
Yunjin Chen

Learning fast and effective image
restoration models

DOCTORAL THESIS

to achieve the university degree of

Doktor der technischen Wissenschaften

submitted to

Graz University of Technology

Supervisor

Prof. Dr. Thomas Pock

Institute for Computer Graphics and Vision

Prof. Dr. Stefan Roth

Department of Computer Science, TU Darmstadt

Graz, Austria, November 2014

To my parents Xiaohua and Yilan

There is no royal road to science, and
only those who do not dread the fa-
tiguing climb of its steep paths have
a chance of gaining its luminous sum-
mits.

Karl Marx

v

Abstract

Up to now, image restoration remains an active research topic, and many new approaches

are constantly emerging. However, many newly proposed algorithms achieve the state-

of-the-art performance, at the expense of computation time. The goal of this thesis is

to develop effective image restoration approaches with both high computational efficiency

and recovery quality. To that end, we focus on variational models and some related models

derived from them, e.g., nonlinear diffusion processes, due to their effectiveness for many

generally ill-posed computer vision problems.

Motivated by statistical inference methods, variational methods are among the most

successful methods to solve image restoration problems. Variational methods aim to min-

imize an energy functional which is designed to appropriately describe a specific image

restoration problem. Typically, it involves an image prior term (also known as regularizer)

and a data fidelity term, which is derived from the observation model. The performance

of a variational image restoration model heavily depends on the regularization term. The

development of better image regularization techniques has received intensive attention in

the past two decades. In this thesis, we concentrate on the so-called Fields of Experts

(FoE) image prior model (a trainable filter-based higher order MRFs model), which was

firstly proposed by Roth and Black in 2005. We prefer the FoE image prior model for

two main reasons. (1) It has been widely investigated in many classic image restoration

problems due to its high effectiveness, which is attributed to the explicit modeling of the

heavily-tailed statistical properties of natural images. (2) The resulting variational model

has the additional advantage of high computational efficiency, as it is a local model, and

only involves 2D convolution operations of a set of linear filters, alluding to the fact that

it is well-suited for parallel computation such as GPU.

We review existing algorithms for the training of the FoE model, and propose a refined

loss-specific training scheme. The loss-specific training scheme naturally leads to a bi-level

optimization problem. We make use of techniques from bi-level optimization to solve it,

where we found it important to we solve the lower-level problem in the bi-level framework

vii

viii

with very high accuracy. It turns out that our refined training algorithm helps us to arrive

a better learned FoE model, which can significantly boost the performance of previous

models. We demonstrate that this seemingly negligible modification is very beneficial for

the bi-level learning.

We build the link between the FoE model and a recently proposed analysis operator

learning model, which can be seen as the counterpart of the well-known synthesis sparse

representation based models such as K-SVD. We hold the opinion that the commonly

addressed analysis prior model, which is usually designed based on image patch rather

than the whole image, is a simplified version of the FoE model, at least in the context of

image processing. We argue that for the analysis prior modeling, we should turn to the

image-based modeling framework - FoE. Numerical experiments also demonstrate that the

image-based analysis model (e.g., the FoE model) works better than the patch-based ones.

We apply the learned image regularizers (e.g., the FoE models) to a variety of classical

image restoration problems, including (1) noise reduction with different noise types such

as additive Gaussian noise, Nakagami multiplicative noise and impulse noise, (2) JPEG

blocky artifacts suppression, (3) image super resolution from a single image or multiple

low resolution frames, (4) image deconvolution for blurring images corrupted by certain

linear kernels, and (5) image inpainting. The resulting variational models naturally lead to

demanding non-convex optimization problems. We develop a highly efficient non-convex

optimization algorithm, called iPiano to solve all the related problems. For all the inves-

tigated applications, the resulting variational models with the learned image regularizers

can achieve very good recovery performance on par with state-of-the-art algorithms. More-

over, the resulting variational models have an additional advantage of simplicity, and are

well-suited for GPU computation. Though the CPU implementation of our model is slower

than some highly-engineered methods, such as BM3D, the GPU implementation is at least

one order of magnitude faster than those strong competitors.

Motivated by the natural link between the energy functional minimization model and

nonlinear diffusion models, we propose to learn optimized nonlinear diffusion models de-

rived from the FoE model regularized energy functional. For this new training model, we

obtain additional capacity to train the penalty functions associated with the FoE model,

which are fixed to a specific one in the variational framework. Numerical experiments

show that due to this additional freedom to tune the penalty functions, we can achieve

significantly better results compared to our previous variational models.

We investigate two representative image restoration problems, namely Gaussian de-

ix

noising (a standard test bed to evaluate newly proposed image restoration models) and

JPEG deblocking (a non-smooth problem), which is used to demonstrate the applicability

of our proposed training model for non-smooth problems. We train two specific nonlinear

diffusion processes for these two problems. It turns out that we arrive at surprisingly good

results which are on par with or even surpass the recent state-of-the-arts, within 5 diffusion

steps. As the resulting diffusion processes only involve few steps (≤ 5 steps), they are ex-

tremely fast. Therefore, the CPU implementation based on Matlab is already faster than

some highly-engineered methods, such as BM3D. In addition, the GPU implementation

clearly accelerates the diffusion procedure. We find that with the GPU implementation,

our approach successfully accomplishes the exploited image restoration problems in less

than 1s for the images of size up to 3K× 3K.

Keywords. Fields of Experts, non-convex optimization, bi-level optimization, reaction

diffusion, nonlinear diffusion, image denoising, image despeckling, image deblocking, image

super resolution, image deconvolution, image inpainting

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used other than

the declared sources/resources, and that I have explicitly marked all material which has

been quoted either literally or by content from the used sources.

The text document uploaded to TUGRAZonline is identical to the presented doctoral

thesis.

Place Date Signature

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als

die angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich

und inhaltlich entnommene Stellen als solche kenntlich gemacht habe.

Das in TUGRAZonline hochgeladene Textdokument ist mit der vorliegenden Disser-

tation identisch.

Ort Datum Unterschrift

Acknowledgments

I would like to thank all those people who contributed to this thesis in various ways and

made the last years an unforgettable experience for me.

First and foremost, I would like to express my sincere gratitude and appreciation to my

supervisor, Prof. Thomas Pock for his valuable, indefatigable and inspiring support, for

his effective guidance on carrying out scientific research in the exciting field of computer

vision, for providing an excellent and professionally challenging working environment.

This thesis would have not been possible without his tremendous support, patience and

unsurpassed knowledge. He has been a great mentor to supervise me whilst allow me

the room to work in my own way. If I were a boat drifting in the ocean, he was the

navigation system that tells me where I am, and what direction to go. I am extremely

thankful to him. Meanwhile, I am also grateful to Prof. Stefan Roth from TU Darmstadt

for agreeing to serve as the second thesis supervisor, as well as his seminal work on the

Fields of Experts (FoE) model, which is the foundation stone of my thesis.

Now I want to express my special thanks to Prof. Horst Bischof, who approved my

application to be a PhD student in the ICG. Horst gave me an opportunity of great

value to start my scientific career in the field of computer vision. I will never forget his

encouragements during the beginning period of my study in the ICG. I am grateful to him

for choosing me four years ago. I found myself lucky to gain his trust in me.

I wish to thank all my present and former colleagues and scientists from the ICG, as well

as all the co-authors from other universities, who helped me in many ways to complete

my thesis. I owe many heartfelt thanks to the ICG’s vision group members: Martin

Köstinger, Martin Lenz, René Ranftl, Stefan Heber, Thomas Mauthner, David Ferstl,

Christian Reinbacher, Inayatullah Khan, Gottfried Graber, Markus Unger and Wei Yu.

Special thanks to René Ranftl for interesting and fruitful discussions about the research

work, as well as his patience to help me to deal with many annoying GPU programming

problems. Meanwhile, many thanks to Thomas Mauthner for his encouragements when I

xiii

xiv

was suffering from depression.

Furthermore, I would like to acknowledge the system administrator - Andreas Wurm,

who provided many technical support. Thanks to the ladies in the secretary office: Nicole

Eichberger, Renate Hönel, Karin Maier, Eva-Maria Christina Fuchs for providing help in

the office administrative works.

I am glad to know that there are people I can always count on when times are rough:

my family and my Chinese friends in Graz. My greatest, deepest and most special thanks

goes to my parents, Xiaohua and Yilan, my elder sisters Meirong and Haiyan, who made

finishing this thesis possible with their unconditional love, endless patience and continuous

support. I must also pay thanks to my Chinese friends in Graz: Huanghuang Yan, Qiang

Chen, Jianhua Tong, Jianfeng Huang and Ge Jin, who play with me in leisure time. My

gratitude is beyond words, but thank you for believing in me and encouraging me on this

journey.

Finally, I must also thank the financial support from the CSC-FWF Scholarships,

which is jointly run by the China Scholarship Council (CSC) and the Austrian Science

Fund (FWF). In addition, I also acknowledge support from FWF under the START project

BIVISION, No. Y729.

Contents

0.1 Notations . xxvii

0.2 Matrix calculus . xxviii

1 Introduction 1

1.1 Image restoration problems . 1

1.2 Variational formulation for solving image restoration problems 3

1.3 Regularization techniques for image restoration 5

1.4 Relations between regularization and nonlinear diffusion filtering 8

1.5 From convex regularizations to non-convex regularizations 11

1.6 Contributions of the thesis . 13

1.6.1 Learning better image regularizers 14

1.6.2 Applications of the learned image regularizers 15

1.6.3 Learning effective reaction diffusion processes 17

2 Learning optimized FoE models using loss-specific minimization 19

2.1 Revisiting loss-specific training of filter-based MRFs 19

2.1.1 The Fields of Experts (FoE) model 20

2.1.2 Related works and motivation to revisit loss-specific training scheme 21

2.1.3 Basic training model . 24

2.2 Link to analysis operator learning problem 26

2.2.1 Background of the co-sparse analysis model 26

2.2.1.1 Related notations . 26

2.2.1.2 Patch-based synthesis and analysis models 26

2.2.1.3 Patch-based analysis operator learning 27

2.2.1.4 Comments to existing co-sparse analysis model 30

2.2.2 Insights into analysis based models 30

2.2.2.1 Equivalence between the patch-based analysis model and

the PoE model . 30

2.2.2.2 From patch-based to image-based model 31

2.2.2.3 Equivalence between the image-based analysis model and

the FoE model . 32

2.2.3 Loss-specific analysis operator learning model 33

xv

xvi CONTENTS

2.3 Solving the loss-specific problem . 34

2.3.1 Gradients computation . 34

2.3.2 Bi-level learning algorithm . 36

2.3.3 The iPiano algorithm to solve the lower level problem 37

2.3.3.1 Introduction . 38

2.3.3.2 The heavy ball with friction method 39

2.3.3.3 The proposed algorithm - iPiano 41

2.3.3.4 Backtracking based iPiano 42

2.3.3.5 Ability to overcome spurious stationary points 43

2.4 Refined training scheme . 44

2.5 More training experiments . 49

2.5.1 Penalty functions . 50

2.5.2 Training experiments . 50

2.5.3 The influence of the penalty function 52

2.5.4 The influence of the number of filters 55

2.5.5 The influence of filter size . 55

2.5.6 The robustness of our training scheme 55

2.6 Discussion . 56

3 Applications of the trained image regularizers 59

3.1 Image denoising . 60

3.1.1 Gaussian noise reduction . 60

3.1.1.1 Solving the corresponding minimization problems 60

3.1.1.2 Details of the evaluation experiments 62

3.1.1.3 Comparison of three different penalty functions 64

3.1.1.4 Comparison to other analysis models 64

3.1.1.5 Comparison to state-of-the-art methods 65

3.1.1.6 Comparison of run time . 76

3.1.1.7 Realistic noise removal experiments 79

3.1.1.8 Discussion . 79

3.1.2 Impulse noise . 79

3.1.3 Multiplicative noise reduction (despeckling) 84

3.1.3.1 Introduction . 84

3.1.3.2 The variational model for despeckling 85

3.1.3.3 Despeckling experiments 88

3.1.3.4 Conclusion . 95

3.2 JPEG artifacts suppression . 96

3.2.1 Introduction . 98

3.2.2 A novel variational model for image deblocking 100

3.2.2.1 JPEG compression and the QCS 100

3.2.2.2 Variational model for image deblocking 101

CONTENTS xvii

3.2.2.3 Solving the variational deblocking model 102

3.2.3 Experimental results . 106

3.2.4 Discussion . 113

3.3 Other image restoration problems . 113

3.3.1 Non-blind image deconvolution . 113

3.3.2 Image super resolution . 117

3.3.2.1 Single image super resolution 118

3.3.2.2 Multi-frame super resolution 119

3.3.3 Image inpainting . 120

3.4 Discussion . 123

4 Learning effective reaction diffusion processes 125

4.1 Introduction . 126

4.1.1 Background . 126

4.1.2 Motivations of the proposed reaction diffusion process 128

4.1.2.1 Perona and Malik diffusion model 128

4.1.2.2 Proposed nonlinear diffusion model 129

4.2 Related works . 130

4.3 Learning framework . 132

4.4 Computing gradients . 134

4.4.1 Preliminaries . 134

4.4.2 Derivations of learning problem with respect to Gaussian denoising . 135

4.4.2.1 Greedy training . 136

4.4.2.2 Joint training . 142

4.4.3 Training for JPEG deblocking . 143

4.4.3.1 Variational model for image deblocking 144

4.4.3.2 Gradients with respect to the deblocking training 146

4.5 Training experiments for image denoising and deblocking 147

4.5.1 Image denoising experiments . 148

4.5.1.1 Analysis of the proposed diffusion process 149

4.5.1.2 Learned influence functions 150

4.5.1.3 Training for other configurations 152

4.5.1.4 Run time . 153

4.5.1.5 Denoising examples . 154

4.5.2 JPEG deblocking experiments . 154

4.6 Discussion . 159

5 Conclusion 163

5.1 Future work . 165

5.1.1 Further investigation of the variational model with learned image

regularizer . 165

xviii CONTENTS

5.1.2 Trainable nonlinear reaction diffusion models 166

5.1.3 Some relations to convolutional neural networks 167

A Implementation of the transpose operation K> 169

Bibliography 179

List of Figures

1 Vectorizing a 2D image into a long one-dimensional column vector xxvii

1.1 Examples of degraded images generated by the process of

Equation (1.1).

. 2

1.2 Additional examples of degraded images. 3

1.3 Image restoration using the Tikhonov model Equation (1.9) and the

ROF model Equation (1.13), respectively.

. 6

1.4 Discrete first- and second-order derivatives, interpreted as 2D linear filters

for image processing. 8

1.5 Negative log probability density function (PDF) of the filter response of

the first-order derivative filter ∇x applied to natural images. Note that the

non-convex penalty function |z| 12 function provides the best fitting to the

heavy tailed shape of the true density function. 12

1.6 DCT5×5 linear filters. 13

1.7 Image restoration using the ROF model Equation (1.13), non-convex

regularization based model Equation (1.24), and a state-of-the-art

denoising algorithm - BM3D, respectively.

. 13

2.1 An illustrative example of the heavy ball method 40

2.2 Contours plot (left) and energy landscape (right) of the non-convex function

h shown in (2.35). The four diamonds mark stationary points of the function

h. 44

2.3 The first row shows the result of the iPiano algorithm for four different

starting points when using µ = 0, the second row shows the results when

using µ = 0.75. While the algorithm without inertial term gets stuck into

unwanted local stationary points in three of four cases, the algorithm with

inertial term always succeeds to converge to the global optimum. 45

2.4 The Lorentzian penalty function φ(z) = log(1 + z2) and its derivatives. . . . 45

2.5 Subset of the ground truth and the noisy data with noise level σ = 25. . . . 46

2.6 Two exploited basis filters. 47

2.7 Performance curves (test PSNR value and training loss value) vs. the so-

lution accuracy of the lower-level problem εl. It is clear that solving the

lower-level problem with higher accuracy is beneficial. 48

xix

xx LIST OF FIGURES

2.8 24 learned filters (5× 5). The first number in the bracket is the weight αi
and the second one is the norm of the filter. 49

2.9 The DCT7×7 basis . 51

2.10 48 filters of size 7 × 7 learned by using different penalty functions. Each

filter is shown with the corresponding norm and weight. The first number

in the bracket is the weight αi and the second one is the norm of the filter. 53

2.11 Negative log probability density function (PDF) of the filter response of

a learned 7 × 7 filter applied to natural images. Note that non-convex

functions log(1 + |z|) and log(1 + z2) provide much better fits to the heavy

tailed shape of the true density function, compared to the convex function

|z|. 54

2.12 Performance curves (test PSNR value and training loss value) vs. the filter

size. One can see that generally larger filter size can yield some improve-

ments, but the performance is close to saturation when the filter size is

increasing to 9× 9. 56

3.1 Comparison of denoising results obtained by three different penalty func-

tions for noise level σ = 25. The numbers shown in the brackets refer to

PSNR values with respect to the clean images. 63

3.2 Scatter plot of the PSNRs over 68 Berkeley images produced by our learned

log(1 + z2)-based analysis model, BM3D, GMM-EPLL and LSSC. A point

above the diagonal line means performance is better than our model. 67

3.3 Denoising results for the test image “water-castle” at noise level σ = 25. Red ellipses

highlight the typical failure modes of considered approaches. 68

3.4 Denoising results for the test image “goat” at noise level σ = 25. Red ellipses highlight

the typical failure modes of considered approaches. 69

3.5 Denoising results for a test image at noise level σ = 25. Red ellipses highlight the typical

failure modes of considered approaches. 70

3.6 Denoising results for the test image “airplane” at noise level σ = 25. Red ellipses highlight

the typical failure modes of considered approaches. 71

3.7 A special test image with a lot of repeated local patterns, e.g., the t-shirt region, for

which the nonlocal models (e.g., BM3D and LSSC) generally perform better than the

local models (e.g., ours), as they can benefit from this kind of nonlocal self-similarity. . . 72

3.8 Denoising results for test image “squirrel” for noise level σ = 15. 73

3.9 Denoising results for test image “elephant” for noise level σ = 15. 74

3.10 Denoising results for test image “AD” for noise level σ = 50. 75

3.11 Denoising results of realistic noisy images using our opt-MRF model. Left:

noisy images; Right: denoised images. 78

LIST OF FIGURES xxi

3.12 Image denoising in the case of impulse noise for an image corrupted by 20%

salt and pepper noise by using (1) our MRF-`1 model incorporating filters

trained in the case of Gaussian noise and (2) median filtering. Note that

the MRF-`1 model leads to somehow over smoothing results in the highly

textured regions as indicated in the image. 81

3.13 Subset of the training image pairs: the ground truth and the noisy image

corrupted by 25% salt and pepper noise. 82

3.14 48 learned filters of 7× 7 in the case of `1 data term. 82

3.15 A performance comparison of the MRF-`1 model with different image reg-

ularization models for the impulse noise removal problem. The left one is

obtained by using the filters trained in the case of Gaussian noise; the right

one is generated by using the filters directly trained in the case of impulse

noise. We see that even though both methods achieve similar PSNR val-

ues, the model with the specialized filters can better preserve the image

structures, e.g., line-like structures. 83

3.16 48 learned filters of size 7× 7 exploited in our despeckling model. The first

number in the bracket is the norm of the filter and the second one is the

weight αi. 86

3.17 Despeckling results for a widely used natural image corrupted by multiplicative noise with

L = 8, using our proposed variational models with different data terms. The recovery

quality is measured by PSNR/SSIM index. 89

3.18 Standard test images of size 256× 256 (Couple, Lenna and Peppers). 90

3.19 Performance comparison to state-of-the-art algorithm - SAR-BM3D [103]

for different L. The results are reported by PSNR/SSIM index. 93

3.20 Performance comparison of different algorithms on a real SAR image. . . . 94

3.21 SAR image 1: sensor AirSAR, Amplitude image, number of looks L = 6. . 95

3.22 SAR image 2: sensor MiniSAR, Amplitude image, number of looks L = 3. 96

3.23 SAR image 3: sensor TerraSAR-X, Amplitude image, number of looks L =

6.4. 97

3.24 Schematic overview of the JPEG compression and decompression procedure 100

3.25 The log-barrier function and the indicator function of an interval. 104

3.26 Image deblocking results for images compressed by JPEG encoder with the

quality q = 10. 109

3.27 Image deblocking results for images compressed by JPEG encoder with the

quality q = 20. 110

3.28 Image deblocking results for images compressed by JPEG encoder with the

quality q = 30. 111

xxii LIST OF FIGURES

3.29 Our proposed model with the log-barrier data term and the SADCT method

fail to remove the bocking artifacts in the sky, while the indicator function

based model succeeds, in despite of inferior PSNR and SSIM values. The

corresponding run time is also reported: (1) CPU implementation for the

SADCT method and GPU implementation for our proposed models; (2)

image size 768× 512. 112

3.30 Delurring results using GMM-EPLL and our opt-MRF model for Kernel 2 19× 19. . . . 115

3.31 Delurring results using GMM-EPLL and our opt-MRF model for Kernel 1 17× 17. . . . 116

3.32 Single image super-resolution results for magnifying a noisy low resolution

image by a factor of 3. The low resolution image was degraded by Gaussian

noise with σ = 8. The numbers shown in the brackets refer to PSNR values

w.r.t. the clean image. 117

3.33 Input low resolution frames . 120

3.34 Super-resolved frame for the Hautlauer AD 121

3.35 Overlaying text removal by using the variational model with our trained

image regularizer. 122

3.36 Inpainting results of our opt-MRF model and the approach in [60] for the

“Lena” image 512× 512 from 40% and 10% pixels, respectively. 123

4.1 The architecture of our proposed diffusion model. Note that the additional

convolution step with the rotated kernels k̄i (cf. Equ. 4.7) does not appear

in conventional feed-forward CNNs. Our model can be interpreted as a

CNN with a feedback step, which makes it different from conventional feed-

forward networks. Due to the feedback step, it can be categorized into

recurrent neural networks [56]. 131

4.2 Proposed nonlinear diffusion process with careful boundary handling oper-

ation. Note that utp = PTut. 136

4.3 G matrix . 140

4.4 Function approximation via Gaussian ϕg(z) or triangular-shaped ϕt(z) ra-

dial basis function, respectively. 141

4.5 The projection function η(z). 146

4.6 The figure shows four characteristic influence functions (left plot in each

subfigure) together with their corresponding penalty functions (right plot

in each subfigure), learned by our proposed method. A major finding in

this paper is that our learned penalty functions significantly differ from

the usual penalty functions adopted in partial differential equations and

energy minimization methods. In contrast to their usual robust smoothing

properties which is caused by a single minimum around zero, most of our

learned functions have multiple minima different from zero and hence are

able to enhance certain image structures. 151

LIST OF FIGURES xxiii

4.7 The trained filters of the model TRD5
5×5 in the case of Gaussian noise level

σ = 25. 155

4.8 Denoising example for an image with noise σ = 25. 156

4.9 Denoising example for an image with noise σ = 25 together with the corresponding

computation time on GPU or CPU. 157

4.10 Denoising results on a test images (σ = 25). Note the effectiveness of our trained TRD5
7×7

model for those regions with repeated local pattern (indicated by the red arrow). 158

4.11 Image deblocking for images compressed by JPEG encoder with the quality

q = 10. Note the difference in the sky. 160

4.12 Debloking of the “Lena” of a ordinary size of 512 × 512, together with corresponding

computation time. 161

List of Tables

1.1 Commonly used non-convex penalty functions. 11

2.1 Summary of various typical MRF-based systems and the average denoising

results on 68 test images [111] with σ = 25 21

2.2 Average denoising results of the current state-of-the-art methods for 68 test

images (σ = 25) . 23

2.3 Summary of the final training loss values for different model capacities and

the corresponding average denoising PSNR results based on 68 test images

with σ = 25 Gaussian noise. In the table, fsz denotes the filter size, Nk is

the number of filters, Train means the final loss value in the training and

Test signifies the average PSNR value in the test. 52

3.1 Summary of denoising experiments results (average PSNR values) of anal-

ysis prior based models on different noise levels. 64

3.2 Summary of various analysis models and the average denoising results on

68 test images with σ = 25. We highlighted our result, as it is the best one. 65

3.3 Summary of denoising experiments results (average PSNR values) of our

opt-MRF models (48 filters of size 7 × 7, different penalty functions) and

state-of-the-art image denoising algorithms. We highlighted the state-of-

the-art results. 66

3.4 Typical run time of the denoising methods for a 481× 321 image (σ = 25)

on a server (Intel X5675, 3.07GHz). The highlighted number is the run

time of GPU implementation. 76

3.5 Default settings of the model parameters λ1 and λ2 for some typical L . . . 91

3.6 despeckling results of SAR-BM3D [103] and our approach. Our results are

marked with blue color (with model (3.28)). The results are reported with

PSNR and SSIM values. 92

3.7 despeckling results on 68 Berkeley test images. The results are reported

with average PSNR and SSIM values. 92

xxv

xxvi LIST OF TABLES

3.8 JPEG deblocking results for natural images in terms of PSNR value and

SSIM index (×100). We compare our method to four representative image

deblocking methods, including the best published deblocking method based

on RTF [68]. We highlight the state of the art results. 107

3.9 Typical run time (CPU computation) of the deblocking methods for a 240×
160 image (q = 10) on a server (Intel X5675, 3.07GHz). The highlighted

number is the run time of the GPU implementation. 107

3.10 The run time of our deblocking approach (log-barrier based model) for dif-

ferent image size by using GPU computation (based on NVIDIA Geforce

GTX 780Ti). We also present the CPU computation time for the SADCT

algorithm (based on Intel X5675, 3.07GHz), which is the strongest competi-

tor in terms of run time. 108

3.11 Deconvolution results for 68 test images (average PSNR). 114

4.1 Average PSNR (dB) on 68 images from [111] for image denoising with

σ = 15, 25. 149

4.2 Runtime comparison for image denoising (in seconds) with different imple-

mentations. (1) The runtime results with gray background are evaluated

with the single-threaded implementation on Intel(R) Xeon(R) CPU E5-2680

v2 @ 2.80GHz; (2) the blue colored runtimes are obtained from the multi-

threaded implementation on a server with the above CPUs; (3) the runtime

results colored in red are executed on a NVIDIA GeForce GTX 780Ti GPU. 153

4.3 JPEG deblocking results for natural images, reported with average PSNR

values. 159

Preliminaries: notations and

matrix calculus

0.1 Notations

In this thesis, a two-dimensional image u of size m× n is also represented as a long one-

dimensional column vector u ∈ RN with N = m × n, according to the scanning manner

shown in Figure 1. We will consider this representation frequently in our work, especially

for derivations related to matrix calculus.

Figure 1: Vectorizing a 2D image into a long one-dimensional column vector

In this thesis, lower case letters such as “u, v, f” etc., denote scalar and vector variables,

while capital letters such as “K,A,D,U” etc., denote matrix. We make use of convolution

technique frequently in this thesis. The 2D convolution result of an image u with a linear

filter k ∈ Rr×r is written as u ∗ k. The convolution result is also equivalent to two matrix-

xxvii

xxviii LIST OF TABLES

vector product based formulations:

k ∗ u︸︷︷︸
1

⇐⇒ Ku︸︷︷︸
2

⇐⇒ Uk︸︷︷︸
3

,

where in the formulation 1 both u and k are two-dimensional matrix, in the formulation

2 , K is a highly sparse matrix K ∈ RN×N and u is a N × 1 column vector, while in the

formulation of 3 , matrix U ∈ RN×R is constructed from image u and k is a R×1 column

vector with R = r×r. In this thesis, we will make use of the above equivalence frequently.

0.2 Matrix calculus

We will make heavy use of matrix calculus for our derivations. Usually, there exist two

notational conventions that are used in the various fields, namely numerator layout and

denominator layout. The fundamental issue is the way they lay out the gradient of scalar

y with respect to a vector x. In general, there are two kinds of people in this world: those

who think the gradient is a row vector, and those who think it is a column vector.

If we choose numerator layout for ∂y
∂x , the gradient ∂y

∂x is represented as a row vector,

while if we choose denominator layout for ∂y
∂x , the gradient ∂y

∂x is represented as a column

vector. In our work, we make use of the denominator layout for our derivations. We collect

some useful formulas of matrix calculus that often appear in this thesis.

Let x and y be vectors of order n and m respectively:

x =

x1

x2

...

xn

, y =

y1

y2

...

ym

,

where each component yi may be a function of all the xj , a fact represented by saying

that y is a function of x, or

y = y(x) .

If n = 1, x reduces to a scalar. If m = 1, y reduces to a scalar.

Derivative of a vector with respect to a vector

0.2. Matrix calculus xxix

The derivative of the vector y with respect to vector x is the n×m matrix

∂y

∂x

def
=

∂y1
∂x1

∂y2
∂x1

· · · ∂ym
∂x1

∂y1
∂x2

∂y2
∂x2

· · · ∂ym
∂x2

...
...

. . .
...

∂y1
∂xn

∂y2
∂xn

· · · ∂ym
∂xn

Derivative of a scalar with respect to a vector

If y is a scalar,

∂y

∂x

def
=

∂y
∂x1
∂y
∂x2
...
∂y
∂xn

Derivative of a vector with respect to a scalar

∂y

∂x

def
=
[

∂y1
∂x

∂y2
∂x · · · ∂ym

∂x

]

Some useful vector derivative formulas

y ∂y
∂x

Ax A>

x>x 2x
x>Ax Ax+A>x

The chain rule for vector functions

Assume three vectors x, y, z have the following relationship

z → y → x ,

i.e., z is a function of y, which is in turn a function of x. Then the gradient ∂z
∂x is obtained

by the following chain rule
∂z

∂x
=
∂y

∂x
· ∂z
∂y

,

where we have to make use of this exact multiplication order. If we have an additional

function w, which is a function of z, then the gradient ∂w
∂x is given as

∂w

∂x
=
∂y

∂x
· ∂z
∂y
· ∂w
∂z

.

Chapter 1

Introduction

Contents

1.1 Image restoration problems . 1

1.2 Variational formulation for solving image restoration problems 3

1.3 Regularization techniques for image restoration 5

1.4 Relations between regularization and nonlinear diffusion fil-

tering . 8

1.5 From convex regularizations to non-convex regularizations . . 11

1.6 Contributions of the thesis . 13

1.1 Image restoration problems

Image restoration is a class of low level computer vision problems. The goal of image

restoration is to infer a clean image from the noisy (degraded) observation. Typical image

restoration problems comprise the following tasks

• Image denoising for images corrupted by different types of noise, such as additive

white Gaussian noise, multiplicative noise, salt-and-pepper noise (impulse noise) or

Poisson noise.

• Block artifact reduction for images compressed by the JPEG compression algorithm.

• Image super resolution, which resolves a high resolution image from a single low

resolution image or multiple frames.

• Image deconvolution for blurring images corrupted by some linear kernels.

1

2 Chapter 1. Introduction

• Image inpainting, the object of which is to reconstruct the underlying image only

with a portion of sampling points.

A typical image degradation process can be formulated as

f = Hu+ n , (1.1)

where f is the observed noisy image, u is the underlying true image, H is a probably known

linear operator (e.g., blurring kernel or down-sampling operator) and n ∼ N (0, σ) is the

zero-mean white Gaussian noise of known variance σ2. Figure 1.1 shows some examples

of degraded images generated by Equation (1.1).

(a) Clean image (b) Gaussian noise σ = 25 (c) Motion blur and σ = 5
Gaussian noise

(d) Down-sampled image
with a factor 3

(e) 40% random sampling
pixels

(f) Partially occluded image
with overlaying text

Figure 1.1: Examples of degraded images generated by the process of
Equation (1.1).

1.2. Variational formulation for solving image restoration problems 3

(a) JPEG compressed image
with quality q = 10

(b) Nakagami multiplicative
noise with L = 8

(c) Poisson noise with peak
value peak = 40

Figure 1.2: Additional examples of degraded images.

Some other degraded images, which can not be casted with the formulation of

Equation (1.1), are shown in Figure 1.2, including JPEG compressed image, noisy image

corrupted by Nakagami distribution based multiplicative noise or Poisson noise.

The image restoration problem is stated as: given the observed noisy image f with

the probably known parameters of the image degradation model (H,σ), estimate the

underlying clean image u. As we know, the image restoration problems are mathematically

ill-posed inverse problems in that existence, uniqueness, and stability of solutions cannot be

guaranteed in the absence of additional constraints. Therefore, it is generally not possible

to directly compute the solution of Equation (1.1). A potential approach is to constrict

the space of possible solutions to physically meaningful ones. In this regard, constraints

such as smoothness have been useful expressions of generic, a priori information about

possible solutions.

1.2 Variational formulation for solving image restoration

problems

An effective framework to incorporate the image prior information is to make use of the

Bayesian inference theory. From the perspective of probability, we want to select the

hypothesis having the highest probability, i.e., we are facing the following optimization

problem

u∗ = arg max
u

P (u|f) , (1.2)

4 Chapter 1. Introduction

where P (u|f) is the posterior probability of the a certain hypothesis u given the observation

f . This principle is known as maximum a posteriori (MAP) estimation. According to the

Bayesian inference theory, we know that the conditional probability P (u|f) can be written

as

P (u|f) =
P (f |u)P (u)

P (f)
, (1.3)

where P (u) is the prior probability of u (i.e., a prior knowledge or image prior) and P (f |u)

is the conditional probability of the observed image f given the true image u (also known

as likelihood or data model), which indicates the compatibility of the evidence with the

given hypothesis. The expression P (f) is called partition function or normalization factor

that guarantees that the posterior probability sum to one. In the optimization problem

Equation (1.2), P (f) is a constant, which can be omitted during minimization process.

From the Gibbs distribution of image prior model [53], a typical image prior model

P (u) is formulated as

P (u) =
1

Z
e−φ(Tu) , (1.4)

where φ is called penalty function and T is some linear operator applied to the image u,

e.g., derivatives filters (first, second, or higher order), wavelets transform, curvelets etc..

Z is the so-called partition function that guarantees that the equation
∑

u P (u) = 1 holds.

As in Equation (1.1), we are dealing with independently distributed additive Gaussian

noise, the data model is straightforward to model using the following pixel-wise product

of normal distributions

P (f |u) =
N∏

p=1

1√
2πσ

e−
((Hu)p−fi)

2

2σ2 =
1

C
e−
‖Hu−f‖22

2σ2 , (1.5)

where N is the pixel number of the image f , C is a constant, ‖ · ‖2 denotes standard

`2-norm and σ2 is the noise variance.

Substituting Equation (1.5) and Equation (1.4) into Equation (1.3), ignoring the con-

stants, we arrive at

P (u|f) ∝ e
−
(
φ(Tu)+

‖Hu−f‖22
2σ2

)
. (1.6)

It is clear that maximizing the posterior probability P (u|f) is equivalent to minimizing

the following energy functional

E(u) = φ(Tu) +
‖Hu− f‖22

2σ2
. (1.7)

1.3. Regularization techniques for image restoration 5

This leads us to the following variational formulation of our image restoration problem

arg min
u∈RN

E(u) = φ(Tu) +
λ

2
‖Hu− f‖22 , (1.8)

where the first term is known as the regularization term (derived from the image prior

model), and the second term is known as the data fidelity term (derived from the likeli-

hood). λ is a free parameter to tune, which provides a trade-off between regularization

and data fitting.

1.3 Regularization techniques for image restoration

Through regularization, the original ill-posed inverse problem Equation (1.1) can be refor-

mulated as a well-posed variational model Equation (1.8) whose solution is computable.

Historically, the first regularization technique coming into consideration is the Tikhonov

model [126, 127], which employs quadratic penalty functionals, imposing global smooth-

ness constraints on possible solutions. That is to say, the Tikhonov regularization involves

the penalty function φ(z) = z2, and the corresponding variational model is given as

arg min
u∈RN

E(u) = ‖Tu‖22 +
λ

2
‖Hu− f‖22 , (1.9)

for which, in general a closed-form solution exists. If one selects the linear operator T as

the first order finite differentiation operator ∇, the optimal solution u∗ of the optimization

problem Equation (1.9) can be achieved according to the optimality condition

∂E

∂u

∣∣∣∣
u=u∗

= 0 , (1.10)

where ∂E
∂u is given as

∂E

∂u
= ∇>∇u+ λH>(Hu− f) . (1.11)

For the case of image denoising, H = I with I ∈ RN×N the identity matrix, the minimizer

is given as

u∗ = λ
(
∇>∇+ λI

)−1
· f . (1.12)

Figure 1.3(b) shows an example of image restoration result obtained by the Tikhonov

model for Gaussian noise corrupted image.

From Figure 1.3(b), one can see that the denoising result generated by the Tikhonov

6 Chapter 1. Introduction

(a) Gaussian noise σ = 25,
PSNR: 20.18

(b) Tikhonov model (λ =
0.1), PSNR: 24.52

(c) ROF model (λ = 0.045),
PSNR: 28.61

Figure 1.3: Image restoration using the Tikhonov model Equation (1.9) and the
ROF model Equation (1.13), respectively.

model is very blurry, i.e., all the edges in the image are smoothed out. This result is

not surprising, as the Tikhonov regularizations impose global smoothness on the under-

lying image. Therefore, discontinuities (e.g., edges) present great difficulties to standard

Tikhonov regularization, as their reconstruction requires a more precise spatial control

over the smoothing properties.

In summary, the Tikhonov regularizations solve the ill-posedness of the image restora-

tion problems, but the performance is not satisfactory, and needs to be improved via better

regularization techniques.

In 1992, Rudin-Osher-Fatemi (ROF) [114] made a big step forward in this research

direction by proposing the total variation (TV) based image denoising model, in which

the regularization term is defined as total variation norm of image u, which has been well-

known from measure theory [45]. The resulting model is well-known as the ROF model.

The discrete ROF model for image denoising is given as

arg min
u∈RN

‖∇u‖2,1 +
λ

2
‖u− f‖22 , (1.13)

where ‖∇u‖2,1 denotes the discrete version of the isotropic total variation norm defined as

‖∇u‖2,1 =
N∑

p=1

√
(∇xu)2

p + (∇yu)2
p , (1.14)

1.3. Regularization techniques for image restoration 7

where ∇x and ∇y denote the linear operators computing the gradient in x-direction and

y-direction, respectively. Comparing the ROF model Equation (1.13) to the Tikhonov

regularized denoising model Equation (1.9), the only difference lies in that we replace

the quadratic penalty function with the `1 norm. It turns out that this seemingly small

modification has brought significant improvement for the image denoising problem, an

illustrative example is shown in Figure 1.3. The corresponding minimization problem is

solve efficiently via the recently proposed primal-dual algorithm [21].

The main advantage of the TV regularization is that it disfavors small oscillations such

as noise but allows for sharp discontinuities such as edges. This ability to preserve edges

can also be explained by means of robust statistics [66]. The `1 penalty function employed

in the TV regularization is a robust potential function, which is not sensitive to the outliers

and allows existence of outliers. In the context of image processing, outliers signify large

magnitude of the image gradient, i.e., image edges. In contrast, the quadratic penalty

function exploited in the Tikhonov regularizations penalize the outliers too much, and

therefore, the outliers are smoothed out, i.e., image edges are blurred. From Figure 1.3, one

can see the difference between two regularization techniques. Figure 1.3(c) demonstrates

that the ROF model can effectively remove the noise, while simultaneously preserve the

image edges.

The promising edge-preserving property of the ROF model demonstrates the effec-

tiveness of TV regularization. Since then, the success of the ROF model has inspired

tremendous works based on the TV regularization, which is still widely used nowadays.

No doubt the TV regularization is one of the most popular regularization technique up to

now.

Despite of the effectiveness of the TV regularization, it has a main drawback that the

TV regularized variational models suffer from the so-called “stair-case” artifacts, i.e., the

TV-based models favor minimizer with piece-wise constant regions. In order to ameliorate

the undesirable stair-casing effect, a lot of efforts have been devoted to address this issue.

An effective approach is to introduce higher order derivatives into the regularization term.

Most of the work concentrate on exploiting higher-order derivatives, e.g., fourth-order

derivatives, see [10, 23, 78, 88, 139] for instance.

There are several typical variants of fourth order derivative based regularizers, which

8 Chapter 1. Introduction

Figure 1.4: Discrete first- and second-order derivatives, interpreted as 2D linear filters for
image processing.

replace the standard TV norm using the following energy functionals

R1(u) = ‖∆u‖1 =
N∑
i=1
|(∆u)p|

R2(u) =
N∑
p=1
|(∇xxu)p|+ |(∇yyu)p|

R3(u) =
N∑
p=1

√
(∇xxu)2

p + (∇yyu)2
p + (∇xyu)2

p + (∇yxu)2
p ,

(1.15)

where ∆ ∈ RN×N is the Laplacian operator defined as ∆ = −∇>∇, and ∇xx ∈ RN×N ,

∇yy ∈ RN×N , ∇xy ∈ RN×N and ∇yx ∈ RN×N correspond to the second-order derivatives.

In the discrete case, all of these linear operators can be interpreted as linear filters, which

are shown in Figure 1.4.

Numerical results demonstrate that the variational models involving higher-order

derivatives can remove the staircase artifacts to a remarkable degree. Some researcher

also consider hybrid models, which make a linear combination of the lower- and

higher-order derivatives to better preserve the discontinuities along edges, and meanwhile,

recover smooth regions, see [80, 89, 102] for an example. A notable work of considering

the higher-order derivative information is the so-called TGV (Total generalized variation)

model [18] proposed by Bredies et al., which has become a very popular convex

regularizer in the imaging community.

1.4 Relations between regularization and nonlinear diffu-

sion filtering

As revealed in many previous works [19, 48, 118, 122, 133], there exist closely relations

between the regularization based methods and the nonlinear diffusion processes. In the

nonlinear diffusion framework, natural relations between biased diffusion and regulariza-

tion theory exist via the Euler equation for the regularization functional. This Euler

1.4. Relations between regularization and nonlinear diffusion filtering 9

equation can be regarded as the steady-state of a suitable nonlinear diffusion process with

a bias term, called reaction diffusion [95]. It is shown in [118] that regularization may be

regarded as diffusion filtering with an implicit time discretization where one single step is

used. Thus, iterated regularization with small regularization parameters approximates a

diffusion process.

In a more general sense, if we consider the steepest descent method to solve the regu-

larization involved energy functional, it naturally leads to a diffusion process, i.e.,

ut+1 = ut −∆t · ∂E
∂u

∣∣∣∣
ut
⇐⇒ ∂u

∂t
=
ut+1 − ut

∆t
= −∂E

∂u

∣∣∣∣
ut
, (1.16)

Therefore, any energy functional can lead to a nonlinear diffusion process, and any non-

linear diffusion process may correspond to certain regularization functional.

Let us take for instance, the well-know Pernona-Malik nonlinear diffusion filtering

model [104], which reads as
∂u

∂t
= ∇ · (g(|∇u|)∇u) , (1.17)

in the continuous form, where g(z) is the diffusivity function given as

g(z) =
1

1 + az2
, (1.18)

u(t = 0) = u0 = f , Neumann boundary conditions. The corresponding discrete version is

given as
ut+1 − ut

∆t
= −

∑

i={x,y}

∇>i D(ut)∇iut , (1.19)

where matrices ∇x and ∇y ∈ RN×N extract the gradients in x-direction and y-direction,

respectively. D(u) ∈ RN×N is defined as a diagonal matrix

D(u) = diag
(
g
(√

(∇xu)2
p + (∇yu)2

p

))
p=1,··· ,N

.

Therefore, the regularization functional associated with the nonlinear diffusion process

(1.19) is given as

E(u) =
N∑

p=1

φ
(√

(∇xu)2
p + (∇yu)2

p

)
, (1.20)

where φ(z) = 1
2a · log(1 + az2). Note the relation between function φ and g, which reads

10 Chapter 1. Introduction

as

φ′(z) = zg(z) ,

where the function Φ(z) = zg(z) is the so-called flux/influence function.

It is clear that the steady-state of the diffusion process (1.19), i.e., the minimizer of the

energy functional (1.20) is the trivial solution u = c (c is a constant). In order to achieve

a meaningful solution, the diffusion process should be stopped at certain optimal time t∗,

or equivalently by adding a reaction term to force the solution close to the initialization

u0, which naturally leads to the reaction diffusion process, given as

∂u

∂t
= −

∑

i={x,y}

∇>i D(u)∇iu+ λ(f − u) , (1.21)

where f − u defines the reaction force, and λ controls the influence of the reaction force.

Therefore, searching the optimal stopping time t∗ in the original diffusion process (1.19)

becomes finding an optimal parameter λ∗ in the reaction diffusion model (1.21). The

corresponding energy functional with respect to the reaction diffusion process (1.21) is

given as

arg min
u
E(u) =

N∑

p=1

φ
(√

(∇xu)2
p + (∇yu)2

p

)
+
λ

2
‖u− f‖22 . (1.22)

Concerning the TV regularized energy functional (1.13), the corresponding diffusion

process is given as
∂u

∂t
= −

∑

i={x,y}

∇>i D(u)∇iu+ λ(f − u) , (1.23)

with g(z) = 1√
z2+ε2

and φ(z) =
√
z2 + ε2 with ε > 0 smoothing parameter, corresponding

to the smoothed version of the TV regularization, which has been investigated in many

previous work [19, 48, 122].

The effectiveness of the Pernona-Malik nonlinear diffusion process inspired many works

to investigate nonlinear diffusion processes involving diffusivity functions of the similar

form to (1.18), which correspond to non-convex penalty functions. In the following section,

we will discuss non-convex penalty functions.

1.5. From convex regularizations to non-convex regularizations 11

1.5 From convex regularizations to non-convex regulariza-

tions

As we have seen in the last section that all the regularization techniques are convex. On

the other hand, a considerable efforts, in the meanwhile have been made to investigate

non-convex penalty function, instead of the convex `1-norm in the TV-norm. Since the

pioneering work of Geman and Geman [53], different non-convex penalty functions φ

have been considered in either a statistical or variational framework, representative works

include [61, 71, 74, 96, 104, 116]. Experimental results show that the associated minimizers

provide solutions with neat edges and well-smoothed homogeneous regions.

Several typical non-convex penalty functions, which have been intensively investigated

are shown in Table 1.1. There are also some non-parameterized penalty functions, which

are derived from image statistic [117] or learned training samples [70].

Non-convex penalty functions

φ(z) = |z|p, 0 < p < 1, [71, 116] φ(z) = 1− e−az2 , [74, 104]

φ(z) = log(1 + az2), [61, 104] φ(z) = a|z|
1+a|z| , [96]

φ(z) = log(1 + a|z|), [20] φ(z) = az2

1+az2
, [51]

Table 1.1: Commonly used non-convex penalty functions.

Recently, researchers propose to combine the non-convex penalty function with the

higher-order derivatives [100] or other linear filters e.g., DCT (Discrete cosine transform)

filters [73]. Especially, [73] exhibits very encouraging results for image denoising problems,

which are significantly better than all the previous variational models, and are also strongly

competitive to state-of-the-art denoising algorithms.

The usage of non-convex penalty function is also motivated by the observation of the

statistical properties of natural images. In [65], it was shown that the gradients of natural

images typically exhibit heavy-tailed distribution, which is clearly non-Gaussian. There-

fore, convex penalty functions cannot capture this statistical property, and a non-convex

penalty function is required. Figure 1.5 shows the negative log PDF (probability density

function) of the first-order derivative ∇x applied to natural images. From Figure 1.5, one

can see that even thought the commonly used `1 penalty function can provide much better

fitting than the quadratic penalty function derived from the Gaussian distribution, it is

quite far away from the true PDF; in contrast, the non-convex penalty function |z| 12 can

provide the best fitting to the heavy-tailed shape of the true density function.

In a recent work [73], Kunisch and Pock exploit a non-convex regularization based

12 Chapter 1. Introduction

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2
0

5

10

15

-log PDF√

| · |
| · |
| · |2

Figure 1.5: Negative log probability density function (PDF) of the filter response of the
first-order derivative filter∇x applied to natural images. Note that the non-convex penalty
function |z| 12 function provides the best fitting to the heavy tailed shape of the true density
function.

variational model for image denoising, which involves the non-convex penalty function

|z| 12 and the DCT filters. The associated variational model is given as

arg min
u∈RN

Nk∑

i=1

αi‖Kiu‖
1
2
1
2

+
1

2
‖u− f‖22 , (1.24)

where ‖Kiu‖
1
2
1
2

=
N∑
p=1
|Kiu|

1
2
p and Ki ∈ RN×N are the matrix-form of the DCT5×5 filters

shown in Figure 1.6, i.e., Ki is a sparse matrix implemented such that Kiu⇐⇒ ki ∗ u (ki

is a 2D filter kernel and ∗ denotes the 2D convolution operation). The weights αi of this

model is optimized via a bi-level optimization approach. With the optimized parameters

αi, this model can obtain a denoising result presented in Figure 1.7. The corresponding

non-convex non-smooth minimization problem is solved with an iterated `1 algorithm [98].

From Figure 1.7, one can see that compared to the ROF model, Equation (1.24) gen-

erates much more natural denoising result without stair-casing artifacts. Moreover, it also

presents strongly competitive performance relative to a state-of-the-art image denoising

algorithm - BM3D [36].

In summary, we have shown that an effective image regularizer should possess two

important properties:

• Higher-order linear filters, i.e., filters with larger influence size relative to pair-wise

filters;

1.6. Contributions of the thesis 13

Figure 1.6: DCT5×5 linear filters.

(a) ROF model (λ = 0.045),
PSNR: 28.61

(b) Non-convex model (1.24),
PSNR: 29.25

(c) BM3D [36], PSNR: 29.62

Figure 1.7: Image restoration using the ROF model Equation (1.13), non-convex
regularization based model Equation (1.24), and a state-of-the-art
denoising algorithm - BM3D, respectively.

• Non-convex penalty functions, which will prove to be the critical factor for an effective

regularizer, latter in Section 2.5.

Based on the existing work of image regularization, especially the work in [73], a

natural question arises:

Can we go further? Namely, Can we find or define better image regularizers for image

restoration problems?

The answer to this question leads us to the contributions of this thesis.

1.6 Contributions of the thesis

Then contents of this thesis is based on the work presented in [25–30, 47, 97], which is

the result of joint work with Prof. Thomas Pock, Peter Ochs, René Ranftl, Wensen Feng,

Wei Yu and Prof. Horst Bischof. The main contributions of this thesis lie in that we

14 Chapter 1. Introduction

have trained two classes of effective, as well as highly efficient image restoration models,

namely:

• variational models with optimal image regularizers, which are trained via

bi-level optimization;

• effective reaction diffusion approaches, which are also optimized from

training samples using loss minimization.

1.6.1 Learning better image regularizers

As previously shown, the non-convex image regularizer in Equation (1.24) employs fixed

DCT5×5 filters, and only the weights of corresponding filters are optimized from training

samples. Intuitively, if we also optimize the linear filters in the training, this process

should have the potential to yield superior results, as the regularizer has more freedom to

tune. Therefore, in this thesis we consider the following image regularization model

R(u) =

Nk∑

i=1

αi

N∑

p=1

φi ((Kiu)p)

 =

Nk∑

i=1

αi

N∑

p=1

φi ((ki ∗ u)p)

 , (1.25)

where ki are a set of linear filters with associated weights αi, both of which will be trained

simultaneously in our work. φi are non-convex penalty functions, which are chosen from

some candidate functions, and then fixed in the training.

One can see the investigated image regularization naturally leads to a widely used

image prior model, called Fields of Experts (FoE), which was proposed by Roth and

Black [111]. The FoE model is a filter-based higher-order Markov Random Fields (MRF)

model. Our goal of our work is to learn a better FoE image prior model by using bi-level

optimization.

Interestingly, we also find that the regularization model (1.25) closely links to the so-

called co-sparse analysis model [43, 60, 105, 112, 113], which is a recently introduced sparse

representation model for signal processing. In Section 2.2, we provide our insights into

the analysis operator learning problem. We show that the analysis prior model, which is

usually designed based on image patch rather than the whole image, is a simplified version

of the FoE model. We argue that for the analysis prior modeling, we should turn to the

image-based modeling framework - FoE, at least in the circumstances of image processing.

Therefore, we claim that the so-called analysis prior model is actually equivalent to the

filter-based MRF model, and we propose to exploit the framework of FoE model to define

1.6. Contributions of the thesis 15

the analysis prior model.

There are some previous work to train the parameters of the FoE model. In Section

2.1, we review existing training approaches for the FoE model. Broadly speaking, recent

years have seen the emergence of two main approaches for learning the parameters in

the FoE model: (1) probabilistic learning using sampling-based algorithms [52, 111, 119]

and (2) loss-specific training based on MAP estimate [8, 40, 115]. After investigating

existing training approaches, we find that the performance of the loss-specific training

has been significantly underestimated in existing works. Therefore, we are motivated to

revisit this approach. We propose a refined training algorithm for the loss-specific training

scheme. Finally, numerical results demonstrate that we can obtain a substantial gain in

the performance, i.e., our refined training strategy pays off.

With our refined training algorithm, we train a variety of image regularization models

with different configurations, including different penalty functions, filter size and number

of filters. The training is mainly based on the Gaussian denoising problem. We compre-

hensively investigate the influence of different aspects of the regularization model, and our

results suggest that the penalty function is the most important factor.

As the image regularization model investigated in this thesis is non-convex, the result-

ing variational models impose hard non-convex optimization problems, and therefore, an

efficient optimization algorithm is required from a practical point of view. To that end,

we propose the so-called iPiano algorithm to efficiently solve the corresponding problems.

The proposed iPiano algorithm is based on a forward-backward splitting scheme with an

inertial force term, and it is applicable for a class of non-convex minimization problem,

which is composed of a smooth (possibly nonconvex) function and a convex (possibly non-

smooth) function. We present some overall aspects of the iPiano algorithm in Section

2.3.3.

1.6.2 Applications of the learned image regularizers

Once we have trained an image regularizer, we apply it to various of classical image restora-

tion problems, such as image denoising with different noise types, deblocking for JPEG

compressed images, image super resolution, non-blind image deconvolution and image in-

painting. Even though the image regularization model in our work is discriminatively

trained based on the Gaussian denoising problem, it turns out that it well generalizes

to other image restoration problems, not just the image denoising problem. Therefore,

the discriminatively trained image regularizer can be treated as a generative model or an

16 Chapter 1. Introduction

image prior model, which is applicable for any image restoration problem ∗.

In Section 3.1, we mainly focus on the image denoising task with different noise types at

different noise levels, including commonly investigated additive white Gaussian noise, mul-

tiplicative noise and impulse noise. The obtained denoising results are carefully compared

to current state-of-the-art algorithms. Numerical results demonstrate that our trained

models are on par with highly specialized image denoising algorithms.

In Section 3.2, we focus on image deblocking for JPEG compressed images. To that

end, we propose a novel variational model for reducing blocking artifacts, which combines

our trained image regularizer with the indicator function of the quantization constraint

set (QCS). This new model leads to a generally hard non-convex non-smooth optimization

problem, and we make use of our proposed iPiano algorithm to solve it efficiently. We first

review some related work for image deblocking, and then introduce our algorithm. Again,

the deblocking results are compared with related work to demonstrate the effectiveness of

our proposed variational model.

In Section 3.3, experiments of other image restoration problems are presented. For im-

age super resolution, we first consider the commonly addressed single image super resolu-

tion task, then we address the case of multiple frames. Regarding the task of multi-frame

image super resolution, we also make use of a variational method, which incorporates

additional warping information, derived from the corresponding optical flow estimation.

Then, we turn to the problems of image inpainting and non-blind image deconvolution.

We present results of typical cases exploited in the literature, and comparisons are made.

It is clear that all the variational models involving the trained image regularizers cor-

respond to non-convex optimization problems, sometimes even non-smooth. Fortunately,

these minimization problems can be efficiently solved by the proposed iPiano algorithm.

Moreover, the trained image regularization models come along with the additional advan-

tage of simplicity, as it only involves 2D image convolution operations with a few linear

filters. Therefore, our model is well suited to GPU parallel computation. For some image

restoration problems, we also implement the GPU version of our model, which additionally

accelerates the inference procedure.

In summary, the variational models, that incorporate our trained image regularizers,

can effectively solve the image restoration problems, meanwhile possessing the property

of high efficiency.

∗Note that in principle it will lead to probable improvements if one train a specialized FoE prior model
for a specific data term.

1.6. Contributions of the thesis 17

1.6.3 Learning effective reaction diffusion processes

Although the variational image restoration model based on the trained regularizer can be

efficiently solved using the iPiano algorithm, the inference process is not easy in that it

imposes a generally demanding non-convex minimization problem, and usually couples of

hundreds of iterations are required to converge to a stationary solution. Besides, there

are some drawbacks in the loss-specific training of the image regularizer in the varia-

tional model. The loss-specific training of the image regularizer is formulated as a bi-level

optimization problem, which is solved by gradient-based algorithms. However, the compu-

tation of the gradients in this problem is quite expensive, because it needs to calculate the

inverse matrix of a huge matrix, and the minimizer (with high accuracy) of corresponding

variational model is also required.

Bearing these drawbacks in mind, we are therefore motivated to think about a possi-

bility:

Starting from the energy functional in the variational model, is it possible to design

a process, which only involves few steps (e.g., < 10 steps), while can reach a result still

owning good performance?

As describe in Section 1.4, an energy functional minimization problem can be related

to a diffusion process. Therefore, the FoE model regularized energy functional is also

related the following diffusion process (given as gradient descent steps)

ut+1 = ut − ∂E

∂u

∣∣∣∣
ut
, (1.26)

where ∂E
∂u

∣∣
ut

is the gradient of the functional E at point ut, which is defined by the FoE

image prior regularized functional. Now the new goal is to train the parameters (e.g., the

FoE image regularization model) in each gradient descent step, such that the output of

this process is optimized.

We find that the above gradient descent process (1.26) naturally leads to a nonlinear

reaction diffusion process with higher-order filters. In Section 4.1, we review the relation

to the commonly investigated nonlinear diffusion process. Then we propose a trainable

nonlinear diffusion model, which is parameterized by the linear filters in the FoE model

and influence functions controlling the diffusion behavior. We train two specific diffusion

processes for the image denoising problem and image deblocking task, respectively.

We still make use of the loss-minimization training scheme to optimize the proposed

diffusion process. It turns out that the trained nonlinear diffusion processes surprisingly

18 Chapter 1. Introduction

exhibit superior performance even compared to recent state-of-the-arts, meanwhile with

extremely high efficiency.

Chapter 2

Learning optimized FoE models

using loss-specific minimization

Contents

2.1 Revisiting loss-specific training of filter-based MRFs 19

2.2 Link to analysis operator learning problem 26

2.3 Solving the loss-specific problem 34

2.4 Refined training scheme . 44

2.5 More training experiments . 49

2.6 Discussion . 56

2.1 Revisiting loss-specific training of filter-based MRFs

Recall that the image regularization model to be exploited in this thesis is defined as the

following FoE image prior model (filter-based MRF)

R(u) =

Nk∑

i=1

N∑

p=1

αiφi ((ki ∗ u)p) , (2.1)

where the filters ki with associated weights αi are to be trained from samples, and the

penalty function is chosen from some candidate functions, which will be then fixed in the

training process.

In the following subsections, we first introduce the well-known image prior model

called Fields of Experts (FoE), which was proposed by Roth and Black in 2009 [111].

19

20 Chapter 2. Learning optimized FoE models using loss-specific minimization

The FoE image prior model is trained from samples. Up to now there already exist a

few previous works to train the parameters of the FoE model. Then, we review existing

training approaches, and finally show the motivation to revisit a specific training scheme,

namely, loss-specific (or loss minimization) training approach, which will be utilized in

this thesis.

2.1.1 The Fields of Experts (FoE) model

In 2005, the FoE image prior model was first proposed in [110]. It has attracted many

research attention until now due to its effectiveness for many image restoration problems.

The FoE image prior model is defined by a set of linear filters {ki}Nki=1 (Nk is the number

of filters) and potential functions ρi. The FoE model defines the probability density of a

full image u, which is formally given as

P (u) =
1

Z(Θ)

Nk∏

i=1

N∏

p=1

ρi((ki ∗ u)p;αi), Θ = {θ1, · · · , θNk} , (2.2)

where θi = {ki, αi} are the model parameters, ρi is the so-called potential functions or

experts, Z(Θ) is the normalization constant. According to the Gibbs distribution, the

probability density P (u) can be rewritten as P (u) = 1
Z(Θ)exp(−EFoE(u,Θ)) with

EFoE(u,Θ) = −
Nk∑

i=1

N∑

p=1

logρi((ki ∗ u)p;αi) . (2.3)

Comparing Equation (2.1) and Equation (2.3), one can see that they are exactly the same

if we choose the penalty function according the rule

αiφi(z) = −logρi(z;αi) .

Based on the observation that responses of mean-zero linear filters typically exhibit

heavy-tailed distributions [65] on natural images, three typical types of potential functions

have been investigated, including the Student-t distribution (ST), generalized Laplace

2.1. Revisiting loss-specific training of filter-based MRFs 21

model potential training inference PSNR

5× 5 FoE ST&Lap. contrastive divergence MAP, CG 27.77[111]
3× 3 FoE GSMs contrastive divergence Gibbs sampling 27.95[119]
5× 5 FoE GSMs persistent contrastive divergence Gibbs sampling 28.40[52]
5× 5 FoE ST loss-specific(truncated optimization) MAP, GD 28.24[8]
5× 5 FoE ST loss-specific(truncated optimization) MAP, L-BFGS [86] 28.39[40]
5× 5 FoE ST loss-specific(implicit differentiation) MAP, CG 27.86[115]

Table 2.1: Summary of various typical MRF-based systems and the average denoising
results on 68 test images [111] with σ = 25

distribution (GLP) and Gaussian scale mixtures (GSMs) function.

ρ(z;αi) = (1 + z2)−αi , αi > 0 (ST)

ρ(z;αi) = e−|z|
αi , 0 < αi < 1 (GLP)

ρ(z;αi) =
J∑
j=1

αij · N (z; 0, γ2
i /sj), αij ≥ 0 (GSMs),

(2.4)

where N (·) denotes the mean-zero Gaussian function, and αij are the normalized weights

of the Gaussian component with scale sj and base variance γ2
i . Therefore, for the ST and

GLP distributions, we can obtain the corresponding penalty functions, namely,

ρi(z; pi) = (1 + z2)−αi ⇐⇒ φi = αilog(1 + z2)

ρi(z; pi) = e−|z|
αi ⇐⇒ φi = |z|αi (Lp norm).

(2.5)

Now we can see that the penalty functions φ in (2.5) are commonly used non-convex

functions already mentioned in the last chapter. The goal of this chapter is to train the

FoE image prior model for image restoration problems such that it performs in some

optimal way.

2.1.2 Related works and motivation to revisit loss-specific training

scheme

In recent years several approaches for learning the parameters of the FoE model have

emerged [8, 40, 52, 111, 115, 119]. Table 2.1.2 gives a summary of several typical methods

and the corresponding average denoising PSNR results based on 68 test images from

Berkeley database with σ = 25 Gaussian noise.

In general, existing training approaches fall into two main types: (1) probabilistic train-

22 Chapter 2. Learning optimized FoE models using loss-specific minimization

ing using sampling-based algorithms, such as (persistent) contrastive divergence ((P)CD);

(2) loss-specific training based on the MAP estimation. Roth and Black [111] first intro-

duced the concept of FoE and proposed an approach to learn the parameters of FoE model

which uses a sampling strategy and the idea of CD to estimate the expectation value over

the model distribution. Schmidt et al. [119] improved the performance of their previous

FoE model [111] by changing (1) the potential function from ST and Laplace to GSMs

and (2) the inference method from MAP estimate to Bayesian minimum mean squared

error estimate (MMSE). The same authors present their latest results in [52], where they

achieve significant improvements by employing an improved learning scheme called PCD

instead of previous CD.

In this thesis, we are dedicated to MAP estimation for the usage of the FoE image prior

model, due to its preferable computational efficiency relative to the MMSE estimation.

We also prefer the loss-specific training based on MAP estimation, as it is stated in a

previous work [115] that:

if the intent is to use MAP estimates and evaluate the estimates using some criterion,

like PSNR, obviously, a better strategy is to find the parameters such that the quality of

MAP estimates are directly optimized. Therefore, if the goal is to maximize PSNR, maxi-

mizing a likelihood (probabilistic training) and then hoping that it leads to MAP estimates

with good PSNR values is not the best strategy. Instead, one should choose the parameters

such that the MAP estimates have the highest PSNR possible.

Samuel and Tappen [115] present a novel loss-specific training approach to learn MRF

parameters under the framework of bi-level optimization [31]. In their approach they train

the MRF model by optimizing the parameters such that the minimum energy solution of

the MRF model is as similar as possible to the ground-truth. They use a plain gradient-

descent technique to optimize the parameters, where the essence of this learning scheme

- the gradients, are calculated by using implicit differentiation technique. Domke [40]

and Barbu [8] propose two similar approaches for the training of MRF model parameters

also under the framework of bi-level optimization. Their methods are some variants of

standard bi-level optimization method [115]. In the modified setting, the MRF model is

trained in terms of results after optimization is truncated to a fixed number of iterations,

i.e., they do not solve the energy minimization problem exactly; instead, they just run

some specific optimization algorithm for a fixed number of steps (10 in [40] and 4 in [8]).

The main reason why they use the strategy of truncated optimization is due to its lower

computational expense compared to standard “full” training.

2.1. Revisiting loss-specific training of filter-based MRFs 23

BM3D [36] GMM-EPLL [143] LSSC [91]

σ = 25 28.56 28.68 28.70

Table 2.2: Average denoising results of the current state-of-the-art methods for 68 test
images (σ = 25)

Even though recent years have seen the introduction of various new approaches for

training the MRF models, unfortunately, taking image denoising task for instance, the

performance of MRF-based systems is still far away from the state-of-the-art methods.

Table 2.2 presents the denoising results of state-of-the-art methods: (1) patch-average

method, BM3D [36]; (2) non-local sparse coding method, LSSC [91]; (3) expected patch

log likelihood method using GMM prior, GMM-EPLL [143]. It is clear that these methods

outperform the MRF-based models in Table 2.1.2. This situation challenges the theoret-

ically sound MRF approaches. However, as described below, we can find some clues to

improve the MRF model, after having a closer look at the current loss-specific training

approaches.

Analysis: The loss-specific training criterion is formally expressed as the following

bi-level optimization problem

arg min
ϑ
L(u∗(ϑ), g)

subject to u∗(ϑ) = arg min
u
E(u, f, ϑ).

(2.6)

In this model, given the observation f and ground-truth g, our goal is to find the opti-

mal parameters ϑ to minimize the loss function L(u∗(ϑ), g), which is called the upper-level

problem in the bi-level framework. The MRF model is defined by the energy minimization

problem E(u, f, ϑ), which is called the lower-level problem.

The essential point to solve this bi-level optimization problem is to calculate the gradi-

ent of the loss function L(u∗(ϑ), g) with respect to the parameters ϑ. As aforementioned,

[115] employs the implicit differentiation technique to calculate the gradients explicitly;

in contrast, [40] and [8] make use of an approximation approach based on truncated op-

timization. All of them use the same ST-distribution as potential function; however, the

latter two approaches surprisingly obtain much better performance than the former, as

can be seen in Table 2.1.2.

Since Samuel and Tappen use a “full” fitting training scheme, they should achieve

better results compared to the approximation approaches, but actually they fail in practice.

24 Chapter 2. Learning optimized FoE models using loss-specific minimization

Therefore, we argue that there should be something imperfect in their training scheme.

We could probably achieve promising improvements by refining this “full” fitting training

scheme.

Another instance to prove that the ST-distribution based MRF model should not be

so inferior is the work in a recent paper [73], where a Laplace distribution based MRF

model is also optimized under the framework bi-level optimization. Even though they only

optimize the weights of some fixed filters such as DCT (Discrete cosine transform) filters,

their convex `1 model, which is a worse fitting of heavy-tailed distribution compared to

the ST-distribution, has already led to comparable results and their non-convex ` 1
2

leads

to significantly better results compared to [115].

Motivations: Motivated by the above observations, we think it is necessary and

worthwhile to restudy the loss-specific training scheme and we expect that we can achieve

significant improvements. In our work, we do not make any modifications to the training

model used in [115] - we use exactly the same model capacity, potential function and

training images. The only difference is the training algorithm. We exploit a refined

training algorithm, where we solve the lower-level problem in the loss-specific training

with very high accuracy and make use of a more efficient quasi-Newton’s method for model

parameters optimization. We conduct a series of playback experiments and show that the

performance of loss-specific training is indeed underestimated in previous work [115]. We

argue that the the critical reason is that they do not solve the lower-level problem to

sufficient accuracy. We also demonstrate that solving the lower-level problem with higher

accuracy is indeed beneficial. This argument about the loss-specific training scheme is the

major contribution of this section.

In addition, we show that our trained model can obtain further improvement by in-

creasing the model size. It turns out that for image denoising task, our optimized MRF

(opt-MRF) model of size 7 × 7 has achieved the best result among existing MRF-based

systems and been on par with state-of-the-art methods. Due to the simplicity of our

model, it is easy to implement the inference algorithm on parallel computation units, e.g.,

GPUs. Numerical results show that our GPU-based implementation can perform image

denoising in near real-time with state-of-the-art performance.

2.1.3 Basic training model

Our training model makes use of the bi-level optimization framework, and is based on the

image denoising task. For image denoising, the FoE image prior based variational model

2.1. Revisiting loss-specific training of filter-based MRFs 25

is expressed as

arg min
u
E(u) =

Nk∑

i=1

αi

N∑

p=1

φ((Kiu)p) +
λ

2
‖u− f‖22. (2.7)

where Nk is the number of filters, N is the number of pixels in image u, Ki is an N ×N
highly sparse matrix, which makes the convolution of the filter ki with a two-dimensional

image u equivalent to the product result of the matrix Ki with the vectorization form of u,

i.e., ki ∗u⇔ Kiu. Moreover, αi ≥ 0 is the associated weight for filter Ki, and λ defines the

trade-off between the prior term and data fitting term. φ(·) denotes the penalty function

which can be chosen from some candidate functions. Up to now, we do not specify the

penalty function. Note that this variational model defines the lower-level problem in the

bi-level framework.

The loss function L(u∗, g) (upper-level problem) is defined to measure the difference

between the optimal solution of energy function and the ground-truth. In this paper, we

make use of the same loss function as in [115],

L(u∗, g) =
1

2
‖u∗ − g‖22, (2.8)

where g is the ground truth image and u∗ is the optimal solution of the variational model

(2.7). This loss function is related to the PSNR quality measure. Note that as shown

in [68], other quality measures, such as structural similarity (SSIM) and mean absolute

error (MAE) can be chosen to define the loss function. We currently only consider the

quadratic loss function due to its simplicity. Extension to other loss function is subject to

future work.

Given the training samples {fs, gs}Ss=1, where gs and fs are the sth clean image and

the associated noisy version respectively, our aim is to learn an optimal MRF parameter

ϑ = (α, k) (we group the linear filters ki and weights αi into a single vector ϑ), to minimize

the overall loss function. Therefore, the learning model is formally formulated as the

following bi-level optimization problem

min
α≥0,k

L(u∗(α, k)) =
S∑
s=1

1
2‖u∗s(α, k)− gs‖22

where u∗s(α, k) = arg min
u

Nk∑
i=1

αiφ(ki ∗ u) + 1
2‖u− fs‖22,

(2.9)

where φ(ki∗u) =
N∑
p=1

φ((ki∗u)p). We eliminate λ for simplicity, since it can be incorporated

26 Chapter 2. Learning optimized FoE models using loss-specific minimization

into weights α.

2.2 Link to analysis operator learning problem

In the literature of sparse representation for image processing, a new sparsity based concept

has been introduced in recent years, which is so-called co-sparse analysis model (or co-

sparsity) [60, 105, 113]. Many algorithms are proposed to train the so-called analysis

operator in the co-sparse analysis model. However, we find some interesting relations

between the the co-sparse analysis model and the FoE image prior model.

In this section, we give new insights into the co-sparse analysis model from the view of

filter-based Markov Random Fields (MRF) models. We hold the opinion that for image

processing the cos-parse analysis model is equivalent to the filter-based MRF model, which

is also known as Field of Experts (FoE). Therefore, we advocate treating analysis operator

learning the same as the filters learning for the FoE model. In this section, we establish

the connection between the co-sparse analysis model and the FoE model.

2.2.1 Background of the co-sparse analysis model

2.2.1.1 Related notations

In this section, our model presents a global prior over the entire image instead of small

image patches. In order to distinguish between a small patch and an entire image, we

represent a square patch (patch size:
√
m ×√m) by x ∈ Rm, and an image (image size:

M × N , with m � M,m � N) by u ∈ RMN . We denote the patch-based synthesis

dictionary and analysis operator by D ∈ Rm×n and A ∈ Rn×m with m ≤ n, respectively.

Furthermore, when the analysis operator A is applied to the entire image u, we use the

common sliding-window fashion to compute the coefficients Ax for all MN patches in

the image. This result is equivalent to a multiplication of a highly sparse matrix A ∈
R(n×MN)×MN with the image u, i.e., Au. We can group A to n separable sparse matrices

{A1, . . . ,An}, whereAi ∈ RMN×MN is associated with the ith row of A (Ai). If we consider

Ai as a 2-D filter (
√
m×√m), we have: Aiu is equivalent to the result of convolving image

u with filter Ai.

2.2.1.2 Patch-based synthesis and analysis models

Historically, sparse representations refer to the so-called sparse synthesis model. In the

synthesis-based models, a signal x ∈ Rm (a patch) is called sparse over a given dictionary

2.2. Link to analysis operator learning problem 27

D ∈ Rm×n with m ≤ n, when it can be composed of a linear combination of only a few

atoms from dictionary D. This is formulated as the following minimization problem:

x∗ = Dα∗;α∗ = arg min
α∈Rn

ϕ(α) +
λ

2
‖Dα− f‖22 , (2.10)

where f ∈ Rm is the observed patch, α ∈ Rn is the coefficient vector and ϕ is the penalty

function. In order to induce sparsity in the representation, typical penalty functions

include `p norms with p ∈ {0, 1} or logarithmic functions such as log(1 + |z|p), with

p ∈ {1, 2}. The synthesis model has been intensively studied in the past decade, including

global and specialized dictionary learning algorithms and applications to various image

processing tasks, see [3, 42, 76, 90, 92] for examples.

However, there is another viewpoint to consider sparse representations, which is the

so-called co-sparse analysis model [43]. The objective of a co-sparse model is to pursue a

linear operator A ∈ Rn×m, such that the resulting coefficient vector Ax ∈ Rn is expected

to be sparse. In the framework of MAP inference, the co-sparse analysis model is given as

the following minimization problem:

x∗ = arg min
x∈Rm

ϕ(Ax) +
λ

2
‖x− f‖22 , (2.11)

where A is the so-called analysis operator, ϕ is again a sparsity promoting function as

mentioned above and f ∈ Rm is the observed patch. Note that both the analysis model

and the synthesis model become equivalent if D is invertible. However, the analysis model

is much less investigated compared to the well-known synthesis model, but it has been

gaining more and more attention in recent years [60, 105, 113].

2.2.1.3 Patch-based analysis operator learning

In the case of the synthesis model, the learning of an optimized dictionary has become

ubiquitous. However, in analysis-based models, fixed operators inspired from variational

methods such as the discrete total variation have been used for a long time. It is only

recently that people started to develop customized algorithms to learn in some sense

optimal analysis operators.

Existing algorithms mainly concentrate on the patch-based training strategy. Given

a set of S training samples Y = [y1, . . . , yS] ∈ Rm×S , where depending of the training

procedure, each sample is a noisy version or a clean version of an image patch. For the

noisy version, yi = xi +ni, where ni is an additive zero-mean white Gaussian noise vector

28 Chapter 2. Learning optimized FoE models using loss-specific minimization

and xi is the clean signal.

For the noise-free training, the goal of the analysis operator learning is to find a linear

operator A ∈ Rn×m with m ≤ n, such that the coefficient vector Ayi is as sparse as

possible. This strategy can be formally expressed as the following optimization problem.

A? = arg min
A
ϕ(AY). (2.12)

For the noise aware case, the objective is to learn an optimal analysis operator A,

which enforces the coefficient vector Axi to be sparse, while ‖xi − yi‖22 ≤ ε for each

training sample (ε is an error tolerance, which is derived from the noise level). This

requires solving a problem of the form

{A?, X} = arg min
A,X

ϕ(AX),

subject to ‖xi − yi‖22 ≤ ε. (2.13)

Using a Lagrange multiplier λ > 0 this can be equivalently expressed as

{A?, X} = arg min
A,X

ϕ(AX) +
λ

2
‖X − Y ‖2F , (2.14)

where ϕ is again a sparsity promoting function and ‖·‖F denotes the Frobenius norm.

Unfortunately, the above optimization problems suffer from the problem of trivial

solutions. Indeed, if no constraints are imposed on A, it is easy to see that the trivial

solution A ≡ 0 is the global minimizer of (2.12), (2.13) and (2.14). A possible solution to

exclude the trivial solution is to impose additional assumptions on A, i.e., restricting the

solution set to an admissible set C. The following constraints have been investigated in

[137] and [60]:

(i) row norm constraints. All the rows of A have the same norm, i.e., ‖Ai‖2 = c for the

ith row of operator A.

(ii) row norm + full rank constraints. The analysis operator A has full rank, i.e., rk(A) =

m.

(iii) tight frame constraints. The admissible set of this constraint is the set of tight frame

in Rn×m, i.e., A>A = Im, where Im is the identity operator in Rm.

As pointed out in [137], each individual constraint presented above does not lead to

satisfactoy results. Therefore, in [137, 138] a constraint called the Uniform Normalized

2.2. Link to analysis operator learning problem 29

Tight Frame (UNTF) was proposed, which is a combination of the unit row norm and

the tight frame constraint. The authors of [60] employed a constraint combining the unit

row norm and the full rank constraint with an additional consideration that the analysis

operator A doesn’t have trivially linear dependent rows, i.e., Ai 6= Aj for i 6= j.

In [137], Yaghoobi et al. employed the convex `1-norm, i.e., ϕ(AY) = ‖AY ‖1, as

sparsity promoting function and the UNTF constraint to solve problem (2.12). In [138], the

same authors proposed an extension of their previous algorithm that simultaneously learns

the analysis operator and denoises the training samples. The improved algorithm solves

the problem (2.14) by alternating between updating the analysis operator and denoising

the training samples. They gave some preliminary image denoising results by applying

the learned operator to natural face images.

In [60], Hawe et al. exploited the above constraints - full rank matrices with normalized

rows, and a non-convex sparsity measurement function called the mixed (p, q)-pseudo-norm

to minimize problem (2.12). They employed a conjugate gradient method on manifolds to

solve this optimization problem. Their experimental results for classical image restoration

problems show competitive performance compared to state-of-the-art techniques.

Rubinstein et al. [112] presented an adaption of the widely known K-SVD dictionary

learning method [42] to solve the problem (2.13) directly based on the `0 quasi-norm,

i.e., ϕ(AY) = ‖AY ‖0. Unfortunately, there are only synthetic experiments and examples

based on piece-wise constant images considered in their work. The same authors presented

some preliminary results for natural image denoising in their later work [113]. However, it

turns out that the performance of the learned analysis operator is inferior to the synthesis

model [42].

Ophir et al. [101] proposed a simple analysis operator learning algorithm, where anal-

ysis “atoms” are learned sequentially by identifying directions that are orthogonal to a

subset of the training data.

Apart from the above analysis operator learning algorithms, Peyré and Fadili proposed

an attractive learning approach in [105]. They considered the analysis operator from a

particular viewpoint. They interpreted the behavior of the analysis operator as a convolu-

tion with some finite impulse response filters. Keeping this idea in mind, they formulated

the analysis operator learning as a bi-level programming problem [31] which was solved

using a gradient descent algorithm. However, their work only considered a simple case -

one filter and 1D signals. Following this direction, a preliminary attempt to apply this

idea to 2D image processing was done in [26].

30 Chapter 2. Learning optimized FoE models using loss-specific minimization

2.2.1.4 Comments to existing co-sparse analysis model

Among the existing algorithms for analysis operator learning, only few prior works have

been evaluated based on natural images [60, 113, 138]. Moreover, most of these algo-

rithms have to impose a non-convex constraint on the analysis operator A, making the

corresponding optimization problems hard to solve. Thus a question arises: Is it possible

to introduce a more principled technique to learn optimized analysis operators without

the need to impose additional constraints on the operators?

In this thesis, we give an answer to this question. First, we extend the patch-based

analysis model to a global image regularization term, which allows to consider also more

general inverse problems such as image deconvolution and image inpainting. Then, we

show that this model is equivalent to higher-order filter-based MRF models such as the

FoE model [111]. Motivated by this observation, we apply a loss-function based training

scheme [115] and show that this approach excludes the trivial solution of the analysis

operator learning problem without imposing any additional constraints. Furthermore, we

carefully investigate the effect of different aspects of the analysis based model. We show

that the choice of the sparsity promoting function is the most important aspect.

2.2.2 Insights into analysis based models

In this section, we first show the equivalence between the patch-based analysis model and

filter-based probabilistic image patch modeling - Product of Experts (PoE) [63, 135]. Then

we extend the patch-based analysis model to the image-based model and show connections

to higher order MRFs [111].

2.2.2.1 Equivalence between the patch-based analysis model and the PoE

model

The patch-based analysis model in (2.11) focuses on modeling small image patches, which

is formulated as a matrix-vector multiplication (Ax). This procedure can be interpreted

as projecting a signal x (an image patch) onto a set of linear components {Ai}ni=1, where

each component Ai is a row of the matrix A. Note that projecting an image patch onto a

linear component (Aix) is equivalent to filtering the patch with a linear filter given by Ai.

The PoE model provides a prior distribution on small image patches by taking the

product of several expert distributions, where each expert works on a linear filter and the

expert function. The PoE model is formally written as p(x) = 1
Z(Θ)exp(−EPoE(x,Θ))

2.2. Link to analysis operator learning problem 31

with

EPoE(x,Θ) = −
n∑

i=1

logρi(Aix), (2.15)

where ρi is the potential function, Z(Θ) is the normalization and Θ are the parameters of

this model.

Comparing the analysis prior given in (2.11), ϕ(Ax) =
n∑
i=1

ϕi(Aix) with the above PoE

model, we can see they are actually the same model if we choose the penalty function as

ϕi = −logρi. In this case, if we consider the analysis operator learning problem based on

the strategy which focuses on the modeling of small image patches rather than defining a

prior model over an entire image, the learning problem is tantamount to learning filters

in the PoE model.

2.2.2.2 From patch-based to image-based model

Patch-based models are only valid for the reconstruction of a single patch. When they

are applied to full image recovery, a common strategy is patch averaging [42]. All the

patches in the entire image are treated independently, reconstructed individually and then

integrated to form the final reconstruction result by averaging the overlapping regions.

While this method is simple and intuitive, it clearly ignores the coherence between over-

lapping patches, and thus misses global support during image reconstruction. To overcome

these drawbacks, an extension to the whole image is necessary where patches are not

treated independently but each of them is a part of the image.

A promising direction to formulate an image-based model is to make use of the for-

malism of higher-order MRFs which enforce coherence across patches. The basic idea is

to modify the patch-based analysis model in (2.11) such that all possible patches in the

entire image and the corresponding coefficient vectors Ax are considered at once. This

leads to an image-based prior model of the form:

Eprior(u) =
N∑

p=1

ϕ(APpu), (2.16)

where u is an image of size M×N , N = N×M , ϕ(APpu) =
n∑
i=1

ϕ((APpu)i) and Pp ∈ Rm×N

is a sampling matrix extracting the patch at pixel p in image u. For the patches at the

image boundaries, we extract patches by using symmetric boundary conditions.

A key characteristic of the model (2.16) is that it explicitly models the overlapping of

32 Chapter 2. Learning optimized FoE models using loss-specific minimization

image patches, which are highly correlated. Intuitively, it is a better strategy for image

modeling compared to the patch averaging approach. In Subsection 3.1.1 we will provide

experimental results to support this claim.

2.2.2.3 Equivalence between the image-based analysis model and the FoE

model

If we consider in (2.16) each row of A (Ai) as a 2-D filter (
√
m×√m), we can rewrite this

term as

Eprior(u) =
N∑

p=1

n∑

i=1

ϕ(〈Ai, up〉) =
n∑

i=1

N∑

p=1

ϕ((Ai ∗ u)p) , (2.17)

where 〈Ai, up〉 denotes the inner product of the patch at pixel p with filter Ai
∗. Recall

that the exploited image regularization model is defined as

R(u) =

Nk∑

i=1

N∑

p=1

αiφi ((ki ∗ u)p) . (2.18)

Comparing the image-based analysis model and the the exploited image regularization

model (e.g., the FoE image prior model), it is easy to see the equivalence of these two

models:

• Each row of the analysis operator A corresponds to a linear filter in the FoE model;

• The sparsity promoting function ϕ corresponds to the penalty function φ in the FoE

model ;

• The row number of the analysis operator A corresponds to number of filters in the

FoE model.

Therefore, it becomes quite clear that the analysis co-sparse model is actually equiv-

alent to the well-known FoE model, and we think it is better to consider the analysis

operator learning problem in the framework of FoE model.

In conclusion, the FoE model can be treated as an extension of the co-sparse analysis

model from a patch-based formulation to an image-based formulation. It comes along with

the advantage of inherently capturing the coherence between overlapping patches which

has to be enforced explicitly in patch-based models. As we will see in the next section,

the image-based model also allows to learn optimized analysis operators without the need

for additional constraints.
∗It can also be seen as the result of convolving the patch at pixel p with filter Ai.

2.2. Link to analysis operator learning problem 33

2.2.3 Loss-specific analysis operator learning model

Given the training samples {fs, gs}Ss=1, where gs and fs are the sth clean image and the

associated noisy version respectively, our aim is to learn an optimal analysis operator or

a set of filters which are defined by parameters ϑ = (α, k) (we group the filters ki and

weights αi into a single vector ϑ), such that the overall loss function for all samples is

as small as possible. Therefore, our learning model is formulated as the following bi-level

optimization problem:

min
α≥0,A

L(u∗(α,A)) =
S∑
s=1

1
2‖u∗s(α,A)− gs‖22

where u∗s(α,A) = arg min
u

n∑
i=1

αiφ(Aiu) + 1
2‖u− fs‖22.

(2.19)

We eliminate λ for simplicity since it can be incorporated into the weights α. Our anal-

ysis operator training model has two advantages over existing analysis operator learning

algorithms.

(a) It is completely unconstrained with respect to the analysis operator A. Normally, ex-

isting approaches such as [60, 137, 138] have to impose some non-convex constraints

over the analysis operator. On the one hand, this makes the corresponding optimiza-

tion problem difficult to solve, and on the other hand it decreases the probability

of learning a meaningful analysis operator, because as indicated in [137], there is

no evidence to prove that the introduced constraints are the most suitable choices.

The reason why constraints are indispensable for these approaches lies in the need

to exclude the trivial solution A = 0. However, looking back at our training model,

this trivial solution can be avoided naturally. If A = 0, the optimal solution of the

lower-level problem in (2.21) is certainly u∗s = fs, which makes the loss function still

large; thus this trivial solution is not acceptable in that the goal of our model is to

minimize the loss function. Therefore, the optimal operator A must comprise some

meaningful filters such that the minimizer of the lower-level problem is close to the

ground-truth.

(b) The learned analysis operator inherently captures the properties of overlapping

patches. In [42, 112, 113, 137], their approaches present a patch-based prior, and

thus for global reconstruction of an entire image, the common strategy consists

of two stages: (i) extract overlapping patches, reconstruct them individually by

synthesis-prior or analysis-prior based model, and (ii) form the entire image by

34 Chapter 2. Learning optimized FoE models using loss-specific minimization

averaging the final reconstruction results in the overlapping regions. This strategy

clearly misses global support during the reconstruction process; however our

approach can overcome these drawbacks.

In the work of [60], the authors employ the patch-based model to train the analysis

operator, but use it in the manner of an image based model. Clearly, if the final intent is

to use the analysis operator in an image-based model, a better strategy is to train it also

in the same framework.

2.3 Solving the loss-specific problem

2.3.1 Gradients computation

In this subsection, we consider the bi-level optimization problem from a general point of

view. For convenience, we only consider the case of a single training sample and we show

how to extend the framework to multiple training samples in the end.

First of all, in our training we consider linear filters constructed from certain basis

filters to preserve some special properties, e.g., zero-mean filters. That is to say, we

employ some specific basis filters {B1, · · · , BJ}, and the filters to train are expressed as

the following linear combination

Ki =
J∑

j=1

βijBj . (2.20)

Therefore, the filter Ki is defined by the coefficients βij . In the following derivation, the

FoE model is parameterized by a vector ϑ = (α, β). Recall that the FoE image prior

training model using the loss-specific learning scheme is formulated as

min
α≥0,β

L(u∗(α, β)) =
S∑
s=1

1
2‖u∗s(α, β)− gs‖22

where u∗s(α, β) = arg min
u

Nk∑
i=1

αiφ(Kiu) + 1
2‖u− fs‖22,

(2.21)

According to the optimality condition, the solution of the lower-level problem in (2.21)

is given by u∗, such that ∇uE(u∗) = 0. Therefore, we can rewrite problem (2.21) as

2.3. Solving the loss-specific problem 35

following constrained optimization problem

min
α≥0,β

L(u(α, β)) = 1
2‖u(α, β)− g‖22

subject to ∇uE(u) =
Nk∑
i=1

αiK
>
i φ
′(Kiu) + u− f = 0,

(2.22)

where φ′(Kiu) = (φ′((Kiu)1), · · · , φ′((Kiu)p))
> ∈ RN . Now we can introduce Lagrange

multipliers and study the Lagrange function

L(u, α, β, p, µ) =
1

2
‖u− g‖22 + 〈−α, µ〉+ 〈

Nk∑

i=1

αiK
>
i φ
′(Kiu) + u− f, p〉, (2.23)

where µ ∈ RNk and p ∈ RN are the Lagrange multipliers associated to the inequality

constraint α ≥ 0 and the equality constraint in (2.22), respectively. Here 〈·, ·〉 denotes

the standard inner product. Taking into account the inequality constraint α ≥ 0, the first

order necessary condition for optimality is given by

G(u, α, β, p, µ) = 0, (2.24)

where

G(u, α, β, p, µ) =

(
Nk∑
i=1

αiK
>
i DiKi + I)p+ u− g

(〈K>i φ′(Kiu), p〉)Nk×1 − µ

(〈B>j φ′(Kiu) +K>i DiBju, p〉)n×1

Nk∑
i=1

αiK
>
i φ
′(Kiu) + x− f

µ−max(0, µ− cα)

.

Wherein Di(Kiu) = diag(φ′′((Kiu)1), · · · , φ′′((Kiu)p)) ∈ RN×N ,

(〈·, p〉)N×1 = (〈(·)1, p〉, · · · , 〈(·)r, p〉)>, in the third formulation n = Nk × J .

Note that the last formulation is derived from the optimality condition for the inequality

constraint α ≥ 0, which is expressed as α ≥ 0, µ ≥ 0, 〈α, µ〉 = 0. It is easy to check that

these three conditions are equivalent to µ−max(0, µ− cα) = 0 with c to be any positive

scalar and max operates coordinate-wise.

Generally, we can continue to calculate the generalized Jacobian of G, i.e., the Hessian

matrix of Lagrange function, with which we can then employ a Newton’s method to solve

the necessary optimality system (2.24)[73]. However, for this problem calculating the

36 Chapter 2. Learning optimized FoE models using loss-specific minimization

Jacobian of G is computationally intensive; thus in this paper we do not consider it and

only make use of the first derivatives.

Since what we are interested in is the MRF parameters ϑ = {α, β}, we can reduce

unnecessary variables in (2.24). By solving for p and u in (2.24), and substituting them

into the second and the third formulation, we arrive at the gradients of loss function with

respect to parameters ϑ

∇βijL = −(B>j φ
′(Kiu) +K>i DiBju)>(HE(u))−1 (u− g)

∇αiL = −(K>i φ
′(Kiu))>(HE(u))−1 (u− g)

where ∇uE(u) =
Nk∑
i=1

αiK
>
i φ
′(Kiu) + u− f = 0.

(2.25)

In (2.25), HE(u) denotes the Hessian matrix of E(u),

HE(u) =

Nk∑

i=1

αiK
>
i DiKi + I. (2.26)

In (2.25), we also eliminate the Lagrange multiplier µ associated to the inequality

constraint α ≥ 0, as we utilize a quasi-Newton’s method for optimization, which can

easily handle this type of box constraints. We can see that (2.25) is equivalent to the

results presented in previous work [115] using implicit differentiation.

Considering the case of S training samples, in fact it turns out that the derivatives of

the overall loss function in (2.21) with respect to the parameters ϑ are just the sum of

(2.25) over the training dataset.

2.3.2 Bi-level learning algorithm

In (2.25), we have collected all the necessary information to compute the gradients of

the loss function with respect to the parameters ϑ, so we can now employ gradient de-

scent based algorithms, e.g., the steepest descent method, for optimization. Although

this type of algorithm is very easy to implement, it is not effective. In this thesis, we

resort to a more efficient non-linear optimization method - the Limited-memory Broyden-

Fletcher-Goldfarb-Shanno (L-BFGS) quasi-Newton’s method [86]. We summarize our bi-

level learning scheme in Algorithm 1.

In our work, step (ii) in Algorithm 1 is accomplished efficiently by using our proposed

iPiano algorithm. We solve this minimization problem to a very high accuracy with

‖∇uE(u∗)‖2 ≤ 10−3 (gray-values in the range [0 255]), i.e., we use a more conservative

2.3. Solving the loss-specific problem 37

Algorithm 1 Bi-level learning algorithm for analysis operator training

(i) Given training samples {fs, gs}Ss=1, initialization of parameters ϑ0 = {α0, β0}, let
l = 0,

(ii) For each training sample, solve for u∗s(ϑl)

n∑

i=1

αliK
>
i φ
′(Kiu

∗
s) + u∗s − fs = 0,where Ki =

J∑

j=1

βlijBj .

(iii) Compute ∇ϑL(u∗(ϑ)) at ϑl via (2.25),

(iv) Update parameters ϑ = {α, β} by using a quasi-Newton’s method, let l = l+ 1, and
goto (ii).

convergence criterion in this inner loop than previous work [115]. The training algorithm

is terminated when the relative change of the loss is less than a tolerance, e.g., tol = 10−5,

a maximum number of iterations e.g., maxiter = 500 is reached or L-BFGS can not find

a feasible step to decrease the loss.

2.3.3 The iPiano algorithm to solve the lower level problem

As shown in the aforementioned subsections, we need to solve the lower-level problem in

the training. One can see that the corresponding minimization problems poses a generally

demanding non-convex optimization problem, which typically takes thousands of iterations

with standard gradient descent algorithms, e.g., 5000 iterations in [111]. Obviously, it is

not good to employ such a slow algorithm to solve the lower-level problem in the training.

Therefore, a computationally efficient algorithm is urgently necessary.

In this subsection, we present our proposed iPiano (Inertial Proximal Algorithm for

Non-convex Optimization) algorithm for a class of non-convex problems. The iPiano

algorithm is to solve a minimization problem composed of a differentiable (possibly non-

convex) and a convex (possibly non-differentiable) function. This algorithm combines

forward-backward splitting with an inertial force. As a rigorous convergence analysis of

the proposed algorithm is beyond the scope of this thesis, we only present the overall

aspects of the iPiano algorithm in this subsection, and the convergence details can be

found in the full paper [97].

38 Chapter 2. Learning optimized FoE models using loss-specific minimization

2.3.3.1 Introduction

The gradient method is certainly one of the most fundamental but also one of the most

simple algorithms to solve smooth convex optimization problems. In the last decades,

the gradient method has been modified in many ways. One of those improvements is

to consider so-called multi-step schemes [94, 108]. It has been shown that such schemes

significantly boost the performance of the plain gradient method. Triggered by practical

problems in signal processing, image processing and machine learning, there has been an

increased interest in so-called composite objective functions, where the objective function

is given by the sum of a smooth function and a non-smooth function with an easy to

compute proximal map. This initiated the development of the so-called proximal gradient

or forward-backward method [84], that combines explicit (forward) gradient steps w.r.t.

the smooth part with proximal (backward) steps w.r.t. the non-smooth part.

In our work, we combine the concepts of multi-step schemes and the proximal gra-

dient method to efficiently solve a certain class of non-convex, non-smooth optimization

problems. Although, the transfer of knowledge from convex optimization to non-convex

problems is very challenging, it aspires to find efficient algorithms for certain non-convex

problems. Therefore, we consider the subclass of non-convex problems

min
x∈RN

F (x) +G(x) ,

where G is a convex (possibly non-smooth) and F is a smooth (possibly non-convex)

function. The sum F + G comprises non-smooth, non-convex functions. Despite the

non-convexity, the structure of F being smooth and G being convex makes the forward-

backward splitting algorithm well-defined. Inspired by the heavy ball algorithm [141], an

inertial force is incorporated into the design of our algorithm, which we termed iPiano.

Informally, the update scheme of the algorithm that will be analyzed is

xn+1 = (I + τ∂G)−1(xn − τ∇F (xn) + µ(xn − xn−1)) ,

where τ and µ are the step size parameters. The term xn−τ∇F (xn) is referred as forward

step, µ(xn − xn−1) as inertial term, and (I + τ∂G)−1 as backward or proximal step.

Setting µ = 0 results in the forward-backward splitting algorithm, which has the nice

property that in each iteration the function value decreases. Our convergence analysis

reveals that the additional inertial term prevents our algorithm from monotonically de-

creasing the function values. Although this may look like a limitation on first glance,

2.3. Solving the loss-specific problem 39

demanding monotonically decreasing function values anyway is too strict as it does not

allow for provably optimal schemes. We refer to a statement of Nesterov [94]: “In convex

optimization the optimal methods never rely on relaxation. Firstly, for some problem

classes this property is too expensive. Secondly, the schemes and efficiency estimates of

optimal methods are derived from some global topological properties of convex functions”†.

The negative side of better efficiency estimates of an algorithm is usually the convergence

analysis. This is even true for convex functions. In case of non-convex and non-smooth

functions, this problem becomes even more severe.

For g ≡ 0 the proximal step is the identity and the update scheme is usually referred

as Heavy-ball method [141]. This reduced iterative scheme is an explicit finite differences

discretization of the so-called Heavy-ball with friction dynamical system

ẍ(t) + γẋ(t) +∇F (x(t)) = 0 .

It arises when Newton’s law is applied to a heavy material point subject to a constant

friction γ > 0 (of the velocity ẋ(t)) and a profile defined by F in the gravity potential.

This explains the naming “Heavy-ball method” and the interpretation of µ(xn− xn−1) as

inertial force. A more detailed mechanical interpretation reads as follows.

2.3.3.2 The heavy ball with friction method

When we consider a non-linear oscillator with damping

ẍ(t) + γẋ(t) +∇F (x(t)) = 0 , (2.27)

where γ is a positive real number (γ > 0). This system modelizes the motion of a heavy

material point M(t) = (x(t), F (x(t))) sliding on a profile defined by F . The damping term

γẋ(t) corresponds to a viscous mechanical friction. Because of this mechanical interpreta-

tion, this system is referred as the “heavy ball with friction” dynamical system.

Concerning the discretized version of the dynamical system (2.27), it naturally leads

to
(xt+1 − xt)− (xt − xt−1)

2∆t
+ γ

xt+1 − xt
∆t

+∇F (xt) = 0 ,

†Relaxation is to be interpreted as the property of monotonically decreasing function values in this
context. Topological properties should be associated with geometrical properties.

40 Chapter 2. Learning optimized FoE models using loss-specific minimization

Figure 2.1: An illustrative example of the heavy ball method

with which we then have

xt+1 = xt − τ∇F (xt) + µ(xt − xt−1) ,

with τ = 2∆t
1+2γ and µ = 1

1+2γ . This will help us to derive a numerical algorithm to compute

the local minima of F .

As an illustration, let us consider the following situation (see Figure 2.1) presented in

[6] and the corresponding Cauchy problem for (2.27):

ẍ(t) + γẋ(t) +∇F (x(t)) = 0

x(0) = x0, ẋ(0) = ẋ0

(2.28)

For this dynamical system, the stationary state is determined by (1) the initial data,

namely the initial position x0 and the initial velocity ẋ0, and (2) the friction parameter

γ, which allow us to reach asymptotically several local minima of F . For example, when

starting from x0, one can asymptotically reach x̄ or x#, depending on the velocity ẋ0. As

one can additionally play with the initial velocity ẋ0, even when starting from x̄ with an

initial velocity which is large enough, the material point can escape from the attraction

domain of x̄, and converge to x#. In contrast, this will never happen for the steepest

descent method (also called gradient descent method), which is a first order dynamical

system (in time)‡ and does not contain an acceleration term.

‡Note that the heavy ball with friction system is a second order (in time) dissipative dynamical system.

2.3. Solving the loss-specific problem 41

The dynamical system associated with the steepest descent method is given as

ẋ(t) +∇F (x(t)) = 0

x(0) = x0

(2.29)

The above dynamical system (2.29) modelizes the motion of a drop of water sliding

on the profile represented by F . In general, when starting from the initial point x0, the

trajectory asymptotically converges to x̄, and it will never have the chance to climb over

the “hill” and to reach x#. The dynamical system (2.29) is a first order (in time) system,

the trajectory of the point is completely determined by its initial position. However, in the

second order system (i.e., the heavy ball with friction system (2.28)), we have additional

flexibility and possibility of control, which will help us to overcome spurious stationary

points, see the next subsection for an example.

2.3.3.3 The proposed algorithm - iPiano

We consider a structured non-smooth non-convex optimization problem with a proper

lower semi-continuous extended valued function H : RN → R ∪ {+∞}, N ≥ 1:

min
x∈RN

H(x) = min
x∈RN

F (x) +G(x) , (2.30)

which is composed of a C1-smooth (possibly non-convex) function F : RN → R with

L-Lipschitz continuous gradient on domG, L > 0, and a convex (possibly non-smooth)

function G : RN → R ∪ {+∞}. Furthermore, we require H to be coercive, i.e.,

‖x‖2 → +∞ implies H(x)→ +∞, and bounded from below by some value H > −∞.

The proposed algorithm seeks for a critical point x∗ ∈ domH of H, which is charac-

terized by the necessary first-order optimality condition 0 ∈ ∂H(x∗). In our case, this is

equivalent to

−∇F (x∗) ∈ ∂G(x∗) .

In our work, we propose an algorithm, iPiano, with the generic formulation in Algo-

rithm 2. It is a forward-backward splitting algorithm incorporating an inertial force. In

the forward step, τn determines the step size in the direction of the gradient of the differ-

entiable function F . The step in gradient direction is aggregated with the inertial force

from the previous iteration weighted by µn. Then, the backward step is the solution of

42 Chapter 2. Learning optimized FoE models using loss-specific minimization

the proximity operator for the function G with the weight τn.

Algorithm 2 inertial proximal algorithm for non-convex optimization (iPiano)

• Initialization: Choose a starting point x0 ∈ domh and set x−1 = x0. Moreover,
define sequences of step size parameter (τn)∞n=0 and (µn)∞n=0.

• Iterations (n ≥ 0): Update

xn+1 = (I + τn∂G)−1(xn − τn∇F (xn) + µn(xn − xn−1)) . (2.31)

In order to make the algorithm specific and convergent, the step size parameters must

be chosen appropriately. There are several strategies to choose appropriate step size

parameters. In this section, we only present the backtracking method, which is used to

solve the non-convex optimization problems in our work.

2.3.3.4 Backtracking based iPiano

The case where we have only limited knowledge about the objective function occurs more

frequently. It can be very challenging to estimate the Lipschitz constant of∇F beforehand.

Using backtracking the Lipschitz constant can be estimated automatically. The Lipschitz

constant at iteration n to n+ 1 must satisfy the following inequality

F (xn+1) ≤ F (xn) +
〈
∇F (xn), xn+1 − xn

〉
+
Ln
2
‖xn+1 − xn‖22 . (2.32)

Although, there are different strategies to determine Ln, the most common one is by

defining an increment variable η > 1 and looking for Ln ∈ {Ln−1, ηLn−1, η
2Ln−1, . . .}

minimal satisfying (2.32). Sometimes, it is also feasible to decrease the estimated Lipschitz

constant after a few iterations. A possible strategy is as follows: if Ln = Ln−1, then search

for the minimal Ln ∈ {η−1Ln−1, η
−2Ln−1, . . .} satisfying (2.32).

In Algorithm 3 we propose the iPiano algorithm with variable step sizes, which is

employed to solve the non-convex minimization problems in our work. In practice, we

make use of the following parameter settings:

L−1 = 1, η = 1.2, µ = 0.8, τ = 1.99(1− µ)/Ln .

In order to make use of possible larger step sizes in practice, we use a following trick: when

the inequality (2.32) is fulfilled, we decrease the evaluated Lipschitz constant Ln slightly

2.3. Solving the loss-specific problem 43

by setting Ln = Ln/1.05.

Algorithm 3 non-monotone inertial proximal algorithm for non-convex optimization
with backtracking (nmiPiano)

• Initialization: Choose β ∈ [0, 1), L−1 > 0, η > 1, and x0 ∈ domh and set x−1 = x0.

• Iterations (n ≥ 0): Update xn as follows:

xn+1 = (I + τn∂G)−1(xn − τn∇F (xn) + µ(xn − xn−1)) , (2.33)

where Ln ∈ {Ln−1, ηLn−1, η
2Ln−1, . . .} is minimal satisfying

F (xn+1) ≤ F (xn) +
〈
∇F (xn), xn+1 − xn

〉
+
Ln
2
‖xn+1 − xn‖22 (2.34)

and τn < 2(1− µ)/Ln.

2.3.3.5 Ability to overcome spurious stationary points

Let us present some of the qualitative properties of the proposed algorithm. For this, we

consider to minimize the following simple problem

min
x∈RN

H(x) := F (x)+G(x) , F (x) =
1

2

N∑

i=1

log(1+γ(xi−u0
i)

2) , G(x) = λ‖x‖1 , (2.35)

where x is the unknown vector, u0 is some given vector, and λ, γ > 0 are some free

parameters. A contour plot and the energy landscape of H in the case of N = 2, λ = 1,

γ = 100, and u0 = (1, 1)> is depicted in Figure 2.2. It turns out that the function H

has four stationary points, i.e. points x̄, such that 0 ∈ ∇F (x̄) + ∂G(x̄). These points are

marked by small black diamonds.

Clearly the function F is non-convex but has a Lipschitz continuous gradient with

components

∇F (x)i = γ
xi − u0

i

1 + γ(xi − u0
i)

2

The Lipschitz constant of ∇F is easily computed as L = γ. The function G is non-

smooth but convex and the proximal operator with respect to G is given by the well-known

shrinkage operator

(I + τ∂G)−1(y) = max(0, |y| − τλ) · sgn(y) , (2.36)

44 Chapter 2. Learning optimized FoE models using loss-specific minimization

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(a) Contour plot of h(x) (b) Energy landscape of h(x)

Figure 2.2: Contours plot (left) and energy landscape (right) of the non-convex function
h shown in (2.35). The four diamonds mark stationary points of the function h.

where all operations are understood component-wise. Let us test the performance of the

proposed algorithm on the example shown in Figure 2.2. We set τ = 2(1−µ)/L. Figure 2.3

shows the results of using the iPiano algorithm for different settings of the extrapolation

factor µ. We observe that iPiano with µ = 0 is strongly attracted by the closest stationary

points while switching on the inertial term can help to overcome the spurious stationary

points. The reason for this desired property is that while the gradient might vanish at

some points, the inertial term µ(xn − xn−1) is still strong enough to drive the sequence

out of the stationary region.

Clearly, there is no guarantee that iPiano always avoids spurious stationary points.

iPiano has in general no chance to find the global optimum. However, our numerical

experiments suggest that in many cases, iPiano finds lower energies than the respective

algorithm without inertial term. A similar observation about the Heavy-ball method is

described in [11].

2.4 Refined training scheme

In Section 2.1, we have shown that the performance of loss-specific training scheme has

been underestimated in the previous work [115], and it is necessary to revisit it. In

this section, we revisit the loss-specific training approach for the FoE image prior model

learning problem, and propose a refined training algorithm. With our refined training

2.4. Refined training scheme 45

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 2.3: The first row shows the result of the iPiano algorithm for four different starting
points when using µ = 0, the second row shows the results when using µ = 0.75. While
the algorithm without inertial term gets stuck into unwanted local stationary points in
three of four cases, the algorithm with inertial term always succeeds to converge to the
global optimum.

−20 −15 −10 −5 0 5 10 15 20
0

1

2

3

4

5

6

ρ(z)

(a) Penalty function φ

−20 −15 −10 −5 0 5 10 15 20
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

ρ’(z)

(b) 1st-order derivative φ′

−20 −15 −10 −5 0 5 10 15 20
−0.5

0

0.5

1

1.5

2

ρ’’(z)

(c) 2nd-order derivative φ′′

Figure 2.4: The Lorentzian penalty function φ(z) = log(1 + z2) and its derivatives.

algorithm, we achieve a FoE prior model, which can significantly boost the performance

of the variational model.

As it is a revising study, we conducted a playback experiment using the same training

configurations, i.e.,

(1) The same penalty function φ(z) = log(1 + z2), as shown in Figure 2.4;

(2) The same model capacity - 24 filters of size 5× 5;

46 Chapter 2. Learning optimized FoE models using loss-specific minimization

Figure 2.5: Subset of the ground truth and the noisy data with noise level σ = 25.

(3) The same basis filters - “inverse” whitened PCA filters §, shown in Figure 2.6(a);

(3) The same 40 images for training and 68 images for performance evaluation.

We randomly sampled four 51 × 51 patches from each training image, resulting in a

total of 160 training samples. We then generated the noisy versions by adding Gaussian

noise with standard deviation σ = 25. Figure 2.5 shows an exemplary subset of the

training data together with the noisy version.

The major difference between our training experiment and previous one is the training

algorithm. In our refined training scheme, we employed (1) our proposed iPiano algorithm

to solve the lower-level problem with very high accuracy, and (2) L-BFGS to optimize the

model parameters, but in contrast, Samuel and Tappen used non-linear conjugate gradient

and plain gradient descent algorithm, respectively. In our refined training algorithm, we

used the normalized norm of the gradient, i.e., ‖∇xE(x∗)‖2√
N

≤ εl (N is the pixel number of

§The PCA filters are generated from natural image patches of size 5× 5.

2.4. Refined training scheme 47

(a) Reduced PCA5×5 filters (b) Reduced DCT5×5 filters

Figure 2.6: Two exploited basis filters.

the training patch) as the stopping criterion for solving the lower-level problem. In our

training experiment, we set εl = 10−5 (gray-value in range [0 255]), which implies a very

accurate solution.

Based on this training configuration, we learned 24 filters of size 5×5, then we applied

them to the task of image denoising to estimate the inference performance using the same

68 test images. Finally, we achieved an average PSNR value of 28.51dB for noise level

σ = 25, which is significantly superior to previous result of 27.86dB in [115].

We believe that the major reason lies in our refined training algorithm where we solve

the lower-level problem with very high accuracy.

To make this argument more clear, we need to eliminate the possibility of training

dataset, because we did not exploit exactly the same training dataset as previous work

(unfortunately we do not have their dataset at hand). Since the training patches were

randomly selected, we could run the training experiment multiple times by using different

training dataset. Finally, we found that the deviation of test PSNR values based on 68 test

images is within 0.02dB, which is negligible. Therefore, it is clear that training dataset is

not the reason for this improvement, and the only remaining reason is our refined training

scheme.

The influence of εl: To investigate the influence of the solution accuracy of the lower-

level problem εl more detailedly, we conducted a series of training and testing experiments

by setting εl to different magnitudes. Based on a fixed training dataset (160 patches of size

51 × 51) and 68 test images, we got the performance curves with respect to the solution

accuracy εl, as shown in Figure 2.7. From Figure 2.7, we can clearly see that it is indeed

48 Chapter 2. Learning optimized FoE models using loss-specific minimization

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

27.6

27.8

28

28.2

28.4

28.6

Solution accuracy of lower−level problem

T
es

t P
S

N
R

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1
2.5

2.6

2.7

2.8

2.9

3
x 10

5

T
ra

in
in

g
lo

ss

Test PSNR value
A guess at result of paper [15]
Training Loss value

Figure 2.7: Performance curves (test PSNR value and training loss value) vs. the solution
accuracy of the lower-level problem εl. It is clear that solving the lower-level problem with
higher accuracy is beneficial.

the high solution accuracy that helps us to achieve the above significant improvement.

Our finding suggests that solving the lower-level problem with higher accuracy pays

off. This finding is the main contribution of our refined loss-specific training algorithm.

We also make a guess how accurate Samuel and Tappen solve the lower-level problem

according to their result and our performance curve, which is marked by a red triangle

in Figure 2.7. The argument that higher solution accuracy of the lower-level problem is

helpful is explicable, the reason reads as follows.

The key aspect of our approach is to calculate the gradients of the loss function with

respect to the parameters ϑ. According to (2.25), there is a precondition to obtain accurate

gradients: both the lower-level problem and the inverse matrix of Hessian matrix HE must

be solved with high accuracy, i.e., we need to calculate a u∗ such that ∇uE(u∗) = 0 and

compute (HE)−1 explicitly. Since the Hessian matrix HE is highly sparse, we can solve

the linear system HEu = b efficiently with very high accuracy (we use the “backslash”

operator in Matlab). However, for the lower-level problem, in practice we can only solve

it to finite accuracy by using certain algorithms, i.e., ‖∇uE(u∗)‖2√
N

≤ εl. If the lower-level

problem is not solved to sufficient accuracy, the gradients ∇ϑL are certainly inaccurate

which will probably affect the training performance. This has been demonstrated in our

experiments.

Therefore, for the bi-level training framework, it is necessary to solve the lower-level

problem as accurately as possible, e.g., in our training we solved it to a very high accuracy

2.5. More training experiments 49

with εl = 10−5, and experimental results demonstrate that it pays off.

The influence of basis: In our playback experiments, we used the “inverse” whitened

PCA basis to keep consistent with previous work. However, we argue that the DCT basis

is a better choice, because meaningful filters should be mean-zero according to the findings

in [65], which is guaranteed by DCT basis without the constant basis vector, shown in

Figure 2.6(b). Therefore, we will exploit the DCT filters excluding the filter with uniform

entries from now on. Using this modified DCT basis, we retrained our model and we got

a test PSNR result of 28.54dB.

The influence of training dataset: To verify whether larger training dataset is

beneficial, we retrained our model by using (1) 200 samples of size 64 × 64 and (2) 200

samples of size 100×100, which is about two times and four times larger than our previous

dataset, respectively. Finally, we got a test PSNR result of 28.56dB for both cases. As

shown before, the influence of training dataset is marginal.

Based on 200 samples of size 64 × 64, the trained filters together with the associated

weights are shown in Figure 2.8, with which we can achieve an average PSNR result of

28.56dB over the test data set of 68 natural images.

(12.62,0.34) (11.77,0.26) (11.39,0.18) (11.14,0.41) (10.81,0.08) (10.49,0.11)

(10.22,0.13) (9.37,0.38) (8.07,0.45) (7.00,0.30) (6.75,0.47) (6.12,0.52)

(11.96,0.18) (11.48,0.15) (11.28,0.11) (11.08,0.30) (10.58,0.24) (10.33,0.21)

(9.77,0.36) (8.15,0.33) (7.11,0.48) (6.89,0.42) (6.29,0.39) (5.91,0.43)

Figure 2.8: 24 learned filters (5× 5). The first number in the bracket is the weight αi and
the second one is the norm of the filter.

2.5 More training experiments

Employing our refined loss-specific training scheme, we can train the FoE image prior

model with different configurations to investigate its properties. We conducted our training

experiments using the training images from the BSDS300 image segmentation database [4].

We used the whole 200 training images, and randomly sampled one 64 × 64 patch from

each training image, resulting in a total of 200 training samples. We then generated the

noisy versions by adding Gaussian noise with standard deviation σ = 25.

50 Chapter 2. Learning optimized FoE models using loss-specific minimization

In order to evaluate the performance of the learned analysis operators, we applied

them to image denoising experiments over a validation dataset consisting of 68 images

from Berkeley database [4]. This is a common denoising test dataset for natural images,

which was selected by Roth and Black [111]. The performance of an image denoising

algorithm varies greatly for different image contents. We therefore consider the average

performance over the whole test dataset as performance measurement.

2.5.1 Penalty functions

In order to investigate the importance of the penalty function, in this thesis, we consider

three penalty functions with different properties: (1) the `1 norm, which is a well-known

convex sparsity promoting function and has been successfully applied to a number of

problems in image restoration [41], (2) the log-sum penalty suggested in [20], log(1 + |z|),
which is a non-convex function and can enhance sparsity and (3) the smooth non-convex

function log(1+z2), which is derived from the student-t distribution and has been employed

as the penalty function for sparse representation [125], as well as in the original work of

the FoE model [111].

As our training model needs differentiable penalty functions, we have to use a small

parameter ε to regularize the absolute function |z|. The penalty functions and their

associated derivatives are given by

φ(z) =
√
z2 + ε2

φ′(z) = z/
√
z2 + ε2

φ′′(z) = ε2/(z2 + ε2)3/2

φ(z) = log(1 + z2)

φ′(z) = 2z/(1 + z2)

φ′′(z) = 2(1− z2)/(1 + z2)2,

(2.37)

and

φ(z) = log(1− ε+
√
z2 + ε2)

φ′(z) = z√
z2+ε2(1−ε+

√
z2+ε2)

φ′′(z) = ε2(1−ε)+(ε2−z2)
√
z2+ε2

(z2+ε2)3/2(1−ε+
√
z2+ε2)2

.

2.5.2 Training experiments

First of all, we focused training on filters of dimension 7 × 7, since our approach allowed

us to train larger filters than those trained in [52, 119], and normally larger filters can

involve more information of the neighborhood.

We started with a preliminary training experiment based on the penalty function

2.5. More training experiments 51

Figure 2.9: The DCT7×7 basis

log(1 + z2). We intended to learn an analysis operator A ∈ R48×49, i.e, 48 filters with

dimension 7× 7, and each filter is expressed as a linear combination of the DCT-7 basis,

which is shown in Figure 2.9. In principle, we can use any basis such as the identity

¶, PCA or ICA basis; however as described below, we need zero-mean filters, which is

guaranteed by the DCT filters after excluding the filter with constant entries.

For the preliminary experiment, we initialized the analysis operator using 48 random

filters having unified norms and weights, which are 0.01 and 1, respectively. Finally

training result shows that all the coefficients with respect to the first atom of DCT-7

(an atom with constant entries) are approximately equal to zero, implying that the first

atom isn’t necessary to construct the filters. Therefore the learned filters are undoubtedly

zero-mean because all the remaining atoms are zero-mean; this makes the analysis prior

based model Equation (2.7) invariant to constant functions. This result is coherent with

the findings in the work [65] that meaningful filters should be zero-mean. Hence we

explicitly exclude the first atom in DCT-7 to speed up the training process for the sequent

experiments.

We then conducted training experiments based on three different penalty functions. In

this paper, the regularization parameter ε in (2.37) was set to ε = 10−2. Smaller ε implies

a better fitting to the absolute function, but it makes the lower-level problem harder to

¶The identity basis contains filters formulated by unit vectors like (1, 0, 0, · · ·), (0, 1, 0, · · ·), · · ·

52 Chapter 2. Learning optimized FoE models using loss-specific minimization

Final training results and the average denoising PSNR results on 68 test images

φ(z) |z| log(1 + |z|) log(1 + z2) log(1 + z2) log(1 + z2) log(1 + z2) log(1 + z2) log(1 + z2)
fsz 7× 7 7× 7 7× 7 3× 3 5× 5 7× 7 9× 9 direct DCT-7
Nk 48 48 48 8 24 98 80 48
Train 440,350 389,860 388,053 437,788 396,250 386,270 384,788 407,556
Test 28.04 28.64 28.66 28.13 28.56 28.68 28.70 28.47

Table 2.3: Summary of the final training loss values for different model capacities and
the corresponding average denoising PSNR results based on 68 test images with σ = 25
Gaussian noise. In the table, fsz denotes the filter size, Nk is the number of filters, Train
means the final loss value in the training and Test signifies the average PSNR value in the
test.

solve and the training algorithm fail.

As in the preliminary experiment, we also learned 48 filters. We initialized the filters

using the reduced DCT-7 basis with unified norms and weights. The optimal analysis

operators learned by using three different penalty functions are shown in Figure 2.10. The

final loss function values (normalized by the number of training images) of these three

experiments are presented in Table 2.3 (first three columns), together with the average

denoising PSNR results based on 68 test images with σ = 25 Gaussian noise.

As shown in Figure 2.10, the learned filters present some special structures. We can

find high-frequency filters as well as derivative filters including the first derivatives along

different directions, the second and higher-order derivatives. These filters make the analy-

sis prior based model (2.7) a higher-order model which is able to capture the structures in

natural images that cannot be captured by using only the first derivatives as in the total

variation based methods.

In our training model, the size and the number of filters are free parameters; thus

we can train filters of various sizes and numbers. Our current implementation is an

unoptimized Matlab code. The training time for 48 filters of size 7× 7 was approximately

24 hours on a server (Intel X5675, 3.07GHz), 98 filters of size 7× 7 took about 80 hours.

However, the training time for larger filter size 9 × 9 was much longer; it took about

20 days. Fortunately, the training procedure is off-line; thus the training time does not

matter too much in practice.

2.5.3 The influence of the penalty function

From Table 2.3, we can see that the results obtained by two non-convex penalty functions,

log(1+|z|) and log(1+z2) are very similar; however, there is a great improvement compared

2.5. More training experiments 53

(8.39,0.32) (8.00,0.03) (8.00,0.03)

(7.97,0.06) (7.93,0.11) (7.89,0.10)

(7.39,0.07) (7.30,0.39) (6.91,0.28)

(6.03,0.42) (4.66,0.39) (3.37,0.67)

(8.00,0.05) (8.00,0.01) (8.00,0.02)

(7.97,0.04) (7.92,0.18) (7.82,0.18)

(7.37,0.29) (7.26,0.09) (6.51,0.21)

(5.60,0.39) (4.25,0.47) (3.25,0.45)

(8.00,0.02) (8.00,0.01) (8.00,0.02)

(7.97,0.10) (7.91,0.38) (7.74,0.13)

(7.36,0.29) (7.21,0.23) (6.49,0.24)

(5.07,0.48) (4.16,0.51) (3.20,0.71)

(8.00,0.04) (8.00,0.02) (7.99,0.03)

(7.94,0.04) (7.89,0.13) (7.72,0.33)

(7.35,0.24) (7.02,0.44) (6.31,0.25)

(4.83,0.48) (3.38,0.78) (3.20,0.82)

(a) filters learned by using the penalty function log(1 + z2)

(12.26,0.12) (12.19,0.18) (12.16,0.09)

(12.15,0.10) (12.12,0.09) (12.12,0.10)

(12.07,0.14) (12.04,0.13) (11.98,0.08)

(11.91,0.13) (11.63,0.05) (11.02,0.12)

(12.20,0.21) (12.18,0.08) (12.16,0.10)

(12.13,0.10) (12.12,0.15) (12.11,0.09)

(12.07,0.08) (12.02,0.07) (11.96,0.11)

(11.87,0.18) (11.60,0.12) (10.98,0.12)

(12.19,0.13) (12.17,0.18) (12.15,0.12)

(12.13,0.09) (12.12,0.10) (12.10,0.13)

(12.07,0.08) (12.01,0.09) (11.93,0.11)

(11.87,0.09) (11.57,0.11) (10.88,0.16)

(12.19,0.13) (12.17,0.12) (12.15,0.12)

(12.12,0.10) (12.12,0.13) (12.08,0.08)

(12.04,0.16) (11.99,0.13) (11.93,0.12)

(11.69,0.11) (11.13,0.08) (10.67,0.22)

(b) filters learned by using the penalty function log(1 + |z|)

(5.08,0.25) (5.06,0.23) (5.03,0.21)

(5.01,0.19) (4.99,0.17) (4.98,0.15)

(4.97,0.13) (4.96,0.07) (4.95,0.10)

(4.95,0.09) (4.94,0.11) (4.93,0.07)

(5.06,0.24) (5.05,0.23) (5.02,0.20)

(5.01,0.19) (4.99,0.16) (4.98,0.15)

(4.97,0.13) (4.95,0.11) (4.95,0.05)

(4.95,0.11) (4.94,0.09) (4.93,0.08)

(5.06,0.24) (5.04,0.22) (5.02,0.20)

(5.00,0.19) (4.98,0.16) (4.97,0.14)

(4.96,0.06) (4.95,0.11) (4.95,0.10)

(4.94,0.09) (4.94,0.09) (4.93,0.06)

(5.06,0.24) (5.04,0.22) (5.02,0.20)

(4.99,0.17) (4.98,0.15) (4.97,0.14)

(4.96,0.12) (4.95,0.11) (4.95,0.10)

(4.94,0.06) (4.94,0.08) (4.93,0.05)

(c) filters learned by using the penalty function |z|

Figure 2.10: 48 filters of size 7×7 learned by using different penalty functions. Each filter
is shown with the corresponding norm and weight. The first number in the bracket is the
weight αi and the second one is the norm of the filter.

54 Chapter 2. Learning optimized FoE models using loss-specific minimization

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

2

4

6

8

10

-log PDF
log(1 + z2)
log(1 + |z|)
|z|

Figure 2.11: Negative log probability density function (PDF) of the filter response of a
learned 7× 7 filter applied to natural images. Note that non-convex functions log(1 + |z|)
and log(1 + z2) provide much better fits to the heavy tailed shape of the true density
function, compared to the convex function |z|.

to the convex `1 penalty function. The reason is as follows.

It is well known that the probability density function (PDF) of the responses of zero-

mean linear filters (e.g., DCT filters) applied to natural images exhibit heavy tailed distri-

butions [65]. Figure 2.11 shows the negative log PDF of the first filter in Figure 2.10(a)

applied to natural images together with different model fits. We can clearly see that two

non-convex functions, log(1 + |z|) and log(1 + z2) both provide an almost perfect fit to the

heavy tailed shape of the true density function. The convex function |z| presents a much

worse fitting, however. Therefore, a suitable penalty function is crucial for the analysis-

prior based model. In general, in order to model the heavy tailed shape of the true PDF,

a non-convex function is required.

In order to further investigate how important the non-convex penalty function is for

the analysis prior based model, we considered an analysis model consisting of 48 fixed and

predefined filters (DCT-7 filters excluding the filter with uniform entries) and making use

of the log(1 + z2) penalty function. We only optimized the norm and weight of each filter

2.5. More training experiments 55

by using our bi-level training algorithm. The training loss value and the denoising test

result of this model are shown in Table 2.3 (the sixth column entitled “direct DCT-7”).

The image denoising test result is surprisingly good, even though this analysis model only

utilizes a predefined analysis operator DCT-7. We will see in Table 3.1 of Section 3.1 that

the performance of this model is already on par with the currently best analysis operator

learning model - GOAL [60], which involves much more carefully trained filters. We believe

that the superiority of our model lies in the non-convex penalty function log(1 + z2).

2.5.4 The influence of the number of filters

In previous work of analysis operator learning [60, 112, 137], the authors were interested in

the over-complete case, where the number of filters is larger than the dimension of filters.

Clearly our learned analysis operator in Figure 2.10 is under-complete. In order to investi-

gate the influence of the over-complete property, we also conducted a training experiment

for the over-complete case (A ∈ R98×49) based on the penalty function log(1 + z2). We

initialized the analysis operator A using 98 random zero-mean filters. The performance of

this over-complete case is presented in Table 2.3.

From Table 2.3, one can see that the improvement achieved by over-complete analysis

operator is marginal. Therefore for the analysis model, under-complete operators already

work sufficiently well. An increase of the number of filters can not bring significant im-

provements, while it will clearly increase the training time and inference time.

2.5.5 The influence of filter size

Intuitively the size of filters should be an important factor for the analysis model. In

order to investigate the influence of filter size, we conducted training experiments for

several different analysis models, where the filter size varies from 3 × 3 to 9 × 9. The

training and evaluation results of these models are presented in Table 2.3 and Figure 2.12.

One can see that increasing the filter size yields some improvements. However, the

performance is close to saturation when the filter size is increasing to 9× 9. The improve-

ment brought by increasing the filter size to 9× 9 is negligible. This implies that we can

not expect large improvements by increasing the filter size to 11× 11 or even larger.

2.5.6 The robustness of our training scheme

As our training model (2.21) is a non-convex optimization problem, we can only find

stationary points. Thus, a natural question about the initialization arises. We did have

56 Chapter 2. Learning optimized FoE models using loss-specific minimization

3 4 5 6 7 8 9
28

28.5

29

filter size

T
es

t P
S

N
R

3 4 5 6 7 8 9
3.5

4

4.5
x 10

5

T
ra

in
in

g
lo

ss

Test PSNR value
Training Loss value

Figure 2.12: Performance curves (test PSNR value and training loss value) vs. the filter
size. One can see that generally larger filter size can yield some improvements, but the
performance is close to saturation when the filter size is increasing to 9× 9.

experiments for different initializations, such as random initialization. The final learned

analysis operators are surely different, but all of them corresponds to almost the same

training loss function, which is the goal of our optimization problem. In addition, these

operators perform similarly in the evaluation experiments.

Another issue about the robustness of our training scheme is the influence of the

training dataset. Since the training patches were randomly selected, we could run the

training experiment multiple times by using a different training dataset. Finally, we only

found a negligible difference between the test PSNR values based on 68 test images.

In summary, even though our training is built on a relative small training data set (200

samples of size 64× 64, roughly 0.8 million pixels), the trained analysis prior model (i.e.,

FoE image prior model or image regularizer) works quite well and it is reliable.

2.6 Discussion

In this chapter, we revisited the loss-specific training approach for the FoE image prior

model. This training strategy is defined as a bi-level optimization problem, and was first

proposed by Samuel and Tappen in [115]. We were motivated to revisit it by using a refined

training algorithm, where we solved the lower-level problem with higher accuracy. It turns

out that we have achieved significant improvements relative to the previous work in [115],

i.e., the performance of the loss-specific training was indeed undervalued in previous work.

We argued that the major reason lies in the solution accuracy of the lower-level problem

2.6. Discussion 57

in the bi-level framework, and we have demonstrated that solving the lower-level problem

with higher accuracy is beneficial.

We also have built the link between the investigated FoE image prior model and the

recently proposed analysis operator learning model. We expressed our insights into the

analysis prior model. We proposed to go beyond existing patch-based models, and to

exploit the framework of the FoE model to define a image prior over the entire image,

rather than image patches. Then we pointed out that the image based analysis model

is equivalent to the FoE model. Based on this conclusion, we have introduced a bi-level

training approach (i.e., loss-specific training) for analysis operator learning. By using

our training framework, we have carefully investigated the effect of different aspects of

the analysis prior model including the filter size, the number of filters and the penalty

function. Numerical results have demonstrated that the penalty function is the most

important factor for this model.

In order to efficiently solve the lower-level problem, which is a non-convex optimiza-

tion problem, in the bi-level learning framework, we have proposed a fast non-convex

optimization algorithm called iPiano. The iPiano algorithm is applicable for a class of

non-convex problems, which are composed of a differentiable (possibly non-convex) and a

convex (possibly non-differentiable) function. The algorithm combines forward-backward

splitting with an inertial force called heavy ball method.

For future work, focusing on generic prior of natural images, we expect that our learned

analysis model could be improved potentially in two aspects: (1) consider more flexible

penalty function. In our current model, the penalty function is fixed the same for every

filter. If we free the shape of the penalty function, our model will possess more freedom for

optimization, which might increase the performance. A feasible way to consider alterable

penalty function is to make use of GSMs prior [119]. (2) make use of larger training

dataset. Our training is conducted based on 200 training samples, which is only a very

small part of the natural images. Consequently, the learned filters may get over-fitting

to this training dataset. However, our current training scheme is not available for large

training dataset, e.g., ∼ 106, because it needs to solve the lower-level problem for each

training sample. Feasible methods may include making use of stochastic optimization.

In the next chapter, we will apply the learned FoE image regularizations to various

image restoration problems, beyond the task of Gaussian denoising, to evaluate the per-

formance of the learned image priors.

Chapter 3

Applications of the trained image

regularizers

Contents

3.1 Image denoising . 60

3.2 JPEG artifacts suppression . 96

3.3 Other image restoration problems 113

3.4 Discussion . 123

In the last chapter, we presented our refined loss-specific training scheme to learn an

image regularizer (i.e., an image prior model). An important question for a learned prior

model is how well it generalizes. To evaluate this, we directly applied the learned image

regularizers trained based on image Gaussian denoising task to various image restora-

tion problems such as image deconvolution, inpainting, super-resolution, JPEG artifacts

suppression, as well as denoising task.

To start with, we first express the image restoration model by using the learned image

regularizer, which is formulated as:

u∗ = arg min
u
E(u) =

Nk∑

i=1

αiφ(Kiu) +D(u, f) , (3.1)

where the first term is the learned image regularizer, D(u, f) denotes the data fidelity

term, which varies for different image restoration problems.

This chapter is dedicated to various representative image restoration applications by

using the above variational model, involving our learned image regularizers.

59

60 Chapter 3. Applications of the trained image regularizers

3.1 Image denoising

Image denoising is an important pre-processing step for many vision applications. In this

section, we consider the image denoising task for different noise types, including additive

white Gaussian noise, impulse noise, and multiplicative noise (speckle noise) by using our

trained variational models. In order to evaluate the performance of the learned models,

we also comprehensively compare our results to recent state-or-the-art image denoising

algorithms, in terms of the denoising performance and the run time.

3.1.1 Gaussian noise reduction

Gaussian denoising aims to reconstruct the underlying clean image u from its noisy ob-

servation f = u + n, where n is assumed to be additive white Gaussian noise with zero

mean and variance σ2. The variational model with the learned image regularizer for the

Gaussian denoising problem is formulated as

u∗ = arg min
u
E(u) =

Nk∑

i=1

αiφ(Kiu) +
λ

2
‖u− f‖22 , (3.2)

where λ is a free parameter to be tuned for different noise levels.

3.1.1.1 Solving the corresponding minimization problems

A first question about the variational model Equation 3.2 is how to solve it efficiently.

Variational model with convex penalty function |z|: For the case of convex

penalty function φ(z) = |z|, we make use of the first-order primal-dual algorithm proposed

in [22] with the preconditioning technique described in [107]. In this case, the problem

Equation 3.2 can be rewritten as

arg min
u
‖Ku‖1 +

λ

2
‖u− f‖22 , (3.3)

where the matrix K is stacked in the form

K =

α1K1

α2K2

...

αNkKNk

.

3.1. Image denoising 61

The saddle-point formulation of the problem 3.3 is given as

min
u

max
p
〈Ku, p〉+

λ

2
‖u− f‖22 − δP (p) , (3.4)

where δP (p) is the convex conjugate of the function ‖z‖, which is given by the indicator

function over the the convex interval P = [−1, 1], namely, the indicator function δP (p) is

defined as

δP (p) =

0 if |pi| ≤ 1 ,

+∞ else where .
(3.5)

Now it is straightforward to exploit the primal-dual algorithm to solve the saddle-point

problem 3.4.

In order to apply the primal-dual algorithm, we need to solve two proximal mapping

subproblems (I + µ∂F ∗)−1 and (I + τ∂G)−1. By casting Equation 3.4 in the form of the

general saddle-point problem, we see that F ∗(p) = δP (p) and G(u) = λ
2‖u − f‖22. Since

F ∗ is the indicator function of a convex set, the proximal mapping operator reduces to

point-wise projection onto the interval P = [−1, 1]

p = (I + µ∂F ∗)−1(p̂) = arg min
p

‖p− p̂‖22
2µ

+ δP (p)⇐⇒ pq = max(−1,min(1, p̂q)) . (3.6)

The proximal mapping operator with respect to G poses simple point-wise quadratic prob-

lems. The solution is trivially given by

u = (I + τ∂G)−1(û) = arg min
u

‖u− û‖22
2τ

+
λ

2
‖u− f‖22 ⇐⇒ uq =

ûq + τλfq
1 + τλ

. (3.7)

Variational models with non-convex penalty functions: For the case of non-

convex penalty functions, e.g., φ(z) = |z| 12 , φ(z) = log(1 + |z|) and φ(z) = log(1 + z2), we

make use of our proposed iPiano algorithm for optimization∗.

As the iPiano algorithm is only applicable for smooth problems, we need to smooth

the first two penalty functions with a small parameter ε. The smoothed version is given

as φ(z) = (z2 + ε2)
1
4 and φ(z) = log(1− ε+

√
z2 + ε2), respectively.

Casting the problem 3.2 in the general form of the iPiano algorithm, we see that

F (u) =
Nk∑
i=1

αiφ(Kiu) and G(u) = λ
2‖u − f‖22. In order to make use of iPiano algorithm,

∗Note that, for the smooth problem, e.g., φ(z) = log(1 + z2) regularized model, we find that the
general optimization algorithm - LBFGS also works quite well. In addition, all the minimization problems,
including non-smooth cases, can be solved by using a very recently proposed iteratively reweighted convex
algorithm [99].

62 Chapter 3. Applications of the trained image regularizers

we need to calculate ∇uF (u), which is given by

∇uF (u) =

Nk∑

i=1

αiK
>
i φ
′(Kiu) . (3.8)

We find that explicitly constructing the huge matrix Ki and its transpose K>i is very

time consuming in practice. In order to speed up the inference algorithm, we consider

the filtering technique. We know Kiu is equivalent to the filtering process (ki ∗ u). In

the case of symmetric boundary condition exploited in our work, K>i v can be interpreted

as a convolution operation of image v with a kernel k̄i, which is obtained by mirroring

ki around its center point, only in the central region. In order to exactly calculate K>i v,

we need to carefully handle boundaries additionally. We implemented the computation of

K>i v with C programming, see the Appendix A.

Therefore, with the filtering technique, ∇uF (u) is accomplished by

∇uF (u) =

Nk∑

i=1

αik̄i ∗ φ′(ki ∗ u) . (3.9)

Note that ki ∗ u is accomplished with symmetric boundary condition, and k̄i ∗ v is also

accomplished with symmetric boundary condition, but additionally with careful consider-

ation of the boundaries.

In the iPiano algorithm, we also need to compute the proximal mapping operation

with respect to function G, which is the same as Equation 3.7. Then it is straightforward

to employ the iPiano algorithm to solve the non-convex optimization problem Equation

in 3.2.

3.1.1.2 Details of the evaluation experiments

As we know, image denoising performance of a specific method varies greatly for different

image contents, in order to make a fair comparison, we conducted denoising experiments

over a standard test dataset - 68 Berkeley test images identified by Roth and Black [111].

we used exactly the same noisy version of each test image for different methods and

different test images were added with distinct noise realizations. All results were computed

per image and then averaged over the test dataset.

We considered image denoising testing for various noise level σ = {15, 25, 50}. For

noise levels other than σ = 25, we need to tune the parameter λ in (3.2). An empirical

3.1. Image denoising 63

(a) noisy (20.17) (b) noisy (20.17) (c) noisy (20.17)

(d) log(1 + z2) (29.31) (e) log(1 + z2) (30.40) (f) log(1 + z2) (36.84)

(g) log(1 + |z|) (29.34) (h) log(1 + |z|) (30.28) (i) log(1 + |z|) (36.40)

(j) |z| (29.03) (k) |z| (29.50) (l) |z| (34.24)

Figure 3.1: Comparison of denoising results obtained by three different penalty functions
for noise level σ = 25. The numbers shown in the brackets refer to PSNR values with
respect to the clean images.

choice of λ is: σ = 15, λ = 25/σ × 1.15; σ = 50, λ = 25/σ × 0.8.

64 Chapter 3. Applications of the trained image regularizers

σ FoE GOAL
log(1 + z2)
7× 7, 48

log(1 + |z|)
7× 7, 48

|z|
7× 7, 48

log(1 + z2)
7× 7, 98

log(1 + z2)
9× 9, 80

log(1 + z2)
direct DCT-7

15 30.99 31.03 31.18 31.18 30.45 31.22 31.22 30.92
25 28.40 28.45 28.66 28.64 28.04 28.68 28.70 28.47
50 25.35 25.44 25.70 25.58 25.12 25.71 25.76 25.58

Table 3.1: Summary of denoising experiments results (average PSNR values) of analysis
prior based models on different noise levels.

3.1.1.3 Comparison of three different penalty functions

Table 3.1 shows the summary of denoising results achieved by different penalty functions.

One can clearly see that two non-convex penalty functions lead to similarly good results

and they significantly outperform the results of the convex function |z|. In additional,

we can also see that the over-complete operator can not improve the performance too

much and larger filters (9 × 9) can only achieve slightly better performance. Both of

these two models are more time consuming than the model of 48 filters for inference;

therefore, the learned model based on 48 filters of size 7 × 7 offers the best trade-off

between computational cost and performance.

In the following testing experiments, we only consider the model of 48 filters and

penalty function log(1 + z2). We prefer the penalty function log(1 + z2), in that it is

completely smooth, making the corresponding minimization problem easier to solve. We

present three denoising examples obtained by three different penalty functions in Fig-

ure 3.1.

3.1.1.4 Comparison to other analysis models

Our learned model is an analysis prior-based model, also a MRF-based system. In order to

rank our model among other analysis models, we compared its performance with existing

analysis models, including typical FoE models [8, 40, 52, 111, 115, 119] and the currently

published best analysis operator model - GOAL [60]. For the GOAL method, we made

use of the l0.4-norm penalty function |z|0.4, together with the learned analysis operator

Ω ∈ R98×49 provided by the authors. We also utilized the iPiano algorithm to solve the

corresponding minimization problem. We present image denoising results of considered

approaches over 68 test images with noise level σ = 25 in Table 3.2. One can see that

our model based on the penalty function log(1 + z2) (48 learned filters, 7× 7) has clearly

achieved the best performance among all the related approaches. The comparison with the

3.1. Image denoising 65

model potential training PSNR

5× 5 FoE ST&GLP. contrastive divergence 27.77[111]
3× 3 FoE GSMs contrastive divergence 27.95[119]
5× 5 FoE GSMs persistent contrastive divergence 28.40[52]
5× 5 FoE ST bi-level (truncated optimization) 28.24[8]
5× 5 FoE ST bi-level (truncated optimization) 28.39[40]
5× 5 FoE ST bi-level (implicit differentiation) 27.86[115]
7× 7 GOAL GLP geometric conjugate gradient 28.45[60]
7× 7 FoE ST bi-level (implicit differentiation) 28.66

Table 3.2: Summary of various analysis models and the average denoising results on 68
test images with σ = 25. We highlighted our result, as it is the best one.

best FoE [52] model and the latest analysis model GOAL for other noise levels is shown in

Table 3.1. For all the noise levels, our trained analysis model outperforms both of them

significantly.

An interesting result in Table 3.1 is that the performance of the direct DCT-7 model,

which only utilizes a predefined analysis operator DCT-7 (48 filters of size 7 × 7), is

already on par with the GOAL model, which involves much more carefully trained filters

(98 filters of size 7 × 7). For this direct DCT-7 model, we used the log(1 + z2) penalty

function, and only optimized the norms and weights of the filters using our bi-level training

algorithm. This result demonstrates the importance of non-convex penalty function and

the effectiveness of our bi-level training scheme.

As the analysis operator of GOAL model is trained using a patch-based model, we can

also use it in the manner of patch-averaging to conduct image denoising like K-SVD [42].

We embedded the learned analysis operator Ω into the patch-based analysis model (2.11),

and used it to denoise each patch extracted from an image. We also considered overlapped

windows and averaged the results in the overlapping regions to form the final denoised

image. Just as expected, we got a much inferior result (average PSNR 28.25 over 68 test

images) to the model formulated under the FoE framework (average PSNR 28.45).

3.1.1.5 Comparison to state-of-the-art methods

As mentioned in the preceding subsection, our opt-MRF model based on (1) the smooth

penalty function log(1+z2), and (2) 48 filters of size 7×7 offers the best trade-off between

computational cost and performance; therefore, from now on, we only consider the opt-

MRF with this specific configuration.

66 Chapter 3. Applications of the trained image regularizers

σ KSVD FoE GOAL BM3D LSSC EPLL
log(1 + z2)
7× 7, 48

log(1 + |z|)
7× 7, 48

|z|
7× 7, 48

15 30.87 30.99 31.03 31.08 31.27 31.19 31.18 31.18 30.45
25 28.28 28.40 28.45 28.56 28.70 28.68 28.66 28.64 28.04
50 25.17 25.35 25.44 25.62 25.72 25.67 25.70 25.58 25.12

Table 3.3: Summary of denoising experiments results (average PSNR values) of our opt-
MRF models (48 filters of size 7×7, different penalty functions) and state-of-the-art image
denoising algorithms. We highlighted the state-of-the-art results.

In order to evaluate how well our analysis models work for denoising task, we compared

their performance with leading image denoising methods, including three state-of-the-art

methods: (1) BM3D [36]; (2) LSSC [91]; (3) GMM-EPLL [143] along with three leading

generic methods: (4) a MRF-based approach, FoE [52]; (5) a synthesis sparse represen-

tation based method, KSVD [42] trained on natural image patches; and (6) the currently

published best analysis operator learning method, GOAL [60]. All implementations were

downloaded from the corresponding authors’ homepages. We conducted denoising exper-

iments over 68 Berkeley test images with various noise levels σ = {15, 25, 50}. All results

were computed per image and then averaged over the number of images.

Table 3.3 shows the summary of results. One can see that our trained model based on

the penalty function log(1+z2) (48 learned filters, 7×7) outperforms three leading generic

methods and is on par with three state-of-the-art methods for any noise level. To the best

of our knowledge, this is the first time that a MRF model based on generic priors of natural

images has achieved such clear state-of-the-art performance. Figure 3.2 gives a detailed

comparison result between our learned analysis model and three state-of-the-art methods

over 68 test images for σ = 25. We can see that all the points surround the diagonal line

“y = x” closely, i.e., all considered methods achieve very similar results. Therefore, it is

clear that our learned analysis models based on non-convex penalty function is state-of-

the-art.

We present several denoising examples of the considered denoising methods in Fig-

ure 3.3 - Figure 3.6 for the noise level of σ = 25. As observed in a recent paper [68],

state-of-the-art denoising methods possess complementary strengths and failure modes,

namely, (1) FoE, having many visibly still noisy regions in the result image; (2) K-SVD,

also having visibly still noisy regions and over-smoothing in some parts; (3) BM3D and

LSSC, having some artifacts or patterns nonexistent in the clean image; (4) GMM-EPLL,

undesired spots in the smooth regions such as the sky or water surface; and (5) our opt-

3.1. Image denoising 67

22 24 26 28 30 32 34 36 38
22

24

26

28

30

32

34

36

38

PSNRs of our learned MRF model

P
S

N
R

s
 o

f
B

M
3

D
,G

M
M

−
E

P
L

L
 a

n
d

 L
S

S
C

BM3D

GMM−EPLL

LSSC

PSNR Averages
Ours: 28.66
BM3D: 28.56
LSSC: 28.70
GMM−EPLL: 28.68

Figure 3.2: Scatter plot of the PSNRs over 68 Berkeley images produced by our learned
log(1 + z2)-based analysis model, BM3D, GMM-EPLL and LSSC. A point above the
diagonal line means performance is better than our model.

MRF model and the analysis operator based model - GOAL, over-smoothing in highly

textured regions for some images. We highlight these typical failure modes by red el-

lipses in some denoised images.

It is worth to note that from the comparison in Figure 3.2, we see that even though our

learned opt-MRF model outperforms the BM3D algorithm in terms of average PSNR value,

there are two test images for which the BM3D algorithm performs much better. When

we inspect these two special test images, we find that they are images with significant

redundancy of local patterns. The denoising results of one of them is shown in Figure

3.7, where we can see that nonlocal methods, e.g., the BM3D and LSSC algorithm work

much better than the remaining local algorithms. In fact, this result is not surprising

because nonlocal models explicitly exploit the nonlocal self-similarity across the image,

and therefore they can benefit from the repeated local patterns.

We also present some illustrative examples of image denoising at other noise levels,

e.g., σ = 15 and σ = 50 in Figure 3.8 - Figure 3.10.

68 Chapter 3. Applications of the trained image regularizers

(a) clean image (b) σ = 25 (20.17) (c) KSVD (29.13)

(d) FoE (29.15) (e) BM3D (29.52) (f) LSSC (29.47)

(g) GMM-EPLL (29.50) (h) GOAL (29.30) (i) log(1 + z2) (29.48)

Figure 3.3: Denoising results for the test image “water-castle” at noise level σ = 25. Red ellipses
highlight the typical failure modes of considered approaches.

3.1. Image denoising 69

(a) clean image (b) σ = 25 (20.17) (c) KSVD (26.17)

(d) FoE (26.44) (e) BM3D (26.24) (f) LSSC (26.54)

(g) GMM-EPLL (26.52) (h) GOAL (26.29) (i) log(1 + z2) (26.48)

Figure 3.4: Denoising results for the test image “goat” at noise level σ = 25. Red ellipses highlight the
typical failure modes of considered approaches.

70 Chapter 3. Applications of the trained image regularizers

(a) clean image (b) σ = 25 (20.17)

(c) KSVD (27.62) (d) FoE (27.82)

(e) BM3D (27.58) (f) LSSC (27.91)

(g) GMM-EPLL (28.02) (h) GOAL (27.75)

(i) log(1 + z2) (27.97)

Figure 3.5: Denoising results for a test image at noise level σ = 25. Red ellipses highlight the typical
failure modes of considered approaches.

3.1. Image denoising 71

(a) clean image (b) σ = 25 (20.17)

(c) KSVD (36.19) (d) FoE (35.67)

(e) BM3D (36.78) (f) LSSC (35.58)

(g) GMM-EPLL (36.47) (h) GOAL (36.45)

(i) log(1 + z2) (36.84)

Figure 3.6: Denoising results for the test image “airplane” at noise level σ = 25. Red ellipses highlight
the typical failure modes of considered approaches.

72 Chapter 3. Applications of the trained image regularizers

(a) clean image (b) σ = 25 (20.17) (c) KSVD (32.20)

(d) FoE (31.44) (e) BM3D (33.24) (f) LSSC (33.36)

(g) GMM-EPLL (32.33) (h) GOAL (31.82) (i) log(1 + z2) (32.27)

Figure 3.7: A special test image with a lot of repeated local patterns, e.g., the t-shirt region, for which
the nonlocal models (e.g., BM3D and LSSC) generally perform better than the local models (e.g., ours),
as they can benefit from this kind of nonlocal self-similarity.

3.1. Image denoising 73

(a) clean image (b) σ = 15 (24.61)

(c) KSVD (31.37) (d) FoE (31.73)

(e) BM3D (31.81) (f) LSSC (31.85)

(g) GMM-EPLL (31.81) (h) GOAL (31.80)

(i) log(1 + z2) (31.77)

Figure 3.8: Denoising results for test image “squirrel” for noise level σ = 15.

74 Chapter 3. Applications of the trained image regularizers

(a) clean image (b) σ = 15 (24.61)

(c) KSVD (31.61) (d) FoE (31.72)

(e) BM3D (31.75) (f) LSSC (31.96)

(g) GMM-EPLL (31.99) (h) GOAL (31.69)

(i) log(1 + z2) (31.88)

Figure 3.9: Denoising results for test image “elephant” for noise level σ = 15.

3.1. Image denoising 75

(a) clean image (b) σ = 50 (14.15)

(c) KSVD (23.94) (d) FoE (23.87)

(e) BM3D (25.03) (f) LSSC (25.23)

(g) GMM-EPLL (24.73) (h) GOAL (24.32)

(i) log(1 + z2) (24.78)

Figure 3.10: Denoising results for test image “AD” for noise level σ = 50.

76 Chapter 3. Applications of the trained image regularizers

KSVD FoE BM3D LSSC EPLL GOAL ours

T(s) 30 1600 4.3 700 99 112 12 (0.138)
psnr 28.28 28.40 28.56 28.70 28.68 28.45 28.66

Table 3.4: Typical run time of the denoising methods for a 481 × 321 image (σ = 25)
on a server (Intel X5675, 3.07GHz). The highlighted number is the run time of GPU
implementation.

3.1.1.6 Comparison of run time

Our opt-MRF model has the advantage of simplicity, since it is a local (without block

matching), only involves 48 filters (relatively few filters) and uses MAP estimate for in-

ference (easy to implement). Our model only contains the operation of convolution of

some filters with an image; therefore it is well-suited to GPU parallel computation. Our

GPU implementation using CUDA based on NVIDIA Geforce GTX 780Ti accelerates the

inference procedure significantly; for a denoising task with σ = 25, typically it takes 0.21s

for image size 512×512, 0.138s for 481×321 and 0.078s for 256×256, i.e., using our GPU

based implementation, image denoising can be conducted in near real-time at 12.8fps for

256× 256 image sequence with clear state-of-the-art performance.

In contrast, GSM-EPLL is more involved (decomposing 200 64×64 covariance matrices

into its eigenvectors, one can get 12,800 filters), and the inference is more time consuming;

BM3D is an non-local (need for block-matching) specialized denoising approach, which is

also more involved (3D collaborative filtering); LSSC is an image based method (training

dictionary on-line based on noisy image itself, thus time consuming) and also more involved

(e.g., 512 9× 9 dictionary atoms); K-SVD, trained on natural image patches, is also more

involved (e.g., 256 8 × 8 dictionary atoms); the inference of FoE model using MMSE

estimate is quite slow because of Gibbs sampling.

In Table 3.4, we show the average run time of the considered denoising methods on

481× 321 images for the case of noise level σ = 25. In this case, the iPiano algorithm typ-

ically takes 40 iterations to arrive at the solution. For heavier noise levels, e.g., σ = 50, it

generally requires more iterations, typically ∼100 iterations. Therefore, the corresponding

computation will linearly increase.

Considering the speed and quality of our model, it is a perfect choice of the base

methods in the image restoration framework proposed in [68], which leverages advantages

of existing methods.

3.1. Image denoising 77

78 Chapter 3. Applications of the trained image regularizers

Figure 3.11: Denoising results of realistic noisy images using our opt-MRF model. Left:
noisy images; Right: denoised images.

3.1. Image denoising 79

3.1.1.7 Realistic noise removal experiments

In this subsection, we present several image denoising experiments for realistic noise.

Normally, images taken under the bad lighting condition will contain some noise, especially

for images captured by a cell phone camera. Besides, images from old films are also rather

noisy; images may become noisy (degraded) after recoding or transmission. We collected

several realistic noisy (degraded) images, and tried to denoise them using our opt-MRF

model, see Figure 3.11 for some examples. For color image, we process R, G, B channels

separately. Visual inspection shows that our opt-MRF model also works very well for

realistic noise removal application.

3.1.1.8 Discussion

In this subsection, we have evaluated the performance of the learned image regulariza-

tions, which are based on three different penalty functions, over the standard Gaussian

denoising problem. For the convex penalty regularized variational model, we employed the

primal-dual algorithm for optimization, and for the non-convex penalty regularized model,

the iPiaon algorithm was exploited. Numerical experiments have demonstrated that the

image regularizers based non-convex penalty functions clearly outperform those models

based on convex penalty functions. In addition, non-convex penalty functions regularized

variational models have achieved the best performance among the MRFs systems, and

have been on par with state-of-the-art denoising algorithms.

The resulting variational model involving the learned image regularizations have an

additional advantage of simplicity, as it only contains convolution operations of an image

with a set of linear filters. Therefore, it is well-suited for GPU parallel computation. The

GPU implementation based on CUDA programming significantly accelerates the inference

procedure, with which we can conduct the image denoising task in near real time at 12.8fps

for image size 256× 256, meanwhile with state-of-the-art performance.

3.1.2 Impulse noise

Salt-and-pepper noise (also known as impulse noise) is a form of noise sometimes seen on

images. It presents itself as sparsely occurring white and black pixels, i.e., strong outliers.

In order to deal with strong outliers, a robust data term, which is less sensitive to the

outliers, is typically required. In practice, the `1 data term seems a good choice. As a

consequence, the resulting variational model based on our learned image regularizers is

80 Chapter 3. Applications of the trained image regularizers

defined as

u∗ = arg min
u
E(u) =

Nk∑

i=1

αiφ(Kiu) + λ‖u− f‖1 , (3.10)

which also can be solved by the iPiano algorithm. We refer this model as the MRF-`1

model.

Casting the minimization problem of Equation 3.10 in the general form of the iPiano

algorithm, we see that F (u) =
Nk∑
i=1

αiφ(Kiu) and G(u) = λ‖u− f‖1. The gradient of F (u)

with respect to u is given as in the preceding subsection. The proximal mapping operator

with respect to G poses simple point-wise soft shrinkage operation, which is given as

u = (I + τ∂G)−1(û)⇐⇒ uq = fq + max(0, |ûq − fq| − τλ) · sign(ûq − fq) . (3.11)

We directly apply the learned Student-t regularized image prior model (48 filters of

size 7×7) to the impulse denoising problem. A denoising example is shown in Figure 3.12

together with the result of median filtering method. From Figure 3.12, one can see that

the MRF-`1 model generally works quite well for the impulse denoising problem. However,

we also find that the MRF-`1 model tends to generate somehow over smoothing results in

the highly textured regions, i.e., the filters trained in the presence of Gaussian noise does

not generalize so well for the impulse noise.

In order to alleviate these imperfection, we propose to train the filters directly based

on the MRF-`1 model, i.e., we retrain the image regularizer by using the following training

model directly based on the training samples corrupted by salt and pepper noise.

min
α≥0,k

L(u∗(α, k)) =
S∑
s=1

1
2‖u∗s(α, k)− gs‖22

where u∗s(α, k) = arg min
u

Nk∑
i=1

αiφ(Kiu) + ‖u− fs‖1,
(3.12)

where the penalty function is given as φ(z) = log(1 + z2). As in our training scheme, we

need a smooth lower-level problem, and therefore, we make use of a small parameter to

smooth the `1 data term. The revised lower-level problem is given as

arg min
u

Nk∑

i=1

αiφ(Kiu) + ‖u− f‖1,ε, (3.13)

where ψ(z) = |z|1,ε =
√
z2 + ε2 with ε = 10−2 in our experiment. For this revised lower-

level problem, the iPiano algorithm is not the best choice, as it is not easy to compute

3.1. Image denoising 81

(a) Clean image (b) Noisy image (20% salt and pepper noise)

(c) MRF-`1 model (25.70) (d) Median filtering (22.89)

Figure 3.12: Image denoising in the case of impulse noise for an image corrupted by 20%
salt and pepper noise by using (1) our MRF-`1 model incorporating filters trained in the
case of Gaussian noise and (2) median filtering. Note that the MRF-`1 model leads to
somehow over smoothing results in the highly textured regions as indicated in the image.

the solution for the proximal mapping operator with respect to the smoothed `1 function.

Therefore, we exploit the L-BFGS algorithm to solve this problem as it is a smooth

optimization problem. For the L-BFGS algorithm, we need to calculate the gradient of

energy functional, which is given as

∂E

∂u
=

Nk∑

i=1

αiK
>
i φ
′(Kiu) + ψ′(u− f), (3.14)

82 Chapter 3. Applications of the trained image regularizers

Figure 3.13: Subset of the training image pairs: the ground truth and the noisy image
corrupted by 25% salt and pepper noise.

(8.07,0.17) (8.05,0.15) (8.03,0.13) (8.02,0.12) (8.02,0.11) (8.00,0.10)

(8.00,0.09) (7.99,0.07) (7.98,0.06) (7.97,0.08) (7.97,0.05)

(7.96,0.05) (7.96,0.03) (7.95,0.03) (7.95,0.03) (7.94,0.04)

(8.06,0.16) (8.05,0.14) (8.03,0.13) (8.02,0.11) (8.01,0.11)

(8.00,0.09) (7.99,0.08) (7.99,0.10) (7.98,0.07) (7.97,0.08) (7.96,0.04)

(7.96,0.02) (7.95,0.01) (7.95,0.01) (7.95,0.06) (7.94,0.02)

(8.06,0.16) (8.04,0.14) (8.02,0.13) (8.02,0.11) (8.01,0.12)

(8.00,0.11) (7.99,0.08) (7.99,0.08) (7.97,0.05) (7.97,0.09)

(7.96,0.07) (7.96,0.01) (7.95,0.01) (7.95,0.01) (7.94,0.04) (7.94,0.07)

Figure 3.14: 48 learned filters of 7× 7 in the case of `1 data term.

where ψ′(u− f) = (ψ′((u− f)1, · · · , (u− f)p))
> ∈ RN with ψ′(z) = z√

z2+ε2
. In this case,

the Hessian matrix related to the energy functional E, which is required in the training

3.1. Image denoising 83

(a) With Gaussian filters (25.70) (b) With newly trained filters (25.65)

Figure 3.15: A performance comparison of the MRF-`1 model with different image regu-
larization models for the impulse noise removal problem. The left one is obtained by using
the filters trained in the case of Gaussian noise; the right one is generated by using the
filters directly trained in the case of impulse noise. We see that even though both methods
achieve similar PSNR values, the model with the specialized filters can better preserve the
image structures, e.g., line-like structures.

process, is given as

HE(u) =

Nk∑

i=1

αiK
>
i DiKi + ψ′′(u− f), (3.15)

where ψ′′(u−f) = diag (ψ′′((u− f)1, · · · , (u− f)p)) ∈ RN×N with ψ′′(z) = ε2/(z2+ε2)3/2.

We set up the training dataset with the same clean samples in the training of Gaussian

noise, but we replaced the noisy samples with 25% impulse noise corrupted images. An

exemplary subset of the training samples are shown in Figure 3.13.

We still concentrated on the model capacity of 48 filters of size 7 × 7. The learned

filters are shown in Figure 3.14. Then we applied this newly trained image regularizer to

the impulse noise removal problem. The result with this new image regularization model

is shown in Figure 3.15. We see that even though both methods achieve similar PSNR

values, the model with the specialized filters can better preserve the image structures,

e.g., line-like structures. Therefore, for the case of impulse noise removal problem, the

specialized training helps to alleviate the over-smoothing problem in the MRF-`1 model

with filters trained in the case of Gaussian noise.

84 Chapter 3. Applications of the trained image regularizers

3.1.3 Multiplicative noise reduction (despeckling)

In this subsection we propose a novel variational model for multiplicative noise reduction

based on the FoE image prior model. The resulting model corresponds to a non-convex

minimization problem, which can be efficiently solved by our proposed non-convex opti-

mization algorithm - iPiano. Experimental results based on synthetic speckle noise and

real synthetic aperture radar (SAR) images suggest that the performance of our proposed

method is on par with the best published despeckling algorithm. Besides, our proposed

model comes along with an additional advantage, that the inference is extremely efficient.

Our GPU based implementation takes less than 1s to produce state-of-the-art despeckling

performance.

3.1.3.1 Introduction

Images generated by coherent imaging modalities, e.g., synthetic aperture radar (SAR),

ultrasound and laser imaging, inevitably come with multiplicative noise (also known as

speckle), due to the coherent nature of the scattering phenomena. The presence of this

noise prevents us from interpreting valuable information of images, such as textures, edges

and point target, and therefore speckle reduction is often a necessary preprocessing step

for successful use of classical image processing algorithms involving image segmentation

and classification. The topic of speckle noise reduction (despeckling) has attracted a lot

of research attention since early 1980s [72, 77]. At present it has been extensively studied.

Roughly speaking, the major despeckling techniques fall into four categories: filtering

based methods in (1) spatial domain; or (2) a transform domain, e.g., wavelet domain; (3)

nonlocal filtering and (4) variational methods.

Early filtering techniques in the spatial domain are developed under the minimum

mean square error (MMSE) criterion [77], and then progress to more sophisticated and

promising maximum a posterior (MAP) approaches [72]. Recently, the bilateral filtering

has also been modified for despeckling [81]. The emergence of wavelet transform in the

early of 1990s, opened the way to a new generation of despeckling techniques. There were

intensive studies of wavelet based despeckling approaches, see, for instance [5, 12] and

references therein.

Nonlocal approaches, which take the advantage of self-similarity commonly present

in natural as well as SAR images, have been already introduced to SAR despeckling

[34, 37, 103]. By taking into account the peculiar features of multiplicative noise, the

so-called SAR-BM3D algorithm [103], which is a SAR-oriented version of the well-known

3.1. Image denoising 85

BM3D algorithm [36], exhibits the best published despeckling performance at present.

The last class of methods are variational ones, which minimize some appropriate energy

functionals, consisting of a regularizer (also called image prior) and a data fitting term.

Up to now, the well-known total variation (TV) has been widely used as a regularizer

[7, 121, 140], and the total generalized variation (TGV) regularizer [18] also has been

investigated in a recent work [46].

Motivated by the results obtained by the FoE image prior regularized models in the

preceding subsection for the Gaussian denoising and impulse noise removal problems, it is

interesting to investigate the FoE prior based model for despeckling. In this subsection,

we propose a FoE prior based variational approach for speckle removal. Again we use the

iPiano algorithm to solve the corresponding minimization problem. Our proposed method

obtains strongly competitive despeckling performance w.r.t. the state-of-the-art method

- SAR-BM3D [103], meanwhile, preserve the property of high computational efficiency.

3.1.3.2 The variational model for despeckling

In our work, we propose FoE prior based variational models for speckle noise removal and

in particular for SAR images. We apply an efficient algorithm to solve the corresponding

optimization problems.

Given an observation image f corrupted by multiplicative noise, the FoE prior based

despeckling model is defined as the following energy minimization problem

û = arg min
u
E(u, f) = EFoE(u) +D(u, f) , (3.16)

where u is the underlying unknown image, the first term is the FoE prior model, and the

second part is the data fidelity term, derived from the multiplicative noise model.

The FoE prior utilized in our despeckling model: For the image despeckling

problem, we directly used the filters trained in the context of Gaussian denoising problem.

We exploited the FoE model with 48 filters of size 7×7 and the Lorentzian penalty function

trained based on the Gaussian noise level of σ = 15. The filters are shown in Figure 3.16.

Modeling of the data term: Let f be the observed SAR image amplitude, which

follows a Nakagami distribution depending on the underlying true image amplitude u, the

86 Chapter 3. Applications of the trained image regularizers

(0.44,1.89) (1.14,0.55) (0.68,0.84)

(0.55,0.95) (0.81,0.56) (0.27,1.54)

(0.27,1.31) (0.13,1.58) (0.08,1.57)

(0.02,1.60) (0.01,1.60) (0.01,1.60)

(0.48,1.56) (1.13,0.54) (0.71,0.79)

(0.79,0.64) (0.34,1.31) (0.37,1.13)

(0.71,0.49) (0.12,1.59) (0.08,1.56)

(0.02,1.60) (0.01,1.60) (0.01,1.60)

(0.35,2.12) (0.68,0.85) (0.45,1.22)

(0.63,0.78) (0.42,1.04) (0.34,1.19)

(0.25,1.32) (0.11,1.58) (0.03,1.57)

(0.02,1.60) (0.01,1.60) (0.01,1.60)

(1.25,0.59) (0.72,0.79) (0.42,1.26)

(0.50,0.97) (0.31,1.39) (0.29,1.36)

(0.20,1.32) (0.09,1.56) (0.03,1.60)

(0.01,1.60) (0.01,1.60) (0.00,1.60)

Figure 3.16: 48 learned filters of size 7 × 7 exploited in our despeckling model. The first
number in the bracket is the norm of the filter and the second one is the weight αi.

square root of the reflectivity [55]

p(f |u) =
2LL

Γ(L)u2L
f2L−1exp

(
−Lf

2

u2

)
, (3.17)

with L the number of looks of the image (i.e., number of independent values averaged)

and Γ is the classical Gamma function.

According to the Gibbs function, this likelihood leads to the following energy term via

E = −logp(f |u)

D(u, f) = L · (2logu+
f2

u2
) . (3.18)

Combining this data term with the FoE prior model, we arrive at the following variational

model

arg min
u>0

Nk∑

i=1

αiφ(ki ∗ u) +
λ

2

〈
2logu+

f2

u2
, 1

〉
, (3.19)

where 〈·, ·〉 denotes the common inner product. Note that the data term is not convex

w.r.t. u > 0, which will generally make the corresponding optimization problem harder to

solve.

There exists an alternative method to define a convex data term by using the classical

Csiszár I-divergence model [35]. Although the I-divergence data fitting term typically used

in the context of Poisson noise, this seemingly inappropriate data term performs very well

in the TV and TGV regularized variational models for despeckling [46, 121]. Therefore,

we also study this variant for data term modeling in this work. Following previous works

of modeling the SAR image intensity [46, 121], the I-divergence based data term for the

3.1. Image denoising 87

amplitude model is given by

D(u, f) =
λ

2
(u2 − 2f2logu) , (3.20)

which is strongly convex w.r.t. u for u > 0. Then the variational model involving this

convex data term is given by

arg min
u>0

Nk∑

i=1

αiφ(ki ∗ u) +
λ

2

〈
u2 − 2f2logu, 1

〉
. (3.21)

Solving the variational despeckling models: Due to the non-convexity of the

prior term, the proposed variational models impose generally very hard optimization prob-

lems, especially for the model (3.19) with a non-convex data term. In this work, we resort

to our proposed non-convex optimization algorithm - iPiano [97] to solve them.

The iPiano algorithm is designed for a structured non-smooth non-convex optimization

problem, which is composed of a smooth (possibly non-convex) function F and a convex

(possibly non-smooth) function G:

arg min
u
H(u) = F (u) +G(u) . (3.22)

Recall that the iPiano algorithm is an inertial force enhanced forward-backward splitting

algorithm with the following basic update rule

un+1 = (I + τ∂G)−1 (un − τ∇F (un) + µ(un − un−1)) , (3.23)

where τ and µ are the step size parameters.

For the model (3.19) with a non-convex data term, we can convert the data term to a

convex function via commonly used logarithmic transformation (i.e., w = logu). Therefore,

the minimization problem is rewritten as

arg min
w

Nk∑

i=1

αiφ(ki ∗ ew) +
λ

2

〈
2w + f2e−2w, 1

〉
, (3.24)

with u = ew. Casting (3.24) in the form of (3.22), we see that F (w) =
Nk∑
i=1

αiφ(ki ∗ew) and

G(w) = λ
2

〈
2w + f2e−2w, 1

〉
. In order to use the iPiano algorithm, we need to calculate

88 Chapter 3. Applications of the trained image regularizers

the gradient of F and the proximal map w.r.t. G. It is easy to check that

∇wF =

Nk∑

i=1

αiWK>i φ
′(Kie

w) ,

where Ki is an N ×N highly sparse matrix, implemented as 2D convolution of the image

u with filter kernel ki, i.e.,, Kiu⇔ ki ∗u, φ′(Kiu) = (φ′((Kiu)1), · · · , φ′((Kiu)N))> ∈ RN ,

with φ′(x) = 2x/(1 + x2), and W = diag(ew).

The proximal map w.r.t. G is given as the following minimization problem

(I + τ∂G)−1 (ŵ) = arg min
w

‖w − ŵ‖22
2

+
τλ

2

〈
2w + f2e−2w, 1

〉
. (3.25)

Instead of using a direct solver for (3.25) in terms of the Lambert W function [32], we

utilized Newton’s method. We found that this scheme has a quite fast convergence (less

than 10 iterations).

For the variational model (3.21), F (u) =
Nk∑
i=1

αiφ(ki ∗ u), G(u) = λ
2

〈
u2 − 2f2logu, 1

〉
.

Then we have

∇uF =

Nk∑

i=1

αiK
>
i φ
′(Kiu) , (3.26)

and the proximal map w.r.t. G is given by the following point-wise calculation

(I + τ∂G)−1 (û)⇔ up =
ûp +

√
û2
p + 4(1 + τλ)τλf2

p

2(1 + τλ)
(3.27)

3.1.3.3 Despeckling experiments

In this subsection, we evaluated the performance of our proposed variational models based

on images corrupted by synthetic speckle noise and real noisy SAR images. For synthetic

experiments, we calculated the common measurements PSNR and SSIM index [131], and

compared the results with a state-of-the-art algorithm - SAR-BM3D [103].

The influence of data term: We started with conducting a preliminary despeckling

test on a commonly used natural image contaminated by multiplicative noise with L = 8,

using our proposed variational models (3.24) and (3.21). We carefully tuned the parameter

λ to insure that the corresponding variational models achieve the best performance. The

despeckling results are shown in Figure 3.17(b) and (c).

A first impression about the results is: the variational model with an accurate data

fitting term, which is exactly derived from the multiplicative noise model can lead to better

3.1. Image denoising 89

(a) Noisy image (21.23/0.4267) (b) Model (3.24) (29.30/0.8567)

(c) Model (3.21) (28.40/0.8264) (d) Combined (3.28)(29.62/0.8794)

Figure 3.17: Despeckling results for a widely used natural image corrupted by multiplicative noise with
L = 8, using our proposed variational models with different data terms. The recovery quality is measured
by PSNR/SSIM index.

result than the model with an “inappropriate” data term. But after having a closer look

90 Chapter 3. Applications of the trained image regularizers

Figure 3.18: Standard test images of size 256× 256 (Couple, Lenna and Peppers).

at the despeckling images, we found an interesting phenomena: these two methods possess

complementary strengths and failure modes. For example, for the highly textured region

(highlighted by the white rectangle), (3.24) works much better than (3.21); however, for

the homogeneous region (highlighted by the red rectangle), (3.21) generates preferable

result. Then an intuitive idea arises to integrate these two data terms so as to leverage

their advantages.

As a result, a new variational model incorporating these two data terms comes out as

follows

arg min
w
EFoE(ew) +

λ1

2
(2w + f2e−2w) +

λ2

2
(e2w − 2f2w) , (3.28)

with u = ew. The data fitting term is still convex, and we can utilize iPiano to solve it.

The proximal map w.r.t. G is also solved using Newton’s method.

We manually tuned the parameters λ1 and λ2, and conducted the same despeckling

experiment. The final result is shown in Figure 3.17(d). One can see that the combined

model indeed leads to significant improvement in terms of both PSNR and SSIM index

value. From now on, we will use the combined model (3.28) for despeckling experiments.

Guideline to tune the model parameters: In our despeckling model (3.28), there

are two free parameters to be tuned in practice. For the choice of the parameters λ1 and

λ2, we used an alternate optimization strategy, namely, we set one parameter to zero and

tuned the other one, such that the despeckling result is optimized (measured by PSNR

and SSIM values if the ground truth is available, or by visual inspection for the case of

no ground truth). Then we consider a linear combination of two data terms, i.e., we use

a factor a (0 ≤ a ≤ 1) to scale the parameter λ1 and a factor 1− a to scale the parameter

λ2. Usually, the choice of a = 0.5 works quite well in practice. For some instances of L,

3.1. Image denoising 91

we recommend to make use of the default settings in Table 3.5.

L λ1 λ2

L = 1 160 0.004

L = 2 250 0.006

L = 3 310 0.008

L = 4 390 0.01

L = 5 450 0.01

L = 8 550 0.02

Table 3.5: Default settings of the model parameters λ1 and λ2 for some typical L

Results on synthetic speckle noise: We first evaluated the performance of our

proposed variational model (3.28) for despeckling based on synthetic noisy images. The

results are compared to the best published despeckling algorithm - SAR-BM3D [103].

First of all, we considered three standard test images widely used in image processing

community, see in Figure 3.18. The despeckling results at three representative numbers

of look L = 1, 3, 8 are summarized in Table 3.6. We made the following empirical choice

for the parameters λ1 and λ2 for different L: if L = 8, λ1 = 550, λ2 = 0.02; if L = 3,

λ1 = 310, λ2 = 0.008; and if L = 1, λ1 = 160, λ2 = 0.004.

From Table 3.6, one can see that these two competing approaches generate very similar

results, with almost identical PSNR and SSIM values. We present three despeckling

examples obtained by these two algorithms in Figure 3.19.

It is clear that the despeckling performance of a particular method varies greatly for

different image contents, in order to make a comprehensive comparison, we conducted

additional despeckling experiments over a standard test dataset - 68 Berkeley test images

identified by Roth and Black [111], which is widely used for AWGN denoising test. All the

results were computed per image and then averaged over the test dataset. We present the

results in Table 3.7. Again, two competing algorithms behave similarly, which implies that

our proposed variational model based on the FoE prior is on par with the best published

despeckling algorithm - SAR-BM3D.

In general, for the cases L ≥ 3, our approach can surpass the performance of SAR-

BM3D in most cases, in terms of PSNR and SSIM values; however, for the cases L = 1, 2,

our method leads to somehow over-smoothing results and the block-type artifacts appear

apparent in the despecked images (see Figure 3.19(c) for example), therefore inferior PSNR

and SSIM values from time to time. This is reasonable, because our proposed approach is a

local model, in contrast to patch-based non-local methods, such as SAR-BM3D. When the

92 Chapter 3. Applications of the trained image regularizers

Lenna Peppers Couple

L = 8
31.29 0.8948 29.69 0.8693 29.01 0.8416
31.38 0.8968 30.64 0.8803 29.23 0.8368

L = 3
28.81 0.8453 27.48 0.8233 26.60 0.7559
28.85 0.8541 28.38 0.8409 26.52 0.7510

L = 1
25.92 0.7432 24.95 0.7495 23.98 0.6210
25.85 0.7771 25.34 0.7770 23.79 0.6023

Table 3.6: despeckling results of SAR-BM3D [103] and our approach. Our results are
marked with blue color (with model (3.28)). The results are reported with PSNR and
SSIM values.

L = 8 L = 3 L = 1
Noisy 21.61 0.5355 17.42 0.3778 12.95 0.2231

SAR-BM3D 29.35 0.8520 27.12 0.7756 24.85 0.6757

Ours 29.54 0.8481 27.07 0.7628 24.65 0.6691

Table 3.7: despeckling results on 68 Berkeley test images. The results are reported with
average PSNR and SSIM values.

number of looks is quite low, e.g., L = 1, the input image is too noisy, which makes our local

model less effective to infer the underlying structures solely from the local neighborhoods.

In this case, the non-locality helps, which can integrate information from non-local patches,

and the advantage of non-local models comes through.

Results on a real SAR image: In order to demonstrate the effectiveness of our

proposed method on real SAR image despeckling task, we conducted a despeckling test on

a real noisy SAR image, which is taken by the radar system equipped with the JSTARS

aircraft [SAR] (the number of looks L = 5). For this experiment, we set λ1 = 50, λ2 = 0.15

for our model.

The results of different algorithms are shown in Figure 3.20. One can see that the tiny

structures in the image, especially the region highlighted by the white rectangle, are well-

preserved by our approach after despeckling; however, they are smoothed out to different

extents by other algorithms. We provide three additional experiments for real SAR images

as shown in Figure 3.21 - 3.23.

Run time: Efficiency is also an important aspect for real world SAR despeckling

tasks. On the server platform of Intel X5675 3.07GHz, for images of size 481×321 exploited

in our experiments, a typical run time of the SAR-BM3D algorithm is about 65.4s, which

can be reduced to 5.6s, by its improved version - FANS [34], at the expense of slight

performance degradation. Our method typically consumes 27s with a pure Matlab code.

3.1. Image denoising 93

(a) L = 1 (12.10/0.1595) (b) SAR-BM3D (25.92/0.7432) (c) Ours (25.85/0.7771)

(d) L = 3 (16.48/0.2939) (e) SAR-BM3D (27.48/0.8233) (f) Ours (28.38/0.8409)

(g) L = 8 (23.19/0.6981) (h) SAR-BM3D (28.06/0.8663) (i) Ours (28.39/0.8647)

Figure 3.19: Performance comparison to state-of-the-art algorithm - SAR-BM3D [103] for
different L. The results are reported by PSNR/SSIM index.

However, our model is a local model, which solely contains convolution of linear fil-

94 Chapter 3. Applications of the trained image regularizers

(a) Noisy image, L = 5 (b) SAR-BM3D[103] (c) Ours

(d) PPBit[37] (e) TGV based[46]

Figure 3.20: Performance comparison of different algorithms on a real SAR image.

ters with an image, in contrast to non-local models, e.g., SAR-BM3D and its variant

FANS. Therefore, our model is well-suited to GPU parallel computation. Our GPU im-

plementation based on a NVIDIA Geforce GTX 680 accelerates the inference procedure

significantly; for a despeckling task with L = 8, it typically takes 0.6s for images of size

512 × 512, 0.41s for 481 × 321 and 0.2s for 256 × 256. In the case of L = 8, the iPiano

algorithm takes about 150 iterations.

In practice, we find that for the cases of relative large L, e.g., L ≥ 3, usually 150

iterations is enough; however, for the cases of small L, e.g., L ≤ 2, the corresponding

minimization problems become harder to solve, and therefore the iPiano algorithm takes

more iterations to achieve a satisfying solution, typically 500 iterations. As a result, the

run time will increase linearly.

3.1. Image denoising 95

(a) Noisy image (b) PPBit (c) SAR-BM3D

(d) Ours with λ1 = 200, λ2 =
0.05

Figure 3.21: SAR image 1: sensor AirSAR, Amplitude image, number of looks L = 6.

3.1.3.4 Conclusion

In this subsection, we have proposed a novel variational model for speckle noise reduction,

based on an expressive image prior model - FoE model. Our new variational model poses

a generally demanding non-convex optimization problem and we have used our proposed

algorithm - iPiano to solve it efficiently. Numerical results on synthetic images corrupted

by speckle noise and a real SAR image demonstrate that the performance of our method is

clearly on par with the best published despeckling algorithm - SAR-BM3D. Furthermore,

our model comes along with the additional advantage of simplicity and therefore well-

suited to GPU programming. The GPU based implementation can conduct despeckling

in less than 1s with state-of-the-art performance.

96 Chapter 3. Applications of the trained image regularizers

(a) Noisy image (b) PPBit (c) SAR-BM3D

(d) Ours with λ1 = 150, λ2 =
0.03

Figure 3.22: SAR image 2: sensor MiniSAR, Amplitude image, number of looks L = 3.

Generally speaking, training specialized FoE image prior model directly based on the

despeckling task has the potential to achieve some improvements, as this is guaranteed

not to decrease the training performance. This is subject to our future work.

3.2 JPEG artifacts suppression

The Block-wise Discrete Cosine Transform (B-DCT) based compression technique has

been widely used in image and video coding standards. However, at high compression

ratios, the coded images inevitably contain unwanted blocking artifacts, because each

block is processed independently. In this section, we propose a novel variational model for

3.2. JPEG artifacts suppression 97

(a) Noisy image (b) PPBit (c) SAR-BM3D

(d) Ours with λ1 = 50, λ2 =
0.07

Figure 3.23: SAR image 3: sensor TerraSAR-X, Amplitude image, number of looks L =
6.4.

reducing blocking artifacts, which combines our learned image regularization model with

the indicator function of the quantization constraint set (QCS). This new model leads to a

generally hard non-convex optimization problem, and we make use of the iPiano algorithm

to solve it efficiently. Numerical experiments show that in terms of PSNR and SSIM index,

our deblocking approach with the learned FoE prior results in identical performance with

the best published deblocking method across a range of compression levels, while our

deblocking model comes along with the additional advantage of high efficiency.

98 Chapter 3. Applications of the trained image regularizers

3.2.1 Introduction

B-DCT has been successfully exploited in lossy image and video compression, such as

JPEG, MPEG and H.263. Although it is well-known that the B-DCT coded images suffer

from the so-called blocking effect, especially severe at low bit rate (i.e., high compression

ratio), the classic JPEG standard is still the most popular lossy compression technique,

and the dominant majority of the pictures circulated on the Internet is compressed by

this standard. As a result of this fact, the development of advanced and efficient post-

processing techniques to reduce the blocking artifacts is still a very active research topic.

Recovery of B-DCT coded images has attracted a lot of research attention since early 1980s

[85, 109], and therefore there are hundreds of publications to deal with this problem.

Reviewing all the works of image deblocking is surely beyond the scope of this thesis.

Instead we briefly pick out some representative works.

As a matter of fact, one can view the blocking artifacts from different aspects, which

will lead to different solutions. Viewing the blocking artifacts as noise with certain struc-

ture, the deblocking problem corresponds to image denoising. There are different types

of approaches proposed starting from this point of view: (1) image filtering technique

[49, 85, 109]; (2) wavelet thresholding technique which originates from image denoising for

Gaussian white noise [82, 136]; (3) deblocking via sparse representation using a general

dictionary trained by the K-singular value decomposition (K-SVD) algorithm [69], whose

original purpose is also for Gaussian noise removal; and (4) a recently introduced non-

parametric image restoration model based on Regression Tree Fields (RTF), which defines

a framework leveraging the advantages of existing deblocking methods by incorporating

their predictions into the filed model, and therefore generates a state of the art for image

deblocking [68].

On the other hand, the compression operation can be viewed as a degradation process,

and many image restoration approaches are proposed to recover the original image, for

example, algorithms based on projection onto convex sets (POCS) [50, 83]. In these

methods, the prior information of the original image is defined as several convex sets,

and an iterative projection algorithm is exploited to search the recovered image. Two

commonly used convex sets are the QCS and the smoothness constraint set (SCS). The

POCS-based methods are effective for reducing blocking artifacts. However, the basic

difficulty is to construct appropriate convex sets to represent the image prior information

of particular types.

In general, image restoration is a typical inverse problem. One of the most successful

3.2. JPEG artifacts suppression 99

approaches to solve inverse problems is to minimize a suitable energy functional whose

minimizer provides a trade-off between a regularization term and a data term. Up to now,

some researcher have investigated the regularization technique for image deblocking, see

for example [15, 17, 24, 123]. These methods differ from each other in the regularization

term or data term. Regarding the regularizer, the widely used Total Variation (TV), the

Total Generalized Variation (TGV) of second order and a higher-order MRF image prior

model based on the FoE have been investigated in [17, 24], [15] and [123] respectively.

There are two methods to define the data term. One is the noise model [123], and the

other is the indicator function of the QCS [15, 17, 24].

Generally speaking, the FoE image prior model is more expressive for natural image

modeling than hand-crafted models, such as TV and TGV models, since it explicitly cap-

tures the statistical properties of natural images. For the data term, although the Gaussian

noise model exploited in [123] can produce better recovery results than its predecessor, it is

only a coarse approximate model for the quantization noise (blocking artifacts). However,

the indicator function of the QCS exactly depicts the image compression process, as the

QCS defines an accurate convex set of original image, and therefore, it is a more accurate

data fidelity term. However, there is no work to combine the FoE-based prior term with

the QCS-based data term up to now.

Our contributions. We introduce a novel variational model for image deblocking

based on the FoE image prior model [111] and the QCS. This model incorporates bet-

ter modes for both the regularization term and data term, and therefore defines a more

accurate variational model for this task.

As mentioned before, image deblocking has a long history, and there exist numerous

image deblocking methods. In order to demonstrate the effectiveness of our proposed

method, we compare our approach with four representative methods: (1) recently pub-

lished the best deblocking method based on RTF [68]†; (2) method based on dictionary

learning and sparse representation [24]; and two similar variational approaches (3) FoE

prior based method (different in data term) [123] and (4) TGV regularized model (different

in regularization term) [15].

Numerical experiments show that in terms of PSNR and SSIM index, our variational

model with the trained FoE image regularization term can obtain strongly competitive

results to the best published image deblocking results [68], and significantly surpass the

results of (1) a previous deblocking model also based on the FoE prior [123]; (2) TGV

†We consider the RTF model that relies on the output of the SADCT method [49]

100 Chapter 3. Applications of the trained image regularizers

C
o
m

p
ressed

 im
ag

e d
ata

JPEG compressed image

Assemble image Apply Inv-DCT De-quantization Decode

Source image

Divide image

8×8 blocks
Apply DCT Quantization Encode

Quantization

table

Figure 3.24: Schematic overview of the JPEG compression and decompression procedure

regularized deblocking model [15]; (3) deblocking method based on TV regularization and

sparse representation [24] and (4) the image filtering based algorithm - SADCT [49].

In addition, our deblocking algorithm is relative easy to understand and implement,

and well-suited to GPU parallel computation, which will make the inference procedure

extremely efficient.

3.2.2 A novel variational model for image deblocking

We first give a brief overview of the JPEG compression process, and introduce the QCS,

which will be employed in our model. Then we propose a variational model based on the

FoE prior and the QCS, and introduce an efficient algorithm to solve the corresponding

optimization problem.

3.2.2.1 JPEG compression and the QCS

In our work, we only consider gray-value images. Note that an extension of our model

to color images is straightforward. Figure 3.24 illustrates all the steps of the JPEG com-

pression and decompression procedure, see [130] for a more detailed explanation. In the

step of quantization, the transformed DCT coefficients of each 8× 8 block are point-wise

divided by the quantization matrix, and then the values are rounded to integer, which is

where the loss of data takes place, as the rounding operation is a mapping of “∞ → 1”.

Given an integer number d, any number in the interval [d− 1
2 , d+ 1

2] is a possible candidate

for the original number which is rounded to d.

With the compressed image data, we only know the integer coefficient data (dqi,j)1≤i,j≤8,

3.2. JPEG artifacts suppression 101

where q indicates a 8 × 8 block indexed by q, and the quantization matrix (Qi,j)1≤i,j≤8.

Therefore, the possible original DCT coefficients, which yield (dqi,j) in the quantization

and rounding step are given by the interval

Sqi,j = [Qi,j(d
q
i,j −

1

2
), Qi,j(d

q
i,j +

1

2
)] .

This result is for the block q. For the full size image, we just need to repeat this result

for each distinct block. All the intervals Sqi,j associated with each 8 × 8 block form the

so-called QCS, which is simply a box constraint determining all possible source images.

In order to simplify the notation, the interval S is represented by two column vectors

a ∈ RN and b ∈ RN , which correspond to the lower and upper bounds of the intervals

Spi,j , respectively.

3.2.2.2 Variational model for image deblocking

In our formulations, an image u of size m × n is written as a column vector u ∈ RN

with N = m× n. We further define a highly sparse matrix D ∈ RN×N , which makes Du

equivalent to the B-DCT transform applied to the two-dimensional image u. Given the

compressed image data, the QCS is given as the box constraint S = [a, b], and the set of

possible source image of the compression process is defined as

U = {u ∈ RN |(Du)p ∈ [ap, bp]} .

Concerning the prior term, we directly make use of the trained FoE image prior model

of the last Chapter. Namely, we exploited the same FoE model as shown in Figure 3.16.

Recall that the FoE image prior model is formulated as

EFoE(u) =

Nk∑

i=1

αiφ(ki ∗ u) , (3.29)

where φ(ki ∗ u) =
N∑
p=1

φ((ki ∗ u)p), N is the number of pixels in image u, Nk is the number

of filters, ki is a set of learned linear filters with the corresponding weights αi > 0, ki ∗ u
denotes the convolution of the filter ki with a two-dimensional image u, and φ(·) denotes

the Lorentzian potential function φ(x) = log(1 + x2), which is derived from the student-t

distribution.

102 Chapter 3. Applications of the trained image regularizers

Having this, now we can define our variational model, which reads as

min
u∈U

E(u) =

Nk∑

i=1

αiφ(ki ∗ u) . (3.30)

This is a constrained optimization problem, and it can be rewritten as

min
u
E(u) =

Nk∑

i=1

αiφ(ki ∗ u) + IS(Du) , (3.31)

where

IS(Du) =

0 if Du ∈ S,
∞ else .

In this formulation, we directly exploit the convex set S instead of set U , as S is a box

constraint, which is simpler than U .

3.2.2.3 Solving the variational deblocking model

An immediate question about the proposed image deblocking model is how to solve it.

Due to the non-convexity of the prior term and the non-smoothness of the data term,

it turns out that (3.31) is a very hard optimization problem. Fortunately, our proposed

non-convex optimization algorithm - iPiano is applicable for solving this problem.

Recall that the iPiano algorithm is designed for a structured non-smooth non-convex

optimization problem, which is composed of a smooth (possibly non-convex) function F

and a convex (possibly non-smooth) function G:

min
u
h(u) = F (u) +G(u) . (3.32)

Casting (3.31) in the form of (3.32), we see that F (u) =
Nk∑
i=1

αiφ(ki∗u) and G(u) = IS(Du).

It is clear that F (u) is smooth and G(u) is convex, and hence the iPiano algorithm can

be applied. In order to use this algorithm, we need to calculate the gradient of F and the

proximal map with respect to G. It is easy to check that

∇F (u) =

Nk∑

i=1

αiK
>
i φ
′(Kiu) ,

where Ki is an N×N highly sparse matrix, which is implemented as 2D convolution of the

3.2. JPEG artifacts suppression 103

image u with filter kernel ki, i.e., Kiu⇔ ki∗u, φ′(Kiu) = (φ′((Kiu)1), · · · , φ′((Kiu)N))> ∈
RN , with φ′(x) = 2x/(1 + x2).

The proximal map with respect to G is given as the following minimization problem

(I + τ∂G)−1 (û) = arg min
u

‖u− û‖22
2

+ τIS(Du) . (3.33)

As DCT is a orthogonal transform, i.e., D>D = DD> = I, then we have

‖Du−Dû‖22 = (u− û)>D>D(u− û) = (u− û)>(u− û) = ‖u− û‖22 .

For problem 3.33, let

c = Du, ĉ = Dû .

Note that the connection between c and u (also ĉ and û) is a mapping of one-to-one.

It turns out that

arg min
u

‖u− û‖22
2

+ τIS(Du)⇐⇒ arg min
c

‖c− ĉ‖22
2

+ τIS(c) .

Obviously, the solution for the minimization problem of right side is given as the following

point-wise projection onto the interval

c̃p =

ĉp if ĉp ∈ Sp = [ap, bp]

bp if ĉp > bp

ap if ĉp < ap .

Finally, the the solution of u is given as ũ = D>c̃.

In experiments, we found that the deblocking results generated by the variational model

Equation (3.31) is somehow over-smoothing, and therefore inferior PSNR and SSIM index

values relative to the RTF based model [68]. The reason lies in the data term involved in

the variational model (3.31), which is the indicator function of an interval. On the one

hand, the indicator function makes no difference for the points lying in the interval ‡; and

on the other hand, the FoE image regularization is essentially a smoothing term. Therefore,

the variational model (3.31) prefers those smoother solutions lying in the boundary of the

interval.

In order to alleviate the over-smoothing effect, a natural idea is to modify the data

‡Note that the input blocky image is the median point of this interval.

104 Chapter 3. Applications of the trained image regularizers

0 1 2 3 4 5 6 7 8 9 10 11
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Log barrier function
Indicator funtion

Figure 3.25: The log-barrier function and the indicator function of an interval.

term such that it can push away the minimizer from the boundary of the interval, i.e.,

the penalty will increase when the solution is approaching the boundary of the interval.

A feasible solution is to exploit the following log-barrier function, which is typically used

to approximate the indicator function ISp=[ap,bp],

ψp(x) = −1

t
(log(x− ap) + log(bp − x)) ,

where t is a parameter to control the approximation, the larger, the better. An illustrative

example of the log-barrier function is shown in Figure 3.25. Then the modified version of

our proposed variational model is given as

arg min
u
E(u) =

Nk∑

i=1

αiφ(Kiu) + ψ(Du) , (3.34)

where ψ(Du) =
N∑
p=1

ψp((Du)p). In order to make use of the iPiano algorithm to solve

(3.34), we need to recalculate the proximal map with respect to the new function G(u) =

ψ(Du). By using the orthogonality of the DCT transform, the solution is given as u =

D>c̃, with c̃ is the solution of the following point-wise subproblem

c̃p = arg min
c

‖c− ĉp‖22
2

+
−τ
t

(log(c− ap) + log(bp − c)) , (3.35)

where ĉ = Dû. In order to solve the above minimization problem, we calculate the gradient

3.2. JPEG artifacts suppression 105

with respect to c, then let it equal to 0. Let k = τ
t ,

c− ĉ+ k(
−1

c− a +
−1

c− b) = 0

Multiplying both sides with (c− a)(c− b), it is given as

(c− ĉ)(c− a)(c− b) + k(b− c+ a− c) = 0

c3 − (a+ b+ ĉ)c2 + (ab+ aĉ+ bĉ− 2k)c+ (a+ b)k − abĉ = 0

Let A = 1, B = −(a+ b+ ĉ), C = ab+ aĉ+ bĉ− 2k, D = (a+ b)k − abĉ,
the above cubic equation is given as

Ac3 +Bc2 + Cc+D = 0 . (3.36)

For the general cubic equation 3.36, the general formula for the roots, in terms of the

coefficients, is as follows: §

ci =
−1

3A
(B + siQ+

∆0

siQ
), i ∈ {1, 2, 3} ,

where

s1 = 1, s2 =
−1 + i

√
3

2
, s3 =

−1− i
√

3

2

are the three cube roots of unity, and where

Q =
3

√
∆1 +

√
∆2

1 − 4∆3
0

2

with

∆0 = B2 − 3AC

∆1 = 2B3 − 9ABC + 27A2D

However, for the subproblem 3.35, the solution must be unique, i.e., we need to identify

the correct solution from three roots ci. For our specific problem, we succeed, and the

wanted solution is given by c3 with s3 = −1−i
√

3
2 .

For example, choose

Ba = 5, b = 10, k = 0.1, ĉ = 18 =⇒ c1 = 4.9923, c2 = 18.0201, c3 = 9.9876, only

§http://en.wikipedia.org/wiki/Cubic_function

http://en.wikipedia.org/wiki/Cubic_function

106 Chapter 3. Applications of the trained image regularizers

with c3 ∈ (5, 10).

Ba = 5, b = 10, k = 0.1, ĉ = −18 =⇒ c1 = −18.0079, c2 = 10.0036, c3 = 5.0043,

only with c3 ∈ (5, 10).

Ba = −5, b = 10, k = 1, ĉ = −18 =⇒ c1 = −18.1118, c2 = 10.0358, c3 = −4.9239,

only with c3 ∈ (−5, 10).

3.2.3 Experimental results

In order to evaluate the performance of our proposed variational image deblocking model

based on a set of learned filters, we applied the proposed model to suppress the blocking

artifacts in JPEG compressed images with different compression quality q. The compressed

images are quantized using the quantization matrix Qq = round(50Q50/q), where Q50 is

the standard quantization matrix [130] given as

Q50 =

−16 11 10 16 24 40 51 61

12 12 14 19 26 58 60 55

14 13 16 24 40 57 69 56

14 17 22 29 51 87 80 62

18 22 37 56 68 109 103 77

24 35 55 64 81 104 113 92

49 64 78 87 103 121 120 101

72 92 95 98 112 100 103 99

As we know, the image deblocking performance of a specific method varies greatly

for different image contents, in order to make a fair comparison with other competing

methods, we conducted deblocking experiments over a standard test dataset - BSD500,

consisting of 200 natural images, which was firstly used in [68] for deblocking performance

evaluation.

We followed the test procedure in [68]. The test images were converted to gray-

value, and scaled by a factor of 0.5, resulting images of size 240 × 160. We distorted

the images by JPEG blocking artifacts. We considered three compression quality settings

q = 10, 20 and 30 for the JPEG encoder.

For our proposed variational model, we investigate two different data terms: (1) the

indicator function and (2) the log-barrier function. We compared our models with four

representative methods: (1) the published best deblocking method based on RTF [68];

(2) method based on dictionary learning and sparse representation (SR) [24]; as well as

3.2. JPEG artifacts suppression 107

q
JPEG

decoder
TGV [15]
deblocking

Dictionary
SR [24]

FoE [123]
deblocking

RTF [68]
Ours (log-
barrier)

Ours
(indicator)

10 26.59/76.10 26.96/77.80 27.15/77.87 27.40/79.10 27.68/79.47 27.68/79.66 27.34/78.32

20 28.77/84.47 29.01/85.03 29.03/83.76 29.54/86.47 29.83/86.68 29.86/87.02 29.47/85.60

30 30.05/88.04 30.25/88.33 30.13/86.35 30.86/89.63 31.14/89.85 31.18/90.14 30.76/88.93

Table 3.8: JPEG deblocking results for natural images in terms of PSNR value and SSIM
index (×100). We compare our method to four representative image deblocking methods,
including the best published deblocking method based on RTF [68]. We highlight the state
of the art results.

TGV [15]
deblocking

Dictionary
SR [24]

FoE [123]
deblocking

SADCT [49]
Ours (log-
barrier)

Ours
(indicator)

T(s) 7.42 7.23 50 3.53 5.57 (0.062) 5.29 (0.058)
PSNR 26.96 27.15 27.40 27.43 27.68 27.34
SSIM 77.80 77.87 79.10 78.64 79.66 78.32

Table 3.9: Typical run time (CPU computation) of the deblocking methods for a 240×160
image (q = 10) on a server (Intel X5675, 3.07GHz). The highlighted number is the run
time of the GPU implementation.

two variational approaches (3) FoE prior based method [123] and (4) TGV regularized

model[15]. For the RTF based model, we exploited the PSNRRTFSADCT system, which

includes SA-DCT as a base method and is optimized for the PSNR performance measure.

For the sparse representation based method, we used the dictionary model without TV

regularization term. The deblocking performance is reported with the commonly used

objective measurements: PSNR and SSIM index [131].

The average PSNR and SSIM results of the considered methods over the test dataset

are summarized in Table 3.8. In terms of the objective measurements, one can see that

(1) our proposed deblocking method with the log-barrier data term can lead to better

performance compared to the model with the indicator function, (2) the log-barrier data

term based model has surpassed three competing methods and has achieved identical

performance with the best one [68]. We present the deblocking results of our log-barrier

based model and other competing methods in Figure 3.26 for the case of compression

quality q = 10, in Figure 3.27 for the compression quality q = 20, and Figure 3.28 for the

compression quality q = 30.

Concerning the visual inspection, generally speaking, in the case of relatively high

compression rate, e.g., q = 10, the results given by TGV based method are over-smoothed

as the minimizer of the TGV regularized model is piece-wise affine. The dictionary based

108 Chapter 3. Applications of the trained image regularizers

240× 160 480× 320 512× 512 1024× 1024

Ours(ms) 62.2 153 230 822
SADCT(ms) 3530 11790 17650 70978

Table 3.10: The run time of our deblocking approach (log-barrier based model) for different
image size by using GPU computation (based on NVIDIA Geforce GTX 780Ti). We also
present the CPU computation time for the SADCT algorithm (based on Intel X5675,
3.07GHz), which is the strongest competitor in terms of run time.

method frequently fails to remove the blocking artifacts in the homogeneous regions, such

as in the sky. The RTF based method, FoE prior regularized model and our approach

usually generate visually plausible deblocking results, but the FoE prior regularized model

in previous work [123] is prone to produce slightly blurred edges, thus inferior PSNR

results. See Figure 3.26 for example.

After having a closer look at the results obtained by our log-barrier based model, we

also find that it is less effective to remove the blocking artifacts in the homogeneous regions,

e.g., in the sky. However, the indicator function based method, which usually provides

over-smoothing results (thus inferior PSNR and SSIM values) can address this problem

better, see Figure 3.29 for an example. We see that the indicator function based method

even though owns inferior PSNR and SSIM values, it can more effectively suppress the

blocky artifacts in the sky. Meanwhile, we also see that the SADCT method also usually

fails to remove the blocking artifacts in the sky. It seems for the task of JPEG deblocking,

the PSNR and SSIM index are not the best quality measurement.

Run time: We conducted a direct run time comparison for different deblocking algo-

rithms based on CPU implementation. In Table 4.2, we show the average run time of the

considered deblocking methods on 240×160 images. We use the iPiano algorithm to solve

our proposed models, and typically it takes 40 iterations to converge to a stationary point.

For the investigated algorithms, we make use of the codes provided by the authors as is¶.

Our proposed deblocking model comes along with the additional advantage of sim-

plicity, as it solely involves convolution of filters with an image. Therefore, our model

is well-suited to GPU parallel computation. Table 3.10 presents the GPU computation

time of our log-barrier function based deblocking model for different image dimensions.

Note that for GPU computation, it is not appropriate to solve the subproblem Equation

¶However, we are not able to present the runtime of RTF method [68], as its implementation is not
available. But we know it relies on the output of the SADCT method, thus its computation time is the
runtime of SADCT plus the execution time of RTF (i.e., RTF based method is slower than the SADCT
algorithm).

3.2. JPEG artifacts suppression 109

(1) Clean image (2) Clean image (3) Clean image (4) Clean image

(5) Lossy (24.15) (6) Lossy (24.99) (7) Lossy (23.77) (8) Lossy (24.80)

(9) TGV[15] (24.24) (10) TGV[15] (25.44) (11) TGV[15] (23.96) (12) TGV[15] (25.10)

(13) Dic. SR[24] (24.63) (14) Dic. SR[24] (25.58) (15) Dic. SR[24] (24.32) (16) Dic. SR[24] (25.22)

(17) FoE[123] (24.70) (18) FoE[123] (25.71) (19) FoE[123] (24.37) (20) FoE[123] (25.48)

(21) RTF[68] (24.93) (22) RTF[68] (26.17) (23) RTF[68] (24.77) (24) RTF[68] (26.01)

(25) Ours (24.94) (26) Ours (26.03) (27) Ours (24.86) (28) Ours (25.95)

Figure 3.26: Image deblocking results for images compressed by JPEG encoder with the
quality q = 10.

110 Chapter 3. Applications of the trained image regularizers

(1) Clean image (2) Clean image (3) Clean image (4) Clean image

(5) Lossy (32.73) (6) Lossy (32.12) (7) Lossy (26.58) (8) Lossy (27.89)

(9) TGV[15] (33.18) (10) TGV[15] (32.30) (11) TGV[15] (27.34) (12) TGV[15] (27.88)

(13) Dic. SR[24] (29.94) (14) Dic. SR[24] (31.86) (15) Dic. SR[24] (27.74) (16) Dic. SR[24] (28.00)

(17) FoE[123] (33.94) (18) FoE[123] (32.72) (19) FoE[123] (27.45) (20) FoE[123] (28.40)

(21) RTF[68] (34.12) (22) RTF[68] (32.88) (23) RTF[68] (28.77) (24) RTF[68] (28.72)

(25) Ours (34.12) (26) Ours (32.86) (27) Ours (28.36) (28) Ours (28.69)

Figure 3.27: Image deblocking results for images compressed by JPEG encoder with the
quality q = 20.

3.2. JPEG artifacts suppression 111

(1) Clean image (2) Clean image (3) Clean image (4) Clean image

(5) Lossy (28.68) (6) Lossy (30.26) (7) Lossy (29.43) (8) Lossy (32.41)

(9) TGV[15] (28.92) (10) TGV[15] (30.60) (11) TGV[15] (30.26) (12) TGV[15] (33.41)

(13) Dic. SR[24] (29.21) (14) Dic. SR[24] (30.77) (15) Dic. SR[24] (29.79) (16) Dic. SR[24] (32.71)

(17) FoE[123] (29.52) (18) FoE[123] (31.27) (19) FoE[123] (30.34) (20) FoE[123] (33.63)

(21) RTF[68] (29.80) (22) RTF[68] (31.43) (23) RTF[68] (31.00) (24) RTF[68] (34.35)

(25) Ours (29.85) (26) Ours (31.57) (27) Ours (30.80) (28) Ours (34.10)

Figure 3.28: Image deblocking results for images compressed by JPEG encoder with the
quality q = 30.

112 Chapter 3. Applications of the trained image regularizers

(a) Lossy JPEG q = 10 (27.14/90.88) (b) SADCT (27.87/92.31, CPU: 23.5s)

(c) Indicator based model (27.43/90.69, GPU:
0.306s)

(d) Log-barrier based model (28.11/92.88,
GPU: 0.324s)

Figure 3.29: Our proposed model with the log-barrier data term and the SADCT method
fail to remove the bocking artifacts in the sky, while the indicator function based model
succeeds, in despite of inferior PSNR and SSIM values. The corresponding run time is also
reported: (1) CPU implementation for the SADCT method and GPU implementation for
our proposed models; (2) image size 768× 512.

(3.35) by using the direct method, because it involves the calculation of complex number.

Instead, we make use of the Newton’s method to solve this subproblem. In practice,we

find that this scheme has a quite fast convergence (usually less than 10 iterations.)

Note that the TGV based method [15] and the previous FoE prior based method [123]

are also suited for GPU parallel computation, but we didn’t implement it.‖ Also note

‖In the work of [15], for the TGV based deblocking algorithm (1000 iterations), the authors quoted a
GPU computation time of 1.2s for the image size 512× 512 based on NVIDIA Geforce GTX 580.

3.3. Other image restoration problems 113

that the RTF based approach, e.g., the PSNRRTFSADCT system relies on the output of the

SADCT algorithm [49]. However, our proposed model is an independent algorithm, which

dose not rely on the output of any existing methods.

3.2.4 Discussion

In this section, we have proposed a novel variational model for image deblocking based on

(1) an expressive image prior model - FoE model and (2) the indicator function of the QCS,

which exactly defines a convex set of possible source images given the compressed image.

This new variational model poses a generally demanding non-convex minimization problem

and we introduced our proposed algorithm iPiano to solve it. We directly applied our

trained FoE image prior model in the case of Gaussian denoising to the deblocking model.

Experimental results on a set of natural images demonstrate that our deblocking model

with the learned FoE prior model leads to identical performance with the best published

deblocking method. Our proposed model comes along with the additional advantage that

the inference is extremely efficient. The GPU based implementation can conduct image

deblocking in less than 1s for image sizes up to 1024× 1024.

3.3 Other image restoration problems

In the framework of variational models, it is straightforward to exploit the trained FoE

image prior model for additional image restoration problems, such as non-blind image

deconvolution, single (or multi-frame) image super resolution and image inpainting. In this

section, we investigate these additional image restoration problems by using our trained

image prior model.

3.3.1 Non-blind image deconvolution

The FoE image prior regularized deconvolution model is defined as

u∗ = arg min
u
E(u) =

Nk∑

i=1

αiφ(Kiu) +
λ

2
‖h ∗ u− f‖22 , (3.37)

where the noisy input image f is corrupted by a linear kernel h, which is assumed to be

known in our work, and λ is again a trade-off parameter to be tuned in the experiments.

Regarding the FoE image prior term, we still make use of the model shown in Figure 3.16.

114 Chapter 3. Applications of the trained image regularizers

The corresponding minimization problem Equation (3.37) also can be solved by the

iPiano algorithm. In order to make use of the iPiano algorithm, we just need to compute

the proximal mapping operator with respect to G(u) = λ
2‖h ∗ u − f‖22, i.e., we need to

solve the following subproblem

u = arg min
u

‖u− û‖22
2τ

+
λ

2
‖h ∗ u− f‖22

⇐⇒ u− û+ τλh̄ ∗ (h ∗ u− f) = 0 . (3.38)

Assuming the above convolution operation is performed with periodic boundary condition,

according to the well-known convolution theorem, the corresponding linear system can be

rewritten as following problem by using the FFT transform

F(u)−F(û) + τλF(h)∗ � (F(h)�F(u)−F(f)) = 0

⇐⇒ F(u) =
τλF(h)∗ �F(f) + F(û)

τλF(h)∗ �F(h)

⇐⇒ u = F−1

(
τλF(h)∗ �F(f) + F(û)

τλF(h)∗ �F(h) + 1

)
, (3.39)

where F(·) and F−1(·) denote the FFT and inverse FFT, respectively; � means the point-

wise operation, and the division operator is also understood in the point-wise manner;

F(h)∗ denotes the complex conjugate of F(h).

Now we can apply the variational model (3.37) to the image deconvolution problem.

To present a comparison, we conducted the same experiment as [143]: convolved 68 image

(the same as in previous sections) with the blur kernels from [71], then added 1% white

Gaussian noise. We tried to restore the clean images by using GMM-EPLL framework

and our opt-MRF model. Results are shown in Table 3.11 and Figure 3.30 - Figure 3.31.

We can see that both methods present pretty good results. Figure 3.30 shows deblurring

results for the convolution kernel 2 19×19 from [71]. Figure 3.31 shows deblurring results

for the convolution kernel 1 17×17. All the results are compared with GMM-EPLL [143].

GMM-EPLL Opt-MRF

Kernel 1 17× 17 28.99 29.69
Kernel 2 19× 19 29.95 30.49

Table 3.11: Deconvolution results for 68 test images (average PSNR).

3.3. Other image restoration problems 115

(a) Blurred image (b) GMM-EPLL (26.48) (c) Our opt-MRF (26.89)

(d) Blurred image (e) GMM-EPLL (30.19) (f) Our opt-MRF (30.84)

(g) Blurred image (h) GMM-EPLL (27.55) (i) Our opt-MRF (28.02)

Figure 3.30: Delurring results using GMM-EPLL and our opt-MRF model for Kernel 2 19× 19.

116 Chapter 3. Applications of the trained image regularizers

(a) Blurred image (b) GMM-EPLL (33.72) (c) Our opt-MRF (34.63)

(d) Blurred image (e) GMM-EPLL (29.51) (f) Our opt-MRF (30.02)

(g) Blurred image (h) GMM-EPLL (27.26) (i) Our opt-MRF (27.95)

Figure 3.31: Delurring results using GMM-EPLL and our opt-MRF model for Kernel 1 17× 17.

3.3. Other image restoration problems 117

(a) Original image (b) Bicubic interpolation (21.63)

(c) GOAL [60] (22.45) (d) Ours: log(1 + z2) (22.57)

Figure 3.32: Single image super-resolution results for magnifying a noisy low resolution
image by a factor of 3. The low resolution image was degraded by Gaussian noise with
σ = 8. The numbers shown in the brackets refer to PSNR values w.r.t. the clean image.

3.3.2 Image super resolution

The learned FoE image prior is also applicable for the task of image super resolution. In

our work, we consider two cases (1) single image super resolution, where we upsample a

single noisy low resolution image by a factor of s > 1 and (2) multi-frame super resolution,

where we resolve a high resolution image from a low resolution image sequence (e.g., from

a video).

118 Chapter 3. Applications of the trained image regularizers

3.3.2.1 Single image super resolution

For the problem of single image super-resolution by using our trained image regularizers,

we are to solve the following optimization problem

arg min
u
E(u) =

Nk∑

i=1

αiφ(Kiu) +
λ

2
‖Hu− f‖22 , (3.40)

where the image regularization term is again given as the FoE image prior model shown

in Figure 3.16, the linear operator H is constructed by a decimation operator Φ and a

blurring operator B, i.e., H = ΦB.

The first question about the above optimization problem (3.40) is how to solve it by

using the iPiano algorithm. The first option is to set F (u) =
Nk∑
i=1

αiφ(Kiu) and G(u) =

λ
2‖Hu − f‖22. Then we need to compute the proximal mapping with respect to G, which

is given as the following minimization problem.

u = arg min
u

‖u− û‖22
2τ

+
λ

2
‖Hu− f‖22

⇐⇒u− û+ τλH>(Hu− f) = 0

⇐⇒u =
(
τλH>H + I

)−1
(τλH>f + û) . (3.41)

Even though this subproblem leads to a closed-from solution, solving the above linear

system is quite computationally expensive in practice. Therefore, it is not the best choice

to solve the optimization problem (3.40) in this manner.

In our work, we consider another option by setting F (u) =
Nk∑
i=1

αiφ(Kiu)+ λ
2‖Hu−f‖22

and G(u) = 0. Now it is straightforward to compute the gradient of F with respect to u,

which is simple given as

∇uF (u) =

Nk∑

i=1

αiK
>
i φ
′(Kiu) + λH>(Hu− f) , (3.42)

and the proximal mapping with respect to G is given as

u = (I + τ∂G)−1(û)⇐⇒ u = û . (3.43)

In order to perform a better comparison with the latest analysis model GOAL [60],

we conducted the same single image super-resolution experiment. We artificially created

3.3. Other image restoration problems 119

a low resolution image by downsampling a ground-truth image by a factor of 3 using

bicubic interpolation. Then the low resolution image was corrupted by Gaussian noise with

σ = 8. We magnified the noisy low resolution image by the same factor using (a) bicubic

interpolation, (b) the GOAL method [60], (c) our learned model, respectively. Figure 3.32

shows the results for different methods. One can see that two analysis models present

similar results, which are visually and quantitatively better than the bicubic method.

3.3.2.2 Multi-frame super resolution

In this subsection, we consider the problem of multi-frame super resolution by using the

variational framework proposed by Unger et al. [129]. In the original work [129], the

widely used total variation (TV) regularizer was employed. While the TV regularization

has the advantage that it allows sharp edges in the image, it can not reflect the complex

statistics of natural images. In our work, we replace the TV regularization with our trained

image regularizer.

In our work, we embed our learned FoE prior into the variational super resolution

framework proposed in the previous work [129], resulting in the following variational model

for multi-frame image super resolution problem.

arg min
u
E(u) =

Nk∑

i=1

αiφ(Kiu) + λ

n∑

i=1

‖ΦBWiu− fi‖1,ε, (3.44)

where φ(Kix) =
N∑
p=1

φ((Kix)p), φ(z) = log(1 + z2) and |z|1,ε =

z2

2ε if|z| ≤ ε

|z| − ε
2 if|z| > ε.

In (3.44), the first term is our learned filters-based MRF prior shown in Figure 3.16.

The second term consists of the input multi-frames fi, where the linear operator Φ, B and

W denote down-sampling, blurring and warping operators. The warping operator W is

derived from the computed optical flow. More details refer to [129].

We still make use of the iPiano algorithm to solve the minimization problem (3.44) by

setting F (u) = E(u) and G(u) = 0. The gradient of F is defined as

∇uF (u) =

Nk∑

i=1

αiK
>
i φ
′(Kiu) + λ

n∑

i=1

(ΦBWi)
>ϕ(ΦBWiu− fi), (3.45)

where ϕ(z) = z
max{ε,|z|} .

We present an example to illustrate the performance of our proposed FoE image prior

120 Chapter 3. Applications of the trained image regularizers

(a) frame 1 (b) frame 8 (c) frame 12 (d) frame 18

(e) frame 22 (f) frame 27 (g) frame 31 (h) frame 36

Figure 3.33: Input low resolution frames

based multi-frame super resolution approach. In this experiment, we moved the “Haut-

lauer” AD page slowly, and then recorded this scene. We selected a sequence consisting of

36 images to conduct the super resolution task. In order to reduce the computation cost,

we only chose the cropped region containing the moving AD page, which we are interested

in. The input low resolution frames are shown in Figure 3.33. The super resolved result

for this sequence is shown in Figure 3.34, together with closeup of the corresponding im-

ages. One can easily see the improvements brought by our proposed multi-frame super

resolution approach.

3.3.3 Image inpainting

Image inpainting is the process of filling in the lost image data such that the resulting image

is visually appealing. Typically, the positions of the pixels to be filled up are assumed to

be known. The image inpainting model based on our trained image regularizer is defined

3.3. Other image restoration problems 121

(a) original low resolution im-
age

(b) Bi-cubic (c) MRF prior based

Figure 3.34: Super-resolved frame for the Hautlauer AD

as

arg min
u
E(u) =

Nk∑

i=1

αiφ(Kiu) +
λ

2
‖Hu− f‖22 , (3.46)

122 Chapter 3. Applications of the trained image regularizers

(a) Clean image (b) Corrupted image with
overlaying text

(c) Inpainting result (PSNR:
37.27)

Figure 3.35: Overlaying text removal by using the variational model with our trained
image regularizer.

where the image regularization term is again given as the FoE image prior model shown

in Figure 3.16, and the linear operator H is simply a sampling matrix. Each row of H

contains exactly one entry equal to one, and its position indicates a pixel with given value.

The parameter λ corresponds to joint inpainting and denoising, and the choice λ → +∞
means pure inpainting. In our experiment since we assumed the test images are noise free,

we empirically selected λ = 103 for pure inpainting.

We still employ the iPiano algorithm to solve the corresponding minimization problem

(3.46) by setting F (u) =
Nk∑
i=1

αiφ(Kiu) and G(u) = λ
2‖Hu−f‖22. In this case, the proximal

mapping operator with respect to G can be easily calculated.

u = (I + τ∂g)−1 (û)⇐⇒ up =

ûp if p ∈ I
τλfp+ûp

1+τλ else
. (3.47)

where I denotes the set of indices of the inpainting domain.

In this subsection, we consider two typical image inpainting tasks. The first one is to

remove the overlaying text from the corrupted image. An illustrative example is shown in

Figure 3.35. One can see that the overlaying text is removed successfully.

The second one is to fill up the random missing pixels in an image. We destroyed the

ground-truth “ Lena” image (512 × 512) artificially by randomly masking 60% and 90%

of the entire pixels, respectively. Then we reconstructed the incomplete image using our

3.4. Discussion 123

(a) 60% missing pixels (b) GOAL [60] (35.6) (c) Our opt-MRF (37.79)

(d) 90% missing pixels (e) GOAL [60] (28.57) (f) Our opt-MRF (29.10)

Figure 3.36: Inpainting results of our opt-MRF model and the approach in [60] for the
“Lena” image 512× 512 from 40% and 10% pixels, respectively.

learned analysis model - log(1 + z2)-based model. In order to present a comparison, we

also give the inpainting result of the GOAL model [60]. Inpainting results are shown in

Figure 3.36. From Figure 3.36, one can see that the result of our learned analysis model

achieves better results relative to the GOAL model in terms of PSNR value, while both

methods provide visually similar results.

3.4 Discussion

In this chapter, we have thoroughly exploited the capability of our trained image prior

model for a class of image restoration problems, including image denoising for various of

124 Chapter 3. Applications of the trained image regularizers

noise types, JPEG deblocking, image super resolution, image deconvolution and image

inpainting. Even though our image prior model is discriminatively trained based on the

problem of Gaussian denoising, the resulting image prior model is not heavily tailored

to the Gaussian denoising task. In contrast, extensive experiments demonstrate that

the trained image prior model generalize well for many image restoration problems, and

the corresponding variational models can usually generate state-of-the-art results for the

investigated problems. Therefore, the trained image prior model can be indeed treated as

an image regularization term for a variety of image restoration problems.

Concerning the problem of how to solve the corresponding minimization problems, in

general, the resulting variational models pose generally demanding non-convex optimiza-

tion problems. Fortunately, our proposed iPiano algorithm is applicable for all of these

problems. With the iPiano algorithm, the corresponding minimization problems can be

efficiently solved. In additional, our models with the trained FoE image prior have the

advantage of simplicity, as they only consist of the operation of image convolution with a

set of linear kernels. Therefore, they are well-suited for GPU parallel computation, which

can typically accelerate the inference procedure with a factor of 60× ∼ 80× relative to a

multi-threaded CPU implementation.

Concerning potential improvements of the FoE prior based variational methods, we

believe that there are at least two possible directions. One is to learn specialized filters

for specific task, i.e., with specific data term. The other one is to consider more flexible

penalty function. In our current models, the penalty function is fixed the same for each

filter. If we free the shape of the penalty function, our model will possess more freedom

for optimization, which will probably boost the performance.

Chapter 4

Learning effective reaction

diffusion processes

Contents

4.1 Introduction . 126

4.2 Related works . 130

4.3 Learning framework . 132

4.4 Computing gradients . 134

4.5 Training experiments for image denoising and deblocking . . . 147

4.6 Discussion . 159

As stated in Section 1.6.3, we are motivated to train a nonlinear diffusion process like

ut+1 = ut −∆t · ∂E
∂u

∣∣∣∣
ut
,

where E is defined by the FoE prior regularized energy functional such as

E(u) =

Nk∑

i=1

αiφ(Kiu) +
λ

2
‖u− f‖22 .

It turns out that the resulting gradient descent process leads to a nonlinear reaction

diffusion process with higher-order filters. We find that the proposed nonlinear diffusion

model is also motivated by the investigation of the conventional nonlinear reaction diffusion

model.

125

126 Chapter 4. Learning effective reaction diffusion processes

4.1 Introduction

For several decades, image restoration remains an active research topic in low-level com-

puter vision and hence new approaches are constantly emerging. However, many recently

proposed algorithms achieve state-of-the-art performance only at the expense of very high

computation time, which clearly limits their practical relevance. In this work, we propose

an effective approach with both high computational efficiency and high restoration qual-

ity. We extend conventional nonlinear reaction diffusion models by several parametrized

linear filters as well as several parametrized influence functions. We propose to train the

parameters of the filters and the influence functions through a loss based approach. Exper-

iments show that our trained nonlinear reaction diffusion models largely benefit from the

training of the parameters and finally lead to the best reported performance on common

test datasets for image restoration. Due to their structural simplicity, our trained models

are highly efficient and are also well-suited for parallel computation on GPUs.

4.1.1 Background

Image restoration is the process of estimating uncorrupted images from noisy or blurred

ones. It is one of the most fundamental operation in image processing, video processing,

and low-level computer vision. There exists a huge amount of literature addressing the

topic of image restoration problems, see for example [93] for a survey. Broadly speaking,

most state-of-the-art techniques mainly concentrate on achieving utmost image restoration

quality, with little consideration on the computational efficiency [57, 91, 143]. However,

there are two notable exceptions, BM3D [36] and the recently proposed Cascade of Shrink-

age Fields (CSF) [120] model, which simultaneously offer high efficiency and high image

restoration quality.

It is well-known that BM3D is a highly engineered method, specialized for Gaussian

noise. Moreover, it involves a block matching process, which is challenging for parallel

computation on GPUs, alluding to the fact that it is not straightforward to accelerate

BM3D algorithm on parallel architectures. In contrast, the recently proposed CSF model

offers high levels of parallelism, making it well suited for GPU implementation, thus owning

high computational efficiency.

Among the approaches to tackle the problem of image restoration, nonlinear anisotropic

diffusion [104] defines a class of efficient approaches, as each diffusion step merely con-

tains the convolution operation with a few linear filters. However, up to now, the image

restoration quality of diffusion based approaches is still far away from the state-of-the-art,

4.1. Introduction 127

although with many improvements [39, 58, 59, 106].

We give a brief review of nonlinear diffusion based approaches and then introduce our

proposed diffusion model. In the seminal work [104], Perona and Malik (P-M) demon-

strated that nonlinear diffusion models yield very impressive results for image processing.

This has given rise to many revised models with various formulations. A notable variant

is the so-called biased anisotropic diffusion (also known as reaction diffusion) proposed

by Nordström [95], which introduces a bias term (forcing term) to free the user from

the difficulty of specifying an appropriate stopping time for the P-M diffusion process.

This additional term reacts against the strict smoothing effect of the pure P-M diffusion,

therefore resulting in a nontrivial steady-state.

Tsiotsios et al. [128] discussed the choice of some crucial parameters in the P-M model,

such as the diffusivity function, the gradient threshold parameter and the stopping time

of the iterative process. Some works consider modification to the diffusion term or the

reaction term for the reaction diffusion model [2, 33, 44, 95, 106], e.g., Acton et al. [2]

and Plonkna et al. [106] exploited a more complicated reaction term to enhance oriented

textures; [9, 124] proposed to replace the ordinary diffusion term with a flow equation

based on mean curvature.

Gilboa et al. [54] proposed a forward and backward diffusion process, which incor-

porates explicit inverse diffusion with negative diffusivity coefficient by carefully choosing

the diffusivity function. The resultant diffusion processes can adaptively switch between

forward and backward diffusion process. In a latter work [134], the theoretical foundations

for discrete forward-and-backward diffusion filtering were investigated. As demonstrated

in [134], in spite of its negative diffusivity, forward and backward diffusion becomes well-

posed if a nonstandard space discretization is used. It guarantees a positive diffusivity in

discrete extrema.

Researchers also propose to exploit higher-order nonlinear diffusion filtering, which

involves larger linear filters, e.g., fourth-order diffusion models [38, 39, 58, 59]. Meanwhile,

theoretical properties about the stability and local feature enhancement of higher-order

nonlinear diffusion filtering are established in [38].

In this chapter we focus on nonlinear diffusion process due to its high efficiency and

propose a trainable nonlinear diffusion model, which is parameterized by the linear filters

and the influence functions. The trained diffusion model contains many special influence

functions (see Fig. 4.6 for an illustration), which greatly differ from usual influence func-

tions employed in conventional diffusion models. It turns out that the trained diffusion

128 Chapter 4. Learning effective reaction diffusion processes

processes can lead to effective image restoration with state-of-the-art performance, while

preserve the property of high efficiency of diffusion based approaches. At present, we

are not aware of any previous works that simultaneously optimize the linear filters and

influence functions of a nonlinear diffusion process.

Our proposed nonlinear diffusion process has several remarkable benefits as follows:

1) It is conceptually simple as it is merely a standard nonlinear diffusion model with

trained filters and influence functions;

2) It has broad applicability to a variety of image restoration problems. In principle,

all the diffusion based models can be revisited with appropriate training;

3) It achieves very high levels of recovery quality surpassing very recent state-of-the-

arts;

4) It is highly computationally efficient, and well suited for parallel computation on

GPUs.

4.1.2 Motivations of the proposed reaction diffusion process

In this section, we start with conventional nonlinear diffusion processes, then propose a

training based reaction diffusion model for image restoration. Finally we show the relations

between the proposed model and existing image restoration models.

4.1.2.1 Perona and Malik diffusion model

In the whole chapter, we stick to the fully discrete setting, where images are represented

as column vectors, i.e., u ∈ RN . Therefore, the discrete version of the well-known Perona-

Malik type nonlinear diffusion process [104] can be formulated as the following discrete

partial differential equation (PDE) with an explicit finite difference scheme

ut+1 − ut
∆t

= −
∑

i={x,y}

∇>i Λ(ut)∇iut .= −
∑

i={x,y}

∇>i φ(∇iut) , (4.1)

where matrices ∇x and ∇y ∈ RN×N are finite difference approximation of the gradi-

ent operators in x-direction and y-direction, respectively and ∆t denotes the time step.

Λ(ut) ∈ RN×N is defined as a diagonal matrix

Λ(ut) = diag
(
g
(√

(∇xut)2
p + (∇yut)2

p

))
p=1,··· ,N

,

4.1. Introduction 129

where function g is known as edge-stopping function [13] or diffusivity function [132], a

typical g function given as g(z) = 1/(1 + z2). If ignoring the coupled relation between

∇xu and ∇yu, the P-M model can be also written as the second formula on the right side

in (4.1), where φ(∇iu) = (φ(∇iu)1, · · · , φ(∇iu)N)> ∈ RN with function φ(z) = zg(z),

known as influence function [13] or flux function [132]. In the upcoming subsection, we

will stick to this decoupled formulation.

4.1.2.2 Proposed nonlinear diffusion model

Clearly, the matrix-vector product, ∇xu can be interpreted as a 2D convolution of u with

the linear filter kx = [−1, 1] (∇y corresponds to the linear filter ky = [−1, 1]>). Intuitively,

in order to improve the capacity of the diffusion model, we can employ more filters of larger

kernel size, in contrast to previous works that typically involve few filters with relatively

small kernel size. We can additionally consider different influence functions for different

filters, rather than an unique one. Moreover, the parameters of each iteration can vary

across iterations. Taking the reaction term into account, our proposed nonlinear reaction

diffusion model is formulated as

ut − ut−1

∆t
= −

Nk∑

i=1

Kt
i
>
φti(K

t
iut−1)

︸ ︷︷ ︸
diffusion term

− ψ(ut−1, u0)︸ ︷︷ ︸
reaction term

, (4.2)

where Ki ∈ RN×N is a highly sparse matrix, implemented as 2D convolution of the image

u with the filter kernel ki, i.e., Kiu ⇔ ki ∗ u, Ki is a set of linear filters and Nk is the

number of filters. In practice, we set ∆t = 1, as we can freely scale the formula on the right

side. Note that in our proposed diffusion model, the influence functions are adjustable

and can be different from each other.

The specific formulation for the reaction term ψ(u) depends on applications. For

classical image restoration problems, such as Gaussian denoising, image deblurring, image

super resolution and image inpainting, we can set the reaction term to be the gradient

of a data term, i.e. ψ(u) = ∇uD(u). For example, if D(u, u0) = λ
2‖Au − u0‖22, ψ(u) =

λA>(Au − u0), where u0 is the initial input degraded image, A is the associated linear

operator, and λ is related to the strength of the reaction term. In the case of Gaussian

denoising, A is the identity matrix.

In our work, instead of making use of the well-chosen filters and influence functions,

we train the nonlinear diffusion process for specific image restoration problem, including

130 Chapter 4. Learning effective reaction diffusion processes

both the linear filters and the influence functions. As the diffusion process is an iterative

approach, typically we run it for certain iterations. In order to make our proposed diffu-

sion process more flexible, we train the parameters of the diffusion model for each single

iteration. Finally, we arrive at a diffusion process which merely involves several iterations

(referred to as stages).

4.2 Related works

Previous works [95, 118] show that in the nonlinear diffusion framework, there exist natural

relations between reaction diffusion and regularization based energy functional. First of

all, we can interpret (4.2) as one gradient descent step at ut−1 of a certain energy functional

given by

E(u, u0) =

Nk∑

i=1

Ri(u) +D(u, u0) , (4.3)

where Ri(u) =
∑N

p=1 ρ
t
i((K

t
iu)p) are the regularizers and the functions ρti are the so-called

penalty functions. Note that ρ′(z) = φ(z). Since the parameters {Kt
i , ρ

t
i} vary across the

stages, (4.3) is a dynamic energy functional, which changes at each iteration.

In the case of fixed {Kt
i , ρ

t
i} across the stages t, it is obvious that functional (4.3) is

exactly the fields of experts image prior regularized variational model for image restoration

[27, 29, 111]. In our work, we do not exactly solve this minimization problem anymore,

but in contrast, we run the gradient descent step for several stages, and each gradient

descent step is optimized by training.

In a very recent work [120], Schmidt et al. exploited an additive form of half-quadratic

optimization to solve the same problem (4.3), which finally leads to a fast and effective

image restoration model called cascade of shrinkage fields (CSF). The CSF model makes an

assumption that the data term in (4.3) is quadratic and the operator A can be interpreted

as a convolution operation, such that the corresponding subproblem has fast closed-form

solution based on discrete Fourier transform (DFT). This restrains its applicability to

many other problems such as image super resolution. However, our proposed diffusion

model does not have this restriction on the data term. In principle, any smooth data term

is appropriate. Moreover, as shown in the following sections, we can even handle the case

of non-smooth data term.

There exist some previous works [8, 40], also trying to train an optimized gradient

descent algorithm for the energy functional similar to (4.3). In their works, the Gaussian

4.2. Related works 131

...

...

λ AT (Au – u0)

Nonlinearity

k1

k2

kN

Convolution Convolution

k1

k2

kN

Feedback

Reaction force

Input

Output

*

*

*

*

*

*

t

t

t

t

t

t

t

t

Figure 4.1: The architecture of our proposed diffusion model. Note that the additional
convolution step with the rotated kernels k̄i (cf. Equ. 4.7) does not appear in conventional
feed-forward CNNs. Our model can be interpreted as a CNN with a feedback step, which
makes it different from conventional feed-forward networks. Due to the feedback step, it
can be categorized into recurrent neural networks [56].

denoising problem is considered, and the trained gradient descent algorithm typically

involves less than 10 iterations. However, their model is much more constrained, in the

sense that, they exploited the same filters for each gradient descent step. More importantly,

the influence function in their model is fixed to be a unique one. This clearly restricts the

model performance, as demonstrated in Sec. 3.1.

There are also few preliminary works, e.g., [87] to go beyond traditional PDEs of

the form (4.1), and propose to learn optimal PDEs for image restoration via optimal

control. However, the investigated PDE model in [87] is too simple to generate a promising

performance, as they only optimize the linear combination coefficients of a few predefined

terms, which depend on selected derivative filters.

The proposed diffusion model also bears an interesting link to the convolutional neural

networks (CNNs) employed for image restoration problems [67]. One can see that each

iteration (stage) of our proposed diffusion process involves the convolution operation with

a set of linear filters, and thus it can be treated as a convolutional neural network. The

architecture of our proposed network is shown in Figure 4.1, where one can see that it is

not a pure feed-forward network any more, because it has a feedback step. Therefore, the

structure of our CNN model is different from conventional feed-forward networks. Due to

this feedback step, it can be categorized into recurrent neural networks [56]. Moreover, the

nonlinearity (e.g., influence functions in the context of nonlinear diffusion) in our proposed

network are trainable. However, conventional CNNs make use of fixed activation function,

132 Chapter 4. Learning effective reaction diffusion processes

e.g., ReLU functions or sigmoid functions.

4.3 Learning framework

In this paper, we train our models for two representative image restoration problems:

(1) denoising of images corrupted by Gaussian noise and (2) JPEG blocking artifacts

reduction, which is formulated as a non-smooth problem. We use a loss minimization

scheme to learn the model parameters Θt = {λt, φti, kti} for each stage t of the diffusion

process, given S training samples {u(s)
0 , u

(s)
gt }Ss=1, where u

(s)
0 is a noisy input and u

(s)
gt is the

corresponding ground truth clean image.

We firstly consider a greedy training strategy to train the diffusion processes stage-by-

stage, i.e., at stage t, we minimize the cost function

L(Θt) =
S∑

s=1

`(u
(s)
t , u

(s)
gt) , (4.4)

where u
(s)
t is the output of stage t of the diffusion process. We prefer the usual quadratic

loss function to the negative PSNR used in [120], because the latter one imposes more

weights on those samples with relatively smaller cost, and thus leads to slightly inferior

results in practice. The loss function is given as

`(u
(s)
t , u

(s)
gt) =

1

2
‖u(s)

t − u
(s)
gt ‖22 . (4.5)

Parameterizing the influence functions φti: We parameterize the influence func-

tion via standard radial basis functions (RBFs), i.e., each function φ is represented as

a weighted linear combination of a family of RBFs as follows

φti(z) =

M∑

i=1

wtijϕ

(|z − µj |
γj

)
, (4.6)

where ϕ represents different RBFs. In this paper, we exploit RBFs with equidistant centers

µj and unified scaling γj . We investigate two typical RBFs [64]: (1) Gaussian radial basis

and (2) triangular-shaped radial basis.

In general, the Gaussian RBF can provide better approximation for generally smooth

function than the triangular-shaped RBF with the same number of basis functions. How-

ever, the triangular-shaped RBF based function parameterization has the advantage of

4.3. Learning framework 133

computational efficiency. More details can be found in the following section. In our work,

we consider both function parameterization methods, but only present the results achieved

based on the Gaussian RBF. A comprehensive comparison of both function approximation

methods is subject to future work.

Training for denoising: According to the diffusion equation (4.2), for image denoising,

the output of stage t is given as

ut = ut−1 −
(
Nk∑

i=1

k̄ti ∗ φti(kti ∗ ut−1) + λt(ut−1 − u0)

)
, (4.7)

where we explicitly use a convolution kernel k̄i (obtained by rotating the kernel ki 180

degrees) to replace the K>i for the sake of model simplicity ∗.

Training for deblocking: As described in the last chapter Section 3.2, we consider a

new variational model for JPEG deblocking based on the FoE image prior model

arg min
u
E(u) =

Nk∑

i=1

ρi(ki ∗ u) + IQCS(Du) , (4.8)

where IQCS is a indicator function over the set QCS (quantization constraint set), which

is a box constraint determining all possible source image given the input JPEG compressed

data. The sparse matrix D ∈ RN×N denotes the block DCT transform.

We derive the diffusion process with respect to the variational model (4.8) using the

proximal gradient method [94], which reads as

ut = D>projQCS

(
D

(
ut−1 −

∑Nk

i=1
k̄ti ∗ φti(kti ∗ ut−1)

))
, (4.9)

where projQCS(·) denotes the projection operation onto QCS. More details can be found

in the following section.

Gradients: We minimize (4.4) with commonly used gradient based L-BFGS algorithm

[86]. The gradient of the loss function at stage t w.r.t the model parameters Θt is computed

using standard chain rule, given as

∂`(ut, ugt)

∂Θt
=
∂ut
∂Θt

· ∂`(ut, ugt)
∂ut

, (4.10)

∗We use the symmetric boundary condition in our work. In this case, K>i can be interpreted as the
convolution kernel k̄i only in the central region. Therefore, we actually slightly modify the original model.

134 Chapter 4. Learning effective reaction diffusion processes

where
∂`(ut,ugt)

∂ut
= ut − ugt is directly derived from (4.5), ∂ut

∂Θt
is computed from (4.7) for

the training of denoising task or (4.38) for the deblocking training, respectively. We do

not present the derivatives for specific model parameters due to space limitation. All

derivatives can be found in the following section.

Joint training: In (4.4), each stage is trained greedily such that the output of each stage

is optimized according to the loss function, regardless of the total stages T used in the

diffusion process. A better strategy would be to jointly train all the stages simultaneously.

The joint training task is formulated as

L(Θ1,··· ,T) =
S∑

s=1

`(u
(s)
T , u

(s)
gt) , (4.11)

where the loss function only depends on uT (the output of the final stage T). The gradients

of the loss function w.r.t Θt is given as

∂`(uT , ugt)

∂Θt
=
∂ut
∂Θt

· ∂ut+1

∂ut
· · · ∂`(uT , ugt)

∂uT
,

which is the standard back-propagation technique widely used in the neural networks

learning [75]. Compared with the greedy training, we additionally need to calculate ∂ut+1

∂ut
.

See the following section for the derivations.

4.4 Computing gradients

As shown in the last section, the main issue for the training is to compute the gradient of

the loss function with respect to the training parameters in each step. In this section, we

provide the derivations to compute these gradients.

4.4.1 Preliminaries

When we modify the original diffusion equation

ut = ut−1 −
(
Nk∑

i=1

Kt
i
>
φti(K

t
iut−1) + λt(ut−1 − u0)

)
, (4.12)

to the following version

ut = ut−1 −
(
Nk∑

i=1

k̄ti ∗ φti(kti ∗ ut−1) + λt(ut−1 − u0)

)
, (4.13)

4.4. Computing gradients 135

we find that it introduces some imperfections in the image boundary. The basic reason

lies in the fact that , in the case of symmetric boundary condition used in our work, K>i

can be interpreted as the convolution kernel k̄i
† only in the central region, while it can

not in the boundary. However, in the diffusion equation (4.13), the convolution kernel k̄i

is applied to the whole image, thus bringing some artifacts in the boundary. The benefit

to use the diffusion equation (4.13), other than (4.12) is that the revised model is more

tractable in practice, especially for training, as everything can be done by the convolution

operation efficiently.

In order to remove this artifacts, we pad the input image ut−1 of stage t, as well as

the noisy image u0, with mirror reflections of itself. This operation is formulated by the

sparse “padding” matrix P . After a diffusion step, we only crop the central region of

the output image ut for usage. This operation is formulated by the sparse “cropping”

matrix T . When we apply the matrix PT = P ×T to an image u, PTu corresponds to two

operations: it first crops the central region of u, then pads it with mirror reflections.

After taking into account the operation of boundary handling, the exact diffusion

process is illustrate in Figure 4.2. There we have utp = PTut.

In our derivations, we use the symmetric boundary condition for the convolution oper-

ation k ∗u (image u ∈ Rm×n, k ∈ Rr×r). As we know, it is equivalent to the matrix-vector

product formulation Ku, where K ∈ RN×N is a highly sparse matrix and u is a column

vector u ∈ RN with N = m× n. The result k ∗ u can also be interpreted with Uk, where

matrix U ∈ RN×R is constructed from image u and k is a column vector k ∈ RR with

R = r×r. This formulation is very helpful for the computation of the gradients of the loss

function with respect to. the kernel k, as U>v (v ∈ RN is a column vector) can be explic-

itly interpreted as a convolution operation, which is widely used in classic convolutional

neural networks [14]. In the following derivations, we will make use of this equivalence

frequently, i.e.,

k ∗ u⇐⇒ Ku⇐⇒ Uk .

4.4.2 Derivations of learning problem with respect to Gaussian denois-

ing

Given S training samples {u(s)
0 , u

(s)
gt }Ss=1, where u

(s)
0 is the noisy input and u

(s)
gt is the

corresponding ground truth clean image. Let assume the original image size is m × n.

We first pad the noisy image u0 with ω pixels, then the resulting image has size O =

†Recall that kernel k̄i is obtained by rotating ki 180 degrees.

136 Chapter 4. Learning effective reaction diffusion processes

Stage 1

Ѳ1

u0 u0p
Stage 2

Ѳ2

u1 u1p uT-1 u(T-1)pu2

Gradient Descent StepGradient Descent Step

Stage T

ѲT

uT

Gradient Descent Step

…...

Figure 4.2: Proposed nonlinear diffusion process with careful boundary handling operation.
Note that utp = PTut.

(m+2ω)×(n+2ω). We have the corresponding matrix T ∈ RN×O, P ∈ RO×N , PT ∈ RO×O

and u0 ∈ RO, ugt ∈ RN .

4.4.2.1 Greedy training

In the greedy training for stage t, we are to minimize the following loss function with

respect to the model parameters Θt = {λt, φti, kti} of stage t,

L(Θt) =

S∑

s=1

`(u
(s)
t , u

(s)
gt) =

S∑

s=1

1

2
‖Tu(s)

t − u
(s)
gt ‖22 , (4.14)

where

ust = us(t−1)p −
(
Nk∑

i=1

k̄ti ∗ φti(kti ∗ us(t−1)p) + λt(us(t−1)p − us0p)
)
. (4.15)

Note that in the training for stage t, the images u(t−1)p are fixed, served as the input of

this feed-forward step.

As the gradient of overall loss function on the whole training datasets can be decom-

posed to the sum over training samples, in the following derivation, we only consider the

case of one training sample for the sake of brevity. The basic result of the gradient of the

loss function with respect to the training parameters Θt = {λt, φti, kti} is given

∂`(ut, ugt)

∂Θt
=
∂ut
∂Θt

· ∂`(ut, ugt)
∂ut

, (4.16)

where
∂`(ut,ugt)

∂ut
is simply given as

∂`(ut, ugt)

∂ut
= T>(Tut − ugt) .

4.4. Computing gradients 137

Let us define a column vector e ∈ RO as

e = T>(Tut − ugt) .

Therefore, the main issue is to calculate ∂ut
∂Θt

from (4.15).

Weight parameter λt: It is easy to see that

∂ut
∂λt

=
(
u(t−1)p − u0p

)>
. (4.17)

Thus ∂`
∂λt is given as

∂`

∂λt
=
(
u(t−1)p − u0p

)>
e . (4.18)

Filters kti: Concerning the dependency of ut on parameters kti , it is easy to see the

following relationship

ust → −k̄ti︸︷︷︸
f

∗φti(kti ∗ u(t−1)p)︸ ︷︷ ︸
v

,

where f and v are two auxiliary variables defined as f = −k̄ti and v = φti(k
t
i ∗ u(t−1)p).

Therefore, we get the following dependency relationship,

ut f

v

kti

According to the chain rule, we have

∂ut
∂kti

=
∂f

∂kti
· ∂ut
∂f

+
∂v

∂kti
· ∂ut
∂v

. (4.19)

Note that f = −k̄ti , which can be formulated as f = −Pinvkti with matrix Pinv inverting

the kernel vector kti . Recall the equivalence

f ∗ v ⇐⇒ Fv ⇐⇒ V f .

Therefore, the first term of (4.19) is given as

∂f

∂kti
· ∂ut
∂f

= −P>invV > .

For the second term, we introduce an additional auxiliary variable z, defined as z =

138 Chapter 4. Learning effective reaction diffusion processes

kti ∗ u(t−1)p. Then we have v = φti(z). Recall that

z = kti ∗ u(t−1)p ⇐⇒ U(t−1)pk
t
i .

Therefore, we obtain

∂v

∂kti
· ∂ut
∂v

=
∂z

∂kti
· ∂v
∂z
· ∂ut
∂v

= U>(t−1)pΛF
> ,

where Λ is a diagonal matrix Λ = diag(φti
′
(z1), · · · , φti

′
(zp)) (φti

′
is the first order derivative

of function φti). Note that F = −K̄t
i . In summary, ∂ut

∂kti
is given as

∂ut
∂kti

= −
(
P>invV

> + U>(t−1)pΛK̄
t
i

>)
. (4.20)

Finally, we arrive at the desired gradients

∂`

∂kti
= −

(
P>invV

> + U>(t−1)pΛK̄
t
i

>)
e . (4.21)

In practice, we do not need to explicitly construct the matrices V,U, K̄t
i . Recall that

the product of matrices V >, U>(t−1)p and a vector can be accomplished by the convolution

operator [14]. As shown in a previous work [29], K̄t
i

>
can also be accomplished by the

convolution operation with the kernel kti with careful boundary handling. Matrix P>inv is

merely a linear operation which inverts the vectorized kernel k. In the case of a square

kernel k, it is equivalent to the Matlab command

P>invk ⇐⇒ rot90(rot90(k)) .

If we have a closer look at the diffusion equation (4.15), we find that it has a scaling

problem with respect to the filters kti . First we know the function φti is free to tune in

the training. In this case, if we scale the filter kti by a factor of h to generate a new filter

k̂ti = hkti , and the corresponding new function φ̂ti is selected such that φ̂ti(hz) = 1
hφ

t
i(z),

then we will see that the term k̄ti ∗ φti(kti ∗ u(t−1)p) keep unchanged, i.e., two different set

of parameters {kti , φti} and {k̂ti , φ̂ti} own exactly the same loss function `(ut, ugt). In order

to get rid of this ambiguity, it is necessary to fix the scale of the filters. In practice, we

learn filters with fixed unit norm. Motivated by the statement in [29] that meaningful

filters should be zero-mean, we also construct the training filter k from the DCT basis

4.4. Computing gradients 139

B ∈ RR×(R−1) (without the DC-component). Therefore, we define each filter k ∈ RR with

k = B c

‖c‖2
, (4.22)

where c ∈ RR−1. Now the training parameters become c, and we need to calculate ∂`
∂c . As

shown in (4.21), we already have ∂`
∂k , according to the chain rule, we have

∂`

∂c
=
∂k

∂c
· ∂`
∂k

,

where ∂k
∂c is computed from (4.22). Let us define an auxiliary variable v = c

‖c‖2 , we have

∂k

∂c
=
∂v

∂c
· ∂k
∂v

(4.23a)

=
∂v

∂c
· B> (4.23b)

=

(
I

‖c‖2
+
∂[(c>c)−

1
2]

∂c
· c>
)
· B> (4.23c)

=

(
I

‖c‖2
+
∂[(c>c)]

∂c
· (−1

2

1

‖c‖32
) · c>

)
· B> (4.23d)

=

(
I

‖c‖2
+ 2c · (−1

2

1

‖c‖32
) · c>

)
· B> (4.23e)

=
1

‖c‖2

(
I− c

‖c‖2
· c
>

‖c‖2

)
· B> , (4.23f)

where I ∈ R(R−1)×(R−1) is the identity matrix. Combining the Equation (4.21) and (4.31),

we can obtain the desired gradients of the loss function with respect to the training pa-

rameter cti, given as

∂`

∂cti
= − 1

‖cti‖2

(
I− cti
‖cti‖2

· c
t
i
>

‖cti‖2

)
· B> ·

(
P>invV

> + U>(t−1)pΛK̄
t
i

>)
e (4.24)

Influence functions φ: According to diffusion equation (4.15), the dependency of ut

on the influence function φti is given as

ut → −K̄t
i · φti(Kt

i · u(t−1)p) . (4.25)

140 Chapter 4. Learning effective reaction diffusion processes

Let us define an auxiliary variable y ∈ RO as

y = Kt
i · u(t−1)p . (4.26)

In our work, function φti is represented as

φti(z) =
M∑

j=1

wtijϕ

(|z − µj |
γ

)
, (4.27)

Therefore, the column vector φti(y) ∈ RO can be reformulated via a matrix equation

φti(y) = G(y) · wti ,

where wti ∈ RM is the vectorized version of parameters wtij , matrix G(y) ∈ RO×M is given

as

Figure 4.3: G matrix

Now, it is straightforward to obtain ∂ut
∂wti

, given as

∂ut
∂wti

= −G>K̄t
i

>
. (4.28)

Then we can obtain the desired gradients of the loss function with respect to the parameters

of the influence function, written as

∂`

∂wti
= −G>K̄t

i

>
e . (4.29)

In this chapter, we investigate two typical RBFs [64]: (1) Gaussian radial basis ϕg and

(2) triangular-shaped radial basis ϕt, which are given as

ϕg(z) = ϕ

(|z − µ|
γ

)
= exp

(
−(z − µ)2

2γ2

)

4.4. Computing gradients 141

−30 −20 −10 0 10 20 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−300 −200 −100 0 100 200 300
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−30 −20 −10 0 10 20 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−300 −200 −100 0 100 200 300
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 4.4: Function approximation via Gaussian ϕg(z) or triangular-shaped ϕt(z) radial
basis function, respectively.

and

ϕt(z) = ϕ

(|z − µ|
γ

)
=

1− |z−µ|γ |z − µ| ≤ γ

0 |z − µ| > γ

respectively. The basis functions are shown in Figure 4.4, together with an example of the

function approximation by using two different RBF methods.

In Figure 4.4, we can see that in the case of triangular-shaped RBF based function

approximation any input variable z only involves two basis functions, i.e., each row of the

G matrix (4.3) only has two non-zero numbers. Therefore, we can explicitly make use of

this property in the implementation to speed up the computation of Equation (4.29), i.e.,

the triangular-shaped RBF based training process is generally faster than the Gaussian

RBF based one.

In the training, the first order derivative of the influence function φ is also required as

in Equation (4.24). In the case of Gaussian RBF, the first order derivative is given as

φ′i(z) = −γ
M∑

i=1

wijexp
(
−γ

2
(z − µj)2

)
· (z − µj) .

In the case of triangular-shaped RBF, φ′ is defined by a piece-constant function as φ

is a piece-wise linear function. Although the influence function φ and its derivative φ′ is

not smooth, the training still works quite well.

In practice, in order to speed up the computation of the function value φ(z) and its

derivative φ′(z) for the case Gaussian RBF, we approximate these functions with piece-

wise linear functions (the function values at discrete points are precomputed and stored

in a lookup-table), then the function values at point z can be retrieved efficiently using

142 Chapter 4. Learning effective reaction diffusion processes

linear interpolation.

Concerning the function approximation accuracy, in general, the Gaussian RBF can

provide a better approximation for generally smooth function than the triangular-shaped

RBF with the same number of basis functions, as the latter generates a piece-wise lin-

ear function for approximation. In order to improve the approximation accuracy of the

triangular-shaped RBF based method, usually we need to exploit more basis functions

relative to the Gaussian RBF based method. However, using more basis functions will

bring an unwanted problem of over-fitting. Therefore, certain regularization technique

is required. Unfortunately, up to now we have not figured out the best choice for the

regularization term.

In our work, we have investigated both function approximation methods, and we find

that they generate similar results. We only present the results obtained by the Gaussian

RBF due to space limitation. We do not provide a comprehensive comparison of two

methods, as it is out of the scope of this chapter.

4.4.2.2 Joint training

In the joint training, the parameters of all stages T are optimized simultaneously. The

joint training task is formulated as

L(Θ1,··· ,T) =
S∑

s=1

`(u
(s)
T , u

(s)
gt) , (4.30)

where the loss function only depends on uT , the output of the final stage T . The gradients

of the loss function with respect to Θt is given as

∂`(uT , ugt)

∂Θt
=
∂ut
∂Θt

· ∂`(uT , ugt)
∂ut

,

where ∂ut
∂Θt

has been already done in the preceding subsection. Now the main issue is to

calculate
∂`(uT ,ugt)

∂ut
. As we only know

e =
∂`(uT , ugt)

∂uT
= T>(TuT − ugt) ,

4.4. Computing gradients 143

the standard back-propagation technique widely used in neural networks learning [75] can

be used to calculate the desired gradients, which is written as

∂`(uT , ugt)

∂ut
=
∂ut+1

∂ut
· `(uT , ugt)

∂ut+1
(4.31a)

=
∂ut+1

∂ut
· ∂ut+2

∂ut+1
· `(uT , ugt)

∂ut+2
(4.31b)

=
∂ut+1

∂ut
· ∂ut+2

∂ut+1
· · · ∂uT

∂uT−1
· e . (4.31c)

In practice, (4.31) is accomplished with a backward manner starting from the last stage.

Now the only thing we need to calculate is ∂ut+1

∂ut
. Recall the diffusion process shown in

Figure 4.2, it is straightforward to see that

∂ut+1

∂ut
=
∂utp
∂ut

· ∂ut+1

∂utp
,

where
∂utp
∂ut

= P>T according to the equation utp = PTut, and ∂ut+1

∂utp
can be obtained from

the diffusion equation (4.15).

∂ut+1

∂utp
= (1− λt+1)I−

Nk∑

i=1

Kt+1
i
> · Λi ·

(
K̄t+1
i

)>
,

where Λi is a diagonal matrix Λi = diag(φt+1
i
′
(z1), · · · , φt+1

i
′
(zp)) with z = kt+1

i ∗ utp.
Therefore, the overall ∂ut+1

∂ut
is given as

∂ut+1

∂ut
= P>T ·

(
(1− λt+1)I−

Nk∑

i=1

Kt+1
i
> · Λi ·

(
K̄t+1
i

)>
)
.

Then the gradients of
∂`(uT ,ugt)

∂ut
can be computed using the backward recurrence described

above. Once we have obtained the results of
∂`(uT ,ugt)

∂ut
, it is straightforward to calculate

∂`(uT ,ugt)
∂Θt

using the derivations in previous subsection.

4.4.3 Training for JPEG deblocking

Recall that we consider the JPEG deblocking problem by defining a new variational model,

which incorporates the FoE image prior model and the quantization constraint set (QCS).

More details can be found in the last chapter Section 3.2.

144 Chapter 4. Learning effective reaction diffusion processes

4.4.3.1 Variational model for image deblocking

In our training, an image u of size m × n is padded with ω pixels (we set ω = 8 for this

problem). In order to simplify the notation, the interval S is represented by two column

vectors a ∈ RO and b ∈ RO (O = (m+ 2ω)× (n+ 2ω)), which correspond to the lower and

upper bounds of the intervals SIi,j , respectively. We further define a highly sparse matrix

D ∈ RO×O, which makes Du equivalent to the block-wise DCT transform applied to the

two-dimensional image u.

Given the compressed image data, the QCS is given as the box constraint S = [a, b],

and the set of possible source image of the compression process is defined as

U = {u ∈ RO | (Du)p ∈ [ap, bp]} .

Then we can define our variational model based on the FoE image prior model and QCS,

which reads as

arg min
u∈U

E(u) =

Nk∑

i=1

ρi(ki ∗ u) . (4.32)

This is a constrained optimization problem, and it can be rewritten as

arg min
u
E(u) =

Nk∑

i=1

ρi(ki ∗ u) + IS(Du) , (4.33)

where

IS(Du) =

0 if Du ∈ S,

∞ else .

In this formulation, we exploit the convex set S instead of set U , as S is a box constraint,

which is simpler than U .

As the minimization problem (4.33) contains the non-smooth indicator function, the

standard gradient descent algorithm is not applicable. Therefore, we resort to the more

general proximal gradient method [94], which is applicable to solve a class of the following

minimization problems

min
u
h(u) = f(u) + g(u) , (4.34)

where f is a smooth function and g is convex (possibly non-smooth) function. The proxi-

mal gradient method is defined as

ut = (I + τ∂g)−1(ut−1 − τ∇f(ut−1)) ,

4.4. Computing gradients 145

where τ is the step size parameter, (I + τ∂g)−1 denotes the proximal mapping operator.

Casting the problem (4.33) in the form of (4.34), we have f(u) =
Nk∑
i=1

ρi(ki ∗ u) and

g(u) = IS(Du). It is easy to check that

∇f(u) =

Nk∑

i=1

k̄i ∗ φi(ki ∗ u) ,

with φi = ρ′i. We again make the modification k̄i to the rigorous formulation K>i . The

proximal mapping with respect to g is given as the following minimization problem

(I + τ∂g)−1 (û) = arg min
u

‖u− û‖22
2

+ τIS(Du) . (4.35)

As shown in the last chapter Section 3.2, the solution of this problem is given as

ũ = D>c̃ ,

with

c̃p =

ĉp if ĉp ∈ Sp = [ap, bp]

bp if ĉp > bp

ap if ĉp < ap .

(4.36)

Finally, the the solution of u is given as ũ = D>c̃. Therefore, the overall gradient descent

step is given as

ut = D>projQCS

(
D

(
ut−1 −

Nk∑

i=1

k̄i ∗ φi(ki ∗ ut−1)

))
, (4.37)

where projQCS(·) denotes the orthogonal projection onto QCS (4.36). In our training

model, as we consider different filters and influence functions for each stage t, the accurate

diffusion process is given as

ut = D>projQCS

(
D

(
ut−1 −

Nk∑

i=1

k̄ti ∗ φti(kti ∗ ut−1)

))
. (4.38)

The projection operator can be represented by the function η(z) show in Figure 4.5.

Therefore, the corresponding gradient descent step (4.38) can be rewritten as the following

146 Chapter 4. Learning effective reaction diffusion processes

a b

a

b

η(z)

Figure 4.5: The projection function η(z).

formulas by introducing the auxiliary variables v, z, and y.

ut = D>v

v = η(z)

z = Dy

y = ut−1 −
Nk∑
i=1

k̄ti ∗ φti(kti ∗ ut−1) .

(4.39)

4.4.3.2 Gradients with respect to the deblocking training

For the training of this new problem, the training parameters Θt is given by Θt = {φti, kti}.
According to the result of (4.16), for this new training problem, we can make use of the

framework presented in the last section and we just need to recalculate ∂ut
∂Θt

from (4.39),

which is given as

∂ut
∂Θt

=
∂y

∂Θt
· ∂z
∂y
· ∂v
∂z
· ∂ut
∂v

=
∂y

∂Θt
·D> · diag(η′(z)) ·D , (4.40)

where η′(z) = (η′(z1), η′(z2), · · · , η′(zO))> ∈ RO with η′(zp) defined as

η′(zp) =

1 if zp ∈ [ap, bp] ,

0 else
(4.41)

4.5. Training experiments for image denoising and deblocking 147

Even though we do not consider any smoothing technique for the non-smooth function

η, in practice we find that it is not a problem for the training procedure by using the

above discontinuous derivative. According to the derivations (4.20) and (4.28) in the last

section, it is straightforward to calculate ∂y
∂Θt

, which leads to exactly the same results.

Concerning the joint training model, we can still make use of the same framework

presented in the last section and we just need to additionally compute ∂ut
∂ut−1

. Taking into

account the operation of boundary handling, ∂ut
∂ut−1

is given as

∂ut
∂ut−1

=P>T ·
∂y

∂ut−1
· ∂z
∂y
· ∂v
∂z
· ∂ut
∂v

=P>T ·
(

I−
Nk∑

i=1

Kt
i
> · Λi · K̄t

i

>
)
·D> · diag(η′(z)) ·D (4.42)

Combining the derivation results of (4.40), (4.42) and the framework presented in the

last section, we can reach the formulas required for the training of the JPEG deblocking

problem.

4.5 Training experiments for image denoising and deblock-

ing

As the calculation of the gradients of the loss function in (4.10) can be accomplished with

convolution technique efficiently, we can train our models on a relatively large dataset,

even with a simple Matlab implementation. We used the same 400 training images as

[120], and cropped a 180× 180 region from each image, resulting in a total of 400 training

samples of size 180× 180, i.e., roughly 13 million pixels.

We trained the proposed diffusion process with at most 8 stages to observe its satu-

ration behavior after some stages. We first greedily trained T stages of our model with

specific model capacity, then conducted a joint training for the parameters of the whole

T stages.

In our work, we mainly considered two trained reaction diffusion (TRD) models.

TRDT
5×5,Fully trained model with 24 filters of size 5× 5 ,

TRDT
7×7,Fully trained model with 48 filters of size 7× 7 ,

where TRDT
m×m denotes a nonlinear diffusion process of stage T with filters of size m×m.

148 Chapter 4. Learning effective reaction diffusion processes

The filters number is m2 − 1, if not specified.

In training, computing the gradients ∂L
∂Θ with respect to the parameters of one stage for

400 images of size 180× 180 takes about 35s (TRD5×5), 75s (TRD7×7) or 165s (TRD9×9)

with Matlab implementation on a server with CPUs: Intel(R) Xeon E5-2680 @ 2.80GHz

(eight parallel threads, 63 Gaussian RBF kernels for the influence function parameteri-

zation). We typically run 200 L-BFGS iterations for optimization. Therefore, the total

training time, e.g., for the TRD5
7×7 model is about 5× (200× 75)/3600 = 20.8h.

4.5.1 Image denoising experiments

We started with the training model of TRDT
5×5. We first considered the greedy scheme to

train a diffusion process up to 8 stages (i.e., T ≤ 8), in order to observe the asymptotic

behavior of the diffusion process. After the greedy training was completed, we conducted

joint training for a diffusion model of certain stages (e.g., T = 5), by simultaneously tuning

the parameters in all stages.

We initialized the joint training with the parameters obtained from greedy training,

as this is guaranteed not to decrease the training performance.‡ In previous work [120],

it is shown that joint training a model with filters of size 5 × 5 or larger hardly makes a

difference relative to the result obtained by the greedy training. However, in our work we

observed that joint training always improves the result of greedy training.

Note that for the models trained in the greedy manner, we can stop the inference at

any stage, as its output of each stage is optimized. However, for the jointly trained models,

we have to run T stages, as in this case only the output of the T th stage is optimized.

We first trained our diffusion models for the Gaussian denoising problem with standard

deviation σ = 25. The noisy training images were generated by adding synthetic Gaussian

noise with σ = 25 to the clean images. Once we have trained a diffusion model, we

evaluated its performance on a standard test dataset of 68 test images.§

We present the final results of the joint training in Table 4.1, together with a selection

of recent state-of-the-art denoising algorithms, namely BM3D [36], LSSC [91], EPLL [143],

opt-MRF [27], RTF5 model [68] and two very recent methods: the CSF model [120] and

WNNM [57]. We downloaded these algorithms from the corresponding author’s homepage,

and used them as is.¶

Concerning the performance of our TRDT
5×5 models, we find that joint training usually

‡In practice, we also find that a plain initialization can actually lead to closely similar results.
§The test images are strictly separate from the training datasets.
¶The implementation of the RTF5 model is not available, and we quoted its result from [120].

4.5. Training experiments for image denoising and deblocking 149

Method
σ

St.
σ = 15

15 25 TRD5×5 TRD7×7

BM3D 31.08 28.56 2 31.14 31.30
LSSC 31.27 28.70 5 31.30 31.42
EPLL 31.19 28.68 8 31.34 31.43
opt-MRF 31.18 28.66 σ = 25
RTF5 – 28.75 TRD5×5 TRD7×7

WNNM 31.37 28.83 2 28.58 28.77
CSF5

5×5 31.14 28.60 5 28.78 28.91
CSF5

7×7 31.24 28.72 8 28.83 28.95

Table 4.1: Average PSNR (dB) on 68 images from [111] for image denoising with σ =
15, 25.

leads to an improvement of about 0.1dB in the cases of T ≥ 5. From Table 4.1, one can see

that (1) the performance of the TRDT
5×5 model saturates after stage 5, i.e., in practice, 5

stages are typically enough; (2) our TRD5
5×5 model has achieved significant improvement

(28.78 vs.28.60), compared to a similar model CSF5
5×5, which has the same model capacity

and (3) moreover, our TRD8
5×5 model is on par with so far the best-reported algorithm -

WNNM.

When comparing with some closely related models such as the FoE prior based vari-

ational model [27], the FoE derived CSF model [120] and convolutional neural networks

(CNNs) [67], our trained models can provide significantly superior performance. There-

fore, a natural question arises: what is the critical factor in the effectiveness of the trained

diffusion models? There are actually two main aspects in our training model: (1) the

linear filters and (2) the influence functions. In order to have a better understanding of

the trained models, we went through a series of experiments to investigate the impact of

these two aspects.

4.5.1.1 Analysis of the proposed diffusion process

Concentrating on the model capacity of 24 filters of size 5× 5, we considered the training

of a diffusion process with 10 steps, i.e., T = 10 for the Gaussian denoising of noise level

σ = 25. We exploited two main classes of configurations: (A) the parameters of every

stage are the same and (B) every diffusion stage is different from each other. In both

configurations, we consider two cases: (I) only train the linear filters with fixed influence

function φ(z) = 2z/(1+z2) and (II) simultaneously train the filters and influence functions.

Based on the same training dataset and test dataset, we obtained the following results:

(A.I) every diffusion step is the same, and only the filters are optimized with fixed influence

150 Chapter 4. Learning effective reaction diffusion processes

function. This is a similar configuration to previous works [8, 40]. The trained model

achieves a test performance of 28.47dB. (A.II) with additional tuning of the influence

functions, the resulting performance is boosted to 28.60dB. (B.I) every diffusion step can be

different, but only train the linear filters with fixed influence function. The corresponding

model obtains the result of 28.56dB, which is equivalent to the variational model [27]

with the same model capacity. Finally (B.II) with additional optimization of the influence

functions, the trained model leads to a significant improvement with the result of 28.86dB.

The analysis experiments demonstrate that without the training of the influence func-

tions, there is no chance to achieve significant improvements over previous works, no

matter how hard we tune the linear filters. Therefore, we believe that the additional free-

dom to tune the influence functions is the critical factor of our proposed training model.

After having a closer look at the learned influence functions of the TRD5
5×5 model, these

functions reinforce our argument.

4.5.1.2 Learned influence functions

After we go through all 120 learned influence functions in the TRD5
5×5 model, we find that

the form of the learned penalty functions ρ‖ in the TRD5
5×5 model can be divided into

four classes (see the corresponding subfigures in Figure 4.6):

(a) Truncated convex penalty functions with low values around zero to encourage

smoothness.

(b) Negative Mexican hat functions, which have a local minimum at zero and two sym-

metric local maxima.

(c) Truncated concave functions with smaller values at the two tails.

(d) Double-well functions, which have a local maximum (not a minimum any more) at

zero and two symmetric local minima.

At first glance, the learned penalty functions (except (a)) differ significantly from the usu-

ally adopted penalty functions used in PDE and energy minimization methods. However,

it turns out that they have a clear meaning for image regularization.

Regarding the penalty function (b), there are two critical points (indicated by red

triangles). When the magnitude of the filter response is relatively small (i.e., less than

‖The penalty function ρ(z) is integrated from the influence function φ(z) according to the relation
φ(z) = ρ′(z)

4.5. Training experiments for image denoising and deblocking 151

−400 −200 0 200 400
−6

−4

−2

0

2

4

6

−400 −200 0 200 400
−400

−350

−300

−250

−200

−150

−100

−50

0

φa ρa

(a) Truncated convex

−400 −200 0 200 400
−4

−3

−2

−1

0

1

2

3

4

φb

−400 −200 0 200 400
−200

−150

−100

−50

0

50

100

ρb

(b) Negative Mexican hat

−400 −200 0 200 400
−4

−3

−2

−1

0

1

2

3

4

φc

−400 −200 0 200 400
−50

0

50

100

150

200

250

300

350

ρc

(c) Truncated concave

−400 −200 0 200 400
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−400 −200 0 200 400
−50

−40

−30

−20

−10

0

10

20

30

40

φd ρd

(d) Double-well penalty

Figure 4.6: The figure shows four characteristic influence functions (left plot in each sub-
figure) together with their corresponding penalty functions (right plot in each subfigure),
learned by our proposed method. A major finding in this paper is that our learned penalty
functions significantly differ from the usual penalty functions adopted in partial differential
equations and energy minimization methods. In contrast to their usual robust smooth-
ing properties which is caused by a single minimum around zero, most of our learned
functions have multiple minima different from zero and hence are able to enhance certain
image structures.

the critical points), probably it is stimulated by the noise and therefore the penalty func-

tion encourages smoothing operation as it has a local minimum at zero. However, once

the magnitude of the filter response is large enough (i.e., across the critical points), the

corresponding local patch probably contains a real image edge or certain structure. In

152 Chapter 4. Learning effective reaction diffusion processes

this case, the penalty function encourages to increase the magnitude of the filter response,

alluding to an image sharpening operation. Therefore, the diffusion process controlled by

the influence function (b), can adaptively switch between image smoothing (forward dif-

fusion) and sharpening (backward diffusion). We find that the learned influence function

(b) is closely similar to an elaborately designed function in a previous work [54], which

leads to an adaptive forward-and-backward diffusion process.

A similar penalty function to the learned function (c) with a concave shape is also

observed in previous work on image prior learning [142]. This penalty function also en-

courages to sharpen the image edges. Concerning the learned penalty function (d), as it

has local minima at two specific points, it prefers specific image structure, implying that

it helps to form certain image structure. We also find that this penalty function is exactly

the type of bimodal expert functions for texture synthesis employed in [62].

Now it is clear that the diffusion process involving the learned influence functions does

not perform pure image smoothing any more for image processing. In contrast, it leads

to a diffusion process for adaptive image smoothing and sharpening, distinguishing itself

from previous commonly used image regularization techniques.

4.5.1.3 Training for other configurations

In order to investigate the influence of the model capacity, we increase the filter size to

7 × 7 and 9 × 9. We find that increasing the filter size from 5 × 5 to 7 × 7 brings a

significant improvement of 0.14dB (TRD5
7×7 vs.TRD5

5×5) as show in Table 4.1. However,

if we further increase the filter size to 9× 9, the resulting TRD5
9×9 leads to a performance

of 28.96dB (a slight improvement of 0.05dB relative to the TRD5
7×7 model). In practice,

we prefer the TRD5
7×7 model as it provides the best trade-off between performance and

computation time.

We also trained diffusion models for the noise level of σ = 15, and the test performance

is shown in Table 4.1. In experiments, we observed that joint training can always gain an

improvement of about 0.1dB over the greedy training for the cases of T ≥ 5.

From Table 4.1, one can see that for both noise levels, the resulting TRD7×7 model

achieves the highest average PSNR. The TRD5
7×7 model outperforms the benchmark

BM3D method by 0.35dB in average. This is a notable improvement as few methods

can surpass BM3D more than 0.3dB in average [79]. Moreover, the TRD5
7×7 model also

surpasses the best-reported algorithm - WNNM method, which is very slow as shown in

Table 4.2. In summary, our TRD5
7×7 model outperforms all the recent state-of-the-arts

4.5. Training experiments for image denoising and deblocking 153

Method 2562 5122 10242 20482 30722

BM3D [36] 1.1 4.0 17 76.4 176.0
CSF5

7×7 [120] 3.27 11.6 40.82 151.2 494.8
WNNM [57] 122.9 532.9 2094.6 – –

TRD5
5×5

0.51 1.53 5.48 24.97 53.3
0.43 0.78 2.25 8.01 21.6
0.005 0.015 0.054 0.18 0.39

TRD5
7×7

1.21 3.72 14.0 62.2 135.9
0.56 1.17 3.64 13.01 30.1
0.01 0.032 0.116 0.40 0.87

Table 4.2: Runtime comparison for image denoising (in seconds) with different implemen-
tations. (1) The runtime results with gray background are evaluated with the single-
threaded implementation on Intel(R) Xeon(R) CPU E5-2680 v2 @ 2.80GHz; (2) the blue
colored runtimes are obtained from the multi-threaded implementation on a server with
the above CPUs; (3) the runtime results colored in red are executed on a NVIDIA GeForce
GTX 780Ti GPU.

on the exploited test dataset, meanwhile it is the fastest method even with the CPU

implementation.

4.5.1.4 Run time

The algorithm structure of our TRD model is closely similar to the CSF model, which is

well-suited for parallel computation on DSP or GPU. We implemented our trained models

on GPU using CUDA programming to speed up the inference procedure, and finally it

indeed lead to a significantly improved runtime, see Table 4.2. We see that for the images

of size up to 3K× 3K, the TRD5
7×7 model is still able to accomplish the denoising task in

less than 1s.

We make a runtime comparison to other denoising algorithms based on strictly enforced

single-threaded CPU computation (e.g., start Matlab with -singleCompThread) for a fair

comparison, see Table 4.2. We only present the results of some selective algorithms, which

either have the best denoising performance or runtime result. We refer to [120] for a

comprehensive runtime comparison of various algorithms.

We see that our trained TRD model is generally faster than the CSF model with the

same model capacity. It is reasonable, because in each stage the CSF model involves

additional DFT and inverse DTF operations, i.e., our model only requires a portion of

the computation of the CSF model. Even though the BM3D is a non-local model, it still

possesses high computation efficiency, in contrast to another non-local model WNNM,

which achieves compelling denoising results at the expense of computation time. Moreover,

154 Chapter 4. Learning effective reaction diffusion processes

the WNNM algorithm is hardly applicable for high resolution images (e.g., 10 mega-pixels)

due to its huge memory requirement. Note that our model can be also easily implemented

with multi-threaded CPU computation, which is generally able to speed up the single-

threaded implementation by 2-4 times, see Table 4.2.

4.5.1.5 Denoising examples

We present the trained filters of the model TRD5
5×5 in the case of Gaussian noise level

σ = 25 in Figure 4.7 to illustrate the property of the learned filters. We see find the first,

second derivative filters and their rotated versions, as well as higher-order filters.

We present three Gaussian denoising examples in Figure 4.8 - Figure 4.10. We compare

the results of our trained TRD models with a selection of representative state-of-the-art

approaches: (1) the benchmark denoising algorithm - BM3D, (2) our learned opt-MRF

model in the last chapter, one of the best-performing MRFs for image restoration, (3)

WNNM algorithm, the currently best-reported denoising algorithm, (4) CSF5
7×7 model,

having the best trade-off between performance and computation time. For the exploited

image size of 481×321, the corresponding run time of the competing algorithms are shown

in Figure 4.9 based on either CPU or GPU computation.

Note that in Figure 4.10, the test image contains many repeated local patterns, e.g., the

T-shirt region, the nonlocal methods (BM3D and WNNM) generally should work better

than the local methods (CSF model and our TRD model), because the nonlocal models

explicitly exploit nonlocal self-similarity across the image. Even though the nonlocal

methods can benefit from these repeated local patterns, our trained TRD5
7×7 still show

strongly competitive performance.

4.5.2 JPEG deblocking experiments

We also trained diffusion models for the JPEG deblocking problem. We followed the test

procedure in [68] for performance evaluation. The test images were converted to gray-

value, and scaled by a factor of 0.5, resulting images of size 240 × 160. We distorted

the images by JPEG blocking artifacts. We considered three compression quality settings

q = 10, 20 and 30 for the JPEG encoder. Results are shown in Table 4.3, compared

with several representative deblocking approaches, as well as the opt-MRF model based

deblocking algorithm presented in the last chapter Section 3.2.

We see that our trained TRD4
7×7 outperforms all the competing approaches in terms

of the PSNR index. Furthermore, our model is very fast on GPU, e.g., for a common

4.5. Training experiments for image denoising and deblocking 155

(a) Learned filters of stage 1

(b) Learned filters of stage 2

(c) Learned filters of stage 3

(d) Learned filters of stage 4

(e) Learned filters of stage 5

Figure 4.7: The trained filters of the model TRD5
5×5 in the case of Gaussian noise level

σ = 25.

image size of 1024× 1024, our model takes about 95ms, while the strongest competitor -

SADCT consumes about 56.5s with CPU computation. We present four JPEG deblocking

156 Chapter 4. Learning effective reaction diffusion processes

(a) clean image (b) σ = 25 (20.17) (c) BM3D (28.60)

(d) CSF5
7×7 (28.83) (e) WNNM (28.82) (f) opt-MRF (28.61)

(g) TRD5
5×5 (28.85) (h) TRD5

7×7 (28.97)

Figure 4.8: Denoising example for an image with noise σ = 25.

4.5. Training experiments for image denoising and deblocking 157

(a) clean image (b) σ = 25 (20.17)

(c) BM3D (36.78)/CPU: 2.5s (d) CSF5
7×7 (37.15)/GPU: 0.55s

(e) WNNM (36.95)/CPU: 393.2s (f) opt-MRF (36.84)/GPU: 0.138s

(g) TRD5
5×5 (37.04)/GPU: 9.1ms (h) TRD5

7×7 (37.64)/GPU: 20.3ms

Figure 4.9: Denoising example for an image with noise σ = 25 together with the corresponding compu-
tation time on GPU or CPU.

158 Chapter 4. Learning effective reaction diffusion processes

(a) clean image (b) Noisy, 20.17dB (c) BM3D, 33.24dB

(d) CSF5
7×7, 32.93dB (e) WNNM, 33.77dB (f) opt-MRF (32.27)

(g) TRD5
5×5, 32.91dB (h) TRD5

7×7, 33.34dB

Figure 4.10: Denoising results on a test images (σ = 25). Note the effectiveness of our trained TRD5
7×7

model for those regions with repeated local pattern (indicated by the red arrow).

4.6. Discussion 159

q
JPEG

decoder

TGV
[16]

Dic-
SR[24]

SADCT
[49] RTF[68] TRD4

7×7

10 26.59 26.96 27.15 27.43 27.68 27.85

20 28.77 29.01 29.03 29.46 29.83 30.06

30 30.05 30.25 30.13 30.67 31.14 31.41

Table 4.3: JPEG deblocking results for natural images, reported with average PSNR
values.

examples in Figure 4.11. Note that the variational model (opt-MRF) sometimes fails to

remove the blocking artifacts in the sky, while the newly trained TRD4
7×7 succeeds.

An additional deblocking example based on common size of 512 × 512 is shown in

Figure 4.12, together with the corresponding computation time. While the competing

approaches achieve similar deblocking performance, the trained TRD4
7×7 provide the best

run time.

4.6 Discussion

In this chapter, we have proposed a trainable reaction diffusion model for effective image

restoration. Its critical point lies in the training of the influence functions. We have

trained our models for the problem of Gaussian denoising and JPEG deblocking. Based on

standard test datasets, the trained models result in the best-reported results. Meanwhile,

the trained models are very simple and well-suited for parallel computation on GPUs. As a

consequence, the resulting algorithms are significantly faster than all competing algorithms

and hence are also applicable to the restoration of high resolution images.

We believe that the effectiveness of the trained diffusion models is attributed to the

following desired properties of the models

• Anisotropy. In the trained filters, we can find rotated derivative filters in different

directions, cf. Fig 4.7.

• Higher order. The learned filters contain first, second and higher-order derivative

filters, cf. Fig 4.7.

• Adaptive forward/backward diffusion through the learned nonlinear functions. Non-

linear functions corresponding to explicit backward diffusion appear in the learned

nonlinearity, cf. Fig 4.6.

160 Chapter 4. Learning effective reaction diffusion processes

(a) Clean image (b) Clean image (c) Clean image (d) Clean image

(e) Lossy (30.02) (f) Lossy (27.59) (g) Lossy (24.24) (h) Lossy (28.56)

(i) SADCT[49] (30.69) (j) SADCT[49] (29.63) (k) SADCT[49] (25.54) (l) SADCT[49] (29.53)

(m) RTF[68] (30.93) (n) RTF[68] (29.16) (o) RTF[68] (26.37) (p) RTF[68] (29.94)

(q) opt-MRF (30.93) (r) opt-MRF (29.03) (s) opt-MRF (25.96) (t) opt-MRF (30.00)

(u) TRD4
7×7 (31.04) (v) TRD4

7×7 (29.47) (w) TRD4
7×7 (27.05) (x) TRD4

7×7 (30.17)

Figure 4.11: Image deblocking for images compressed by JPEG encoder with the quality
q = 10. Note the difference in the sky.

4.6. Discussion 161

(a) Clean image (b) Compressed with q = 10 (30.41)

(c) SA-DCT (31.84)/CPU: 17.6s (d) opt-MRF (31.09)/GPU: 0.23s

(e) TRD4
7×7 (32.22)/GPU: 25ms

Figure 4.12: Debloking of the “Lena” of a ordinary size of 512 × 512, together with corresponding
computation time.

Chapter 5

Conclusion

In this thesis, we have proposed two fast and effective image restoration models, namely:

� variational model with learned FoE image regularization, and

� non-linear diffusion model optimized with loss-minimization.

For the variational image restoration model, we concentrate on the problem of learning

better image regularization term. Due to its simplicity and effectiveness, we mainly focused

on the Fields of Experts (FoE) image prior model. We have reviewed existing learning ap-

proaches to train the FoE model, and we are motivated to revisit the loss-specific training

strategy, because we believe that the performance of the loss-specific training approach has

been underestimated in previous work. We proposed a refined training algorithm to inves-

tigate the loss-specific training model, which is defined as a bi-level optimization problem.

Our refined training algorithm suggested to solve the lower-level problem in the bi-level

framework with higher accuracy, i.e., using a more conservative stopping criterion for the

corresponding minimization problem. It turns out that this seemingly minor modification

has brought significant improvements relative to previous work. Numerical experiments

have demonstrated that solving the lower-level problem with higher accuracy is indeed

beneficial for the training.

We also have revealed an interesting link between the FoE image prior model and

a recently proposed sparse representation based model called analysis operator learning

(analysis prior model). We expressed our insights into the analysis prior model. We

proposed to go beyond existing patch-based models, and to exploit the framework of FoE

model to define a image prior over the entire image, rather than image patches. Then we

pointed out that the image based analysis model is equivalent to the FoE model. Based

163

164 Chapter 5. Conclusion

on this conclusion, we suggested to employ the bi-level training approach (i.e., loss-specific

training) for analysis operator learning. By using our training framework, we have carefully

investigated the effect of different aspects of the analysis prior model including the filter

size, the number of filters and the penalty function. Numerical results have demonstrated

that the penalty function is the most important factor for this model.

The FoE image prior regularized variational model naturally leads to a non-convex

optimization problem, due to the non-convex penalty function involved in the FoE model.

In general, the resulting minimization problems pose demanding non-convex optimization

problems. In order to efficiently solve these non-convex optimization problems, we have

proposed a fast non-convex optimization algorithm called iPiano. Our proposed iPiano

algorithm is applicable for a class of non-convex problems, which are composed of a dif-

ferentiable (possibly non-convex) and a convex (possibly non-differentiable) function. The

algorithm combines forward-backward splitting with an inertial force called heavy ball

method.

All the investigated image restoration problems can be efficiently solved by using our

proposed iPiano algorithm, typically in less than 100 iterations. Due to the structure sim-

plicity of the FoE image prior model, the resulting variational models are well-suited for

GPU parallel computation. We have implemented some of our variational image restora-

tion models on GPU with CUDA programming, which can typically accelerate the infer-

ence procedure with a factor of 40× relative to a multi-threaded CPU implementation.

Concerning the image reconstruction quality, the image restoration performance of our

trained variational models have been compared with corresponding state-of-the-art algo-

rithms to demonstrate the effectiveness. Numerical results have shown that the variational

models with learned image regularizer can lead to recovery quality on par with state-of-

the-arts, meanwhile possess the additional advantage of high computational efficiency.

In addition, motivated by the natural link between the energy functional minimization

and nonlinear diffusion process, we have proposed a trainable reaction diffusion model for

effective image restoration, which are derived from the FoE image prior model regularized

variational model. The training model is parameterized by the linear filters in the FoE

model and the nonlinearity imposed to the filter response (also known as influence function

in the context of nonlinear diffusion process). We have demonstrated that the additional

flexibility to tune the nonlinearity is the critical point of this training model.

In this thesis, we have trained effective reaction diffusion processes for two classic

image restoration problems: (1) the standard test bed - Gaussian denoising and (2) a non-

5.1. Future work 165

smooth problem - JPEG deblocking task. Based on standard test datasets, the trained

nonlinear diffusion models lead to very compelling results, which exhibit the best-reported

performance. Meanwhile, as the trained diffusion processes only involves 4− 5 steps, they

are very fast. As we know, the FoE model is very suited for GPU structure. Therefore, the

trained nonlinear diffusion processes, which are derived from the FoE image prior model,

are also well-suited for GPU parallel computation. As a consequence, the resulting algo-

rithms based on GPU are faster than related algorithms and are undoubtedly applicable

to the restoration of high resolution images. With the GPU implementation, the trained

diffusion model has successfully accomplished the exploited image restoration problems in

less than 1s for the images of size up to 3K × 3K.

5.1 Future work

In this thesis, we have demonstrated two effective image restoration models closely related

to higher-order MRFs, specifically filter-based MRF model called FoE proposed by Roth

and Black [111]. We concentrated on the MAP inference other than the sampling based

MMSE inference to use the higher-order MRF models, due to its efficiency. Keeping in

mind the good results achieved in this thesis, we think the following issues are worthwhile

to investigate in future work.

5.1.1 Further investigation of the variational model with learned image

regularizer

As shown in this thesis, although the FoE image prior model is trained based on the

Gaussian denoising problem, it is not heavily tied to this specific problem. In contrast, it

can be applied to many other image restoration problems. Therefore, a straightforward

work is to extend the learned image prior model to other possible image processing tasks

to renew existing results. Another possible extension of the application is to retrain the

FoE image prior model for specialized image type, e.g., medical images like MRI, CT etc.,

to achieve some specialized image prior model.

It is also interesting to investigate whether it is helpful to retrain the FoE model for

specific image restoration problem, such as image deconvolution or image super resolution.

In the training of the nonlinear diffusion process, we have revealed some unconventional

penalty functions (e.g., the negative Mexican hat function), which have significant meaning

in visual computation. These penalty functions, such as the negative Mexican hat function,

166 Chapter 5. Conclusion

goes a step further relative to the conventional non-convex penalty function, which is a

increasing function of |z|, and always has a minimum at zero∗. Clearly, the conventional

non-convex penalty function based regularization is merely a smooth term. However, the

unconventional penalty function based regularization is not a smooth term any more; in

contrast, it encourages some image patterns. Therefore, it is very interesting to investigate

the regularization technique based on unconventional penalty functions. Obviously, the

corresponding minimization problem will become harder to solve. This is subject to our

future work.

5.1.2 Trainable nonlinear reaction diffusion models

Given the significant meaning and the effectiveness of the TRD models, we believe that it is

worthwhile to revisit nonlinear diffusion based image processing problems with appropriate

training, such as image super resolution, image deconvolution, image enhancement, etc.

As shown in our work, the trained nonlinear diffusion model leads to a diffusion process

which can automatically switch between forward (image smoothing) and backward (image

sharpening) process. In addition, this diffusion process can generate image patterns or

structure from some slight evidence. This property is desired for many image processing

task such as image super resolution. Therefore, it is definitely worthwhile to train more

nonlinear diffusion models for specialized image processing tasks.

There are also some work we can do for the training model itself. In our current work,

even though we have achieved nonlinear diffusion models which can generate very com-

pelling results, we find that there are some problems with the trained models. For example,

some trained influence functions are not smooth, and there are oscillations. We believe

that the reason lies in insufficient training data. This should be the consequence of over-

fitting. We believe that universal influence functions should be smooth. A straightforward

solution for this issue is to make use of sufficiently larger training datasets. However, with

our current CPU implementation for training, it is not feasible to drastically increase the

training datasets. A feasible solution is to implement the training procedure on GPU, as

the we know this diffusion process is well-suited for GPU parallel computation. Our future

∗We know that although the diffusion process involving the conventional non-convex penalty function
owns the property of edge preserving, it can not stop the diffusion across the edge, and it can only slow
down the diffusion across the edge, as the penalty function always has a punishment on those non-zero
filter response. Therefore, the final state of this diffusion process is a trivial constant value. However,
for the unconventional penalty function controlled diffusion process, if the filter response is large enough,
the penalty function does not impose punishment on the filter response any more, and in contrast, it
encourages to increase the filter response.

5.1. Future work 167

work is to execute the training on GPU. With highly efficiently GPU implementation, we

can investigate more possible configurations for the training.

Another issue is to study and compare two different function approximation

approaches, namely RBF with Gaussian radial basis and triangular-shaped radial basis.

5.1.3 Some relations to convolutional neural networks

As shown in our work, our proposed nonlinear diffusion process can be regarded as a

convolutional neural network with special architecture. Our training experiences show

that optimizing the nonlinear functions in a CNN model has great potential to improve

the performance. This provides a good motivation to tune the nonlinearity in the standard

CNN models, which typical employ the fixed activation function.

On the other hand, our proposed nonlinear diffusion process corresponds to a recurrent

neural network. In our case, the CNN model is derived from an energy functional. This

new architecture might inspire a new type of CNN models, which could also be applied to

pattern recognition problems, as in the case of conventional CNN models.

Appendix A

Implementation of the transpose

operation K>

In the trained model, we need to compute the matrix multiplication result of the transpose

matrix K> with a vector v. As in practice explicitly constructing the huge matrix K is

very time consuming, a fast implementation to compute K>v is required.

If Ku is implemented with the periodic boundary condition, the result of K>v is simply

given by a convolution operation k̄ ∗ v, where k̄ is obtained by mirroring the convolution

kernel k around its center point, e.g.,

k =

−0.3902 −0.2338 0.2690

0.4338 0.2978 −0.1040

−0.3125 −0.0124 −0.2271

 =⇒ k̄ =

−0.2271 −0.0124 −0.3125

−0.1040 0.2978 0.4338

0.2690 −0.2338 −0.3902

However, in our model, we are employing the symmetric boundary condition, where

K>v can be interpreted as the convolution with the kernel k̄ only in the central region of

image v. Therefore, we need to carefully handle the boundary regions. We implement the

computation of K>v with C programming as follows mex convolution transpose.cpp.

#include ”mex . h”

#include <malloc . h>

#include <math . h>

///

// compi le wi th : mex mex convo lu t i on t ranspose . cpp

///

// entry func t i on

void mexFunction (int nlhs , mxArray ∗ plhs [] , int nrhs , const mxArray ∗prhs []) {

169

170 Chapter A. Implementation of the transpose operation K>

double ∗ input ,∗ output ,∗ k ,∗ f i l t e r ;

int f i l t e r s i z e , nRow, nCol ,N;

i f (nrhs !=4 | | nlhs !=1)

mexErrMsgTxt (” I n v a l i d number o f input / output arguments ! ”) ;

input = mxGetPr(prhs [0]) ;

k = mxGetPr(prhs [1]) ;

f i l t e r s i z e = mxGetM(prhs [1]) ;

nRow = mxGetScalar (prhs [2]) ;

nCol = mxGetScalar (prhs [3]) ;

N = (f i l t e r s i z e − 1) /2 ;

p lhs [0] = mxCreateDoubleMatrix (nRow∗nCol , 1 ,mxREAL) ;

output = mxGetPr(p lhs [0]) ;

i f (f i l t e r s i z e != mxGetN(prhs [1]) | | f i l t e r s i z e %2 != 1)

mexErrMsgTxt (” I n v a l i d f i l t e r (only v a l i d f o r square and odd s i z e f i l t e r) ! ”) ;

// r e v e r s e f i l t e r

f i l t e r = (double ∗) mxCalloc (f i l t e r s i z e ∗ f i l t e r s i z e , s izeof (double)) ;

for (int idx = 0 ; idx < f i l t e r s i z e ∗ f i l t e r s i z e ; idx++)

f i l t e r [idx] = k [f i l t e r s i z e ∗ f i l t e r s i z e − idx − 1] ;

// handle c en t r a l reg ion f o r example

int co l , row ;

for (c o l = N; c o l < nCol−N; c o l++)

{
for (row = N; row < nRow−N; row++)

{
int idx = 0 ;

int i d x c o l , idx row ;

double re sponse = 0 ;

for (int f i l t e r c o l = −N; f i l t e r c o l <=N; f i l t e r c o l ++)

{
for (int f i l t e r r o w = −N; f i l t e r r o w<=N; f i l t e r r o w ++)

{
i d x c o l = c o l + f i l t e r c o l ;

idx row = row + f i l t e r r o w ;

re sponse = response + input [idx row + i d x c o l ∗nRow] ∗ f i l t e r [idx] ;

idx++;

}
}
output [row + c o l ∗nRow] = response ;

}
}
// handle boudary ie s

// l e f t s i d e boundary

for (c o l = 0 ; c o l < N; c o l++)

171

{
double ∗ t e m p f i l t e r = (double ∗) mxCalloc (f i l t e r s i z e ∗ f i l t e r s i z e , s izeof (double)) ;

for (int i d x c o l = 0 ; i d x c o l < N−c o l ; i d x c o l++)

{
for (int idx row = 0 ; idx row < f i l t e r s i z e ; idx row++)

t e m p f i l t e r [idx row + i d x c o l ∗ f i l t e r s i z e] = f i l t e r [idx row + (2∗N−i d x c o l) ∗ f i l t e r s i z e] ;

}
for (int i d x c o l = N−c o l ; i d x c o l < f i l t e r s i z e ; i d x c o l++)

{
for (int idx row = 0 ; idx row < f i l t e r s i z e ; idx row++)

t e m p f i l t e r [idx row + i d x c o l ∗ f i l t e r s i z e] = f i l t e r [idx row + i d x c o l ∗ f i l t e r s i z e] ;

}
for (row = N; row < nRow−N; row++)

{
int idx = 0 ;

int i d x c o l , idx row ;

double re sponse = 0 ;

for (int f i l t e r c o l = −N; f i l t e r c o l <=N; f i l t e r c o l ++)

{
for (int f i l t e r r o w = −N; f i l t e r r o w<=N; f i l t e r r o w ++)

{
i d x c o l = c o l + f i l t e r c o l ;

idx row = row + f i l t e r r o w ;

i f (i d x c o l < 0)

i d x c o l = −1 − i d x c o l ;

r e sponse = response + input [idx row + i d x c o l ∗nRow] ∗ t e m p f i l t e r [idx] ;

idx++;

}
}
output [row + c o l ∗nRow] = response ;

}
}
// r i g h t s i d e boundary

for (c o l = nCol−N; c o l < nCol ; c o l++)

{
double ∗ t e m p f i l t e r = (double ∗) mxCalloc (f i l t e r s i z e ∗ f i l t e r s i z e , s izeof (double)) ;

for (int i d x c o l = 0 ; i d x c o l < N−(nCol−c o l) +1; i d x c o l++)

{
for (int idx row = 0 ; idx row < f i l t e r s i z e ; idx row++)

t e m p f i l t e r [idx row + (2∗N−i d x c o l) ∗ f i l t e r s i z e] = f i l t e r [idx row + i d x c o l ∗ f i l t e r s i z e] ;

}
for (int i d x c o l = N−(nCol−c o l) +1; i d x c o l < f i l t e r s i z e ; i d x c o l++)

{

172 Chapter A. Implementation of the transpose operation K>

for (int idx row = 0 ; idx row < f i l t e r s i z e ; idx row++)

t e m p f i l t e r [idx row + (2∗N−i d x c o l) ∗ f i l t e r s i z e] = f i l t e r [idx row + (2∗N−i d x c o l) ∗ f i l t e r s i z e] ;

}
for (row = N; row < nRow−N; row++)

{
int idx = 0 ;

int i d x c o l , idx row ;

double re sponse = 0 ;

for (int f i l t e r c o l = −N; f i l t e r c o l <=N; f i l t e r c o l ++)

{
for (int f i l t e r r o w = −N; f i l t e r r o w<=N; f i l t e r r o w ++)

{
i d x c o l = c o l + f i l t e r c o l ;

idx row = row + f i l t e r r o w ;

i f (i d x c o l >= nCol)

i d x c o l = 2∗nCol − (i d x c o l +1) ;

r e sponse = response + input [idx row + i d x c o l ∗nRow] ∗ t e m p f i l t e r [idx] ;

idx++;

}
}
output [row + c o l ∗nRow] = response ;

}
}
// top boundary

for (row = 0 ; row < N; row++)

{
double ∗ t e m p f i l t e r = (double ∗) mxCalloc (f i l t e r s i z e ∗ f i l t e r s i z e , s izeof (double)) ;

for (int idx row = 0 ; idx row < N−row ; idx row++)

{
for (int i d x c o l = 0 ; i d x c o l < f i l t e r s i z e ; i d x c o l++)

t e m p f i l t e r [idx row + i d x c o l ∗ f i l t e r s i z e] = f i l t e r [2∗N − idx row + i d x c o l ∗ f i l t e r s i z e] ;

}
for (int idx row = N−row ; idx row < f i l t e r s i z e ; idx row++)

{
for (int i d x c o l = 0 ; i d x c o l < f i l t e r s i z e ; i d x c o l++)

t e m p f i l t e r [idx row + i d x c o l ∗ f i l t e r s i z e] = f i l t e r [idx row + i d x c o l ∗ f i l t e r s i z e] ;

}
for (c o l = N; c o l < nCol−N; c o l++)

{
int idx = 0 ;

int i d x c o l , idx row ;

double re sponse = 0 ;

for (int f i l t e r c o l = −N; f i l t e r c o l <=N; f i l t e r c o l ++)

173

{
for (int f i l t e r r o w = −N; f i l t e r r o w<=N; f i l t e r r o w ++)

{
i d x c o l = c o l + f i l t e r c o l ;

idx row = row + f i l t e r r o w ;

i f (idx row < 0)

idx row = −1 − idx row ;

re sponse = response + input [idx row + i d x c o l ∗nRow] ∗ t e m p f i l t e r [idx] ;

idx++;

}
}
output [row + c o l ∗nRow] = response ;

}
}
// bottom boudanry

for (row = nRow−N; row < nRow; row++)

{
double ∗ t e m p f i l t e r = (double ∗) mxCalloc (f i l t e r s i z e ∗ f i l t e r s i z e , s izeof (double)) ;

for (int idx row = 0 ; idx row < N−(nRow−row) +1; idx row++)

{
for (int i d x c o l = 0 ; i d x c o l < f i l t e r s i z e ; i d x c o l++)

t e m p f i l t e r [2∗N − idx row + i d x c o l ∗ f i l t e r s i z e] = f i l t e r [idx row + i d x c o l ∗ f i l t e r s i z e] ;

}
for (int idx row = N−(nRow−row) +1; idx row < f i l t e r s i z e ; idx row++)

{
for (int i d x c o l = 0 ; i d x c o l < f i l t e r s i z e ; i d x c o l++)

t e m p f i l t e r [2∗N − idx row + i d x c o l ∗ f i l t e r s i z e] = f i l t e r [2∗N − idx row + i d x c o l ∗ f i l t e r s i z e] ;

}
for (c o l = N; c o l < nCol−N; c o l++)

{
int idx = 0 ;

int i d x c o l , idx row ;

double re sponse = 0 ;

for (int f i l t e r c o l = −N; f i l t e r c o l <=N; f i l t e r c o l ++)

{
for (int f i l t e r r o w = −N; f i l t e r r o w<=N; f i l t e r r o w ++)

{
i d x c o l = c o l + f i l t e r c o l ;

idx row = row + f i l t e r r o w ;

i f (idx row >= nRow)

idx row = 2∗nRow − (idx row +1) ;

re sponse = response + input [idx row + i d x c o l ∗nRow] ∗ t e m p f i l t e r [idx] ;

174 Chapter A. Implementation of the transpose operation K>

idx++;

}
}
output [row + c o l ∗nRow] = response ;

}
}
// handle l e f t two b l o c k s

for (c o l = 0 ; c o l < N; c o l++)

{
double ∗ t e m p f i l t e r = (double ∗) mxCalloc (f i l t e r s i z e ∗ f i l t e r s i z e , s izeof (double)) ;

for (int i d x c o l = 0 ; i d x c o l < N−c o l ; i d x c o l++)

{
for (int idx row = 0 ; idx row < f i l t e r s i z e ; idx row++)

t e m p f i l t e r [idx row + i d x c o l ∗ f i l t e r s i z e] = f i l t e r [idx row + (2∗N−i d x c o l) ∗ f i l t e r s i z e] ;

}
for (int i d x c o l = N−c o l ; i d x c o l < f i l t e r s i z e ; i d x c o l++)

{
for (int idx row = 0 ; idx row < f i l t e r s i z e ; idx row++)

t e m p f i l t e r [idx row + i d x c o l ∗ f i l t e r s i z e] = f i l t e r [idx row + i d x c o l ∗ f i l t e r s i z e] ;

}
// top b l o c k

for (row = 0 ; row < N; row++)

{
double ∗ t e m p f i l t e r 2 = (double ∗) mxCalloc (f i l t e r s i z e ∗ f i l t e r s i z e , s izeof (double)) ;

for (int idx row = 0 ; idx row < N−row ; idx row++)

{
for (int i d x c o l = 0 ; i d x c o l < f i l t e r s i z e ; i d x c o l++)

t e m p f i l t e r 2 [idx row + i d x c o l ∗ f i l t e r s i z e] = t e m p f i l t e r [2∗N − idx row + i d x c o l ∗ f i l t e r s i z e] ;

}
for (int idx row = N−row ; idx row < f i l t e r s i z e ; idx row++)

{
for (int i d x c o l = 0 ; i d x c o l < f i l t e r s i z e ; i d x c o l++)

t e m p f i l t e r 2 [idx row + i d x c o l ∗ f i l t e r s i z e] = t e m p f i l t e r [idx row + i d x c o l ∗ f i l t e r s i z e] ;

}
int idx = 0 ;

int i d x c o l , idx row ;

double re sponse = 0 ;

for (int f i l t e r c o l = −N; f i l t e r c o l <=N; f i l t e r c o l ++)

{
for (int f i l t e r r o w = −N; f i l t e r r o w<=N; f i l t e r r o w ++)

{
i d x c o l = c o l + f i l t e r c o l ;

idx row = row + f i l t e r r o w ;

175

i f (i d x c o l < 0)

i d x c o l = −1 − i d x c o l ;

i f (idx row < 0)

idx row = −1 − idx row ;

re sponse = response + input [idx row + i d x c o l ∗nRow] ∗ t e m p f i l t e r 2 [idx] ;

idx++;

}
}
output [row + c o l ∗nRow] = response ;

}
// bottom b l o c k

for (row = nRow−N; row < nRow; row++)

{
double ∗ t e m p f i l t e r 2 = (double ∗) mxCalloc (f i l t e r s i z e ∗ f i l t e r s i z e , s izeof (double)) ;

for (int idx row = 0 ; idx row < N−(nRow−row) +1; idx row++)

{
for (int i d x c o l = 0 ; i d x c o l < f i l t e r s i z e ; i d x c o l++)

t e m p f i l t e r 2 [2∗N − idx row + i d x c o l ∗ f i l t e r s i z e] = t e m p f i l t e r [idx row + i d x c o l ∗ f i l t e r s i z e] ;

}
for (int idx row = N−(nRow−row) +1; idx row < f i l t e r s i z e ; idx row++)

{
for (int i d x c o l = 0 ; i d x c o l < f i l t e r s i z e ; i d x c o l++)

t e m p f i l t e r 2 [2∗N − idx row + i d x c o l ∗ f i l t e r s i z e] = t e m p f i l t e r [2∗N − idx row + i d x c o l ∗ f i l t e r s i z e] ;

}
int idx = 0 ;

int i d x c o l , idx row ;

double re sponse = 0 ;

for (int f i l t e r c o l = −N; f i l t e r c o l <=N; f i l t e r c o l ++)

{
for (int f i l t e r r o w = −N; f i l t e r r o w<=N; f i l t e r r o w ++)

{
i d x c o l = c o l + f i l t e r c o l ;

idx row = row + f i l t e r r o w ;

i f (i d x c o l < 0)

i d x c o l = −1 − i d x c o l ;

i f (idx row >= nRow)

idx row = 2∗nRow − (idx row +1) ;

re sponse = response + input [idx row + i d x c o l ∗nRow] ∗ t e m p f i l t e r 2 [idx] ;

idx++;

}
}
output [row + c o l ∗nRow] = response ;

}

176 Chapter A. Implementation of the transpose operation K>

}
// handle r i g h t two b l o c k s

for (c o l = nCol−N; c o l < nCol ; c o l++)

{
double ∗ t e m p f i l t e r = (double ∗) mxCalloc (f i l t e r s i z e ∗ f i l t e r s i z e , s izeof (double)) ;

for (int i d x c o l = 0 ; i d x c o l < N−(nCol−c o l) +1; i d x c o l++)

{
for (int idx row = 0 ; idx row < f i l t e r s i z e ; idx row++)

t e m p f i l t e r [idx row + (2∗N−i d x c o l) ∗ f i l t e r s i z e] = f i l t e r [idx row + i d x c o l ∗ f i l t e r s i z e] ;

}
for (int i d x c o l = N−(nCol−c o l) +1; i d x c o l < f i l t e r s i z e ; i d x c o l++)

{
for (int idx row = 0 ; idx row < f i l t e r s i z e ; idx row++)

t e m p f i l t e r [idx row + (2∗N−i d x c o l) ∗ f i l t e r s i z e] = f i l t e r [idx row + (2∗N−i d x c o l) ∗ f i l t e r s i z e] ;

}
// top b l o c k

for (row = 0 ; row < N; row++)

{
double ∗ t e m p f i l t e r 2 = (double ∗) mxCalloc (f i l t e r s i z e ∗ f i l t e r s i z e , s izeof (double)) ;

for (int idx row = 0 ; idx row < N−row ; idx row++)

{
for (int i d x c o l = 0 ; i d x c o l < f i l t e r s i z e ; i d x c o l++)

t e m p f i l t e r 2 [idx row + i d x c o l ∗ f i l t e r s i z e] = t e m p f i l t e r [2∗N − idx row + i d x c o l ∗ f i l t e r s i z e] ;

}
for (int idx row = N−row ; idx row < f i l t e r s i z e ; idx row++)

{
for (int i d x c o l = 0 ; i d x c o l < f i l t e r s i z e ; i d x c o l++)

t e m p f i l t e r 2 [idx row + i d x c o l ∗ f i l t e r s i z e] = t e m p f i l t e r [idx row + i d x c o l ∗ f i l t e r s i z e] ;

}
int idx = 0 ;

int i d x c o l , idx row ;

double re sponse = 0 ;

for (int f i l t e r c o l = −N; f i l t e r c o l <=N; f i l t e r c o l ++)

{
for (int f i l t e r r o w = −N; f i l t e r r o w<=N; f i l t e r r o w ++)

{
i d x c o l = c o l + f i l t e r c o l ;

idx row = row + f i l t e r r o w ;

i f (i d x c o l >= nCol)

i d x c o l = 2∗nCol − (i d x c o l +1) ;

i f (idx row < 0)

idx row = −1 − idx row ;

re sponse = response + input [idx row + i d x c o l ∗nRow] ∗ t e m p f i l t e r 2 [idx] ;

177

idx++;

}
}
output [row + c o l ∗nRow] = response ;

}
// bottom b l o c k

for (row = nRow−N; row < nRow; row++)

{
double ∗ t e m p f i l t e r 2 = (double ∗) mxCalloc (f i l t e r s i z e ∗ f i l t e r s i z e , s izeof (double)) ;

for (int idx row = 0 ; idx row < N−(nRow−row) +1; idx row++)

{
for (int i d x c o l = 0 ; i d x c o l < f i l t e r s i z e ; i d x c o l++)

t e m p f i l t e r 2 [2∗N − idx row + i d x c o l ∗ f i l t e r s i z e] = t e m p f i l t e r [idx row + i d x c o l ∗ f i l t e r s i z e] ;

}
for (int idx row = N−(nRow−row) +1; idx row < f i l t e r s i z e ; idx row++)

{
for (int i d x c o l = 0 ; i d x c o l < f i l t e r s i z e ; i d x c o l++)

t e m p f i l t e r 2 [2∗N − idx row + i d x c o l ∗ f i l t e r s i z e] = t e m p f i l t e r [2∗N − idx row + i d x c o l ∗ f i l t e r s i z e] ;

}
int idx = 0 ;

int i d x c o l , idx row ;

double re sponse = 0 ;

for (int f i l t e r c o l = −N; f i l t e r c o l <=N; f i l t e r c o l ++)

{
for (int f i l t e r r o w = −N; f i l t e r r o w<=N; f i l t e r r o w ++)

{
i d x c o l = c o l + f i l t e r c o l ;

idx row = row + f i l t e r r o w ;

i f (i d x c o l >= nCol)

i d x c o l = 2∗nCol − (i d x c o l +1) ;

i f (idx row >= nRow)

idx row = 2∗nRow − (idx row +1) ;

re sponse = response + input [idx row + i d x c o l ∗nRow] ∗ t e m p f i l t e r 2 [idx] ;

idx++;

}
}
output [row + c o l ∗nRow] = response ;

}
}
}

BIBLIOGRAPHY 179

Bibliography

[SAR] http://academic.emporia.edu/aberjame/student/graves1/project.html.

[2] Acton, S. T., Prasad Mukherjee, D., Havlicek, J. P., and Conrad Bovik, A. (2001).

Oriented texture completion by AM-FM reaction-diffusion. IEEE TIP, 10(6):885–896.

[3] Aharon, M., Elad, M., and Bruckstein, A. (2006). K-SVD: An algorithm for design-

ing over-complete dictionaries for sparse representation. IEEE Transactions on Signal

Processing, 54(11):4311–4322.

[4] Arbelaez, P., Maire, M., Fowlkes, C., and Malik, J. (2011). Contour detection and

hierarchical image segmentation. IEEE Trans. Pattern Anal. Mach. Intell., 33(5):898–

916.

[5] Argenti, F., Bianchi, T., Lapini, A., and Alparone, L. (2012). Fast MAP despeckling

based on laplacian-gaussian modeling of wavelet coefficients. IEEE Geosci. Remote

Sensing Lett., 9(1):13–17.

[6] Attouch, H., Goudou, X., and Redont, P. (2000). The heavy ball with friction method,

i. the continuous dynamical system: global exploration of the local minima of a real-

valued function by asymptotic analysis of a dissipative dynamical system. Communica-

tions in Contemporary Mathematics, 2(01):1–34.

[7] Aubert, G. and Aujol, J.-F. (2008). A variational approach to removing multiplicative

noise. SIAM Journal of Applied Mathematics, 68(4):925–946.

[8] Barbu, A. (2009). Training an active random field for real-time image denoising. IEEE

Trans. on Image Proc, 18(11):2451–2462.

[9] Barcelos, C. A. Z., Boaventura, M., and Silva Jr, E. C. (2003). A well-balanced flow

equation for noise removal and edge detection. IEEE TIP, 12(7):751–763.

[10] Benning, M., Brune, C., Burger, M., and Müller, J. (2013). Higher-order TV methods

- enhancement via bregman iteration. Journal of Scientific Computing, 54(2-3):269–310.

[11] Bertsekas, D. P. (1999). Nonlinear Programming. Athena Scientific, 2nd edition.

[12] Bianchi, T., Argenti, F., and Alparone, L. (2008). Segmentation-based MAP de-

speckling of SAR images in the undecimated wavelet domain. IEEE T. Geoscience and

Remote Sensing, 46(9):2728–2742.

http://academic.emporia.edu/aberjame/student/graves1/project.html

180

[13] Black, M., Sapiro, G., Marimont, D., and Heeger, D. (1997). Robust anisotropic

diffusion and sharpening of scalar and vector images. In ICIP, pages 263–266. IEEE.

[14] Bouvrie, J. (2006). Notes on convolutional neural networks.

[15] Bredies, K. and Holler, M. (2012a). Artifact-free JPEG decompression with total

generalized variation. In VISAPP (1), pages 12–21.

[16] Bredies, K. and Holler, M. (2012b). Artifact-free jpeg decompression with total gen-

eralized variation. In VISAPP (1), pages 12–21.

[17] Bredies, K. and Holler, M. (2012c). A total variation-based JPEG decompression

model. SIAM J. Imaging Sciences, 5(1):366–393.

[18] Bredies, K., Kunisch, K., and Pock, T. (2010). Total generalized variation. SIAM

Journal on Imaging Sciences, 3(3):492–526.

[19] Brox, T., Welk, M., Steidl, G., and Weickert, J. (2003). Equivalence results for tv

diffusion and tv regularisation. In Scale Space Methods in Computer Vision, pages

86–100. Springer.

[20] Candes, E. J., Wakin, M. B., and Boyd, S. P. (2008). Enhancing sparsity by

reweighted `1 minimization. Journal of Fourier analysis and applications, 14(5-6):877–

905.

[21] Chambolle, A. and Pock, T. (2011a). A first-order primal-dual algorithm for convex

problems with applications to imaging. Journal of Mathematical Imaging and Vision,

40(1):120–145.

[22] Chambolle, A. and Pock, T. (2011b). A first-order primal-dual algorithm for convex

problems with applications to imaging. Journal of Mathematical Imaging and Vision,

40(1):120–145.

[23] Chan, T., Marquina, A., and Mulet, P. (2000). High-order total variation-based image

restoration. SIAM Journal on Scientific Computing, 22(2):503–516.

[24] Chang, H., Ng, M. K., and Zeng, T. (2014). Reducing artifact in JPEG decompression

via a learned dictionary. IEEE Transactions on Signal Processing, 62(3):718–728.

[25] Chen, Y., Feng, W., Ranftl, R., Qiao, H., and Pock, T. (2014a). A higher-order MRF

based variational model for multiplicative noise reduction. IEEE Signal Process. Lett.,

21(11):1370–1374.

BIBLIOGRAPHY 181

[26] Chen, Y., Pock, T., and Bischof, H. (2012). Learning `1-based analysis and synthesis

sparsity priors using bi-level optimization. In Workshop on Analysis Operator Learning

vs. Dictionary Learning, NIPS 2012.

[27] Chen, Y., Pock, T., Ranftl, R., and Bischof, H. (2013). Revisiting loss-specific train-

ing of filter-based mrfs for image restoration. In Pattern Recognition - 35th German

Conference, GCPR 2013, Saarbrücken, Germany, September 3-6, 2013. Proceedings,

pages 271–281.

[28] Chen, Y., Ranftl, R., and Pock, T. (2014b). A bi-level view of inpainting - based

image compression. In 19th Computer Vision Winter Workshop, CVWW 2014, Křiny,

Czech Republic, 3-5th February 2014, pages 19–26.

[29] Chen, Y., Ranftl, R., and Pock, T. (2014c). Insights into analysis operator learning:

From patch-based sparse models to higher order mrfs. IEEE Transactions on Image

Processing, 23(3):1060–1072.

[30] Chen, Y., Yu, W., and Pock, T. (2014d). On learning optimized reaction diffusion

processes for effective image restoration. Preprint.

[31] Colson, B., Marcotte, P., and Savard, G. (2007). An overview of bilevel optimization.

Annals OR, 153(1):235–256.

[32] Corless, R. M., Gonnet, G. H., Hare, D. E. G., Jeffrey, D. J., and Knuth, D. E. (1996).

On the lambert W function. Adv. Comput. Math., 5(1):329–359.

[33] Cottet, G.-H. and Germain, L. (1993). Image processing through reaction combined

with nonlinear diffusion. Mathematics of Computation, pages 659–673.

[34] Cozzolino, D., Parrilli, S., Scarpa, G., Poggi, G., and Verdoliva, L. (2014). Fast

adaptive nonlocal SAR despeckling. IEEE Geosci. Remote Sensing Lett., 11(2):524–

528.

[35] Csiszár, I. (1991). Why least squares and maximum entropy? an axiomatic approach

to inference for linear inverse problems. The annals of statistics, 19(4):2032–2066.

[36] Dabov, K., Foi, A., Katkovnik, V., and Egiazarian, K. (2007). Image denoising by

sparse 3-d transform-domain collaborative filtering. Image Processing, IEEE Transac-

tions on, 16(8):2080–2095.

182

[37] Deledalle, C.-A., Denis, L., and Tupin, F. (2009). Iterative weighted maximum like-

lihood denoising with probabilistic patch-based weights. IEEE Transactions on Image

Processing, 18(12):2661–2672.

[38] Didas, S., Weickert, J., and Burgeth, B. (2005). Stability and local feature enhance-

ment of higher order nonlinear diffusion filtering. In Pattern Recognition, pages 451–458.

Springer.

[39] Didas, S., Weickert, J., and Burgeth, B. (2009). Properties of higher order nonlinear

diffusion filtering. JMIV, 35(3):208–226.

[40] Domke, J. (2012). Generic methods for optimization-based modeling. Journal of

Machine Learning Research - Proceedings Track, 22:318–326.

[41] Donoho, D. L., Elad, M., and Temlyakov, V. N. (2006). Stable recovery of sparse

overcomplete representations in the presence of noise. IEEE Transactions on Information

Theory, 52(1):6–18.

[42] Elad, M. and Aharon, M. (2006). Image denoising via sparse and redundant represen-

tations over learned dictionaries. IEEE Transactions on Image Processing, 15(12):3736–

3745.

[43] Elad, M., Milanfar, P., and Rubinstein, R. (2007). Analysis versus synthesis in signal

priors. Inverse Problems, 23(3):947–968.

[44] Esclaŕın, J. and Alvarez, L. (1997). Image quantization using reaction-diffusion equa-

tions. SIAP, 57(1):153–175.

[45] Evans, L. C. and Gariepy, R. F. (1991). Measure theory and fine properties of func-

tions, volume 5. CRC press.

[46] Feng, W., Lei, H., and Gao, Y. (2014a). Speckle reduction via higher order total

variation approach. Image Processing, IEEE Transactions on, 23(4):1831–1843.

[47] Feng, W., Qiao, H., and Chen, Y. (2014b). Poisson noise reduction with higher-order

MRF prior. Preprint.

[48] Feng, X. and Prohl, A. (2003). Analysis of total variation flow and its finite element

approximations. ESAIM: Mathematical Modelling and Numerical Analysis, 37(03):533–

556.

BIBLIOGRAPHY 183

[49] Foi, A., Katkovnik, V., and Egiazarian, K. (2007). Pointwise shape-adaptive DCT for

high-quality denoising and deblocking of grayscale and color images. Image Processing,

IEEE Transactions on, 16(5):1395–1411.

[50] Gan, X., Liew, A. W.-C., and Yan, H. (2005). A smoothness constraint set based

on local statistics of BDCT coefficients for image postprocessing. Image and Vision

Computing, 23(8):731–737.

[51] Ganan, S. and McClure, D. (1985). Bayesian image analysis: an application to single

photon emission tomography. In American Statistical Association, pages 12–18.

[52] Gao, Q. and Roth, S. (2012). How well do filter-based MRFs model natural images?

In DAGM/OAGM Symposium, pages 62–72.

[53] Geman, S. and Geman, D. (1984). Stochastic relaxation, gibbs distributions, and

the bayesian restoration of images. Pattern Analysis and Machine Intelligence, IEEE

Transactions on, (6):721–741.

[54] Gilboa, G., Sochen, N., and Zeevi, Y. Y. (2002). Forward-and-backward diffusion

processes for adaptive image enhancement and denoising. IEEE TIP, 11(7):689–703.

[55] Goodman, J. W. (1975). Statistical properties of laser speckle patterns. In Laser

speckle and related phenomena, pages 9–75. Springer.

[56] Graves, A. and Schmidhuber, J. (2009). Offline handwriting recognition with multi-

dimensional recurrent neural networks. In Advances in Neural Information Processing

Systems, pages 545–552.

[57] Gu, S., Zhang, L., Zuo, W., and Feng, X. (2014). Weighted nuclear norm minimization

with application to image denoising. In CVPR.

[58] Guidotti, P. and Longo, K. (2011). Two enhanced fourth order diffusion models for

image denoising. JMIV, 40(2):188–198.

[59] Hajiaboli, M. R. (2011). An anisotropic fourth-order diffusion filter for image noise

removal. IJCV, 92(2):177–191.

[60] Hawe, S., Kleinsteuber, M., and Diepold, K. (2013). Analysis operator learning

and its application to image reconstruction. IEEE Transactions on Image Processing,

22(6):2138–2150.

184

[61] Hebert, T. and Leahy, R. (1989). A generalized em algorithm for 3-d bayesian recon-

struction from poisson data using gibbs priors. Medical Imaging, IEEE Transactions

on, 8(2):194–202.

[62] Heess, N., Williams, C. K. I., and Hinton, G. E. (2009). Learning generative texture

models with extended fields-of-experts. In BMVC, pages 1–11.

[63] Hinton, G. E. (1999). Products of experts. In ICANN, pages 1–6.

[64] Hu, Y. H. and Hwang, J.-N. (2010). Handbook of neural network signal processing.

CRC press.

[65] Huang, J. and Mumford, D. (1999). Statistics of natural images and models. In

Computer Vision and Pattern Recognition, 1999. IEEE Computer Society Conference

on., volume 1. IEEE.

[66] Huber, P. J. (1981). Robust statistics. Wiley, New York.

[67] Jain, V. and Seung, S. (2009). Natural image denoising with convolutional networks.

In NIPS, pages 769–776.

[68] Jancsary, J., Nowozin, S., and Rother, C. (2012). Loss-specific training of non-

parametric image restoration models: A new state of the art. In ECCV, pages 112–125.

[69] Jung, C., Jiao, L., Qi, H., and Sun, T. (2012). Image deblocking via sparse represen-

tation. Signal Processing: Image Communication, 27(6):663–677.

[70] Krajsek, K. and Scharr, H. (2010). Diffusion filtering without parameter tuning:

Models and inference tools. In Computer Vision and Pattern Recognition (CVPR),

2010 IEEE Conference on, pages 2536–2543. IEEE.

[71] Krishnan, D. and Fergus, R. (2009). Fast image deconvolution using hyper-laplacian

priors. In Advances in Neural Information Processing Systems, pages 1033–1041.

[72] Kuan, D. T., Sawchuk, A., Strand, T. C., and Chavel, P. (1987). Adaptive restoration

of images with speckle. Acoustics, Speech and Signal Processing, IEEE Transactions

on, 35(3):373–383.

[73] Kunisch, K. and Pock, T. (2013). A bilevel optimization approach for parameter

learning in variational models. SIAM Journal on Imaging Sciences, 6(2):938–983.

BIBLIOGRAPHY 185

[74] Leclerc, Y. G. (1989). Constructing simple stable descriptions for image partitioning.

International journal of computer vision, 3(1):73–102.

[75] LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning

applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324.

[76] Lee, H., Battle, A., Raina, R., and Ng, A. Y. (2006). Efficient sparse coding algo-

rithms. In NIPS, pages 801–808.

[77] Lee, J.-S. (1980). Digital image enhancement and noise filtering by use of local

statistics. Pattern Analysis and Machine Intelligence, IEEE Transactions on, (2):165–

168.

[78] Lefkimmiatis, S., Bourquard, A., and Unser, M. (2012). Hessian-based norm regu-

larization for image restoration with biomedical applications. Image Processing, IEEE

Transactions on, 21(3):983–995.

[79] Levin, A. and Nadler, B. (2011). Natural image denoising: Optimality and inherent

bounds. In CVPR, pages 2833–2840. IEEE.

[80] Li, F., Shen, C., Fan, J., and Shen, C. (2007). Image restoration combining a total

variational filter and a fourth-order filter. Journal of Visual Communication and Image

Representation, 18(4):322–330.

[81] Li, G.-T., Wang, C.-L., Huang, P.-P., and Yu, W.-D. (2013). SAR image despeckling

using a space-domain filter with alterable window. IEEE Geosci. Remote Sensing Lett.,

10(2):263–267.

[82] Liew, A.-C. and Yan, H. (2004). Blocking artifacts suppression in block-coded images

using overcomplete wavelet representation. IEEE Trans. Circuits Syst. Video Techn.,

14(4):450–461.

[83] Liew, A.-C., Yan, H., and Law, N.-F. (2005). POCS-based blocking artifacts sup-

pression using a smoothness constraint set with explicit region modeling. IEEE Trans.

Circuits Syst. Video Techn., 15(6):795–800.

[84] Lions, P. L. and Mercier, B. (1979). Splitting algorithms for the sum of two nonlinear

operators. 16(6):964–979.

186

[85] List, P., Joch, A., Lainema, J., Bjontegaard, G., and Karczewicz, M. (2003). Adap-

tive deblocking filter. IEEE transactions on circuits and systems for video technology,

13(7):614–619.

[86] Liu, D. C. and Nocedal, J. (1989). On the limited memory BFGS method for large

scale optimization. Mathematical Programming, 45(1):503–528.

[87] Liu, R., Lin, Z., Zhang, W., and Su, Z. (2010). Learning PDEs for image restoration

via optimal control. In ECCV, pages 115–128.

[88] Lysaker, M., Lundervold, A., and Tai, X.-C. (2003). Noise removal using fourth-order

partial differential equation with applications to medical magnetic resonance images in

space and time. Image Processing, IEEE Transactions on, 12(12):1579–1590.

[89] Lysaker, M. and Tai, X.-C. (2006). Iterative image restoration combining total vari-

ation minimization and a second-order functional. International Journal of Computer

Vision, 66(1):5–18.

[90] Mairal, J., Bach, F., Ponce, J., and Sapiro, G. (2009a). Online dictionary learning

for sparse coding. In ICML, pages 689–696.

[91] Mairal, J., Bach, F., Ponce, J., Sapiro, G., and Zisserman, A. (2009b). Non-local

sparse models for image restoration. In ICCV, pages 2272–2279.

[92] Mairal, J., Elad, M., and Sapiro, G. (2008). Sparse representation for color image

restoration. IEEE Transactions on Image Processing, 17(1):53–69.

[93] Milanfar, P. (2013). A tour of modern image filtering: new insights and methods,

both practical and theoretical. Signal Processing Magazine, IEEE, 30(1):106–128.

[94] Nesterov, Y. and Nesterov, I. E. (2004). Introductory lectures on convex optimization:

A basic course, volume 87. Springer.

[95] Niklas Nordström, K. (1990). Biased anisotropic diffusion: a unified regularization

and diffusion approach to edge detection. Image and Vision Computing, 8(4):318–327.

[96] Nikolova, M., Ng, M. K., and Tam, C.-P. (2010). Fast nonconvex nonsmooth min-

imization methods for image restoration and reconstruction. Image Processing, IEEE

Transactions on, 19(12):3073–3088.

BIBLIOGRAPHY 187

[97] Ochs, P., Chen, Y., Brox, T., and Pock, T. (2014a). iPiano: Inertial proximal algo-

rithm for nonconvex optimization. SIAM J. Imaging Sciences, 7(2):1388–1419.

[98] Ochs, P., Dosovitskiy, A., Brox, T., and Pock, T. (2013). An iterated l1 algorithm

for non-smooth non-convex optimization in computer vision. In Computer Vision and

Pattern Recognition (CVPR), 2013 IEEE Conference on, pages 1759–1766. IEEE.

[99] Ochs, P., Dosovitskiy, A., Brox, T., and Pock, T. (2014b). An iteratively reweighted

algorithm for non-smooth non-convex optimization in computer vision. Technical Re-

port.

[100] Oh, S., Woo, H., Yun, S., and Kang, M. (2013). Non-convex hybrid total varia-

tion for image denoising. Journal of Visual Communication and Image Representation,

24(3):332–344.

[101] Ophir, B., Elad, M., Bertin, N., and Plumbley, M. D. (2011). Sequential minimal

eigenvalues – an approach to analysis dictionary learning. In European Signal Processing

Conference, pages 1465–1469.

[102] Papafitsoros, K. and Schönlieb, C.-B. (2014). A combined first and second order

variational approach for image reconstruction. Journal of mathematical imaging and

vision, 48(2):308–338.

[103] Parrilli, S., Poderico, M., Angelino, C. V., and Verdoliva, L. (2012). A nonlocal SAR

image denoising algorithm based on LLMMSE wavelet shrinkage. IEEE T. Geoscience

and Remote Sensing, 50(2):606–616.

[104] Perona, P. and Malik, J. (1990). Scale-space and edge detection using anisotropic

diffusion. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 12(7):629–

639.

[105] Peyré, G. and Fadili, J. (2011). Learning analysis sparsity priors. In Proc. of

Sampta’11.

[106] Plonka, G. and Ma, J. (2008). Nonlinear regularized reaction-diffusion filters for

denoising of images with textures. IEEE TIP, 17(8):1283–1294.

[107] Pock, T. and Chambolle, A. (2011). Diagonal preconditioning for first order primal-

dual algorithms. In ICCV.

188

[108] Polyak, B. T. (1964). Some methods of speeding up the convergence of iteration

methods. USSR Computational Mathematics and Mathematical Physics, 4(5):1–17.

[109] Reeve, H. C. and Lim, J. S. (1983). Reduction of blocking effect in image coding.

In ICASSP, pages 1212–1215.

[110] Roth, S. and Black, M. J. (2005). Fields of experts: A framework for learning

image priors. In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE

Computer Society Conference on, volume 2, pages 860–867. IEEE.

[111] Roth, S. and Black, M. J. (2009). Fields of experts. International Journal of Com-

puter Vision, 82(2):205–229.

[112] Rubinstein, R., Faktor, T., and Elad, M. (2012). K-SVD dictionary-learning for the

analysis sparse model. In ICASSP.

[113] Rubinstein, R., Peleg, T., and Elad, M. (2013). Analysis K-SVD: A dictionary-

learning algorithm for the analysis sparse model. IEEE Transactions on Signal Process-

ing, 61(3):661–677.

[114] Rudin, L. I., Osher, S., and Fatemi, E. (1992). Nonlinear total variation based noise

removal algorithms. Physica D: Nonlinear Phenomena, 60(1):259–268.

[115] Samuel, K. G. G. and Tappen, M. (2009). Learning optimized map estimates in

continuously-valued MRF models. In CVPR.

[116] Saquib, S. S., Bouman, C. A., and Sauer, K. (1998). Ml parameter estimation for

markov random fields with applications to bayesian tomography. Image Processing,

IEEE Transactions on, 7(7):1029–1044.

[117] Scharr, H., Black, M. J., and Haussecker, H. W. (2003). Image statistics and

anisotropic diffusion. In Computer Vision, 2003. Proceedings. Ninth IEEE International

Conference on, pages 840–847. IEEE.

[118] Scherzer, O. and Weickert, J. (2000). Relations between regularization and diffusion

filtering. Journal of Mathematical Imaging and Vision, 12(1):43–63.

[119] Schmidt, U., Gao, Q., and Roth, S. (2010). A generative perspective on MRFs in

low-level vision. In CVPR, pages 1751–1758.

BIBLIOGRAPHY 189

[120] Schmidt, U. and Roth, S. (2014). Shrinkage fields for effective image restoration. In

CVPR.

[121] Steidl, G. and Teuber, T. (2010). Removing multiplicative noise by douglas-rachford

splitting methods. Journal of Mathematical Imaging and Vision, 36(2):168–184.

[122] Strong, D. M. and Chan, T. F. (1996). Relation of regularization parameter and

scale in total variation based image denoising. Department of Mathematics, University

of California, Los Angeles.

[123] Sun, D. and kuen Cham, W. (2007). Postprocessing of low bit-rate block DCT coded

images based on a fields of experts prior. IEEE Transactions on Image Processing,

16(11):2743–2751.

[124] Surya Prasath, V. and Vorotnikov, D. (2014). Weighted and well-balanced

anisotropic diffusion scheme for image denoising and restoration. Nonlinear Analysis:

Real World Applications, 17:33–46.

[125] Teh, Y. W., Welling, M., Osindero, S., and Hinton, G. E. (2003). Energy-based

models for sparse overcomplete representations. Journal of Machine Learning Research,

4:1235–1260.

[126] Tikhonov, A. N. (1943). On the stability of inverse problems. In Dokl. Akad. Nauk

SSSR, volume 39, pages 195–198.

[127] Tikhonov, A. N. and Arsenin, V. Y. (1977). Solutions of ill-posed problems.

[128] Tsiotsios, C. and Petrou, M. (2013). On the choice of the parameters for anisotropic

diffusion in image processing. Pattern Recognition, 46(5):1369–1381.

[129] Unger, M., Pock, T., Werlberger, M., and Bischof, H. (2010). A convex approach

for variational super-resolution. In Proceedings German Association for Pattern Recog-

nition (DAGM), volume 6376 of LNCS, pages 313–322. Springer.

[130] Wallace, G. K. (1991). The JPEG still picture compression standard. Communica-

tions of the ACM, 34(4):30–44.

[131] Wang, Z., Bovik, A. C., Sheikh, H. R., and Simoncelli, E. P. (2004). Image quality

assessment: from error visibility to structural similarity. IEEE Transactions on Image

Processing, 13(4):600–612.

190

[132] Weickert, J. (1998). Anisotropic diffusion in image processing. Teubner Stuttgart.

[133] Weickert, J. (2001). Applications of nonlinear diffusion in image processing and

computer vision. Acta Math. Univ. Comenianae, 70(1):33–50.

[134] Welk, M., Gilboa, G., and Weickert, J. (2009). Theoretical foundations for discrete

forward-and-backward diffusion filtering. In Scale Space and Variational Methods in

Computer Vision, pages 527–538. Springer.

[135] Welling, M., Hinton, G. E., and Osindero, S. (2002). Learning sparse topographic

representations with products of student-t distributions. In NIPS, pages 1359–1366.

[136] Xiong, Z., Orchard, M. T., and Zhang, Y.-Q. (1997). A deblocking algorithm for

JPEG compressed images using overcomplete wavelet representations. IEEE Trans.

Circuits Syst. Video Techn., 7(2):433–437.

[137] Yaghoobi, M., Nam, S., Gribonval, R., and Davies, M. E. (2011). Analysis operator

learning for over-complete co-sparse representations. In European Signal Processing

Conference.

[138] Yaghoobi, M., Nam, S., Gribonval, R., and Davies, M. E. (2012). Noise aware

analysis operator learning for approximately cosparse signals. In ICASSP.

[139] You, Y.-L. and Kaveh, M. (2000). Fourth-order partial differential equations for

noise removal. Image Processing, IEEE Transactions on, 9(10):1723–1730.

[140] Yun, S. and Woo, H. (2012). A new multiplicative denoising variational model based

on mth root transformation. IEEE Transactions on Image Processing, 21(5):2523–2533.

[141] Zavriev, S. and Kostyuk, F. (1993). Heavy-ball method in nonconvex optimization

problems. Computational Mathematics and Modeling, 4(4):336–341.

[142] Zhu, S. C. and Mumford, D. (1997). Prior learning and gibbs reaction-diffusion.

IEEE TPAMI, 19(11):1236–1250.

[143] Zoran, D. and Weiss, Y. (2011). From learning models of natural image patches to

whole image restoration. In ICCV, pages 479–486.

	Notations
	Matrix calculus
	Introduction
	Image restoration problems
	Variational formulation for solving image restoration problems
	Regularization techniques for image restoration
	Relations between regularization and nonlinear diffusion filtering
	From convex regularizations to non-convex regularizations
	Contributions of the thesis
	Learning better image regularizers
	Applications of the learned image regularizers
	Learning effective reaction diffusion processes

	Learning optimized FoE models using loss-specific minimization
	Revisiting loss-specific training of filter-based MRFs
	The Fields of Experts (FoE) model
	Related works and motivation to revisit loss-specific training scheme
	Basic training model

	Link to analysis operator learning problem
	Background of the co-sparse analysis model
	Related notations
	Patch-based synthesis and analysis models
	Patch-based analysis operator learning
	Comments to existing co-sparse analysis model

	Insights into analysis based models
	Equivalence between the patch-based analysis model and the PoE model
	From patch-based to image-based model
	Equivalence between the image-based analysis model and the FoE model

	Loss-specific analysis operator learning model

	Solving the loss-specific problem
	Gradients computation
	Bi-level learning algorithm
	The iPiano algorithm to solve the lower level problem
	Introduction
	The heavy ball with friction method
	The proposed algorithm - iPiano
	Backtracking based iPiano
	Ability to overcome spurious stationary points

	Refined training scheme
	More training experiments
	Penalty functions
	Training experiments
	The influence of the penalty function
	The influence of the number of filters
	The influence of filter size
	The robustness of our training scheme

	Discussion

	Applications of the trained image regularizers
	Image denoising
	Gaussian noise reduction
	Solving the corresponding minimization problems
	Details of the evaluation experiments
	Comparison of three different penalty functions
	Comparison to other analysis models
	Comparison to state-of-the-art methods
	Comparison of run time
	Realistic noise removal experiments
	Discussion

	Impulse noise
	Multiplicative noise reduction (despeckling)
	Introduction
	The variational model for despeckling
	Despeckling experiments
	Conclusion

	JPEG artifacts suppression
	Introduction
	A novel variational model for image deblocking
	JPEG compression and the QCS
	Variational model for image deblocking
	Solving the variational deblocking model

	Experimental results
	Discussion

	Other image restoration problems
	Non-blind image deconvolution
	Image super resolution
	Single image super resolution
	Multi-frame super resolution

	Image inpainting

	Discussion

	Learning effective reaction diffusion processes
	Introduction
	Background
	Motivations of the proposed reaction diffusion process
	Perona and Malik diffusion model
	Proposed nonlinear diffusion model

	Related works
	Learning framework
	Computing gradients
	Preliminaries
	Derivations of learning problem with respect to Gaussian denoising
	Greedy training
	Joint training

	Training for JPEG deblocking
	Variational model for image deblocking
	Gradients with respect to the deblocking training

	Training experiments for image denoising and deblocking
	Image denoising experiments
	Analysis of the proposed diffusion process
	Learned influence functions
	Training for other configurations
	Run time
	Denoising examples

	JPEG deblocking experiments

	Discussion

	Conclusion
	Future work
	Further investigation of the variational model with learned image regularizer
	Trainable nonlinear reaction diffusion models
	Some relations to convolutional neural networks

	Implementation of the transpose operation K
	Bibliography

