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Abstract

Passive UHF RFID is considered an enabler technology for highly flexible, yet fully transparent

logistic applications. The possibility to identify and track individual items from the manufacturing

stage to the end customer provides unique possibilities anda deep insight to logistic processes and

supply chains. Although RFID technology has experienced significant advances during the last

couple of years, there are still open issues related to data inaccuracies caused by the underlying

physical principles of operation. In particular, RFID systems face challenges in terms of missing

and false positive observations. Both effects lead to inconsistent data in the backend system.

This thesis addresses the problem of increasing the robustness of RFID systems in logistic ap-

plications. We develop a framework that specifically deals with false positive observations and

missing tags on different abstraction levels. The presented models cover three key aspects of the

RFID system: First, we present a model for RFID enabled supply chains on the process level

which allows us to efficiently filter noisy observations. Themodel provides a well-defined way

to integrate prior information about the typical behavior of goods in a supply chain and considers

the spatio-temporal correlation among RFID observations.Second, we develop a probabilistic

readpoint and signal model which is used in a classification approach to improve the detection

performance of the readpoint. Third, we present an information fusion approach for the purpose

of RFID tag localization by means of a hybrid RFID and computer vision system.

The encountered variability and the fact that RFID is an interdisciplinary field with heterogeneous

system components require a consideration on an adequate abstraction level. Throughout this the-

sis, we show that probabilistic methods are well suited to tackle the challenges in RFID systems.

Using a simulation engine and comprehensive empirical datasets from different RFID deploy-

ments, we provide an in-depth evaluation of the presented approaches and filter mechanisms and

validate the underlying modeling assumptions.





Kurzfassung

Die passive UHF RFID Technologie gilt als Meilenstein für logistische Anwendungen im Hin-

blick auf Flexibilität und Transparenz. Die Möglichkeit, Einzelteile entlang der Lieferkette ein-

deutig zu identifizieren und zu verfolgen bietet eine Vielzahl von Möglichkeiten und eine Fülle

von Informationen über logistische Prozesse.

Vom technologischen Standpunkt her haben sich passive UHF RFID Systeme in den letzten Jahren

sehr stark weiterentwickelt. Die Genauigkeit der generierten Daten und Informationen stellt aber

nach wie vor den limitierenden Faktor für den Einsatz von RFID dar. Die inhärenten Ungenau-

igkeiten werden durch die zugrundeliegenden physikalischen Prinzipien der Wellenausbreitung

verursacht und äußern sich durch eine limitierte Leserateund das Auftreten von Falsch-Positiv

Observationen.

Diese Arbeit stellt verschiedene Ansätze zur Erhöhung der Datengenauigkeit in RFID Systemen

vor. Im Rahmen einer probabilistischen Formulierung wird ein Systemmodell präsentiert welches

es erlaubt, RFID Daten auf Prozessebene effizient zu bewerten und zu filtern. Durch das Modell

kann a-priori Wissen über den logistischen Prozess hinsichtlich des typischen Verhaltens und dem

Auftreten korrelierter Vorgänge berücksichtigt werden. Ergänzend dazu wird ein Signal-Modell

vorgestellt mit dem RFID Observationen auf der Ebene einzelner Lesepunkte evaluiert und klas-

sifiziert werden können. Um den steigenden Anforderungen moderner Anwendungen gerecht zu

werden, wird zudem die Fusion von RFID-Systemen mit alternativen Sensormodalitäten unter-

sucht. Dabei steht die Lokalisierung von RFID Transpondernin praxisnahen Szenarien im Fokus.

RFID Systeme sind durch eine Vielzahl von heterogenen Komponenten gekennzeichnet. Gemein-

sam mit dem Umstand, dass RFID orientierte Prozesse mitunter eine hohe Variabilität aufweisen,

macht dies eine Betrachtung auf einem angemessen hohen Abstraktionsgrad unabdingbar. In die-

ser Dissertation wird gezeigt, dass probabilistische Methoden ein geeignetes Werkzeug sind, um

die im Kontext von RFID Systemen gestellten Herausforderungen zu lösen. Zu diesem Zweck

werden die getroffenen Modellannahmen und die Leistungsf¨ahigkeit der vorgestellten Methoden

auf Basis von Simulationen und umfassenden empirischen Daten evaluiert.
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1
Introduction

Some years ago, Radio Frequency Identification (RFID) was imagined to fully replace the ubiq-

uitous barcode technology in logistics and retail. The direct comparison between these two tech-

nologies suggests that RFID is superior in almost every aspect - except for the price. The advan-

tages are indeed manifold: RFID chips have a considerably larger memory, can be identified in a

bulk, do not require a direct line of sight to the reader, and optionally offer security features like

authentication or selective memory access. However, the RFID market still hopes for the long

desired increase in sales and applications like the frequently cited Future Store1 are still elusive.

The RFID industry has developed various different types of RFID systems and standards tailored

to the requirements of different applications [50]. However, the different system types consist

of the same basic building blocks: Thereader (interrogator) is designed for the communication

with (low-cost) transponders(tags) by means of electromagnetic waves or inductive coupling.

For high-volume applications, the Ultra High Frequency (UHF) band from 860 – 960 MHz has

become the operating frequency of choice in current RFID deployments. The EPCglobal, Class-1

Generation-2 (Gen-2) standard [48] laid an important cornerstone and can be considered as the

enabler for RFID systems operating on the item-level. Thereexists a vast variety of different

types of RFID tags designed for specific product categories and environmental conditions. Three

1http://www.future-store.org/
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Chapter 1. Introduction

examples for RFID tags are shown in Figure 1.1: An adhesive multi-purpose label, a paper tag,

and a so calledhard tagwith a robust plastic housing.

(a) Adhesive label (b) Paper tag

(c) Hard tag

Figure 1.1: RFID tags for different applications: (a) shows an adhesivemulti-purpose label, (b) a
standard paper tag for fashion applications, and (c) a so called hard tag with a robust
plastic housing.

So when RFID technology is superior to barcodes in almost every aspect, what are the factors that

still prevent a mass deployment? As stated above, the key factor is the price in comparison to well

established, barcode based identification systems. In addition, the nature of passive RFID systems

exhibits some peculiarities and technological challengesthat make a plug-and-play deployment

difficult and require special attention.

1.1 Passive UHF RFID

The unique feature that tags are remotely powered by the reader enables high volume applications

since tags can be built as small and ubiquitous devices without an integrated power supply. In-

stead, tags draw their operating power solely from the field emitted by the reader. The operating

principle of a passive RFID system is shown in Figure 1.2. Theelectromagnetic field emitted by

the reader is used to power the tag and to transmit data and commands. Whereas the commu-

nication from reader to tag is based on amplitude modulation, information from tag to reader is

2



1.1. Passive UHF RFID

transmitted by means of a load modulation.

Energy, Data

Data

Reader
Tag

Antenna 1

Antenna N

...

Figure 1.2: Operating principle of passive RFID systems: RFID tags are powered by the reader-
field. Data and commands from reader to tag are transmitted bymeans of amplitude
modulation, whereas data transmission from the tag to the reader is based on a load
modulation.

Advances in reader and tag technology over the last years have resulted in considerable read-

ranges of up to15m under ideal conditions. These advances are best demonstrated by comparing

the sensitivity of the very first Gen-2 transponder chips with today’s state-of-the-art: Impinj2,

a leading manufacturer of transponder chips, reader chips,and readers released the Monza/ID

transponder chip with a sensitivity of−11.5 dBm as one of the first Gen-2 compliant transponder

chips in 2005 [85]. The latest chip, Monza 5, exhibits a nominal sensitivity of−17.8 dBm [86],

providing a significant increase in readrange and orientation insensitivity.

However, for typical applications, readrange is not the limiting factor. Due to the fact that com-

munication is based on the electromagnetic wave propagation, it is not possible to define a precise

interrogation zonefor RFID readers and antennas. For an idealized system, suchas shown in

Figure 1.3(a), the interrogation zone is a specific volume ofknown dimensions in which a present

tag population can be identified with a probability ofPD = 1. In this context,PD is referred

to asdetection probability. Outside the interrogation zone, the detection probability is PD = 0.

However, practical systems as shown in Figure 1.3(b) do not exhibit an ideal detection probabil-

ity inside the interrogation zone and the detection probability outside the interrogation zone does

not vanish. This has two immediate consequences: First, a detection probabilityPD ≤ 1 causes

that a certain percentage of tags in the interrogation zone is not identified, leading tofalse nega-

tivesor missing observations. Second, the nonzero probability to detect tags outside thedesired

2http://www.impinj.com/
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Chapter 1. Introduction

PD = 0

PD = 1

(a) Ideal

PD ≥ 0

PD ≤ 1

(b) Real

Figure 1.3: Ideal vs. real interrogation zone. Whereas an ideal RFID system has a well defined
interrogation zone where the detection probability isPD = 1 (a), practical systems
do not show this property and suffer fromfalse positiveand false negative(missing)
observations (b).

interrogation zone causes so calledfalse positivetag readings.

The factors that cause a non ideal detection probability inside the interrogation zone of an RFID

system are manifold. First, the operating principle of passive RFID systems imposes challenging

conditions in terms of the tag power supply and the communication link. The multipath channel

characteristic leads to so called dead zones with insufficient energy to power the tag [13]. Second,

RFID tags are required to be small and cheap and therefore have limited capabilities. This means

that there is only a minimum functionality regarding power supply stabilization, stable data trans-

mission, and anti-collision schemes. Third, the electromagnetic properties of tagged items can

severely affect the identification performance. Especially, objects containing water or reflective

materials introduce challenging conditions and result in severe performance degradation due to

absorption or detuning phenomena [16]. Finally, the increasing item throughput imposes a limi-

tation especially in case of moving RFID tags or readers. Although single tags can be identified

at considerable velocity, increasing the number of tags also increases the required inventory time

during which the tags must be present in the interrogation zone. Nikitin and Rao [152] provide a

concise summary about the different impact factors in RFID systems. In terms of the missing tag

problem, a careful choice of the transponder type, antenna design, and system setup is important.

Typically, this involves extensive evaluations and tests during the deployment phase of an RFID

system to find the optimal configuration for a given scenario.

The problem of false positive reads stems from the fact that antennas show a specific, environment

dependent radiation pattern which contradicts the requirement for a well defined interrogation

zone. Conductive materials with dimensions that are large compared to the wavelength reflect

incident electromagnetic waves and lead to undefined interrogation zones in real-world deploy-

4



1.2. Motivation and Contributions

ments. This especially causes problems in environments where space is a scarce resource, as it is

typically the case in warehouses and distribution centers.

1.2 Motivation and Contributions

The lack of a well defined interrogation zone and the non idealdetection probability have one

major implication for RFID systems: Noisy data. The noise stems from the fact that a reader may

fail to identify a tag inside the interrogation zone or unwanted reads from tags located outside

the desired volume. Depending on the application, this has different, sometimes immediate con-

sequences. Consider an RFID system for EAS (Electronic Article Surveillance) in a retail store.

In this scenario, continuous false positives reads that trigger false alarms introduce considerable

problems in terms of customer acceptance and are a serious argument against the use of RFID.

On the long run, the problem of noisy data could be partly solved by means of an accurate local-

ization of RFID tags. Knowing the exact position of a tag enables the system to decide whether

it is inside the defined interrogation zone or not. However, aprecise localization of RFID tags in

practical applications is difficult to achieve within the limits of the narrowband EPCglobal stan-

dard [13]. Similarly, the problem of missing tags is difficult to solve, even though readers and

tags are steadily improving in performance and sensitivity.

From a practical point of view, this means that there are considerable open issues for the mass

deployment of RFID systems which cannot be solely tackled byadvances in reader and tag tech-

nology. Since practical applications have stringent performance requirements in terms of detec-

tion and false positive probability, additional concepts are required which help to improve the

data accuracy. This motivates the use of top-down-conceptsand model based approaches which

are employed successfully in other fields facing similar challenges. For model based approaches,

the nature of RFID systems introduces additional complexity due to the integration of several

heterogeneous components. Consequently, the research questions addressed by this thesis are:

• Can the problem of noisy data in RFID systems be mitigated by means of a top-down mod-

eling approach?

• Is a probabilistic framework suitable to deal with the particular properties and heteroge-

neous components in an RFID system?

The idea of a top-down modeling approach stood at the beginning of this thesis project in 2010.

The goal was to establish a framework for RFID systems to improve the data quality by consider-

ing the following aspects:
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• Business process information:The flow of products in typical applications follows certain

rules. Usually, items are moving from the manufacturing stage over a network of distribu-

tors to a retail shop and finally to the end customer through a network referred to assupply

chain. The information about the typical goods flow can be considered in a model to eval-

uate individual item trajectories. Another aspect on the business layer is the fact that items

are usually aggregated in packaging units for easier transportation and handling. This intro-

duces additional information by means of spatial and temporal item relationships. Logistic

processes hence provide prior information about thetypical behavior of items in the supply

chain which can be integrated in a high-level RFID system model.

• RFID system properties:In order to account for the inherent observation noise, the mod-

eling framework should specifically consider the properties of RFID systems in terms of

false negative and false positive observations. A detaileddiscussion about the RFID system

model that takes into account the business process information together with the particular

RFID system properties is provided in Chapter 3. Due to the fact that empirical data from

large scale practical applications is scarce, a simulationframework has been developed to

verify and to evaluate the discussed modeling approaches. In contrast to existing simula-

tors, this framework provides a combination of a high-levelsupply chain simulation and the

generation of low-level RFID observations. The simulator and the underlying concepts are

described in detail in Chapter 5.

• RFID readpoint and low-level features:From a high-level perspective, the detection of

RFID tags is a binary event – either a tag is detected by a readpoint or not. RFID systems,

however, provide more detailed information for every read event, which opens up several

possibilities to evaluate and assess tag read events. The available information is discussed

and integrated in a readpoint and signal model which is discussed in Chapter 4. The signal

model forms the basis for a classification approach which canbe employed at the readpoint

level to identify and suppress false positive observations.

• Information fusion:The combination of different information sources and sensor modali-

ties is a common approach in various technical systems that deal with noisy data. Chapter 6

gives an overview over RFID related sensor fusion approaches in the recent literature and

discusses computer vision systems as an attractive fusion candidate. In particular, we de-

velop a localization system that combines the information from a mono camera with RFID

read events to determine the location of individual items ina scene.

The discussed aspects have been extensively studied duringthe course of this thesis project. Con-

sequently, this lead to a number of publications which are outlined below for detailed reference.
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1.2.1 Publications

The joint consideration of business process information and RFID system properties was achieved

in a flexible discrete time state-space-model which was firstpresented at the IEEE RFID confer-

ence in 2011:

[68] M. Goller and M. Brandner. Increasing the robustness ofRFID systems using a

probabilistic business process model. Poster Presentation, IEEE RFID, 2011

The ideas behind this approach were continuously refined andextended by a classification mecha-

nism that jointly considers business process information and low-level RFID data to identify false

positive and false negative observations. In order to allowfor a convenient evaluation of differ-

ent ideas and modeling concepts, we started the developmentof a Probabilistic RFID Simulation

Engine –PRISE. In contrast to other simulation frameworks that focus on particular problems

such as the UHF channel or communication protocol, PRISE allows for the simulation of large

scale RFID systems and specifically considers the business process layer by simulating high-level

item trajectories. The system model and the simulation engine were continuously optimized and

evaluated by means of data from real-world RFID installations in different applications. This

work resulted in a publication which was presented at the RFID Technology and Applications

conference in 2011:

[69] M. Goller and M. Brandner. Probabilistic modeling of RFID business processes.

In Proc. IEEE RFID-TA, pages 432–436, 2011

The developed framework was further improved by integrating a continuous time motion model

and an RFID sensor model. Using empirical data from active deployments, a comprehensive

validation of the modeling assumptions was performed. The resulting state-space model and an

algorithm for process-level localization were presented at the IEEE International Conference on

Wireless Information Technology and Systems 2012:

[71] M. Goller and M. Brandner. Process-level localizationof RFID tags using prob-

abilistic models. InProc. IEEE ICWITS, 2012

The second part addressed in the course of this thesis project deals with RFID systems modeling

on the readpoint level. In this context, the goal was to develop a probabilistic framework with

the capability to evaluate and classify read events with off-the-shelf RFID hardware. Based on an

analysis of different feature attributes and previous workon readpoint modeling [67] with HMMs

(Hidden Markov Models), an experimental study about different strategies to evaluate low-level

signal features was performed and published at the IEEE RFIDconference 2011:
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[66] M. Goller and M. Brandner. Experimental evaluation of RFID gate concepts. In

Proc. IEEE RFID, pages 26–31, 2011

The main result of this work was that the performance of individual readpoints can be significantly

improved by means of a classification scheme using an appropriate system model. The readpoint

model based on HMMs was gradually improved to provide a flexible framework for different

feature attributes. The model has been evaluated in typicalapplications, both in laboratory envi-

ronments and practical deployments. The results of the experimental evaluation were published

at the European Conference on Smart Objects, Systems and Technologies 2012 and awarded as

Best Paper:

[70] M. Goller and M. Brandner. Evaluation of feature attributes for an RFID con-

veyor belt application using probabilistic models. InProc. SmartSystech, 2012

The consequent next step for a general readpoint model was toinvestigate on more advanced sen-

sor modalities. For logistic applications in automated environments, standard proximity sensors

provide a robust and deterministic information due to well defined boundary conditions such as

known object dimensions and a fixed movement speed. However,these sensor modalities are not

applicable to other use cases like warehouse portals or the aforementioned EAS scenario. For this

reason, computer vision systems were investigated as complementary sensor modality with the

capability to provide accurate location and tracking information.

The increasing requirements in terms of detection performance and item throughput in state-of-

the art logistic applications motivated further research to improve the detection performance of

practical RFID deployments. With the background of a probabilistic framework, this research was

focusing on diversity concepts in general, and spatial readpoint diversity in particular. Whereas

the idea of spatial diversity is widely developed in wireless communication systems, it requires

special attention in the context of RFID. Backed up by extensive empirical data, a model for

cooperative RFID readpoints was developed, leading to a Journal publication submitted to the

IEEE Transactions on Instrumentation and Measurement in 2013:

[72] M. Goller, M. Brandner, and G. Brasseur. A system model for cooperative RFID

readpoints.Submitted to the IEEE Trans. Instrumentation and Measurement, 2013

The problem of noisy observations due to the discussed challenges in RFID systems have been

addressed by probabilistic modeling concepts on differentabstractions layers. Viewing RFID sys-

tems in a probabilistic context enabled us to effectively combine different information sources and

properly address the challenges introduced by the heterogeneous system components. Due to the
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close cooperation with an industrial partner, the conceptsdeveloped in this thesis were success-

fully applied to a number of RFID projects in logistic and retail scenarios. Besides the insights

gained from practical implementations, the individual projects provided us with experimental data

and served as a benchmark under realistic operating conditions.
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2
Related Work

RFID systems comprise a variety of heterogeneous components and therefore face diverse ques-

tions, reaching from hardware-related topics such as circuit and chip design up to software devel-

opment, database design and supply chain considerations. For this reason, the literature on RFID

related topics is also very heterogeneous and characterized by interdisciplinary approaches. This

chapter gives an overview over the activities in the different research communities related to this

thesis during the last years. In particular, we provide a system perspective view of the different

approaches, discuss their advantages and limitations and highlight the open issues.

Traditionally, RFID system design and deployment is characterized by extensive experimental

evaluations and feasibility studies. Due to various physical effects, the most important ques-

tions for an RFID system are still the ones about the effective detection probability, effective read

range, and maximum achievable item throughput. Several authors have presented experimen-

tal studies solely devoted to these performance metrics andtheir dependence on environmental

factors [16, 27, 39, 44, 60, 95, 103]. The reasons why this type of analysis is so popular and

therefore often encountered are twofold: First, the detection probability and read range are the

most basic performance metrics that are directly visible tothe end-user. They can be determined

without specialized measurement equipment which reduces the complexity of the experimental

setup. Second, the detection probability is by far the most important and concise quantity that
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describes the performance of an RFID deployment.

Although studies on this level provide a concise picture of the performance limitations, they do

not explain the involved physical effects that lead to a decreased system performance. For this

reason, there are various experimental studies that provide important insights on a lower abstrac-

tion level. Nikitin et al. have published substantial work in terms of tag performance, sensitivity

and impedance measurements and the impact of different communication protocol parameters

[148, 149, 153, 154, 156]. Similarly, other authors have investigated on these aspects with a focus

on tag and antenna performance [29, 35, 65, 75, 189]. Since RFID systems are primarily limited

in the forward link [116], tag related measurements have received a lot of attention in the commu-

nity [31, 124, 129, 133, 172, 195]. Closely related to this issue is the wireless UHF channel. The

wireless multipath channel in the context of RFID systems has been studied extensively by differ-

ent researches and considerable effort has been devoted to channel modeling and characterization

[13, 80, 131, 139].

Whereas the authors in the literature discuss evaluation scenarios on different abstraction levels

and analyze different impact factors, the basic conclusions are very similar: RFID systems offer

a fast and reliable method to identify tagged objects under idealized conditions but suffer from

performance degradations in typical industrial environments. In particular, multipath propaga-

tion and the presence of metal or water lead to a significant decrease of the detection probability.

Consequently, the challenges encountered in RFID deployments are approached on a broad basis.

From a high-level perspective, these approaches can be grouped into hardware related concepts,

diversity schemes, and methods targeting the protocol layer. Since the RFID tag and the forward

link are the primary limitation, there are continuous advances in transponder chip technology and

tag antenna design [128, 160]. There exists a huge diversityof RFID tags for different environ-

mental requirements, for example tags that are especially designed for the application to metallic

objects. The increase in sensitivity, improvements in orientation insensitivity and a certain tol-

erance to particular item materials are the key enabler for RFID driven supply chains in various

industries. However, the physical limitations that lead toa non ideal detection performance are

still an important reason that impedes the mass deployment of UHF RFID.

To overcome this issue on another system layer, RFID systemshave adopted several diversity con-

cepts [183], similar to other wireless communication systems. The most intuitive approach in this

respect makes use of several RFID antennas to maximize the coverage in an interrogation zone

and to increase the detection probability. Commonly, this approach is implemented by means of

a simple time-multiplexing scheme for the different antennas. More advanced approaches, such

as presented by Angerer et. al [11, 12] include a signal processing block as countermeasure to

the undesirable properties of the wireless multipath channel. The diversity introduced by multiple
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RFID tags attached to the same object is another intuitive method to increase the system perfor-

mance [183], which, however, is rarely employed due to the increasing costs. Instead, temporal

diversity by means of repeated inventory sessions is a frequently found approach that has been

extensively studied in the literature [57, 88, 161]. On the downside, temporal diversity automati-

cally increases the overall inventory duration and is therefore a limiting factor in terms of system

throughput.

The multiple-access problem is an inherent characteristicof communication systems in general,

and RFID systems in particular due to the unknown number of tags in the interrogation zone.

In RFID systems, this problem is solved by an anti-collisionscheme which is used to single out

particular tag responses. Therefore, the anti-collision procedure is a key parameter in terms of

throughput and efficiency [32, 105, 106]. Several authors have presented concepts for enhanced

anti-collision schemes [115, 177, 191, 199] which show considerable throughput improvements

compared to the current standard. In addition to the features specified in the EPCglobal standard

[48] such as different sessions and tag muting, advanced anti-collision schemes also improve the

detection probability for a given RFID deployment by providing additional time-slots for tags that

are particularly hard to identify.

Although the effective detection probability is the most important performance metric for an RFID

system, the problem of false positive observations is of equal importance to the data accuracy in

the backend system. Characteristic scenarios that emphasize the consequences of false positive

observations include the checkout-desk in a retail store oran RFID driven article surveillance.

In both cases, false positive observations not only impair the data accuracy, but also have im-

mediate impact on the end customer in terms of erroneous bills or the characteristic false alarm.

Among other performance metrics, this issue is investigated in a real-life environment by Al-

Kassabet al. [5]. The main conclusion is that the value of an RFID system ismainly determined

by the achieved data accuracy. For this reason, considerable research has been conducted targeting

the false positive read problem. The different approaches range from a geometric tag localization

over classification schemes to high-level process modelingand the integration of different infor-

mation sources.

The most popular approach to eliminate false positives is concerned with the geometric local-

ization of RFID tags. The idea behind this approach is simpleand intuitive: If a reader is able

to determine the exact tag location, it is possible to decidewhether the tag is located in the de-

fined interrogation zone or not. However, tag localization in passive UHF RFID systems is a

challenging task and the accuracy is impaired by several different aspects. First, the EPCglobal

standard is merely designed for the identification of objects and does not explicitly address lo-

calization issues. This is reflected by the limited bandwidth available in UHF RFID systems.
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Second, the harsh channel conditions in terms of multipath propagation make the localization

increasingly difficult, especially in indoor environments. The localization approaches discussed

in the literature are manifold and heterogeneous which makes a direct comparison difficult. A

characterization can be carried out by means of the employedsignal features [136]. The first

type of localization methods employs the RSS (Received Signal Strength) or RSSI (Received

Signal Strength indicator) from a backscattered tag response [78, 94, 173] to estimate the dis-

tance between reader and tag. In addition, several approaches using advanced tracking strategies

[117, 145] have been presented by different authors. Localization using RFID has also become

a popular topic in the robotic community where reference tags are frequently used to localize a

mobile robot [33, 38, 185]. Although the problem in this context is to determine the location of

a reader, the principles are very similar to tag localization systems. The second type of methods

to determine the location of individual RFID tags is based onthe phase information [150], for

example with a synthetic antenna aperture [137].

Both RSS and phase-based systems have their limitations in terms of accuracy due to the difficult

environmental conditions. For this reason, extended approaches including information fusion

concepts and the adoption of computer vision systems [87, 143] have been developed. These

systems provide a more accurate localization of individualobjects due to the employed camera

system. In addition, systems that work beyond the EPCglobalstandard specifications (e.g., ultra-

wideband systems) have been developed that show a considerable improvement in localization

accuracy [123]. The capabilities of the different systems discussed in the literature are usually

demonstrated in well defined setups with a low number of tags.Real-world applications which

usually exhibit a considerably larger tag population are however still an open issue with respect

to an accurate localization. To provide the required accuracy, future RFID standards will need to

specify a considerably larger bandwidth [13] compared to current state-of-the-art systems.

Besides the geometric tag localization, there are alternative solutions to the false positive read

problem. On the hardware layer, there exists a variety of options, including shielding structures

or special antenna designs for particular applications [134, 135]. Whereas shielding structures are

typically bulky, inflexible, and costly to install, approaches based on a specialized antenna design

have the disadvantage that they are usually tailored to a very specific setup and require a lot of

engineering and tuning during the deployment phase.

Somewhere in between hardware related approaches and a full-blown localization are filtering

mechanisms that try to assess the characteristic of tag responses to decide whether a tag was de-

liberately identified or not. In this context, different filtering and cleaning mechanisms have been

proposed as described in a recent survey about data processing in RFID systems by Aggarwal

and Han [2]. Pioneering work in terms of data cleaning has been published by Jeffreyet al. [90].
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The authors use an adaptive temporal windowing technique tocompensate for missing reads and

suppress false positive tag observations. Besides the filtering capability, this work provided sub-

stantial novelty by defining a major and minor detection region for RFID readers and by inter-

preting the tag detection process in a probabilistic context. Consequently, different researchers

have build up on this idea [76, 101, 111, 181, 198] and provided extensions and improvements.

Temporal filtering mechanisms provide an effective suppression of false positive observations in

specific applications but are not directly applicable to some scenarios such as the commissioning

verification of individual packaging units. However, sliding window techniques form the base-

line for many RFID systems to increase the data accuracy. As extension to the discussed sliding

window schemes, an approach that integrates the RSS information provided by RFID readers has

been presented by Kelleret al. [99, 100]. The authors try to extract scalar metrics that describe a

particular tag response and perform a classification to distinguish between stationary and moving

tags in a dock-door scenario. Their work is especially noteworthy since it is based on a large scale

dataset from a real-world application, in contrast to most other publications in this field.

As a complementary idea to the discussed low-level approaches, several researchers have devel-

oped systems that use high-level prior information [98, 118]. Since RFID systems are usually

employed in a certain supply chain structure [22], it is possible to consider the typical behavior

of tagged items in terms of a model. The basic idea to suppressfalse positives is then to use the

learned model and evaluate a given observation. Besides thefalse positive tag problem, it has been

shown that an adequate supply chain model can also be used forsecurity related aspects such as

cloned tag detection and anti counterfeiting [119] as well as supply chain visualization and pro-

cess analysis [83, 84]. Beyond the actual supply chain structure, other authors propose methods

to integrate additional prior information such as the spatio-temporal correlation among individ-

ual read events [30, 146, 167]. These systems have in common that they rely on a probabilistic

formulation and are hence suited for the integration in a general system model.

Although there are significant advances in terms of RFID system performance, the problem intro-

duced by noisy RFID data is still an open issue. Since the original goal of RFID deployments is

to provide information about a particular environment, theinherent noise impairs the information

quality and therefore has impact on the value of the RFID system itself. The challenges in terms

of missing and false positive observations can be addressedon different abstraction levels and

there exists a huge variety of different approaches. These approaches are very heterogeneous and

it is difficult to integrate them in a generic, flexible framework. This thesis aims to fill this gap by

means of a generic modeling framework that is capable to handle different abstraction levels and

integrate heterogeneous information sources.
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3
RFID System Modeling

The peculiar properties of passive UHF RFID systems result in potentially noisy data in the back-

end system. This noise is mainly caused by the lack of a well defined interrogation zone and a

variety of physical effects that impair the system performance. This chapter presents top-down

modeling concepts designed to tackle the problem of noisy RFID observations. First, we develop

an RFID system model which is able to describe the dynamics intypical supply chain structures

and specifically considers the non-ideal RFID system properties in terms of a sensor model. The

model forms the basis for a process level localization mechanism and additionally allows us to

evaluate the performance of an RFID system at runtime. Second, we present an approach to uti-

lize the information about spatio-temporal item relationships as complement to the RFID system

model. In particular, we develop a co-occurrence model to represent the relationship between

individual items in a supply chain.

The increasing requirements for logistic systems in terms of time, costs and flexibility have led to

highly complex process structures and the need for powerfulbackend IT-systems to provide a fast

and accurate information exchange. From a high-level perspective, the task of logistic systems

seems simple: Establish a goods flow to supply a specific customer demand in a timely fashion

with a certain quality, low costs and the correct information. However, this usually involves long

and complex network structures with different manufacturers, a distribution network and retail
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stores. A simplified example of a three tier supply chain is shown in Figure 3.1. Goods are

transported from different manufacturers (tier 1) over a distribution network (tier 2) to a set of

retail stores (tier 3), where they are finally sold to the end-customer.

Manufacturing Distribution Retail

Customer

M1

M2

M3

M4

M5

M6

D1

D2

D3

D4

D5

R1

R2

R3

R4

Figure 3.1: Exemplary supply chain: Goods move along typical trajectories from manufacturing
over a distribution network to retail stores and are finally sold to a customer. A typical
trajectory for an article could hence span from the two manufacturersM2 andM6 over
the distribution partnersD1 andD4, respectively, to the retail shopR1 where it is
bought by a customer.

Depending on the type of product or product mix, a supply chain can exhibit different levels

of complexity. Typically, every stage involves a set of subordinate process steps, giving rise

to a self-similar structure [179], as exemplary shown for a retail store in Figure 3.2. A typical

retail store features a goods inbound where delivered articles are received. The goods are then

placed in a storage area and are finally presented on the salesfloor. Regardless of the supply chain

structure and the number of hierarchy levels, inventory andorder management require an accurate

information flow and identification of goods and transactions. To provide information about the

current location of individual items, an RFID system hence needs to automatically identify goods

as soon as they enter a specific process stage. For this purpose, RFID hardware is installed at

critical locations in the supply chain. In this context, we define anRFID readpointR as a set of

RFID readers, antennas and additional sensors that belong to a specific process step.

Depending on the hierarchy level at which RFID readpoints are installed, the location information

can be provided at a certain discretization level. The basicfunctional principle, however, is in-

dependent of the hierarchy level: As soon as an item enters the interrogation zone of a particular

readpoint, the RFID reader identifies the item and triggers the location update. At this level, we
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can hence define aread event(or RFID observation) as a binary variable

zi =







1 if tag is detected by readpointRi

0 if tag is not detected by readpointRi

. (3.1)

Illustrated by means of the exemplary retail store in Figure3.2, an itemI1 is received and identi-

fied at the goods inbound which causes a location update to retail storeR1. Similarly, the location

inside the shop is updated with every new observation. Independent of the hierarchy level in the

M1 M5 D1 D3 R1

R1

Inbound Storage

Sales floor 1

Sales floor 2

Figure 3.2: Zoom into an exemplary retail store with different process steps and locations. After
receiving a set of goods in the inbound area, they are typically transferred to the storage
location before being presented on the sales floor

supply chain, every stage has a set of characteristic properties:

• Physical location:At the highest hierarchy level, this can denote the location(address) of

a manufacturing plant or distribution center. At a lower level, the location can for example

refer to a specific region in a warehouse or store such asStorage areaor Sales floor 2.

• Dwell time: Defines how long items remain in a particular supply chain stage. Depending

on the process, we can identify two possibilities that characterize the dwell time: Either, it

is determined by process requirements (e.g., storage or cooling period, duration of certain

manufacturing steps or transportation), or external factors such as customer behavior. The

first case especially covers process steps in manufacturingand distribution where the dwell

time typically is determined by the duration of certain manufacturing steps. For the second

case, the dwell time provides substantial information about the process for the maintainer
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of a supply chain. For example, the information about how long certain products are pre-

sented on a sales floor before being sold is valuable information for management tasks and

marketing.

• Previous process steps:Defines a set of previous stages in the supply chain from which

items can be transferred to the current stage.

• Subsequent process steps:In analogy, this is a set of subsequent process steps to which

items can be transferred from the current stage.

The discussed properties define the topological structure and the dynamic behavior of a supply

chain. As an additional characteristic, logistic applications usually utilize different sorts of pack-

aging units for item aggregation and transport. Typical examples are pallets, cardboard boxes

or packs for hanging garments. Regardless of the physical properties, packaging units introduce

logical item units and give rise to a certain structure and correlation in the goods flow. This is a

noteworthy aspect that provides prior information about a particular supply chain.

Following a top-down approach, the remainder of this chapter presents a probabilistic process

model to describe the characteristics of modern RFID drivensupply chains. The model charac-

terizes the goods flow in terms of a motion model and specifically addresses the RFID system

properties by means of a sensor model. Besides the general idea, we discuss a mechanism for

process-level localization and present a method to estimate the model parameters. The charac-

teristic of spatio-temporal item relationships in a supplychain are utilized in two different ways.

First, we describe an online, high-level system monitoringmechanism to estimate the detection

probability of individual readpoints at runtime. Second, we utilize the spatio-temporal relation-

ships between individual items in a co-occurrence model to increase accuracy of RFID observa-

tions.

3.1 Probabilistic Process Model

The most noticeable aspect that characterizes a supply chain is goods flow along the different

stages and process steps. This flow is difficult to describe ina deterministic way due to the high

dynamics and the wide variety of different products and processing steps. For this reason, an

adequate approach to accurately consider these characteristics is the use of a stochastic model. In

particular, Continuous Time Markov Chains (CTMCs) [169] allow for a concise description and

provide a powerful mathematical framework. A CTMC

λ = (π, P,µ) (3.2)
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comprises the initial state distributionπ and describes the dynamic behavior in terms of the transi-

tion probability matrixP and the dwell time parameterµ. Similar to discrete time Markov chains,

a CTMC is a directed graph consisting ofN states andE edges representing transitions between

the states, as shown in Figure 3.3. The state-spaceX = (X1, ...,XN ) represents the different

stages in the supply chain and the transition probability matrix entriespij describe the probability

for a transition fromXi to Xj for a particular item. In contrast to discrete time Markov chains,

Xi Xk

Xj

pik

pkj

µi µk

µj

Figure 3.3: Continuous Time Markov Chain as motion model for an RFID enabled supply chain.
Every stage in the supply chain corresponds to one discrete stateXi. The temporal
behavior of the motion model is characterized by the transition probabilitiespij and
the mean dwell timesµi in every state.

CTMCs explicitly model the duration in a particular state bymeans of a dwell time parameterTi.

The dwell time is defined as the time difference between leaving and entering a state

Ti = t
(i)
Leave− t

(i)
Enter (3.3)

and can be characterized in terms of a probability distribution. For our purposes, we consider

time homogeneousCTMCs, which means that the transition probabilities are independent of the

absolute time

P (X(t) = j |X(s) = i) = P (X(t− s) = j |X(0) = i), ∀ s < t. (3.4)

This property implies that the dwell timesTi follow an Exponential distribution

Ti ∼ Exp(µi) (3.5)

since this is the only continuous distribution that exhibits the memoryless property [141]. Conse-

quently, this results in the parameterµ holding the mean dwell time for every state in the CTMC.

Although the assumption of an exponentially distributed dwell time is potentially limiting the
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applicability of this model, it provides a comfortable mathematical formalism and a reasonable

approximation as we will show later by means of empirical data from two case studies in Sec-

tion 3.1.4.

An alternative representation for a CTMC is thegenerator matrixG with individual entries

gij =
pij
µi

gii = −
N
∑

j=1
j 6=i

gij . (3.6)

The generator matrix allows for an efficient computation of the time dependent transition proba-

bility function

pij(t) = P (X(t) = j |X(0) = i) = etG ≡
∞
∑

n=0

(tG)n

n!
(3.7)

which describes the temporal evolution of the transition probabilities. Using this framework, we

can describe a wide variety of supply chain structures. For example, consider the retail store mod-

eled as CTMC shown in Figure 3.4. The process is characterized by five states that describe the

flow of goods from the inbound over a storage area and two salesfloors to the end-customer. The

time dependent transition probability function for a subset of states is shown in Figure 3.5. For

1 .000

0 .600

0 .400

0 .150

0 .850

0 .100

0 .900
1-Inbound
µ1 = 1h

2-Storage
µ2 = 317 h

3-Sales floor 1
µ3 = 67 h

4-Sales floor 2
µ4 = 79 h

5-Customer

Figure 3.4: A retail store modeled as CTMC: Articles are received at the inbound and then trans-
ferred to a common storage area. From there, the articles aretransferred to one of two
sales floors where they are presented to the customer. The dwell time in every state is
specified in terms of an exponential distribution with meanµi.

the interpretation of Figure 3.5, it is important to keep in mind that the transition probabilities are

independent of the absolute time due to the assumption of time homogeneity. Characteristically,

the probability to stay in a certain state decreases exponentially, as shown for the state2-Storage.

In contrast, the transition to another state first increasesand shows a dwell time dependent maxi-

mum.
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Figure 3.5: Time dependent transition probabilities for the process model shown in Figure 3.4. For
the exemplary process, the probability that an item which was received at timet = 0h
is sold to the customer has its maximum aroundt = 271 h (seep15(t)). Similarly, the
transition probability from sales floor 1 to the customer hasits maximum aftert = 83 h.

In addition to the process dynamics covered by the CTMC, the RFID system model specifically

considers the properties of RFID readpoints by means of a sensor model which accounts for the

lack of a well defined interrogation zone and the non ideal detection probability. Specifically, the

sensor model integrates the possibility for missing observations in terms of a detection probability

P
(i)
D ≤ 1 and models false positive reads from tags outside the definedinterrogation zone. In

this context, the probability in stateXj to detect an unwanted tag currently being in stateXi is

denoted asP (j)
FA,i. The detection and false positive probabilities can be summarized in anN ×N

observation matrixO, where

oij = P
(j)
FA,i and oii = P

(i)
D . (3.8)

The resulting state-space model as shown in Figure 3.6 consists of a CTMC as continuous time

motion model and a sensor model reflecting the RFID system properties. The state-space model

provides us with the following possibilities: First, we canuse it as a generative data model to

simulate high-level item trajectories in a wide range of possible supply chain scenarios. Second,

the model can be used to robustly determine the actual item location in the supply chain based

on potentially noisy read events. The inference mechanism for this high-level localization is

explained in the next section.
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Figure 3.6: RFID system model, consisting of a CTMC and an RFID sensor model that reflects the
individual readpoint properties. The sensor model specifically considers the detection
probability and accounts for the possibility of false positive observations.

3.1.1 Process Level Localization

Estimating the most likely state of a system from noisy observations is commonly discussed in the

literature asfiltering problem. Given a series of observationsz = z(t1), ..., z(tK ) and the system

model described in Equ. (3.2), the task is to compute the current state probability distribution for a

particular item. In case of a discrete time, finite state-space setting, the Forward Algorithm [163]

is an optimal solution for this problem. For discrete time stepsk, the state probability distribution

is

Xk = OkP
TXk−1, X0 = O0π (3.9)

whereOk denotes the diagonal observation matrix according to the sensor model andπ is the

initial state distribution. Equ. (3.9) can be interpreted as a recursive Bayes update to the state

distribution as new observation data becomes available. The simplicity of this recursive solution

stems from the first order Markov assumption, i.e., the assumption that given the present state, the

past and the future are independent.

As an extension to the discrete time solution, we can consider the dwell time in every state by

integrating the transition probability functionP(t) which can be computed using Equ. (3.7) for

every new observation. The state probability distributionthen becomes

X(t2) = OkP
T (t)X(t1), t2 > t1. (3.10)

As soon as an RFID observation occurs, the process model can be employed to update the cur-

rent item location. Depending on the motion and sensor model, the observation triggers a state

transition or is identified as a false positive.
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The graphical representation of the system model in Figure 3.6 allows for an intuitive explanation

of the filtering process described in Equ. (3.10). If we assume that a particular item is in state

Xi at time t = 0, we can consider the probability for a valid state transition given an RFID

observationzj as defined in Equ. (3.1). In particular, the probability for avalid state transition

can be formulated as

P (t; Transition| zj) =
P (t; zj |Transition)P (Transition)

P (zj)
=

ojjpij(t)

P (zj)
. (3.11)

In Equ. (3.11), the conditional probabilityP (t; zj |Transition) = ojj denotes the readpoint de-

tection probability given that a transition to the stateXj has occurred. The transition probability,

P (Transition) can be directly computed from the CTMC motion model and equals pij(t). The

posterior probability for observing a valid state transition can therefore be computed using the

RFID sensor model, and the transition probability according to the CTMC motion model. Simi-

larly, the probability for the observation to be a false positive can be expressed as

P (t; False positive| zj) =
P (t; zj |False positive)P (False positive)

P (zj)
=

oijpii(t)

P (zj)
. (3.12)

This reflects the possibility that an item in stateXi is identified by a readpoint inXj . In general,

there exist several statesXm that cause false positive observations inXj . With the last observation

in Xi, this requires that the transition fromXi to Xm is not detected and hence, the probability

for a false positive inXj becomes

P (t; False positive| zj) =

oijpii(t) +

N
∑

m=1
m6=j

omjpim(t) (1− omm)

P (zj)
. (3.13)

With a sufficiently high detection probabilityomm ≈ 1 and a low false positive probability

omj ≪ 1, the summation term can be neglected which turns Equ (3.12) into

P (t; False positive| zj) ≈
oijpii(t)

P (zj)
. (3.14)

The denominator in Equ. (3.11) – (3.14) corresponds to the overall probability that an observation

zj occurs and follows from the law of total probability

P (zj) = ojjpij(t) + oijpii(t). (3.15)
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To identify the most likely cause of an RFID observation, Equ. (3.11) and (3.14) can be combined

in a decision rule

γ(t) =
P (t; Transition| zj)

P (t; False positive| zj)
=

ojjpij(t)

oijpii(t)
≷ 1. (3.16)

Using this decision rule, a readpoint can effectively identify false positive read events and suppress

the corresponding state transition. An equivalent interpretation is that the RFID system model can

be used to estimate the location of an item in the supply chainat a given point in time. An observed

read eventzj for an item in stateXi will only be accepted by the model givenγ(t) > 1, thereby

providing an effective mechanism to filter noisy RFID observations.

The RFID system model addresses the introductory requirements in terms of the process dynamics

and the characteristics of noisy RFID observations. To enable the desired filtering capability, the

model parameters need to be adjusted according to the particular supply chain and RFID system

characteristics, which can be accomplished by means of an initial calibration phase.

3.1.2 Model Calibration

The RFID system model is uniquely described by means of the prior state distribution, the gen-

erator matrix and the RFID sensor model. In order to enable the filtering mechanism described

above, the model parameters need to accurately reflect the properties of the underlying supply

chain and the RFID system properties. These parameters can be estimated from empirical process

data which needs to be recorded during the system setup. For the calibration, we assume that

logged process data in the form of read events

z = [t, ID, Xi] (3.17)

with timestampt, tag identifier ID and stateXi is available. This definition of a read event is

closely related to the EPCIS (Electronic Product Code Information Service) standard [47].

3.1.2.1 Transition model – CTMC

The transition model is specified in terms of the prior state distribution and the generator matrix

G or, equivalently, the dwell time vectorµ together with the transition probability matrixP.

Consequently, the estimation of the model parameters involves two parts: First, the average dwell

time µi for each state needs to be estimated from logged read events.For this purpose, the

empirical dwell timesTi for all tags that have entered and left a particular stateXi need to be

computed using the definition in Equ. (3.3). With the assumption of an exponential distribution,
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the Maximum-Likelihood estimate for the mean dwell time is then

µi =
1

N

N
∑

i=1

Ti. (3.18)

Second, the prior state distribution and the individual transition probabilities can be estimated

from logged event data by applying the Forward-Backward algorithm [163]. For this purpose,

the absolute timestamp can be dropped since the Forward-Backward algorithm only evaluates

the occurrence of state transitions, regardless of the temporal behavior. In order to account for

possible process noise, the estimated transition probabilities and the prior state distribution require

modifications to consider arbitrary start states and transitions. Following the definition by Rozinat

et al. [171], we define a noise levelǫ that reflects the probability for an item to perform a state

transition apart from the estimated probabilities. Consequently, all zero transition probabilities

are set to this noise level. To ensure thatP is a row stochastic matrix (i.e., the rows sum up to 1),

we modify the matrix elements

pij =







ǫ pij = 0

pij − ǫ
|{(ij′) | pij′=0}|

|{(ij′) | pij′>ǫ}| pij > 0,
(3.19)

where|{(ij′) | pij′ = 0}| is the number of zero elements in rowi and|{(ij′) | pij′ > ǫ}| denotes

the number of elements in rowi greater thanǫ. The prior state probability vectorπ needs to be

modified in the same manner to allow for a tag to start in an arbitrary state.

3.1.2.2 RFID sensor model

Similar to the motion model, calibrating the sensor model requires a ground-truth dataset from a

set of items moving along the supply chain or a set of subordinate steps. By means of that, the

supply chain dynamics (i.e., the transition probability matrix P and the dwell times) are deter-

mined and the sensor model parameters can be considered in anisolated manner. The parameter

estimation can be performed based on empirical data holdingindividual RFID observations from

one or more calibration runs.

The detection probability for a readpoint belonging to a stateXi can be estimated as

P̂
(i)
D = ôii =

# items detected inXi

# items inXi
, (3.20)

where the actual number of tags inXi in the denominator is defined by the ground-truth. Similarly,
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the empirical estimates for false positive observations can be obtained using

P̂
(j)
FA,i = ôij =

# false positives fromXi in Xj

# items inXi
. (3.21)

The described calibration method can be carried out during the deployment of individual read-

points along the supply chain. Typically, this deployment phase is characterized by an iterative

evaluation and parameter optimization. The parameters include for example the reader transmit

power, communication protocol settings as well as the number and placement of individual anten-

nas. These parameters have direct influence on the system performance and consequently also on

the resulting sensor model. The detection and false positive probabilities are highly dependent on

the system configuration and, moreover, cannot be considered independently. This is an issue that

should be kept in mind during the deployment of an RFID system. Since there is little to no the-

ory about how the detection probability depends on individual system parameters, a recalibration

after every parameter update is vital to accurately reflect the system properties.

3.1.3 System Monitoring

After the initial calibration during the deployment phase,being aware of the current system status

is a desirable feature for practical deployments in order toallow for monitoring and management

tasks. Besides the possibility to react to disturbances, monitoring capabilities form the basis for an

adaptation of individual system parameters driven by environmental changes. Possible changes

include varying geometric conditions or, as frequently found in fashion logistics, seasonal changes

in the goods assortment which has a direct impact on the RFID system performance due to varying

item properties.

In general, RFID system monitoring includes several aspects: Whereas it is relatively straightfor-

ward to detect if a particular RFID reader is in operation or that an antenna is physically connected,

specific information about how well an RFID deployment operates is more difficult to obtain. In

this context, the detection probability of individual readpoints is the most important metric, since

it concisely describes the quality of operation. To obtain exact values for the detection probabil-

ity, a ground-truth for a sufficiently large set of RFID tagged items is required as described in

Section 3.1.2. However, this time consuming process cannotbe carried out regularly during the

actual system operation. For this reason, a mechanism that allows for an online estimation based

on the available RFID observations is required. The RFID system model presented in this thesis

can be employed to estimate the detection probability of an RFID system at runtime without the

need for an exact ground-truth. The idea is to apply a bootstrapping mechanism that combines the

information from individual readpoints to obtain an estimate for the ground-truth.

28



3.1. Probabilistic Process Model

In order to establish a ground-truth estimate at runtime, wecan exploit the existence of logical item

units introduced by the aggregation of items in packaging units. In particular, we can combine

the information about a packaging unitPj from different readpoints to estimate the number of

itemsM . For this purpose, the indicator variableZ as defined in Equ. (3.1) can be employed.

LetZ(i) = [Z
(i)
1 , Z

(i)
2 , ..., Z

(i)
K ]T denote the vector of indicator variables for tagsT1, T2, ..., TK

in a packaging unitPj , stemming from the observations in stateXi. Along the supply chain,

the packaging unit gives rise to a set of indicator vectorsZ = (Z(1),Z(2), ..., Z(N))T due to

the detection in different states. An estimator for the truenumber of itemsM in the considered

packaging unit is found by counting the number of tags that have been detected by at leastk

readpoints

M̂ = |Z ≥ k| = |Z|, (3.22)

where| · | denotes the set cardinality. The following example illustrates the estimation process:

Consider a packaging unitP1 with M = 5 tags. The unit proceeds through four different states

in a supply chain, giving rise to the indicator vectors

Z =

















X1 X2 X3 X4

T1 1 1 0 1

T2 1 1 1 1

T3 1 1 1 1

T4 1 1 1 1

T5 1 0 1 0

















. (3.23)

The individual length of the indicator vectorsZ(i) can vary among the different supply chain

states depending on whether an item is detected or not. For the example in Equ. (3.23), we obtain

M̂ = 5. The estimate for the detection probability of the readpoint in stateXi is then

P̂
(i)
D =

M (i)

M̂
=

|Z(i)|
|Z| , i ∈ [1, N ]. (3.24)

The ground-truth and the estimate for the individual detection probabilities are updated and re-

fined with every processed packaging unit. Assuming that packaging units are identified at dis-

crete time instantst, the update can be computed recursively using

P
(i)
D,t =

M̂
(i)
t−1P

(i)
D, t-1 +M

(i)
t

M̂
(i)
t−1 + M̂t

, (3.25)

whereM̂ (i)
t−1 denotes the total number of tags identified inXi up to timet−1. Since this is difficult
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to maintain in practical applications, it is convenient to define a temporal window for whicĥM (i)
t−1

is evaluated.

To illustrate the estimation technique, Figure 3.7 shows a simulation result for the readpoint de-

tection probability over time. The simulated system consists of four readpoints with an initial

detection probabilityP (i)
D = 0.95. The simulation includes 2000 packaging units withM = 50

items each. Betweent = 1000h andt = 1500h, we simulate a disturbing event (malfunction of

readpoint in stateX1). The obtained estimate for the detection probability are smoothed by means

of a running average filter with window sizeT = 50 h to provide a convenient view. The simula-
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Figure 3.7: Simulation experiment: Estimated detection probability over time for readpointR1 in
an RFID system consisting of four readpoints. The actual detection probability in the
undisturbed phase isP (1)

D = 0.95. Betweent = 1000 h andt = 1500 h, a disturbance
leads to a considerable decrease in the detection performance. As more information
(provided by the observations from subsequent states respectively readpoints) becomes
available, the accuracy of the detection probability estimate increases and approaches
the true value.

tion shows two interesting aspects. First, it highlights that the individual estimates are biased due

to the fact that the ground-truth is obtained from uncertaininformation. As shown in Figure 3.7,

this bias depends on the actual value of the detection probability. For the undisturbed case, the

estimates closely approach the true value, whereas the biasincreases during the disturbed phase.

Second, the disturbed phase can be clearly identified also bymeans of the biased estimates, which

provides the possibility to react on disturbing events in real-time. The described bootstrapping

technique therefore provides an effective way to estimate the detection probability of individual

readpoints at runtime. Ultimately, this forms a starting point for the adaptation of individual RFID
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system parameters (e.g., transmit power) to react on small environmental changes.

3.1.4 Case Studies

The presented system model provides a flexible framework to describe RFID enabled supply

chains and processes. In this section, we discuss two applications and show how the developed

model can be applied to practical scenarios. By means of thatwe verify the model assumptions

and provide important insights for the application and implementation of the RFID system model.

The first scenario is a logistic application for the processing of fruit trays. In this case, the RFID

system is designed to track individual trays over the different states of an automated sorting pro-

cess. The second scenario consists of a distribution centerand a fashion retail store where the

RFID system tracks individual articles from the shipping stage in the distribution center to the

end-customer.

3.1.4.1 RFID enabled sorting plant

In this scenario, an RFID system is used to identify and trackindividual fruit trays through a pro-

duction and sorting process. For this purpose, every tray isequipped with an RFID tag. By means

of this case study, we investigate if the developed system model can be applied to automated en-

vironments. Besides developing the general model topology, we will analyze the empirical dwell

times in every state to verify the assumption of an exponential distribution.

From the process perspective, three types of trays can be identified: The first type, which we will

refer to asraw trayscontain different fruit cultivars. The task of the sorting plant is basically

to identify distinct cultivars and sizes and sort the fruitsaccordingly. The second type, called

receiving traysare meant to be filled with one distinct cultivar. At this stage, these trays are

transformed fromreceiving traysto sorted trays. Consequently, the trajectory of a particular tray

through the process is as follows: A raw crate is transferredfrom the storage area to theSorter

Feedwhere it is identified by the RFID system. Subsequently, the tray is emptied and transported

to a facility where the tray’s physical condition is inspected. If the physical condition allows for

further operation, the tray is transported as receiving tray to theSorter Exitwhere it is again filled

with one distinct cultivar. Finally, the tray is transported back to the storage area. Consequently,

the process can be modeled by four distinct states as shown inFigure 3.8. The model parameters

(i.e., the transition probabilities and dwell times) are estimated from empirical data over a period

of three days. In particular, the dataset contains trajectories from 1.439 processed trays. The

transition probabilityp31 = 0.006 (which corresponds to eight trays) is caused by the fact that

these trays do not fulfill the inspection criteria and are therefore directly transferred back to the
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Figure 3.8: Model for an automated sorting process of fruit trays. Trayswith different fruit cultivars
are processed in an RFID enabled sorting plant over the stages Sorter Feed, Inspection
and Sorter Exit. The transition probabilities and dwell times are estimated from selected
process data containing trajectories of 1.439 trays over a period of three days. After
the sorting process, the trays contain one distinct fruit cultivar and are moved back
to the storage area. If an individual tray does not fulfill theinspection criteria, it is
directly transferred back to the storage area, as indicatedby the transition probability
p31 = 0.006, which corresponds to a total of eight trays.

storage area for further processing. To verify the assumption of exponentially distributed dwell
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(a) Storage,µ1 = 3.3 h
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(b) Inspection,µ2 = 1.3 h
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(c) Sorter Exit,µ3 = 1.4 h

Figure 3.9: Empirical dwell time distributions with fitted Exponentials for three different process
stages in an RFID enabled sorting plant. Although the empirical data exhibits a certain
amount of outliers, the exponential distribution providesa reasonable fit to describe the
temporal behavior in the RFID system model.

times, we investigate on the empirical distributions as shown in Figure 3.9 together with their

exponential fit.

The three histograms for the states Storage, Inspection andSorter Exit indicate that the dwell time

approximately follows an exponential distribution. The interpretation of the empirical data is as

follows: The average tray stays in the storage area forµ1 = 3.3h whereas the inspection takes

µ2 = 1.3h on average. Regardless of the outliers (for example in Figure 3.9(a), which can be

explained by process interruptions such as a malfunction ofthe conveyor system), the exponential
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distribution provides a reasonable fit to the empirical data.

3.1.4.2 Fashion supply chain

The second scenario that we consider for the evaluation of our RFID system model is a fashion

supply chain, which is maybe the most prominent applicationof UHF RFID systems on item-

level. For the evaluation of this scenario, we use an empirical dataset of 27.371 item trajectories

from a pilot installation in a distribution center and a retail store. The resulting model represen-

tation is shown in Figure 3.10. The distribution center comprises a tag printing facility where

1 .000 1 .000
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1-Printed
µ1 = 139 h

2-Shipped
µ2 = 49 h

3-Storage
µ3 = 690 h

4-Sales floor 1
µ4 = 67h

5-Sales floor 2
µ5 = 79h

6-Customer

Figure 3.10: Model for a fashion supply chain, comprising a distributioncenter and a retail store.
From the perspective of the RFID system, the supply chain comprises six distinct
states. RFID tags are initialized in a printing facility andthen attached to the individual
articles. The articles are identified as soon as they are shipped to the retail store,
causing a transition to the stateShipped. In the store, the articles are received and then
placed in aStoragearea. Finally, they are transported to one of twoSales floorswhere
they are presented to the end-customer. The empirical data for this process stems from
a pilot installation and consists of 27.371 item trajectories. The estimated dwell times
are rounded to integer values.

RFID tags are initialized and attached to the individual articles. Subsequently, the articles are

shipped to the store. The store features several locations which are covered by RFID readpoints.

In particular, goods are received and placed in aStoragearea, from where they are transported to

one of twoSales floors, for women and men respectively. Finally, articles are either sold to the

end-customer or transferred back to the storage area.

For the evaluation, we again focus on the dwell time distributions in the individual states. The

empirical histograms for the statesStorage, Sales floor 1(for women), andSales floor 2(for

men) are shown in Figure 3.11. The interpretation of the empirical histograms is similar to the

case study of the automated sorting process. An article stays in the storage area of the shop for

µ1 = 690h on average before it is transferred to one of the two sales floors. There, the mean

dwell times areµ4 = 66h for women andµ5 = 79h for men. Compared to the automated
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(a) Shop storage,µ3 = 690 h
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(b) Sales floor women,µ4 = 67 h
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(c) Sales floor men,µ5 = 79 h

Figure 3.11: Empirical dwell time distributions with fitted Exponentialfor three different process
stages in a fashion supply chain. Since the discussed process is mainly characterized
by manual interaction, the amount of outliers is larger compared to the case study
of the automated sorting plant. However, the exponential distribution still provides a
reasonable fit and can therefore be used to model the temporalbehavior.

environment discussed in the first case study, the empiricaldata in this case shows an even higher

amount of outliers, but can still be approximated with an exponential distribution. The analyzed

data moreover provides valuable information for the shop management. Knowing the temporal

behavior of individual articles or article groups gives insight to the customer behavior and allows

for an intelligent replenishment process.

The presented case studies provide us with three important insights. First, we can conclude that

the temporal behavior of items in a supply chain can be described by means of a time homoge-

neous CTMC. The empirical data from the two analyzed scenarios suggest that the exponential

distribution provides a good approximation, regardless ofa certain amount of outliers. Second,

the empirical data from the discussed processes shows that the presented RFID system model is

able to describe a wide variety of different supply chain structures, from highly automated envi-

ronments to processes that are solely characterized by human interaction. Finally, the conducted

evaluation shows that RFID systems are capable to provide information for an in-depth analysis

with regard to the efficiency and throughput, which forms thebasis for a subsequent optimization.

3.2 Spatio-temporal Item Correlation

The fact that items are aggregated in packaging units for transportation and easier handling in-

troduces interesting aspects for the structure of RFID readevents, as already described in Sec-

tion 3.1.3. Besides the possibility to approximate a ground-truth for system monitoring tasks,

the structure of logical item units gives rise to a systematic correlation of read events. Under

the assumption that the content of packaging units does not change over time, a packaging unit
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defines a persistent item set. This means that read events in asupply chain state will occur closely

spaced in time as soon as the corresponding packaging unit enters the interrogation zone of a

particular readpoint. The idea is hence to utilize the information about the existence of item sets

in order to compensate for missing observations and to identify false positives. For this purpose,

two prerequisites are needed: First, a mathematical formulation of item sets and an adequate way

of detecting co-occurring read events needs to be developed. This can be used to infer the re-

lationships between individual items and build a probabilistic co-occurrencemodel. Second, a

way to incorporate the knowledge about item sets in the detection process at the readpoint level

is required to compensate for missing and false positive observations. The co-occurrence model

hence needs to provide a mechanism to evaluate whether or nota particular tag belongs to an item

set based on the history of joint observations.

3.2.1 Modeling spatio-temporal correlation

The identification of spatio-temporal relationships within large datasets is a frequently found

problem that has received a lot of attention in the data mining community. To describe the

spatio-temporal structure of RFID observations, an intuitive approach is to investigate on the

co-occurrence of read events caused by individual items in packaging units as soon as they en-

ter the readpoint interrogation zone. An example of three packaging units with 10 items each is

shown in Figure 3.12. The items give rise to correlated trajectories through the state-space repre-

senting the supply chain. However, read events are typically subjected to uncertainties due to the

non ideal detection performance of individual readpoints.To describe this behavior in terms of a

co-occurrence model, we utilize again the indicator variable z representing a read event in a partic-

ular state. Each packaging unit gives rise to a set of indicator vectorsZ = (Z(1),Z(2), ..., Z(N))T

from which the co-occurrence of read events among individual items can be derived by counting

the number of times that tagTi and tagTj are observed together. This concept can be formulated

in terms of the co-occurrence matrixC with individual entries

cij = |zi > 0 ∩ zj > 0|. (3.26)

The co-occurrence matrix is a frequently found tool in data mining applications such as market

basket analysis [4]. For the exemplary observations in Equ.(3.23), the resulting co-occurrence
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Figure 3.12: Exemplary state-space trajectories for three packaging units with 10 items each. Items
belonging to a particular packaging unit give rise to neighboring read events in time
and space, thereby introducing a correlation structure. This can be used to infer the
relationship between individual items in terms of a co-occurrence model.

matrix is

C =

















3 3 3 3 1

3 4 4 4 2

3 4 4 4 2

3 4 4 4 2

1 2 2 2 2

















. (3.27)

The diagonal elements ofC describe how often a particular item is observed in total, whereas the

off-diagonal elements describe the absolute frequency of joint observations. Consequently,C is a

symmetric matrix, sincecij = cji. The co-occurrence matrix can be used to derive two additional

metrics. Thesupport

sij =
cij
N

, sij ∈ [0, 1], (3.28)

whereN is the total number of states (readpoints), describes the relative frequency of joint obser-

vations, which can be interpreted as the probability that tag Ti andTj are observed together. The

confidence

pij =
cij
cii

=
sij
sii

, pij ∈ [0, 1] (3.29)

is the conditional probability

pij = P (zj |zi) (3.30)

of an observationzj , given thatzi already occurred which can be interpreted as the strength of

a connection between any two items. These two metrics are well suited for the integration in a
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3.2. Spatio-temporal Item Correlation

probabilistic framework, since they provide an explicit probability measure for a given observa-

tion based on previous data. The co-occurrence matrix, or alternatively the support matrix can

be updated in an online manner with new observations of a particular packaging unit. For the

exemplary data, the support and confidence matrices are

S =

















0.75 0.75 0.75 0.75 0.25

0.75 1.00 1.00 1.00 0.50

0.75 1.00 1.00 1.00 0.50

0.75 1.00 1.00 1.00 0.50

0.25 0.50 0.50 0.50 0.50

















P =

















1.00 1.00 1.00 1.00 0.33

0.75 1.00 1.00 1.00 0.50

0.75 1.00 1.00 1.00 0.50

0.75 1.00 1.00 1.00 0.50

0.50 1.00 1.00 1.00 1.00

















. (3.31)

The explicit description of item relationships in terms of aco-occurrence model enables us to

evaluate particular RFID observations based on the joint previous history. Regarding the practical

implementation, there are two additional aspects that needto be considered. The first is that

the assumption of constant item relationships holds for a wide variety of different supply chain

structures, but has its limitations when the supply chain features specific process steps such as

commissioning or sorting. In such steps, the content of packaging unit changes by definition

and consequently, practical implementations need to dissolve previously learned relationships. In

this case, the co-occurrence model needs to be reset to a uniform distribution. The second aspect

deals with the temporal characteristic of the co-occurrence model. Depending on the supply chain

structure (in particular, the number of individual states), it is convenient to define a temporal

window over which item relationships are learned.

3.2.2 Evaluating RFID observations

With the co-occurrence model, expressed in terms of the support and confidence matrices, we

have a framework that allows us to describe the connection between two arbitrary items in the

supply chain. In order to make use of this information, an evaluation method is required which

can answer questions like ‘Given that a particular set of tagsT1, T2, ..., TN is observed, how

likely is the absence or presence of tagTj?’. In other words, we want to evaluate the likelihood

of an RFID observationZj given a set of observationsz1, z2, ..., zN and the previously learned

item relationships. This allows for the detection of missing tags if the available history suggests

that a tag should actually be present in a packaging unit. Conversely, it enables us to identify false

positive observations by means of their missing connectionto other observed items.

The computation of the true likelihoodP (zj |z1, z2, ..., zN ) requires the full joint distribution

P (zj , z1, z2, ..., zN ), which is difficult to maintain in practice due to high dimensionality and
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the inherent statistic dependence. Instead, an approximation can be found by combining the

conditional probabilitiesP (zj | zi) for i ∈ [1, N ] using a so calledopinion pool functionPG such

that

P (zj |z1, z2, ..., zN ) ≈ PG(P (zj | z1), P (zj | z2), ..., P (zj | zN )). (3.32)

The expression opinion pool stems from the similar problem to consolidate the opinion of several

experts asked about a particular problem [1]. In our case, these experts correspond to the set of

observed tags with a support value

sij > γO (3.33)

larger than a given threshold. In other words, we only consider the conditional probabilities of

frequent joint observations that have a sufficient support.Pooling operators have a variety of math-

ematical properties and there exists an elaborate framework for the description of the individual

characteristics [9]. Although this mathematical treatment is beyond the scope of this thesis, there

is one noteworthy property with direct implications to the considered problem. Certain pooling

functions have the so called0/1 forcing property, which means that as soon as a single conditional

probability equals zero (or one, respectively), the resultof the pooling operation will also equal

zero (or one). For the given problem, this property imposes aserious limitation since a single,

undetected tag with a sufficient support value leads to a zerolikelihood of the observation.

The different types of pooling functions can be categorizedinto additive and multiplicative meth-

ods. Although the latter class generally outperforms linear methods, it is not suitable for the

considered problem due to the inherent zero forcing property. In contrast, the intuitive method of

additive pooling

PG =

N
∑

i=1
i6=j

wiP (zj | zi),
N
∑

i=1

wi = 1 (3.34)

does not exhibit the zero forcing property. The linear pooling operator reduces to a simple Arith-

metic Bayes average when the weightswi are chosen equally which is the case when no additional

information about the observations is available.

Given a set of tag observations that are identified to belong to a particular packaging unitPi, the

co-occurrence model and the linear pooling operator can be employed in a two-way evaluation

scheme to identify missing and false positive tags. The firststep involves a direct application of

Equ. (3.34) for every tag observation, provided that the corresponding support is above the defined

thresholdγO. By means of that, every observation is evaluated in the light of the neighboring ob-

servations and the co-occurrence model. A potential false positive will have a significantly lower

probability according to the pooling operation, due to the lack of joint previous observations. The
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Step 1:
for all Packaging unitsPi do

for all TagsTj do

ComputeP (j)
G

if P (j)
G > γ′ then
Tj detected, reportzj

else
Tj is false positive, suppresszj

end if
end for

end for

Step 2:
for all TagsTj ∈ Pi do

ComputeP (j)
G

if P (j)
G > γ′ then
Tj detected, reportzj

else
Tj is missing

end if
end for

Algorithm 3.1: Two-way evaluation of tag observations using the co-occurrence model: Step 1
is used to identify false positive observations by means of lacking joint previous
observations. In addition, step 2 uses the co-occurrence model to compensate for
potentially missing observations, thereby introducing a low-pass characteristic for
RFID observations.
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second step is to iterate through all items previously assigned to the considered packaging unit

and to compute their current observation likelihood. This step introduces a low-pass character-

istic by filtering individual missed tags. The pseudo-code for the described two-way evaluation

is shown in Algorithm 3.1. The final step in the evaluation is to perform an update on the co-

occurrence model by means of the newly obtained observationdata. Using this iterative scheme,

the problem of missed and false positive detections at a particular readpoint can be effectively

addressed by means of the inherent correlation structure ofread events, which increases accuracy

of the resulting RFID data.

3.2.3 Experimental Evaluation

To demonstrate the capabilities of the co-occurrence model, we conduct a simulation experiment

involving eight distinct readpoints. The experimental setup is split into two parts: Readpoints

R1 ...R4 are designed such that a reliable identification of items in apackaging unit is possible,

thereby enabling us to learn the co-occurrence model for thesimulated set of packaging units.

In contrast, readpointsR5 ...R8 do not have these idealized properties. Instead, they exhibit a

detection performancePD < 1 and are closely spaced such that the individual interrogation zones

show a considerable overlap. By means of that, false positive observations are introduced with

a certain probability. Whereas this design would not be favorable in a practical deployment, it

enables us to explicitly analyze the filter capabilities of the co-occurrence model. The geometry

of the experimental setup, together with the individual packaging unit trajectories is shown in

the floor plan in Figure 3.13. Packaging unitsPi are moved through the individual interrogation

zones with a constant velocity ofv = 0.5m/s. After a packaging unit has proceeded through the

interrogation zonesR1 ...R4, it proceeds to one of the four readpointsR5 ...R8 with a probability

of p = 0.25. This means that the simulated packaging units are distributed uniformly over the non

ideal readpoints. Due to the chosen geometry, readpointsR6 andR7 show a higher false positive

probability compared toR5 andR8. The simulation incorporates a total ofN = 200 packaging

units, withMi = 10 items each.

For the evaluation we compare the detection and false positive probabilities for readpointsR5 ...R8

to their corresponding raw values without the co-occurrence model as shown in Figure 3.14. The

resulting detection and false positive probabilities indicate that the co-occurrence model provides

a considerable increase in the readpoint performance. Whereas the detection rate is boosted to the

ideal value ofPD = 1 for every readpoint, false positive observations are perfectly suppressed.

This ideal result is mainly caused by the perfect information incorporated in the co-occurrence

model. Since readpointsR1 ...R4 provide ideal observations, the resulting co-occurrence model

accurately represents the individual item relationships.This enables the model to perfectly com-
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Figure 3.13: Simulation setup: Schematic representation of the simulated environment. The setup
consists of a total of eight readpoints in statesR1...R8. Packaging unitsPi first travel
through the interrogation zones of readpointsR1...R4 and then have a probability of
p = 0.25 to travel throughR5...R8. The first four readpoints are assumed to be
ideal regarding the detection and false positive probability. In contrast, the readpoints
R5...R8 suffer from false positives due to overlapping interrogation zones and have
a non-ideal detection probabilityP (i)

D < 1.
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Figure 3.14: Readpoint performance with and without co-occurrence model: With perfect informa-
tion about the spatio-temporal item relationships, the co-occurrence model consider-
able enhances the detection probability and perfectly suppresses false positives.
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pensate for missing reads and to suppress false positives insubsequent process steps.

The performance increase naturally is limited by the quality of the learned co-occurrence model.

To investigate on this issue, we repeat the experiment described above under different conditions:

Whereas the properties of readpointsR5 ...R8 remain unchanged, the detection probability of the

first four readpoints is deliberately reduced. In particular, we can define the co-occurrence model

quality

q = P̄
(1−4)
D =

1

4

4
∑

i=1

P
(i)
D (3.35)

as equivalent to the average detection probability of readpoints R1 ...R4. This enables us to

analyze the average detection probabilityP̄
(5−8)
D as a function of the model qualityq, which is

varied in the intervalq = [0.92, 1.00]. The resulting detection performance together with the

corresponding standard deviation is estimated in a series of N = 10 runs. The results of this

analysis are shown in Figure 3.15.
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Figure 3.15: Resulting average detection probability for readpointsR5 ...R8 as a function of the
co-occurrence model qualityq i.e. the average detection probabilitȳP (1−4)

D . The co-
occurrence model shows a considerable tolerance to noisy RFID observations which
makes it ideally suited to integrate potentially noisy, uncertain information about ex-
isting item relationships.

The co-occurrence model is tolerant to noisy observations to a considerable extend, which makes

it ideally suited to the application in RFID systems. If the model quality drops below a critical

value, the overall performance is below the raw value since the co-occurrence model is dominated

by uncertain or wrong information. In this scenario, a performance gain is already achieved for a

model qualityq = P̄
(1−4)
D ≥ 0.965.
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3.3. Summary

The simulation experiment presented in this section shows that the performance of individual

readpoints can be improved considerably when the inherent correlation structure among RFID

observations is considered. For this purpose, we have introduced a co-occurrence model which

enables us to efficiently infer the relationship between items in an RFID enabled supply chain.

The discussed evaluation method which is based on a linear pooling operator is an intuitive, yet

powerful approach to increase the data quality in an RFID system. In particular, the described

two-way evaluation can be used to identify false positive and missing observations by considering

their joint history. The developed co-occurrence model is tolerant to a considerable amount of

noise in the RFID observations, making it an effective way toincorporate potentially uncertain

prior information about existing item relationships.

3.3 Summary

In this chapter, we have presented several high-level modeling concepts to target the problem of

noisy data in RFID systems. Starting from a requirement definition, we have first developed a

flexible model for RFID enabled supply chains which incorporates the dynamic behavior and the

specific properties of RFID readpoints. For this purpose, wehave combined a CTMC as motion

model with an RFID sensor model that accounts for the possibility of missing and false positive

observations. Using this model, we have discussed a processlevel localization mechanism which

is designed to filter noisy RFID observations. Furthermore,we have employed the model in

an online system monitoring mechanism to estimate the performance of individual readpoints at

runtime. In order to verify the employed modeling assumptions, we have conducted an analysis

of comprehensive datasets from practical applications.

The second modeling concept is based on the inherent spatio-temporal correlation structure of

RFID read events in a supply chain. To utilize the information introduced by correlated ob-

servations, we have developed a co-occurrence model which describes the relationship between

individual items. In particular, we have presented a framework to infer existing relationships and

to evaluate RFID observations in light of the joint history.In a simulation experiment, we have

demonstrated that this approach provides a significant performance increase and is tolerant to

noisy observations.
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4
RFID Readpoint Modeling

So far, we have defined an RFID observation as a binary event ata certain time instant which

indicates that a tag is detected by a particular readpoint. At a lower abstraction level, state-of-the

art RFID hardware provides more information within a particular read event such as the received

signal strength and the phase angle of the tag response signal. Throughout this chapter, we will

refer to this information aslow level features. Similar to the system model approach described

in Chapter 3, the goal is to establish a framework which allows us to evaluate RFID observations

in order to decide whether a particular tag was deliberatelyidentified or not. This provides us

with the possibility to distinguish between true positive and false positive observations on the

readpoint level, which provides more reliable RFID data to the backend system. The consider-

ation on readpoint level is required whenever there is no possibility to employ a process-based

filtering mechanism. This can be the case in specific supply chain states (e.g., verification after

commissioning) or when the underlying process does not provide sufficient prior information.

To investigate on the possibilities on the readpoint level we will discuss the available low level

features and establish the theoretical background behind the individual quantities. Starting from

this theoretical consideration, we present a compact signal model which we integrate into a more

general modeling framework that can be used in a classification mechanism. The presented ap-

proach is evaluated by means of an RFID conveyor belt scenario as typical example for a logistic
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application. Complementary to the classification mechanism, we present an approach to mitigate

the problem of missing tags by means of cooperative RFID readpoints. For this purpose, we em-

ploy a generalized Binomial model to consider the correlation between individual readpoints. The

concept of cooperative readpoints is investigated by meansof a comprehensive dataset stemming

from a logistic application.

4.1 Feature Attributes

On the protocol level, the communication between reader andtag basically consists of a reader

request and the tag response which, in the simplest case, contains the tag identifier and some

protocol overhead. On the signal level, RFID readers measure the power and phase angle of the

received tag response and provide this information to higher level software layers running on a

host PC. A tag read event can therefore be characterized by a vector

e = [t, ID, r, ϕ, i] (4.1)

comprising a timestampt, the tag identifier ID, the RSSIr, the phase angleϕ, and the logical

indexi of the antenna by which the inventory was performed. The antenna index is interesting for

readers that have a number of antenna ports which are used in atime multiplexing scheme. If a tag

remains within the interrogation zone of a reader, there will be a series of consecutive read events

since the reader periodically inventories the present tag population. Besides the quantities stated

in Equ. (4.1), the total number of read events (also referredto as read redundancy or read count)

per unit time is an intuitive characteristic that describeshow good a particular tag is identified. In

this context, theread rate

ν =
# Read events
# Tags·∆t

(4.2)

describes the total number of read events per tag and unit time. The termread rate is subject

to conflicting definitions in the literature. Whereas some authors use it to describe the detection

probability of an RFID reader or readpoint, we use this term to describe the number of read events

per unit time. The basic idea behind many filtering approaches [30, 90, 132] is that tags located in

the desired interrogation zone will be continuously identified and therefore provide a high number

of read events per unit time, i.e., a higher read rate. The problem is, however, that the number of

read events depends heavily on the total number of tags in theinterrogation zone. This results from

the anti-collision scheme used for the media access control. We demonstrate this dependency in

an experiment where an increasing number of stationary tagsis placed in the interrogation zone of

an RFID reader such that each tag is inventoried periodically. The experiment is repeatedN = 5
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Figure 4.1: Read rate for a varying number of tags in the interrogation zone. The number of inven-
tories per tag and unit time decreases with the overall number of present tags due to the
sequential anti-collision scheme.

times for a duration ofT = 10 s allowing us to augment the best estimates with their respective

standard deviations. As shown in Figure 4.1, the read rate for the specific reader in the experiment

drops down to 25% of its maximum value already for as little as20 tags in the interrogation zone

– a number that is easily reached in practical applications.

Returning back to the actual low level features, the timestamp t of a tag read event is the most

basic and intuitive quantity. Depending on the system architecture and implementation, there

are several possible ways how the timestamp can be generated. Some RFID readers utilize their

real-time clock (RTC) for setting the timestamp, which means that the accuracy is limited by the

particular reader hardware. Another possibility is that the timestamp is generated on the host PC

as soon as the tag read event is processed. In this case, the limiting factor in terms of accuracy is

the non-deterministic behavior of the operating system rather than the reader RTC. In any case,

the timestamp will be subjected to a jitter and drift over time. However, these uncertainties are

usually in a negligible range and are thus not further investigated.

The next feature described in Equ. (4.1) is the received signal strengthr, which is measured by

the RFID reader for every inventory round. The signal strength is proportional to the power of the

backscattered tag response given by

r ∝ Pr = PtG
2
t (PL)2σ (4.3)

as described by Nikitin and Rao [153]. In Equ. (4.3),Pt denotes the transmitted power,Gt is
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the gain of the reader antenna, PL is the path loss of the UHF channel andσ describes the tag

radar cross section. The path loss can be computed by generalizing the free-space loss model to

consider multipath propagation [152]. Hence,

PL =

(

λ

4πd

)2
∣

∣

∣

∣

∣

1 +
N
∑

n=1

Γn
d

dn
e−k(dn−d)

∣

∣

∣

∣

∣

2

(4.4)

whered is the distance between antenna and tag for the line-of-sight (LOS) path,Γn is the re-

flection coefficient of thenth reflecting path with distancedn, k describes the wavenumber and

N is the total number of multipath components. Equ. (4.3) is only a conceptual solution since

the number of multipath components depends highly on the geometry and the surroundings and

is thus unknown a priori. At the receiver front end of an RFID reader, the backscattered signal

is demodulated which results in a complex valued baseband signal. This signal is characterized

by an in-phase (I) and quadrature phase (Q) component, from which the RSSI can be derived in

terms of

r =
I2 +Q2

Z0
, (4.5)

whereZ0 is the input impedance [150]. Towards the host PC, the RSSI isusually reported in

units of dBm, typically with a resolution of±1 dBm. Besides the quantization effect, the RSSI is

subject to different sources of noise, mainly caused by the multipath-channel characteristics and

different object properties.

The phase angle

ϕ = −2kd (4.6)

of the tag response depends linearly on the traveled distance d and the wavenumberk. At the

receiver, the phase angle can also be derived from theI andQ components of the demodulated

baseband signal using

ϕ = arctan

(

Q

I

)

. (4.7)

Similar to the RSSI, the phase angle is perturbed by environment dependent noise. The RSSI and

phase response of a tag moving through the interrogation zone of a reader with constant velocity

and a stationary tag are shown in Figure 4.2. Both responses are characterized by a considerable

amount of noise and the lack of a uniform sampling with respect to time.

Regardless of the inherent noise, the low level features show a characteristic behavior that can be

considered in terms of a model. The approach followed by localization systems is to determine

the location, velocity and/or moving direction of RFID tagged objects. From a theoretical point

of view the RSSI and the phase angle provide the possibility to perform direction sensing and
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Figure 4.2: Characteristic RSSI and phase responses for a stationary and a moving tag. Both signal
features are perturbed by noise due to the environmental propagation conditions, the
presence of other RFID tags and different object properties.

ranging in absence of multipath propagation and noise. Regarding the RSSI, the relationship

between traveled distance and reflected power could be used directly to determine the distance

between reader and tag. Similarly, the relationship between phase angle and distance in Equ.

(4.6) allows for a range estimation. If the frequencyf of the carrier signal is varied, the distance

between reader and tag can be estimated using

d = − c

4π

∆ϕ

∆f
, (4.8)

wherec denotes the speed of light. However, the UHF channel is characterized by severe multi-

path propagation, which prohibits the use of this straight forward approach and makes localization

and ranging a still desired feature for RFID systems. The phase response additionally provides

the possibility to estimate the radial velocity of a tag whenoperating at a fixed frequencyf using

vr = − c

4πf

∆ϕ

∆t
. (4.9)

This mechanism is widely used to measure the speed of moving objects by means of RF waves,

which seems especially appealing for RFID systems. In most practical scenarios, tags are moved

through the interrogation zone of a readpoint. In contrast the majority of false positive read events

stems from stationary tags in the near vicinity. Therefore,the tag velocity is a key criterion to

identify false positives. The velocity estimates over time(vr > 0 for tags approaching the

antenna,vr < 0 for tags moving away from the antenna) for a moving and a stationary tag are
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Figure 4.3: Velocity for a moving and a stationary tag. In contrast to thetheoretical considerations,
the velocity of the stationary tag shows considerable fluctuations and several zero cross-
ings.

shown in Figure 4.3. The velocity response for the stationary tag exhibits random fluctuations and

several zero crossings due to the noisy phase signal, makingit difficult to identify that the tag is

actually stationary.

The impact of the multipath propagation and the resulting noise in the phase response can be

demonstrated in a simple experiment. The setup comprises anRFID reader, a setS1 of 765 mov-

ing and a setS2 of 5 stationary tags. The tags inS1 are placed in 51 cardboard boxes and moved

through the readpoint interrogation zone with a constant velocity vr = 0.6m
s . The stationary tags

are placed in the interrogation zone such that they are continuously visible to the reader. For

every cardboard box, the individual tag responses are recorded, yielding a total of 765 responses

for moving, and 255 responses for stationary tags. The recorded phase responses are resampled

and smoothed to estimate the radial velocity according to Equ. (4.9). Given a phase response

consisting ofN read events, we can estimate the variance of the tag velocityaccording to

var{vr} =
1

N

N
∑

n=0

(vr[n]− v̄r)
2 . (4.10)

An intuitive approach for a classification scheme based on this metric is that the absolute mag-

nitude and the variance should be significantly smaller for stationary tags. By estimating the

velocity variance from the individual phase responses and counting the number of occurrences,

we can build an empirical histogram as shown in Figure 4.4(a). Due to the fact that the empirical

histograms overlap, the classification performance suffers from Type I and Type II errors. In other
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Figure 4.4: Classification based on the radial tag velocity: (a) shows anempirical histogram of the
velocity variance for moving (blue) vs. stationary (red) tags. Since the two histograms
overlap, there is no cutoff point for an error free classification. (b) shows the ROC
curve for the classification with the variance as threshold parameter. The optimal clas-
sification yields a detection ratePD = 0.9306 and a false positive ratePFA = 0.0431.

words, there is a certain percentage of false negative and false positive classification results. The

Receiver Operating Characteristic (ROC) curve in Figure 4.4(b) shows the classification results

when the thresholdvT is varied in the interval[0, var{vr}max]. The optimal classification yields

a detection ratePD = 0.9306 and a false positive ratePFA = 0.0431 at a threshold value of

vT = 0.0064. The resulting error rate with this simple approach is far too high for the require-

ments for practical RFID systems. Taking into account that the considered experimental setup is

well defined in terms of movement velocity, it is to expect that the performance will be even lower

in scenarios with less stringent boundary conditions. Furthermore, the described setup is a typical

near-field application and thus does not show excessive multipath characteristics. For this reason,

we can conclude that the observation noise on feature level prohibits the use of straight-forward

classification mechanisms based on the discussed low-levelfeatures. This motivates and justifies

the use of more advanced and abstract modeling concepts which are capable of dealing with the

noisy environment.

4.1.1 Signal model

The key to a reliable classification is an appropriate signalmodel with a sufficient robustness

to the noisy low-level features. The RSSI and phase responses in Figure 4.2 suggest that both

moving and stationary tags show a characteristic behavior which differs mainly in the variation

51



Chapter 4. RFID Readpoint Modeling

of the corresponding signals in time and amplitude. In particular, the response of a moving tag

exhibits a characteristic peak that indicates when the tag was closest to the reader antenna. The

idea behind the signal model and subsequent classification approaches is therefore to use a fitting

function which allows us to describe and assess these characteristics. For the RSSI in free space,

theory suggests that a polynomial of orderN = 4 best describes the RSSI response. However,

polynomial coefficients do not allow for a convenient assessment of the temporal location and

extend of a signal. In contrast, a Gauss Kernel

g(t) =
1

σt
√
2π

· e
−(t−µt)

2

2σ2
t (4.11)

enables us to describe the center of gravity and the temporalextend by means of two scalar values,

µt andσt. Figure 4.5 shows the RSSI and phase responses for a stationary and a moving tag with

robustly fitted Gauss Kernels. As constraint for the fitting algorithm, the parameterµt is chosen

such that it lies within the temporal limits of the observation frame. The temporal centerµt allows
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Figure 4.5: Characteristic RSSI and phase responses with a corresponding Gauss Kernel fit. The
kernel describes the center of gravity and temporal extend by means of two scalar quan-
tities,µt andσt.

us to efficiently determine when an RFID tag was closest to thereader antenna, i.e., actually

present in the interrogation zone. This information is in particular useful when the requirement

for the RFID system is to identify the content of individual,closely spaced packaging units. The

temporal extendσt is inverse proportional to the movement velocityvr and therefore is the key

metric to distinguish between moving and stationary tags.

The signal model can be easily generalized to scenarios withmore than one reader antenna. If a
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readpoint featuresm antennas having a common interrogation zone, the estimatesfor µt andσt
can be obtained by averaging over the individual estimates

µ̄t =
1

m

m
∑

i=0

µ
(i)
t σ̄t =

1

m

m
∑

i=0

σ
(i)
t . (4.12)

The model described in Equ. (4.11) forms the basis for an abstract classification approach. The

key requirement for the classification is a certain flexibility in terms of readpoint configuration,

i.e., number and placement of antennas as well as the corresponding antenna radiation pattern.

To provide this flexibility, the low-level features are considered in a state-space representation,

similar to our RFID system model discussed in Chapter 3. The transformation from the signal

domain to the state-space representation involves severalsteps. First, the fitted Gauss Kernels are

abstracted by means of anormalized state assignment function

G(ti) =
1

σt
√
2π

ti
∫

−∞

e
−(t−µt)

2

2σ2
t dt. (4.13)

This function represents the value of the normal cumulativedistribution function (CDF) of the

estimated Gauss Kernel at sampling timeti. Consequently, for each sampling time instant, we

obtain a vector

f(ti) = [GR(ti), Gϕ(ti)]
T (4.14)

in the feature space spanned by the RSSI and phase response. Periodic sampling of the feature

space trajectory gives rise to a sequencef1...fK , whereK is the total number of samples in the

observation window. The state assignment functions for a set of 15 moving and 5 stationary tags

with K = 5 samples are shown in Figure 4.6 for two different configurations: Whereas Fig-

ure 4.6(a) shows the trajectories in the RSSI-phase (GR, Gϕ) plane, 4.6(b) shows the trajectories

over time when only the RSSI information is considered.

The next step is to translate the sampled features into a discrete set of observation symbols. This is

achieved by means of a quantization step. For this purpose, avector quantizer maps each sample

to a discrete observation symbol, resulting in a sequenceO = O1 ... OK . Returning back to the

initial idea, the distinction between moving and stationary tags can now be formulated as a tra-

jectory classification problem in the discrete state-spacewhich can efficiently be performed using

HMMs. HMMs provide a powerful and flexible framework to evaluate a set of given trajectories

and can also be used as a generative data model [163]. Similarto the state-space model discussed

in Chapter 3, HMMs comprise a motion model described by a transition matrixA, an observation

matrixO and a vectorπ describing the prior state probability distribution. The classification of
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Figure 4.6: Sampled feature space trajectories for 15 moving and 5 stationary tags withK = 5
samples. (a) shows the trajectories in the RSSI-phase (GR, Gϕ) plane, whereas (b)
depicts the trajectories over time when only the RSSI is usedas feature attribute.

observation sequences involves two appropriately trainedHMMs, λ1 andλ2 representing moving

and stationary tags. The HMMs are used to compute the likelihood of an observation sequence

and to assign a particular tag to the most likely class. This can be achieved by means of the

likelihood ratio

Λ =
P (O |λ1)

P (O |λ2)
≶ γ, (4.15)

that is compared to a threshold valueγ. Depending on which HMM is more likely to represent

the observed sequence, the considered tag is assigned to thecorresponding class.

The classification scheme described above requires a training phase to initialize the vector quan-

tization and to estimate the parameters of the HMMsλ1 and λ2. Consequently, the training

involves two steps: First, the vector quantizer is initialized based on the normalized state assign-

ment functions, i.e., the sampled feature space trajectories. This can be done using unsupervised

learning algorithms, such as the standard K-Means algorithm. From the sampled feature space

trajectories, K-Means identifies cluster regions and allows for the estimation of the corresponding

centroidsµi and covariance matricesΣi. The results of applying the K-Means algorithm to an

exemplary dataset consisting of 135 tags is shown in Figure 4.7, where the feature space is divided

into K = 5 clusters in accordance with the number of samples in the observation window. The

vector quantization assigns the sampled low-level features to one of five distinct observation sym-

bols. The second training step is required to determine the parameters of the HMMs for moving

and stationary tags. The HMM parametersλi = (Ai,Bi,πi) can be estimated by applying the

Forward-Backward algorithm to a set of labeled training sequences [163].
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Figure 4.7: Feature space comprising RSSI and phase information for a training set of 135 tags.
The feature space is clustered intoK = 5 clusters in accordance with the number of
samples in the observation window. The clusters are required to assign each low-level
feature sample to a distinct observation symbol.

The number of possible and meaningful observation symbols (which defines the resolution of the

vector quantizer) is strongly connected to the sampling frequency and the overall length of the

observation window. An increased sampling frequency requires a higher resolution, resulting in a

higher model complexity and the potential danger of over-fitting to the training samples. In con-

trast, a lower sampling frequency leads to a reduced number of distinct observation symbols which

limits the discriminative power of the state-space model. For this reason, a compromise between

model complexity respectively over-fitting and discriminative capability needs to be found for a

given scenario. Considering the shape of the Gauss Kernel fits, the absolute minimum number of

observation symbols isK = 3 to describe the signal characteristics.

The classification scheme developed in this chapter is flexible in terms of readpoint configuration

and can therefore be employed in a variety of different scenarios. The necessary training phase

is well suited to be integrated in the deployment of an RFID readpoint. The HMM classification

framework provides an efficient way to evaluate individual tag responses. Besides the filtering

of read events at the supply chain level, this forms the second important cornerstone to provide

reliable RFID data for the backend system.
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4.1.2 Case Study: Conveyor Belt Application

In logistic applications, a core functionality of RFID systems is to identify the content of pack-

aging units after manual commissioning. Based on specific order information provided by an

Enterprise-Resource-Planning (ERP) system, articles aremanually aggregated in packaging units

in a process referred to aspicking. The task of the RFID system is then to verify the content of

the packaging unit by identifying every contained item. Depending on the scan result, the pack-

ERP-System

Manual

Correction

Commissioning

("Picking")

RFID

Verification
Content

ok?
Delivery

Order

yes

no

Order
Notification

manual

automated

Figure 4.8: Commissioning and verification with RFID in a typical logistic application: Based on
an order provided by the ERP-system, articles are commissioned (picked) in a packag-
ing unit. The content of the packaging unit is then verified bymeans of an RFID scan
and manually corrected if necessary.

aging unit is further processed for delivery or manually corrected, as shown in Figure 4.8. The

manual correction step is a time consuming and work intensive process. Considering the fact

that missing a single tag triggers the manual correction of the entire packaging unit emphasizes

the high requirements for an RFID system in order to allow foran efficient operation. A simple

calculation example demonstrates that even small error rates cause a considerable work-load for

manual correction. Consider an RFID system with a detectionprobability ofPD = 0.995 and

an ideal suppression of false positives. Assume that packaging units containM = 20 items on

average and that missed tags are distributed uniformly overall packaging units. The error rate on

packaging unit level for this system ispE = (1 − PD) · M = 0.1, which means that 10% of all

packaging units require manual correction due to errors introduced by the RFID system.

A common approach to verify the content of individual packaging units for flat packed goods is to

deploy RFID reader antennas along a conveyor belt. By means of that, the content of individual
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packaging units can be identified during transportation. This has two main advantages: First, the

identification usually does not require any additional timeor manual interaction. Second, RFID

readpoints benefit from fixed boundary conditions such as a constant movement velocity and a

fixed box-to-box distance. This makes the identification more robust in comparison to processes

that are characterized by manual handling.

The described use case is difficult to support with high-level modeling approaches due to the lack

of prior information. Since the content of a packaging unit solely depends on the specific customer

order, it is difficult to integrate prior process information as a countermeasure to the noisy RFID

observations. In particular, the spatio-temporal relationship among items described in Chapter 3

cannot be utilized, since the commissioning process can be viewed as the initialization step for

the co-occurrence model. For this reason, the classification of low-level read events is mandatory

to provide accurate scan results. The readpoint objectivesfor the verification can be formulated

as follows:

• Objective 1:Identify the content of a particular packaging unit: This requires the readpoint

to perform an assignment of read events to the boxes as they move through the interrogation

zone. For this purpose, the individual boxes need to be identified by means of a dedicated

RFID tag or a barcode label.

• Objective 2: Filtering of false positive tags: Tags that do not belong to the considered

packaging unit should be identified and suppressed. This includes stationary tags in the

vicinity of the readpoint as well as tags from previous or subsequent packaging units on the

conveyor.

The first objective, which we refer to astag-to-box assignmentis elegantly covered by the pre-

sented signal model since it allows us to determine the temporal signal center for every tag. As-

suming a constant conveyor velocityv, we can investigate on the relation between the RSSI /

phase responses and the time instants when boxes are presentin the interrogation zone. For the

experimental evaluation in this case study, we define two scenarios: The first scenario assumes

that a proximity sensor (light barrier) in combination witha barcode reader is available. In this

case, the center timestampstPi
of individual packaging units can be computed from the rising and

falling edge of the proximity sensor signal

tPi
=

ti,1 + ti,2
2

, (4.16)

whereti,1, ti,2 denote the time instants of the rising and falling edge respectively. The second

scenario covers the case when no proximity sensor is available. Hence, the packaging unit center
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timestamps are obtained from the center timestamps of the dedicated box identifier tags

tPi
= µi. (4.17)

With the center timestamps forN consecutive boxes, the most likely box for tagTj can be deter-

mined by finding the minimum temporal distance between the tag center timestampµj and theN

packaging unit center timestamps using

i = argmin
i

(|µt − tPi
|) . (4.18)

The readpoint setup for this use case, consisting of an RFID reader with a single antenna, a

light barrier sensor and barcode scanner to identify the individual packaging units is shown in

Figure 4.9. The experiment is designed to demonstrate the capabilities of the presented approach

v

Light barrier

Antenna

Ground floor

Barcode scanner

Figure 4.9: Readpoint setup comprising a conveyor belt and an RFID reader antenna mounted be-
low the conveyor belt facing upwards. The presence of packaging units can be detected
by means of a proximity sensor and a barcode scanner is used toidentify the individual
packaging units.

and to evaluate the individual signal features in terms of classification performance. For this

purpose, a set of six feature attributesF1 ...F6 is defined, representing all possible combinations

of the individual low-level features. Prior to the evaluation, the classifier is trained by means of

a labeled data set. The evaluation is carried out by means of tagged items in a total of 51 boxes

that are transported on a conveyor belt with a constant velocity v. Each box contains 15 items,

including a dedicated box identifier tag. At the same time, five stationary tags are placed near

the reader antenna such that they are continuously visible to the reader. Details about the RFID

readpoint setup and reader configuration are summarized in Table 4.1.
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Component / Parameter Name / Value
Reader Impinj Speedway Revolution R420
Antenna Kathrein Widerange70◦/30◦

Transmit PowerPTX 0.3W
Conveyor velocityv 0.5 m

s
Box-to-box distanced 0.5m

Table 4.1: Experimental conveyor belt setup: Summary of parameters and readpoint configuration

Feature attributes w/o. box w. box
P̂D P̂FA P̂D P̂FA

F1: RSSI / LB 0.9961 0.0 0.9948 0.0
F2: RSSI 0.9987 0.0 0.9582 0.0
F3: RSSI / phase / LB 0.9961 0.0 0.983 0.0
F4: RSSI / phase 0.9922 0.0 0.9503 0.0
F5: phase / LB 0.5124 0.1294 0.4392 0.1294
F6: phase 0.3516 0.1294 0.2810 0.1294

Table 4.2: Performance characteristics of the classification approach using different feature at-
tributesF , consisting of RSSI, phase, and light barrier (LB).

The evaluation metrics for the conducted experiments are the overall detection probabilityPD

and the false positive probabilityPFA. The detection probability considers the reader detection

probability (i.e., the probability of physically detecting a tag) and the classification performance

in terms of a correct tag-to-box assignment. The false positive probability accounts for stationary

tags that are erroneously assigned to a packaging unit. The experiment is repeated several times

to obtain a comprehensive data set. For each of the feature attributes, the classification perfor-

mance is evaluated with and without the tag-to-box assignment. The results of the evaluation are

summarized in Table 4.2 and visualized in Figure 4.10.

The evaluation provides two main insights. First, the proposed signal model integrated in the

abstract classification scheme provides a reliable suppression of false positives and an accurate

tag-to-box assignment with appropriate low-level features. The perfect suppression of false pos-

itives together with a detection probability of̂PD = 0.9987 for feature attributesF2, consisting

solely of the RSSI information demonstrate the effectiveness of this approach. The gap to a per-

fect detection probability stems from the fact that a singletag could not be physically identified

and can therefore not be attributed to the classification scheme. However, the classification per-

formance depends strongly on the quality of the feature attributes and drops considerably when

only the phase signal is used. Figure 4.6 illustrates the reason for this result: The phase angle

of the tag response is too noisy to provide meaningful information that could be exploited by the
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classification algorithm. If, however, the RSSI is added to the feature attributes, the performance

increases and stationary tags can be filtered out reliably asindicated byP̂FA = 0 for all four test

runs. The second aspect is concerned with the reliability ofthe tag-to-box assignment. Whereas

the suppression of false positives does not benefit from the light-barrier information, the tag-to-

box assignment is more accurate when taking the light-barrier signal into consideration. This

can be explained by the fact that the light-barrier providesan accurate estimate of the box center

timestamps.
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Figure 4.10: Resulting detection and false positive rate for different feature attributesFi, with and
without tag-to-box assignment. In particular, the featureattributes areF1 (RSSI /
LB), F2 (RSSI),F3 (RSSI / phase / LB),F4 (RSSI / phase),F5 (phase / LB), andF6

(phase). The combination of RSSI and light-barrier signal (F1) provides a perfect tag-
to-box assignment and a robust suppression of false positives. In contrast, the phase
signal is too noisy to provide a reliable classification in this scenario.

The issue of missing observations is a widely discussed problem for RFID systems and is still a

limiting factor for the mass deployment in several applications. For this reason, there are several

approaches to mitigate this problem, from an increased inventory duration to the use of multiple

tags for every item. Another intuitive approach is the concept of cooperative readpoints, which

will be discussed in the next section. This concept is an ideal addition to the low-level classifica-

tion approach discussed above to provide a reliable detection of RFID tags together with a robust

suppression of false positives.

4.2 Cooperative RFID Readpoints

Commonly, RFID systems rely on the principle of periodic inventories by making use of consec-

utive reader-sessions. The idea behind this approach is to increase the overall scan duration such
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that all tags in the interrogation zone reply to the reader request with a sufficient probability. The

need for a periodic inventory mainly stems from the necessary anti-collision scheme. Depending

on the overall number of tags in the interrogation zone and the protocol parameters, a certain

number of tag replies result in a collision on the air interface. In order to fully identify a given tag

population, the reader hence needs to repeat the request to provide an additional slot for individual

tags to reply.

Within the operation limits of the EPCglobal standard in terms of item-throughput, the main

cause of the missing tag problem, however, is not associatedwith the temporal behavior of the

anti-collision scheme. Instead, the detection probability is usually limited by theforward link

from reader to tag, i.e., tags do not receive sufficient powerto reply to a reader request [116]. The

temporal diversity introduced by periodic inventory sessions can only compensate for the missing

tag problem to a certain extend. Especially for stationary readpoints, the geometric constraints

do not change significantly between two inventory sessions which means that additional reader

requests do not necessarily improve the detection probability. For this reason, a vital step during

the conception of an RFID system is a careful placement of RFID reader antennas, combined with

an optimization of the parameter-setup to compensate for varying tag orientation, item throughput

and item variability.

The concept of antenna diversity with respect to an RFID readpoint can be further extended to

include several, cooperative readpoints. Following the definition by Fyhnet al. [57], coopera-

tive means that the individual readpoints exchange information about identified tags. The overall

system performance benefits from the use of additional readpoints in two ways: First, every read-

point introduces additional reader sessions, thereby increasing the overall inventory time. This

decreases the probability of persistent collisions by adding additional inventory slots. Second,

additional readpoints give rise to a spatial diversity which decreases the effect of dead zones and

hence increases the overall detection probability. The concept of spatial diversity is widely devel-

oped in wireless communications but requires special attention in the context of RFID systems.

The often tightly constrained readpoint setup in automatedenvironments gives rise to a significant

correlation between individual readpoints, even if the reader antennas are sufficiently spaced.

Taking the correlation between individual readpoints intoaccount, this section presents a corre-

lated Binomial model to describe the tag detection process for cooperative readpoints. The model

provides an intuitive way to quantify the correlation between individual antennas or readpoints

and can therefore be used to estimate the number of necessarysystem components for a given

performance requirement. This reduces the trial-and-error characteristic often found in current

conception processes and forms the basis for a more systematic approach.
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4.2.1 System model

The detection performance of an isolated readpointRi can be described by means of the detection

probabilityP (i)
D , which quantifies the percentage of tags in the interrogation zone that are success-

fully identified. In the idealized case of an RFID system consisting ofN uncorrelated, cooperative

readpointsR1, ...RN with equal detection probabilitiesP (1)
D = P

(2)
D = ... = P

(N)
D = PD, the

combined detection probabilitȳPD follows a Binomial distribution. In order to account for the

inherent correlation between readpoints, we need to extendthe standard Binomial model to con-

sider the conditional probability for a detectionzi at readpointRi given previous read eventszi−j

P
(i)
hh = P (zi = 1 | zi−1 = 1, zi−2 = 1, ..., z1 = 1) (4.19)

and

P
(i)
hm = P (zi = 1 | zi−1 = 0, zi−2 = 0, ..., z1 = 0). (4.20)

In this context, the subscripth represents a successful detection (‘hit’), whereas a subscripted

m refers to a ‘miss’. Consequently,P (i)
hh denotes the probability of subsequent detections (hits),

for example when readpointsR1 andR2 both have successfully identified a tag. In contrast,

P
(i)
hm denotes the conditional probability of a detection following a miss. To keep the computation

tractable, we employ the first order Markov assumption, which means that a detection by readpoint

Ri depends only on the detection by readpointRi−1, yielding

P
(i)
hh = P (zi = 1 | zi−1 = 1) (4.21)

and

P
(i)
hm = P (zi = 1 | zi−1 = 0), (4.22)

respectively. Similarly, the conditional probabilities for a missed tag are defined as

P
(i)
mh = P (zi = 0 | zi−1 = 1) = 1− P

(i)
hh (4.23)

and

P (i)
mm = P (zi = 0 | zi−1 = 0) = 1− P

(i)
hm. (4.24)

A sequence of read events represented by the indicator variable Z = [z1, z2, ..., zN ] for a par-

ticular tag can be interpreted as a Markov chain described bythe conditional probabilities in

Equ. (4.21) – (4.24). Using this set of conditional probabilities, we can construct the combined

detection probabilityP̄D = P (k,N) in an iterative manner [114] as visualized in Figure 4.11,

where each nodePkN = P (k,N) represents the probability ofk successful detections byN
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readpoints. A vertexmkN represents the probability ofk detections byN readpoints with a miss

P33

m23h33 P22

P23

m12h22 P11

m13h23 P12

P13

m01h11 P00

m02h12 P01

m03h13 P02

P03

Figure 4.11: Graphical representation of the probabilistic tag detection model to compute the com-
bined detection probability. Each vertex represents a conditional probability, whereas
a nodePkN = P (k,N) is the probability ofk detections by a given number of read-
pointsN . The notation is adopted from Ladd [114].

on theN -th readpoint. Depending on whether the previous node was reached through a hit or a

miss, this yields

mkN =







P
(N)
mm if zN−1 = 0

P
(N)
mh if zN−1 = 1.

(4.25)

Similarly, vertexhkN is the probability ofk detections byN readpoints with successful detection

on theN -th readpoint, yielding

hkN =







P
(N)
hm if zN−1 = 0

P
(N)
hh if zN−1 = 1.

(4.26)

The combined detection probabilityP (k,N) can be computed as the sum over all possible paths

through the tree in Figure 4.11, where the first nodeP (1, 1) = h11 = P
(1)
D is the unconditional

detection probability of the first readpoint.
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From the general model, we can derive the special case for thedetection by at least one readpoint

P (k ≥ 1, N) = 1− P (0, N) = 1− (1− P
(1)
D )

N
∏

i=2

P (i)
mm, (4.27)

which is the desired combined detection probabilityP̄D. In this context,P (0, N) denotes the

probability that a tag is missed by allN readpoints. If we assume that the conditional probabilities

P
(1)
mm = P

(2)
mm = ... = P

(N)
mm = Pmm are equal among all readpoints, Equ. (4.27) becomes

P (k ≥ 1, N) = 1− (1− P
(1)
D )PN−1

mm . (4.28)

The combined detection probability for this simplified caseis shown in Figure 4.12 for differ-

ent levels of correlation, expressed in terms ofPmm and an unconditional detection probability

P
(1)
D = 0.8. In addition, the uncorrelated case covered by the standardBinomial distribution

is shown for comparison. Although the simplifying assumption of equal conditional probabili-
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Figure 4.12: Simulated detection probability for a given number of readpoints with different de-
grees of correlation. The correlation is expressed in termsof Pmm, the conditional
probability that two subsequent readpoints fail to detect aparticular tag.

ties will not hold in practice, this example highlights two important aspects. First, the standard

Binomial distribution readpoints forms the upper bound forthe combined detection probability.

For practical scenarios, this yields overly optimistic results due to the idealized assumptions.

Second, the higher the correlation, the more readpoints arerequired to achieve a specific target

performance which means that an increasing correlation limits the gain in detection performance

introduced by additional readpoints. Therefore, it is important to consider measures to reduce
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4.2. Cooperative RFID Readpoints

the correlation before performing an additional RFID scan.Such measures include an alternative

orientation between reader antenna and tag, but more importantly a rearrangement of tags inside

their enclosing packaging units to reduce the impact of mutual coupling and detuning.

The presented model provides a concise way to describe the correlation among individual read-

points and to quantify the combined detection probability.The model parameters can be estimated

in a straight forward manner from a set of read events and can then be used to extrapolate the re-

sults in order to assess if an additional readpoint yields the desired performance improvement. To

further study the effect of readpoint correlation, we use the discussed model to analyze a large

scale dataset from a real-world RFID deployment.

4.2.2 Experimental Evaluation

The experimental evaluation presented in this section is part of a larger study with the goal to

identify and quantify the different error sources in a practical RFID deployment. In parallel, we

use the dataset to verify the assumptions of the generalizedBinomial model. The data for the

evaluation stems from a two month period of an active RFID deployment in a fashion distribution

center. In this application, the task of the RFID system is toverify the content of individual pack-

aging units (containing flat packed garments) after commissioning. The deployed RFID system

consists of a total ofN = 4 readpoints as shown in Figure 4.13. The individual readpoints are in-

RFID Server

Readpoint 1 Readpoint 2 Readpoint 3 Readpoint 4

RFID

Reader 1

RFID

Reader 2

Figure 4.13: RFID system architecture: The RFID system comprises two RFID readers and
N = 4 readpoints, each consisting of two antennas. The read events are processed
on a centralized RFID server.

stalled along an automated conveyor belt and consist of two directional RFID antennas which are

placed directly above and below the conveyor belt. This placement is a logical consequence of the

tag dipole radiation pattern to maximize the energy transfer between reader antenna and tag. The
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Chapter 4. RFID Readpoint Modeling

first two readpoints,R1 andR2, are shown in Figure 4.14 together with several cardboard boxes

transported on the motorized conveyor belt. Due to the similar orientation and close spacing, the

readpoints show a considerable correlation with respect tothe detected RFID tags.

Figure 4.14: RFID readpoints installed on a motorized conveyor belt. Thetwo antennas mounted
above the conveyor belt are aligned such that the energy transfer to the tag is max-
imized. Due to the similar orientation and close spacing, both readpoints show a
considerable correlation with respect to the detected RFIDtags. Image courtesy of
Enso Detego GmbH, 2013.

The raw datasetD1 features read events from over 500.000 tags in 23.365 packaging units during

a two month period. In order to allow for an in-depth analysis, a ground-truth has been established

by manually scanning the individual packaging units.

The main error source is identified in a certain percentage ofdefective tags, i.e., tags that do

not respond to a reader query in the far field due to a hardware failure. In order not to bias the

analysis, we establish a corrected datasetD2 by removing all defective tags from the ground-

truth. The evaluation includes the following aspects: First we analyze the correlation between

individual readpoints on feature level by investigating onthe read redundancy (number of read

events) for the individual tags. Second, we fit the correlated Binomial distribution to the raw

and corrected dataset to derive the conditional probabilities and to assess the gain in detection

probability introduced by additional readpoints. Finally, we carry out a temporal analysis of

the readpoint detection performance to demonstrate that the spatial diversity concept provides a

significant performance enhancement in terms of the missingtag problem.

For the analysis on the feature level we consider the total number of successful inventoriesn(j)
i

for tagTi on readpointRj . Provided a constant conveyor velocity, the read redundancy can be

interpreted as a quality indicator that describes how reliable a tag is identified. Contour plots of

the joint empirical distributions for readpoint pairs(R1,R2), (R1,R3) and(R3,R4) are shown

in Figure 4.15. From the dataset, we can compute the linear correlation coefficientsρi,j for

all readpoint pairs, as summarized in Table 4.3. The empirical distributions and the correlation
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Figure 4.15: Contour plots of the joint empirical read count distributions on the individual read-
points. With constant movement velocity, the read count canbe interpreted as a mea-
sure of how reliable a tag is identified. Due to the similar readpoint setup, the read
count exhibits a considerable correlation.

ρ n(1) n(2) n(3) n(4)

n(1) 1.00 0.58 0.35 0.35

n(2) 0.58 1.00 0.34 0.34

n(3) 0.35 0.34 1.00 0.98

n(4) 0.35 0.34 0.98 1.00

Table 4.3: Read count correlation coefficients between the individualreadpoints. Readpoints
(R3,R4) are highly correlated on feature level due to the almost identical setup.

coefficients highlight the significant correlation betweenthe individual readpoints. This implies

that tags which are often read by a given readpoint have a highprobability of being detected

by subsequent readpoints in a similar fashion. In particular, readpoint pair(R3,R4) shows an

extraordinary correlation withρ3,4 = 0.98. This can be explained by the similarity of the physical

setup and the small spacing between the readpoints.

From the read count, we can derive the binary indicator variable

z
(j)
i =







1 if n(j)
i > 0

0 if n(j)
i = 0

(4.29)

which can be used to analyze the correlation on detection level. In particular, the detection prob-

abilities of the individual readpoints are shown in Table 4.4, whereas the conditional probabilities

are shown in Table 4.5. In accordance to the analysis on feature level, the conditional proba-

bilities in Table 4.5 reflect the significant correlation among the individual readpoints. Based on
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R1 R2 R3 R4

P̂D 0.9959 0.9953 0.9900 0.9885

Table 4.4: Detection probabilities for the corrected datasetD2. For example, readpointR1 exhibits
a detection performance of̂P (1)

D = 0.9959.

R1 R2 R3 R4

P̂hh 0.9959 0.9982 0.9905 0.9985

P̂hm 0.0041 0.0018 0.0095 0.0015

P̂mh 0.9959 0.3013 0.8746 0.0

P̂mm 0.0041 0.6987 0.1254 1.0

Table 4.5: Conditional probabilities of detecting and missing a tag onsubsequent readpoints. The
consistently high values for̂Phh emphasize the correlation between the individual read-
points. For example, the probability of two successful detections onR3 andR4 is
P̂hh = 0.9985.

the estimated values, we can fit the correlated Binomial to the empirical data and construct the

combined detection probabilitŷPD = P (k ≥ 1, N). The resulting detection probability over the

number of readpoints is visualized in Figure 4.16. Startingfrom the unconditional detection prob-

ability of the first readpoint, the additional readpoints increase the combined detection probability

for the raw datasetD1 and the corrected datasetD2. Although the individual detection proba-

bilities are close to or above 99%, the performance of the isolated readpoints is not sufficient to

meet the requirements in practical scenarios. In contrast,the fusion of read events provides an im-

provement in terms of the combined detection probability. For the corrected datasetD2, a perfect

detection can be achieved withN = 3 readpoints. Since readpointsR2 andR3 show the least

degree of correlation,R3 provides the largest gain in terms of detection performance, whereas

readpointR4 is redundant in this scenario. Furthermore, Figure 4.16 highlights that the standard

Binomial distribution provides overly optimistic estimates, since the assumption of uncorrelated

readpoints is clearly violated. In contrast, the suggestedcorrelated Binomial model provides ac-

curate values that fit the experimental dataset. The small deviation from the empirical data stems

from the simplifying first order Markov assumption.

For the last part of the analysis, we investigate on the temporal evolution of the individual and

combined detection probabilities. The readpoint detection probabilities over time are show in

Figure 4.17. Although the average detection performance for every readpoint is close to or above

99%, the plot shows several significant performance dips indicating that tags in particular pack-

aging units are difficult to identify. Whereas these performance dips correlate strongly among

readpoint (R1, R2) respectively (R3, R4), the correlation between (R2, R3) is considerably less

significant. This is emphasized by the combined detection probabilities for readpointsR1...R4
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Figure 4.16: Resulting detection probability over the number of readpoints for the raw datasetD1

and the corrected datasetD2. Whereas the standard Binomial distribution provides
overly optimistic estimates, the correlated Binomial model provides an accurate fit
to the experimental data and can therefore be used to predictthe detection rate as a
function of the number of readpoints.

as shown in Figure 4.18. The combination of the individual readpoints reduces the number and

extend of the performance dips. In the particular scenario,readpoints(R1 - R3) provide suffi-

cient diversity for the mutual compensation of missed RFID tags. The concept of spatial diversity

is hence an effective way to mitigate the missing tag problemif the correlation issue between

individual readpoints is properly addressed.

The generalized Binomial model provides an effective way toassess the correlation among in-

dividual readpoints and is hence a valuable tool during the conception of an RFID system. The

empirical study by means of a comprehensive dataset has shown that individual readpoints suffer

from random performance dips which can be significantly reduced by means of the cooperative

readpoint concept.

4.3 Summary

The concepts developed in this chapter are targeted to provide an increased data accuracy for RFID

systems on the readpoint level. This is particularly necessary when no prior information can be

utilized in terms of a high-level system model. From this perspective, the presented readpoint

model serves as complement to the high-level approach discussed in Chapter 3.

In order to address the problem of false positive observations, we have analyzed the information

on readpoint level in terms of the available low level features. Using a compact signal model,
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Figure 4.17: Detection probabilities for readpointsR1...R4 over time. Whereas the average de-
tection performance is close to or above 99%, the individualreadpoints suffer from
random performance dips. An important aspect is that the performance dips show a
certain correlation among the readpoints, which indicatesthat tags in particular pack-
aging units are difficult to identify.
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Figure 4.18: Combined detection probability of the RFID system withN ∈ [1, 4] readpoints.
Whereas individual readpoints suffer from performance dips, the fusion of read events
provides a robust and reliable detection. The curves forN = 3 andN = 4 are identi-
cal which shows that the fourth readpoint is redundant in this scenario.
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we have integrated these features in an abstract state-space representation which forms the basis

for a robust classification mechanism. The abstraction level in the state-space representation pro-

vides the necessary flexibility and ensures that this approach can be used in a variety of different

scenarios. In an experimental study, we have evaluated the individual low level features and the

classification approach.

In addition to the classification mechanism, we have also presented a method to target the prob-

lem of missing RFID observations. For this purpose, we use a readpoint diversity approach which

combines the RFID observations from several, independent readpoints. In this context, the corre-

lation between readpoints has been found as the limiting factor, which is why we have explicitly

considered this aspect in the presented model.

The major conclusions from this chapter can therefore be summarized as follows. First, RFID

systems provide information that goes beyond the definitionof a binary read event. By employing

this information, a reliable suppression of false positiveobservations can be performed. Second,

the presented classification mechanism is a flexible framework suited for a variety of different

use cases. Finally, the crucial problem of missing tags can be mitigated by means of a readpoint

diversity concept. The probabilistic formulation on readpoint level developed in this chapter

provides a high flexibility regarding possible applicationscenarios and different configurations.
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5
PRISE - Probabilistic RFID Simulation Engine

RFID systems cover a variety of different aspects and face complex questions from physical as-

pects such as wave propagation and circuit design to high-level business considerations. Due to

the fact that the deployment of RFID systems is a cost and timeintensive process, simulation

tools for a variety of different aspects are frequently usedin the conception phase. Consequently,

the research community has developed various simulation and emulation frameworks addressing

the different abstraction layers of an RFID system [23]. Since data from large scale RFID de-

ployments is scarce, a simulation environment forms the necessary basis for the development and

evaluation of high-level modeling approaches and filter techniques. The first part of this chapter

gives an overview of different simulation frameworks for RFID systems and provides a compar-

ison of the individual approaches. The second part discusses the concepts and ideas behind the

probabilistic simulation framework PRISE and the implemented models. Finally, we present an

experimental evaluation of the simulated RFID observations in three practically relevant scenar-

ios.
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5.1 Related Simulation Tools

There exist several simulation frameworks targeting the low-level aspects of an RFID system. For

example, the MATLAB based simulation framework by Hanet al. [79] focuses on the analog

frontend of RFID readers and tags to verify the protocol and standard compliance of a particular

tag or reader model. For this reason, the reader frontend is modeled in detail, including the

digital-to-analog conversion (DAC) as well as the modulator and power amplifier subsystems.

The framework furthermore provides mechanisms to specifically simulate the forward and reverse

link by means of a wireless channel model and the tag reflection behavior. The simulation is

performed on signal level which limits its applicability due to the considerable computational

complexity. Similarly, the MATLAB based simulation framework PARIS [13–15] implements a

detailed model for RFID readers, tags, and the wireless multipath channel. In addition, the PARIS

framework considers the aspect of Ultra-Wideband signaling in RFID systems and is especially

designed to investigate on the issue of geometric tag localization. Hence, PARIS features an

abstraction level that is not adequate for the simulation ofa large scale RFID system.

In terms of a high-level system simulation with various RFIDreaders, antennas and tags, RFIDSim

[51, 52] is closest to the PRISE simulation framework presented in this thesis. RFIDSim abstracts

from the signal level which reduces the computational complexity such that RFID systems with

a large number of tags can be simulated. The communication between reader and tags features

the mandatory commands specified in the EPCglobal standard,such asQuery, Ack, QueryRep

andQueryAdj[48]. The behavior of tags is implemented according to the state diagram specified

in the EPCglobal standard. In terms of signal propagation, RFIDSim uses a Rician fading chan-

nel model, but does not especially consider item propertiesor detuning effects. A simulator that

closely resembles the functionality of RFIDSim was developed by Zhanget al. [197], including a

Graphical User Interface (GUI). In addition to the simulation frameworks discussed above, there

are several other simulation and emulation approaches targeting passive UHF RFID systems, se-

curity aspects [138] and hardware-in-the-loop simulation[40]. These systems, however, do not

consider high-level aspects such as the underlying supply chain structure.

The probabilistic simulation engine presented in this chapter is a system-level simulation tool

that provides a compromise between high-level business process simulation and the generation

of low-level RFID observations. Naturally, this requires atrade-off in the simulation accuracy

due to simplified modeling assumptions. PRISE is hence not designed as a detailed reader, tag or

channel simulation software, but rather as a framework to generate datasets for large scale RFID

systems operated in a particular supply chain. The modular software architecture allows for the

integration of more detailed models and the output of other simulators to address particular aspects
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if necessary. The main differentiation to existing RFID simulators is that PRISE performs a true

system level simulation, including the underlying business process which defines the abstract,

high-level item movement.

5.2 Simulator Concepts

PRISE is a cross platform, C++ / Qt based software framework which provides the possibility

to set up and simulate typical RFID readpoints in a supply chain. For this purpose, the simu-

lator implements the business process model described in Chapter 3 to generate high-level item

trajectories. PRISE offers a GUI allowing the user to specify the following aspects:

• Supply chain structure setup:Defines the structure and dynamics of the simulated supply

chain in terms of the CTMC as described in Chapter 3. The setupcomprises the model

parameters (transition probability matrix, prior state probabilities and the individual dwell

time parameters) as well as the overall simulation time and temporal resolution.

• Item setup:Allows for the definition of a hierarchical item structure that can be used to

create packaging units and tagged items. Together with the supply chain structure, the item

setup serves as input for the generation of high-level item trajectories.

• Readpoint setup:Defines the number, type and placement of RFID readers, connection

cables and antennas in a 3D environment. Additionally, the readpoint setup covers the def-

inition of geometric item trajectories. In order to accountfor variabilities in the geometric

setup, a controllable degree of randomness can be added to the item trajectories.

The simulation setup is represented in an .xml file structurethat serves as input to the actual

simulation core. An example configuration file, representing a single reader with stationary tags

is shown in Appendix A.1. The actual simulation core implements an event queue driven by a

simulation clock that controls the movement of items, schedules reader inventories and updates

the channel characteristics. Based on this information, a matrix holding the individual detection

probabilitiespij(t) for theith reader antenna and thejth tag is computed. A block diagram of the

simulator architecture is shown in Figure 5.1. The simulation output is represented in terms of

RFID observations

eSim = [t, ID, r, i], (5.1)

with the timestampt, tag identifier ID, RSSI valuer, and antenna indexi in analogy to the

definition in Equ. (4.1), except for the phase angleϕ. The simulated read events are provided
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Figure 5.1: Simulator architecture: The simulation setup, comprisinga supply chain model, item
model, and readpoint setup is fed to the simulation core. Thecore is based on an event
queue which is driven by a simulation clock. The implementedmodels for readers, an-
tennas, items, tags, and the UHF channel are used to compute the detection probability
matrixP, where each entrypij(t) represents the detection probability at timet for the
jth tag on theith reader antenna.
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in a .csv file structure, hierarchically grouped by reader and tag. In addition, the output contains

the ground-truth for the high-level supply chain movement and the geometric item trajectories on

every readpoint.

5.3 Models and Implementation

The simulator implementation follows an object-oriented approach and currently incorporates

specific RFID reader-, antenna-, and tag-models. The specification for the individual components

are closely related to the corresponding manufacturer datasheets and can be subjected to a con-

trollable amount of randomness. Currently, there exists nocomprehensive dataset that provides

information about the distribution of individual parameters such as reader or tag sensitivity. For

this reason, standard Normal distributions with adjustable parameters are used.

5.3.1 RFID Tag

RFID tags are characterized by means of their antenna and thetransponder chip. The implemented

antenna model is a standard dipole with a specific antenna impedanceZa = Ra+Xa. The dipole

radiation pattern is shown for reference in Figure 5.2. The transponder chip is characterized by
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Figure 5.2: Tag antenna radiation pattern: The tag antenna features a dipole characteristic which
introduces a significant orientation sensitivity.

the sensitivity value and the chip impedanceZc = Rc + Xc. The individual values can be

set according to the manufacturer data sheet or available measurement data [156]. The chosen
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sensitivity value is interpreted as the mean value of a Gaussian distribution with a configurable

standard deviation. The antenna and chip impedance are usedin the simulation to compute the

tag radar cross-section

σ =
λ2G2R2

a

π|Za + Zc|2
, (5.2)

whereλ denotes the wavelength andG is the angle dependent antenna gain [153]. The radar cross-

section is the primary factor that determines the backscattered power and is therefore required to

compute the RSSI value during a particular tag inventory. The implemented tag model abstracts

from the signal and command level and hence does not require the state machine implementation

defined in the EPCglobal standard.

5.3.2 RFID Reader and Antenna

The implemented reader model consists of several blocks that cover different operational aspects.

Considering the RF-frontend, RFID readers are equipped with a certain number (default: four) of

antenna ports that are used in a time multiplexing scheme. For each port, a distinct transmit power

valuePT can be configured. The reader model implements a frequency table according to the

European RF regulations [49]. In terms of the backscatteredtag response, the reader implements

an additive noise model representing thermal noise as well as ambient RF noise. In analogy to

current state-of-the art RFID readers, the backscattered signal power for each tag read event is

provided in terms of an integer dBm value.

From the protocol perspective, the reader model implementsthe anti-collision scheme specified in

the EPCglobal standard [48]. The key parameter for the the anti-collision scheme is the number of

expected tagsM = 2Q. This quantity specifies the number of slots that are initiated in the framed

slotted ALOHA protocol and therefore determines the duration of an inventory round [184]. The

timing is specified by means of the data rate, in particular the Tari (Type A Reference Interval)

value which determines the symbol length [48].

Antennas are connected to the reader by means of a cable with alength-dependent attenuation. In

contrast to the tag model where matching is explicitly considered, the reader / antenna model is

idealized and does not account for a potential mismatch. Instead, antennas are solely character-

ized by their radiation patterns. In particular, a standarddipole antenna model and a directional

antenna model with an approximate half power beamwidth of70◦ and30◦, respectively as shown

in Figure 5.3 are implemented. Antennas are assumed to have circular polarization, which in-

troduces a polarization mismatch in the link budget betweenreader and tag. The polarization

mismatch is assumed to be constant with -3 dB for the forward and the reverse channel link. The

implemented RFID reader and antenna models feature a configurable defect probabilityPDefect
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which allows us to simulate system failures in large scale RFID deployments.
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(a) Horizontal
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Figure 5.3: Horizontal and vertical radiation pattern of the implemented antenna model with an
approximate half power beamwidth of70◦ and30◦, respectively for the horizontal and
vertical axis. In both directions, the radiation pattern ischaracterized by a prominent
main lobe and a number of additional side lobes.

5.3.3 Detection model

The detection model is based on the simplifying assumption of a free-space propagation. For this

reason, the path loss

PL =

(

λ

4πd

)2

(5.3)

is computed according to the standard Friis equation. Instead of modeling the communication on

signal level with the appropriate waveforms, the detectionprobability for a particular tag-antenna

pair is evaluated by means of the forward and reverse channellink budgets [116]. The values

for the path loss and antenna directivity are computed according to the given geometry, which

is assumed to be stationary for the duration of an inventory.The link budget is then evaluated

in terms of the individual tag and reader sensitivity values. If a tag is visible to the reader and

successfully identified during the anti-collision scheme,the RSSI value is computed according to

r = ||PTG
2
T (PL)2σ||, (5.4)

where|| · || denotes the quantization operator.
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5.3.4 Sensors

In addition to RFID related components, PRISE also implements a set of devices commonly found

in automated environments, such as barcode scanners and proximity sensors. These devices are

characterized by a maximum range (default:1m) and a defect probability. To detect the presence

of objects in the simulated environment, the movement engine continuously monitors if a barcode

reader or sensor is triggered by a particular object. The simulated barcode scanner output

bSim = [t, Pi], (5.5)

comprises a timestampt and the identifier of a particular packaging unitPi. In contrast, proximity

sensors are limited to a digital output

sSim = [t, u], u ∈ {0, 1}, (5.6)

whereu = 1 indicates that the proximity sensor is triggered. Both barcode scanners and proximity

sensors are idealized with respect to duplicate readings and signal debouncing.

5.4 Limitations

As stated in the introduction of this chapter, the PRISE simulation engine is designed for a high-

level RFID system simulation. For this reason, there is an inherent need for simplifications in

the implemented models to reduce the computational complexity. PRISE is not designed as a

profound channel, protocol, tag, or reader simulator sincethere exists a variety of software frame-

works solely focusing on these aspects of RFID systems. Instead, PRISE establishes a compro-

mise between an adequate high-level supply chain model and areasonable approximation for

low-level RFID observations. Consequently, there are several simplifications which are required

to reduce the computational complexity.

The most important simplification in terms of the wireless channel is the assumption of a free-

space propagation environment. This means that multipath propagation due to reflective materials

is not explicitly considered. False positive observationsare hence introduced by means of non

ideal antenna radiation patterns or overlapping interrogation zones among readpoints. In addition,

the channel model does not consider particular item properties (such as metal or water content)

which, in practice, heavily influence the link budget and lead to detuning phenomena. Similarly,

detuning effects introduced by tag-to-tag coupling are also not considered. The simplified channel

model also imposes a limitation to the accuracy of the resulting RSSI responses, since the link
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budgets do not consider material dependent attenuation.

In terms of reader capabilities and low-level signal features, the main simplification is that the

phase response is not simulated. The reason for this is highlighted in Chapter 4: Although the

phase information provides interesting possibilities from a theoretical point of view, the practical

relevance for the purpose of classification is limited by theinherent noise.

Due to the modular software architecture, the limitations discussed above can be easily addressed,

e.g., by integrating a more detailed channel or item model. For the research issues addressed in

this thesis, the current implementation provides a fast andefficient method to generate large scale

datasets for different supply chain structures and readpoint setups.

5.5 Experimental validation

For the experimental evaluation of the implemented models,we focus on the characteristics of the

simulated RFID observations. In particular, the read rate and the RSSI response characteristics are

analyzed. For this purpose, we define three different scenarios that are set up in a lab environment

and the simulation framework. As a result, we obtain experimental and simulated datasets which

allows us to perform a direct verification. In the following,the datasets and quantities from the

real-world setup are marked with the subscriptExp, whereas the corresponding quantities from

the simulated data carry the subscriptSim. The experimental setups for the evaluation comprise an

Impinj Speedway Revolution R420 reader and Kathrein Widerange70◦/30◦ antennas. The RFID

reader is connected to a host PC which controls the operationmodes and stores the individual tag

observations for an offline evaluation.

Scenario 1covers a single RFID reader with an antenna that is used to identify a varying number of

stationary tags in the interrogation zone. This scenario ismainly designed to evaluate the temporal

behavior and the anti-collision scheme in terms of the read rateν. Scenario 2features the conveyor

belt scenario which we have already described in Section 4.1.2 for the identification of items in

cardboard boxes. The first two scenarios are characterized by a small distance between reader

antenna and tags, which means that the RFID tags are typically in the antenna near-field. The

second scenario is especially chosen due to its practical relevance for logistic applications. Finally,

Scenario 3covers an RFID reader with a total of four antennas in an EAS application. This is

a typical far field scenario which is characterized by a considerable variability in terms of item

trajectories and the varying orientation between tag and reader antenna. The defect probability of

all components is set toPDefect = 0 in all three scenarios.
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5.5.1 Scenario 1 - Stationary tags

This scenario is used to evaluate the temporal behavior of the implemented reader and tag models.

For this purpose, a varying number of tags is placed in the interrogation zone such that all tags are

continuously visible to the reader, as shown in Figure 5.4. The reader is configured to perform a

Antenna

d
=

0.
15

m

Tags

Figure 5.4: Experimental setup scenario 1: A varying number of stationary tags is placed in the
interrogation zone such that all tags are continuously visible to the reader. The reader
performs a periodic inventory of all tags, and the resultingnumber of read events is
used to compute the read rateν as a function of the total number of tags.

periodic inventory for a duration ofT = 100 s. Consequently, the tag population is continuously

identified, which allows us to evaluate the read rateν as a function of the total number of tags.

For both the experimental setup and the simulated environment, the reader is initialized with an

idealQ- value for the current tag population. The characteristic reader settings are summarized

in Table 5.1. The experiment is repeatedN = 10 times for each tag population and the mean

Component / Parameter Value
Datarate 80 kbps
Tari 10µs
Transmit PowerPTX 0.1W
Number of tagsM M ∈ {1, 2, 5, 10, 15, 20, 30, 40, 50}

Table 5.1: Scenario 1: Setup and reader configuration

values of the resulting read rates are estimated together with the corresponding standard deviation.

The comparison between the experimental data and the simulation data is shown in Figure 5.5.

The simulated read rate shows a characteristic decrease with an increasing number of tags in the

interrogation zone. The experimental dataset is characterized by a higher variability but otherwise

provides an accurate match to the simulated data. The highervariability is introduced by physical

effects that are not explicitly considered in our channel model, such as dead zones introduced by

destructive interference.

Regarding the simulation time, we analyze the overall duration of the last experiment withM = 50
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Figure 5.5: Read rateν (number of RFID observations per tag and unit time) for the simulated and
experimental setup overN = 10 runs for each tag population. The simulated read rate
provides an accurate fit to the empirical data, which means that the timing parameters
and the anti-collision procedure are in accordance with theEPCglobal standard. Char-
acteristically, the read rate decreases with an increasingnumber of tags visible to the
reader.

RFID tags. The average duration over theN = 10 runs isT̄Sim = 3.073 s on a standard PC with

an Intel Core i5-2520M CPU running at2.5GHz. The abstraction from the signal level hence

provides a considerable speed-up compared to the experimental setup.

5.5.2 Scenario 2 - Conveyor Belt Setup

The second scenario is of considerable importance for practical applications, since the verification

of commissioned packaging units is a key application for RFID systems. The key criteria for the

analysis in this case are the low-level signal features, in particular the characteristic signal shape

which forms the basis for the signal model in Chapter 4. In addition, the analysis covers the read

count per tag as general quality metric. This aspect is investigated by means of the empirical read

count distributions over all identified tags. The signal shape is analyzed qualitatively and in terms

of the dynamic range (i.e., minimum and maximum RSSI values).

Similar to the evaluation of Scenario 1, this near-field scenario is set up in a test lab and the

simulator environment. The configuration parameters are shown in Table 5.2 and the experimental

setup is the same as depicted in Figure 4.9. The resulting empirical distributions for the read

count are shown in Figure 5.6 with mean valuesn̄Exp = 22.08 and n̄Sim = 20.07. This means

that on average, the experimental setup yields slightly more RFID observations. Furthermore,
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Component / Parameter Value
Datarate 80 kbps
Tari 10µs
Transmit PowerPTX 0.3W
Conveyor velocityv 0.5 m

s
Number of tags per box Mi = 15
Total number of tags M = 405
Box-to-box distanced 0.5m

Table 5.2: Scenario 2: Experimental conveyor belt setup. Parameters and readpoint configuration
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Figure 5.6: Empirical distribution of the number of read events for a conveyor belt scenario. The
mean values for the read redundancy aren̄Exp = 22.08 andn̄Sim = 20.07, whereas the
corresponding values for the standard deviation aresExp = 6.71 andsSim = 5.17. The
empirical distribution of the experimental data shows a slightly higher mean value and
higher tails. The deviations are due to the simplifications in terms of the propagation
channel and tag-to-tag coupling effects.
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the experimental data exhibits a higher variability (standard deviationsExp = 6.71 vs. sSim =

5.17 ), which results in higher distribution tails. The deviations between the experimental and

simulated data are mainly due to the simplified channel model. Since multipath propagation is

not considered, the simulated dataset lacks a certain percentage of read events that occur over non

line-of-sight paths. However, the simplifications in termsof the channel model still allow for a

reasonable approximation.

Regarding the quantitative analysis of the simulated low-level features, Figure 5.7 shows an ex-

emplary RSSI response which features a peak resulting from the characteristic tag movement in

the interrogation zone. Besides the main peak, the RSSI response exhibits two additional maxima

which are caused by the side-lobes of the reader antenna radiation pattern. Regarding the tempo-

ral aspect, the response is characterized by non uniform sampling with respect to time due to the

non-deterministic inventory procedure as discussed in Chapter 4.
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Figure 5.7: Simulated RSSI response: The quantita-
tive comparison between simulated and
measured response shows that the imple-
mented models provide an accurate fit in
the considered near-field scenario.

Experiment Simulation
min{r(i)} in dBm -66 -68
max{r(i)} in dBm -28 -28

Table 5.3: Dynamic range of the RSSI response for
the experimental and simulated data.

The dynamic range of the empirical and simulated RSSI responses is analyzed by finding the min-

imum and maximum value over all individual signal values as shown in Table 5.3. The simulated

RSSI values are in a comparable range to the empirical data despite the simplified channel model,

since the scenario does not include specific materials that influence the channel link budget. For

this reason, we can conclude that the implemented models provide a reasonable approximation

for this scenario in terms of the generated RFID observations.
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5.5.3 Scenario 3 - EAS

Whereas the two previous scenarios are designed to evaluatethe simulator performance in near-

field applications, Scenario 3 is used to investigate on the far-field behavior. RFID systems for

EAS are a popular but challenging application in different fields. The basic task of an RFID

readpoint used for EAS is to identify items that are removed from a shop or sales floor without a

preceding transaction at the checkout desk. For this purpose, RFID antennas are usually mounted

near the shop exit, as depicted in the floor-plan in Figure 5.8. Four antennas are mounted at a

height ofzA = 3m and spaced by a distance ofdx = dy = 2m in each direction. Hence, the
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Figure 5.8: Floor plan of the experimental setup for scenario 3: Four RFID antennas are mounted
at a height ofzA = 3m to identify tags that leave the shop through the exit door. To
account for the variability, the trajectory is specified by aset of randomized way points

scenario differs from the first two applications in a number of aspects: First, the distance between

reader antenna and tag is considerably larger and tags are typically located in the antenna far-field.

Second, the link budget suffers from the absorption of RF waves due to the water content in the

human body. As a consequence, the channel characteristics are considerably more difficult and

result in a decreased detection performance. Third, this scenario shows a considerably greater

variability due to the lack of well defined boundary conditions in terms of movement speed and

geometric trajectories. Finally, the multi-antenna setupintroduces another aspect that needs to

be considered in the simulation: RFID-readers use a temporal multiplexing scheme and activate

the connected antennas sequentially. For this reason, the carrier signal needs to be switched

off and on again for every antenna which introduces an additional time delay compared to the
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single antenna case. This delay is a reader dependent property and needs to be considered in the

simulation. The experimental setup and the simulation parameters are summarized in Table 5.4.

For the experiment, four tagged items are carried in a shopping bag through the interrogation zone

in a total ofN = 100 trials. The empirical and the simulated dataset hence comprise read events

from M = 400 tags each.

Component / Parameter Value
Datarate 80 kbps
Tari 10µs
Transmit PowerPTX 0.75W
Item velocityv 1.5 m

s
Total number of trials N = 100
Total number of tags M = 400

Table 5.4: Scenario 3: Experimental EAS setup. Parameters and readpoint configuration

The evaluation of the simulated environment incorporates the same metrics as for Scenario 2. In

particular, the number of RFID observations and the dynamicrange of the RSSI responses are

investigated. The corresponding empirical histograms forthe read redundancy are shown in Fig-

ure 5.9. The simplified channel model is the limiting factor in terms of accuracy for this scenario.
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Figure 5.9: Empirical distribution of the number of read events for the EAS scenario. The mean
values for the read redundancy aren̄Exp = 30.61 and n̄Sim = 37.51, the estimates
for the standard deviation aresExp = 9.72 andsSim = 5.24. The simplified channel
conditions (absence of absorption effects) cause a considerably higher number of read
events due to the more optimistic link budget. Furthermore,the experimental data is
characterized by a higher standard deviation due to the greater variability.

The simplification results in an overly optimistic link budget and hence yields a considerably

higher number of read events. This effect is highlighted when looking at the RSSI responses in
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Figure 5.10. Since the human body (as carrier for the tagged items) is not explicitly modeled,

there is no absorption of RF waves which increases the tag detection probability and the number

of read events. In contrast, the experimental data shows that the shielding effect introduced by

the human body leads to a considerable performance degradation. The dynamic range of the sim-
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Figure 5.10: Experimental (a) and simulated (b) RSSI response, shifted around the temporal center.
The simplified channel model leads to an overly optimistic link budget which results
in a higher number of RFID observations per tag, since absorption effects are not
considered. For this reason, the shown experimental data lacks read events from the
opposite antennasA3 andA4.

ulated RSSI responses, however, shows an accurate fit to the experimental data. This means that

the implemented reader and tag models, together with the backscattering characteristic provide

a reasonable approximation also in the far-field. The small deviations on signal level are caused

Experiment Simulation
min{r(i)} in dBm -70 -69
max{r(i)} in dBm -45 -45

Table 5.5: Scenario 3: Dynamic range of the RSSI response for the experimental and simulated
data.

by the simplified assumptions, especially in terms of the channel model. Considering the simu-

lator design goals, the implemented models, however, provide a reasonable compromise between

accuracy and computational complexity.
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5.6 Summary

The presented RFID simulation engine allows us to perform anefficient simulation of large scale

RFID systems. This includes the generation of high-level item trajectories through a supply

chain, which is the major distinction to existing simulation frameworks. Whereas other simu-

lators focus on particular aspects in an RFID system, PRISE operates at a higher abstraction level

which significantly reduces the computational complexity.The evaluation presented in this chap-

ter demonstrates that the simulated RFID observations provide an accurate fit to experimental

data, especially in near-field scenarios.

For this reason, PRISE is a powerful tool that can be used to speed up the conception and imple-

mentation phase of an RFID system. In particular, the software implementation on the backend

side can benefit from the efficient possibility to generate RFID observations in a controlled man-

ner instead of relying on time consuming prototypes and experimental setups. Furthermore, the

possibility to generate large scale datasets provides a convenient way to perform profound stress

tests for implemented algorithms and database structures.

The current limitations are mainly due to the simplified modeling assumptions which are nec-

essary to reduce the computational complexity. The modularsoftware architecture allows for a

seamless integration of more advanced models which provides the possibility to detail on specific

aspects if necessary.
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6
Information Fusion

Under optimal conditions, RFID systems provide a reliable identification of individual items up

to a range of several meters. However, the precise localization of items is a challenging task

due to the limited bandwidth and the multipath channel characteristic as we have discussed in

Chapter 2. In certain applications such as EAS or adjacentlyplaced warehouse portals, the limited

localization capabilities are the major source of noisy observations due to false positive read

events. Commercially available EAS systems try to minimizefalse alarms by specialized antenna

designs with an extremely narrow radiation pattern. Whereas this indeed reduces the number of

false positive read events, multipath propagation can still lead to unwanted observations which is

a problem that cannot be solely solved by antenna design considerations.

The probabilistic view of RFID systems in this thesis provides a considerable increase of data

accuracy in RFID systems from the readpoint level up to largescale deployments along a supply

chain. The developed mechanisms increase the reliability in terms of detection performance and

false positive observations by considering the typical behavior on different abstraction levels.

For scenarios like a retail store with an RFID driven articlesurveillance, this approach has its

limitations due to the lack of prior information and the considerable variability. In this case,

geometric tag localization is a more promising approach to the problem of false positives. The

established probabilistic framework is well suited for theintegration of different sensor modalities
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which can be used to increase the localization accuracy. This chapter discusses the fusion of

computer vision (CV) and RFID systems to provide the required localization accuracy for typical

applications. For this purpose, we first review the related literature in this field and provide a

comparison of different tag localization systems. Second,we introduce an information fusion

approach for tag localization and tracking and provide an experimental evaluation by means of a

typical EAS scenario.

6.1 Fusion of CV and RFID

CV systems have progressed to a technological state where they allow for a reliable tracking of

individual objects or people from image sequences at low costs. Several authors have investigated

on the combination of RFID and CV systems for localization and tracking in different applica-

tions. For example, Germaet al. [64] have developed a fusion system consisting of an RFID

reader and a camera on a mobile robot platform. In particular, the authors combine the sensor

information from the CV and the RFID system using a Particle Filter framework to track and fol-

low individual people in a scene. A similar system [18] uses afixed camera and a moving RFID

reader. Nicket al. [143–145] have also investigated on the localization of passive UHF tags in

combination with a CV system and an Unscented Kalman Filter.In this case, the target is to track

moving objects with a fixed RFID reader and camera setup. For this purpose, the authors employ

a deterministically found RSS model and a template based object detection to identify and track

tagged items in a warehouse portal scenario. In order to further improve the localization accuracy,

the authors integrate prior information in terms of a known object height in the scene. The pre-

sented studies show a reasonable accuracy for a very specificsetup but do not include the case of

multiple tags and the related data association problem [127, 166], i. e., the problem of associating

the observations from several tags and objects in the scene.

To tackle the problem of a multi-target tracking scenario, acombined CV and RFID system re-

quires four major building blocks as shown in the block diagram in Figure 6.1. First, the RFID

system needs to provide at least a rough location estimatex̂Ti
of individual tags. Second, the

CV system needs to provide an estimatex̂Bj
for the current location and trajectory of moving

objects in the scene. For this purpose, a mechanism to detectand track moving objects (hereafter

referred to as blobs) is required. Third, a way to combine theindividual location estimates needs

to be found, which can be formulated in terms of a data association problem. The combined in-

formation can then be interpreted in terms of a high-level reasoning scheme such as a trajectory

classification block.

The discussed system architecture provides a flexible way tocombine two complementary sensor
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Ti, x̂Ti
Bj , x̂Bj

High-Level Reasoning

Data Association

CVRFID

Figure 6.1: Block diagram for a combined RFID and CV localization system. The RFID and CV
subsystems detect and localize tagsTi and blobsBj , respectively. The data association
layer subsequently finds the most probable match between identified tags and detected
blobs in the scene. Based on the combined information, a high-level reasoning scheme
can be employed to identify specific trajectories and provide abstract information.

modalities in a probabilistic framework. This forms the basis for an elegant fusion approach and

furthermore enables us to integrate prior information, forexample in terms of a floor plan.

6.2 RFID Subsystem

The task of the RFID system in this context is not only to identify RFID tags, but also to provide

a location estimatêxTi
in order to track individual tags over time. Specifically, the system is

required to provide a location estimate for a number of tagsN > 1. As we have discussed

in Chapter 4, the available information for each tag per unittime decreases as the total number

of tags increases. For this reason, elaborate localizationschemes requiring a high number of

read events cannot be employed in this scenario. Instead, wechoose a model-based location

by proximity approach to provide location estimates for a given number of tags. Naturally, this

leads to a compromise between the number of tags that can be handled by the system and the

achievable localization accuracy. Since the goal is to combine the information from the RFID

system with other sensor modalities, a formulation for the location estimate together with the

associated uncertainty is required. The presented probabilistic framework enables us to interpret
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the RFID related information in a Bayesian sense and forms the basis for a recursive update

scheme when new observation data becomes available.

The idea behind the localization approach is to use several antennasA1 ... AK that cover a specific

region of interest. The antennas are set up such that the individual interrogations zones overlap.

For the localization approach, we approximate the individual antenna interrogation zones in the

horizontalx − y plane by means of a two dimensional Gauss Kernelg, specified in terms of the

antenna positionµi and the covariance matrixΣi. Consequently, the entire region of interest can

be modeled using a Mixture of Gaussians (MoG), where each mixture component represents one

particular antenna. For every RFID observationz, the tag location̂x can be expressed using the

mixture model

P (x̂ | z) =
K
∑

i=1

wig(x̂ |µi,Σi). (6.1)

In Equ. (6.1),wi ∝ r̄i are the weights of the mixture components proportional to measured RSSI

values on each antenna. For a simplified scenario withK = 3 antennas, a qualitative RFID

sensor model is shown in Figure 6.2 with the individual mixture components for a given RFID

observation. Since the considered tag is closest to antennaA1, the RSSI value (and consequently,

the weight of the mixture component) for this antenna is dominating over antennasA2 andA3.

x

A1 A2 A3

T1

Figure 6.2: RFID sensor model for a simplified 1D case withK = 3 antennas. The sensor model
incorporates a Mixture of Gaussians (MoG) to provide a likelihood for the location of
tagT1 based on the mean RSSI values. The parameters of the mixture model depend
on the antenna characteristics (position and radiation pattern) and need to be learned in
a calibration step.

The chosen modeling approach has several implications in terms of complexity, accuracy and
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practical aspects. First, the model requires a parameter initialization to estimate the characteristics

of the Gaussian mixture components. This parameter estimation needs to be carried out during the

deployment phase in order to accurately reflect the characteristics for a given scenario. Second,

the resulting abstract representation of the interrogation zone removes the need for an accurate

channel model and hence forms a compromise between accuracyand model complexity. Finally,

the chosen approach is relatively robust to changes in tag orientation, since we do not use the

RSSI values directly to estimate the distance between tag and antenna, but rely on the ratio of the

individual RSSI values.

6.3 Blob Detection and Tracking

As complementary sensor modality, the CV system is used to monitor the region of interest in

order to detect and track moving blobs. For this purpose, we use a monocular camera with a

wide-angle lens to maximize the field of view in a given scenario. For indoor scenarios, it is

advantageous to mount the camera on the ceiling to provide a bird’s-eye view of the scene. In

addition, this allows us to align the camera field of view withthe RFID interrogation zone such

that we can establish a common reference frame.

The blob detection and tracking mechanism includes severalprocessing steps that are applied to

each recorded frame as shown in Figure 6.3. The first block implements a foreground / back-

FG/BG

Detection

Shadow

Detection

Blob

Detection

Mean-Shift

Tracker

Frame

BG Model

Bj , x̂Bj

Figure 6.3: Blob detection and tracking: Each frame is first segmented into a foreground (FG)
and background (BG) region using a MoG model which represents the RGB values
of each pixelp. Subsequently, a shadow detection mechanism is applied to suppress
false positive blobs caused by moving shadows in the scene. The actual blob detection
incorporates several constraints regarding blob size and velocity. Each detected blob is
tracked over consecutive frames using the mean-shift algorithm. Consequently, the blob
detector provides an annotated trajectory for every detected blob in an image sequence.
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ground segmentation which is based on a MoG model representing the RGB (red, green, blue)

values of each pixelp [201, 202]. This segmentation scheme requires an initial training phase

with a static scene to establish a background model BG. Basedon the learned model, we process

a new frame and classify each pixel by computing the likelihood ratio

R =
P (BG |p)
P (FG|p) =

P (p |BG)P (BG)

P (p |FG)P (FG)
≶ γR, (6.2)

and comparing the value to a thresholdγR. Since there is usually no prior information about

foreground objects, a pixel is assigned to the background ifthe likelihood

p(p |BG) > ct (6.3)

exceeds a certain thresholdct. The segmentation scheme implements an online update mechanism

and can therefore adapt to slow illumination changes in the scene. This is of particular importance

for practical applications without strictly defined lighting conditions. In addition, a shadow de-

tection block [162] is used to suppress false positive blobscaused by moving shadows. This

mechanism is based on a non-parametric approach which introduces the two additional classes

highlightedandshadowedbackground for the classification of each pixel.

The actual blob detection operates on the segmented foreground region and incorporates con-

straints regarding the size and velocity of blobs. To track the individual blobs over a given image

sequence, a Mean-Shift tracking algorithm is employed which is based on the histogram of gray

scale values in the blob region. The histogram is updated with every new frame and the blob cen-

ter x̂Bj
is identified as the mode of the histogram. Hence, for each blob Bj, we obtain an estimate

for the current position̂xBj
in image coordinates and can construct the trajectoryx̂Bj

(t) over

time. For an exemplary scenario in a lab environment, the camera view with a person detected as

blob is shown in Figure 6.4. The visualization shows the estimated blob dimensions (ellipse) as

well as the moving direction and velocity (arrow). The presented approach provides an efficient

way to identify and track moving objects or people in a scene.The CV system can be easily

integrated in an existing RFID deployment and does not require knowledge about the intrinsic

camera parameters.

6.4 Data Association

For every processed frame, the two described subsystems provide a set of tagsT and a set of

blobsB, incorporating the identifier and location estimates for every tag and blob, respectively.
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Figure 6.4: Blob detection and tracking: Camera view of a lab environment. In this scenario, a
moving person is identified as blob with ID 36. The arrow visualizes the movement
direction and velocity.

From these two sets, we want to establish an assignment between individual tags and blobs such

that a subset

(Ti ⊂ T) → Bj (6.4)

is assigned to a particular blobBj . Furthermore, we need to consider the possibility of stationary

tags, i.e., tags that belong to the scene background rather than a particular blob. The described

problem can be formulated in a data association context which considers the spatial distance

di,j =
√

x2i,j + y2i,j between tagTi and blobBj , as shown for one tag and two blobs in Figure 6.5.

The spatial distance can be transformed into a probability measure

pi,j =
1

2πσxσy
exp

(

−x2i,j
2σ2

x

+
−y2i,j
2σ2

y

)

(6.5)

using a Gauss Kernel with zero mean and a specific covariance

Σd =

(

σx 0

0 σy

)

(6.6)

according to the localization uncertainty of the RFID system. In addition, we explicitly consider

the possibility of stationary tags in terms of a velocity based background model. In particular, we
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B1

T1

B2

d1,1

d1,2

y1,2

x1,2

x

y

Figure 6.5: Data association problem for a tagT1 and two blobsB1, B2. The goal is to find the
most likely assignment between this tag and the detected blobsBj . For this purpose,
the spatial distancedi,j is estimated and transformed to a probability measurepi,j
by means of a Gauss Kernel. In addition, we account for the dynamic of tag-blob
assignments by incorporating the association history. Stationary tags are considered
using a velocity based background model.

estimate the tag velocity

v̂i =
dx̂i(t)

dt
(6.7)

as derivative of the trajectory with respect to time. In analogy to the spatial distance, the velocity is

transformed to a probability measure by means of a Gauss Kernel with zero mean and a covariance

matrixΣv. For each observed tag, we can hence build an assignment matrix

M =













BG B1 B2 · · · BM

T1 p1,BG p1,1 p1,2 · · · p1,M

T2 p2,BG p2,1 p2,2 · · · p2,M
...

...
...

...
. . .

...

TN pN,BG pN,1 pN,2 · · · pN,M













(6.8)

holding the individual probability measures for each tag↔ blob pair and the background BG.

A tag Ti can then be assigned to the most likely class (blobsBj or background) by finding the

maximum value in each row.

The quality of the data association depends on the RFID observations and hence needs to be

tolerant to noisy and incomplete data. To provide the required robustness, we integrate the history
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6.4. Data Association

of previous assignments by considering the individual blobs and the background in a discrete

state-space setting

B = [BG B1 B2 ... BM ]. (6.9)

The idea is that the tag↔ blob assignment is rather stationary, i.e., a particular tag Ti is typically

connected to a blobBj for a given observation period. Based on the defined state-space, we can

hence employ a HMMλA = (π, A, B) to filter the assignments. Since there is usually no

prior information available, the prior state distributionπ represents a uniform distribution over all

blobs and the scene background. The requirements for the transition modelA are twofold: First,

it needs to consider the discussed stationary assignment characteristic by means of appropriate

self-transition probabilities. Second, the transition model also needs to allow for a transition

from one blob to another, for example when a tag is handed over. For this reason, a compromise

between a robust assignment and the capability to follow thescene dynamics needs to be found.

The observation modelB accounts for the uncertainty regarding missing RFID observations and

the limited localization accuracy.
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Figure 6.6: Data association problem: Filtered association probabilities in a scene with one tag and
two blobs. The scenario is as follows: The considered tag is first carried by blobB1 and
then handed over to blobB2. Finally, the tag is left stationary in the region of interest
while both blobs leave the scene. The HMM based filtering approach adds a low-pass
characteristic to the association probabilities and henceprovides a certain robustness to
noisy and incomplete observations.

Based on the described HMM, we can filter the estimated assignments by means of a recursive

Bayes update which is implemented in the Forward algorithm [163]. An example for the filtered

assignment probabilitiespi,j over time for the exemplary scenario with one tag and two blobs is

shown in Figure 6.6. In this scenario, the tag is first carriedby blobB1 and then handed over to

blobB2. Finally, the tag is left stationary in the region of interest. The association probabilities
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show a smooth behavior since the HMM filter introduces a certain low-pass characteristic based

on the history of previous associations. This provides a considerable robustness for the data

association problem and reduces the negative impact of noisy observations.

6.5 Calibration

The combination of the two different sensor modalities requires a calibration procedure consisting

of two main steps. First, a common reference frame for the RFID and the CV system needs to be

established. For this purpose, the antenna and camera positionsµi as well as the camera’s field

of view need to be determined. Second, the characteristics of the Gaussian mixture components,

represented by the covariance matricesΣi need to be estimated. These characteristics directly

reflect the spatial extend of the antenna interrogation zoneand are the crucial parameter for the

location by proximity approach.

To estimate the characteristics of the interrogation zone,a 2D tag grid in the region of interest is

required for which RFID read events are recorded over a specific time frame. Figure 6.7 shows a

schematic representation of the calibration setup, consisting of the RFID system and an equidis-

tant tag grid. From the read events, we obtain an observationstatistic for every tag-antenna pair.

x

y

∆x

∆y

z

A1

C

A2

Figure 6.7: Schematic representation of the calibration setup. A tag grid with equidistant spacing
is used to obtain an observation statistic for each tag-antenna pair. The observation
statistic comprises the mean RSSI value and the corresponding standard deviation. The
statistic is used to estimate the parameters of the Gaussianmixture model that repre-
sents the spatial extend of the interrogation zone.
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In particular, the statistic comprises the mean RSSI and thecorresponding standard deviation for

each tag and antenna. Since theK antenna positionsµi are known with respect to the reference

frame, we need to fit a set ofK Gauss Kernels to the recorded calibration data. This directly yields

an estimate for the covariance matricesΣi, i = 1 ...K. The measured interrogation zone and the

corresponding Gaussian approximation for a single antenna(Kathrein Widerange with70◦ / 30◦

half power beamwidth) are shown in Figure 6.8. The measured interrogation zone exhibits local

maxima and minima (dead zones) as a direct consequence of theantenna radiation pattern and the

multipath channel environment. Furthermore, the interrogation zone shows a certain asymmetry

due to reflections caused by a concrete wall located atx = −1.5m. Figure 6.9 shows the mea-
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Figure 6.8: RFID sensor model: Contour plot. (a) shows the measured interrogation zone (RSSI
values) for a30 × 30 cm tag grid and (b) shows the approximation by means of a 2D
Gauss Kernel. The considered system comprises a Kathrein Widerange antenna with
70◦ / 30◦ half power beamwidth, mounted at a height ofh = 2.5m.

sured and modeled interrogation zone for the principal antenna axes inx- andy- direction. The

antenna radiation pattern which is characterized by a prominent main-lobe and two side-lobes

introduces local RSSI maxima in thex- direction. Due to the difference in halfpower beamwidth,

the interrogation zone shows a considerably larger extend in thex- direction.

The Gauss Kernel is a reasonable approximation for the interrogation zone and can be efficiently

estimated from the calibration data. In a setup withK equivalent antennas, the combined sensor

model can be obtained as a superposition of the individual Gaussian components. This allows for

a concise formulation of the likelihood function for the taglocation in terms of the mixture model.

The presented information fusion concept provides a concise, yet powerful way to incorporate the

two different sensor modalities. To study the performance in a practical environment, the next
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Figure 6.9: RFID sensor model: RSSI values along the principal antenna axis for thex-direction
in (a) and they- direction in (b), together with the Gaussian approximation. Along the
x- axis, the interrogation zone shows a characteristic peak and two local maxima from
the side-lobes of the antenna radiation pattern.

section presents a case study for an EAS scenario.

6.6 Case Study: EAS

To evaluate the presented information fusion concept, we investigate on an EAS scenario which is

a typical application for RFID systems in retail. The main challenge for RFID driven EAS systems

is the occurrence of observations that trigger a false alarm. Due to the lack of prior information

and the inherent variability, the low-level approach of geometric tag localization is promising to

significantly reduce the percentage of false positives in this scenario.

The functional requirement for an EAS system is to trigger analarm as soon as an article leaves

the shop without a preceding transaction at the checkout desk. With the presented localization and

tracking capability, the idea is to track the tag in the region of interest and trigger the alarm as soon

as it crosses an imaginary line marking the shop exit. More generally, we can define anexit region

which a moving tag is not allowed to enter. In addition to the localization and tracking task, this

adds a high-level reasoning step which can be elegantly integrated in the proposed framework. In

contrast to current RFID driven EAS solutions, this provides a considerable degree of robustness

in practical applications.

From the physical point of view, not only the localization, but also the tag detection is challenging

in this scenario. As briefly discussed in Chapter 5, the limiting factor in this case is the forward
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link budget. The power transferred from the reader to the tagsuffers from the absorption due

to the water content in the human body and arbitrary tag orientation. The evaluation is hence

focused on the two key performance metrics for an RFID system, the detection and false positive

probability, rather than the geometric localization uncertainty. For the detection probability, we

define two measures: On the tag-level, the detection probability PD is defined as the ratio of

correctly detected tags over the total number of tags that move through the scene and enter the

exit region. On the test-run level,PD, Run denotes the percentage of runs where at least one tag

has been successfully identified as stolen. The false positive probability denotes the ratio of false

positive observations over the number of stationary tags inthe scene.

The evaluation is based on an RFID system comprising an Impinj Revolution R420 reader and

K = 3 Kathrein Widerange antennas together with an monocular camera with unknown intrinsic

parameters. The camera features an1/3 ” Aptina CMOS sensor, coupled with a1.8mm wide-

angle lens to provide an appropriate field of view. The chosenimage resolution is752×480 px at

a framerate of100 fps. For the positioning of the individual system components, several aspects

need to be taken into account. First, the crucial part in terms of RFID localization is the place-

ment of the individual RFID antennas to provide a good coverage over the region of interest with

a sufficiently high detection probability. Second, the CV system needs to be placed such that the

camera field of view is aligned with the antenna interrogation zones. This enables us to define a

common reference frame and estimate the RFID sensor model parameters by means of the pro-

posed calibration step. Finally, there are certain restrictions regarding the antenna placement due

to shop design and spacing considerations. For the evaluation, we follow the common approach

to mount the RFID antennas on the ceiling. The floor plan of thegeometric setup and the camera

view of the evaluation environment are shown in Figure 6.10 and Figure 6.11, respectively.

For the evaluation, we define different scenarios with an increasing level of complexity. First,

we investigate on the detection performance in a single person, single tag scenario. This scenario

gives insight to the combined detection performance of the blob detector and the RFID system and

does not consider false positive observations, since no stationary tags are placed in the region of

interest. The second and third part of the evaluation cover asingle person, multiple tag scenario

with and without stationary tags in the region of interest. Finally, we evaluate a multi person,

multi tag scenario with stationary tags. In each scenario, the tags are carried through the region

of interest using a standard shopping bag along different, randomly displaced trajectories. The

stationary tags are placed in the region of interest such that they are continuously visible to the

RFID system.

For the first scenario (single person, single tag), we perform N = 150 trials to estimate the
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x

7m

3m

Shop region Exit region

Figure 6.10: EAS scenario: Floor plan. The considered scenario featuresa 3 × 7m region of
interest, split into ashop regionand anexit region. The task of the EAS system is to
trigger an alarm as soon as a tag enters the exit region without a preceding transaction
at the checkout desk. In addition to the localization and tracking of individual RFID
tags, this requires a high-level reasoning step to decide whether a tag has crossed the
imaginary line to the exit region.

Figure 6.11: EAS scenario: Camera view with highlightedexit region. The camera view shows a
considerable distortion due to the use of a wide angle lens which is required to provide
an adequate field of view.
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detection probability. The resulting performance is

PD, Run = PD = 0.9733

which means that the combined RFID and CV system missed as little as four tags. In this sce-

nario, all tags have been detected by the RFID system, but could not be identified as stolen. This

is caused by the CV system failing to identify a moving blob orthe background model which

erroneously considers a particular tag as stationary.

For the second scenario (single person, multiple tags) we perform an evaluation withN ′ = 2 and

N ′ = 4 tags per run. In this case, the results are

N ′ = 2 : PD, Run = 1 PD = 0.975 (6.10)

and

N ′ = 4 : PD, Run = 1 PD = 0.9125 (6.11)

These results agree to the intuitive assumption that the detection probability depends on the sce-

nario complexity, which in this case is determined by the overall number of tags. This is due

to the fact that the number of read events per tag and unit timedecreases as the number of tags

increases. The number of read events has direct impact on thelocalization accuracy and hence

on the overall system performance. For the considered scenario with N ′ = 4 tags, the achieved

detection probability of over 90% allows for an efficient system operation since the theft event is

detected for all performed test runs.

To further increase the scenario complexity, we addNS = 4 stationary tags to the region of

interest. Consequently, we can evaluate the detection and false positive probability. The resulting

performance for a total of 80 test runs withN ′ = 2 tags per run is

PD, Run = 1 PD = 0.9312 PFA = 0.0188, (6.12)

which means that 149 tags could be identified as stolen with six false alarms caused by the sta-

tionary tags. Although the detection probability on the taglevel decreases, the actual theft event

is robustly detected by the proposed system.

Finally, the multi person, multi tag scenario features two people in the region of interest: Whereas

one person is walking around at random, the other carriesN ′ = 2 tags per run. For this scenario,

the resulting performance is

PD, Run = 1 PD = 0.8438 PFA = 0.0219. (6.13)
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The performance decrease compared to the previous cases is mainly due to the complexity in the

multi person scenario which imposes an additional challenge to the data association layer. This

is especially the case when the two people in the scene are closely spaced. An erroneous data

association is hence the main cause for false positives. Forthis reason, we can conclude that

the system performance is directly affected by the scenariocomplexity and limited by the RFID

system rather than the CV system. Even in this complex scenario, the proposed system provides

a considerable detection performance on the tag level and robustly suppresses false positives.

Since the increased number of tags also adds a certain kind ofdiversity, the actual theft event

can be reliably detected in the defined setup. The presented information fusion approach can be

directly applied to the discussed EAS scenario and shows a robust performance under realistic

environmental conditions.

6.7 Summary

RFID tag localization can be considered as the key enabling step for RFID systems in applica-

tions that require an accurate location information. The limited system bandwidth together with

the multipath channel characteristics impose serious limitations to the achievable accuracy. The

information fusion concept presented in this chapter is a powerful approach to combine the local-

ization capabilities of CV systems with the strengths of an RFID system.

With the use of a flexible, yet compact RFID sensor model and a location by proximity approach,

we can estimate the location and velocity of individual RFIDtags in a considered region of inter-

est. The fusion of RFID and CV data results in a data association problem which we formulate

in a probabilistic context. The information fusion approach improves the location estimate for

a particular RFID tag and forms the basis for high-level reasoning schemes. The experimental

evaluation shows that the presented approach provides a considerable detection probability and is

robust to false positives. The performance depends on the complexity of the application scenario

and decreases with the number of tags. This is mainly caused by the anti-collision scheme which

limits the information per tag and unit time. For the demonstrated EAS scenario, the information

fusion approach is superior to currently established systems which only try to minimize the num-

ber of false positive observations by means of specialized antenna designs and therefore cannot

deal with stationary tags in the interrogation zone.
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Conclusion

Passive UHF RFID has the potential to provide full visibility in supply chain applications, from

the manufacturing plant over distribution networks and retail stores to the end customer. Besides

the insights that are gained from the additional information on item level, the ability to uniquely

identify a particular product also opens up new possibilities in terms of customer experience and

marketing channels.

From the technical point of view, RFID systems are still concerned with debates aboutread rates

(detection probabilities) and the widespread problem of false positive observations. The effects

leading to missed and false positives are an inherent property of passive RFID systems and thus

cannot be solely mitigated by means of advanced reader, antenna or tag design. The consequences

of missing and false positive observations are manifold andrange from inconsistent and noisy data

in the backend system to false alarms in case of an RFID drivenEAS system.

In this thesis, we have developed several concepts to targetthe problem of noisy and inconsistent

data based on a top-down modeling approach. In order to deal with the peculiar properties of

passive RFID systems, we have investigated on the applicability of probabilistic models to the

considered problem. The results of the conducted research are best summarized by answering the

research questions that stood at the beginning of this thesis project.
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Can the problem of noisy data in RFID systems be mitigated by means of a top-down modeling

approach? As we have demonstrated in the course of this thesis, a model based approach on

different abstraction levels can be used to increase the data accuracy and thereby the value of an

RFID system. The targeted abstraction levels range from high-level supply chain considerations

down to the individual readpoint and antenna. By means of comprehensive experimental data

from practical deployments, we have shown that the presented modeling concepts considerably

increase the performance of an RFID system and reduce the inherent observation noise.

Is a probabilistic framework suitable to deal with the particular properties and heterogeneous

components in an RFID system?Considering the structure of RFID systems, the versatile require-

ments and inherent variability, a probabilistic approach seems to be the only way to incorporate

the information provided by the heterogeneous system components. Processes on the different

abstraction levels show a considerable variability which motivates and justifies the consideration

in a probabilistic context.

7.1 Summary of Contributions

The main contributions of this work follow the discussed top-down view of RFID systems. For

the first time, we have presented a probabilistic model for RFID enabled supply chains which con-

siders three important characteristics. First, the model incorporates thetypical behavior of goods

in a supply chain by means of a continuous time motion model and thus provides an elegant way

to incorporate prior process information. Second, the model takes into account the RFID system

properties in terms of the detection and false positive probability of individual readpoints. The

proposed state-space representation forms the basis for a process level localization scheme and

can be easily implemented at the readpoint level to evaluatea given RFID observation. Finally,

we have integrated the characteristic of logical item unitsas source of prior information. The

different modeling concepts and the underlying assumptions have been evaluated by means of

extensive simulations and comprehensive empirical datasets from different applications.

On the readpoint level, we have developed a signal model thatis able to describe the characteristic

low-level features in a concise way. This signal model formsthe basis for an abstract classification

scheme which can be employed to identify false positive observations. The consideration on

readpoint level is necessary when the underlying application does not provide sufficient prior

information that can be integrated in terms of a high-level model. Typical application scenarios

are hence the verification of commissioned packaging units where neither the transition, nor the

co-occurrence model can be employed. The performed experimental evaluation has provided

important insights in terms of the individual signal features and has demonstrated the effectiveness
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of the presented classification approach.

The developed RFID simulation enginePRISEis a valuable tool for the simulation of large scale

RFID deployments. The ability to generate realistic, high-level item trajectories together with

low-level RFID observations provides the unique capability to study the structure of RFID en-

abled supply chains. Furthermore, it allows us to effectively validate filtering mechanisms on the

different abstraction levels of an RFID system. The implemented models are a compromise be-

tween accuracy on the signal level and computational complexity in order to enable a large scale

system simulation. PRISE relies directly on the developed RFID system model and provides a

fast and efficient possibility to generate large scale datasets.

Consequently following the probabilistic view of RFID systems, we have presented an informa-

tion fusion approach for the geometric localization of RFIDtags. For this purpose, we combine

an RFID and a computer vision (CV) system to localize and track tags in practically relevant sce-

narios. The RFID system incorporates a location by proximity approach which is significantly

enhanced by means of the computer vision system. The probabilistic formulation of the local-

ization problem provides a high degree of flexibility and allows for an easy integration into a

specific setup. The evaluation by means of a typical EAS application proved the efficiency of the

presented approach in several scenarios with different complexity.

The empirical data analysis conducted in the course of this thesis has provided several important

insights. First, we have shown that RFID related applications are characterized by a considerable

degree of variability which can be efficiently described in terms of a probabilistic framework. Sec-

ond, the presented analysis highlights that RFID deployments benefit from well defined boundary

conditions, such as a constant movement velocity, defined movement trajectories or a fixed tag

orientation. Applications that require highest detectionprobabilities are hence best set up in an

automated environment which can guarantee for defined operating conditions. Finally, the empir-

ical data suggests that an increasing item throughput is a limiting factor for the performance of

RFID systems. Although the EPCglobal standard is theoretically capable of identifying several

100 tags per second, practical applications suffer considerably from an increased item throughput.

Since the basic task of an RFID system is to collect information about a particular process, the

value of an RFID deployment is directly connected to the quality of the provided information. The

ultimate goal is hence to increase the data quality in order to provide a reliable basis for high-level

decisions and process optimizations. The presented modelsand filtering schemes have the main

advantage that they abstract from the technology layer towards a more general view. Although

the individual models might require slight adaptations to consider new technological aspects,

we are confident that the fundamental ideas and mechanisms provide a general and technology

independent framework.
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7.2 Outlook

Beyond the goal of increasing the data accuracy in RFID systems, we believe that the devel-

oped models can be used as basis for an in-depth analysis and monitoring of RFID driven supply

chains. Possible applications range from intelligent replenishment reports over accurate order

management to the efficiency analysis of individual processing steps. In this context, we see in-

teresting research challenges for the data mining community to extract relevant information from

the collected data and draw conclusions from a series of observations.

Similarly, the probabilistic top-down interpretation of RFID systems can be the starting point for

the design of smart, interactive processes. By introducinga feedback loop that provides immediate

information to the user, processes in manufacturing and logistics can be optimized to increase the

flexibility and efficiency. For this reason, Artificial Intelligence and Machine Learning concepts

are required which can interpret the gathered data to formulate an adequate feedback.

Regarding the characterization of individual readpoints,fundamental research is required to estab-

lish a theory for the tag detection process under different environmental conditions and readpoint

setups. Despite the fact that detailed channel models and simulation environments are available,

the design of an RFID system is still dominated by extensive experiments and a trial-and-error

characteristic. This is mainly due to the fact that available simulators face a considerable compu-

tational complexity and hence cannot be directly used to simulate practically relevant scenarios.

On the hardware layer, we expect that advanced reader and antenna systems will provide interest-

ing new features such as antenna beamforming, switching polarization, advanced anti-collision

schemes and additional sensing capabilities. Consideringthe flexibility of the presented concepts,

future research should specifically consider the technological advances to further improve the data

accuracy and enable new application ideas.
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A.1 PRISE - Example configuration file

1 <?xml version="1.0" encoding="UTF-8"?>

2 <ProjectConfiguration>

3 <ProcessModel>

4 <Name>MyProcess</Name>

5 <NumberOfStates>1</NumberOfStates>

6 <StateDescriptions>

7 <State Description="State 1"/>

8 </StateDescriptions>

9 <ContinuousTimeMarkovChain>

10 <InitialProbabilities>

11 <pi0>1</pi0>

12 </InitialProbabilities>

13 <DwellTimes>

14 <t0>3600</t0>
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15 </DwellTimes>

16 <TransitionProbabilities>

17 <r0>

18 <c00>1</c00>

19 </r0>

20 </TransitionProbabilities>

21 </ContinuousTimeMarkovChain>

22 <SensorModel>

23 <r0>

24 <c00>0</c00>

25 </r0>

26 </SensorModel>

27 </ProcessModel>

28 <Sites>

29 <Site>

30 <Name>State 1</Name>

31 <Comment></Comment>

32 <Readers>

33 <RfidReader>

34 <Identifier>State 1_Reader_1</Identifier>

35 <DefectProbability>0</DefectProbability>

36 <Dimensions x="0.5" y="0.5" z="0.05"/>

37 <Location x="0" y="0" z="0"/>

38 <Sensitivity>9.03361e-12</Sensitivity>

39 <InitialQ>3</InitialQ>

40 <OperationMode>Miller 2</OperationMode>

41 <DataRate>80000</DataRate>

42 <Tari>10e-06</Tari>

43 <Antennas>

44 <Antenna>

45 <Identifier>A000</Identifier>

46 <Type>Directional3050</Type>

47 <DefectProbability>0</DefectProbability>

48 <AntennaImpedance Real="50" Imag="0"/>

49 <Dimensions x="0.7" y="0.35" z="0.15"/>
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50 <Location x="0" y="1" z="1"/>

51 <LookAt x="0" y="0" z="-1"/>

52 <RfPower>0.1</RfPower>

53 </Antenna>

54 </Antennas>

55 <Cables>

56 <Cable>

57 <CableType>RG58</CableType>

58 <CableLength>2</CableLength>

59 <Attenuation>20</Attenuation>

60 </Cable>

61 </Cables>

62 </RfidReader>

63 </Readers>

64 <Sensors/>

65 </Site>

66 </Sites>

67 <Trajectories>

68 <Trajectory>

69 <Name>State 1_t</Name>

70 <Velocity>0.0001</Velocity>

71 <Variance>0</Variance>

72 <waypoint x="-0.005" y="1" z="0.75" yaw="0" pitch="0"

roll="0"/>

73 <waypoint x="0.005" y="1" z="0.75" yaw="0" pitch="0"

roll="0"/>

74 </Trajectory>

75 </Trajectories>

76 <SimulationParameters>

77 <SimulationEndTime>72000</SimulationEndTime>

78 <SimulationTimeResolution>0.001</

SimulationTimeResolution>

79 </SimulationParameters>

80 <ItemTemplates>

81 <ItemTemplate>
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82 <TemplateName>Box</TemplateName>

83 <NumberOfItems>1</NumberOfItems>

84 <IdentifierPrefix>Item</IdentifierPrefix>

85 <Dimensions x="0.4" y="0.4" z="0.005"/>

86 <Tags min="5" max="5"/>

87 <TagIdentifierPrefix>Tag</TagIdentifierPrefix>

88 </ItemTemplate>

89 </ItemTemplates>

90 </ProjectConfiguration>

Listing A.1: Example configuration file
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[27] M. Büttner and D. Wetherall. An empirical study of UHF RFID performance. InProc.
ACM MobiCom, pages 223–234, 2008.

116



Bibliography

[28] S. Caizzone and G. Marrocco. RFID grids: Part II–experimentations.Trans. Antennas and
Propagation, 59(8):2896–2904, 2011.

[29] L. Catarinucci, D. De Donno, M. Guadalupi, F. Ricciato,and L. Tarricone. Performance
analysis of passive UHF RFID tags with GNU-radio. InProc. IEEE APS/URSI, pages
541–544, 2011.

[30] H. Chen, W.-S. Ku, H. Wang, and M.-T. Sun. Leveraging spatio-temporal redundancy for
RFID data cleansing. InProc. ACM SIGMOD, pages 51–62, 2010.

[31] X. Chen, F. Lu, and T. Ye. Mutual coupling of stacked UHF RFID antennas in NFC
applications. InProc. IEEE APS/URSI, pages 1–4, 2009.

[32] T. Cheng and L. Jin. Analysis and simulation of RFID anti-collision algorithms. InProc.
IEEE ACT, volume 1, pages 697–701, 2007.

[33] B.-S. Choi, J.-W. Lee, J.-J. Lee, and K.-T. Park. A hierarchical algorithm for indoor mobile
robot localization using RFID sensor fusion.Trans. Industrial Electronics, 58(6):2226–
2235, 2011.

[34] J. S. Choi, H. K. Kang, J. E. Jung, J. E. Kim, and D. H. Lee. Impact of operating frequency
on passive UHF RFID based localization system. InProc. IEEE ICWITS, 2012.

[35] J. S. Choi, M. Kang, R. Elmasri, and D. W. Engels. Investigation of impact factors for
various performances of passive UHF RFID system. InProc. IEEE RFID-TA, pages 152–
159, 2011.

[36] J. S. Choi, B. R. Son, H. J. Park, and D. H. Lee. Consideration for performance of pas-
sive UHF far-field RFID tag to tag interference based localization system. InProc. IEEE
ICWITS, 2012.

[37] H.-T. Chou, S.-P. Liang, and S.-Y. Wei. Characteristicexamination of RFID tag implemen-
tation on a vehicle outer surface. InProc. IEEE ICWITS, 2012.

[38] G. Cicirelli, A. Milella, and D. Di Paola. RFID tag localization by using adaptive neuro-
fuzzy inference for mobile robot applications.Industrial Robot: An International Journal,
39(4):340–348, 2012.

[39] R. H. Clarke, D. Twede, J. R. Tazelaar, and K. K. Boyer. Radio frequency identification
(RFID) performance: The effect of tag orientation and package contents.Packaging Tech-
nology and Science, 19(1):45–54, 2006.

[40] V. Derbek, C. Steger, R. Weiß, D. Wischounig, J. Preishuber-Pflügl, and M. Pistauer. Sim-
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