazards and Hazardous Events

Based on the definition of the analysis subject, PHA (for
more details see also [9]) is carried out. Possible malfunctions
are identified. Hazards are derived for each malfunction (e.g.
unintended acceleration of the vehicle). Thereafter operational
situations such as traffic situations (e.g. oncoming traffic on a
highway in a curve) and maintenance situations (e.g. vehicle at
lifting ramp) are defined. Moreover use cases describing the
behavior (e.g. overtaking or changing oil) of the related actors
(e.g. driver or mechanic) are described. Hazardous events are
determined for relevant combinations of hazards, use cases
and operational situations. Moreover relevant modes are
identified for each hazardous event. The criticality of each
hazardous event is assessed in terms of its controllability,
severity and exposure and an ASIL is determined.

3.3 Derivation of Safety Goals

For each hazardous event that has an ASIL assigned
(ASIL A, ASIL B, ASIL C or ASIL D), a safety goal is
derived and associated. Furthermore, a safe state is defined
(e.g. switch open) for each safety goal. Alternatively a safe
mode (e.g. limp home mode) is determined. The determined
safety goals are top-level safety requirements.

3.4 Definition of Safety Concept

The safety concept is derived from the safety goals. This
safety concept consists of functional and technical safety
requirements to the automotive embedded system, connected
sensors and controlled actuators. Traces are created between
safety goals, functional safety requirements and technical
safety requirements.

3.5 Definition of System Architecture

The system architecture is defined in terms of the
embedded system, connected sensors and controlled actuators.
Moreover the parts of the environment are modeled that
interact with the sensors and actuators. Thereafter the
functional and technical safety requirements are allocated to
the components of the system architecture. Furthermore
functions are allocated to the system components.

3.6 Investigation and Annotation of Faults and Failures

Information flows and energy flows through the
embedded system, connected sensors, controlled actuators and
their environment are investigated. Possible faults and failures

Publication 3 - RAMS 2012 66

are estimated and their propagation is analyzed and annotated.
Moreover it is investigated and annotated how the failures lead
to the malfunctions that were identified during PHA.
Thereafter FTA and FMEA [3] are applied. Finally, ASILs are
allocated to the components of the system (this paper is
focused on this workflow activity). The allocated ASILs
determine applicable requirements of ISO 26262 (e.g. process
stringency) as well as the necessary safety measures (e.g.
runtime fault detection capabilities). Furthermore, they
determine the efforts for achieving functional safety with
respect to the development efforts as well as the costs per
piece of the system components.

4 MODELING FRAMEWORK

An EAST-ADL model is elaborated in course of the
safety engineering workflow that contains its work products.
This model is created using a framework that supports EAST-
ADL modeling.

Furthermore, the modeling framework supports the
automatic generation of fault trees from a subset of the EAST-
ADL model. The violated safety goals that were identified
during PHA are used as top events of these fault trees. Their
descendants are causative hazardous events, hazards,
malfunctions, faults and failures. Minimum cut sets can be
automatically extracted from the fault trees. A minimum cut
set [3] is a set of basic events leading to the top event
(violation of safety goal) that cannot be reduced in number.
The automated generation of fault trees supports the
application of FTA and the verification of the system
architecture. Furthermore the automatically extracted
minimum cut sets are input to the presented approach to ASIL
allocation. For more details on fault tree generation,
illustrations of the fault trees and a description of other
capabilities of the modeling framework refer to [9] and [10].

The modeling framework is equipped with a constraint
solver. This constraint solver can automatically find an
allocation of ASILs to the components of the system. This
allocation depends on the safety goals defined during PHA,
the minimum cut sets extracted during FTA as well as
particular preferences of the safety engineer. The allocation is
optimal with respect to an objective function and ensures
consistency to PHA results and FTA results. Preferences can
be defined using a dedicated graphical user interface that is
illustrated in Figure 1. Once an optimal solution is found, the
solution can be automatically projected on the EAST-ADL
model, making a manual model modification superfluous. The
approach to ASIL allocation is thereafter described.

5 ASIL ALLOCATION

5.1 Integer Linear Programing Problems

Linear programming denotes an approach to modeling
and solution of linear mathematical models and more
specifically those models that seek to optimize a linear
measure of performance [11]. A single-objective linear
programming model can be stated mathematically. Find the
variables ݔଵ, ,ଶݔ … , ݔ 0 so as to optimize (either maximize

or minimize) the objective function that is subject to specified
constraints. Expression 1 defines the objective function ݖ.

,ଵݔሺݖ ,ଶݔ … . , ሻݔ ൌݔ · ܿ

ୀ

 ሺ1ሻ

In addition the ݉ specified constraints are defined by
Expression 2 for the ݊ variables.

ଵݔ · ܿଵଵ ڮ ݔ · ܿଵሼ,ൌ,ሽܾଵ
ଵݔ · ܿଶଵ ڮ ݔ · ܿଶሼ,ൌ,ሽܾଶ ሺ2ሻ

 ڭ
ଵݔ · ܿଵ ڮ ݔ · ܿሼ,ൌ,ሽܾ

An integer linear programming problem is a linear
program in which some or all of the variables ݔଵ, ,ଶݔ … , areݔ
restricted to integer values.

5.2 ASIL Arithmetic

ISO 26262 defines a method called ASIL decomposition.
This method allows reducing the ASILs allocated to
sufficiently independent components that can only jointly
cause the violation of a safety goal. If a component can solely
cause the violation of a safety goal its ASIL cannot be
reduced.

Rules for the reduction of the ASILs are defined. To
formalize these rules, QM, ASIL A, ASIL B, ASIL C and
ASIL D can be interpreted as the integer numbers 0, 1, 2, 3
and 4.

Assume ܵܩ is a safety goal. Furthermore assume
 ሻ denotes the ASIL of a safety goal interpreted as anܩሺ݈ܵ݅ݏܽ
integer number (see Expression 3).

 ൯߳ሼ1,2,3,4ሽ ሺ3ሻܩ൫݈ܵ݅ݏܽ
Assume ܥ denotes a component of the embedded system,

a connected sensor or controlled actuator. Furthermore assume
 ሺCሻ denotes the ASIL that is allocated to the component݈݅ݏܽ
 . interpreted as an integer number (see Expression 4)ܥ

 ሻ߳ሼ0,1,2,3,4ሽ ሺ4ሻܥሺ݈݅ݏܽ
According to ISO 26262, if ASIL decomposition is

applied for ݈ components that can only jointly cause the
violation of the safety goal ܵܩ, an inequality shall be fulfilled
(see Expression 5).

݈ܽ݅ݏሺܥሻ

ୀ

 ൯ ሺ5ሻܩ൫݈ܵ݅ݏܽ

This implies that ASILs, interpreted as integer numbers,
can be added resulting in a new ASIL that is limited to 4.

5.3 ASIL Allocation as Integer Linear Programing Problem

The problem of allocating ASILs to the components of
the system under development can be interpreted as an integer
linear programing problem. This approach is based on the
assumption that (a) ASILs can be interpreted as integer
numbers and (b) ASILs can be input to additions that result in
a new ASIL (see also Section 5.2).

Generally, the greater an allocated ASIL, the greater the
efforts for the development process and the higher the costs
per piece of a component. It can therefore be assumed that a
low sum of allocated ASILs leads to an economic ASIL
allocation for the system under development. An objective

Publication 3 - RAMS 2012 67

function ܨ can be defined that shall be minimized in order
to find an economic ASIL allocation to ݊ components (see
Expression 6).

,ଵܥሺܨ ,ଶܥ … , ሻܥ ൌ݈ܽ݅ݏሺܥሻ

ୀ

 ሺ6ሻ

Safety goals can be modeled using EAST-ADL and
ASILs can be assigned. Assume that ܵܵܩ is the set of safety
goals that was defined in course of the safety engineering
workflow (see Expression 7).

ܩܵ א ሺ7ሻ ܵܩܵ
EAST-ADL allows modeling of components (e.g. sensor,

actuator, control unit) of the system under development and
the system environment. Furthermore faults, failures and their
propagation can be modeled. Fault and failures are
unambiguously relatable to the components of the system
under development or the system environment. Assume ݂ is a
fault or failure of the system under development or the system
environment.

Assume ݂ is part of minimum cut set ܥܯ ܵ that was
automatically extracted during FTA and can lead to the
violation of safety goal ܵܩ (see Expression 8).

݂ א ܥܯ ܵ ሺ8ሻ
Based on the set of safety goals ܵܵܩ and the minimum cut

sets that contribute to the violation of the safety goals, ݈
constraints can be defined for ݉ safety goals and ݊
components (see Expression 9). These constraints assure that
the allocation of ASILs is consistent to the safety goals and the
minimum cut sets and assure the achievement of functional
safety according to ISO 26262.

A constraint is defined for each minimum cut set that can
lead to the violation of a safety goal in ܵܵܩ and exclusively
consists of faults and failures that result from a component ܥ
of the system under development. Every constraint contains a
coefficient ܿ௫௬ per component. If a failure ݂ of a component
ܥܯ is element of a minimum cut setܥ ܵ, the coefficient ܿ௫௬
is set to 1 in the corresponding constraint. Else the coefficient
is set to 0. Thus, if components can only jointly cause the
violation of a safety goal, their coefficients are 1 while the
remaining coefficients are 0 in the corresponding constraint. If
a component can solely cause the violation of a safety goal, its
coefficient is the only coefficient that is 1 in the corresponding
constraint.

ଵሻܥሺ݈݅ݏܽ · ܿଵଵ ڮ ሻܥሺ݈݅ݏܽ · ܿଵ ଵሻܩሺ݈ܵ݅ݏܽ
 ڭ

ଵሻܥሺ݈݅ݏܽ · ܿଵ ڮ ሻܥሺ݈݅ݏܽ · ܿ ଵሻ ሺ9ሻܩሺ݈ܵ݅ݏܽ
ଵሻܥሺ݈݅ݏܽ · ܿଵ ڮ ሻܥሺ݈݅ݏܽ · ܿ ଶሻܩሺ݈ܵ݅ݏܽ

 ڭ
ଵሻܥሺ݈݅ݏܽ · ܿଵ ڮ ሻܥሺ݈݅ݏܽ · ܿ ሻܩሺ݈ܵ݅ݏܽ

Usually a safety engineer has certain preferences
concerning the allocation of safety integrity levels to the
components of the system under development. A reason may
be the intended reuse of a component ܥ developed in an
earlier project according to a particular ASIL. Another reason
may be the selected limitation of the ASIL allocated to a
component in order to limit costs per piece or development
costs. Assume ݈݅ݏܽሺܥሻ is the preferred ASIL for a

component ܥ (see Expression 10).
 ሻ߳ሼ0,1,2,3,4ሽ ሺ10ሻܥሺ݈݅ݏܽ

To ensure the consideration of such preferences, an
additional constraint on the ASIL of each of the ݊ system
components can be defined by the safety engineer (see
Expression 11). If a preference for a component ܥ is defined,
the corresponding coefficient ݀௫௬ of the component is the only
one that is 1.

ଵሻܥሺ݈݅ݏܽ · ݀ଵଵ ڮ ሻܥሺ݈݅ݏܽ · ݀ଵ ଵሻܥሺ݈݅ݏܽ
ଵሻܥሺ݈݅ݏܽ · ݀ଶଵ ڮ ሻܥሺ݈݅ݏܽ · ݀ଶ ଶሻܥሺ݈݅ݏܽ
ଵሻܥሺ݈݅ݏܽ · ݀ଷଵ ڮ ሻܥሺ݈݅ݏܽ · ݀ଷ ଷሻ ሺ11ሻܥሺ݈݅ݏܽ

 ڭ
ଵሻܥሺ݈݅ݏܽ · ݀ଵ ڮ ሻܥሺ݈݅ݏܽ · ݀ ሻܥሺ݈݅ݏܽ

The constraint solver of the modeling framework can be
used to solve the ILP problem. This constraint solver attempts
to determine the parameters ݈ܽ݅ݏሺܥሻ that lead to a minimum
of the function ܨ under consideration of the constraints on
the parameters ݈ܽ݅ݏሺܥሻ imposed by Expression 9 and
Expression 11. If the constraint solver finds a solution, it is (a)
optimal with respect to the objective function ܨ, (b)
consistent to results of PHA and FTA and (c) considers the
preferences of the safety engineer.

A safety engineer can inspect the solution to the problem.
If the solution is satisfactory, the safety engineer can initiate
the allocation of the ASILs to the components. In this case the
EAST-ADL model is automatically modified according to the
accepted solution. If the result is not satisfactory, the safety
engineer can decide to change the preferences concerning the
ASIL allocation and run the constraint solver again.

If the imposed ILP problem cannot be solved, the safety
engineer needs to revise the preferences concerning the ASIL
allocation and needs to rerun the constraint solver.

6 EXPERIMENTAL EVALUATION

A plugin for the open source tool Papyrus [12] was
created that supports the generation of fault trees as well as the
automatic, optimal allocation of safety integrity levels such as
described in Section 4 and Section 5. This plugin embeds a
constraint solver.

The presented approach was experimentally evaluated
using the case study of HEV development. This type of
vehicle contains an additional electric motor that supplements
the internal combustion engine providing substitutive or
additive torque. The safety engineering workflow including
ASIL allocation was carried out for a part of the HEV
powertrain according to Section 3.

Figure 1 illustrates the GUI of the plugin that was used to
carry out ASIL allocation. The grey lines of the table list the
safety goals that were defined during PHA and the white lines
list the HEV components (column Origin). The ASILs of the
safety goals and the preferred component ASILs defined by
the safety engineer are listed (column Required ASIL).
Furthermore the faults and failures of each component leading
to safety goal violations are listed (column Fault/Failure).
Finally the constraints on the component ASILs (see also
Expressions 9 and 11) that were derived from PHA results,
FTA results and preferences of the safety engineer are

Publication 3 - RAMS 2012 68

displayed (column Constraints).
The HEV contains two redundant acceleration pedal

sensors. While one sensor measures the pedal position, the
other one measures the pedal pressure. Due to the redundancy,
the fault or failure of one acceleration pedal can only cause the
violation of a safety goal in conjunction with the fault or
failure of the other one. This is the prerequisite for ASIL
decomposition of these two components. It was decided to use
a proven ASIL A pedal position sensor that was used in earlier
projects. Therefore it was decided to set the preferred ASIL of
the sensor to ASIL A.

The HCU (hybrid control unit) manages the interaction of
HEV components such as battery, E-motor, inverter as well as
other control units. Therefore the development efforts for a
HCU are typically high. Thus it was decided to set the
preferred ASIL of the HCU to ASIL A in order to keep
development costs low.

After defining preferred ASILs, the constraint solver was
activated by clicking on the bulb icon at the upper right (see
Figure 1). The constraint solver could not find a solution for
the defined constraints. This indicated that the preferred

ASILs of the HCU or the pedal sensor were in conflict with
the results of PHA and FTA. This made it necessary to modify
the preferences.

The preferred ASIL of the HCU was set to ASIL B.
Thereafter the constraint solver was activated again. The
constraint solver was able to find a solution for the modified
constraint set (see column Allocated ASIL in Figure 1). This
solution is optimal with respect to the defined objective
function (see also Expression 6) and consistent to the defined
safety goals, the minimum cut sets extracted during FTA and
the defined preferences for the ASIL allocation. Furthermore
the constraint solver identified the possibility for ASIL
decomposition of the two redundant acceleration pedal sensors
under consideration of the defined constraints and
decomposed the ASILs of the acceleration pedal sensors to
ASIL A+ASIL A.

Thereafter the results were stored by clicking the
rectangle icon on the upper right (see Figure 1). This resulted
in the automated manipulation of the EAST-ADL model and
the allocation of ASILs to the components of the system under
development.

Figure 1: The elaborated ASIL allocation is optimal with respect to a predefined objective function.

ACKNOWLEDGEMENTS

The MEPAS project team wishes to thank the "COMET
K2 Forschungsförderungs-Programm" of the Austrian Federal
Ministry for Transport, Innovation and Technology (BMVIT),
the Austrian Federal Ministry of Economics and Labour
(BMWA), Österreichische Forschungsförderungsgesellschaft
mbH (FFG), Das Land Steiermark and Steirische
Wirtschaftsförderung (SFG) for their financial support.

REFERENCES

1. International Organization for Standardization, “ISO
26262 - Road vehicles - Functional Safety”, 2010.

2. ATESST2 Project Consortium, “EAST-ADL Domain
Model Specification”, V2.1, Release Candidate 3, 2010.

3. N. G. Leveson, “Safeware: system safety and computers”,
Addison Wesley, 1995.

4. H. Zhang, W. Li and J. Qin, “Model-based Functional

Safety Analysis Method for Automotive Embedded
System Applications”, Proc. International Conference on
Intelligent Control and Information Processing, (Aug.)
2010, pp 761-765.

5. Y. Lee, J. Kim, J. Kim and I. Moon, “A Verification of
Fault Tree for Safety Integrity Level Evaluation”, Proc.
ICROS-SICE International Joint Conference, (Aug.)
2009, pp 5548-5551.

6. M. Sallak, C. Simon and J.-F. Aubry, “A Fuzzy
Probabilistic Approach for Determining Safety Integrity
Level”, IEEE Transactions on Fuzzy Systems, vol. 16,
(Feb.) 2008, pp 239-248.

7. Y. Papadopoulos, M. Walker, M.-O. Reiser, M. Weber,
D. Chen, M. Törngren, D. Servat, A. Abele, F. Stappert,
H. Lönn, L. Berntsson, R. Johansson, F. Tagliabo, S.
Torchiaro and A. Sandberg, “Automatic Allocation of
Safety Integrity Levels”, Proc. 1st Workshop on Critical
Automotive applications: Robustness & Safety, (Apr.)

Publication 3 - RAMS 2012 69

2010, pp 7-10.
8. A. Sandberg, D. Chen, H. Lönn, R. Johansson, L. Feng,

M. Törngren, S. Torchiaro, R. T. Kolagari and A. Abele,
“Model-Based Safety Engineering of Interdependent
Functions in Automotive Vehicles Using EAST-ADL2”,
Proc. 29th International Conference on Computer Safety,
Reliability and Security, (Sep.) 2010, pp 332-346.

9. R. Mader, G. Grießnig, A. Leitner, C. Kreiner, Q.
Bourrouilh, E. Armengaud, C. Steger and R. Weiß, “A
Computer-Aided Approach to Preliminary Hazard
Analysis for Automotive Embedded Systems”, Proc.
IEEE International Conference and Workshops on
Engineering of Computer Based Systems, (Apr.) 2011, pp
169-178.

10. R. Mader, E. Armengaud, A. Leitner, C. Kreiner, Q.
Bourrouilh, G. Grießnig, C. Steger and R. Weiß,
“Computer-Aided PHA, FTA and FMEA for Automotive
Embedded Systems”, Proc. 30th International Conference
on Computer Safety, Reliability and Security, (Sep.)
2011, pp 113-127.

11. J. P. Ignazio and T. M. Cavalier, “Linear Programming”,
Prentice Hall, 1994.

12. A. Lanusse, Y. Tanguy, H. Espinoza, C. Mraidha, S.
Gerard, P. Tessier, R. Schnekenburger, H. Dubois and F.
Terrier, “Papyrus UML: an open source toolset for
MDA.”, Proc. Fifth European Conference on Model-
Driven Architecture Foundations and Applications, (Jun.)
2009, pp 1-4.

BIOGRAPHIES

Roland Mader
AVL List GmbH, Graz University of Technology
Graz, Austria

e-mail: roland.mader@avl.com

Roland Mader received the Dipl.-Ing. degree (M.Sc.) with
honors in Telematics from Graz University of Technology,
Austria. Since 2009 he is employee of AVL List GmbH and a
Ph.D. student at Graz University of Technology. His research

interests include safety-critical embedded systems as well as
methods for their development.

Eric Armengaud
AVL List GmbH, Virtual Vehicle Competence Center
Graz, Austria

e-mail: eric.armengaud@avl.com

Eric Armengaud received the Diplome d'Ingenieur (M.Sc.) in
Electrical Engineering in 2002 from the ESIEE Paris. In 2008
he received the Dr. techn. degree (Ph.D.) from Vienna
University of Technology. He is employee of AVL List
GmbH and the Virtual Vehicle Competence Center. His
research interests include distributed real-time systems, testing
as well as safety engineering.

Andrea Leitner
Graz University of Technology
Graz, Austria

e-mail: andrea.leitner@tugraz.at

Andrea Leitner received the Dipl.-Ing. degree (M.Sc.) from
Graz University of Technology, Austria. Since 2010 she is a
Ph.D. student at Graz University of Technology. Her research
interests include product line engineering, variant management
and knowledge-oriented software engineering.

Christian Steger
Graz University of Technology
Graz, Austria

e-mail: steger@tugraz.at

Christian Steger received the Dipl.-Ing. degree (M.Sc.) in
1990 and the Dr. techn. degree (Ph.D.) in electrical
engineering in 1995 from Graz University of Technology.
Since 1992 he is Assistant Professor at the Institute for
Technical Informatics at Graz University of Technology. His
research interests include embedded systems,
hardware/software co-design and hardware/software co-
verification.

Publication 3 - RAMS 2012 70

A Bridge from System to Software Development
for Safety-Critical Automotive Embedded Systems

Roland Mader1,2, Gerhard Grießnig1, Eric Armengaud1,3, Andrea Leitner2,
Christian Kreiner2, Quentin Bourrouilh1, Christian Steger2, Reinhold Weiß2

1AVL List GmbH, Austria
2Institute for Technical Informatics, Graz University of Technology, Austria

3Virtual Vehicle Competence Center, Austria

Abstract—In this paper, we present a tool enhancement that
allows an effective transition from the system level development
phase to the software level development phase of a tool-supported
safety engineering workflow aligned with the automotive func-
tional safety standard ISO 26262. The tool enhancement has
capabilities for model generation and code generation. Whereas
the generation of Simulink models supports the development of
application software, the configuration and generation of safety
drivers supports the development of the basic software required
for initialization, runtime fault detection and error handling. We
describe the safety engineering workflow and its supporting tool
chain including the tool enhancement. Moreover we demonstrate
that the enhancement supports the transition from the system
level development phase to the software level development phase
using the case study of a hybrid electric vehicle development.

Index Terms—functional safety; automotive embedded system;
ISO 26262; EAST-ADL; multi-core microcontroller

I. INTRODUCTION

Powertrain electrification of vehicles transforms power-
trains into complex, mechatronic systems. Due to the safety-
criticality of the embedded system, sensors and actuators, they
are developed according to safety standards like the automotive
functional safety standard ISO 26262 [1].
The standard requires the application of a system level

development phase. In this phase safety requirements are
defined. Furthermore, the system architecture (architecture of
embedded system, connected sensors and controlled actuators)
is designed and analyzed using FTA (fault tree analysis) and
FMEA (failure modes and effects analysis). In addition, safety
requirements and ASILs (Automotive Safety Integrity Levels)
are allocated to the components of the system architecture.
ISO 26262 also requires a software level development phase
based on the results of the system level development phase.
In this phase software requirements are defined and software
units are designed, implemented and integrated under consid-
eration of allocated ASILs.
Tool support for the application of the required phases

exists. The EAST-ADL [2] (Electronics Architecture and
Software Technology-Architecture Description Language) tool
Papyrus for UML [3] (Unified Modeling Language) is useful
during the entire system level development phase and the early
part of the software level development phase. During the main
part of the software level development phase Simulink [4],
TargetLink [5] and software development IDEs (integrated
development environments) like Code Composer Studio [6]
are especially useful.

Whereas EAST-ADL is a domain-specific language for the
automotive domain and allows to model a system architecture
and related artifacts from different viewpoints and on different
levels of abstraction, Papyrus for UML is an open source tool
that allows EAST-ADL modeling. Simulink is a software tool
that is tightly integrated with Matlab and provides a graphical
modeling language allowing behavioral modeling using sinks,
sources, linear blocks, nonlinear blocks and connectors. Tar-
getLink is a code generator that allows generating C-programs
from Simulink models. Software development IDEs support
developing C-programs, compilation, linking and debugging.
However, due to insufficient support for model generation

and code generation, an effective transition from the system
level development phase to the software level development
phase is difficult. To overcome these problems, sophisticated
tool support with capabilities for model generation and code
generation is required.
The contribution of this work is an enhancement of the

EAST-ADL tool Papyrus for UML. The enhancement con-
sists of (a) a Simulink Model Generator and (b) a Safety
Driver Generator. Taking an EAST-ADL model as input, the
Simulink Model Generator allows the generation of Simulink
models required for the development of application software.
Taking the same EAST-ADL model as input, the Safety Driver
Generator allows the configuration and generation of safety
drivers forming a part of the basic software required for
initialization, runtime fault detection and error handling of
microcontrollers under consideration of ASILs. Both, (a) and
(b) support the transition from the system level development
phase to the software level development phase of a tool-
supported automotive safety engineering workflow aligned
with the safety standard ISO 26262.
This work is organized as follows. Section II summarizes

related work. Section III describes the automotive safety engi-
neering workflow and its supporting tool chain including the
proposed tool enhancement. Section IV describes the Simulink
model generation capabilities of the tool enhancement. The
capabilities of the proposed enhancement for configuration and
generation of safety drivers is described in Section V. Sec-
tion VI presents the experimental evaluation and Section VII
concludes this work.

II. RELATED WORK

An approach to safety engineering using EAST-ADL is
presented in [7]. This work is focused on a model-based

2012 38th Euromicro Conference on Software Engineering and Advanced Applications

978-0-7695-4790-9/12 $26.00 © 2012 IEEE

DOI 10.1109/SEAA.2012.61

75

Publication 4 - SEAA 2012 71

©2012 IEEE. Reprinted, with permission, from Proceedings of the SEAA 2012.

approach to PHA (Preliminary Hazard Analysis) required by
ISO 26262’s concept phase. In contrast, our work is focused
on providing a more effective transition from the system
level development phase to the software level development
phase of an automotive safety engineering workflow using
the generation of Simulink models and the configuration and
generation of safety drivers.
The works in [8], [9] are concerned with component-based

software development for safety-critical embedded systems.
Whereas [8] is focused on integrating safety analyses with
component-based software development, [9] is focused on
simulation and model-checking based on a component model.
Both do not address the problem of supporting safety-critical
software development for initialization, runtime-testing and
error-handling of microcontrollers.
The works in [10], [11], [12], [13] describe approaches to

embedded software development that include Simulink. They
do not focus on safety-critical embedded software develop-
ment. Thus, they do not address the problem of supporting
the development of safety-critical software that allows initial-
ization, runtime-testing and error-handling of microcontrollers.
A survey of techniques for SBST (Software-based Self

Testing) can be found in [14]. SBST can be used for runtime-
testing of microcontrollers in the field to detect faults in
on-chip programmable resources like CPU, RAM, ROM or
periphery. This is also one of the purposes of safety drivers.
However, the works surveyed in [14] do not present tool
support that allows the supported configuration and according
generation of this functionality.
In contrast to the works presented in [8], [9], [10], [11], [12],

[13], [14], the presented tool enhancement allows to configure
and generate safety drivers covering safe initialization, runtime
fault detection and error handling of microcontrollers.

III. SAFETY ENGINEERING WORKFLOW

This section describes an automotive safety engineering
workflow that is aligned with the safety standard ISO 26262,
supported by a tool chain and requires the use of different
languages. This workflow can be subdivided into multiple
phases and allows iterations. It covers activities required by
ISO 26262’s system level development phase and its software
level development phase (other activities and phases required
by ISO 26262 but not covered by the workflow are outside the
scope of this paper). The remainder of this section describes
the phases of the safety engineering workflow. Figure 1
illustrates the workflow phases, their supporting tools and the
languages required for the workflow application.

A. System Level Development Phase

The Safety Concept is defined in terms of safety require-
ments on the automotive embedded system, connected sensors
and controlled actuators. Traces are created between related
requirements. The System Architecture is defined in terms
of the embedded system, connected sensors and controlled
actuators. Moreover the components of the environment are
modeled that interact with the sensors and actuators. Thereafter
safety requirements and functions are allocated.

Fig. 1. Safety-Engineering Workflow and Supporting Tools

Information flows and energy flows through the system
architecture and their environment are investigated. Possible
faults and failures are estimated and their propagation is
analyzed and annotated in the form of an Error Model.
Moreover it is investigated and annotated how the failures lead
to the malfunctions of the system. Thereafter FTA and FMEA
are applied (see also [15]). Finally, ASILs are allocated to the
components of the system architecture (see also [16]).

B. Software Level Development Phase

It is defined which components of the system architec-
ture are required to execute software. Software Requirements
(including software safety requirements) on the application
software and the basic software are defined and allocated
to these components. Safety drivers are configured under
consideration of ASILs, the application and the safety concept
for the components of the system architecture required to carry
out basic software. Traces are created if a software requirement
is derived from any other requirements.

Simulink Models are generated to serve as basis for ap-
plication software development. They reflect the structure
of the components of the system architecture that are re-
quired to execute application software. Based on the generated
models application software is designed and implemented.

76

Publication 4 - SEAA 2012 72

Allocated software requirements are considered. The enhanced
and refined Simulink models determine the Behaviors of the
components that are required to execute application software.
Moreover, Source Codes are generated from the enhanced and
refined Simulink models.
Depending on their configurations, Safety Drivers are gen-

erated for the components of the system architecture that
are required to carry out basic software. These safety drivers
determine the random hardware fault detection capabilities and
error-handling capabilities of their respective components.

Source Codes are manually implemented. Afterwards,
source codes for application software and source codes for
basic software like RTOS (real time operating system), legacy
code, I/O-related code or generated safety drivers are inte-
grated. This is done by considering allocated basic software
requirements for the components of the system architecture
required to execute basic software. Finally the integrated
software is compiled and linked to form Executables.

IV. SIMULINK MODEL GENERATOR

Typically, some of the components of the system archi-
tecture are required to carry out application software using
microcontrollers. The EAST-ADL model describes these com-
ponents together with their interfaces defined in terms of
ports. The safety engineering workflow requires the creation of
Simulink models for design and implementation of application
software. Such a model shall contain a top-level block with
an interface defined in terms of ports as well.
The Simulink Model Generator is capable of generating

Simulink models from the EAST-ADL model. These models
reflect the structure of the components of the system archi-
tecture required to carry out application software in terms of
top-level block and interface. The generated Simulink models
are refined and enhanced using Simulink’s graphical modeling
language in the course of the safety engineering workflow.
Once enhanced and refined, C-code can be generated from
these models. In the following, our approach to Simulink
model generation is described.
In the EAST-ADL model, each component of the system

architecture is represented by a modeling element Ck. Each
component Ck is typed by a type Ti. If a type Ti is required
to carry out application software according to the EAST-
ADL model, it is a candidate for Simulink model generation.
Whereas each component Ck has a single type Ti, a type
Ti can type multiple components of the system architecture.
Thus, if multiple components are typed by the same type Ti,
application software needs once to be developed per type Ti

but not per component Ck.
The Simulink Model Generator can investigate the EAST-

ADL model and identify candidates for Simulink model gener-
ation. The safety engineer can choose candidates for Simulink
model generation. Assume that M is an EAST-ADL model
containing at least one application software component typed
by Ti. The Simulink Model Generator η(M,Ti) can generate
a Simulink model STi that is consistent with Ti in terms of
(a) top-level block and (b) interface (Expression 1).

η(M,Ti) → STi (1)

V. SAFETY DRIVER GENERATOR

Typically, some of the components of the system archi-
tecture are required to carry out basic software using mi-
crocontrollers. This basic software is partly dedicated to (1)
safe initialization, (2) runtime-testing and (3) error-handling.
Whereas (1) and (2) are required to detect random hardware
faults during system operation, (1) and (3) are required to
achieve and maintain a safe state upon detecting random
hardware faults. The presented tool enhancement contains a
Safety Driver Generator that is capable of configuring and
generating so-called safety drivers. The term safety driver
refers to the part of the basic software for a component of the
system architecture that is dedicated to (a) safe initialization,
(b) runtime detection of random hardware faults and (c) error-
handling of its supported microcontroller.

A. Safety Driver Configuration
The Safety Driver Generator allows to configure safety

drivers. Furthermore, to aid safety driver configuration, the
Safety Driver Generator can suggest safety driver configu-
rations based on the ASILs allocated to the components of
the system architecture. In the following, our approach to
configure and generate is described.
In the EAST-ADL model, each component of the system

architecture is represented by a modeling element Ck. Each
component Ck is typed by a type Ti. If a type Ti is required
to carry out basic software according to the EAST-ADL
model, it is a candidate for safety driver generation. Whereas
each component Ck has a single type Ti, a type Ti can
type multiple components of the system architecture. Thus,
if multiple components are typed by the same type Ti, basic
software needs once to be developed per type Ti but not per
component Ck.

Assume asil(Ck) is the ASIL allocated to a component Ck

of the system architecture using our approach to automatic and
optimal ASIL allocation [16]. Moreover, assume that rasil(Ti)
is the maximum ASIL of all components Ck typed by Ti. We
refer to rasil(Ti) as the relevant ASIL of Ti (Expression 2).

rasil(Ti) =
n

max
k=0

asil(Ck) (2)

The Safety Driver Generator can investigate the EAST-ADL
model and identify candidates for safety driver configuration
and generation. The Safety Driver Generator presents these
candidates together with their relevant ASILs to the safety
engineer. The safety engineer can use the Safety Driver Gener-
ator to select (a) candidates, (b) the target microcontrollers for
the candidates and (c) the software development IDEs (because
a safety driver may contain IDE-specific language constructs)
depending on the selected target microcontrollers.
In addition, (d) it is possible to configure microcontroller-

dependent options for the safety driver generation. These
options depend on the microcontroller’s specifics and features
(e.g. CPU instruction set, memory sizes, control registers
or hardware-based self-test capabilities). These options can
significantly differ depending on the type of microcontroller.
The Safety Driver Generator can automatically propose con-

figurations of these options depending on the relevant ASILs

77

Publication 4 - SEAA 2012 73

of the candidates. ASIL-dependent, proposed configurations
are predefined based on expert knowledge for all ASILs.
An ASIL-dependent, proposed configuration guides and

supports the safety engineer in defining an adapted config-
uration meeting the needs of the application and the safety
concept elaborated in the course of the safety engineering
workflow. Although the Safety Driver Generator provides
guidance for selecting options, a safety engineer still needs
to be aware of the specifics of the selected microcontroller to
appropriately adapt a proposed configuration to the needs of
the application and the safety concept.
Assume KTi

is a configuration of a safety driver for the
microcontroller of a particular candidate Ti. The Safety Driver
Generator φ(rasil(Ti)) can propose a configurationKTi of the
safety driver based on the relevant ASIL of Ti (Expression 3).

φ(rasil(Ti)) → KTi (3)

A safety engineer can adapt the proposed configuration
based on the needs of the application and the safety concept.
For example, if the application requires a particular micro-
controller module (e.g. a communication peripheral) and the
safety concept requires according runtime-testing, the safety
engineer can adapt the proposed configuration to enable safe
initialization and appropriate runtime-testing of this module.
In contrast, if a particular module is not required, the safety
engineer can omit the options for the module’s safe initializa-
tion and runtime-testing to safe computational resources.
Once the safety driver configurations for the candidates are

satisfactory, the Safety Driver Generator can automatically
project the configurations on the EAST-ADL model, render-
ing a manual modification redundant. The configurations are
projected in (1) a machine-readable representation and in (2) a
human-readable representation on the EAST-ADL model. The
machine-readable representation is required for subsequent
safety driver generation and mainly consists of machine-
readable name/value pairs. The human-readable representation
describes the configuration of the safety drivers using natural
language as software safety requirements. Traces from the
safety concept to the generated software safety requirements
need to be manually created in accordance with the safety
engineering workflow.
Assume TS is the set of all safety driver configurations

defined for the candidates (Expression 4).

KTi
εTS (4)

Furthermore, assume M is an EAST-ADL model. The
Safety Driver Generator φ(M,TS) can project the config-
urations of the safety drivers for the candidates onto the
EAST-ADL model. This results in an EAST-ADL model M ′

(Expression 5).

φ(M,TS) → M ′ (5)

B. Safety Driver Generation
After the configuration of safety drivers for the candidates

and the projection of the configurations onto the EAST-
ADL model, the safety engineer can use the Safety Driver

Generator to generate the safety drivers from the EAST-ADL
model. Assume M ′ is an EAST-ADL model containing the
safety driver configurations TS defined for the candidates.
Assume KTi

is a configuration in TS. The Safety Driver
Generator φ(M ′,KTi) can generate a safety driver DTi for
each configuration (Expression 6).

φ(M ′,KTi
) → DTi

(6)

Each generated safety driver contains a header file describ-
ing the safety-driver’s interface in terms of functions for (1)
initialization, (2) runtime-testing and (3) error-handling. This
interface is automatically documented during the generation
process and describes the safety driver configuration.
A generated safety driver impacts runtime fault detection

and error-handling capabilities of a component’s microcon-
troller. This has a direct impact on the safe operation of the
components of the system architecture. Thus, to make the
presented approach practically applicable, (a) the Safety Driver
Generator must either be certified, or (b) a generated safety
driver must be verified.

C. Support for an Industrial Multi-Core Microcontroller
To illustrate the concept of configuration and generation of

safety drivers, the Safety Driver Generator’s support for an in-
dustrial lock-step multi-core microcontroller is summarized in
this section. This microcontroller is the TMS570LS20216 [6]
belonging to the TMS570 family that is based on the lock-
step architecture [17]. The TMS570LS20216 offers numerous
safety-related features and modules.
To adapt the TMS570LS20216 to the needs of the applica-

tion and the safety concept and to manage the built-in safety-
related features, a multitude of control and status registers is
available that can be used by the programmer. The multitude
of safety features and configuration possibilities motivates
the presented approach that foresees the configuration and
generation of safety drivers using the Safety Driver Generator.
Support for configuration and generation of safety drivers

was designed with respect to a safety manual [18] for the
TMS570LS20216 provided by the vendor. Consequently, gen-
erated safety drivers can cover microcontroller modules such
as the CCM-R4F (CPU Compare Module for Cortex-RF4)
module, the ESM (Error Signaling Module) or the VIM
(Vector Interrupt Module) that are commonly used by all
typical applications according to the safety manual as well as
modules supporting the automotive communication protocol
CAN (Controller Area Network).
Depending on the configuration, a generated safety driver

for the industrial multi-core processor provides an automati-
cally documented interface describing its configuration. The
interface consists of up to eight C-functions that can be used
by the application. One of these functions is dedicated to safe
initialization, two functions are dedicated to start-up testing,
one function is dedicated to periodic online testing and four
functions are dedicated to error handling.

VI. EXPERIMENTAL EVALUATION

The tool enhancement was implemented as a plugin for
Papyrus for UML such as described in the Sections IV and V.

78

Publication 4 - SEAA 2012 74

Metric Value
of Generated Simulink Model Ports 5
of Requirements from Safety Driver Configuration 44
of Lines of Code of Generated Safety Driver 4224

TABLE I
METRICS INDICATING THE VALUE OF THE TOOL ENHANCEMENT.

A tool chain was set up such as described in Section III.
Code Composer Studio was chosen as software development
IDE. Thereafter the presented approach was experimentally
evaluated using the case study of an HEV (hybrid electric
vehicle) development.
This type of vehicle contains an electric motor that supple-

ments the internal combustion engine providing substitutive
or additive torque. The electric motor is controlled by the
automotive embedded system. One of the components of
the embedded system is an HCU (hybrid control unit) that
manages the interaction of components of the HEV such as
battery or E-motor as well as other control units.
The safety engineering workflow (see Section III) was

carried out for a part of an HEV powertrain and an EAST-ADL
model was created accordingly. It was decided to configure a
safety driver for the HCUType that defines the behavior of
the HCU. A TMS570LS20216 was selected as target micro-
controller. On demand the Safety Driver Generator proposed
a configuration of the HCU’s safety driver depending on
the HCU’s relevant ASIL (ASIL B). This configuration was
manually refined to fit the needs of the HCUType. For example,
the options for FPU backup before CPU testing (the HCU
application requires the FPU), safe CAN initialization (the
HCU application requires CAN) and parity startup testing of
particular message boxes of the CAN Module 1 (required by
the HCU application) were selected. After the configuration,
a Simulink model and a Safety Driver were generated for the
HCUType. The metrics presented in Table I illustrate the value
of the tool enhancement. For example, the manual design and
implementation of basic software with 4224 lines of codes
would have been a time-consuming and error-prone task.
Finally, an HCU demonstrator was created using the gen-

erated artifacts. This demonstrator is capable of continuously
computing the required E-motor torque of the HCU depending
on the SOC (state of charge) of the HEV battery and the pedal
positions, while carrying out runtime tests and handling errors.

VII. CONCLUSION

The paper at hand presents a novel tool enhancement.
Taking an EAST-ADL as input, this enhancement is capable
of generating Simulink models to support application software
development as well as configuring and generating safety
drivers for initialization, runtime testing and error handling of
microcontrollers to support basic software development. Based
on the use of metrics, the case study of a hybrid electric vehicle
development was used to demonstrate the effectiveness of the
approach. The results show that the tool enhancement sustains
an effective transition from the system level development
phase to the software level development phase of a tool-

supported automotive safety engineering workflow aligned
with ISO 26262.

ACKNOWLEDGMENT
The authors wish to thank the "COMET K2 Forschungsförderungs-

Programm" of the Austrian Federal Ministry for Transport, Innovation
and Technology (BMVIT), the Austrian Federal Ministry of Economics
and Labour (BMWA), Österreichische Forschungsförderungsgesellschaft mbH
(FFG), Das Land Steiermark and Steirische Wirtschaftsförderung (SFG) for
their financial support. Additionally we would like to thank the supporting
company and project partner AVL List GmbH as well as Graz University of
Technology. Further information about the MEPAS project can be found at
http://www.v2c2.at/mepas.

REFERENCES

[1] International Organization for Standardization, “ISO 26262 Road vehi-
cles - Functional safety,” 2011.

[2] ATESST2 Project Consortium, “EAST-ADL Domain Model Specifica-
tion,” 2010, version 2.1, Release Candidate 3.

[3] A. Lanusse, Y. Tanguy, H. Espinoza, C. Mraidha, S. Gerard, P. Tessier,
R. Schnekenburger, H. Dubois, and F. Terrier, “Papyrus UML: an open
source toolset for MDA.” in Proc. of the Fifth European Conference on
Model-Driven Architecture Foundations and Applications (ECMDA-FA
2009), Jun. 2009, pp. 1–4.

[4] The MathWorks, Inc. (2012, Feb.) Simulink - Sim-
ulation und Model-Based Design. [Online]. Available:
www.mathworks.de/products/simulink

[5] dSPACE GmbH. (2012, Feb.) TargetLink. [Online]. Available:
www.dspace.com/en/inc/home/products/sw/pcgs/targetli.cfm

[6] Texas Instruments Inc. (2012, Feb.) Texas Instruments Website.
[Online]. Available: www.ti.com

[7] A. Sandberg, D. Chen, H. Lönn, R. Johansson, L. Feng, M. Törngren,
S. Torchiaro, R. T. Kolagari, and A. Abele, “Model-Based Safety
Engineering of Interdependent Functions in Automotive Vehicles Us-
ing EAST-ADL2,” in Proc. of the 29th International Conference on
Computer Safety, Reliability and Security, Sep. 2010, pp. 332–346.

[8] D. Domis and M. Trapp, “Integrating Safety Analyses and Component-
Based Design,” in Proc. of the 27th International Conference on
Computer Safety, Reliability and Security, Sep. 2008, pp. 58–71.

[9] S. Sentilles, A. Pettersson, and I. Crnkovic, “Safe-IDE - A Tool for
Design, Analysis and Implementation of Component-Based Embedded
Systems,” in Proc. of the 31st IEEE International Conference on
Software Engineering (ICSE), May 2009, pp. 607–610.

[10] R. Bartosinski, Z. Hanzálek, P. Struz̆ka, and L. Waszniowski, “Integrated
Environment for Embedded Control Systems Design,” in Proc. of the
IEEE International Symposium on Parallel and Distributed Processing
Symposium (IPDPS), Jun. 2007, pp. 1–8.

[11] C.-J. Sjöstedt, J. Shi, M. Törngren, D. Servat, D. Chen, V. Ahlsten,
and H. Lönn, “Mapping Simulink to UML in the design of embedded
systems: Investigating scenarios and transformations,” in Proc. of the
OMER 4 Workshop, Sep. 2008.

[12] T. Farkas, E. Meiseki, C. Neumann, K. Okano, A. Hinnerichs, and
S. Kamiya, “Integration of UML with Simulink into embedded software
engineering,” in Proc. of the ICROS-SICE International Joint Confer-
ence, Aug. 2009, pp. 474–479.

[13] M. Biehl, C.-J. Sjöstedt, and M. Törngren, “A Modular Tool Integration
Approach - Experiences from two Case Studies,” in Proc. of the 3rd
Workshop on Model-Driven Tool & Process Integration (MDTPI), Jun.
2010, pp. 19–30.

[14] M. Psarakis, D. Gizopoulos, E. Sanchez, and M. Reorda, “Microproces-
sor Software-Based Self-Testing,” IEEE Design & Test of Computers,
vol. 27, pp. 4–19, 2010.

[15] R. Mader, E. Armengaud, A. Leitner, C. Kreiner, Q. Bourrouilh,
G. Grießnig, C. Steger, and R. Weiß, “Computer-Aided PHA, FTA and
FMEA for Automotive Embedded Systems,” in Proc. of the International
Conference on Computer Safety, Reliability and Security (SafeComp),
2011, pp. 113–127.

[16] R. Mader, E. Armengaud, A. Leitner, and C. Steger, “Automatic and
Optimal Allocation of Safety Integrity Levels,” in Proc. of the Reliability
and Maintainability Symposium (RAMS), 2012, pp. 258–263.

[17] M. Baleani, A. Ferrari, L. Mangeruca, A. Sangiovanni-Vincentelli,
M. Peri, and S. Pezzini, “Fault-tolerant Platforms for Automotive Safety-
Critical Applications,” in Proc. of the International Conference on Com-
pilers, Architectures and Synthesis for Embedded Systems (CASES’03).
ACM, Nov. 2003, pp. 170–177.

[18] Texas Instruments, “Safety Manual - TMS570LS20216S Device,” 2010.

79

Publication 4 - SEAA 2012 75

OASIS: An Automotive Analysis and

Safety Engineering Instrument

Roland Madera,b, Eric Armengauda,c, Gerhard Grießniga,
Christian Kreinerb, Christian Stegerb, Reinhold Weißb

aAVL List GmbH
bGraz University of Technology

cVirtual Vehicle Competence Center

Abstract

In this paper, we present a novel software tool named OASIS (AutOmotive
Analysis and Safety EngIneering InStrument). This tool supports the ap-
plication of a safety engineering workflow aligned with the automotive safety
standard ISO 26262. OASIS provides features for safety engineering that
allow to create consistent and complete work products and to simplify and
automate workflow steps. More precisely, it provides support for (a) model
creation and reuse, (b) analysis and documentation and (c) configuration
and code generation. We present the safety engineering workflow, OASIS’
features and architecture. Moreover, we systematically demonstrate that
OASIS is able to strongly support the application of the safety engineering
workflow using the case study of hybrid electric vehicle development.

Keywords: ASIL allocation, FMEA, FTA, functional safety, ISO 26262,
multi-core microcontroller, PHA, safety driver, system architecture

1. Introduction

Powertrain electrification of vehicles transforms powertrains into complex,
mechatronic systems. Due to the safety-criticality of the embedded system,
sensors and actuators, they are developed according to safety standards like
the automotive functional safety standard ISO 26262 [1].

The standard requires the application of a concept phase. This phase
aims at the functional description of a newly developed vehicle, the early
identification, assessment and classification of hazards (preliminary hazard
analysis) and the according derivation of safety requirements (top-level and

Preprint submitted to Reliability Engineering & System Safety June 10, 2012

Publication 5 - Invited Paper under Review for Journal of Reliability Engineering & System Safety 76

Post-Conference Publication on a Special Issue of the Journal of Reliability Engineering
& System Safety (Invited Paper under Review)

functional). The standard also requires a system level development phase
depending on the results of the concept phase. In this phase, the system
architecture (architecture of embedded system, connected sensors and con-
trolled actuators) is designed and analyzed (using fault tree analysis and fail-
ure modes and effects analysis). Furthermore, technical safety requirements
are defined. In addition, safety requirements and ASILs (Automotive Safety
Integrity Levels) are allocated to the components of the system architecture.
ISO 26262 also requires a software level development phase depending on the
results of the system level development phase. In this phase software require-
ments are defined and embedded software units are designed, implemented
and integrated.

Tool support for the application of the required phases exists. However,
due to lacking support for safety engineering, (1) the concept phase and the
system level development phase are difficult to apply. Another difficulty is
(2) the effective transition from the system level development phase to the
software level development phase. Both hinder the efficient creation of a
complete and consistent set of work products. To overcome these problems,
sophisticated tool support is required that provides features for safety en-
gineering allowing to create consistent and complete work products and to
simplify and automate workflow steps.

The contribution of this paper is a novel tool named OASIS (AutOmotive
Analysis and Safety EngIneering InStrument). OASIS supports a safety
engineering workflow that is aligned with ISO 26262’s concept phase, sys-
tem level development phase and software level development phase. OASIS’
features allow (a) model creation and reuse (e.g. by checking an evolving
model for properties), (b) analysis and documentation (e.g. by generating
fault trees and extracting minimum cut sets) and (c) configuration and code
generation (e.g. by allowing configuration and generation of safety-critical
embedded software). These features allow to create consistent and complete
work products and to simplify and automate workflow steps.

The paper is organized as follows. Section 2 describes the safety engi-
neering workflow. Section 3 summarizes the state of the art and shows how
OASIS is different from existing approaches. Section 4 describes the tool
chain that is used to apply the safety engineering workflow. Section 5 des-
cribes OASIS’ support for model creation and reuse. Section 6 describes
OASIS’ support for analysis and documentation. Section 7 describes OA-
SIS’ support for configuration and code generation. Section 8 describes the
experimental evaluation of our approach and Section 9 concludes the paper.

2

Publication 5 - Invited Paper under Review for Journal of Reliability Engineering & System Safety 77

2. Safety Engineering Workflow

This section describes a safety engineering workflow (see Figure 1) aligned
with ISO 26262. This workflow can be subdivided into multiple phases and
allows iterations. It covers activities required by ISO 26262’s concept phase,
its system level development phase and its software level development phase
(other activities and phases required by ISO 26262 but not covered by the
workflow are outside the scope of this paper). The remainder of this section
describes the phases of the safety engineering workflow.

2.1. Concept Phase

The concept phase of the safety engineering workflow foresees the func-
tional description of the vehicle under development and the application of
PHA [2] (preliminary hazard analysis). PHA is an analysis technique that is
qualitatively applied early in the development process by a team of people
with a wide variety of expert knowledge and skills. The application of PHA
aims at the identification, classification and assessment of potential hazards
of a newly developed vehicle. In addition, the derivation of top-level safety
requirements and functional safety requirements is required.

2.1.1. Definition of the Analysis Subject

Information about the vehicle under development is collected and mo-
deled. Functions of the vehicle (e.g. motoring or recuperative braking) are
defined. Requirements on the functions are determined and allocated (e.g.
conditions for activation or deactivation). In addition, relevant modes (e.g.
drive, creep or acceleration) are identified for each function and associated
with the requirements.

2.1.2. Identification of Hazards and Hazardous Events

Based on the definition of the analysis subject, possible malfunctions are
identified. Hazards are derived for each malfunction (e.g. unintended ac-
celeration of the vehicle). Thereafter, operational situations such as traffic
situations (e.g. oncoming traffic on a highway in a curve) and maintenance
situations (e.g. vehicle at lifting ramp) are defined. Moreover, use cases de-
scribing the behavior (e.g. overtaking or changing oil) of the related actors
(e.g. driver or mechanic) are described. Hazardous events are determined
for relevant combinations of hazards, use cases and operational situations.
A library of relevant use cases and operational situations from earlier work-
flow applications is used as input. If necessary, this library is updated for

3

Publication 5 - Invited Paper under Review for Journal of Reliability Engineering & System Safety 78

Figure 1: The safety engineering workflow is aligned with life cycle phases of ISO 26262
and supported by a tool chain. The tools support the languages required for the annotation
of the work products of the workflow.

4

Publication 5 - Invited Paper under Review for Journal of Reliability Engineering & System Safety 79

future workflow applications. Relevant modes are identified for each haz-
ardous event. The criticality of each hazardous event is assessed in terms of
controllability, severity and exposure, and an ASIL is determined.

2.1.3. Derivation of Safety Goals

For each hazardous event classified as ASIL A, ASIL B, ASIL C or
ASIL D, a safety goal is derived and associated. Furthermore, a safe state
is defined (e.g. switch open) for each safety goal. Alternatively, a safe mode
(e.g. limp home mode) is determined. The determined safety goals are top-
level safety requirements.

2.1.4. Definition of Functional Safety Concept

The functional safety concept is derived from the safety goals. The func-
tional safety concept consists of functional safety requirements on the auto-
motive embedded system, connected sensors and controlled actuators. Traces
are created between safety goals and derived functional safety requirements
as well as among functional safety requirements, if necessary.

2.2. System Level Development Phase

The system level development phase focuses on the definition of the sys-
tem architecture, the allocation of requirements and the application of FTA
[2] (fault tree analysis) and FMEA [2] (failure modes and effects analysis).
Whereas FTA is a deductive analysis technique, FMEA is an inductive anal-
ysis technique. The techniques complement each other. Their qualitative
application is especially useful in early development phases when less quan-
titative information about the vehicle, its embedded system, its sensors and
actuators is available. In line with results of analyses such as PHA and FTA,
an allocation of ASILs to the components of the system architecture must
be carried out. Once allocated, they determine applicable requirements of
ISO 26262 and the necessary safety measures of the system components to
avoid unreasonable residual risk.

2.2.1. Definition of Technical Safety Concept

The technical safety concept is derived from the functional safety con-
cept. The technical safety concept consists of technical safety requirements.
Traces are created between functional safety requirements and derived tech-
nical safety requirements as well as among technical safety requirements, if
necessary.

5

Publication 5 - Invited Paper under Review for Journal of Reliability Engineering & System Safety 80

2.2.2. Definition of System Architecture

The system architecture is defined in terms of the embedded system,
connected sensors and controlled actuators. Moreover, the components of
the environment interacting with the sensors and actuators are modeled.
Thereafter, functional and technical safety requirements and functions are
allocated to the components of the system architecture.

2.2.3. Investigation and Annotation of Faults and Failures

Information flows and energy flows through the system architecture and
its environment are investigated. Possible faults and failures are estimated,
and their propagation is analyzed and annotated. The estimated faults can
either be random hardware faults or potential process faults that are in-
troduced during the development process. Moreover, it is investigated and
annotated how the failures lead to the malfunctions of the system. The sys-
tem architecture is analyzed and verified using qualitative FTA and FMEA.
Finally, ASILs are allocated to the components of the system architecture.

2.3. Software Level Development Phase

The software level development phase is focused on the derivation of soft-
ware requirements and the according implementation, generation and inte-
gration of software. Developed software must be divided into application
software and basic software designed and implemented in different manners.
Whereas application software determines the behavior of the vehicle func-
tions, basic software fulfills tasks like hardware abstraction, initialization,
communication, detection of random hardware faults and error-handling. We
refer to the part of the basic software for a component of the system archi-
tecture that is dedicated to safe initialization, runtime fault detection and
error-handling as safety driver. Thereafter, the sub phases of the concept
phase, the system level development phase and the software level develop-
ment phase are described.

2.3.1. Specification of Embedded Software

It is defined which components of the system architecture are required
to execute software. Requirements (including safety requirements) on the
application software and the basic software are defined and allocated to these
components. Safety drivers are configured for the components of the system
architecture that are required to execute basic software. Traceability links are
created if a software requirement is derived from any other requirements (e.g.

6

Publication 5 - Invited Paper under Review for Journal of Reliability Engineering & System Safety 81

from the functional or technical safety concept). A report is generated that
lists software requirements, describes their allocation and the work products
of the preceding workflow phases.

2.3.2. Generation of Simulink Models

Simulink models are generated to serve as basis for application software
development. They reflect the structure of the components of the system
architecture that are required to execute application software.

2.3.3. Definition of Behaviors

Application software is designed and implemented based on the generated
Simulink models for the components of the system architecture. Allocated
software requirements are considered. The enhanced and refined Simulink
models determine the behavior of the components that are required to exe-
cute application software.

2.3.4. Generation of Source Codes

Program code is generated from the enhanced and refined Simulink mod-
els for the components of the system architecture that are required to execute
the application software.

2.3.5. Generation of Safety Drivers

Based on their configurations, safety drivers are generated for the com-
ponents of the system architecture that are required to execute basic soft-
ware. These safety drivers determine the random hardware fault detection
capabilities and error-handling capabilities of the components of the system
architecture that are required to execute basic software.

2.3.6. Implementation and Integration of Source Codes

Program code is manually implemented. Afterwards, program code for
application software and code for basic software like RTOS (real time oper-
ating system), legacy code, I/O-related code or generated safety drivers is
integrated. This is done by considering allocated basic software requirements
for the components of the system architecture that are required to execute
basic software.

2.3.7. Compilation and Linking of Executable

The created software is compiled and linked to form executables for the
components of the system architecture that are required to execute software.

7

Publication 5 - Invited Paper under Review for Journal of Reliability Engineering & System Safety 82

3. State of the Art

This section summarizes the state of the art with respect to techniques
the are relevant to the application of the safety engineering workflow. We
compare these techniques to OASIS’ support for the workflow application
and show how OASIS contributes to the field.

3.1. Concept Phase

The concept phase requires identifying, assessing and classifying hazards
based on a functional vehicle description and the according derivation of
safety requirements to mitigate and control the hazards.

The works in [3, 4, 5, 6] focus on defining systematic approaches support-
ing the process of identifying and classifying hazards and defining means to
mitigate or control them. Although they refer to the use of models they do
not explicitly foresee the use of diagrammatic languages.

In contrast, [7, 8, 9] present approaches requiring the use of diagrammatic
languages in the context of tool support. However, these approaches do not
allow the automatic identification of imperfections.

Approaches that go one step further and foresee the use of more sophis-
ticated tool support are described in [10, 11]. These approaches make use of
diagrammatic languages and, furthermore, support the automatic identifica-
tion of imperfections. However, they do not allow the automatic correction
of the model. In contrast, OASIS supports the automatic checking of prop-
erties and the automatic proposition and application of corrective measures
based on using the diagrammatic language EAST-ADL [12] (Electronics Ar-
chitecture and Software Technology-Architecture Description Language).

3.2. System Level Development Phase

The definition of a system architecture, the application of FTA and
FMEA as well as the allocation of ASILs are important aspects of the system
level development phase.

The approaches explained in [13, 14, 15, 16, 17, 18, 19] use models that de-
scribe the structure of a system. These models are complemented with safety-
relevant information (typically about faults and failures and their propaga-
tion). The underlying models are used by all approaches as input to fault
tree generation and/or for FMEA table generation, supporting the applica-
tion of FTA and/or FMEA. However, these approaches do not support the
elaboration of the underlying model. In contrast, OASIS supports fault tree

8

Publication 5 - Invited Paper under Review for Journal of Reliability Engineering & System Safety 83

generation and FMEA table generation and, furthermore, the elaboration of
the underlying model using property checking and model correction.

The works presented in [20, 21] address the problem of allocation of safety-
relevant levels to the components of a system architecture under consider-
ation of safety and costs. The approach presented in [21] focuses on the
aerospace domain and proposes a method for the allocation of DALs (De-
sign Assurance Levels) to the components of an avionic system architecture.
The approach presented in [20] focuses on the automotive domain, but po-
tentially leads to lots of possible ASIL (Automotive Safety Integrity Level)
allocations that must be manually investigated by the safety engineer. In
contrast, OASIS supports an approach to ASIL allocation leading to a single
allocation that is optimal with respect to an objective function and considers
preferences of the safety engineer that were defined in advance.

3.3. Software Level Development Phase

An important aspect of the software level development phase is the design,
implementation and integration of embedded software. The works in [16, 22]
are concerned with component-based software development for safety-critical
embedded systems. Whereas [16] is focused on integrating safety analyses
with component-based software development, [22] is focused on simulation
and model-checking based on a component model. Both do not address the
problem of supporting safety-critical software development for initialization,
runtime-testing and error-handling of microcontrollers. In contrast, OASIS
allows to configure and generate safety drivers covering these functionalities.

The works in [23, 24, 25, 26] describe approaches to embedded software
development that include Simulink. They do not focus on safety-critical
embedded software development. Thus, they do not address the problem
of supporting the development of safety-critical software that allows initial-
ization, runtime-testing and error-handling of microcontrollers. In contrast,
OASIS supports the development of safety-critical software by configuring
and generating safety drivers.

A survey of techniques for SBST (Software-based Self Testing) can be
found in [27]. SBST can be used for runtime-testing of microcontrollers
in the field to detect faults in on-chip programmable resources like CPU,
RAM, ROM or periphery. This is also one of the purposes of safety drivers.
However, the works surveyed in [27] do not present tool support that allows
the supported configuration and according generation of this functionality. In
contrast OASIS supports the configuration and generation of safety drivers.

9

Publication 5 - Invited Paper under Review for Journal of Reliability Engineering & System Safety 84

4. Tool Chain

The safety engineering workflow that is described in Section 2 is supported
by a tool chain. The tools of the tool chain support different languages re-
quired for the annotation of the work products of the workflow. Figure 1
maps the phases of the safety engineering workflow on the tools and lan-
guages necessary for the workflow application. The remainder of this section
describes the tools, languages and the mapping.

4.1. Papyrus for UML

Papyrus for UML [10] is an Eclipse-based open-source tool that allows
UML (Unified Modeling Language) modeling as well as the definition of
UML profiles. An open-source plugin is available that allows to create EAST-
ADL models. EAST-ADL is a domain-specific language and adapted to the
needs of the automotive domain. It is diagrammatic [28] such as UML. It
consists of syntactic elements such as boxes, ovals, lines or arrows. Its abstract
syntax is defined by its meta model and its semantic domain and semantic
mapping are defined using natural language [28]. EAST-ADL allows (a)
to describe a system architecture from different viewpoints and on different
levels of abstraction, (b) to express work products and artifacts required by
ISO 26262, (c) to describe relations and dependencies and (d) to structure the
resulting information. Papyrus for UML is used to annotate a central EAST-
ADL model in the course of the safety engineering workflow phases that are
defined in the Sections 2.1, 2.2 and 2.3.1. This central EAST-ADL model
reflects all the work products created in the course of the aforementioned
workflow phases in an organized and structured manner.

4.2. OASIS

OASIS is a plugin for the tool Papyrus for UML. Its relations to other
tools of the tool chain are illustrated in Figure 2. OASIS exploits the cen-
tral EAST-ADL model (contains the work products in an organized and
structured manner) and the EAST-ADL meta model (defines rules for the
structure of the information) in order to support the application of the safety
engineering workflow. The support is thereafter described.

• Support for Model Creation and Reuse is provided by the modules de-
scribed in Section 5. They support creation and maintenance of a
complete and consistent EAST-ADL model and are especially useful

10

Publication 5 - Invited Paper under Review for Journal of Reliability Engineering & System Safety 85

Figure 2: The tool OASIS is part of a tool chain that is required for the application of
the safety engineering workflow. OASIS supports the application of the safety engineering
workflow by providing (5.x) support for model creation and reuse, (6.x) support for analysis
and documentation and (7.x) support for configuration and code generation.

11

Publication 5 - Invited Paper under Review for Journal of Reliability Engineering & System Safety 86

during the workflow phases described in the Sections 2.1, 2.2 and 2.3.1.
This is achieved by providing (a) systematic reuse of modeling elements,
(b) automatic checking of the model and (c) automatic suggestion and
application of corrective measures.

• Support for Analysis and Documentation is provided by the modules
described in Section 6. Taking the EAST-ADL model as input, they
support continuous analyses, communication and reviews and are espe-
cially useful during the workflow phases described in the Sections 2.1,
2.2 and 2.3.1. This is achieved by providing (a) automatic extraction of
views, (b) automatic generation of fault trees, (c) automatic generation
of FMEA tables, (d) automatic and optimal ASIL allocation and (e)
automatic report generation.

• Support for Configuration and Code Generation is provided by the
modules that are described in Section 7. They support design and
implementation of software in consistency with the EAST-ADL model
and are especially useful during the workflow phases described in the
Sections 2.3.2 and 2.3.5. This is achieved by providing (a) computer-
aided configuration and automatic generation of safety drivers and (b)
automatic generation of Simulink models.

4.3. Simulink

Simulink [29] is tightly integrated with Matlab and is a development envi-
ronment for multidomain simulation and model-based design of dynamic sys-
tems. A graphical modeling language is available containing sinks, sources,
linear blocks, nonlinear blocks and connectors. Add-ons for Simulink can
be built that allow to extend Simulink to other model domains by provid-
ing blocksets. Simulink is used for behavioral modeling in the course of the
workflow phase defined in Section 2.3.3. The resulting models determine the
behavior of the system components that are required to execute application
software.

4.4. TargetLink

TargetLink [30] is an add-on to Simulink supporting a specialized blockset
for code generation. TargetLink allows the generation of C-code from models
created using this blockset. C is a general-purpose programming language
that is frequently used for embedded software development. TargetLink al-
lows to design control algorithms and to generate production code for every

12

Publication 5 - Invited Paper under Review for Journal of Reliability Engineering & System Safety 87

microcontroller that is supported by a compiler and a linker. TargetLink is
used in the workflow phase defined in Section 2.3.4 to generate C-code.

4.5. Software Development IDEs

Software development IDEs (integrated development environments) sup-
port developing C-programs, compilation, linking and debugging. Examples
of embedded software development IDEs are Code Composer Studio [31],
Code Warrior [32] or µVision [33]. Typically, IDEs are provided by the ven-
dors of microcontrollers (e.g. Code Composer Studio or Code Warrior) or
provided by third parties (e.g. µVision). Software development IDEs are
used in the workflow phases described in the Sections 2.3.6 and 2.3.7.

5. Support for Model Creation and Reuse

The application of the safety engineering workflow requires (a) the ca-
pability to describe a system and related artifacts using the domain-specific
language EAST-ADL, (b) the capability to assess the quality of the resulting
model with respect to consistency and completeness and (c) the capability to
consistently maintain the model depending on discussions, reviews, analyses
and changes. These activities are typically performed by the safety engineer.
OASIS provides the following modules to support the safety engineer:

• The Selective Interface (see Section 5.1) to a Model Library allows to
systematically reuse particular modeling elements (e.g. use cases). This
supports the model creation and improves the model quality thanks to
the reuse of mature and complete information.

• The Property Checker (see Section 5.2) can automatically check the
model for properties that indicate the quality of the resulting model.
This allows the continuous assessment of the model with respect to
completeness and unambiguity.

• The Model Corrector (see Section 5.3) can take corrective actions if
the model is incomplete or ambiguous. Thus, the creation and the
maintenance of a consistent and complete model is supported.

13

Publication 5 - Invited Paper under Review for Journal of Reliability Engineering & System Safety 88

5.1. Selective Interface
The safety engineering workflow foresees the application of PHA in the

concept phase. PHA requires the identification, classification and assessment
of potential hazards of the vehicle under development in the context of poten-
tial operational situations and potential use cases. In the presented approach,
the results of PHA are annotated using EAST-ADL. The language allows to
express concepts that are relevant to PHA such as operational situations, use
cases, malfunctions, hazards, hazardous events and safety goals.

There are numerous operational situations that are likely to occur in
everyday life. Passenger vehicles are frequently exposed to these situations
regardless of their vehicle features, type or technology (e.g. oncoming traffic
on a highway in a curve). Also driver behavior that is described in terms of
use cases is frequently recurring (e.g. braking, coasting, accelerating or gear
switching). Thus, operational situations and use cases are well suited to be
reused from workflow application to workflow application.

In contrast, malfunctions, hazards, hazardous events and safety goals are
specific to the vehicle under development (e.g. the hazard of unintended
movement of a vehicle is typically differently classified for HEVs and tra-
ditional vehicles). Thus, their reuse from workflow application to workflow
application can mislead the safety engineer. Consequently, there is a risk that
potential malfunctions and hazards of a vehicle are inappropriately identified,
classified and assessed.

OASIS contains a Selective Interface to a Model Library (see Figure 2).
This Selective Interface allows to export operational situations and use cases
(including actors, extensions points and respective relations) to an external
Model Library. The Selective Interface omits the export of other modeling
elements such as malfunctions, hazards, hazardous events and safety goals.
Once exported, operational situations and use cases are stored in the Model
Library. Stored operational situations and use cases can be imported from
the Model Library and used as starting point for new PHA applications. The
reuse of operational situations and use cases supports the creation of the
model and allows the safety engineer to carry out PHA more systematically
and efficiently.

Assume that M is the EAST-ADL model that is elaborated in course
of PHA. Furthermore, assume that e is an OperationalSituation that is con-
tained in M (precondition) and shall be stored for later reuse (Expression 1).

eεM (1)

14

Publication 5 - Invited Paper under Review for Journal of Reliability Engineering & System Safety 89

OperationalSituation e can be exported to L using the Selective Inter-
face χ. χ updates the Model Library L to Model Library L′ accordingly
(Expression 2).

χ(L, e)→ L′ (2)

After the export process (postcondition), the updated Model Library L′

contains a copy e′ of e (Expression 3).

eεM ∧ e′εL′ (3)

Assume that S is a subset of M that exclusively consists of UseCases,
Actors, ExtensionPoints, Include relations and Extend relations that shall
be stored to be reused for future PHA applications (precondition) (Expres-
sion 4).

S ⊆M (4)

Assume that L is the Model Library. S can be exported to L using the
Selective Interface χ. χ updates the Model Library L to Model Library L′

accordingly (Expression 5).

χ(L, S)→ L′ (5)

Thereafter (postcondition), a copy S ′ of S is contained in L′ (Expres-
sion 6).

S ⊆M ∧ S ′ ⊆ L′ (6)

Whenever a new EAST-ADL model is required for another application
of the safety engineering workflow, the Selective Interface χ can be used
to import the content of the Model Library L′ to create a new model M ′

that comprises modeling elements that can be reused in the context of PHA
(Expression 7).

χ(L′)→M ′ (7)

15

Publication 5 - Invited Paper under Review for Journal of Reliability Engineering & System Safety 90

ID Meta Class Property Definition

12a HazardousEvent At least one SafetyGoal is associated if
ASIL greater than QM

Table 1: The Property Checker supports 71 properties. An example property for the meta
class HazardousEvent is presented.

5.2. Property Checker

Contemporary vehicles, their embedded systems, sensors and actuators
are complex. This complexity results in a large set of information that needs
to be managed during the application of the safety engineering workflow. The
workflow application and the complete and consistent projection of its results
on the EAST-ADL model are challenging, cumbersome and error-prone.

To address this problem, we propose to automatically check the evolving
EAST-ADL model for properties during the application of the workflow.
The fulfillment of such properties shall indicate the correct application of
the safety engineering workflow. The violation of such properties shall unveil
the erroneous application of the safety engineering workflow.

OASIS contains a Property Checker (see Figure 2) that supports 71 prop-
erties based on the properties defined in [34, 35]. Input to their definition
were (1) the specification of the domain-specific language EAST-ADL and
(2) the safety standard ISO 26262 [1]. An example for a property is pre-
sented in Table 1. Column Meta Class denotes the meta class of the EAST-
ADL language that can violate the corresponding property. Column Property
Definition defines the property for the corresponding meta class in natural
language.

The Property Checker continuously checks the evolving model. It auto-
matically presents violating modeling elements to the safety engineer (see
Figure 3). This information allows to early identify inadequately performed
workflow steps before their results can affect subsequent workflow steps. The
Property Checker does not only allow the identification of errors, it is also a
valuable guide during the application of the safety engineering workflow.

AssumeM is an EAST-ADL model, MMM is the EAST-ADL meta model,
and P is the set of properties an EAST-ADL model is expected to hold.
Assume e is a modeling element of the EAST-ADL model, t is a type defined
by the EAST-ADL meta model, and p is a property (Expression 8).

eεM, tεMMM , pεP (8)

16

Publication 5 - Invited Paper under Review for Journal of Reliability Engineering & System Safety 91

Figure 3: Violated properties are automatically identified and possible solutions to prob-
lems are suggested on demand.

Moreover, I(e, t) pertains if e is of type t. D(t, p) pertains if p is defined for
t and H(e, p) pertains if p holds for e. If M indicates the correct application
of the workflow, Expression 9 is valid. In this case, no modeling elements
violate properties.

¬∃e¬∃t¬∃p(I(e, t) ∧D(t, p) ∧ ¬H(e, p)) (9)

If a model M shows the erroneous application of the workflow, Expres-
sion 10 is valid. In this case, at least one modeling element violates a property.

∃e∃t∃p(I(e, t) ∧D(t, p) ∧ ¬H(e, p)) (10)

17

Publication 5 - Invited Paper under Review for Journal of Reliability Engineering & System Safety 92

ID Meta Class Suggested Solution

12a HazardousEvent Creation and association of SafetyGoal

12a HazardousEvent Associate one of the SafetyGoals
without HazardousEvent

Table 2: The Model Corrector supports 91 correction rules. Two example correction rules
for the meta class HazardousEvent are presented.

5.3. Model Corrector

If violated properties unveil an erroneous application of the safety engi-
neering workflow, the EAST-ADL model needs to be corrected accordingly.
To ease the correction of errors, we propose to support the identification and
application of proper correction measures.

OASIS contains a Model Corrector (see Figure 2) that supports 91 correc-
tion rules based on the correction rules described in [34, 35]. Input to their
definition were again ISO 26262 and EAST-ADL. Two example correction
rules are presented in Table 2. Column Meta Class denotes the meta class
of the enhanced EAST-ADL language that can be subject to the suggestion
of an automated correction. Column Suggested Solution defines the possible
suggestion for the corresponding meta class in natural language.

The Model Corrector can automatically suggest possible solutions for
problems unveiled by the Property Checker. On demand, it identifies and
proposes possible solutions depending on the affected modeling element,
based on the current EAST-ADL model and the violated property (see Fig-
ure 3). If the safety engineer decides to accept a solution, the model is
automatically modified accordingly. Manual modifications are superfluous.

Assume M is an EAST-ADL model, MMM is the meta model of the
EAST-ADL language, P is the set of properties an EAST-ADL model is
expected to hold, and S is the set of suggestions supported by the Model
Corrector. Assume e1 is a modeling element of the EAST-ADL model, t1 is
a type defined by the meta model, p1 is a property, and s1 is a suggestion
(Expression 11).

e1εM, t1εMMM , p1εP, s1εS (11)

Assume that before an automated model correction is carried out (pre-
condition), e1 is of type t1 and violates p1 that is defined for type t1 (Expres-
sion 12).

18

Publication 5 - Invited Paper under Review for Journal of Reliability Engineering & System Safety 93

I(e1, t1) ∧D(t1, p1) ∧ ¬H(e1, p1) (12)

If the safety engineer accepts suggestion s1, the EAST-ADL model M is
automatically corrected and transformed to EAST-ADL model M ′ by the
Model Corrector γ(M, e1, t1, p1, s1) depending on M , e1, t1, p1 and s1 (Ex-
pression 13).

γ(M, e1, t1, p1, s1)→M ′ (13)

After the modification (postcondition), e1 is an element of M ′, still e1 is
of type t1 and does not violate p1 any more (Expression 14).

e1εM
′, I(e1, t1) ∧D(t1, p1) ∧H(e1, p1) (14)

6. Support for Analysis and Documentation

The application of the safety engineering workflow requires (a) continuous
analyses as well as (b) communication of safety engineers, domain experts
and other stakeholders based on the contents of the model. Languages like
EAST-ADL are complex, and the evolving model is difficult to assess. Thus,
it is important to automatically highlight specific aspects of the model, and
to generate documents to support activities like analyzing, discussing and re-
viewing. To support these activities, OASIS provides the following modules:

• The View Provider (see Section 6.1) allows the automated extraction
of model information (e.g. PHA results) that is relevant to particular
aspects or phases of the safety engineering workflow. This enables
focused discussions or reviews and improves communication efficiency.

• The FTA Generator (see Section 6.2) allows the automated generation
of fault trees from the model and the according extraction of minimum
cut sets. This supports the application of FTA and the assessment
of the system architecture’s robustness against faults. Furthermore, it
sustains discussing and reviewing.

• The FMEA Generator (see Section 6.3) allows the consistent generation
of FMEA tables based on information contained in the model. This
supports the application of FMEA. Moreover a generated FMEA table
is valuable for discussions and reviews.

19

Publication 5 - Invited Paper under Review for Journal of Reliability Engineering & System Safety 94

• The ASIL Allocator (see Section 6.4) allows inspecting the constraints
on the allocation of ASILs to the components of the system architecture
based on PHA and FTA results. Furthermore, it allows the automatic
allocation of ASILs to the components of the system architecture. This
makes a manual elaboration superfluous.

• The Report Generator (see Section 6.5) permits the automated genera-
tion of text-based reports from the model. The resulting documentation
of the work products of the safety engineering workflow allows reviews
and discussions.

6.1. View Provider

In the course of the safety engineering workflow, the EAST-ADL model
grows large in size and reflects an increasing number of work products. Be-
cause of the complexity, it is increasingly difficult to examine particular work
products or particular aspects of the model. Thus, we propose supporting the
safety engineer by providing tabular views on work products and particular
aspects of the EAST-ADL model.

OASIS contains a View Provider (see Figure 2). This View Provider can
automatically extract information from the model that is especially relevant
to particular aspects or workflow phases and presents it in tables. These
tables supplement the GUIs that are provided by other OASIS modules like
the Property Checker, the Model Corrector, the FTA Generator, the FMEA
Generator, the ASIL Allocator or the Safety Driver Generator. Tables are
available to examine (a) the definition of the analysis subject, (b) the PHA,
(c) the safety concept, (d) the system connectors, (e) the system components,
(f) the software requirements and (k) the violated properties.

Assume M is an EAST-ADL model. The View Provider β(M) can create
tabular views V from the EAST-ADL model (Expression 15).

β(M)→ V (15)

6.2. FTA Generator

The safety engineering workflow foresees the qualitative application of
FTA to analyze and verify the system architecture. For the application of
qualitative FTA, fault trees are required. A manual construction of fault trees
that are consistent with the EAST-ADL model (describes PHA results and
system architecture) is cumbersome and error-prone. Furthermore extracting

20

Publication 5 - Invited Paper under Review for Journal of Reliability Engineering & System Safety 95

the minimum cut sets from the fault trees is challenging. Thus, we propose
automating the construction of fault trees and the extraction of minimum
cut sets.

OASIS contains a FTA Generator (see Figure 2). Taking the EAST-ADL
model as input, the FTA Generator can generate fault trees (see Figure 4)
and extract their minimum cut sets. The generated fault trees are consistent
with the results of PHA and describe how each safety goal can be violated by
the faults and failures of the components of the system architecture. Faults
are either random hardware faults or potential process faults that can occur
in the course of the development process.

The FTA Generator uses the safety goals that were identified during PHA
as top events of the generated fault trees (one fault tree per safety goal is
generated). It adds the malfunctions, hazards and hazardous events that
were identified during PHA and can lead to the violation of the safety goals
as ancestors. Component faults, component failures and gates that were
identified during the definition of the error model are used as ancestors of
the malfunctions.

The minimum cut sets can be automatically extracted from each fault
tree. A minimum cut set [2] is a set of basic events (faults and failures
of components) leading to the top event (violation of the safety goal) that
cannot be reduced in number. For every violated safety goal, the minimum
cut sets can be displayed on demand.

The safety engineer can examine the minimum cut sets either as tool
tip (see Figure 4) in the context of the fault tree or as MCS (minimum cut
set) fault tree (see Figure 5). An MCS fault tree is a tree representation of
the minimum cut sets together with their top event. Each MCS fault tree
contains a violated safety goal as top event. The safety goals’ ancestors are
causative faults and failures of the components of the system architecture
as well as logic symbols. The logic symbols show how the top event can
be caused depending on faults and failures. To switch between fault trees
and MCS fault trees, the safety engineer needs to click the arrow icon at the
upper right of the FTA Generator GUI (see Figures 4 and 5).

The FTA Generator considers the recommendations of IEC 61025 [36].
Thus, the shapes of the symbols of the fault trees and the MCS fault trees
are adapted to the shapes of the recommended symbols. Basic events (faults,
failures) are represented by circles, complex events (faults, failures, malfunc-
tions, hazards, hazardous events, violated safety goals) are represented by
rectangles, and gates (and, or) are represented by logic symbols.

21

Publication 5 - Invited Paper under Review for Journal of Reliability Engineering & System Safety 96

Figure 4: Fault trees can be generated from the EAST-ADL model to support the appli-
cation of qualitative FTA.

Assume M is an EAST-ADL model, and S is the subset of M that de-
scribes hazards, hazardous events, safety goals, system architecture and the
error model (Expression 16).

S ⊆M (16)

The FTA Generator ρ(S) can generate fault trees Υ that allow to examine
how component faults and failures can contribute to the violation of safety
goals (Expression 17).

ρ(S)→ Υ (17)

Assume that MCSj is a minimum cut set of a generated fault tree. Fur-
thermore, assume that SSMCSj

is the set of all minimum cut sets that can

22

Publication 5 - Invited Paper under Review for Journal of Reliability Engineering & System Safety 97

Figure 5: An MCS (minimum cut set) fault tree is a tree representation of the minimum
cut sets that lead to the violation of a safety goal. MCS fault trees can be generated from
the EAST-ADL model to support the application of qualitative FTA.

lead to the violation of the safety goals (Expression 18).

MCSjεSSMCSj
(18)

The FTA Generator ρ(Υ) can automatically extract SSMCSj
from the

generated fault trees Υ (Expression 19).

ρ(Υ)→ SSMCSj
(19)

The FTA Generator ρ(S) can generate MCS fault trees Υ′ that allow
examining the minimum cut sets that are included in SSMCSj

as trees (Ex-
pression 20).

ρ(SSMCSj
)→ Υ′ (20)

6.3. FMEA Generator

The safety engineering workflow foresees the qualitative application of
FMEA to analyze and verify the system architecture. For the application
of qualitative FMEA, an FMEA table is required. A manual construction
of an FMEA table that is consistent with the EAST-ADL model (contains
PHA results and a description of the system architecture) is cumbersome
and error-prone. Thus, we propose automating FMEA table construction.

23

Publication 5 - Invited Paper under Review for Journal of Reliability Engineering & System Safety 98

Figure 6: An FMEA table can be generated from the EAST-ADL model to support the
application of qualitative FMEA.

OASIS contains an FMEA Generator (see Figure 2). The FMEA Genera-
tor can generate an FMEA table from the EAST-ADL model (see Figure 6).
The FMEA table shows the relations between the failure modes of the com-
ponents of the system architecture, causative faults and effects in terms of
violated safety goals. The generated FMEA table is consistent with the gen-
erated fault trees.

A generated FMEA table contains four columns denoting the names of
the components (Component), the component failure modes leading to the
violation of safety goals (Failure Mode), faults that potentially cause the
component failure modes (Possible Causative Faults) and the violated safety
goals (Violated Safety Goal).

Assume M is an EAST-ADL model and S is the subset of M that de-
scribes hazards, hazardous events, safety goals, system architecture and the
error model (Expression 21).

S ⊆M (21)

24

Publication 5 - Invited Paper under Review for Journal of Reliability Engineering & System Safety 99

The FMEA Generator α(S) can generate an FMEA table Ξ that allows
to examine how component faults and failures can contribute to the violation
of safety goals (Expression 22).

α(S)→ Ξ (22)

6.4. ASIL Allocator

The safety engineering workflow requires the allocation of ASILs to the
components of the system architecture. The allocated ASILs determine ap-
plicable requirements of ISO 26262 and the necessary safety measures to
avoid unreasonable residual risk. The requirements of ISO 26262 affect the
rigor of the development process of the system components (e.g. the port-
folio of applicable verification techniques). The necessary safety measures
determine the runtime fault detection capabilities of the system components.
Thus, the allocated ASILs strongly affect system safety. Furthermore, the
allocated ASILs influence development costs and costs per piece.

An allocation of ASILs to the components of the system architecture shall,
therefore (1) assure that the required level of functional safety is achieved
and (2) permit an economic solution with respect to development costs and
cost per piece. Manual elaboration of an ASIL allocation that fulfills the
requirements is complex, cumbersome and should be automated.

OASIS contains an ASIL Allocator (see Figure 2) that uses a constraint
solver. This constraint solver can automatically find an allocation of ASILs
to the components of the system architecture. First, this allocation depends
on constraints that are derived from (a) the safety goals defined during PHA
and (b) the generated fault trees and their automatically extracted minimum
cut sets (see Section 6.2). Second, this allocation depends on constraints that
are derived from particular preferences of the safety engineer. The resulting
allocation is optimal with respect to an objective function and consistent with
PHA results, generated fault trees, their automatically extracted minimum
cut sets and preferences of the safety engineer.

The GUI of the ASIL Allocator is illustrated in Figure 7. The gray lines
of the table list the safety goals that were defined during PHA, and the white
lines list the components of the system architecture (column Origin). The
ASILs of the safety goals and the preferred component ASILs that were de-
fined by the safety engineer are listed (column Required ASIL). Furthermore,
the faults and failures of each component that lead to safety goal violations
are listed (column Fault/Failure). Finally, the constraints on the component

25

Publication 5 - Invited Paper under Review for Journal of Reliability Engineering & System Safety 100

Figure 7: ASILs (Automotive Safety Integrity Levels) can be automatically and optimally
allocated to the components of the system architecture.

ASILs that were derived from PHA results, generated fault trees, extracted
minimum cut sets and the preferences of the safety engineer are displayed
(column Constraints).

Once an optimal solution is found, the solution can be automatically
projected on the EAST-ADL model, rendering a manual model modification
redundant. The approach to ASIL allocation is described subsequently.

6.4.1. Integer Linear Programing Problems

Linear programming denotes an approach to modeling and solving linear
mathematical models, and more specifically those models that seek to opti-
mize a linear measure of performance [37]. A single-objective linear program-
ming model can be stated mathematically. Find the variables x1, x2, ..., xn ≥
0 so as to optimize (either maximize or minimize) the objective function
that is subject to specified constraints. Expression 23 defines the objective
function z.

26

Publication 5 - Invited Paper under Review for Journal of Reliability Engineering & System Safety 101

z(x1, x2, ..., xn) =
n∑

i=0

xi ∗ ci (23)

In addition, the m specified constraints are defined by Expression 24 for
the n variables.

x1 ∗ c11 + ...+ xn ∗ c1n{≤,=,≥}b1
x1 ∗ c21 + ...+ xn ∗ c2n{≤,=,≥}b2

...
x1 ∗ cm1 + ...+ xn ∗ cmn{≤,=,≥}bm

(24)

An integer linear programming problem is a linear program in which some
or all of the variables x1, x2, ..., xn are restricted to integer values.

6.4.2. ASIL-Arithmetic

ISO 26262 defines a method called ASIL decomposition. This method
allows reducing the ASILs allocated to sufficiently independent components
that can only jointly cause the violation of a safety goal. If a component can
solely cause the violation of a safety goal, its ASIL cannot be reduced.

Rules for the reduction of the ASILs are defined by ISO 26262. To formal-
ize these rules, QM, ASIL A, ASIL B, ASIL C and ASIL D can be interpreted
as the integer numbers 0, 1, 2, 3 and 4.

Assume SGj is a safety goal. In addition, assume asil(SGj) denotes the
ASIL of a safety goal interpreted as an integer number (Expression 25).

asil(SGj)ε{1, 2, 3, 4} (25)

Assume Ck denotes a component of the system architecture. Moreover,
assume asil(Ck) denotes the ASIL that is allocated to the component Ck

interpreted as an integer number (Expression 26).

asil(Ck)ε{0, 1, 2, 3, 4} (26)

According to ISO 26262, if an ASIL decomposition is applied for l com-
ponents that can only jointly cause the violation of the safety goal SGj, an
inequality shall be fulfilled (Expression 27).

l∑

k=0

asil(Ck) ≥ asil(SGj) (27)

27

Publication 5 - Invited Paper under Review for Journal of Reliability Engineering & System Safety 102

This implies that ASILs, interpreted as integer numbers, can be added
resulting in a new ASIL that is limited to 4.

6.4.3. ASIL-Allocation as Integer Linear Programing Problem

The problem of allocating ASILs to the components of the system under
development can be interpreted as an integer linear programing problem.
This approach is based on the assumption that (a) ASILs can be interpreted
as integer numbers and (b) ASILs also can be an input to additions that
result in a new ASIL (see also Section 6.4.2).

Commonly, the greater an allocated ASIL, the greater the efforts for the
development process and the higher the costs per piece of a component. It
can, therefore, be assumed that a low sum of allocated ASILs leads to an
economic ASIL allocation for the system under development. An objective
function Fmin can be defined that shall be minimized in order to find an
economic ASIL allocation to n components (Expression 28).

Fmin(C1, C2, ..., Cn) =
n∑

i=0

asil(Ci) (28)

Assume that SGS is the set of safety goals that was defined in the course
of the safety engineering workflow (Expression 29).

SGkεSGS (29)

Assume fi is a fault or failure of a component of the system architecture
or the system environment. Additionally, assume fi is part of the mini-
mum cut set MCSj that was automatically extracted from the generated
fault trees (see Section 6.2) and can lead to the violation of safety goal SGk

(Expression 30).

fiεMCSj (30)

Based on the set of safety goals SGS and the minimum cut sets that
contribute to the violation of the safety goals, l constraints can be defined
for m safety goals and n components (Expression 31). These constraints
assure that the allocation of ASILs is consistent with the safety goals and the
minimum cut sets and assure the achievement of functional safety according
to ISO 26262.

28

Publication 5 - Invited Paper under Review for Journal of Reliability Engineering & System Safety 103

asil(C1) ∗ c11 + ...+ asil(Cn) ∗ c1n ≥ asil(SG1)
...

asil(C1) ∗ cp1 + ...+ asil(Cn) ∗ cpn ≥ asil(SG1)
asil(C1) ∗ cq1 + ...+ asil(Cn) ∗ cqn ≥ asil(SG2)

...
asil(C1) ∗ cl1 + ...+ asil(Cn) ∗ cln ≥ asil(SGm)

(31)

A constraint is defined for each minimum cut set that can lead to the vi-
olation of a safety goal in SGS and exclusively consists of faults and failures
that result from a component Ck of the system under development. Every
constraint contains a coefficient cxy per component. If a failure fi of a com-
ponent Ck is element of a minimum cut set MCSj, the coefficient cxy is set
to 1 in the corresponding constraint. Else, the coefficient is set to 0. Thus,
if components can only jointly cause the violation of a safety goal, their co-
efficients are 1 while the remaining coefficients are 0 in the corresponding
constraint. If a component can solely cause the violation of a safety goal, its
coefficient is the only coefficient that is 1 in the corresponding constraint.

Usually, a safety engineer has certain preferences concerning the alloca-
tion of safety integrity levels to the components of the system under devel-
opment. A reason for that may be the intended reuse of a component Ck

developed in an earlier project according to a particular ASIL. Another rea-
son may be the selected limitation of the ASIL allocated to a component Ck

in order to limit costs per piece or development costs. Assume pasil(Ck) is
the preferred ASIL for a component Ck (Expression 32).

pasil(Ck)ε{0, 1, 2, 3, 4} (32)

To ensure the consideration of such preferences, an additional constraint
on the ASIL of each of the n system components can be defined by the safety
engineer (Expression 33). If a preference for a component Ck is defined, the
corresponding coefficient dxy of the component is the only one that is 1.

asil(C1) ∗ d11 + ...+ asil(Cn) ∗ d1n ≤ pasil(C1)
asil(C1) ∗ d21 + ...+ asil(Cn) ∗ d2n ≤ pasil(C2)
asil(C1) ∗ d31 + ...+ asil(Cn) ∗ d3n ≤ pasil(C3)

...
asil(C1) ∗ dn1 + ...+ asil(Cn) ∗ dnn ≤ asil(Cn)

(33)

29

Publication 5 - Invited Paper under Review for Journal of Reliability Engineering & System Safety 104

The constraint solver of the ASIL Allocator can be used to solve the
ILP problem. Therefore, the safety engineer needs to click the bulb icon
at the upper right of the ASIL Allocator GUI (see Figure 7). Then, the
constraint solver attempts to determine the parameters asil(Ci) leading to
a minimum of the function Fmin under consideration of the constraints on
the parameters asil(Ci) imposed by Expression 31 and Expression 33. If the
constraint solver finds a solution, the solution is (a) optimal with respect to
the objective function Fmin, (b) consistent with results of PHA, generated
fault trees and their minimum cut sets and (c) considers the preferences of
the safety engineer.

A safety engineer can inspect the solution to the problem. If the solution
is satisfactory, the safety engineer can initiate the allocation of the ASILs
to the components. In this case, the EAST-ADL model is automatically
modified according to the accepted solution. Therefore, the safety engineer
needs to click the rectangle icon at the upper right of the ASIL Allocator
GUI (see Figure 7).

If the result is not satisfactory or the imposed ILP problem cannot be
solved, the safety engineer needs to revise the preferences concerning the
ASIL allocation and needs to rerun the constraint solver.

6.5. Report Generator

The EAST-ADL model that is created in the course of the safety engi-
neering workflow reflects the work products of the phases that are defined
in the Sections 2.1, 2.2 and 2.3.1. EAST-ADL is a language that can be
understood by professionals like safety engineers. In contrast, project stake-
holders or reviewers typically await a document-based representation of work
products. The manual writing of a report describing the work products of
the safety engineering workflow and consistent with the EAST-ADL model is
cumbersome and error-prone. Thus, automatic report generation is required
to support communication and reviews.

OASIS contains a Report Generator (see Figure 2) that can generate a
document-based report from the EAST-ADL model. This report describes
the created work products as tables or trees and is consistent with the EAST-
ADL model. The report can contain chapters for (a) the definition of the
analysis subject, (b) the PHA, (c) the safety concept, (d) the system con-
nectors, (e) the system components, (f) the software requirements and (k)
the violated properties. The safety engineer can decide which chapters to
include or omit.

30

Publication 5 - Invited Paper under Review for Journal of Reliability Engineering & System Safety 105

Assume M is an EAST-ADL model. Furthermore, assume that Report
Generator α(M) can generate a report R from the EAST-ADL model (Ex-
pression 34).

α(M)→ R (34)

7. Support for Configuration and Code Generation

The application of the safety engineering workflow requires the design and
the implementation of software for the components of the system architec-
ture. These are challenging tasks, and it is difficult to design and implement
software that is consistent with the EAST-ADL model. To support these
activities, OASIS provides the following modules:

• The Simulink Model Generator (see Section 7.1) allows the automated
generation of Simulink models from the EAST-ADL model. This en-
sures consistency between EAST-ADL model and Simulink models and
is the basis for the subsequent description of behaviors (implementation
of the functions).

• The Safety Driver Generator (see Section 7.2) allows the computer-
aided configuration and generation of safety drivers for safe initial-
ization, runtime-testing and error-handling of microcontrollers. This
module extracts information from the EAST-ADL model, guides the
safety engineer, updates the model and generates program code.

7.1. Simulink Model Generator

Typically, some of the components of the system architecture are re-
quired to execute application software using microcontrollers. The EAST-
ADL model describes these components together with their interfaces defined
in terms of ports. The safety engineering workflow requires the creation
of Simulink models for design and implementation of application software.
Such a model shall contain a top-level block with an interface defined in
terms of ports as well. These Simulink models with their top-level blocks
and ports must be consistent with the EAST-ADL model. The manual an-
notation of these Simulink models is cumbersome and error-prone and should
be computer-aided.

OASIS contains a Simulink Model Generator (see Figure 2) that is capable
of generating Simulink models from the EAST-ADL model. These Simulink

31

Publication 5 - Invited Paper under Review for Journal of Reliability Engineering & System Safety 106

models reflect the structure of the components of the system architecture
that are required to execute application software in terms of top-level block
and interface. The generated Simulink models are refined and enhanced using
Simulink’s graphical modeling language in the course of the safety engineering
workflow. Once enhanced and refined, C-code can be generated from these
models. In the following, our approach to Simulink model generation is
described.

In the EAST-ADL model, each component of the system architecture is
represented by a modeling element Ck. Each component Ck is typed by a
type Ti. If a type Ti is required to execute application software according
to the EAST-ADL model, it is a candidate for Simulink model generation.
Whereas each component Ck has a single type Ti, a type Ti can type multiple
components of the system architecture. Thus, if multiple components are
typed by the same type Ti, application software needs once to be developed
per type Ti but not per component Ck.

The Simulink Model Generator can investigate the EAST-ADL model
and identify candidates for Simulink model generation. The safety engineer
can use the GUI illustrated in Figure 9 for Simulink model generation. As-
sume that M is an EAST-ADL model containing at least one application
software component typed by Ti. The Simulink Model Generator η(M,Ti)
can generate a Simulink model STi

that is consistent with Ti in terms of (a)
top-level block and (b) interface (Expression 35).

η(M,Ti)→ STi
(35)

7.2. Safety Driver Generator

Typically, some of the components of the system architecture are required
to execute basic software using microcontrollers. This basic software is partly
dedicated to (1) safe initialization, (2) runtime-testing and (3) error-handling.
Whereas (1) and (2) are required to detect random hardware faults during
system operation, (1) and (3) are required to achieve and maintain a safe state
upon detecting random hardware faults. The design and the implementation
of these functionalities are difficult tasks. Thus, we propose tool support for
their design and implementation.

OASIS contains a Safety Driver Generator (see Figure 2) that is capa-
ble of configuring and generating so-called safety drivers. The term safety
driver refers to the part of the basic software for a component of the system
architecture that is dedicated to (a) safe initialization, (b) runtime detection

32

Publication 5 - Invited Paper under Review for Journal of Reliability Engineering & System Safety 107

of random hardware faults and (c) error-handling of its supported micro-
controller. To aid safety driver configuration, the Safety Driver Generator
can suggest safety driver configurations based on the ASILs allocated to the
components of the system architecture. There are GUIs for the configura-
tion (see Figure 8) and the generation (see Figure 9) of safety drivers. In
the following, our approach to configure and generate is described. To illus-
trate this approach, we describe OASIS’ support for an industrial multi-core
microcontroller.

7.2.1. Safety Driver Configuration

In the EAST-ADL model, each component of the system architecture is
represented by a modeling element Ck. Each component Ck is typed by a type
Ti. If a type Ti is required to execute basic software according to the EAST-
ADL model, it is a candidate for safety driver generation. Whereas each
component Ck has a single type Ti, a type Ti can type multiple components
of the system architecture. Thus, if multiple components are typed by the
same type Ti, basic software needs once to be developed per type Ti but not
per component Ck.

Based on the ASIL Arithmetic defined in Section 6.4.2, assume that
rasil(Ti) is the maximum ASIL of all components Ck typed by Ti. We refer
to rasil(Ti) as the relevant ASIL of Ti (Expression 36).

rasil(Ti) =
n

max
k=0

asil(Ck) (36)

The Safety Driver Generator can investigate the EAST-ADL model and
identify candidates for safety driver configuration and generation. The Safety
Driver Generator provides a GUI that presents these candidates together
with their relevant ASILs (see Figure 8). The GUI can be used to select the
candidates for whom a safety driver has to be configured. In any case, safety
driver configuration for a candidate is optional.

The safety engineer can also select a target microcontroller for each can-
didate. In this case, a microcontroller-dependent part of the GUI appears.
This includes a list of software development IDEs. The items of this list
depend on the Safety Driver Generator’s support for the selected microcon-
troller. It is important to choose the right software development IDE because
a generated safety driver may contain proprietary language constructs that
can only be understood by particular IDEs.

33

Publication 5 - Invited Paper under Review for Journal of Reliability Engineering & System Safety 108

Figure 8: Safety drivers for initialization, random hardware fault detection and error-
handling can be configured for the components of the system architecture.

Furthermore, the microcontroller-dependent part of the GUI includes op-
tions for the safety driver generation that depend on the specifics and features
(e.g. CPU instruction set, memory sizes, control registers or hardware-based
self-test capabilities) of the selected microcontroller. These options can sig-
nificantly differ from microcontroller to microcontroller.

The Safety Driver Generator can automatically propose configurations
of these options depending on the relevant ASILs of the candidates. ASIL-
dependent, proposed configurations are predefined based on expert know-
ledge for potentially relevant ASILs. To obtain a proposed configuration, the
safety engineer needs to click the bulb icon illustrated in Figure 8.

An ASIL-dependent, proposed configuration guides and supports the
safety engineer in defining an adapted configuration meeting the needs of

34

Publication 5 - Invited Paper under Review for Journal of Reliability Engineering & System Safety 109

the application and the safety concept elaborated in the course of the safety
engineering workflow. Although the Safety Driver Generator provides gui-
dance for selecting options according to a particular ASIL, a safety engineer
still needs to be aware of the specifics of the selected microcontroller to ap-
propriately adapt a proposed configuration to the needs of the application
and the safety concept.

Assume KTi
is a configuration of a safety driver for the microcontroller

of a particular candidate Ti. The Safety Driver Generator φ(rasil(Ti)) can
propose a configuration KTi

of the safety driver based on the relevant ASIL
of Ti (Expression 37).

φ(rasil(Ti))→ KTi
(37)

A safety engineer can adapt the proposed configuration based on the needs
of the application and the safety concept. For example, if the application re-
quires a particular microcontroller module (e.g. a communication peripheral)
and the safety concept requires according runtime-testing, the safety engineer
can adapt the proposed configuration to enable safe initialization and appro-
priate runtime-testing of this module. In contrast, if a particular module is
not required, the safety engineer can turn off the options for the module’s
safe initialization and runtime-testing to safe computational resources.

Once the driver configurations for the candidates are satisfactory, the
safety engineer can project these configurations on the EAST-ADL model by
clicking the rectangle icon. In this case, the EAST-ADL model is automa-
tically modified. The configurations are projected in (1) a machine-readable
representation and in (2) a human-readable representation on the EAST-
ADL model. The machine-readable representation is required for subsequent
safety driver generation and mainly consists of machine-readable name/value
pairs. The human-readable representation describes the configuration of the
safety drivers using natural language as software safety requirements. Traces
from the safety concept to the generated software safety requirements need
to be manually created in accordance with the safety engineering workflow.

Assume TS is the set of all safety driver configurations defined for the
candidates (Expression 38).

KTi
εTS (38)

Furthermore, assume M is an EAST-ADL model. The Safety Driver
Generator φ(M,TS) can project the configurations of the safety drivers for

35

Publication 5 - Invited Paper under Review for Journal of Reliability Engineering & System Safety 110

Figure 9: Safety drivers and Simulink models can be generated from the EAST-ADL
model supporting the development of application software and basic software.

the candidates onto the EAST-ADL model. This results in an EAST-ADL
model M ′ (Expression 39).

φ(M,TS)→M ′ (39)

7.2.2. Safety Driver Generation

After the configuration of safety drivers for the candidates and the projec-
tion of the configurations onto the EAST-ADL model, the safety engineer can
generate the safety drivers from the EAST-ADL model. The Safety Driver
Generator provides a GUI for safety driver generation (see Figure 9). This
GUI allows to select the candidates whose safety drivers were configured for
safety driver generation.

Assume M ′ is an EAST-ADL model containing the safety driver configu-
rations TS defined for the candidates. Assume KTi

is a configuration in TS.

36

Publication 5 - Invited Paper under Review for Journal of Reliability Engineering & System Safety 111

The Safety Driver Generator φ(M ′, KTi
) can generate a safety driver DTi

for
each configuration (Expression 40).

φ(M ′, KTi
)→ DTi

(40)

Each generated safety driver contains a header file describing the safety-
driver’s interface in terms of functions for (1) initialization, (2) runtime-
testing and (3) error-handling. This interface is automatically documented
during the generation process and describes the configuration of the gener-
ated safety driver.

A generated safety driver impacts runtime fault detection and error-
handling capabilities of a microcontroller. This has a direct impact on the
safe operation of the components of the system architecture. Thus, to make
the presented approach practically applicable, (a) the Safety Driver Genera-
tor must either be certified, or (b) a generated safety driver must be verified.

7.2.3. Support for an Industrial Multi-Core Processor

To illustrate the concept of configuration and generation of safety drivers,
OASIS’ support for an industrial lock-step multi-core microcontroller is pre-
sented in this section. This microcontroller is the TMS570LS20216 [31] be-
longing to the TMS570 family. This family represents a new generation of
industrial multi-core microcontrollers aiming at safety-critical applications.
Other representatives of this new generation are the MPC564xL family [32]
and the AUDO family [38]. The MPC564xL family and the TMS570 family
are based on the lock-step architecture [39]. In contrast, the AUDO family
follows an approach that foresees the implementation of an asymmetric con-
troller strategy on a single chip [40].

The TMS570LS20216 offers built-in safety-related features. The two
CPUs of the microcontroller can operate in lock-step mode. In this case,
both Cortex-R4F CPUs execute the same program, and their results are
continuously compared. Discrepancies indicate faults. Faults can be sig-
naled internally or towards an external device. The TMS570LS20216 allows
protecting flash and RAM using ECCs (error correction codes). It also pro-
vides hardware support for self tests of its CPUs, memories and peripherals.

To adapt the TMS570LS20216 to the needs of the application and the
safety concept and to manage the built-in safety-related features, a mul-
titude of control and status registers is available that can be used by the
programmer. The multitude of safety features and configuration possibilities

37

Publication 5 - Invited Paper under Review for Journal of Reliability Engineering & System Safety 112

motivates the presented approach that foresees the configuration and gen-
eration of safety drivers using the Safety Driver Generator. This helps to
cope with the complexity of the device and makes it superfluous to manually
design and implement the functionality covered by a generated safety driver.

Support for configuration and generation of safety drivers was designed
with respect to a safety manual for the TMS570LS20216 [41] provided by
the vendor. Consequently, generated safety drivers can cover microcon-
troller modules commonly used by all typical applications according to the
safety manual as well as modules supporting the automotive communica-
tion protocol CAN (Controller Area Network). Furthermore, support for the
TMS570LS20216 is restricted to Code Composer Studio. Thus, generated
safety drivers for the TMS570LS20216 can contain language constructs that
can only be understood by the software development IDE.

The safety engineer can configure TMS570LS20216 safety drivers for the
candidates by defining, selecting and deselecting options for each candidate.
This can be done using the GUI illustrated in Figure 8.

Once the safety driver configurations for selected candidates are com-
pleted, the configurations can be projected on the EAST-ADL model. Taking
this model as input, the Safety Driver Generator can generate safety drivers
from the EAST-ADL model. Depending on the configuration, a generated
safety driver for the industrial multi-core processor provides an automatically
documented interface describing its configuration. The interface consists of
up to eight C-functions and can be used by the application. One of these
functions is dedicated to safe initialization, two functions are dedicated to
start-up testing, one function is dedicated to periodic online testing and four
functions are dedicated to error handling.

The remainder of this section describes the Safety Driver Generators’s op-
tions for safety driver configuration and generation for the TMS570LS20216.

CAN. The CAN controllers can be initialized to activate parity checking for
its message objects. Further options are a parity fault injection test and a
loop back test for selectable CAN controllers and message boxes on startup.

CCM-R4F. The CCM-R4F (CPU Compare Module for Cortex-RF4) module
can be initialized in lock-step mode. Furthermore, up to three startup tests
checking the fault detection mechanisms of the CCM-R4F are selectable.

DMA. The DMA (Direct Memory Access) module can be initialized to en-
able parity checking of the control packets. Moreover, it can be chosen to

38

Publication 5 - Invited Paper under Review for Journal of Reliability Engineering & System Safety 113

test the parity checking schema of the control packets for selectable channels
on startup. It can also be chosen to test the memory protection schema of
the MPU (memory protection unit) for selectable regions and channels on
startup.

ESM. The ESM (Error Signaling Module) can be initialized to signal de-
tected faults through a pin of the microcontroller and to trigger high level
interrupts on fault detection. The reset pin time is configurable. Addition-
ally, a startup self test is selectable.

Flash. The Flash module can be safely initialized to enable flash error detec-
tion, flash error correction, single bit error interrupt creation and to disable
flash writing during runtime. Furthermore, a corrupted value test and a
golden value test are selectable to test the error detection and correction
schema upon startup. The corrupted value, its address and the address of
the golden value are configurable.

PBIST. The PBIST (Programmable Built-In Self Test) module can apply
different test modes for the ROMs and RAMs upon startup. The RAMs and
ROMs that shall be tested are selectable.

RTI. The RTI (Real-Time Interrupt) module provides timer functionality.
Two startup tests are available that can check the behavior of the RTI module
for selectable counters, counter compares and interrupts.

STC-LBIST. The STC-LBIST (Self Test Controller-Logic Built-In Self Test)
module allows CPU testing during runtime. The timeout counter of the STC-
LBIST can be initialized with a designated value. Furthermore, a startup test
and a periodic online test of the CPUs of the microcontroller are selectable.
A backup and restoration strategy for the FPU (floating point unit) status
is a further option.

TCRAM Wrappers. The TCRAM (Tightly-Coupled RAM) Wrappers can be
initialized to enable parity checking of the address bus and ECC protection
of the RAM. Two startup self tests of the error detection schemes and a
periodic online test for the SRAM are selectable.

VIM. The VIM (Vector Interrupt Module) can be initialized to enable par-
ity checking and error-handling. Moreover, a startup fault injection test is
selectable.

39

Publication 5 - Invited Paper under Review for Journal of Reliability Engineering & System Safety 114

Watchdog. An interface towards an external windowed watchdog for program
flow monitoring can be configured. The safety engineer can choose port, bit
and determine the reset schema (active high/active low).

8. Experimental Evaluation

The tool OASIS was designed and implemented as a plugin for the tool
Papyrus as described in the Sections 5, 6 and 7. A tool chain was set up
like described in Section 4 (the tool Code Composer Studio was chosen as
software development IDE). Section 8.1 presents the application of the safety
engineering workflow for the case study of an HEV development. Section 8.2
presents metrics that describe the complexity of the resulting EAST-ADL
model and derived entities. Section 8.3 systematically assesses the benefits
of OASIS with respect to defined evaluation criteria.

8.1. Case Study of HEV Development

The presented approach was experimentally evaluated using the case
study of HEV [42] development. One of the main characteristics of HEVs is
the addition of an electric machine supporting the classic combustion engine
providing supplementary or substitutive torque. If such a vehicle uses its
electric machine as electric motor to support the combustion engine, it dis-
charges the battery. If the electric machine is used as a generator to regain
energy while the vehicle decelerates (recuperation), it recharges the battery
and/or supplies the auxiliaries with electrical energy. The Sections 8.1.1,
8.1.2 and 8.1.3 describe the case study of HEV development for the Con-
cept Phase, the System Level Development Phase and the Software Level
Development Phase of the workflow.

8.1.1. Concept Phase

In the concept phase, PHA was carried out to identify, assess and classify
hazards. Safety goals and functional safety requirements were derived. The
results of PHA were annotated using EAST-ADL. During the analysis, the
View Provider was used to examine the definition of the analysis subject, the
PHA results, the safety goals and the functional safety requirements.

It turned out that the embedded system, sensors or actuators of the HEV
are safety-critical, because their failures can cause malfunctions such as over-
charging of the battery. This can lead to hazards like fire and/or explosion.
Thus, a modeling element named FireExplosion was created. Furthermore, a

40

Publication 5 - Invited Paper under Review for Journal of Reliability Engineering & System Safety 115

hazardous event named FireExplosionDuringOvertaking was created contain-
ing the results of the assessment of the hazard FireExplosion in the context
of an operational situation.

The safety engineering workflow was applied erroneously. No safety goal
(top-level safety requirement) was derived from the hazardous event FireEx-
plosionDuringOvertaking to demand the mitigation of the hazard FireExplo-
sion. This was reflected by the EAST-ADL model. Figure 3 illustrates the
GUI of the Property Checker that detected the erroneous application based
on the EAST-ADL model and reported that modeling element FireExplo-
sionDuringOvertaking violated property 12a.

Due to the erroneous application of PHA, it was necessary to apply cor-
rective measures and to modify the EAST-ADL model. As illustrated in
Figure 3, the Model Corrector proposed the creation of a new safety goal
and the association with the hazardous event FireExplosionDuringOvertak-
ing on demand. This is the appropriate measure to correct the erroneously
applied workflow with respect to the violated property. After having selected
this option, the EAST-ADL model was automatically modified and a new
traceable safety goal was created. Subsequently, the newly created model-
ing element was named AvoidBatteryOvercharging and refined using textual
descriptions.

Finally, the Selective Interface was used to export operational situations
and use cases from the resulting model to the Model Library for future reuse.

8.1.2. System Level Development Phase

In the system level development phase, technical safety requirements and
a part of the system architecture and its environment were defined. The part
of the system architecture includes the HCU (Hybrid Control Unit). This
control unit manages the interaction of HEV components such as battery,
electric machine, inverter as well as other control units.

The propagation of faults and failures was estimated, and an error model
was created accordingly. The failure UnintendedNegativeTorque2 of the com-
ponent EMotor was identified to be the cause for the malfunction Battery-
Overcharging that was identified during PHA. This failure can occur due
to a failure of the electric machine or faults propagating from a sensor and
networked control units such as the HCU.

Property Checker and Model Corrector supported the workflow steps.
Furthermore, the View Provider was used to examine the definition of the
safety concept, the system connectors and the system components. Fault

41

Publication 5 - Invited Paper under Review for Journal of Reliability Engineering & System Safety 116

trees and an FMEA table were generated from the EAST-ADL model using
the FTA Generator and the FMEA Generator. Thereafter, qualitative FTA
and qualitative FMEA were applied to verify the system architecture.

Figure 4 illustrates a fault tree showing the relations between safety
goal AvoidBatteryOvercharging, hazardous event FireExplosionDuringOver-
taking, hazard FireExplosion, malfunction BatteryOvercharging as well as the
causative faults and failures of the components of the system architecture.
The extracted minimum cut sets that can cause the violation of the safety
goal AvoidBatteryOvercharging are also illustrated. The same minimum cut
sets are shown in Figure 5 as MCS Fault Tree.

Figure 6 shows a part of the generated FMEA table. It reveals that a
failure mode of the HCU can lead to the violation of the safety goal Avoid-
BatteryOvercharging. It also presents causative faults for this failure mode.

The HEV contains two redundant and diverse acceleration pedal sensors.
Due to the redundancy, the fault or failure of one pedal sensor can only cause
the violation of a safety goal in conjunction with the fault or failure of the
other one. This is the prerequisite for ASIL decomposition.

For economic reasons, it was decided to set the preferred ASILs of the
HCU and one acceleration pedal sensor to ASIL A using the GUI of the
ASIL Allocator (see Figure 7). The ASIL Allocator derived constraints on
the ASIL allocation accordingly. The constraint solver was activated, but
could not find a solution for the derived constraint set. This indicated that
at least one of the preferred ASILs was in conflict with the constraints derived
from the safety goals, the fault trees and the extracted minimum cut sets.

Thus, the preferred ASIL of the HCU was set to ASIL B, and the con-
straint solver was activated again. The constraint solver was able to find
a solution for the modified constraint set (see column Allocated ASIL in
Figure 7). This solution is optimal with respect to the defined objective
function and consistent with the defined safety goals, the fault trees, their
minimum cut sets and the defined preferences for the ASIL allocation. Fur-
thermore, the constraint solver identified the possibility for ASIL decomposi-
tion and decomposed the ASILs of the redundant acceleration pedal sensors
to ASIL A+ASIL A. Afterwards, the ASIL allocation was automatically pro-
jected on the EAST-ADL model.

8.1.3. Software Level Development Phase

In the software level development phase, the components of the system
architecture that are required to execute application software and basic soft-

42

Publication 5 - Invited Paper under Review for Journal of Reliability Engineering & System Safety 117

Figure 10: The safety engineering workflow was applied for the case study of hybrid electric
vehicle development. Finally a control unit demonstrator was created that is based on a
multi-core microcontroller and a residual bus simulation was set up.

ware were determined and software requirements were derived and allocated.
One of these components is the HCU that is typed by the HCUType.

The Safety Driver Generator was used to configure a safety driver for the
HCUType assuming a TMS570LS20216 as target microcontroller and Code
Composer Studio as software development IDE. The Safety Driver Generator
proposed an initial configuration of the safety driver according to the relevant
ASIL of the HCUType (ASIL B). This configuration was manually refined
to fit the needs of the HCUType. For example, the options for FPU backup
(the HCU application requires the FPU), safe CAN initialization (the HCU
application requires CAN) and parity startup testing of the message boxes 1,
2, 3, 4 and 5 of the CAN Module 1 (required by the HCU application) were
selected. Thereafter, the configuration was automatically projected onto the
EAST-ADL model resulting in (a) a group of name/value-pairs and (b) a
list of software safety requirements describing the configuration in a human-
readable manner. Traces from the newly created software safety requirements
to the safety concept were created. A part of the configuration of the safety
driver is illustrated in Figure 8.

Property Checker and Model Corrector supported the definition of soft-
ware requirements and the creation of traces. Furthermore, the View Pro-
vider was used to examine the software requirements and their allocation.
The Report Generator was employed to generate a report that described the
software requirements, their allocation as well as all work products that were
created in the preceding workflow phases.

After the configuration of the safety driver, the Safety Driver Generator
and the Simulink Model Generator were used to configure and generate a
safety driver and to generate a Simulink model. Whereas the safety driver
was fitted to the TMS570LS20216 and the HCUType, the Simulink model
was consistent with the HCUType in terms of top-level block and interface.

43

Publication 5 - Invited Paper under Review for Journal of Reliability Engineering & System Safety 118

Thereafter, based on the generated Simulink model, the TargetLink block-
set was used to define HCUType functionality according to the allocated
application software requirements. The behavior determines the electric ma-
chine torque demanded by the HCU depending on the SOC (state of charge)
of the HEV-battery, and the acceleration and brake pedal positions of the
HEV. Subsequently, C-code was generated from the Simulink model using
TargetLink. An embedded RTOS was instantiated, legacy code and I/O-
related code were created. Then, the generated C-code (safety driver and
application software) was integrated with the RTOS, the legacy code and
the I/O-related code according to the allocated basic software requirements.

The program was compiled and linked and the resulting executable was
deployed on a TMS570LS20216 microcontroller prototyping board. This pro-
totyping board served as HCU demonstrator and is capable of safely initial-
izing the TMS570LS20216, carrying out startup tests and periodic runtime
tests, handling errors and executing the HCU application. A residual bus
simulation was set up. Simulation software was executed on a PC to trans-
mit stimuli to the HCU demonstrator via a USB-to-CAN adapter. The HCU
demonstrator responded accordingly. Stimuli and responses were visualized
using the simulation software. This setup is illustrated in Figure 10.

8.2. Complexity of Resulting Model and Derived Entities

While the safety engineering workflow was applied for the case study of
hybrid electric vehicle development, an EAST-ADL model was created and
different entities were derived from the model. This section presents metrics
together with values characterizing the complexity of the resulting model and
the derived entities. These metrics and values fall into different categories
and are presented in Table 3.

Category (1) describes the complexity of the resulting EAST-ADL model.
Whereas the workflow was only applied for a part of the hybrid electric ve-
hicle powertrain consisting of 3 sensors, 3 actuators and 4 control units, the
resulting EAST-ADL contained 957 modeling elements. The large number of
modeling elements is not ascribable to EAST-ADL that allowed to appropri-
ately structure the information and to efficiently express the work products.
On the contrary, the large number of modeling elements is ascribable to the
complexity of an HEV powertrain. This complexity is existent and challeng-
ing, regardless whether an EAST-ADL model is used or not.

The rigor of the information structure of the EAST-ADL model was ex-
ploited by OASIS to support the creation of consistent and complete work

44

Publication 5 - Invited Paper under Review for Journal of Reliability Engineering & System Safety 119

(1) EAST-ADL Model Metrics Value

of Modeled Sensors 3
of Modeled Actuators 3
of Modeled Control Units 4
of EAST-ADL Modeling Elements 957

(2) Model Creation and Reuse Metrics Value

of Property Violations 160
of Violating Modeling Elements 152
of Modeling Elements for Future Reuse 36

(3) Analysis and Documentation Metrics Value

of Generated Fault Trees 6
of Generated Fault Tree Nodes 245
of Extracted Minimum Cut Sets 45
of Generated FMEA Table Lines 192
of Derived Constraints for ASIL Allocation 43
of Automatically Allocated ASILs 10
of Provided View Table Lines 701
of Words of Generated Report 7299
of Tables of Generated Report 9
of Trees of Generated Report 6

(4) Configuration and Code Generation Metrics Value

of Generated Simulink Model Ports 5
of Requirements from Safety Driver Configuration 44
of Lines of Code of Generated Safety Driver 4224

Table 3: This table presents metrics together with values characterizing the complexity of
the EAST-ADL model that results from the HEV use case and the derived entities.

products and to simplify and automate workflow steps. The categories (2),
(3) and (4) describe the complexity of the entities that were automatically de-
rived by OASIS in order to support the workflow application. The presented
numbers underpin the value of OASIS. For example, a manual identification
of 152 improper modeling elements or a manual elaboration of fault trees
with 245 nodes would have been time-consuming and error-prone tasks.

8.3. Assessment of Benefits

Based on the case study of HEV development, this section evaluates the
benefits of OASIS’ modules with respect to the application of the safety
engineering workflow by a safety engineer.

45

Publication 5 - Invited Paper under Review for Journal of Reliability Engineering & System Safety 120

S
el

ec
ti

ve
In

te
rf

ac
e

P
ro

p
er

ty
C

h
ec

k
er

M
o
d
el

C
o
rr

ec
to

r

V
ie

w
P

ro
v
id

er

F
T

A
G

en
er

at
or

F
M

E
A

G
en

er
at

or

A
S
IL

A
ll
o
ca

to
r

R
ep

o
rt

G
en

er
a
to

r

S
im

u
li
n
k

M
o
d
el

G
en

er
at

or

S
a
fe

ty
D

ri
v
er

G
en

er
at

or

Model Creation 2 3 3 1 - - 1 - - 1 11

Model Reuse 3 - - - - - - - - - 3

Model Maintenance - 3 3 - - - 1 - - 1 8

Model Consistency - 3 3 2 2 2 2 3 3 3 23

Model Completeness 1 2 1 - 1 1 1 1 1 1 10

Model Examination - 2 2 3 3 3 3 1 - - 17

Application of Analyses 2 2 2 3 3 3 3 2 - - 20

Application of Reviews - - - 2 2 2 2 3 - 2 13

Communication - - - 2 2 2 2 3 - 1 12

Software Development - 1 1 1 - - - 2 3 3 11

8 15 15 14 13 13 15 15 7 12

Table 4: Depending on evaluation criteria, the achieved benefits of OASIS’ modules were
assessed and classified as high (3), medium (2), low (1) or not applicable (-) based on
experience from the HEV use case.

First, evaluation criteria were defined to allow a systematic evaluation.
The criteria Model Creation, Model Reuse and Model Maintenance concern
the ability to efficiently elaborate an EAST-ADL model by creating and
manipulating modeling elements. The criteria Model Consistency and Model
Completeness are related to the capability of assessing the model with respect
to particular characteristics indicating quality. The criteria Model Examina-
tion, Application of Analyses, Application of Reviews and Communication
concern the ability of validating the information contained in the model. Fi-
nally, the criterion Software Development describes the capability of bridging
the gap between system and software development activities.

Second, the achieved benefits of OASIS’ modules were assessed with re-
spect to the evaluation criteria. The achieved benefits were classified as high

46

Publication 5 - Invited Paper under Review for Journal of Reliability Engineering & System Safety 121

(3), medium (2), low (1) or not applicable (-). The results of the assessment
are presented in Table 4.

The best results were achieved with respect to the evaluation criteria (1)
Model Consistency, (2) Application and Analyses and (3) Model Examina-
tion. Considering the complexity of an HEV powertrain, this is justified by
the fact that (1) the elaboration of a consistent model, (2) the manual cre-
ation of means that support analyses and (3) the examination of particular
details are time-consuming and error-prone tasks.

According to the results, the most valuable OASIS modules were (a) the
Property Checker, (b) the Model Corrector, (c) the Report Generator and
(d) the ASIL Allocator. Considering the complexity of an HEV powertrain,
this is justified by the fact that (a,b,c) provide support for a lot of phases of
the presented workflow and (d) replaces the manual application of a highly
safety-relevant development step with an automatic and optimal application
of the same working step.

9. Conclusion

The paper presents a novel software tool named OASIS (AutOmotive
Analysis and Safety EngIneering InStrument). OASIS supports the appli-
cation of a safety engineering workflow aligned with the automotive safety
standard ISO 26262. OASIS sustains the creation of consistent and com-
plete of work products and simplifies and automates workflow steps. This
is achieved by providing support for (a) model creation and reuse, (b) anal-
ysis and documentation and (c) configuration and code generation. Based
on the use of metrics and evaluation criteria, the case study of an hybrid
electric vehicle development was used to demonstrate the effectiveness of the
approach. OASIS was able to cope with the complexity imposed by a hybrid
electric vehicle powertrain and greatly eased the application of the workflow.
It turned out that OASIS is especially useful for achieving model consistency,
applying analyses and examining the model.

Acknowledgment

The authors wish to thank the COMET K2 Forschungsförderungs-Programm of the
Austrian Federal Ministry for Transport, Innovation and Technology (BMVIT), the Aus-
trian Federal Ministry of Economics and Labour (BMWA), Österreichische Forschungs-
förderungsgesellschaft mbH (FFG), Das Land Steiermark and Steirische Wirtschaftsförder-
ung (SFG) for their financial support. Additionally, we would like to thank the supporting

47

Publication 5 - Invited Paper under Review for Journal of Reliability Engineering & System Safety 122

company and project partner AVL List GmbH as well as Graz University of Technology.
Further information about the MEPAS project can be found at www.v2c2.at/mepas.

References

[1] International Organization for Standardization, ISO 26262 Road vehicles -
Functional safety (2011).

[2] N. G. Leveson, Safeware: system safety and computers, Addison-Wesley Pub-
lishing Company, 1995.

[3] P. Johannessen, F. Törner, J. Torin, Actuator Based Hazard Analysis for
Safety Critical Systems, in: Proc. of the 23th International Conference on
Computer Safety, Reliability and Security, 2004, pp. 130–141.

[4] P. Jesty, D. Ward, R. Rivett, Hazard Analysis for Programmable Automotive
Systems, in: Proc. of the 2nd IET International Conference on System Safety
2007, 2007, pp. 106–111.

[5] H. Schubotz, Hazard Analysis and Risk Assessment for Complex EE-
Architectures, in: Proc. of the SAE World Congress & Exhibition, no. 2010-
01-0029, 2010.

[6] M. Stringfellow, N. Leveson, B. Owens, Safety-Driven Design for Software-
Intensive Aerospace and Automotive Systems, Proceedings of the IEEE 98
(2010) 515–525.

[7] H. Giese, M. Tichy, D. Schilling, Compositional Hazard Analysis of UML
Component and Deployment Models, in: Proc. of the 23th International Con-
ference on Computer Safety, Reliability and Security, 2004, pp. 166–179.

[8] K. Allenby, T. Kelly, Deriving Safety Requirements Using Scenarios, in: Proc.
of the 5th IEEE International Symposium on Requirements Engineering,
2001, pp. 228–235.

[9] A. Sandberg, D. Chen, H. Lönn, R. Johansson, L. Feng, M. Törngren,
S. Torchiaro, R. T. Kolagari, A. Abele, Model-Based Safety Engineering of In-
terdependent Functions in Automotive Vehicles Using EAST-ADL2, in: Proc.
of the 29th International Conference on Computer Safety, Reliability and Se-
curity, 2010, pp. 332–346.

48

Publication 5 - Invited Paper under Review for Journal of Reliability Engineering & System Safety 123

[10] A. Lanusse, Y. Tanguy, H. Espinoza, C. Mraidha, S. Gerard, P. Tessier,
R. Schnekenburger, H. Dubois, F. Terrier, Papyrus UML: an open source
toolset for MDA., in: Proc. of the Fifth European Conference on Model-
Driven Architecture Foundations and Applications (ECMDA-FA 2009), 2009,
pp. 1–4.

[11] D. Makartetskiy, D. Pozza, R. Sisto, An Overview of Software-based Sup-
port Tools for ISO 26262, in: Proc. of the 3rd International Workshop on
Innovation in Information Technologies: Theory and Practice, 2010, pp. 1–6.

[12] ATESST2 Project Consortium, EAST-ADL Domain Model Specification, ver-
sion 2.1, Release Candidate 3 (2010).

[13] Y. Papadopoulos, M. Maruhn, Model-Based Synthesis of Fault Trees from
Matlab - Simulink models, in: Proc. of the International Conference on De-
pendable Systems and Networks (DSN 2001), 2001, pp. 77–82.

[14] Y. Papadopoulos, C. Grante, Evolving car designs using model-based auto-
mated safety analysis and optimisation techniques, The Journal of Systems
and Software 76 (2004) 77–89.

[15] M. de Miguel, J. Briones, J. Silva, A. Alonso, Integration of safety analysis
in model-driven software development, IET Software 2 (2008) 260–280.

[16] D. Domis, M. Trapp, Integrating Safety Analyses and Component-Based De-
sign, in: Proc. of the 27th International Conference on Computer Safety,
Reliability and Security, 2008, pp. 58–71.

[17] J. Elmqvist, S. Nadjm-Tehrani, Tool Support for Incremental Failure Mode
and Effects Analysis of Component-Based Systems, in: Proc. of the Design,
Automation and Test in Europe Conference and Exhibition (DATE’08), 2008,
pp. 921–927.

[18] A. Majdara, T. Wakabayashi, A New Approach for Computer-Aided Fault
Tree Generation, in: Proc. of the 3rd Annual IEEE Systems Conference,
2009, pp. 308–312.

[19] M. Biehl, C. DeJui, M. Törngren, Integrating Safety Analysis into the Model-
based Development Toolchain of Automotive Embedded Systems, in: Proc. of
the Conference on Languages, Compilers and Tools for Embedded Systems,
2010, pp. 125–131.

49

Publication 5 - Invited Paper under Review for Journal of Reliability Engineering & System Safety 124

[20] Y. Papadopoulos, M. Walker, M.-O. Reiser, M. Weber, D. Chen, M. Törngren,
D. Servat, A. Abele, F. Stappert, H. Lönn, L. Berntsson, R. Johansson,
F. Tagliabo, S. Torchiaro, A. Sandberg, Automatic Allocation of Safety In-
tegrity Levels, in: Proc. of the 1st Workshop on Critical Automotive applica-
tions (CARS’10), 2010, pp. 7–10.

[21] P. Bieber, R. Delmas, C. Seguin, DALculus - Theory and Tool for Develop-
ment Assurance Level Allocation, in: Proc. of the International Conference
on Computer Safety, Reliability and Security (SafeComp), 2011, pp. 43–56.

[22] S. Sentilles, A. Pettersson, I. Crnkovic, Safe-IDE - A Tool for Design, Anal-
ysis and Implementation of Component-Based Embedded Systems, in: Proc.
of the 31st IEEE International Conference on Software Engineering (ICSE),
2009, pp. 607–610.

[23] R. Bartosinski, Z. Hanzálek, P. Struz̆ka, L. Waszniowski, Integrated Envi-
ronment for Embedded Control Systems Design, in: Proc. of the IEEE In-
ternational Symposium on Parallel and Distributed Processing Symposium
(IPDPS), 2007, pp. 1–8.

[24] C.-J. Sjöstedt, J. Shi, M. Törngren, D. Servat, D. Chen, V. Ahlsten, H. Lönn,
Mapping Simulink to UML in the design of embedded systems: Investigating
scenarios and transformations, in: Proc. of the OMER 4 Workshop, 2008.

[25] T. Farkas, E. Meiseki, C. Neumann, K. Okano, A. Hinnerichs, S. Kamiya,
Integration of UML with Simulink into embedded software engineering, in:
Proc. of the ICROS-SICE International Joint Conference, 2009, pp. 474–479.

[26] M. Biehl, C.-J. Sjöstedt, M. Törngren, A Modular Tool Integration Approach
- Experiences from two Case Studies, in: Proc. of the 3rd Workshop on Model-
Driven Tool & Process Integration (MDTPI), 2010, pp. 19–30.

[27] M. Psarakis, D. Gizopoulos, E. Sanchez, M. Reorda, Microprocessor Software-
Based Self-Testing, IEEE Design & Test of Computers 27 (2010) 4–19.

[28] D. Harel, B. Rumpe, Meaningful Modeling: What’s the Semantics of ”Se-
mantics”?, IEEE Transactions on Computers 37 (2004) 64–72.

[29] The MathWorks, Inc., Simulink - Simulation und Model-Based Design (Feb.
2012).
URL www.mathworks.de/products/simulink

50

Publication 5 - Invited Paper under Review for Journal of Reliability Engineering & System Safety 125

[30] dSPACE GmbH, TargetLink (Feb. 2012).
URL www.dspace.com/en/inc/home/products/sw/pcgs/targetli.cfm

[31] Texas Instruments Inc., Texas Instruments Website (Feb. 2012).
URL www.ti.com

[32] Freescale Semiconductor Inc., Freescale Website (Feb. 2012).
URL www.freescale.com

[33] ARM Inc., Keil µVision (Feb. 2012).
URL www.keil.com/uvision

[34] R. Mader, G. Grießnig, A. Leitner, C. Kreiner, Q. Bourrouilh, E. Armen-
gaud, C. Steger, R. Weiß, A Computer-Aided Approach to Preliminary Haz-
ard Analysis for Automotive Embedded Systems, in: Proc. of the IEEE In-
ternational Conference and Workshops on Engineering of Computer Based
Systems (ECBS), 2011, pp. 169–178.

[35] R. Mader, E. Armengaud, A. Leitner, C. Kreiner, Q. Bourrouilh, G. Grießnig,
C. Steger, R. Weiß, Computer-Aided PHA, FTA and FMEA for Automotive
Embedded Systems, in: Proc. of the International Conference on Computer
Safety, Reliability and Security (SafeComp), 2011, pp. 113–127.

[36] International Electrotechnical Commission, IEC 61025 - Ed. 2.0 Fault tree
analysis (FTA) (2006).

[37] J. P. Ignazio and T. M. Cavalier, Linear Programming, Prentice Hall, 1994.

[38] Infineon Technologies AG, Infineon Website (Feb. 2012).
URL www.infineon.com

[39] M. Baleani, A. Ferrari, L. Mangeruca, A. Sangiovanni-Vincentelli, M. Peri,
S. Pezzini, Fault-tolerant Platforms for Automotive Safety-Critical Applica-
tions, in: Proc. of the International Conference on Compilers, Architectures
and Synthesis for Embedded Systems (CASES’03), ACM, 2003, pp. 170–177.

[40] S. Brewerton, R. Schneider, D. Eberhard, Implementation of a Basic Single-
Microcontroller Monitoring Concept for Safety Critical Systems on a Dual-
Core Microcontroller, SAE SP (2121) (2007) 25–32.

[41] Texas Instruments, Safety Manual - TMS570LS20216S Device (2010).

[42] M. Ehsani, Y. Gao, S. Gay, A. Emadi, Hybrid Electric Vehicles, in: Modern
Electric, Hybrid Electric, and Fuel Cell Vehicles Fundamentals, Theory, and
Design, CRC Press, 2005, Ch. 5.

51

Publication 5 - Invited Paper under Review for Journal of Reliability Engineering & System Safety 126

Bibliography

[1] D. Harel and B. Rumpe. Meaningful Modeling: What’s the Semantics of ”Semantics”?
IEEE Transactions on Computers, 37:64–72, October 2004.

[2] International Organization for Standardization. ISO 26262 Road vehicles - Functional
safety, 2011.

[3] N. G. Leveson. Safeware: system safety and computers. Addison-Wesley Publishing
Company, 1995.

[4] M. Ehsani, Y. Gao, S.E. Gay, and A. Emadi. Hybrid Electric Vehicles. In Modern
Electric, Hybrid Electric, and Fuel Cell Vehicles Fundamentals, Theory, and Design,
chapter 5. CRC Press, 2005.

[5] AVL List GmbH. Turbohybrid Website, September 2012.

[6] D. Ward. System safety in electric and hybrid electric vehicles. In Proc. of the
Australian System Safety Conference (ASSC), pages 79–83, 2011.

[7] C. Ebert and C. Jones. Embedded Software: Facts, Figures, and Future. IEEE
Computer, 42(4):42–52, 2009.

[8] P. Johannessen, F. Törner, and J. Torin. Actuator Based Hazard Analysis for Safety
Critical Systems. In Proc. of the 23th International Conference on Computer Safety,
Reliability and Security, pages 130–141, September 2004.

[9] F. Törner, P. Johannessen, and P. Öhman. Assessment of Hazard Identification
Methods for the Automotive Domain. In Proc. of the 25th International Conference
on Computer Safety, Reliability and Security, pages 247–260, September 2006.

[10] P.H. Jesty, D.D. Ward, and R.S. Rivett. Hazard Analysis for Programmable Auto-
motive Systems. In Proc. of the 2nd IET International Conference on System Safety
2007, pages 106–111, December 2007.

[11] H. Schubotz. Hazard Analysis and Risk Assessment for Complex EE-Architectures.
In Proc. of the SAE World Congress & Exhibition, number 2010-01-0029, April 2010.

[12] M.V. Stringfellow, N.G. Leveson, and B.D. Owens. Safety-Driven Design for Software-
Intensive Aerospace and Automotive Systems. Proceedings of the IEEE, 98:515–525,
2010.

127

BIBLIOGRAPHY 128

[13] J.B. Michael, Man-Tak Shing, K.J. Cruickshank, and P.J. Redmond. Hazard Analysis
and Validation Metrics Framework for System of Systems Software Safety. IEEE
Systems Journal, 4:186–197, 2010.

[14] S.P. Kumar, P.S. Ramaiah, and V. Khanaa. A Methodology for Building Safer Soft-
ware based Critical Computing Systems. In Proc. of the 2nd IEEE International
Conference on Advance Computing (IACC’2010), pages 422–429, February 2010.

[15] H. Giese, M. Tichy, and D. Schilling. Compositional Hazard Analysis of UML Com-
ponent and Deployment Models. In Proc. of the 23th International Conference on
Computer Safety, Reliability and Security, pages 166–179, September 2004.

[16] K. Allenby and T. Kelly. Deriving Safety Requirements Using Scenarios. In Proc. of
the 5th IEEE International Symposium on Requirements Engineering, pages 228–235,
August 2001.

[17] A. Sandberg, D. Chen, H. Lönn, R. Johansson, L. Feng, M. Törngren, S. Torchiaro,
R. Tavakoli Kolagari, and A. Abele. Model-Based Safety Engineering of Interde-
pendent Functions in Automotive Vehicles Using EAST-ADL2. In Proc. of the 29th
International Conference on Computer Safety, Reliability and Security, pages 332–
346, September 2010.

[18] C. Hamoy, D. Hemer, and P. Lindsay. HazLog: tool support for hazard management.
In Proc. of the 9th Australian workshop on Safety critical systems and software (SCS),
pages 77–87, 2004.

[19] A. Lanusse, Y. Tanguy, H. Espinoza, C. Mraidha, S. Gerard, P. Tessier, R. Schneken-
burger, H. Dubois, and F. Terrier. Papyrus UML: an open source toolset for MDA.
In Proc. of the Fifth European Conference on Model-Driven Architecture Foundations
and Applications (ECMDA-FA 2009), pages 1–4, June 2009.

[20] ATESST2 Project Consortium. Refined EAST-ADL2 tool support. Technical report,
2010. Deliverable D3.2.

[21] D. Makartetskiy, D. Pozza, and R. Sisto. An Overview of Software-based Support
Tools for ISO 26262. In Proc. of the 3rd International Workshop on Innovation in
Information Technologies: Theory and Practice, pages 1–6, September 2010.

[22] K.K. Vemuri, J.B. Dugan, and K.J. Sullivan. Automatic Synthesis of Fault Trees for
Computer-Based Systems. IEEE Transactions on Reliability, 48:394–402, December
1999.

[23] Y. Papadopoulos and M. Maruhn. Model-Based Synthesis of Fault Trees from Matlab
- Simulink models. In Proc. of the International Conference on Dependable Systems
and Networks (DSN 2001), pages 77–82, July 2001.

[24] Y. Papadopoulos and C. Grante. Evolving car designs using model-based automated
safety analysis and optimisation techniques. The Journal of Systems and Software,
76:77–89, June 2004.

BIBLIOGRAPHY 129

[25] M. Biehl, C. DeJui, and M. Törngren. Integrating Safety Analysis into the Model-
based Development Toolchain of Automotive Embedded Systems. In Proc. of the
Conference on Languages, Compilers and Tools for Embedded Systems (LCTES),
pages 125–131, 2010.

[26] G.J. Pai and J.B. Dugan. Automatic Synthesis of Dynamic Fault Trees from UML
System Models. In Proc. of the 13th International Symposium on Software Reliability
Engineering (ISSRE), pages 243–254, 2002.

[27] M.A. de Miguel, J.F. Briones, J.P. Silva, and A. Alonso. Integration of safety analysis
in model-driven software development. IET Software, 2:260–280, 2008.

[28] D. Domis and M. Trapp. Integrating Safety Analyses and Component-Based Design.
In Proc. of the 27th International Conference on Computer Safety, Reliability and
Security, pages 58–71, September 2008.

[29] J. Elmqvist and S. Nadjm-Tehrani. Tool Support for Incremental Failure Mode and
Effects Analysis of Component-Based Systems. In Proc. of the Design, Automation
and Test in Europe Conference and Exhibition (DATE’08), pages 921–927, April 2008.

[30] A. Majdara and T. Wakabayashi. A New Approach for Computer-Aided Fault Tree
Generation. In Proc. of the 3rd Annual IEEE Systems Conference, pages 308–312,
2009.

[31] G. Latif-Shabgahi and F. Tajarrod. A New Approach for the Construction of Fault
Trees from System Simulink. In Proc. of the International Conference on Availability.
Reliability and Security (ARES), pages 712–717, 2009.

[32] M. Bozzano, A. Cimatti, J. Katoen, V. Nguyen, T. Noll, M. Roveri, and R. Wim-
mer. A Model Checker for AADL. In Proc. of the 22nd International Conference on
Computer Aided Verification (CAV), pages 562–565, 2010.

[33] M.-A. Esteve, J.-P. Katoen, V. Nguyen, B. Postma, and Y. Yushtein. Formal Cor-
rectness, Safety, Dependability, and Performance Analysis of a Satellite. In Proc.
of the 13th International Symposium on Software Reliability Engineering (ISSRE),
pages 1022–1031, 2012.

[34] C. Lauer, R. German, and J. Pollmer. Fault Tree Synthesis from UML Models for
Reliability Analysis at Early Design Stages. ACM SIGSOFT Software Engineering
Notes, 36:1–8, January 2011.

[35] J. Xiang, K. Yanoo, Y. Maeno, and K. Tadano. Automatic Synthesis of Static Fault
Trees from System Models. In Proc. of the 5th International Conference on Secure
Software Integration and reliability Improvement, pages 127–136, 2004.

[36] Y. Papadopoulos, M. Walker, M.-O. Reiser, M. Weber, D. Chen, M. Törngren,
D. Servat, A. Abele, F. Stappert, H. Lönn, L. Berntsson, R. Johansson, F. Tagli-
abo, S. Torchiaro, and A. Sandberg. Automatic Allocation of Safety Integrity Levels.
In Proc. of the 1st Workshop on Critical Automotive applications (CARS’10), pages
7–10, April 2010.

BIBLIOGRAPHY 130

[37] P. Bieber, R. Delmas, and C. Seguin. DALculus - Theory and Tool for Development
Assurance Level Allocation. In Proc. of the International Conference on Computer
Safety, Reliability and Security (SafeComp), pages 43–56, 2011.

[38] M. Psarakis, D. Gizopoulos, E. Sanchez, and M.S. Reorda. Microprocessor Software-
Based Self-Testing. IEEE Design & Test of Computers, 27:4–19, 2010.

[39] J.U. Gärtner. Certified Software Factory: Open Software Toolsuites, Safe Methodolo-
gies and System Architectures. In Proc. of the 11th Australian Workshop on Safety
Related Programmable Systems (SCS), pages 19–22, 2006.

[40] P. Caspi, A. Curic, A. Maignan, C. Sofronis, S. Tripakis, and P. Niebert. From
Simulink to SCADE/Lustre to TTA: a Layered Approach for Distributed Applica-
tions. In Proc. of the Conference on Languages, Compilers and Tools for Embedded
Systems (LCTES), pages 153–162, 2003.

[41] N. Scaife, C. Sofronis, P. Caspi, S. Tripakis, and F. Maraninchi. Defining and Trans-
lating a S̈afeS̈ubset of Simulink/Stateflow into Lustre. In Proc. of the International
Conference on Embedded Software (EMSOFT), pages 259–268, 2004.

[42] R. Venky, S. Ulka, A. Kulkarni, and P. Bokil. STATEMATE to SCADE Model
Translation. In Proc. of the 1st India Software Engineering Conference (ISEC), pages
145–146, 2008.

[43] S. Burmester, H. Giese, M. Hirsch, D. Schilling, and M. Tichy. The Fujaba Real-
Time Tool Suite: Model-Driven Development of Safety-Critical, Real-Time Systems.
In Proc. of the International Conference on Software Engineering (ICSE), pages 670–
671, 2005.

[44] C. Buckl, A. Knoll, and G. Schrott. Model-Based Development of Fault-Tolerant Em-
bedded Software. In Proc. of the International Symposium on Leveraging Applications
of Formal Methods, Verification and Validation (ISoLA), pages 103–110, 2006.

[45] L. Brisolara, M. Oliveira, R. Redin, L. Lamb, L. Carro, and F. Wagner. Using UML
as Front-end for Heterogeneous Software Code Generation Strategies. In Proc. of the
Design, Automation and Test in Europe Conference and Exhibition (DATE), pages
504–509, 2008.

[46] G. Lasnier, B. Zalila, L. Pautet, and J. Hugues. OCARINA: An Environment for
AADL Models Analysis and Automatic Code Generation for High Integrity Appli-
cations. In Proc. of the Ada-Europe International Conference on Reliable Software
Technologies (Ada-Europe), pages 237–250, 2009.

[47] E. Borde, P.H. Feiler, Häık, and L. Pautet. Model Driven Code Generation for Critical
and Adaptative Embedded Systems. ACM SIGBED Review - Special Issue on the
2nd International Workshop on Adaptive and Reconfigurable Embedded Systems, 6(3),
2009.

[48] S. Sentilles, A. Pettersson, and I. Crnkovic. Safe-IDE - A Tool for Design, Analysis
and Implementation of Component-Based Embedded Systems. In Proc. of the 31st

BIBLIOGRAPHY 131

IEEE International Conference on Software Engineering (ICSE), pages 607–610, May
2009.

[49] E. Borde and J. Carlson. Towards Verified Synthesis of ProCom, a Component Model
for Real-Time Embedded Systems. In Proc. of the International ACM Sigsoft Sym-
posium on Component Based Software Engineering (CBSE), pages 129–138, 2011.

[50] M. Eberl, M. Glaß, J. Teich, and U. Abelein. Considering Diagnosis Functionality
during Automatic System-Level Design of Automotive Networks. In Proc. of the
Annual Design Automation Conference (DAC), pages 205–213, 2012.

[51] J. Shen and J.A. Abraham. Native Mode Functional Test Generation for Processors
with Applications to Self Test and Design Validation. In Proc. of the International
Test Conference (ITC’98), pages 990–999, October 1998.

[52] K. Jayaraman, V.M. Vedula, and J.A. Abraham. Native Mode Functional Self-Test
Generation for Systems-on-Chip. In Proc. of the International Symposium on Quality
Electronic Design (ISQED’02), pages 280–285, August 2002.

[53] P. Parvathala, K. Maneparambil, and W. Lindsay. FRITS - A Microprocessor Func-
tional BIST Method. In Proc. of the International Test Conference (ITC’02), pages
590–598, December 2002.

[54] F. Corno, E. Sanchez, M.S. Reorda, and G. Squillero. Automatic Test Program
Generation: A Case Study. IEEE Transactions on Design & Test of Computers,
21:102–109, 2004.

[55] I. Bayraktaroglu, J. Hunt, and D. Watkins. Cache Resident Functional Microprocessor
Testing: Avoiding High Speed IO Issues. In Proc. of the IEEE International Test
Conference (ITC), pages 1–7, 2006.

[56] The MathWorks, Inc. Simulink - Simulation und Model-Based Design, February 2012.

[57] dSPACE GmbH. TargetLink, February 2012.

[58] Texas Instruments Inc. Texas Instruments Website, February 2012.

[59] Freescale Semiconductor Inc. Freescale Website, February 2012.

[60] ARM Inc. Keil µVision, February 2012.

	1 Introduction
	1.1 Motivation
	1.1.1 Safety-Criticality of Embedded Systems in HEVs
	1.1.2 Development of Safety-Critical Embedded Systems in HEVs
	1.1.2.1 Early Hazard Analysis
	1.1.2.2 FTA, FMEA and Allocation of Safety Parameters based on System Models
	1.1.2.3 Generation of Source Code and Models

	1.2 Computer-Aided Model-Based Safety Engineering of Automotive Systems
	1.2.1 The MEPAS Project
	1.2.2 The OASIS Tool
	1.2.3 Organization of this Thesis

	2 Related Work
	2.1 Early Hazard Analysis
	2.1.1 Systematic Approaches Incorporating Models
	2.1.2 Incorporation of Diagrammatic Languages
	2.1.3 Provision of Sophisticated Tool Support

	2.2 FTA, FMEA and Allocation of Safety Parameters based on System Models
	2.2.1 Generation of Fault Trees and FMEA Tables from System Models
	2.2.2 Allocation of Safety Parameters

	2.3 Generation of Source Code and Models
	2.3.1 Generation of Source Code and Models From Other Models
	2.3.2 Generation of Functional SBSTs for Microcontrollers

	2.4 Potentials for Improvement
	2.4.1 Potential for Improvement 1
	2.4.2 Potential for Improvement 2
	2.4.3 Potential for Improvement 3
	2.4.4 Potential for Improvement 4

	2.5 Contribution and Significance
	2.5.1 Contribution 1: Safety-Relevant Model Creation
	2.5.2 Contribution 2: Generation of Fault Trees, FMEA Tables and ASIL Allocations
	2.5.3 Contribution 3: Configuration and Code Generation

	3 Computer-Aided Model-Based Safety Engineering of Automotive Systems
	3.1 Safety Engineering Workflow
	3.1.1 Concept Phase
	3.1.1.1 Definition of the Analysis Subject
	3.1.1.2 Identification of Hazards and Hazardous Events
	3.1.1.3 Derivation of Safety Goals
	3.1.1.4 Definition of Functional Safety Concept

	3.1.2 System Level Development Phase
	3.1.2.1 Definition of Technical Safety Concept
	3.1.2.2 Definition of System Architecture
	3.1.2.3 Investigation and Annotation of Faults and Failures

	3.1.3 Software Level Development Phase
	3.1.3.1 Specification of Embedded Software
	3.1.3.2 Generation of Simulink Models
	3.1.3.3 Definition of Behaviors
	3.1.3.4 Generation of Source Codes
	3.1.3.5 Generation of Safety Drivers
	3.1.3.6 Implementation and Integration of Source Codes
	3.1.3.7 Compilation and Linking of Executable

	3.2 Supporting Tool Chain
	3.2.1 Papyrus for UML
	3.2.2 OASIS
	3.2.3 Simulink
	3.2.4 TargetLink
	3.2.5 Software Development IDEs

	3.3 Safety-Relevant Model Creation
	3.3.1 Support for Property Checking
	3.3.2 Support for Model Correction

	3.4 Generation of Fault Trees, FMEA Tables and ASIL Allocations
	3.4.1 Support for Fault Tree Generation
	3.4.2 Support for FMEA Table Generation
	3.4.3 Support for Automatic and Optimal Allocation of ASILs

	3.5 Configuration and Code Generation
	3.5.1 Support for Generation of Simulink Models
	3.5.2 Support for Configuration and Generation of Safety Drivers

	4 Experimental Evaluation
	4.1 Case Study of HEV Development
	4.2 Complexity of Resulting Model and Derived Entities
	4.3 Assessment of Benefits

	5 Conclusion and Future Work
	5.1 Conclusion
	5.2 Future Work
	5.2.1 Safety-Relevant Model Creation
	5.2.2 Generation of Fault Trees, FMEA Tables and ASIL Allocations
	5.2.3 Configuration and Code Generation

	6 Publications
	6.1 A Computer-Aided Approach to Preliminary Hazard Analysis For Automotive Embedded Systems
	6.2 A Computer-Aided Approach to PHA, FTA and FMEA for Automotive Embedded Systems
	6.3 Automatic and Optimal Allocation of Safety Integrity Levels
	6.4 A Bridge from System to Software Development for Automotive Embedded Systems
	6.5 OASIS: An Automotive Analysis and Safety Engineering Instrument

	Bibliography

