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Abstract

Passive UHF RFID is considered an enabler technology fdriiiexible, yet fully transparent
logistic applications. The possibility to identify and¢kaindividual items from the manufacturing
stage to the end customer provides unique possibilitieaal®dp insight to logistic processes and
supply chains. Although RFID technology has experiencgdifitant advances during the last
couple of years, there are still open issues related to datxiracies caused by the underlying
physical principles of operation. In particular, RFID ®rst face challenges in terms of missing
and false positive observations. Both effects lead to isistent data in the backend system.

This thesis addresses the problem of increasing the rasssiof RFID systems in logistic ap-

plications. We develop a framework that specifically deaih fialse positive observations and

missing tags on different abstraction levels. The preskemtedels cover three key aspects of the
RFID system: First, we present a model for RFID enabled supp&ins on the process level

which allows us to efficiently filter noisy observations. Tinedel provides a well-defined way

to integrate prior information about the typical behavibgoods in a supply chain and considers
the spatio-temporal correlation among RFID observatiodBscond, we develop a probabilistic

readpoint and signal model which is used in a classificatfgor@ach to improve the detection

performance of the readpoint. Third, we present an infammdusion approach for the purpose

of RFID tag localization by means of a hybrid RFID and computsion system.

The encountered variability and the fact that RFID is arrdiseiplinary field with heterogeneous
system components require a consideration on an adequsitaciion level. Throughout this the-
sis, we show that probabilistic methods are well suited ¢&léathe challenges in RFID systems.
Using a simulation engine and comprehensive empiricalséédafrom different RFID deploy-
ments, we provide an in-depth evaluation of the presentptbaphes and filter mechanisms and
validate the underlying modeling assumptions.






Kurzfassung

Die passive UHF RFID Technologie gilt als Meilenstein fdgistische Anwendungen im Hin-
blick auf Flexibilitat und Transparenz. Die MoglichkeEinzelteile entlang der Lieferkette ein-
deutig zu identifizieren und zu verfolgen bietet eine Viblzagon Mdglichkeiten und eine Fille
von Informationen tber logistische Prozesse.

Vom technologischen Standpunkt her haben sich passive UHIB Bysteme in den letzten Jahren
sehr stark weiterentwickelt. Die Genauigkeit der gentieDaten und Informationen stellt aber
nach wie vor den limitierenden Faktor fir den Einsatz voriDR&ar. Die inharenten Ungenau-
igkeiten werden durch die zugrundeliegenden physikadiscRrinzipien der Wellenausbreitung
verursacht und auf3ern sich durch eine limitierte Lesaratedas Auftreten von Falsch-Positiv
Observationen.

Diese Arbeit stellt verschiedene Ansatze zur ErhdhundDddengenauigkeit in RFID Systemen
vor. Im Rahmen einer probabilistischen Formulierung wird®ystemmodell prasentiert welches
es erlaubt, RFID Daten auf Prozessebene effizient zu bawen@ zu filtern. Durch das Modell

kann a-priori Wissen tiber den logistischen Prozess Hitigib des typischen Verhaltens und dem
Auftreten korrelierter Vorgange bertcksichtigt werd&nganzend dazu wird ein Signal-Modell
vorgestellt mit dem RFID Observationen auf der Ebene emedlesepunkte evaluiert und klas-
sifiziert werden kdnnen. Um den steigenden Anforderungedemer Anwendungen gerecht zu
werden, wird zudem die Fusion von RFID-Systemen mit altérea Sensormodalitaten unter-
sucht. Dabei steht die Lokalisierung von RFID Transpondepraxisnahen Szenarien im Fokus.

RFID Systeme sind durch eine Vielzahl von heterogenen Karapien gekennzeichnet. Gemein-
sam mit dem Umstand, dass RFID orientierte Prozesse miteim& hohe Variabilitat aufweisen,
macht dies eine Betrachtung auf einem angemessen hoherailsisgrad unabdingbar. In die-
ser Dissertation wird gezeigt, dass probabilistische @t ein geeignetes Werkzeug sind, um
die im Kontext von RFID Systemen gestellten Herausfordgeanzu losen. Zu diesem Zweck
werden die getroffenen Modellannahmen und die LeistattgKeit der vorgestellten Methoden
auf Basis von Simulationen und umfassenden empirischeenaaluiert.
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Introduction

Some years ago, Radio Frequency Identification (RFID) wasyined to fully replace the ubig-
uitous barcode technology in logistics and retail. Thedioemparison between these two tech-
nologies suggests that RFID is superior in almost everyaspxcept for the price. The advan-
tages are indeed manifold: RFID chips have a consideralfgdanemory, can be identified in a
bulk, do not require a direct line of sight to the reader, apiionally offer security features like
authentication or selective memory access. However, thH® Rtarket still hopes for the long
desired increase in sales and applications like the fratyueited Future Stor@ are still elusive.

The RFID industry has developed various different typeseiflRsystems and standards tailored
to the requirements of different applications![50]. Howevbe different system types consist
of the same basic building blocks: Theader (interrogator is designed for the communication
with (low-cost) transpondergtag9 by means of electromagnetic waves or inductive coupling.
For high-volume applications, the Ultra High Frequency @Hthand from 860 — 960 MHz has
become the operating frequency of choice in current RFIDoyepents. The EPCglobal, Class-1
Generation-2 (Gen-2) standard [[48] laid an important astoee and can be considered as the
enabler for RFID systems operating on the item-level. Tleists a vast variety of different
types of RFID tags designed for specific product categonedseavironmental conditions. Three

http://www.future-store.org/




Chapter 1. Introduction

examples for RFID tags are shown in Figlirel 1.1: An adhesiviti4purpose label, a paper tag,
and a so calletiard tagwith a robust plastic housing.

S

(a) Adhesive label (b) Paper tag

(c) Hard tag

Figure 1.1: RFID tags for different applications: (a) shows an adhesiwti-purpose label, (b) a
standard paper tag for fashion applications, and (c) a dedchhard tag with a robust
plastic housing.

So when RFID technology is superior to barcodes in almosiyeapect, what are the factors that
still prevent a mass deployment? As stated above, the kegrfadhe price in comparison to well
established, barcode based identification systems. Iti@ualdine nature of passive RFID systems
exhibits some peculiarities and technological challerthas make a plug-and-play deployment
difficult and require special attention.

1.1 Passive UHF RFID

The unique feature that tags are remotely powered by theresebles high volume applications
since tags can be built as small and ubiquitous devices utitho integrated power supply. In-
stead, tags draw their operating power solely from the figldted by the reader. The operating
principle of a passive RFID system is shown in Fidguré 1.2. dleetromagnetic field emitted by
the reader is used to power the tag and to transmit data anthands. Whereas the commu-
nication from reader to tag is based on amplitude modulatidormation from tag to reader is




1.1. Passive UHF RFID

transmitted by means of a load modulation.

Energy, Data
e

Antenna 1

Tag
Reader

Antenna N

Data
~ e -

Figure 1.2: Operating principle of passive RFID systems: RFID tags amggped by the reader-
field. Data and commands from reader to tag are transmitteddans of amplitude
modulation, whereas data transmission from the tag to thgereis based on a load
modulation.

Advances in reader and tag technology over the last yeams femulted in considerable read-
ranges of up td5 m under ideal conditions. These advances are best demeuashytomparing
the sensitivity of the very first Gen-2 transponder chipshwiiiday’s state-of-the-art: Impfhj

a leading manufacturer of transponder chips, reader chipd,readers released the Monza/ID
transponder chip with a sensitivity ef11.5 dBm as one of the first Gen-2 compliant transponder
chips in 2005([85]. The latest chip, Monza 5, exhibits a h@ahsensitivity of—17.8 dBm [86],
providing a significant increase in readrange and oriemtdtisensitivity.

However, for typical applications, readrange is not thetiimg factor. Due to the fact that com-
munication is based on the electromagnetic wave propagatis not possible to define a precise
interrogation zondor RFID readers and antennas. For an idealized system, asishown in
Figure[1.3(a), the interrogation zone is a specific volumknofvn dimensions in which a present
tag population can be identified with a probability 8§ = 1. In this context,Py is referred
to asdetection probability Outside the interrogation zone, the detection probgh#itP, = 0.
However, practical systems as shown in Figure 1.3(b) do xtubé an ideal detection probabil-
ity inside the interrogation zone and the detection prditgluiutside the interrogation zone does
not vanish. This has two immediate consequences: Firstiegttln probabilityPy < 1 causes
that a certain percentage of tags in the interrogation zeoneti identified, leading téalse nega-
tivesor missing observationsSecond, the nonzero probability to detect tags outsidel¢seed

2http://www.impinj.com/
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(a) Ideal (b) Real

Figure1.3: Ideal vs. real interrogation zone. Whereas an ideal RFID system haslladefined
interrogation zone where the detection probabilityPis = 1 (a), practical systems
do not show this property and suffer frof@se positiveandfalse negativdmissing)
observations (b).

interrogation zone causes so calfatse positivedag readings.

The factors that cause a non ideal detection probabiliigénthe interrogation zone of an RFID
system are manifold. First, the operating principle of pasRFID systems imposes challenging
conditions in terms of the tag power supply and the commuioicdink. The multipath channel
characteristic leads to so called dead zones with insuffieieergy to power the tag [13]. Second,
RFID tags are required to be small and cheap and therefoeelinaited capabilities. This means
that there is only a minimum functionality regarding powepgly stabilization, stable data trans-
mission, and anti-collision schemes. Third, the electrgmatic properties of tagged items can
severely affect the identification performance. Espegialbjects containing water or reflective
materials introduce challenging conditions and resulteivese performance degradation due to
absorption or detuning phenomenal[16]. Finally, the ingirgaitem throughput imposes a limi-
tation especially in case of moving RFID tags or readersh@lgh single tags can be identified
at considerable velocity, increasing the number of tags ialsreases the required inventory time
during which the tags must be present in the interrogatiore zdlikitin and Rao/[152] provide a
concise summary about the different impact factors in RBi®ems. In terms of the missing tag
problem, a careful choice of the transponder type, anteesm, and system setup is important.
Typically, this involves extensive evaluations and testsrd) the deployment phase of an RFID
system to find the optimal configuration for a given scenario.

The problem of false positive reads stems from the fact thigirmas show a specific, environment
dependent radiation pattern which contradicts the remeérg for a well defined interrogation
zone. Conductive materials with dimensions that are lagyepared to the wavelength reflect
incident electromagnetic waves and lead to undefined ogation zones in real-world deploy-
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ments. This especially causes problems in environmentsendpace is a scarce resource, as it is
typically the case in warehouses and distribution centers.

1.2 Motivation and Contributions

The lack of a well defined interrogation zone and the non ide&tction probability have one
major implication for RFID systems: Noisy data. The noiserst from the fact that a reader may
fail to identify a tag inside the interrogation zone or unteshreads from tags located outside
the desired volume. Depending on the application, this feereht, sometimes immediate con-
sequences. Consider an RFID system for EAS (Electroniclargurveillance) in a retail store.
In this scenario, continuous false positives reads thggéri false alarms introduce considerable
problems in terms of customer acceptance and are a serigursi@nt against the use of RFID.

On the long run, the problem of noisy data could be partlyesthly means of an accurate local-
ization of RFID tags. Knowing the exact position of a tag deslthe system to decide whether
it is inside the defined interrogation zone or not. Howevemexise localization of RFID tags in
practical applications is difficult to achieve within thenlts of the narrowband EPCglobal stan-
dard [13]. Similarly, the problem of missing tags is diffictd solve, even though readers and
tags are steadily improving in performance and sensitivity

From a practical point of view, this means that there are idenable open issues for the mass
deployment of RFID systems which cannot be solely tackleddwances in reader and tag tech-
nology. Since practical applications have stringent perémce requirements in terms of detec-
tion and false positive probability, additional concepts sequired which help to improve the
data accuracy. This motivates the use of top-down-con@qutsmodel based approaches which
are employed successfully in other fields facing similailehges. For model based approaches,
the nature of RFID systems introduces additional compledite to the integration of several
heterogeneous components. Consequently, the researstiogeeaddressed by this thesis are:

e Can the problem of noisy data in RFID systems be mitigateddansof a top-down mod-
eling approach?

e Is a probabilistic framework suitable to deal with the pattiar properties and heteroge-
neous components in an RFID system?

The idea of a top-down modeling approach stood at the beginoii this thesis project in 2010.
The goal was to establish a framework for RFID systems toawvgpthe data quality by consider-
ing the following aspects:
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e Business process informatioithe flow of products in typical applications follows certain
rules. Usually, items are moving from the manufacturingystaver a network of distribu-
tors to a retail shop and finally to the end customer througétaark referred to asupply
chain The information about the typical goods flow can be considién a model to eval-
uate individual item trajectories. Another aspect on th&r®ss layer is the fact that items
are usually aggregated in packaging units for easier tmatetjon and handling. This intro-
duces additional information by means of spatial and tealptam relationships. Logistic
processes hence provide prior information aboutypeal behavior of items in the supply
chain which can be integrated in a high-level RFID systemehod

e RFID system propertiestn order to account for the inherent observation noise, thd-m
eling framework should specifically consider the properti¢ RFID systems in terms of
false negative and false positive observations. A detalieclission about the RFID system
model that takes into account the business process infrnmi@tyether with the particular
RFID system properties is provided in Chapter 3. Due to thetfeat empirical data from
large scale practical applications is scarce, a simuldteimework has been developed to
verify and to evaluate the discussed modeling approackmesoritrast to existing simula-
tors, this framework provides a combination of a high-lestgdply chain simulation and the
generation of low-level RFID observations. The simulataod ¢he underlying concepts are
described in detail in Chaptg} 5.

e RFID readpoint and low-level featured=rom a high-level perspective, the detection of
RFID tags is a binary event — either a tag is detected by a odaidpr not. RFID systems,
however, provide more detailed information for every reaeng, which opens up several
possibilities to evaluate and assess tag read events. alakde information is discussed
and integrated in a readpoint and signal model which is dsedi in Chaptér 4. The signal
model forms the basis for a classification approach whichbeasmployed at the readpoint
level to identify and suppress false positive observations

¢ Information fusion:The combination of different information sources and semsodali-
ties is a common approach in various technical systems datdth noisy data. Chaptel 6
gives an overview over RFID related sensor fusion appraathéhe recent literature and
discusses computer vision systems as an attractive fusiodidate. In particular, we de-
velop a localization system that combines the informatiomfa mono camera with RFID
read events to determine the location of individual itema stene.

The discussed aspects have been extensively studied doeicgurse of this thesis project. Con-
sequently, this lead to a number of publications which atérmad below for detailed reference.
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1.2.1 Publications

The joint consideration of business process informatiahRIRID system properties was achieved
in a flexible discrete time state-space-model which wasgiessented at the IEEE RFID confer-
ence in 2011:

[6€] M. Goller and M. Brandner. Increasing the robustnesRBID systems using a
probabilistic business process model. Poster Presemtéii&E E RFID, 2011

The ideas behind this approach were continuously refine@stethded by a classification mecha-
nism that jointly considers business process informatiahlaw-level RFID data to identify false
positive and false negative observations. In order to aftawa convenient evaluation of differ-
ent ideas and modeling concepts, we started the develomhariRrobabilistic RFID Simulation
Engine —PRISE In contrast to other simulation frameworks that focus ortipalar problems
such as the UHF channel or communication protocol, PRIS&valffor the simulation of large
scale RFID systems and specifically considers the busimesess layer by simulating high-level
item trajectories. The system model and the simulationrengiere continuously optimized and
evaluated by means of data from real-world RFID instalfegian different applications. This
work resulted in a publication which was presented at theDRFdchnology and Applications
conference in 2011.:

[6€] M. Goller and M. Brandner. Probabilistic modeling of RFbusiness processes.
In Proc. IEEE RFID-TApages 432—-436, 2011

The developed framework was further improved by integgagircontinuous time motion model

and an RFID sensor model. Using empirical data from actiyelogenents, a comprehensive

validation of the modeling assumptions was performed. Eselting state-space model and an
algorithm for process-level localization were presentetha IEEE International Conference on

Wireless Information Technology and Systems 2012:

[71] M. Goller and M. Brandner. Process-level localizatadRFID tags using prob-
abilistic models. IrProc. IEEE ICWITS$2012

The second part addressed in the course of this thesis pdgals with RFID systems modeling
on the readpoint level. In this context, the goal was to dgyvel probabilistic framework with
the capability to evaluate and classify read events withitedfshelf RFID hardware. Based on an
analysis of different feature attributes and previous warkeadpoint modeling [67] with HMMs
(Hidden Markov Models), an experimental study about diffgrstrategies to evaluate low-level
signal features was performed and published at the IEEE RBiierence 2011.:
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[6€] M. Goller and M. Brandner. Experimental evaluation ¢fIR gate concepts. In
Proc. IEEE RFIDQ pages 26-31, 2011

The main result of this work was that the performance of iddial readpoints can be significantly
improved by means of a classification scheme using an apateystem model. The readpoint
model based on HMMs was gradually improved to provide a flexitamework for different
feature attributes. The model has been evaluated in typmaications, both in laboratory envi-
ronments and practical deployments. The results of therimpatal evaluation were published
at the European Conference on Smart Objects, Systems ahddlegies 2012 and awarded as
Best Paper:

[7Q] M. Goller and M. Brandner. Evaluation of feature atiriéss for an RFID con-
veyor belt application using probabilistic models.Rroc. SmartSystec¢t2012

The consequent next step for a general readpoint model vigststigate on more advanced sen-
sor modalities. For logistic applications in automatedimmments, standard proximity sensors
provide a robust and deterministic information due to welired boundary conditions such as
known object dimensions and a fixed movement speed. Howttese sensor modalities are not
applicable to other use cases like warehouse portals ofdhenaentioned EAS scenario. For this
reason, computer vision systems were investigated as eomapltary sensor modality with the
capability to provide accurate location and tracking infation.

The increasing requirements in terms of detection perfao@and item throughput in state-of-
the art logistic applications motivated further resea@lnprove the detection performance of
practical RFID deployments. With the background of a prdistic framework, this research was
focusing on diversity concepts in general, and spatialpeid diversity in particular. Whereas

the idea of spatial diversity is widely developed in wirsle@mmunication systems, it requires
special attention in the context of RFID. Backed up by extenempirical data, a model for

cooperative RFID readpoints was developed, leading to endbpublication submitted to the

IEEE Transactions on Instrumentation and Measurementi3:20

[72] M. Goller, M. Brandner, and G. Brasseur. A system modetboperative RFID
readpoints.Submitted to the IEEE Trans. Instrumentation and Measuneér2€13

The problem of noisy observations due to the discussedertygds in RFID systems have been
addressed by probabilistic modeling concepts on diffesbatractions layers. Viewing RFID sys-
tems in a probabilistic context enabled us to effectiveimbme different information sources and
properly address the challenges introduced by the heteeogis system components. Due to the
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close cooperation with an industrial partner, the concdpt&loped in this thesis were success-
fully applied to a number of RFID projects in logistic andaiéscenarios. Besides the insights
gained from practical implementations, the individualjpcts provided us with experimental data
and served as a benchmark under realistic operating consliti
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Related Work

RFID systems comprise a variety of heterogeneous compea@ut therefore face diverse ques-
tions, reaching from hardware-related topics such asitiaog chip design up to software devel-
opment, database design and supply chain considerationhi& reason, the literature on RFID

related topics is also very heterogeneous and charaadvizenterdisciplinary approaches. This
chapter gives an overview over the activities in the diffiémesearch communities related to this
thesis during the last years. In particular, we provide aesygperspective view of the different

approaches, discuss their advantages and limitationsightfight the open issues.

Traditionally, RFID system design and deployment is chiarézed by extensive experimental
evaluations and feasibility studies. Due to various platséffects, the most important ques-
tions for an RFID system are still the ones about the effedistection probability, effective read
range, and maximum achievable item throughput. Severlbethave presented experimen-
tal studies solely devoted to these performance metricdtaid dependence on environmental
factors [16, 277, 39, 44, 60, 95, 103]. The reasons why thig tyjpanalysis is so popular and
therefore often encountered are twofold: First, the ditegbrobability and read range are the
most basic performance metrics that are directly visibléanéoend-user. They can be determined
without specialized measurement equipment which reddwesdamplexity of the experimental
setup. Second, the detection probability is by far the nmogiortant and concise quantity that

11



Chapter 2. Related Work

describes the performance of an RFID deployment.

Although studies on this level provide a concise picturehef performance limitations, they do
not explain the involved physical effects that lead to a eased system performance. For this
reason, there are various experimental studies that @awigortant insights on a lower abstrac-
tion level. Nikitin et al. have published substantial work in terms of tag performasessitivity
and impedance measurements and the impact of different coioation protocol parameters
[148,149| 153, 154, 156]. Similarly, other authors havestigated on these aspects with a focus
on tag and antenna performance [29,135, 65, 75, 189]. Sinte Rstems are primarily limited
in the forward link [115], tag related measurements haveived a lot of attention in the commu-
nity [31,/124/129|, 133, 172, 195]. Closely related to thsugsis the wireless UHF channel. The
wireless multipath channel in the context of RFID systenssheen studied extensively by differ-
ent researches and considerable effort has been devotedrined modeling and characterization
[13,/80,/131) 139].

Whereas the authors in the literature discuss evaluatienasios on different abstraction levels
and analyze different impact factors, the basic conclissame very similar: RFID systems offer
a fast and reliable method to identify tagged objects undieslized conditions but suffer from
performance degradations in typical industrial environtee In particular, multipath propaga-
tion and the presence of metal or water lead to a significasredse of the detection probability.
Consequently, the challenges encountered in RFID deplotgraee approached on a broad basis.
From a high-level perspective, these approaches can beeapdato hardware related concepts,
diversity schemes, and methods targeting the protocot.|&iace the RFID tag and the forward
link are the primary limitation, there are continuous ademin transponder chip technology and
tag antenna design [128, 160]. There exists a huge divarsRFID tags for different environ-
mental requirements, for example tags that are especiadligded for the application to metallic
objects. The increase in sensitivity, improvements inrdaton insensitivity and a certain tol-
erance to particular item materials are the key enabler FIDRiriven supply chains in various
industries. However, the physical limitations that leaditoon ideal detection performance are
still an important reason that impedes the mass deployniésile RFID.

To overcome this issue on another system layer, RFID systenesadopted several diversity con-
cepts|[183], similar to other wireless communication systeThe most intuitive approach in this
respect makes use of several RFID antennas to maximize tieeag® in an interrogation zone
and to increase the detection probability. Commonly, tpigreach is implemented by means of
a simple time-multiplexing scheme for the different anmnMore advanced approaches, such
as presented by Angerer et. all[11} 12] include a signal psicg block as countermeasure to
the undesirable properties of the wireless multipath chirirhe diversity introduced by multiple

12



RFID tags attached to the same object is another intuitivihodeto increase the system perfor-
mance [183], which, however, is rarely employed due to tloesiasing costs. Instead, temporal
diversity by means of repeated inventory sessions is a émttjufound approach that has been
extensively studied in the literature [57, 88, 161]. On thevdside, temporal diversity automati-
cally increases the overall inventory duration and is tfeeeea limiting factor in terms of system

throughput.

The multiple-access problem is an inherent charactedt@ommunication systems in general,
and RFID systems in particular due to the unknown number gd ta the interrogation zone.
In RFID systems, this problem is solved by an anti-collissmeme which is used to single out
particular tag responses. Therefore, the anti-collisimtedure is a key parameter in terms of
throughput and efficiency [32, 105, 106]. Several authoks lpwesented concepts for enhanced
anti-collision schemes [115, 177, 191, 199] which show m@rable throughput improvements
compared to the current standard. In addition to the featspecified in the EPCglobal standard
[4€] such as different sessions and tag muting, advancea@tision schemes also improve the
detection probability for a given RFID deployment by pramgladditional time-slots for tags that
are particularly hard to identify.

Although the effective detection probability is the mospintant performance metric for an RFID
system, the problem of false positive observations is ofkppportance to the data accuracy in
the backend system. Characteristic scenarios that emzehth consequences of false positive
observations include the checkout-desk in a retail stor@anoRFID driven article surveillance.
In both cases, false positive observations not only imgerdata accuracy, but also have im-
mediate impact on the end customer in terms of erroneowusdiilthe characteristic false alarm.
Among other performance metrics, this issue is investiyatea real-life environment by Al-
Kassalet al.[5]. The main conclusion is that the value of an RFID systemasnly determined
by the achieved data accuracy. For this reason, considardgarch has been conducted targeting
the false positive read problem. The different approachege from a geometric tag localization
over classification schemes to high-level process modalnththe integration of different infor-
mation sources.

The most popular approach to eliminate false positives mcemed with the geometric local-
ization of RFID tags. The idea behind this approach is sinaplé intuitive: If a reader is able
to determine the exact tag location, it is possible to dewillether the tag is located in the de-
fined interrogation zone or not. However, tag localizatinrpassive UHF RFID systems is a
challenging task and the accuracy is impaired by severtrdiit aspects. First, the EPCglobal
standard is merely designed for the identification of olsjestd does not explicitly address lo-
calization issues. This is reflected by the limited bandwiatailable in UHF RFID systems.
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Second, the harsh channel conditions in terms of multipatipggation make the localization
increasingly difficult, especially in indoor environmeniBhe localization approaches discussed
in the literature are manifold and heterogeneous which makdirect comparison difficult. A
characterization can be carried out by means of the empleiggthl features [136]. The first
type of localization methods employs the RSS (Received &i§trength) or RSSI (Received
Signal Strength indicator) from a backscattered tag resp@n8, 94, 173] to estimate the dis-
tance between reader and tag. In addition, several appeading advanced tracking strategies
[117,1145] have been presented by different authors. Lratidin using RFID has also become
a popular topic in the robotic community where reference @@ frequently used to localize a
mobile robot[[33, 38, 185]. Although the problem in this amiitis to determine the location of
a reader, the principles are very similar to tag localizasgstems. The second type of methods
to determine the location of individual RFID tags is basedtw phase information [150], for
example with a synthetic antenna aperture [137].

Both RSS and phase-based systems have their limitatioesnts tof accuracy due to the difficult
environmental conditions. For this reason, extended amies including information fusion
concepts and the adoption of computer vision systems| [8F], Hdve been developed. These
systems provide a more accurate localization of indivichigécts due to the employed camera
system. In addition, systems that work beyond the EPCgkthaldard specifications (e.g., ultra-
wideband systems) have been developed that show a cord@érgrovement in localization
accuracy|[123]. The capabilities of the different systenssubsed in the literature are usually
demonstrated in well defined setups with a low number of t&g=al-world applications which
usually exhibit a considerably larger tag population aredneer still an open issue with respect
to an accurate localization. To provide the required aagyfature RFID standards will need to
specify a considerably larger bandwidth|[13] compared toeru state-of-the-art systems.

Besides the geometric tag localization, there are altenablutions to the false positive read
problem. On the hardware layer, there exists a variety abogt including shielding structures
or special antenna designs for particular applicationd,[135]. Whereas shielding structures are
typically bulky, inflexible, and costly to install, apprdees based on a specialized antenna design
have the disadvantage that they are usually tailored toyaspecific setup and require a lot of
engineering and tuning during the deployment phase.

Somewhere in between hardware related approaches andldofuth localization are filtering
mechanisms that try to assess the characteristic of tagnssp to decide whether a tag was de-
liberately identified or not. In this context, different éiithg and cleaning mechanisms have been
proposed as described in a recent survey about data pmogessRFID systems by Aggarwal
and Hanl|[2]. Pioneering work in terms of data cleaning has pedblished by Jeffregt al. [90].
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The authors use an adaptive temporal windowing technigaertipensate for missing reads and
suppress false positive tag observations. Besides therfijteapability, this work provided sub-
stantial novelty by defining a major and minor detection eagior RFID readers and by inter-
preting the tag detection process in a probabilistic cant@©onsequently, different researchers
have build up on this idea [76, 101, 111, 181,/198] and praVieddensions and improvements.
Temporal filtering mechanisms provide an effective sumpoesof false positive observations in
specific applications but are not directly applicable to s@menarios such as the commissioning
verification of individual packaging units. However, shigiwindow techniques form the base-
line for many RFID systems to increase the data accuracy.xgmsion to the discussed sliding
window schemes, an approach that integrates the RSS iniommaovided by RFID readers has
been presented by Kellet al. [99,100]. The authors try to extract scalar metrics thatdes a
particular tag response and perform a classification tindisish between stationary and moving
tags in a dock-door scenario. Their work is especially notéwy since it is based on a large scale
dataset from a real-world application, in contrast to malséppublications in this field.

As a complementary idea to the discussed low-level appesadeveral researchers have devel-
oped systems that use high-level prior information [98/]11%nce RFID systems are usually
employed in a certain supply chain structure [22], it is fassto consider the typical behavior
of tagged items in terms of a model. The basic idea to suppaéss positives is then to use the
learned model and evaluate a given observation. Besidéslgieepositive tag problem, it has been
shown that an adequate supply chain model can also be ussediarity related aspects such as
cloned tag detection and anti counterfeiting [119] as wels@apply chain visualization and pro-
cess analysis [83, B4]. Beyond the actual supply chaintsireicother authors propose methods
to integrate additional prior information such as the sptgimporal correlation among individ-
ual read events [30, 146, 167]. These systems have in commbthiey rely on a probabilistic
formulation and are hence suited for the integration in agarsystem model.

Although there are significant advances in terms of RFIDesygterformance, the problem intro-
duced by noisy RFID data is still an open issue. Since tharaigoal of RFID deployments is
to provide information about a particular environment, ititeerent noise impairs the information
quality and therefore has impact on the value of the RFIDesgstself. The challenges in terms
of missing and false positive observations can be addressatifferent abstraction levels and
there exists a huge variety of different approaches. Thgseaches are very heterogeneous and
it is difficult to integrate them in a generic, flexible framank. This thesis aims to fill this gap by
means of a generic modeling framework that is capable toleatiffierent abstraction levels and
integrate heterogeneous information sources.
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RFID System Modeling

The peculiar properties of passive UHF RFID systems resylbtentially noisy data in the back-

end system. This noise is mainly caused by the lack of a wéilheld interrogation zone and a
variety of physical effects that impair the system perfanoea This chapter presents top-down
modeling concepts designed to tackle the problem of noid{pRBservations. First, we develop

an RFID system model which is able to describe the dynamitgpisal supply chain structures

and specifically considers the non-ideal RFID system ptigsein terms of a sensor model. The
model forms the basis for a process level localization meisha and additionally allows us to

evaluate the performance of an RFID system at runtime. Skeowg present an approach to uti-
lize the information about spatio-temporal item relatlips as complement to the RFID system
model. In particular, we develop a co-occurrence model poesent the relationship between
individual items in a supply chain.

The increasing requirements for logistic systems in terftisre, costs and flexibility have led to
highly complex process structures and the need for powksitkend IT-systems to provide a fast
and accurate information exchange. From a high-level petse, the task of logistic systems
seems simple: Establish a goods flow to supply a specific mestdemand in a timely fashion
with a certain quality, low costs and the correct informatielowever, this usually involves long
and complex network structures with different manufaatyra distribution network and retail
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stores. A simplified example of a three tier supply chain iewshin Figure[3.l. Goods are
transported from different manufacturers (tier 1) over stritiution network (tier 2) to a set of

retail stores (tier 3), where they are finally sold to the endtomer.

Customer

Manufacturing Distribution Retail

Figure3.1: Exemplary supply chain: Goods move along typical trajéesofrom manufacturing
over a distribution network to retail stores and are finatlidgo a customer. A typical
trajectory for an article could hence span from the two mactufrers)> and Mg over
the distribution partner®; and D4, respectively, to the retail shoR;: where it is
bought by a customer.

Depending on the type of product or product mix, a supply releain exhibit different levels
of complexity. Typically, every stage involves a set of suliimate process steps, giving rise
to a self-similar structure [179], as exemplary shown foetit store in Figuré _3]12. A typical
retail store features a goods inbound where deliverediestare received. The goods are then
placed in a storage area and are finally presented on thdlsaledRegardless of the supply chain
structure and the number of hierarchy levels, inventory@ddr management require an accurate
information flow and identification of goods and transadiomo provide information about the
current location of individual items, an RFID system heneeds to automatically identify goods
as soon as they enter a specific process stage. For this pulRBHD hardware is installed at
critical locations in the supply chain. In this context, wefide anRFID readpointR as a set of
RFID readers, antennas and additional sensors that bedanggecific process step.

Depending on the hierarchy level at which RFID readpoirgsistalled, the location information
can be provided at a certain discretization level. The bfasictional principle, however, is in-
dependent of the hierarchy level: As soon as an item enterstlrrogation zone of a particular
readpoint, the RFID reader identifies the item and triggeesdcation update. At this level, we
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can hence definer@ad even{or RFID observatiohas a binary variable

1 iftag is detected by readpoifk;
g Yy p (3.1)

Z; = .
0 iftag is not detected by readpoiR;

lllustrated by means of the exemplary retail store in Figg an item/; is received and identi-
fied at the goods inbound which causes a location updatedibstire R, . Similarly, the location
inside the shop is updated with every new observation. lexégnt of the hierarchy level in the

Ry Sales floor 1 \

Inbound Storage

Figure 3.2: Zoom into an exemplary retail store with different proceteps and locations. After
receiving a set of goods in the inbound area, they are tygitrahsferred to the storage
location before being presented on the sales floor

Sales floor 2

-

supply chain, every stage has a set of characteristic fiegper

e Physical location:At the highest hierarchy level, this can denote the locafimtdress) of
a manufacturing plant or distribution center. At a lowereethe location can for example
refer to a specific region in a warehouse or store su@tasge arear Sales floor 2

e Dwell time: Defines how long items remain in a particular supply chaigestddepending
on the process, we can identify two possibilities that ottarize the dwell time: Either, it
is determined by process requirements (e.g., storage tingqueriod, duration of certain
manufacturing steps or transportation), or external factach as customer behavior. The
first case especially covers process steps in manufactandglistribution where the dwell
time typically is determined by the duration of certain mi@eturing steps. For the second
case, the dwell time provides substantial information &lloe process for the maintainer
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of a supply chain. For example, the information about hovgloertain products are pre-
sented on a sales floor before being sold is valuable inféom&ir management tasks and
marketing.

e Previous process stepdPefines a set of previous stages in the supply chain from which
items can be transferred to the current stage.

e Subsequent process stepa: analogy, this is a set of subsequent process steps to which
items can be transferred from the current stage.

The discussed properties define the topological structadettze dynamic behavior of a supply

chain. As an additional characteristic, logistic applimas usually utilize different sorts of pack-

aging units for item aggregation and transport. Typicalneples are pallets, cardboard boxes
or packs for hanging garments. Regardless of the physiogkepties, packaging units introduce
logical item units and give rise to a certain structure andgetation in the goods flow. This is a

noteworthy aspect that provides prior information abouadigular supply chain.

Following a top-down approach, the remainder of this chaptesents a probabilistic process
model to describe the characteristics of modern RFID draugoply chains. The model charac-
terizes the goods flow in terms of a motion model and spedifiealdresses the RFID system
properties by means of a sensor model. Besides the genegligk discuss a mechanism for
process-level localization and present a method to edirtigt model parameters. The charac-
teristic of spatio-temporal item relationships in a supgiain are utilized in two different ways.
First, we describe an online, high-level system monitorimgchanism to estimate the detection
probability of individual readpoints at runtime. Second utilize the spatio-temporal relation-
ships between individual items in a co-occurrence modahd¢oeiase accuracy of RFID observa-
tions.

3.1 Probabillistic Process Model

The most noticeable aspect that characterizes a supply chgoods flow along the different
stages and process steps. This flow is difficult to descrilzedaterministic way due to the high
dynamics and the wide variety of different products and @ssing steps. For this reason, an
adequate approach to accurately consider these chasticteis the use of a stochastic model. In
particular, Continuous Time Markov Chains (CTMGQs) [169bad for a concise description and
provide a powerful mathematical framework. A CTMC

A= (m, P,p) (3.2)
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comprises the initial state distributienand describes the dynamic behavior in terms of the transi-
tion probability matrixP and the dwell time parametgr. Similar to discrete time Markov chains,

a CTMC is a directed graph consisting &fstates and? edges representing transitions between
the states, as shown in Figure]3.3. The state-space (X3, ..., Xy ) represents the different
stages in the supply chain and the transition probabilityrimantriesp;; describe the probability
for a transition fromX; to X; for a particular item. In contrast to discrete time Marko\aicis,

Pkj

Xi Dik Xk
i Kk

Figure 3.3: Continuous Time Markov Chain as motion model for an RFID éethlsupply chain.
Every stage in the supply chain corresponds to one disctates;. The temporal
behavior of the motion model is characterized by the traorsiprobabilitiesp;; and
the mean dwell timeg; in every state.

CTMCs explicitly model the duration in a particular staterbgans of a dwell time parameteé.
The dwell time is defined as the time difference between hegpaind entering a state

7, — ) 40

Leave Enter

(3.3)

and can be characterized in terms of a probability distidiout For our purposes, we consider
time homogeneouSTMCs, which means that the transition probabilities adependent of the
absolute time

P(X(t)=j|X(s)=i)=P(X(t—s)=4]|X(0)=i), Vs<t. (3.4)
This property implies that the dwell tim&3 follow an Exponential distribution
T; ~ Explpi) (3.5)

since this is the only continuous distribution that exHsilbite memoryless property [141]. Conse-
guently, this results in the paramejeholding the mean dwell time for every state in the CTMC.
Although the assumption of an exponentially distributedetiiime is potentially limiting the
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applicability of this model, it provides a comfortable mextatical formalism and a reasonable
approximation as we will show later by means of empiricabdadm two case studies in Sec-
tion[3.1.4.

An alternative representation for a CTMC is tipenerator matrixG with individual entries

N
Dii
gij =~ i =— Y Gij. (3.6)
M =y
J#
The generator matrix allows for an efficient computationhaf time dependent transition proba-

bility function

> n
pislt) = PX(1) = 1 X(0) = i) = €6 =3 ) 37)
n=0
which describes the temporal evolution of the transitiambpbilities. Using this framework, we
can describe a wide variety of supply chain structures. kamgple, consider the retail store mod-
eled as CTMC shown in Figufe 3.4. The process is charactehbiydive states that describe the
flow of goods from the inbound over a storage area and two falt&s to the end-customer. The
time dependent transition probability function for a sulidestates is shown in Figufte 3.5. For

3-Sales floor 1

1-Inbound
M1 = 1 h

2-Storage

4-Sales floor 2
pa ="T79h

Figure 3.4: A retail store modeled as CTMC: Articles are received at timiund and then trans-
ferred to a common storage area. From there, the articlasaargferred to one of two
sales floors where they are presented to the customer. THEtumesin every state is
specified in terms of an exponential distribution with mean

the interpretation of Figuiie 3.5, it is important to keep imdithat the transition probabilities are

independent of the absolute time due to the assumption efhiomogeneity. Characteristically,

the probability to stay in a certain state decreases expiatgnas shown for the stat2-Storage

In contrast, the transition to another state first increaselsshows a dwell time dependent maxi-
mum.
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Figure 3.5: Time dependent transition probabilities for the procesdehshown in FigurE-314. For
the exemplary process, the probability that an item which keaeived at timé = 0h
is sold to the customer has its maximum around 271 h (seep15(t)). Similarly, the
transition probability from sales floor 1 to the customeritamaximum after = 83 h.

In addition to the process dynamics covered by the CTMC, thlbRsystem model specifically
considers the properties of RFID readpoints by means of sosenodel which accounts for the
lack of a well defined interrogation zone and the non ideaati&in probability. Specifically, the
sensor model integrates the possibility for missing oleg@ms in terms of a detection probability
P[(,") < 1 and models false positive reads from tags outside the definedogation zone. In
this context, the probability in stat&; to detect an unwanted tag currently being in staes
denoted asPéQr The detection and false positive probabilities can be sarmed in anV x N
observation matrixO, where

0ij = Pé,]a\),z and O = Péz) (38)

The resulting state-space model as shown in Figurde 3.6stsradia CTMC as continuous time
motion model and a sensor model reflecting the RFID systeipepties. The state-space model
provides us with the following possibilities: First, we case it as a generative data model to
simulate high-level item trajectories in a wide range ofgildle supply chain scenarios. Second,
the model can be used to robustly determine the actual iteatiém in the supply chain based
on potentially noisy read events. The inference mechan@nthis high-level localization is
explained in the next section.
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Figure 3.6: RFID system model, consisting of a CTMC and an RFID sensorefrtbdt reflects the
individual readpoint properties. The sensor model spedificonsiders the detection
probability and accounts for the possibility of false piwsibbservations.

3.1.1 Process Level Localization

Estimating the most likely state of a system from noisy olest@wns is commonly discussed in the
literature adiltering problem Given a series of observations= z(¢;), ..., z(tx ) and the system
model described in EqU.(3.2), the task is to compute thentstate probability distribution for a
particular item. In case of a discrete time, finite statezepsetting, the Forward Algorithm [163]
is an optimal solution for this problem. For discrete timepst:, the state probability distribution
is

X, = 0,PTX; 1, Xo=Ogm (3.9)

where O, denotes the diagonal observation matrix according to thememodel andr is the
initial state distribution. Equ.[(3.9) can be interpretedaarecursive Bayes update to the state
distribution as new observation data becomes available.sirhplicity of this recursive solution
stems from the first order Markov assumption, i.e., the apsiomthat given the present state, the
past and the future are independent.

As an extension to the discrete time solution, we can congidedwell time in every state by
integrating the transition probability functidA(¢) which can be computed using Eql._(3.7) for
every new observation. The state probability distributioen becomes

X(tg) = OkPT(t)X(tl), to > t;. (310)

As soon as an RFID observation occurs, the process modelecamployed to update the cur-
rent item location. Depending on the motion and sensor malelobservation triggers a state
transition or is identified as a false positive.
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The graphical representation of the system model in Figili@®ws for an intuitive explanation
of the filtering process described in Eqi._(3.10). If we asstinat a particular item is in state
X; at timet = 0, we can consider the probability for a valid state transitigiven an RFID
observationz; as defined in Equ[(3.1). In particular, the probability fovadid state transition
can be formulated as

P(t; z; | Transition P(Transition)  o0;;p;;(t)
P(z)) P(z)

In Equ. [3.11), the conditional probabilit}(¢; z; | Transition) = o;; denotes the readpoint de-
tection probability given that a transition to the stafe has occurred. The transition probability,
P(Transition can be directly computed from the CTMC motion model and espiglt). The
posterior probability for observing a valid state tramsitican therefore be computed using the
RFID sensor model, and the transition probability accaydmthe CTMC motion model. Simi-
larly, the probability for the observation to be a false pesican be expressed as

(3.11)

P(t; Transition| z;) =

P(t; ;| False positivgP(False positivg  o;;p;(t)

P(t; False positivg z;) = PCx)) = Ply)

(3.12)

This reflects the possibility that an item in stafeis identified by a readpoint iX ;. In general,
there exist several staté§,, that cause false positive observations(in With the last observation
in X, this requires that the transition froij; to X,,, is not detected and hence, the probability
for a false positive inX; becomes

N
0;;pii(t) + Z 0m;jPim (t) (1 — Omm,)
=1

mi .
m#£j

P(t; False positivg z;) = (3.13)

P(z))
With a sufficiently high detection probability,,,, =~ 1 and a low false positive probability
omj < 1, the summation term can be neglected which turns Equl(311@) i

0i;pii(t)

P(t; False positivg z;) ~ P
j

(3.14)

The denominator in EqU.(3.111) =(3]114) corresponds to tieeatprobability that an observation
zj occurs and follows from the law of total probability

P(zj) = 0j;pij(t) + oijpii(t). (3.15)
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To identify the most likely cause of an RFID observation, E@11) and[(3.14) can be combined

in a decision rule Pt T ii ;
. Transition| z; D
’Y(t) — ( ) ! ‘ ZJ) — Ojjpzj( ) 2 1 (316)
P(t; False positive z;) 0i;pii(t)

Using this decision rule, a readpoint can effectively iffgrialse positive read events and suppress
the corresponding state transition. An equivalent intetgdion is that the RFID system model can
be used to estimate the location of an item in the supply citargiven point in time. An observed
read event; for an item in stateX; will only be accepted by the model giverit) > 1, thereby
providing an effective mechanism to filter noisy RFID obsgions.

The RFID system model addresses the introductory requirtesmeterms of the process dynamics
and the characteristics of noisy RFID observations. To lerthle desired filtering capability, the

model parameters need to be adjusted according to thewartgupply chain and RFID system

characteristics, which can be accomplished by means ofit#ad iralibration phase.

3.1.2 Model Calibration

The RFID system model is uniquely described by means of tioe gtate distribution, the gen-
erator matrix and the RFID sensor model. In order to enalddiltering mechanism described
above, the model parameters need to accurately reflect tipenpies of the underlying supply
chain and the RFID system properties. These parameterseasstimated from empirical process
data which needs to be recorded during the system setup.h€aatibration, we assume that
logged process data in the form of read events

z=[t, ID, Xi] (3.17)

with timestampt, tag identifier ID and statéX; is available. This definition of a read event is
closely related to the EPCIS (Electronic Product Code mfdion Service) standard [47].

3.1.2.1 Transition model — CTMC

The transition model is specified in terms of the prior stas¢ribution and the generator matrix
G or, equivalently, the dwell time vectqgs together with the transition probability matriR.
Consequently, the estimation of the model parametersvagdivo parts: First, the average dwell
time u; for each state needs to be estimated from logged read evE&wisthis purpose, the
empirical dwell timesT; for all tags that have entered and left a particular stéteneed to be
computed using the definition in Equ._(B.3). With the assiompof an exponential distribution,
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Second, the prior state distribution and the individuahgrgon probabilities can be estimated
from logged event data by applying the Forward-Backwardritlym [163]. For this purpose,
the absolute timestamp can be dropped since the ForwarklaBad algorithm only evaluates
the occurrence of state transitions, regardless of thedeahpehavior. In order to account for
possible process noise, the estimated transition praotiabiind the prior state distribution require
modifications to consider arbitrary start states and ttamsi. Following the definition by Rozinat
et al. [171], we define a noise levelthat reflects the probability for an item to perform a state
transition apart from the estimated probabilities. Consedjy, all zero transition probabilities
are set to this noise level. To ensure tRais a row stochastic matrix (i.e., the rows sum up to 1),
we modify the matrix elements

€ pij =0
Pij = {(i5") | p;;y=0}]
Pij = G oy >ell

o (3.19)
Dij )

where|{(zj) | p;;» = 0}| is the number of zero elements in rewnd |{(ij’) | p;;» > €}| denotes
the number of elements in roigreater thare. The prior state probability vecter needs to be
modified in the same manner to allow for a tag to start in artraurlyi state.

3.1.2.2 RFID sensor model

Similar to the motion model, calibrating the sensor modglinees a ground-truth dataset from a
set of items moving along the supply chain or a set of subatdisteps. By means of that, the
supply chain dynamics (i.e., the transition probabilitytrixaP and the dwell times) are deter-
mined and the sensor model parameters can be consideredsimaed manner. The parameter
estimation can be performed based on empirical data hoiddigidual RFID observations from
one or more calibration runs.

The detection probability for a readpoint belonging to &esi§ can be estimated as

# items detected iX;
# items inX; ’

PO — 5y = (3.20)

where the actual number of tagsif in the denominator is defined by the ground-truth. Similarly
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the empirical estimates for false positive observatiomstzEaobtained using

_ # false positives from¥; in X;
N # items inX; '

PR =y (3.21)
The described calibration method can be carried out duhiergdeployment of individual read-
points along the supply chain. Typically, this deploymehéage is characterized by an iterative
evaluation and parameter optimization. The parametefsdador example the reader transmit
power, communication protocol settings as well as the nurabeé placement of individual anten-
nas. These parameters have direct influence on the systéompance and consequently also on
the resulting sensor model. The detection and false pegitiobabilities are highly dependent on
the system configuration and, moreover, cannot be considiedependently. This is an issue that
should be kept in mind during the deployment of an RFID systBimce there is little to no the-
ory about how the detection probability depends on indigidlystem parameters, a recalibration
after every parameter update is vital to accurately reflecsystem properties.

3.1.3 System Monitoring

After the initial calibration during the deployment phalseing aware of the current system status
is a desirable feature for practical deployments in ordedltw for monitoring and management
tasks. Besides the possibility to react to disturbancesitoring capabilities form the basis for an
adaptation of individual system parameters driven by emwirental changes. Possible changes
include varying geometric conditions or, as frequentlyifdin fashion logistics, seasonal changes
in the goods assortment which has a direct impact on the RER@1® performance due to varying
item properties.

In general, RFID system monitoring includes several asp&tthereas it is relatively straightfor-
ward to detect if a particular RFID reader is in operatiorhatt an antenna is physically connected,
specific information about how well an RFID deployment opesds more difficult to obtain. In
this context, the detection probability of individual rgaéhts is the most important metric, since
it concisely describes the quality of operation. To obtaiact values for the detection probabil-
ity, a ground-truth for a sufficiently large set of RFID tadggéems is required as described in
Section 3.1.2. However, this time consuming process camaafrried out regularly during the
actual system operation. For this reason, a mechanismltasdor an online estimation based
on the available RFID observations is required. The RFIRDesgamodel presented in this thesis
can be employed to estimate the detection probability of BIDRystem at runtime without the
need for an exact ground-truth. The idea is to apply a bagping mechanism that combines the
information from individual readpoints to obtain an estiefor the ground-truth.

28



3.1. Probabilistic Process Model

In order to establish a ground-truth estimate at runtimegaveexploit the existence of logical item
units introduced by the aggregation of items in packagingsunn particular, we can combine
the information about a packaging um from different readpoints to estimate the number of
items M. For this purpose, the indicator variableas defined in Equ.[(3.1) can be employed.
LetZ®) = [z Z{) ... Z\)]T denote the vector of indicator variables for tags T, ..., Tk
in a packaging unitP;, stemming from the observations in statge. Along the supply chain,
the packaging unit gives rise to a set of indicator vectbrs= (Z™M,Z?, ..., ZO)T due to
the detection in different states. An estimator for the muenber of items\/ in the considered
packaging unit is found by counting the number of tags thaeHhzeen detected by at ledst
readpoints

M=|Z>kl =|Z|, (3.22)
where| - | denotes the set cardinality. The following example illatts the estimation process:
Consider a packaging uri®; with M = 5 tags. The unit proceeds through four different states
in a supply chain, giving rise to the indicator vectors

X, Xo X3 X4

/1 1 0 1
nl 1 1 1 1

Z=T7 1 1 1 1 (3.23)
w1 1 1 1
s\1 0 1 0

The individual length of the indicator vecto&® can vary among the different supply chain
states depending on whether an item is detected or not. Eexdmple in Equ[(3.23), we obtain

~

M = 5. The estimate for the detection probability of the readpiirstateX; is then

SG) M@ B ‘z(z’)‘
/I

iell, N]. (3.24)

The ground-truth and the estimate for the individual dédecprobabilities are updated and re-
fined with every processed packaging unit. Assuming thaka@ing units are identified at dis-
crete time instants, the update can be computed recursively using

or(i) p(i) (2)
P _ Mt(—)lpD, 1 T My
Dt — ~ (i ~
Mt(jl + Mt

(3.25)

whereMt@1 denotes the total number of tags identifiedipup to timet — 1. Since this is difficult
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to maintain in practical applications, it is convenient &ide a temporal window for whic}’uA{t(i)1
is evaluated.

To illustrate the estimation technique, Figlirel 3.7 showssmaulation result for the readpoint de-
tection probability over time. The simulated system cdasid four readpoints with an initial
detection probabilityPéi) = 0.95. The simulation includes 2000 packaging units with= 50
items each. Between= 1000 h and¢ = 1500 h, we simulate a disturbing event (malfunction of
readpoint in stat&;). The obtained estimate for the detection probability ateched by means
of a running average filter with window siZé= 50 h to provide a convenient view. The simula-
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Figure 3.7: Simulation experiment: Estimated detection probabilitgratime for readpoinR; in
an RFID system consisting of four readpoints. The actuadign probability in the
undisturbed phase Eél) = 0.95. Betweent = 1000 h and¢ = 1500 h, a disturbance
leads to a considerable decrease in the detection perfaemaks more information
(provided by the observations from subsequent statesatagly readpoints) becomes
available, the accuracy of the detection probability eatarincreases and approaches
the true value.

tion shows two interesting aspects. First, it highlightst e individual estimates are biased due
to the fact that the ground-truth is obtained from uncerafarmation. As shown in Figurie 3.7,
this bias depends on the actual value of the detection pilaalf-or the undisturbed case, the
estimates closely approach the true value, whereas thénbi@ases during the disturbed phase.
Second, the disturbed phase can be clearly identified alatelays of the biased estimates, which
provides the possibility to react on disturbing events il-tame. The described bootstrapping
technique therefore provides an effective way to estimaedetection probability of individual
readpoints at runtime. Ultimately, this forms a startingnpfor the adaptation of individual RFID
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3.1. Probabilistic Process Model

system parameters (e.g., transmit power) to react on smatb@mental changes.

3.1.4 Case Studies

The presented system model provides a flexible frameworkeszribe RFID enabled supply
chains and processes. In this section, we discuss two apiptis and show how the developed
model can be applied to practical scenarios. By means ofatbaterify the model assumptions
and provide important insights for the application and iempéntation of the RFID system model.

The first scenario is a logistic application for the proaegsif fruit trays. In this case, the RFID
system is designed to track individual trays over the diff¢istates of an automated sorting pro-
cess. The second scenario consists of a distribution cantka fashion retail store where the
RFID system tracks individual articles from the shippingg& in the distribution center to the
end-customer.

3.1.4.1 RFID enabled sorting plant

In this scenario, an RFID system is used to identify and tradkidual fruit trays through a pro-
duction and sorting process. For this purpose, every tragugpped with an RFID tag. By means
of this case study, we investigate if the developed systemhetrzan be applied to automated en-
vironments. Besides developing the general model topolegywill analyze the empirical dwell
times in every state to verify the assumption of an expoakdistribution.

From the process perspective, three types of trays can btfidd: The first type, which we will
refer to asraw trays contain different fruit cultivars. The task of the sortinfamt is basically

to identify distinct cultivars and sizes and sort the frutcordingly. The second type, called
receiving traysare meant to be filled with one distinct cultivar. At this staghese trays are
transformed fronteceiving traygo sorted trays Consequently, the trajectory of a particular tray
through the process is as follows: A raw crate is transfefireah the storage area to ti8orter
Feedwhere it is identified by the RFID system. Subsequently, ifng is emptied and transported
to a facility where the tray’s physical condition is inspett If the physical condition allows for
further operation, the tray is transported as receivingtwaheSorter Exitwhere it is again filled
with one distinct cultivar. Finally, the tray is transpattback to the storage area. Consequently,
the process can be modeled by four distinct states as shokigure[3.8. The model parameters
(i.e., the transition probabilities and dwell times) arBreated from empirical data over a period
of three days. In particular, the dataset contains trajestdrom 1.439 processed trays. The
transition probabilityp3; = 0.006 (which corresponds to eight trays) is caused by the fact that
these trays do not fulfill the inspection criteria and aredfare directly transferred back to the
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2-Sorter Feed
p2 =0.12h

3-Inspection

4-Sorter Exit
pa =1.39h

1-Storage

Figure 3.8: Model for an automated sorting process of fruit trays. Treigh different fruit cultivars
are processed in an RFID enabled sorting plant over thestgger Feed, Inspection
and Sorter Exit. The transition probabilities and dwellegvare estimated from selected
process data containing trajectories of 1.439 trays ovesrimgh of three days. After
the sorting process, the trays contain one distinct frulitvewr and are moved back
to the storage area. If an individual tray does not fulfill thepection criteria, it is
directly transferred back to the storage area, as indidagatie transition probability
p31 = 0.006, which corresponds to a total of eight trays.

storage area for further processing. To verify the assumpif exponentially distributed dwell
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Figure 3.9: Empirical dwell time distributions with fitted Exponensafor three different process
stages in an RFID enabled sorting plant. Although the egdidata exhibits a certain
amount of outliers, the exponential distribution providegasonable fit to describe the
temporal behavior in the RFID system model.

times, we investigate on the empirical distributions asashin Figure[3.9 together with their
exponential fit.

The three histograms for the states Storage, InspectioSardr Exit indicate that the dwell time
approximately follows an exponential distribution. Théehpretation of the empirical data is as
follows: The average tray stays in the storage area.fox= 3.3 h whereas the inspection takes
uy = 1.3h on average. Regardless of the outliers (for example inr€[@B(a), which can be
explained by process interruptions such as a malfunctidineofonveyor system), the exponential
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distribution provides a reasonable fit to the empirical data

3.1.4.2 Fashion supply chain

The second scenario that we consider for the evaluation oR&ID system model is a fashion
supply chain, which is maybe the most prominent applicatblJHF RFID systems on item-
level. For the evaluation of this scenario, we use an engpidataset of 27.371 item trajectories
from a pilot installation in a distribution center and a feséore. The resulting model represen-
tation is shown in Figure_3.10. The distribution center casgs a tag printing facility where

1-Printed
w1 =139h

2-Shipped
M2 = 49 h

3-Storage
p3 =690h

Figure 3.10: Model for a fashion supply chain, comprising a distribut@enter and a retail store.
From the perspective of the RFID system, the supply chainpciz@s six distinct
states. RFID tags are initialized in a printing facility ahén attached to the individual
articles. The articles are identified as soon as they argstipo the retail store,
causing a transition to the stéBbipped In the store, the articles are received and then
placed in &Storagearea. Finally, they are transported to one of Baes floorsvhere
they are presented to the end-customer. The empirical diatiai$ process stems from
a pilot installation and consists of 27.371 item traje@sriThe estimated dwell times
are rounded to integer values.

RFID tags are initialized and attached to the individuaickes. Subsequently, the articles are
shipped to the store. The store features several locatibichware covered by RFID readpoints.
In particular, goods are received and placed Bt@ragearea, from where they are transported to
one of twoSales floorsfor women and men respectively. Finally, articles areegitgold to the
end-customer or transferred back to the storage area.

For the evaluation, we again focus on the dwell time distiilms in the individual states. The
empirical histograms for the stat&orage Sales floor 1(for women), andSales floor 2(for
men) are shown in Figufe 3J11. The interpretation of the a@ogbihistograms is similar to the
case study of the automated sorting process. An articles stathe storage area of the shop for
u1 = 690h on average before it is transferred to one of the two salessfloThere, the mean
dwell times areus = 66 h for women andus; = 79h for men. Compared to the automated
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Figure 3.11: Empirical dwell time distributions with fitted Exponentifdr three different process
stages in a fashion supply chain. Since the discussed pracesinly characterized
by manual interaction, the amount of outliers is larger carag to the case study
of the automated sorting plant. However, the exponentgtitiution still provides a
reasonable fit and can therefore be used to model the teniyravior.

environment discussed in the first case study, the empdatal in this case shows an even higher
amount of outliers, but can still be approximated with anagsgntial distribution. The analyzed
data moreover provides valuable information for the shopagament. Knowing the temporal
behavior of individual articles or article groups givesigid to the customer behavior and allows
for an intelligent replenishment process.

The presented case studies provide us with three imponaigthits. First, we can conclude that
the temporal behavior of items in a supply chain can be desdrby means of a time homoge-
neous CTMC. The empirical data from the two analyzed scesatiggest that the exponential
distribution provides a good approximation, regardlesa oértain amount of outliers. Second,
the empirical data from the discussed processes showshtharésented RFID system model is
able to describe a wide variety of different supply chaindures, from highly automated envi-
ronments to processes that are solely characterized byrintesaction. Finally, the conducted
evaluation shows that RFID systems are capable to provideniation for an in-depth analysis
with regard to the efficiency and throughput, which formshhsis for a subsequent optimization.

3.2 Spatio-temporal Item Correlation

The fact that items are aggregated in packaging units fosp@rtation and easier handling in-
troduces interesting aspects for the structure of RFID meahts, as already described in Sec-
tion[3.1.3. Besides the possibility to approximate a gretrnth for system monitoring tasks,

the structure of logical item units gives rise to a systematirrelation of read events. Under
the assumption that the content of packaging units doeshawtge over time, a packaging unit
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3.2. Spatio-temporal Item Correlation

defines a persistent item set. This means that read evenssippy chain state will occur closely
spaced in time as soon as the corresponding packaging uaisehe interrogation zone of a
particular readpoint. The idea is hence to utilize the imfation about the existence of item sets
in order to compensate for missing observations and toifgieatse positives. For this purpose,
two prerequisites are needed: First, a mathematical fationl of item sets and an adequate way
of detecting co-occurring read events needs to be developkid can be used to infer the re-
lationships between individual items and build a probatidico-occurrencemodel. Second, a
way to incorporate the knowledge about item sets in the teteprocess at the readpoint level
is required to compensate for missing and false positiverehtions. The co-occurrence model
hence needs to provide a mechanism to evaluate whether ampapticular tag belongs to an item
set based on the history of joint observations.

3.2.1 Modeling spatio-temporal correlation

The identification of spatio-temporal relationships withérge datasets is a frequently found
problem that has received a lot of attention in the data rgimiammunity. To describe the
spatio-temporal structure of RFID observations, an iMeiapproach is to investigate on the
co-occurrence of read events caused by individual itemsdakaging units as soon as they en-
ter the readpoint interrogation zone. An example of threzkaging units with 10 items each is
shown in Figuré_3.12. The items give rise to correlated ¢tajges through the state-space repre-
senting the supply chain. However, read events are typisaljected to uncertainties due to the
non ideal detection performance of individual readpoifitsdescribe this behavior in terms of a
co-occurrence model, we utilize again the indicator véeialvsepresenting a read event in a partic-
ular state. Each packaging unit gives rise to a set of indiicactorsZ = (Z), 2 ... Z(N)T
from which the co-occurrence of read events among individems can be derived by counting
the number of times that tafy and tagl’; are observed together. This concept can be formulated
in terms of the co-occurrence matixwith individual entries

Cij = |zi > 0N zj > 0|. (3.26)

The co-occurrence matrix is a frequently found tool in dataimg applications such as market
basket analysis [4]. For the exemplary observations in Hg123), the resulting co-occurrence
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Figure 3.12: Exemplary state-space trajectories for three packagiitg with 10 items each. Items
belonging to a particular packaging unit give rise to neihig read events in time
and space, thereby introducing a correlation structurés @n be used to infer the
relationship between individual items in terms of a co-eoence model.

matrix is
333 31
3 4 4 4 2
C=13 4 4 4 2 (3.27)
3 4 4 4 2
1 2 2 2 2

The diagonal elements & describe how often a particular item is observed in totaknehs the
off-diagonal elements describe the absolute frequenayimf pbservations. Consequenty,is a
symmetric matrix, since;; = c;;. The co-occurrence matrix can be used to derive two addition
metrics. Thesupport

sij = CNJ s € [0, 1], (3.28)
whereN is the total number of states (readpoints), describes thevefrequency of joint obser-
vations, which can be interpreted as the probability thgffteand7’; are observed together. The

confidence

Ciq Sij
Pij = C—ZZ = S—Z_Z_, pij € [0, 1] (3.29)
is the conditional probability
pij = P(Zj ’Zz) (330)

of an observatiory;, given thatz; already occurred which can be interpreted as the strength of
a connection between any two items. These two metrics afeswigtd for the integration in a
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probabilistic framework, since they provide an expliciolpability measure for a given observa-
tion based on previous data. The co-occurrence matrix,temalively the support matrix can
be updated in an online manner with new observations of acpkmt packaging unit. For the

exemplary data, the support and confidence matrices are

0.75 0.75 0.75 0.75 0.25 1.00 1.00 1.00 1.00 0.33

0.75 1.00 1.00 1.00 0.50 0.75 1.00 1.00 1.00 0.50
S=1075 1.00 1.00 1.00 0.50 P=107 100 1.00 1.00 0.50]. (3.31)

0.75 1.00 1.00 1.00 0.50 0.75 1.00 1.00 1.00 0.50

0.25 0.50 0.50 0.50 0.50 0.50 1.00 1.00 1.00 1.00

The explicit description of item relationships in terms of@occurrence model enables us to
evaluate particular RFID observations based on the jogipus history. Regarding the practical
implementation, there are two additional aspects that medtk considered. The first is that
the assumption of constant item relationships holds fordewariety of different supply chain
structures, but has its limitations when the supply chaatuiees specific process steps such as
commissioning or sorting. In such steps, the content of @gicly unit changes by definition
and consequently, practical implementations need to ldisgoeviously learned relationships. In
this case, the co-occurrence model needs to be reset tocairardfstribution. The second aspect
deals with the temporal characteristic of the co-occueenodel. Depending on the supply chain
structure (in particular, the number of individual statds)s convenient to define a temporal
window over which item relationships are learned.

3.2.2 Evaluating RFID observations

With the co-occurrence model, expressed in terms of the@mtpmd confidence matrices, we
have a framework that allows us to describe the connectibwdas two arbitrary items in the
supply chain. In order to make use of this information, arlation method is required which
can answer questions lik&iven that a particular set of tag$;, 75, ..., T is observed, how
likely is the absence or presence of tAg". In other words, we want to evaluate the likelihood
of an RFID observatior¥; given a set of observations, 2, ..., zy and the previously learned
item relationships. This allows for the detection of migsiags if the available history suggests
that a tag should actually be present in a packaging unitvé€realy, it enables us to identify false
positive observations by means of their missing conned¢tiasther observed items.

The computation of the true likelihooB(z; |21, 22, ..., zn) requires the full joint distribution
P(zj, z1, 22, ..., zn), Which is difficult to maintain in practice due to high dimenslity and
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the inherent statistic dependence. Instead, an appragimaan be found by combining the
conditional probabilities”(z; | z;) for i € [1, N] using a so calledpinion pool functionP; such
that

P(zj|z1, 22, ..., 2N) = Pa(P(2 | 21), P(2j | 22), ..., P(2j | 2n))- (3.32)

The expression opinion pool stems from the similar problerohnsolidate the opinion of several
experts asked about a particular problem [1]. In our cassetlexperts correspond to the set of
observed tags with a support value

i > Yo (3.33)

larger than a given threshold. In other words, we only casitle conditional probabilities of
frequent joint observations that have a sufficient supgtwbling operators have a variety of math-
ematical properties and there exists an elaborate frankefepthe description of the individual
characteristics [9]. Although this mathematical treattrigfbeyond the scope of this thesis, there
is one noteworthy property with direct implications to thansidered problem. Certain pooling
functions have the so call@il forcing propertywhich means that as soon as a single conditional
probability equals zero (or one, respectively), the restithe pooling operation will also equal
zero (or one). For the given problem, this property imposesraus limitation since a single,
undetected tag with a sufficient support value leads to aldeighood of the observation.

The different types of pooling functions can be categorirédl additive and multiplicative meth-
ods. Although the latter class generally outperforms limeathods, it is not suitable for the
considered problem due to the inherent zero forcing prgpbrtcontrast, the intuitive method of

additive pooling
N

N
Po=> wiP(z|z), Y wi=1 (3.34)
7
does not exhibit the zero forcing property. The linear pugplbperator reduces to a simple Arith-
metic Bayes average when the weightsare chosen equally which is the case when no additional

information about the observations is available.

Given a set of tag observations that are identified to beloraydarticular packaging uni;, the
co-occurrence model and the linear pooling operator camiyayed in a two-way evaluation
scheme to identify missing and false positive tags. The dtegp involves a direct application of
Equ. [3.34) for every tag observation, provided that theesponding support is above the defined
thresholdyo. By means of that, every observation is evaluated in the bfjthe neighboring ob-
servations and the co-occurrence model. A potential fatséipe will have a significantly lower
probability according to the pooling operation, due to tieklof joint previous observations. The
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Step 1.
for all Packaging unit$; do
for all TagsT; do
ComputePC(j )
if BY) > 4" then
T; detected, report;
else
Tj is false positive, suppress
end if
end for
end for

Step 2:
for all TagsT; € P; do
ComputePC(f)
if BY) > ' then
T; detected, report;
else
Tj; is missing
end if
end for

Algorithm 3.1: Two-way evaluation of tag observations using the co-oenge model: Step 1
is used to identify false positive observations by meansadkihg joint previous
observations. In addition, step 2 uses the co-occurrenaceito compensate for
potentially missing observations, thereby introducingwa-pass characteristic for
RFID observations.
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second step is to iterate through all items previously assigo the considered packaging unit
and to compute their current observation likelihood. Thépsntroduces a low-pass character-
istic by filtering individual missed tags. The pseudo-codethe described two-way evaluation
is shown in Algorithm_3.1l. The final step in the evaluationdsperform an update on the co-
occurrence model by means of the newly obtained observdtiten Using this iterative scheme,
the problem of missed and false positive detections at acpkat readpoint can be effectively
addressed by means of the inherent correlation structueadfevents, which increases accuracy
of the resulting RFID data.

3.2.3 Experimental Evaluation

To demonstrate the capabilities of the co-occurrence madetonduct a simulation experiment
involving eight distinct readpoints. The experimentalugeis split into two parts: Readpoints
R1 ... R4 are designed such that a reliable identification of itemspakaging unit is possible,
thereby enabling us to learn the co-occurrence model fosithelated set of packaging units.
In contrast, readpoint®&; ... Rgs do not have these idealized properties. Instead, they ixhib
detection performancEp < 1 and are closely spaced such that the individual interrogabnes
show a considerable overlap. By means of that, false pesitbservations are introduced with
a certain probability. Whereas this design would not beravie in a practical deployment, it
enables us to explicitly analyze the filter capabilitieshaf to-occurrence model. The geometry
of the experimental setup, together with the individualka&ing unit trajectories is shown in
the floor plan in Figuré_3.13. Packaging urfsare moved through the individual interrogation
zones with a constant velocity of= 0.5 m/s. After a packaging unit has proceeded through the
interrogation zone® ... R4, it proceeds to one of the four readpoifiis ... Rg with a probability
of p = 0.25. This means that the simulated packaging units are distdbuniformly over the non
ideal readpoints. Due to the chosen geometry, readp@igtEndR 7 show a higher false positive
probability compared t& 5 andRg. The simulation incorporates a total &f = 200 packaging
units, with M; = 10 items each.

For the evaluation we compare the detection and false pesgitobabilities for readpoin®5 ... Rg

to their corresponding raw values without the co-occureemodel as shown in Figure 3]114. The
resulting detection and false positive probabilities @adi¢ that the co-occurrence model provides
a considerable increase in the readpoint performance. &sdbéhe detection rate is boosted to the
ideal value of P = 1 for every readpoint, false positive observations are pHyfesuppressed.
This ideal result is mainly caused by the perfect informafiocorporated in the co-occurrence
model. Since readpoinf®®; ... R4 provide ideal observations, the resulting co-occurrenodeh
accurately represents the individual item relationshigss enables the model to perfectly com-
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Figure 3.13: Simulation setup: Schematic representation of the siradlativironment. The setup
consists of a total of eight readpoints in steigs.. Rg. Packaging unit®; first travel
through the interrogation zones of readpoiRts... R4 and then have a probability of
p = 0.25 to travel throughRs... Rs. The first four readpoints are assumed to be
ideal regarding the detection and false positive prokigbiln contrast, the readpoints
Rs... Rs suffer from false positives due to overlapping interrogiatzones and have

a non-ideal detection probabililz?,:(,“ < 1
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Figure 3.14: Readpoint performance with and without co-occurrence matlih perfect informa-
tion about the spatio-temporal item relationships, th@codrrence model consider-
able enhances the detection probability and perfectlyraggps false positives.
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pensate for missing reads and to suppress false positigedbsequent process steps.

The performance increase naturally is limited by the qualitthe learned co-occurrence model.
To investigate on this issue, we repeat the experiment ibesicabove under different conditions:
Whereas the properties of readpois... Rg remain unchanged, the detection probability of the
first four readpoints is deliberately reduced. In particulge can define the co-occurrence model
quality

4
1 g 1
q= =3 Z (3.35)

as equivalent to the average detection probability of reedp7RR, ... R4. This enables us to
analyze the average detection probabiﬂﬁgf_g) as a function of the model quality, which is
varied in the interval; = [0.92, 1.00]. The resulting detection performance together with the
corresponding standard deviation is estimated in a sefidé e- 10 runs. The results of this
analysis are shown in Figure 3]115.

Det. probability p-®

0.986 | /
-l = = = Raw

Co occurrence
092 093 094 095 096 097 O 98 0. 99 1
Model quality ¢ = B~

Figure 3.15: Resulting average detection probability for readpoiRts... Rs as a function of the

co-occurrence model qualityi.e. the average detection probabilﬁglf“). The co-
occurrence model shows a considerable tolerance to noily Bfservations which

makes it ideally suited to integrate potentially noisy, emain information about ex-
isting item relationships.

The co-occurrence model is tolerant to noisy observatiomsdonsiderable extend, which makes
it ideally suited to the application in RFID systems. If thedel quality drops below a critical
value, the overall performance is below the raw value sihe&b-occurrence model is dominated

by uncertain or wrong information. In this scenario, a parfance gain is already achieved for a
model qualityg = P!~ > 0.965.
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3.3. Summary

The simulation experiment presented in this section shitwatthe performance of individual

readpoints can be improved considerably when the inhex@n¢lation structure among RFID

observations is considered. For this purpose, we havedimtaxd a co-occurrence model which
enables us to efficiently infer the relationship betweem#én an RFID enabled supply chain.
The discussed evaluation method which is based on a linedingaperator is an intuitive, yet

powerful approach to increase the data quality in an RFIDesys In particular, the described
two-way evaluation can be used to identify false positive miissing observations by considering
their joint history. The developed co-occurrence modeblsrant to a considerable amount of
noise in the RFID observations, making it an effective wayntmrporate potentially uncertain

prior information about existing item relationships.

3.3 Summary

In this chapter, we have presented several high-level rnraglebncepts to target the problem of
noisy data in RFID systems. Starting from a requirement diefim we have first developed a
flexible model for RFID enabled supply chains which incogtes the dynamic behavior and the
specific properties of RFID readpoints. For this purposehaxe combined a CTMC as motion
model with an RFID sensor model that accounts for the pdigibf missing and false positive
observations. Using this model, we have discussed a prémeddocalization mechanism which
is designed to filter noisy RFID observations. Furthermaeve, have employed the model in
an online system monitoring mechanism to estimate the pedoce of individual readpoints at
runtime. In order to verify the employed modeling assumpsjove have conducted an analysis
of comprehensive datasets from practical applications.

The second modeling concept is based on the inherent dpatigeral correlation structure of

RFID read events in a supply chain. To utilize the infornmatinotroduced by correlated ob-

servations, we have developed a co-occurrence model westrides the relationship between
individual items. In particular, we have presented a fragrévio infer existing relationships and

to evaluate RFID observations in light of the joint histohy.a simulation experiment, we have

demonstrated that this approach provides a significanbpesance increase and is tolerant to
noisy observations.
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RFID Readpoint Modeling

So far, we have defined an RFID observation as a binary evemntattain time instant which
indicates that a tag is detected by a particular readpoing I8wer abstraction level, state-of-the
art RFID hardware provides more information within a patc read event such as the received
signal strength and the phase angle of the tag responséd. sigwaughout this chapter, we will
refer to this information atow level features Similar to the system model approach described
in Chaptef B, the goal is to establish a framework which alow to evaluate RFID observations
in order to decide whether a particular tag was deliberati#ntified or not. This provides us
with the possibility to distinguish between true positiveddalse positive observations on the
readpoint level, which provides more reliable RFID datahe backend system. The consider-
ation on readpoint level is required whenever there is naipiisy to employ a process-based
filtering mechanism. This can be the case in specific supmyncétates (e.g., verification after
commissioning) or when the underlying process does notigeaufficient prior information.

To investigate on the possibilities on the readpoint levelwill discuss the available low level
features and establish the theoretical background behméhdividual quantities. Starting from
this theoretical consideration, we present a compact kigodel which we integrate into a more
general modeling framework that can be used in a classtitatiechanism. The presented ap-
proach is evaluated by means of an RFID conveyor belt seenariypical example for a logistic
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application. Complementary to the classification mectanige present an approach to mitigate
the problem of missing tags by means of cooperative RFIDp®iats. For this purpose, we em-

ploy a generalized Binomial model to consider the corretabetween individual readpoints. The

concept of cooperative readpoints is investigated by medasomprehensive dataset stemming
from a logistic application.

4.1 Feature Attributes

On the protocol level, the communication between readentagdbasically consists of a reader
request and the tag response which, in the simplest casw@im®ithe tag identifier and some
protocol overhead. On the signal level, RFID readers mear power and phase angle of the
received tag response and provide this information to mitghel software layers running on a
host PC. A tag read event can therefore be characterized égtarv

e=[t ID, 7, o, i (4.)

comprising a timestamp, the tag identifier ID, the RSSi, the phase angle, and the logical
index: of the antenna by which the inventory was performed. Thengwaténdex is interesting for
readers that have a number of antenna ports which are usdidria multiplexing scheme. If a tag
remains within the interrogation zone of a reader, thereheila series of consecutive read events
since the reader periodically inventories the present tgmijation. Besides the quantities stated
in Equ. [4.1), the total number of read events (also refeiweas read redundancy or read count)
per unit time is an intuitive characteristic that describew good a particular tag is identified. In
this context, theead rate

L # Read events 4.2)

# Tags At

describes the total number of read events per tag and uret tiihe termread rateis subject
to conflicting definitions in the literature. Whereas somthars use it to describe the detection
probability of an RFID reader or readpoint, we use this taymdscribe the number of read events
per unit time. The basic idea behind many filtering approa¢B@, 90, 132] is that tags located in
the desired interrogation zone will be continuously id@edi and therefore provide a high number
of read events per unit time, i.e., a higher read rate. Thelgmois, however, that the number of
read events depends heavily on the total number of tags intdreogation zone. This results from
the anti-collision scheme used for the media access co¥eldemonstrate this dependency in
an experiment where an increasing number of stationarnjigqgaced in the interrogation zone of
an RFID reader such that each tag is inventoried perioglicAie experiment is repeatéd = 5
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25

20+

[
(&)
T

Read rate v
5

12 5 10 15 20 30 40 50
# Tags

Figure4.1: Read rate for a varying number of tags in the interrogatiorezd@ he number of inven-
tories per tag and unit time decreases with the overall nowigEresent tags due to the
sequential anti-collision scheme.

times for a duration of" = 10s allowing us to augment the best estimates with their regect
standard deviations. As shown in Figlrel4.1, the read ratibéospecific reader in the experiment
drops down to 25% of its maximum value already for as littl@@sags in the interrogation zone
—a number that is easily reached in practical applications.

Returning back to the actual low level features, the tinmapta of a tag read event is the most
basic and intuitive quantity. Depending on the system #&chire and implementation, there
are several possible ways how the timestamp can be genefete RFID readers utilize their
real-time clock (RTC) for setting the timestamp, which netrat the accuracy is limited by the
particular reader hardware. Another possibility is thattiilmestamp is generated on the host PC
as soon as the tag read event is processed. In this casemitireglifactor in terms of accuracy is
the non-deterministic behavior of the operating systerearathan the reader RTC. In any case,
the timestamp will be subjected to a jitter and drift overdinHowever, these uncertainties are
usually in a negligible range and are thus not further irigated.

The next feature described in Equ._{4.1) is the receivedasiginengthr, which is measured by
the RFID reader for every inventory round. The signal stiieigproportional to the power of the
backscattered tag response given by

r « P, = P,G?(PL)’c (4.3)

as described by Nikitin and Rao [153]. In Eql._{4.8),denotes the transmitted powe¥; is
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the gain of the reader antenna, PL is the path loss of the UldRreh and> describes the tag
radar cross section. The path loss can be computed by geimerdhe free-space loss model to
consider multipath propagation [152]. Hence,

A 2
PL= (-
<4ﬂd>
whered is the distance between antenna and tag for the line-of-§igbS) path,T",, is the re-
flection coefficient of theath reflecting path with distancé,, ¥ describes the wavenumber and

N 2
14 3T, e (4.4)
n=1 n

N is the total number of multipath components. Equ.](4.3) ly anconceptual solution since
the number of multipath components depends highly on thengag and the surroundings and
is thus unknown a priori. At the receiver front end of an RF#ader, the backscattered signal
is demodulated which results in a complex valued basebamalsi This signal is characterized
by an in-phase (I) and quadrature phase (Q) component, frioichwhe RSSI can be derived in

terms of

r = Zo s
where Z; is the input impedance [150]. Towards the host PC, the RSG$uslly reported in
units of dBm, typically with a resolution a1 dBm. Besides the quantization effect, the RSSl is

(4.5)

subject to different sources of noise, mainly caused by thiipath-channel characteristics and
different object properties.

The phase angle
w = —2kd (4.6)

of the tag response depends linearly on the traveled distaand the wavenumbekt. At the
receiver, the phase angle can also be derived froni @ed Q components of the demodulated
baseband signal using

_ Q
(p = arctan (T) . (4.7)

Similar to the RSSI, the phase angle is perturbed by enviemmependent noise. The RSSI and
phase response of a tag moving through the interrogatioae @aba reader with constant velocity
and a stationary tag are shown in Figlrg 4.2. Both respomsazharacterized by a considerable
amount of noise and the lack of a uniform sampling with resfetme.

Regardless of the inherent noise, the low level features shcharacteristic behavior that can be
considered in terms of a model. The approach followed bylikation systems is to determine
the location, velocity and/or moving direction of RFID t&ghobjects. From a theoretical point
of view the RSSI and the phase angle provide the possibdityetrform direction sensing and
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Figure 4.2: Characteristic RSSI and phase responses for a stationdwy moving tag. Both signal
features are perturbed by noise due to the environmentpbgedion conditions, the
presence of other RFID tags and different object properties

ranging in absence of multipath propagation and noise. Regpathe RSSI, the relationship

between traveled distance and reflected power could be ussadlyl to determine the distance

between reader and tag. Similarly, the relationship betwdease angle and distance in Equ.
(4.9) allows for a range estimation. If the frequenfcpf the carrier signal is varied, the distance
between reader and tag can be estimated using

¢ Ay

YN (4.8)
wherec denotes the speed of light. However, the UHF channel is ctetaed by severe multi-
path propagation, which prohibits the use of this straightvrd approach and makes localization
and ranging a still desired feature for RFID systems. Thes@hasponse additionally provides

the possibility to estimate the radial velocity of a tag wioperating at a fixed frequendgyusing

c A
vy = _Wff' (4.9)
This mechanism is widely used to measure the speed of mobjegts by means of RF waves,
which seems especially appealing for RFID systems. In mmastigal scenarios, tags are moved
through the interrogation zone of a readpoint. In conttastajority of false positive read events
stems from stationary tags in the near vicinity. Thereftine, tag velocity is a key criterion to
identify false positives. The velocity estimates over tifag > 0 for tags approaching the
antennayp, < 0 for tags moving away from the antenna) for a moving and acstatiy tag are
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Figure 4.3: Velocity for a moving and a stationary tag. In contrast tottieoretical considerations,
the velocity of the stationary tag shows considerable fatibns and several zero cross-
ings.

shown in Figur@& 4]3. The velocity response for the statiptey exhibits random fluctuations and
several zero crossings due to the noisy phase signal, mildiffjcult to identify that the tag is
actually stationary.

The impact of the multipath propagation and the resultingen@n the phase response can be
demonstrated in a simple experiment. The setup comprisBéHh reader, a sef; of 765 mov-

ing and a seb, of 5 stationary tags. The tagsdi are placed in 51 cardboard boxes and moved
through the readpoint interrogation zone with a constalutoity v, = 0.67;. The stationary tags
are placed in the interrogation zone such that they are raomisly visible to the reader. For
every cardboard box, the individual tag responses arededpyielding a total of 765 responses
for moving, and 255 responses for stationary tags. The dedophase responses are resampled
and smoothed to estimate the radial velocity according to. E4,9). Given a phase response
consisting ofN read events, we can estimate the variance of the tag velwityrding to

N
var(v,} = 1 5 (ol =50 (4.10)
An intuitive approach for a classification scheme based @nrttetric is that the absolute mag-
nitude and the variance should be significantly smaller fatiaary tags. By estimating the
velocity variance from the individual phase responses ammting the number of occurrences,
we can build an empirical histogram as shown in Fidguré 4.43ap to the fact that the empirical
histograms overlap, the classification performance suiffem Type | and Type Il errors. In other
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Figure 4.4: Classification based on the radial tag velocity: (a) showsmpirical histogram of the
velocity variance for moving (blue) vs. stationary (redjgaSince the two histograms
overlap, there is no cutoff point for an error free classtf@a (b) shows the ROC
curve for the classification with the variance as threshaldimeter. The optimal clas-
sification yields a detection ra#@ = 0.9306 and a false positive ratBa = 0.0431.

words, there is a certain percentage of false negative sl fasitive classification results. The
Receiver Operating Characteristic (ROC) curve in Figub).shows the classification results
when the threshold is varied in the interval0, var{v, }max]. The optimal classification yields
a detection raté’y = 0.9306 and a false positive rat€a = 0.0431 at a threshold value of
vp = 0.0064. The resulting error rate with this simple approach is far liagh for the require-
ments for practical RFID systems. Taking into account thatdonsidered experimental setup is
well defined in terms of movement velocity, it is to expect tha performance will be even lower
in scenarios with less stringent boundary conditions. Heurhore, the described setup is a typical
near-field application and thus does not show excessivepatiitcharacteristics. For this reason,
we can conclude that the observation noise on feature legblihpts the use of straight-forward
classification mechanisms based on the discussed lowfeateires. This motivates and justifies
the use of more advanced and abstract modeling concepts atéccapable of dealing with the
noisy environment.

4.1.1 Signal model

The key to a reliable classification is an appropriate signatlel with a sufficient robustness
to the noisy low-level features. The RSSI and phase respansEigure 4.R suggest that both
moving and stationary tags show a characteristic behavinchwdiffers mainly in the variation

51



Chapter 4. RFID Readpoint Modeling

of the corresponding signals in time and amplitude. In paldir, the response of a moving tag
exhibits a characteristic peak that indicates when the tagchosest to the reader antenna. The
idea behind the signal model and subsequent classificgbimaches is therefore to use a fitting
function which allows us to describe and assess these ¢bastics. For the RSSI in free space,
theory suggests that a polynomial of ordér= 4 best describes the RSSI response. However,
polynomial coefficients do not allow for a convenient asses# of the temporal location and
extend of a signal. In contrast, a Gauss Kernel

1 *(t*gt)Q
g(t) = por e 9 (4.11)
t

enables us to describe the center of gravity and the temextiehd by means of two scalar values,
u; andoy. Figurel4.b shows the RSSI and phase responses for a stataomha moving tag with
robustly fitted Gauss Kernels. As constraint for the fittitgpethm, the parametei; is chosen
such that it lies within the temporal limits of the obsersatirame. The temporal centgy allows
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Figure4.5: Characteristic RSSI and phase responses with a corresgpfdiuss Kernel fit. The
kernel describes the center of gravity and temporal extgndédans of two scalar quan-
tities, u: andoy.

us to efficiently determine when an RFID tag was closest tor¢lagler antenna, i.e., actually
present in the interrogation zone. This information is intipalar useful when the requirement
for the RFID system is to identify the content of individuelipsely spaced packaging units. The
temporal extend; is inverse proportional to the movement velocityand therefore is the key

metric to distinguish between moving and stationary tags.

The signal model can be easily generalized to scenariosmgtie than one reader antenna. If a
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readpoint features: antennas having a common interrogation zone, the estirf@tes ando;
can be obtained by averaging over the individual estimates

1 i _ 1 i
Nt:EZ#g) Ut:_ZU§)~ (4.12)

The model described in EqU._(4]11) forms the basis for arradistlassification approach. The
key requirement for the classification is a certain flextipiin terms of readpoint configuration,
i.e., number and placement of antennas as well as the cormdisyg antenna radiation pattern.
To provide this flexibility, the low-level features are caleyed in a state-space representation,
similar to our RFID system model discussed in Chapter 3. Taresformation from the signal
domain to the state-space representation involves sestera. First, the fitted Gauss Kernels are
abstracted by means oharmalized state assignment function

1 b —(t—gt)z
G(t;) = e 29t dt. 4.13
()= —= / (4.13)

This function represents the value of the normal cumuladigéribution function (CDF) of the
estimated Gauss Kernel at sampling titpe Consequently, for each sampling time instant, we
obtain a vector

f(t;) = [Gr(t:), Go(t)]" (4.14)

in the feature space spanned by the RSSI and phase resparamlidPsampling of the feature
space trajectory gives rise to a sequeficefy, whereK is the total number of samples in the
observation window. The state assignment functions fot afskb moving and 5 stationary tags
with K = 5 samples are shown in Figure ¥.6 for two different configorati Whereas Fig-
ure[4.6(a) shows the trajectories in the RSSI-phése () plane[4.6(b) shows the trajectories
over time when only the RSSI information is considered.

The next step is to translate the sampled features into eetliseet of observation symbols. This is
achieved by means of a quantization step. For this purpogsstar quantizer maps each sample
to a discrete observation symbol, resulting in a sequéhee O; ... Ok . Returning back to the
initial idea, the distinction between moving and statignags can now be formulated as a tra-
jectory classification problem in the discrete state-spétieh can efficiently be performed using
HMMs. HMMs provide a powerful and flexible framework to evale a set of given trajectories
and can also be used as a generative data maodel [163]. Sioilee state-space model discussed
in Chaptef 8, HMMs comprise a motion model described by asttian matrix A, an observation
matrix O and a vectotr describing the prior state probability distribution. THassification of
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Figure4.6: Sampled feature space trajectories for 15 moving and sty tags withxX' = 5
samples. (a) shows the trajectories in the RSSI-ph@sg (G,) plane, whereas (b)
depicts the trajectories over time when only the RSSI is asefgature attribute.

observation sequences involves two appropriately traiifddls, \; and A2 representing moving
and stationary tags. The HMMs are used to compute the lik@titof an observation sequence
and to assign a particular tag to the most likely class. This lze achieved by means of the

likelihood ratio

_ P(OM)

that is compared to a threshold vakye Depending on which HMM is more likely to represent
the observed sequence, the considered tag is assigneddartisponding class.

A

The classification scheme described above requires angaifiase to initialize the vector quan-
tization and to estimate the parameters of the HMMsand \,. Consequently, the training
involves two steps: First, the vector quantizer is inigall based on the normalized state assign-
ment functions, i.e., the sampled feature space trajestofiihis can be done using unsupervised
learning algorithms, such as the standard K-Means algoritRrom the sampled feature space
trajectories, K-Means identifies cluster regions and alfav the estimation of the corresponding
centroidsy,; and covariance matrices;. The results of applying the K-Means algorithm to an
exemplary dataset consisting of 135 tags is shown in Flgevhere the feature space is divided
into K = 5 clusters in accordance with the number of samples in thergditsen window. The
vector quantization assigns the sampled low-level featir@ne of five distinct observation sym-
bols. The second training step is required to determine dnanpeters of the HMMs for moving
and stationary tags. The HMM parametess= (A;, B;, m;) can be estimated by applying the
Forward-Backward algorithm to a set of labeled traininguseges| [163].
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Figure4.7: Feature space comprising RSSI and phase information faimirtg set of 135 tags.
The feature space is clustered ifto= 5 clusters in accordance with the number of
samples in the observation window. The clusters are redjir@ssign each low-level
feature sample to a distinct observation symbol.

The number of possible and meaningful observation symmgigch defines the resolution of the
vector quantizer) is strongly connected to the samplinguiemcy and the overall length of the
observation window. An increased sampling frequency regua higher resolution, resulting in a
higher model complexity and the potential danger of ovéir{jtto the training samples. In con-
trast, a lower sampling frequency leads to a reduced nunfioéstinct observation symbols which
limits the discriminative power of the state-space modet. this reason, a compromise between
model complexity respectively over-fitting and discrintiaa capability needs to be found for a
given scenario. Considering the shape of the Gauss Kersdifi absolute minimum number of
observation symbols i& = 3 to describe the signal characteristics.

The classification scheme developed in this chapter is fekilterms of readpoint configuration
and can therefore be employed in a variety of different stesaThe necessary training phase
is well suited to be integrated in the deployment of an RFi&dmint. The HMM classification
framework provides an efficient way to evaluate individua) tesponses. Besides the filtering
of read events at the supply chain level, this forms the staoportant cornerstone to provide
reliable RFID data for the backend system.
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4.1.2 Case Study: Conveyor Belt Application

In logistic applications, a core functionality of RFID sgsts is to identify the content of pack-
aging units after manual commissioning. Based on specifieranformation provided by an
Enterprise-Resource-Planning (ERP) system, articlemaraially aggregated in packaging units
in a process referred to agcking The task of the RFID system is then to verify the content of
the packaging unit by identifying every contained item. Bagting on the scan result, the pack-

[ ERP-System ]

Order Notification
Commissioning RFID .
("Picking") Verification yes
no
Manual D manual
Correction D automated

Figure4.8: Commissioning and verification with RFID in a typical logésapplication: Based on
an order provided by the ERP-system, articles are comnniedi¢picked) in a packag-
ing unit. The content of the packaging unit is then verifiedhians of an RFID scan
and manually corrected if necessary.

aging unit is further processed for delivery or manuallyreoted, as shown in Figute #.8. The
manual correction step is a time consuming and work intenpiwcess. Considering the fact
that missing a single tag triggers the manual correctiohefentire packaging unit emphasizes
the high requirements for an RFID system in order to allowdorefficient operation. A simple
calculation example demonstrates that even small erres #use a considerable work-load for
manual correction. Consider an RFID system with a detegtioability of Po = 0.995 and
an ideal suppression of false positives. Assume that pawamits containM/ = 20 items on
average and that missed tags are distributed uniformly al/packaging units. The error rate on
packaging unit level for this systemjg; = (1 — Pp) - M = 0.1, which means that 10% of all
packaging units require manual correction due to errorsdiiced by the RFID system.

A common approach to verify the content of individual padkgainits for flat packed goods is to
deploy RFID reader antennas along a conveyor belt. By mefathaip the content of individual
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packaging units can be identified during transportatioris hias two main advantages: First, the
identification usually does not require any additional tionananual interaction. Second, RFID
readpoints benefit from fixed boundary conditions such asnatant movement velocity and a
fixed box-to-box distance. This makes the identification emobust in comparison to processes
that are characterized by manual handling.

The described use case is difficult to support with highllewedeling approaches due to the lack
of prior information. Since the content of a packaging uaiély depends on the specific customer
order, it is difficult to integrate prior process informatias a countermeasure to the noisy RFID
observations. In particular, the spatio-temporal refetiop among items described in Chapter 3
cannot be utilized, since the commissioning process caridyeed as the initialization step for
the co-occurrence model. For this reason, the classificafitow-level read events is mandatory
to provide accurate scan results. The readpoint objectivethe verification can be formulated
as follows:

e Objective 1:ldentify the content of a particular packaging unit: Thiguies the readpoint
to perform an assignment of read events to the boxes as thaytimough the interrogation
zone. For this purpose, the individual boxes need to beiftehby means of a dedicated
RFID tag or a barcode label.

e Objective 2: Filtering of false positive tags: Tags that do not belonghe tonsidered
packaging unit should be identified and suppressed. Thigdas stationary tags in the
vicinity of the readpoint as well as tags from previous ors&tuent packaging units on the
conveyor.

The first objective, which we refer to @ag-to-box assignmeris elegantly covered by the pre-
sented signal model since it allows us to determine the teahg@nal center for every tag. As-
suming a constant conveyor velocity we can investigate on the relation between the RSSI /
phase responses and the time instants when boxes are preseninterrogation zone. For the
experimental evaluation in this case study, we define twoatas: The first scenario assumes
that a proximity sensor (light barrier) in combination watharcode reader is available. In this
case, the center timestamfps of individual packaging units can be computed from the gsind
falling edge of the proximity sensor signal

ti1+tio

T (4.16)

tp, =

wheret; 1,t; » denote the time instants of the rising and falling edge retspdy. The second
scenario covers the case when no proximity sensor is alailbelence, the packaging unit center
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timestamps are obtained from the center timestamps of ttieated box identifier tags

tp, = i (4.17)

With the center timestamps fd¥ consecutive boxes, the most likely box for tAgcan be deter-
mined by finding the minimum temporal distance between theséater timestamp; and theNV
packaging unit center timestamps using

i:argnliin(|pt—tpi|). (4.18)

The readpoint setup for this use case, consisting of an REHer with a single antenna, a
light barrier sensor and barcode scanner to identify th&viohgal packaging units is shown in
Figure[4.9. The experiment is designed to demonstrate thabdaies of the presented approach

Light barrier Barcode scanner

I_I

( Antenna )

Ground floor

Figure 4.9: Readpoint setup comprising a conveyor belt and an RFID readtenna mounted be-
low the conveyor belt facing upwards. The presence of pangagits can be detected
by means of a proximity sensor and a barcode scanner is usdehtdfy the individual
packaging units.

and to evaluate the individual signal features in terms a$dification performance. For this
purpose, a set of six feature attributgs... 74 is defined, representing all possible combinations
of the individual low-level features. Prior to the evaloati the classifier is trained by means of
a labeled data set. The evaluation is carried out by mearaggetl items in a total of 51 boxes
that are transported on a conveyor belt with a constant igloc Each box contains 15 items,
including a dedicated box identifier tag. At the same timee Htationary tags are placed near
the reader antenna such that they are continuously visiltleetreader. Details about the RFID
readpoint setup and reader configuration are summarizeahie®.1.
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Component / Parameter | Name / Value

Reader Impinj Speedway Revolution R420
Antenna Kathrein Widerang&0° /30°
Transmit PowerPrx 0.3W

Conveyor velocityw 0.5%

Box-to-box distancel 0.5m

Table 4.1: Experimental conveyor belt setup: Summary of parametatseadpoint configuration

Feature attributes w/o. box w. box
Pp Pra Po Pea

F1: RSSI/LB 0.9961 0.0 0.9948 0.0

Fo: RSSI 0.9987 0.0 0.9582 0.0

F3: RSSI/ phase /LB 0.9961 0.0 0.983 0.0
F4: RSSI/ phase 0.9922 0.0 0.9503 0.0
F5: phase /LB 0.5124 | 0.1294 | 0.4392 | 0.1294
Fe: phase 0.3516 | 0.1294 | 0.2810 | 0.1294

Table4.2: Performance characteristics of the classification apprasging different feature at-
tributesF, consisting of RSSI, phase, and light barrier (LB).

The evaluation metrics for the conducted experiments areotierall detection probability’p

and the false positive probabiliti#=a. The detection probability considers the reader detection
probability (i.e., the probability of physically deteatira tag) and the classification performance
in terms of a correct tag-to-box assignment. The false ipegirobability accounts for stationary
tags that are erroneously assigned to a packaging unit. Xpeximent is repeated several times
to obtain a comprehensive data set. For each of the featuwilsutds, the classification perfor-
mance is evaluated with and without the tag-to-box assigiiniéhe results of the evaluation are
summarized in Table 4.2 and visualized in Figure 4.10.

The evaluation provides two main insights. First, the pesgubsignal model integrated in the
abstract classification scheme provides a reliable sugipresf false positives and an accurate
tag-to-box assignment with appropriate low-level feadurEhe perfect suppression of false pos-
itives together with a detection probability 6f, = 0.9987 for feature attributesF,, consisting
solely of the RSSI information demonstrate the effectiwgsnef this approach. The gap to a per-
fect detection probability stems from the fact that a sirtglg could not be physically identified
and can therefore not be attributed to the classificatioerseh However, the classification per-
formance depends strongly on the quality of the featuréates and drops considerably when
only the phase signal is used. Figlrel4.6 illustrates theoreéor this result: The phase angle
of the tag response is too noisy to provide meaningful infiiom that could be exploited by the
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Chapter 4. RFID Readpoint Modeling

classification algorithm. If, however, the RSSI is addechfeature attributes, the performance
increases and stationary tags can be filtered out reliakilydésated byP-a = 0 for all four test
runs. The second aspect is concerned with the reliabilithetag-to-box assignment. Whereas
the suppression of false positives does not benefit fromighé-barrier information, the tag-to-
box assignment is more accurate when taking the lightdrasignal into consideration. This
can be explained by the fact that the light-barrier providlesccurate estimate of the box center
timestamps.

0.2
s . DOX
0.181 — \\//0. DOX
f Q_‘E 0.16
> E‘ 014}
= ks
o) @ 0121
© o
g S o
s 4 o008t
I S’
&) © 006}
K%
L‘E 0.04}
0.02
ol— ‘ ‘ ‘
Fi1 F2 F3 Fa Fs F6 F1 F2 F3 Fa F5 Fe
(a) Detection probability (b) False positive probability

Figure4.10: Resulting detection and false positive rate for differesattéire attributeg;, with and
without tag-to-box assignment. In particular, the featatibutes are; (RSSI /
LB), 72 (RSSI),F3 (RSSI/ phase / LB)F. (RSSI/ phase)fs (phase / LB), andFs
(phase). The combination of RSSI and light-barrier sigifa)) orovides a perfect tag-
to-box assignment and a robust suppression of false pesitin contrast, the phase
signal is too noisy to provide a reliable classification iis ftenario.

The issue of missing observations is a widely discussedigmolor RFID systems and is still a
limiting factor for the mass deployment in several appimas. For this reason, there are several
approaches to mitigate this problem, from an increasechtove duration to the use of multiple
tags for every item. Another intuitive approach is the cqie# cooperative readpoints, which
will be discussed in the next section. This concept is arl idedition to the low-level classifica-
tion approach discussed above to provide a reliable deteofiRFID tags together with a robust
suppression of false positives.

4.2 Cooperative RFID Readpoints

Commonly, RFID systems rely on the principle of periodiceintories by making use of consec-
utive reader-sessions. The idea behind this approach itease the overall scan duration such
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4.2. Cooperative RFID Readpoints

that all tags in the interrogation zone reply to the readeuest with a sufficient probability. The
need for a periodic inventory mainly stems from the necgsaati-collision scheme. Depending
on the overall number of tags in the interrogation zone amdpitotocol parameters, a certain
number of tag replies result in a collision on the air integfaln order to fully identify a given tag
population, the reader hence needs to repeat the requesitdgan additional slot for individual
tags to reply.

Within the operation limits of the EPCglobal standard imisrof item-throughput, the main
cause of the missing tag problem, however, is not associaithdthe temporal behavior of the
anti-collision scheme. Instead, the detection probgbititusually limited by theforward link
from reader to tag, i.e., tags do not receive sufficient pdweeply to a reader request [116]. The
temporal diversity introduced by periodic inventory seasican only compensate for the missing
tag problem to a certain extend. Especially for stationagdpoints, the geometric constraints
do not change significantly between two inventory sessioniglwmeans that additional reader
requests do not necessarily improve the detection pratyalitior this reason, a vital step during
the conception of an RFID system is a careful placement oDRE&der antennas, combined with
an optimization of the parameter-setup to compensate fgmgatag orientation, item throughput
and item variability.

The concept of antenna diversity with respect to an RFIDpeed can be further extended to
include several, cooperative readpoints. Following théndon by Fyhnet al. [57], coopera-
tive means that the individual readpoints exchange infionabout identified tags. The overall
system performance benefits from the use of additional m@atipin two ways: First, every read-
point introduces additional reader sessions, thereby#sing the overall inventory time. This
decreases the probability of persistent collisions by regididditional inventory slots. Second,
additional readpoints give rise to a spatial diversity vahilecreases the effect of dead zones and
hence increases the overall detection probability. Theepinof spatial diversity is widely devel-
oped in wireless communications but requires special @ttein the context of RFID systems.
The often tightly constrained readpoint setup in automatedronments gives rise to a significant
correlation between individual readpoints, even if thelezaantennas are sufficiently spaced.

Taking the correlation between individual readpoints iatcount, this section presents a corre-
lated Binomial model to describe the tag detection procassdoperative readpoints. The model
provides an intuitive way to quantify the correlation betwedndividual antennas or readpoints
and can therefore be used to estimate the number of necessteyn components for a given

performance requirement. This reduces the trial-and-exnaracteristic often found in current

conception processes and forms the basis for a more systeapptoach.
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4.2.1 System model

The detection performance of an isolated readpRintan be described by means of the detection
probabilityP(i), which quantifies the percentage of tags in the interrogatéme that are success-
fully identified. In the idealized case of an RFID system éstivgg of N uncorrelated, cooperative
readpointsRy, ... Ry with equal detection probabilities” = P = .. = P{") = P, the
combined detection probabiliti’s follows a Binomial distribution. In order to account for the
inherent correlation between readpoints, we need to extendtandard Binomial model to con-
sider the conditional probability for a detectionat readpoinfR; given previous read events_;

P}E;L) = P(ZZ =1 | Zi—1 — 1, Zi—2 — 1, A 1) (419)

and
Ph(j?)1 == P(ZZ =1 | Zi—1 — 0, Zi—2 — 0, veey 1 = 0) (420)

In this context, the subscrigt represents a successful detectionit(j, whereas a subscripted
m refers to amiss. Consequently,P,EQ denotes the probability of subsequent detections (hits),
for example when readpoin®, and R, both have successfully identified a tag. In contrast,
P,Efq)l denotes the conditional probability of a detection follogria miss. To keep the computation
tractable, we employ the first order Markov assumption, Wwhieans that a detection by readpoint
‘R; depends only on the detection by readpdit +, yielding

Py =Pz = 1]z =1) (4.21)
and
PP = P(zi =12, =0), (4.22)

respectively. Similarly, the conditional probabilities fa missed tag are defined as
P9 — P(z=0]z_,=1)=1-P% (4.23)

and
P, = P(z=0]z_1=0)=1- P (4.24)

A sequence of read events represented by the indicatoblatia= [z, z2, ..., zn] for a par-
ticular tag can be interpreted as a Markov chain describethbyconditional probabilities in
Equ. [4.21) -[(4.24). Using this set of conditional prohbi&ib#, we can construct the combined
detection probabilityPs = P(k, N) in an iterative manner [114] as visualized in Figlre 4.11,
where each nod@,y = P(k, N) represents the probability &f successful detections hy
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readpoints. A vertexn,y represents the probability éfdetections byV readpoints with a miss

Ps3 Pss Pi3 Pos

Figure 4.11: Graphical representation of the probabilistic tag detecthodel to compute the com-
bined detection probability. Each vertex represents aitiond! probability, whereas
anodeP,y = P(k, N) is the probability oft detections by a given number of read-
points N. The notation is adopted from Ladd [114].

on the N-th readpoint. Depending on whether the previous node wahesl through a hit or a
miss, this yields
PN it ey =0

(4.25)
P&Nh) if ZN—-1 = 1.

mpN =
Similarly, vertexh,y is the probability oft detections byV readpoints with successful detection
on the N-th readpoint, yielding

PN iy =0

(4.26)
P i 2y = 1

hkn =

The combined detection probabilify(k, V) can be computed as the sum over all possible paths
through the tree in Figule 4111, where the first nétig, 1) = hy; = Pél) is the unconditional
detection probability of the first readpoint.
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From the general model, we can derive the special case faoletieetion by at least one readpoint

(4.27)

N
P(k>1,N)=1-P(0,N)=1-(1- P [ P9,
=2
which is the desired combined detection probability. In this context,P(0, N) denotes the
probability that a tag is missed by &¥l readpoints. If we assume that the conditional probakslitie

PTS% = P,gf,% =..= 75%) = P, are equal among all readpoints, Equ. (#.27) becomes

P(k>1,N)=1—(1-P")PN-1. (4.28)

The combined detection probability for this simplified casehown in Figuré_4.12 for differ-
ent levels of correlation, expressed in termsyf,, and an unconditional detection probability
Pt(,l) = 0.8. In addition, the uncorrelated case covered by the stanBaromial distribution
is shown for comparison. Although the simplifying assumptof equal conditional probabili-

S @

=#— Binomial

0.84F —O— P,y = 0.3
Ppym = 0.5
0.82 Ppm = 0.7

Pyym = 0.9
2 3 4 5 6 7 8 9 10
# Number of readpoints N

Figure4.12: Simulated detection probability for a given number of rezidts with different de-
grees of correlation. The correlation is expressed in tefnB,,,,, the conditional
probability that two subsequent readpoints fail to detquaricular tag.

ties will not hold in practice, this example highlights twoportant aspects. First, the standard
Binomial distribution readpoints forms the upper boundtf@ combined detection probability.

For practical scenarios, this yields overly optimisticules due to the idealized assumptions.
Second, the higher the correlation, the more readpointsegigired to achieve a specific target
performance which means that an increasing correlatioitslitne gain in detection performance
introduced by additional readpoints. Therefore, it is im@ot to consider measures to reduce
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the correlation before performing an additional RFID scanch measures include an alternative
orientation between reader antenna and tag, but more iemilyria rearrangement of tags inside
their enclosing packaging units to reduce the impact of mluwtaupling and detuning.

The presented model provides a concise way to describe thelation among individual read-
points and to quantify the combined detection probabilitye model parameters can be estimated
in a straight forward manner from a set of read events andheamlie used to extrapolate the re-
sults in order to assess if an additional readpoint yieldgl#sired performance improvement. To
further study the effect of readpoint correlation, we use discussed model to analyze a large
scale dataset from a real-world RFID deployment.

4.2.2 Experimental Evaluation

The experimental evaluation presented in this section lisgiaa larger study with the goal to
identify and quantify the different error sources in a pdtRFID deployment. In parallel, we
use the dataset to verify the assumptions of the generaBasaimial model. The data for the
evaluation stems from a two month period of an active RFIOagpent in a fashion distribution
center. In this application, the task of the RFID system igetdfy the content of individual pack-
aging units (containing flat packed garments) after comongsy. The deployed RFID system
consists of a total oV = 4 readpoints as shown in Figure 4.13. The individual readpaire in-

[ RFID Server }

RFID RFID
Reader 1 Reader 2

[ Readpoint 1 ] [ Readpoint 2 ] [ Readpoint 3 ] [ Readpoint 4 ]

Figure4.13: RFID system architecture: The RFID system comprises twoDRFaders and
N = 4readpoints, each consisting of two antennas. The readsaeafprocessed
on a centralized RFID server.

stalled along an automated conveyor belt and consist of ikeotibnal RFID antennas which are
placed directly above and below the conveyor belt. Thisgtzent is a logical consequence of the
tag dipole radiation pattern to maximize the energy trartsééween reader antenna and tag. The
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first two readpointsR; andR,, are shown in Figure_4.14 together with several cardboaréso
transported on the motorized conveyor belt. Due to the aimoitientation and close spacing, the
readpoints show a considerable correlation with respeitigtaletected RFID tags.

Figure4.14: RFID readpoints installed on a motorized conveyor belt. Wiee antennas mounted
above the conveyor belt are aligned such that the energgfénato the tag is max-
imized. Due to the similar orientation and close spacingh beadpoints show a
considerable correlation with respect to the detected R&{3. Image courtesy of
Enso Detego GmbH, 2013.

The raw dataseb, features read events from over 500.000 tags in 23.365 penxgkagits during
a two month period. In order to allow for an in-depth analyaiground-truth has been established
by manually scanning the individual packaging units.

The main error source is identified in a certain percentagdetdctive tags, i.e., tags that do
not respond to a reader query in the far field due to a hardvedltegd. In order not to bias the
analysis, we establish a corrected datda3etby removing all defective tags from the ground-
truth. The evaluation includes the following aspects: tRive analyze the correlation between
individual readpoints on feature level by investigatingtba read redundancy (number of read
events) for the individual tags. Second, we fit the correld@omial distribution to the raw
and corrected dataset to derive the conditional probasiliand to assess the gain in detection
probability introduced by additional readpoints. Finallye carry out a temporal analysis of
the readpoint detection performance to demonstrate teadghtial diversity concept provides a
significant performance enhancement in terms of the migsimgroblem.

For the analysis on the feature level we consider the totalbau of successful inventorieéj )
for tag T; on readpointR ;. Provided a constant conveyor velocity, the read redurndaan be
interpreted as a quality indicator that describes howlkdia tag is identified. Contour plots of
the joint empirical distributions for readpoint paitR1, R2), (R1,R3) and(R3, R4) are shown
in Figure[4.1b. From the dataset, we can compute the lineaelation coefficients; ; for
all readpoint pairs, as summarized in Tablg 4.3. The engbidistributions and the correlation
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30 0 5 10 15 20 25 30
D D n(®

(a) Readpoint§R1, R2) (b) Readpoint§R1, R3) (c) Readpoint§Rs, R4)

Figure 4.15: Contour plots of the joint empirical read count distribagoon the individual read-
points. With constant movement velocity, the read countbmmterpreted as a mea-
sure of how reliable a tag is identified. Due to the similadpesnt setup, the read
count exhibits a considerable correlation.

p | n® | n® | n® | @

n | 1.00| 0.58| 0.35| 0.35
n® | 0.58| 1.00 | 0.34| 0.34
n®) | 0.35| 0.34| 1.00| 0.98
n® | 0.35| 0.34| 0.98 | 1.00

Table4.3: Read count correlation coefficients between the individealdpoints. Readpoints
(Rs3,Ra4) are highly correlated on feature level due to the almosttidainsetup.

coefficients highlight the significant correlation betweba individual readpoints. This implies
that tags which are often read by a given readpoint have aigbability of being detected
by subsequent readpoints in a similar fashion. In particu&adpoint pai(RRs, R4) shows an
extraordinary correlation withs 4 = 0.98. This can be explained by the similarity of the physical
setup and the small spacing between the readpoints.

From the read count, we can derive the binary indicator kbéia

£ (9)
' 0 ifn?) =0

)

(4.29)

which can be used to analyze the correlation on detectia. l&v particular, the detection prob-
abilities of the individual readpoints are shown in TAbK, 4vhereas the conditional probabilities
are shown in Table"4l5. In accordance to the analysis onréedguel, the conditional proba-

bilities in Table[4.5 reflect the significant correlation amgahe individual readpoints. Based on
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ENEAENES
Pp | 0.9959] 0.9953| 0.9900 | 0.9885

Table 4.4: Detection probabilities for the corrected dataBet For example, readpoifiR: exhibits
a detection performance éﬁ” = 0.9959.

R Ro Rs3 R4
P., | 0.9959| 0.9982| 0.9905| 0.9985
Py, | 0.0041| 0.0018| 0.0095| 0.0015
P, | 0.9959| 0.3013| 0.8746| 0.0

A~

P, | 0.0041| 0.6987| 0.1254| 1.0

Table 4.5: Conditional probabilities of detecting and missing a tagsabhsequent readpoints. The
consistently high values faP,;, emphasize the correlation between the individual read-
points. For example, the probability of two successful diéas onRs and R4 is
Pr, = 0.9985.

the estimated values, we can fit the correlated Binomial ¢oetimpirical data and construct the
combined detection probabilityh, = P(k > 1, N). The resulting detection probability over the
number of readpoints is visualized in Figlire 4.16. Startiom the unconditional detection prob-
ability of the first readpoint, the additional readpointsriase the combined detection probability
for the raw dataseD; and the corrected datasBt. Although the individual detection proba-
bilities are close to or above 99%, the performance of thiated readpoints is not sufficient to
meet the requirements in practical scenarios. In contitastusion of read events provides an im-
provement in terms of the combined detection probability. the corrected datasét, a perfect
detection can be achieved wifti = 3 readpoints. Since readpoirfi, andR3 show the least
degree of correlationk; provides the largest gain in terms of detection performandereas
readpointR 4 is redundant in this scenario. Furthermore, Fidgurel4.1Blights that the standard
Binomial distribution provides overly optimistic estineat since the assumption of uncorrelated
readpoints is clearly violated. In contrast, the suggestetkelated Binomial model provides ac-
curate values that fit the experimental dataset. The smahititen from the empirical data stems
from the simplifying first order Markov assumption.

For the last part of the analysis, we investigate on the teatgvolution of the individual and
combined detection probabilities. The readpoint detacpimbabilities over time are show in
Figure[4.1V. Although the average detection performanceviery readpoint is close to or above
99%, the plot shows several significant performance dipedtidg that tags in particular pack-
aging units are difficult to identify. Whereas these perfance dips correlate strongly among
readpoint R1, Rs) respectively Rs3, Ry4), the correlation betweerR(;, R3) is considerably less
significant. This is emphasized by the combined detectiobadilities for readpoint® ;... R4
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Figure 4.16: Resulting detection probability over the number of readofor the raw datasé€?,
and the corrected datasPt. Whereas the standard Binomial distribution provides
overly optimistic estimates, the correlated Binomial maa®vides an accurate fit
to the experimental data and can therefore be used to prtedictetection rate as a
function of the number of readpoints.

as shown in Figure_4.18. The combination of the individualdmoints reduces the number and
extend of the performance dips. In the particular scenagiadpoints(R; - R3) provide suffi-
cient diversity for the mutual compensation of missed RFE@st The concept of spatial diversity
is hence an effective way to mitigate the missing tag prohlfetihhe correlation issue between
individual readpoints is properly addressed.

The generalized Binomial model provides an effective wagpgssess the correlation among in-
dividual readpoints and is hence a valuable tool during tmeeption of an RFID system. The
empirical study by means of a comprehensive dataset hasgheawvindividual readpoints suffer

from random performance dips which can be significantly ceduby means of the cooperative
readpoint concept.

4.3 Summary

The concepts developed in this chapter are targeted tod@avi increased data accuracy for RFID
systems on the readpoint level. This is particularly nesmswhen no prior information can be
utilized in terms of a high-level system model. From thisspective, the presented readpoint
model serves as complement to the high-level approachstiedun Chaptéd 3.

In order to address the problem of false positive obsemsatiove have analyzed the information
on readpoint level in terms of the available low level featur Using a compact signal model,
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Figure4.17: Detection probabilities for readpoint®, ... R4 over time. Whereas the average de-
tection performance is close to or above 99%, the individeatipoints suffer from
random performance dips. An important aspect is that thiopeance dips show a
certain correlation among the readpoints, which indictttastags in particular pack-
aging units are difficult to identify.
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Figure4.18: Combined detection probability of the RFID system with € [1, 4] readpoints.

Whereas individual readpoints suffer from performance dipe fusion of read events
provides a robust and reliable detection. The curves\fee 3 and N = 4 are identi-
cal which shows that the fourth readpoint is redundant is1shenario.
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we have integrated these features in an abstract state-sgaesentation which forms the basis
for a robust classification mechanism. The abstractiorl Iavtbe state-space representation pro-
vides the necessary flexibility and ensures that this ajgproan be used in a variety of different
scenarios. In an experimental study, we have evaluatedttiddual low level features and the
classification approach.

In addition to the classification mechanism, we have alsegmm&d a method to target the prob-
lem of missing RFID observations. For this purpose, we usadpoint diversity approach which
combines the RFID observations from several, independaatpoints. In this context, the corre-
lation between readpoints has been found as the limitingrfaehich is why we have explicitly
considered this aspect in the presented model.

The major conclusions from this chapter can therefore benrsanized as follows. First, RFID
systems provide information that goes beyond the defindgfabinary read event. By employing
this information, a reliable suppression of false positibservations can be performed. Second,
the presented classification mechanism is a flexible framewuoited for a variety of different
use cases. Finally, the crucial problem of missing tags eamitigated by means of a readpoint
diversity concept. The probabilistic formulation on reauip level developed in this chapter
provides a high flexibility regarding possible applicatemenarios and different configurations.
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PRISE - Probabilistic RFID Simulation Engine

RFID systems cover a variety of different aspects and facepbex questions from physical as-
pects such as wave propagation and circuit design to high-leisiness considerations. Due to
the fact that the deployment of RFID systems is a cost and itemsive process, simulation
tools for a variety of different aspects are frequently usetie conception phase. Consequently,
the research community has developed various simulatidrearulation frameworks addressing
the different abstraction layers of an RFID system [23].c8idata from large scale RFID de-
ployments is scarce, a simulation environment forms thessary basis for the development and
evaluation of high-level modeling approaches and filtehtégques. The first part of this chapter
gives an overview of different simulation frameworks forlRFsystems and provides a compar-
ison of the individual approaches. The second part dissusgeconcepts and ideas behind the
probabilistic simulation framework PRISE and the impleteenmodels. Finally, we present an
experimental evaluation of the simulated RFID observationthree practically relevant scenar-
ios.
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5.1 Related Simulation Tools

There exist several simulation frameworks targeting thelevel aspects of an RFID system. For
example, the MATLAB based simulation framework by Hetnal. [79] focuses on the analog
frontend of RFID readers and tags to verify the protocol @aaddard compliance of a particular
tag or reader model. For this reason, the reader frontendoteled in detail, including the
digital-to-analog conversion (DAC) as well as the modulatnd power amplifier subsystems.
The framework furthermore provides mechanisms to speltifisenulate the forward and reverse
link by means of a wireless channel model and the tag refledi&@havior. The simulation is
performed on signal level which limits its applicability elto the considerable computational
complexity. Similarly, the MATLAB based simulation framevk PARIS [13+-15] implements a
detailed model for RFID readers, tags, and the wirelessipatit channel. In addition, the PARIS
framework considers the aspect of Ultra-Wideband siggalinRFID systems and is especially
designed to investigate on the issue of geometric tag katadn. Hence, PARIS features an
abstraction level that is not adequate for the simulatioa lafge scale RFID system.

In terms of a high-level system simulation with various RF#é2ders, antennas and tags, RFIDSIim
[51,/52] is closest to the PRISE simulation framework présgim this thesis. RFIDSim abstracts
from the signal level which reduces the computational cexipf such that RFID systems with
a large number of tags can be simulated. The communicatiomebe reader and tags features
the mandatory commands specified in the EPCglobal standaath, asQuery, Ack QueryRep
andQueryAdijl48]. The behavior of tags is implemented according to tagesdiagram specified
in the EPCglobal standard. In terms of signal propagatiddDiSim uses a Rician fading chan-
nel model, but does not especially consider item propeatietetuning effects. A simulator that
closely resembles the functionality of RFIDSim was devetbpy Zhanget al. [197], including a
Graphical User Interface (GUI). In addition to the simwatframeworks discussed above, there
are several other simulation and emulation approachestiaggpassive UHF RFID systems, se-
curity aspects [138] and hardware-in-the-loop simulaféi. These systems, however, do not
consider high-level aspects such as the underlying sugaincstructure.

The probabilistic simulation engine presented in this tdajs a system-level simulation tool
that provides a compromise between high-level businessepsosimulation and the generation
of low-level RFID observations. Naturally, this requiresrade-off in the simulation accuracy
due to simplified modeling assumptions. PRISE is hence redjded as a detailed reader, tag or
channel simulation software, but rather as a framework tegde datasets for large scale RFID
systems operated in a particular supply chain. The modofaware architecture allows for the
integration of more detailed models and the output of otimeukators to address particular aspects

74



5.2. Simulator Concepts

if necessary. The main differentiation to existing RFID sglators is that PRISE performs a true
system level simulation, including the underlying busigsocess which defines the abstract,
high-level item movement.

5.2 Simulator Concepts

PRISE is a cross platform, C++ / Qt based software framewdrichwprovides the possibility

to set up and simulate typical RFID readpoints in a supphirch&or this purpose, the simu-
lator implements the business process model describedapt€h3 to generate high-level item
trajectories. PRISE offers a GUI allowing the user to speitié following aspects:

e Supply chain structure setufefines the structure and dynamics of the simulated supply
chain in terms of the CTMC as described in Chapler 3. The setupprises the model
parameters (transition probability matrix, prior statel@bilities and the individual dwell
time parameters) as well as the overall simulation time ampbral resolution.

e Item setup:Allows for the definition of a hierarchical item structureatican be used to
create packaging units and tagged items. Together withughyglys chain structure, the item
setup serves as input for the generation of high-level itajadtories.

e Readpoint setupDefines the number, type and placement of RFID readers, ctiane
cables and antennas in a 3D environment. Additionally, ¢aelpoint setup covers the def-
inition of geometric item trajectories. In order to accoftortvariabilities in the geometric
setup, a controllable degree of randomness can be added itertintrajectories.

The simulation setup is represented in an .xml file structbhe¢ serves as input to the actual
simulation core. An example configuration file, represantirsingle reader with stationary tags
is shown in AppendiX’AJl. The actual simulation core impletsean event queue driven by a
simulation clock that controls the movement of items, schexireader inventories and updates
the channel characteristics. Based on this informationatixnholding the individual detection
probabilitiesp;;(t) for theith reader antenna and tlith tag is computed. A block diagram of the
simulator architecture is shown in Figure]5.1. The simafabutput is represented in terms of
RFID observations
esim=[t, ID, r, 1], (5.1)

with the timestamp, tag identifier ID, RSSI value,, and antenna index in analogy to the
definition in Equ. [(4.11), except for the phase angle The simulated read events are provided
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Simulation Core

\ [ , )

P Item Trajectories Event Queue Clock
Prior state probabilities i Event 1
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Antennas Tags

Supply Chain Model
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Item properties

# Tags
N < Detection Probability Matrix
4 Readpoint setup ) l
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Item trajectories

RFID Observations
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Figure5.1: Simulator architecture: The simulation setup, comprisirgupply chain model, item
model, and readpoint setup is fed to the simulation core.cbhe is based on an event
gueue which is driven by a simulation clock. The implememtextiels for readers, an-
tennas, items, tags, and the UHF channel are used to congutietection probability
matrix P, where each entry;; (¢) represents the detection probability at titrfer the
jth tag on theth reader antenna.
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in a .csv file structure, hierarchically grouped by readet tag. In addition, the output contains
the ground-truth for the high-level supply chain movemertt the geometric item trajectories on
every readpoint.

5.3 Models and Implementation

The simulator implementation follows an object-orientggbraach and currently incorporates
specific RFID reader-, antenna-, and tag-models. The spatidfn for the individual components
are closely related to the corresponding manufacturer steats and can be subjected to a con-
trollable amount of randomness. Currently, there existsoroprehensive dataset that provides
information about the distribution of individual paranmstsuch as reader or tag sensitivity. For
this reason, standard Normal distributions with adjustgisirameters are used.

5.3.1 RFID Tag

RFID tags are characterized by means of their antenna amchttponder chip. The implemented
antenna model is a standard dipole with a specific antennedemzeZ, = R, +3X,. The dipole
radiation pattern is shown for reference in Figurg 5.2. Taadponder chip is characterized by

105°

-105°

-75°

-90°

Figure5.2: Tag antenna radiation pattern: The tag antenna featurgsotediharacteristic which
introduces a significant orientation sensitivity.

the sensitivity value and the chip impedangge = R. + 3X.. The individual values can be
set according to the manufacturer data sheet or availabésumnement data [156]. The chosen
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sensitivity value is interpreted as the mean value of a Gaggstribution with a configurable
standard deviation. The antenna and chip impedance areirusieel simulation to compute the

tag radar cross-section
NG2R?
oc=—""-,
7| Za + Zc|?

where) denotes the wavelength agds the angle dependent antenna gain/[153]. The radar cross-

(5.2)

section is the primary factor that determines the backsaattpower and is therefore required to
compute the RSSI value during a particular tag inventorye iftplemented tag model abstracts
from the signal and command level and hence does not redpgrstate machine implementation
defined in the EPCglobal standard.

5.3.2 RFID Reader and Antenna

The implemented reader model consists of several blocksdvar different operational aspects.
Considering the RF-frontend, RFID readers are equipped avitertain number (default: four) of
antenna ports that are used in a time multiplexing schenreedeh port, a distinct transmit power
value Pr can be configured. The reader model implements a frequebty aacording to the
European RF regulations [49]. In terms of the backscattergdesponse, the reader implements
an additive noise model representing thermal noise as wealhzbient RF noise. In analogy to
current state-of-the art RFID readers, the backscattaggdlspower for each tag read event is
provided in terms of an integer dBm value.

From the protocol perspective, the reader model implenthetanti-collision scheme specified in
the EPCglobal standard [48]. The key parameter for the ttiecalision scheme is the number of
expected tagd/ = 29. This quantity specifies the number of slots that are imitlan the framed
slotted ALOHA protocol and therefore determines the doratf an inventory round [184]. The
timing is specified by means of the data rate, in particularThri (Type A Reference Interval)
value which determines the symbol lengthl [48].

Antennas are connected to the reader by means of a cable lgitlyth-dependent attenuation. In
contrast to the tag model where matching is explicitly codeséd, the reader / antenna model is
idealized and does not account for a potential mismatcheduls antennas are solely character-
ized by their radiation patterns. In particular, a stand#ipble antenna model and a directional
antenna model with an approximate half power beamwidfodand30°, respectively as shown
in Figure[5.B3 are implemented. Antennas are assumed to lmsac polarization, which in-
troduces a polarization mismatch in the link budget betwesder and tag. The polarization
mismatch is assumed to be constant witdB for the forward and the reverse channel link. The
implemented RFID reader and antenna models feature a comfigudefect probabilitypefect
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which allows us to simulate system failures in large scaldCRfeployments.

-105°

-75° 1050 goo  75°

-90°

(a) Horizontal (b) Vertical

Figure5.3: Horizontal and vertical radiation pattern of the implengghintenna model with an
approximate half power beamwidth ©f° and30°, respectively for the horizontal and
vertical axis. In both directions, the radiation patterchsracterized by a prominent
main lobe and a number of additional side lobes.

5.3.3 Detection model

The detection model is based on the simplifying assumpti@faee-space propagation. For this

reason, the path loss
A 2
PL= | — 5.3
<47Td> 3

is computed according to the standard Friis equation. ddsté modeling the communication on
signal level with the appropriate waveforms, the detecgtimbability for a particular tag-antenna
pair is evaluated by means of the forward and reverse chdinkebudgets [[116]. The values

for the path loss and antenna directivity are computed daogrto the given geometry, which

is assumed to be stationary for the duration of an inventdhe link budget is then evaluated
in terms of the individual tag and reader sensitivity valudsa tag is visible to the reader and
successfully identified during the anti-collision schethe, RSSI value is computed according to

r = ||PrG3(PL)%a|], (5.4)

where|| - || denotes the quantization operator.

79



Chapter 5. PRISE - Probabilistic RFID Simulation Engine

5.3.4 Sensors

In addition to RFID related components, PRISE also impldmarset of devices commonly found
in automated environments, such as barcode scanners axithipycsensors. These devices are
characterized by a maximum range (defalilta) and a defect probability. To detect the presence
of objects in the simulated environment, the movement engimtinuously monitors if a barcode
reader or sensor is triggered by a particular object. Thelsited barcode scanner output

bsim = [t, P, (5.5)

comprises a timestantand the identifier of a particular packaging URjt In contrast, proximity
sensors are limited to a digital output

ssim= [t, u], wu € {0, 1}, (5.6)

whereu = 1 indicates that the proximity sensor is triggered. Both bdecscanners and proximity
sensors are idealized with respect to duplicate readingisignal debouncing.

5.4 Limitations

As stated in the introduction of this chapter, the PRISE #atian engine is designed for a high-
level RFID system simulation. For this reason, there is &eiient need for simplifications in
the implemented models to reduce the computational coritpleRRISE is not designed as a
profound channel, protocol, tag, or reader simulator siheee exists a variety of software frame-
works solely focusing on these aspects of RFID systemseddstPRISE establishes a compro-
mise between an adequate high-level supply chain model aedsmnable approximation for
low-level RFID observations. Consequently, there arersdwimplifications which are required
to reduce the computational complexity.

The most important simplification in terms of the wirelesamthel is the assumption of a free-
space propagation environment. This means that multipatiegation due to reflective materials
is not explicitly considered. False positive observatians hence introduced by means of non
ideal antenna radiation patterns or overlapping intetiogaones among readpoints. In addition,
the channel model does not consider particular item prigzefsuch as metal or water content)
which, in practice, heavily influence the link budget andlléadetuning phenomena. Similarly,

detuning effects introduced by tag-to-tag coupling are ats considered. The simplified channel
model also imposes a limitation to the accuracy of the regulRSSI responses, since the link
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budgets do not consider material dependent attenuation.

In terms of reader capabilities and low-level signal feagyurthe main simplification is that the
phase response is not simulated. The reason for this isiglgéd in Chapterl4: Although the
phase information provides interesting possibilitiesrfra theoretical point of view, the practical
relevance for the purpose of classification is limited byititeerent noise.

Due to the modular software architecture, the limitatioissussed above can be easily addressed,
e.g., by integrating a more detailed channel or item modet.tle research issues addressed in
this thesis, the current implementation provides a fastedficient method to generate large scale
datasets for different supply chain structures and readetups.

5.5 Experimental validation

For the experimental evaluation of the implemented moaesocus on the characteristics of the
simulated RFID observations. In particular, the read ratethe RSSI response characteristics are
analyzed. For this purpose, we define three different saentirat are set up in a lab environment
and the simulation framework. As a result, we obtain expenital and simulated datasets which
allows us to perform a direct verification. In the followirthe datasets and quantities from the
real-world setup are marked with the subscép, whereas the corresponding quantities from
the simulated data carry the subsc@itn The experimental setups for the evaluation comprise an
Impinj Speedway Revolution R420 reader and Kathrein Widgea0°/30° antennas. The RFID
reader is connected to a host PC which controls the openattmies and stores the individual tag
observations for an offline evaluation.

Scenario Icovers a single RFID reader with an antenna that is usedmdifig@ varying number of
stationary tags in the interrogation zone. This scenanaeimly designed to evaluate the temporal
behavior and the anti-collision scheme in terms of the ratelt Scenario Zeatures the conveyor
belt scenario which we have already described in Settio@ 4ot the identification of items in
cardboard boxes. The first two scenarios are characterizedsmall distance between reader
antenna and tags, which means that the RFID tags are typioalhe antenna near-field. The
second scenario is especially chosen due to its practieabrece for logistic applications. Finally,
Scenario 3covers an RFID reader with a total of four antennas in an EASication. This is

a typical far field scenario which is characterized by a atgrsible variability in terms of item
trajectories and the varying orientation between tag aadeeantenna. The defect probability of
all components is set tBpefect = 0 in all three scenarios.
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5.5.1 Scenario 1 - Stationary tags

This scenario is used to evaluate the temporal behavioedfiplemented reader and tag models.
For this purpose, a varying number of tags is placed in thegriogation zone such that all tags are
continuously visible to the reader, as shown in Fiduré 5K fieader is configured to perform a

Antenna

Tags )

NG ;

0.15m

I&C

d=

Figure5.4: Experimental setup scenario 1: A varying number of statiptags is placed in the
interrogation zone such that all tags are continuoushbigdio the reader. The reader
performs a periodic inventory of all tags, and the resultignber of read events is
used to compute the read rat@s a function of the total number of tags.

periodic inventory for a duration &f = 100s. Consequently, the tag population is continuously
identified, which allows us to evaluate the read rates a function of the total number of tags.
For both the experimental setup and the simulated envirahrtiee reader is initialized with an
ideal Q- value for the current tag population. The characteristader settings are summarized
in Table[5.1. The experiment is repeatdd= 10 times for each tag population and the mean

Component / Parameter \ Value

Datarate 80 kbps

Tari 10 us

Transmit PowerPrx 0.1W

Number of tags\/ M € {1,2,5,10,15, 20, 30, 40, 50}

Table5.1: Scenario 1: Setup and reader configuration

values of the resulting read rates are estimated togethiethe corresponding standard deviation.
The comparison between the experimental data and the dionul#ata is shown in Figufe 8.5.
The simulated read rate shows a characteristic decreasamwinhcreasing number of tags in the
interrogation zone. The experimental dataset is chaiaeteby a higher variability but otherwise
provides an accurate match to the simulated data. The highiability is introduced by physical
effects that are not explicitly considered in our channetielpsuch as dead zones introduced by
destructive interference.

Regarding the simulation time, we analyze the overall domadf the last experiment with/ = 50
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Figure5.5: Read rate- (humber of RFID observations per tag and unit time) for theuated and
experimental setup oveé¥ = 10 runs for each tag population. The simulated read rate
provides an accurate fit to the empirical data, which meaasttte timing parameters
and the anti-collision procedure are in accordance wittEfR€global standard. Char-
acteristically, the read rate decreases with an increasingper of tags visible to the
reader.

RFID tags. The average duration over tNe= 10 runs isTsjm = 3.073s on a standard PC with
an Intel Core i5-2520M CPU running at5 GHz. The abstraction from the signal level hence
provides a considerable speed-up compared to the expdahsetup.

5.5.2 Scenario 2 - Conveyor Belt Setup

The second scenario is of considerable importance foripedetpplications, since the verification
of commissioned packaging units is a key application forlREystems. The key criteria for the
analysis in this case are the low-level signal featuresaitiqular the characteristic signal shape
which forms the basis for the signal model in Chapler 4. Iritaaid the analysis covers the read
count per tag as general quality metric. This aspect is figaged by means of the empirical read
count distributions over all identified tags. The signalpghis analyzed qualitatively and in terms
of the dynamic range (i.e., minimum and maximum RSSI values)

Similar to the evaluation of Scenario 1, this near-field stienis set up in a test lab and the
simulator environment. The configuration parameters are/slin Tabld 5.2 and the experimental
setup is the same as depicted in Figurd 4.9. The resultingrieadpdistributions for the read
count are shown in Figuie 5.6 with mean valugs, = 22.08 andnsim = 20.07. This means
that on average, the experimental setup yields slightlyeniifID observations. Furthermore,
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Value

Datarate
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Transmit PowelPry
Conveyor velocityw
Number of tags per box
Total number of tags
Box-to-box distancel

80 kbps
10 us
0.3W
0.5%

M; =15
M = 405
0.5m

Table5.2: Scenario 2: Experimental conveyor belt setup. Parametersesmdpoint configuration
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Figure 5.6: Empirical distribution of the number of read events for avayor belt scenario. The
mean values for the read redundancy@g = 22.08 and7isim = 20.07, whereas the

corresponding values for the standard devi

ationsage= 6.71 andssim = 5.17. The

empirical distribution of the experimental data shows gtgly higher mean value and

higher tails. The deviations are due to the
channel and tag-to-tag coupling effects.

simplificationterms of the propagation
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the experimental data exhibits a higher variability (stmdddeviationsgyy = 6.71 Vs. ssim =
5.17 ), which results in higher distribution tails. The deviatsobetween the experimental and
simulated data are mainly due to the simplified channel mo8gice multipath propagation is
not considered, the simulated dataset lacks a certainmgageeof read events that occur over non
line-of-sight paths. However, the simplifications in teroighe channel model still allow for a
reasonable approximation.

Regarding the quantitative analysis of the simulated level features, Figufe 5.7 shows an ex-
emplary RSSI response which features a peak resulting fnencharacteristic tag movement in

the interrogation zone. Besides the main peak, the RSSdmespexhibits two additional maxima

which are caused by the side-lobes of the reader antenraticedpattern. Regarding the tempo-
ral aspect, the response is characterized by non uniformplsagwith respect to time due to the

non-deterministic inventory procedure as discussed imp@ia.

30r
.
00
50
| Experiment | Simulation

50k min{r®} in dBm -66 -68
max{r(*} in dBm -28 -28

RSSI in dBm

551

Table 5.3: Dynamic range of the RSSI response for
the experimental and simulated data.

60 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
1.5 2 25 3 35 4 45 5 55
timeins

Figure5.7: Simulated RSSI response: The quantita-
tive comparison between simulated and
measured response shows that the imple-
mented models provide an accurate fit in
the considered near-field scenario.

The dynamic range of the empirical and simulated RSSI resgsois analyzed by finding the min-
imum and maximum value over all individual signal valuestasnm in Tabld 5.8. The simulated
RSSI values are in a comparable range to the empirical dagatdehe simplified channel model,
since the scenario does not include specific materials tiflaence the channel link budget. For
this reason, we can conclude that the implemented modelsdpra reasonable approximation
for this scenario in terms of the generated RFID observation
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5.5.3 Scenario 3 - EAS

Whereas the two previous scenarios are designed to evagasimulator performance in near-
field applications, Scenario 3 is used to investigate on dndidld behavior. RFID systems for
EAS are a popular but challenging application in differeptd$. The basic task of an RFID
readpoint used for EAS is to identify items that are removethfa shop or sales floor without a
preceding transaction at the checkout desk. For this pariisIiD antennas are usually mounted
near the shop exit, as depicted in the floor-plan in Figure &E@ur antennas are mounted at a
height ofz4 = 3m and spaced by a distance &f = d, = 2m in each direction. Hence, the

Antennas
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[ [ _
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Average movement trajectory ™
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<
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Figure5.8: Floor plan of the experimental setup for scenario 3: FourlR&tennas are mounted
at a height okz4 = 3 m to identify tags that leave the shop through the exit door. To
account for the variability, the trajectory is specified bged of randomized way points

scenario differs from the first two applications in a numbfesispects: First, the distance between
reader antenna and tag is considerably larger and tagspicalty located in the antenna far-field.
Second, the link budget suffers from the absorption of RFesalue to the water content in the
human body. As a consequence, the channel characterigticoasiderably more difficult and
result in a decreased detection performance. Third, tliaas® shows a considerably greater
variability due to the lack of well defined boundary condigain terms of movement speed and
geometric trajectories. Finally, the multi-antenna seéhntpduces another aspect that needs to
be considered in the simulation: RFID-readers use a terhpuartiplexing scheme and activate
the connected antennas sequentially. For this reason,athiercsignal needs to be switched
off and on again for every antenna which introduces an amfdititime delay compared to the
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single antenna case. This delay is a reader dependent yraperneeds to be considered in the
simulation. The experimental setup and the simulationrpatars are summarized in Table]5.4.
For the experiment, four tagged items are carried in a sihggdmg through the interrogation zone
in a total of N = 100 trials. The empirical and the simulated dataset hence demmad events

from M = 400 tags each.

Component / Parameter

Value

Datarate

Tari

Transmit PowePry
Item velocityv

Total number of trials
Total number of tags

80 kbps
10 ps
0.75W
1.5%

N =100
M = 400

Table5.4: Scenario 3: Experimental EAS setup. Parameters and readmoifiguration

The evaluation of the simulated environment incorporatessame metrics as for Scenario 2. In
particular, the number of RFID observations and the dynamamge of the RSSI responses are
investigated. The corresponding empirical histogramghHeread redundancy are shown in Fig-
ure[5.9. The simplified channel model is the limiting factotérms of accuracy for this scenario.
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Figure5.9: Empirical distribution of the number of read events for th&SEscenario. The mean
values for the read redundancy ate, = 30.61 andnsim = 37.51, the estimates
for the standard deviation akgx, = 9.72 andssim = 5.24. The simplified channel
conditions (absence of absorption effects) cause a caasigehigher number of read
events due to the more optimistic link budget. Furthermtire,experimental data is
characterized by a higher standard deviation due to theegreariability.

The simplification results in an overly optimistic link bugtgand hence yields a considerably
higher number of read events. This effect is highlighted mdoeking at the RSSI responses in
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Figure[5.1D. Since the human body (as carrier for the taggeds) is not explicitly modeled,
there is no absorption of RF waves which increases the tagtitmt probability and the number
of read events. In contrast, the experimental data showshbahielding effect introduced by
the human body leads to a considerable performance degnad@he dynamic range of the sim-
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Figure5.10: Experimental (a) and simulated (b) RSSI response, shiftaeha the temporal center.
The simplified channel model leads to an overly optimistik lbudget which results
in a higher number of RFID observations per tag, since alisorgffects are not
considered. For this reason, the shown experimental delta tead events from the
opposite antennads and A4.

ulated RSSI responses, however, shows an accurate fit tafleemental data. This means that
the implemented reader and tag models, together with thiesbattering characteristic provide
a reasonable approximation also in the far-field. The smedlations on signal level are caused

| Experiment | Simulation
min{r} in dBm -70 -69
max{r(®} in dBm -45 -45

Table5.5: Scenario 3: Dynamic range of the RSSI response for the erpatal and simulated
data.

by the simplified assumptions, especially in terms of thenaehmodel. Considering the simu-
lator design goals, the implemented models, however, geogireasonable compromise between
accuracy and computational complexity.
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5.6 Summary

The presented RFID simulation engine allows us to perforrafficient simulation of large scale
RFID systems. This includes the generation of high-levenittrajectories through a supply
chain, which is the major distinction to existing simulatirameworks. Whereas other simu-
lators focus on particular aspects in an RFID system, PR[&abes at a higher abstraction level
which significantly reduces the computational complexiiye evaluation presented in this chap-
ter demonstrates that the simulated RFID observationsigegaan accurate fit to experimental
data, especially in near-field scenarios.

For this reason, PRISE is a powerful tool that can be useddedspp the conception and imple-
mentation phase of an RFID system. In particular, the seévmplementation on the backend
side can benefit from the efficient possibility to generatélRébservations in a controlled man-
ner instead of relying on time consuming prototypes and iixmtal setups. Furthermore, the
possibility to generate large scale datasets provides\aeoant way to perform profound stress
tests for implemented algorithms and database structures.

The current limitations are mainly due to the simplified modeassumptions which are nec-
essary to reduce the computational complexity. The modudftware architecture allows for a
seamless integration of more advanced models which prewigepossibility to detail on specific
aspects if necessary.
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Under optimal conditions, RFID systems provide a reliallentification of individual items up
to a range of several meters. However, the precise localizalf items is a challenging task
due to the limited bandwidth and the multipath channel attarstic as we have discussed in
ChaptefD. In certain applications such as EAS or adjacetdtyed warehouse portals, the limited
localization capabilities are the major source of noisyeotations due to false positive read
events. Commercially available EAS systems try to mininfisgge alarms by specialized antenna
designs with an extremely narrow radiation pattern. Whethis indeed reduces the number of
false positive read events, multipath propagation cahlesitl to unwanted observations which is
a problem that cannot be solely solved by antenna designdewatons.

The probabilistic view of RFID systems in this thesis pr@dda considerable increase of data
accuracy in RFID systems from the readpoint level up to laggde deployments along a supply
chain. The developed mechanisms increase the reliahilitgrms of detection performance and
false positive observations by considering the typicalavedr on different abstraction levels.
For scenarios like a retail store with an RFID driven artisleveillance, this approach has its
limitations due to the lack of prior information and the ciolesable variability. In this case,
geometric tag localization is a more promising approacthéogroblem of false positives. The
established probabilistic framework is well suited for tfkegration of different sensor modalities
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which can be used to increase the localization accuracys dtépter discusses the fusion of
computer vision (CV) and RFID systems to provide the reglioealization accuracy for typical
applications. For this purpose, we first review the relatttdture in this field and provide a
comparison of different tag localization systems. Secawgl,introduce an information fusion
approach for tag localization and tracking and provide gedrmental evaluation by means of a
typical EAS scenario.

6.1 Fusion of CV and RFID

CV systems have progressed to a technological state wheyeatiow for a reliable tracking of
individual objects or people from image sequences at lowsc@everal authors have investigated
on the combination of RFID and CV systems for localizatioul &nacking in different applica-
tions. For example, Germet al. [64] have developed a fusion system consisting of an RFID
reader and a camera on a mobile robot platform. In particthar authors combine the sensor
information from the CV and the RFID system using a PartidgkeiFframework to track and fol-
low individual people in a scene. A similar system|[18] uséised camera and a moving RFID
reader. Nicket al. [143+-145] have also investigated on the localization ospasUHF tags in
combination with a CV system and an Unscented Kalman Flitehis case, the target is to track
moving objects with a fixed RFID reader and camera setup.H®ptrpose, the authors employ
a deterministically found RSS model and a template baseztbbgtection to identify and track
tagged items in a warehouse portal scenario. In order thdunnprove the localization accuracy,
the authors integrate prior information in terms of a knovafeot height in the scene. The pre-
sented studies show a reasonable accuracy for a very sgsatifijc but do not include the case of
multiple tags and the related data association problem, [11€%], i. e., the problem of associating
the observations from several tags and objects in the scene.

To tackle the problem of a multi-target tracking scenariecpmbined CV and RFID system re-
quires four major building blocks as shown in the block digrin Figurd 6.11. First, the RFID
system needs to provide at least a rough location estisnatef individual tags. Second, the
CV system needs to provide an estimatg, for the current location and trajectory of moving
objects in the scene. For this purpose, a mechanism to detddtack moving objects (hereafter
referred to as blobs) is required. Third, a way to combindrid&idual location estimates needs
to be found, which can be formulated in terms of a data assmgiproblem. The combined in-
formation can then be interpreted in terms of a high-levakoming scheme such as a trajectory
classification block.

The discussed system architecture provides a flexible wegrtbine two complementary sensor
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High-Level Reasoning
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Figure 6.1: Block diagram for a combined RFID and CV localization systérhe RFID and CV
subsystems detect and localize tdgsnd blobsB;, respectively. The data association
layer subsequently finds the most probable match betweetifidd tags and detected
blobs in the scene. Based on the combined information, alkigh reasoning scheme
can be employed to identify specific trajectories and pmwabstract information.

modalities in a probabilistic framework. This forms theibder an elegant fusion approach and
furthermore enables us to integrate prior information,eiaimple in terms of a floor plan.

6.2 RFID Subsystem

The task of the RFID system in this context is not only to idfgrRFID tags, but also to provide
a location estimater; in order to track individual tags over time. Specificallye thystem is
required to provide a location estimate for a number of tAgs> 1. As we have discussed
in Chaptei 4, the available information for each tag per timie decreases as the total number
of tags increases. For this reason, elaborate localizatityemes requiring a high number of
read events cannot be employed in this scenario. Insteadtha@se a model-based location
by proximity approach to provide location estimates foraeginumber of tags. Naturally, this
leads to a compromise between the number of tags that cannoietlaby the system and the
achievable localization accuracy. Since the goal is to ¢oethe information from the RFID
system with other sensor modalities, a formulation for theation estimate together with the
associated uncertainty is required. The presented praiabiramework enables us to interpret
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the RFID related information in a Bayesian sense and forrasbtsis for a recursive update
scheme when new observation data becomes available.

The idea behind the localization approach is to use severahnasi; ... Ak that cover a specific
region of interest. The antennas are set up such that thadndl interrogations zones overlap.
For the localization approach, we approximate the ind&idantenna interrogation zones in the
horizontalx — y plane by means of a two dimensional Gauss Keghsbecified in terms of the
antenna positiop; and the covariance matri;. Consequently, the entire region of interest can
be modeled using a Mixture of Gaussians (MoG), where eactungixomponent represents one
particular antenna. For every RFID observatigrihe tag locatiork can be expressed using the
mixture model

K
P(x|z) =Y wig(%|p;, ). (6.1)
i=1

In Equ. [6.1)w;  7; are the weights of the mixture components proportional tasueed RSSI
values on each antenna. For a simplified scenario With= 3 antennas, a qualitative RFID
sensor model is shown in Figure 6.2 with the individual migtaomponents for a given RFID
observation. Since the considered tag is closest to anténrthe RSSI value (and consequently,
the weight of the mixture component) for this antenna is cating over antennad, and As.

A Ay As
° ° °
Ty
d

X

Figure 6.2: RFID sensor model for a simplified 1D case with= 3 antennas. The sensor model
incorporates a Mixture of Gaussians (MoG) to provide aiii@dd for the location of
tagT:1 based on the mean RSSI values. The parameters of the mixadel mepend
on the antenna characteristics (position and radiaticeepgtand need to be learned in
a calibration step.

The chosen modeling approach has several implicationsrinstef complexity, accuracy and
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practical aspects. First, the model requires a parametialiization to estimate the characteristics
of the Gaussian mixture components. This parameter estimag¢eds to be carried out during the
deployment phase in order to accurately reflect the charstits for a given scenario. Second,
the resulting abstract representation of the interrogatiane removes the need for an accurate
channel model and hence forms a compromise between acamdayodel complexity. Finally,
the chosen approach is relatively robust to changes in tagtation, since we do not use the
RSSI values directly to estimate the distance between tdguatenna, but rely on the ratio of the
individual RSSI values.

6.3 Blob Detection and Tracking

As complementary sensor modality, the CV system is used tuitorathe region of interest in

order to detect and track moving blobs. For this purpose, seesaumonocular camera with a
wide-angle lens to maximize the field of view in a given scenafor indoor scenarios, it is

advantageous to mount the camera on the ceiling to provideda-leye view of the scene. In

addition, this allows us to align the camera field of view vilte RFID interrogation zone such
that we can establish a common reference frame.

The blob detection and tracking mechanism includes sepeogkssing steps that are applied to
each recorded frame as shown in Figurg 6.3. The first blockeimgnts a foreground / back-

BG Model
Y
Frame . B;.xp
3 FG/BG > Shado_w > Blob_ > Mean-Shift : J
Detection Detection Detection Tracker

Figure 6.3: Blob detection and tracking: Each frame is first segmentéal anforeground (FG)
and background (BG) region using a MoG model which represtdm@ RGB values
of each pixelp. Subsequently, a shadow detection mechanism is appliegpfress
false positive blobs caused by moving shadows in the scameagtual blob detection
incorporates several constraints regarding blob size atotity. Each detected blob is
tracked over consecutive frames using the mean-shiftidhgor Consequently, the blob
detector provides an annotated trajectory for every dedidaiob in an image sequence.
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ground segmentation which is based on a MoG model repregetite RGB (red, green, blue)
values of each pixep [201,1202]. This segmentation scheme requires an inithitmg phase
with a static scene to establish a background model BG. Basdioe learned model, we process
a new frame and classify each pixel by computing the likethatio

_ P(BG|p) _ P(p|BG)P(BG)

R = b(Felp) ~ Plp|FO)P(FG) = 1

(6.2)

and comparing the value to a thresheld. Since there is usually no prior information about
foreground objects, a pixel is assigned to the backgroutiekifikelihood

p(p|BG) > ¢ (6.3)

exceeds a certain threshaetd The segmentation scheme implements an online update misgha

and can therefore adapt to slow illumination changes ind¢kaes. This is of particular importance
for practical applications without strictly defined lighg conditions. In addition, a shadow de-
tection block [[162] is used to suppress false positive blodnssed by moving shadows. This
mechanism is based on a non-parametric approach whichdirtes the two additional classes
highlightedandshadowedackground for the classification of each pixel.

The actual blob detection operates on the segmented fameginegion and incorporates con-
straints regarding the size and velocity of blobs. To tréaekindividual blobs over a given image
sequence, a Mean-Shift tracking algorithm is employed Wwigdased on the histogram of gray
scale values in the blob region. The histogram is updated eviery new frame and the blob cen-
terxp; is identified as the mode of the histogram. Hence, for eadh Bjpwe obtain an estimate
for the current positiorkz; in image coordinates and can construct the trajecfgsy(t) over
time. For an exemplary scenario in a lab environment, theecawiew with a person detected as
blob is shown in Figuré 6l4. The visualization shows thenestied blob dimensions (ellipse) as
well as the moving direction and velocity (arrow). The presd approach provides an efficient
way to identify and track moving objects or people in a sceibe CV system can be easily
integrated in an existing RFID deployment and does not recknowledge about the intrinsic
camera parameters.

6.4 Data Association

For every processed frame, the two described subsystemi@ra set of tags’ and a set of
blobsB, incorporating the identifier and location estimates fagrgwag and blob, respectively.
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Figure 6.4: Blob detection and tracking: Camera view of a lab environmmen this scenario, a
moving person is identified as blob with ID 36. The arrow viges the movement
direction and velocity.

From these two sets, we want to establish an assignment ériwdividual tags and blobs such
that a subset
(T; CT) — By (6.4)

is assigned to a particular bld;. Furthermore, we need to consider the possibility of staiip
tags, i.e., tags that belong to the scene background rdtherat particular blob. The described
problem can be formulated in a data association contexthwbimsiders the spatial distance
d;j = \/=7; +y;; between tag; and blobB;, as shown for one tag and two blobs in Figuré 6.5.

The spatial distance can be transformed into a probabilégsuare

pi,j _ exp ( 1,] + ZJ) (65)

2 2
2mo L0y 20Z 203

using a Gauss Kernel with zero mean and a specific covariance

o O
e (2 0) oo

according to the localization uncertainty of the RFID systén addition, we explicitly consider
the possibility of stationary tags in terms of a velocity édbackground model. In particular, we
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Figure 6.5: Data association problem for a tdg and two blobsB:, B2. The goal is to find the
most likely assignment between this tag and the detectdub 9. For this purpose,
the spatial distance; ; is estimated and transformed to a probability meagure
by means of a Gauss Kernel. In addition, we account for theniyn of tag-blob
assignments by incorporating the association historytidbiary tags are considered
using a velocity based background model.

estimate the tag velocity
. dx(?)
Vit T
as derivative of the trajectory with respect to time. In agglto the spatial distance, the velocity is
transformed to a probability measure by means of a Gaus®Kseith zero mean and a covariance

matrix X,,. For each observed tag, we can hence build an assignmerix matr

(6.7)

BG B, By - By
Ty ( ;e P11 P12 0 PILM
To | p28G P21 P22 -+ DM
M= | ; . . . (6.8)
Tn \PNBG PN,1 DPN2 “** DNM

holding the individual probability measures for each tagblob pair and the background BG.
A tag T; can then be assigned to the most likely class (blBp®r background) by finding the
maximum value in each row.

The quality of the data association depends on the RFID wvagens and hence needs to be
tolerant to noisy and incomplete data. To provide the reguiobustness, we integrate the history
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of previous assignments by considering the individual slabd the background in a discrete
state-space setting
B =BG B, Bs ... Byl (6.9)

The idea is that the tag> blob assignment is rather stationary, i.e., a particulgflias typically
connected to a blol; for a given observation period. Based on the defined stateespve can
hence employ a HMM\4 = (m, A, B) to filter the assignments. Since there is usually no
prior information available, the prior state distributiatrepresents a uniform distribution over all
blobs and the scene background. The requirements for th&ticen modelA are twofold: First,

it needs to consider the discussed stationary assignmaraatkristic by means of appropriate
self-transition probabilities. Second, the transitiondeloalso needs to allow for a transition
from one blob to another, for example when a tag is handed &ogrthis reason, a compromise
between a robust assignment and the capability to follovstieme dynamics needs to be found.
The observation modd8 accounts for the uncertainty regarding missing RFID olet@rs and
the limited localization accuracy.
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Figure 6.6: Data association problem: Filtered association proligslin a scene with one tag and
two blobs. The scenario is as follows: The considered tagsisdarried by blolB; and
then handed over to bloB;. Finally, the tag is left stationary in the region of intdres
while both blobs leave the scene. The HMM based filtering @ggit adds a low-pass
characteristic to the association probabilities and henoeides a certain robustness to
noisy and incomplete observations.

Based on the described HMM, we can filter the estimated as&igts by means of a recursive
Bayes update which is implemented in the Forward algorith&8]. An example for the filtered
assignment probabilitieg; ; over time for the exemplary scenario with one tag and twosisb
shown in Figuré 6]6. In this scenario, the tag is first carbigdblob B; and then handed over to
blob B,. Finally, the tag is left stationary in the region of intdreEhe association probabilities
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show a smooth behavior since the HMM filter introduces a @ettav-pass characteristic based
on the history of previous associations. This provides ssidemable robustness for the data
association problem and reduces the negative impact of nbservations.

6.5 Calibration

The combination of the two different sensor modalities nexgua calibration procedure consisting
of two main steps. First, a common reference frame for théDR¥Id the CV system needs to be
established. For this purpose, the antenna and camer#psegit as well as the camera’s field
of view need to be determined. Second, the characteridtitge dsaussian mixture components,
represented by the covariance matri@sneed to be estimated. These characteristics directly
reflect the spatial extend of the antenna interrogation zmukare the crucial parameter for the
location by proximity approach.

To estimate the characteristics of the interrogation zar) tag grid in the region of interest is
required for which RFID read events are recorded over a pdione frame. Figuré 617 shows a
schematic representation of the calibration setup, ctingisf the RFID system and an equidis-
tant tag grid. From the read events, we obtain an observatasistic for every tag-antenna pair.
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Figure6.7: Schematic representation of the calibration setup. A taywith equidistant spacing
is used to obtain an observation statistic for each tagraat@air. The observation
statistic comprises the mean RSSI value and the corresppstiindard deviation. The
statistic is used to estimate the parameters of the Gaussidare model that repre-
sents the spatial extend of the interrogation zone.
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In particular, the statistic comprises the mean RSSI anddahesponding standard deviation for
each tag and antenna. Since fkieantenna positiong,; are known with respect to the reference
frame, we need to fit a set & Gauss Kernels to the recorded calibration data. This dijrgitids

an estimate for the covariance matri®@si = 1 ... K. The measured interrogation zone and the
corresponding Gaussian approximation for a single ant@athrein Widerange wittt0° / 30°
half power beamwidth) are shown in Figlre]6.8. The measuredrogation zone exhibits local
maxima and minima (dead zones) as a direct consequenceaftirena radiation pattern and the
multipath channel environment. Furthermore, the inteatiog zone shows a certain asymmetry
due to reflections caused by a concrete wall located at —1.5m. Figure[6.9 shows the mea-

yinm
yinm

0. 05 1 15 Ta 0.5 0. 0.5 1
zinm zinm
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(a) Measurement (b) Model

Figure 6.8: RFID sensor model: Contour plot. (a) shows the measuredagiation zone (RSSI
values) for a30 x 30 cm tag grid and (b) shows the approximation by means of a 2D
Gauss Kernel. The considered system comprises a Kathraler#fige antenna with
70° 1 30° half power beamwidth, mounted at a heightiof 2.5 m.

sured and modeled interrogation zone for the principalrargteaxes inc- andy- direction. The
antenna radiation pattern which is characterized by a premimain-lobe and two side-lobes
introduces local RSSI maxima in the direction. Due to the difference in halfpower beamwidth,
the interrogation zone shows a considerably larger extetiokiz- direction.

The Gauss Kernel is a reasonable approximation for therogation zone and can be efficiently
estimated from the calibration data. In a setup witlequivalent antennas, the combined sensor
model can be obtained as a superposition of the individuak&an components. This allows for
a concise formulation of the likelihood function for the tagation in terms of the mixture model.

The presented information fusion concept provides a cengist powerful way to incorporate the
two different sensor modalities. To study the performamca practical environment, the next
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Figure6.9: RFID sensor model: RSSI values along the principal anterisafar the z-direction
in (a) and they- direction in (b), together with the Gaussian approximatidlong the
x- axis, the interrogation zone shows a characteristic pedkwo local maxima from
the side-lobes of the antenna radiation pattern.

section presents a case study for an EAS scenario.

6.6 Case Study: EAS

To evaluate the presented information fusion concept, westigate on an EAS scenario which is
a typical application for RFID systems in retail. The maiakdénge for RFID driven EAS systems
is the occurrence of observations that trigger a false al@ue to the lack of prior information
and the inherent variability, the low-level approach of metric tag localization is promising to
significantly reduce the percentage of false positivesimgbenario.

The functional requirement for an EAS system is to triggeakanm as soon as an article leaves
the shop without a preceding transaction at the checkolat &figh the presented localization and
tracking capability, the idea is to track the tag in the regibinterest and trigger the alarm as soon
as it crosses an imaginary line marking the shop exit. Moregaly, we can define agxit region
which a moving tag is not allowed to enter. In addition to thealization and tracking task, this
adds a high-level reasoning step which can be elegantlgretied in the proposed framework. In
contrast to current RFID driven EAS solutions, this progideconsiderable degree of robustness
in practical applications.

From the physical point of view, not only the localizatiomnit blso the tag detection is challenging
in this scenario. As briefly discussed in Chaptier 5, the lingifactor in this case is the forward
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link budget. The power transferred from the reader to thest#ters from the absorption due

to the water content in the human body and arbitrary tag taiiem. The evaluation is hence
focused on the two key performance metrics for an RFID systieendetection and false positive
probability, rather than the geometric localization uteiety. For the detection probability, we
define two measures: On the tag-level, the detection prifyaldt; is defined as the ratio of
correctly detected tags over the total number of tags thatenttrough the scene and enter the
exit region. On the test-run levebs run denotes the percentage of runs where at least one tag
has been successfully identified as stolen. The false pogitbbability denotes the ratio of false
positive observations over the number of stationary tagiseérscene.

The evaluation is based on an RFID system comprising an jnewolution R420 reader and
K = 3 Kathrein Widerange antennas together with an monoculaecamith unknown intrinsic
parameters. The camera featuresla®” Aptina CMOS sensor, coupled with1a8 mm wide-
angle lens to provide an appropriate field of view. The chasemge resolution 852 x 480 px at

a framerate ofl00 fps. For the positioning of the individual system componengsesal aspects
need to be taken into account. First, the crucial part in $eofMfRFID localization is the place-
ment of the individual RFID antennas to provide a good cayemver the region of interest with
a sufficiently high detection probability. Second, the C¥tsyn needs to be placed such that the
camera field of view is aligned with the antenna interrogationes. This enables us to define a
common reference frame and estimate the RFID sensor modehpeers by means of the pro-
posed calibration step. Finally, there are certain regiris regarding the antenna placement due
to shop design and spacing considerations. For the evayatie follow the common approach
to mount the RFID antennas on the ceiling. The floor plan ofgsemetric setup and the camera
view of the evaluation environment are shown in Figure 6 id Rigurd 6.111, respectively.

For the evaluation, we define different scenarios with ameiasing level of complexity. First,
we investigate on the detection performance in a singleopesingle tag scenario. This scenario
gives insight to the combined detection performance of tbie thetector and the RFID system and
does not consider false positive observations, since tiorstay tags are placed in the region of
interest. The second and third part of the evaluation cogngle person, multiple tag scenario
with and without stationary tags in the region of interesinally, we evaluate a multi person,
multi tag scenario with stationary tags. In each scenahietéags are carried through the region
of interest using a standard shopping bag along differamglomly displaced trajectories. The
stationary tags are placed in the region of interest sudhtliest are continuously visible to the
RFID system.

For the first scenario (single person, single tag), we perfdoi = 150 trials to estimate the
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Figure6.10: EAS scenario: Floor plan. The considered scenario featufes< 7m region of
interest, split into ahop regionand anexit region The task of the EAS system is to
trigger an alarm as soon as a tag enters the exit region withpreceding transaction
at the checkout desk. In addition to the localization andkirey of individual RFID
tags, this requires a high-level reasoning step to decidegtheh a tag has crossed the
imaginary line to the exit region.

Figure 6.11: EAS scenario: Camera view with highlightedit region The camera view shows a
considerable distortion due to the use of a wide angle lensha$irequired to provide
an adequate field of view.
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detection probability. The resulting performance is
PD, Run — PD =0.9733

which means that the combined RFID and CV system missedtlasdg four tags. In this sce-
nario, all tags have been detected by the RFID system, bild oot be identified as stolen. This
is caused by the CV system failing to identify a moving blohtlw background model which
erroneously considers a particular tag as stationary.

For the second scenario (single person, multiple tags) wernpe an evaluation witlV’ = 2 and
N’ = 4 tags per run. In this case, the results are

N/ =2: PD, Run — 1 PD = 0.975 (610)

and
N'=4: Pprm=1 Pp=0.9125 (6.11)

These results agree to the intuitive assumption that thectien probability depends on the sce-
nario complexity, which in this case is determined by theralenumber of tags. This is due
to the fact that the number of read events per tag and unitdieeecases as the number of tags
increases. The number of read events has direct impact dodhkzation accuracy and hence
on the overall system performance. For the considered soemith N’/ = 4 tags, the achieved
detection probability of over 90% allows for an efficientt®ya operation since the theft event is
detected for all performed test runs.

To further increase the scenario complexity, we a&dg = 4 stationary tags to the region of
interest. Consequently, we can evaluate the detectionadsel fositive probability. The resulting
performance for a total of 80 test runs witl = 2 tags per run is

Porun=1 Pp=0.9312 P = 0.0188, (6.12)

which means that 149 tags could be identified as stolen witfatge alarms caused by the sta-
tionary tags. Although the detection probability on the lagel decreases, the actual theft event
is robustly detected by the proposed system.

Finally, the multi person, multi tag scenario features twode in the region of interest: Whereas
one person is walking around at random, the other cai¥ies 2 tags per run. For this scenario,
the resulting performance is

Porun=1 Pp=0.8438 Pra = 0.0219. (6.13)

105



Chapter 6. Information Fusion

The performance decrease compared to the previous casamiy due to the complexity in the
multi person scenario which imposes an additional chaldnghe data association layer. This
is especially the case when the two people in the scene aselglspaced. An erroneous data
association is hence the main cause for false positives.thHireason, we can conclude that
the system performance is directly affected by the scemamoplexity and limited by the RFID
system rather than the CV system. Even in this complex sienhe proposed system provides
a considerable detection performance on the tag level dmastly suppresses false positives.
Since the increased number of tags also adds a certain kiddvafity, the actual theft event
can be reliably detected in the defined setup. The presemtechiation fusion approach can be
directly applied to the discussed EAS scenario and showdw@stgerformance under realistic
environmental conditions.

6.7 Summary

RFID tag localization can be considered as the key enabtiyw for RFID systems in applica-
tions that require an accurate location information. Thetéd system bandwidth together with
the multipath channel characteristics impose seriougdiions to the achievable accuracy. The
information fusion concept presented in this chapter isvegoful approach to combine the local-
ization capabilities of CV systems with the strengths of &tRsystem.

With the use of a flexible, yet compact RFID sensor model atdation by proximity approach,
we can estimate the location and velocity of individual REdDs in a considered region of inter-
est. The fusion of RFID and CV data results in a data assonigtioblem which we formulate
in a probabilistic context. The information fusion approamproves the location estimate for
a particular RFID tag and forms the basis for high-level oeasy schemes. The experimental
evaluation shows that the presented approach providessadeoable detection probability and is
robust to false positives. The performance depends on theleaity of the application scenario
and decreases with the number of tags. This is mainly cays#tklanti-collision scheme which
limits the information per tag and unit time. For the demaated EAS scenario, the information
fusion approach is superior to currently established syst@hich only try to minimize the num-
ber of false positive observations by means of specialireenma designs and therefore cannot
deal with stationary tags in the interrogation zone.
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Conclusion

Passive UHF RFID has the potential to provide full visilyilih supply chain applications, from
the manufacturing plant over distribution networks anditetores to the end customer. Besides
the insights that are gained from the additional informratio item level, the ability to uniquely
identify a particular product also opens up new possiediin terms of customer experience and
marketing channels.

From the technical point of view, RFID systems are still camed with debates aborgtad rates
(detection probabilities) and the widespread problem Isiefpositive observations. The effects
leading to missed and false positives are an inherent gyopépassive RFID systems and thus
cannot be solely mitigated by means of advanced readenrst® tag design. The consequences
of missing and false positive observations are manifoldrande from inconsistent and noisy data
in the backend system to false alarms in case of an RFID dEve® system.

In this thesis, we have developed several concepts to tdagetroblem of noisy and inconsistent
data based on a top-down modeling approach. In order to d#faltee peculiar properties of
passive RFID systems, we have investigated on the apgltgabi probabilistic models to the
considered problem. The results of the conducted reseeedieat summarized by answering the
research questions that stood at the beginning of thisstipesject.
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Can the problem of noisy data in RFID systems be mitigated égnsiof a top-down modeling
approach? As we have demonstrated in the course of this thesis, a madeldbapproach on
different abstraction levels can be used to increase tleeataiuracy and thereby the value of an
RFID system. The targeted abstraction levels range froin-leigel supply chain considerations
down to the individual readpoint and antenna. By means ofprehensive experimental data
from practical deployments, we have shown that the predemtadeling concepts considerably
increase the performance of an RFID system and reduce thesimhobservation noise.

Is a probabilistic framework suitable to deal with the padiar properties and heterogeneous
components in an RFID syster@dnsidering the structure of RFID systems, the versatijaire-
ments and inherent variability, a probabilistic approaeénss to be the only way to incorporate
the information provided by the heterogeneous system coemie. Processes on the different
abstraction levels show a considerable variability whigttivates and justifies the consideration
in a probabilistic context.

7.1 Summary of Contributions

The main contributions of this work follow the discussed-tigwn view of RFID systems. For
the first time, we have presented a probabilistic model fdER#abled supply chains which con-
siders three important characteristics. First, the maumrporates thgypical behavior of goods
in a supply chain by means of a continuous time motion modeltlans provides an elegant way
to incorporate prior process information. Second, the mtades into account the RFID system
properties in terms of the detection and false positive gindity of individual readpoints. The
proposed state-space representation forms the basis focass level localization scheme and
can be easily implemented at the readpoint level to evaluaiigen RFID observation. Finally,
we have integrated the characteristic of logical item uagssource of prior information. The
different modeling concepts and the underlying assumsgtluawve been evaluated by means of
extensive simulations and comprehensive empirical detésan different applications.

On the readpoint level, we have developed a signal modeighle to describe the characteristic
low-level features in a concise way. This signal model fotingsbasis for an abstract classification
scheme which can be employed to identify false positive magiens. The consideration on
readpoint level is necessary when the underlying apptinatioes not provide sufficient prior
information that can be integrated in terms of a high-levedei. Typical application scenarios
are hence the verification of commissioned packaging uriisrevneither the transition, nor the
co-occurrence model can be employed. The performed exeetihevaluation has provided
important insights in terms of the individual signal feasiand has demonstrated the effectiveness
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of the presented classification approach.

The developed RFID simulation engiRRISEis a valuable tool for the simulation of large scale
RFID deployments. The ability to generate realistic, Higvel item trajectories together with

low-level RFID observations provides the unique capapiiit study the structure of RFID en-

abled supply chains. Furthermore, it allows us to effettivalidate filtering mechanisms on the
different abstraction levels of an RFID system. The impleted models are a compromise be-
tween accuracy on the signal level and computational coxitplian order to enable a large scale
system simulation. PRISE relies directly on the develop&tDRsystem model and provides a
fast and efficient possibility to generate large scale d#tas

Consequently following the probabilistic view of RFID sgsts, we have presented an informa-
tion fusion approach for the geometric localization of RE#Hgs. For this purpose, we combine
an RFID and a computer vision (CV) system to localize andkttags in practically relevant sce-
narios. The RFID system incorporates a location by proyirajiproach which is significantly
enhanced by means of the computer vision system. The pihabiormulation of the local-
ization problem provides a high degree of flexibility andbalé for an easy integration into a
specific setup. The evaluation by means of a typical EAS egiitin proved the efficiency of the
presented approach in several scenarios with differenptdity.

The empirical data analysis conducted in the course of lieisi$ has provided several important
insights. First, we have shown that RFID related applicegtiare characterized by a considerable
degree of variability which can be efficiently describedemts of a probabilistic framework. Sec-
ond, the presented analysis highlights that RFID deploysnieenefit from well defined boundary
conditions, such as a constant movement velocity, definegement trajectories or a fixed tag
orientation. Applications that require highest detectiwababilities are hence best set up in an
automated environment which can guarantee for defined pg@onditions. Finally, the empir-
ical data suggests that an increasing item throughput imiéiig factor for the performance of
RFID systems. Although the EPCglobal standard is the@lgticapable of identifying several
100 tags per second, practical applications suffer coraitiefrom an increased item throughput.

Since the basic task of an RFID system is to collect inforamatibout a particular process, the
value of an RFID deployment is directly connected to theityuaf the provided information. The
ultimate goal is hence to increase the data quality in oalprdvide a reliable basis for high-level
decisions and process optimizations. The presented madel§iltering schemes have the main
advantage that they abstract from the technology layerritsva more general view. Although
the individual models might require slight adaptations émsider new technological aspects,
we are confident that the fundamental ideas and mechanisugl@ra general and technology
independent framework.
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Chapter 7. Conclusion

7.2 Outlook

Beyond the goal of increasing the data accuracy in RFID Bysteve believe that the devel-
oped models can be used as basis for an in-depth analysisamtbring of RFID driven supply
chains. Possible applications range from intelligentemishment reports over accurate order
management to the efficiency analysis of individual praogssteps. In this context, we see in-
teresting research challenges for the data mining comsntoixtract relevant information from
the collected data and draw conclusions from a series of adiiens.

Similarly, the probabilistic top-down interpretation oFR® systems can be the starting point for
the design of smatrt, interactive processes. By introduaifegdback loop that provides immediate
information to the user, processes in manufacturing andtiog can be optimized to increase the
flexibility and efficiency. For this reason, Artificial Intigjence and Machine Learning concepts
are required which can interpret the gathered data to f@men adequate feedback.

Regarding the characterization of individual readpoifulsdamental research is required to estab-
lish a theory for the tag detection process under differamirenmental conditions and readpoint
setups. Despite the fact that detailed channel models amdation environments are available,
the design of an RFID system is still dominated by extensimegments and a trial-and-error
characteristic. This is mainly due to the fact that avadadimulators face a considerable compu-
tational complexity and hence cannot be directly used takita practically relevant scenarios.

On the hardware layer, we expect that advanced reader aghansystems will provide interest-
ing new features such as antenna beamforming, switchirayipation, advanced anti-collision
schemes and additional sensing capabilities. Considérafiexibility of the presented concepts,
future research should specifically consider the techmcdbgdvances to further improve the data
accuracy and enable new application ideas.
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I = S = Y
A W N P O

A.1 PRISE - Example configuration file

Appendix

<?xm version="1.0" encodi hg="UTF-8"?>
<Pr oj ect Conf i gurati on>
<Pr ocessModel >
<Name>MPr ocess</ Nanme>
<Nunber O St at es>1</ Nunber O St at es>
<St at eDescri pti ons>
<State Description="State 1"/>
</ St at eDescri pti ons>
<Cont i nuousTi neMar kovChai n>
<Initial Probabilities>
<pi 0>1</ pi 0>
</lnitial Probabilities>
<Dwel | Ti mes>
<t 0>3600</t 0>
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</ Dwnel | Ti nes>

<Transi ti onProbabilities>

<r 0>
<c00>1</ c00>
</r0>

</ Transiti onProbabilities>
</ Cont i nuousTi neMar kovChai n>

<Sensor Model >
<r0>
<c00>0</ c00>
</r0>
</ Sensor Model >
</ ProcessModel >
<Sites>
<Site>
<Nanme>St at e 1</ Nane>
<Commrent ></ Conment >
<Reader s>
<Rf i dReader >

<ldentifier>State 1_Reader 1</l dentifier>
<Def ect Probabi | i t y>0</ Def ect Probabi | i ty>
<Di nrensi ons x="0.5" y="0.5" z="0.05"/>
<Location x="0" y="0" z="0"/>
<Sensitivity>9.03361le-12</Sensitivity>
<Initial@3</Initial &

<Qper ati onMbde>M | | er 2</ Oper ati onMbde>
<Dat aRat e>80000</ Dat aRat e>

<Tari >10e-06</ Tari >

<Ant ennas>
<Ant enna>

<l dentifier>A000</Identifier>
<Type>Di recti onal 3050</ Type>

<Def ect Pr obabi | i t y>0</ Def ect Probabi lity>
<Ant ennal npedance Real ="50" | nmag="0"/>
<Di mrensi ons x="0.7" y="0.35" z="0.15"/>
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74
75
76|
77
78]

79
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A.l. PRISE - Example configuration file

81

<Location x="0" y="1" z="1"/>
<LookAt x="0" y="0" z="-1"/>
<Rf Power >0. 1</ Rf Power >
</ Ant enna>
</ Ant ennas>
<Cabl es>
<Cabl e>
<Cabl eType>RG58</ Cabl eType>
<Cabl eLengt h>2</ Cabl eLengt h>
<At t enuat i on>20</ At t enuati on>
</ Cabl e>
</ Cabl es>
</ Rf i dReader >
</ Reader s>
<Sensor s/ >
</Site>
</Sites>
<Traj ectories>
<Traj ectory>
<Nanme>State 1 _t</Nanme>
<Vel oci t y>0. 0001</ Vel oci ty>
<Vari ance>0</ Vari ance>
<waypoi nt x="-0.005" y="1" z="0.75" yaw="0"
roll="0"/>

<waypoi nt x="0.005" y="1" z="0.75" yaw="0" pitch="0"

roll="0"/>
</ Traj ectory>
</ Traj ectories>
<Si nul ati onPar anet er s>
<Si mul ati onEndTi ne>72000</ Si nul at i onEndTi nme>
<Si nul ati onTi neResol uti on>0. 001</
Si mul ati onTi neResol uti on>
</ Si mul at i onPar anet er s>
<l temlenpl at es>
<l temTenpl at e>

pi t ch="0"
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</ Proj ect Confi gurati on>

<Tenpl at eNanme>Box</ Tenpl at eNane>
<Nunber O | t ens>1</ Nunber Of | t ens>
<l dentifierPrefix>lten</ldentifierPrefix>
<Di nensi ons x="0.4" y="0.4" z="0.005"/>
<Tags m n="5" max="5"/>
<Tagl denti fierPrefix>Tag</ Tagl dentifierPrefix>
</1tenmlenpl at e>
</l tenflenpl at es>

Listing A.1: Example configuration file
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