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Abstract

This dissertation presents the asynchronous Graz Brain Switch, a non-invasive brain-
computer interface (BCI) based on the beta rebound after overt and covert foot

movements. The first part of this thesis provides an overview on the beta rebound, a burst
of beta activity (15 to 35 Hz) that follows somatosensory stimulation or motor behavior,
assumed to reflect a process of deactivation/inhibition of cortical networks. This part also
presents a novel comparison of the beta rebound between execution and withholding of
physical movement, and a novel comparison of the beta rebound between withholding of
executed and imagined movement. Across these conditions, the beta rebound appears in
the same frequency band and at the same electrode position, with differences in magnitude
and breadth: (i) larger beta rebound after execution as compared to during withholding of
physical movement, and (ii) larger and broader beta rebound during withholding of motor
execution as compared to withholding of motor imagery.

The second part of this work presents an overview on current brain switch designs and
evaluation methods. The majority of brain switch designs rely on the detection of motor
related phenomena, i.e. motor-related potentials and event-related (de)synchronization.
Performance is usually evaluated offline in terms of true and false activations, but com-
parisons between different approaches are difficult because false activations are considered
differently, and class probabilities are unbalanced. A good way to evaluate the rejection
of non-target brain patterns is to estimate the number of false activations per minute.
Current brain switch designs attempt to provide near-zero false activations, prioritizing
reliability over responsiveness.

The third part of this work demonstrates that the beta rebound is suitable for realiz-
ing an asynchronous brain switch. After one run of cue-paced motor execution or motor
imagery, a support vector machine is trained with spectral features to classify the beta
rebound against other brain patterns. For the sake of practicality, the electroencephalo-
gram (EEG) from a single Laplacian derivation at the vertex is used. Offline simulations
of an asynchronous BCI show that the detection of overt and covert foot movement, based
on the beta rebound, achieves an average true positive rate (TPR) of 0.74 and 0.59, re-
spectively. In both cases, the false positive rate (FPR) is limited to 0.10. Exploiting the
similarity of the beta rebound after overt and covert foot movement, EEG data recorded
during movement is used to set up the Graz Brain Switch. After a short calibration phase,
the brain switch can be used to detect the beta rebound after motor imagery. Since move-
ment execution is required for setting up a classifier, this scheme represents a brain switch
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for able-bodied users. An offline simulation of this scheme shows an average TPR of 0.46
(FPR = 0.11) for the detection of imagined movements.

The fourth part of this work describes the online evaluation of the Graz Brain Switch,
and the successful implementation of a hybrid BCI. The hybrid BCI is obtained from the
combination of the Graz Brain Switch and a BCI based on the classification of steady
state visual evoked potentials. A well-defined paradigm with specific timing serves as a
benchmark application for the online evaluation. Six participants completed the evaluation
with an average of 7.5 true activations and 3.5 false activations per run (a perfect run would
have five true activations and zero false activations). The average positive predictive value
(PPV) was 0.74, meaning that 74% of all activations were intended, and the number of
false positives per minute (FP/min) was 0.47. For comparison, other brain switch designs
have achieved 0.7 FP/min in offline analyses and 1.4 FP/min in online experiments.



Zusammenfassung

Diese Doktorarbeit präsentiert den Graz Brain Switch, ein nicht-invasives asynchrones
Brain-Computer Interface (BCI), das eine Schalterfunktion bietet. Ein BCI wan-

delt bestimmte Aktivitätsmuster des Gehirns in Steuersignale um. Der Graz Brain Switch
verwendet den Beta Rebound nach einer kurzen Fußbewegung oder Fußbewegungsvorstel-
lung als Gehirnmuster. Im ersten Teil dieser Doktorarbeit wurde ein Überblick über die
aktuelle Literatur gegeben. Der Beta Rebound ist eine kurze Zunahme von Spektralkom-
ponenten des Elektroenzephalogramms (EEG) im Beta Frequenzbereich (15 - 35 Hz), der
einer somatosensorischen Stimulation oder einer motorischen Aufgabe folgt. Man nimmt
an, dass der Beta Rebound mit einer Inhibition kortikaler Neurone zusammenhängt. Weit-
ers wurde der Beta Rebound nach Durchführung von Bewegung und nach Hemmung von
Bewegung bzw. Bewegungsvorstellung verglichen. Der Beta Rebound tritt in jeder dieser
Bedingungen im gleichen Frequenzbereich und auf der gleichen Elektrodenposition auf.
Unterschiede zeigen sich nur in der Amplitude und Verteilung: (i) stärkerer Beta Rebound
nach Bewegungsdurchführung als nach Hemmung der Bewegung, und (ii) stärkere und bre-
itere Verteilung des Beta Reboundes nach Hemmung von Bewegung als nach Hemmung
von Bewegungsvorstellung.

Im zweiten Teil dieser Doktorarbeit wurde ein Überblick über aktuelle Arten des Brain
Switches und Evaluierungsmethoden gegeben. Die aktuellen Brain Switches basieren auf
motorischen Gehirnmustern, bzw. motorischen Potentialen und ereignisbezogener Desyn-
chronisation (ERD) und Synchronisation (ERS). Die Evaluierung wird normalerweise off-
line durchgeführt, mittels True Positive Rate (TPR) und False Positive Rate (FPR). Der
Vergleich von verschiedenen Arten des Brain Switches ist jedoch kompliziert, weil falsche
Aktivierung unterschiedlich definiert wird. Hilfreich ist der Vergleich zwischen falschen
Aktivierungen pro Minute (FP/min), zur Evaluierung der korrekten Zurückweisung von
Gehirnmustern, die nicht dem Zielmuster entsprechen. Aktuelle Arten des Brain Switches
geben der FPR eine höhere Priorität als der Reaktionsfähigkeit.

Im dritten Teil dieser Doktorarbeit wurde die Realisierbarkeit eines Beta Rebound
basierten Brain Switches bewiesen. EEG Daten, die während Bewegungsdurchführungen
und Bewegungsvorstellungen aufgenommen wurden, wurden für das Klassifikatortraining
verwendet. Der Klassifikator analysiert das EEG-Signal von einer einzelnen Laplace-Ab-
leitung in einer offline Simulation eines asynchrones Brain Switches, und detektiert das
Auftreten des Beta Rebounds. Die Ergebnisse zeigen eine durchschnittliche TPR von 0.74
und 0.59 für die Klassifikation von Bewegungsdurchführung bzw. Bewegungsvorstellung.
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Die FPR war in beiden Fällen auf 0.10 begrenzt. Die Ähnlichkeit des Beta Rebound-
es zwischen Bewegungsdurchführung und Bewegungsvorstellung wurde genutzt, um den
Graz Brain Switch nach dem Bewegungsdurchführungmuster einzustellen. Nach einer Ka-
librierungsphase wurde der Graz Brain Switch am Bewegungsvorstellungsmuster getestet.
Eine offline Simulation zeigte eine durchschnittliche TPR von 0.46 (FPR = 0.11).

Im vierten Teil dieser Doktorarbeit wurden die online Evaluierung des Graz Brain
Switches und die Realisierung eines hybriden BCI gezeigt. Das hybride BCI besteht aus ein-
er Kombination des Graz Brain Switches mit einem auf steady-state visuell evozierten Po-
tentialen basierendem BCI. Ein experimentelles Paradigma mit definiertem Zeitablauf di-
ente als Vergleichsanwendung für die online Evaluierung des Brain Switches. Sechs Proban-
den nahmen an der Evaluierung teil und erreichten durchschnittlich 7.5 richtige und 3.5
falsche Aktivierungen (perfekte Ausführung bestand aus fünf richtigen und null falschen
Aktivierungen) und 0.74 FP/min. Zum Vergleich, andere Brain Switch Arten erreichen
0.7 FP/min (offline) und 1.4 FP/min (online).



Resumen

Esta tesis doctoral presenta una interfaz cerebro-computadora (BCI por sus siglas en
Inglés) aśıncrona y no-invasiva, que proporciona la función de un interruptor. El

Graz Brain Switch está basado en la sincronización del ritmo central beta (entre 15 y
35 Hz) que sigue la ejecución y la imaginación de movimiento (dorsiflexión) de ambos
pieses, y que se conoce como beta rebound. La primera parte de esta tesis presenta una
revisión bibliográfica sobre el beta rebound, un fenómeno fisiológico que corresponde a un
cambio en la interacción entre grupos neuronales (sincronización), y que se presenta como
un incremento del componente espectral beta del electroencefalograma (EEG). El beta
rebound coincide con un estado de excitabilidad reducida de grupos neuronales corticales.
La primera parte presenta, además, una comparación del beta rebound entre ejecución e
inhibición de movimiento y entre la inhibición de movimiento real e imaginario. En estas
condiciones, el beta rebound se presenta en la misma banda de frecuencia y en la misma
localización topográfica, con diferencias en amplitud y distribución: (i) mayor amplitud
entre ejecución e inhibición de movimiento y (ii) mayor amplitud y distribución más amplia
entre inhibición de movimiento real y de movimiento imaginario.

La segunda parte de esta tesis presenta una revisión de diseños de brain switch ac-
tuales y sus métodos de evaluación. La mayoŕıa de estos diseños estan basados en patrones
cerebrales motores. Usualmente, el desempeño es evaluado fuera de ĺınea, mediante la esti-
mación de la tasa de verdaderos positivos (TPR) y la tasa de falsos positivos (FPR). Debido
a que los falsos positivos pueden ser definidos de diferente manera y a que las clases no
están balanceadas, la comparación entre dos o más diseños es complicada. Adicionalmente,
se puede estimar el número de falsos positivos por minuto (FP/min). Medida que busca
reducirse con mayor prioridad que el tiempo de respuesta de un brain switch.

La tercera parte de esta tesis demuestra la realización de un brain switch basado en el be-
ta rebound. Señales de EEG registradas durante la ejecución e imaginación de movimiento
son utilizadas para entrenar un clasificador. Este clasificador utiliza caracteŕısticas espec-
trales para analizar el EEG y detectar la ocurrencia del beta rebound. Para obtener una
BCI práctica, sólo una derivación (Laplaciana) de EEG es utilizada. Simulaciones de un
brain switch aśıncrono muestran un TPR de 0.74 para la detección de movimientos reales
y de 0.59 para la detección de movimientos imaginarios. En ambos casos, el FPR esta lim-
itado a 0.10. La similitud del beta rebound entre ejecución e imaginación de movimiento,
permite entrenar el clasificador con el patrón cerebral de movimiento y, después de una
fase de calibración, utilizar la imaginación de movimiento para el control del brain switch.
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La simulación de este esquema resulta en un TPR promedio de 0.46 (FPR = 0.11).
La cuarta parte de esta tesis presenta la evaluación en ĺınea del Graz Brain Switch, y

la realización de una BCI h́ıbrida. Esta BCI h́ıbrida resulta de la combinación del Graz
Brain Switch con una BCI basada en potenciales evocados visuales de estado estacionario.
Un paradigma experimental bien definido y con temporización espećıfica sirve como refer-
encia para esta evaluación. Seis participantes completaron la evaluación con un promedio
de 7.5 verdaderos positivos y 3.5 falsos positivos (el desempeño perfecto resultaŕıa en cinco
verdaderos positivos y cero falsos positivos) y un promedio de 0.47 FP/min. En compara-
ción, otros diseños han reportado 0.7 FP/min en análisis fuera de ĺınea y 1.4 FP/min para
experimentos en ĺınea.
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Chapter 1

Introduction

1.1 Brain-computer interfaces

A brain-computer interface1 (BCI) is a communication system that provides a direct link
between the human brain and a computer without involving peripheral nerves or mus-
cles [1, 2], thus installing a non-muscular channel for the translation of brain activity
(thoughts) into control commands (actions). The principal goal of a BCI is to improve the
quality of life of persons with severe motor impairments, who may not have other means
of communication. Brain-driven human-computer interaction is attractive to healthy per-
sons who could use BCIs as novel controllers or hands-free devices. Therefore, current
BCI research targets both disabled and able-bodied persons. Development in the BCI field
has demonstrated applications that enable communication, provide control over devices,
restore or replace lost motor functions, and contribute to recreation and creative expres-
sion [3–15]. Other applications offer thought-based control over robots and video games,
as well as, navigation of virtual worlds [16–21]. Novel applications include the assessment
of consciousness of non-responsive persons, and the assessment and promotion of cortical
recovery after stroke [22–27]. Recent developments include the combination of one or more
BCIs with other assistive technologies into hybrid systems [28–32].

Figure 1.1 illustrates the basic scheme of a BCI. In a nutshell, the BCI monitors the on-
going brain activity for characteristic patterns that represent the user’s control intentions.
Relying on signal processing and pattern recognition methods, the BCI identifies one of
several predefined patterns and produces a distinct control command. The BCI informs
the user about the current command and prepares itself for decoding the next instruction.
A BCI complies with the following basic principles [29]:

Source: Control signals originate from the brain.
Control: Users are able to volitionally modulate the signal that enters the system.
Real time: Systems provide online control.
Feedback: Success or failure, i.e. system state, is fed back to the user.

1Also called brain-machine interface (BMI), and recently grouped under the term brain/neural-
computer interaction (BNCI).
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Brain-Computer
Interface

Signal
acquisition

Signal processing

Pre-processing Feature 
extraction Classification Post-processing

Application 
interface

Application

Feedback

closed
loop

Intention Control

Figure 1.1: Scheme of a brain-computer interface (modified from [33]).

Control over a BCI is a skill that needs to be learned [2, 34]. A common approach is to
train the BCI to recognize a user-specific brain pattern (machine learning), then allow the
user to adapt his/her mental strategy to the BCI rule (operant conditioning). The latter
procedure is known as user training or “feedback” training, where the BCI output guides
the user to gain control over his/her own brain activity and over the machine. User training
and machine learning are repeated until the system converges to an optimal control state.
Coadaptation time varies among persons and BCI designs, and some users are unable to
attain control [35–38]. Adaptive systems and machine learning methods help to ease the
learning phase and to improve user’s proficiency [39–41].

Existing BCIs can be grouped according to their operational characteristics [2, 42, 43].
Three main categories describe the operation mode of the BCI (asynchronous vs. syn-
chronous), the type of technique that monitors brain activity (invasive vs. non-invasive),
and the nature of the brain patterns that encode user’s intentions (exogenous vs. en-
dogenous). Noteworthy, these categories are not mutually exclusive, since they indicate
different characteristics.

Operation of a BCI can be continuous or intermittent, meaning that control is available
at any time or only during certain periods. Asynchronous BCIs provide continuous control
to the user. On the other hand, synchronous BCIs allow control periodically, according to a
system cue. Asynchronous and synchronous BCIs have been further divided depending on
the inclusion of a no-control state [42], i.e. an additional command that does not execute
any action. The no-control state allows the user to generate arbitrary brain patterns with-
out producing unwanted control of the application. Following this subdivision, the four
categories are: synchronized, system-paced, constantly-engaged, and self-paced. The for-
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mer pair corresponds to the definition of synchronous BCI, and the latter pair corresponds
to the definition of asynchronous BCI given above. In synchronized and constantly-engaged
mode, the no-control state is not supported. Needless to say, an asynchronous BCI that
supports the no-control state (self-paced) is preferred.

Brain activity is associated with changes in electrical potentials, magnetic fields, and
blood flow that are useful as BCI inputs. Among these, bioelectrical signals are most
practical due to their temporal resolution and the cost/portability of the measuring in-
struments. Bioelectrical brain activity can be monitored from inside the brain, from its
surface (the brain cortex), and from the scalp. While invasive techniques record signals
from electrodes inserted into the cortex (intracortical recordings) or laid on its surface
(electrocorticogram, ECoG); non-invasive techniques record signals from electrodes placed
on the scalp (electroencephalogram, EEG). Invasive BCIs use invasive techniques to obtain
a high signal-to-noise ratio and a high temporal and spatial resolution; however, surgery
is necessary to implant electrodes inside the head. Although signal quality decays with
time after the implant, results from pilot clinical trials conducted by The BrainGate Co.
(http://www.braingate.com/) showed that control over a computer mouse (2D movement
and click) by a tetraplegic person is still possible 1000 days after implant [44]. Non-invasive
BCIs use non-invasive techniques, which also have a high temporal resolution but lower
signal-to-noise ratio and lower spatial resolution, to create systems that could be used on
a daily basis by disabled persons and occasionally by able-bodied persons. Despite the
differences in signal-to-noise ratio and spatial resolution, a recent comparison between in-
vasive and non-invasive BCIs showed that the performance of 2D control of a computer
cursor is comparable between both types [45]; furthermore, 3D control has been reported
only with EEG-based BCIs in humans [46, 47].

Non-invasive BCIs based on hemodynamics use functional magnetic resonance imaging
(fMRI) or functional near infrared spectroscopy (fNIRS), to quantify changes in the concen-
tration of oxyhemoglobin and deoxyhemoglobin, which are an indirect measure of neuronal
activity. Hemodynamic changes need around 6 to 12 s to reach a maximum value and 8 to
20 s to return to baseline levels; fast but weak changes appear 0.5 to 2 s after activity onset,
thus setting the limit for temporal resolution of fMRI- and fNIRS-based BCIs [48]. Due
to the complexity and cost of the equipment, applications of fMRI-based BCIs are lim-
ited to clinical rehabilitation and treatment [26, 49–51], e.g stroke rehabilitation, chronic
pain, emotional and social disorders, and assessment of consciousness. Although fMRI is
considered a standard for brain imaging, fNIRS is more practical and less expensive [52].
fNIRS-based BCIs could be considered practical for applications where time resolution is
less important, e.g assessment of consciousness, or in hybrid systems [29, 53–57].

Brain activity patterns used for BCI control can be evoked by external stimuli or
induced by internal processes. Evoked responses have known characteristics that are stable
among persons, namely topography and latency; whereas induced responses create complex
spatiotemporal patterns of brain activity with some general features that vary slightly
among persons, i.e. topography and time-frequency characteristics. Exogenous BCIs take
advantage of evoked responses to reduce user training and to maximize the information
transfer rate (ITR), i.e. the amount of brain information that is correctly decoded by the

http://www.braingate.com/
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BCI in a certain amount of time [2]. However, exogenous BCIs require the users to focus
their attention to an external stimulus, and unwanted commands often occur. Endogenous
BCIs rely on induced patterns to convey control commands without the need of external
stimuli, at a moderate ITR. The complexity of induced patterns reduces the probability
of unwanted commands, but multichannel recordings are often necessary. Moreover, the
capability of self-inducing these patterns varies among persons, which may increase the
time for user training.

1.2 Event-related brain phenomena

Different types of events induce transient changes on the ongoing brain activity that are
time-locked, but not always phase-locked. Phase-locked electrical responses are called
event-related potentials (ERPs), and can be interpreted as the response of a stationary
system to a stimulus [58]. ERPs occur in the EEG as small potential deflections immersed
in the spontaneous activity. Averaging across several realizations reduces the contribu-
tion of spontaneous activity and isolates the ERP [59]. Non-phase locked responses are
called event-related (de)synchronization (ERD/ERS), and represent changes in the func-
tional connectivity of neuronal populations [60]. While the desynchronization of neuronal
groups induces a suppression of a particular EEG rhythm, their synchronization induces
an increment of a specific rhythm. Hence, the analysis of ERD and ERS require non-linear
methods such as envelope detection or power spectral analysis. Time course of ERD/ERS
is often computed with the inter-trial variance method [61], but other methods are avail-
able (see [62]). Since ERD and ERS are frequency specific, it is necessary to indicate the
frequency band where the changes occur.

Many endogenous BCIs are based on the classification of event-related (de)synchronization
of sensorimotor rhythms [42, 43, 63], i.e. oscillations in the alpha (8 to 13 Hz), beta (15 to
35 Hz), and gamma (> 40 Hz) bands. Typically, ERD is interpreted as correlate of an active
cortical area, whereas ERS in the alpha and beta bands is commonly associated with a
deactivated or inhibited state of large neural networks; noteworthy, the ERS in the gamma
band is considered a correlate of an active cortical area. In general, the ERD (power de-
crease) of the mu and lower beta (16 to 20 Hz) rhythms appears up to two seconds before
movement onset and for the duration of the movement itself. The motor-related ERD
reaches its minimum about half of a second to one second after movement onset [64]. After
movement offset, a beta ERS (power increase) appears for about one second [65–67]. An
ERS around 40 Hz appears shortly before movement onset [68, 69]. A similar ERD/ERS
pattern is also visible during imagination of movements [34].

Interestingly, ERD and ERS are visible at the same time in different frequency bands
(e.g alpha ERD and gamma ERS) and at the same cortical areas, thus indicating that
underlying neuronal populations are engaged in different processes related to motor be-
havior, e.g somatosensory processing or motor control. Simultaneous ERD and ERS may
also appear in the same frequency band on distant brain areas. This phenomenon is known
as focal ERD/surround ERS [70, 71].
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An example of focal ERD/surround ERS is observed during movement: hand/finger
movement induces a contralateral ERD (cortical hand representation) and a mid-central
ERS (cortical foot representation, overlapping with the supplementary motor area); sim-
ilarly, foot movement produces a mid-central ERD and a bi-lateral ERS [70]. Focal
ERD/surround ERS may result from a distribution of cortical resources, which might
facilitate task performance by an additional suppression or inhibition of the surrounding
cortical areas [72]. Antagonistic patterns, similar to the focal ERD/surround ERD of senso-
rimotor rhythms, can be found on the concentration changes of oxy- and deoxyhemoglobin
(fNIRS) in the prefrontal cortex during mental arithmetic [57, 73]; and in form of positive
and negative blood-oxygen-level-dependent (BOLD) signal measured by functional mag-
netic resonance imaging (fMRI) during toe movements [74] (positive BOLD in foot area,
and negative BOLD in hand areas).

1.3 Bringing BCIs out of the lab

Widespread use of BCIs would require non-invasive techniques and affordable systems to
record brain activity. The EEG meets these requirements and it offers a good temporal
resolution (in the order of milliseconds), although the signal-to-noise ratio is low and mul-
tichannel recordings are often required. To bring an EEG-based BCI into every day life,
additional features are necessary. The BCI must be simple and easy to set up, it must be
robust and reliable, and it must provide on demand control. Hence, the BCI must be con-
tinuously available to the user and the number of unwanted commands must be minimized.
Furthermore, the BCI should not depend on external stimuli and use as few channels as
possible.

Ideally, a BCI that identifies stable brain patterns from ongoing single channel EEG
would fulfill these requisites. A BCI that distinguishes a single brain pattern from all other
brain activity is called a brain switch [75]. A brain switch provides a simple mechanism to
trigger an action, to start/stop an application, or to sequentially execute a series of actions.
Prerequisite for a robust BCI is a simple mental task associated with an stable EEG
pattern, suitable for online detection in only one EEG channel or derivation. Such an EEG
pattern could be the beta rebound reported after active and passive movement, electrical
nerve stimulation, observation of movement, withholding of movement, and motor imagery.
The beta rebound presents a strict somatotopic organization [62, 65], somatotopically-
specific frequency components [76], “cross-talk” between hand representation area and
mesial cortex [77], and coincidence with a reduced excitability of motor cortex neurons [78].

1.4 Aim of this work

This dissertation presents the asynchronous Graz Brain Switch, an EEG-based BCI trained
to detect the event-related synchronization of the central beta rhythm (beta rebound)
present after termination of a motor task, particularly, after brisk foot motor imagery.
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Outline

This dissertation is organized in seven chapters. This chapter, Chapter 1, introduces
brain-computer interfaces, the problem of bringing BCIs out of the lab, and the aim of
this dissertation. Chapter 2, provides a brief literature review on the beta rebound and
its characteristics. It also includes a novel comparison between the beta rebound following
overt foot movement and its inhibition. Chapter 3 presents a brief literature review on other
asynchronous brain switch designs and the methods for evaluation. Chapter 4 demonstrates
that the beta rebound is suitable for realizing a brain switch, and compares the classification
performance when ERD or ERS are used as features. Chapter 5 presents the methods for
setting up a brain switch for healthy users, based on the similarity between the post-
movement and the post-imagery beta rebound. Chapter 6 describes an online application
and performance evaluation of the brain switch, as part of a hybrid BCI. Finally, Chapter 7
presents the conclusions and future prospects of this work.

Previously published work

Parts of this dissertation have appeared in peer-reviewed journals.
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based “brain switch”: a feasibility study towards a hybrid BCI. IEEE Transactions on
Neural Systems and Rehabilitation Engineering, 18:409–414, 2010.
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Chapter 2

The beta rebound

Beta rebound is the term for the induced burst of beta activity that follows somatosensory
stimulation or motor behavior [64, 79]. The beta rebound is a short lasting beta ERS
observable in ECoG, EEG, and MEG. It typically appears in the motor cortex, the so-
matosensory cortex, and the supplementary motor area [80–85]; but it also appears in the
prefrontal cortex [86], and the parietal cortex [65, 87]. Figure 2.1 illustrates the burst of
beta activity in the EEG and the corresponding beta ERS.

It is generally accepted that the beta rebound reflects a process of active inhibition after
termination of a sensorimotor program [66, 67, 72, 88], but its exact functional meaning
is still uncertain. Support for the active inhibition role of the beta rebound comes from
studies demonstrating that the beta rebound coincides with a reduced excitability of the
neurons in the motor cortex [89], that the beta rebound is suppressed during enhanced
activation of the motor cortex [90–94], and that the beta rebound correlates inversely with
the blood-oxygen-level-dependent (BOLD) signal measured by fMRI [95–97]. Additionally,
there are studies showing an influence of the concentration of the inhibitory neurotrans-
mitter γ-Aminobutyric acid (GABA) on the power and frequency of the beta rhythm at
rest [98] and the beta rebound [99, 100], and a decreased beta rebound in patients with
myoclonic epilepsy (Unverricht-Lundborg disease), which leads to an enhanced excitation
and deficient inhibition of cortical regions [101, 102].

Other observations indicate that the beta rebound partly correlates with the processing
of afferent inputs [103–107], and that changes to somatosensory pathways affect the beta
rebound [108–111]. However, motor output and somatosensory stimulation are not a requi-
site for the beta rebound since motor imagery [91, 112] and motor inhibition [86, 113, 114]
are also followed by a beta rebound.

A general interpretation of beta activity has been recently proposed [115]. Engel and
Fries [115] suggest that beta band activity could “signal the status quo”, of motor control
and cognitive processes. Regarding motor control, the authors cite several studies where
the beta band activity helps to restore a motor state after some dynamic change, e.g. after
motor planning, motor termination, somatosensory stimulation, or response inhibition.
Although there is no consensus on the functional meaning of the beta rebound, the active
inhibition role seems to be appropriate.
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Figure 2.1: Quantification of the beta rebound. (a) Raw EEG (0.5 to 100 Hz) recorded
from a Laplacian derivation at the vertex (electrode position Cz), during cue-paced foot
movement, cue onset at t=2 s. Shaded areas indicate the duration of individual movements.
(b) Event-related brain responses during cue-paced foot movement (cue at t = 2 s, vertical
line), the left panel shows the event-related potentials (average) obtained after filtering
below 7 Hz, between 7 and 15 Hz, and between 15 and 40 Hz; the right panel presents the
corresponding event-related (de)synchronization computed with the power method (red)
and the inter-trial variance method [61] (black). The inter-trial variance method reduces
the contribution of phase-locked responses by subtracting the average waveform to each
individual EEG epoch (differences marked in red). Reference for the ERD/ERS curves
was between 0.5 and 1.5 s.
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2.1 Beta rebound after movement and stimulation

Voluntary movements

The post-movement beta rebound appears over the sensorimotor cortex after self-paced
and cue-paced movement of several body parts [64–67, 76, 79, 80, 85, 95, 103, 104, 116–
118]. Following a strict somatotopic organization along the sensorimotor strip, the beta
rebound is dominant in contralateral areas of the sensorimotor cortex after finger, wrist,
and toe movements [65, 67, 80]; whereas a dominant beta rebound appears at the vertex
after foot movement [66], and bilaterally in the parietal cortex after mouth movements [65].

Although the beta rebound is sometimes associated with cortical oscillations around
20 Hz [65, 81], the reactive bands of the beta rebound present a somatotopic frequency
specificity with higher components for foot movements than for hand movements [76, 84].
Figure 2.2 exemplifies the somatotopic specificity of the beta rebound. Interestingly, self-
paced brisk finger movement induces a beta rebound in the contralateral hand represen-
tation area, and a midcentral beta rebound around the foot representation area and the
supplementary motor area (SMA) [84]. This observation suggests the information transfer
between the primary motor cortex (M1) and the SMA, which has also been reported in
response inhibition experiments with humans [119] and non-human primates [120].

ERD

ERS

Finger
13 - 19 Hz

Arm
18 - 23 Hz

Foot
20 - 24 Hz

Motor 
homunculus

Figure 2.2: Somatotopic organization and frequency specificity of the beta rebound. To-
pography of the beta rebound after hand, arm, and foot movement; noteworthy are the
different frequencies where the beta rebound occurs. The cortical representation of different
body parts on the motor cortex is shown on the far right (modified from [76]).

Different characteristics of the movement have a direct influence on the post-movement
beta rebound. Brisk/ballistic movements induce a stronger beta rebound than sustained
movements [103, 117]; the duration of the beta rebound is related to the muscle force [121]
and the muscle mass [67] involved in the movement; the strength of the beta rebound
reduces gradually and inversely with the speed of the movement [95]; the beta rebound is
stronger for movements of the non-dominant side than for the dominant side, for hand [122]
and foot [66].
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Passive movements

Besides voluntary movements, passive movements are also followed by a beta rebound.
Since passive movements do not require motor planning or execution of a motor program,
it is concluded that these are not a requisite for the beta rebound. The beta rebound
has been observed after passive movements [88, 104, 123, 124], movements induced by
nerve stimulation [90, 93], and movements induced by functional electrical stimulation
(FES) [125]. Also displaying a somatotopic organization, the beta rebound after passive
movements is generally more intense than the beta rebound after voluntary movement [123,
124]. The presence of the beta rebound after induced movements suggest that at least some
components of the beta rebound are related to somatosensory stimulation. Figure 2.3 shows
a comparison between active and passive movements, as well as somatosensory stimulation.

fact that the force and endurance of paralyzed muscles could
be trained by using FES lead to the development of
neuroprosthetic devices and their use in special clinical
applications [18]. To extend the range of applications of

neuroprosthetic devices alternative control modes have to
be developed. One method for patient-controlled operation
can be based on the real-time detection of motor intents or
imaginations in continuous EEG or electrocorticogram

G.R. Müller et al. / Neuroscience Letters 340 (2003) 143–147144

(a) Time-frequency.

difference was found for condition illusion and passive
movement (t(6) =−0.778, p=0.466) (Fig. 4).

3.2. Mu frequency–mu ERD during movement

The results of separate ANOVAs with repeated measurement
design of the different movement conditions showed neither
significant differences in ERD values in the lower (8–10 Hz)
mu band (F(2,14)=1.237, p=0.320) nor in the upper (10–14 Hz)
mu band (F(2,14)=0.963, p=0.406).

3.3. Beta frequency–beta ERS after movement

The statistical analyses was performed with subject specific
center frequencies in the range of 18 to 27 Hz. Individual beta
frequencies were held constant for each subject over the
experimental conditions. The results of the ANOVAwith repeated
measurement design showed significant differences in ERS values
for the three types of movements (F(2,12)=14.929, p=0.001). Post
hoc paired samples t-tests showed a significant difference between
active and passive movement (t(6)=−5.147, p=0.002). Further-
more, a significant difference was found for beta activity between
illusion and passive (t(6)=−3.922, p=0.008) movement which is
particularly important to the rebound hypotheses, while the
difference between illusion and active movement was not
significant (t(6)=0.777, p=0.941) (Fig. 5).

3.4. Illusion questionnaire

Whereas significant electrophysiological differences for the
three types of movements were obtained, the results of the
‘illusion-questionnaire’, where subjects had to rate their subjec-
tive feeling of similarity concerning the different movements
revealed no significant differences (X2=2.174, p=0.337).

4. Discussion

The present study investigated the function and cortical
localization of post movement beta synchronizations elicited by
kinesthetic illusions compared to active and passive movements.

When cortical activation during illusion of movement was
compared with active and passive movement, a mu ERD con-
tralateral to the movement was found in all three conditions. This
might suggest an association of all threemotor taskswith activation
in primary and somatosensory areas. Additionally, the results of the
illusion questionnaire where no differences between the subjective
feeling of similarity concerning the different movements were
foundmight indicate the similar activation patterns in the upper and
lower mu frequency bands.

According to our hypothesis, we found that kinesthetic illusion
also induced a beta rebound like active or passive movements.
However, the spatial localization of the beta ERS in all conditions
elicited in somatosensory and primary motor areas, its amplitude
size varied significantly. The highest amplitude was found in the
passive movement, which could be explained by the relationship
between cortical activation and excitability of neurons. That is, if
the magnitude of the beta rebound is negatively correlated with the
excitability level of motor cortex neurons, a larger beta rebound is
expected with passive as compared to active movement (Chen et
al., 1998; Schnitzler et al., 1997; Pfurtscheller et al., 2005).
Furthermore, an active movement resulted in both, an efferent flow
to the muscles and in proprioceptive afferences, whereas passive
movement was accompanied by an afferent flow only. Another
explanation for the higher beta ERS in the passive condition
compared to the active condition could be due to the different
performance of execution. Whereas the active movement and its
ending was a continuous slow process, the passive movement, on
the other hand, stopped abruptly when the movable board reached
the starting position causing a massive afferent flow. The
observation of a suppressed beta rebound during movement
illusion can be interpreted that illusion is accompanied with an
increased level of motor cortex excitability similar as found during
active movement. It is known that kinesthetic illusions can be
elicited by artificially manipulating proprioceptive pathways
through tendon vibration (Naito et al., 1999; Goodwin et al.,
1972) because the vibration excites themuscle spindles in amanner
similar towhen themuscle actually stretches (Roll andVedel, 1982;
Roll et al., 1989). That is active movement and illusion of move-
ment share similar neural circuitry in motor areas and result both in
an activation of motor cortex neurons. The results of the present
study further support this assumption and it is in linewith the results
of several brain imaging studies which have shown an activation of
motor cortex neurons not only during motor execution but also
during illusion of movement (Naito et al., 1999; Lotze et al., 2000;
Naito and Ehrsson, 2001).

The results of the beta ERS after different movements could
be explained by the assumptions made above, however, there
are some discrepancies concerning the corresponding values in
the reference interval. Against our expectations of similar cort-
ical activation during the reference intervals in all three con-
ditions, the results revealed significant differences. Whereas the
high power values in the active movement condition could be

Fig. 5. Results of peak magnitude (ERS) after the movement within the
individual beta band for each condition. The yellow boxes contain all the values
between the lower and the upper quartile. The dark line inside the boxes is
representing the median values. Lines outside of the boxes represent the lowest
and the greatest value. The asterisk shows statistically significant post-hoc
differences (pb0.05).

326 C. Keinrath et al. / International Journal of Psychophysiology 62 (2006) 321–327

(b) Amplitude.

Figure 2.3: Beta rebound after active and passive movements. (a) Time-frequency map
of the ERD/ERS during active and FES-induced wrist movement. Note the lack of ERD
before movement onset (vertical line) in the passive (PAS) movement condition (modified
from [125]). (b) Statistical analysis of the amplitude of the beta rebound after movement
illusion (nerve stimulation without movement), active movement, and passive movement
of the arm (modified from [123]).

The role of somatosensory stimulation in the beta rebound after voluntary and induced
movements has been addressed in several experiments. In healthy persons, the beta re-
bound after passive movements and nerve stimulation disappears following blocking of the
median nerve with an ischemic maneuver [91, 104]. Accordingly, the beta rebound after
active movement, passive movement, and nerve stimulation is reduced in patients with
sensory deafferentation due to Parkinson’s disease [109]; and the beta rebound after self-
paced finger movement is reduced in patients with sensory deafferentation due to chronic
pain [108]. Furthermore, the beta rebound is reduced or abolished in persons with spinal
cord injury [124], and the amplitude of the rebound is correlated to the severity of the
lesion [110].
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Somatosensory stimulation

Somatosensory stimulation can induce a beta rebound even without inducing movement.
A beta rebound occurs after median nerve stimulation below motor threshold [76, 106, 123]
and tactile stimulation [105, 126]. The beta rebound after somatosensory stimulation also
follows somatotopic organization and frequency specificity. Figure 2.4 shows a comparison
between the beta rebound after movement and stimulation of hand an foot.

lar locations in the midline close to the vertex for both
sensory and motor maps of the leg (Cohen and Hallett,
1988). Based on these observations, foot area neuronal
networks localized in the mesial cortex are likely involved
in the generation of both movement and stimulation-related
beta ERS.

Another possibility is that the supplementary motor area
(SMA) plays a role in the production of the mid-central beta
ERS. Because of the proximity between the foot motor area
and the SMA (Tanji, 1996), oscillatory activity generated in
these areas can probably not be differentiated from scalp
recordings (Ikeda et al., 1992). Studies of movement-related
potentials (MRPs) revealing maximal vertex negativity
preceding the initiation of movement (e.g. Ikeda et al.,
1993), as well as electrical stimulation studies with subdural
electrodes (Lim et al., 1994), strongly suggest that the Cz
electrode site is a representation of SMA. According to
present indication, the SMA is not a pure motor area, but

rather a mixed sensorimotor area with predominantly motor
representation. Electrical cortical stimulation on the mesial
surface of the cerebral hemisphere elicited, for example, not
only motor responses, but also sensory phenomena, as far as
4 cm anterior to the paracentral lobule (Lim et al., 1994). A
number of studies defined two areas in the medial part of the
frontal agranular cortex (for a review, see e.g. Tanji, 1996):
the anterior part, called the pre-supplementary motor area
(pre-SMA), and the posterior part, the SMA proper or the
SMA. Although both areas take some part in simple motor
tasks, the pre-SMA appears to be more involved than the
SMA proper in tasks requiring higher order aspects of motor
control. Preliminary evidence for a post-movement beta
ERS generated in the SMA comes from recent ECoG
recordings in epilepsy patients. Comparing recordings
from the primary sensorimotor area (S1-M1) and the SMA
proper during self-paced finger/wrist extension, a transient
increase in cortical EEG activity after movement (ERS) was

C. Neuper, G. Pfurtscheller / Clinical Neurophysiology 112 (2001) 2084–2097 2093

Fig. 5. Topographical display (nose on top) of grand average ERD/ERS curves comparing movement vs. stimulation in the optimized frequency bands for the
hand (mean frequency band: 15.2–20.2 Hz; upper panel) and for the foot (mean frequency band: 19.8–24.8 Hz; lower panel). The horizontal line marks the
level of reference power and the vertical line movement-offset/stimulation. Band power increase (beta ERS) is indicated by upward deflection, band power
decrease (beta ERD) by downward deflection.

Figure 2.4: Beta rebound after somatosensory stimulation. Comparison of the beta re-
bound following movement and nerve stimulation. Vertical lines indicate the offset of
movement or stimulation (modified from [76]).

Action observation

Action observation activates parts of the primary motor cortex and the premotor cortex
through the mirror neuron system, which is believed to help understanding the meaning of
observed actions and learning by imitation [92, 127, 128]. Activation of the mirror neuron
system through action observation creates an interference in the primary motor system
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that reduces the amplitude of the beta rebound after nerve stimulation [129]. Even without
nerve stimulation, the beta rebound is also present after observation of movement [130]
and hearing of motor actions (drum tapping) [107]. Interestingly, the beta rebound after
observation of movements is reduced in patients with a dysfunctional mirror neuron system
associated with autistic spectrum disorder [131].

Noteworthy, the beta rebound after observation of motor tasks is modulated by the
semantics of the movement (see Figure 2.5). Observation of goal directed movement sup-
presses the beta rebound more than non-goal directed movement [94]. Also, the execution
and observation of movement, as well as observation of somatosensory stimulation (brush-
ing of a mannequin hand), reduced the amplitude of the beta rebound, whereas observation
of aimless thumb movement does not [129]. The amplitude of the beta rebound correlates
inversely with the correctness of the observed action [87]. Similarly, the beta rebound after
tactile stimulation is stronger when the stimulus has the relevance of a cue [132].

(Lange et al., 1999). Using this criterion the conditions differed
significantly between 1.05 and 1.3 s. The beta modulation was also
compared, using the same channels mentioned earlier, between the
six channels contra- and the six channels ipsi-lateral to the
movements (Fig. 2C; right panels). A repeated measurements
analysis of variance (ANOVA) on the mean power over a single
time period of 0.8–1.3 s with laterality (ipsi or contra) and
correctness (correct or incorrect) as factors showed a main effect
for laterality (F(1,11)=14.835, measured standard error (MSE)=
0.121, pb0.005), a strong trend for correctness (F(1,11)=3.530,
MSE=0.317, p=0.087), and no interaction effect (Fb1). This
means that the beta modulation was strongest contralateral to the
movement; however, the lateralized modulation was not signifi-
cantly affected by correctness.

The sources accounting for the modulation in the beta band
during the execution condition are shown in Fig. 3. The modulation
of beta band power was characterized by comparing the 15–23 Hz
(19 Hz±4 Hz smoothing) activity during the interval of increase
(t=0.8–1.3 s) to the interval of decrease (t=−0.5–0 s) (see Fig.
2C). This was done for the 8 subjects for whom we had structural
MRIs. The single-subject anatomical and functional data were
aligned to a standard brain and averaged. The strongest modulation
in the beta band was observed in BA6 with the largest value in
precentral gyrus for both correct and incorrect motor executions
(Figs. 3A and B).

Observation task

Fig. 4A shows time–frequency representations of the data in the
observation task for a collection of sensors (the same as for the
execution task) over sensorimotor areas. The activity in the beta

band (15–23 Hz) was depressed at the onset of the movement
(−0.2–0.5 s) and was then followed by a rebound (0.7–1.5 s). Note
that the magnitude of the beta modulation was much weaker
compared to the execution task. The topography of the activity in
the 15–23 Hz beta band showed a depression over central and
posterior areas followed by a rebound (Fig. 4B). Both the beta
depression and rebound were modulated by the correctness of the
observed actions (significant depression: 0.45–0.6 s significant
rebound: 1.3–1.45 s, Fig. 4C). The ipsi- and contralateral observed
movements were also studied separately (Fig. 4C; right panels). A
repeated measurements ANOVA over a time period of 1–1.5 s with
laterality (ipsi or contra) and correctness (correct or incorrect) as
factors revealed a significant laterality (F(1,11) = 4.860,
MSE=0.004, p=0.050), a significant effect for correctness (F
(1,11)=6.846, MSE=0.021, pb0.05), and no interaction effect
(Fb1). No laterality effect was identified with respect to the beta
depression. Thus, the beta rebound was strongest for sensors
contralateral to the observed movement; however, there was no
interaction effect so a significant modulation of correctness did not
result in a stronger laterality. We also compared the differences in
beta power with respect to individual error types (‘hand’, ‘goal’
and ‘hand&goal’ errors); however, no statically significant
modulations emerged.

The results of source localization on the action observation data
are shown in Fig. 5. The modulation of beta band power was derived
by comparing the beta band (15–23 Hz) increase (1–1.5 s) to the
decrease (0.1–0.6 s) (see Fig. 4C). When subjects were observing
correct motor responses, beta modulation was primarily localized in
superior parietal lobule (BA7) and weakly extended to the dorsal
motor areas (Fig. 5A). When the subjects observed erroneous motor
responses beta modulation was localized both in the superior parietal

Fig. 3. Source reconstructions accounting for the beta modulation in the execution task. The rebound interval (0.8–1.3 s) was compared to the beta depression
interval (−0.5–0 s). The source reconstructions were performed for correct (A) and incorrect actions (B). In both cases the strongest beta modulation was
identified in the left and right precentral sulcus and adjacent middle frontal cortex. Source activation is projected on a standard brain. NAI refers to the ratio in
power with respect to the rebound and depression intervals (NAI=(powerrebound−powerdepression) /powerdepression).
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A beamformer analysis was applied to identify the dominant
sources accounting for the beta modulations. It should be
mentioned that while source modeling is associated with potential
inaccuracies due to the inverse problem (Lutkenhoner, 2003), the
beamformer technique has been shown to provide sensible results
when identifying sources of oscillatory activity (Hillebrand et al.,
2005). In the execution condition the beamformer approach
revealed sources accounting for the beta modulation in the
precentral gyrus in line with previous studies that localized
oscillatory beta activity in dorsal motor cortical areas in both
monkeys and humans (e.g. Jensen et al., 2005; Salmelin et al.,
1995; Sanes and Donoghue, 1993). Given the low number of error
trials in the execution condition, we were not able to reliably
localize the sources reflecting the difference between errors and
correct trials. In the observation condition we identified the
dominant sources of beta modulation in the same precentral areas
and in the superior parietal lobule. The difference between correct
and incorrect observed actions was localized to pre-central areas

including the supplementary motor area. These results suggest that
dorsal motor areas were activated both during action execution and
during action observation. Importantly, in both conditions, beta
oscillations observed at the sensors located over motor cortex were
modulated more strongly for errors than for correct actions,
suggesting a common functional mechanism to support the
processing of self- and other-generated errors. It should be noted
that the areas we identified to be modulated by error observation
are not part of the ‘classical mirror neuron system’ as for instance
the inferior frontal gyrus (IFG). However, as also argued by
Caetano et al. (2007), the identified motor areas are downstream to
the IFG. Thus activation of the mirror neuron system in IFG is
likely to modulate the beta activity in the dorsal motor system.

Despite of the similarities between the execution and observa-
tion conditions, also a few differences in beta modulation were
noted. One difference between error-processing in the two
conditions was that in the execution condition errors exclusively
modulated the magnitude of the beta rebound, whereas in the

Fig. 5. Source reconstructions accounting for the beta modulation in the observation task. Separate source reconstructions were performed for correct actions,
incorrect actions, and the difference in activation between correct and incorrect actions. (A) Beta modulation induced by observed correct actions was mainly
found in bilateral superior parietal lobules but it also extended to precentral areas. (B) Beta modulated induced by incorrect actions was strongest in the bilateral
superior parietal lobules and in the bilateral precentral sulcus. For both panels A and B the rebound interval (1–1.5 s) was compared to the beta depression
interval (0.1–0.6 s) (NAI=(powerrebound−powerdepression) /powerdepression). (C) The difference in beta modulations between incorrect and correct actions was
strongest around the precentral gyrus and supplementary motor areas (see. Fig. 3). For panel C the rebound interval (1–1.5 s) for correct actions was divided by
the beta interval (1–1.5 s) for incorrect actions. Source activation is projected on a standard brain (NAI=(powerincorrect−powercorrect) / powercorrect).
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Figure 2.5: Beta rebound during action observation. (left) Beta rebound after execution
of correct and incorrect responses. (right) Brain activity during observation of correct and
incorrect responses. Differences between observation of correct and incorrect responses are
stronger in precentral areas, including the SMA (modified from [87]).

2.2 Beta rebound after motor imagery

Motor imagery is the mental simulation of a movement without motor output. It acti-
vates cortical areas in the sensorimotor cortex that are also active during execution of
movement [91, 133]. Consequently, a beta rebound is also observed after motor imagery,
although with a smaller amplitude than the post-movement beta rebound [124]. Besides
the amplitude differences, the post-imagery beta rebound is similar in topography and
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time course to those patterns accompanying motor execution [134]. It also follows the
somatotopic organization [135, 136], the somatotopic frequency specificity [124, 135], the
contralateral dominance [136], and the negative covariation with the BOLD signal [97]
previously mentioned for the post-movement beta rebound.

Execution and imagination of foot movement

The beta rebound after execution [76] and imagination [112] of foot movement is particu-
larly interesting due to its dominance. This beta rebound appears at the vertex, near the
SMA and the cortical foot representation area. Considering the close proximity of these
areas [137] and the possible cross talk between M1 and SMA [84], it is reasonable that a
large amplitude beta rebound occurs after foot movement or its imagination. Figure 2.6
illustrates the cross talk between these M1 and SMA, as well as the dominance of the mid-
central beta rebound. Figure 2.7 demonstrates the similarity between the beta rebound
after foot movement execution and imagination. It can be stated that the beta rebound
after foot movement displays a high signal-to-noise ratio, thus it is specially suitable for
detection of foot motor imagery in single EEG trials.

somatosensory stimulation. These beta bursts appear within
1 s after movement or after the delivery of the stimulus, with
a clear focus close to the corresponding representation area.
Beta ERS is in most cases preceded by ERD, which appears
more pronounced during voluntary movement, but is also
visible as a small deflection immediately after stimulation.
Hence, these beta oscillations can be considered as a
rebound phenomenon arising specifically over previously
desynchronized and probably activated areas.

Despite controversial assumptions on the possible func-
tional role of cortical oscillations in the beta band, the so-
called beta rebound has been associated with some sort of
selective deactivation (Pfurtscheller et al., 1996; Pfurtschel-
ler and Lopes da Silva, 1999) or even a process of active
immobilization of specific body parts, controlled by the
motor cortex (Salmelin et al., 1995). Compared to the
control of a single finger movement, movement of the
foot/leg is associated with more muscle force and, hence,
a larger mass of muscular fibers has to be activated. Assum-

ing that activation of a larger muscle mass requires a rela-
tively more extended population of cortical neurons, our
finding of larger beta oscillations with foot/leg as compared
to finger movement can be understood as the change of a
larger population of motor cortex neurons from an increased
neural discharge during the motor act to a state of cortical
deactivation after termination of movement.

By applying transcranial magnetic stimulation (TMS)
during the time period that precedes and follows a voluntary
finger movement, it was shown that the excitability of
cortico-spinal neurons was increased shortly before and
during the movement, while it was significantly reduced
during the first second after termination of the movement
(Chen et al., 1998). The finding that the period of decreased
cortico-spinal excitability corresponds to the time interval in
which the beta ERS occurs, supports indeed, that the post-
movement beta ERS might represent an inactive state of the
motor cortex with reduced excitability. This interpretation
might also hold true for the stimulation-induced beta ERS.

C. Neuper, G. Pfurtscheller / Clinical Neurophysiology 112 (2001) 2084–2097 2091

Fig. 3. Grand average ERD/ERS time courses calculated for the subject-specific frequency bands obtained over the hand and foot areas. The time courses for
electrode positions C3 and Cz are separately shown for finger and foot movement. The average hand area-specific frequency band was 15.2–20.2 Hz (full line
curves), and the average foot area-specific frequency band was 19.8–24.8 Hz (stripped line curves). The vertical line indicates the trigger (movement-offset).
The horizontal line marks the baseline (reference band power). Gray horizontal bars indicate the reference interval and the time periods (t1, t2, t3) subjected to
statistical analysis. Band power increase (beta ERS) is indicated by upward deflection, whereas band power decrease (beta ERD) is indicated by downward
deflection.

Figure 2.6: Cross talk and dominance of midcentral beta rebound. (left) Contralateral
and midcentral beta rebound after right hand movement. The midcentral beta rebound
has a slightly shorter latency than the contralareal beta rebound. (right) Contralateral
and midcentral beta rebound after foot movement. The midcentral beta rebound following
foot movement has a larger amplitude than the contralateral beta rebound following hand
movement. In both cases, the beta rebound displays a somatotopic frequency specificity
(modified from [76]).
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Figure 2.7: Beta rebound after foot movement and its imagination. (top) Time-frequency
maps of statistically significant (p < 0.01) ERD/ERS values and the mean and standard
deviation across trials (N = 36 for execution, and N = 60 for imagination). (bottom) Time
course of the beta rebound, same frequency band used for motor execution and imagery
(15 to 27 Hz). ERD and ERS are observed in slightly different bands (dashed circles in
top-left map).

2.3 Inhibition of overt and covert foot movement

Inhibition processes, along with decision making, are studied with Go/NoGo paradigms. In
such paradigms, participants are required to execute or withhold an action in response to a
cue. Several studies have observed a beta rebound induced by the NoGo cue, in the human
EEG [86, 113, 114, 119] and local field potentials (LFP) of non-human primates [120].
Moreover, Zhang et al. [120] observed the beta rebound following the NoGo cue, even
when the decision was to maintain an arm extension (continuous depression of a lever).
The beta rebound during response inhibition appears with a latency between 200 to 300 ms
after the cue, over the prefrontal (electrode positions Fz or Cz) and premotor cortex (FC3,
F3 or F8) near the cortical representation areas of the motor response, e.g. finger/wrist
movements.

A beta rebound has also been observed in the inhibition of voluntary action. Walsh
et al. [138] observed a burst of beta activity 12 ms before the intention to move in a self-
inhibition experiment, only in the trials that included self-inhibition. Using a self-reporting
scheme, the participants of that study decided when to complete or inhibit a movement
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(key press), at their own freewill. These observations support the active inhibition role of
the beta rebound.

Interestingly, the beta rebound after motor execution and during response inhibition
have not been directly compared. Moreover, investigations of withholding of movement are
exclusively done with hand movement; while foot movements have not been considered.
In this section we present a comparison of the beta rebound following the Go/NoGo cues
in an experiment with dorsiflexion of both feet, and between the withholding of execution
and imagination of the same movement. The goal is to investigate the differences between
the beta rebound following the Go/NoGo cues for experiments with foot movement, and
the differences between the beta rebound during withholding of overt and covert foot
movement.

Participants and experimental setup

Our analysis included sixteen participants (8 males and 8 females, age 23.6± 3.5 years).
From an original group of twenty persons, the data from three participants was discarded
due to movement or EMG artifacts. Data from one additional participant was discarded
because the beta rebound showed an atypical power increase (> 1000%). All participants
gave informed consent. During the experiment the participants sat on an armchair, one
meter in front of a computer screen. The computer screen showed the cues for a Go/NoGo
experiment and a first person perspective of a virtual character’s feet. The participants’
task was to perform or imagine a brisk movement (dorsiflexion) of both feet following a
green circle (Go), and to withhold the movement if a red circle (NoGo) appeared.

The experimental paradigm consisted of a single session of cue-paced motor execution
(ME) without feedback, and another session of cue-paced motor imagery (MI) with feed-
back. None of the participants had previous experience with MI. The ME session consisted
of two runs and the MI session of three runs. Each run contained 40 trials and Go/NoGo
class probability of 50%. Trials with feedback were not considered in this analysis. Both
sessions were conducted in the same day with several pauses in between. The paradigm
timing is shown in Figure 2.8.

Data recordings

We recorded the EEG from the participants’ scalp with five Ag-AgCl electrodes arranged
around electrode position Cz. Reference and ground electrodes were attached to the left
and right mastoid, respectively. Additionally, we recorded the electromyogram (EMG) from
the tibialis anterior muscles in both legs using bipolar derivations. A reference electrode
for EMG was attached to the right hip. Figure 2.9 shows the montage for both EEG
and EMG. Prior to digitization, the EMG was band-pass filtered between 1 and 1000 Hz,
full-wave rectified, and integrated with a time constant of 100 ms. EEG and EMG were
recorded with a biosignal amplifier (g.UBSamp, Guger Technologies, Schiedlberg, Austria).
Sampling rate was 250 Hz, with a band-pass filter between 0.5 and 100 Hz, and a notch
filter at 50 Hz.
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Figure 2.8: Experimental paradigm Go/NoGo. (a) The trials in each run lasted 8 s plus
a random pause between 3 and 6 s. Auditive (beep, 70 ms) and visual (ball, 2 s) cues
were presented to the participants two seconds after the beginning of a trial. (b) A green
ball indicated the execution (or imagination) of brisk foot dorsiflexion, while a red ball
indicated the withholding of such task. Participants observed a fixation cross during the
rest of the trial and the pause (inter-trial period). Modified from [139].
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Figure 2.9: Electrode montage for EEG and EMG. EEG was recorded from five monopolar
channels arranged in a Laplacian derivation around position Cz. Inter-electrode distance
was 2.5 cm. EMG was recorded from the tibialis anterior muscles from both legs using
two bipolar derivations. The ground electrode for EMG was located on the right hip (not
shown). Modified from [139].
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Artifact rejection

We computed a Laplacian filter [140] over Cz to improve the signal-to-noise ratio of the
EEG. Then, we rejected the EEG trials automatically: (i) if the kurtosis of each trial
exceeded the mean plus five times the standard deviation of the EEG data, or (ii) if the
amplitude of the signal exceeded 20µV. Additionally, for NoGo trials and MI runs, we
rejected trials if the EMG from either leg was larger than a threshold. For NoGo trials,
this threshold was equal to the mean plus three times the standard deviation of the EMG
at rest. For Go trials in the MI runs, the threshold was equal to the mean plus five times
the standard deviation of the EMG at rest, since imagined movements can increase the
tonus of the target muscles [141]; although MI-Go trials were not further analyzed. We
defined the EMG at rest period as a five second interval before the cue onset. Data sets
from two participants were discarded after artifact rejection due to excessive number of
movement artifacts in the EEG (ME-Go trials). One additional data set was discarded due
to large EMG activity during MI (Go trials). MI-NoGo trials were discarded if feedback,
i.e. moving legs of the avatar, occurred between five seconds before and six seconds after
the cue onset.

Beta rebound quantification

We used the inter-trial variance method [61] to quantify the amplitude and time course of
the beta rebound. Furthermore, visualization of ERD/ERS patterns was completed with
ERD/ERS maps, a time-frequency representation of significant ERD/ERS values [142].
Quantification and visualization were managed by the BioSig toolbox [143]. Data was
analyzed between 8 and 45 Hz in intervals of 2 Hz. Reference interval for the relative power
changes was between 0.5 and 1.5 s after beginning of the trial. We used the ERD/ERS
maps and the discriminability (Cohen’s kappa) between the beta rebound and the reference
interval to define a participant-specific frequency band.

To complete the quantification of the beta rebound we applied the inter-trial variance
method once again, after selection of the individual frequency band. The ME-Go trials were
re-triggered to the end of the movement to avoid attenuations due to inter-trial differences
in movement duration. Alignment of individual trials has been used previously for similar
reasons [103, 144]. Since NoGo trials and MI produced no EMG, we processed those trials
relative to the cue onset. Reference interval for the beta rebound quantification was 4.5 to
3.5 s before the end of the movement (ME-Go) or the cue onset (ME-NoGo and MI-NoGo).
After quantification of the beta rebound, the data of one participant was discarded due to
a very strong beta rebound (> 1000%).

Beta rebound characteristics

Sixteen participants showed a post-movement beta rebound following the brisk dorsiflexion
of both feet (ME-Go). Average reaction time was 367± 124 ms, and movement duration
was 1.6 s± 310 ms. Twelve out of sixteen participants showed a beta rebound after the ME-
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NoGo cue, whereas only seven participants showed a beta rebound after the MI-NoGo cue.
The beta rebound ranged between 13 and 37 Hz, with an average frequency band between
19 and 28 Hz (s.d. 4.7 Hz in both cases). The post-movement beta rebound (ME-Go)
reached an average amplitude of 322± 169% with an average peak latency of 0.9± 0.4 s,
relative to the end of the movement. During withholding of movement, the amplitude
decreased to 191± 99% and 152± 75%, for ME-NoGo and MI-NoGo respectively. In both
cases, latency was 1.0± 0.2 s relative to cue onset. Figure 2.10 presents the individual and
grand average ERD/ERS curves. Details about the participants’ average reaction time
and movement duration, as well as the number of artifact-free trials, individual frequency
bands, peak amplitude, and peak latency of the beta rebound are given in Table A.1 and
Table A.2 (Appedix A).

Statistical analyses

We compared the beta rebound between pairs of conditions: (i) ME-Go vs. ME-NoGo,
and (ii) ME-NoGo vs. MI-NoGo; considering only those participants with a significant
beta rebound in each condition, i.e. sixteen in ME-Go, twelve in ME-NoGo, and seven
in MI-NoGo. For the first analysis, ME-Go vs. ME-NoGo, we aligned the beta rebound
of individual participants to 100 ms before a certain ERS threshold. This threshold was
equal to 30%, i.e. the average ERS across participants at the end of the movement (EMG
triggered). For the second analysis, ME-NoGo vs. MI-NoGo, the alignment time point was
the cue onset. Bear in mind that in the second analysis, the two conditions refer to the
inhibition task only; hence, motor execution or imagery should not occur. The power from
the reference intervals between pairs of conditions were compared with a paired t-test, since
significant differences in the reference interval affect the beta rebound quantification. We
observed that the power of the reference interval of the first comparison was significantly
different (p < 0.05). To correct this, three participants with the largest differences in power
were removed from the analysis. After recomputing a t-test between the references of the
nine remaining participants, we found no significant difference. For the second comparison,
no significant differences in the power of the reference period were found in the original
sample of seven persons.

To improve the topographical information of our study, we analyzed the beta rebound
from all five EEG electrodes (see Figure 2.9). Once the trials were selected and aligned
(see above), we applied a common average reference to the EEG channels. Time course of
the beta rebound between conditions was compared with a three-way ANOVA with fac-
tors TASK×CHANNEL×TIME. The factor TASK indicates the motor task to perform,
i.e. ME or MI in Go or NoGo conditions. The factor CHANNEL had five levels, i.e.
the channel locations relative to Cz: anterior, lateral left, Cz, lateral right, and posterior.
The factor TIME refers to the time course of the ERD/ERS. The factor TIME consid-
ered only time points from t = 0 to 2.5 s, in steps of 500 ms, relative to the alignment
point of each analysis (see previous paragraph). The dependent variable was the average
beta ERD/ERS over a 300 ms window centered at each of the time points under analy-
sis. Pair-wise post-hoc tests (Bonferroni corrected) provided the confidence intervals for
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Figure 2.10: Time course of the Go/NoGo beta rebound. (a) Beta rebound after foot
movement execution (dorsiflexion). Individual curves were computed according to the
end of the movement of individual trials, and then re-aligned according to the average
movement duration for display only. (b) Beta rebound after/during withholding of overt
foot movement. (c) Beta rebound after/during withholding of covert foot movement (motor
imagery). Gray lines show the individual beta rebound of individual participants. A thick
black line presents the grand average curve and dashed black lines show the standard
deviation. Vertical lines indicate the cue onset (t = 2 s). All curves obtained from the
Laplacian derivation at Cz. Modified from [139].
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the TASK×CHANNEL×TIME interaction comparisons. Significance levels were corrected
(Greenhouse-Geisser) if sphericity violations occurred.

All factors and their interactions showed statistically significant differences. These
differences are summarized in the next sections. Please refer to Table A.3 and Table A.4
(Appendix A) for the exact mean and standard deviation values of the comparisons.

ME-Go vs. ME-NoGo

For the factor TASK, the beta ERS was stronger during ME-Go than during ME-NoGo.
For the factor CHANNEL, the ERS was strongest on channel Cz. For the factor TIME,
the ERS at time t = 0 s was weaker than all other time points, and the ERS at time
t = 0.5 s was stronger than at time t = 2.5 s. For the interaction TASK×CHANNEL, the
strongest ERS during ME-Go appeared on channel Cz. There were no significant differences
across channels during ME-NoGo. On channel Cz, the beta ERS was stronger during
ME-Go than during ME-NoGo. For the interaction TASK×TIME, the beta ERS during
ME-Go was stronger than during ME-NoGo between t = 1 and 2.5 s. The strongest ERS
during ME-NoGo occurred at t = 0.5 s. For the interaction CHANNEL×TIME, the beta
ERS was stronger on channel Cz than other channels between t = 0.5 and 2.5 s. For the
interaction TASK×CHANNEL×TIME, significant differences between ME-Go and ME-
NoGo occurred only on channel Cz, between t = 0.5 and 2.5 s.

ME-NoGo vs. MI-NoGo

For the factor TASK, the beta ERS was stronger during ME-NoGo than during MI-NoGo.
For the factor CHANNEL, the ERS was strongest on channel Cz. For the factor TIME, the
ERS was strongest at t = 1 s. The beta ERS at t = 1.5 s was stronger than at t = 0, 0.5, and
2.5 s. For the interaction TASK×CHANNEL, the beta ERS was stronger during ME-NoGo
than during MI-NoGo on all channels. The beta ERS on channel Cz was stronger than any
other channel during both ME-NoGo and MI-NoGo. For the interaction TASK×TIME,
the beta ERS was stronger at time t = 1 s than at any other time point, during both ME-
NoGo and MI-NoGo. The beta ERS during ME-NoGo was stronger than during MI-NoGo
between t = 1 and 2.5 s. For the interaction CHANNEL×TIME, the beta ERS on each
channel was strongest at t = 1 s. The beta ERS was stronger on channel Cz than in other
channels between t = 1 and 2.5 s. For the interaction TASK×CHANNEL×TIME, the beta
ERS during ME-NoGo was strongest on all channels at t = 1 s, with the maximum located
on channel Cz. The beta ERS was also strongest on channel Cz at t = 1.5 and 2 s. All
channels presented a strong beta ERS at t = 1.5 s, compared with time points t = 0, 0.5,
and 2.5 s. During MI-NoGo, the strongest beta ERS occurred on channel Cz at t = 1 s.
There were no differences across time in all other channels. The beta ERS during ME-
NoGo was stronger than during MI-NoGo at t = 1 s on all channels, except lateral right.
At t = 1.5 s, the beta ERS was stronger on channels lateral left and posterior. On channel
Cz, the ME-NoGo beta ERS was stronger than the MI-NoGo between t = 1 and 2 s.
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Figure 2.11: Execution and inhibition of foot movement. The post-movement beta rebound
is shown in light gray, and the beta rebound during withholding of movement is shown in
dark gray; vertical lines in the middle of each bar indicate the standard deviation. Thick
black lines indicate significant differences. Statistically significant differences (p < 0.001)
appear only in electrode position Cz. The beta rebound after the ME-Go cue (post-
movement) is stronger and lasts longer than the beta rebound following the ME-NoGo cues
(inhibition). There are no statistical significant differences between the two conditions in
any other electrode position and during the first second (electrode Cz). Modified from [139].
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Figure 2.12: Inhibition of overt and covert foot movement. The beta rebound during
withholding of overt foot movement is shown in light gray, and the beta rebound during
withholding of covert foot movement is shown in dark gray; vertical lines in the middle of
each bar indicate the standard deviation. Thick black lines indicate significant differences.
Statistically significant differences (p < 0.05) appear in all electrodes between 1 and 1.5 s
after the cue. In electrode position Cz, these differences continue until 2 s after the cue.
The beta rebound after the ME-NoGo cue (withholding of overt movement) is stronger,
more widespread, and lasts longer than the beta rebound following the MI-NoGo cues
(withholding of covert movement). Modified from [139].
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Findings

Our main findings show that the beta rebound is not only observed after motor execu-
tion [64, 66, 67, 76, 79–82, 85, 95, 103, 116–118], motor imagery [97, 124, 135, 136], action
observation [107, 129–131], and other kinds of somatosensory stimulation [88, 90, 93, 104–
106, 123–126], but also after withholding of overt and covert movements [120, 138, 139]. To
our knowledge, we have compared for the first time the post-movement beta rebound with
the beta rebound during withholding of foot dorsiflexion, and the beta rebound during
withholding of overt and covert foot movement. Our results suggest that the magnitude
of the beta rebound may depend on motor task preparation prior to cue onset. In other
words, the active inhibition represented by the beta rebound may be stronger when the
pre-activation of cortical areas is larger [65, 67, 121, 122].

The beta rebound following physical motor execution (ME-Go) has a larger magnitude
than the beta rebound during withholding of movement (ME-NoGo), but only after the
first second of recovery of the beta rhythm. To explain this observation, we assume that
the ME-Go and the ME-NoGo beta rebound share a common functional meaning, at least
within the first second, i.e. the active inhibition of neuronal networks activated during
movement execution (ME-Go) and/or movement preparation (ME-NoGo). Besides the
different processes that precede the beta rebound, there are other factors that should be
further considered, namely, the re-afferent input after ME-Go, and the contributions of
movement onset to the beta ERD/ERS [103].

The beta rebound during withholding of movement, i.e. in the NoGo condition, begins
after an early beta ERD (power decrease around 500 ms after cue onset) and reaches its
maximum around one second after cue onset. Although the responses to NoGo cues are
similar for motor execution and motor imagery, withholding of motor execution presents
a larger magnitude than withholding of motor imagery. This difference can be interpreted
as the result of a more intense and/or widespread inhibition of neuronal networks for
withholding the execution of physical movement.

No clear statement can be made about the origin of the midcentral beta rebound. In
addition to the reduced topographic information of our study, whole head MEG recordings
have shown evidence of an inter-participant variability of the sources of beta oscillations
along peri-Rolandic areas [145]. Furthermore, the contributions of the foot representation
area and the supplementary motor area can not be differentiated because of the close
proximity of both areas [137].



Chapter 3

Asynchronous brain switch

A brain switch is a two-state BCI that differentiates between a specific brain state and any
other mental state. In its asynchronous mode, the brain switch remains inactive during
periods of rest or non-intentional control, and reacts only when the user performs a spe-
cific mental task, i.e. intentional control. This means that the brain switch is continuously
available to the user, who decides freely when to activate the brain switch. Figure 3.1
illustrates the brain switch operation. In order to be practical, activations during non-
intentional control must not occur. First reports on asynchronous brain switch began to
appear around the year 2000, when several research groups presented system prototypes
for asynchronous operation. Since asynchronous BCIs dismiss the use of external cues,
exogenous BCIs were the first to support the continuous analysis of ongoing brain activity.
Most brain switch designs rely on the detection of motor related brain phenomena, i.e.
motor-related potentials [75, 146] and event-related (de)synchronization [8, 136]. Never-
theless, slow cortical potentials [147], steady state visual evoked potentials [148], and brain
hemodynamics [54, 149] have also been used.

Even though many research groups are working towards out of the lab applications of
asynchronous BCIs, most researchers target multi-class systems. However, it is not uncom-
mon that multi-class BCIs operate under a one vs. the rest scheme, which can be regarded
as a brain switch. Still, only a few groups work specifically on brain switch systems. Al-
though binary classification has been extensively analyzed and standardized methods for
performance evaluation exist, it is difficult to strictly compare the performance of different
brain switch approaches because false activations are considered differently, and the non-
intentional control is more prevalent that intentional control, contrary to the assumptions
of performance evaluation methods. Interestingly, current brain switch systems attempt
to provide near-zero false activations, prioritizing reliability over responsiveness.
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Figure 3.1: Brain switch operation. A brain switch identifies a specific brain state (X)
from any other arbitrary activity(T, Y, orZ). In the example, the brain switch produces
an impulse every time it detects brain state X, which is produced by the user at any time
and for any lapse of time.

3.1 Detection of motor-related potentials

The low frequency asynchronous switch design

The first report of an asynchronous brain switch introduced the low-frequency asyn-
chronous switch design (LF-ASD) [75]. The LF-ASD could identify the intention to perform
an index finger flexion, based on frequency components of the EEG between 1 and 4 Hz.
Such low frequency features correspond to the motor-related cortical potential (MRCP)
that precedes a movement [150, 151]. Offline performance of the original LF-ASD showed
a true positive rate1 (TPR, the fraction of correct activations) that varied between 0.38
and 0.81, whereas the false positive rate (FPR, the fraction of false activations) ranged be-
tween 0.003 and 0.12. Online evaluation led to a similarly low FPR for the detection of real
movements and the intention to perform imagined movements [152]. Since its introduc-
tion, the LF-ASD has reduced the number of false activations through several optimization
steps such as normalization and dimensionality reduction [153], inclusion of temporal fea-
tures [154], and parameter optimization [155]. The latest modifications to the LF-ASD
include the addition of two supporting brain phenomena (modulations of the mu and beta
rhythms) and a classifier ensemble [156, 157].

Beyond the LF-ASD, the Birch-Ward’s group investigates the feasibility of a two-state
BCI with different mental strategies [158, 159] (rest, multiplication, letter composing, 3D
object rotation, mental arithmetic, sentence visualization, and motor imagery). These
mental strategies are compared one vs. the rest, and the BCI is tuned to obtain a FPR
equal zero and the highest possible TPR. Offline results from this approach show that the
best mental strategies lead to an average TPR of 0.67 while maintaining a FPR equal to
zero [159].

1Definitions of true positive rate and false positive rate are given in Section 3.4.
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Brain switch designs based on motor-related potentials

The strategy from the original LF-ASD is similar to template matching. This idea forms
the basis of several brain switch designs. Ongoing EEG is compared to a template of
the MRCP by means of the cross-correlation, and the brain switch generates a detection
event if the comparison exceeds a threshold. In the LF-ASD, the 1 to 4 Hz filter serves as
template for the MRCP.

Detection of motor related potentials based on template matching was presented by
Levine et al. [146] (see Figure 3.2(a)). Analyzing ECoG, the authors demonstrated that
using this scheme it was possible to obtain an average TPR of 0.94 and FPR of 0.20. In an
analysis of the original LF-ASD, Yom-Tov and Inbar [160] demonstrated the similarity be-
tween the LF-ASD and the template matching approach (see Figure 3.2(b)). Additionally,
the authors improved the LF-ASD performance by including a feature extraction scheme
that allows for variations of the MRCP template and evaluating different classifiers.
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Fig. 2. Cross-correlation of the average template with the continuous ECoG. The sum of a point-by-point multiplication (the cross-correlation value) between the
template and the ECoG is calculated for successive time delays as the averaged template is shifted to the right along the time axis. The normalized cross-correlation
value is plotted as a function of delay time to create the cross-correlogram. The asterisks mark the trigger points for each repetition and the shaded area shows the
interval in which a detection is counted as a hit.

Fig. 3. Cortical mapping (interhemispheric areas not shown).

equal to 50 were found for 15 of 17 subjects. HF-differences
greater than 75 occurred on a total of 19 ECoG recordings, while
HF-differences greater than or equal to 50 occurred on a total of
119 ECoG recordings. Of the subjects with the lowest HF-dif-
ferences (Table I), GB performed only a single action while the
electrode locations for VC, DT, DB, andMDwere not very well
suited for recording movement-related ERP’s. HF-differences
greater than 75 were found for multiple actions with a number
of subjects, usually from different electrode locations. The best
subject, CB, had HF-differences of 96, 86, and 83 for middle
finger extension, lip movement, and tongue protrusion, respec-
tively.
The general cortical distributions of ECoG recordings with

HF-differences greater than or equal to 50 are shown in Table II.
The cortical areas yielding the highest percentage of ECoG’s
with an HF-difference greater than or equal to 50 were the sup-
plementary motor area, the postcentral gyrus and the precen-
tral gyrus. The three largest HF-differences (96 for subject TS,
tongue protrusion, 96 for CB, middle finger extension, and 93
for DV, tongue protrusion) were recorded from the middle/in-
ferior temporal gyri, parietal lobe, and postcentral gyrus areas
respectively.
Accurate determination of the ERP onset times was difficult

because of low signal-to-noise ratios. Manual classification of
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(a) MRCP template matching (modified from [146]).

width of the radial basis was varied to produce desired true- 
detection ratios. The kernel type was chosen after it was found to 
give superior performance over other (linear and polynomial) 
kernels. We should note that the main drawback of the SVM 
classifier is that it is difficult to find the training parameters that 
give the desired performance (true and false positive rates) for 
the detector. The training times for the SVM classifier were in 
the order of  a few seconds. 

A movement was marked as detected (true detection) if the 
hybrid detector identified movement 0.5 s before or after the 
actual movement, as shown by the micro-switch state. This 
measure of  success is similar to the one used in HUGGINS et al. 
(1996), although, in that study, a less constrained interval of  1 s 
before or after the trial was used. it is necessary to identify the 
movement in a time interval rather than a single time instant, 
because latency changes are known to occur in MRPs (LANGE 
and INBAR, 1999). Multiple detections in the range of 0.5 s 
before or after a true detection were counted as one true 
detection. Detections that occurred outside this window in 
time were considered false detections. 

3 Results 
Fig. 4 shows the averaged MRP from subject 4, computed by 

averaging time-locked samples of  the left index finger move- 
ments from 1.5 s before the micro-switch was pressed to 1 s 
afterwards. This averaged MRP is shown in comparison with a 
bandpass finite impulse response (FIR) filter with a lower- 
frequency cutoff of  1 Hz and a high-frequency cutoff of  4 Hz. 
The resemblance between the filter and the averaged MRP 
is evident, and it is for this reason that the first block of the 
LFASD, the BPF, performs a similar function to that of  
convoluting the time-reversed average MRP with the signal, as 
in the first stage of the matched filter. However, as the LFASD 
uses the same BPF for all users of  the system, it is not as good a 
match to the averaged MRP of other users, thus causing a 
degradation in its performance. 

Fig. 5 shows the average relationship between the probability 
of  true positives (true detections) and the probability of  false 
positives (false detections) computed for the five subjects, using 
the hybrid detector working on one EEG channel and an SVM 
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classifier. Different points on the graph were obtained by varying 
the parameters of the classifier. This combination of data, feature 
set and classifier gave the best performance, as described below. 
This type of graph, known as a receiver operating characteristic 
curve (ROCC) is useful for comparing this detector with other 
detectors, as in MASON and BIRCH (2000). The area under the 
ROCC is often used as a measure of  the system's overall 
performance. Fig. 6 shows the average areas under the ROCC 
for all five subjects, using the two feature extraction methods and 
the three classifiers. 

it is interesting to note that the area under the ROCC decreases 
when more channels are used, when the level and LVQ 
classifiers are used. This is somewhat counter-intuitive, 
because it is expected that more information would increase 
the performance of the classifier. The most likely cause for this 
result is that additional channels with a lower SNR add noise to 
the examples, which confuses these simple classifiers but not the 
SVM classifier. 

Comparison of the performance of the hybrid detector with 
that of  the LFASD shows, in Fig. 6, that improved perfor- 
mance is gained by using the hybrid detector. This result is 
statistically significant (ANOVA, p<0.0001). The best clas- 
sifier (the SVM classifier) operating on the hybrid features 
gives an average area under the ROCC of 87.8%, compared 
with 70.1% obtained using the SVM classifier and the 
LFASD features. Therefore the improvement in performance 
gained by using the hybrid detector is approximately 25%. it 
should be noted that the average area under the LFASD 
ROCC is smaller than that reported in MASON and BIRCH 
(2000). This can be attributed to differences in the experi- 
mental paradigm, recording sites and the error estimation 
techniques. The standard deviation of the area under the 
ROCC was less than 10% in all cases. 

Finally, the detector was operated on the data from subject 2 
using the averaged MRP and the parameters obtained from 
subject 1. This was done to investigate how sensitive the detector 
is to changes in MRP. it was found that the area under the 
resulting ROCC was reduced by only 0.1% compared with the 
area under the ROCC obtained using the correct parameters 
(i.e. those obtained from subject 2). This degradation in 
performance, caused by the use of  sub-optimum parameters, is 
small, suggesting that the detector is not highly sensitive to 
variation in its parameters. Thus it may be possible to set the 
detector with a set of  initial parameters before fine-tuning them 
to the specific user. 

4 Discussion 
The first step in realising a BCI that operates using MRPs is a 

detector capable of  identifying the MRPs in an on-going EEG. 
MASON and BIRCH (2000) suggested such a detector, in this 
paper, we have presented an approach that is a composite 
between this detector and the matched filter. 

The proposed hybrid detector achieves better overall perfor- 
mance than the LFASD, as measured by three parameters: the 
number of  electrodes, which should, ideally, be as small as 
possible so as to improve ease of  use; the detector's 
performance; and the rate of  detection. The number of EEG 
channels needed for acquiring the data is reduced from six 
channels acquired using nine electrodes to between one and 
four channels recorded using two-five electrodes. The perfor- 
mance, as measured by the average area under the ROCC, is 
increased by 25% when only one EEG channel is used. Finally, 
the hybrid detector works at arate of  25 decisions s 1 (a decision 
is made for every sample of  the down-sampled signal), as 
opposed to only 16 decisions s 1 in the LFASD, providing the 
user with greater sensitivity and precision. 
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Figure 3.2: Template matching for detection of motor-related potentials. (a) Cross-
correlation of ongoing ECoG and an MRCP template. (b) Similarity between the MRCP
template and the low-pass filter from the LF-ASD.

A prototype system presented by Boye et al. [161] introduced an optimal spatial filtering
algorithm to maximize the signal-to-noise ratio of the MRCP, and principal component
analysis for dimensionality reduction [161]. The performance of the system achieved a
TPR of 0.84 and an FPR of 0.01, evaluated offline with a single participant. Niazi et al.
[162] developed this idea into a system for detection of MRCPs with an optimal spatial filter
and template matching for detection. The authors demonstrated the online performance
of their brain switch with a group of healthy persons performing overt and covert foot
movements, and stroke patients attempting to perform foot movements. All experiments
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were self-paced, without any external cues. For healthy persons the average TPR was 0.83
for motor execution (n = 15) and 0.64 for motor imagery (n = 10). For stroke patients it
was 0.55 for attempted movements (n = 5). Instead of reporting FPR values, the authors
counted the number of false activations (false positives) in a period of rest (non-intentional
control) five minutes. This brain switch generated 1.38, 3.16, and 3.38 FP per minute,
for overt and covert foot movement in healthy persons and attempted foot movements in
stroke patients, respectively.

Instead of relying on template matching, the brain switch described by Hasan and Gan
[163] uses a Gaussian mixture model to differentiate the non-intentional control period
from motor onset, motor execution (wrist extension), and a post-movement period. The
offline performance of this approach was reported by counting true and false activations
from the intentional control epochs of a cue-paced experiment. The average TPR can be
estimated to 0.89 and the FPR to 0.10.

3.2 Detection of event-related (de)synchronization

The asynchronous Graz BCI

Although most work from the Graz group is not defined as a brain switch, some of it
presents a switch-like behavior. Early work focused on offline ERD detection from contin-
uous ECoG [164], and simulations of an asynchronous BCI [165]. Graimann et al. [164]
compared the template matching scheme with the detection of ERD from the ongoing
ECoG (Figure 3.3). Across participants and four motor tasks, the average TPR was 0.97
and the FPR was 0.22 for the detection of ERD, in comparison with an average TPR of
0.93 and FPR of 0.35 for the template matching scheme. This findings highlighted the
signal-to-noise ratio differences between ERD and MRCP. Townsend et al. [165] evaluated
the inclusion of post-processing parameters (a threshold, a dwell time, and a refractory
period) to transform a continuous BCI classification into control events (Figure 3.4).

Pfurtscheller et al. [136], presented an asynchronous BCI for online control of functional
electrical stimulation (FES) for grasp restoration in a tetraplegic person. Later, Müller-
Putz et al. [8] reported on the online control of an implanted neuroprosthesis (Freehand
system [166]) in another tetraplegic person. Both BCI users were able to switch between
the phases of a grasp sequence by imagining foot or hand movements. The methodology
of the Graz group consisted on selecting the most discriminative features between two
motor imagery tasks (cue-paced training), and training a linear classifier (Fisher’s linear
discriminant analysis) to distinguish between the two mental states. By adding a threshold,
one of these two mental strategies can be identified against other arbitrary states or EEG
at rest [167] (see Figure 3.5). This well established methodology has been used for online
control of a virtual keyboard [168] and navigation of virtual environments [169, 170].

Regarding brain switch development, Leeb et al. [169] focused on the use of the asyn-
chronous BCI to switch between stand and move phases, while exploring a virtual envi-
ronment along a predefined path. The performance of the BCI was estimated to TPR
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Fig. 2. Principle of the ERDS method. (a) During the training process, the
training data is divided into action periods (labeled with 1) and resting periods
(labeled with 0) by means of a GA. (b) The weights of the LDA are the
result of the training process and are used to transform the AAR features of the
test data into a 1-D feature signal.

E. Feature Classification
In order to directly compare results from the proposed

ERDS method with those from the CCTM method [3], the
same threshold detector (THD) used for the CCTM method
was applied. In addition, the test data for the classification was
selected in a similar way to that previously used for CCTM [5],
[6]: each ECoG channel was divided into two parts. The first
half of the data was used as training set and the second half of
the data was used as test set.
In order to apply the threshold detector and its experimentally

determined threshold, the six-dimensional feature signal (the es-
timated AAR parameters) had to be transformed into a 1-D fea-
ture signal (Fig. 2). Several techniques such as LDA, principal
component analysis, and projection pursuit [9] are available for
dimensionality reduction. In contrast to unsupervised dimen-
sionality reduction techniques like principle component anal-
ysis, LDA is based on the assumption that it is known to which
class each ECoG sample point belongs; i.e. each ECoG sample
used to train the LDA has to be labeled with the true class. For
the two-class case, where the dimensionality is reduced to one,
the higher dimensional data is projected onto a line such that the
projected data are well separated.
An important point when applying LDA to reduce the data

dimension is the correct assignment of the ECoG samples to
classes. One approach to labeling the ECoG samples is to as-
sign all samples that are not within a task related period (resting
period) as one class (e.g. class 0) and the samples that are within
a task related period (action period) as the other class (e.g. class
1). For the experimental paradigm based on actual executed
movements, a trigger signal is available. Hence, the time pe-
riod of the class representing each action period can be approx-
imately determined by the trigger. The optimal start and end
point of each period, however, are not so easily determined.
Ideally, they should correspond to the start and the end of the
event-related desynchronization. ERD/ERSmaps could be used
to get an overview of the onset and ending of the ERD/ERS pat-
terns (Fig. 5). However, they reflect only the averaged activity
over all trials, and furthermore, the on- and offset of ERD/ERS
of different frequency bands are, in general, different as well.
In order to overcome this problem, a genetic algorithm (GA)

was utilized. GAs are optimization algorithms based on the me-
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chanics of natural selection and natural genetics. They typically
maintain a population of “individuals” that are samples of the
given search space. Each individual is evaluated based on its fit-
ness (cost function). New individuals are produced by selecting
the best individuals to produce a new generation of individuals
that retain many of the attributes of their “parents.” This leads
to a new population with an improved fitness with respect to the
given optimization task [10].
The optimization task of the GA in this study was to find

the optimal period around the triggers which represents the task
related activity. That is, the GA had to find windows of fixed
length around or near the triggers in which all samples were
labeled as class 1 (with all samples outside these windows la-
beled as class 0). The GA was programmed to find windows in
the range 1.25 s before and 2 s after the triggers for each training
set. Additionally, the lengths of thewindows could vary between
0.25 and 2.5 s ( Fig.3). With these ranges, all possible time pe-
riods where desynchronization could take place were covered.
A standard GAwith rank selection and elitism was used [10].

The basic structure is shown in Fig. 4. The initial population size
was 70 and subsequent populations were limited to 40 individ-
uals. The start of the window and the window length were coded
in two binary strings. For the creation of the next generation, a
two-point crossover and a mutation rate of 0.02 were used. The
fitness of each individual was evaluated by the result of classi-
fication on the training set. Individuals with the lowest classifi-
cation errors were used to form new solutions, i.e. to create the
new individuals for the next generation by crossover.
It is important to note that this optimization process was only

applied to the training set (first half of the data). Furthermore,
only the ECoG channel which showed the most prominent ERD
(determined by visual inspection of the ERD/ERS maps) was
subjected to optimization by the GA. The result of the training
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Fig. 2. Principle of the ERDS method. (a) During the training process, the
training data is divided into action periods (labeled with 1) and resting periods
(labeled with 0) by means of a GA. (b) The weights of the LDA are the
result of the training process and are used to transform the AAR features of the
test data into a 1-D feature signal.
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Fig. 5. ERD/ERS maps and one exemplary ERD/ERS curve of the best
performing channels of the middle finger movement task. The vertical dotted
lines indicate trigger occurrence. The ERD/ERS values are significant with
a confidence of . The ERD curves are plotted together with 95%
confidence intervals (dotted lines).

as well. The ERD/ERS curves are plotted as solid lines with the
corresponding 5%-confidence limits shown as dotted lines. All
maps, including the map for C18, show prominent wideband
desynchronization (ERD) around the trigger point followed by
a large synchronization (ERS).

IV. DISCUSSION AND CONCLUSION
The results presented in this study show that the proposed

method can classify movement related desynchronization and
synchronization patterns in the ongoing ECoG with very good
accuracy. Classification results of close to perfect detection
could be found. The best performing channels of subject C16
during middle finger movement were found in the lateral part
of the left parietal cortex. The best channels of C17 were also
located over the parietal cortex, although closer to the primary
sensorimotor area. In general, the best classification results and
most significant ERD/ERS changes were not found at electrode
positions over or very close to the primary sensorimotor areas,
but more posterior to the central sulcus located over the parietal
cortex. This finding is unexpected and needs further research. It
has to be noted, however, that in a similar and comparable study
on patients with subdural electrode grids and hand movement
the ERD displayed in some subjects a shift to the more posterior
electrode positions [11]. A similar result concerning ERPs was
also reported in Levine et al. [3].
Although subject C18 showed channels with prominent ERD

for all four different movement tasks, only the task tongue pro-
trusion could be classified with an HF-difference higher than
90%. In order to find an explanation for this, the ECoG time

Fig. 6. Some trials of the dataset C18/FIN channel 24. The vertical dotted line
indicates the trigger time point. The trials do not show only desynchronization
around the trigger, but also desynchronization between the triggers.

course was examined. Fig. 6 depicts ECoG for some trials for
subject C18 performing finger extension with the ECoG aligned
at the trigger point (vertical dotted line). The ECoG signal shows
a classical arc-shaped mu rhythm interrupted by desynchroniza-
tion during the movements (around the trigger points), but also
between the triggers where no movement occurred. The reason
for this “unstable” behavior of the ECoG signal is not really
clear. A video recording that was made during the tasks of sub-
ject C18 did not reveal any additional movements of the subject
in the idle periods (time between triggers). A possible expla-
nation could be that C18 performed unintended imagination of
movement between the triggers, which could have caused these
power decreases. It is well known that the mere imagination of a
movement can cause a power decrease in the ongoing brain sig-
nals [1]. Of course, this explanation can only be a supposition,
but whatever the actual reason was, the ERDS method could
not distinguish between the desynchronizations during move-
ments and those during the idle periods. Each desynchronization
within the idle periods caused an increase of the false positives
and thus a decrease of the HF-difference performance.
This work is not intended to provide a detailed comparison

between the CCTM method and the ERDS method. Due to the
limited number of subjects used for this study a statistically
significant comparison is not possible. The primary objective
in this offline evaluation of the classification of event-related
desynchronization patterns was to demonstrate that this method
can yield similar results to the CCTM method. Table I shows
that both methods produce classification performances of more
than 90%. It is interesting to note, however, that CCTM and
ERDS do not perform best on the same channels. This can be
explained by the fact that ERP and ERD/ERS represent dif-
ferent bioelectrical reactivity patterns. There is a great deal of
evidence that ERP and ERD/ERS represent different responses
for neuronal networks. So, for example, visual stimulation
results in a VEP with the largest amplitudes close to the vertex
and the occipital pole [13], whereas the corresponding ERD is
clearly located over the posterior area [14]. In this relationship,
it is of interest, however, that the VEP amplitude and the ERD
magnitude can display a positive correlation, with a larger VEP
during a more intensive alpha desynchronization [16]. Another
example of the dissociation of ERP and ERD/ERS is found
during self-paced unilateral finger movement. In this case,
the ERP starts with a bilaterally symmetrical Bereitschafts
potential over the midline about 1 s prior to movement and
becomes lateralized with the motor potential during movement
onset [15]. In contrast, the ERD starts over the contralateral
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Figure 3.3: ERD detection from ongoing ECoG. (a) An amplitude decrease is observed
around the button press. (b) Event-related (de)synchronization of ECoG during button
press (dotted lines represent the confidence intervals α = 0.05). Modified from [164].
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FN, since an FN is an event that went undetected by the detector.
Since an ROC curve provides a measure of sensitivity versus
selectivity, the inability to measure false negatives is clearly
problematic, since it prevents a proper measure of selectivity
from being evaluated.

It also becomes necessary to count multiple detections during
an event as a single TP and, similarly, it becomes necessary to
count multiple detections during a nonevent as a single FP for a
valid ROC analysis. The reason for this is that if instead each de-
tection was counted as a separate event, the illusion of many suc-
cessful detections where in fact only one event occurred would
skew the results. Similarly a single detection during a nonevent
means that the entire nonevent was incorrectly recognized as
a nonevent, and additional detections during such a period do
not mean that additional nonevents occurred. Therefore, only
one incorrect detection should be recorded. This results in a
pass/fail approach, since even a single detection at any point
in time during a nonevent results in the detector being declared
incorrect for the entire time period of the nonevent.

When using a ROC curve as an evaluation tool, the area under
the curve determines the performance of the detector. The cri-
teria described earlier is far more stringent under this approach,
than in the sample-by-sample approach and, therefore, the re-
sults may appear correspondingly poorer. Bear in mind that the
same detector is evaluated in both cases and it is only the test
criteria that has changed.

A modification of the event-by-event analysis is to introduce
a “dwell time” and “refractory period.” The first of these is the
amount of time that the signal must cross the threshold to be
considered a valid detection. Various dwell times were experi-
mented with and from these results, 0.25 s was chosen for fur-
ther analysis. The second parameter, the refractory period, is a
period where the signal (once the “dwell time” has been met)
will be ignored, whether above or below the threshold. Various
refractory periods were tested, and from these values of 1.0,
1.25, and 1.35 s were analyzed further here. Fig. 4 should help
to explain the use of dwell time and refractory periods. This
method of processing the original signal will convert an output
signal that is sustained above the threshold for some time into a
train of spikes with a period equal to the sum of the dwell and
refractory periods. If the original signal behaves ideally, how-
ever, the result of processing should produce a single spike for
each event and no spikes for nonevents.

E. TF Differences

ThepreviousmethodofanalysiswasbasedonROCcurvesand,
therefore, required that multiple detections during a nonevent be
counted as a single FP. It may not always be appropriate to do
this because the period of a nonevent, or idle period, may be sub-
stantially longer than periods of imagery. It therefore becomes
verysignificanthowmanyfalsedetections(i.e.,FPs)occurduring
these time periods. To treat these as separate events prohibits a
valid ROC analysis from being preformed. Therefore, a different
method of analysis must be resorted to if this issue is significant.

To deal with such situations, we may use a system of true and
FPs. Here, all detections during a nonevent are counted as FPs.
A TP, however, is defined to be one or any number of detections
during a particular event. Therefore, we will only count at most

Fig. 4. Processing steps used to incorporate the dwell and refractory periods.
(a) The original Graz-BCI output is compared to the threshold for the imagery
in question. (b) The initial processing step consists of simple threshold detection
(i). (c) The output is suppressed if the dwell time is not met or for the refractory
period (iii) once dwell time is met (ii). (d) The output of step (c) is then converted
into single spikes located where the dwell was met. Note: After the refractory
period, the cycle may be repeated. This could potentially result in trains of spikes
if the original signal remains above the threshold for some time.

one TP per event. The total number of incorrect detections or
FPs plus the total number of events then gives us a total number
of “tests.” That is, the total number of tests is then the sum of the
number of events and FPs. Note that we do not count the number
of nonevents in this system. As a result, the number of true and
false positives is independent of the number of events and non-
events. This is in contrast to the methods discussed earlier where
there was a relationship between all of these parameters that
also involved true and false negatives. Under the scheme de-
scribed here, care must be taken to recognize this subtle distinc-
tion. Much less subtle is the fact that there is no way to record or
define a TN using the measure described here. For this reason,
some caution should be exercised when resorting to this method,
however when long resting periods make it unreasonable to de-
clare the output of the detector invalid for the entire period due
to a single false alarm, it would seem justifiable to adopt this ap-
proach as an alternative. Note that in this method of evaluation,
the true rate corresponds precisely to the sensitivity measure as
calculated in the event-by-event method, however the other pa-
rameter (false rate) differs from the selectivity measure. These
distinctions prevent the parameters discussed here from being
used to generate ROC curves. However, we may use these re-
sults to produce a TF difference, which is defined to be the dif-
ference in the ratio of TPs to events and FPs to tests. Ideally,
the TF difference will be 100% as a result of one or more de-
tections for each event and no detections during a nonevent. For
a detection system with random behavior, these two parameters
will both be 50% giving a TF difference of zero. The TF differ-
ence (TF%) is defined by the following:

TF
T
E

F
E F

(3)

where T, F, E are the number of TPs, FPs, and events, respec-
tively. The minuend describes the TP ratio, the subtrahend the
FP ratio.

The same range of thresholds were tested as before using a
dwell time of 0.25 s and refractory times of 1.0, 1.25, and 1.35 s.
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Figure 3.4: Post-processing parameters for asynchronous BCIs. (A) The classifier output
is compared to a threshold (a). To generate an event, the classifier output must exceed the
threshold for a dwell time (b). (C) After this, the classifier output is overridden during a
refractory period (c). (D) The result is an impulse train that correspond to control events.
Modified from [165].
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Figure 4 ERD/ERS map of channel Cz during imagination of a
foot movement in a control session (80 trials) from December
2001.
The vertical bold line indicates the appearance of the cue.
Marked areas show a strong ERS signal (band power increase)
around 17 Hz and its second harmonic.

Figure 5 Features and classification output of patient A.
(A) LDA output for a training run. (B) Average LDA outputs around grasping. (C) Corresponding logarithmic band power features (a
and b for C3 and Cz) to B. (D) Logarithmic b-band power for Cz during one grasp sequence: hand opens, fingers close (around a
drinking glass), hand opens again, and stimulation stops, so that corresponding muscles relax.

the same time, the distance between the different clus-
ters is maximized to enhance discrimination. The LDA
output is sample distance required to classify the deci-
sion hyper-plane that best separates the clusters w4x. The
LDA weights were calculated for different time points
starting at time zero to the end of the trial in steps of 0.5
or 0.25 s. Using 10=10 cross-validation, the classifica-
tion accuracy was estimated without over fitting. This
procedure permuted the data set randomly and divided
it into 10 equally sized partitions. Nine partitions were
used for training and the 10th was used for testing. This
resulted in 10 different error rates. To reach a more gen-
eral estimation of the accuracy, this procedure was
repeated 10 times. The weight vector of the time point
with the best accuracy was then used for further
experiments.

BCI set-up procedures

As a first step, both patients participated in standard
cue-guided or synchronous BCI training to identify reac-
tive frequency bands during imagination of hand or foot
movements w15x. This means that cues appearing ran-
domly on a screen indicated the imagery task to be per-
formed by the patients. A minimum of 160 trials were
used to identify suitable frequency bands with the help
of ERD/ERS maps (e.g., for patient A during imagination
of foot movement, see Figure 4). Logarithmic band power
features were then calculated from the reactive bands
and used for classifier set-up. The classifier with maxi-
mum accuracy was then used for further training. The

different training steps for set-up of an asynchronous
brain switch are described in more detail in the next
sections.

Patient A In a very intensive training period over more
than 4 months, patient A learned to control the cue-
based BCI. The training started with left hand vs. right
hand imaginations. Because of insufficient accuracy, this
MI task was changed to right/left hand vs. idling or right
hand vs. left foot, and finally to right hand and foot motor
imagination. The patient’s final performance was be-
tween 90% and 100% w14x. An example of 120 s of a
training run is shown in Figure 5A. The cue appeared with
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approaches into the clinical setting is a problem. The main
goal of this work is to demonstrate that it is possible to train a
patient over a comparatively short time period to gain control
over aBCI system, thus enabling control of a neuroprosthesis.
The patient enrolled in the experiment is a 42-year-old

male (H.K.) who sustained a traumatic spinal cord injury
(SCI) in 1998. He has a complete motor and sensory lesion
(ASIA A) below C5. His volitional muscle activation is re-
stricted to both shoulders and elbows (flexion). At the Or-
thopaedic University Hospital II of Heidelberg he started a
preoperative muscle conditioning program in January 2000.
Half a year later the Freehand® system was implanted in
his right hand and arm, which was his dominant hand be-
fore the injury. More details about the Freehand® system
can be found elsewhere [6,11,17]. Since completion of the
rehabilitation program, he has been able to use the system
autonomously in the execution of many activities of daily
living.

The Freehand® system provides two grasp patterns, usu-
ally a lateral and palmar grasp, and is controlled in a cor-
responding manner by an analog two-axis sensor fixed at
the contralateral shoulder. For this case study, the lateral
grasp was chosen. It allows the user to fix flat objects (e.g. a
spoon) between the flexed fingers and the closing thumb (see
Fig. 1A and 3C).
The lateral grasp pattern was divided into three grasp

phases, which were restricted to the following order:

(i) finger and thumb extension (hand opens): hand releases
object;

(ii) finger flexion and thumb extension (fingers close): hand
can now be positioned within grasp of an object;

(iii) finger and thumb flexion (thumb moves against closed
fingers): target object is grasped between the closed fin-
gers and the thumb;

(iv) next step (i).

Fig. 1. (A) Time course of the control voltage and the corresponding grasp phases. During the switch from one phase to another the voltage changes in form of
a ramp. (B) Training accuracy of 25 Basket runs during 2 days. The top diagram shows the classification rates (Basket hits in percentages) per run. The accuracy
of Basket runs after the specified falling time (second 5) is displayed (solid lines, circles). During the first day, the regression line shows an increase over all
runs. During the second day, a slight decrease of the accuracy can be shown. The four runs marked through solid circles were used for classifier calculation. This
classifier was used with the Freehand® system on day 3. The bottom diagram shows the corresponding time points of classification. Fixed Basket classification
time was at second 5 (solid lines, circles). Time points on the dotted line (squares) represent best accuracies. During the first day the patient learned to reach
his best rates around the Basket classification time point (second 5). During day 2 accuracies decreased whereas their time points were around second 5.

open
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his right hand and arm, which was his dominant hand be-
fore the injury. More details about the Freehand® system
can be found elsewhere [6,11,17]. Since completion of the
rehabilitation program, he has been able to use the system
autonomously in the execution of many activities of daily
living.

The Freehand® system provides two grasp patterns, usu-
ally a lateral and palmar grasp, and is controlled in a cor-
responding manner by an analog two-axis sensor fixed at
the contralateral shoulder. For this case study, the lateral
grasp was chosen. It allows the user to fix flat objects (e.g. a
spoon) between the flexed fingers and the closing thumb (see
Fig. 1A and 3C).
The lateral grasp pattern was divided into three grasp

phases, which were restricted to the following order:

(i) finger and thumb extension (hand opens): hand releases
object;

(ii) finger flexion and thumb extension (fingers close): hand
can now be positioned within grasp of an object;

(iii) finger and thumb flexion (thumb moves against closed
fingers): target object is grasped between the closed fin-
gers and the thumb;

(iv) next step (i).

Fig. 1. (A) Time course of the control voltage and the corresponding grasp phases. During the switch from one phase to another the voltage changes in form of
a ramp. (B) Training accuracy of 25 Basket runs during 2 days. The top diagram shows the classification rates (Basket hits in percentages) per run. The accuracy
of Basket runs after the specified falling time (second 5) is displayed (solid lines, circles). During the first day, the regression line shows an increase over all
runs. During the second day, a slight decrease of the accuracy can be shown. The four runs marked through solid circles were used for classifier calculation. This
classifier was used with the Freehand® system on day 3. The bottom diagram shows the corresponding time points of classification. Fixed Basket classification
time was at second 5 (solid lines, circles). Time points on the dotted line (squares) represent best accuracies. During the first day the patient learned to reach
his best rates around the Basket classification time point (second 5). During day 2 accuracies decreased whereas their time points were around second 5.

open

Figure 3.5: Neuroprosthesis control using a two-state BCI. Tetraplegic persons control a
BCI to switch a FES neruoprotsthesis to open/close their own hands. Modified from [167].
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0.23 and FPR of 0.04, where the special focus was the low FPR achieved online. Latest
developments on the Graz asynchronous BCI include the introduction of pulse width mod-
ulation of the brain switch [171], to extend the number of commands that are available to
the user with a two-state BCI, and the combination of a brain switch with other assistive
technologies [29].

Other ERD/ERS-based brain switch

Other research groups have also developed BCIs based on ERD and ERS, but only a few
have targeted the brain switch. Lauer et al. [172] presented an online system that allowed
the users (two healthy persons and one tetraplegic person) to open/close a neuroprosthesis,
by modulating the band power of a frontal beta rhythm (25 to 28 Hz). After 20 training
sessions, the accuracy of the system was above 90 % in all cases. Heasman et al. [173]
showed an online system that relied on the occipital alpha rhythm (8 to 13 Hz) of the users
for the same task. TPR was around 0.70 and FPR below 0.10, for one tetraplegic user and
one healthy person.

Relying on modulations of the mu and beta rhythms (8 to 30 Hz), Bai et al. [174] re-
ported on the online prediction of movement from the EEG. The authors trained a BCI
to differentiate between rest periods and preparation of movements of the right wrist of
healthy participants. After a session of about 40 movements, the authors modeled the dif-
ferences between these two phases. Then, in a validation run, a threshold was added to the
classifier output to minimize the FPR (close to zero). In a final evaluation run, the system
obtained a TPR close to 0.40, but the FPR was not reported. Previously, Bai’s group in-
vestigated different combinations of features and classifiers for such a BCI [175]. Also from
Bai’s group, Qian et al. [176] recently presented a new paradigm for an asynchronous brain
switch. The novel paradigm goes against the brain switch convention and provides the user
with an external periodic cue, which the user is free to use or to ignore. If the user desires
to activate the brain switch, he or she performs a mental task (imagination of thumb-index
pinch) after every cue. The user must keep performing the mental task (synchronously)
until the system provides a detection. The BCI averages the ERD/ERS from previous
“epochs” to detect the user’s intention. This strategy helps to improve the signal-to-noise
ratio of the ERD/ERS features and to reduce false activations, at the expense of limiting
the responsiveness of the system. Online evaluation of this system achieved an average
FPR of 0.008, with an average response time of 37 s.

3.3 Detection of alternative brain phenomena

Slow cortical potentials – the thought translation device

Kaiser et al. [147] showed the self-paced initiation of the thought translation device (TTD),
a spelling application for BCIs based on slow cortical potentials [4, 177]. In the original
TTD, a user is trained to produce a negative or positive shift in the ongoing EEG. Contin-
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uous feedback informs the user on the development of the slow cortical potential and, at
the end of each trial, the TTD informs the user on the outcome. The work of Kaiser et al.
[147] consisted on extending the TTD to include an on/off function. To volitionally switch
on/off the spelling application, users produce a predefined sequence of ten potential shifts
without continuous feedback. Two locked-in persons learned to self-initiate the spelling
application following this control strategy. Performance from both users was above 84 %
classification accuracy after several sessions, including user training and evaluation of the
system. Two major points need to be noticed: (i) external cues about the start/end of
the trial are still included, and (ii) a long sequence of commands is required. Although it
is not a brain switch in the strict sense, it is worth considering this device and strategy
because of its novelty.

Steady state visual evoked potentials

Steady state visual evoked potentials (SSVEP) provide one of the fastest information trans-
fer rate among existing BCIs, but require focused attention on external stimuli and un-
intended activations often occur. Cheng et al. [148] developed a SSVEP-based BCI that
operated in a self-paced mode, and included an on/off button between the BCI commands.
The on/off button operated as a main switch for the system, enabling or disabling twelve
other visual stimuli. To minimize the false activations of the SSVEP switch, a control
command was generated only after the BCI detected two seconds of sustained visual at-
tention on the on/off button. In online experiments, six out of seven participants needed
between 3.9 and 7.5 s to turn on the BCI, and between 4.2 and 7.2 s to turn it off. Two
additional participants were unable to control this brain switch, thus the BCI was turned
on/off manually. Noteworthy, only the performance of the on/off stimuli is discussed here.

Hemodynamic responses

Coyle et al. [54] realized a brain switch based on hemodynamic responses using a custom
built, one-channel fNIRS system and motor imagery. Although the system didn’t operate in
an asynchronous mode, it was the first fNIRS-based brain switch. In a two-class, cue-paced
paradigm, the BCI presents a period when users are supposed to perform motor imagery
and when to avoid doing it. After the two classes have been shown, the BCI selects the class
with the largest oxyhemoglobin concentration change. In online, cue-paced experiments,
the average classification accuracy was 82 %, the TPR was 0.72, and the FPR was 0.10.

Bauernfeind et al. [149] presented another fNIRS-based brain switch. This system
operated online in an asynchronous mode. Included into a hybrid BCI, the fNIRS switch
was used to turn on/off a SSVEP-based BCI, in a paradigm that required a specific control
sequence [29, 178]. To start the experiment, a trained user operated the fNIRS-based BCI
to turn on the second BCI (SSVEP). Next, the user controlled the SSVEP-based BCI in a
given sequence. Finally, the fNIRS-based BCI turned off the second BCI. After four runs
and parameter adaptation, the user achieved complete control over the hybrid system.
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Both fNIRS brain switch used only one channel and a custom system, which could
be developed into a portable system. There are three main differences between both
fNIRS-based BCIs: (i) the two systems operated online, but only Bauernfeind’s system
operated in an asynchronous mode; (ii) brain activities were motor imagery and mental
arithmetic; and (iii) Coyle’s brain switch prompted the user to perform two mental tasks,
whereas Bauernfeind’s system relied on relative changes (from a baseline recording) and a
threshold. The two systems are limited by the latency of hemodynamic responses.

3.4 Evaluation

Confusion matrix, true positive rate, and false positive rate

Assuming that a binary classifier assigns a class label equal to +1 to the intentional con-
trol and equal to −1 to non-intentional control, correct detection of intentional control
is called true positive (TP), and correct detection of the non-intentional control is called
true negative (TN). Consequently, incorrect activations are false positives (FP) and missed
intentions are false negatives (FN). These events compose the confusion matrix

M =

[
TP FN
FP TN

]
(3.1)

The confusion matrix fully describes the performance of a classifier [179]. In BCI re-
search, M represents the correspondance between the user’s intention and the BCI’s de-
tections [180].

It is usual to summarize the information from the confusion matrix into one or two
values, for easy comparisons between classifiers or BCIs. These comparisons need to be
carefully interpreted. When comparing classifiers or BCIs, special attention needs to be
paid to the chance agreement, i.e. the performance of a random classifier. A random
classifier assigns a random class label to every input. Furthermore, it assigns random class
labels even if the same input is presented more than once.

The classification accuracy
(
ACC = TP+TN

TP+FN+FP+TN

)
is the most common way to present

the performance of a classifier. It reports the overall performance by indicating the pro-
portion of correct decisions made, and it is usually reported as a percentage. Theoretically,
the chance agreement of a binary classifier is associated with a 50% classification accuracy,
but depending on class prevalence, the classifier bias, and the number of training/testing
patterns, the classification accuracy of a random classifier accuracy can be well above the
theoretical value [181].

The true positive rate (TPR) and false positive rate (FPR) are another form of sum-
marizing the confusion matrix. The TPR indicates the ratio of user’s intentions correctly
detected, and the FPR is the ratio between false detection and the total number of de-
cisions from non-intentional control periods. The pair TPR and FPR is easily computed
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from the confusion matrix as

TPR =
TP

TP + FN
(3.2)

FPR =
FP

FP + TN
(3.3)

In the particular case of brain switch evaluation, the main problem with TPR and FPR is
the prevalence of classes and the number of total activations of the brain switch, specially
when considering FPR because TN can be overestimated, causing the FPR to tend to zero.

Asynchronous operation of a brain switch in a cue-paced paradigm

Construction of a confusion matrix for evaluation of a brain switch faces several practical
problems. First, the evaluation can be done sample-by-sample or event-by-event [165],
i.e. counting correctly and incorrectly classified samples or single detection events. Since
periods of non-intentional control are more common than periods of intentional control,
the evaluation based on events is preferred because offers a smaller difference between class
prevalences. Moreover, while brain switch activations can be either correct or incorrect, the
correct detection of the non-intentional control does not generate brain switch activations;
posing the problem of estimating the number of TNs.

TNs can be correctly estimated in a cue-paced paradigm, where the non-intentional
periods are well defined. Hence, it is possible to continuously classify the EEG from a
cue-paced paradigm for performance estimation. Additionally, it is possible to conduct
a simulation of an asynchronous brain switch, preferably from runs without feedback. A
variation of this is the evaluation of an asynchronous two-class BCI or a brain switch with
experimenter given cues, where the paradigm is defined, and the experimenter guides the
participants through its execution. An example of this type of evaluation can be found
in [169]. Leeb et al. [169] completed an experiment where the participants were instructed
to navigate a virtual environment through sustained motor imagery (hand vs. foot), with
several stops along a predefined path. The participants knew beforehand where they were
supposed to stop, and the experimenter informed them about the duration of the stops. A
generalization of these methods can be described as the control of a benchmark application.
This means that a simple application with a predefined timing can be used to evaluate the
participant’s control over the brain switch.

Self-report of the brain switch performance

Another way to evaluate the performance of a brain switch relies on the participants self-
report of their own intentions [152, 182]. For example, the participant could confirm the
correct detection of his/her intentions after every brain switch detection; failing to do so,
would automatically generate a FP. Noteworthy, TNs are impossible to count in this way.
One possibility is to indicate the intention to activate the brain switch, prior to the actual
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brain switch detection. Nonetheless, the execution of a motor/cognitive task before the
activation of the brain switch could lead to a misinterpretation of false activations, biasing
the performance estimation. This type of evaluation is discouraged.

False positives per minute

False positives per minute (FP/min) offer a way to evaluate the reliability of a brain
switch during the non-intentional control periods [156]. One way to estimate the FP/min
consist on counting all false activations that appear during a run or the whole experiment.
However, it is common to segment the data for offline analysis, and to discard contaminated
epochs. In a better way to estimate the FP/min, the brain switch user is instructed to
remain relaxed (rest with eyes open) for a certain period of time [162, 178]. FP/min is not
restricted to the non-intentional control periods, it could also be computed from periods
where intentional control is expected, e.g. if two or more activations occur when only one
is expected. Nonetheless, a well designed paradigm is needed to differentiate TP from FP.
The recommendation for evaluation of a brain switch is the combination of a benchmark
application with inclusion of non-intentional control periods for estimation of the FP/min.

3.5 Overview

The majority of brain switch designs rely on non-invasive techniques and endogenous brain
phenomena. Most of them are based on motor-related brain phenomena, but few other
options have been explored. A brain switch might not result very attractive for fast com-
munication and control applications. However, it is the simplest case of an asynchronous
BCI and could be considered a building block for multi-class BCIs, as many of them operate
under a one vs. the rest scheme. A brain switch could be combined with multi-class BCIs
and other assistive technologies into a hybrid BCI. The number of sensors needed for on/off
control is low, in comparison to multi-class BCIs, which is an appealing property for out of
the lab applications. Some brain switch prototypes have been used to control a neuropros-
thesis for grasp (open/close) and elbow (up/down) function, and to provide detection of
movement intention (foot movement) in stroke patients, these are current BCI applications
of growing interest. Performance evaluation is usually measured in terms of true and false
activations, and it should be completed with the online control of a benchmark application
that includes periods of non-intentional control, and the report of FP/min.



Chapter 4

Beta ERS-based brain switch

4.1 Detection of overt foot movement

Data description

We analyzed a database of EEG recordings from ten healthy persons (4 female, aged
24.6± 1.4 years). The EEG was recorded while the participants completed several runs of
cue-paced motor tasks, including passive movement, motor execution, and motor imagery.
Here we present the analysis of the motor execution runs only. Details about other exper-
imental runs can be found elsewhere [124]. The EEG was recorded with sixteen Ag-AgCl
electrodes placed on the scalp around electrode position Cz. Distance between electrodes
was 2.5 cm. Reference and ground electrodes were attached to the left and right mastoid,
respectively. The EEG was filtered between 0.5 and 30 Hz before digitalization. In all
recordings, a notch filter at 50 Hz was on and the sampling rate was fS = 250 Hz.

Cue-paced motor execution

The paradigm corresponded to cue-paced execution of foot movements. In the paradigm,
a trial began when a fixation cross appeared on screen (t = 0 s). Two seconds later (t = 2 s)
an arrow pointing downwards was displayed as a cue. Following the cue, the participants
performed a brisk dorsiflexion of both feet, lasting about one second. The arrow disap-
peared from screen at t = 3.25 s, and the cross disappeared at t = 6 s. Afterwards, the screen
displayed a blank screen until the end of the trial (t = 7.5 s) and during a random inter-trial
interval (maximum duration of one second). Figure 4.1 illustrates the timing of a trial.
Each participant completed three runs with 30 trials each, for a total of 90 movements.
All runs were conducted on the same day with few minutes in between.

Spatial filtering and ERD/ERS maps

To improve the signal-to-noise ratio of the EEG, we computed a Laplacian derivation from
five electrodes around electrode position Cz (see Figure 2.9 in Chapter 2). Data quality
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Figure 4.1: Paradigm timing for overt and covert foot movement. The trials in each run
lasted 7.5 s plus a random pause with maximum duration of one second. Two seconds after
the beginning of the trial, an arrow pointing downwards appeared as cue for the execution
of brisk foot movement (dorsiflexion of both feet).

was visually inspected from the mean and standard deviation across trials. No artifacts
were rejected or labeled for exclusion. ERD and ERS embedded in the Laplacian derivation
were quantified with the inter-trial variance method and visualized with the computation
of ERD/ERS maps [142]. We used Morlet1 wavelets for the spectral analysis between 6 and
36 Hz (non-ovelapping bands of 2 Hz). Statistical significance (p < 0.05) was determined
using a bootstrap algorithm. Reference interval for the relative power changes was between
t = 0.5 and t = 1.5 s. The data from three participants was discarded for analysis due to
lack of significant post-movement beta ERS.

Feature extraction

For our analysis, we considered trials of 10 s (t = -1 s to t = 9 s, relative to the onset of the
fixation cross). Each trial was segmented in epochs of one second with 50 % overlap. A
total of 29 spectral features were extracted from each epoch by means of the logarithmic
band power (logBP), i.e. filtering the epoch, squaring every sample, and averaging across
samples. These features corresponded to spectral components between 6 and 36 Hz. Each
component had a bandwidth of 2 Hz, with an overlap of 1 Hz between consecutive compo-
nents. Filtering was performed with a 62nd order band-pass finite impulse response filter
(FIR). In this way, an epoch yielded a feature vector with 29 logBP values.

The feature vectors were labeled twice for the independent classification of ERD or
ERS against all other brain activity. Because ERD and ERS occur in slightly different
frequency bands and at different times, they can be treated as mutually exclusive. On
one hand, for the ERD-based classification, a class +1 label was assigned to all feature
vectors lying in the interval t = 2.5 s to t = 3.5 s. On the other hand, for the ERS-based
classification, the class +1 label was assigned to all feature vectors in the interval t = 4 s

1According to an implementation of the ERD/ERS maps developed by Clemens Brunner (clemens.
brunner@tugraz.at). An updated version can be found with the BioSig Toolbox [143].

clemens.brunner@tugraz.at
clemens.brunner@tugraz.at
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to t = 5 s. In both cases, the class −1 label was assigned to all feature vectors outside
these intervals. Noteworthy, the feature vectors labeled as class +1 for ERD are labeled
as class −1 for ERS, and vice versa. Figure 4.2 illustrates the labeling procedure for each
trial.
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Class +1 ERD based
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Figure 4.2: Labeling of feature vectors. The feature vectors extracted from each epoch
were labeled twice for comparison of ERD- and ERS-based detection of foot movement.
All vectors are considered as class −1, except those from the intervals t = 2.5 s to t = 3.5 s
(ERD-based) or t = 4 s to t = 5 s (ERS-based), which where labeled as class +1. These
windows are exclusive.

Classifier training

Support vector machines (SVM) with Gaussian kernels handled the classification of feature
vectors. We used the library libSVM [183] in combination with the Matlab interface from
BioSig [184] for the implementation of the SVM. Kernel parameters of the SVMs, i.e. the
regularization factor C and the kernel width σ, were selected after an exhaustive search in
a parameter grid. Inside the grid C varied from 2−10 to 21 and σ varied from 2−15 to 21.
These parameters doubled their value at each step inside the grid.

The three runs were shuffled before parameter selection. One run was kept apart for
evaluation and the remaining two runs were assigned to training and testing phases (one
run each). Training and testing runs entered the following iterative process:

1. Train a SVMi,j with a specific pair of parameters (Ci, σj) and the data from the
training run, including a 10-fold cross-validation.

2. Test the SVMi,j with the data from the testing run. Obtain the confusion matrix
and compute TPR and FPR. Summarize the performance of SVMi,j with the index
Y = TPR− FPR .

3. Repeat from step 1 until all parameters (Ci, σj) have been tested.
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The parameters (Ci, σj) associated with the highest value of the index Y were chosen. A
SVM was trained with those parameters and the feature vectors from the training and
testing runs. At this point, the SVM was also trained to predict the posterior probability
of a new feature vector [185].

We carried out a parameter selection process for ERD and ERS independently. Only
the Gaussian kernel was considered because it has been proved that when using this kernel
with a complete parameter search, there is no need to test linear kernels [186]. The
classifier training process was repeated six times in total, one time for each combination
of training/testing runs.

Post-processing

The evaluation run, a run set apart before classifier training, was analyzed and classified
continuously. Features vectors were computed from the first until the last second of EEG
data, using a sliding window of one second with an overlap of 249 samples (fS = 250 Hz).
All consecutive feature vectors were fed to the pair of SVMs obtained for classification of
ERD and ERS. This procedure corresponds to the simulation of an asynchronous brain
switch. Figure 4.3 demonstrates the ERD and ERS classification. The output of each
SVM indicated the probability of a feature vector to represent ERD or ERS, hence the
classifier outputs represent P (ERD) and P (ERS), respectively. The probability output
of the classifiers was further processed with a threshold (TH), a dwell time (DT), and a
refractory period (RP) [165]. A receiver operating characteristics (ROC) analysis over TH
revealed the best threshold for fixed values of DT = 250 ms and RP = 2 s. We considered
these parameters to allow the system to make fast decisions (DT) and to limit the number
of detections during the intentional control windows defined for evaluation (RP). Figure 4.4
presents an example of post-processing of the classifier output.

Performance assessment

The commands of an asynchronous brain switch may happen at any moment, depending
entirely on the user’s intention. A simulation of an asynchronous brain switch from a
cue-paced paradigm, provides a useful way to evaluate the capability of the brain switch
to detect intentional and non-intentional control. Knowing when a brain switch activation
is supposed to occur allows for the estimation of TPs, FPs, and FNs. Additionally, since
the periods of non-intentional control are know, the estimation of TNs is also possible. In
our assessment, a TP was counted if a brain switch activation (foot movement detection)
occurred between t = 2.5 s and 4.5 s for the ERD-based classifier, and between t = 3.5 s and
5.5 s for the ERS-based classifier. All detections outside these windows were counted as
FPs.

TPR and FPR were estimated from TP, FP, the expected total of true detections
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Figure 4.3: Simulation of an asynchronous brain switch. The validation run is analyzed
to extract feature vectors from a 1 s sliding window. The feature vectors are fed to the
SVMs, which predict the probability of a feature vector corresponding to ERD (red) or
ERS (blue). Bursts of activity, the beta rebound, can be seen in the raw EEG (top). Black
vertical lines indicate the beginning of individual trials.
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Figure 4.4: Post-processing of the classifier output. To generate detection events from the
classifier output (blue), a threshold (dashed horizontal line), a dwell time (green squares),
and a refractory period are used (red rectangle). A brain switch event occurs when the
classifier output exceeds the threshold for a period of time given by the dwell time. After
a detection, further events are suppressed during the refractory period.
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NT = TP + FN, and the maximum number of false detections

TPR =
TP

NT

(4.1)

FPR =
FP

NF

(4.2)

where NT is equal to the number of trials, and NF is the estimated count of possible events
in the non-intentional control periods

NF =
total number of samples

bfS × (DT + RP)c
(4.3)

In this study, NT = 30 and NF ∼ 110, due to the random duration of the inter-trial
interval.

Combination of motor-related information

ERD and ERS are related to the execution of foot movement, therefore, it is reasonable
to assume that combination of ERD and ERS features could improve the detection of foot
movements. We combined the ERD and ERS information to try to minimize the number
of false detections. The combination was based on the following assumptions:

- ERD is present in all foot movements.
- ERS follows ERD.
- Classification of ERD and ERS are independent.

These assumptions led to the computation of the joint probability as the product of inde-
pendent probabilities

P (ERD,ERD) = P (ERD) · P (ERS) (4.4)

where P (ERD) and P (ERS) are the output of the ERD- and ERS-based SVMs described
above. Since co-occurrence of ERD and ERS is not considered, P (ERD) was delayed
one second to match the P (ERS) events, before computing the product between classifier
outputs. Figure 4.5 gives an example of the combination of classifiers. Foot movement
detection with the classifier combination was completed with the additional post-processing
parameters, and performance assessment described above.

Outcome

Figure 4.6 shows the TPR and FPR values obtained from each run combination per par-
ticipant, and the participant individual average. Table 4.1 presents the individual averages
and the grand average TPR and FPR for the classifiers under analysis. Detection of brisk
foot movement based on ERD achieved an average TPR of 0.21± 0.12 and an FPR of
0.06± 0.06. The detection based on ERS achieved an average TPR of 0.74± 0.21 and
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Figure 4.5: Combination of ERD- and ERS-based classifiers. The joint probability
P (ERD,ERD) is obtained from the individual classifier outputs P (ERD) and P (ERD).
Before combining these two probabilities, the ERD-based classifier must be delayed to
match the occurrence of the post-movement beta rebound. This figure can be compared
to Figure 4.3.

an average FPR of 0.06± 0.03. Detection of foot movement based on the combination of
ERD and ERS classifiers resulted in a TPR of 0.74± 0.20 and an FPR 0.06± 0.03. These
results were obtained from the ROC analyses as the maximum TPR associated with an
FPR≤ 0.1, to show the best performance possible. The highest individual performance was
achieved in all cases for ERS-based classification, although in some cases the classification
based on the combination of ERD and ERS led to a slight performance improvement (a2,
a3, a5, and a7). A two tailed t-test for repeated measurements applied to the results of
each participant showed no significant differences (p≥ 0.05) between the combination of
classifiers and the ERS-based classification.

We used a wide spectral description and no feature selection to let the SVMs learn the
differences between intentional and non-intentional control from the EEG of each partici-
pant. The SVMs automatically adjust the decision border to the intra-subject variability,
by assigning smaller weights to non-relevant features during the optimization of the de-
cision boundary. This classification scheme showed a stable performance despite the lack
of feature selection. Dimensionality of the feature vectors (29 features) did not represent
a problem, but the parameter selection for the SVM was a time consuming task, and the
number of feature vectors has to be controlled to avoid overfitting. It is important to no-
tice that the same Laplacian derivation was used for all participants, and that the analyses
were made without artifact selection. Furthermore, a unique set of features was used for
every participant and only two runs are needed to find the parameters of the SVMs.

For the first time, information related to brain signal dynamics during and after move-
ment were combined to improve the performance of single trial classification. Even though
no significant differences were found between ERS and the combination of classifiers, it
can be speculated that there is considerable potential of improvement if ERD and ERS are
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Figure 4.6: Detection of overt foot movement. (a) ERD-based classifier, (b) ERS-based
classifier, and (c) Classifier combination. Performance of the individual evaluation folds
is shown in gray. TPR is represented by circles and FPR is represented by squares. The
horizontal black line marks the limit where FPR = 0.10.

Table 4.1: Participant average performance (overt foot movement)

ID ERD ERS Combination

TPR FPR TPR FPR TPR FPR

mean s.d. mean s.d. mean s.d. mean s.d. mean s.d. mean s.d.

a1 0.34 0.05 0.08 0.01 0.97 0.05 0.03 0.02 0.92 0.07 0.03 0.03
a2 0.23 0.17 0.05 0.03 0.94 0.05 0.04 0.04 0.95 0.05 0.04 0.02
a3 0.20 0.08 0.07 0.03 0.83 0.12 0.04 0.03 0.86 0.14 0.06 0.02
a4 0.11 0.08 0.05 0.04 0.79 0.12 0.08 0.01 0.73 0.13 0.07 0.03
a5 0.28 0.13 0.08 0.01 0.61 0.10 0.07 0.02 0.62 0.14 0.07 0.02
a6 0.12 0.12 0.05 0.03 0.54 0.14 0.07 0.02 0.49 0.19 0.08 0.02
a7 0.22 0.14 0.08 0.02 0.52 0.20 0.06 0.02 0.64 0.17 0.07 0.02

mean 0.21 0.06 0.74 0.06 0.74 0.06
s.d. 0.12 0.06 0.21 0.03 0.20 0.03
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successfully combined.

4.2 Detection of covert foot movement

Data description, experimental paradigm, and analysis

To further evaluate the use of the beta ERS for the realization of a brain switch, we
analyzed a second database of EEG recordings. The data was collected from five healthy
participants (3 female, aged 25.8± 2.9 years) during a cue-paced motor imagery experiment
without feedback. During the experiments the participants were seated on a comfortable
armchair about 1.5 m in front of a computer screen, in an electrically shielded room. The
participants’ task was the kinesthetic imagination of a brisk foot movement, similar to
the movement described in Section 4.1. Before the experiment, the participants gave
informed consent and were allowed to practice the motor task with real feet movement.
All participants were familiar with hand and foot imagery but, only two of them had
participated experiments with feedback. Electrode montage and amplifier settings were
the same as described above. We applied the methods described in Section 4.1 for feature
extraction, classifier training, post-processing, and performance assessment. Only ERD-
and ERS-based classification was investigated. Combination of features was disregarded
because no significant improvements were found before.

Performance

With all possible combinations of training/testing/evaluation, each run served twice for
evaluation. Hence, the performance was estimated six times per participant. Figure 4.7
shows the individual TPR and FPR values obtained from every run combination per par-
ticipant and the individual average. Table 4.2 shows the individual averages and the grand
average TPR and FPR. By design, in all cases the FPR was less or equal to 0.10. The
average TPR for detection of ERD was 0.28± 0.13 (FPR 0.08± 0.01) and the TPR for
detection of the ERS was 0.59± 0.20 (FPR 0.07± 0.02).

In accordance with our previous analysis regarding motor execution, the ERS-based
classifier performed better than the ERD-based classifier. For both overt and covert foot
movement, the most dominant feature is the beta ERS, which appears as a strong broad
pattern in the visualization of ERD/ERS. In contrast, the beta ERD is less pronounced and
has a larger inter-participant variability (not shown). For covert movements, part of this
variability is an effect of the timing for motor imagery, since it is difficult to exactly know
when the imagery starts and it is not easy to repeat the motor task with the same time
span every time, specially without online feedback. Such inherent variability could affect
the training of the SVMs because errors may occur while labeling the training patters,
due to the fixed latency and length of the labeling windows. Optimization strategies, e.g.
identification of the most discriminant time points, could help to improve the SVM training
and thus the classification performance too.
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Figure 4.7: Detection of covert foot movement. (a) ERD-based classifier and (b) ERS-
based classifier. Performance of the individual evaluation folds is shown in gray. TPR is
represented by circles and FPR is represented by squares. The horizontal black line marks
the limit where FPR = 0.10.

Table 4.2: Participant average performance (covert foot movement)

ID ERD ERS

TPR FPR TPR FPR

mean s.d. mean s.d. mean s.d. mean s.d.

b1 0.28 0.07 0.08 0.01 0.92 0.10 0.05 0.03
b2 0.49 0.13 0.09 0.01 0.59 0.24 0.09 0.01
b3 0.12 0.06 0.08 0.02 0.57 0.14 0.09 0.02
b4 0.30 0.11 0.07 0.01 0.51 0.15 0.07 0.03
b5 0.23 0.09 0.08 0.01 0.37 0.19 0.07 0.02

mean 0.28 0.08 0.59 0.07
s.d. 0.13 0.01 0.20 0.02
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4.3 Discussion

The analyses presented in this chapter demonstrate that the beta rebound (ERS) is a
better feature than the ERD for the detection of overt and covert brisk foot movement. By
selecting a fixed FPR limit (≤0.10) we managed to obtain an average TPR of 0.74± 0.21
for detection of overt foot movement, and 0.59± 0.20 for detection of covert foot movement.
Because of the relative stability of the beta rebound, its similarity during executed and
imagined foot movements [112, 124], and the activation of similar cortical areas during
overt and covert movement [187, 188], we propose that movement execution data may be
suitable to train a classifier that could be applied to motor imagery data.

A limitation of using the beta rebound as feature for a brain switch is the time delay
between an intended command and its detection. We estimated the information transfer
rate of the ERS-based detection of overt foot movement to range between 8 and 18 bits/min
(average ITR of 11 bits/min) [189]. It can be expected that the average ITR is maintained
or improved after some training sessions with feedback. For operating complex applications,
like a spelling device or an arm prosthesis, 11 bits/min is relatively low. However, such
ITR is sufficient for simple switching tasks or for leisure. In this way, an acceptable ITR
can be achieved after a few training runs, meaning that a working BCI could be set up
very fast. The next chapter presents a methodology for setting up a brain switch relying
on data from motor execution; thus, a brain switch for the able-bodied.



Chapter 5

A brain switch for the able-bodied

5.1 Methods

Data description

We analyzed the EEG recordings from nine healthy persons (3 female, aged 25.1± 0.9
years). Six participants were experienced with BCIs and motor imagery, including real
time feedback sessions, but they were unfamiliar with our particular paradigm. The re-
maining three participants had no previous experience with motor imagery, BCI or similar
experiments. EEG was recorded from five Ag-AgCl electrodes placed on the scalp around
electrode position Cz, during cue-paced runs with motor execution and motor imagery
without feedback. A single Laplacian derivation was computed from the multichannel
EEG data. Amplifier settings were the same as described in the previous Chapter.

Experimental paradigm and analysis overview

Each participant completed three runs of cue-paced foot motor execution and another
three runs of cue-paced foot motor imagery. One run consisted of 30 trials. All runs were
completed on the same day, with several minutes in between. During the experiment, par-
ticipants sat in comfortable armchair about 1.5 m in front of a monitor, inside an electrically
shielded room. They were asked to perform a brisk foot movement, or its imagination, in
response to a cue. Paradigm timing (Figure 5.1) was similar to the experiments described
in Chapter 4 with two minor variations: (i) addition of an audible cue, and (ii) longer
inter-trial pauses. At the beginning of the trial (t = 0 s) a fixation cross appeared on the
center of the screen. Two seconds lated (t = 2 s), a beep (1 kHz tone, with a duration of
70 ms) and an arrow pointing downwards served as cue for the motor task (motor execution
or motor imagination). The arrow remained on screen for 1.25 s (t = 3.25 s). At the end of
the trial (t = 6 s) the cross disappeared. Participants observed a blank screen in between
trials, during a short pause with a random duration between 1.5 and 3 s.

The analysis of the data was divided into synchronous and asynchronous processing.
In the synchronous phase, two SVMs were trained with the data from the motor execution
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Figure 5.1: Paradigm timing. The timing of a trial is similar to that of Chapter 4. Minor
differences include: (i) addition of an adible cue (beep), (ii) reduction of the trial duration,
and (iii) extension of the inter-trial interval.
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Figure 5.2: Analysis overview. The analysis is divided into a synchronous and an asyn-
chronous phase. In the synchronous phase, a pair of SVMs are trained to detect foot
movements based on ERD or ERS. In the asynchronous phase, post processing parameters
are setup from a single run of motor imagery, and a simulation of an asynchronous brain
switch is conducted. Modified from [190].
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runs, according to the methods presented in Chapter 4. Each SVM was trained to classify
either ERD or ERS against other brain activity. Labeling of feature vectors was adapted
for each participant using the information from ERD/ERS maps computed from the motor
execution runs. In the asynchronous phase, the post-processing parameters DT, TH and
RP were obtained from the first motor imagery run. Then, a simulation of an asynchronous
brain switch was performed with the remaining two motor imagery runs. Figure 5.2 gives
an overview of the methods. Synchronous and asynchronous processing are described in
detail below.

Synchronous processing

Labeling of feature vectors

Labeling of feature vectors was customized to the ERD/ERS patterns of each participant.
We computed an ERD/ERS map for each participant using the data from the motor
execution runs. Again, sinusoidal wavelets were used to assess changes in the frequency
domain, and a bootstrap algorithm revealed statistically significant changes (p < 0.05).
The maps analyzed the frequencies between 6 and 40 Hz and the interval between t = 0
and t = 7 s, relative to the beginning of the trial. The reference interval for ERD/ERS
calculation was between t = 0.5 and t = 1.5 s. We identified the time intervals with the
largest, significant ERD or ERS from the ERD/ERS maps. The periods selected were
regarded as intentional control period. Three constraints were imposed to the selection of
the intervals:

- Only patterns between t = 2.5 s and t = 6 s were considered.
- ERD patterns may precede ERS patterns, but not the other way around.
- ERD duration is restricted to one second.

Feature extraction

Features were extracted from the motor execution recordings according to the methods
described in the previous Chapter, i.e. 29 logBP features between 6 and 36 Hz (2 Hz
bandwidth with 1 Hz overlap), extracted using a set of 62nd order band-pass FIR filters,
and applying a moving average filter of one second length (250 samples). Each trial was
segmented in epochs of length one second with 50% overlap. Feature labeling was done
separately for each participant. In this case, the class +1 window was selected individually
for each participant as described above. All patterns outside these windows were labeled
as class −1.

Classifier training

After labeling the segments from all trials from the motor execution data, one of the runs
was chosen randomly to train a SVM with a specific set of parameters for the Gaussian
kernel. This classifier was tested with one of the remaining motor execution runs, and the
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performance was measured with the TPR and FPR. The procedure was repeated in an
iterative manner during an exhaustive search for parameters Ci and σj.

The parameters that achieved the maximum TPR and the minimum FPR were se-
lected for the next phase. Note that there was no limitation on the FPR, contrary to the
FPR≤ 0.10 constraint imposed in Chapter 4. In the case of a tie between two or more
parameter pairs (Ci, σj), the pair that included the smallest regularization parameter C
was chosen. During training of the SVMs, a small C penalizes less the misclassification
of feature vectors close to the separation hyperplane, thus offering a softer margin and
improving generalization. The winning parameters were used to train a SVM using all
feature vectors from the three motor executions runs. These SVMs were trained to predict
the posterior class probability of each new feature vector. Classifier training was carried
out for ERD and ERS independently. After the classification procedure, the data from
one participant was discarded because the performance was close to random (ERD: TPR
= 0.28, FPR = 0.22; ERS: TPR = 0.17, FPR = 0.15).

Asynchronous processing

Post-processing parameters (calibration)

The first recorded run of foot motor imagery was continuously classified by the SVMs
trained on the motor execution data. The motor imagery run was described with the same
29 logBP features with one-sample shift for consecutive feature vectors. All feature vectors
were fed to the classifiers and two output signals were obtained, namely the ERD and the
ERS posterior probabilities. This processing corresponds to the continuous classification
of the motor imagery run, i.e. the simulation of an asynchronous brain switch.

A ROC analysis determined the optimal values of the post-processing parameters TH,
DT and RP. Parameter TH varied from 0 to 1 in steps of 0.01. The parameter DT took the
values 25, 50, 62, 75 and 100 samples. Larger values (up to 200 samples) were tested in a
preliminary study but the results showed no improvement. RP was computed according to
DT + RP = 2×fS. For continuous processing, the intentional control period was extended
to t = 2 s to 4 s for ERD, and t = 3 s to 4 s for ERS. Noteworthy, the ERD interval include
the time of the cue and the beep (t = 2 s). Feature vectors around t = 2 s were labeled
as class −1 during training, because the cue is shown always at the same time and the
participants could start preparing themselves for the motor imagery. Thus, early ERD due
to motor preparation could be detected.

Classification performance was estimated for every combination of TH, DT, and RP.
TPR and FPR were used for performance evaluation. In this analysis, the maximum
number of false detections NF = FP + TN was estimated from

NF =
∑
i

⌊
NSi

DT + RP

⌋
(5.1)

where NSi corresponds to the number of samples outside the detection window for trial i;
all values are given in samples. The parameters TH, DT and RP that lead to the maximum
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TPR, subject to the condition FPR≤ 0.10, were chosen for further analysis.

Asynchronous simulation

The remaining two motor imagery runs were described with the same logarithmic band
power features and classified by the motor execution-trained SVMs. The post-processing
parameters were included, and the performance was measured with the TPR and FPR.
This process was equivalent to the simulation of an asynchronous brain switch.

5.2 Results

Figure 5.3 presents the results for the ERD-based classification, and Figure 5.4 presents
the results for the ERS-based classification. Please refer to Table B.1 and Table B.2
(Appendix B) for the individual TPR and FPR values of each participant. The average
TPR for ERD-based classification was 0.52± 0.20 and the FPR was 0.14± 0.07, during
the training phase (motor execution). For ERS-based classification, the average TPR was
0.63± 0.17 and the FPR was 0.11± 0.05, in the same phase. Contrary to the results
presented in the previous chapter, there were no significant differences between ERD- and
ERS-based classification (t-test, p > 0.05 for TPR and p > 0.05 for FPR). We attribute
this result to the use of participant specific windows for the labeling of feature vectors.
No significant differences (t-test, p > 0.05) were found during the calibration of post-
processing parameters either. Average TPR values were 0.32± 0.22 and 0.51± 0.28 for
ERD- and ERS-based classification, respectively. FPR was restricted to be less or equal
to 0.10.

In the evaluation phase, the average TPR was 0.27± 0.19 for ERD-based classification,
and 0.46± 0.26 for ERS-based classification. Average FPR was 0.11± 0.03 and 0.11± 0.05
for ERD- and ERS-based classification, respectively. There were no significant differences
between the two approaches for neither for TPR (t-test, p > 0.05) nor FPR (t-test, p >
0.05) estimations.

Table 5.1 indicates, for each participant, which neurophysiological phenomenon is asso-
ciated with the highest performance (TPR) during motor execution (training) and motor
imagery (calibration and evaluation). This table also shows the segment where the class +1
label was assigned during training, and the parameters TH and DT from the calibration
phase, also used during evaluation. Six out of eight participants achieved a better perfor-
mance with the ERS-based classifier during the classifier training phase (motor execution
runs). During the simulation of an asynchronous BCI, it was not possible to select one
particular phenomenon for participants c7 and c8. In four from the remaining six partic-
ipants, the ERS-based classifier performed better than the ERD-based classifier. Overall,
the threshold was set around 0.3 (median 0.22) and the dwell time was longer than 250 ms
(median 350 ms).
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Figure 5.3: ERD-based classification results. (a) Training phase with motor execution
data, (b) calibration phase with data from the first motor imagery run, and (c) evaluation
phase, i.e. simulation of an asynchronous brain switch. A horizontal black line indicates
0.10.
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Figure 5.4: ERS-based classification results. (a) Training phase with motor execution data,
(b) calibration phase with data from the first motor imagery run, and (c) evaluation phase,
i.e. simulation of an asynchronous brain switch. A horizontal black line indicates 0.10.
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Table 5.1: Physiological phenomena and post-processing parameters

ID Training Calibration & Evaluation

Phenomenon Labeling window Phenomenon DT TH
(s) (ms)

(
P(x)

)
c1 ERS 4 5 ERS 300 0.24
c2 ERS 3.5 4.5 ERS 248 0.22
c3 ERS 3 4 ERS 400 0.15
c4 ERD 5 6 ERD 248 0.66
c5 ERD 4 5 ERD 400 0.56
c6* ERS 4.5 5.5 ERS 300 0.15
c7* ERS 3.5 4.5 – 400 0.29
c8 ERS 4 6 – 400 0.22

Naive participants marked with an asterisk (*).

5.3 Discussion

This chapter shows that a brain switch can be implemented by training a classifier with
motor execution data, and then, applying it directly to motor imagery with only a minor
calibration. This approach proved to be successful because both motor tasks (execution
and imagery) result in similar ERD/ERS patterns, as expected. To use a classifier trained
with motor execution on motor imagery data can be seen as a measurement of similarity
between the patterns of both motor tasks. Hence, if the patterns differ significantly, the
classification performance degrades. The results in Table 5.1 suggests that, when compar-
ing motor execution to motor imagery, the post-movement ERS is more stable than the
peri-movement ERD.

ERD/ERS pattern reshaping comprises frequency shifts and increments/decrements of
the time/frequency span. For the particular case of post-movement ERS, those changes
may be present in harmonic frequencies too, because the EEG can present a characteristic
arc shape during the beta rebound. Frequency shifts could result from adjustments of
the somatosensory and motor cortex during covert movement, specially for the beta ERS,
when different neural networks may be responsible for its generation. The same principle
applies to the increment/decrement of the frequency spread, while time span changes could
result from variations in the duration of the motor imagery. The lack of somatosensory
input and the inexperience with kinesthetic imagery, influences the activation of the neural
networks involved in motor execution. Being unable to activate a specific motor related
neural network impacts the generation of ERD patterns, and the subsequent inhibition of
such network and the post-imagery ERS.

Another naive participant, c6, presented a stable ERS-based classification, meaning
that the beta ERS from motor execution and motor imagery was similar between motor
tasks. Most interesting is the case of participant c7, also naive, which presented a similar
performance with both ERD- and ERS-based classifiers (motor imagery), even though the
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ERS-based classification was better during motor execution. The rest of the participants
were experienced with BCIs, meaning that they were able to produce ERD/ERS patterns
with motor imagery. Similarity between execution and imagery related ERD/ERS patterns
was not tested before on those participants.

In comparison with the previous chapter, the selection of an optimum window for
labeling of feature vectors helped to reduce the gap between ERD- and ERS-based classi-
fication. No significant difference was found between ERD- and ERS-based classification
for synchronous or asynchronous processing.

Since the design of the brain switch is based on motor execution, this methodology
could not be used to create a brain switch for severely disabled patients. It is instead,
a simple way to train a BCI for applications controlled by healthy users. However, it
would be possible to obtain data from attempted movements or even through passive
movements, possibly for clinical applications for persons with stroke, spinal cord injuries,
or in a minimally conscious state.

5.4 Toward online operation

The offline analyses described so far rely on a full description of the EEG’s power spec-
trum and a SVM to detect the beta rebound following a brisk foot movement, or its
imagination. Labeling of training patterns in Chapter 4 considered only the timing of the
training paradigm. Such strategy is suboptimal because the individual time span of the
ERD/ERS patterns is not examined. In this chapter, individual differences were inspected,
and participant-specific labeling was carried out. Such simple refinement reduced the dif-
ference between ERD- and ERS-based classification, by improving the performance of both
classifiers.

One further improvement to our methods is feature selection. Until now, the SVMs
dealt with a feature set that contained both relevant and irrelevant features. As discussed
above, frequency shifts of the ERD/ERS patterns influence the performance of the brain
switch. If a relevant feature changes from the training to the testing set, or in this case from
execution to imagery, the classifier’s performance will change. Identification of relevant
features, i.e. feature selection, could cope with this problem. Moreover, reduction of the
feature set would make the use of SVMs unnecessary and simpler, linear classifiers could
be used. Additionally, training a SVM is a time consuming task that presents an obstacle
for a quick setup of a brain switch. This section describes the comparison between the
methods from this chapter and a similar analysis including feature selection and a Fisher’s
linear discriminant analysis (LDA) [179] instead of the SVMs.

Analysis

We analyzed the data presented at the beginning of this chapter once again, centering our
analysis in the post-movement beta ERS. Feature extraction was repeated with a set of
5th order Butterworth filters, to obtain a similar set of 29 logBP features extracted from
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motor execution data. Each trial was segmented in epochs of length 0.5 s without overlap.
We changed the labeling of training patterns in preparation for feature selection. First, we
considered class −1 to match the reference interval for the ERD/ERS map computation
(between t = 0.5 and t = 1.5 s). Then, any training pattern outside the reference interval
was considered as class +1.

The most discriminative time intervals (segments) and features were revealed by a
DSLVQ analysis [191]. In an iterative way, features from a given time interval were com-
pared against the features from the reference interval and, ranked according to their dis-
criminability. The most discriminative features corresponding to the beta rebound were
clustered into broader bands. A clustering algorithm found the most discriminative time
interval for each feature and its matching ERD/ERS value. Only features with significant
ERD/ERS were considered. Features were merged if they differed at most in 2 Hz and if
their associated time segments were at most 1 s apart from each other. Merging of features
continued until no further merging was possible.

Once a frequency band was selected, a single logBP feature was computed from the
motor execution data. Trials were segmented again in epochs of length 0.5 s without over-
lap. The epochs were labeled as described above. The most discriminative time interval
was found by evaluating an LDA classifier with the features from each segment against the
reference interval. We use Cohen’s kappa (κ), estimated from a 10 × 10 cross-validation,
as discrimination index. The segment with the highest κ was identified. An LDA was
computed with the training patterns from the most discriminative time interval and the
reference interval. The computation of post-processing parameters (calibration) as well as
the simulation of an asynchronous BCI (evaluation), were repeated as described above.
These methods are based on the standard methods from the Graz BCI group, which have
been modified to include the automatic selection of features and the post-processing pa-
rameters.

Results and discussion

Figure 5.5 presents the classification performance of the different analysis stages (training,
calibration and evaluation). Please refer to Table B.3 in Appendix B for the individual TPR
and FPR values of each participant. Although our analysis focused on the beta rebound,
participant c4 did not present a post-imagery ERS, therefore, the classifier was trained
with features corresponding to a peri-imagery ERD. The average TPR during training was
0.92± 0.07, significantly higher than the ERS-based classification presented above (p <
0.001). The average FPR was 0.24± 0.11, also significantly higher than previous results
for ERS-based classification (p < 0.05). After calibration, the classification performance
between LDA and SVM leveled (p > 0.05 for TPR). At this stage, the LDA achieved a
TPR of 0.49± 0.25, while FPR was kept below 0.10. Remarkably, the performance was
maintained between calibration and the evaluation stage with both classifiers. For the
simulation of an asynchronous brain switch (evaluation), the average TPR was 0.51± 0.20
(p > 0.05) and the average FPR was 0.08± 0.03 (p > 0.05).

Table 5.2 list the parameters from the feature selection and calibration phases. As
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Figure 5.5: LDA-based classification results. (a) Training phase with motor execution
data, (b) calibration phase with data from the first motor imagery run, and (c) evaluation
phase, i.e. simulation of an asynchronous brain switch. A horizontal black line indicates
0.10.

mentioned before, ERS was used as neurophysiological phenomena for seven out of eight
participants. The DT was again longer than 250 ms with median 300 ms. Direct compar-
isons of the TH parameter are not possible, because the SVMs computed a probability
between 0 and 1, whereas the LDA computes a distance between −∞ and +∞.

Summarizing, both schemes presented in this chapter are equivalent. The inclusion
of feature selection in our training scheme allows for the use of a simpler classifier, i.e.
LDA. Classifier raining is completed faster for LDA than for SVMs, even though a series
of DSLVQ analyses are necessary. Another boost on the setup of the brain switch, is the
selection of the beta ERS as supporting neurophysiological phenomena. Focusing on the
beta ERS reduces the feature space where DSLVQ must be applied. These results indicate
that it would be feasible to set up an asynchronous brain switch for naive able-bodied
persons, after a short time, with only a few repetitions of foot movement.

With a similar approach, Müller-Putz et al. [182] reported on the fast and easy setup
of a brain switch, and its online operation through motor imagery. Six healthy persons
completed a session of cue-paced foot movement, while their EEG was recorded from a
single Laplacian derivation over Cz. After computing ERD/ERS maps, the authors selected
a participant-specific frequency band to train an LDA classifier. During training, the overall
classification accuracy was 91.8%. Then, four of the six participants completed a session of
cue-paced motor imagery, with online feedback provided by the LDA trained with motor
execution. The online classification accuracy was 68.8%, close to a chance agreement.
EEG data recorded from the feedback sessions was used to update the classifier, defining
a second participant-specific frequency band, and retraining the classifier. The improved
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Table 5.2: Physiological phenomena and post-processing parameters (LDA)

ID Training Calibration & Evaluation

Frequency band Labeling window Phenomenon DT TH
(Hz) (s) (ms)
f1 f2

c1 15 20 5.5 6.5 ERS 400 0.43
c2 26 30 5 6 ERS 100 0.78
c3 18 25 4 5 ERS 248 0.68
c4 26 31 4.5 6 ERD 300 0.60
c5 15 19 6 7.5 ERS 100 0.84
c6* 21 26 6 7 ERS 400 0.41
c7* 9 11 5 6 ERS 300 0.69
c8 19 23 6 7 ERS 300 0.54

Naive participants marked with an asterisk (*).

classification accuracy went up to 80.8% (offline analysis).
The same four participants completed a third experiment of self-paced motor imagery.

All participants completed five runs (3 min each), with a total of eight (intended) acti-
vations per run. To evaluate this experiment, the participants were instructed to press
a button with their right thumb before attempting to activate the brain switch through
motor imagery (feet dorsiflexion). In this way, TP, FP, and FN could be estimated. Perfor-
mance was evaluated with the TPR and the positive predictive value

(
PPV = TP

TP+FP

)
. The

average TPR was 0.79, and the PPV was 0.84. FP/min (not reported) can be estimated
around 0.5 FP/min. However, it is possible that the brain switch reacted to a central beta
rebound following the button press instead of the participant’s motor imagery, biasing the
results.



Chapter 6

Online application: a hybrid BCI

One way to evaluate the online performance of an asynchronous brain switch, consists
on assessing the user’s control over a simple benchmark application (see Chapter 3). A
benchmark application provides a specific task and a set of rules, which the participant
must observe while operating the brain switch (or BCI). For example, Müller-Putz et al.
[192] used a video game to evaluate the control of a brain switch based on motor im-
agery, and to facilitate user training. In another example, Cheng et al. [148] conducted
a self-paced experiment consisting of focusing visual attention on a set of flickering lights
(LEDs), following a strict order, to evaluate the control of a SSVEP-based BCI. Note-
worthy, these experiments were designed to evaluate motor imagery and focused visual
attention independently.

A novel benchmark application could integrate motor imagery and focused visual at-
tention into a single experiment controlled by a hybrid BCI. Hybrid BCIs result from the
combination of a BCI (e.g. a brain switch) and another system, possibly a second BCI or
an assistive device [28–31]. Besides combining two or more systems, a hybrid BCI offers
some advantages over its individual components.

In this chapter, we realize a hybrid BCI by combining a brain switch with a SSVEP BCI.
To operate the hybrid BCI motor imagery and visual attention are sequentially performed
by the user. The hybrid BCI constitutes a benchmark application for the online evaluation
and development 1 of brain switch concepts.

6.1 Brain switch as a component of a hybrid BCI

A brain switch could be integrated into a hybrid system to enable/disable a secondary,
more complicated, multi-class BCI or another assistive technology. In this way, the brain
switch could disable the system during periods of non-intentional control, avoiding the
occurrence of false activations, should these happen. Additionally, a self-paced paradigm
with a well defined and expected behavior, allows evaluating the online operation of the

1Bauernfeind et al. [149], Bauernfeind [193] have used this application to evaluate an optical brain
switch based on fNIRS.
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brain switch. This Chapter presents the online operation of an ERS-based brain switch,
and its effect on the performance of a hybrid BCI composed by a SSVEP-based BCI and
the beta rebound based brain switch.

6.2 Methods

Data description

Six healthy participants (male, age 26.1± 2.9 years) completed an experimental session
involving motor imagery and SSVEP. Five out of six participants had previous experience
with motor imagery and SSVEP, but were unfamiliar with this particular paradigm. We
recorded the EEG form a Laplacian derivation over Cz and a bipolar derivation at electrode
position O1. Five Ag-AgCl were placed around Cz, and two additional electrodes were
placed 2.5 cm anterior and posterior to O1. Reference and ground electrodes were attached
to the left and right mastoid, respectively. EEG was recorded with a biosignal amplifier at
256 Hz, with a band-pass filter between 0.5 and 100 Hz and a notch filter at 50 Hz, applied
before digitalization.

We conducted the experiments in a quiet, unshielded room. During the experiments,
the participants sat comfortably on an office chair, in front of a table. A monitor placed
on the table, one meter away from the participants provided cues and online feedback. A
hand orthosis was also placed on the table, 40 cm away from the participant. This hand
orthosis was controlled by a SSVEP-based BCI. With this configuration, the participants
simultaneously observed the monitor and the orthosis.

The experiments were divided into three main parts. The first part included the training
of a brain switch based on the post-imagery beta rebound, and the calibration of a SSVEP-
based BCI. The second part involved the self-paced operation of a hybrid BCI composed
by the ERS brain switch and the SSVEP-based BCI. Finally, as a control condition, the
participants repeated the self-control paradigm with the SSVEP-based BCI only. These
main stages are described in the following sections.

Cue-paced motor imagery

Each participant completed two runs of cue-paced motor imagery without feedback. A
run consisted of trials with imagination of brisk feet dorsiflexion or rest (relaxed with eyes
open), with fifteen trials per class. At the beginning of the trial (t = 0 s) a fixation cross
appeared on the center of the monitor. Two seconds later (t = 2 s) an audible cue was
played, and an arrow was displayed as a cue. An arrow pointing downwards indicated
a trial of motor imagery, and an arrow pointing upwards indicated a trial of rest. Cue
presentation was randomized. The arrow disappeared at t = 3.25 s, followed by the cross
at t = 6 s. A blank screen was presented until the end of the trial (t = 8 s) and during the
inter-trial interval (random duration between 0.5 and 1.5 s). The trial timing is shown in
Figure 6.1.
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Figure 6.1: Cue-paced training paradigm. Besides minor differences in timing, the runs of
this paradigm included two classes: motor imagery and rest (relaxed with eyes open). Two
seconds after the beginning of the trial (t = 2 s) an arrow appeared on screen for 1.25 s,
the arrow could point downwards or upwards, indicating imagination of foot movement
(dorsiflexion) or rest (relax with eyes open).

Brain switch setup

We completed the brain switch setup by selecting the reactive band of the beta rebound,
and a specific time segment, which offered the best classification between the post-imagery
beta rebound and a reference interval (t = 0.5 to 1.5 s), for each participant. As described
in the last section of Chapter 5, we estimated the performance (10× 10 cross-validation)
of a LDA classifier trained on different logBP features at different time segments within
a trial. The frequency bands with the best performance (Cohen’s κ) were merged for
computation of a single, broad band feature. Finally, we selected the time segment where
the classification performance reached its maximum for setting up the classifier for online
operation.

To further reduce the setup time, we avoided the ROC analysis for selection of post-
processing parameters. Instead, we adapted the methods of Müller-Putz et al. [182] and
defined preliminary values for threshold (TH) and dwell time (DT). These two parameters
were manually adjusted for every participant during a test run. The initial threshold was
defined as the mean plus one standard deviation of the LDA output from the training seg-
ments, and the dwell time was defined to be one second. To complete the set of parameters,
and reduce the possible number of activations, the refractory period (RP) was fixed to two
seconds (512 samples). It is necessary to mention that length of the refractory period has
a direct impact on the ITR of a BCI.

SSVEP-based BCI calibration

Participants operated a SSVEP-based BCI to control a 4-step electrical hand orthosis (Otto
Bock Healthcare Products GmbH, Vienna, Austria). Details about this orthosis can be
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found elsewhere [194]. The hand orthosis supports wrist flexion, with four intermediate
steps (see Figure 6.2). Two LEDs attached to the orthosis deliver the visual stimulation for
the SSVEP-based BCI. One LED flickering at 8 Hz is used for wrist flexion, and another
LED flickering at 13 Hz is used for wrist extension.

Operation of the SSVEP-based BCI relied on the harmonic sum decision (HSD) [195].
The HSD evaluates the weighted sum of the spectral power at each stimulation frequency
and its 2nd and 3rd harmonics. The results of the HSD for n stimulation frequencies are
compared, and the maximum value is selected as command. The weights for the HSD are
computed as the average harmonic sum of each stimulation frequency during a period of
rest (one minute EEG recordings, relaxed with eyes open). In this period of rest, the visual
stimuli are inside the visual field, but the participants are instructed to avoid attending any
of the flickering elements. The SSVEP-based BCI evaluates the HSD based on the discrete
Fourier transform computed from the last second of EEG recordings (bipolar derivation
over O1). The output of the SSVEP-based BCI was further processed with a DT (1.56 s)
and RP (4 s).

Figure 6.2: SSVEP controlled hand orthosis. A 4-step (A→D) electrical hand orthosis
(Otto Bock Healthcare Products GmbH, Vienna, Austria) was fixed with a pair of LEDs
flickering at 8 and 13 Hz. Participants could control the movement of the orthosis by
focusing on one of these two LEDs (modified from [178]).

Hybrid BCI and self-paced paradigm

We realized a hybrid BCI by combining the ERS-based brain switch and the SSVEP-based
BCI (see Figure 6.3). The ERS-based brain switch enabled/disabled the flickering elements
of the SSVEP-based BCI, while the SSVEP-based BCI controlled the hand orthosis. The
self-paced paradigm required the participants to operate both BCIs sequentially. At the
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beginning of a self-paced run, the participants activated the brain switch to turn on the
visual stimulation, i.e. LEDs on the orthosis, enabling the SSVEP-based BCI. Next, the
participants operated the SSVEP-based BCI to change the positions of the hand orthosis
from fully extended to fully flexed, and back to fully extended. After completing this
task, the participants were required to activate the bran switch to turn off the visual
stimulation and to disable the SSVEP-based BCI. A non-intentional control period (one
minute) followed. The participants repeated the SSVEP control three times, with two
non-intentional control period in between (see Figure 6.4). Maximum duration of a self-
paced run was ten minutes. Participants were instructed to correct the false activations of
the brain switch, and the SSVEP-based BCI during the intentional control periods. As a
control experiment, each participant repeated the self-paced paradigm with the SSVEP-
based BCI only, i.e. the brain switch was removed and the LEDs were continuously on.

Hybrid BCI

SSVEP
BCI

ERD
BCI

motor
imagery

visual
attention

A
B
C
D

Brain switch Control of
orthosis

Figure 6.3: Realization of a hybrid BCI. A brain switch and a SSVEP-based BCI were
combined to create a hybrid system. To operate the hybrid BCI, users need to sequen-
tially change their mental strategy between motor imagery and visual attention (modified
from [29]).

Performance evaluation

The performance of the classifiers used for online operation of the brain switch was esti-
mated from the confusion matrix during training, and summarized with the classification
accuracy (class prevalence was the same at this stage). Activations of both BCIs were the
basis for performance evaluation of the hybrid system. We counted the true and false ac-
tivations of the SSVEP-based BCI, during intentional and non-intentional control periods
separately, and the activations of the brain switch during the complete run.
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Figure 6.4: Self-paced paradigm for the hybrid BCI. At the beginning of a run, the partic-
ipants perform motor imagery to close the brain switch and to turn on the LED’s on the
hand orthosis (top). By focusing on the different LEDs, the participants move the hand
orthosis (red triangles). After completing a control sequence (A→D→A, see Figure 6.2)
with the orthosis, a period of non-intentional control (duration: 60 s, showed in gray) for
the SSVEP-based BCI starts. The participants perform motor imagery to open the brain
switch and turn off the LED’s, avoiding movements of the orthosis. Participants were
instructed to correct false activations of the brain switch at any time, and false activations
of the orthosis only during the intentional control periods. A run ends after completing the
third sequence with the hand orthosis, or if the time limit is reached (ten minutes). For
illustration purposes, the bottom of the figure shows half of the orthosis control sequence.
Noteworthy, the participants did not wear the orthosis on their hand.
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To facilitate the interpretation of the performance evaluation, we combined true and
false activations into the positive predictive value

(
PPV = TP

TP+FP

)
. The PPV equals one

when there are no false activations, it equals 0.5 if the number of true and false activations
is the same, and it tends to zero if the number of false activations is larger than the number
of true activations. Although it might seem that this strategy disregards the importance
of the non-intentional control period, we consider that the estimation of the true and false
negatives is highly affected by class prevalence. As an alternative, we estimated the false
positives per minute (FP/min) from the periods of non-intentional control (SSVEP-based
BCI only), and for the brain switch during the whole run.

6.3 Results

Figure 6.5 shows an example of the self-paced paradigm with the hybrid system. For com-
parison, Figure 6.6 shows an example of the self-paced paradigm without the brain switch.
Both figures correspond to the evaluation runs of participant d4. Table 6.1 presents the fre-
quency band selected for each participant, and the classification accuracy obtained during
the setup of the brain switch. Average classification accuracy was 85.0± 6.6%. Notably,
classifier training does not impose any restrictions to the FPR. Table 6.2 shows the perfor-
mance evaluation for the brain switch. Figure 6.7 shows the average PPV and FP/min of
each participant in their individual runs, obtained during the self-paced operation of the
brain switch. Each participant completed two runs with the online self-paced paradigm,
except participants d3 and d4. On average, the FP/min was 0.47± 0.37. Additionally,
there were 7.58± 2.35 TPs and 3.50± 3.35 FPs, yielding an average PPV of 0.74± 0.14.
All PPV values were above 0.50, and above 0.70 in four out of six participants.

Table 6.1: Brain switch setup.

ID Frequency band Accuracy
(Hz) (%)
f1 f2

d1 20 24 95
d2 26 32 90
d3 25 27 76
d4 22 26 84
d5 25 29 82
d6 34 36 83

mean 25.3 29.0 85.0
s.d. 4.8 4.4 6.6

Table 6.3 shows the performance of the SSVEP-based BCI as part of the hybrid BCI,
whereas Table 6.4 shows the performance of the SSVEP-based BCI by itself, i.e. without
inclusion of the brain switch. Considering the hybrid BCI, the average TP/min were
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Figure 6.5: Example of online evaluation: hybrid system. Few seconds after the beginning
of the run, the brain switch enables the LEDs on the hand orthosis. A false positive
occurs after two movements of the hand orthosis. Motor imagery turns the LEDs back
on ( t = 50 s), and the participant completes the sequence with the hand orthosis. The
non-intentional control period (duration 60 s, marked in gray) starts immediately, and the
participant is notified on the computer screen. Two false activations of the orthosis occur
while attempting an activation of the brain switch ( t = 100 s). The second sequence is
executed without problem, but false activations occur during the second non-intentional
control period. Finally, the third sequence is also executed without problem. The figure
corresponds to the data from participant d4.
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Figure 6.6: Example of online evaluation: SSVEP. All three control sequences with the
hand orthosis are completed without problems. However, false activations occur during the
periods of non-intentional control (duration: 40 s, marked in gray). The figure corresponds
to the data from participant d4.

3.96± 1.34 and the FP/min were 0.84± 0.98 during intentional control. In addition, there
were 1.46± 1.18 FP/min during non-intentional control. Considering the SSVEP-based
BCI alone, the average TP/min were 6.87± 2.48 and the FP/min were 0.94± 0.76 during
intentional control. Furthermore, there were 5.40± 0.90 FP/min during non-intentional
control.

Noteworthy, the FP/min during non-intentional control were significantly reduced for
the hybrid BCI (p < 0.01). Figure 6.8 illustrates the reduction of FP/min. Although the
TP/min (intentional control) were also reduced significantly reduced (p < 0.01), there was
only a slight reduction on FP/min (intentional control) and the PPV. Another difference
between the operation of the hybrid BCI and the SSVEP-based BCI, is the time needed
to complete a run. The average time for the hybrid BCI was 429.64± 86.06 s, while the
operation of the SSVEP-based BCI required only 291.89± 48.23 s. This difference might
caused by the time needed to operate the brain switch, and a higher workload required for
control of the hybrid BCI.
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Table 6.2: Online performance of the brain switch.

ID TP FP PPV Time (s) FP/min

mean s.d. mean s.d. mean s.d. mean s.d.

d1 5.50 0.71 0.50 0.71 0.92 0.10 468 87 0.06
d2 5.00 0.00 1.00 1.41 0.83 0.20 457 61 0.13
d3 8.00 3.00 0.73 306 0.59
d4 7.00 2.00 0.78 346 0.35
d5 8.50 4.95 5.00 2.83 0.63 0.00 465 34 0.65
d6 11.50 0.71 9.50 0.71 0.55 0.03 536 11 1.06

mean 7.58 3.50 0.74 430 0.47
s.d. 2.35 3.35 0.14 86 0.37

Table 6.3: Performance of the hybrid BCI.

ID Intentional Non-intentional Time
control control (s)

TP/min FP/min PPV FP/min

d1 4.29 0.91 0.83 0.25 468
d2 2.69 2.73 0.50 0.25 457
d3 5.80 0.00 1.00 1.00 306
d4 5.04 0.27 0.95 2.00 346
d5 3.58 0.77 0.82 2.00 465
d6 2.38 0.37 0.87 3.25 536

mean 3.96 0.84 0.83 1.46 430
s.d. 1.34 0.98 0.18 1.18 86

Table 6.4: Performance of the SSVEP-based BCI.

ID Intentional Non-intentional Time
control control (s)

TP/min FP/min PPV FP/min

d1 6.06 0.91 0.87 5.00 319
d2 3.70 2.18 0.64 5.63 321
d3 10.10 0.00 1.00 4.50 229
d4 9.64 0.54 0.95 6.00 232
d5 5.77 1.38 0.81 6.75 338
d6 5.97 0.63 0.90 4.50 311

mean 6.87 0.94 0.86 5.40 292
s.d. 2.48 0.76 0.13 0.90 48
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Figure 6.7: Online performance of the brain switch. (a) Positive predictive value and (b)
false positives per minute of individual participants and individual runs are shown in gray
circles. Average values for each participant are marked with blue circles. All PPV values
above 0.50. All FP/min values below 1.2. Participants d3 and d4 completed only one run
of the self-paced paradigm.
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Figure 6.8: Reduction of FP/min in a hybrid BCI. False activations of the SSVEP-based
BCI during periods of non-intentional control differ significantly (p < 0.01) between the
hybrid BCI (continuous line), and the SSVEP-based BCI without the brain switch (dashed
line); showing that the brain switch effectively reduces the false activations of the SSVEP-
based BCI during periods of non-intentional control.
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6.4 Discussion

In this Chapter we have demonstrated the online operation of the Graz Brain Switch,
and its possible role as a component of a hybrid BCI. We realized a hybrid BCI with
the sequential operation of a brain switch and a SSVEP-based BCI. The hybrid system
provides control of a hand orthosis, while reducing the FP/min during periods of rest or
non-intentional control.

There are two main features of the hybrid BCI: (i) the reduction of false activations,
and (ii) the online evaluation of a brain switch. First, we show that including the brain
switch reduces the number of false activations by disabling the SSVEP-based BCI, during
periods of non-intentional control. A slight decrease of the TP/min and FP/min (for
SSVEP) in the hybrid BCI might have occurred because the participants needed more
time to complete a run with the hybrid system. Longer duration of the runs could be a
consequence of higher cognitive load due to the operation of the hybrid BCI, or it could
reflect the time needed to correct errors from one of the two BCIs.

Second, the online self-paced paradigm can be seen as a benchmark application suitable
to investigate, test, and develop different brain switch designs in real time applications with
feedback [149]. Without explicit cues, the self-paced paradigm described above provides
a guide for the expected behavior of the hybrid BCI; allowing the estimation of true an
false activations for individual components of the system. To assess the performance of an
asynchronous BCI, it is important to include periods of non-intentional control.



Chapter 7

Conclusion and further prospects

This thesis presented the design and evaluation of the asynchronous Graz Brain Switch.
After providing an overview of the beta rebound (Chapter 2) and current brain switch
designs (Chapter 3), we demonstrated the feasibility of realizing a brain switch based on
the beta rebound after execution or imagination of brisk feet dorsiflexion (Chapter 4).
Simulations of an asynchronous BCI revealed an average TPR of 0.74 for the detection of
overt movement, and 0.59 for the detection of covert movement. In both cases, the FPR
was below 0.10. The FPR limit was selected by design, and the brain switch could be
tuned to a lower limit. However, there exist a trade-off between reducing the FPR and the
highest TPR achievable. Although current brain switch designs aim at achieving an FPR
equal to zero, there is no online system with such performance.

Taking advantage of the similarity of the beta rebound after execution of physical move-
ment and after movement imagination, we proposed to set up the brain switch with data
recorded during actual movement, for later operation through motor imagery (Chapter 5).
In a training phase, we used motor execution data to set up a classifier with the best
performance possible. In a calibration phase, we applied this classifier to motor imagery
data and adjusted a set of post-processing parameters to limit the FPR (≤0.10). Finally,
we assessed the performance of this approach with a simulation of an asynchronous brain
switch. The detection of the post-imagery beta rebound led to an average TPR of 0.46
and an FPR of 0.11.

In some cases, a brain switch trained to detect the peri-imagery ERD could outperform
the original design of the Graz Brain Switch. Thus, the training and calibration phases
may consider both alternatives to offer the best performance possible. This methodol-
ogy presents a simple way to train a BCI for applications controlled by healthy users.
Nonetheless, it would be possible to obtain data from attempted or passive movements.
This would allow to use these methods in clinical applications for persons with stroke,
spinal cord injury, or in a minimally conscious state.

Next, we evaluated the online performance of the Graz Brain Switch with a novel bench-
mark application (Chapter 6). Since online evaluation does not provide the number of false
or true negatives, it is not possible to compute the TPR and FPR. Instead, we calculated
the positive predictive value (PPV) to summarize the performance of the brain switch. The
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average PPV was 0.74, with only 0.47 false positives per minute (FP/min). In comparison,
current brain switch designs have reported 0.70 FP/min in offline simulations [156, 163]
and 1.4 FP/min during online processing [162] for the detection of physical movement,
and around 3.0 FP/min [162] for the online detection of motor imagery (healthy persons)
and attempted movement (stroke patients). Additionally, we reported on the successful
implementation of a hybrid BCI, in which the Graz Brain Switch is used to enable/disable
a SSVEP-based BCI. In this case, the number of false activations during periods of non-
intentional control could be reduced by the switch operation.

Besides giving an overview on the beta rebound, in Chapter 2 we reported for the first
time on the beta rebound following the execution and withholding of physical movement,
and on the differences between withholding of overt and covert movement. Investigating
the response pattern, we observed a beta ERS (beta rebound) during the inhibition (with-
holding) of overt and covert movement. Comparing execution and inhibition of physical
movement (feet dorsiflexion), we observed a beta rebound in the same frequency band and
at the same electrode position, but with statistically significant differences in magnitude,
namely, a larger beta rebound after execution as compared to during inhibition. Interest-
ingly, withholding of motor execution and withholding of motor imagery present different
response profiles in the EEG, composed by an early beta ERD terminated by the beta
rebound (beta ERS, peaking around one second after cue onset). While the beta ERD was
similar in both conditions, the beta rebound was significantly larger during withholding of
motor execution. A possible interpretation for this difference is that motor execution de-
mands a stronger active inhibition of neuronal networks in the motor cortex, as compared
to motor imagery.

Future prospects for the Graz Brain Switch could be oriented towards enhancing its
performance. For example, by including additional features besides the post-movement
beta rebound. For the sake of practicality, the analyses presented in this thesis used a
single Laplacian derivation around electrode position Cz, i.e. a set of five EEG channels.
Although the beta rebound has a specific somatotopic organization, the localization of
beta oscillations’ sources in peri-Rolandic regions vary across persons [145]. It would be
interesting to analyze the different bipolar derivations that can be computed from this set
of electrodes, or from additional EEG channels to extract features that might be relevant
for classification. For example, the focal ERD/surround ERS phenomenon [70] could be
used to include information from the hand area (i.e. electrode position C3) to enhance the
classification accuracy of imagination of foot movement.

Hybrid systems that include other types of biosignals, e.g. the electromyogram (EMG)
or the electrocardiogram (ECG), could also benefit the Graz Brain Switch. Heart rate
changes are of special interest, due to the close relation between the central nervous sys-
tem and the cardiovascular system [196]. There exist a couple of reports on BCI control
including heart rate [197, 198]. In this line, we have started by analyzing the heart rate
during execution and inhibition of covert feet dorsiflexion (Go/NoGo experiment described
in Chapter 2). Imagination of a brisk dorsiflexion not only produces the characteristic beta
ERD/ERS pattern, but also a modulation of the heart rate (see Figure 7.1). The post-
imagery beta rebound roughly coincides with a heart rate acceleration. Both phenomena,
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i.e ERD/ERS and heart rate, display significant changes across sixteen naive participants.
Although this is a preliminary observation, we expect that including heart rate information
will boost the performance of the Graz Brain Switch at least in some participants.
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Figure 7.1: Post-imagery beta ERS and HR acceleration. (a) Time course of the beta
power after during imagination of brisk feet dorsiflexion. (b) Heart rate modulation during
the same condition. Gray lines indicate the responses for individual participants. Grand
average responses are plotted with black thick lines. A bootstrap algorithm was used to
identify significant changes across all 16 participants (single asterisk indicates p < 0.05,
and double vertical asterisks indicate p < 0.01.). Vertical lines indicate cue onset (Go). In
comparison with Figure 2.10, the responses in this figure have been computed relative to
cue onset, instead of motor offset.

From the investigation of the beta rebound after withholding of motor imagery, we
conclude that post-processing could enhance the performance of the Graz Brain Switch,
i.e. reduce the false activation rate. A beta rebound lasting longer than one second, should
be clearly identified as a post-imagery beta rebound, while a shorter beta rebound can be
considered as non-intentional control.



Appendix A

Inhibition of overt and covert foot
movement—detailed information

The tables in this section provide detailed information on the comparisons between the
post-movement beta rebound and the beta rebound during withholding of movement (ME-
Go vs. ME-NoGo), and the beta rebound during withholding of overt foot movement
(ME-NoGo vs. MI-NoGo); presented in Chapter 2.

Table A.1: Movement parameters and artifact free trials.

ID Reaction time Movement duration Artifact-free trials

(ms) (s) ME MI

mean s.d. mean s.d. Go NoGo NoGo

s1 393 368 2.48 0.26 40 38 51
s2 240 54 1.87 0.15 40 39 20
s3 288 75 1.42 0.1 40 39 56
s4 482 87 1.56 0.2 40 38 45
s5 395 109 1.84 0.28 40 39 31
s6 497 246 1.67 0.37 40 40 34
s7 213 106 1.15 0.24 40 39 39
s8 356 79 1.54 0.11 40 40 50
s9 253 66 1.83 0.38 40 39 25
s10 671 113 1.31 0.17 40 39 47
s11 360 76 1.6 0.11 40 39 27
s12 426 163 1.54 0.2 40 39 53
s13 265 85 1.31 0.23 40 39 31
s14 227 85 1.45 0.17 40 37 11
s15 480 110 1.7 0.17 40 39 24
s16 326 85 1.7 0.11 40 37 49

mean 367.00 1.62 40.00 38.75 37.06
s.d. 124.15 0.31 0.00 0.86 13.55
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Appendix B

A brain switch for the
able-bodied—detailed information

The tables in this section provide detailed information on the individual TPR and FPR
values of each participant, for the training (motor execution), calibration (motor imagery),
and the simulation (evaluation) of an asynchronous brain switch operated through motor
imagery of brisk dorsiflexion of both feet. According to Chapter 5, these tables represent
the ERD-based classification, the ERS-based classification, and the classification focused
on the detection of the beta rebound using a LDA as classifier.

Table B.1: Performance of the ERD-based classifier
ID Training Calibration Evaluation

TPR FPR TPR TPR FPR

c1 0.58 0.12 0.17 0.25 0.11
c2 0.46 0.23 0.30 0.17 0.10
c3 0.52 0.14 0.13 0.05 0.06
c4 0.67 0.06 0.70 0.57 0.09
c5 0.92 0.04 0.60 0.55 0.15
c6* 0.29 0.18 0.13 0.12 0.08
c7* 0.36 0.18 0.23 0.23 0.11
c8 0.36 0.18 0.33 0.23 0.14

mean 0.52 0.14 0.32 0.27 0.11
s.d. 0.20 0.07 0.22 0.19 0.03

Naive participants marked with an asterisk (*).
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Table B.2: Performance of the ERS-based classifier
ID Training Calibration Evaluation

TPR FPR TPR TPR FPR

c1 0.76 0.03 0.97 0.88 0.02
c2 0.70 0.21 0.77 0.68 0.13
c3 0.73 0.07 0.70 0.63 0.09
c4 0.66 0.09 0.10 0.12 0.18
c5 0.37 0.15 0.37 0.37 0.10
c6* 0.52 0.09 0.33 0.50 0.10
c7* 0.43 0.13 0.43 0.25 0.09
c8 0.84 0.09 0.37 0.25 0.13

mean 0.63 0.11 0.51 0.46 0.11
s.d. 0.17 0.05 0.28 0.26 0.05

Naive participants marked with an asterisk (*).

Table B.3: Performance of the LDA-based classification.
ID Training Calibration Evaluation

TPR FPR TPR FPR TPR FPR

c1 0.96 0.05 0.97 0.07 0.92 0.05
c2 0.96 0.28 0.27 0.08 0.52 0.07
c3 0.93 0.11 0.63 0.07 0.53 0.05
c4 0.75 0.40 0.37 0.09 0.45 0.10
c5 0.97 0.33 0.27 0.06 0.50 0.07
c6* 0.93 0.20 0.33 0.09 0.53 0.12
c7* 0.93 0.27 0.67 0.07 0.38 0.07
c8 0.93 0.27 0.37 0.09 0.22 0.12

mean 0.92 0.24 0.49 0.08 0.51 0.08
s.d. 0.07 0.11 0.25 0.01 0.20 0.03

Naive participants marked with an asterisk (*).
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