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Quellen wörtlich und inhaltlich entnommene Stellen als solche kenntlich gemacht
habe.

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used other
than the declared sources/resources, and that I have explicitly marked all material
which has been quoted either literally or by content from the used sources.

Graz, December 2013 ...........................
(signature)





iii

Abstract

Human cognition is believed to emerge in complex networks of neurons in the brain.
Recent findings in cognitive science have demonstrated that many aspects of cogni-
tion and behavior are inherently variable, and can be well explained by stochastic
models. Moreover, it has been suggested that such stochastic behavior may be un-
derstood on a rational basis as the footprint of efficient stochastic algorithms that
are carried out in the brain, such as sample-based inference on high-dimensional
and often incomplete and ambiguous inputs, stochastic memory search, and sample-
based autonomous learning of a statistically optimized internal model of the envi-
ronment. The neural basis of these processes, however, remains largely unknown.
This thesis investigates how stochastic algorithms such as Markov Chain Monte
Carlo, sample-based inference, stochastic search, and autonomous model optimiza-
tion, could emerge in networks of spiking neurons on the implementation level.

First, a general theoretical framework for understanding stochastic computa-
tions in biological networks of spiking neurons is developed. It is proved that under
mild conditions every stochastic network of spiking neurons has, for any given input,
a unique stationary distribution of network states. On the basis of this result, a
framework is proposed for storing and representing complex knowledge in the form
of probability distributions over network states. The retrieval of information in this
framework occurs in a sample-based manner such that the state of the network at
any moment represents a sample from a stored probability distribution. This estab-
lishes a link between realistic neural network dynamics and Markov Chain Monte
Carlo sampling, and a theoretical foundation for the hypothesis that the brain
stores, represents and processes knowledge in the form of probability distributions.

Second, it is shown how specific knowledge can be programmed in this framework
into a network of spiking neurons through the use of simple circuit motifs. In
particular, it is demonstrated how hard constraint satisfaction and optimization
problems can be encoded in networks of spiking networks, such that the intrinsic
network dynamics automatically generates valid solutions through stochastic search.

Third, it is considered how neuronal plasticity could enable networks of stochas-
tic spiking neurons to acquire an optimized internal model of their high-dimensional
spike input streams. In networks of neurons organized in winner-take-all (WTA)
circuits, a salient circuit motif in the brain, the emergence of sample-based infer-
ence and statistically optimal learning is linked to a biologically well-known plas-
ticity mechanism: spike-timing-dependent plasticity (STDP). Furthermore, using
machine learning methods it is shown that the interplay of STDP and another
experimentally reported form of plasticity, intrinsic homeostatic plasticity, allows
WTA circuits to process and learn from arbitrary input spike streams in a near-
optimal Bayesian manner.
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Zusammenfassung

Menschliche Kognition entsteht, so wird vermutet, in komplexen neuronalen Netz-
werken im Gehirn. Neueste Erkenntnisse in den Kognitionswissenschaften legen
nahe, dass viele Aspekte von menschlichem Verhalten von Natur aus variabel sind,
und mittels stochastischer Modelle erklärt werden können. Außerdem wurde vorge-
schlagen, dass manch stochastisches Verhalten auf rationaler Grundlage als “Fußab-
druck” effizienter stochastischer Algorithmen im Gehirn verstanden werden kann,
wie beispielsweise sample-basierte Inferenz auf hochdimensionalen und oft unvoll-
ständigen und mehrdeutigen Eingabesignalen, stochastische Suche, und autonomes
Lernen eines statistisch optimierten internen Modells der Umgebung. Die neuro-
nale Grundlage dieser Prozesse ist jedoch noch weitgehend unbekannt. Diese Ar-
beit untersucht, wie stochastische Algorithmen wie Markov Chain Monte Carlo,
sample-basierte Inferenz, stochastische Suche und sample-basierte autonome Model-
loptimierung, in neuronalen Netzwerken auf der Implementierungsebene entstehen
können.

Zuerst wird ein allgemeiner theoretischer Rahmen für das Verständnis stochas-
tischer Berechnungen in biologischen neuronalen Netzwerken entwickelt. Es wird
bewiesen, dass unter milden Bedingungen jedes stochastische neuronale Netz für
ein gegebenes Eingabesignal eine eindeutige stationäre Verteilung von Netzwerk-
zuständen besitzt. Auf der Grundlage dieses Ergebnisses wird ein Rahmen für die
Speicherung und Darstellung komplexen Wissens in Form von Wahrscheinlichkeits-
verteilungen über Netzwerkzustände vorgeschlagen. Der Abruf von Informationen
in diesem Rahmen erfolgt in einer sample-basierten Art, sodass der Zustand des
Netzwerkes zu jedem Zeitpunkt eine Probe (ein sample) von einer gespeicherten
Wahrscheinlichkeitsverteilung darstellt. Dies stellt eine Verbindung zwischen rea-
listischer neuronaler Netzwerkdynamik und Markov Chain Monte Carlo sampling
her, und liefert eine theoretische Grundlage für die Hypothese, dass das Gehirn
Wissen in Form von Wahrscheinlichkeitsverteilungen speichert, repräsentiert und
verarbeitet.

Zweitens wird gezeigt, wie spezifisches Wissen in diesem Rahmen in einem Netz-
werk von Spiking Neuronen durch die Verwendung von einfachen Schaltungsmoti-
ven programmiert werden kann. Insbesondere wird gezeigt, wie schwere Constraint
Satisfaction und Optimierungsprobleme in Netzwerken von Spiking Neuronen ko-
diert werden können, sodass die intrinsische Netzwerkdynamik automatisch gültige
Lösungen durch stochastische Suche erzeugt.

Drittens wird untersucht, wie neuronale Plastizität es Netzwerken von stochas-
tischen Neuronen ermöglichen könnte, ein optimiertes internes Modell von hoch-
dimensionalen Spiking Eingangssignalen zu bilden. In Netzwerken von Neuronen,
welche in winner-take-all (WTA)-Schaltungen organisiert sind, ein häufiges Schal-
tungsmotiv im Gehirn, wird eine Beziehung zwischen sample-basierter Inferenz und
statistisch optimalem Lernen auf der einen Seite, und einem biologisch bekannten
Plastizitätsmechanismus, spike-timing-dependent plasticity (STDP), auf der ande-
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ren Seite, geknüpft. Darüber hinaus wird mit Methoden des maschinellen Lernens
gezeigt, dass das Zusammenspiel von STDP und einer weiteren Form von experi-
mentell beobachteter Plastizität, homöostatischer intrinsischer Plastizität, es WTA-
Schaltungen ermöglicht, auf nahezu optimale Weise beliebige Spiking Eingangssi-
gnale zu verarbeiten und von diesen zu lernen.
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Chapter 1

Introduction

The human brain is arguably the most remarkable achievement of evolution. To
master the challenges of life, evolution has equipped the brain with billions of
densely packed nerve cells, called neurons. These neurons communicate via short
electrical pulses, called action potentials or spikes, that are transmitted along thin
biological wires, called axons, and passed on to other neurons through trillions of
synaptic connections. In this manner, neurons form massively complex and finely
tuned networks that are believed to lend us our cognitive abilities, from perception,
emotion, fine motor control, to conscious thought and complex problem solving.

Computational neuroscience – a relatively young and highly interdisciplinary re-
search field – has set out to quantitatively understand how networks of neurons in
the brain process information and compute with it: how they process and integrate
sensory input from various sensory modalities (visual, auditory, tactile, etc.), how
they store and retrieve memories and experience, how they generate motor plans
and direct muscle movements, and, ultimately, how they give rise to higher cogni-
tive functions. A natural way to contribute to these questions from the perspective
of computer science is to identify footprints of algorithms and representations that
underlie neural processing in the brain. A major challenge inherent in this ap-
proach is that computations appear to be organized quite differently in networks of
neurons than in computers. For example, unlike synchronous signaling in modern
digital computers, neurons compute and emit spikes in an inherently asynchronous
manner (Gerstner and Kistler, 2002), without a global clock that centrally coor-
dinates communication. Furthermore, information processing in the brain occurs
in an inherently parallel manner, in contrast to the sequential (or weakly parallel)
organization of information processing in computers.

Among the many peculiarities of biological neural networks, which make them
rather unlikely computing devices from the perspective of digital computing, one of
the most fundamental and remarkable features is the amazing abundance of stochas-
ticity and noise involved in neural processing. As a recent review of the literature
concluded, “Noise is an inescapable consequence of brains operating with molecular
components at the nanometer scale, sensors that are sensitive to individual quanta
and complex networks of noisy neurons that generate behavior” (Faisal et al., 2008).
Indeed, numerous experimental data highlight inherently stochastic aspects of neu-
rons, synapses and networks of neurons on virtually all spatial and temporal scales
that have been examined (Allen and Stevens, 1994; Faisal et al., 2008; Borst, 2010;
Yarom and Hounsgaard, 2011; Clarke, 2012). The fact that noise and random vari-
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ability are present at microscopic scales is of little surprise due to the inherently
stochastic quantum-mechanical nature of molecular interactions. However, in con-
trast to most macroscopic physical systems which are sufficiently well described
by deterministic laws, in the brain variability appears to be a phenomenon that is
maintained across scales: it is observed in single neurons and synapses, in response
properties of neuronal populations, and in behavior.

Given that the evolution of the brain has taken place over millions of years,
it is unlikely that such prominent phenomenon is an undesired feature of neural
computation. In fact, is it possible that stochasticity plays some integral role in the
information processing strategy employed by the nervous system? Consistent with
such hypothesis, a closer look suggests that the amount of variability is sophisti-
cally controlled by the brain. On the molecular scale, for example, neurotransmitter
release is a basically stochastic process. Curiously, the reliability of neurotransmit-
ter release is considerably different from synapse to synapse (Branco and Staras,
2009): It is very reliable in some synapses and highly unreliable in others. Even in
a single synapse the release probability appears to be adapted dynamically through
complex feedback mechanisms. Also in neuronal response properties the level of
variability is not a static quantity. A basic phenomenon that has been observed,
for example, is that variability is significantly reduced at the onset of a new sensory
stimulus (Churchland et al., 2010). Finally, also on the behavioral level variability
appears to be sophistically regulated. In motor control experiments, for instance,
motor variability in human subjects is observed to be significantly reduced in tasks
that demand high precision movements (Selen et al., 2006). And more generally,
task-relevant variables appear to be controlled by human subjects with considerably
higher precision than task-irrelevant variables (Latash et al., 2001; Valero-Cuevas
et al., 2009).

The above examples indicate that variability can, in principle, be up- and down-
regulated by the brain. This raises an important question: In situations where
variability is not down-regulated, what could its functional role in human behavior
be?

One clue may come from how the brain interprets incomplete or ambiguous
sensory input, and infers hidden causes of observations. From a computer sci-
ence perspective, there exist basically two fundamentally different algorithmic ap-
proaches to perform inference on ambiguous data (in the context of a prior knowl-
edge base): deterministic algorithms based on belief propagation or variational
methods, and stochastic algorithms based on Markov Chain Monte Carlo (MCMC)
sampling (Bishop, 2006). Algorithms from these two classes can be distinguished
quite easily through their properties in response to ambiguous input: belief propa-
gation or variational methods will provide a deterministic and stable result in the
form of analog probabilities for each interpretation (e.g. 50%/50% in an ambiguous
case with two equally likely interpretations). MCMC, on the other hand, will pro-
vide a sequence of samples which are, in the long run, distributed according to these
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probabilities. In particular, each sample in MCMC votes for an interpretation of
the data. Hence, in the example of two ambiguous interpretations, roughly an equal
number of samples produced by MCMC will vote for either percept. Since sam-
ples are constructed in a sequential manner through local stochastic perturbations,
switches between the interpretations occur in a stochastic manner. Curiously, the
dynamics by which MCMC generates possible interpretations through stochastic
perturbations appears to be very closely related to how humans respond to the pre-
sentation of ambiguous stimuli: the percept of an ambiguous image switches forth
and back between the two coherent interpretations. This (and a number of related
findings) has led cognitive scientists and neuroscientists to propose that one possible
use of stochasticity in the brain could be to support sample-based representations
of probability distributions and, in particular, sample-based inference (Gershman
et al., 2009; Fiser et al., 2010).

A closely related proposal regarding the functional role of variability is that
variable responses reflect an ongoing stochastic search process. For example, when
asked to search their memory for as many words as they can in a given category
(such as animals), humans produce a sequence of words in an apparently random
fashion. The thinking time between two words, however, is significantly increased
if the words are less related to another (i.e. the thinking time is longer between cat
and elephant than between cat and dog). This has been taken as evidence for a
stochastic search model of memory retrieval, according to which new words are gen-
erated internally by a random walk on structured semantic memory representations
(Austerweil et al., 2012).

Finally, variability may also have important functional roles during human learn-
ing. This has been well-known in the context of human reinforcement learning (Daw
et al., 2006). But recent studies have also begun to investigate potential roles of
variability during unsupervised, autonomous learning. In the context of children’s
cognitive development, for example, it has been suggested that children’s learn-
ing dynamics are indicative of a “stochastic search at two levels of abstraction –
an outer loop in the space of theories, and an inner loop in the space of explana-
tions or models generated by each theory given a particular dataset – in order to
discover the theory that best explains the observed data.” (Ullman et al., 2010).
In the proposed model, stochastic, sample-based representations of sensory inter-
pretations are therefore considered to play an integral role during the acquisition
and maintenance of an internal model of the environment. Notably, this idea has
also been tested recently in experimental neuroscience: indeed, a highly influential
(and also controversial) study appears to have found first indirect evidence for the
hypothesis that autonomous learning of internal models of the environment occurs
through an ongoing refinement of stochastic, sample-based representations in neural
circuits (Berkes et al., 2011).

It is intriguing that some of the most powerful cognitive abilities of humans, such
as inference, memory search or maintenance of an internal model of the environment,
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appear to rely fundamentally on stochasticity. At least on the level of behavioral
data, the brain seems to exploit stochasticity in a very similar way as powerful
algorithms from computer science do. While much progress has been made on
the behavioral level, the neural basis of these processes remains largely unknown.
Shedding light on how these processes could be implemented in networks of neurons
in the brain therefore constitutes an exciting challenge for future research.

The goal of this thesis is to provide some of the many missing pieces of the puz-
zle, in particular regarding the question how behaviorally relevant computations
such as sample-based inference and stochastic search, as well as autonomous model
optimization and learning, could arise in networks of stochastic spiking neurons,
in an inherently parallel and asynchronous manner. This thesis contributes to the
theoretical understanding of stochastic computations and learning in networks of
spiking neurons in three ways. First, a general theoretical framework for the emer-
gence of stochastic knowledge representations in realistic biological networks with
noise is developed. This provides, in particular, a rigorous theoretical foundation
for the hypothesis that knowledge is stored in brain in the form of probability dis-
tributions which can be accessed in a sample-based manner. Second, it is shown
how specific knowledge can be encoded within this framework in networks of spik-
ing neurons through the use of simple circuit motifs. By this means, networks of
spiking neurons acquire the capability to solve hard constraint satisfaction and op-
timization problems through stochastic search. Third, it is shown how stochastic
neural circuits organized in winner-take-all (WTA) circuits, a common circuit mo-
tif in cortex, can learn to form efficient internal models of their high-dimensional
input streams in a completely unsupervised manner through biologically plausible
learning mechanisms.

1.1 Organization of the Thesis

The results of this thesis are presented in the form of four paper manuscripts which
were written in collaboration with my supervisor, Wolfgang Maass, and my col-
leagues Johannes Bill, Zeno Jonke, Bernhard Nessler and Helmut Puhr. These
manuscripts were based, to a major extent, on theoretical findings I made dur-
ing my PhD studies. The manuscripts are organized such that the main findings
are presented in a relatively concise format. Supporting information, as well as
derivations and proofs, can be found in the Appendix. Acknowledgments of my
collaborator’s contributions to the manuscripts can be found at the end of each
Chapter.

In Chapter 2 a new stochastic computing paradigm for networks of spiking neu-
rons is developed, that is based on the observation that neurons are inherently
stochastic. It is shown that the dynamics of noisy biological spiking networks with
virtually arbitrarily complex dynamics including short term plasticity, non-linear
dendritic computations, and arbitrary shapes of post-synaptic potentials, can be
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viewed as a sampling process from a stationary distribution of network states.
In this manner, a link between realistic biological neural network dynamics and
well-known Markov Chain Monte Carlo algorithms is established, that integrates
previous, more specific findings of (Buesing et al., 2011; Pecevski et al., 2011) in a
more general context. The theoretical basis for this link is a set of mathematical
proofs which guarantee exponential ergodicity of the network dynamics under a
wide range of input scenarios and otherwise very mild conditions. This provides
the foundation of a generic framework for storing and representing complex knowl-
edge in the form of probability distributions over network states. The retrieval of
information occurs in a sampled-based manner: the state of the network at any
moment represents a sample from a stored probability distribution. This allows
various inference tasks on stored probability distributions, such as marginalization
or marginal maximum a-posteriori estimation, to be carried out by simple readout
operations. Altogether, this work provides a rigorous theoretical foundation for the
hypothesis that the brain stores, represents and processes information in the form
of probability distributions.

In Chapter 3 it is investigated how this new stochastic computing paradigm
can be put to use to solve difficult computational problems with spiking networks.
It is shown how problem specific knowledge and constraints can be programmed
into a network of spiking neurons using simple circuit motifs. Through its inherent
stochastic dynamics, the network searches and identifies solutions which meet the
problem constraints. The underlying theoretical principle of the approach is to con-
struct a circuit such that the relative occurrence of a network state x is inversely
related to the number of problem constraints violated by x. Hence, network states x
which correspond to correct solutions occur particularly often. Applications of this
principle are demonstrated for satisfiability (3-SAT) and planning problems (Trav-
eling Salesman Problem).

In Chapter 4 it is addressed how stochastic microcircuits in the cortex can learn
to optimally integrate information from many unreliable sources in a Bayesian man-
ner. It is shown that neurons organized in winner-take-all circuits, a common circuit
motif in the brain, can efficiently learn to extract and represent hidden causes of
their high-dimensional inputs through a biologically plausible learning mechanism,
spike-timing-dependent plasticity (STDP). In particular, STDP is shown to sup-
port the emergence of optimal decoding of input population codes in such stochas-
tic winner-take-all networks. The basis for this result is a theoretical link between
STDP and an online version of the powerful Expectation Maximization algorithm
in a generative mixture model with Poisson distributed observations, which extends
and generalizes previous work by (Nessler et al., 2010). Poisson distributions are
particularly relevant in cortex, since they are often a good model for spike train
variability. Variants of the theoretically derived STDP rule for Poisson distributed
inputs can be shown to implement Bayes-optimal plasticity when observations are
distributed according to other exponential family distributions, such as Gamma
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or Gaussian distributions. Altogether, these results show how STDP, arguably
one of the most important plasticity mechanisms in cortex, could support optimal
(Bayesian) decoding of input streams in cortical microcircuits for a wide range of
input distributions.

Chapter 5 builds on the learning approach of Chapter 4 and investigates how
synaptic plasticity rules (such as STDP) could interact with homeostatic plastic-
ity, another prominent plasticity mechanism in the brain, from the perspective of
statistically optimal learning. Among other benefits, it is shown that the interplay
of synaptic plasticity and intrinsic homeostatic plasticity allows WTA circuits to
process and learn from arbitrary input spike streams in a near-optimal Bayesian
manner, thus extending the scope of the theoretical learning approach of Chapter 4
to a much wider range of input statistics.
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Experimental data from neuroscience suggest that a substantial amount of
knowledge is stored in the brain in the form of probability distributions over network
states and trajectories of network states. We provide a theoretical foundation for
this hypothesis by showing that even very detailed models for cortical microcircuits,
with data-based diverse nonlinear neurons and synapses, have a stationary distribu-
tion of network states and trajectories of network states to which they converge ex-
ponentially fast from any initial state. We demonstrate that this convergence holds
in spite of the non-reversibility of the stochastic dynamics of cortical microcircuits.
We further show that, in the presence of background network oscillations, separate
stationary distributions emerge for different phases of the oscillation, in accordance
with experimentally reported phase-specific codes. We complement these theoret-
ical results by computer simulations that investigate resulting computation times
for typical probabilistic inference tasks on these internally stored distributions, such
as marginalization or marginal maximum-a-posteriori estimation. Furthermore, we
show that the inherent stochastic dynamics of generic cortical microcircuits enables
them to quickly generate approximate solutions to difficult constraint satisfaction
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problems, where stored knowledge and current inputs jointly constrain possible
solutions. This provides a powerful new computing paradigm for networks of spik-
ing neurons, that also throws new light on the way how networks of neurons in the
brain could carry out complex computational tasks such as prediction, imagination,
memory recall and problem solving.

2.1 Introduction

The question whether brain computations are inherently deterministic or inherently
stochastic is obviously of fundamental importance. Numerous experimental data
highlight inherently stochastic aspects of neurons, synapses and networks of neu-
rons on virtually all spatial and temporal scales that have been examined (Allen
and Stevens, 1994; Faisal et al., 2008; Borst, 2010; Yarom and Hounsgaard, 2011;
Clarke, 2012). A clearly visible stochastic feature of brain activity is the trial-to-
trial variability of neuronal responses, which also appears on virtually every spatial
and temporal scale that has been examined (Faisal et al., 2008). This variability
has often been interpreted as side-effect of an implementation of inherently deter-
ministic computing paradigms with noisy elements, and it has been attempted to
show that the observed noise can be eliminated through spatial or temporal averag-
ing. However, more recent experimental methods, which make it possible to record
simultaneously from many neurons (or from many voxels in fMRI), have shown
that the underlying probability distributions of network states during spontaneous
activity are highly structured and multimodal, with distinct modes that resemble
those encountered during active processing. This has been shown through record-
ings with voltage-sensitive dyes starting with (Tsodyks et al., 1999; Kenet et al.,
2003), multi-electrode arrays (Luczak et al., 2009), and fMRI (Raichle, 2010; Lewis
et al., 2009). It was also shown that the intrinsic trial-to-trial variability of brain
systems is intimately related to the observed trial-to-trial variability in behavior
(see e.g. (Fox et al., 2007)). Furthermore, in (Kelemen and Fenton, 2010) it was
shown that during navigation in a complex environment where simultaneously two
spatial frames of reference were relevant, the firing of neurons in area CA1 rep-
resented both frames in alternation, so that coactive neurons tended to relate to
a common frame of reference. In addition it has been shown that in a situation
where sensory stimuli are ambiguous, large brain networks switch stochastically
between alternative interpretations or percepts, see (Leopold and Logothetis, 1996,
1999; Kim and Blake, 2005). Furthermore, an increase in the volatility of network
states has been shown to accompany episodes of behavioral uncertainty (Karlsson
et al., 2012). All these experimental data point to inherently stochastic aspects
in the organization of brain computations, and more specifically to an important
computational role of spontaneously varying network states of smaller and larger
networks of neurons in the brain. However, one should realize that the approach
to stochastic computation that we examine in this article does not postulate that
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all brain activity is stochastic or unreliable, since reliable neural responses can be
represented by probabilities close to 1.

The goal of this article is to provide a theoretical foundation for understanding
stochastic computations in networks of neurons in the brain, in particular also
for the generation of structured spontaneous activity. To this end, we prove here
that even biologically realistic models C for networks of neurons in the brain have
– for a suitable definition of network state – a unique stationary distribution pC

of network states. Previous work had focused in this context on neuronal models
with linear sub-threshold dynamics (Brémaud and Massoulié, 1996; Borovkov et al.,
2012) and constant external input (e.g. constant input firing rates). However, we
show here that this holds even for quite realistic models that reflect, for example,
data on nonlinear dendritic integration (dendritic spikes), synapses with data-based
short term dynamics (i.e., individual mixtures of depression and facilitation), and
different types of neurons on specific laminae. We also show that these results are
not restricted to the case of constant external input, but rather can be extended to
periodically changing input, and to input generated by arbitrary ergodic stochastic
processes.

Our theoretical results imply that virtually any data-based model C, for net-
works of neurons featuring realistic neuronal noise sources (e.g. stochastic synaptic
vesicle release) implements a Markov process through its stochastic dynamics. This
can be interpreted – in spite of its non-reversibility – as a form of sampling from
a unique stationary distribution pC . One interpretation of pC , which is in princi-
ple consistent with our findings, is that it represents the posterior distribution of
a Bayesian inference operation (Hoyer and Hyvärinen, 2003; Berkes et al., 2011;
Buesing et al., 2011; Pecevski et al., 2011), in which the current input (evidence)
is combined with prior knowledge encoded in network parameters such as synaptic
weights or intrinsic excitabilities of neurons (see (Friston, 2010; Vilares and Kord-
ing, 2011; Fiser et al., 2010; Doya et al., 2007) for an introduction to the “Bayesian
brain”). This interpretation of neural dynamics as sampling from a posterior dis-
tribution is intriguing, as it implies that various results of probabilistic inference
could then be easily obtained by a simple readout mechanism: For example, pos-
terior marginal probabilities can be estimated (approximately) by observing the
number of spikes of specific neurons within some time window (see related data
from parietal cortex (Huk and Shadlen, 2005)). Furthermore, an approximate max-
imal a posteriori (MAP) inference can be carried out by observing which network
states occur more often, and/or are more persistent.

A crucial issue which arises is whether reliable readouts from pC in realistic
cortical microcircuit models can be obtained quickly enough to support, e.g., fast
decision making in downstream areas. This critically depends on the speed of
convergence of the distribution of network states (or distribution of trajectories of
network states) from typical initial network states to the stationary distribution.
Since the initial network state of a cortical microcircuit C depends on past activity,
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it may often be already quite “close” to the stationary distribution when a new
input arrives (since past inputs are likely related to the new input). But it is also
reasonable to assume that the initial state of the network is frequently unrelated
to the stationary distribution pC , for example after drastic input changes. In this
case the time required for readouts depends on the expected convergence speed
to pC from – more or less – arbitrary initial states. We show that one can prove
exponential upper bounds for this convergence speed. But even that does not
guarantee fast convergence for a concrete system, because of constant factors in
the theoretical upper bound. Therefore we complement this theoretical analysis of
the convergence speed by extensive computer simulations for cortical microcircuit
models.

The notion of a cortical microcircuit arose from the observation that “it seems
likely that there is a basically uniform microcircuit pattern throughout the neo-
cortex upon which certain specializations unique to this or that cortical area are
superimposed” (Mountcastle, 1998). This notion is not precisely defined, but rather
a term of convenience: It refers to network models that are sufficiently large to
contain examples of the main types of experimentally observed neurons on spe-
cific laminae, and the main types of experimentally observed synaptic connections
between different types of neurons on different laminae, ideally in statistically rep-
resentative numbers (Douglas and Martin, 2004). Computer simulations of cortical
microcircuit models are practically constrained both by a lack of sufficiently many
consistent data from a single preparation and a single cortical area, and by the avail-
able computer time. In the computer simulations for this article we have focused on
a relatively simple standard model for a cortical microcircuit in the somatosensory
cortex (Haeusler and Maass, 2007) that has already been examined in some vari-
ations in previous studies from various perspectives (Haeusler et al., 2009; Rasch
et al., 2011; Potjans and Diesmann, 2012; Bastos et al., 2012).

We show that for this standard model of a cortical microcircuit marginal prob-
abilities for single random variables (neurons) can be estimated through sampling
even for fairly large instances with 5000 neurons within a few 100 ms of simulated
biological time, hence well within the range of experimentally observed computation
times of biological organisms. The same holds for probabilities of network states for
small sub-networks. Furthermore, we show that at least for sizes up to 5000 neurons
these “computation times” are virtually independent of the size of the microcircuit
model.

We also address the question to which extent our theoretical framework can be
applied in the context of periodic input, for example in the presence of background
theta oscillations (Dragoi and Buzsaki, 2006). In contrast to the stationary input
case, we show that the presence of periodic input leads to the emergence of unique
phase-specific stationary distributions, i.e., a separate unique stationary distribution
for each phase of the periodic input. We discuss basic implications of this result
and relate our findings to experimental data on theta-paced path sequences (Dragoi
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and Buzsaki, 2006; Gupta et al., 2012) and bi-stable activity (Jezek et al., 2011) in
hippocampus.

Finally, our theoretically founded framework for stochastic computations in net-
works of spiking neurons also throws new light on the question how complex con-
straint satisfaction problems could be solved by cortical microcircuits (Hinton et al.,
1984; Davenport et al., 1994). We demonstrate this in a toy example for the pop-
ular puzzle game Sudoku. We show that the constraints of this problem can be
easily encoded by synaptic connections between excitatory and inhibitory neurons
in such a way that the stationary distribution pC assigns particularly high proba-
bility to those network states which encode correct (or good approximate) solutions
to the problem. The resulting network dynamics can also be understood as parallel
stochastic search with anytime computing properties: Early network states provide
very fast heuristic solutions, while later network states are distributed according
to the stationary distribution pC , therefore visiting with highest probability those
solutions which violate only a few or zero constraints.

In order to make the results of this article accessible to non-theoreticians we
present in the subsequent Results section our main findings in a less technical formu-
lation that emphasizes relationships to experimental data. Rigorous mathematical
definitions and proofs can be found in Appendix B, which has been structured in the
same way as the following main Results sections in order to facilitate simultaneous
access on different levels of detail.

2.2 Network states and distributions of network states

A simple notion of network state at time t simply indicates which neurons in the
network fired within some short time window before t. For example, in (Berkes
et al., 2011) a window size of 2 ms was selected. However, the full network state
could not be analyzed there experimentally, only its projection onto 16 electrodes
in area V1 from which recordings were made. An important methodological innova-
tion of (Berkes et al., 2011) was to analyze under various conditions the probability
distribution of the recorded fragments of network states, i.e., of the resulting bit
vectors of length 16 (with a “1” at position i if a spike was recorded during the
preceding 2 ms at electrode i). In particular, it was shown that during development
the distribution over these 216 network states during spontaneous activity in dark-
ness approximates the distribution recorded during natural vision. Apart from its
functional interpretation, this result also raises the even more fundamental ques-
tion how a network of neurons in the brain can represent and generate a complex
distribution of network states. This question is addressed here in the context of
data-based models C for cortical microcircuits. We consider notions of network
states y similar to (Berkes et al., 2011) (see the simple state yS(t) in Figure 2.1C)
and provide a rigorous proof that under some mild assumptions any such model C
represents and generates for different external inputs x associated different internal
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distributions pC(y|x) of network states y. More precisely, we will show that for any
specific input x there exists a unique stationary distribution pC(y|x) of network
states y to which the network converges exponentially fast from any initial state.

This result can be derived within the theory of Markov processes on general state
spaces, an extension of the more familiar theory of Markov chains on finite state
spaces to continuous time and infinitely many network states. Another important
difference to typical Markov chains (e.g. the dynamics of Gibbs sampling in Boltz-
mann machines) is that the Markov processes describing the stochastic dynamics of
cortical microcircuit models are non-reversible. This is a well-known difference be-
tween simple neural network models and networks of spiking neurons in the brain,
where a spike of a neuron causes postsynaptic potentials in other neurons - but not
vice versa. In addition, experimental results show that brain networks tend to have
a non-reversible dynamics also on longer time scales (e.g., stereotypical trajectories
of network states (Abeles et al., 1995; Luczak et al., 2007; Buzsáki, 2010; Luczak
and MacLean, 2012)).

In order to prove results on the existence of stationary distributions pC(y|x)
of network states y, one first needs to consider a more complex notion of network
state yM (t) at time t, which records the history of all spikes in the network C since
time t−Θ (see Figure 1C). The window length Θ has to be chosen sufficiently large
so that the influence of spikes before time t − Θ on the dynamics of the network
after time t can be neglected. This more complex notion of network state then
fulfills the Markov property, such that the future network evolution depends on the
past only through the current Markov state. The existence of a window length
Θ with the Markov property is a basic assumption of the subsequent theoretical
results. For standard models of networks of spiking neurons a value of Θ around
100 ms provides already a good approximation of the Markov property, since this
is a typical time during which a post-synaptic potential has a non-negligible effect
at the soma of a post-synaptic neuron. For more complex models of networks of
spiking neurons a larger value of Θ in the range of seconds is more adequate, in
order to accommodate for dendritic spikes or the activation of GABAB receptors
that may last 100 ms or longer, and the short term dynamics of synapses with
time constants of several hundred milliseconds. Fortunately, once the existence of
a stationary distribution is proved for such more complex notion of network state,
it also holds for any simpler notion of network state (even if these simpler network
states do not fulfill the Markov property), that results when one ignores details of
the more complex network states. For example, one can ignore all spikes before
time t − 2 ms, the exact firing times within the window from t − 2 ms to t, and
whether a neuron fired one or several spikes. In this way one arrives back at the
simple notion of network state from (Berkes et al., 2011).

Theorem 1 (Exponentially fast convergence to a stationary distribution)
Let C be an arbitrary model for a network of spiking neurons with stochastic synap-
tic release or some other mechanism for stochastic firing. C may consist of complex
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Figure 2.1: (see next page for Figure caption)
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Figure 2.1: Network states and stationary distributions of network states in a cortical mi-
crocircuit model. A. Data-based cortical microcircuit template from (Haeusler and Maass,
2007); c© 2007 by Oxford University Press, reprinted by permission of the authors and
Oxford University Press. B. A small instantiation of this model consisting of 10 net-
work neurons 1, . . . , 10 and 2 additional input neurons i1, i2. Neurons are colored by type
(blue:input, black:excitatory, red:inhibitory). Line width represents synaptic efficacy. The
synapse from neuron 8 to 7 is removed for the simulation described in E. C. Notions of
network state considered in this article. Markov states are defined by the exact timing of
all recent spikes within some time window Θ, shown here for Θ = 50 ms. Simple states
only record which neurons fired recently (0=no spike, 1=at least one spike within a short
window τ , with τ = 10 ms throughout this figure). D. Empirically measured stationary
distribution of simple network states. Shown is the marginal distribution pC(ỹ|x) for a
subset of three neurons 2,7,8 (their spikes are shown in C in black), under two different
input conditions (input pattern 1: i1 firing at 10 Hz and i2 at 50 Hz, input pattern 2:
i1 at 50 Hz and i2 at 10 Hz). The distribution for each input condition was obtained by
measuring the relative time spent in each of the simple states (0,0,0), . . . , (1,1,1) in a single
long trial (100 s). The zero state (0,0,0) is not shown. E. Effect of removing one synapse,
from neuron 8 to neuron 7, on the stationary distribution of network states (input pattern 1
was presented). F. Illustration of trial-to-trial variability in the small cortical microcircuit
(input pattern 1). Two trials starting from identical initial network states yM (0) are shown.
Blue bars at the bottom of each trial mark periods where the subnetwork of neurons 2,7,8
was in simple state (1,1,1) at this time t. Note that the “blue” initial Markov state is
shown only partially: it is actually longer and comprises all neurons in the network (as in
panel C, but with Θ = 1s). G. Two trials starting from a different (“red”) initial network
state. Red bars denote periods of state (1,1,1) for “red” trials. H. Convergence to the
stationary distribution pC in this small cortical microcircuit is fast and independent of the
initial state: This is illustrated for the relative frequency of simple state (1,1,1) within the
first 300 ms after input onset. The blue/red line shows the relative frequency of simple
state (1,1,1) at each time t estimated from many (105) “blue”/“red” trials. The relative
frequency of simple state (1,1,1) rapidly converges to its stationary value denoted by the
symbol ⊳ (marked also in panels D and E). The relative frequency converges to the same
value regardless of the initial state (blue/red).

multi-compartment neuron models with nonlinear dendritic integration (including
dendritic spikes) and heterogeneous synapses with differential short term dynamics.
We assume that this network C receives external inputs from a set of input neurons
i = 1 . . . N which fire according to Poisson processes at different rates xi(t). The
vector x(t) of input rates can be either constant over time (x(t) ≡ x), or generated
by any external Markov process that converges exponentially fast to a stationary
distribution.

Then there exists a stationary distribution pC(y|x) of network states y, to which
the stochastic dynamics of C converges from any initial state of the network ex-
ponentially fast. Accordingly, the distribution of subnetwork states ỹ of any subset
of neurons converges exponentially fast to the marginal distribution pC(ỹ|x) of this
subnetwork.
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Note that Theorem 1 states that the network embodies not only the joint dis-
tribution pC(y|x) over all neurons, but simultaneously all marginal distributions
pC(ỹ|x) over all possible subsets of neurons. This property follows naturally from
the fact that pC(y|x) is represented in a sample-based manner (Fiser et al., 2010).
As a consequence, if one is interested in estimating the marginal distribution of
some subset of neurons rather than the full joint distribution, it suffices to observe
the activity of the particular subnetwork of interest (while ignoring the remaining
network). This is remarkable insofar, as the exact computation of marginal prob-
abilities is in general known to be quite difficult (even NP-complete (Koller and
Friedman, 2009)).

Theorem 1 requires that neurons fire stochastically. More precisely, a basic as-
sumption required for Theorem 1 is that the network behaves sufficiently stochastic
at any point in time, in the sense that the probability that a neuron fires in an
interval [t, t+ δt) must be smaller than 1 for any t. This is indeed fulfilled by any
stochastic neuron model as long as instantaneous firing rates remain bounded. It
is also fulfilled by any deterministic neuron model if synaptic transmission is mod-
eled via stochastic vesicle release with bounded release rates. Another assumption
is that long-term plasticity and other long-term memory effects have a negligible
impact on the network dynamics on shorter timescales which are the focus of this
article (milliseconds to a few seconds). Precise mathematical definitions of all as-
sumptions and notions involved in Theorem 1 as well as proofs can be found in
Appendix B (see Lemma 2 and 3).

An illustration for Theorem 1 is given in Figure 2.1. We use as our running
example for a cortical microcircuit model C the model of (Haeusler and Maass, 2007)
shown in Figure 2.1A, which consists of three populations of excitatory and three
populations of inhibitory neurons on specific laminae. Average strength of synaptic
connections (measured as mean amplitude of postsynaptic potentials at the soma
in mV, and indicated by the numbers at the arrows in Figure 2.1A) as well as the
connection probability (indicated in parentheses at each arrow as % in Figure 2.1A)
are based in this model on intracellular recordings from 998 pairs of identified
neurons from the Thomson Lab (Thomson et al., 2002). The thickness of arrows in
Figure 2.1A reflects the products of those two numbers for each connection. The
nonlinear short-term dynamics of each type of synaptic connection was modeled
according to data from the Markram Lab (Gupta et al., 2000; Markram et al.,
1998). Neuronal integration and spike generation was modeled by a conductance-
based leaky-integrate-and-fire model, with a stochastic spiking mechanism based on
(Jolivet et al., 2006). See Appendix B for details.

The external input x consists in a cortical microcircuit of inputs from higher
cortical areas that primarily target neurons in superficial layers, and bottom-up
inputs that arrive primarily in layer 4, but also on other layers (details tend to
depend on the cortical area and the species). We model two input streams in a
qualitative manner as in (Haeusler and Maass, 2007). Also background synaptic
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input is modeled according to (Haeusler and Maass, 2007).

Figure 2.1B shows a small instantiation of this microcircuit template consisting
of 10 neurons (we had to manually tune a few connections in this circuit to facilitate
visual clarity of subsequent panels). The impact of different external inputs x
and of a single synaptic connection from neuron 8 to neuron 7 on the stationary
distribution is shown in Figure 2.1D and E, respectively (shown is the marginal
distribution pC(ỹ|x) of a subset of three neurons 2,7 and 8). This illustrates that
the structure and dynamics of a circuit C are intimately linked to properties of its
stationary distribution pC(y|x). In fact, we argue that the stationary distribution
pC(y|x) (more precisely: the stationary distribution pC(y|x) for all relevant external
inputs x) can be viewed as a mathematical model for the most salient aspects of
stochastic computations in a circuit C.

The influence of the initial network state on the first 150 ms of network response
is shown in Figure 2.1F and G for representative trials starting from two different
initial Markov states (blue/red, two trials shown for each). Variability among trials
arises from the inherent stochasticity of neurons and the presence of background
synaptic input. Figure 2.1H is a concrete illustration of Theorem 1: it shows that the
relative frequency of a specific network state (1,1,1) in a subset of the three neurons
2,7 and 8 converges quickly to its stationary value. Furthermore, it converges to
this (same) value regardless of the initial network state (blue/red).

2.3 Stationary distributions of trajectories of network
states

Theorem 1 also applies to networks which generate stereotypical trajectories of net-
work activity (Luczak et al., 2007). For such networks it may be of interest to
consider not only the distribution of network states in a short window (e.g. simple
states with τ = 10 ms, or Θ = 50 ms), but also the distribution of longer trajecto-
ries produced by the network. Indeed, since Theorem 1 holds for Markov states yM

with any fixed window length Θ, it also holds for values of Θ that are in the range of
experimentally observed trajectories of network states (Mazor and Laurent, 2005;
Luczak et al., 2007; Harvey et al., 2012). Hence, a generic neural circuit C auto-
matically has a unique stationary distribution over trajectories of (simple) network
states for any fixed trajectory length Θ. Note that this implies that a neural circuit
C has simultaneously stationary distributions of trajectories of (simple) network
states of various lengths for arbitrarily large Θ, and a stationary distribution of
simple network states. This fact is not surprising if one takes into consideration
that if a circuit C has a stationary distribution over simple network states this
does not imply that subsequent simple network states represent independent draw-
ings from this stationary distribution. Hence the circuit C may very well produce
stereotypical trajectories of simple network states. This feature becomes even more
prominent if the underlying dynamics (the Markov process) of the neural circuit is
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non-reversible on several time scales.

2.4 Extracting knowledge from internally stored distri-

butions

We address two basic types of knowledge extraction from a stationary distribu-
tion pC of a network C: the computation of marginal probabilities and maximal
a posteriori (MAP) assignments. Both computations constitute basic inference
problems commonly appearing in real-world applications (Wainwright and Jordan,
2008), which are in general difficult to solve as they involve large sums, integrals,
or maximization steps over a state space which grows exponentially in the number
of random variables. However, already (Fiser et al., 2010; Buesing et al., 2011)
noted that the estimation of marginal probabilities would become straightforward
if distributions were represented in the brain in a sample-based manner (such that
each network state at time t represents one sample from the distribution). Theo-
rem 1 provides a theoretical foundation for how such a representation could emerge
in realistic data-based microcircuit models on the implementation level: Once the
network C has converged to its stationary distribution, the network state at any
time t represents a sample from pC(y|x) (although subsequent samples are gener-
ally not independent). Simultaneously, the subnetwork state ỹ(t) of any subset of
neurons represents a sample from the marginal distribution pC(ỹ|x). This is par-
ticularly relevant if one interprets pC(y|x) in a given cortical microcircuit C as the
posterior distribution of an implicit generative model, as suggested for example by
(Berkes et al., 2011) or (Buesing et al., 2011; Pecevski et al., 2011).

In order to place the estimation of marginals into a biologically relevant context,
assume that a particular component y1 of the network state y = (y1, . . . , yK) has
a behavioral relevance. This variable y1, represented by some neuron n1, could
represent for example the perception of a particular visual object (if neuron n1 is
located in inferior temporal cortex (Zhang et al., 2011)), or the intention to make
a saccade into a specific part of the visual field (if neuron n1 is located in area LIP
(Shadlen and Newsome, 2001)). Then the computation of the marginal

pC(y1 = 1|x) =
∑

v2∈{0,1},...,vK∈{0,1}

pC(y1 = 1, y2 = v2, . . . , yK = vK |x) (2.1)

would be of behavioral significance. Note that this computation integrates infor-
mation from the internally stored knowledge pC with evidence about a current
situation x. In general this computation is demanding as it involves a sum with
exponentially many terms in the network size K.

But according to Theorem 1, the correct marginal distribution pC(y1|x) is au-
tomatically embodied by the activity of neuron n1. Hence the marginal probability
y1 = 1 can be estimated by simply observing what fraction of time the neuron
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spends in the state y1 = 1, while ignoring the activity of the remaining network
(Buesing et al., 2011). In principle, a downstream neuron could gather this infor-
mation by integrating the spike output of n1 over time.

Marginal probabilities of subpopulations, for example pC(y1 = 1, y2 = 0, y3 =
1|x), can be estimated in a similar manner by keeping track of how much time the
subnetwork spends in the state (1,0,1), while ignoring the activity of the remaining
neurons. A downstream network could gather this information, for example, by
integrating over the output of a readout neuron which is tuned to detect the desired
target pattern (1,0,1).

Notably, the estimation of marginals sketched above is guaranteed by ergodic
theory to converge to the correct probability as observation time increases (due
to Theorem 1 which ensures that the network is an ergodic Markov process, see
Appendix B). In particular, this holds true even for networks with prominent
sequential dynamics featuring, for example, stereotypical trajectories. However,
note that the observation time required to obtain an accurate estimate may be
longer when trajectories are present since subsequent samples gathered from such a
network will likely exhibit stronger dependencies than in networks lacking sequential
activity patterns. In a practical readout implementation where recent events might
be weighed preferentially this could result in more noisy estimates.

Approximate maximal a posteriori (MAP) assignments to small subsets of vari-
ables y1, . . . , ym can also be obtained in a quite straightforward manner. For
given external inputs x, the marginal MAP assignment to the subset of vari-
ables y1, . . . , ym (with some m ≤ K) is defined as the set of values v̂1, . . . , v̂m

that maximize

∑

vm+1∈{0,1},...,vK∈{0,1}

pC(y1 = v̂1, . . . , ym = v̂m, ym+1 = vm+1, . . . , yK = vK |x) .

(2.2)

A sample-based approximation of this operation can be implemented by keeping
track of which network states in the subnetwork n1, . . . , nm occur most often. This
could, for example, be realized by a readout network in a two stage process: first
the marginal probabilities pC(y1 = v̂1, y2 = v̂2, y3 = v̂3|x) of all 23 = 8 subnetwork
states (0, 0, 0), . . . , (1, 1, 1) are estimated (by 8 readout neurons dedicated to that
purpose), followed by the selection of the neuron with maximal probability. The
selection of the maximum could be achieved in a neural network, for example,
through competitive inhibition. Such competitive inhibition would ideally lead
to a winner-take-all function such that the neuron with the strongest stimulation
(representing the variable assignment with the largest probability) dominates and
suppresses all other readout neurons.
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2.5 Estimates of the required computation time

Whereas many types of computations (for example probabilistic inference via the
junction tree algorithm (Wainwright and Jordan, 2008)) require a certain compu-
tation time, probabilistic inference via sampling from an embodied distribution pC

belongs to the class of anytime computing methods, where rough estimates of the
result of a computation become almost immediately available, and are automati-
cally improved when there is more time for a decision. A main component of the
convergence time to a reliable result arises from the time which the distribution of
network states needs to become independent of its initial state y0. It is well known
that both, network states of neurons in the cortex (Arieli et al., 1996) and quick
decisions of an organism, are influenced for a short time by this initial state y0 (and
this temporary dependence on the initial state y0 may in fact have some behavioral
advantage, since y0 may contain information about preceding network inputs, ex-
pectations, etc.). But it has remained unknown, what range of convergence speeds
for inference from pC is produced by common models for cortical microcircuits C.

We address this question by analyzing the convergence speed of stochastic com-
putations in the cortical microcircuit model of (Haeusler and Maass, 2007). A
typical network response of an instance of the cortical microcircuit model compris-
ing 560 neurons as in (Haeusler and Maass, 2007) is shown in Figure 2.2A. We first
checked how fast marginal probabilities for single neurons converge to stationary
values from different initial network Markov states. We applied the same analysis
as in Figure 2.1H to the simple state (τ = 10 ms) of a single representative neuron
from layer 5. Figure 2.2B shows quite fast convergence of the “on”-state probability
of the neuron to its stationary value from two different initial states. Note that this
straightforward method of checking convergence is rather inefficient, as it requires
the repetition of a large number of trials for each initial state. In addition it is not
suitable for analyzing convergence to marginals for subpopulations of neurons (see
Figure 2.2G).

Various more efficient convergence diagnostics have been proposed in the con-
text of discrete-time Markov Chain Monte Carlo theory (Gelman and Rubin, 1992;
Cowles and Carlin, 1996; Brooks et al., 2010; Gjoka et al., 2010). In the following,
we have adopted the Gelman and Rubin diagnostic, one of the standard methods
in applications of MCMC sampling (Gelman and Rubin, 1992). The Gelman Rubin
convergence diagnostic is based on the comparison of many runs of a Markov chain
when started from different randomly drawn initial states. In particular, one com-
pares the typical variance of state distributions during the time interval [t, 2t] within
a single run (within-variance) to the variance during the interval [t, 2t] between dif-
ferent runs (between-variance). When the ratio R̂ of between- and within-variance
approaches 1 this is indicative of convergence. A comparison of panels B and C of
Figure 2.2 shows that in the case of marginals for single neurons this interpretation
fits very well to the empirically observed convergence speed for two different initial
conditions. Various values between 1.02 (Gjoka et al., 2010) and 1.2 (Kass et al.,
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Figure 2.2: (see next page for Figure caption)

1998; Gelman et al., 2004; Brooks et al., 2010) have been proposed in the literature
as thresholds below which the ratio R̂ signals that convergence has taken place.
The shaded region in Figure 2.2C-G corresponds to R̂ values below a threshold
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Figure 2.2: Fast convergence of marginals of single neurons and more complex quantities in
a cortical microcircuit model. A. Typical spike response of the microcircuit model based on
(Haeusler and Maass, 2007) comprising 560 stochastic point neurons. Spikes of inhibitory
neurons are indicated in red. B. Fast convergence of a marginal for a representative layer 5
neuron (frequency of “on”-state, with τ = 10 ms) to its stationary value, shown for two dif-
ferent initial Markov states (blue/red). Statistics were obtained for each initial state from
105 trials. C. Gelman-Rubin convergence diagnostic was applied to the marginals of all
single neurons (simple states, τ = 10 ms). In all neurons the Gelman-Rubin value R̂ drops
to a value close to 1 within a few 100 ms, suggesting generally fast convergence of single
neuron marginals (shown are 20 randomly chosen neurons; see panel E for a summary of all
neurons). The shaded area below 1.1 indicates a range where one commonly assumes that
convergence has taken place. D. Convergence speed of pairwise spike coincidences (simple
states (1,1) of two neurons, 20 randomly chosen pairs of neurons) is comparable to marginal
convergence. E. Summary of marginal convergence analysis for single neurons in C: Mean
(solid) and worst (dashed line) marginal convergence of all 560 neurons. Mean/worst con-
vergence is reached after a few 100 ms. F. Convergence analysis was applied to networks of
different sizes (500-5000 neurons). Mean and worst marginal convergence of single neurons
are hardly affected by network size. G. Convergence properties of populations of neurons.
Dotted: multivariate Gelman-Rubin analysis was applied to a subpopulation of 30 neu-
rons (5 neurons were chosen randomly from each pool). Solid: convergence of a “random
readout” neuron which receives spike inputs from 500 randomly chosen neurons in the mi-
crocircuit. It turns out that the convergence speed of such a generic readout neuron is
even slightly faster than for neurons within the microcircuit (compare with panel E). A
remarkable finding is that in all these cases the network size does not affect convergence
speed.

of 1.1. An obvious advantage of the Gelman-Rubin diagnostic, compared with a
straightforward empirical evaluation of convergence properties as in Figure 2.2B,
is its substantially larger computational efficiency and the larger number of initial
states that it takes into account. For the case of multivariate marginals (see Fig-
ure 2.2G), a straightforward empirical evaluation of convergence is not even feasible,
since relative frequencies of 230 states would have to be analyzed.

Using the Gelman-Rubin diagnostic, we estimated convergence speed for
marginals of single neurons (see Figure 2.2C, mean/worst in Figure 2.2E), and for
the product of the simple states of two neurons (i.e., pairwise spike coincidences)
in Figure 2.2D. We found that in all cases the Gelman-Rubin value drops close to 1
within just a few 100 ms. More precisely, for a typical threshold of 1.2 convergence
times are slightly below 100 ms in Figure 2.2C-E. A very conservative threshold of
1.02 yields convergence times close to 600 ms.

The above simulations were performed in a circuit of 560 neurons, but even-
tually one is interested in the properties of much larger circuits. Hence, a crucial
question is how the convergence properties scale with the network size. To this
end, we compared convergence in the cortical microcircuit model of (Haeusler and
Maass, 2007) for four different sizes (500, 1000, 2000 and 5000). To ensure that
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overall activity characteristics are maintained across different sizes, we adopted the
approach of (Haeusler and Maass, 2007) and scaled recurrent postsynaptic potential
(PSP) amplitudes inversely proportional to network size. A comparison of mean
(solid line) and worst (dashed line) marginal convergence for networks of different
sizes is shown in Figure 2.2F. Notably we find that the network size has virtually
no effect on convergence speed. This suggests that, at least within the scope of the
laminar microcircuit model of (Haeusler and Maass, 2007), even very large cortical
networks may support fast extraction of knowledge (in particular marginals) from
their stationary distributions pC(y|x).

In order to estimate the required computation time associated with the es-
timation of marginal probabilities and MAP solutions on small subpopulations
n1, . . . , nm, one needs to know how fast the marginal probabilities of vector-valued
states (y1, . . . , ym) of subnetworks of C become independent from the initial state
of the network. To estimate convergence speed in small subnetworks, we applied a
multivariate version of the Gelman-Rubin method to vector-valued simple states of
subnetworks (Figure 2.2G, dotted lines, evaluated for varying circuit sizes from 500
to 5000 neurons). We find that multivariate convergence of state frequencies for a
population of m = 30 neurons is only slightly slower than for uni-variate marginals.
To complement this analysis, we also investigated convergence properties of a “ran-
dom readout” neuron which integrates inputs from many neurons in a subnetwork.
It is interesting to note that the convergence speed of such a readout neuron, which
receives randomized connections from a randomly chosen subset of 500 neurons, is
comparable to that of single marginals (Figure 2.2F, solid lines), and in fact slightly
faster.

2.6 Impact of different dynamic regimes on the conver-
gence time

An interesting research question is which dynamic or structural properties of a
cortical microcircuit model C have a strong impact on its convergence speed to
the stationary distribution pC . Unfortunately, a comprehensive treatment of this
question is beyond the scope of this paper, since virtually any aspect of circuit
dynamics could be investigated in this context. Even if one focuses on a single
aspect, the impact of one circuit feature is likely to depend on the presence of other
features (and probably also on the properties of the input). Nonetheless, to lay a
foundation for further investigation, first empirical results are given in Figure 2.3.

As a reference point, Figure 2.3A shows a typical activity pattern and con-
vergence speed of single marginals in the small cortical microcircuit model from
Figure 2.1. To test whether the overall activity of a network has an obvious impact
on convergence speed, we constructed a small network of 20 neurons (10 excitatory,
10 inhibitory) and tuned connection weights to achieve sparse overall activity (Fig-
ure 2.3B). A comparison of panels A and B suggests that overall network activity
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has no significant impact on convergence speed. To test whether the presence of
stereotypical trajectories of network states (similar to (Luczak et al., 2007)) has
a noticeable influence on convergence, we constructed a small network exhibiting
strong sequential activity patterns (see Figure 2.3C). We find that convergence
speed is hardly affected, except for the first 200 ms (see Figure 2.3C). Within the
scope of this first empirical investigation, we were only able to produce a significant
slow-down of the convergence speed by building a network that alternated between
two attractors (Figure 2.3D).

2.7 Distributions of network states in the presence of

periodic input

In Theorem 1 we had already addressed one important case where the network C
receives dynamic external inputs: the case when external input is generated by
some Markov process. But many networks of neurons in the brain are also subject
to more or less pronounced periodic inputs (“brain rhythms” (Engel et al., 2001;
Buzsaki, 2009; Wang, 2010)), and it is known that these interact with knowledge
represented in distributions of network states in specific ways. For instance, it had
been shown in (Dragoi and Buzsaki, 2006) that the phase of the firing of place cells
in the hippocampus of rats relative to an underlying theta-rhythm is related to the
expected time when the corresponding location will be reached. Inhibitory neurons
in hippocampus have also been reported to fire preferentially at specific phases of
the theta cycle (see e.g. Figure S5 in (Kelemen and Fenton, 2010)). Moreover it
was shown that different items that are held in working memory are preferentially
encoded by neurons that fire at different phases of an underlying gamma-oscillation
in the monkey prefrontal cortex (Siegel et al., 2009) (see (Pipa et al., 2009) for
further evidence that such oscillations are behaviorally relevant). Phase coding was
also reported in superior temporal sulcus during category representation (Turesson
et al., 2012). The following result provides a theoretical foundation for such phase-
specific encoding of knowledge within a framework of stochastic computation in
networks of spiking neurons.

Theorem 2 (Phase-specific distributions of network states) Let C be an
arbitrary model for a network of stochastic spiking neurons as in Theorem 1. As-
sume now that the vector of input rates x(t) has in addition to fixed components
also some components that are periodic with a period L (such that each input neu-
ron i emits a Poisson spike train with an L-periodically varying firing rate xi(t)).
Then the distribution of network states y converges for every phase l (0 ≤ l < L)
exponentially fast to a unique stationary distribution of network states pC,l(y|x) at
this phase l of the periodic network input x.

Hence, a circuit C can potentially store in each clearly separable phase l of an
(externally) imposed oscillation a different, phase-specific, stationary distribution
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Figure 2.3: Impact of network architecture and network dynamics on convergence speed.
Convergence properties for single neurons (as in Figure 2.2C) in different network archi-
tectures were assessed using univariate Gelman-Rubin analysis. Typical network activity
is shown on the left, convergence speed on the right (solid: mean marginal, dashed: worst
marginal). A. Small cortical column model from Figure 2.1 (input neurons not shown).
B. Network with sparse activity (20 neurons). C. Network with stereotypical trajecto-
ries (50 neurons, inhibitory neurons not shown). Despite strongly irreversible dynamics,
convergence is only slightly slower. D. Network with bistable dynamics (two competing
populations, each comprising 10 neurons). Convergence is slower in this circuit due to
low-frequency switching dynamics between two attractors.

pC,l(y|x). Below we will address basic implications of this result in the context
of two experimentally observed phenomena: stereotypical trajectories of network
states and bi-stable (or multi-stable) network activity.
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Figure 2.4A-D demonstrates the emergence of phase-specific distributions in a
small circuit (the same as in Figure 2.3C but with only one chain) with a built-
in stereotypical trajectory similar to a spatial path sequence generated by hip-
pocampal place cell assemblies (Dragoi and Buzsaki, 2006; Gupta et al., 2012).
Figure 2.4A shows a typical spike pattern in response to rhythmic background
stimulation (spikes from inhibitory neurons in red). The background oscillation
was implemented here for simplicity via direct rhythmic modulation of the spik-
ing threshold of all neurons. Note that the trajectory becomes particularly often
initiated at a specific phase of the rhythm (when neuronal thresholds are lowest),
like in experimental data (Dragoi and Buzsaki, 2006; Gupta et al., 2012). As a
result, different phases within a cycle of the rhythm become automatically associ-
ated with distinct segments of the trajectory. One can measure and visualize this
effect by comparing the frequency of network states which occur at two different
phases, i.e., by comparing the stationary distributions pC,l(y|x) for these two phases.
Figure 2.4B shows a comparison of phase-specific marginal distributions on a small
subnetwork of 3 neurons, demonstrating that phase-specific stationary distributions
may indeed vary considerably across different phases. Convergence to the phase-
specific stationary distributions pC,l(y|x) can be understood as the convergence of
the probability of any given state to a periodic limit cycle as a function of the phase
l (illustrated in Figure 2.4C). An application of the Gelman-Rubin multivariate di-
agnostic suggests that this convergence takes places within a few cycles of the theta
oscillation (Figure 2.4D).

Theta-paced spatial path sequences in hippocampus constitute a particularly
well-studied example of phase-specific network activity(Dragoi and Buzsaki, 2006).
Our theoretical framework suggests a novel interpretation of these patterns as sam-
ples from a Markov chain with a phase-dependent stationary distribution of network
states induced by the theta-rhythm. A basic prediction of this interpretation is that
two trajectories in successive theta cycles should exhibit significantly stronger simi-
larities than two trajectories from randomly chosen cycles (due to inherent temporal
dependencies of the Markov chain). Two trajectories from distant cycles, on the
other hand, should relate to each other similarly as randomly chosen pairs of tra-
jectories. Evidence for such an effect has been reported recently by (Gupta et al.,
2012), where it was found that “sequences separated by 20 cycles approach random
chance, whereas sequences separated by only a single theta cycle are more likely to
be similar to each other.”

The previously described theoretical framework also provides an interesting new
perspective on multi-stability, a wide-spread phenomenon which has been observed
in various sensory domains (Blake and Logothetis, 2002; Sterzer et al., 2009). Dif-
ferent authors have noted that multi-stability, both on the neuronal and perceptual
level, could be understood as a side effect of sampling from a multi-modal distri-
bution (Hoyer and Hyvärinen, 2003; Buesing et al., 2011; Gershman et al., 2012).
Recent data from hippocampus suggest that oscillations, which had previously re-
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Figure 2.4: (see next page for Figure caption)

ceived little attention in this context, may play an important role here: (Jezek et al.,
2011) found that switching between different attractors (= modes of the stationary
distribution in our terminology) occurs preferentially at a specific phase during the
theta cycle, whereas activity patterns within each cycle preferentially stayed in one
attractor. Hence, the precise timing of switching between modes was found to be
strongly tied to the theta rhythm. Such chunking of information in separate pack-
ages (theta cycles) has been proposed as an important constituent of neural syntax
(Buzsáki, 2010).

In Figure 2.4E we reproduce phase-dependent switching in a simple network
model of bi-stable dynamics (the same network as in Figure 2.3D) in the presence of
a 6 Hz background oscillation. Indeed, we find that switching occurs preferentially
at a specific phase of the oscillation (see Figure 2.4F) when the total firing rate of
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Figure 2.4: Emergence of phase-specific stationary distributions of network states in the
presence of periodic network input. A. A network with a built-in stereotypical trajectory
is stimulated with a 6 Hz background oscillation. The oscillation (top) is imposed on the
neuronal thresholds of all neurons. The trajectories produced by the network (bottom)
become automatically synchronized to the background rhythm. The yellow shading marks
the three neurons for which the analysis in panels B and C was carried out. The two
indicated time points (green and purple lines) mark the two phases for which the phase-
specific stationary distributions are considered in panels B and D (83 ms and 103 ms into
the cycle, with phase-specific distributions pC,1 and pC,2, respectively). B. The empirically
measured distributions of network states are observed to differ significantly at two different
phases of the oscillation (phases marked in panel A). Shown is for each phase the phase-
specific marginal distribution over 3 neurons (4, 5 and 6), using simple states with τ =
10 ms. The zero state (0,0,0) is not shown. The empirical distribution for each phase φ was
obtained from a single long run, by taking into account the network states at times φ, φ+
T, φ + 2T , etc., with cycle length T = 1

6s. C. Illustration of convergence to phase-specific
stationary distributions. Shown is the relative frequency of subnetwork state (1,1,0) on the
subset of neurons 4,5 and 6 over time, when the network is started from two different initial
states (red/blue). In each case, the state frequency quickly approaches a periodic limit
cycle. D. Convergence to phase-specific stationary distributions takes place within a few
cycles of the underlying oscillation. Shown is the multivariate Gelman-Rubin convergence
analysis to the phase-specific stationary distribution for two different phases. E. Bi-stable
network under the influence of a 6 Hz background oscillation. F. In response to the periodic
stimulation, transitions between the two attractors (modes) become concentrated around a
specific phase of the distribution.

the network is lowest. Note that this is consistent with (Jezek et al., 2011) who
found that the separation between representations in different cycles was strongest
at the point of the lowest average firing rate in the population (see Figure 1b in
(Jezek et al., 2011)). This phenomenon can be explained in our model by noting
that the attractors are deeper during periods of high network activity. Conversely,
attractors are more shallow when the population firing rate is lower, leading to an
increased transition probability between attractors. If one takes a closer look at
Proposition 1 and Lemma 1 in Appendix B one sees that this is also consistent
with our theoretical framework: A lower population firing rate ρ̂ translates into a
smaller contraction factor (1 − ǫΘ), implying a tighter bound on the contraction
speed of state distributions and thus higher transition probabilities to radically
different states from the current (initial) network state.

Altogether, one sees that the presence of background oscillations has relevant
functional implications on multi-stability. In particular, the presence of background
oscillations in multi-stable networks facilitates both exploitation within a cycle and
exploration across cycles: Within a cycle high firing rates force the network into one
of the attractors, thereby avoiding interference with other attractors and facilitating
the readout of a consistent network state. At the end of a cycle low firing rates allow
the network to switch to different attractors, thereby promoting fast convergence
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to the stationary distribution. The rhythmic deepening and flattening of attractors
and the resulting phase-specific attractor dynamics could be particularly useful for
the extraction of information from the circuit if downstream networks are phase-
locked to the same rhythm, as reported, for example, for the interactions between
neurons in hippocampus and prefrontal cortex (Siapas et al., 2005).

2.8 Generation of heuristic solutions to a constraint

satisfaction problem

Whenever an inhibitory neuron fires, it reduces for a short while the probability of
firing for its postsynaptic targets. In fact, new experimental data (Haider et al.,
2013) show that inhibitory neurons impose quite powerful constraints on pyramidal
cells. But also how pyramidal cells are embedded into their network environment
imposes constraints on local network activity. From this perspective, the resulting
firing patterns of a cortical microcircuit can be viewed as stochastically generated
solutions of an immensely complex constraint satisfaction problem, that is defined
both by external inputs x to the circuit and by the way each excitatory and in-
hibitory neuron is embedded into its circuit environment. Constraint satisfaction
problems are from the computational perspective a particularly interesting class of
problems, because many tasks that a brain has to solve, from the generation of a
percept from unreliable and ambiguous sources to higher level tasks such as memory
recall, prediction, planning, problem solving, and imagination, can be formulated
as constraint satisfaction problems (Kumar, 1992). However, numerous constraint
satisfaction problems are known to be NP-hard, thereby limiting the applicability
of exact solution strategies. Instead, approximate or heuristic algorithms are com-
monly used in practice (for example evolutionary algorithms (Craenen et al., 2003)).
Here we propose that networks C of spiking neurons with noise have an inherent
capability to solve constraint satisfaction problems in an approximate (heuristic)
manner through their stochastic dynamics. The key principle is that those network
states y, which satisfy the largest number of local constraints, have the highest
probability under the distribution pC(y|x). These constraints are imposed by the
way each neuron of C is embedded into the circuit, and the current external input
x which can selectively activate or deactivate specific constraints.

We have selected a specific constraint satisfaction problem for demonstrating
the capability of networks of spiking neurons to generate rapidly approximate solu-
tions to constraint satisfaction problems through their inherent stochastic dynamics:
solving Sudoku puzzles (see Figure 2.5A). Sudoku is a well-suited example because
it is complex enough to be representative for many problem solving tasks, and lends
itself well to visual interpretation and presentation (but note that we do not aim to
model here how humans solve Sudoku puzzles). The rules of the Sudoku game can
be easily embedded into common models for cortical microcircuits as recurrent net-
works of Winner-Take-All (WTA) microcircuit motifs (Douglas and Martin, 2004).
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Each WTA motif is an ensemble of pyramidal cells (on layers 2/3 or 5/6) that are
subject to lateral inhibition (see Figure 2.5B). Each pyramidal cell can in fact be
part of several interlocking WTA motifs (Figure 2.5B, right).

This architecture makes it easy to impose the interlocking constraints of Sudoku
(and of many other constraint satisfaction problems). Each pyramidal cell (or each
local group of pyramidal cells) votes for placing a particular digit into an empty
field of the grid, that is not dictated by the external input x. But this pyramidal
cell is subject to the constraints that only one digit can be placed into this field, and
that each digit 1, . . . , 9 occurs only once in each column, in each row, and in each
3x3 sub-grid. Hence each pyramidal cell is simultaneously part of four inhibitory
subnetworks (WTA motifs).

A specific puzzle can be entered by providing strong input x to those neurons
which represent the given numbers in a Sudoku (Figure 2.5A, left). This initiates
a quite intuitive dynamics: ”Clamped“ neurons start firing strongly, and as a con-
sequence, neurons which code for conflicting digits in the same Sudoku field, the
same row, column or 3x3 sub-grid, become strongly inhibited through di-synaptic
inhibition. In many Sudoku fields this will lead to the inhibition of a large number
of otherwise freely competing neurons, thereby greatly reducing the space of con-
figurations generated by the network. In some cases, inhibition will immediately
quieten all neurons except those associated with a single remaining digit (the only
choice consistent with the givens). In the absence of competition, these uninhibited
neurons will start firing along with the givens, thereby further constraining neigh-
boring neurons. This form of inhibitory interaction therefore implicitly implements
a standard strategy for solving easy Sudokus: checking for fields in which only one
possibility remains. In harder Sudokus, however, this simple strategy alone would
be typically insufficient, for example when several possibilities remain in all fields.
In such cases, where inhibition leaves more than one possible digit open, a tentative
digit will be automatically picked randomly by those neurons which happen to fire
first among its competitors. This ensures that, instead of getting stuck, the net-
work automatically explores potential configurations in situations where multiple
possibilities remain. Altogether, through this combination of constraint enforce-
ment and random exploration, those network states which violate few constraints
(good approximate solutions) are visited with much higher probability than states
with conflicting configurations. Hence, most time is spent in good approximate so-
lutions. Furthermore, from all 981 Sudoku configurations the solving configuration
is visited in this process especially often.

Figure 2.5C shows a typical network run during the last 1.5 seconds (out of a
total simulation time of approximately 3 s) before the correct solution was found
to the Sudoku puzzle from Figure 2.5A. For this simulation we modeled lateral
inhibition in each WTA motif by reciprocally connecting each neuron in the sub-
network to a single inhibitory neuron. For each of the 9 digits in a Sudoku field,
we created an associated local group of four pyramidal cells. This can be seen in
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Figure 2.5: (see next page for Figure caption)

Figure 2.5C, where spike responses of pyramidal cells associated with three different
Sudoku fields are shown (the three colored fields in Figure 2.5A and B). Each field
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Figure 2.5: Solving Sudoku, a constraint satisfaction problem, through structured interac-
tions between stochastically firing excitatory and inhibitory neurons. A. A “hard” Sudoku
puzzle with 26 given numbers (left). The solution (right) is defined uniquely by the set of
givens and the additional constraints that each digit must appear only once in each row,
column and 3x3 subgrid. B. An implementation of the constraints of the Sudoku game in
a spiking neural network C consists of overlapping WTA circuits. WTA circuits are ubiq-
uitous connection motifs in cortical circuits (Douglas and Martin, 2004). A WTA circuit
can be modeled by a set of M stochastically spiking output neurons zk that are subject
to lateral inhibition (left). The same pyramidal cell can be part of several such WTA mo-
tifs (right). In the Sudoku example, each digit in a Sudoku field is associated with four
pyramidal cells which vote for this digit when they emit a spike. Each such pyramidal cell
participates in four WTA motifs, corresponding to the constraints that only one digit can be
active in each Sudoku field, and that a digit can appear only once in each row, column and
3x3 subgrid. C. A typical network run is shown during the last 1500 ms before the correct
solution was found to the Sudoku from panel A (the total solve time was approximately 3s
in this run, see panel D for statistics of solve times). The network performance (fraction of
cells with correct values) over time is shown at the top. The spiking activity is shown for
3 (out of the 81) WTA motifs associated with the 3 colored Sudoku fields in A and B. In
each of these WTA motifs there are 36 pyramidal cells (9 digits and 4 pyramidal cells for
each digit). Spikes are colored green for those neurons which code for the correct digit in
each Sudoku field (6, 8 and 4 in the example). D. Histogram of solve times (the first time
the correct solution was found) for the Sudoku from panel A. Statistics were obtained from
1000 independent runs. The sample mean is 29 s. E. Average network performance for
this Sudoku converges quickly during the first five seconds to a value of 0.9, corresponding
to 90% correctly found digits (average taken over 1000 runs; shaded area: ±2 standard
deviations). Thereafter, from all possible 981 configurations the network spends most time
in good approximate solutions. The correct solution occurs particularly often, on average
approximately 2% of the time (not shown).

has 9 possible digits, and each digit has four associated neurons. Hence, for each
of the three Sudoku fields (WTA motifs), 9 · 4 = 36 neurons are shown. Spikes
are colored black for those neurons which code for a wrong digit, and green for the
four neurons which code for the correct digit in a Sudoku field (the correct digits
in Figure 2.5C are 6, 8 and 4). The overall performance of the network (fraction
of correctly solved fields) during the last 1.5 seconds before the solution is found is
shown in Figure 2.5C above.

In our simulations we found that the solve time (the time until the correct so-
lution is found for the first time) generally depends on the hardness of the Sudoku,
in particular on the number of givens. For the ”hard“ Sudoku with 26 givens from
Figure 2.5A, solve times are approximately exponentially distributed at an average
of 29 seconds (Figure 2.5D). The average performance during the first five seconds
of a run (obtained from 1000 independent runs) is shown in Figure 2.5E. The plot
shows quick convergence to a (stationary) average performance of approximately
0.9. This demonstrates that the network spends on average most time in approx-
imate solutions with high performance. Among these high-performance solutions,
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the correct solution occurs especially often (on average 2% of the time).

2.9 Discussion

A theoretical foundation for memory-based stochastic computation
in cortical microcircuits

We have shown that for common noise models in cortical microcircuits, even cir-
cuits C with very detailed and diverse non-linear neurons and synapses converge
exponentially fast to a stationary distribution pC(y|x) of network states y. This
holds both for external inputs x that consist of Poisson spike trains of a fixed rate,
and for the case where x is periodic, or generated by some Markov process with
a stationary distribution. The same mathematical framework also guarantees ex-
ponentially fast convergence to a stationary distribution of trajectories of network
states (of any fixed time length), thereby providing a theoretical foundation for
understanding stochastic computations with experimentally observed stereotypical
trajectories of network states. These results extend and generalize previous work in
(Brémaud and Massoulié, 1996) and (Borovkov et al., 2012) in two ways. First, pre-
vious convergence proofs had been given only for networks of simplified neurons in
which the (sub-threshold) neuronal integration of pre-synaptic spikes was assumed
a linear process, thereby excluding the potential effects of dendritic non-linearities
or synaptic short-term dynamics. Second, previous work had focused only on the
case where input is provided by neurons with fixed firing rates (a special case of
Theorem 1). In addition we show that these convergence proofs can be derived from
a fundamental property of stochastic spiking networks, that we have formulated as
the Contraction Lemma (Lemma 1 in Appendix B).

The stationary distribution pC provides an attractive target for investigating the
stochastic computing capabilities of data-based models C for local circuits or larger
networks of neurons in the brain. In contrast to the much simpler case of Boltzmann
machines with non-spiking linear neurons and symmetric synaptic connections, it is
unlikely that one can attain for cortical microcircuit models C a simple analytical
description of pC . But our computer simulations have shown that this is not nec-
essarily an obstacle for encoding salient constraints for problem solving in pC , and
for merging knowledge that is encoded in pC with online information from external
inputs x in quite fast stochastic computations. In fact, the resulting paradigm for
computations in cortical microcircuits supports anytime computing, where one has
no fixed computation time. Instead, first estimates of computational results can be
produced almost immediately, and can be rapidly communicated to other circuits.
In this way, no processor (circuit) has to idle until other processors have completed
their subcomputations, thereby avoiding the arguably most critical general bottle-
neck of massively parallel computing systems. Instead, each microcircuit C can
contribute continuously to an iterative refinement of a global computation.
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Estimates for the computation time of stochastic computations

Our computer simulations for a standard cortical microcircuit model C suggest that
convergence to pC is fast enough to support knowledge extraction from this distribu-
tion pC within a few 100 ms, i.e. within the typical computation time of higher-level
brain computations. These first estimates need to be corroborated by further theo-
retical work and computer simulations. In particular, the relationship between the
structure and dynamics of cortical microcircuits and their convergence speed merits
further investigation. Furthermore, in the case where pC is a multi-modal distribu-
tion there exists an obvious tradeoff between the convergence speed to pC and the
typical duration of staying in an “attractor” (i.e., a region of the state space which
has high probability under pC). Staying longer in an attractor obviously facilitates
the readout of the result of a computation by downstream networks. A number of
experimental data suggest that neuromodulators can move neural circuits (at least
in the prefrontal cortex) to different points on this tradeoff curve. For example it
is argued in (Durstewitz, 2006, 2009) that the activation of D1 receptors through
dopamine deepens all basins of attraction, making it harder for the network state
to leave an attractor. Additional molecular mechanisms that shift the tradeoff be-
tween fast sampling (exploration) and the temporal stability of found solutions are
reviewed in (Arnsten et al., 2012). Another interesting perspective on convergence
speed is that slow convergence may be beneficial for certain computations in spe-
cific brain areas (especially early sensory areas). Slow convergence enlarges the
time span during which the network can integrate information from non-stationary
external inputs (Maass et al., 2002; Nikolic et al., 2009; Klampfl et al., 2012). In
addition the initial state y0 of a network may contain information about preceding
events that are computationally useful. Those considerations suggest that there
exist systematic differences between the convergence speed to pC in different neural
systems C, and that it can be modulated in at least some systems C dependent on
the type of computational task that needs to be solved.

Another important issue is the tradeoff between sampling time and sampling
accuracy. In high-level cognitive tasks, for example, it has been argued that “ap-
proximate and quick” sample-based decisions are often better than “accurate but
slow” decisions (Vul et al., 2009; Lieder et al., 2013). Of particular interest in this
context is the analysis of (Lieder et al., 2013) who studied the time-accuracy trade-
off during decision making, under the assumption that the mind performs inference
akin to MCMC sampling. Due to the nature of MCMC sampling, early samples be-
fore convergence (during the burn-in period) are biased towards the initial state of
the system. In the absence of time pressure, the optimal strategy is therefore to wait
and collect samples for a long period of time (in theory indefinitely). In the presence
of even moderate time costs, however, the optimal sampling time can be shown to
be finite, a result which can provide a rational explanation of the anchoring effect
in cognitive science (Lieder et al., 2013) (under time pressure people’s decisions are
influenced by their “initial state”). Notably, the analysis of (Lieder et al., 2013)
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was based on the assumption that the MCMC algorithm exhibits geometric con-
vergence, the discrete-time equivalent to the exponential convergence speed proved
in this paper for stochastic spiking networks. Applying a similar analysis to study
optimal time-accuracy tradeoff points in cortical microcircuits therefore presents a
promising avenue for future research.

Which probability distributions can be encoded as a stationary dis-
tribution of some neural circuit?

It had been shown in (Buesing et al., 2011) and (Pecevski et al., 2011) that, under
certain assumptions on the neuron models and circuit structure, in principle every
joint distribution p over discrete-valued random variables can be represented as
a stationary distribution pC of some network C of spiking neurons. Forthcoming
unpublished results suggest that such internal representations of a given distribution
p can even be learned from examples drawn from p. This will provide a first step
towards understanding how the stationary distribution pC of a microcircuit can be
adapted through various plasticity processes to encode salient constraints, successful
solution strategies (rules), and other types of knowledge. This research direction
promises to become especially interesting if one takes into account that knowledge
can not only be encoded in the stationary distribution of network states, but also in
the simultaneously existing stationary distribution of trajectories of network states.

Relationship to attractor networks and transients between attrac-
tors

Attractor neural networks (Hopfield, 1982) were originally deterministic computa-
tional models, where gradient descent leads the network from some given initial
state y0 (the input for the computation) to the lowest point of the attractor (the
output of the computation) in whose basis of attraction y0 lies. The computational
capability of an attractor neural network is substantially larger if its attractor land-
scape can be reconfigured on the fly by external input x, as in (Hopfield and Tank,
1986) and in the Sudoku example of this article. This usually requires that the
attractors are not programmed directly into the network parameters, but emerge
from some more general computational principles (e.g. constraint satisfaction). At-
tractor neural networks gain additional computational capability if there is some
noise in the system (Rolls and Deco, 2010). This enables the network to leave after
a while suboptimal solutions (Durstewitz and Deco, 2008). Alternative modeling
frameworks for the transient dynamics of neural systems are provided by the liquid
computing model (Maass et al., 2002), and on a more abstract level by sequences
of metastable states in dynamical systems (Rabinovich et al., 2008). Here we pro-
pose to view both transient and attractor dynamics of complex data-based circuits
C from the perspective of probabilistic inference, in particular as neural sampling
(Buesing et al., 2011) (or more abstractly: as MCMC sampling) from their inherent
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probability distribution pC over network states (or trajectories of network states),
that serves as the knowledge base of these neural systems.

A new computational framework for analyzing brain activity

We had focused in our computer simulations on the investigation of the stationary
distribution pC for models C of cortical microcircuits. But the results of Theorem 1
and Theorem 2 are of course much more general, and in principle apply to models
C for networks of neurons in the whole brain (Sporns, 2011). This perspective sug-
gests understanding spontaneous brain activity (see (Raichle, 2010)) as sampling
from this global distribution in the absence of external input, and brain computa-
tions with external inputs x as sampling of brain states from conditional distribution
pC(y|x), thereby merging the knowledge base pC of the brain with incoming new
information x. This computational framework could in principle explain how the
brain can merge both types of information in such seemingly effortless manner, a
capability that can only partially be reproduced in artificial devices with current
technology. Large-scale computer simulations will be needed to test the viability of
this hypothesis, in particular the relationship between the known global structure
of the brain network C and properties of its stationary distribution pC , and the
convergence speed to pC . Possibly the brain uses an important trick to speed up
convergence during brain-wide sampling, for example by sampling during any con-
crete brain computation only from a subnetwork C ′ of C: those brain areas that
control variables that are relevant for this computation. Functional connectivity
would be explained from this perspective as opening of communication channels
that support sampling from the (marginal) joint distribution of those variables that
are stored within the functionally connected brain areas. Structured spontaneous
brain activity (Raichle, 2010) would then receive a functional interpretation in terms
of updating these marginal joint distributions on the basis of newly acquired knowl-
edge.

Stochastic solutions of constraint satisfaction problems as a
paradigm for higher level brain computation

A surprisingly large number of computational tasks that the brain has to solve,
from the formation of a percept from multi-modal ambiguous sensory cues, to pre-
diction, imagination, motor planning, rule learning, problem solving, and memory
recall, have the form of constraint satisfaction problems: A global solution is needed
that satisfies all or most of a set of soft or hard constraints. However, this char-
acterization per se does not help us to understand how the brain can solve these
tasks, because many constraint satisfaction problems are computationally very de-
manding (in fact, often NP-hard (Garey and Johnson, 1979)), even for a fast digital
computer. In the Sudoku example we have shown that the inherent stochastic dy-
namics of cortical microcircuits provides a surprisingly simple method for generating
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heuristic solutions to constraint satisfaction problems. This is insofar remarkable,
as this computational organization does not require that specific algorithms are
programmed into the network for solving specific types of such problems (as it is
for example needed for solving Sudoku puzzles according to the ACT-R approach
(Qin et al., 2012)). Rather, it suffices that salient constraints are encoded into the
network (e.g. through learning) in such a way that they make certain firing patterns
of a subset of neurons more or less likely.

Future work will need to investigate whether and how this approach can be
scaled up to larger instances of NP-complete constraint satisfaction problems. For
example, it will be interesting to see whether stochastic networks of spiking neurons
can also efficiently generate heuristic solutions to energy minimization problems
(Boykov et al., 2001) arising in visual processing.

Furthermore, additional research is needed to address suitable readout mecha-
nisms that stabilize and evaluate promising candidate solutions (see (Arnsten et al.,
2012) for an experimentally supported mechanism that might contribute to this
function). This is an important issue since, in its current form, the network will
simply continue the stochastic exploration of heuristic solutions even after it has
found the optimal solution. Therefore, in the absence of additional mechanisms
the network is not able to hold on to (or store) previously found (near-)optimal
solutions. To solve this issue one could consider, for example, one or several net-
works C1, . . . , Ci which generate in parallel heuristic solutions to a given problem.
The output of these networks could then be further processed and integrated by a
readout network Ci+1 which attempts to extract a MAP solution, for example by
adopting a solution from some Cj only if it has higher value than the currently stored
state. Hence, the sampling networks C1, . . . , Ci would have stationary distributions
pCj

(y|x) which encourage exploration and broadly assign probability to many differ-
ent heuristic solutions, whereas the readout network would ideally exhibit a sharply
peaked stationary distribution at the global optimum of the constraint satisfaction
problem. Studying the feasibility of this approach requires further research.

Relationship to models for probabilistic inference in cognitive sci-
ence

A substantial number of behavioral studies in cognitive science (see e.g. (Griffiths
and Tenenbaum, 2006; Vul and Pashler, 2008; Denison et al., 2009; Gershman et al.,
2012; Tenenbaum et al., 2011)) have arrived at the conclusion that several of the
previously discussed higher level mental operations are implemented through prob-
abilistic inference. Some of the underlying data also suggest that probabilistic
inference is implemented in the brain through some form of sampling (rather than
through arithmetical approaches such as belief propagation (Koller and Friedman,
2009)). But according to (Tenenbaum et al., 2011): “The key research questions are
as follows: What approximate algorithms does the mind use, how do they relate to
engineering approximations in probabilistic AI, and how are they implemented in
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neural circuits?” This article contributes to these fascinating questions by providing
a rigorous theoretical foundation for the hypothesis that neural circuits in the brain
represent complex probability distributions pC(y|x) through sampling. In addition,
we have provided evidence that this form of sampling in cortical microcircuits may
be fast enough to facilitate the approximate estimation of marginals or marginal
MAP assignments, which commonly appear in real-world inference tasks, within a
few 100 ms. A major challenge for future work will be to understand also neuronal
plasticity on the implementation level from this perspective. For example, how can
prior knowledge be acquired and integrated into the stationary distribution pC(y|x)
of a realistic circuit C (featuring short-term plasticity, dendritic processing, etc.)
in an autonomous fashion, and in a manner consistent with statistically optimal
learning (Fiser et al., 2010)?

Long-term plasticity and other slower features of network dynamics

In biological networks it is reasonable to assume that the network dynamics unfolds
on a continuum of time scales from milliseconds to days. Our goal in this article
was to focus on stochastic computations on shorter time scales, between a few mil-
liseconds to seconds. To this end we assumed that there exists a clear separation
of time scales between fast and slow dynamical network features, thus allowing us
to exclude the effect of slower dynamical processes such as long-term plasticity of
synaptic weights during these shorter time scales. In network models and experi-
mental setups where slower processes significantly influence (or interfere with) the
dynamics on shorter time scales, it would make sense to extend the concept of a
stationary distribution to include, for example, also the synaptic parameters as ran-
dom variables. A first step in this direction has been made for neurons with linear
sub-threshold dynamics and discretized synapses in (Borovkov et al., 2012).

Deterministic network models and chaos

Deterministic network models such as leaky integrate-and-fire neurons without noise
(no external background noise, no synaptic vesicle noise and no channel noise) vio-
late the assumptions of Theorem 1 and 2. Furthermore, although realistic neurons
are known to possess various noise sources, the theoretical assumptions could in
principle still fail if the network is not sufficiently stochastic: this would happen,
for example, if there exists some strong input (within the limits of typical input
activity) which entirely overrules the noise, leading to a firing probability 1 in some
time interval [t, t+ δt) during the network simulation. Such deterministic behavior
would correspond to the instantaneous firing rate of a stochastic neuron becoming
infinite at some point during that interval (in violation of assumption A2, see Ap-
pendix B: Scope of theoretical results). From an empirical perspective, a simple
necessary condition for sufficient stochasticity is the presence of trial-to-trial vari-
ability for each single spike produced by a network. Consider, for example, the spike
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times generated by a specific neuron in a network simulation, in response to some
fixed input spike train. If there exists a spike which always occurs at the exact same
time during multiple repetitions of this experiment starting from identical initial
states, then the assumptions of Theorem 1 and 2 are obviously violated.

For deterministic (or insufficiently stochastic) networks the question arises
whether convergence to a unique stationary distribution may still occur under ap-
propriate conditions, perhaps in some modified sense. Notably, it has been recently
observed that deterministic networks may indeed lead to apparently stochastic spik-
ing activity (Churchland and Abbott, 2012; Litwin-Kumar and Doiron, 2012). This
apparent stochasticity was linked to chaotic spiking dynamics. This suggests that
chaos may act as a substitute for “real” noise in deterministic networks (similar to
pseudo random-number generators emulating true randomness): Chaotic systems
are sensitive to small perturbances in initial conditions, and may thus exponen-
tially amplify otherwise insignificant noise sources such as ubiquitous thermal noise
(Clarke, 2012). Thus, chaos could play an important role in both emulating and
amplifying stochasticity on the network level.

(Litwin-Kumar and Doiron, 2012) focused their analysis of stochasticity on firing
rate fluctuations and spiking irregularity, and it remains unclear whether these
networks would still appear stochastic if one takes into account full network states
(as in this article). The Gelman-Rubin convergence analysis of population activity
proposed in this paper could be applied to provide some insight into this question.
A more thorough investigation of chaos in the context of our results would also call
for a rigorous theoretical analysis of ergodic properties of chaotic spiking networks.

Further experimentally testable predictions

Our theoretical results demonstrate that every neural system C has a stationary
distribution pC(y|x) of network states y. This can be tested experimentally, for
various behavioral regimes and external inputs x. A first step in this direction has
already been carried out in (Berkes et al., 2011) (see also the discussion in (Okun
et al., 2012)). The hypothesis that pC serves (for “neutral” external inputs x) as
a prior for probabilistic inference through sampling suggests that pC is constantly
modified through prior experience (see (Zhang et al., 2012; Xu et al., 2012) for first
results) and learning (see (Lewis et al., 2009) for fMRI data).

Our Theorem 2 suggests in addition that neural systems C that have a prominent
rhythm (such as for example the theta oscillation in the hippocampus) are able
to store several stationary distributions pC,l of network states, one for each clearly
separable phase l of this rhythm. It has already been shown in a qualitative manner
that in some behavioral situations certain states y appear with substantially high
probability at specific phases l of the rhythm (see e.g. (Harris et al., 2003; Buzsaki,
2009; Siegel et al., 2009; Gupta et al., 2012; Turesson et al., 2012)). But a systematic
experimental analysis of phase-dependent distributions of network states in the style
of (Berkes et al., 2011) is missing.
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Our Theorem 1 predicts in addition that a generic neural circuit C also has a
stationary distribution over trajectories of network states. The existence of stereo-
typical trajectories of network states in the awake brain has been frequently reported
(see e.g. (Abeles et al., 1995; Jones et al., 2007; Luczak et al., 2007; Zhang et al.,
2012)). But a statistical analysis of the distribution of such trajectories, especially
also during spontaneous activity, is missing. Of particular interest is the relationship
between the distribution of trajectories and the stationary distribution of (simple)
network states. Do some network states y typically have a high probability because
they occur in some high probability trajectory? And how does the distribution of
trajectories change during learning?

The model for problem solving that we have presented in Figure 2.5 suggests that
external constraints have a significant and characteristic impact on the structure
of the stationary distribution pC , by reducing the probability of network states
which are inconsistent with the current constraints x. In principle, this could be
analyzed experimentally. In addition, this model suggests that there may be special
mechanisms that prolong the time span during which a neural system C stays in a
network state y with high probability under pC(y|x), in order to support a readout
of y by downstream networks. These mechanisms need to be revealed through
experiments.

New ideas for neuromorphic computation

The Sudoku example has shown that networks of spiking neurons with noise are
in principle able to carry out quite complex computations. The constraints of
many other demanding constraint satisfaction problems, in fact even of many NP-
complete problems, can be encoded quite easily into circuit motifs composed of
excitatory and inhibitory spiking neurons, and can be solved through the inherent
stochastic dynamics of the network. This provides new computational paradigms
and applications for various energy-efficient implementations of networks of spiking
neurons in neuromorphic hardware, provided they can be equipped with sufficient
amounts of noise. In particular, our results suggest that attractive computational
properties of Boltzmann machines can be ported into spike-based hardware. These
novel stochastic computing paradigms may also become of interest for other types
of innovative computer hardware: Computer technology is approaching during the
coming decade the molecular scale, where noise is abundantly available (whether one
wants it or not) and it becomes inefficient to push through traditional deterministic
computing paradigms.

Conclusion

The results of this article show that stochastic computation provides an attractive
framework for the investigation of computational properties of cortical microcir-
cuits, and of networks of microcircuits that form larger neural systems. In particu-
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lar it provides a new perspective for relating the structure and dynamics of neural
circuits to their computational properties. In addition, it suggests a new way of
understanding the organization of brain computations, and how they are modified
through learning.
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Networks of neurons in the brain compute and communicate very differently
from transistors in digital computers: with unsynchronized short pulses, called ac-
tion potentials or spikes. But it has remained unknown how difficult computational
problems could be solved in this way. We present here new principles of spike-
based computation with noise that enable networks of spiking neurons to carry
out a very efficient stochastic search in high-dimensional spaces, thereby producing
fast approximate solutions to hard computational problems such as logical infer-
ence (SATISFIABILITY) and planning (TRAVELING SALESMAN PROBLEM).
The underlying computational theory that we present also suggests new methods
for organizing massively parallel computations in novel energy-efficient but noisy
computing hardware.

3.1 Introduction

Despite the astonishing advancements of digital computing in the past decades,
the human brain is still considered the most powerful, versatile and “intelligent”
computing device. Most of the remarkable mental faculties of humans, from imagi-
nation, prediction, and creative problem solving to abstract thought, are unrivaled
by the most powerful supercomputers. This is achieved by the brain with only ∼ 25
Watt of energy consumption (Kandel et al., 1991) (several order of magnitude less
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than its most powerful digital counterparts), without the need for a global clock
through inherently asynchronous communication (Gerstner and Kistler, 2002), and
in spite of powerful noise sources introducing random variability at virtually every
step of neural computation, from spike generation, to action potential propagation,
to synaptic transmission (Faisal et al., 2008). Despite decades of research, however,
it is still largely unknown how complex computations, beyond mere sensory process-
ing, could be implemented in neural circuits on the basis of such noisy asynchronous
computing units.

In this article we present a theoretical framework and four new principles for
circuit design with spiking neurons that demonstrate how the inherent stochasticity
and asynchronous dynamics of neural circuits can be systematically exploited to
solve hard computational problems. We report that the application of this new
theoretical framework leads to a qualitative jump in the computational capabilities
of networks of spiking neurons.

3.2 New design principles for spike-based computation

A spiking neuron responds to stimulation by emitting short pulses, called action
potentials or spikes. Spikes occur asynchronously (in continuous time) and are
communicated to other neurons via inhibitory or excitatory synaptic connections
(Figure 3.1A, top). Biological spiking neurons are inherently noisy (Faisal et al.,
2008). We model the stochastic spiking behavior of a neuron k via an instantaneous
firing probability (or firing rate), ρk(t),

ρk(t) =
1

τ
exp(uk(t)) , (3.1)

the magnitude of which depends on the current membrane potential uk(t) of the
neuron. The membrane potential is defined as the weighted sum of the neuron’s
inputs,

uk(t) = bk +
∑

l

wkl xk(t) . (3.2)

The additional bias term bk represents the intrinsic excitability of neuron k. After
each emitted spike, neuron k enters a refractory period of length τ before it can
re-spike. A spike by neuron k is transmitted via synaptic connections to all post-
synaptic neurons receiving input from neuron k. The effect of a spike on a post-
synaptic neuron l, the so-called post-synaptic potential (PSP), is short-lived and
can be either inhibitory or excitatory, depending on the sign of the synaptic weight
wlk. In general, PSPs can assume complex shapes and the effective duration of
a PSP may depend on various dynamically changing factors. Here we assume for
mathematical tractability a rectangular shape with a fixed length τ = 10ms as
shown in Figure 3.1A, such that xk(t) = 1 if a spike occurred within (t− τ, t], and
xk(t) = 0 otherwise.
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The network state at time t is defined as the vector of neural states x(t) =
(x1(t), x2(t), . . . , xN (t)), i.e. only those neurons are set to 1 which fired recently
(Figure 3.1A, middle). Due to network connectivity some network states x(t) will
naturally occur more often on average than others. Consider the distribution of net-
work states that can be measured empirically by observing network activity over
a long period (Figure 3.1A, bottom). In general networks of spiking neurons, the
resulting long-term distribution will depend on the initial state of the network at
the beginning of the experiment. If the network is sufficiently stochastic, however,
the distribution over network states becomes independent of the initial state. In
networks composed of stochastic neurons of the type (3.1), a sufficient condition for
this to occur is that all excitatory weights in the network are bounded. Note that
when such a unique stationary distribution p(x) exists, it reflects which network
states can be most likely observed after the vanishing of transients (after conver-
gence to equilibrium). In analogy with statistical physics, we define the energy
function of a sufficiently stochastic network as E(x) = − log p(x) + const. Accord-
ing to this definition low energy states correspond to likely network states after
convergence to equilibrium.

We present a set of four new principles of circuit design with spiking neurons.
Principle 1 – the foundation of our framework – states that one should add sufficient
stochasticity to a (possibly otherwise deterministic) network with spiking neurons
so that the network has a unique stationary distribution p(x) of network states
(Figure 3.1A). For stochastic neurons (3.1) adding further noise is obviously not
required. In order to use such a stochastic network to solve a given computational
task, the circuit should then be constructed in such a manner that the stationary
distribution of network states p(x) assumes especially high values for circuit states
that encode good solutions to the computational task. Equivalently, the energy
function E(x) = − log p(x) + const of a circuit should be particularly low for states
x representing solutions to the problem.

Principle 2 states that the energy function E(x) over a set of principal neurons
can be systematically shaped through the use of a few auxiliary circuit motifs (Fig-
ure 3.1B). In particular we present two circuit motifs, the winner-take-all (WTA)
and the OR motif, that can be used to impose powerful higher-order constraints
on the activity of principal neurons in order to encode a variety of hard computa-
tional problems. The WTA circuit motif, applied to some set of principal neurons,
increases the energy (decreases the probability) of all network states where not ex-
actly (i.e. not more and not less than) one principal neuron in the WTA circuit
is active. The OR motif increases the energy of all states where none of the in-
volved principal neurons is active. A third way of systematically shaping energies
is to add bi-directional and symmetric synaptic connections between two neurons
k and l which either increase or decrease the energy of network states where both
involved neurons are active, xk = 1, xl = 1 (via inhibitory or excitatory connections,
respectively).
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Figure 3.1: (see next page for Figure caption)

One important use of the WTA motif is to represent discrete random variables
(RV): Consider a set of K principal neurons, where each neuron codes for one out
of K possible values of a discrete RV. Then, by applying the WTA motif to these
neurons one can ensure that most of the time only one of the principal neurons
is active and, as a result, most of the time the RV has a well-defined value which
can be derived from the current network state. Nevertheless, it may happen that
for some short period of time none (or more than one) of the K neurons is active.
During that period, the value of the represented RV is then considered undefined.
The WTA motif ensures that such periods are very brief when they occur. Various
computational problems, including 3-SAT and TSP, can be represented in terms of
a number of discrete RVs with a finite state space. Hence, the representation of
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Figure 3.1: Four new principles of circuit design with spiking neurons. A. Unlike tran-
sistors in a digital computer, spiking neurons communicate via brief asynchronous pulses
called spikes (inhibitory/excitatory synaptic connections shown in red/black, connection
line width represents synaptic strength). To study the collective behavior of spiking net-
works, we consider joint network states x(t), a binary vector where all neurons which
fired recently (within the last 10ms) are assigned 1, over time t. The stationary distri-
bution of network states, p(x), reflects which network states can be likely observed af-
ter transients have vanished. We propose that p(x), or equivalently the energy function
E(x) = − log p(x) + const, represents the computational output of a spiking network with
noise (Principle 1). B. The energy function p(x) over a set of principal neurons (white)
can be shaped in a systematic manner by adding circuit motifs (shown in gray). Top row:
Two motifs winner-take-all (WTA) and OR. These circuit motifs constrain activity pat-
terns such that most of the time exactly one (WTA) or at least one (OR) in the set of
connected principal neurons is active. Middle/bottom row: Example network consisting of
two WTA circuits, each representing a discrete random variable (RV) with four possible
values (middle left). Symmetric synaptic connections (only some shown) can be used to
modulate the energies of different joint assignments to these two variables (middle right).
Additional auxiliary circuits can be added (bottom left) to shape the energy landscape
in more complex ways (bottom right). Those network states which violate the fewest of
the imposed constraints have lowest energy (such as the highlighted states 1, a and 4, c).
The energy contributions of different auxiliary circuits sum up linearly. This facilitates the
construction of complex energy landscapes through repeated use of simple circuit motifs
(Principle 2). C. Stochastic search for low energy states is facilitated by the asymmetry
of spike-based signaling. Direct transitions between the two low-energy states 1, a and 4, c
are blocked due to high energy intermediate states (marked in red). An alternative route
goes over a series of states where the value of one or both discrete RVs is briefly undefined
(marked by #). Such “exploratory” periods of undefined RVs occur particularly frequently
(and briefly) in a spiked-based communication scheme (Principle 3). D. In contrast to
traditional stochastic search algorithms, the search process in a physical implementation
cannot be “stopped” when a satisfactory solution has been found. Instead, internal tem-
perature control is proposed as a principled alternative for high-speed computing systems:
each circuit motif detects and reports to a global lock-in neuron whether its constraint is
currently met (OK signals). As soon as all (or most) constraints are met the global lock-in
neuron activates a set of additional circuit motifs which sharpen the existing energy land-
scape (right). This leads to a global reduction of the temperature of the circuit, thereby
reducing exploration and forcing the network to lock into the locally best solution (Principle
4).

discrete RVs by WTA circuits is the foundation for the encoding of many problems.
Specific constraints of a problem can be implemented by adding symmetric synaptic
connections among principal neurons, as well as connecting additional WTA and
OR circuits to different subsets of principal neurons (Figure 3.1B).

The systematic design of complex energy landscapes composed of large numbers
of circuit elements calls for an understanding of how circuit elements interact with
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each other. For example, what is the joint effect of two auxiliary circuit motifs
which are operating on an overlapping set of principal neurons? Notably, one can
show theoretically that under certain idealized conditions the energy contributions
of circuit motifs sum up linearly. This occurs in particular when a) integration of
synaptic inputs is linear as in (3.2) and b) the total instantaneous synaptic drive
∆uk,i onto a principal neuron k due to the presence of a circuit motif Ci is given
by,

∆uk,i(t) = ∆Ei({xk = 0,x\k(t)}) − ∆Ei({xk = 1,x\k(t)}) (3.3)

at any point in time during circuit operation. Since the design of large-scale circuits
is greatly facilitated by linear compositionality of individual elements, (3.3) can be
seen as the idealized reference functionality of a circuit motif with energy contri-
bution ∆Ei(x). In practice, such reference can be used to guide circuit design; the
WTA and OR circuit motifs shown in Figure 3.1B were specifically designed to ap-
proximate (3.3). A basic consequence is that the relative energy contribution of any
given circuit motif is practically independent of the presence of other circuit motifs.
This allows one to apply all three types of circuit motifs on different subsets of
principal neurons in a combinatorial fashion to generate a rich diversity of energy
landscapes in a highly controlled fashion. As a result, energy landscapes of im-
portant computational problems can be constructed in a relatively straightforward
manner.

Principles 1 and 2 lay the foundation for implementing massively parallel local
search for low energy states in complex energy landscapes through the intrinsic
dynamics of spiking networks with noise.1 Principle 3 states that this search process
is facilitated by the inherent asymmetry of spike-based signaling (Figure 3.1C).
This is because asymmetric signaling, where a spike is followed by a fixed period
of on-time whereas off -times are subject to random variation, alleviates one of the
practical issues of stochastic local search: the presence of deep local minima in which
the search process gets stuck. The benefits of spike-based signaling are particularly
visible in conjunction with the WTA circuit motif: suppose that some WTA circuit
represents a discrete RV in a computational problem, and each principal neuron in
the WTA circuit represents one possible value of that variable, as described above.
Then the WTA circuit motif permits that sometimes (randomly and briefly) none
of the principal neurons in the WTA is active, and hence the value of the RV is
temporarily undefined (Figure 3.1C, right). When this occurs, most of the time
it has no lasting effect because the previously defined state is quickly restored.
But when the transition to an undefined RV state occurs in two or more WTA
circuits at approximately the same time, the principal neurons in these circuits

1The search is local in the sense that when the network moves from state x to some other
state x

′ this always occurs through a series of small changes (a series of individual neurons turning
on and off). In addition, the search process is parallel because state changes occur in a highly
distributed manner across the network, thus supporting the efficient exploitation of independent
substructures in the energy landscape.
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are momentarily given the opportunity to reconfigure their states from scratch and
explore radically different state configurations. Although such transitions to brief
periods of undefined RVs occur rarely, their frequency is greatly enhanced through
the asymmetry of spike-based signaling because spikes have a fixed on time and
neurons are therefore bound to switch to an off state on a much more regular basis
(but more briefly) than expected from the energy landscape alone. Indeed one can
show theoretically that, compared with a symmetrized system which samples from
the same stationary distribution p(x)2, the stochastic dynamics of noisy spiking
networks is considerably more explorative due to an increased frequency of state
transitions which gap large energy barriers.

Finally, Principle 4 proposes internal, rather than the traditional external, tem-
perature control for regulating stochastic search as part of the spike-based comput-
ing architecture (Figure 3.1D). Temperature control, i.e. the strategic modulation
of the energy landscape according to ET (x) = E(x)/T with some temperature T ,
is an essential ingredient of many stochastic search algorithms (Kirkpatrick et al.,
1983; Michalewicz and Fogel, 2000). High temperatures T generally lead to a flat-
tening of the energy landscape and increased exploration, whereas low temperatures
T correspond to a sharpening of the landscape and increased exploitation and drive
towards (local) energy minima. We propose an internal temperature control mech-
anism capable of a) automatically detecting in-situ when an acceptable solution
has been reached and b) reducing temperature once such a solution has been found,
leading to decreased exploration and a quasi lock-in effect. The key advantage of
such internal temperature control is that solutions are automatically detected and
stabilized which facilitates readout. In particular, in the absence of stabilization
the network may visit solution states arbitrarily briefly and transiently, and thus
solutions may be easily missed by a sloppy readout. In the presence of a lock-in
mechanism, on the other hand, good solutions are maintained and it therefore suf-
fices to check for solutions at irregular intervals. As a practical consequence, the
readout logic may run on a much slower timescale than the spiking dynamics, which
may be particularly beneficial in the context of high-speed neuromorphic simulation
of spiking networks.

3.3 Solving 3-SAT problems

To demonstrate these principles we applied the proposed framework to hard logi-
cal inference problems. As problem instances, hard random 3-SAT problems with
a clauses-to-variables ratio 4.3 near the phase transition (Biere, 2009) are consid-
ered (Figure 3.2). Each clause (constraint) of a 3-SAT formula consists of three
literals, where a literal is either a variable Xi or its negation Xi (Figure 3.2A).

2A symmetrized non-spike-based system which samples from the same stationary distribution
p(x) but in which transitions from on to off occur in the same stochastic manner as transitions
from off to on: a continuous-time variant of Gibbs sampling.
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Figure 3.2: Solving logical inference (SATISFIABILITY) problems. A. A 3-SAT problem
consisting of 50 boolean variables and 218 constraints (clauses). Each clause is fulfilled if
at least one out of the three literals is true. For the sketched problem only one assignment
to the variables exists which fulfills all clauses – the goal is to find this solution. A network
implementation based on Principles 1 and 2 is shown below. B. Example network run
during the first 4 seconds of network time (bottom: spike trains of neurons of selected
WTA circuits, top: performance of current network solution over time). C. Example run
in the presence of an additional lock-in circuit: when a solution is found it is automatically
detected and stabilized. D. Average network performance over time in the absence and
presence of lock-in. E. Distribution of wait times, i.e. times until the solution is found
for the first time. F. As expected for hard NP-complete problem instances, simulation
results suggest an exponential increase in wait times for hard random 3-SAT problems with
increasing problem size.

A clause is fulfilled if at least one out of the three literals is true. The goal is to
find an assignment to the variables which satisfies all clauses.3 For hard problems
this typically means finding one out of a handful of solutions in an astronomically
large search space of 2#vars possible assignments. Using Principles 1 and 2, any
3-SAT problem can be encoded in a straightforward manner in a spiking network
by representing each boolean variable by two neurons (Xi/Xi) and a WTA circuit,
and adding for each clause an OR circuit which is linked to the three literals of the
clause (Figure 3.2A). Note that the network states representing correct solutions to

3This is the search variant of the satisfiability problem (Biere, 2009).
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the problem violate the fewest circuit constraints and are therefore assigned partic-
ularly low energies (and high probability) in the energy landscape. In simulations
it is observed that networks constructed in this manner quickly generate good ap-
proximate solutions to the encoded 3-SAT problem, i.e. assignments which meet
many but not all constraints (Figure 3.2B). For hard problems with 50 variables a
correct solution which meets all constraints is usually found for the first time after
a few 100ms to a few seconds of network time (Figure 3.2B,E). Without a lock-in
mechanism the network then continues to search for other potential solutions to the
problem (Figure 3.2B). When a lock-in circuit is added, solutions are automatically
maintained and stabilized (Figure 3.2C). As a result, the average performance of
the network is considerably enhanced with lock-in. Regarding scalability on hard
random 3-SAT problems, simulations suggest that typical wait times (the time un-
til a solution is found by the network for the first time) scale exponentially with
problem size (Figure 3.2E), as expected for hard NP-complete problem instances.

3.4 Generating solutions to Traveling Salesman Prob-
lems

We further applied the proposed framework to planning problems (Figure 3.3), in
particular instances of the Traveling Salesman Problem (TSP) (Gutin and Punnen,
2002). Given a list of cities and the traveling costs for going from any city i to
any other city j, the goal is to find the least costly (the “shortest”) round-trip
route that visits each city exactly once. The problem can be encoded in a spik-
ing network by representing each step s in the trajectory by a WTA circuit with
Ncities neurons, one for each city (Figure 3.3A). To encourage short routes in the en-
ergy landscape, synaptic weights between two successive steps are chosen inversely
proportional to movement costs, such that low costs map onto strong excitatory
synaptic connections, whereas high costs are represented by low excitatory (or in-
hibitory) connections. The constraint that each city must be visited only once is
enforced by inhibitory connections among neurons coding for the same city at dif-
ferent time steps. Furthermore, to facilitate the search process, Nresting additional
“resting” steps are introduced which allow the salesman to “rest” in a city for one
time step before moving on (Figure 3.3A). Note that in the TSP optimization prob-
lem the optimality of solutions cannot be easily verified, and hence, in contrast to
the 3-SAT application, the objective in this case is not necessarily to recover an
optimal solution, but to find good approximate solutions. We tested the perfor-
mance of the network architecture with respect to this objective on a planar 38-city
problem instance (≈ 1043 unique tours). We find that the network quickly gener-
ates good approximate solutions to the TSP problem: The average performance of
generated network solutions converges within a few seconds to approximately 0.75
(where 1 corresponds to the optimal solution). Furthermore, due to fluctuations
around this stationary value, performances up 0.99 are typically reached within
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Figure 3.3: Generating approximate solutions to traveling salesman problems (TSP). A.
Network architecture for solving TSP problems. Each step i in the trajectory of the traveling
salesman is represented by a WTA circuit Xi with Ncities neurons (one for each city). The
synaptic weights between two steps are chosen to reflect movement costs between each pair
of cities. The constraint that each city must be visited exactly once is enforced by inhibitory
connections among neurons coding for the same city at different time steps. B. Example
application to a planar 38-city TSP instance. Top: 38-city problem; solution trajectories
generated by the network; optimal solution. Bottom: spike trains of neurons in selected
WTA circuits during the first few seconds of a typical run. Middle: network performance
over time (dark blue: single trial, cyan: average over 100 trials). The network quickly
generates good approximate solutions to the TSP problem. C. Advantage of asymmetric
spike-based signaling (Principle 3). The number of (very brief) exploratory transitions to
network states with partially undefined RVs (where no neuron is active in several WTAs
i such that the value of the corresponding RVs Xi is undefined) is compared between the
asymmetric spike-based system (NS=Neural Sampling) and an otherwise equivalent but
symmetrized non-spiking system (BM=Boltzmann Machine). Intermittent transitions to
exploratory states with more than 3 undefined variables Xi are found to occur up to 80
times more frequently in the spike-based system. D. Convergence is considerably faster
in the spike-based system than in the symmetrized system (shown is for each system the
cumulative mean/max performance as a function of the number of state changes). E. Similar
results are found when the same analysis is repeated for an asymmetric TSP problem with
39 cities.

a few 10s. We also tested Principle 3 (the advantage of asymmetric spike-based
communication) in the described setup. The results are shown in Figure 3.3C-E:
Brief periods of partially undefined network states occur with increased frequency in
the asymmetric spike-based architecture compared with a comparable symmetrized
sampler which samples from the same stationary distribution p(x) (Figure 3.3C).
Moreover, convergence to high-performance solutions (short trajectories) is consid-
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erably faster in the spike-based architecture compared to the symmetrized system
(Figure 3.3D). Similar results are obtained for an asymmetric 39-city TSP problem
instance (Figure 3.3E).

3.5 Discussion

In summary, we have presented a set of four new principles of circuit design with
spiking neurons which enable the systematic construction of networks of spiking
neurons for solving hard computational problems. In simulations, we have demon-
strated this for two well-known problems, 3-SAT and the Traveling Salesman Prob-
lem. The proposed architecture for solving 3-SAT (and k-SAT) has a particularly
wide range of potential applications. On the one hand, this is because every de-
cision problem in NP can be reduced to the satisfiability problem (Cook, 1971).
On the other hand, efficient solvers for satisfiability problems are in high demand
in many practical applications, such as model checking and software verification
(Biere, 2009) or haplotyping in genomics (Lynce and Marques-Silva, 2006). Apart
from boolean k-SAT and TSP, a direct application of the proposed framework to
many other important problems such as MAX-CUT, non-boolean k-SAT, the Hamil-
tonian path problem and graph-coloring (Karp, 1972), should be straightforward
to realize and could be examined in simulations in future work. A more ambitious
goal for the future is to examine to what extent the proposed framework can be
realized in practice on current or future neuromorphic hardware. If successful, this
would represent a major breakthrough in the pursuit of a long-standing goal: the
demonstration of powerful problem solving capabilities emerging in brain-inspired
computing hardware.
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The brain faces the problem to infer reliable hidden causes from large popula-
tions of noisy neurons, for example the direction of a moving object from spikes in
area MT. It is known that a theoretically optimal likelihood decoding could be car-
ried out by simple linear readout neurons if weights of synaptic connections would
be set to certain values that depend on the tuning functions of sensory neurons.
We show here that such theoretically optimal readout weights emerge autonomously
through STDP in conjunction with lateral inhibition between readout neurons. In
particular, we identify a class of optimal STDP learning rules with homeostatic plas-
ticity, for which the autonomous emergence of optimal readouts can be explained
on the basis of a rigorous learning theory. This theory shows that the considered
network motif approximates Expectation Maximization for creating internal gener-
ative models for hidden causes of high-dimensional spike inputs. Notably, we find
that this optimal functionality can be well approximated by a variety of STDP
rules beyond those predicted by theory. Furthermore we show that this learning
process is very stable, and automatically adjusts weights to changes in the number
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of readout neurons, in the tuning functions of sensory neurons, and in the statistics
of external stimuli.

4.1 Introduction

Uncertainty accompanies us in almost all situations in life. Whether we try to
recognize a distant object, decide which path to take on a mountain hike, or read a
person’s face in an important negotiation: the environment often provides us with
many cues, but each single cue is too unreliable to inform a decision on its own.
Thus we are forced to combine different cues in a meaningful manner in order to
gain sufficient certainty. The theoretical framework for solving such tasks in an
optimal way is Bayesian inference. Notably, behavioral and psychophysical studies
strongly support the picture that the brain implements this strategy: in numerous
experiments human subjects have been shown to take into account uncertainty in
a near-optimal way (Griffiths and Tenenbaum, 2006).

At the level of neural coding in early sensory areas, uncertainty is a particularly
well-studied phenomenon: individual neurons which encode certain stimulus prop-
erties show significant trial-to-trial variability, making it difficult to infer the original
stimulus from single neuron responses. This observation has led to the notion of
population coding: the value of a single variable is encoded by a whole popula-
tion of neurons, each noisy and typically broadly tuned to the external variable
(Pouget et al., 2000). Experimental data suggests this coding strategy as a candi-
date for understanding how important variables are represented in different areas
across cortex, e.g. sound location in auditory cortex (Miller and Recanzone, 2009),
or stimulus location in somatosensory cortex (Petersen et al., 2002). Just how the
brain reliably decodes information from populations of neurons in a near-optimal
way remains one of the open key questions in computational neuroscience.

In experimental neuroscience, the computation of robust readouts from popu-
lation codes has become indispensable in the analysis and interpretation of neural
data: population vector analysis and maximum likelihood (ML) estimation (Pouget
et al., 2000) are two frequently used methods. More recently, attempts have been
made to model neural networks which exhibit near-optimal decoding capabilities
(Deneve et al., 1999; Jazayeri and Movshon, 2006; Chaisanguanthum and Lisberger,
2011). The hope is that such models will advance our understanding of the neural
substrates of perceptual judgments: how the noisy and broadly tuned representa-
tions found in sensory areas can be efficiently used and transformed by downstream
populations to allow near-optimal performance in a variety of perceptual tasks.
The theoretical framework which has been guiding the search for suitable models is
Bayesian inference. Here, in contrast to previous, static models, we will use this per-
spective for the analysis of an adaptive cortical microcircuit, featuring spike-timing
dependent plasticity.

In the Bayesian framework, an observed response of a population of M neurons,
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which we will write here as x = (x1, . . . , xM )T , is interpreted as the result of an
underlying cause θ which cannot be observed directly. In visual processing this
external cause could correspond to the true stimulus orientation or motion direction
at some retinal location. The population code, i.e. the relation between the external
cause θ and the observed population response x, can then be represented by the
conditional distribution p(x|θ). This captures both deterministic dependencies on
θ, usually specified in terms of tuning functions, as well as neuronal noise. The
optimal way of inferring the external variable θ from noisy observations x is then
given by Bayes’ theorem:

p(θ|x)
︸ ︷︷ ︸

posterior

∝ p(θ)
︸︷︷︸

prior

· p(x|θ)
︸ ︷︷ ︸

likelihood

. (4.1)

In the context of population codes, the prior distribution is often assumed
to be uniform, such that inference reduces to computing the likelihood function
L(θ) = p(x|θ), which indicates how likely different θ are to have caused a given
observation x. This results in a quite straightforward decoding strategy: compute
the likelihood for each possible cause θ which could have given rise to the observed
population response, and choose the one with maximal likelihood. Somewhat sur-
prisingly, the computational requirements for implementing such a readout are min-
imal: under a few simplifying assumptions, including Poisson firing statistics and
zero noise correlations in the population pool, it was shown recently that the like-
lihood L(θ) of a stimulus can be written as a weighted sum of sensory responses x
(Jazayeri and Movshon, 2006). Based on this observation, the authors argued that
a readout neuron which specializes on detecting a particular stimulus value from a
set of possible values, can compute the corresponding likelihood by integrating its
synaptic inputs in a feed-forward manner (see the feed-forward path in Figure 4.1).
The synaptic weights which are required for this operation depend on the tuning
functions fj(θ) of the sensory neurons xj and the preferred orientation θk of the
readout neuron:

wkj = log fj(θk) + const. (4.2)

This establishes an important link between the response properties of the sensory
population (the tuning functions) and the optimal weights to decode information
from it, and gives clear instructions on how to construct an optimal readout network.
However, (4.2) also highlights that each population of neurons in the brain must be
read out differently, depending on the particular tuning functions of the neurons.

The preceding research leaves the question open how readout neurons could
acquire the theoretically optimal synaptic weights (4.2). The importance of this
question is underlined by recent findings which suggest that the brain constantly
retunes its circuits in order to improve probabilistic inference (Bejjanki et al., 2011).
How experimentally observed plasticity mechanisms at the synaptic level could
account for such an improvement had remained an open question.
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Here we present a learning theory for Spike-Timing Dependent Plastic-
ity (STDP) rules in the context of spiking neurons and lateral inhibition which
addresses this question: building on the analysis of previous work (Nessler et al.,
2010) we show that optimal likelihood decoding of noisy population codes emerges
automatically through STDP in a Winner-Take-All (WTA) circuit, a ubiquitous
network motif in cortical microcircuits (Douglas and Martin, 2004). In particular,
we theoretically analyze the weight dynamics of a particular form of STDP with
homeostatic plasticity and show that it can be described as an attractor dynamics,
where the centers of the attractors are the weight values (4.2) that are optimal
from the perspective of probabilistic inference and learning. In this way we create
a direct link between simple local rules for synaptic plasticity and theoretically op-
timal inference and learning on the network level. Whereas the analysis of Nessler
et al. (2010) was restricted to the case of multinomial input variables (that are
each encoded by a population of neurons of which at any time t exactly one has
fired within the time window [t − τ, t] and rectangular EPSPs (modeled by a step
function, rather than by a function with smooth decay), we show here that the
underlying learning theory can be extended to cover the biologically more realistic
case where each input neuron fires according to some Poisson-like statistics, and
EPSPs have a smooth decay. This new learning theory makes it possible to derive
learning curves for STDP and dependencies between current weight values and the
amount of weight potentiations or depressions under STDP that are optimal for a
given input statistic and EPSP shape. These analytically derived predictions for
details of STDP match currently available data quite well in a number of aspects.
Furthermore, we show that in practice variants of these optimal rules, and in par-
ticular plasticity rules based on typical STDP curves, approximate this optimal
behavior well.

We test predictions of the new learning theory in computer simulations and
show that previously derived optimal weights for likelihood decoding (4.2) emerge
autonomously through STDP in conjunction with homeostatic plasticity. Based on
this learning theory, we also show that an adaptive architecture for reading popu-
lation codes provides attractive benefits compared to previously considered static
models. In particular, we demonstrate stable and predictable behavior under chal-
lenging but biologically realistic dynamic scenarios, like changes in sensory tuning
functions or neuron growth and loss. We furthermore demonstrate that selective
modulation of learning leads to effects which are reminiscent of perceptual learning
(Gilbert et al., 2009), where the accuracy of neural codes is selectively enhanced for
behaviorally relevant stimuli.

The article is structured as follows: first, we introduce the canonical microcircuit
model we consider. In this circuit model we demonstrate STDP-based autonomous
learning upon exposure to population coded stimuli, and show that in such a setup
the synaptic weights converge to a setting which is optimal from the perspective of
likelihood decoding. We then introduce the theory which underlies this optimality,
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and derive a rigorous link between local synaptic learning and theoretical optimality
in the Bayesian framework. We complement these theoretical results by an extensive
performance comparison of different optimal and near-optimal STDP-based learning
rules. Hereupon we present results of simulations which test further predictions of
the theory, and demonstrate the versatility and robustness of the considered model.
We conclude with a simulation in which effects reminiscent of perceptual learning
are reproduced.

In order to make accurate perceptual judgments, the brain must use the infor-
mation provided by sensory areas as efficiently as possible. Since sensory neurons
tend to be noisy and broadly tuned, the computation of a sparse representation of
the most likely external stimulus (“hidden cause”) is a nontrivial task for a network
of neurons. However it was shown in Jazayeri and Movshon (2006), that for the case
of a one-dimensional hidden cause θ, which could for example represent the current
orientation, speed, or direction of a visual stimulus, this task could in principle be
solved by an array of linear readout neurons k = 1 . . . N with spiking outputs zk,
that receive synaptic inputs xj from sensory neurons j = 1 . . .M (see Figure 4.1).
It was shown that the readout neurons k can compute in their membrane potential
the log-likelihood that a particular hidden cause θk (which was assigned externally
to readout neuron k in Jazayeri and Movshon (2006)) had caused the current spike
output x of the sensory neurons. This occurs if the weights wkj from sensory neuron
j to readout neuron k are set according to (4.2). We show here, that these weights
emerge as fixed points (equilibria) of a class of theoretically optimal STDP rules
with homeostatic plasticity, provided that the readout neurons are subject to lat-
eral inhibition. Through the same learning process each readout neuron k implicitly
develops a preferred stimulus ψk, which then altogether allows the reconstruction
of an external input variable θ(t) at any moment in time.

4.2 Adaptive, stochastic WTA architecture

For the readout neurons k a stochastic neuron model is used similar to the model
recently proposed by Jolivet et al. (2006), which has been shown to explain neural
data well. The neuron model is characterized by an exponential dependence of the
firing probability on the current membrane potential uk,

p(k fires in [t, t+ ∆t]) = ∆t exp(uk(t)) , (4.3)

for small ∆t. The membrane potential of a readout neuron k consists of an excita-
tory and an inhibitory contribution:

uk(t) =
M∑

j=1

wkj(t)xj(t) − I(t) . (4.4)

Excitation comes from the feed-forward connections originating in the sensory pop-
ulation x1, . . . , xM . In particular, the term wkj(t)xj(t) represents the contribution
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Figure 4.1: Network motif in which STDP generates optimal decoding of population codes.
A time-varying external variable θ(t) is encoded by a population of sensory neurons. Each
sensory neuron xj has a characteristic average response for each value of θ: its tuning
function. Based on these tuning functions they emit spikes according to a Poisson process.
Readout neurons receive these spikes via feedforward connections with synaptic weights wkj .
A stochastic WTA circuit induces competition among readout neurons k. As a consequence,
those readout neurons, which receive the greatest stimulation from the sensory neurons, fire
preferentially.

of previous spikes from the j’th sensory neuron to the membrane potential uk of the
readout neuron k at time t. The term xj(t) hence models the unweighted output
spike train of the j’th sensory neuron after filtering according to the low-pass filter-
ing properties of the post-synaptic membrane. x(t) represents the collection of all
input signals which are available to the readout neurons at time t. We will refer to
this as the current (sensory) population response.

I(t) denotes the contribution to the membrane potential due to lateral inhibi-
tion. I(t) is common to all readout neurons in the circuit, and can thus be viewed as
a global inhibitory signal which controls the total gain of the circuit. In computer
simulations we modeled I(t) such that the total firing activity of the readout circuit
remained approximately constant. The resulting effect of inhibition is a normaliza-
tion of circuit responses, reminiscent of normalization models in cortex (Simoncelli
and Heeger, 1998; Zoccolan et al., 2005; Ohshiro et al., 2011; Louie et al., 2011).
Note that the lateral inhibition introduces competition among the readout neurons,
since a readout neuron with strong feed-forward input will claim a large fraction of
the total firing rate, thereby suppressing other readout neurons. We will refer to
the resulting network as a (stochastic) Winner-Take-All (WTA) circuit.

We focus in this article on the following theoretically motivated spike-timing-
dependent plasticity rule (but see Figure 4.3 for other forms of STDP we consider),

∆wkj = η · zk · (xj · αe
−wkj − 1) , (4.5)

where α is a positive constant which controls the balance between potentiation
and depression, and η is a learning rate which is constant unless otherwise stated.
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We define zk = 1 at spike times of the WTA neuron k and zk = 0 otherwise. The
learning rate η is chosen small throughout this article such that learning takes place
on a (much) longer time-scale than stimulus and network dynamics.

The first term of (4.5) corresponds to a prototypical spike-timing dependent
long term potentiation (LTP) window (with the same shape and time constant
as PSPs) with weight dependence. The second term depends on post-synaptic
spikes only, and can be interpreted as a form of homeostatic plasticity providing
negative feedback to the post-synaptic rate. Both terms fit well into the relatively
broad phenomenological framework of STDP rules (Gerstner and Kistler, 2002;
Gilson et al., 2010). But to distinguish it from more common STDP rules (which
typically feature spike-timing dependent depression), we will refer to this rule as
“theoretically optimal STDP”.

The motivation for first considering this form of STDP comes from its notable
and provable theoretical properties which will be developed in this article: (4.5)
leads to stable equilibrium weight settings which can be analyzed, and have a clear
interpretation from the perspective of probability theory. In particular, we will
show that (4.5) is an instance of a family of learning rules which can be directly
derived from the principle of adapting and optimizing an implicit generative model
of the input statistics.

With regard to biological plausibility, (4.5) is in many aspects consistent with
experimental studies on STDP. First, the strength and direction of learning depends
on the timing difference between pre- and post-synaptic spike. For pre-before-post
pairings, xj is large at the time of the post-synaptic spike and (4.5) will typically
lead to potentiation. For post-before-pre pairings, the negative part dominates and
leads to depression (Bi and Poo, 1998; Sjöström et al., 2001). Also, the strength
of potentiation correlates inversely with the synaptic weight before pairing. This
feature is also consistent with a number of experimental studies (Bi and Poo, 1998;
Sjöström et al., 2001; Liao et al., 1992; Montgomery et al., 2001). Furthermore,
the amount of depression is independent of the current weight. This is consistent
with the experimental results of Jacob et al. (2007), which is to the best of our
knowledge the only study of this effect in-vivo. Moreover, when measured under
a typical pairing STDP protocol, (4.5) will automatically shift towards LTP for
higher pairing frequencies, since for each post-synaptic spike, the xj will accumulate
more pre-synaptic spikes in the causal STDP window, while the negative term
remains constant. This effect is hence reminiscent of the tendency towards LTP
(and abolishment of LTD) for higher frequencies found experimentally (Sjöström
et al., 2001). Altogether, the agreement with these experimental STDP data is in a
sense remarkable, given that (4.5) can be derived from purely statistical principles.

However, there are also a few deviations from STDP data. Most importantly,
the negative contribution of (4.5) is activated for every post-synaptic spike regard-
less of pre-synaptic input. Hence, long-term depression (LTD) is not spiking-timing
dependent and can be triggered by post-synaptic spikes alone. We address this po-
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Figure 4.2: (see next page for Figure caption)

tential issue later, when we consider also a variation of (4.5) with timing-dependent
depression in Figure 4.3, and it turns out that the results are qualitatively very sim-
ilar. Another deviation is in regard to the frequency dependence mentioned above:
despite the general shift towards LTP, the exact form of frequency dependence in
experimental data (see e.g. Figure 7 in Sjöström et al. (2001)) cannot be reproduced
by (4.5).

For the described network architecture a computer simulation was carried out,
in which a fluctuating external variable θ ∈ [0, 2π] with a periodic boundary con-
dition (like any angle) was presented (Figure 4.2). Concretely one could interpret
this external variable as a motion direction. The changes in θ were designed to be
slightly slower than the network dynamics, corresponding to the assumption that
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Figure 4.2: Spike-timing dependent plasticity regulates synaptic weights towards theoretical
optima for likelihood decoding. A. An external variable θ(t) was presented to the network
of Figure 4.1A, here shown over a period of 6s. B. 100 sensory neurons (x1, . . . xM ) with
broad tuning functions and Poisson firing statistics provided a noisy population code of this
stimulus. Through plastic synaptic readout weights, these sensory spikes were fed into a
readout network (stochastic WTA) consisting of 20 spiking neurons with lateral inhibition.
The readout network produces a sparse output code. An external observer can associate
each readout neuron with a preferred stimulus ψk(t), which develops over the course of
learning. Based on the preferred stimuli, the original stimulus can be reconstructed from
the sparse readout spikes. C. The development of the weight matrix through theoretically
optimal STDP is shown over 2000s during exposure to a randomly changing stimulus θ(t).
Colors range from dark blue (0) to dark red (2.4). Initially, the weight matrix was randomly
initialized. At t = 100s, the effects of learning became visible: sensory neurons which
typically fired together had developed a preference for activating the same readout neuron.
At t = 2000s the weights had stabilized, and settled on a configuration which closely
matches the theoretical Bayes-optimal solution (4.2). Note that the readout neurons in
panel C (and D) are ordered by their preferred stimuli ψk at t = 2000s, to facilitate
visual comparison with the optimal solution. D. The development of readout responses is
shown over the course of learning. Initially, responses were unspecific to different stimuli.
At t = 100s, readout neurons had developed noticeable preferences for certain stimuli.
At t = 2000s, each readout neuron had become responsible for representing a particular
preferred stimulus. The firing activity of a readout neuron reflects the posterior probability
of the neuron’s preferred stimulus, given the current population response. The characteristic
sparse code which emerged is predicted by theory (see Bayes-optimal, bottom). E. The
readout spikes were used to compute a reconstruction θrec(t) (shown in red) of the external
stimulus θ(t) (shown in blue), in order to compare the quality of the readout at different
stages of learning. The reconstruction signal at time t was obtained based on the preferred
stimuli ψ(t) of those readout neurons which spiked in a 100ms time window before t (see
main text). As shown, initially each readout spike conveyed rather unspecific information
about the stimulus. The following specialization of readout neurons to different stimuli
allowed for an increasingly accurate reconstruction.

the sensory stimulus remains stable for the duration of a few PSPs. A number of
broadly tuned sensory neurons with Poisson firing statistics represented the value of
this external variable over time. Initially, synaptic readout weights were randomly
initialized, leading to rather unspecific responses in the readout circuit when stim-
ulated with different θ. At t = 100s of exposure to different population responses,
readout neurons started to specialize on different stimuli. This was reflected both
by selective firing of individual readout neurons to certain θ, and the gradual spe-
cialization of synaptic readout weights to different “patterns”. This specialization
can be understood as follows. During exposure to population responses, the readout
network continuously emits spikes. After each readout spike, the current population
response leaves a small trace in the synaptic weights of the readout neuron k which
has fired. In particular, as expected from STDP, synapses which are not active at
the time of the post-synaptic spike are depressed, and those with strong activity
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are enhanced. The synaptic changes induced by plasticity increase the probability
that the same neuron fires again when a similar population response is registered,
while making it less likely to fire when significantly different patterns are active.
Due to the inhibitory circuit which promotes competition, different neurons start
to pick up different patterns. As a consequence, a specific pattern emerges in the
synaptic weights of each readout neuron. This pattern reflects the history of pop-
ulation responses which made the readout neuron fire. At t = 2000s the readout
weights have reached a setting which was stable with minor fluctuations around
some target values. One can now compare this converged weight setting with the
results by Jazayeri and Movshon (2006) on optimal population decoding. As shown
in Figure 4.2C, the weights, which have autonomously emerged during exposure to
unknown population responses, have recovered the previously identified theoretical
optima for likelihood decoding, in particular those obtained through (4.2).

What is the overall effect of this learning process? Most importantly, individual
readout neurons have become specialists for individual hidden causes (or stimuli).
Hence, after but not before learning, each readout spike can be considered an indica-
tion for a particular hidden cause. As a consequence one can achieve an increasingly
faithful reconstruction of the original stimulus θ from readout spikes, as shown in
Figure 4.2E.

4.3 Learning theory for STDP in a network with lateral

inhibition

We have shown in Figure 4.2 that the spike-timing dependent rule (4.5) in a network
with lateral inhibition can regulate the synaptic readout weights such that near-
optimal decoding of population responses can take place. We demonstrated that
a main feature of this learning process was the emergence of a sparse spike code,
optimized to reveal the hidden causes of high-dimensional input spike-trains. Here
we will show that this behavior can be understood in terms of a rigorous learning
theory. Our theoretical analysis relies on the notion of an implicit generative model
implemented in the network, a powerful statistical tool for the extraction of hidden
causes from high-dimensional data. Using basic assumptions about the input distri-
bution we arrive at a performance measure favoring sparse spiking in which different
readout neurons fire for distinct hidden causes (with clearly distinct sensory repre-
sentations). This theoretical tool allows us to track and analyze the performance of
the network, in particular small changes in performance due to a single application
of the learning rule. The main result is that an application of the local learning
rule (4.5) is always expected to increase global performance. This increase can be
understood in terms of an attractor dynamics in the weight space induced by the
plasticity rule, in which the attractor centers are weight settings which are stable
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under the dynamics of the network. These equilibria are characterized by,

wkj = log 〈xj |k fires〉 + const., (4.6)

where we write 〈·|k fires〉 for the empirical average over all spike times of neuron k
during the operation of the circuit (for a more precise definition, see Appendix D:
Equilibria of STDP). Importantly, we show that these weight settings are not only
the attractors of the network dynamics, but they also correspond to locally optimal
weights settings from the perspective of the implicit generative model. Hence, we
establish a direct link between local synaptic learning rules and theoretically optimal
performance of the network.

A common problem in data analysis is to extract hidden causes from high-
dimensional input x without supervision, i.e. without the help of a teacher sig-
nal which provides the desired outcome z during training. Generative models are
arguably the most powerful paradigm of unsupervised learning, with examples in-
cluding (probabilistic) PCA , ICA, Gaussian mixture models and Hidden Markov
Models (Bishop, 2006). The rationale behind generative models is “analysis by syn-
thesis”: if you aim to understand (decode) something, learn to build (generate) it
yourself. The starting point is a model p(x|W) describing the statistics of an input
stream x as the result of a generative random process, typically involving hidden
causes z,

p(x|W) =
∑

z

p(z|W) · p(x|z,W) . (4.7)

This generative model can understood as a two-step process. First, a hidden con-
figuration is drawn according to the hidden probabilities p(z|W). Then, the hidden
states generate the actual data x, according to p(x|z,W). The sum in (4.7) reflects
the fact that the same data x can be generated by different hidden configurations
z.

Then, the goal of learning is to find parameters W which bring the distribution
p(x|W) generated by the model as close as possible to the actual data distribu-
tion, which we will write here as p∗(x). This is done by adjusting the parame-
ters W of the model, usually in small steps, until the Kullback-Leibler divergence
KL(p∗(x)||p(x|W)), a quantity that measures the distance between the real distri-
bution and the model, becomes minimal. During this process, an efficient repre-
sentation for the hidden causes z emerges which is optimized to “explain” the data
in p∗(x). This hidden representation can be retrieved by evaluating the posterior
distribution p(z|x,W).

Here, we adopt the perspective of a generative model to analyze learning for the
network shown in Figure 4.1. But what is a good choice for a generative model?
First, we restrict ourselves to a sparse representation of readout neurons, meaning
that only a few hidden causes should be sufficient to explain any given input. A
simple way to achieve this is a mixture model, in which at any time exactly one



64 Chapter 4. Emergence of Optimal Decoding through STDP

hidden cause (or expert) is active, and each expert is associated with a different
set of input patterns. Second, since inputs to the neural network consist of spike
trains with Poisson characteristics, a reasonable choice is to assign to each expert a
characteristic pattern of input firing rates to which it is specialized. Formally, the
generative model then takes the form,

p(x|W) =
1

N

N∑

k=1

M∏

j=1

Poisson(xj ;α
−1ewkj ) , (4.8)

where Poisson(x;λ) denotes the Poisson distribution over x with “rate” λ, and α
is an arbitrary positive constant (note that our analysis extends beyond Poisson
distributions, see below). The model can be understood as follows: the probability
of cause k being active is 1

N . If the cause k is active, the number of spikes for
the sensory neuron xj within a rectangular PSP window of length τ is Poisson-
distributed with a rate which is encoded in the parameter wkj. Hence, each cause k
is an expert for a particular pattern of Poisson rates in the input, and this preferred
pattern is encoded in the parameters wk1, . . . , wkM . Note that prior parameters
instead of a fixed prior 1

N could be easily incorporated into the model. These
prior parameters could then be mapped onto neural excitabilities in the neural
implementation (Nessler et al., 2010).

Several steps are required in order to establish a direct correspondence between
the network implementation and the generative model: first, the network elements
need to be related to the variables of the generative model. We already implicitly
linked the synaptic weights to the model parameters in a straightforward fashion
by using the weights wkj in the definition of the generative model. Similarly, we
can link the readout neurons to the hidden causes of the model: each hidden cause
k is represented by one readout neuron, k. Second the network should support
Bayesian inference, i.e. it should respond to an input x by inferring likely hidden
states z, according to the posterior probabilities p(z|x,W). Indeed we will show that
each output spike from the readout network is generated according to the correct
posterior distribution. Third, network plasticity should optimize the parameters of
the generative model over time, i.e. the synaptic weights should come to reflect the
input statistics p∗(x) through learning. This is the main focus of this article. We
will prove this by relating spike-timing dependent learning to a standard algorithm
for generative model learning, Expectation Maximization (EM). One operation of
the generative model which will not be required from the network, is the actual
generation of data x. Since, in contrast to other models (see e.g. Dayan et al.
(1995); Rao and Ballard (1999)), such an explicit generation of data is not needed
here, we will refer to our model as an implicit generative model.

In the spirit of Jazayeri and Movshon (2006) and Nessler et al. (2010), Bayesian
inference in the model defined by (4.8) can be related to a feed-forward neural
implementation with synaptic weights wkj between input and readout layer. This
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is because the log-likelihood of an input x under the cause k is given by,

log p(x|k,W) =
M∑

j=1

wkjxj −
M∑

j=1

α−1ewkj −
M∑

j=1

log(xj!) . (4.9)

The second term can be ignored in practice if the input representation is homoge-
neous (Jazayeri and Movshon, 2006). The third term is independent of k, and hence
drops out later in the normalization of the posterior distribution p(k|x,W). This
leaves only the first term which is simply the feed-forward sum of inputs, which a
neuron k can compute in its soma. As a consequence, we can show that each spike
from a readout neuron in Figure 4.1 can be interpreted as a sample from the correct
posterior distribution p(k|x,W) (see Appendix D).

The key component of the present learning theory is the connection between
spike-timing dependent learning and the implicit generative model, in particular the
optimization of its parameters W. In machine learning, the most well-known algo-
rithm for performing this optimization is Expectation Maximization (EM) (Bishop,
2006). What we will show here is that the operation of spike-timing dependent
learning in the cortical microcircuit of Figure 4.1 can be understood as a stochastic
online version of EM. This allows us to view learning as an attractor dynamics in
the weight space, where the attractors correspond to local optima in the generative
model perspective.

The framework of Expectation Maximization provides a general tool for deriv-
ing and analyzing learning dynamics of autonomously learning systems which fit an
implicit or explicit generative model to an external distribution p∗(x). Of particular
interest is the family of online EM algorithms (Sato, 1999; Cappé and Moulines,
2009), which operate at one input at a time, thereby gradually absorbing the input
statistics into the parameters of the model. The fundamental steps of online EM are
inference (Expectation) and learning (Maximization). During inference, the poste-
rior probabilities p(z|x,W) of hidden configurations are evaluated for the current
input x. The subsequent learning step uses both x and the inferred hidden con-
figurations to perform a small update ∆W which increases the model’s likelihood
for the current input x. As indicated above, each firing of a neuron k in the WTA-
circuit of the network provides a sample from the current posterior distribution:
hence this is equivalent to a stochastic E-step. The corresponding post-synaptic
spike then triggers the plasticity rule (4.5) in the synapses wk1, . . . , wkM . Through
an analysis of this STDP-based update one can show that this provides a step in
the direction of a correct M-step in online EM. In particular, one can prove that the
expected application of the rule with a sufficiently small learning rate will always
improve the performance of the network until a local optimum is reached, i.e.

KL(p∗(x)||p(x|W + ∆W)) ≤ KL(p∗(x)||p(x|W)) , (4.10)

where ∆W is the expected update for a randomly chosen input pattern from p∗(x)
(see Appendix D).
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This allows us to view learning in the considered cortical microcircuit as an
attractor dynamics: the trajectories in weight space induced by spike-timing de-
pendent learning are attracted to specially distinguished weight settings which have
the property that for all synapses ∆wkj = 0, i.e. the system is in equilibrium with
respect to (4.5). These attractors in weight space are optimal from the perspective
of the implicit generative model, in the sense that they correspond to locally op-
timal solutions to the problem of fitting the internal model p(x|W) to the input
distribution p∗(x).

Before moving on to the generalization of this main result to non-Poisson input
statistics, a remark is in order concerning the connection between the optimization
of the implicit generative model p(x|W) and the optimal readout weights for pop-
ulation coding, as they were derived in Jazayeri and Movshon (2006). As already
suggested by the simulation results shown in Figure 4.2, these two optimality crite-
ria are intimately connected. This is because the “true” statistics of the population
code p(x|θ) from which the optimal readout weights in Jazayeri and Movshon (2006)
are derived, can be mapped with arbitrary precision onto a mixture model repre-
sentation in the form of (4.8). The mapping is most faithful if the Kullback-Leibler
divergence between the real population code and the mixture model is lowest: this
is precisely what the plasticity rule optimizes. By increasing the number of readout
neurons the theoretically achievable divergence can be made arbitrarily small, and
the two optimality criteria become effectively equivalent.

The assumption of Poisson variability is a reasonable and popular approximation
to the firing statistics of real cortical neurons. At the same time there exists ample
experimental evidence for deviations from this rule, e.g. bursty or regularly firing
neurons (Shinomoto et al., 2009). This raises the question whether our learning
theory can be applied also to other firing statistics. In turns out that the presented
theory can indeed be generalized to the exponential family of distributions, which
contains many well-known parametric models like the Poisson, Normal, Gamma,
and negative binomial distributions. The main result of this generalization is that
each firing statistics is associated with a different, small variation of optimal STDP.
Through the generalization to exponential families, the presented theory for STDP
in the context of lateral inhibition becomes applicable to a wide range of biologi-
cally relevant firing statistics (see Appendix D). The power of exponential family
distributions also allows to incorporate more realistic EPSP shapes: given the fir-
ing statistics of sensory neurons, together with the EPSP shape, one can construct
a “tailor-made” exponential family distribution which accounts for the variability
encountered in the inputs x (see Appendix D). This makes the theory applicable
to virtually arbitrary EPSP shapes, in particular those derived from electrophysio-
logical experiments.
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4.4 A family of STDP rules leads to near-optimal read-

outs

These theoretical results are quite encouraging, since they establish a link between
a particular form of STDP on the one hand, and the powerful statistical framework
of Expectation Maximization on the other hand. But how relevant are these results
for the study of autonomous learning processes in the cortex? After all, the the-
oretically postulated mechanism for depression in (4.5), which leads to LTD even
in the absence of pre-synaptic spikes, is quite speculative. It would thus be highly
interesting to know whether this term could also be replaced by timing-dependent
depression without loss of functionality. Furthermore, plasticity mechanisms in the
brain appear to be heterogeneous and noisy (Sjöström et al., 2001; Caporale and
Dan, 2008), in contrast to precise theoretical rules. If one assumes a given PSP
shape and Poisson variability, is (4.5) really the only rule which can be guaranteed
to lead to the emergence of optimal weights?

In this section we provide further results to address these questions. First, the
convergence results (and the link to EM) which hold for (4.5) can in fact be easily
generalized to a whole family of optimal STDP rules with homeostatic plasticity,

∆wkj = η · zk ·
(
f(wkj) · xj · αe

−wkj − f(wkj)
)
, (4.11)

where f(wkj) can be any strictly positive function. For f(wkj) = 1, the original
learning rule is recovered, which yields LTD proportional to the post-synaptic rate
〈zk〉. This form of LTD is thus reminiscent of synaptic scaling (Turrigiano, 2010),
except that in synaptic scaling, updates scale with the current weight (Abbott and
Nelson, 2000). Indeed, a learning rule with synaptic scaling can be obtained by
letting f(wkj) = wkj. We verified the correctness of this (optimal) variant of (4.5)
in Figure 4.3B.

Furthermore, we tested two variations which are not provably optimal from
the perspective of the presented learning theory, but approximate the functionality
of the optimal rules well: As shown in Figure 4.3C, in another variation of (4.5)
the time constant of the causal STDP window was chosen twice as long as the
PSP decay constant (while its magnitude was halved). The resulting performance
is virtually optimal. Finally, we tested the performance of an STDP rule with
common timing-dependent depression (Figure 4.3D), with additional superimposed
noise. The resulting weights are slightly less pronounced and more noisy, but the
readout performance is comparable to the other variants (compare RMSE values in
the bottom row). Notably, this behavior is also quite robust against variations of
parameters of this STDP rule (see Figure D.1).

Although these variants only cover a few cases of special interest, they make
clear that the main finding of this article, the emergence of optimal readouts, is not
an artifact of a specific definition of the learning rule, but in practice a property of
a whole family of STDP learning rules. The most important features which appear
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Figure 4.3: A variety of STDP rules leads to (near-) optimal readouts. Top row: Illustration
of the four STDP rules which were tested. To illustrate weight dependence, the STDP
curves are shown for different weights (blue: 0.5, green: 1, red: 1.5). A and B. Theoretically
optimal rules: (4.5) and a variant with synaptic scaling, respectively. C. A modification of
(4.5) with the time-constant of the causal STDP branch doubled. D. STDP with common
timing-dependent depression and superimposed noise. Black dots in top row represent noisy
samples (weights for these samples drawn randomly from a normal distribution with mean
1 and standard deviation 0.4). Middle row: synaptic weights after 500s of learning. As
a performance measure, the reconstruction RMSE is shown (root mean squared error of
reconstruction signal in a 2000s test run). Bottom row: weights after 3000s. The RMSE of
the optimal decoder is 0.58. All variants yield near-optimal performance.

to characterize this family of STDP rules are a) pronounced weight dependence of
spike-timing dependent potentiation (in accordance with experimental data) and
b) some of form of homeostatic regulation of weights, either implemented explic-
itly (e.g. through synaptic scaling) or implicitly through spike-timing dependent
depression.

4.5 Maintenance of optimality in spite of drastic net-

work changes

To our knowledge, this article provides the first “adaptive” neural approach to op-
timal decoding from sensory populations in the literature. As a consequence, the
canonical microcircuit considered here is substantially more flexible than previous,
static models for optimal decoding. In the following computer simulations, we have
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selected two biologically motivated dynamic scenarios which demonstrate its func-
tional advantages. The first scenario is based on the observation that plasticity in
sensory cortex appears to persist throughout adulthood, as suggested by numerous
studies in different species and cortical areas (Trachtenberg et al., 2002; Goel and
Lee, 2007). Hence, the tuning functions of sensory neurons, especially in superficial
layers, are not fixed but subject to constant change. This constitutes a challenge
to downstream populations which rely on the representation provided by sensory
areas. We will show that the canonical microcircuit considered here gracefully
handles a scenario of changing sensory tuning functions: any change in the input
distribution is automatically detected by the network, resulting in an appropriate
adjustment of the weight settings. As a consequence of this constant readaptation,
the readout representation of the external stimulus can remain remarkably invariant
to changes in the sensory representation. The second scenario deals with neuroge-
nesis and neuron death, two phenomena which have been reported repeatedly in
adult cortex (Morrison and Hof, 2007). We studied the effects of neuron growth
and death in the readout population, showing that through learning, the readout
network can a) minimize the detrimental effects of cell death and b) maximize the
gain in representation accuracy brought by neurogenesis.

In the first scenario, we studied the consequences of changing tuning functions
in the sensory population on the readout network (see Figure 4.4). For this we
divided the sensory population into three groups (G1-G3). Initial sensory tuning
functions were chosen such that the whole range of the input stimulus was repre-
sented uniformly in each group. The simulation was then split into three phases:
a static phase (0s-1000s), a dynamic phase (1000s - 2000s) and a consolidation
phase (2000s - 3000s). During the static phase, sensory tuning functions were kept
constant and the readout network learned an optimal readout representation based
on the initial sensory code. The resulting weight matrices are qualitatively iden-
tical to those obtained in Figure 4.2C. In the dynamic phase, tuning functions in
all three groups of sensory neurons started to change. In the first group tuning
functions broadened, in the second group they narrowed, and in the third group
tuning functions narrowed and simultaneously started to develop a second mode
(see Figure 4.4B). This change in the sensory population code was automatically
“detected” by the readout network causing the synaptic readout weights to take
up pursuit of a quickly moving target: the attractor centers of the learning dy-
namics which depend on and thus drift in parallel with sensory tuning functions.
A snapshot of the readout weight matrix at time 1600s in the middle of the dy-
namic phase is shown in Figure 4.4C. In the consolidation phase, sensory tuning
functions were fixed again. This allowed the readout network to converge to the
new optimal setting, thereby reinterpreting all sensory neurons according to their
new properties. This is particularly visible in Group 3 (G3), where each sensory
neuron had developed two modes in the tuning function. The corresponding opti-
mal decoding strategy is to connect each sensory neuron in G3 strongly with those



70 Chapter 4. Emergence of Optimal Decoding through STDP

readout neurons which correspond to the two modes. As shown in Figure 4.4C,
this strategy was found autonomously through learning. Figure 4.4D illustrates the
preferred stimuli of five exemplary readout neurons during the dynamic phase. One
should note that, in spite of drastic changes in the sensory representation (e.g. the
development of bimodal tuning functions, see Figure 4.4B), the preferred stimuli
of readout neurons hardly change during the adaptation period. Hence, learning
facilitates the decoupling between sensory and readout representations with respect
to the external stimulus.

In a second scenario (see Figure 4.5) we studied the effect of neuron growth
and death in the readout population. In a computer simulation, a microcircuit
was setup with five readout neurons, and the weights were allowed to converge
to a stable setting upon stimulation with input stimuli analogous to Figure 4.2.
At t = 800s and t = 1600s the growth of 5 new readout neurons with randomly
initialized weights was simulated yielding a jump in the mean squared error (MSE)
of the reconstruction, see Figure 4.5B. In theory, a larger number of readout neurons
allows for a more fine-grained representation, and hence for a more accurate readout.
However, this requires that the weights of all neurons are adjusted appropriately.
In particular the newly formed neurons should learn to respond to the most poorly
represented regions of the external stimulus. Figure 4.5A shows that this optimal
strategy automatically emerges through learning: the preferred stimuli ψk of the
newly grown neurons quickly learned to fill in the “spaces” in between the existing
neurons. This is also reflected by a lower mean squared error of the reconstruction
signal (Figure 4.5B, compare at t = 800s and t = 1600s). A similar effect is
observed after simulating the new growth of another five neurons with random
weight initialization. At t = 2400s the sudden death of 10 neurons was simulated.
Theoretically, this substantially reduces the achievable readout accuracy. However,
the loss in accuracy is smallest if the surviving neurons rearrange such that their
preferred stimuli ψk are uniformly distributed over the input range. As shown in
Figure 4.5A, this is the strategy which is automatically implemented by learning
in the network (2400s-3200s). Hence, the detrimental effects of neuron loss on
the readout representation are minimized through learning (see the corresponding
reduction of reconstruction MSE in Figure 4.5B).

4.6 Improved representation of behaviorally relevant
inputs

The ability to dynamically allocate resources for representing important peripheral
inputs in a use-dependent manner is a hallmark of cerebral cortex (Buonomano
and Merzenich, 1998). Indeed, cortical representations are highly plastic, and the
dynamic changes in cortical representation upon manipulations in input or during
task learning are thought to underlie the phenomenon of perceptual learning: the
improvement of sensory abilities during training (Seitz and Watanabe, 2005). Al-
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Figure 4.4: Canonical microcircuit maintains optimality in spite of changing tuning func-
tions in the sensory population. A. The sensory population was divided into three groups,
G1-G3, each group responsive to the whole range of input stimuli. B. The simulation then
comprised a static phase (0s-1000s), a dynamic phase (1000s - 2000s) and a consolidation
phase (2000s - 3000s). In the static phase (first row), constant sensory tuning functions
were used analogous to Figure 4.2. In the dynamic phase (second row), tuning functions
started to change. Each group of sensory neurons developed different tuning functions. In
G1 tuning functions broadened, in G2 they narrowed, and in G3 they became bimodal. In
the consolidation phase (third row), tuning functions were fixed again. C. The change in
the sensory population code during the dynamic phase (second row) resulted in a shift in
the attractor centers of the learning dynamics. This became visible in the synaptic readout
weights, which slowly tracked the changes in the sensory population (see weight matrix
at t = 1600s). During the consolidation phase, the synaptic weights then converged to a
new optimal representation. Colors range from dark blue (0) to dark red (1.9). D. The
preferred directions of five representative z-neurons are shown over the course learning. Al-
though the sensory representation drastically changes over the considered period (B), the
readout representation remains remarkably stable.

though the exact neural mechanisms which give rise to task-related improvements
are largely unknown, experimental evidence suggests an important implication of
synaptic plasticity of intra-cortical connections (Buonomano and Merzenich, 1998)
in conjunction with top-down “relevance” or reward signals (Seitz and Watanabe,
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Figure 4.5: STDP enables robust decoding despite neuron growth and death. A. The
preferred stimuli ψk of readout neurons are shown over time. The circuit was initially setup
with five readout neurons. Through learning these readout neurons became experts with
uniformly distributed preferred stimuli (t = 800s). At t = 800s, five readout neurons were
added to the circuit with randomly initialized weights. They quickly specialized on the
most weakly represented ranges of the stimulus space (t = 1600s). A similar effect could
be observed after adding another five neurons, leading to a yet refined representation (see
1600s− 2400s). At t = 2400s, the cell death of ten readout neurons was simulated. This
resulted in large representation gaps, i.e. poorly represented regions of the input stimulus.
Through learning, the preferred stimuli of WTA neurons rearranged towards an optimized
configuration again (2400s − 3200s). B. Mean-squared reconstruction error over time.
Performance plunged whenever randomly initialized readout neurons were inserted (at t =
800s and t = 1600s), before recovering again through learning. Neurons loss at t = 2400s
also degraded performance. Although learning minimized the ensuing detrimental effects,
the final MSE with 5 neurons (t = 3200s) is markedly higher than with 15 neurons (t =
2400s). Blue dots correspond to selected time points in C. C. Weight matrices at different
stages of the simulation (time points indicated by blue dots in B). Colors: dark blue (0) -
dark red (2.1). An optimized weight setting for five readout neurons is shown at t = 800s.
At t = 900s, the synaptic weights of five newly grown neurons, amidst previously existing
neurons, are depicted shortly after random initialization. Optimized weight settings for 10
and 15 neurons are shown at t = 1600s and t = 2400s, respectively.

2005). The latter have been hypothesized to be communicated to local cortical
circuits via diffuse neuromodulatory signals, such as “acetylcholine, norepinephrine
or dopamine, which gate learning and thus restrict sensory plasticity” (Seitz et al.,
2009). Here we will show that, by incorporating such a modulatory signal into
the considered cortical microcircuit model, the internal representation of stimuli
becomes automatically focused on behaviorally relevant inputs, i.e. those inputs
which are consistently paired with high levels of the modulatory signal. The result-
ing allocation of cortical resources in proportion to relevance is strongly reminiscent
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Figure 4.6: Improved representation of behaviorally relevant inputs. A. For 1000s weights
were regulated by (4.5) with a constant learning rate (no modulation, blue line). For the
following 3000s the learning rate was modulated in dependence of the external variable (red
curve), thereby simulating stimulus selective modulation of learning. The external variable
θ(t) and the tuning functions of sensory neurons were simulated as in Figure 4.2. B. The
simulated cortical microcircuit responded to the modulation by increasing the represen-
tation density for those regions which were paired with strong modulation, at the cost of
reduced representation density for other regions. C. The weight setting which emerged when
gating was present (t = 4000s) differs from the unmodulated case (t = 1000s) by a stronger
focus on those population responses which coincided with periods of high “relevance”. In
particular, after modulated learning more readout neurons receive their strongest synaptic
connections from sensory neurons which respond to relevant stimuli (∼sensory neurons 40-
60). These readout neurons correspond to the dense region of preferred directions in B. As
a consequence of the reallocation of resources, a greater readout resolution is achieved for
those regions of the high-dimensional input space which are behaviorally relevant.

of experimentally observed training-dependent cortical map plasticity (Buonomano
and Merzenich, 1998).

In a computer simulation, we incorporated a global modulatory signal into the
cortical microcircuit considered above, acting as a soft gate for learning. The gating
was implemented as a multiplicative factor on the learning rate. During an initial
reference phase, modulation remained constant during exposure to stimuli, leading
as expected via learning to a uniform internal representation (see Figure 4.6B and
Figure 4.6C at t = 1000s). Modulation was activated at t = 1000s. The modulation
was chosen in dependence of the current external stimulus, such that certain ranges
of θ were paired with higher levels of the modulatory signal than others (see Fig-
ure 4.6A, red curve). As shown, those population responses which coincided with
higher levels were stronger imprinted in the synaptic network weights, and conse-
quently, the internal representation started to shift towards a denser concentration
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around more “relevant” θs (Figure 4.6B and Figure 4.6C at t = 4000s). In contrast,
stimuli paired with lower levels of modulation became more crudely represented by
the network. Hence, the resulting density of representation in the distribution of
preferred stimuli ψk is directly connected to the strength of modulation imposed
for different θ.

Such use-dependent allocation of cortical resources is a ubiquitous feature of
cortical plasticity, and has been shown to correlate with significant performance
improvements on corresponding tasks (Buonomano and Merzenich, 1998). Our
results indicate that the modulation of learning in a local cortical microcircuit model
through a diffuse global signal is indeed sufficient to reproduce relevance-dependent
allocation of representational resources. This provides a simple mechanism which
could underlie the characteristic improvements in sensory abilities associated with
perceptual learning.

4.7 Discussion

Ensembles of pyramidal cells with lateral inhibition on layers 2/3 and layer 5/6
(Fino and Yuste, 2011) constitute a universal network motif of cortical microcir-
cuits in many different cortical areas and different species. We propose that these
network motifs acquire through STDP a rather universal computational function,
that appears to be essential for many, if not all, cortical areas: the compression of
high-dimensional noisy spike inputs into lower-dimensional sparse representations
of the most likely hidden causes of these high-dimensional spike inputs. This yields
in particular an emergent optimal decoding of population codes in the sense of
Jazayeri and Movshon (2006). This emergent computational function of stochas-
tic WTA circuits is very stable, because a rigorous learning theory shows that the
theoretically optimal values of synaptic weights are attractors in the dynamics of
synaptic weights under the considered class of STDP rules with homeostatic plas-
ticity. A remarkable feature of the underlying learning theory is that it creates a
link between local synaptic learning rules such as STDP, and the most powerful
known abstract method for autonomous (i.e., unsupervised) learning: Expectation
Maximization (EM). This link holds provably for the class of optimal STDP rules,
and in practice also approximately for STDP rules which are not directly covered
by theory (see Figure 4.3).

Furthermore the learning theory for STDP that we have introduced provides
a new benchmark for analyzing and understanding from a functional perspective
the large variety of parameters and learning curves for STDP that have been found
at different synapses (Dan and Poo, 2006). This learning theory proposes that
the theoretically optimal version of STDP (from the perspective of autonomous
generation of implicit generative models for high-dimensional noisy spike inputs
through Expectation-Maximization) depends both on the firing statistics of pre-
synaptic neurons, and on the average shape of EPSPs at the soma in a systematic
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and predictable manner.

In particular, the learning theory for STDP that we have presented throws a new
light on the question of downstream decoding of information conveyed by popula-
tions of noisy spiking neurons. It had already been shown in Jazayeri and Movshon
(2006) that simple linear neurons could in principle carry out a theoretically op-
timal maximum likelihood decoding, provided that suitable values are chosen for
their synaptic weights. The learning theory that we have presented shows that these
optimal weight values are in fact attractors with regard to the dynamics of synaptic
weights under STDP in stochastic WTA circuits. This learning theory for STDP
provides therefore also a possible explanation for the problem how downstream neu-
rons can maintain optimal decoding of population codes of sensory neurons in spite
of ubiquitous changes in the tuning functions of sensory neurons (see Figure 4.4)
and changes in the number of neurons involved in this decoding (see Figure 4.5).
Furthermore if one assumes that synaptic plasticity is gated by neuromodulators
or network activity, so that the learning rate of STDP is increased for behaviorally
relevant stimuli, the downstream decoding network automatically adapts its reso-
lution in order to achieve a finer representation of behaviorally relevant ranges of
external stimuli (see Figure 4.6).

An interesting aspect which we did not study in this article is whether “self-
organizing maps”, similar to the well-documented orientation maps in cat visual
cortex (Hubel and Wiesel, 1963), could emerge in the presented model. Indeed, one
could think of clever changes in the model to induce such effects, e.g. adding lateral
excitatory connections between neighboring neurons. This would likely facilitate
the emergence of locally smooth maps. On the other hand, it is not clear at all
whether a downstream “user” of the network output actually requires such a smooth
map representation: indeed, many rodents, including rats, mice and squirrels, can
live without smooth maps (e.g. Van Hooser et al. (2005)). Furthermore, from a
purely functional standpoint, neurons in the presented model with similar tuning
(e.g. specialized on similar motion directions) will generally have non-negligible
signal correlation (see e.g. Figure 4.2D). Hence, downstream neurons which receive
connections from the WTA neurons could quite easily detect groups of neurons
which code for similar input stimuli, and establish selective synaptic connections to
“functionally neighboring” neurons even if their spatial arrangement is scrambled.

The WTA mechanism in this article relies on an exponential input-output non-
linearity of the form eu to fit the requirements of Bayesian inference. Indeed, this
is precisely the input-output relation which has been found empirically by Jolivet
et al. (2006), who fit a stochastic spike response model to predict spike timings in
pyramidal cells from L5 rat somatosensory cortex. Other authors have suggested
a power relation of the form up between membrane potential and output rate,
e.g. Priebe et al. (2004). Although we expect that power relations would suffice
to induce the desired competition, it would be interesting to study the effect of
different non-linearities in future work.
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One of the model assumptions is conditional independence of inputs, and hence
learning is only guaranteed to be optimal if there are no noise correlations in the
input (although convergence is guaranteed regardless). Many studies have found
moderate noise correlations in cortex (Smith and Kohn, 2008; Huang and Lisberger,
2009). On the other hand, the recent study by Ecker et al. (2010) found that in
primary visual cortex even nearby neurons with similar tuning show close to zero
correlation (and the authors argue that earlier findings may need to be reevaluated
under more precise experimental paradigms). Nonetheless, we tested how non-
zero noise correlations affect network performance. Figure D.2 shows that for a
moderately correlated input population code the performance remains quite high,
although not optimal. This has to be expected from a learner which relies on the
independence assumption, and in accordance with the findings of Graf et al. (2011)
who showed that linear readouts can be further improved if input correlations are
taken into account. Whether input correlations could be efficiently exploited in
the context of the present article, i.e. whether and how the correlation structure in
the inputs could be learned autonomously in an unsupervised manner (Graf et al.
(2011) used supervised learning) by a spiking network with local plasticity rules,
remains an open question for future work.

Another model assumption we made is that the stimulus distribution is uni-
form. Note that this does not invalidate the presented results for non-uniformly
distributed inputs: even in a non-uniform stimulus setting, learning is still guaran-
teed to converge to an optimal solution with respect to the fixed prior distribution
(since the assumption is made on the level of the implicit generative model, not
on the input distribution p∗(x)). The solution produced by the network for a non-
uniform stimulus distribution resembles Figure 4.6: a greater number of neurons
specializes on the more likely region of the stimulus (see Figure D.3). This is pre-
cisely what is expected from a maximum likelihood learner with a fixed prior model
distribution. Another important question is whether the network also adapts its
implicit prior distribution over the stimulus in an optimal manner. In other words,
does the WTA network automatically become biased towards activating those neu-
rons whose preferred directions occur more often in the input? Indeed, this turns
out to be the case: Since high probability stimuli will automatically attract more
WTA neurons during the specialization process, the implicit prior distribution of
the network favors high probability stimuli after learning. Indeed this phenomenon
is also quantitatively consistent with the prediction of a Bayesian framework (Fig-
ure D.3).

Related work

As a model for decoding of high-dimensional population codes in the brain, the key
novelty of the present work is plasticity. In particular, this article demonstrates to
the best of our knowledge for the first time that population codes can not only be
read out efficiently (this had already been shown by Deneve et al. (1999), Jazayeri
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and Movshon (2006) and Chaisanguanthum and Lisberger (2011)), but that this
readout can also be learned optimally by a stereotypical cortical microcircuit mo-
tif, in a process which is entirely autonomous and self-organizing. An interesting
difference to previous models for population decoding lies in the output code of the
readout circuit, which can represent a whole distribution (in contrast to Deneve
et al. (1999)), while being sparse for typical stimuli (as opposed to the predic-
tions of Jazayeri and Movshon (2006)). Hence, the information which is extracted
about the inputs is represented and conveyed by the whole network population,
rather than by the identity of a single neuron. Strong, unambiguous stimuli will
elicit sharp responses, whereas weaker/low-contrast/ambiguous stimuli will lead to
a distributed code. Furthermore, our model predicts that neural activity repre-
sents samples from a probability distribution, a coding scheme which has recently
attracted considerable attention, as it appears to be particularly suitable for prob-
abilistic representations subject to learning and adaptation (Fiser et al., 2010). As
a consequence, our model is not only consistent with the experimentally observed
trial-to-trial variability of neuronal responses, but in fact requires that neurons re-
spond in a stochastic manner. Hence, one can view this article also as a contribution
to the growing literature on computational properties of networks of stochastically
firing neurons.

The link to EM extends the presented model’s generality beyond population
coding, to input representations which cannot be easily described in terms of a
fixed number of external variables. In this more general context, different authors
have proposed neural network models which are able to carry out Bayesian inference
(Doya et al., 2007), and some also considered the question how probabilistic repre-
sentations could emerge autonomously through learning, e.g. Dayan et al. (1995);
Rao and Ballard (1999), or Keck et al. (2012) who used a related approach as the
one developed here, but required more approximations and did not model spiking
neurons (and hence also not the relation between EM and STDP). While these
models focused on rather artificial neural networks based on abstract (either bi-
nary or continuous-valued rate-based) neural units, recent studies have started to
address whether also more realistic, spiking neural networks are capable of acquir-
ing optimized probabilistic representations through autonomous learning. A recent
model by Deneve (2008b) focused on a single spiking neuron and showed that such
a neuron can in principle learn an efficient code for its inputs in a basic temporal
generative model. Whether parameter learning in the model can be scaled up to
multiple neurons, which would be required to cope with complex but biologically
realistic input distributions, remains an interesting open issue. Finally, the recent
model by Nessler et al. (2010) showed that spiking neurons can learn to represent
a mixture of multinomial input variables, assuming that exactly one input neuron
in a group is active at a time. The generalization and extension of this result to
biologically realistic firing statistics and EPSP shapes, required for the decoding of
realistic population codes, was described in the present article.



78 Chapter 4. Emergence of Optimal Decoding through STDP

Finally, Law and Gold (2009) showed in a related work that near-optimal pop-
ulation readouts can also be learned autonomously through a simple reinforcement
learning (RL) rule. More precisely, they demonstrate that for a given decision prob-
lem, e.g. whether the motion direction encoded by the input is < 180◦ or > 180◦,
near-optimal linear readouts from an input population can be found through RL.
The learning scheme relies on a feedback signal which conveys the correctness of
the decisions computed from the readout. In principle, for any particular deci-
sion problem a different set of readout weights is required. Our work complements
these findings insofar as we show that an (external) feedback signal is actually not
needed for the emergence of optimal readouts. Instead, optimal readout weights in
a downstream population of neurons can emerge through a purely self-supervising
process. Furthermore, in principle any decision problem can then be reduced to
simply counting spikes emitted by the network population, e.g. checking whether
those output neurons with preferred directions < 180◦ produced more spikes than
those with preferred directions > 180◦. Given the attractive properties of both ap-
proaches and the prevalence of both STDP and reward-modulated learning in the
brain, it is not unreasonable to assume that cortex employs a combination of these
learning mechanisms.

Experimentally testable predictions

Our results predict that abolishment of STDP during a critical period prevents
the emergence of sparse codes for frequently occurring sensory stimuli. They also
predict, that with intact STDP, the coding properties of pyramidal cells will change
in a predictable manner in response to changes in the distribution of external stimuli
or their behavioral relevance (see Figure 4.6), since this change will be tracked by
the implicit generative model of ensembles of pyramidal cells (probably on layers
2/3 and layers 5/6). In addition, a lesion of some neurons within this ensemble will
cause a redistribution of neural codes among the remaining neurons (see Figure 4.5).
Our theoretical analysis of optimal versions of STDP predicts a specific dependence
of features of STDP on the firing statistics of presynaptic neurons that can in
principle be tested experimentally.

Furthermore, our model predicts that in WTA neurons, i.e. pyramidal cells
in layers 2/3 and layers 5/6, the tuning of firing rates should be sharper than
the tuning of membrane potentials. In fact, this is the well-known experimentally
observed ice-berg effect (Carandini and Ferster, 2000). But in our model the ice-berg
effect also has a novel functional interpretation from the perspective of Bayesian
inference: the instantaneous firing rate must depend on the current membrane
potential via a sharpening exponential activation function in order to ensure that
neurons encode probabilities. Hence, the ice-berg effect is a prerequisite for correct
learning of optimal decoding weights. Another direct prediction of our model is
that the stimulus selectivity in ensembles of pyramidal cells with lateral inhibition
is sharper when familiar stimuli are presented compared to novel stimuli. This effect
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has been recently reported in monkey Inferior Temporal Cortex (ITC) by Freedman
et al. (2006).

Conclusion

In summary, we have shown that in conjunction with STDP, a common network
motif of cortical microcircuits acquires a generic computational function: it creates
a sparse representation of complex high-dimensional spike inputs to a local micro-
circuit. Although we have discussed in this article only the application to decoding
of information from populations of noisy sensory neurons, the generation of sparse
representations for complex high dimensional inputs, which converge onto a micro-
circuit from many different brain areas, is a candidate for a generic computational
operation that is meaningful for microcircuits in any cortical area.
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Recent spiking network models of Bayesian inference and unsupervised learning
frequently assume either inputs to arrive in a special format or employ complex
computations in neuronal activation functions and synaptic plasticity rules. Here
we show in a rigorous mathematical treatment how homeostatic processes, which
have previously received little attention in this context, can overcome common the-
oretical limitations and facilitate the neural implementation and performance of
existing models. In particular, we show that homeostatic plasticity can be under-
stood as the enforcement of a ’balancing’ posterior constraint during probabilistic
inference and learning with Expectation Maximization. We link homeostatic dy-
namics to the theory of variational inference, and show that nontrivial terms, which
typically appear during probabilistic inference in a large class of models, drop out.
We demonstrate the feasibility of our approach in a spiking Winner-Take-All archi-
tecture of Bayesian inference and learning. Finally, we sketch how the mathematical
framework can be extended to richer recurrent network architectures. Altogether,
our theory provides a novel perspective on the interplay of homeostatic processes
and synaptic plasticity in cortical microcircuits, and points to an essential role of
homeostasis during inference and learning in spiking networks.
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5.1 Introduction

Experimental findings from neuro- and cognitive sciences have led to the hypoth-
esis that humans create and maintain an internal model of their environment
in neuronal circuitry of the brain during learning and development (Körding
and Wolpert, 2004; Orban et al., 2008; Fiser et al., 2010; Berkes et al., 2011),
and employ this model for Bayesian inference in everyday cognition (Griffiths
and Tenenbaum, 2006; Angelaki et al., 2009). Yet, how these computations
are carried out in the brain remains largely unknown. A number of innova-
tive models has been proposed recently which demonstrate that in principle,
spiking networks can carry out quite complex probabilistic inference tasks (Den-
eve, 2008a; Steimer et al., 2009; Buesing et al., 2011; Pecevski et al., 2011), and
even learn to adapt to their inputs near optimally through various forms of plasticity
(Deneve, 2008b; Nessler et al., 2010; Brea et al., 2012; Rezende et al., 2012; Keck et al., 2012).
Still, in network models for concurrent online inference and learning, most ap-
proaches introduce distinct assumptions: Both (Nessler et al., 2010) in a spiking
Winner-take-all (WTA) network, and (Keck et al., 2012) in a rate based WTA
network, identified the limitation that inputs must be normalized before being
presented to the network, in order to circumvent an otherwise nontrivial (and
arguably non-local) dependency of the intrinsic excitability on all afferent synapses
of a neuron. Nessler et al. (Nessler et al., 2010) relied on population coded input
spike trains; Keck et al. (Keck et al., 2012) proposed feed-forward inhibition as a
possible neural mechanism to achieve this normalization. A theoretically related
issue has been encountered by Deneve (Deneve, 2008a,b), in which inference and
learning is realized in a two-state Hidden Markov Model by a single spiking neuron.
Although synaptic learning rules are found to be locally computable, the learning
update for intrinsic excitabilities remains intricate. In a different approach, Brea et
al. (Brea et al., 2012) have recently proposed a promising model for Bayes optimal
sequence learning in spiking networks in which a global reward signal, which is
computed from the network state and synaptic weights, modulates otherwise purely
local learning rules. Also the recent innovative model for variational learning
in recurrent spiking networks by Rezende et al. (Rezende et al., 2012) relies on
sophisticated updates of variational parameters that complement otherwise local
learning rules.

There exists great interest in developing Bayesian spiking models which require
minimal non-standard neural mechanisms or additional assumptions on the input
distribution: such models are expected to foster the analysis of biological circuits
from a Bayesian perspective (Tenenbaum et al., 2011), and to provide a versa-
tile computational framework for novel neuromorphic hardware (Schemmel et al.,
2010). With these goals in mind, we introduce here a novel theoretical perspective
on homeostatic plasticity in Bayesian spiking networks that complements previous
approaches by constraining statistical properties of the network response rather
than the input distribution. In particular we introduce ’balancing’ posterior con-
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straints which can be implemented in a purely local manner by the spiking network
through a simple rule that is strongly reminiscent of homeostatic intrinsic plas-
ticity in cortex (Desai et al., 1999; Watt and Desai, 2010). Importantly, it turns
out that the emerging network dynamics eliminate a particular class of nontrivial
computations that frequently arise in Bayesian spiking networks.

First we develop the mathematical framework for Expectation Maximiza-
tion (EM) with homeostatic posterior constraints in an instructive Winner-Take-all
network model of probabilistic inference and unsupervised learning. Building upon
the theoretical results of (Graca et al., 2008), we establish a rigorous link between
homeostatic intrinsic plasticity and variational inference. In a second step, we sketch
how the framework can be extended to recurrent spiking networks; by introducing
posterior constraints on the correlation structure, we recover local plasticity rules
for recurrent synaptic weights.

5.2 Theory for balanced autonomous learning in WTA
circuits

We first introduce, as an illustrative and representative example, a generative mix-
ture model p(z,y|V ) with hidden causes z and binary observed variables y, and
a spiking WTA network N which receives inputs y(t) via synaptic weights V . As
shown in (Nessler et al., 2010), such a network N can implement probabilistic in-
ference p(z|y,V ) through its spiking dynamics, and maximum likelihood learning
through local synaptic learning rules (see Figure 1A). The mixture model com-
prises K binary and mutually exclusive components zk ∈ {0, 1},

∑K
k=1 zk = 1, each

specialized on a different N -dimensional input pattern:

p(y,z|V ) =
K∏

k=1

eb̂kzk

N∏

i=1

[
(πki)

yi · (1 − πki)
1−yi

]zk (5.1)

⇔ log p(y,z|V ) =
∑

k

zk

(
∑

i

Vkiyi −Ak + b̂k

)

, (5.2)

with
∑

k

eb̂k = 1 and πki = σ(Vki) and Ak =
∑

i

log(1 + eVki) , (5.3)

where σ(x) = (1 + exp(−x))−1 denotes the logistic function, and πki the expected
activation of input i under the mixture component k. For simplicity and notational
convenience, we will treat the prior parameters b̂k as constants throughout the
paper. Probabilistic inference of hidden causes zk based on an observed input y
can be implemented by a spiking WTA network N of K neurons which fire with the
instantaneous spiking probability (for δt → 0),

p(zk spikes in [t, t+ δt]) = δt · rnet ·
euk(t)

∑

j e
uj(t)

∝ p(zk = 1|y,V ) , (5.4)
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with the input potential uk(t) =
∑

i Vkiyi(t) − Ak + b̂k. Each WTA neuron k
receives spiking inputs yi via synaptic weights Vki and responds with an in-
stantaneous spiking probability which depends exponentially on its input poten-
tial uk in accordance with biological findings (Jolivet et al., 2006). Stochastic
winner-take-all (soft-max) competition between the neurons is modeled via divisive
normalization (5.4) (Simoncelli and Heeger, 1998). The input is defined as yi(t) = 1
if input neuron i emitted a spike within the last τ milliseconds, and 0 otherwise,
corresponding to a rectangular post-synaptic potential (PSP) of length τ . We define
zk(t) = 1 at spike times t of neuron k and zk(t) = 0 otherwise.

In addition to the spiking input, each neuron’s potential uk features an intrinsic
excitability −Ak + b̂k. Note that, besides the prior constant b̂k, this excitability
depends on the normalizing term Ak, and hence on all afferent synaptic weights
through (5.3): WTA neurons which encode strong patterns with high probabilities
πki require lower intrinsic excitabilities, while neurons with weak patterns require
larger excitabilities. In the presence of synaptic plasticity, i.e., time-varying Vki,
it is unclear how biologically realistic neurons could communicate ongoing changes
in synaptic weights from distal synaptic sites to the soma. This critical issue was
apparently identified in (Nessler et al., 2010) and (Keck et al., 2012); both papers
circumvent the problem (in similar probabilistic models) by constraining the input
y (and also the synaptic weights in (Keck et al., 2012)) in order to maintain constant
and uniform values Ak across all WTA neurons.

Here, we propose a different approach to cope with the nontrivial computations
Ak during inference and learning in the network. Instead of assuming that the
inputs y meet a normalization constraint, we constrain the network response during
inference, by applying homeostatic dynamics to the intrinsic excitabilities. This
approach turns out to be beneficial in the presence of time-varying synaptic weights,
i.e., during ongoing changes of Vki and Ak. The resulting interplay of intrinsic and
synaptic plasticity can be best understood from the standard EM lower bound
(Bishop, 2006),

F (V , q(z|y)) = L(V ) − 〈KL(q(z|y) || p(z|y,V )) 〉p∗(y) → E-step , (5.5)

= 〈 log p(y,z|V ) 〉p∗(y)q(z|y) + 〈H(q(z|y)) 〉p∗(y) → M-step , (5.6)

where L(V ) = 〈log p(y|V )〉p∗(y) denotes the log-likelihood of the input under the
model, KL (· || ·) the Kullback-Leibler divergence, andH(·) the entropy. The decom-
position holds for arbitrary distributions q. In hitherto proposed neural implemen-
tations of EM (Deneve, 2008b; Nessler et al., 2010; Keck et al., 2012; Sato, 1999),
the network implements the current posterior distribution in the E-step, i.e., q = p
and KL (q || p) = 0. In contrast, by applying homeostatic plasticity, the network
response will be constrained to implement a variational posterior from a class of
“homeostatic” distributions Q: the long-term average activation of each WTA neu-
ron zk is constrained to an a priori defined target value. Notably, we will see that
the resulting network response q∗ describes an optimal variational E-Step in the
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Figure 5.1: A. Spiking WTA network model. B. Input templates from MNIST database
(digits 0 -5 ) are presented in random order to the network as spike trains (the input tem-
plate switches after every 250ms, black/white pixels are translated to high/low firing rates
between 20 and 90 Hz). C. Sketch of intrinsic homeostatic plasticity maintaining a certain
target average activation. D. Homeostatic plasticity induces average firing rates (blue)
close to target values (red). E. After a learning period, each WTA neuron has specialized
on a particular input motif. F. WTA output spikes during a test phase before and after
learning. Learning leads to a sparse output code.

sense that q∗(z|y) = arg minq∈Q KL(q(z|y) || p(z|y,V )). Importantly, homeostatic
plasticity fully regulates the intrinsic excitabilities, and as a side effect eliminates
the non-local terms Ak in the E-step, while synaptic plasticity of the weights Vki

optimizes the underlying probabilistic model p(y,z|V ) in the M-step.
In summary, the network response implements q∗ as the variational E-step, the

M-Step can be performed via gradient ascent on (5.6) with respect to Vki. As derived
in section 5.2, this gives rise to the following temporal dynamics and plasticity rules
in the spiking network, which instantiate a stochastic version of the variational EM
scheme:

uk(t) =
∑

i

Vkiyi(t) + bk , ḃk(t) = ηb · (rnet ·mk − δ(zk(t) − 1)) , (5.7)

V̇ki(t) = ηV · δ(zk(t) − 1) · (yj(t) − σ(Vki)) , (5.8)

where δ(·) denotes the Dirac delta function, and ηb, ηV are learning rates (which
were kept time-invariant in the simulations with ηb = 10 · ηV ). Note that (5.8)
is a spike-timing dependent plasticity rule (cf. (Nessler et al., 2010)) and is non-
zero only at post-synaptic spike times t, for which zk(t) = 1. The effect of the
homeostatic intrinsic plasticity rule (5.7) is illustrated in Figure 5.1C: it aims to
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keep the long-term average activation of each WTA neuron k close to a certain
target value mk. More precisely, if rk is a neuron’s long-term average firing rate,
then homeostatic plasticity will ensure that rk/rnet ≈ mk. The target activations
mk ∈ (0, 1) can be chosen freely with the obvious constraint that

∑

kmk = 1. Note
that (5.7) is strongly reminiscent of homeostatic intrinsic plasticity in cortex (Desai
et al., 1999; Watt and Desai, 2010).

We have implemented these dynamics in a computer simulation of a WTA spik-
ing network N. Inputs y(t) were defined by translating handwritten digits 0 -5
(Figure 5.1B) from the MNIST dataset (LeCun et al., 1998) into input spike trains.
Figure 5.1D shows that, at the end of a 104s learning period, homeostatic plasticity
has indeed achieved that rk ≈ rnet ·mk. Figure 5.1E illustrates the patterns learned
by each WTA neuron after this period (shown are the πki). Apparently, the WTA
neurons have specialized on patterns of different intensity which correspond to dif-
ferent values of Ak. Figure 5.1F shows the output spiking behavior of the circuit
before and after learning in response to a set of test patterns. The specialization to
different patterns has led to a distinct sparse output code, in which any particular
test pattern evokes output spikes from only one or two WTA neurons. Note that
homeostasis forces all WTA neurons to participate in the competition, and thus
prevents neurons from becoming underactive if their synaptic weights decrease, and
from becoming overactive if their synaptic weights increase, much like the original
Ak terms (which are nontrivial to compute for the network). Indeed, the learned
synaptic parameters and the resulting output behavior corresponds to what would
be expected from an optimal learning algorithm for the mixture model (5.1)-(5.3).1

Theory for the WTA model

In the following, we develop the three theoretical key results for the WTA model
(5.1)-(5.3):

• Homeostatic intrinsic plasticity finds the network response distribu-
tion q∗(z|y) ∈ Q closest to the posterior distribution p(z|y,V ), from a set
of “homeostatic” distributions Q.

• The interplay of homeostatic and synaptic plasticity can be understood from
the perspective of variational EM.

• The critical non-local terms Ak defined by (5.3) drop out of the network
dynamics.

1 Without adaptation of intrinsic excitabilities, the network would start performing erroneous
inference, learning would reinforce this erroneous behavior, and performance would quickly break
down. We have verified this in simulations for the present WTA model: Consistently across trials,
a small subset of WTA neurons became dominantly active while most neurons remained silent.
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E-step: variational inference with homeostasis

The variational distribution q(z|y) we consider for the model (5.1)-(5.3) is a 2N ·
K dimensional object. Since q describes a conditional probability distribution,
it is non-negative and normalized for all y. In addition, we constrain q to be a
“homeostatic” distribution q ∈ Q such that the average activation of each hidden
variable (neuron) zk equals an a-priori specified mean activation mk under the input
statistics p∗(y). This is sketched in Figure 5.2. Formally we define the constraint
set,

Q = {q : 〈zk〉p∗(y)q(z|y) = mk, for all k = 1 . . . K} , with
∑

k

mk = 1 . (5.9)

The constrained maximization problem q∗(z|y) = arg maxq∈QF (V , q(z|y)) can be
solved with the help of Lagrange multipliers (cf. (Graca et al., 2008)). We find
that the q∗ which maximizes the objective function F during the E-step (and thus
minimizes the KL-divergence to the posterior p(z|y,V )) has the convenient form
q∗(z|y) ∝ p(z|y,V ) · exp(

∑

k β
∗
kzk) with some β∗k. Hence, it suffices to consider

distributions of the form,

qβ(z|y) ∝ exp(
∑

k

zk(
∑

i

Vkiyi + b̂k −Ak + βk
︸ ︷︷ ︸

=:bk

)) , (5.10)

for the maximization problem. We identify βk as the variational parameters
which remain to be optimized. Note that any distribution of this form can be
implemented by the spiking network N if the intrinsic excitabilities are set to
bk = −Ak + b̂k + βk. The optimal variational distribution q∗(z|y) = qβ∗(z|y) then
has β∗ = arg maxβ Ψ(β), i.e. the variational parameter vector which maximizes the
dual (Graca et al., 2008),

Ψ(β) =
∑

k

βkmk − 〈log
∑

z

p(z|y,V ) exp(
∑

k

βkzk)〉p∗(y) . (5.11)

Due to concavity of the dual, a unique global maximizer β∗ exists, and thus also
the corresponding optimal intrinsic excitabilities b∗k = −Ak + b̂k + β∗k are unique.
Hence, the posterior constraint q ∈ Q can be illustrated as in Figure 5.2B: For each
synaptic weight configuration V there exists, under a particular input distribution
p∗(y), a unique configuration of intrinsic excitabilities b such that the resulting net-
work output fulfills the homeostatic constraints. The theoretical relation between
the intrinsic excitabilities bk, the original nontrivial term −Ak and the variational
parameters βk is sketched in Figure 5.2C. Importantly, while bk is implemented
in the network, Ak, βk and b̂k are not explicitly represented in the implementa-
tion anymore. Finding the optimal b in the dual perspective, i.e. those intrinsic
excitabilities which fulfill the homeostatic constraints, amounts to gradient ascent
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Figure 5.2: A. Homeostatic posterior constraints in the WTA model: Under the variational
distribution q, the average activation of each variable zk must equal mk. B. For each set
of synaptic weights V there exists a unique assignment of intrinsic excitabilities b, such
that the constraints are fulfilled. C. Theoretical decomposition of the intrinsic excitability
bk into −Ak, b̂k and βk. D. During variational EM the bk predominantly “track” the
dynamically changing non-local terms −Ak (relative comparison between two WTA neurons
from Figure 5.1).

∂βΨ(β) on the dual, which leads to the following homeostatic learning rule for the
intrinsic excitabilities,

∆bk ∝ ∂βk
Ψ(β) = mk − 〈zk〉p∗(y)q(z|y) . (5.12)

Note that the intrinsic homeostatic plasticity rule (5.7) in the network corre-
sponds to a sample-based stochastic version of this theoretically derived adaptation
mechanism (5.12). Hence, given enough time, homeostatic plasticity will automat-
ically install near-optimal intrinsic excitabilities b ≈ b∗ and implement the correct
variational distribution q∗ up to stochastic fluctuations in b due to the non-zero
learning rate ηb. The non-local terms Ak have entirely dropped out of the network
dynamics, since the intrinsic excitabilities bk can be arbitrarily initialized, and are
then fully regulated by the local homeostatic rule, which does not require knowledge
of Ak.

As a side remark, note that although the variational parameters βk are not
explicitly present in the implementation, they can be theoretically recovered from
the network at any point, via βk = bk +Ak − b̂k. Notably, in all our simulations
we have consistently found small absolute values of βk, corresponding to a small
KL-divergence between q∗ and p.2 Hence, a major effect of the local homeostatic
plasticity rule during learning is to dynamically track and effectively implement
the non-local terms −Ak. This is shown in Figure 5.2D, in which the relative
excitabilities of two WTA neurons bk − bj are plotted against the corresponding
non-local Ak −Aj over the course of learning in the first simulation (Figure 5.1).

2This is assuming for simplicity uniform prior parameters b̂k. Note that a small KL-divergence
is in fact often observed during variational EM since F , which contains the negative KL-divergence,
is being maximized.
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Figure 5.3: A. Input templates from MNIST dataset (digits 0,3 at a ratio 2:1, and digits
0,3,4 at a ratio 1:1:1) used during the first and second learning period, respectively. B.
Learned patterns at the end of each learning period. C. Network performance converges in
the course of learning. F is a tight lower bound to L. D. Illustration of pattern learning and
re-learning dynamics in a 2-D projection in the input space. Each black dot corresponds to
the pattern πki of one WTA neuron k. Colored dots are input samples from the training
set (blue/green/red ↔ digits 0/3/4 ).

M-step: interplay of synaptic and homeostatic intrinsic plasticity

During the M-step, we aim to increase the EM lower bound F in (5.6) w.r.t. the
synaptic parameters V . Gradient ascent yields,

∂Vki
F (V , q(z|y)) = 〈∂Vki

log p(y,z|V )〉p∗(y)q(z|y) (5.13)

= 〈 zk · (yj − σ(Vki)) 〉p∗(y)q(z|y) , (5.14)

where q is the variational distribution determined during the E-step, i.e., we can
set q = q∗. Note the formal correspondence of (5.14) with the network synaptic
learning rule (5.8). Indeed, if the network activity implements q∗, it can be shown
easily that the expected update of synaptic weights due to the synaptic plasticity
(5.8) is proportional to (5.14), and hence implements a stochastic version of the
theoretical M-step (cf. (Nessler et al., 2010)).

Dynamical properties of the Bayesian spiking network with home-
ostasis

To highlight a number of salient dynamical properties emerging from homeostatic
plasticity in the considered WTA model, Figure 5.3 shows a simulation of the same
network N with homeostatic dynamics as in Figure 5.1, only with different input
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statistics presented to the network, and uniform mk = 1
K . During the first 5000s,

different writings of 0’ s and 3’ s from the MNIST dataset were presented, with 0’ s
occurring twice as often as 3’ s. Then the input distribution p∗(y) abruptly switched
to include also 4’ s, with each digit occurring equally often. The following obser-
vations can be made: Due to the homeostatic constraint, each neuron responds on
average to mk ·T out of T presented inputs. As a consequence, the number of neu-
rons which specialize on a particular digit is directly proportional to the frequency
of occurrence of that digit, i.e. 8:4 and 4:4:4 after the first and second learning
period, respectively (Figure 5.3B). In general, if uniform target activations mk are
chosen, output resources are allocated precisely in proportion to input frequency.
Figure 5.3C depicts the time course of the EM lower bound F as well as the average
likelihood L (assuming uniform b̂k) under the model during a single simulation run,
demonstrating both convergence and tightness of the lower bound. As expected
due to the stabilizing dynamics of homeostasis, we found variability in performance
among different trials to be small (not shown). Figure 5.3D illustrates the dynamics
of learning and re-learning of patterns πki in a 2D projection of input patterns onto
the first two principal components.

5.3 Extended theory for recurrent stochastic spiking
networks

The neural model so far was essentially a feed-forward network, in which every
postsynaptic spike can directly be interpreted as one sample of the instantaneous
posterior distribution (Nessler et al., 2010). The lateral inhibition served only to
ensure the normalization of the posterior. We will now extend the concept of
homeostatic processes as posterior constraints to the broader class of recurrent
networks and sketch the utility of the developed framework beyond the regulation
of intrinsic excitabilities.

Recently it was shown in (Buesing et al., 2011; Pecevski et al., 2011) that re-
current networks of stochastically spiking neurons can in principle carry out prob-
abilistic inference through a sampling process. At every point in time, the joint
network state z(t) represents one sample of a posterior. However, (Buesing et al.,
2011) and (Pecevski et al., 2011) did not consider unsupervised learning on spiking
input streams.

For the following considerations, we divide the definition of the probabilistic
model in two parts. First, we define a Boltzmann distribution,

p(z) = exp(
∑

k

b̂kzk +
1

2

∑

j 6=k

Ŵkjzkzj)/norm. , (5.15)

with Ŵkj = Ŵjk as “prior” for the hidden variables z which will be represented by a
recurrently connected network ofK spiking neurons. For the purpose of this section,



5.3. Extended theory for recurrent stochastic spiking networks 91

we treat b̂k and Ŵkj as constants. Secondly, we define a conditional distribution in
the exponential-family form (Bishop, 2006),

p(y|z,V ) = exp(f0(y) +
∑

k,i

Vkizkfi(y) −A(z,V )) , (5.16)

that specifies the likelihood of observable inputs y, given a certain network state z.
This defines the generative model p(y,z|V ) = p(z) p(y|z,V ).

We map this probabilistic model to the spiking network and define that for every
k and every point in time t the variable zk(t) has the value 1, if the corresponding
neuron has fired within the time window (t − τ, t]. In accordance with the neural
sampling theory, in order for a spiking network to sample from the correct posterior
p(z|y,V ) ∝ p(z) p(y|z,V ) given the input y, each neuron must compute in its
membrane potential the log-odd (Buesing et al., 2011),

uk = log
p(zk = 1|z\k,V )

p(zk = 0|z\k,V )
=
∑

i

Vkifi(y)

︸ ︷︷ ︸

feedforward drive

−Ak(V ) + b̂k
︸ ︷︷ ︸

intr. excitability

+
∑

j 6=k

(−Akj(V ) + Ŵkj
︸ ︷︷ ︸

recurrent weight

)zj − . . .

(5.17)

where z\k = (z1, . . . , zk−1, zk+1, . . . zK)T. The Ak, Akj , . . . are given by the decom-
position of A(z,V ) along the binary combinations of z as,

A(z,V ) = A0(V ) +
∑

k

zkAk(V ) +
1

2

∑

j 6=k

zkzjAkj(V ) + . . . (5.18)

Note, that we do not aim at this point to give learning rules for the prior parameters
b̂k and Ŵkj. Instead we proceed as in the last section and specify a-priori desired
properties of the average network response under the input distribution p∗(y),

ckj = 〈zkzj〉p∗(y)q(z|y) and mk = 〈zk〉p∗(y)q(z|y) . (5.19)

Let us explore some illustrative configurations for mk and ckj. One obvious choice
is closely related to the goal of maximizing the entropy of the output code by fixing
〈zk〉 to 1

K and 〈zkzj〉 to 〈zk〉〈zj〉 = 1
K2 , thus enforcing second order correlations

to be zero. Another intuitive choice would be to set all 〈zkzj〉 very close to zero,
which excludes that two neurons can be active simultaneously and thus recovers the
function of a WTA. It is further conceivable to assign positive correlation targets to
groups of neurons, thereby creating populations with redundant codes. Finally, with
a topographical organization of neurons in mind, all three basic ideas sketched above
might be combined: one could assign positive correlations to neighboring neurons
in order to create local cooperative populations, mutual exclusion at intermediate
distance, and zero correlation targets between distant neurons.

With this in mind, we can formulate the goal of learning for the network in the
context of EM with posterior constraints: we constrain the E-step such that the
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average posterior fulfills the chosen targets, and adapt the forward weights V in
the M-step according to (5.6). Analogous to the first-order case, the variational
solution of the E-step under these constraints takes the form,

qβ,ω(z|y) ∝ p(z|y,V ) · exp




∑

k

βkzk +
1

2

∑

j 6=k

ωkjzkzj



 , (5.20)

with symmetric ωkl = ωlk as variational parameters. A neural sampling network
N with input weights Vki will sample from qβ,ω if the intrinsic excitabilities are set

to bk = −Ak + b̂k + βk, and the symmetric recurrent synaptic weights to Wkj =

−Akj + Ŵkj + ωkj. The variational parameters β,ω (and hence also b,W ) which
optimize the dual problem Ψ(b,ω) are uniquely defined and can be found iteratively
via gradient ascent. Analogous to the last section, this yields the intrinsic plasticity
rule (5.12) for bk. In addition, we obtain for the recurrent synapses Wkj,

∆Wkj ∝ ckj − 〈zkzj〉p∗(y)q(z|y) , (5.21)

which translates to an anti-Hebbian spike-timing dependent plasticity rule in the
network implementation.

For any concrete instantiation of f0(y), fi(y) and A(z,V ) in (5.16) it is possible
to derive learning rules for Vki for the M-step via ∂Vki

F (V , q). Of course not all
models entail local synaptic learning rules. In particular it might be necessary to
assume conditional independence of the inputs y given the network state z, i.e.,
p(y|z,V ) =

∏

i p(yi|z,V ). Furthermore, in order to fulfill the neural computability
condition (5.17) for neural sampling (Buesing et al., 2011) with a recurrent net-
work of point neurons, it might be necessary to choose A(z,V ) such that terms of
order higher than 2 vanish in the decomposition. This can be shown to hold, for
example, in a model with conditionally independent Gaussian distributed inputs
yi. It is ongoing work to find further biologically realistic network models in the
sense of this theory and to assess their computational capabilities through computer
experiments.

5.4 Discussion

Complex and non-local computations, which appear during probabilistic inference
and learning, arguably constitute one of the cardinal challenges in the develop-
ment of biologically realistic Bayesian spiking network models. In this paper we
have introduced homeostatic plasticity, which to the best of our knowledge had not
been considered before in the context of EM in spiking networks, as a theoretically
grounded approach to stabilize and facilitate learning in a large class of network
models. Our theory complements previously proposed neural mechanisms and pro-
vides, in particular, a simple and biologically realistic alternative to the assumptions
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on the input distribution made in (Nessler et al., 2010) and (Keck et al., 2012). In-
deed, our results challenge the hypothesis of (Keck et al., 2012) that feedforward
inhibition is critical for correctly learning the structure of the data with biologically
plausible plasticity rules. More generally, it turns out that the enforcement of a bal-
ancing posterior constraint often simplifies inference in recurrent spiking networks
by eliminating nontrivial computations. Our results suggest a crucial role of home-
ostatic plasticity in the Bayesian brain: to constrain activity patterns in cortex to
assist the autonomous optimization of an internal model of the environment.
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B.1 Network states and distributions of network states

Markov states

The Markov state yM(t) (or more explicitly, yM :Θ(t)) of a network at time t is
defined here as the recent history of spike times of all neurons in the network
within the period (t − Θ, t]. The term “Markov” refers to the fact that, under
mild conditions and for a sufficiently long window Θ, the network dynamics of
a neural circuit after time t becomes independent of the network activity at times
≤ t−Θ, given the Markov state yM(t) and the external input x. Hence, the network
dynamics has the Markov property with respect to this state definition.

For each neuron k ∈ 1 . . . K in a neural circuit a spike history of length Θ is
defined as the list of spike times emitted by neuron k within the window (t−Θ, t].
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Spike times are counted relative to the beginning of the window at t − Θ. If m is
the number of spikes within (t− Θ, t] for neuron k, then the list takes the form,

yk
M(t) ≡ (yk,1(t), . . . , yk,m(t)) ∈ R

m , (B.1)

where 0 < yk,1(t) < · · · < yk,m(t) ≤ Θ.
We denote the space of all possible network states of length Θ by SΘ or, when

unambiguous, simply by S. Note that this definition is equivalent to the state
definition in (Borovkov et al., 2012), to which the interested reader is referred for
further formal details (e.g. the associated σ-algebra S of the state space S).

Scope of theoretical results: Required properties of the network and
neuronal noise models

We study general theoretical properties of stochastic spiking circuit models, driven
by some external, possibly vector-valued, input x(t), which could represent for
example input rates in a set of input neurons or injected input currents. Formally,
the input sequence can assume values from any state space Q; a concrete example
is vector-valued input with Q = R

N , where N is the number of input dimensions.
We consider in this article two different noise models for a neuron: In noise

model I, the spike generation is directly modeled as a stochastic process. All net-
work dynamics, including axonal delays, synaptic transmission, short-term synaptic
dynamics, dendritic interactions, integration of input at the soma, etc. can be mod-
eled by a function which maps the Markov state (which includes the recent spike
history of the neuron itself) onto an instantaneous spiking probability. This model
is highly flexible and may account for various types of neuronal noise. In the more
specific noise model II, the firing mechanism of the neuron is assumed to be deter-
ministic, and noise enters its dynamics through stochastic vesicle release at afferent
synaptic inputs. Also combinations of noise models I and II in the same neuron
and circuit can be assumed for our theoretical results, for example neurons with a
generic stochastic spiking mechanism which possess in addition stochastic synapses,
or mixtures of neurons from model I and II in the same circuit.

In noise model I, the instantaneous spiking probability of neuron k at time t is
given by,

lim
δt→0

1

δt
· p(neuron k fires in (t, t+ δt)) = ρk(t) . (B.2)

This instantaneous firing rate ρk(t) = f(yM(t)) at time t is assumed to be bounded
and completely determined by the network’s current Markov state yM :Θ(t), for some
sufficiently large Θ. More precisely, the following four assumptions are made for
noise model I:

A1 Spikes are individual events: We assume that,

lim
δt→0

1

δt
· p(more than one neuron fires in (t, t+ δt)) = 0 , (B.3)
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which is, for example, fulfilled if each neuron has some independent source of
stochasticity.

A2 Bounded rates: The instantaneous firing rates are bounded from above:
0 ≤ ρk(t) ≤ ρ̂k for some ρ̂k < ∞. The ensuing upper bound on the total
network firing rate is denoted by ρ̂, i.e. 0 ≤

∑K
k=1 ρk(t) ≤ ρ̂. It is assumed

that instantaneous rates are bounded at any time, and in the presence of any
input x(t).

A3 Bounded memory: The firing rates ρk(t) at time t depend on the network’s
past activity only through the history of recent spikes in a finite window
(t − Θ, t] of length Θ. Hence, the direct effect of a spike at time t on future
firing rates of all neurons is limited to a bounded “memory period”, [t, t +
Θ). This bounded memory period Θ can be understood as a lower bound
for Θ during the subsequent convergence proofs (since smaller Θ would violate
the Markov property). In addition to this bounded-memory dependence on
network spikes, ρk(t) may depend on the current input x(t) in any manner
consistent with A2.

A4 Time-homogeneity: The functional mapping from recent spikes and/or in-
put signals x(t) to instantaneous firing rates ρk(t) does not change over time.
In particular, we do not consider long-term plasticity of synaptic weights
and/or excitabilities in this work.

Assumptions A2−A4 can be summarized as follows: Let x(t) ∈ Q and yM :Θ(t) ∈
S be the trajectories of input and network states as defined above. Then there exists
a memory constant Θ and rate bounds 0 ≤ ρ̂k < ∞, such that for each neuron
k there exists a function fk : Q × S → [0, ρ̂k], where ρk(t) = fk(x(t), yM :Θ(t))
for all t. The function fk is time-invariant but otherwise unconstrained, and can
capture complex dynamical effects such as non-linear dendritic interactions between
synaptic inputs or short-term plasticity of synapses.

The input signal x(t) can formally represent any variable which exerts some
arbitrary influence on the instantaneous network dynamics (the neuronal firing
functions fk). In the simplest case, x(t) could be a vector of firing rates controlling
the spiking behavior of a set ofN input neurons i, such that fi(x(t), yM :Θ(t)) = xi(t)
in these neurons. In this case (which we focused on in the main text), input neurons
are formally considered part of the circuit C. Note that in principle, x(t) could also
represent the strength of currents which are injected into a subset of neurons in the
network C, or the recent spiking history of a set of external input neurons (“input
Markov states”). If the input comprises rates or currents, these can be either fixed
(e.g. fixed input firing rates) or dynamically changing (in particular rates which are
either subject to stochastic ergodic dynamics, or periodically changing rates). Below
convergence proofs will be provided for both fixed and dynamic input conditions.
If the input is defined in terms of input Markov states, the dynamic input analysis
is applicable under conditions described further below.
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In noise model II the basic stochastic event is a synaptic vesicle release (in
noise model I it is a spike). Accordingly, the Markov state yM(t) of a network in
noise model II is defined as the list of vesicle release times for each synaptic release
site in the network (instead of spike timings for each neuron). We assume here
that each synaptic release site releases at a given instance t at most one vesicle
filled with neurotransmitters. But a synaptic connection between two neurons may
consist of multiple synaptic release sites (see (Lisman et al., 2007; Branco and
Staras, 2009) and (Borst, 2010) for reviews). Instead of expressing the network
dynamics through an instantaneous firing probability function for each neuron k,
ρk(t) = fk(x(t), yM :Θ(t)) (noise model I), for noise model II the network dynamics is
expressed in terms of instantaneous release probabilities for each synapse k: ψk(t) =
gk(x(t), yM :Θ(t)). Similar to noise model I, it is assumed that there exists a window
length Θ, such that the dynamics of vesicle release at time t is fully determined by
the timing of previous vesicle releases within (t−Θ, t], and hence can be expressed
in terms of a corresponding variation of the definition of a Markov state yM :Θ(t).
The same framework of assumptions applies as in noise model I: vesicle releases are
individual events, and the functions gk are assumed to be bounded from above by
rate constants ψ̂k <∞.

Combinations of noise model I and II are also possible. In this case, the Markov
state yM(t) may contain both spike times and vesicle release times. The assump-
tions of noise model I/II described above apply to the corresponding stochastic
neurons and vesicle releases, respectively. Altogether, note that all three types of
networks (based on model I, II and mixtures of the two) are based on a common
framework of definitions and assumptions: in all cases the dynamics is described
in terms of stochastic components (neurons, synapses) which generate point events
(spikes/vesicle releases) according to instantaneous probabilities which depend on
the recent event history of the network.

Convergence of state distributions

Below, proofs for the existence and uniqueness of stationary distributions of network
states for the considered network models are given. Furthermore, bounds on the
convergence speed to this stationary distribution are provided. To obtain a com-
prehensive picture, convergence is studied under three different input conditions:
constant, stochastic, and periodic input. All proofs are described in detail for noise
model I. The results transfer in a straightforward manner to noise model II and
mixtures of these two models, since the same framework of assumptions applies to
all cases.

Network dynamics as a Markov process

We view the simulation of a cortical microcircuit model, under a given input con-
dition and starting from a given initial network state, as a random experiment.



B.1. Network states and distributions of network states 101

Formally, we denote the set of all possible outcomes in this random experiment by
Ω, the set of all considered events by F (i.e. a σ-algebra on Ω), and the probability
measure which assigns a probability to each event in F by P. An outcome is the
result of a single run of the network. An outcome is associated with an assignment
of particular values to all defined random variables. An event is a set of outcomes,
for example the set of all outcomes in which neuron 7 spikes within the first 200
milliseconds of the experiment. Suppose X is a random variable with some state
space (R,R), i.e. X assumes values in R, and R is a set of events on the space R.
Formally, such a random variable X is defined as a map X : Ω → R, which assigns
a value x ∈ R to every possible outcome ω ∈ Ω. To denote the probability that the
random variable X assumes some value in the set B ∈ R, we define the short-hand
PX(B) := P(X ∈ B). Furthermore, if Y is another random variable we use the
notation PX|Y =y(B) := P(X ∈ B|Y = y) for conditional probabilities, and write
even shorter, when unambiguous, PX|y(B). The base probability space (Ω,F,P) is
assumed to be rich enough such that all random variables which are needed in the
following exist.

We define the index set of time T = {t ∈ R : t ≥ 0}, and the stochastic
process (Yt, t ∈ T ), as a description of the stochastic evolution of Markov states
of a network C for t ≥ 0. For each time t ∈ T we define a random variable Yt

(also written Y (t)) representing the Markov state of the network at time t. Yt takes
values on the state space S of all possible Markov states of some fixed duration Θ.
We denote by S the σ-algebra associated with S. The assumptions on the network
described in the previous section imply that the process has the Markov property
for Markov states of any length Θ ≥ Θ, since the future evolution of the process
is then entirely independent of the past, given the current Markov state. For the
subsequent proofs, we therefore assume some Θ ≥ Θ. We also define a random
variable Y of entire sample paths on the measurable space (ST ,ST ), i.e. a map
Y : Ω → ST . Realizations of Y are sample paths (or trajectories), i.e. functions
yM (t), t ∈ T , taking values in S. Since realizations of Y are functions, Y can be
thought of as a random function.

For subsequent proofs the following definition of a transition probability kernel
is essential: A transition probability kernel P on a measurable state space (S,S)
is a function P : S × S → [0, 1], which assigns a probability to the transition from
any point x ∈ S to any set B ∈ S. More precisely, if one fixes a particular “initial
state” x ∈ S, then P(x,B) ≡ Px(B) is a probability measure in its target argument
B, corresponding to the result of applying the transition kernel P to x (in addition,
for each event B ∈ S in the target space, P(x,B) is S-measurable in its source
argument). Stochastic transition matrices of Markov chains are, e.g., transition
probability kernels.

Here we write Ps:t for the transition probability kernel corresponding to pro-
gression of the state of the network C from time s to s+ t, i.e.,

P
s:t(y0, B) := P(Y (s+ t) ∈ B | Y (s) = y0) . (B.4)
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We further define the shorthand Pt = P0:t for the progression of duration t starting
from initial time s = 0. Transition kernels can also be applied to probability
measures φ of initial states y0 (as opposed to single initial states y0). We will
write Ps:tφ to denote the result of applying the kernel Ps:t to an initial probability
measure φ. The result Ps:tφ is again a probability measure, assigning a probability
to any event B ∈ S on the state space according to:

(Ps:tφ)(B) :=

∫

S
P

s:t(y0, B) dφ(y0) , (B.5)

Since Ps:tφ is again a probability measure on the state space (S,S), transition
kernels can be applied sequentially. Note that due to the Markov property one has,
Pr:(t1+t2) φ = P(r+t1):t2 Pr:t1 φ for s ≥ 0, t1, t2 > 0.

Stochastic network dynamics is contracting

Before studying specific input conditions, a few basic key properties of the network
dynamics Y are developed. Let Ps:t be the transition probability kernel correspond-
ing to progression of the network C from time s to s + t. For the proofs below,
transitions to the resting state, Y (s+ t) = 0, will be of particular importance. The
resting state 0 is defined as the “empty” Markov state in which no spikes occurred
within the last Θ time units. The first key observation is the following Proposition:

Proposition 1 Consider the probability Ps:Θ(y0,0), that the process Y will be in
the resting state 0 at time s+ Θ, starting from some initial state y0 ∈ S at time s.
This “return probability” to the resting state is bounded from below by,

P
s:Θ(y0,0) ≥ ǫΘ , (B.6)

where ǫ := e−ρ̂. This holds regardless of the input trajectory x(t) driving the net-
work.

The proposition follows directly from the fact that ρ̂ bounds the sum of all instan-
taneous firing rates in the network. Hence with at least probability e−ρ̂Θ = ǫΘ no
neuron fires within Θ time units (cf. (Borovkov et al., 2012)). In technical terms,
this implies that the stochastic kernel corresponding to a duration of length Θ ful-
fills the Doeblin condition (Doeblin, 1937) – a property which is highly useful for
proving convergence and ergodicity results.

Proposition 1 entails a central contraction property of stochastic networks of
spiking neurons C, which holds in the presence of any input trajectory x(t), and
forms the basis for several subsequent proofs. The following definitions are essential:
We will measure below the difference between any two probability distributions φ1

and φ2 in terms of the total variation ‖ · ‖ of the signed measure µ = φ1 − φ2.
Any such signed measure µ can be expressed in terms of its non-negative and
non-positive components, µ = µ+ − µ−, where µ+ and µ− are both non-negative
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measures (but in general no probability measures). The total variation of a signed
measure µ on a measurable space (X,X) is defined as ‖µ‖ = µ+(X)+µ−(X), i.e. the
total mass of its positive and negative components. According to this definition,
‖µ‖ = ‖µ+‖ + ‖µ−‖.

Lemma 1 (Contraction Lemma) The following strict contraction property
holds for the Markov process Y , for any Θ ≥ Θ, and for any initial probability
measures φ1 and φ2 at any time s ≥ 0:

‖Ps:Θφ1 − P
s:Θφ2‖ ≤ (1 − ǫΘ) · ‖φ1 − φ2‖ . (B.7)

In words: applying the dynamics of the network C for Θ time units is guaranteed
to reduce the distance between any two initial distributions φ1 and φ2 of network
states by a factor 1 − ǫΘ.

Proof: Define the auxiliary measure ν0 as zero everywhere outside 0, and ν0(0) =
ǫΘ. Rewrite φ1 − φ2 = µ = µ+ − µ− in terms of the non-negative measures µ+ and
µ−, such that

‖φ1 − φ2‖ = ‖µ+‖ + ‖µ−‖ , (B.8)

and note that ‖φ1‖ = ‖φ2‖ = 1 implies that ‖µ+‖ = ‖µ−‖. Then

‖Ps:Θφ1 − P
s:Θφ2‖ = ‖Ps:Θµ+ − P

s:Θµ−‖ (B.9)

= ‖(Ps:Θµ+ − ‖µ+‖ · ν0) − (Ps:Θµ− − ‖µ−‖ · ν0)‖ (B.10)

≤ ‖P
s:Θµ+ − ‖µ+‖ · ν0
︸ ︷︷ ︸

≥0 for all events B∈S

‖ + ‖P
s:Θµ− − ‖µ−‖ · ν0
︸ ︷︷ ︸

≥0 for all events B∈S

‖ (B.11)

= ‖Ps:Θµ+‖ − ‖µ+‖ · ‖ν0‖ + ‖Ps:Θµ−‖ − ‖µ−‖ · ‖ν0‖ (B.12)

= (1 − ‖ν0‖) · ‖µ
+‖ + (1 − ‖ν0‖) · ‖µ

−‖ (B.13)

= (1 − ǫΘ) ·
(
‖µ+‖ + ‖µ−‖

)
(B.14)

= (1 − ǫΘ) · ‖φ1 − φ2‖ . (B.15)

The equality in (B.9) follows from linearity of transition probability kernels. The
transition to (B.11) is an application of the triangle inequality. The transition
to (B.12) uses the fact that both Ps:Θµ+−‖µ+‖·ν0 and Ps:Θµ−−‖µ−‖·ν0 are non-
negative: this follows from Proposition 1, which ensures that the measure Ps:Θµ+

has at least mass ‖µ+‖ · ǫΘ at the resting state 0 and, hence, for any (non-negative)
measure ν,

P
s:Θν ≥ ‖ν‖ · ν0 . (B.16)

Finally, note that (B.13) uses a general property of transition probability kernels
P, which ensures that ‖Pν‖ = ‖ν‖, for any non-negative measure ν. �

Note that the above Contraction Lemma which holds for spiking neural net-
works has some similarities to Lemma 1 in (Maass and Sontag, 1999) who analyzed
artificial analog neural networks in discrete time.
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B.2 Proof of Theorem 1

We divided the precise formulation of Theorem 1 into two Lemmata: Lemma 2 is
a precise formulation for the case where inputs are fixed (e.g. fixed input rates).
Lemma 3 in the next section corresponds to the case where input rates are controlled
by a Markov process. The precise assumptions on the network model required for
both Lemmata are described above (see “Scope of theoretical results”).

Proof of Theorem 1 for fixed input rates

Here we assume that the vector of inputs x(t) provided to the network is kept fixed
during a trial. Concretely, this is for example the case if there is a set of input
neurons whose rates are fixed. In this case, x(t) is a vector of input rates, which
remains constant over time. The input neurons are formally considered part of
the network in this case. Alternatively, a constant x could correspond to constant
currents which are injected into a subset of neurons.

Under constant input conditions, x(t) ≡ x, the dynamics of the process is time-
homogeneous: the transition probability kernels are invariant to time-shifts, i.e.

P
s1:tφ = P

s2:tφ, s1, s2 ≥ 0, t > 0 . (B.17)

Lemma 2 Let x(t) ≡ x. Then the Markov process Y has a unique stationary
distribution π, to which it converges exponentially fast,

‖Pt(y0, ·) − π‖ ≤ 2 · (1 − ǫΘ)t−1 , t ≥ 0 , (B.18)

from any initial Markov state y0 ∈ S.

Proof: Y is clearly non-explosive, aperiodic and stochastically continuous (cf.
(Borovkov et al., 2012)). To prove exponential ergodicity it thus suffices to show
that some skeleton chain is geometrically ergodic (see for example Theorem 18.1
in (Borovkov, 1998)). The skeleton chain YΘn, n ∈ N, with transition probability
kernel PΘ is aperiodic and irreducible and hence has a unique stationary distribution
π. Then, through recursive application of Lemma 1 with φ2 = π,

‖PΘnφ1 − P
Θnπ‖ ≤ (1 − ǫΘ)n · ‖φ1 − π‖ , (B.19)

‖PΘnφ1 − π‖ ≤ 2 · (1 − ǫΘ)n , (B.20)

proving geometric ergodicity of the skeleton chain, and thus exponential ergodicity
of Y . The quantitative convergence bound follows from (B.20) by choosing a sin-
gleton y0 as initial distribution, and using the general fact that for any transition
probability kernel P and distributions φ1 and φ2,

‖Pφ1 − Pφ2‖ ≤ ‖φ1 − φ2‖ , (B.21)



B.2. Proof of Theorem 1 105

thus guaranteeing that the total variation distance does not (temporarily) grow
between Θn and Θ(n+ 1). �

Lemma 2 provides a general ergodicity result for the considered class of stochas-
tic spiking networks in the presence of fixed input rates x. The proof relies on two
key properties of stochastic spiking networks: aperiodicity and irreducibility. These
properties can be understood intuitively in the context of Figure 2.1H. If the in-
trinsic network dynamics was not aperiodic, for example, then one might be able
to observe oscillating pattern frequencies over time (as in Figure 2.4C). Lemma 2
proves that this cannot occur in stochastic spiking networks as long as input rates
are fixed. Oscillating pattern frequencies can indeed only emerge when input rates
are themselves periodically changing (see Theorem 2 and Figure 2.4). If the network
dynamics was not irreducible on the other hand, i.e. if there were network states
which are unreachable from some other network states, then pattern frequencies
could potentially be observed to converge to different fixed points for different ini-
tial states (e.g. the two lines in Figure 2.1H settling at different values). This cannot
occur in stochastic spiking networks due to Proposition 1 which guarantees that the
state space is connected through the resting state 0.

Note that, although aperiodicity and irreducibility are well known necessary and
sufficient conditions for ergodicity in discrete time Markov chains on finite state
spaces, they are not sufficient for exponential ergodicity in continuous time Markov
processes on general state spaces (see (Down et al., 1995) for precise definitions
of φ-irreducibility and aperiodicity for such processes). Additional conditions in
this more complex case which ensure exponential ergodicity, such as nonexplosivity,
stochastic continuity and geometric ergodicity of a skeleton chain, have also been
taken into account in the proof for Lemma 2 (i.e. stochastic spiking networks also
meet these additional criteria).

Lemma 2 constitutes a proof for Theorem 1 for fixed input rates x. In the main
text we refer to the stationary distribution of the circuit C under fixed input x as
pC(y|x). The proof above guarantees a stationary distribution for both Markov and
simple states. In the main text y refers to the simple network state yS if not stated
otherwise.

Proof of Theorem 1 for input rates controlled by a Markov process

Fixed input assumptions may often hold for the external input x(t), driving a
stochastic computation in a neural system C, only approximately. Stochastic fluc-
tuations on various spatial and temporal scales may be present in the input. In
addition, inputs may have their own short-term stochastic dynamics: Imagine, for
example, a visual scene of randomly moving dots. Despite the presence of such
short-term dynamical features in the input, in many cases one may still suspect
that network state distributions converge. Indeed, below we generalize the con-
vergence results from the constant case to the quite large class of stochastic (and
stochastically changing) inputs which are generated by a uniformly ergodic Markov
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process. Uniform ergodicity is defined as exponential ergodicity (exponentially fast
convergence to a unique stationary distribution) with convergence constants which
apply uniformly to all initial states (Down et al., 1995) (this holds for example for
the convergence constants in Lemma 2).

Let X be a time-homogeneous input Markov process, in the sense that the in-
put trajectory x(t) provided to the network C is itself generated randomly from a
Markov process X. Let (Q,Q) be the (measurable) state space of X. Then define a
joint input/network Markov process Z on the state space (Q×S, σ(Q×S)), where
σ(·) denotes the σ-algebra generated by ·. Further definitions for Z are analogous
to those introduced for Y .

Lemma 3 If the input process X is uniformly ergodic, then the joint Markov pro-
cess Z has a unique stationary distribution π̂ on the joint input/network state
space, to which convergence occurs exponentially fast, i.e. there exist constants
C <∞, ρ < 1, such that

‖Pt(z0, ·) − π̂‖ ≤ C · ρt , t ≥ 0 , (B.22)

for any initial state z0 of the joint Markov process Z.

Proof: If X and Y were entirely independent processes (if X did not influence
Y ) then the joint process Z would automatically be exponentially ergodic if both
X and Y are. Although in the present case Y is not independent of X, a weaker
version of independence applies: the return probability to the resting state Y (t) = 0
during (t − Θ, t] is at least ǫΘ regardless of the input trajectory of X during that
time. This property can be exploited to show that the distribution of hitting times
to a joint resting state has an exponential bound. It follows that the joint process
is exponentially ergodic. A detailed proof is given in the next section. �

The second part of Theorem 1 (exponentially fast convergence for the case of
external input generated by an ergodic Markov process) follows from Lemma 3.
Note that in the main text we slightly abuse the notation pC(y|x) for the dynamic
case to indicate the stationary distribution over network states y, where x denotes
a specific Markov process controlling the inputs.

Detailed proof of Lemma 3

We have split the proof of Lemma 3 into proofs of four auxiliary claims (Proposi-
tions 2-5). Consider the following variations of Proposition 1, which hold for the
Markov process Z describing the joint dynamics of input and network states. Let
{x(t)} denote a particular input sequence defined for t ≥ 0 (a realization of the
input process X) and y0 ∈ S an initial network Markov state (with Θ ≥ Θ) at time
s ≥ 0. Then

P(Y (s+ Θ) = 0 | Y (s) = y0,X = {x(t)}) ≥ ǫΘ , (B.23)

P(Y (s+ Θ) = 0 | X = {x(t)}) ≥ ǫΘ . (B.24)
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It is easy to show that these properties, together with the fact that X is uni-
formly ergodic, ensure that Z is irreducible and aperiodic. Hence, to prove expo-
nential ergodicity of Z it suffices to show that some skeleton chain is geometrically
ergodic (Down et al., 1995). To that end, we will consider the skeleton chain
ZΘn, n ∈ N and prove geometric ergodicity by showing that the hitting time distri-
bution PτC

(τC) to a small set C on the joint state space Q×S of input and network
states admits an exponential bound.

The hitting time τD to some set D on the input state space Q is defined as

τD = min {n ∈ N
+ : XΘn ∈ D} . (B.25)

For notational convenience we abbreviate in the following τ = τD. Due to uniform
ergodicity of X (which implies Harris recurrence (Down et al., 1995)), there exists
some set D to which the hitting time τ is finite (< ∞) from any initial state, with
probability one (Meyn and Tweedie, 1993). Furthermore, there exists according to
(Down et al., 1995) a small set D and constants κ > 1 and 1 ≤ V <∞, such that

∀x0 ∈ Q : E [κτ | X(0) = x0] < V . (B.26)

This implies that there exists a small set D on the input state space Q which can
not only be reached in finite time from any initial input state x0, but for which
the hitting time distribution to D has also finite mean and variance (and finite
higher-order moments). At least one pair of constants κ and V which fulfills (B.26)
is guaranteed to exist, but in fact the following Proposition shows that one can
specify a particular desired bound on the right-hand side (for reasons which will
become clear later), and find a matching λ on the left-hand side.

Proposition 2 There exists a λ > 1, such that

∀x0 ∈ Q : E [λτ | X(0) = x0] < (1 − ǫΘ)−1/2. (B.27)

Proof: Define v(λ) := E [λτ | X(0) = x0]. Let κ and V be any valid pair of
constants which fulfills (B.26). The trivial case is v(κ) < (1 − ǫΘ)−1/2. In the
remainder of the proof it is assumed that κ is “too large”, such that v(κ) ≥ (1 −
ǫΘ)−1/2. By definition of the exponential function, for any λ > 0,

v(λ) = E [λτ |x0] = E

[
∞∑

n=0

(log λ)nτn

n!
|x0

]

(B.28)

=

∞∑

τ=0

∞∑

n=0

Pτ |x0
(τ)

(log λ)nτn

n!
. (B.29)
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By Tonelli’s theorem, since all summands are non-negative, the order of the double
sum can be exchanged:

v(λ) =

∞∑

n=0

∞∑

τ=0

Pτ |x0
(τ)

(log λ)nτn

n!
(B.30)

=
∞∑

n=0

(log λ)n

n!
E[τn|x0] . (B.31)

Note that E[τn|x0] are the moments of the distribution Pτ |x0
[τ ]. By uniform er-

godicity of X, all moments must exist, and in addition there exists a κ > 1 such
that v(κ) < ∞. It is straightforward to see that the series then converges for all
1 ≤ λ ≤ κ, such that v(λ) is continuous on [1, κ]. Finally, since v(1) = 1 and
v(κ) ≥ (1− ǫΘ)−1/2, by the intermediate value theorem there exists some 1 < λ < κ
such that v(λ) = (1 + (1 − ǫΘ)−1/2)/2. �

Denote by τ (m) the time at which the skeleton chain XΘn visits the small set D
for the m-th time:

τ (m) = min {n ∈ N
+ : ∃ n1 < n2 < · · · < nm ≤ n ∈ N : XΘ·nk

∈ D, k ∈ {1, . . . ,m}}.
(B.32)

Furthermore, denote by δ(m) the time between the (m− 1)-th and m-th visit:

δ(1) := τ (1), (B.33)

δ(m) := τ (m) − τ (m−1), m > 1. (B.34)

According to this definition, one can express the hitting time of degree m as
τ (m) =

∑m
k=1 δ

(k). The following Proposition extends the exponential bound on the
first hitting time to hitting times of higher degrees.

Proposition 3 There exists a λ > 1, such that,

∀x0 ∈ Q : E

[

λτ (m)
| X(0) = x0

]

< (1 − ǫΘ)−m/2 . (B.35)

Proof:

E

[

λτ (m)
|y0

]

=

∫

dPδ(1...m)|y0
(δ(1...m)) · λ

Pm
k=1 δ(k)

(B.36)

=

∫

dPδ(1)|y0
(δ(1)) · λδ(1)

∫

dPδ(2)|y0,δ(1)(δ(2)) · λδ(2)
· · ·

· · ·

∫

dPδ(m)|y0,δ(1...m−1)(δ(m)) · λδ(m)
(B.37)

<
[

(1 − ǫΘ)−1/2
]m

. (B.38)
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Let τC be the hitting time to the small set C = D × 0 on the joint state space
Q× S of input and network states,

τC = min {n ∈ N
+ : XΘn ∈ D,YΘn = 0} . (B.39)

Furthermore, let R be the number of visits to the small set D prior to and
including time τC ,

R = max {m ∈ N
+ : ∃ n1 < n2 < · · · < nm ≤ τC ∈ N : XΘnk

∈ D, k ∈ {1, . . . ,m}}.
(B.40)

Proposition 4 For any input trajectory x(t) and any initial network state y0 ∈ S,

P(R = m | Y (0) = y0,X = {x(t)}) ≤ (1 − ǫΘ)m−1 . (B.41)

This follows from (B.23) and (B.24) which ensure that whenever the input pro-
cess visits the small set D, there is also a small probability that the network is in
the resting state.

Proposition 5 There exists a λ > 1 and a constant W <∞ such that,

∀z0 ∈ (Q× S) : E [λτC | Z(0) = z0] < W . (B.42)

Proof: Let τ = (τ (m), m ∈ N
+). Choose some λ which fulfills Proposition 3.

E [λτC |z0] =

∫

dPτ,R|z0
(τ ,m)λτ (m)

(B.43)

=

∫

dPτ|z0
(τ )

∫

dPX|z0,τ({x(t)})

∞∑

m=1

P(R = m|y0, {x(t)})λ
τ (m)

(B.44)

≤

∫

dPτ|z0
(τ )

∞∑

m=1

(1 − ǫΘ)m−1λτ (m)
(B.45)

=

∫

dPτ|x0
(τ )

∞∑

m=1

(1 − ǫΘ)m−1λτ (m)
(B.46)

=

∞∑

m=1

(1 − ǫΘ)m−1

∫

dPτ (m)|x0
(τ (m)) · λτ (m)

(B.47)

<

∞∑

m=1

(1 − ǫΘ)m−1(1 − ǫΘ)−m/2 (B.48)

=

∞∑

m=1

(1 − ǫΘ)(m/2)−1 =: W <∞ . (B.49)
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By Proposition 5, Z is exponentially ergodic (Down et al., 1995). This completes
the proof of Lemma 3.

Distribution of trajectories of network states

The Markov states yM :Θ(t) are segments of spiking trajectories of length Θ. Hence,
all statements developed above apply to convergence of the distribution over these
(short) spiking trajectories. If one is interested in the convergence of longer trajec-
tories, the simplest option is to choose a larger Θ, since any finite Θ ≥ Θ is admis-
sible, and all convergence results readily extend to trajectories of any finite length.
A limitation of this approach is that the quantitative convergence statements will
suffer from making Θ too large, since convergence rates scale approximately with
ǫΘ (and ǫ ≪ 1). Hence, in practice, empirical convergence tests are required to
make statements about specific circuits.

B.3 Proof of Theorem 2

If the input sequence is periodic with period L, i.e. x(t) = x(t+L) for all t ≥ 0, then
the Markov process Y will be time-periodic, in the sense that transition kernels are
invariant to shifts which are multiples of the period L:

P
s:tφ = P

s+kL:tφ, s ≥ 0, t > 0, k ∈ N . (B.50)

This implies the following result, which is a more precise version of Theorem 2:

Lemma 4 Under periodic input, i.e. x(t) = x(t+ L) for all t ≥ 0 with some L ≥
Θ, the time-periodic Markov process Y with period L has a periodically stationary
distribution π̃l, to which convergence occurs exponentially fast from any initial state.
In particular, for every 0 ≤ l < L there exists a unique stationary distribution π̃l

such that,

‖Pl+Ln(y0, ·) − π̃l‖ ≤ 2 · (1 − ǫΘ)⌊
L
Θ
⌋·n , n ∈ N , (B.51)

from any initial Markov state y0.

Proof: For each 0 ≤ l < L there exists a skeleton chain Yl+Ln, n ∈ N, with transi-
tion probability kernel Pl:L = Pl+L:L = Pl+2L:L = . . . , which is time-homogeneous,
irreducible, and aperiodic and thus has a unique stationary distribution π̃l. An
application of Pl:L, which corresponds to a full period, decreases the total variation

distance to π̃l by at least (1 − ǫΘ)⌊
L
Θ
⌋:

‖Pl:Lφ1 − π̃l‖ = ‖Pl:Lφ1 − P
l:Lπ̃l‖ (B.52)

≤ ‖Pl:Θ⌊L
Θ
⌋φ1 − P

l:Θ⌊L
Θ
⌋π̃l‖ (B.53)

≤ (1 − ǫΘ)⌊
L
Θ
⌋ · ‖φ1 − π̃l‖ . (B.54)
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The first inequality follows from the fact that applying the remaining

P
l+Θ⌊L

Θ
⌋:L−Θ⌊L

Θ
⌋ can only further decrease the total variation distance between the

two distributions, according to (B.21). The second inequality is due to Lemma 1.

Lemma 4 then follows from recursive application of (B.52)-(B.54) for multiple
periods, and choosing a singleton y0 as initial distribution. �

In the main text, we use the notation pC,l(y|x) for a phase-specific stationary
distribution, where x denotes a specific periodic input sequence.

B.4 Relation to previous theoretical work

Previous work on the question whether states of spiking neural networks might con-
verge to a unique stationary distribution had focused on the case where neuronal
integration of incoming spikes occurs in a linear fashion, i.e., linear subthreshold
dynamics followed by a single output non-linearity (Brémaud and Massoulié, 1996;
Borovkov et al., 2012). In addition these earlier publications did not allow for the
experimentally observed short term dynamics of synapses. The earlier publication
(Brémaud and Massoulié, 1996) had studied this question as a special case of the
mathematical framework of non-linear Hawkes processes, a class of mutually ex-
citing point processes (see also (Massoulié, 1998)). The authors had arrived for
the more restricted type of neurons which they considered at exponential conver-
gence guarantees under a similar set of assumptions as in this article, in particular
bounded memory and bounded instantaneous firing rates (and these results can thus
be seen as a special case of Theorem 1, for the case of constant external input).
(Brémaud and Massoulié, 1996) also derived convergence results for linearly inte-
grating neurons with unbounded memory dynamics under a different set of assump-
tions, in particular Lipschitz conditions on the output non-linearity and constraints
on the effective connectivity matrix of the network. Whether such alternative set of
assumptions can be found also in the context of non-linear integration of incoming
spikes (needed e.g. for synaptic short-time dynamics or dendritic non-linearities)
remains an open question.

The recent publication (Borovkov et al., 2012) also focused on neurons with lin-
ear sub-threshold dynamics followed by an output non-linearity (termed there non-
linear Poisson neurons) with static synapses, and extended the convergence results
of (Brémaud and Massoulié, 1996) to networks with Hebbian learning mechanisms.
In addition, an important methodological innovation by (Borovkov et al., 2012) was
the introduction of spike history states (which are equivalent to the Markov states
yM (t) in this article) which allowed them to study convergence in the framework
of general Markov processes (in contrast to point processes in (Brémaud and Mas-
soulié, 1996)). Theorem 1 in this article contains as a special case the convergence
results of (Borovkov et al., 2012) for their Model I (non-linear Poisson neurons in
the absence of Hebbian learning). We note that although (Borovkov et al., 2012)
focused on neurons with linear sub-threshold dynamics (and required that firing
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rates are strictly greater than 0), their method of proof for Model I could be readily
extended to cover also non-linear sub-threshold dynamics to yield the first part of
our Theorem 1 (the case where inputs have constant firing rates).

We are not aware of previous work that studied convergence in spiking networks
with dynamic synapses, or in the presence of stochastic or periodic inputs (see the
second part of Theorem 1 concerning Markov processes as input, and Theorem 2).
We further note that our method of proof builds on a new and rather intuitive
intermediate result, Lemma 1 (Contraction Lemma), which may be useful in its
own right for two reasons. On the one hand it provides more direct insight into
the mechanisms responsible for convergence (the contraction between any two dis-
tributions). On the other hand, it holds regardless of the input trajectory x(t),
and hence has in fact an even larger scope of applicability than Theorem 1 and 2.
Hence, Lemma 1 could be, for example, applied to study non-stationary evolutions
of state distributions in response to arbitrary input trajectories.

B.5 Extracting knowledge from internally stored dis-
tributions

A key advantage of sample-based representations of probability distributions is that
probabilities and expected values are in principle straightforward to estimate: To
estimate the expected value Ep(y)[g(y)] of a function g(y) under a distribution p(y)

from a number of samples y1, . . . , yT , simply apply the function to each sample and
compute the time average 1

T

∑T
t=1 g(y

t). As long as the samples yt are distributed
according to p(y), either independently drawn, or as the result of an ergodic Markov
chain/process with stationary distribution p(y), this estimate is guaranteed to con-
verge to the correct value as one increases the number of samples (Gray, 2009),
i.e. limT→∞

1
T

∑T
t=1 g(y

t) = Ep(y)[g(y)]. Estimates based on a finite observation
window represent an approximation to this exact value.

Under the mild assumptions of Theorem 1 the dynamics of a stochastic spiking
network in response to an input x are exponentially ergodic and there exists a
unique stationary distribution pC(y|x), according to which network states y(t) are
distributed. Hence, the expected value EpC(y|x)[g(y)] of any function g(y) under the
stationary distribution pC(y|x) can be estimated by computing the sample-based
time average

1

T

∫ T

0
g(y(t)) dt . (B.55)

This approach can also be used to estimate marginal probabilities, since prob-
abilities can be expressed as expected values, for example,

pC(y1 = 1|x) = EpC(y|x)[δ(y1, 1)] , or (B.56)

pC(y1 = 1, y2 = 0, y3 = 1|x) = EpC(y|x)[δ(y1, 1) · δ(y2, 0) · δ(y3, 1)] , (B.57)
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where δ(a, b) = 1 if a = b and 0 otherwise. Hence, in order to estimate the prob-
ability pC(y1 = 1|x) it suffices to measure the relative time the neuron spends

in its active state, i.e. 1
T

∫ T
0 δ(y1, 1) dt. Similarly, to estimate the probability

pC(y1 = 1, y2 = 0, y3 = 1|x) it is sufficient to keep track of the relative frequency of

the pattern (1, 0, 1), by computing 1
T

∫ T
0 δ(y1, 1) · δ(y2, 0) · δ(y3, 1) dt.

B.6 Simulations of data-based cortical microcircuit
models

All simulations of microcircuit models for Figures 2.1-2.4 were carried out in PCSIM
(Pecevski et al., 2009). A time step of 1 ms was chosen throughout. Further analysis
of spike trains was performed in Python (van Rossum and Drake, 2001).

Stochastic neuron model

A stochastic variation of the leaky integrate-and-fire model with conductance-based
integration of synaptic inputs was used, for both excitatory and inhibitory neurons.
Sub-threshold dynamics of the membrane potential u(t) was defined according to a
standard leaky integration model with conductance-based synapses (Gerstner and
Kistler, 2002), using passive membrane parameters R = 60 MΩ, C = 0.35 nF and
a resting potential Vresting = −60 mV. At simulation start, initial potentials were
randomly chosen from [−65,−55] mV. Reversal potentials for excitatory synapses
and inhibitory synapses were set to 0 mV and −75 mV, respectively. Neuronal noise
was modeled by a voltage-dependent instantaneous probability of firing (instead of
a fixed threshold) (Jolivet et al., 2006),

p(neuron spikes in [t, t+ δt))

δt
=

1

τs
e(u(t)−ϑ)/δu, (B.58)

for δt → 0, with parameters τs = 19 ms, δu = 4 mV taken from (Jolivet et al.,
2006). In contrast to (Jolivet et al., 2006) we used a non-adaptive threshold, ϑ =
−45 mV. After a spike, a neuron enters an absolute refractory period of 3 ms.
Thereafter, the membrane is reset to the resting potential and leaky integration is
continued. Altogether, the resulting neuronal spiking mechanism is consistent with
the theoretical noise model I described in equation (B.2).

Note that Theorem 1 also holds for substantially more complex multi-
compartment neuron models incorporating, for example, data on signal integration
in the dendritic tuft of pyramidal cells (Larkum, 2013; Jiang et al., 2013), and data
on Ca-spikes in pyramidal cells on layer 5 (Larkum, 2012), but we have not yet
integrated these into the simulated microcircuit model because of a lack of coherent
quantitative data for all the neuron types involved.
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Synaptic short-term plasticity

The short-term dynamics of synapses in all data-based simulations was modeled
according to (Maass and Markram, 2002; Markram et al., 1998). The model predicts
that at a synapse with “weight” w the amplitude Ak of the kth spike in a spike train
with interspike intervals ∆1,∆2, ..,∆k−1 is given by,

Ak = w · uk · Rk ,

uk = U + uk−1(1 − U) exp−∆k−1/F , (B.59)

Rk = 1 + (Rk−1 − uk−1Rk−1 − 1) exp−∆k−1/D ,

where the hidden dynamic variables uk ∈ [0, 1] and Rk ∈ [0, 1] are initialized for
the first spike to u1 = U and R1 = 1. The parameters U ,D and F represent
the utilization of the synaptic efficacy of the first spike after a resting state, the
recovery and the facilitation time constants, respectively. These parameters were
set based on experimental data on short-term plasticity in dependence of pre- and
post-synaptic neuron (excitatory or inhibitory) as in (Haeusler and Maass, 2007)
(see in particular Table 1 in this reference), by randomly drawing for each neuron
values for U , D, and F from corresponding data-based Gaussian distributions.

Connectivity and synaptic parameters

Synaptic parameters and connectivity rules for the data-based cortical column
model were taken from (Haeusler and Maass, 2007), see Figure 2.1A. In partic-
ular, we adopted from (Haeusler and Maass, 2007) the connection probabilities and
transmission delays for each type of connection (EE, EI, IE, II) and each cortical
layer ((Haeusler and Maass, 2007), Figure 1), as well as short-term plasticity pa-
rameters. Furthermore, synaptic efficacies of individual synapses were drawn from
Gamma distributions with data-based means and variances for each type of connec-
tion (EE, EI, IE, II) taken from (Haeusler and Maass, 2007). Two input streams
were connected to the microcircuit, each consisting of 40 input neurons. In contrast
to (Haeusler and Maass, 2007) we used rate-based Poisson input neurons instead
of injecting “frozen” spike patterns. Background synaptic inputs were emulated as
in (Haeusler and Maass, 2007) via background input currents to each neuron, with
conductances modeled according to (Destexhe et al., 2001). To adjust connectiv-
ity for cortical microcircuit models of different sizes, we also adopted the method
proposed by (Haeusler and Maass, 2007), in which recurrent weights are scaled
inversely proportional to network size.

We tested the validity of our cortical microcircuit model by comparing the av-
erage activity of different layers (see Figure 2.2A) under various conditions against
the values reported by (Haeusler and Maass, 2007). We confirmed that all layers
exhibited very similar average activity to (Haeusler and Maass, 2007) under all
considered conditions.
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B.7 Details to small microcircuit model in Figure 2.1

The small cortical microcircuit model of Figure 2.1B was constructed based on
the cortical column template of (Haeusler and Maass, 2007): Synaptic connections
between neurons and their weights were chosen to approximately reflect connection
probabilities and mean synaptic strengths of the cortical column template (Haeusler
and Maass, 2007). Due to the very small size of this network, the resulting dynamics
was not immediately satisfactory (for example, the influence of inputs on Layer
5 neurons was too weak). To shift the circuit into a more responsive regime, we
manually adjusted a few synaptic weights and neuronal excitabilities. In particular,
we injected small constant currents into some of the neurons to modulate their
intrinsic excitability. Furthermore, to increase activity and correlations between
highlighted neurons 2, 7 and 8, we increased synaptic weights 8 → 2 and 8 → 7
by factors 5 and 10, respectively. To set the initial Markov state of the network,
preparatory input was shown for 1 s before the actual start of the simulation. Two
different preparatory inputs were injected to set the two initial states considered in
Figure 2.1F-H (first: i1 at 100 Hz, i2 at 100 Hz, second: both i1 and i2 at 0 Hz).
To reproduce the same initial Markov state in multiple trials (for example the two
trials shown in Figure 2.1F), the same random seed was used during the preparatory
phase for these trials. The random seed was then reinitialized at t = 0 to different
values for each trial.

B.8 Estimates of required computation time

Gelman-Rubin univariate and multivariate analysis

Various methods have been developed for measuring convergence speed to a sta-
tionary distribution in the context of Markov chain Monte Carlo sampling (Cowles
and Carlin, 1996; Brooks and Roberts, 1998; El Adlouni et al., 2006). The Gel-
man Rubin diagnostic, which we adopted in this article, is one of the most widely
used methods (Gelman and Rubin, 1992; Brooks and Roberts, 1998; Brooks et al.,
2010; Gjoka et al., 2010), besides other popular methods such as the diagnostics by
Raftery and Lewis (Raftery et al., 1992) and by Geweke (Geweke, 1991). We remark
that the consensus in the literature is that no single method is perfect in general.
Some attractive properties of the Gelman Rubin method are general applicability to
any MCMC system (some other methods only work, for example, in the context of
Gibbs sampling), ease of use, ease of implementation, computational efficiency, and
the fact that results are quantitative (in contrast to graphical diagnostics) (Cowles
and Carlin, 1996; Brooks and Roberts, 1998).

The Gelman-Rubin convergence diagnostic (Gelman and Rubin, 1992) takes as
input samples fromm different runs (trials/chains/sequences) produced by the same
system, started from different initial states. The method was originally developed
for discrete-time systems in the context of Markov Chain Monte Carlo sampling.
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Our simulations use a time step of 1 ms, so we simply treat each simulation step as
one discrete time step in a Markov chain. The Gelman-Rubin method produces as
output the potential scale reduction factor R̂(t) as a function of time t. The scale
reduction factor R̂(t) is an indicator for whether or not the system has converged
at time t. High values ≫ 1 indicate that more time is needed until convergence,
while values close to 1 suggest that convergence has (almost) taken place.

For computing the scale reduction factor R̂(t) at time t, samples from the period
[t, 2t] from each run of the network are taken into account. In the univariate case
one focuses on a particular single variable (such as the marginal simple state of a
single neuron, or the simple state of a “random readout” neuron as in the solid lines
of Figure 2.2G). Let n be the number of samples obtained from the period [t, 2t]
from each of the simulations. Then one defines

R̂(t) =
n− 1

n
+
m+ 1

mn

B(t)

W (t)
, (B.60)

where B(t) and W (t) are between and within-sequence variances, respectively,
which can be computed as described in (Gelman and Rubin, 1992), based on sam-
ples taken from the time period [t, 2t]. In the rare event of W = 0, which happens
for example if a neuron never fires and hence its state is constant across all runs,
we set R̂ to 1.

An unfortunate source of confusion is the fact that Gelman and Rubin (Gel-
man and Rubin, 1992) originally introduced R̂ in its “variance” form equivalent
to equation (B.60), but later in (Gelman et al., 2004; Brooks et al., 2010) altered
this definition and defined R̂ as the square root of (B.60). This issue is particularly
critical when considering threshold values for R̂: a threshold of 1.2 was suggested in
the context of the original definition (Kass et al., 1998). Later, a typical threshold
of 1.1 was suggested, but this lower threshold applied to the modified definition
(Gelman et al., 2004; Brooks et al., 2010). Squaring this apparently lower threshold
yields again a typical threshold of approximately 1.2.

In the multivariate case (e.g. when analyzing convergence of the vector-valued
simple state of a small subset of neurons as in the dotted lines of Figure 2.2G)
one takes vector-valued (d-dimensional) samples, and computes the multivariate
potential scale reduction factor R̂d(t) according to:

R̂d(t) =
n− 1

n
+
m+ 1

m
λ1(t), (B.61)

where λ1(t) is the largest eigenvalue of W (t)−1B(t)/n, and W (t) and B(t) denote
within and between sequence covariance matrix estimates (see (Brooks and Gelman,
1998) for details).

Convergence analysis for cortical microcircuit models

Gelman-Rubin values were calculated based on 100 runs, where the duration of
each run was 10 s of biological time. We tried also much longer simulations of 100 s
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but did not notice any sign of non-convergent behavior. A random initial state
was set in each run by showing random input for 1 s before the start of the actual
simulation. This initial random input was fed into the network via the two regular
input streams (40 neurons each), by assigning to each input neuron a random rate
drawn uniformly from a 0 − 40 Hz range. Convergence analysis of marginals was
performed by applying univariate analysis to single components of the simple state
yS, with τ = 10 ms. From individual marginal convergence values, mean and worst
marginal convergence (as in Figure 2.2E,F) were derived by taking at time t the
mean/max over all individual R̂-values at time t. For pairwise spike coincidences
(see Figure 2.2D), we analyzed samples of the product of simple states of two
neurons (the product equals 1 only if both neurons spiked within the last 10 ms).

Random readouts for Figure 2.2G were implemented by adding an additional
excitatory observer neuron to the network which receives synaptic inputs from a
random subset of 500 network neurons (we kept this number 500 fixed across sim-
ulations with different network sizes to allow a fair comparison). The number of
randomly chosen neurons from each of the pools is given in Table B.1.

E I

L2/3 120 30

L4 80 20

L5 200 50

Table B.1: Number of randomly chosen neurons per pool for readout neuron in Figure 2.2G

Synapses onto the readout neuron were created in a similar manner as con-
nections within the cortical column model: short-term plasticity parameters were
set depending on the type of connection (EE or IE) according to (Haeusler and
Maass, 2007). The weights for EE and IE connections were randomly chosen from
a Gamma distribution with mean 2 nS and scale parameter 0.7, and mean 5 nS and
scale parameter 0.7, respectively. Gelman-Rubin convergence of readouts was then
computed as for the marginal case.

Convergence analysis of vector-valued simple states of subsets of neurons (see
Figure 2.2G) was performed by applying multivariate analysis to randomly chosen
subnetworks of the cortical column. In particular, we randomly drew 5 neurons from
each of the 6 pools, yielding a subnetwork of 30 neurons, and calculated R̂30(t).

B.9 Impact of different dynamic regimes on the con-
vergence time

In Figure 2.3 we compared convergence times in four different neural circuits. The
first circuit was identical to the small cortical microcircuit from Figure 2.1. For the
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remaining three circuits, the same stochastic point neurons and conductance-based
dynamic synapses with delays were used as for the data-based cortical microcircuit
model. Dynamic synaptic parameters were set to the corresponding mean values of
parameters used in the cortical column model. Synaptic delays of 1 ms were used for
all networks, except for the network with sequential structure (Figure 2.3C) where
delays were 3 ms. To modulate the intrinsic excitability of neurons we injected
small currents to each neuron. The strengths of injected currents and connections
were tuned for each network until the desired network activity was achieved. Synap-
tic background inputs were injected as in the cortical microcircuit model. To set
different initial states (needed for Gelman Rubin analysis), during a preparatory
phase of 1 s we injected into each neuron a random current chosen from [−2, 2] nA.
These small random input currents were strong enough to yield sufficiently diverse
initial states. Gelman-Rubin values were then calculated based on 100 runs, where
the duration of each run (after the preparatory phase) was 20 s of biological time.
Convergence analysis was performed on marginals (individual simple states with
τ = 10 ms). Mean and worst marginals were computed as described in the previous
section.

Below are additional details to the circuits used for Figure 2.3B-D: The sparsely
active network of Figure 2.3B comprises one excitatory (E) and one inhibitory (I)
population (each 10 neurons). Connections between neurons were drawn randomly
according to the following set of connection probabilities: EE=0.1, EI=0.1, II=0.9,
IE=0.9. The network with sequential structure of Figure 2.3C consists of two inter-
connected subnetworks where each one of them produces a stereotypical trajectory.
Each subnetwork consists of a trigger neuron, a subsequent chain of neurons, and
a pool of inhibitory neurons. Shown in Figure 2.3C are only the excitatory chain
neurons from each subnetwork (neurons 1-15: first subnetwork; neurons 16-30: sec-
ond subnetwork). Each excitatory neuron in the chain projects to all other neurons
in the same chain with synaptic strengths decreasing with distance according to
exp(−distance/τd) where τd = 0.01 applies to the forward direction in the chain
and τd = 0.1 to the backward direction. The trigger neuron projects (forward) to
the chain in the same fashion with τd = 1. All neurons in the chain project to the
inhibitory pool, and all neurons in the inhibitory pool project back to the trigger
neuron and to the chain. Finally, the two subnetworks are combined such that
the inhibitory pool of one subnetwork projects to the trigger neuron and the chain
of the other subnetwork, and vice versa. This ensures that only one of the two
subnetworks can be active at a time (competition between two trajectories). The
bistable network of Figure 2.3D consists of two populations which strongly inhibit
each other (each population comprising 10 neurons).
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B.10 Phase-specific distributions in the presence of pe-

riodic inputs

The theoretical proof for Theorem 2 can be found after the proof of Theorem 1
above. For Figure 2.4F, a single long simulation (100.000 s) of the bi-stable network
in Figure 2.4E was carried out. Each of the two pools was defined active at time t
if more than two neurons from the pool had an active simple state at time t (with
τ = 10 ms). A transition was defined as the succession of a period in which one
pool was active and the other pool inactive by a period in which the other became
active and the first pool turned inactive. Between those two periods it typically
occurs that either both pools are active or both are inactive for some short time.
The exact time (and phase within the current cycle) of each transition was defined
as the point in the middle of this intermediate period.

B.11 Generation of heuristic solutions to a constraint
satisfaction problem

Formulation of Sudoku as a constraint satisfaction problem

A constraint satisfaction problem consists of a set of variables defined on some
domain and a set of constraints, which limit the space of admissible variable assign-
ments. A solution to a problem consists of an assignment to each variable such that
all constraints are met. To formulate Sudoku as a constraint satisfaction problem,
we define for each of the 81 fields (from a standard 9x9 grid), which has to be filled
with a digit from 1 to 9, a set of 9 binary variables (taking values in {0, 1}) (Ercsey-
Ravasz and Toroczkai, 2012). Each of these binary variables votes for exactly one
digit in a field. The rules of the Sudoku game impose constraints on groups of these
variables, which can be classified into the following three types.

Given number constraints: The given numbers of a puzzle are fixed. Hence, the
binary variables for the given fields are constrained to fixed values, for example, a
given value 2 corresponds to fixed binary values (0, 1, 0, . . . , 0).

Unique field constraints: In a correct solution, there must be only one digit
active in each field. Hence in each field, exactly one of the 9 associated binary
variables must be 1, and all others must be 0 (equivalent to stating that the sum
over these binary variables must equal 1).

Unique group constraints: There are three types of groups: rows, columns and
3x3 subgrids. There are 9 row groups, 9 column groups, and 9 subgrid groups.
In any of these groups, each digit 1, . . . , 9 must appear only once. Hence, in each
group, all binary variables voting for the same digit i must sum to 1.
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Network architecture for solving Sudoku

Sudoku can be implemented in a spiking neural network by creating for each of
the 9 binary variables in each Sudoku field a local group of ngroup pyramidal cells.
Whenever one of these pyramidal cells fires, the corresponding binary variable is
set to 1 for a short period τ = 20 ms. The binary variable is defined 0 only if no
neuron in its associated group fired within the last τ = 20 ms. This mapping allows
one to readout the current (tentative) solution represented by the network at any
time t. The tentative solution is correct only if all constraints are met. For all
simulations we used ngroup = 4, resulting in a total 81∗9∗4 = 2914 pyramidal cells.
Constraints among Sudoku variables can be implemented via di-synaptic inhibition
between the groups of pyramidal cells as detailed below.

Given number constraints are implemented by providing strong positive input
currents selectively to those neurons which code for the given numbers, and negative
currents to neurons coding for wrong digits in a given field. Unique field constraints
are implemented by forming a winner-take-all (WTA) circuit among all 9 ∗ 4 = 36
neurons associated with the same Sudoku field. A WTA circuit is modeled by a
single inhibitory neuron which is reciprocally connected to all 36 pyramidal cells. To
reduce the probability that no pyramidal cell fires (which would violate the unique
field constraint), thresholds of pyramidal cells are set to low values (see next section
for details). Unique group constraints are implemented by a WTA circuit in which
all neurons in a group which code for the same digit participate. In summary, there
are 81 unique field constraints and 27 ∗ 9 = 243 unique group constraints (in each
group there is a constraint for each digit), yielding a total of 324 WTA circuits.
These WTA circuits are partially overlapping, in the sense that each pyramidal cell
participates in 4 of these WTA circuits (one for the unique value constraint in its
field, and three for the unique group constraints in its row/column/subgrid).

Stochastic spike generation in both excitatory and inhibitory neurons is imple-
mented consistent with the theoretical noise model I (see next section for details).
The network thus fulfills all theoretical conditions for Theorem 1, and is guaran-
teed to have a unique stationary distribution pC(y|x) of network states, to which
it converges exponentially fast. This landscape will have automatically peaks at
those states of the network which fulfill most of the game constraints, since each of
the WTA circuits ensures that invalid configurations with respect to that constraint
are unlikely to occur. Any specific Sudoku problem can be set by providing input
x to the network in the form of strong currents to those neurons which correspond
to the given values. This automatically modifies the landscape of the stationary
distribution pC(y|x) such that only (or predominantly) solutions consistent with
the givens are generated. Finally, due to neuronal noise the network can quickly
probe different peaks in the landscape (different promising solution candidates) and
escape them equally fast. Importantly, this process may occur at different places in
the Sudoku puzzle simultaneously. Hence, one can interpret the network dynamics
also as a highly parallel stochastic search algorithm.
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Details to implementation and simulations for Figure 2.5

Simulations for Figure 2.5 were performed in NEVESIM, an event-based simulator
for networks of spiking neurons developed in C++ with a Python Interface(Pecevski,
2013). The puzzle in Figure 2.5A was generated and rated “hard” by “Sudoku Solu-
tions” (Aire Technologies, 2013). Spike generation is modeled according to equation
(B.58), with parameters δu = 0.5, τs = 20 ms. The stochastic threshold ϑ was set
to −1 and 10 for excitatory and inhibitory neurons, respectively. An absolute re-
fractory period of 3 ms was chosen for pyramidal cells. To maximize the speed up of
event-based simulations, PSPs were modeled in a simplified manner as current-based
rectangular pulses of length 20 ms (in contrast to the more complex conductance
based integration of synaptic inputs used for cortical microcircuit models).

WTA circuits were formed by reciprocally connecting a single inhibitory neuron
to all participating pyramidal cells. The single inhibitory neuron was modeled to
mimic the response of a population of inhibitory neurons (i.e. strong inhibition for
a prolonged amount of time), using an absolute refractory period of 20 ms, and
strong bidirectional connections from and to excitatory neurons (synaptic weights
100 and −100, respectively).

To set a particular puzzle, given numbers were fixed by providing strong input
currents to the corresponding pyramidal cells. In particular, neurons coding for
the given numbers in a Sudoku field received a constant positive input current (a
constant input +9 on the membrane potential). Neurons coding for conflicting
digits in given Sudoku fields received a constant negative input current of strength
−11.

A final practical remark concerns the number of neurons coding for each binary
variable, ngroup = 4. We found that networks with ngroup > 1 have a number of
attractive properties compared to networks with single neuron coding. In particular
firing rates of individual neurons can be lower (for ngroup = 1 a pyramidal cell
would need to constantly burst to indicate a steady active state). Also, synaptic
efficacies among neurons can be made weaker, and overall spike response patterns
appear more biologically plausible. In view of a potential implementation in analog
neuromorphic hardware, population coded variable assignments are also less prone
to single unit failures or device mismatch.
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C.1 Stochastic neuron model

Neurons are modeled as simple stochastic point neurons with absolute refractory
period τ . When not in a refractory state, neuron k spikes at an instantaneous firing
rate which depends exponentially on the membrane potential uk(t) (3.2), according
to,

lim
δt→0

p(neuron k fires within(t, t+ δt])/δt = ρk(t) =
1

τ
exp(uk(t)) , (C.1)

with τ = 10ms unless otherwise stated. An exponential dependence of a neuron’s
firing probability on the membrane potential has been suggested by (Jolivet et al.,
2006) based on a fit to experimental data. Similar stochastic neuron models have
been suggested by (Truccolo et al., 2005; Buesing et al., 2011).
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C.2 Details to Principle 1: stationary distributions and

energy functions

Network states

We distinguish between principal neurons and auxiliary neurons. Principal neurons
directly represent the random variables (RV) of a problem (e.g. the boolean vari-
ables in a satisfiability problem as in Figure 3.2). The state of principal neurons
therefore reflects the state of the RVs. Auxiliary neurons (i.e. all auxiliary neurons
in circuit motifs and the lock-in neuron), on the other hand, do not represent ran-
dom variables. Their only purpose is to modulate and shape the distribution (and
energy function) over principal neurons.

The state xk(t) of a principal neuron k at time t is defined as,

xk(t) =

{

1, if neuron k fired within (t− τ, t] ,

0, otherwise ,
(C.2)

where τ is a brief time window corresponding to the duration of a PSP. The state
ξm(t) of an auxiliary neuron m is defined in an analogous manner. The full network
state,

(x(t), ξ(t)) = (x1(t), . . . , xN (t), ξ1(t), . . . , ξM (t)) (C.3)

is defined as the vector of states of all principal neurons k = 1, . . . , N and all
auxiliary neurons m = 1, . . . ,M in the network. Similar notions of network state
have been suggested by a number of experimental (Schneidman et al., 2006; Berkes
et al., 2011) and theoretical (Buesing et al., 2011; Pecevski et al., 2011; Habenschuss
et al., 2013) papers. The principal network state refers only to the state vector x(t)
of all principal neurons. Unless otherwise stated, the term network state refers to
the principal network state.

Convergence to stationary distribution

Under mild conditions, activity in a general spiking network with noise can be
theoretically guaranteed to converge exponentially fast to a unique stationary dis-
tribution p(x, ξ) of full network states (Habenschuss et al., 2013), regardless of
initial network conditions. In the context of the stochastic neuron model (3.1-3.2)
it can be easily verified that the theoretical conditions for convergence are fulfilled
if all weights wkl are bounded from above, i.e. if there exists some wmax such that
all wkl ≤ wmax. Throughout the paper this condition is met. Exponentially fast
convergence to a unique marginal distribution p(x) over principal network states is
a simple corollary that follows from the convergence to a unique joint distribution
p(x, ξ).
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Energy functions

In analogy with statistical physics (Plischke and Bergersen, 2006), we define the
energy function E(x) of a network of spiking neurons with unique stationary dis-
tribution p(x) of principal network states x as

E(x) = − log p(x) + C , (C.4)

with an arbitrary constant C. The stationary distribution p(x) can then be ex-
pressed as,

p(x) =
e−E(x)

∑

x′ e−E(x′)
. (C.5)

Note that according to this definition, energies are defined only up to a constant
(a global shift applied to all states). To indicate that two energy functions are
identical except for a constant shift we use the notation E1(x) , E2(x), i.e.

E1(x) , E2(x) ⇔ ∃C∈R ∀x (E1(x) = E2(x) + C) . (C.6)

C.3 Details to Principle 2: circuit motifs shaping the
energy function

A key theoretical question is how the energy function E(x) (or equivalently p(x))
over principal network states x depends on the parameters of a network, in particu-
lar on synaptic weights wkl and neuronal excitabilities bk among principal neurons,
as well as on auxiliary circuits connected to the principal neurons. Previous work
had shown that pair-wise symmetric connections between neurons map onto second-
order dependencies between variables (Buesing et al., 2011). (Pecevski et al., 2011)
demonstrated in addition how more complex dependencies can be encoded through
the use of pre-processing circuits in the context of probabilistic inference.

Here we consider how in addition to second-order dependencies, common higher-
order constraints of hard computational problems can be encoded through the use
of simple auxiliary circuit motifs, in a manner suitable for compositionality and
large-scale circuit design.

Compositionality

To facilitate systematic design of complex energy landscapes, we would like to find
a basic set of auxiliary circuit motifs which can be combined in arbitrarily rich
ways with predictable outcomes. A particularly desirable feature to aim for is
linear compositionality, such that the energy contribution to the energy landscape
of each circuit motif is independent of the presence of other circuits. A precise
definition follows.
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Definition 1 (Compositionality). Let N be a principal network of k =
1, . . . , N stochastic principal neurons (3.1)-(3.2), symmetric connections wkl = wlk

(but no self-connections, i.e. wkk = 0) and biases bk, with energy function EN(x).
Let C = {C1, . . . , CL} be a set of L additional auxiliary circuits which can be re-
ciprocally connected to the principal network N to modulate the behavior of prin-
cipal neurons. Denote by EN,I(x) the modulated energy function of the network
in the presence of a subset I ⊆ {1, . . . , L} of these auxiliary circuits, and de-
fine the change in the energy landscape due to the presence of this subset I as
∆EN,I(x) , EN,I(x) − EN(x). Then the set of auxiliary circuits C is said to be
compositional with respect to network N if changes in energies sum up linearly for
all possible combinations, i.e.

∆EN,I(x) ,
∑

i∈I

∆EN,i(x) , (C.7)

for any subset I ⊆ {1, . . . , L}.

Note that due to linearity of membrane integration (3.2), the membrane po-
tential of a principal neuron k in the presence of some subset I of arbitrarily
complex auxiliary circuits can be written as,

uk,I(t) = bk +
∑

l

wkl xk(t) +
∑

i∈I

∆uk,i(t) , (C.8)

where the current contribution of auxiliary circuit Ci to the membrane potential
of principal neuron k is denoted by ∆uk,i(t). Define x\k(t) as the state vector
of all principal neurons except neuron k, and {xk = ·,x\k(t)} as the state
vector x(t) with the state of neuron k replaced by ·. Then, building on the
analysis of (Buesing et al., 2011), the following theoretical result provides suf-
ficient conditions on the auxiliary circuit contributions ∆uk,i(·) for compositionality.

Theorem 3 (Sufficient conditions for compositionality). Let N be any
network of principal neurons and C a set of auxiliary circuits as defined above.
Suppose that for each auxiliary circuit Ci there exists an energy function Ui(x)
such that at any time t the following relation holds,

∆uk,i(t) = Ui

(
{xk = 0,x\k(t)}

)
− Ui

(
{xk = 1,x\k(t)}

)
(C.9)

Then the set of auxiliary circuits C is compositional with respect to N. Further-
more, the energy change due to each individual circuit is given by ∆EN,i(x) , Ui(x).

Theorem 3 suggests that auxiliary circuits should be constructed in a highly
specific manner to support compositionality. In particular, (C.9) states that
auxiliary circuit contributions to the membrane potential of a principal neuron
k should be basically memoryless and reflect a specific function of the current
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state of the remaining network, x\k(t). Note that this function (the right-hand
side of (C.9)) has a very intuitive interpretation: a circuit Ci should inform
each principal neuron k about the currently expected drop in the energy function
Ui that can be achieved by a spike of neuron k (i.e. a switch from xk = 0 to xk = 1).

Proof of Theorem 3: If (C.9) holds for all Ci then the membrane po-
tential of a principal neuron k in the presence of some subset of auxiliary neurons
I is given at time t by,

uk,I(t) = bk +

N∑

l=1

wkl xk(t) +
∑

i∈I

[
Ui

(
{xk = 0,x\k(t)}

)
− Ui

(
{xk = 1,x\k(t)}

)]

(C.10)

This can also be expressed as,

uk,I(t) = UI

(
{xk = 0,x\k(t)}

)
− UI

(
{xk = 1,x\k(t)}

)
, (C.11)

with

UI(x) = −
N∑

k=1

bkxk −
1

2

N∑

k=1

N∑

l=1

wklxkxl +
∑

i∈I

Ui(x) . (C.12)

One can then verify that the neural computability condition (NCC) from (Buesing
et al., 2011) is fulfilled by a network with membrane dynamics (C.11) with respect
to stationary distribution p(x) ∝ exp(−UI(x)):

log
p(xk = 1|x\k)

p(xk = 0|x\k)
= log

p({xk = 1,x\k})

p({xk = 0,x\k})
(C.13)

= log p({xk = 1,x\k}) − log p({xk = 0,x\k}) (C.14)

= −UI({xk = 1,x\k}) + UI({xk = 0,x\k}) (C.15)

= bk +

N∑

l=1

wklxl +
∑

i∈I

[−Ui({xk = 1,x\k}) + Ui({xk = 0,x\k})]

(C.16)

Thus, a network with membrane dynamics (C.12) meets the NCC for
p(x) ∝ exp(−UI(x)), and the energy function of the network is given by
EN,I(x) , UI(x). Furthermore, from (C.12) it is obvious that energies due to
combinations of auxiliary circuits sum up linearly and that the energy contribution
due to each single Ci equals ∆EN,i(x) , Ui(x).
�

Note that, in contrast to neural sampling theory (Buesing et al., 2011), The-
orem 3 is only concerned with the distribution over a subset of all neurons (the
principal neurons x), i.e. the marginal distribution p(x) after integrating out all
auxiliary variables ξ.



128 Appendix C. Appending to Chapter 3

WTA circuit motif

The WTA circuit motif consists of a single auxiliary neuron which is reciprocally
connected to some subset K ⊆ {1, . . . N} of principal neurons (Figure 3.1B). The
goal of the WTA motif is to achieve that most of the time exactly one neuron in
K is active. The WTA motif should thus increase the energies of all network states
except those states where exactly one neuron in K is active. This can be achieved
in two steps. First, the energy of all network states where more than one neuron
in K is active is increased. We found that this can be robustly achieved by a single
inhibitory neuron which receives strong excitatory connections from K, and sends
strong inhibitory connections back to K (with some weight −wWTA ≪ 0). The
inhibitory neuron should have a low bias such that it only fires when one of the
principal neurons is active. Second, the energy of states where no neuron in K is
active is raised. This can be done most easily by raising the biases of all neurons
in K by some constant bWTA (not shown in Figure 3.1B) with 0 < bWTA < wWTA.
Alternatively, this could in principle also be achieved by an additional auxiliary
neuron which is constantly active and makes excitatory connections to all neurons
in K.

The described implementation of the WTA circuit motif is intended to approx-
imate the requirements of Theorem 3 for compositionality. This can be seen if one
considers the energy function

UWTA[K](x) =







bWTA , if
∑

k∈K
xk = 0 ,

0 , if
∑

k∈K
xk = 1 ,

(wWTA − bWTA) · (−1 +
∑

k∈K
xk) , if

∑

k∈K
xk > 1 .

(C.17)

According to (C.9) the ideal ∆uk,WTA[K](t) for implementing this energy func-
tion in a compositional manner is given by,

∆uk,WTA[K](t) =

{

bWTA ,
∑

l∈K\k xl(t) = 0 ,

bWTA − wWTA ,
∑

l∈K\k xl(t) > 0 .
(C.18)

This behavior is closely approximated by the described WTA circuit implemen-
tation: Regardless of the network state, there is a bias term bWTA. As soon as one
(or more) of the neurons fire, this triggers the auxiliary inhibitory neuron which
then strongly inhibits all competitors with weight −wWTA. The nature of the ap-
proximation lies mainly in the delay between the onset of activity of a winner and
the onset of inhibition at the remaining principal neurons.

OR circuit motif

The OR circuit motif consists of two auxiliary neurons reciprocally connected to
some subset K ⊆ {1, . . . N} of principal neurons (Figure 3.1B). The purpose of the
OR motif is to ensure that most of the time at least one neuron in K is active.
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Thus, the energies of all network states where no neuron in K is active should
be increased. At the same time, however, the energies of all other network states
should ideally remain unmodified, regardless of how many neurons ≥ 1 are active.
The first part, i.e. increasing the energies of states where no neuron is active, can
be done by adding an auxiliary neuron (Figure 3.1B, left auxiliary OR neuron)
which excites all neurons in K with equal synaptic weight wOR. The second part is
slightly more tricky, as it requires that the OR circuit should suspend its influence
on the network during periods where at least one neuron in K is active. This can be
achieved by a) adding an inhibitory connection from K to the first auxiliary neuron
such that the neuron is only activated when needed, and b) by adding a second
auxiliary neuron (Figure 3.1B, right auxiliary OR neuron) which is triggered when
a neuron in K fires in response to the first auxiliary neuron. The goal of the second
auxiliary neuron is to immediately cancel any effect of the first auxiliary neuron
on the remaining neurons in K due to sustained post-synaptic potentials. This is
achieved through inhibitory connections −wOR to all neurons in K.

Analogous to the WTA circuit, the described implementation of the OR circuit
motif aims to approximate the requirements of Theorem 3 for compositionality. To
see this, consider the energy function

UOR[K](x) =

{

0 , if
∑

k∈K
xk ≥ 1 ,

wOR , if
∑

k∈K
xk = 0 .

(C.19)

By (C.9) the corresponding ideal ∆uk,OR[K](t) supporting compositionality is
given by,

∆uk,OR[K](t) =

{

0 ,
∑

l∈K\k xl(t) ≥ 1 ,

wOR ,
∑

l∈K\k xl(t) = 0 .
(C.20)

The OR circuit approximates this behavior as described above through the
combination of two auxiliary neurons. The nature of the approximation is three-
fold. First, when all principal neurons in an OR circuit have just turned off (and
thus the constraint is not met anymore), the additional bias wOR should ideally be
communicated instantly to all neurons. However, the first auxiliary neuron fires in
general with some small delay, and therefore the additional bias wOR is signaled to
the principal neurons slightly later than ideally required. Second, when a principal
neuron eventually fires in response to the first auxiliary neuron, there is a delay until
the second auxiliary neuron turns on to cancel the bias wOR that is still present due
to lingering PSPs from the first auxiliary neuron. Third, there is an “undershoot”
effect when the excitatory PSP of the first principal neuron has already vanished,
but the inhibitory PSP of the second auxiliary neuron is still present. To minimize
the error due to this effect, the overall biases of all principal neurons in an OR
circuit should be kept high, in order to keep the typical delay between the activity
onset of the first and the second auxiliary neuron as short as possible.
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C.4 Details to Principle 3: benefits of asymmetric

spike-based signaling

Principles 1 and 2 pave the way towards massively parallel realizations of stochas-
tic search in networks of spiking neurons. A first application of these principles
has provided compelling results in simulations, as demonstrated in Figure 3.2 and
Figure 3.3. A key theoretical question which then arises is to what extent differ-
ent components of the system contribute to the observed performance. There are
various aspects that can be examined in this context, such as the asynchronicity of
message transfer, stochasticity, and the asymmetry of spike-based communication
(a spike marks the onset of a fixed-length on period, whereas off periods vary ran-
domly - hence on and off states are handled fundamentally different by a spiking
network). We focus our analysis here on the role of the asymmetry of spike-based
signaling, because its implications are arguably least well understood.

Asymmetric vs. symmetric dynamics

In order to isolate the effect of asymmetric signaling we consider an artificial non-
spike-based “symmetrized” system in which on and off transitions of units are
not mediated in an asymmetric fashion via spikes of fixed length, but rather in a
symmetric manner. Specifically, we aim to morph neural spiking dynamics into
the dynamics of Gibbs sampling (Bishop, 2006), one of the standard methods in
statistics and machine learning for sampling from complex probability distributions.
By theoretically analyzing and comparing the behavior of the two systems one can
then reason about the specific role of asymmetric signaling.

A canonical way of symmetrizing the dynamics of a given spiking network with
noise is to make sure that all other components and aspects of the systems remain
unchanged (event-based asynchronous signaling, stochasticity, synaptic weights and
biases, definition of membrane potential uk given the current on/off states of other
neurons) and modify only the way the system handles transitions between on and off
states. Importantly, to facilitate a comparison between asymmetric vs. symmetric
dynamics, such modification should not alter the stationary distribution and energy
function of the system.

For a stochastic spiking neuron embedded in some network, transitions occur
from off to on states according to

ρon(uk) =
1

τ
exp(uk) , (C.21)

whereas transitions from on to off occur deterministically after a period of τ time
units has passed. Clearly, in a symmetric system transitions must occur stochasti-
cally in both directions (they cannot be both deterministic), with transition rates
ρ′on(uk) and ρ′off(uk). Concrete symmetric expressions for ρ′on(uk) and ρ′off(uk) are
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obtained by using a continuous-time variant of Gibbs sampling (Bishop, 2006).

ρ′on(uk) = ρ0 · σ(uk) , (C.22)

ρ′off(uk) = ρ0 · σ(−uk) , (C.23)

where σ(u) = (1 + exp(−u))−1 denotes the standard sigmoid function. Such a
continuous-time variant of Gibbs sampling has been proposed in the literature,
for example, in the context of sampling from second-order Boltzmann machines
(Yamanaka et al., 1997).

Asymmetry facilitates transitions across large energy barriers

A somewhat unexpected but striking difference which emerges from the comparative
analysis between asymmetric and symmetric dynamics is that transitions across
large energy barriers are much more likely and frequently to occur with asymmetric
(spike-based) signaling. To see this, define the mean on-transition time mon(u) as
the average time from the last on→ off transition until the next off→on transition,
at a given membrane potential u. The mean off -transition time is defined in an
analogous manner. In the stochastic spiking network these are given by,

mon(u) =
1

ron(u)
= τ · exp(−u) , (C.24)

moff(u) = τ . (C.25)

In the symmetric system, on the other hand, mean transition times are given
by,

m′
on(u) =

1

r′on(u)
=

1

ρ0
· (1 + exp(−u)) , (C.26)

m′
off(u) =

1

r′off(u)
=

1

ρ0
· (1 + exp(u)) . (C.27)

Notably, one can identify a single translation factor F (u) between the two systems,

mon(u) = m′
on(u) · F (u), (C.28)

moff(u) = m′
off(u) · F (u) (C.29)

which is given by,

F (u) = τρ0
︸︷︷︸

const.

· (1 + exp(u))−1 (C.30)

Note that F (u) is strictly positive and decreases monotonically with increas-
ing membrane potential u. Furthermore, note that small values F (u) signify that
the asymmetric dynamics is fast in comparison with the symmetric dynamics (in
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both, on and off directions). Hence, (C.30) shows that the asymmetric dynamics
of spiking neurons increases specifically the on- and off -transition rates of those
neurons with high membrane potentials u (i.e. neurons with strong input and/or
high biases). This makes sense since off transitions in the symmetric case can
be arbitrarily slowed down for large u (C.27), whereas the spike-based system will
necessarily fall back to an off state on a regular basis regardless of u.

Given that transitions are specifically enhanced in the presence of high mem-
brane potentials, and taking into account that large u reflect large energy barriers
(according to (C.12)), it follows that the spike-based system is much more inclined
to make exploratory on→off transitions (crossing large energy barriers) on a regular
basis. Despite the resulting increased frequency of transitions to high-energy states
due to (C.30), however, it should be stressed that on average the asynchronous
spike-based system does not spend more time in high-energy states (both systems
sample from the same p(x)), because according to (C.28) also the transition back
to the corresponding on state (i.e. the lower energy state) happens at an increased
rate for large u. The critical observation is that the return to the identical previous
state can be intercepted by other neurons which, while the neuron is off, are given
the brief opportunity to spike before the previous state is restored, and may thereby,
e.g., escape from a previously inhibited state. This is particularly obvious in the
context of WTA circuits, where such brief periods of off -time of the current winner
allow other neurons to take over. Altogether, as we demonstrated in Figure 3.3, it
is observed that this enhanced utilization of exploratory moves leads to improved
search for low energy states in the asymmetric spike-based system, by facilitating
fast escape routes from deep local minima which are not available to such extent in
a symmetric system.

Asymmetry facilitates goal-directed transitions

(C.30) states that spike-based transition frequency is enhanced in proportion to u. It
was already noted above that this encourages exploratory on→off transitions which
may facilitate the escape from local minima. But clearly also off →on transitions
are affected by (C.30). In particular, consider a situation where a group of neurons
in the off state is competing for emitting the next spike (e.g. in a WTA circuit).
Those neurons with the highest membrane potentials are particularly eager to fire.
Suppose, for example, that there are two neurons with ua = 3 and ub = 5, and all
other neurons have considerably lower u. In the symmetrized non-spiking system,
transition rates scale with σ(u) and are therefore approximately equal for the two
neurons a and b (due to saturation of the sigmoid function). In the spike-based
system, however, instantaneous transition rates scale with exp(u) and thus the
competition will be much easier to win by the neuron which is most eager to fire
(i.e. neuron b in the example). Clearly, this makes a substantial difference in the
dynamics and performance of the stochastic search, especially since uk reflects the
drop in energy that can be gained by turning on some neuron k. In particular,



C.5. Details to Principle 4 133

it means that a spike-based system is not only more exploratory in the “up-hill”
direction (on→off transitions towards higher energy levels), but also more goal-
directed in the “down-hill” direction.

Obviously, the enhanced agility with respect to some transitions must come at
a price. Indeed, those transitions which bring about only small changes in the
energy landscape (transitions with small u) are considerably disadvantaged by the
spike-based dynamics. In terms of convergence properties, however, this seems to
be a small price to pay, since stochastic search appears in practice more frequently
impeded by the presence of large energy barriers. 1

C.5 Details to Principle 4: internal temperature con-
trol

In order to realize an internal temperature control mechanism which allows network
activity to “lock in“ when a good solution has been found, the following functional
components are required (Figure 3.1D): 1. The generation of OK signals in each
circuit motif. 2. A lock-in unit that integrates individual OK signals into a global
all OK message. 3. The activation of additional circuits which reduce temperature.

The following realizations of these elements have proved effective: For the WTA
circuit motif, the activity of the inhibitory neuron can be directly used as an OK
signal. This works because the probability that two neurons are active at the same
time is vanishingly small as long as strong inhibitory connections are used in the
WTA motif. Hence, in practice whenever the inhibitory neuron is active it means
that exactly one principal neuron is active (and the WTA constraint is met). For the
same reasons, one can also simply connect all neurons in a WTA circuit to the lock-
in neuron. Since at most one neuron is active at a time, the joint impact of these
neurons on the lock-in unit precisely reflects whether the WTA constraint is met.
For the OR circuit motif, the most straightforward way of implementing an OK
signal is to add another auxiliary neuron with low bias and excitatory connections
from all involved principal neurons, such that the neuron fires as long as one of the
principal neurons is active, and remains silent otherwise. In simulations, however,
a slightly different implementation has proved more effective, which can be used
when all principal neurons involved in the OR circuit are also part of some WTA
circuit. Then, a not OK signal can be derived by adding an auxiliary neuron with
low bias which receives connections from all other neurons in the WTA circuits of
the involved principal neurons. This works because, whenever principal neuron k

1Clearly, also transitions with negative u are disadvantaged by the spike-based dynamics. In
general, this may have a negative effect on convergence, and the magnitude of such negative effects
would need to be examined in relation to the previously described advantages. In the context of
this paper, however, negative u practically only occur in neurons which are not supposed to fire at
all, for example neurons which are currently inhibited in a WTA circuit. And in this case it is in
fact desirable that such transitions occur with decreased frequency.
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(which is involved in the OR circuit and in addition in some WTA circuit) is not
active, some other neuron in the WTA circuit of neuron k must be active (most
of the time). Hence, whenever the OR constraint is violated and all K principal
neurons involved in the OR circuit are inactive, the auxiliary neuron will see that
in each of the involved WTA circuits some other neuron is active. A more detailed
description of how this was implemented as part of the lock-in mechanism for 3-SAT
problems is given in Section ”Details to 3-SAT application“.

The lock-in neuron can be implemented by choosing a low bias and connection
strengths from OK neurons in each circuit in such a manner that the firing prob-
ability reaches non-negligible values only when all OK signals are active. When
circuits send either OK or not OK signals, the connection strengths from not OK
should be negative and can be chosen in such a manner that non-negligible firing
rates are achieved only if all OK but none of the not OK signals are active.

Regarding the activation of additional circuitry to reduce temperature, the most
straightforward way of achieving this is to duplicate all circuit motifs (as indicated
in Figure 3.1D). The biases of auxiliary neurons in duplicated circuits should be
much lower, such that these circuits remain inactive unless an additional excitatory
drive is provided by the lock-in neuron. This is exactly how temperature reduction
was implemented for the OR circuit motif. For WTA circuits, however, there exists
an even a simpler way of reducing temperature which does not require duplication
of circuitry but only excitatory connections from the lock-in neuron to all principal
neurons in a WTA circuit. This works well because the WTA circuit motif consists
of two components, a) excitatory drive (increased bias) to all involved principal
neurons, and b) strong mutual inhibition. If inhibition strength is very strong,
however, duplication of that second component is not necessary. Hence, a reduction
of temperature can be achieved by mere activation of additional excitatory drive.
For further implementation details see Section ”Details to 3-SAT application“.

C.6 Details to simulations

All simulations were performed in NEVESIM, an event-based neural simulator.
Optimization of networks, as well as exploration of their properties were done with
ZLIB, a library for parallelization and optimization, developed within the scope of
this work. The analysis of simulation results was performed in Python and Matlab.

Details to 3-SAT application (Figure 3.2)

A general 3-SAT problem consisting of a set of binary variables and a set of clauses,
each involving three variables, can be implemented in a spiking network by repre-
senting each binary random variable (RV) with two neurons forming a WTA circuit
(biases of the principal neurons: bnrn). In particular, the WTA circuit is imple-
mented by adding a single inhibitory neuron with bias binh and connecting it to
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the two neurons with bidirectional connections winh and wexc (to and from the in-
hibitory neuron, respectively). The winh should be set strong enough to shut down
all principal neurons in the WTA circuit (to overcome their biases). wexc should
be strong enough such that it activates inhibition almost immediately in order to
prevent other neuron(s) from spiking.

For the implementation of a 3-SAT clause one needs to form an OR circuit con-
sisting of those neurons which take part in the clause. In particular, two auxiliary
neurons are added, with biases of 0.5B and −3.5B for the first and the second
auxiliary neuron, respectively, where B is some constant. Both auxiliary neurons
should connect to those neurons involved in the clause (in total to 3 neurons), with
bidirectional connections wOR and −B (to and from the first auxiliary neuron,
respectively), and −wOR and B (to and from the second auxiliary neuron, respec-
tively). Finally, the first auxiliary neuron connects to the second one with strength
3B.

Therefore, the total number of neurons needed to implement a general 3-SAT
problem in a spiking neural network is 3#variables + 2#clauses (2 + 1 per WTA
circuit, and 2 per OR circuit), while the number of connections is 4#variables +
13#clauses. Notably, both the number of neurons and the number of synapses
depend linearly on the number of variables (the number of clauses linearly depends
on the number of variables if problems with some fixed clauses-to-variables ratio
are considered).

At any point in time the principal network state x is defined based on the
activity of principal neurons within the last τ time units. If exactly one of the two
neurons which code for a RV Xi is active at some time t, then the variable has a
properly defined value. The WTA circuit for each RV ensures that this is the case
most of the time for most problem variables. When this is the case, one can simply
read off the current assignment of values to the RVs from the network state. Any
clause is considered satisfied if at least one of the three neurons, which correspond
to the three literals of the clause, is active.

To calculate the current performance of a solution at any point in time we use as
a performance measure the ratio between the number of satisfied clauses and total
number of clauses. If none of the variables which take part in a clause are properly
defined then that clause is considered unsatisfied. As a result, this performance
measure is well-defined at any point in time.

In order to implement the lock-in mechanism we use two working regimes which
differ in the temperature of the network. While the first one is the normal regime
during which the network normally explores possible solutions, the second one is the
regime of decreased temperature during which the network locks into the current
state (solution) and is very unlikely to escape from it. To implement the second
regime we add for each clause two additional auxiliary neurons which are connected
in the same way as the original auxiliary neurons (they target the same neurons) but
with different weights: wOR2 and −B (to and from neuron), and −wOR2 and B(to
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and from neuron), for the first and second additional auxiliary neuron, respectively.
In addition their biases are set to −0.5B and −6.5B (first and second aux. neuron).

These additional auxiliary neurons are activated (i.e. functional) only when a
certain state (the solution) was detected, which is signaled by the global lock-in
neuron with bias bglob that is connected to both additional auxiliary neurons of all
clauses with connection strengths B and 3B to the first and the second additional
auxiliary neuron, respectively. Additionally, the global lock-in neuron is connected
to every other principal neuron with connection strength wglob. This global neuron is
active by default due to the high bias, but is deactivated whenever one of the status
neurons, which check if a certain clause is not satisfied, is active (not OK signals).
There is one status neuron for each clause, with bias set to −2.5B. The status
neuron receives excitatory connections from all neurons corresponding to inverted
literals of the clause, with strength B. Therefore, if all RVs that participate in the
clause are set to the wrong values, this triggers the status neuron which reports
that the clause is not satisfied. This automatically shuts down the global neuron
signaling that the current network state is not a valid solution.

To implement this lock-in mechanism one needs additional 3#clauses+1 neurons
and 2#variables + 20#clauses synapses.

The architecture described above was used throughout with the following pa-
rameters: τ = 10e − 3 and refractory period of 10ms for all neurons except for
the global neuron which has τ = 9e − 3 and refractory period of 9ms, bnrn = 2,
binh = −10, bglob = 10, B = 40, winh = −100, wexc = 100, , winh = −100,
wOR = 2.5, wOR = 10, with rectangular PSPs of 10ms duration without trans-
mission delays for all synapses except for the one from the global neuron to the
additional auxiliary neurons where the duration is 11ms.

For the analysis in Figure 3.2F of problem size dependence we created 3-SAT
problems of different sizes with clause-to-variable ratio of 4.3. To ensure that a
solution exists, each of the created problems was checked for satisfiability with
zhaff, a freely available 3-SAT solver (Fu et al., 2004).

Details to TSP application (Figure 3.3)

For finding the shortest route for a TSP problem consisting of Ncities cities and
Nresting additional resting steps one needs in total Ncities +Nresting variables, where
each RV codes for the city visited at a certain step s. To solve TSP problems one
needs to consider three types of constraints: (a) each RV must be properly defined,
i.e. exactly one city must be visited at each step s. In addition, (b) each value of a
variable must appear at least once in all RVs. At the same time only neighboring
variables (those coding for consecutive steps) can have the same values (this allows
for ”resting“ steps). Finally, (c) the penalty (in terms of additional energy) that two
consecutive variables appear in a given configuration, i.e. a particular transition
from city i to some other city j, must reflect the traveling cost between the pair of
cities.



C.6. Details to simulations 137

Based on Principle 2 these constraints can be implemented in a spiking neural
network by forming circuits and interactions between neurons, where each ofNcities+
Nresting variables with Ncities different values can be represented by Ncities neurons
with bias bnrn each of which represents one city. To implement variable constraints
(a) it is enough to form a WTA circuits from neurons that code for different values
of the same variable. The WTA is formed in the same way as described for 3-SAT
problem by taking corresponding neurons (here WTA circuits have Ncities principal
neurons). To force the network to visit some desired city at a particular step it is
sufficient to set the biases of those neurons which code for the desired city at in the
WTA circuit of that step to different values. In particular, the desired value in the
WTA circuit of that step is set to bP and all others to bN .

The implementation of constraints (b) requires that all variables have different
values except if they are neighboring variables. In the spiking network implemen-
tation this can be realized by adding negative connections of strength wunique from
each neuron that codes for a certain value in a variable to all other neurons which
code for the same value in other variables, except for the neighboring variables.
This simply prevents, or decreases the chance, that two particular variables have
the same value except if they are neighboring variables.

Finally, constraints (c) can be implemented by adding connections between all
the neurons which code for two consecutive variables. This results in a network with
a ring structure (as the last and the first variable are also connected). We chose
to encode weights of these connections such that they reflect the relative distances
between cities. To calculate the weights we normalize all the distances with respect
to the maximum distance (this procedure applies also for asymmetric problems)
and then we rescale and shift them according to w = woffset + (1 − wN ) ∗ wscale,
where wN are normalized weights in [0, 1] range.

Such architecture requires (Ncities +1)∗Nresting neurons and N(3Nresting −1)+
(Ncities − 1) ∗ (Ncities − 1) ∗Nresting number of synapses.

Reading out the current assignment to a variable can be done based on the
activity of the principal neurons which take part in the WTA circuit (same as for 3-
SAT). Note that in this case each variable has Ncities values and therefore it multiple
neurons within the same WTA could be active. When this happens, the value of the
associated RV is briefly undefined. The performance of the network at some time is
calculated as the ratio of the optimal path and the current path represented by the
network. In order for the currently represented path to be valid all variables have
to properly defined and each value (city) has to appear at least once. Although
this is not always the case, exceptions occur rarely and therefore are not visible in
performance plots.

For solving symmetric planar TSP experiments in Figure 3.3 we used the follow-
ing setup: τ = 20e − 3 and refractory period of 20ms for all neurons, bnrn = −0.3,
bP = 100, bN = −100, binh = −10, winh = −100, wexc = 100, wunique = −14.2,
wscale = 20.8, woffset = −6.6, Nresting = 3, with rectangular PSPs of 20ms duration
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without transmission delays for all synapses. The value of the first variable (the
first step) was fixed to the first city.

For solving asymmetric TSP problems we used the same architecture but slightly
different parameters: bnrn = 1.3, wunique = −14.1, woffset = −7.9, Nresting = 8.

For the comparative analysis between asymmetric and symmetric sampler (Neu-
ral Sampling (NS) vs. Boltzmann machine (BM)) we used exactly the same weights,
biases and architecture as described above. The only difference here was that no
inhibitory neurons were used, so that WTAs were implemented via direct inhibi-
tion connections between neurons taking part instead of bi-synaptic connections via
inhibitory neurons.

The comparison of the number of state changes between BM and NS implemen-
tations was done based on 100 runs, each of which was simulated for 100.000 state
changes. In each run and after every state changes we evaluated the current network
state, and checked how many RVs were properly defined or not. Combining all runs
in each case, we calculated how often transitions occurred in each sampler to states
with different numbers Nundef = 0, . . . , Ncities + Nresting of undefined RVs. Based
on this information we constructed corresponding histograms for BM and NS. To
highlight the differences between the two implementations, we calculated the ratios
between the normalized histogram values for NS and BM (Figure 3.3C). For the
convergence speed comparison, in each run we calculated after each state change the
cumulative minimum and mean performance during the whole time leading up to
that state change. This was first done for each of the 100 network runs individually.
The results were then averaged for each number of steps over all runs.
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D.1 Spike-timing dependent plasticity rules

All STDP rules used in this article (see Figure 4.3 for a visual comparison) fit into
the phenomenological framework of STDP rules by Gerstner and Kistler (2002).
Using their notation, Sj(t) =

∑

f δ(t − tj(f)) and Sk(t) =
∑

f δ(t− tk(f)) denoting
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pre- and post-synaptic spike trains, respectively, STDP can be expressed as,

d

dt
w(t) = η Sj(t)

[∫ ∞

0
apre,post

2 (s,w)Si(t− s) ds

]

(D.1)

+ η Si(t)

[

apost
1 (w) +

∫ ∞

0
apost,pre

2 (s,w)Sj(t− s) ds

]

, (D.2)

where apre,post
2 (s,w) and apost, pre

2 (s) denote the pre-before-post and post-before-
pre kernels, respectively, and apost

1 (w) the post-only contributions. The kernels are
given by (double-)exponential decays throughout this article,

apre,post
2 (s,w) = A+(w) · [ exp(s/τ+) − exp(s/τ+rise) ] , (D.3)

apost,pre
2 (s,w) = A−(w) · [ exp(s/τ−) − exp(s/τ−rise) ] . (D.4)

Post-before-pre effects were weight-independent for all tested rules, i.e.
A−(w) ≡ −1. The remaining parameters and functions are specified in Table D.1
for each of the four rules used in this article.

Rules τ+ (τ+rise) A+(w) τ− (τ−rise) apost
1 (w) noise

A. Optimal rule (5) 20ms (2) αe−w 0ms −1 no
B. Optimal with syn. scal. 20ms (2) αwe−w 0ms −w no
C. Longer causal window 40ms (4) αe−w/2 0ms −1 no

D. Common STDP curve 20ms (0) eβ−γw 60ms(0) 0 yes

Table D.1: Comparison of investigated STDP rules (labels A-D as in Figure 4.3). τ
−

= 0ms
in A-C corresponds to the absence of spike-timing dependent depression. For these rules,
weight stabilization is achieved through the homeostatic plasticity term apost

1 (w) which is
triggered for every post-synaptic spike.

We set α = 4.3, β = 1.58 and γ = 0.59 for the simulations in the main text.
Figure D.1 shows the impact on performance of varying β and γ. For the common
STDP curve (Figure 4.3D), additional zero-mean Gaussian noise was superimposed
for each learning update triggered by a post-synaptic spike. The standard deviation
σSTDP of this noise was dependent on the magnitude of the deterministic update: for
each deterministic update of magnitude M , Gaussian noise with standard deviation
σSTDP = κM+ζ was added. The noise parameters were set to κ = 0.3 and ζ = 10−4.
The optimal rule (4.5) was used for simulations in Figure 4.2-4.6. The rules B-D
were used in Figure 4.3.

D.2 Implicit generative model

Neural activity and synaptic learning in the considered cortical microcircuit model
can be understood from the perspective of an underlying implicit generative model.
This generative model takes the form of a mixture model with k ∈ {1, . . . , N}
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hidden causes, uniform priors and conditionally independent Poisson variables xj:

p(x|W) =
1

N

N∑

k=1

p(x|k,wk) , (D.5)

p(x|k,wk) =
M∏

j=1

Poisson(xj ;λkj = α−1ewkj ) (D.6)

= h(x) · exp(wT
k x−A(wk)) . (D.7)

where A(wk) = α−1
∑

j e
wkj , and h(x) =

∏

j
1

xj !
. We associate each hidden cause k

with one readout neuron, k, and the parameters wkj with the synaptic weights of
the network. This allows to relate inference and learning in the generative model
to the operation of the microcircuit.

D.3 Stochastic Winner-Take-All (WTA) circuit and in-

ference

Building on Nessler et al. (2010), we show here that the WTA circuit in the cortical
microcircuit implements inference in the implicit generative model defined by (D.5)-
(D.7). According to Bayes’ rule, inferring the hidden cause k from input data x in
the generative model can be written as,

p(k|x,W) =
exp(wT

k x −A(wk))
∑

l exp(wT
l x −A(wl))

. (D.8)

In case of a homogeneous input representation, e.g. a population code in which the
sum of sensory activations are constant

∑

j xk = A0, this reduces to ,

p(k|x,W) =
exp(wT

k x)
∑

l exp(wT
l x)

. (D.9)

Note that the restriction
∑

j xk = A0 is necessary to make the theory tractable.
However, as demonstrated in the simulations through this article (Figure 4.2-4.6)
in which sensory input neurons fire randomly and only the total input population
rate was kept constant as in Jazayeri and Movshon (2006), this is not required for
the functionality of the model in practice.

Now, consider a population of stochastically spiking readout neurons k which fire
at an instantaneous rate ρk = euk , depending on their current membrane potential
uk = wT

k x− I. We make two basic assumptions about the inhibitory contribu-
tion. First, that I is common to all readout neurons. Second, that the inhibitory
circuit which provides I ensures that an approximately constant total target fir-
ing rate ρtotal =

∑

k ρk is maintained. This form of divisive inhibition introduces
competition among the readout neurons, since a strongly activated readout neuron
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will claim a large fraction of the total target firing rate, thereby suppressing other
readout neurons.

In an ideal stochastic WTA circuit, the inhibitory circuit keeps ρtotal constant.
The ideal inhibitory contribution is given by,

I = log
∑

j

exp(wT
j x) − log ρtotal . (D.10)

Then, the readout neuron k will respond to an input x with an instantaneous
rate,

ρk = ρtotal ·
exp(wT

k x)
∑

l exp(wT
l x)

. (D.11)

By comparison with (D.9), one can verify that this is proportional to the posterior
probability of the hidden cause k in the generative model. Note that, since the
relative spiking probabilities match the posterior probabilities, each spike produced
by the readout circuit can be interpreted as a sample from the posterior distribution,
independent of the total firing rate ρtotal of the circuit.

D.4 Equilibria of theoretically optimal STDP rules and

maximum likelihood

Here we discuss two important results. First, we derive conditions for the equilib-
rium points of STDP: stable weight settings for which the expected STDP update
is zero. The significance of these points derives from the fact that they are attrac-
tors in the weight dynamics. Hence, STDP will always drive the weights into the
neighborhood of such an equilibrium point. Second, we show that these equilib-
ria also have a special interpretation from the generative model perspective: they
correspond to locally optimal parameter settings for the generative model in the
maximum likelihood sense.

An equilibrium point of STDP is, by definition, invariant to the average STDP
update. Our first goal here is to derive from this global definition more concrete
statements for single synapses. To this end, we first define the empirical joint
distribution over x and the activation of a readout neuron, zk ∈ {0, 1}:

p̃(x, zk|W) = p∗(x) · p(zk|x,W) . (D.12)

where p∗(x) is the input distribution, and p(zk = 1|x,W) = p(k|x,W), using the
fact that the WTA circuit implements inference according to the generative model.

Then, at equilibrium the following must hold for all k and j,

〈∆wkj〉p̃(x,zk|W) = 0 , (D.13)
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where 〈·〉q(·) denotes the average (or expectation) taken over the distribution q(·).
After substituting the STDP learning rule specified in (4.5) and rearranging

terms, one obtains

wkj = log α+ log〈xj〉p̃(x|zk=1,W) . (D.14)

Indeed, this result is obtained for any learning rule from the optimal family (4.11).
Hence, at equilibrium, each synaptic weight wkj is set to the logarithm of the average
pre-synaptic activity xj , the average taken over those input patterns which make
the post-synaptic neuron k fire (plus some constant).

The relation of this result to the generative model becomes apparent when
considering the maximization of the marginal likelihood 〈log p(x|W)〉p∗(x), which is
equivalent to the minimization of the KL-divergence KL(p∗(x)||p(x|W)). For local
maxima of the log-likelihood 〈log p(x|W)〉p∗(x) one has for all k and j,

∂wkj
〈log p(x|W)〉p∗(x) = (D.15)

〈
1

p(x|W)
∂wkj

∑

k

p(x, k|W)〉p∗(x) = (D.16)

〈
1

p(x|W)

∑

k

p(x, k|W)∂wkj
log p(x, k|W)〉p∗(x) = (D.17)

〈
∑

k

p(k|x,W) ∂wkj
log p(x, k|W)〉p∗(x) = (D.18)

〈∂wkj
log p(x|k,W)〉p̃(x,zk=1|W) = 0 . (D.19)

By evaluating the derivative, one can verify that this is indeed equivalent to (D.14).
Hence, all STDP equilibrium points are automatically local optima with respect to
the implicit generative model.

D.5 Link between optimal STDP and Expectation

Maximization

EM is a powerful and widely used algorithm for optimizing generative models and
extracting hidden causes from high-dimensional input data. In the operating micro-
circuit model, an online version of this algorithm can be identified. As we showed
above, each time a readout neuron fires, a sample from the posterior distribution
is drawn. Together with the current input pattern, this sample forms a pair (x, k).
Theoretically optimal STDP (4.5), or more generally any rule from the family (4.11),
then increases the log-likelihood p(x, k|W) of this pair in the model. The main dif-
ference to standard EM is the fact that STDP can only access temporally local
information (at least the simple model considered here). Hence, just as in online
EM (Sato, 1999), STDP does not maximize the likelihood over the whole dataset
in each step, but rather makes a small update in the right direction after each
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post-synaptic spike. To show this, consider the expected STDP update ∆wkj for a
synapse, if the input distribution is p∗(x):

∆wkj = η f(wkj) 〈p(k|x,W)(xje
−wkj − α−1)〉p∗(x) , (D.20)

where η is some small learning rate. At the same time, the log-likelihood gradient
with respect to that synaptic weight is,

∂wkj
〈log p(x|W)〉p∗(x) = ewkj

〈
p(k|x,W)(xje

−wkj − α−1)
〉

p∗(x)
(D.21)

Comparing (D.20) and (D.21) one can see that the expected update of STDP
drives the weights towards a skewed version of the true gradient. Importantly, the
dot product between update direction and gradient is strictly non-negative:

∑

k,j

∆wkj · ∂wkj
〈log p(x|W)〉p∗(x) ≥ 0 (D.22)

This means that the average STDP update will never decrease the performance
of the generative model. In fact, one can easily verify that it will always increase
performance, unless the weight setting already constitutes a local optimum of the
log-likelihood (see also Appendix D: Equilibria of STDP). Altogether, this implies
that the average effect of STDP can be described as an attractor dynamics in the
weight space, in which the attractors are the equilibrium points of STDP and at
the same time the local optima of the generative model. Stochastic deviations from
these dynamics are zero-mean, and can thus be suppressed to arbitrary precision
via the learning rate η (at the cost of convergence speed).

D.6 Computer simulations

To abbreviate explanations, computer experiments will be referred to by numbers:
E1 (Figure 4.2), E2 (Figure 4.2), E3 (Figure 4.4), E4 (Figure 4.5) and E5 (Fig-
ure 4.6). The simulation time step throughout the experiments was ∆t = 2.5ms.
The external stimulus θ(t) was generated by a random noise process, in which the
value of θ changed every 100ms, according to,

θ(t) = (θ(t− ∆t) + N(0, 1))mod 2π , (D.23)

where we used the modulo operation on real numbers to enforce periodic boundary
conditions on θ.

Each sensory neuron j ∈ {1, . . . ,M} was assigned a tuning function fj(θ), de-
termining the firing rate of neuron j in response to stimulus θ. For the experiments
E1, E2, E4 and E5, the tuning functions were given by,

fj(θ) = c · exp(k(cos(θ − Θj) − 1)) , (D.24)
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where each sensory neuron was associated with a different preferred stimulus Θj,
equally spaced over [0, 2π] across the population. The concentration factor k regu-
lates the sharpness of the tuning function, and was chosen k = 1 for E1, E2, E4 and
E5. In all experiments, the scaling constant was set to c = 40, yielding a maximal
firing rate of 40 Hertz for the preferred stimulus.

The final tuning functions for the groups G1 and G2 in E3 were set up with
concentration parameters k = 0.5 and k = 3, respectively. G3 developed a bi-modal
tuning function,

fj(θ) = c · exp(k(cos(θ − Θj) − 1)) + c · exp(k(cos(θ − Θj − 2) − 1)) . (D.25)

with k = 6. The transition between initial and final tuning functions in E3 was
done by linear interpolation of the tuning functions.

Input spike trains were generated as inhomogeneous Poisson processes with in-
stantaneous rates fj(θ(t)). The resulting spike trains were then filtered by the shape
of a double-exponential EPSP,

ǫ(t) = D · (exp(−t/τ1) − exp(−t/τ2)) , (D.26)

to yield the filtered unweighted spike trains xj(t). The constant D was chosen such
that xj(t) has equal mean and variance for a fixed firing rate of the sensory neuron.
The EPSP time constants were τ1 = 20ms and τ2 = 2ms.

Synaptic weights wkj were initialized by drawing independently from a normal
distribution with mean µw and standard deviation σw = 0.1, where we used µw = 2
for E1, E2, E4 and E5, and µw = 1.81 for E3. The filtered spike trains xj(t) were
then used as inputs to the readout neurons. The WTA circuit was implemented
according to a discrete time approximation of (D.11): at each discrete time step, the
firing probability for each neuron k is given by ∆t·ρk(t). A spike occurs for neuron k
if a draw from a Bernoulli distribution with this probability is successful. In all
simulations, the total firing rate ρtotal of the WTA circuit was chosen beforehand
to achieve an average firing rate of 3 Hertz per readout neuron (in E4, ρtotal was
computed for N = 15 and kept constant throughout the simulation). Whenever
a readout neuron spiked, STDP was applied according to (4.5). The learning rate
was set to η = 0.001 in E1, E3, and E4, and to η = 0.0005 for E2. For E5, the
learning rate η(t) depended on θ(t) as indicated in Figure 4.6.

At regular intervals, the preferred stimuli ψk(t) of readout neurons were com-
puted. This was done in a separate offline simulation, in which we swept over all
input stimuli and selected for each readout neuron k the stimulus θ which elicited
the greatest average response from that neuron. As a performance indicator, a
reconstruction of the input signal was computed from the output spikes (shown in
Figure 4.2E). First we computed a raw reconstruction signal θ̂rec(t) which jumps to
the preferred stimulus ψk of a readout neuron k whenever zk emits a spike. From
this we obtained the reconstruction θrec(t) as the population vector average of the
raw reconstruction values θ̂rec(t) within a [t − 20ms, t] window. After training, in



146 Appendix D. Appendix: Optimal Decoding through STDP

γ

β

 

 

0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

2
0.8

1

1.2

1.4

1.6

1.8

2

Figure D.1: STDP curve parameter variations. Two tuning parameters β, γ of the STDP
learning curve in Figure 4.3D were varied to evaluate its robustness with respect to param-
eter variations. Shown is RMSE performance after 3000s of learning in the network setup
of Figure 4.3.

E1, E2, E3, and E5 readout neurons were sorted for visualization according to their
preferred stimuli at the end of the simulation. In E4 sorting was done individually
for each visualization point, since different neurons were involved at each time.

D.7 STDP parameter variations

In simulations for Figure 4.3D, an STDP learning curve with standard spike-timing
dependent depression was considered. Two parameters of this STDP rule, κ and
ζ, define noise components while two others β, γ control weight-dependence and
magnitude of the LTP part (see Appendix D: STDP rules). To evaluate not only
performance but also stability of this rule, an array of values for β, γ were evaluated
with respect to the reconstruction RMSE. As shown in Figure D.1, the performance
of the STDP rule is remarkably stable with respect to changes in these parameters,
and there exists a continuum of parameter settings which yield near-optimal per-
formance.

D.8 Effect of noise correlation

Simulations in the main text were performed with uncorrelated inputs, i.e. zero
noise correlation among input neurons. To study the effect of noise correlation
we created a correlated input population code (Figure D.2) in the following sim-
ple manner: we introduced a hidden state variable S ∈ {0, 1} which modulates
the input tuning functions fj(θ) (without the network having access to this vari-
able). S changes randomly every 100ms. For S = 1, the tuning functions
are modulated according to fS=1

j (θ) = mj fj(θ), with the fixed modulation con-
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Figure D.2: Effect of noise correlation on learning. A. Noise correlations between sensory
neurons in a correlated population code. B. Weight matrix after learning. C. Weight
matrix which would be optimal for decorrelated inputs (but is in general sub-optimal for
the correlated case).

stants mj drawn randomly for each sensory neuron from a uniform distribution
on [0.4, 1.6]. Furthermore, if S = 0, tuning functions are modulated according to
fS=0

j (θ) = (2 −mj) fj(θ). This ensures that the sensory inputs become correlated
(Figure D.2), while on average the original tuning functions fj(θ) are preserved (i.e.
identical to those in Figure 4.2).

The resulting weight matrix after 2000s of learning is slightly more noisy than
for decorrelated inputs (Figure D.2B, RMSE 0.7), and resembles the weights which
would be optimal for decorrelated inputs (Figure D.2C, RMSE 0.69). In general,
however, it is known that linear decoding weights can be further improved if input
correlations (when they exist) are taken into account during learning (Graf et al.,
2011). Although we did not implement the supervised learning algorithm of (Graf
et al., 2011) to test this possibility, we would expect to find a slight improvement
over the weights found through (unsupervised) STDP.

Non-uniform stimulus distribution

The simulations described in the main text were performed with a uniformly dis-
tributed input stimulus θ. To examine the impact of non-uniform distributions on
the learning process, a normal distribution (Figure D.3A) was tested in the setup of
Figure 4.2 (with more WTA neurons (100), and a smaller learning rate η = 0.0005).
As shown in Figure D.3B, after learning automatically more WTA neurons special-
ized on high-probability patterns. In fact, the number of neurons which specialized
on a particular stimulus turns out to be proportional to the probability of that
stimulus in the input distribution (Figure D.3C). This demonstrates that through
learning not only the likelihood but also the implicit prior over stimuli becomes
automatically adapted to the input distribution, in accordance with the predictions
of a Bayesian framework.
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Figure D.3: Non-uniform stimulus distribution. A. A normally distributed input stimulus
was used. B. Weight matrix after 2000s of learning. A higher occurrence rate of the
input stimulus around π led to improved specialization of readout neurons on this region.
C. Implicit prior (computed from the histogram of preferred stimuli of WTA neurons) after
learning has correctly adapted to the stimulus distribution.

D.9 Inference with a homogeneous input representa-
tion

In (Jazayeri and Movshon, 2006) it was shown that log-likelihoods in a Poisson
model effectively reduce to a weighted sum of inputs if the (static) input model is
homogeneous, i.e. the average sensory population response to any stimulus sums
to a constant. Here, we will show that a similar result holds when the model is not
static but learned during experience.

For a Poisson model the log-likelihood can be written as,

log p(x|k,wkj) =
∑

j

wkjxj −
∑

j

A(wkj) +
∑

j

log h(xj) , (D.27)

with A(xkj) = α−1ewkj and h(xj) = (xj!)
−1. The third term does not depend on

the parameters and can be safely ignored during inference (it drops out in the WTA
operation). The critical second term vanishes if and only if,

∑

j

ewkj = αA0 ,∀k ∈ {1, N}, (D.28)

for some constant A0.

In a dynamic learning scenario these constraints may be not fulfilled initially.
However, we can show that the STDP learning rule (4.5) automatically forces the
weights to fulfill the constraints, if the real input distribution p∗(x) is strictly ho-
mogeneous. We define strict homogeneity of p∗(x) here as follows,

p∗(x) > 0 ⇒
∑

j

xj = A0 , (D.29)
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for some A0, i.e. the sum of inputs must sum to constant.
Then it is easy to see from (D.14) that any equilibrium point of STDP fulfills

(D.28), since for all k,

∑

j

ewkj = α
〈q(zk = 1|x,W)

∑

j xj〉p∗(x)

〈q(zk = 1|x,W)〉p∗(x)
= αA0 . (D.30)

Note that this is true regardless of the network output behavior q(zk|x,W), and in
particular for the WTA dynamics considered here:

q(zk = 1|x,W) =
ew

T
k
x

∑

l e
wT

l
x
. (D.31)

Hence, if the input is strictly homogeneous, STDP will automatically drive the
weights to the constraint set and the simple WTA dynamics (D.31) will perform
correct inference in terms of the generative model. In simulations we approximated
strict homogeneity by a “homogeneous rate” representation (the average total ac-
tivation of sensory neurons is independent of the stimulus θ) which worked well in
practice.

D.10 Optimal STDP rules for non-Poisson input statis-

tics

Poisson firing variability is a reasonable first assumption for input neurons in the
considered cortical microcircuit model. Yet, not all neurons in cortex are well
described by such a model. In fact, electrophysiological studies indicate that the
brain is populated by neurons covering a whole range of firing characteristics, from
bursty to regularly firing neurons (Shinomoto et al., 2009). Is the present theory
also consistent with non-Poisson statistics? If yes, what are the necessary changes
in the STDP rules predicted by theory? Here we show that a) there exists a large
family of distributions consistent with our theory, and b) each type of distribution
predicts a slightly different weight-dependence of STDP.

In (D.7) we assumed a Poisson model for the inputs of the network. An inter-
esting property of the Poisson distribution is that it factorizes into three separate
objects,

p(xj |k,wkj) = h(xj) · exp(wkjxj) · exp(−A(wkj)) , (D.32)

where for Poisson one has A(wkj) = α−1ewkj , and h(xj) = 1
xj !

. However, in principle

one could plugin other functions A(·) and h(·) here to obtain different distributions,
e.g. to model other firing statistics. The class of all distributions which can be writ-
ten in this form is called natural exponential family(Bishop, 2006). Some prominent
examples are the normal distribution with fixed variance, the Gamma distribution
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with fixed shape, and –of course– the Poisson distribution. In the natural expo-
nential family form, these different distributions are uniquely characterized by their
“log-partition function” A(·).

From a theoretical perspective, the gradient of the log-likelihood with respect
to a synaptic weight wkj is then given by,

∂wkj
〈log p(x|W)〉p∗(x) =

〈
p(k|x,W)(xj −A′(wkj))

〉

p∗(x)
(D.33)

Using this observation, consider the following STDP rule for a natural exponen-
tial family,

∆wkj ∝

{
xj−A′(wkj)

A′′(wkj)
if hidden cause k is active,

0 otherwise.
(D.34)

Similar to the Poisson case then, the expected application of this STDP rule
will never decrease the performance of the generative model, since the dot-product
between update and the performance gradient is non-negative:

∑

k,j

∆wkj · ∂wkj
〈log p(x|W)〉p∗(x) ≥ 0 (D.35)

Analogous to (D.28) for the Poisson model, the theory also requires the weights
to fulfill normalization constraints,

∑

j

A(wkj) = A0 ,∀k ∈ {1, N}, (D.36)

for some constant A0, such that inference as performed by the WTA circuit is
correct. In practice, this could be achieved by additional heterosynaptic plasticity
acting on all synaptic weights wkj of the same readout neuron k.

An interesting variation of (D.34) features a constant negative decay, as has
been observed in experimental studies on STDP (Jacob et al., 2007):

∆wkj ∝

{
xj

A′(wkj)
− 1 if hidden cause k is active,

0 otherwise.
(D.37)

Note that the two learning rules (D.34) and (D.37) are theoretically equivalent in
the sense of asymptotic convergence, but they may have slightly different properties
in terms of convergence speed for different input distributions. Note also that for
simplicity we assumed here that the WTA circuit performs correct inference. In
general, this requires the that the weights can fulfill the constraints

∑

j A(wkj) =
A0 ,∀k ∈ {1, N} for any natural exponential family.

The latter formulation (D.37) facilitates the comparison of learning rules for
different exponential families, since the rules differ only in a single factor 1

A′(wkj)

of the positive STDP part. This factor is shown in Figure D.4 for four different
exponential families. In Table D.2, five types of distributions are listed along with
the associated STDP learning rules.
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Figure D.4: The weight-dependence of the positive STDP part in (D.37), 1
A′(wkj) , is shown

for four different types of model: the Poisson distribution (A(wkj) = Ce−wkj ), the Normal
distribution (A(wkj) = Cwkj), the Gamma distribution (A(wkj) = C/(w0 − wkj)) and the
Negative Binomial distribution (A(wkj) = C/(ew0−wkj − 1)), with respective parameters C
and w0 chosen to facilitate visual comparison. The scaling of the ordinate is arbitrary.

Model type A(wkj) Parameter range Learning rule ∆wkj

Poisson Cewkj wkj ∈ [0,∞) xj(t) ·
1
C

e−wkj − 1
Normal C(wkj − w0) wkj ∈ (0,∞) xj(t) ·

1
C(wkj−w0)

− 1

Gamma C/(w0 − wkj) wkj ∈ [0, w0) xj(t) ·
w0−wkj

C
− 1

Neg. Binomial −C log(1 − ewkj−w0) wkj ∈ [0, w0) xj(t) ·
e

w0−wkj −1
C

− 1

Binomial C log(1 + ewkj−w0) wkj ∈ [0,∞) xj(t) ·
e

w0−wkj +1
C

− 1

Table D.2: Comparison of natural exponential families with corresponding STDP rules

D.11 The relation between EPSP shape and optimal
STDP rule

Similar to an external observer who counts spikes in fixed time window, a readout
neuron “observing” a pre-synaptic input can detect the co-occurence of multiple
input spikes on the same channel by adding them up. However, in contrast to
the “rectangular” observation window often used in external analyses, neurons rely
on the low-pass filtering properties of the membrane to achieve this task, giving
rise to a smoothly decaying filtering (EPSP) shape. In the context of an implicit
generative model implemented by readout neurons, this is relevant since the EPSP
shape determines the observed variables and hence also the statistics p∗(x). In
particular, even if the input spike trains have Poisson characteristics, after filtering
with a non-rectangular EPSP shape the observed, filtered variables x will be non-
Poissonian. Here we show that these effects can be accounted for theoretically, by
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deriving the optimal STDP rule in dependence of the EPSP shape.
We will assume here that input spike trains are generated by inhomogeneous

Poisson processes with slowly varying rates, and consider piece-wise constant EPSP
shapes ǫ(t) of finite length L.Suppose that there are n individual pieces with different
magnitudes ǫi, each of length δ, such that L = n · δ. Formally,

ǫ(t) =

n−1∑

i=0

ǫiH(t− i · δ)H(−t+ (i+ 1) · δ) , (D.38)

where H(·) denotes the Heaviside step function. Then, the convolution of an input
spike train ξ(t) with such an EPSP can be written as,

x(t) =

∫ L

0
ξ(t− τ)ǫ(τ) dτ (D.39)

=
n−1∑

i=0

ǫi

∫ δ

0
ξ(t− i · δ − τ) dτ . (D.40)

Assuming a constant Poisson rate λ throughout the integration period, all sub-
integrals in (D.40) will be Poisson distributed with ensemble mean and variance δλ.
Let a single contribution to this sum be,

xi(t) = ǫi

∫ l

0
ξ(t− i · δ − τ) dτ . (D.41)

Since sub-integrals are Poisson distributed, the ensemble mean and variance of xi(t)
can be found easily as,

E(xi(t)) = ǫiδλ (D.42)

Var(xi(t)) = ǫ2i δλ . (D.43)

Furthermore, since different xi(t) are independent, the sum of contributions is dis-
tributed with mean and variance,

E(x(t)) =

n−1∑

i=0

ǫiδλ = λ

n−1∑

i=0

ǫiδ = λ

∫ L

0
ǫ(τ) dτ , (D.44)

Var(x(t)) =

n−1∑

i=0

ǫ2i δλ = λ

∫ L

0
ǫ2(τ) dτ . (D.45)

In the context of unsupervised learning from data with exponential family dis-
tributions, this suggests an over- or under-dispersed Poisson model for x(t). As
detailed below, this results only in a small adjustment in our model. The so-called
dispersion factor φ of the model can be derived from the EPSP shape as,

φ =

∫ L
0 ǫ2(τ) dτ
∫ L
0 ǫ(τ) dτ

(D.46)
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Then, using an exponential family with

A(wkj) = α−1 exp(φwkj) , (D.47)

one obtains the learning rule,

∆wkj ∝ zk · (xjαe
−φwkj − φ) . (D.48)

In summary, this shows that the optimal STDP rule depends on the EPSP
shape in two different ways. First, through xj which is filtered by the EPSP shape.
It is easy to see that this leads to an STDP shape for pre-before-post pairings
which must correspond to the EPSP shape. Second, through the dispersion factor
φ which directly derives from the EPSP shape (D.46). Note that in the computer
simulations of this article we scaled the EPSP such that φ = 1, leaving only the
first effect.

D.12 Convergence proof for natural exponential fami-

lies

We argued that different STDP rules are optimal for different input statistics (Pois-
son, Gamma, etc.). Here we provide a convergence proof for a whole class of learning
rules, including the local STDP rules (D.34) for natural exponential families with
conditionally independent inputs.

Consider a mixture model with k exponential family components,

p(x |w,π) =
∑

k

exp(πk)p(x |k,wk) (D.49)

=
∑

k

exp(πk)h(x) exp(wT
k x−A(wk)) (D.50)

= h(x)
∑

k

exp(πk + wT
k x−A(wk)

︸ ︷︷ ︸

vk

) (D.51)

= h(x)
∑

k

exp(vk) . (D.52)

The normalization or log-partition function A(·) is a scalar function of the parameter
vector wk, which decomposes into a sum for conditionally independent sufficient
statistics x.

The goal of generative modeling is to maximize the expected log-likelihood of the
data under the model, 〈log p(x |π,w)〉p∗(x), here under the constraint

∑

k e
πk = 1.

To this end one can define the Lagrangian,

L(π,w, λ) = 〈log p(x |π,w)〉p∗(x) − λ(
∑

k

eπk − 1) , (D.53)
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and obtain critical points by requiring

∇L(π,w, λ) = 0 . (D.54)

At a local maximum this gives λ = 1. Using the fact that λ does not depend on
parameters or inputs, and dropping terms which are independent of parameters,
one can define a simplified objective function

l(π,w) = 〈
∑

k

evk〉p∗(x) −
∑

k

eπk , (D.55)

for which it is easy to show that the local maxima coincide with the original con-
strained optimization goal. Maximization of l(π,w) then yields the following nec-
essary conditions:

πk = log〈p(k|x,w)〉p∗(x) , (D.56)

∇A(wk) =
〈p(k|x,w)x〉p∗(x)

〈p(k|x,w)〉p∗(x)
. (D.57)

Now consider the following learning rules,

∆πk
= η(zke

−πk − 1) , (D.58)

∆wk
= ηzk ·H−1

A (wk) [x−∇A(wk)] , (D.59)

with some constant learning rate η. (D.58) is a learning rule for the biases of hidden
causes, which we did not make use of in this article’s simulations. It is considered
here only for the sake of completeness. (D.59) is a non-local generalization of the
local STDP rules (D.34) which could also capture conditional dependencies among
inputs. HA denotes the Hessian matrix of A(·),

hA,ij(wk) =
∂2A(wk)

∂wki∂wkj
, (D.60)

HA can be also interpreted as the covariance matrix of the k-th mixture compo-
nent, since the cumulant-generating function of an exponential family is g(t) =
A(wk + t) −A(wk), and

Cov(xi, xj) =
∂2g(t)

∂ti∂tj
|t=0 =

∂2A(wk)

∂wki∂wkj
. (D.61)

We assume that the inverse of HA(wk) exists, in which case it is guaranteed to be
symmetric and positive definite. In the relevant case of conditional independence,
this is trivially true for natural exponential families.
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In the following, it will be shown that the expected update of the above learning
rule converges to a local optimum of l(π,w) with respect to the optimized param-
eters. First note that the equilibrium points of the learning rule coincide with the
necessary optimality conditions developed above:

〈∆πk
〉p∗(x) = 0 ⇔ πk = log〈p(k|x,w)〉p∗(x) , (D.62)

〈∆wk
〉p∗(x) = 0 ⇔ ∇A(wk) =

〈p(k|x,w)x〉p∗(x)

〈p(k|x,w)〉p∗(x)
. (D.63)

From that it is concluded that the expected learning update is always non-zero
for non-optimal settings, and zero at local optima. Next, it will be proven that
the learning rule always drives the parameters in the right direction, by showing
that the dot product ∇π,wl(π,w) · 〈∆π,w〉p∗(x) ≥ 0. The derivative of l(π,w) with
respect to πk is,

∂l(π,w)

∂πk
= 〈

∂[
∑

k′ evk′ ]

∂πk
〉p∗(x) − eπk (D.64)

= 〈
evk

∑

k′ evk′
〉p∗(x) − eπk (D.65)

= 〈p(k|x)〉p∗(x) − eπk . (D.66)

Similarly, differentiating with respect to wk gives,

∂l(π,w)

∂wk
= 〈

∂[
∑

k′ evk′ ]

∂wk
〉p∗(x) (D.67)

= 〈
evk

∑

k′ evk′
(x−∇A(wk))〉p∗(x) (D.68)

= 〈p(k|x,w)(x−∇A(wk))
T 〉p∗(x) . (D.69)

Then,

∇π,wl(π,w) · 〈∆π,w〉p∗(x) =

=
∑

k

∂l(π,w)

∂πk
〈∆πk

〉p∗(x) +
∑

k

∂l(π,w)

∂wk
〈∆wk

〉p∗(x) (D.70)

=
∑

k

[〈p(k|x,w)〉p∗(x) − eπk ]η[e−πk〈p(k|x,w)〉p∗(x) − 1]+

∑

k

〈p(k|x,w)(x−∇A(wk))
T 〉p∗(x)·

· η · HA(wk)
−1 [〈p(k|x,w)(x−∇A(wk))〉p∗(x)]
︸ ︷︷ ︸

ak

. (D.71)
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Since HA(wk)
−1 is symmetric and positive definite,

∇π,wl(π,w) · 〈∆π,w〉p∗(x) =

=
∑

k

ηe−πk [〈p(k|x,w)〉p∗(x) − eπk ]2
︸ ︷︷ ︸

≥0

+
∑

k

η aT
k HA(wk)

−1 ak
︸ ︷︷ ︸

≥0

(D.72)

≥ 0 , (D.73)

completing the proof.
In summary, this proves that the expected learning update according to (D.58)

and (D.59) will always drive the weights in a direction which increases the perfor-
mance of the generative model, until a local optimum is reached.

D.13 What is the right learning rate?

The learning rate is a crucial parameter in any adaptive system. Unfortunately,
in gradient based methods it is often difficult to predict a good learning rate for a
particular task, since there is no simple mathematical relation between the learning
problem and the learning rate. Here, we show that for the STDP learning rules
(4.5) and (D.34) considered in this article, the learning rate has a tangible mean-
ing: it is directly related to the number of inputs in the past which were involved
in determining a particular weight. Hence, the learning rate reflects how long a
synapse should remember previously collected statistics, as opposed to storing new
information. Interpreted in an online setting, this reveals an intimate link between
the learning rate and the time constants at which the input distribution is expected
to change, which could in principle be tested experimentally.

Consider a generative mixture model,

p(x |w) =

N∑

k=1

p(k)p(x |k,wk) (D.74)

=
N∑

k=1

exp(πk)p(x |k,wk). (D.75)

with π = (π1, . . . πN )T , constrained by
∑

k exp(πk) = 1. This defines a general
parametric mixture model with class probabilities p(k) = exp(πk) and component
parameters wk. We restrict ourselves to mixtures of exponential-family type distri-
butions with linear sufficient statistics, such that the k-th component density can
be written as

p(x |k,wk) = h(x) exp





M∑

j=1

wkjxj −A(wk)



 ,
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parametrized by wk = (wk1, . . . , wkM )T .
For the following derivation, it is assumed that access to an ensemble of in-

dependent observations (x(t), z(t)) is provided. Let p∗(x, z) denote the empirical
distribution defined by these observations. Then the maximum likelihood parame-
ters fulfill:

πk = log p∗(k) (D.76)

∂A(wk)

∂wkj
= 〈xj〉p∗(x |k) (D.77)

Now, in contrast to standard batch learning, here we will derive an online learn-
ing rule which updates parameters incrementally while data is observed. The update
at time step t should depend only on the current data (x(t), z(t)) and the parameters
from the last step (π(t−1),w(t−1)).

First, let p̂
(t)
k and x̂

(t)
k be the empirical estimates of p∗(k) and 〈x〉p∗(x |k), respec-

tively, based on the observations up to time step t:

p̂
(t)
k =

1

t

t∑

t′=1

z
(t′)
k ,

x̂
(t)
k =

∑t
t′=1 z

(t′)
k x(t′)

∑t
t′=1 z

(t′)
k

where z
(t)
k = 1 if the hidden cause k was active at time t, and zero otherwise. Now

suppose that the optimal parameters up to time step t have already been computed,
that is for all k,

π
(t)
k = log p̂

(t)
k ,

∇A(w
(t)
k ) = x̂

(t)
k . (D.78)

For the next time step t+ 1 with η(t+1) = 1
t+1 , one has,

π
(t+1)
k = log p̂

(t+1)
k

= log
(

(1 − η(t+1)) p̂
(t)
k +η(t+1)z

(t+1)
k

)

= log
(

p̂
(t)
k +η(t+1)[z

(t+1)
k − p̂

(t)
k ]
)

≈ log p̂
(t)
k +η(t+1) z

(t+1)
k − p̂

(t)
k

p̂
(t)
k

(D.79)

= π
(t)
k + η(t+1)(e−π

(t)
k z

(t+1)
k − 1)

= π
(t)
k + η(t+1)∆π

(t+1)
k (D.80)
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with

η(t+1)∆π
(t+1)
k =

{

η(t+1)(e−π
(t)
k − 1) if z

(t+1)
k = 1,

−η(t+1) otherwise.
(D.81)

The approximation in (D.79) is valid for small η(t+1).
In order to obtain a recursive formula for w, note that at time step t + 1 the

conditional expectation on the right-hand side of (D.78) changes only for the active
hidden cause k. Therefore one can immediately write

w
(t+1)
k′ = w

(t)
k′ , ∀k′ ∈ {1, . . . , N} \ {k}. (D.82)

For k an update of the form w
(t+1)
k = w

(t)
k +ηk∆w

(t+1)
k is desired, and can be

plugged in to give:

∇A(w
(t)
k +η

(t+1)
k ∆

(t+1)
wk

) = x̂
(t+1)
k

= (1 − η
(t+1)
k ) x̂

(t)
k +η

(t+1)
k x(t+1)

= x̂
(t)
k +η

(t+1)
k [x(t+1) − x̂

(t)
k ]

= ∇A(w
(t)
k ) + η

(t+1)
k [x(t+1) −∇A(w

(t)
k )]

Now, assuming small η
(t+1)
k one may approximate the left-hand side by a first-order

Taylor series

∇A(w
(t)
k +η

(t+1)
k ∆

(t+1)
wk

) ≈ ∇A(w
(t)
k ) + η

(t+1)
k HA(w

(t)
k )∆

(t+1)
wk

,

and obtain

η
(t+1)
k ∆

(t+1)
wk

= η
(t+1)
k H−1

A (w
(t)
k )[x(t+1) −∇A(w

(t)
k )], (D.83)

where HA(·) is the Hessian of A(·) w.r.t. wk. The learning rate η
(t+1)
k depends on

the number of previous updates which have been performed with k:

ηk =
1

∑t+1
t′=1 z

(t)
k

(D.84)

(D.81), (D.82) and (D.83) define an approximate recursive estimation procedure
for mixtures of exponential-family type distributions.

From this one can extract useful guidelines for choosing the global learning
rate η in an unsupervised setting, where the hidden variables z need to inferred
from the inputs x. As was shown above, the learning rate η essentially determines
the mixing between previous knowledge (the current parameter value) and new
knowledge (the current input). Based on this, one can make a rough estimate of
what an appropriate learning rate would be in a realistic input scenario: if the input
distribution is stationary during approximately Ns updates for a typical synaptic
weight, an appropriate choice would be η ≈ 1

Ns
. Conversely, with a learning rate

η = 0.001 used in the simulations of this article, a readout neuron’s synaptic weights
reflect approximately the last Ns = 1000 input patterns which triggered its firing.
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