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Abstract

Dense correspondence problems, like stereo and optical flow estimation, are among the

most fundamental low-level vision problems. Accurate and robust solutions of dense corre-

spondence problems are important for many high-level tasks like navigation, video editing

or scene reconstruction. Among the most successful approaches to solve dense correspon-

dence problems are variational methods, which pose the task of finding correspondences

between images as an energy minimization problem.

The success of any variational method is governed by the form of the energy, which

models a prior assumption on likely solutions as well as some means to measure the

quality of the solution given the observed data. In this thesis we introduce higher-order

variational methods based on Total Generalized Variation. The proposed methods model

the assumption of a piecewise planar world in the case of stereo and of piecewise affine

motion in the case of optical flow. We show experimentally that this assumption leads

to accurate results, especially in scenes depicting man-made structures. We extend the

basic model using an anisotropic diffusion tensor, which allows to condition the model on

image content. This leads to increased robustness and well-localized depth and motion

discontinuities. Next, we introduce a non-local variant of Total Generalized Variation.

This formulation can be used to incorporate soft-segmentation cues in order to model the

assumption that perceptually similar regions undergo similar motion or lie on the same

physical surface. Our experiments show that this approach is able to further enhance the

results with respect to robustness and accuracy.

We show that non-parametric image transformations can be used in conjunction with

the proposed higher-order priors in a convex optimization framework to build state-of-the-

art optical flow and stereo algorithms. Specifically, extensive experiments and comparisons

to other commonly used matching terms show that the Census transform serves as a robust

matching term which is invariant to illumination changes, a common source of error in

dense correspondence problems. For the task of optical flow estimation we propose an

extension of the Census matching term, which tackles the problem of scale changes between
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consecutive frames. Scale changes are prevalent in cameras moving along their optical axis.

This is a common pattern of movement for cameras mounted on a vehicle and can pose

significant challenges for methods which do not account for this effect.

For stereo estimation we introduce a novel optimization procedure, which exploits the

inherent structure of the stereo problem together with the properties of Total General-

ized Variation. The approach reduces optimization of the non-convex stereo model to an

alternating sequence of convex problems, which can be solved to global optimality. We

show experimentally that this optimization approach is able to significantly enhance the

accuracy, without changing the underlying model.

Keywords. Variational methods, Stereo, Motion, Optical flow, Total Generalized Vari-

ation



Kurzfassung

Dichte Korrespondenzprobleme, wie zum Beispiel die Schätzung von Tiefendaten und op-

tischem Fluss, gehören zu den fundamentalen Problemen im Bereich des maschinellen Se-

hens. Akkurate und robuste Lösungen von dichten Korrespondenzproblemen sind wichtig

für übergeordnete Probleme, zum Beispiel Navigation, das Editieren von Videos oder die

Rekonstruktion einer Szene. Zu den erfolgreichsten Methoden zur Lösung von Korre-

spondenzproblemen gehören Variationsmethoden, die das Finden von Korrespondenzen

zwischen Bildern als Energieminimierungsproblem modellieren.

Der Erfolg jeder Variationsmethode hängt von der Form der Energie ab, die einerseits

eine a-priori Annahme über wahrscheinliche Lösungen modelliert und andererseits die

Qualität einer Lösung anhand der vorliegenden Daten misst. In dieser Arbeit präsentieren

wir Variationsmethoden höherer Ordnung, die auf einer Generalisierung der totalen Vari-

ation beruhen. Die vorgestellten Methoden modellieren die Annahme einer stückweise

planaren Welt im Falle von Tiefenschätzung und die Annahme von stückweise affiner

Bewegung im Fall von optischem Fluss. Wir zeigen experimentell, dass diese Annahme

speziell bei von Menschenhand geschaffenen Szenen zu akkuraten Ergebnissen führt. Wir

erweitern das Grundmodell mittels eines anisotropen Diffusionstensors, der es erlaubt

das Modell auf den Bildinhalt zu konditionieren. Dies führt zu erhöhter Robustheit und

genau ausgerichteten Tiefen- und Bewegungskanten. Weiters, führen wir eine nicht-lokale

Variante der generalisierten totalen Variation ein. Diese Formulierung erlaubt es Segmen-

tierungshinweise in das Modell einzuführen. Dies erlaubt die Modellierung der Annahme,

dass perzeptuel ähnliche Regionen einer ähnlichen Bewegung unterliegen oder zur selben

physikalischen Oberfläche gehören. Unsere Experimente zeigen, dass dieser Ansatz zu

einer weiteren Verbesserung der Ergebnisse im Bezug auf Robustheit und Genauigkeit

führt.

Wir zeigen, dass nicht-parametrische Bildtransformationen zusammen mit den zu-

vor erwähnten a-priori Annahmen in einem konvexen Optimierungsframework verwendet
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werden können, um moderne Algorithmen für die Schätzung von optischem Fluss und

Tiefe zu entwickeln. Im Speziellen, zeigen umfassende Experimente und Vergleiche zu

anderen Korrelationstermen, dass die Census-Transformation äußerst robust im Bezug

auf Beleuchtungsunterschied zwischen Bildern ist. Dies ist eine typische Fehlerquelle in

dichten Korrespondenzproblemen. Für die Schätzung des optischen Flusses führen wir

eine Erweiterung der Census-Transformation ein, welche den Korrelationsterm robust im

Bezug auf den Größenunterschied von Objekten in aufeinanderfolgenden Bildern macht.

Größenunterschiede sind häufig in Bildern anzutreffen, die von einer Kamera aufgenom-

men wurde die sich entlang ihrer optischen Achse bewegt. Dies ist zum Beispiel der Fall für

Kameras, die auf einem Fahrzeug montiert sind und kann zu erheblichen Schwierigkeiten

in Methoden führen, die diesen Effekt nicht berücksichtigen.

Für die Aufgabe der Tiefenschätzung führen wir ein neues Optimierungsverfahren

ein, dass die spezielle Struktur des Problems und die Eigenschaften der generalisierten

totalen Variation nutzt. Dieser Ansatz reduziert die Optimierung des nicht-konvexen

Stereomodells auf eine alternierende Sequenz von konvexen Problemen, die global optimal

gelöst werden können. Unsere Experimente zeigen, dass dieses Optimierungsverfahren die

Genauigkeit signifikant erhöt, ohne das zugrunde liegende Modell zu verändern.
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1
Introduction

Contents

1.1 The Relation of Stereo and Optical Flow . . . . . . . . . . . . . 5

1.2 A General Variational Model for Dense Correspondence . . . . 5

1.3 Contributions and Outline . . . . . . . . . . . . . . . . . . . . . . 7

Motion and depth perception are one of the fundamental building blocks of the hu-

man visual system. It is thus not surprising that they were early and intensively studied

problems in Computer Vision. From an algorithmic point of view both motion and depth

perception can be subsumed as the task of finding corresponding points between two or

more images. In the case of depth estimation, the depth of a point can be recovered from

the correspondence together with the geometry of the cameras used for capturing the im-

ages. In the case of motion estimation, correspondences give rise to optical flow [60], which

is the motion of world points projected to the camera and is strongly related to object

motion. Examples of both types of correspondence problems are shown in Figures 1.1

and 1.2.

Due to their fundamental similarity it is possible to view both problems as specific

instances of a general correspondence problem. An important distinction between different

types of correspondence problem is given by the categorization into sparse and dense

correspondences. We talk about sparse correspondences if correspondences are given only

for a small subset of image points, typically on the order of a few hundred to a few thousand

points. In sparse correspondence problems these points are carefully selected based on the

structure of their neighborhood, such that reliable correspondences can be retrieved even

over large view-point variations. On the other hand, we talk about dense correspondences,

which are the scope of this thesis, if an estimate of correspondence is given for a majority or

all pixels in an image. Note that for some pixels there may not exist a corresponding pixel

in the other image, due to effects like occlusion or disocclusion. The capability to provide

dense estimates of correspondence is often a highly desirable property of correspondence

1



2 Chapter 1. Introduction

(a) First image (b) Second image (c) Optical Flow

Figure 1.1: Example of optical flow computed with one of the approaches proposed in this
thesis. Two consecutive frames of a video show apparent motion. Dense optical flow is given by a
two-dimensional vector that indicates the velocity of each image pixel. We use a color coding to
visualize the two-dimensional flow vectors (upper left corner).

algorithms. A reliable pre-selection of sparse points is often not possible. Moreover,

dense correspondences provide a richer source of information for subsequent higher-level

algorithms. The majority of areas in natural images are not discriminative, since they

contain little or no structure, which makes direct search for correspondence for such areas

futile. Dense correspondence algorithms thus typically include, implicitly or explicitly,

some form of prior assumption on the specific form of the correspondence field, which

allows to resolve the ambiguities introduced by non-discriminative areas. Modeling this

prior assumption in a sensible way will be a major topic of this thesis.

The visual system employs low-level cues such as motion and depth as a basic building

block for many higher-level tasks. Perceptual studies indicate that motion is a funda-

mental cue for object recognition and grouping, especially in early developmental stages.

Ostrovsky et al. [114] performed studies on congenitally blind adult individuals, which

where surgically cured from their blindness. Subjects which where initially not able to

recognize objects from static images consistently showed a tremendously better perfor-

mance if the images were augmented with motion cues. Repeated experiments over the

span of several months showed that the performance for static image recognition increased

over time, which lends support to the hypothesis that motion is especially important in

the early stages of development. Similar studies, carried out with infants, came to the

conclusion that motion is instrumental especially for grouping localized shapes into co-

herent objects [2, 41, 86]. Additionally, researchers identified the key role of motion for

a multitude of different everyday tasks, such as estimating the time to collision with a

moving object, figure-ground segmentation, estimation of ego motion together with its

importance for reliable self-locomotion and balance control as well as drawing focus to

salient areas [86, 94, 108].

Similarly, depth perception is another important aspect of the human visual system.

Depth cues are fundamental for tasks like navigation or grasping of objects. The funda-

mental mechanism for depth perception is binocular (stereo) vision, which allows to resolve
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(a) First image (b) Second image (c) Disparity

Figure 1.2: Example of stereo estimation on a pair of aerial images. Disparity is inversely
proportional to depth. Near objects appear bright, whereas far objects are dark.

the depth of objects via their relative displacement in both views, the so-called parallax.

The binocular setup will provide the basic setup for depth estimation in this thesis. Its

main advantage is that the absolute depth can be recovered, provided that geometry of

the binocular setup is known. This approach thus can be used to measure the absolute

depth of an object relative to the observer, which provides rich information about a scene.

Additionally to binocular cues, the visual system employs a multitude of other visual cues

to estimate the depth of an object such as motion parallax, perspective, relative size or

shading. While we do not address recovery of depth via these cues in this thesis, it is

worth to note that the herein presented prior models are excellent models of depth and

not inherently tied to the specific cues that are used for depth estimation. They can thus

be easily incorporated in models that base their depth estimates on other cues.

Apart from their inherent biological motivation and relevance to high-level tasks, there

are many useful applications of correspondence algorithms. Optical flow and motion es-

timation is an invaluable tool in video processing. Video editing tasks like artificial slow

motion, frame interpolation, video stabilization and restoration of damaged frames [165],

rely on optical flow estimation. These applications can tremendously benefit from robust

and highly accurate optical flow, since even small errors in the optical flow can lead to

distracting artifacts in the processed video sequences. Manual correction of such problems

is a labor-intensive and thus costly task. The distribution of digital video, be it in the

form of physical media, or as online streaming services, would not be possible without

efficient video compression methods, which in turn rely on motion estimation algorithms.

Similarly, stereo estimation and 3D reconstruction is an essential building block for movie

production, both for the creation of 3D movies as well as for post-production purposes.

On the frontier of what is currently possible, stereo and optical flow is currently finding

its way into cars. Intelligent and possibly completely autonomous cars will help to reduce

accidents and casualties in everyday traffic. One of the biggest hindrances for widespread

deployment of such systems in cars are the robustness of currently available algorithms.
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Autonomous systems have to be reliable in a multitude of adverse conditions, such as bad

weather and difficult lighting conditions. Stereo and optical flow perception forms the

backbone of autonomous vehicles, and while such systems have already shown impressive

results [56, 179], they are still largely constraint to almost ideal conditions.

While correspondence problems are a much studied field, they are far from solved in the

general setting. The problem poses inherent ambiguities, such as the difference between

apparent pixel motion and true object motion, or more fundamental and low-level ambigu-

ities, such as the aperture problem or challenging surface properties (cf. Figure 1.3). These

ambiguities make the overall problem ill-posed (both on a conceptual and a mathematical

level) and introduce the necessity of sophisticated models, in order to get well-defined and

satisfactory solutions by an algorithm.

(a) Challenging illumination conditions

(b) Apparent motion vs. true object motion

Figure 1.3: Examples of challenges in correspondence problems. Images are part of the HCI Chal-
lenging Sequences Benchmark [102]. Top row: The overall lighting conditions, the wet, specular
road and illumination artifacts from the headlights of the oncoming car pose significant challenges.
Bottom row: The shadows of the car induce apparent motion, which does not correspond to true
object motion.



1.1. The Relation of Stereo and Optical Flow 5

1.1 The Relation of Stereo and Optical Flow

Both stereo estimation and optical flow can be modeled in a similar way. Both problems are

dense correspondence problems, that is, the goal is to assign a correspondence between each

pixel in two images. In optical flow the correspondence search space is two-dimensional,

whereas in stereo the search space can be reduced to a one-dimensional space using the

epipolar geometry of the cameras. In both cases, some form of prior assumption is needed

in order to infer truly dense estimates, since a simple pixel- or patch-wise matching is

typically non-informative for possibly a large number of pixels.

Stereo estimation can be treated as a simplified optical flow problem, which treats

disparity as a continuous quantity. This approach somewhat differs from the classical

approaches in the literature, which typically model disparity as a discrete quantity. The

main advantages of this view are: (1) Very small disparities can be resolved, which, in the

case of stereo, increases accuracy in the far-range. (2) We can employ efficient algorithms

from convex optimization, in order to build real-time or near real-time stereo algorithms.

Additionally, novel approaches from optical flow may be used in stereo algorithms and vice-

versa. If disparities are modeled as a discrete quantity, it is not possible to directly transfer

the results to optical flow, since the number of discrete labels explodes in this setting, due

to the two-dimensional nature of the matching problem [62, 143]. Disadvantages are:

(1) From a mathematical point of view, the matching of pixels or patches becomes more

complex. The need to simplify (i.e. convexify) the matching term results in algorithms that

may not be as good as discrete methods in recovering small details. (2) Direct modeling

of occlusions, which are an inherent discrete quantity, becomes prohibitive.

We will also introduce a specialized model for stereo estimation, which is strongly

related to discrete approaches, but allows for continuous valued disparity estimates. We

will see that this approach can lead to higher accuracy than optical flow-based models.

1.2 A General Variational Model for Dense Correspondence

The general variational model for dense correspondence estimation consists of two parts:

the matching term and the prior term.

The matching term, also called data term, relates the two input images using the

estimated correspondences. The role of this term is to measure compatibility of the es-

timate with the evidence using photometric measures. The matching term is crucial: A

bad matching term will never lead to good estimates, whereas a good matching term can

minimize the need for additional prior assumptions in the model. A matching term should

ideally be invariant to illumination changes and fast to evaluate. Moreover, in the case of

optical flow, it should be robust to scale and rotation changes.

The prior term, also called regularization term, assigns for any possible estimate a

likelihood of being a likely disparity map or motion field. This term allows to model

expert knowledge of the task at hand. A simple example for a prior is the Total Variation
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(TV), which assumes that solutions should be constant in most parts of the image, with a

sparse set of jumps between these constant areas. Other priors enforce planarity or some

form of stiffness. Priors may also be learned from a set of input-groundtruth pairs, but

this approach is seldom used in optical flow and stereo (since planarity assumptions seem

to be already satisfactory). A good prior should typically be easy to incorporate and solve

(this is in the continuous case often synonymous with being convex), be able to model the

task at hand to a satisfactory degree, while simultaneously excluding large parts of the

solution space. A prior that has shown to work particularly well for dense correspondence

problems is given by the Total Generalized Variation (TGV) [26]. TGV is a higher-order

prior, which means that it goes beyond the classical assumption of piecewise constant

solutions and for example allows for piecewise affine or piecewise quadratic solutions,

which is often better suited to model the geometry of a scene or the composition of an

optical flow field.

A last important point, which is not directly included in the modeling, is the question

how to solve the model. Models should be efficiently solvable, in order to yield fast

algorithms. In many cases this requires convexity of the model. Since optical flow and

stereo are inherently non-convex problems, due to the matching term, it is important to

construct convex surrogate problems in order to build efficient algorithms.

Formally, we can write a general variational model to find correspondences u∗ : Ω→ U

between images I1 : Ω → <c and I2 : Ω → <c, where Ω ⊂ <2 denotes the image domain

and c is the number of channels of the input images, as the following optimization problem:

u∗ = arg min
u
R(u; I1) +D(u; I1, I2). (1.1)

Here, we fixed I1 as the designated reference image (i.e. we estimate correspondence

as relative offset from the position in the reference image). This optimization problem

consists of the two already mentioned parts: The regularization term R(u; I1), which

imposes prior knowledge about desired solutions onto the problem. This term may also

have a dependency on the reference image, which is able to give additional prior cues. An

example are the probable location of jumps in the solution. The second term, D(u; I1, I2)

is the matching term, which relates the images I1 and I2 via the estimate u. Classical

matching terms in some form or the other rely on the brightness constancy assumption.

Note that in the variational formulation we have u : Ω→ U , i.e. u can be interpreted

as a correspondence field. In the case of stereo we have U ⊆ <, whereas in the case of

optical flow we have U ⊆ <2.

For the remainder of this thesis we will be concerned with problems of the form (1.1).

We will introduce different forms of the prior and the matching term, as well as efficient

algorithms in order to find (approximate) minimizers u∗. All of these components are

crucial for the overall performance of the estimation algorithms, both with respect to

quality and with respect to speed.
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1.3 Contributions and Outline

Correspondence problems can be tackled in many different ways, even while staying in the

framework of global variational models. The main ingredients of any global variational

method are: (1) The regularization term, which models prior knowledge about expected

solutions. (2) The data term which gives a likelihood that the estimate is correct, given

the observed data. (3) The optimization method, which is used to find minimizers of the

model. Since the correspondence matching problem is inherently non-convex, efficient and

good relaxations are needed to get satisfactory results for a given model. All of these

components significantly influence the quality of the estimates. The first two components

are related to problem modeling, while the last component asks the question on how to

solve a given problem. This thesis presents contributions for all three components. We

will show that careful modeling of both the regularization and the data term results in

state-of-the-art stereo and optical flow methods. Moreover, wherever possible, we will

show that choosing an appropriate optimization procedure that exploits the properties of

the matching problem can significantly enhance the estimates of existing methods. The

individual contributions presented in this thesis are:

Regularizers We introduce efficient higher-order regularizers based on TGV , which are

well suited for modeling correspondence problems. We introduce a second-order regular-

izer which can be conditioned on the reference image in order to increase accuracy at

motion boundaries and depth discontinuities. Moreover, we introduce a non-local second-

order regularizer, called Non-Local Total Generalized Variation (NLTGV), which is able

to incorporate strong prior cues and imposes smoothness on larger areas. This is especially

advantageous for difficult scenes where the data term is uninformativ for large parts of

the input images.

Data term We show that appropriate data terms are able to yield significantly better

results than the classic brightness constancy assumption. In particular we discuss the

Census transform in the context of general variational matching problems and show that

this data term is well suited for complicated environments, due to its robustness to illumi-

nation changes. Moreover, we show how the Census matching term can be adapted to the

special challenges that are inherent in optical flow estimation, where scale changes pose

significant problems for typical patch-based data terms.

Optimization In the case of stereo matching problems we exploit the inherently one-

dimensional structure and the ordering of depth values to reformulate the non-convex

stereo matching problem as an alternating series of convex problems. Since each of these

problems can be solved globally optimal, the overall accuracy of the method is enhanced.

We compare this approach to the classical relaxation approaches based on coarse-to-fine
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warping and are able to show significantly better performance without changing the un-

derlying model.

Outline The thesis is organized as follows. Chapter 2 gives an overview of basic concepts

of convex optimization. We define convex sets and convex functions and discuss important

related mathematical concepts. This is followed by an overview of the most important

algorithms for convex optimization, where the focus lies on first-order methods, which are

fast and well-suited for the problems which will be encountered later on. At the end of

this chapter we introduce two classical variational models and show preliminary results of

denoising and optical flow estimation.

Chapter 3 introduces the higher-order priors that will be used throughout the rest of the

thesis. We introduce TGV and discuss several extension to this basic prior model, which

are aimed at increasing the robustness and accuracy of the models. We further discuss

other commonly encountered higher-order priors and show their qualitative differences

using simple experiments.

Chapter 4 is concerned with optical flow estimation. We introduce novel robust data

terms and show how they can be incorporated with the previously defined higher-order

priors into state-of-the-art optical flow models. Experiments on two different benchmarks

cast light on the strengths and weaknesses of the individual models.

In Chapter 5 we discuss the stereo estimation problem. We introduce the basic ge-

ometry of the stereo setup and show how depth can be recovered from correspondences.

Different matching approaches are discussed and experimentally compared. We also intro-

duce a novel approach for optimization of stereo models that incorporate a TGV prior and

contrast it to the approach previously introduced in the chapter on optical flow estimation.

We conclude this thesis in Chapter 6 and give a brief outlook on remaining challenges and

future work.

This thesis is comprised of research which was presented in the publications [123, 124,

126]. A complete list of (co-)authored publications, including abstracts, can be found in

Appendix B.
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In this chapter we give a short overview on the field of convex analysis and convex

optimization. Readers which are familiar with these topics may safely skip this chapter.

Convex optimization nowadays is a mature topic, which is a de-facto standard tool in

Computer Vision. This is due to the fact that many interesting problems can be modeled

as, or at least approximated by, convex optimization problems. Convex analysis gives

strong estimates on the properties of minimizers of such problems and convex optimization

algorithms give tight theoretical bounds on the speed of convergence and thus on the

quality of solutions. Most importantly they are very efficient in practical applications.

2.1 Convex Analysis

The topic of convex analysis is concerned with the characterization of convex functions

and convex sets and as such forms the theoretical basis of convex optimization algorithms.

A basic understanding of this foundations is of significant importance in order to apply

and build convex optimization algorithms. We thus give a short self-contained overview

of this topic here. A more comprehensive introduction can be found in [21, 110, 129].

9
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2.1.1 Convex Sets

Definition 1. A set C ⊆ <N is called convex, if for any two elements x, y ∈ C and any

scalar α ∈ [0, 1] the relation

αx+ (1− α)y ∈ C (2.1)

holds.

Definition 1 is a simple geometric characterization of a convex set: A set is convex if

for any two points in the set, all points along the line segment joining the two points are

also contained in the set. This notion can be generalized to more than two points, where

it can be shown that any convex combination of points xn ∈ C is also contained in C:∑
n

λnxn ∈ C, λn ≥ 0. (2.2)

Figure 2.1 shows examples of convex and non-convex sets. Note that the whole space <N
is a convex set as is the empty set {∅}. Some important transformations which preserve

convexity are:

• The intersection of convex sets.

• The image of a convex set under affine transformations.

(a) Convex sets

(b) Non-convex sets

Figure 2.1: Example of convex and non-convex sets. For the non-convex examples, pairs of points
x and y, which violate Definition 1, are shown.
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• The Minkowski sum C1 + C2 = {x1 + x2 : x1 ∈ C1, x2 ∈ C2}.

An important subclass of convex sets are convex cones:

Definition 2. A convex set C ⊂ RN is called a convex cone if for all x1, x2 ∈ C and

θ1, θ2 ≥ 0, we have that

θ1x1 + θ2x2 ∈ C. (2.3)

Convex cones are an important concept in convex optimization. An example, the

second-order cone, is shown in Figure 2.2. Most notably, specific instances of convex

cones can be used to describe large subclasses of convex optimization problems, such as

second-order cone programs or semi-definite programs, where the names imply the conic

shape of the feasible regions of the programs.
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Figure 2.2: Shape of the second-order cone K = {(x, y) ∈ R3 : ||x||2 ≤ y}. Note that the interior
is part of the set K and that the cone actually extends infinitely upwards.

2.1.2 Convex Functions

Definition 3. A function f : C → <, with convex domain C is said to be convex, if the

relation

f(αx1 + (1− α)x2) ≤ αf(x1) + (1− α)f(x2) (2.4)

holds for all x1, x2 ∈ C and α ∈ [0, 1]. Functions f for which inequality (2.4) is strict are

called strictly convex. A function f(x) is said to be concave, if −f(x) is convex.

Definition 3 is again a geometric relation similar to the definition of convex sets: The

line segment connecting any two points on the graph of a convex function lies on or above

the graph of the function (or equivalently is contained in the epigraph of the function).
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x2x1

f(αx1 + (1− α)x2)

αf(x1) + (1− α)f(x2)

αx1 + (1− α)x2

f(x)

Figure 2.3: Example of a convex function. A line segment connecting any two points on the
graph of the function, has to lie on or above the graph. Since in this example all points lie strictly
above the graph, this function is also strictly convex.

Figure 2.3 gives a graphical example of this concept. With this geometric interpretation

it is easy to see that affine functions are convex and concave.

For differentiable functions there is an equivalent gradient-based condition for convex-

ity:

f(x1) ≥ f(x2) + 〈∇f(x2), x1 − x2〉 , (2.5)

which needs to hold for all x1, x2 ∈ C, i.e. a convex function can be globally underestimated

by its first-order approximation. An interesting fact directly follows from this relation:

Consider reversing the order of the points x1, x2:

f(x2) ≥ f(x1) + 〈∇f(x1), x2 − x1〉 . (2.6)

This equality still holds, since (2.5) does not assume any particular ordering of the points.

Now adding (2.5) and (2.6) yields

〈∇f(x2)−∇f(x1), x2 − x1〉 ≥ 0, (2.7)

This relation shows that the gradient of a convex function is monotone. In particular,

for scalar functions it is easy to see that the gradient of a convex function necessarily is

non-decreasing, and is strictly increasing if the function is strictly convex.

For non-differentiable functions the idea of characterization of a convex function by

linear underestimators can be extend further by means of the so-called subdifferential.
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The subdifferential at x0 is the set of vectors v, for which the relation

f(x) ≥ f(x0) + 〈v, x− x0〉 (2.8)

holds for all x ∈ C. We formally write v ∈ ∂f(x0) for this set. For continuously differ-

entiable convex functions the subdifferential includes exactly one element at every point

x, namely the gradient. Likewise, the subdifferential reduces to the gradient for points of

a convex function which are differentiable. Moreover, it can be shown that a function is

convex if the subdifferential is non-emtpy everywhere, provided that its domain is convex.

To see this pick any two points x, y ∈ C and set z = αx + (1 − α)y ∈ C, with α ∈ [0, 1].

For v ∈ ∂f(z) it holds that

f(x) ≥ f(z) + 〈v, x− z〉 = f(αx+ (1− α)y) + (1− α) 〈v, x− y〉
f(y) ≥ f(z) + 〈v, y − z〉 = f(αx+ (1− α)y) + α 〈v, y − x〉 . (2.9)

After dividing the first inequality by 1 − α and the second inequality by α, the sum of

both inequalities yields

αf(x) + (1− α)f(y) ≥ f(αx+ (1− α)y), (2.10)

which is exactly the condition for convexity given in Definition 3.

The subdifferential can be used to completely characterize the global minima of a

convex function: f(y) = minx∈C f(x) holds if and only if 0 ∈ ∂f(y), i.e. if 0 ∈ ∂f(y), we

have

f(x) ≥ f(y) + 〈0, x− y〉 = f(y)⇔ f(y) ≤ f(x) ∀x ∈ C. (2.11)

For twice continuously differential convex functions it holds that the Hessian is positive-

semidefinite everywhere:

∇2f(x) � 0, ∀x ∈ C. (2.12)

The last condition often gives a simple practical test for the convexity of a given function,

provided that its Hessian exists.

An important subclass of convex functions are strongly convex functions, for which

the estimate

f(x1) ≥ f(x2) + 〈∇f(x2), x1 − x2〉+
m

2
||x1 − x2||2 , m > 0 (2.13)

holds. Twice continuously differential function have a Hessian whose smallest eigenvalue is

equal to the modulus m and thus are positive-definite. Any strongly convex function is also

strictly convex. Strong convexity gives additional structural knowledge of the functions,
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v3 ∈ ∂f(x0)

v1 ∈ ∂f(x0)

v2 ∈ ∂f(x0)

f(x)

x0

Figure 2.4: Illustration of the subdifferential. The subdifferential of the function f(x) at x0 is
defined by the set of planes passing through point x0 with slope v, which lie below the graph
of f(x).

which can be exploited in optimization algorithms.

A few important transformations of convex functions which preserve convexity are:

• The sum of convex functions is convex.

• Functions remain convex under affine transformations, i.e.

g(x) = f(Ax+ b), A ∈ <M×N , b ∈ <M (2.14)

is convex if f : <N → < is convex.

• The pointwise maximum

g(x) = max{f1(x), f2(x)} (2.15)

over convex functions is again convex.

• Every norm is convex.

2.1.3 The Convex Conjugate

The convex conjugate (also known as the Legendre-Fenchel transform) is a concept that

allows to characterize functions by their slopes and intercepts instead of their points.

Definition 4. For a function f : C → <, the convex conjugate is defined as

f∗(x∗) = sup
x∈C
{〈x∗, x〉 − f(x)}, x∗ ∈ C∗, (2.16)
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where C∗ is the dual domain to C, which is given by

C∗ = {x∗ : f∗(x∗) <∞}. (2.17)

While this transformation is intimately related to convexity, it is not restricted to con-

vex functions. The convex conjugate of any function is convex and lower semicontinuous.

Moreover, the biconjugate

f∗∗(x) = sup
x∗∈C∗

{〈x, x∗〉 − f∗(x∗)} (2.18)

is convex and is the convex envelope of f(x), satisfying f∗∗(x) ≤ f(x). For closed, convex,

lower semicontinuous functions the biconjugate coincides with the function itself, i.e. we

have f∗∗(x) = f(x).

x

f(x)

xy

xmax

xy − f(x)
x

f(x)

xy

xmax

xy − f(x)→ max

−f∗(y)

Figure 2.5: Illustration of the convex conjugate. (Left) The convex conjugate at y is defined via
the maximum of xy − f(x). (Right) The maximum is achieved at xmax, consequently the convex
conjugate is given by the negative y-intercept of the function drawn in black.

The definition of the convex conjugate trivially leads to the Fenchel-Young inequality

f∗(x∗) + f(x) ≥ 〈x∗, x〉 , (2.19)

where equality holds for closed convex functions. Using the Fenchel-Young inequality, it

can be shown that the subdifferential and the convex conjugate have a close relationship

for closed and convex functions. To see this choose v ∈ f(x̂), then

f(x) ≥ f(x̂) + 〈v, x− x̂〉 ⇔ 〈v, x〉 − f(x) ≤ 〈v, x̂〉 − f(x̂)

⇔ f∗(v) = sup
x
〈v, x〉 − f(x) = 〈v, x̂〉 − f(x̂). (2.20)

It follows that f∗(v) + f(x̂) = 〈v, x̂〉.
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2.1.4 Norms

We call a function ||.|| : <N → < a norm on the vector space <N , if it full-fills the following

conditions for all x, y ∈ <N and α ∈ <:

1. ||αx|| = |α| ||x||

2. ||x+ y|| ≤ ||x||+ ||y||

3. ||x|| = 0⇒ x = 0.

Functions which full-fill the first and second condition, but not the third condition, are

called semi-norms. From the first and second condition we have for any α ∈ [0, 1]

||αx+ (1− α)y|| ≤ ||αx||+ ||(1− α)y||
= α ||x||+ (1− α) ||y|| , (2.21)

which shows that any (semi-)norm is convex. Conversely we have that any convex function,

for which the first and the second conditions hold are semi-norms.

Some special norms which will be used frequently throughout this thesis are the Eu-

clidean norm, the Manhattan norm and the Maximum norm respectively. Those are

defined for x ∈ X ⊆ <N as

||x||2 =

√√√√ N∑
n=1

|xn|2 , ||x||1 =

N∑
n=1

|xn| , ||x||∞ = max(|x1| , . . . , |xn|). (2.22)

To simplify notation, we often use the short-hand notation ||x|| for the Euclidean norm.

Some quantities will have additional structure, for example quantities which are given

by a vector for each pixels. We denote this as x ∈ <LN and adopt the notation of an inner

norm, which is applied per element, and an outer norm, which is applied to the resulting

vector. Examples are:

||x||2,1 =
N∑
n=1

√√√√ L∑
l

|xln|2 , ||x||1,1 =

N∑
n=1

L∑
l

∣∣∣xln∣∣∣ (2.23)

The last important concept related the norms are the dual norms. The dual norm ||.||∗
to ||.|| is defined as

||y||∗ = sup
||x||≤1

〈x, y〉 . (2.24)
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The convex conjugate of any norm f(x) = ||x|| is easily given in terms of the dual norm

as

f∗(y) =

{
0 if ||y||∗ ≤ 1

∞ else
(2.25)

2.2 Convex Optimization

Convex optimization is concerned with the optimization problems of the form

min
x∈C

f(x), (2.26)

where f : C → < is a convex function and the domain C ⊆ <N is convex. Convex

optimization problems have the important property that every local minimum is also a

global minimum. Moreover, the global optimum of any strictly convex function is unique.

This structure can be exploited to build efficient optimization algorithms. We will be

mainly concerned with so-called large-scale first-order methods. These methods have the

advantage that their convergence rate does not depend on the number of variables. This

is important for the types of problems that are considered in image processing, since the

optimization problems may involve millions of variables. On the downside, such methods

are only able to yield results of medium accuracy. This is seldom a problem, since solutions

of very high accuracy are rarely needed in image processing, however.

This section aims to give a brief overview of the most important first-order algorithms,

which are relevant to this thesis.

2.2.1 Gradient Descent

Gradient descent is one of the most widely used approaches for the optimization of smooth

functions. For convex optimization problems, convergence to a global optimum can be

rigorously proven. Gradient descent can be applied to optimization problems of the form

min
x∈<N

f(x), (2.27)

where f(x) is a smooth function. The iterations of this method are shown in Algorithm 2.1.

1. Choose a starting point x0 ∈ <N , set k = 0

2. While not converged

xk+1 = xk − hk∇f(xk)

k = k + 1

Algorithm 2.1: Gradient descent
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If f(x) is convex and has Lipschitz-continuous gradient, i.e. the relation

||∇f(x)−∇f(y)|| ≤ L ||x− y|| , (2.28)

holds, it can be shown that Gradient Descent converges for a constant step-size choice

of hk = h ∈ (0, 2
L) with a rate of O( 1

k ). For strongly convex functions with modulus m,

better convergence rates can be obtained by choosing h ∈ (0, 2
m+L ].

Gradient descent is seldom used on convex functions in practice, since it is quite

slow. It has been shown that the optimal convergence rate for first order methods on

smooth convex functions is O( 1
k2 ) [110], which is far better than the convergence rate of

Gradient Descent. Nesterov’s Accelerated Gradient [109] method is a simple modification,

which reaches this theoretically optimal convergence rate. The iterations are shown in

Algorithm 2.2. The scheme uses an additional overrelaxation step in order to reach the

optimal convergence rate. This requires to store historical updates, and results in a doubled

memory demand (which is seldom problematic in practice). It is also important to note

that in contrast to Gradient Descent the iterates xk of the accelerated method are not

monotonically decreasing and often show periodic phases of increase and decrease.

1. Choose a starting point y1 = x0 ∈ <N , t1 = 1, set k = 1

2. While not converged

xk = yk − 1
L∇f(yk)

tk+1 =
1+
√

1+4t2k
2

yk+1 = xk + tk−1
tk+1

(xk − xk−1)

k = k + 1

Algorithm 2.2: Nesterov’s Accelerated Gradient method

2.2.2 Proximal Methods

Proximal Methods are a class of convex optimization algorithms, which use the so-called

proximal operator on the objective function in order to minimize the objective. They allow

for a larger class of convex function to be optimized than the gradient-based approaches

discussed earlier. Many well-known algorithms can be understood as proximal methods.

The basic building block of Proximal Methods is the proximal operator: The proximal

operator of a convex function f(x) evaluated at a point v is given by

proxf (v) = arg min
x

{
1

2
||x− v||2 + f(x)

}
. (2.29)

This operation can be understood in some sense as the generalization of the projection
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operation. Consider the problem of projecting a point v onto the convex set C:

projC(v) = arg min
x∈C

{
1

2
||x− v||

}
. (2.30)

This can be equivalently expressed as an unconstrained problem using the indicator func-

tion of the set C,

IC(v) =

{
0 if v ∈ C
∞ else ,

(2.31)

as

projC(v) = arg min
x

{
1

2
||x− v||2 + IC(x)

}
, (2.32)

which is exactly the proximal operator applied to the indicator function of the set C.

The proximal operator is strongly convex, thus its solution is unique. Moreover, the

fixed point of the proximal operator is a minimizer of f(x), i.e.

x∗ = proxf (x∗)⇔ f(x∗) ≤ f(x) ∀x ∈ C (2.33)

The proximal operator is strongly related to the Moreau envelope of f(x):

Mf (v) = min
x

{
1

2
||x− v||2 + f(x)

}
, (2.34)

which is the infimal convolution of f(x) with the function g(x) = 1
2 ||x||

2:

(g ?inf f)(v) = inf
x
{g(v − x) + f(x)} . (2.35)

Mf can be interpreted as a regularization of f . Both functions share the same set of

minimizers, but Mf is continuously differentiable, even if f is not [117], which makes its

optimization considerably easier. The proximal operator exactly returns the point, where

(2.34) achieves its unique minimum. In fact, evaluation of the proximal operator can be

understood as a gradient step on Mf [117].

The fixed point property (2.33) already points to a simple optimization algorithm, the

so-called proximal point algorithm, which is simply given by iterating

xk+1 = proxλf (xk). (2.36)

This scheme is not always useful in practice, however, since minimizing the original

function f(x) is usually not harder than solving the proximal operator repeatedly. The

concept of proximal operators becomes mostly useful in the presence of additional structure
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1. Choose a starting point x0 ∈ <N , set k = 0

2. While not converged

xk+1 = proxhkf (xk − hk∇g(xk))

k = k + 1

Algorithm 2.3: Proximal Gradient algorithm

in the optimization problem. Consider the following problem:

min
x∈<N

f(x) + g(x), (2.37)

where g(x) is convex with L-Lipschitz-continuous gradient and f(x) is convex, but pos-

sibly non-smooth. Problems of this form can be minimized using the Proximal Gradient

algorithm (Algorithm 2.3), which can be understood as a generalization of the Gradient

Descent method. It is interesting to note that this algorithm shows the same convergence

rate and step-size rule as Gradient Descent, despite the presence of a non-smooth term

f(x). If f(x) is an indicator function of a convex set, the Proximal Gradient algorithm is

equivalent to Projected Gradient Descent.

Most importantly, the algorithm again can be accelerated to achieve optimal conver-

gence rate O( 1
k2 ). This algorithm, which is listed in Algorithm 2.4 is best known as Fast

Iterative Shrinkage Thresholding Algorithm (FISTA) [12] in the literature.

Note that for the Proximal Gradient algorithm as well as for FISTA one fundamental

assumption is that the proximal operator is easy to evaluate. In practice this means that a

closed-form solution is available. If no closed-form solution is available efficient algorithms

can sometimes still be build, if the optimization problem posed by the proximal operator

is sufficiently simple.

1. Choose a starting point y1 = x0 ∈ <N , t1 = 1, set k = 1

2. While not converged

xk = prox 1
L
f (yk − 1

L∇g(yk))

tk+1 =
1+
√

1+4t2k
2

yk+1 = xk + tk−1
tk+1

(xk − xk−1)

k = k + 1

Algorithm 2.4: Fast Iterative Shrinkage Thresholding Algorithm (FISTA)
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2.2.2.1 Dykstra algorithm

The prevalent approach for optimization using proximal methods is based on splitting

the problem in tractable sub-parts. The Proximal Gradient algorithm 2.3 illustrates this,

where the problem is split into a smooth part and a non-smooth part, which can then

be handled independently during optimization. A similar approach can be adopted for

projecting a point p onto the intersection of convex sets C1 and C2:

min
x∈C1∩C2

1

2
||x− p||2 (2.38)

Since the intersection of convex sets is again convex, this problem is convex overall. Using

indicator functions, this problem can be rewritten as the unconstrained problem

min
x

1

2
||x− p||2 + IC1(x) + IC2(x). (2.39)

It is easy to see that (2.39) is in fact the proximal operator proxIC1
+IC2

(p). Unfortunately

the proximal operator of a sum of functions is in general not easy to evaluate. Nonetheless,

on can adopt a splitting approach, where the projections are carried out in an alternating

manner. One particularly efficient approach is called the Dykstra Algorithm [23] (not to

be confused with the more famous Dijkstra’s Shortest Path algorithm), which is listed in

Algorithm 5.2. Its iterations alternatingly project leading points onto the sets C1 and C2.

While this algorithm is mostly used for the projection onto convex sets, it can also be

used with arbitrary proximal operators in order to minimize composite functions with a

quadratic term. This variant is a special case of Douglas-Rachford splitting for composite

functions [40].

1. Set x0 = p, p0 = 0, q0 = 0, set k = 0

2. While not converged

yk = proxIC1
(xk + pk)

pk+1 = xk + pk − yk
xk+1 = proxIC2

(yk + qk)

qk+1 = yk + qk − xk+1

k = k + 1

Algorithm 2.5: Dykstra algorithm

2.2.3 Primal-Dual Method

The primal-dual method [36, 52, 72] is an algorithm, which is particularly well suited for

the type of problems, which are handled in this thesis. It can be applied to problems,
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1. Set x0 = x̄0 ∈ <N , y0 ∈ <M , set k = 0, choose θ ∈ [0, 1]

2. While not converged

yk+1 = proxσf∗(yk + σAx̄k)

xk+1 = proxτg(xk − τA∗yk+1)

x̄k+1 = xk+1 + θ(xk+1 − xk)
k = k + 1

Algorithm 2.6: Primal-Dual algorithm

which admit the following structure:

min
x
f(Ax) + g(x), (2.40)

where f : <M → [0,∞) and g : <N → [0,∞) are proper, convex and lower-semicontinuous

functions and A ∈ <M×N is a linear operator. Note that we do not require smoothness of

the problem, although it an be exploited to achieve a faster convergence rate if it is present

in at least one of the functions. This general structure allows to handle a large class of

convex optimization problems, which are often encountered in image processing. Using

the biconjugate of f(Ax), the minimization problem can be rewritten as a convex-concave

saddle-point problem, the so called primal-dual formulation:

min
x∈<N

max
y∈<M

〈Ax, y〉+ g(x)− f∗(y), (2.41)

where f∗(y) is the convex conjugate of f . The associated dual problem is given by

max
y∈<M

−g∗(−A∗y)− f∗(y). (2.42)

The linear operator A∗ is the adjoint operator to A, i.e. it full-fills the relation

〈Ax, y〉 = 〈x,A∗y〉 , (2.43)

and is for the case of a real-valued matrix A simply given by the matrix transpose.

The primal-dual method directly operates on the primal-dual formulation (2.41) and

is summarized in Algorithm 2.6. The iterations can be interpreted as alternating proximal

gradient steps, which maximize the objective with respect y and minimize with respect to

x, respectively. Moreover the algorithm includes an additional overrelaxation step, which

is crucial for the convergence of the procedure. The algorithm is guaranteed to converge

for step-sizes τσ ||A||2 < 1 with a convergence rate of O( 1
k ), in terms of the restricted
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primal-dual gap

GB1×B2(x, y) = max
y′∈B2

〈
y′, Ax

〉
− f∗(y′) + g(x)− min

x′∈B1

〈
y,Ax′

〉
− f∗(y) + g(x′), (2.44)

with B1 × B2 ⊂ <N × <M . This is the optimal convergence rate for non-smooth convex

problems [110]. Additionally, if g(x) is strongly convex, the algorithm can be accelerated

to a convergence rate of O( 1
k2 ) [37].

2.2.3.1 Preconditioning

The primal-dual method requires knowledge about the operator norm ||A|| of the linear

operator A in order to find step-sizes which guarantee convergence. In many applications,

this norm is difficult to estimate. Pock and Chambolle [120] introduced a practical diagonal

preconditioning scheme to find step-sizes τ and σ which automatically lead to convergence.

Moreover, the preconditioning often leads to faster convergence if the operator A is badly

scaled. The scheme uses a local per-variable step-size, which is given by

τj =
1∑M

i=1 |Ai,j |2−α
, σi =

1∑N
j=1 |Ai,j |α

, α ∈ [0, 2] (2.45)

The step-size for each variable can thus be computed simply by summing over the rows

and columns of the operator A, respectively. This scheme is highly practical and can often

be computed without explicit formation of the operator A.

2.2.4 Other Methods

There are many first-order methods for non-smooth and smooth convex optimization,

which exploit the structure of specific instances of the problems at hand. It is beyond

the scope of this work to give a comprehensive list. An excellent overview of the most

important methods can be found in [40].

A completely different class of algorithms is given by Interior Point methods [168].

Different from first-order methods their scope are small to medium scale problems, which

are solved to high accuracy. Due to these properties they are not as often encountered in

image processing when compared to first-order methods. The basic form that is handled

by interior point methods are linear objectives with convex feasible regions of a particular

form, such as second-order cones or the space of semi-definite matrices. Like Interior Point

methods in linear programming, the problem is reduced to a series of unconstrained convex

problems by modeling the feasible region using barrier functions. The subproblems are

solved using Newton-type methods, which exhibit rapid convergence, but do not scale for

problems with a large amount of variables. The solutions of the subproblems describe a

trajectory which lies strictly in the interior of the feasible region, hence the name Interior

Point methods.
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Despite their problems with large-scale problems, Interior Point methods can be a

viable tool for rapid prototyping in image processing, since the algorithms are applicable

to large subclasses of convex problems such as second-order cone or semi-definite programs.

As a matter of fact all of the optimization problems in this thesis can be represented as

standard second-order cone programs. Most importantly, there exist automatic tools [65]

to convert optimization problems into standard forms, which can then be solved using

off-the-shelf interior point solvers like SeDuMi [144].

2.3 Variational Models

The models in this thesis are defined in a continuous setting. As such, they act on

functions instead of vectors. While any implementation on a digital computer requires

the discretization, it is nonetheless advantageous to first define and analyze the model

in the continuous setting. In this section we will introduce basic concepts of variational

models along with a fundamental model for image restoration, the ROF model [130]. We

will discuss some basic properties of this model and how the model can be discretized and

implemented.

2.3.1 Preliminaries

Throughout the rest of this thesis, bold symbols denote elements in the domain of a

function:

x =
(
x1, . . . , xN

)T
∈ Ω. (2.46)

For images we thus have x = (x1, x2)T . For one-dimensional functions we default to

non-bold notation x1 = x ∈ Ω ⊆ <.

Let us first introduce a concept, which will be crucial in order to allow for a rigorous

treatment of non-smooth functions. A distribution Tu on a function u : Ω → < with

Ω ⊆ RN is defined as

〈Tu, φ〉 =

∫
Ω
φ(x)u(x) dx, φ ∈ C∞c (Ω), (2.47)

where the test function φ is defined on the space of infinitely differentiable functions with

compact support on Ω (it is zero outside of Ω). This mapping is well-defined if u is locally

integrable, i.e. ∫
M
|u| dx <∞, ∀M ⊂ Ω, M compact. (2.48)

Distributions can be used to generalize the concept of differentiation to functions which

are not differentiable in the classical sense. Using integration by parts and noting that φ
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has compact support, we have〈
∂Tu
∂xi

, φ

〉
=

∫
Ω

∂Tu
∂xi

φ dx = −
∫

Ω
Tu

∂φ

∂xi
dx. (2.49)

∂Tu
∂xi

is called the distributional derivative of u and coincides with the classical derivative if

u is smooth, but is also well defined for any locally integrable u. Using these definitions we

can define the distributional gradient of a non-scalar function u analogous the gradient,

by gathering the partial distributional derivatives into a single vector:

Du =

(
∂Tu
∂x1

, . . .
∂Tu
∂xN

)T
, (2.50)

For smooth functions we have ∇u = Du.

2.3.2 Total Variation and the ROF Model

Total Variation (TV) is among the most successful and widely used priors in Computer

Vision. TV was most notably used as a natural image prior for denoising in the seminal

work by Rudin, Osher and Fatemi [130]. Later, TV was also used successfully as a prior

for optical flow estimation [176].

In its most well-known form TV is defined as

TV (u) =

∫
Ω
|Du|, (2.51)

where the operator D denotes the distributional gradient defined in the previous subsec-

tion. The set of functions u ∈ L1(Ω) with TV (u) < ∞ is called the space of functions

with bounded variation BV (Ω).

Alternatively, TV is often equivalently stated in its dual form

TV (u) = sup

{
−
∫

Ω
udiv p dx

∣∣∣ p ∈ C1
c (Ω,<N ), |p(x)| ≤ 1 ∀x ∈ Ω

}
, (2.52)

where C1
c denotes the space of continuously differentiable functions with compact support.

Both definitions are well-defined even for non-differentiable functions if u is locally inte-

grable. It is important to note that typically the absolute value in (2.51) and (2.52) is

understood to be the Euclidean norm, i.e.

|(q1, . . . , qN )T | =

√√√√ N∑
i=1

q2
i . (2.53)

Any other norm leads to a valid definition of the Total Variation as well, however. Note

that the norms arising in (2.51) and (2.52) are dual to each other. They coincide in the
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case of the Euclidean norm, since this norm is self-dual (i.e. the dual norm of the Euclidean

norm is again the Euclidean norm). We will stick to the Euclidean norm in large parts of

this work and make it explicit whenever we deviate from this definition of TV .

It is easy to see that TV is a convex function and that

TV (αu) = |α|TV (u). (2.54)

Thus as was shown in Section 2.1.4 it follows that TV is a semi-norm. Moreover TV is

rotationally invariant, if the norm to measure the magnitude of the gradient is chosen to

be the Euclidean norm (2.53). An interesting property of TV is that it has a convenient

geometric interpretation: TV (u) measures the total length of the level-sets of u.

TV -based models encode the prior assumption that their solution should have sparse

gradients, i.e. solutions are composed of constant regions with a sparse set of jumps

between them. In the case of stereo estimation this assumption directly translates into

the assumption of a fronto-parallel world, which is too restrictive for many real-world

scenes. Nonetheless, TV is still an important prior, since it is well understood in theory

and in practice, and its variations are still used extensively. A seminal model that uses TV

as prior is the model by Rudin, Osher and Fatemi [130], the so-called ROF model. This

model is able to remove Gaussian noise, while preserving dominant edges in the image. It

can be understood as an edge-preserving non-linear filter and is given by

min
u

λ

2

∫
Ω

(u(x)− f(x))2 dx +

∫
Ω
|Du|. (2.55)

This model has been extensively used and analyzed in image processing. We will use the

ROF model to exemplify a few issues regarding the actual implementation of variational

models on digital computers. We will show the discretization of the model and apply

algorithms from the previous section to solve the model efficiently.

Discretization and Optimization The first step for the implementation is discretiza-

tion of the continuous model. Throughout this work we assume a rectangular image

domain, which is laid out on a grid of size Nx ×Ny with discretization steps ∆x and ∆y.

Locations in this grid are indexed by pairs of integers (i, j), i.e. the discrete domain can

be described by

G∆ = {(i∆x, j∆y) : (0, 0) ≤ (i, j) < (Nx, Ny)} . (2.56)

Thus the discrete image is given by u : G∆ → <. We define the discrete gradient that

approximates Du as

(∇u)i,j =

(
(δxu)i,j
(δyu)i,j

)
, (2.57)
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which is defined via the finite forward differences:

(δxu)i,j =

{
(ui+1,j − ui,j)/∆x if i < Nx − 1

0 else

(δyu)i,j =

{
(ui,j+1 − ui,j)/∆y if j < Ny − 1

0 else
(2.58)

Using this definition the adjoint operator acting on p : G∆ → <2 is given by

(∇∗p)i,j = −((δ̄xp
1)i,j + (δ̄yp

2)i,j), (2.59)

with finite backward differences

(δ̄xp
1)i,j =


(p1
i,j − p1

i−1,j)/∆x if 0 < i < Nx − 1

p1
i,j/∆x if i = 0

−p1
i−1,j/∆x if i = Nx − 1

(δ̄yp
2)i,j =


(p2
i,j − p2

i,j−1)/∆y if 0 < j < Ny − 1

p2
i,j/∆y if j = 0

−p2
i,j−1/∆y if j = Ny − 1

(2.60)

Using these definitions, we can define the discrete ROF model as

min
u

λ

2

∑
i,j

(ui,j − fi,j)2 +
∑
i,j

|(∇u)i,j |2 . (2.61)

To allow for uncluttered notation we can stack all quantities into vectors u, f ∈ <NxNy

and write

min
u

λ

2
||u− f ||22 + ||∇u||2,1 , (2.62)

where the matrix ∇ ∈ <2NxNy×NxNy is a sparse matrix implementing the forward differ-

ences.

Model (2.62) is a convex optimization problem, which can be solved using an appro-

priate solver. We will exemplify here the two most widely used algorithms for solving

this model: The primal-dual algorithm 2.6 and FISTA 2.4. Let us start with the primal-

dual algorithm. We can derive a convex-concave saddle-point formulation using the dual

formulation (2.52) of TV :

min
u

max
||p||∞≤1

λ

2
||u− f ||22 + 〈∇u, p〉 = min

u
max
||p||∞≤1

λ

2
||u− f ||22 + 〈u,∇∗p〉 , (2.63)
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where p ∈ <2NxNy and we adopt the short-hand notation ||p||2,∞ = ||p||∞.

In this form Algorithm 2.6 is directly applicable. We identify g(u) = λ
2 ||u− f ||

2
2 and

f∗(p) = I||p||∞≤1. Consequently the iterations of the primal.-dual algorithm are given by
pk+1 = proxI||p||∞≤1

(pk + σ∇ūk)
uk+1 = proxτg(uk − τ∇∗pk+1)

ūk+1 = 2uk+1 − uk
. (2.64)

For this model the proximity operators are very easy to evaluate. For the dual variable p̂,

the operator reduces to a simple element-wise projection onto the Euclidean norm ball:(
proxI||p||∞≤1

(p̂)
)
i,j

= proxI|p|2≤1
(p̂i,j) =

p̂i,j
max(1, |p̂i,j |2)

. (2.65)

For the primal variables, we have to solve element-wise a scalar quadratic minimization

problem, which can be solved in closed form:

(proxτg(û))i,j = arg min
u

1

2
||u− ûi,j ||22 +

λτ

2
||u− fi,j ||22 =

ûi,j + λτfi,j
1 + λτ

(2.66)

This algorithm has a convergence rate of O( 1
k ) in terms of the primal-dual gap, but

can be accelerated to O( 1
k2 ) using only minor modifications to the step-sizes and the

overrelaxation step [36].

On the other hand it is also possible to apply FISTA to the dual problem. Prob-

lem (2.63) admits a closed form solution with respect to u. For any p the first-order

optimality condition with respect to u is given by

u∗ = f − 1

λ
∇∗p, (2.67)

Substituting into (2.63) and multiplying by λ yields

max
||p||∞≤1

−1

2
||∇∗p||2 + λ 〈f,∇∗p〉 . (2.68)

By adding the term ||λf ||2 and multiplying by −1, this can be written more compactly as

the minimization problem

min
||p||∞≤1

1

2
||∇∗p− λf ||2 (2.69)

It is now easy to see that this is a convex optimization problem, which can be written as
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the sum of a smooth function and a non-smooth function by using an indicator function:

min
p

1

2
||∇∗p− λf ||2 + I||p||∞≤1(p). (2.70)

Thus FISTA can be applied to this problem and the basic iterations are given bypk+1 = proxI||p||∞≤1
(p̄k − 1

L∇(∇∗p̄k − λf))

p̄k+1 = pk + tk−1
tk+1

(pk − pk−1),
(2.71)

where tk is computed as shown in Algorithm 2.4. After convergence, the primal solution

can simply be recovered using (2.67). This algorithm has a convergence rate of O( 1
k2 ) in

terms of the dual energy (2.69), which is again the theoretically optimal rate of first-order

algorithms for this type of problem.

Figure 2.6 shows an example of ROF denoising together with close-ups of a sub-region

of the image. We vary the magnitude of the regularization parameter λ. It can be

seen that with stronger regularization more noise is removed, but also fine details are

lost. The close-ups show that the resulting images are composed of piecewise constant

regions. This effect is known as staircasing and is an artifact of the TV regularizer. The

higher-order regularizers which will be discussed in this work are explicitly designed to

address this problem, and relax the assumption of piecewise constancy. Especially for the

task of optical flow and stereo estimation this is not purely a cosmetic, visual difference,

since higher-order priors can generally allow for more plausible solutions if the data is

ambiguous.

2.3.3 A Variational Model for Correspondence Problems

We are now ready to state a variational model for correspondence problems: Consider two

input images I1, I2 : Ω → <. The correspondence problem is to find a displacement field

u = (u, v)T : Ω→ <2, which warps every pixel from I1 to I2, i.e. we have

I1(x + u) = I2(x) (2.72)

This equality, which models brightness constancy, already gives a hint at how to find the

unknown displacement field in principle. The field, assuming that there are no occlusions

or illumination changes, should satisfy (2.72) everywhere. It is obvious that the correspon-

dence problem is severely underconstrained in this form: There is only one measurement

for two unknowns, the solution therefore is highly ambiguous. In the case of stereo es-

timation one can exploit camera geometry to reduce the two dimensional problem to a

one dimensional problem. However, there mighty still be many fields u that fulfill (2.72).

To resolve these ambiguities we can incorporate additional smoothness assumptions. A

prior that models a smoothness assumption was already introduced: TV , which can be

used to encode that solutions shall be piece-wise constant. Note also that (2.72) can never
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(a) Clean (b) Noisy

(c) λ = 20 (d) λ = 10

(e) λ = 5 (f) λ = 1

Figure 2.6: Denoising using the ROF model for different regularization parameters. Smaller
values of λ correspond to stronger regularization. As the influence of the regularization term gets
higher, progressively more details are lost. The image is composed of piecewise constant regions,
which is an artifact of the TV regularization.
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be full-filled exactly everywhere in the image in practical applications (except if there is

no displacement), since some pixels may have no correspondence at all due to occlusions.

Moreover, in realistic scenarios the brightness between the two images may change due

to environmental effects or automatic adjustments of the camera. If we relax the hard

constraint to account for these problems and introduce a prior, for example TV , we can

formulate the correspondence problem as the variational problem

min
u
TV (u) +

∫
Ω

Φ(I1(x + u)− I2(x)) dx. (2.73)

Here Φ is a non-negative penalty function, which is in the most classical form simply the

quadratic function or the absolute value and TV (u) is an appropriate extension of TV to

vector-valued functions. This model is in general non-convex, due to the matching term

even when the penalty function Φ is convex, since h(u) = I1(x + u) may be arbitrarily

shaped. We will see in Chapters 4 and 5 how this can be handled.

Both the prior and the data term have a large influence on the quality of the estimates.

Choosing the correct prior for an application can make a large difference, as is shown in

Figure 2.7. In this example, the piecewise constancy assumption of TV is too strict.

Relaxing this assumption to piecewise affine functions, can lead to qualitatively much

better estimates, especially under challenging conditions. The next chapter will be devoted

to priors which can model such assumptions.

(a) I1 (b) I2

(c) TV (d) TV - Error

(e) TGV (f) TGV - Error

Figure 2.7: Qualitative influence of the prior.
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A well-known and often unwanted effect of models that incorporate Total Variation

(TV) is that solutions of these models show so-called staircasing artifacts, i.e. the solu-

tions are piecewise constant. In this section we discuss higher-order priors that can be

used in stereo and optical flow estimation and aim to avoid the problem of staircasing.

We introduce one of the main building blocks of our stereo and optical flow algorithms,

Total Generalized Variation (TGV), and show how this prior can be extended in various

ways in order to enhance the prior with additional knowledge. In view of the general

correspondence model (1.1), this section is concerned with the term R(u; I1). Some of the

priors only take the correspondence field u into account, i.e. we have a regularizer R(u)

which is independent of the reference image I1.

3.1 Total Generalized Variation

TGV [26] is a non-trivial generalization of TV . Its aim is to measure not only jumps in

the solution, but also higher-order variations like kinks. In its most general form TGV of

order k is defined as

TGV k
α(u) = sup

{∫
Ω
udivk q dx

∣∣∣ q ∈ Ckc (Ω,Symk(<2)),∣∣∣∣∣∣divl q
∣∣∣∣∣∣
∞
≤ αl, l = 0, . . . , k − 1

}
, (3.1)

33



34 Chapter 3. Priors for Optical Flow and Stereo

where Symk(<2) is the space of symmetric tensor fields of order k on <2 and

Ckc (Ω,Symk(<2)) denotes the space of k-times continuously differentiable, compactly

supported functions defined on this tensor space. Finally, αl > 0 are user-defined scalars.

Analogous to (2.52), we will refer to this form of TGV as the dual form. It is easy to see

hat TGV of order 1 is equivalent to the scaled Total Variation, i.e. TGV 1
α(u) = αTV (u).

The most important properties of TGV and their role in practical implementations

are [26] :

1. TGV is a semi-norm and thus convex and one-homogeneous. The convexity enables

to use efficient convex solvers for models that involve TGV as a prior. The semi-

norm property can be used to analyze the space of functions for which TGV is

well-defined.

2. For locally integrable functions u, TGV of order k is equal to zero if and only if u is

a polynomial of order k− 1. As a consequence, solutions of models that involve this

prior tend to be piecewise polynomials of order k − 1. For k ≥ 2, this is clearly less

restrictive than the piecewise constancy assumption of TV and especially useful if

desirable solutions can be described in such a way.

3. TGV is rotationally invariant. This is a property that is desirable for many ap-

plications, since in most cases rotated versions of an image are equally likely than

the non-rotated version. Rotational invariance is most important after discretiza-

tion, where it can be shown that priors with rotational invariance do not show strong

metrication artifacts, since there is less bias to align solutions with the discrete image

grid.

4. TGV and TV are equivalent for piecewise constant functions. Thus TGV -based

models may give the same piecewise constant solution as a TV -based model, if such

a solution is supported by the data. If the data on the other hand supports more

smoothness, TGV -based models may also recover solutions which are not piecewise

constant. As a result we do not expect to get significantly worse results using TGV

over TV , if piecewise constancy is already a good prior assumption for a task, but

significantly better results if this assumption is violated.

Note that the order k of TGV has to be chosen by in advance. We will focus on TGV

of order 2 in this work, since it allows to encode piecewise affinity of solutions, which is a

good prior assumption for correspondence problems and provides a good trade-off between

computational complexity and expressive power of the prior. Using (3.1), TGV of order

2 can be written as

TGV 2
α(u) = sup

{∫
Ω
udiv2 q dx

∣∣∣ q ∈ C2
c (Ω,Sym2(<2)),

||q||∞ ≤ α0, ||div q||∞ ≤ α1

}
. (3.2)
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Sym2(<2) is the space of symmetric 2 × 2 matrices. Since the symmetry is not strictly

required, we can define a slightly different variant of TGV as

TGV 2
α(u) = sup

{∫
Ω
udiv2 q dx

∣∣∣ q ∈ C2
c (Ω,<2×2),

||q||∞ ≤ α0, ||div q||∞ ≤ α1

}
. (3.3)

We will compare both versions later in this section in an empirical denoising experiment,

but will mostly use the non-symmetric variant throughout this work.

We will now derive an alternative form of TGV which will be more convenient to use

in practice. We call this, analogous to the two equivalent definitions of TV , the primal

form.

Proposition 1. The primal form of (3.3) is given by

TGV 2
α(u) = min

w

{
α1

∫
Ω
|Du− w|+ α0

∫
Ω
|Dw|

}
, (3.4)

where w : Ω→ <2.

Proof. From duality of the `1-norms in (3.4), we get

TGV 2
α(u) = min

w
sup

||p||∞≤α1

||q||∞≤α0

∫
Ω

(Du− w) · p+

∫
Ω
Dw · q. (3.5)

(3.5) is a saddle-point problem, which is linear in w, p and q. Morover, the dual variables p

and q lie in a closed convex set and are bounded. Thus a saddle-point exists [129, Corollary

37.3.1] and the minimum and the supremum can be interchanged [129, Corollary 37.3.2]:

TGV 2
α(u) = sup

||p||∞≤α1

||q||∞≤α0

min
w

{
−
∫

Ω
udiv p dx−

∫
Ω
w · (div q + p) dx

}
. (3.6)

w can be understood as a Lagrange multiplier for the constraint div q+p = 0. Minimizing

with respect to w and introducing an indicator function

IX(x) =

{
0 if x ∈ X
∞ else

,

we get

TGV 2
α(u) = sup

||p||∞≤α1

||q||∞≤α0

−
∫

Ω
udiv p dx− I{p=− div q}(p, q). (3.7)
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It is now easy to see that the indicator function can be eliminated by substituting

p = −div q, which yields

TGV 2
α(u) = sup

||div q||∞≤α1

||q||∞≤α0

∫
Ω
udiv2 q dx, (3.8)

which is exactly the dual definition of TGV (3.3).

Remark 1. A similar result can be derived for the symmetric variant (3.2). the primal

formulation then involves a symmetrized gradient operator (Ew)(x) : <2 → Sym(<2×2):

TGV 2
α(u) = min

w

{
α1

∫
Ω
|Du− w|+ α0

∫
Ω
|Ew|

}
. (3.9)

The symmetric definition stems mainly from the consideration that higher-order deriva-

tives are symmetric, i.e. the higher-order derivatives do not depend on the order in which

partial differentiation is carried out, and that w is in fact strongly related to the second

derivatives of u.

The primal form (3.4) is more convenient in practice than (3.3), since the constrained

set in the dual form is very complicated due to the constraints on the divergence of the

dual variable. Projection onto this set can not be carried out in closed-form, which slows

down the first-order algorithms shown in the previous section. Moreover, the primal form

allows for an intuitive interpretation [124] of how this prior acts on a function u: Before

the variation of the image u is measured, a vector field w, which is forced to have low

variation, is subtracted from the gradient. Affine functions will lead to a constant field

w. This (locally) leads to a combined cost of zero for such functions under TGV , which

explains the tendency of models involving TGV of second order to produce piecewise affine

solutions.

To get a better understanding on how TGV acts on a function and how TV compares,

consider the following one-dimensional examples, which where adapted from [26]. An in-

depth treatment of the properties of TGV in the context of one-dimensional signals can

be found in [115]. All examples are defined on the domain Ω = ]0, 1[. Graphical examples

of the functions under consideration are depicted in Figure 3.1.

We first analyze a simple linear function:

ulin(x) = hx+ b (3.10)

For this function we have

TV (ulin) =

∫
Ω
|Dulin| =

∫ 1

0

∣∣u′lin∣∣ dx = |h| . (3.11)
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Thus TV incurs a cost for linear functions, which is proportional to the slope and the

domain of the function. In contrast, for TGV 2
α, we have

TGV 2
α(u) = sup

||q′||∞≤α1

||q||∞≤α0

∫ 1

0
uq′′ dx = sup

||q′||∞≤α1

||q||∞≤α0

∫ 1

0
u′′q dx = 0, (3.12)

since the second derivative vanishes for a linear function. Another interesting example is

a step function

ustp =

{
b1 if x < c, c ∈ ]0, 1[

b2 if x > c.
(3.13)

Using the dual definition of TV , integration by parts and the fact that p is compact on Ω,

we get

TV (ustp) = sup
||p||∞≤1

∫ c

0
ustpp

′ dx+

∫ 1

c
ustpp

′ dx

= sup
||p||∞≤1

[ustpp]
c
0 −

∫ c

0
u′stpp dx+ [ustpp]

1
c −

∫ 1

c
u′stpp dx

= sup
||p||∞≤1

(b1 − b2)p(c) = |b1 − b2|. (3.14)

For TGV we can use the same approach to get

TGV 2
α(ustp) = sup

||q′||∞≤α1

||q||∞≤α0

∫ c

0
ustpq

′′ dx+

∫ 1

c
ustpq

′′ dx

= sup
||q′||∞≤α1

||q||∞≤α0

[ustpq
′]c0 −

∫ c

0
u′stpq

′ dx+ [ustpq
′]1c −

∫ 1

c
u′stpq

′ dx

= sup
||q′||∞≤α1

||q||∞≤α0

(b1 − b2)q′(c) = α1|b1 − b2|. (3.15)

Thus TGV 2
α(ustp) = α1 TV (ustp). Both priors measure the height of the jump.

Let us now consider a piecewise linear function:

upl(x) =

{
h1x+ b1 if x < c, c ∈ ]0, 1[

h2x+ b2 if x > c
. (3.16)
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An example of this function is shown in Figure 3.1d. The Total Variation of this function

is given by

TV (upl) =

∫ c

0
|h1| dx+

∫ 1

c
|h2|dx+

∫ c

0
|(b1 − b2)δ(x− c)| dx

= c |h1|+ (1− c) |h2|+ |b1 − b2| , (3.17)

TV measures the jumps between the linear pieces and also integrates the slopes of the

pieces. As a consequence TV penalizes not only jumps but also deviations from piecewise

constancy. In contrast, for TGV 2
α, we have from [26] for the choice α0, α1 > 0, α0/α1 < 1/2

TGV 2
α(upl) = α1|h1c+ b1 − h2c− b2|+ α0|h1 − h2|. (3.18)

TGV measures the height of the jump between the linear pieces, as well as their absolute

difference in slope. Moreover the linear parts themselves incur no cost. This shows that

in some sense TGV of second-order measures jump discontinuities as well as second-order

discontinuities (kinks). Generally, TGV of order k measures higher-order discontinuities of

up to order k−1. Each scalar weighting factor αl is related to an order of the discontinuity

and can be used to balance the influence between them.

x

u

0 1

h

(a) Linear (TGV 2
α(u) = 0)

x

u

j0

0 1c

(b) Step (TGV 2
α(u) = α1j0)

x

u

0 1c

∆x j1∆x

(c) Kink (TGV 2
α(u) = α0j1)

x

u

j0
j1∆x

0 1c

∆x

(d) Step+Kink (TGV 2
α(u) = α0j1 + α1j0)

Figure 3.1: One-dimensional examples for TGV 2
α

Discretization In order to implement TGV 2
α we again have to define discrete analogs to

the continuous derivative operators. We build on the same finite-differences discretization

as previously shown in Section 2.3.2 for the case of TV and assume a rectangular grid of



3.1. Total Generalized Variation 39

size Ny ×Nx. A discretized version of the primal form of TGV 2
α can then be written as

TGV 2
α(u) = min

wi,j∈<2
α1

∑
i,j

|(∇u)i,j − wi,j |2 + α0

∑
i,j

|(∇w)i,j |2 , (3.19)

where the operator ∇ is a discrete approximation to the Jacobian, which is defined slightly

differently for the symmetric and the asymmetric variants of TGV 2
α. For asymmetric

TGV 2
α we have

(∇Aw)i,j =

(
(δxw

1)i,j (δyw
1)i,j

(δxw
2)i,j (δyw

2)i,j

)
. (3.20)

For the symmetric case we simply symmetrize the off-diagonal entries of the Jacobian

operator:

(∇Sw)i,j =

(
(δxw

1)i,j
(δyw1)i,j+(δxw2)i,j

2
(δyw1)i,j+(δxw2)i,j

2 (δyw
2)i,j

)
. (3.21)

It is again convenient to rewrite (3.19) in terms of matrix-vector products by stacking u

into a vector of length M = NxNy:

TGV 2
α(u) = min

w∈<2M
α1 ||∇u− w||2,1 + α0 ||∇w||2,1 , (3.22)

where the linear operators for the asymmetric and the symmetric case are given by

∇A =

(
∇ 0

0 ∇

)
∈ <4M×2M , ∇S =

∇x 0

0 ∇y
∇y ∇x

 ∈ <3M×2M . (3.23)

Optimization Now consider a functional with TGV 2
α prior and some generic convex

data term g : <M → <. The data term g could be for example a simple quadratic data

term as in the ROF model (c.f. Section 2.3.2).

min
u

TGV 2
α(u) + g(u) = min

u,w
α1 ||∇u− w||2,1 + α0 ||∇w||2,1 + g(u). (3.24)

Using dual norms this can be reformulated equivalently as a convex-concave saddle-point

problem:

min
u,w

max
p∈P,q∈Q

〈∇u− w, p〉+ 〈∇w, q〉+ g(u). (3.25)

The set P describes for each pixel (i, j) the two-dimensional unit ball scaled by α1:

P =
{
p = (p1, p2) ∈ <2×M : |pi,j |2 ≤ α1

}
(3.26)
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The set Q is defined slightly differently depending on whether the asymmetric or the

symmetric variant of TGV 2
α is considered. For asymmetric TGV 2

α the set Q is given by

the four-dimensional scaled unit ball, whereas for the symmetric variant it is given by the

three-dimensional scaled unit ball:

QA =
{
q = (q1, q2, q3, q4) ∈ <4×M : |qi,j |2 ≤ α0

}
QS =

{
q = (q1, q2, q3) ∈ <3×M : |qi,j |2 ≤ α0

}
. (3.27)

It is easy to see that in any case the set is convex. Moreover, it is defined point-wise which

allows for efficient projections onto the sets. The saddle-point problem (3.25) can be

optimized using the primal-dual algorithm which was already introduced in the previous

section. The iterations of the algorithm are shown in Algorithm 3.1. The algorithm in

this form can be applied to any model with TGV 2
α regularization and a convex data term

g. If the proximal operator of g can be evaluated efficiently, we can also expect an overall

efficient algorithm. The primal-dual algorithm converges for step-sizes τσ ||A||2 ≤ 1, where

||A||2 is the operator norm of A. To derive this norm let us first rewrite the saddle-point

problem (3.25) into the canonical primal-dual form (2.41):

min
u,w

max
p∈P,q∈Q

〈[
∇ −I
0 ∇

](
u

w

)
,

(
p

q

)〉
+ g(u). (3.28)

It is now easy to see that in order to find the step-sizes τ and σ it is necessary to estimate

the operator norm of

A =

[
∇ −I
0 ∇

]
. (3.29)

1. Set u0 = ū0 ∈ <M , w0 = w̄0 ∈ <2M

2. Set p ∈ P , q ∈ Q, set k = 0

3. While not converged

pk+1 = projp∈P (pk + σ(∇ūk − w̄k))
qk+1 = projq∈Q(qk + σ∇w̄k)

uk+1 = proxτg(uk − τ∇∗pk+1)

wk+1 = wk − τ(∇∗qk+1 − pk+1)

ūk+1 = 2uk+1 − uk
w̄k+1 = 2wk+1 − wk
k = k + 1

Algorithm 3.1: Primal-dual algorithm for optimization of a TGV 2
α-based model.
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We have

||A||22 = ||A∗||22 = L2

and by the definition of the operator norm for any vector u,w it holds that

||Av||2 ≤ L ||v||2 , v =

(
u

w

)
(3.30)

A quick way to get a rough estimate of L is to use the following decomposition:

||A||2 ≤
√
||A||1 ||A||∞ ≤

√
15 . (3.31)

It turns out, however, that we can get a better estimate by having a closer look at the

structure of this operator. We now assume the symmetric variant of TGV , the asymmetric

case can be handled analogously. We first decompose the operator into a sum over the

individual image pixels:

||Av||22 =
∑
i,j

(ui+1,j − ui,j − w1
i,j)

2 + (ui,j+1 − ui,j − w2
i,j)

2

+ (w1
i+1,j − w1

i,j)
2 + (w1

i,j+1 − w1
i,j)

2

+ (w2
i+1,j − w2

i,j)
2 + (w2

i,j+1 − w2
i,j)

2. (3.32)

Using Jensen’s inequality the individual squares in this sum can be estimated as

(
∑
n

xn)2 ≤ n
∑
n

x2
n, (3.33)

which yields the estimate

||Av||22 ≤
∑
i,j

3
(

(ui+1,j)
2 + (ui,j+1)2 + (w1

i,j)
2 + (w2

i,j)
2
)

+ 6(ui,j)
2+

2
(

(w1
i+1,j)

2 + (w1
i,j+1)2 + (w2

i+1,j)
2 + (w2

i,j+1)2 + 2(w1
i,j)

2 + 2(w2
i,j)

2
)

≤ 12 ||v||22 (3.34)

Thus, Algorithm 3.1 is guaranteed to converge for stepsizes of the form τ = c√
12
, σ = 1

c
√

12
,

where c > 0 can be chosen arbitrarily.

Finally, Figure 3.2 shows an example of TGV-based denoising with a quadratic data

term and compares different ratios of the weights α0 and α1. The results are governed

by the ratio between those weights. Higher ratios lead to smoother results, whereas low

ratios lead to results similar to a TV-based model.

Symmetric vs. Asymmetric In this section we show the practical difference between

the symmetric and the asymmetric variant of TGV 2
α. We generate piecewise affine test
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(a) Noisy (b) α1/α0 = 0.2

(c) α1/α0 = 0.3 (d) α1/α0 = 0.5

Figure 3.2: Denoising with TGV . The behaviour is governed by the ratio of α1 to α0. For small
ratios jumps are penalized less severely, which results in a behaviour similar to TV.

images and apply a modest amount of additive white Gaussian noise. The test images

are then denoised using a quadratic data term as in the ROF model 2.62 and TGV 2
α in

its symmetric and asymmetric variant as prior. We use the generic primal-dual algorithm

3.1 for TGV 2
α based models, where the proximal operator with respect to the data term

is given by (2.66).

Figure 3.3 shows a visual comparison of both approaches. The visual differences be-

tween both images are so small that they are indistinguishable by the naked eye. A

comparison in terms of absolute differences between both variants is shown in Figure 3.3c,

where it can be seen that the maximum per pixel difference is on the order of 10−3. We

choose the asymmetric variant for the remainder of this work, since it better fits to the for-

mulation of Non-Local TGV . The main drawback of the asymmetric variant is its slightly

larger memory footprint due to the 4-dimensional dual variable q. For GPU-based imple-

mentations this problem is mitigated by the requirement of word-aligned vector variables,

which results in the need to store the dual variable as an array of 4-dimensional float

vectors to get optimal performance even for the symmetric variant.
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(a) Symmetric (b) Asymmetric (c) Difference image

Figure 3.3: Comparison of asymmetric and symmetric TGV .

3.1.1 Image-Driven TGV

Priors can be further enhanced by conditioning them on additional input cues. In the

case of dense corresondence problems, we can exploit the fact that depth or optical flow

edges may only appear at locations where there are intensity edges in the reference image.

This assumption can be easily incorporated into the TGV prior by either replacing the

isotropic norm in (3.4) by an anisotropic variant, or by modifying the gradient operators

appropriately [124]: We define the Image-Driven Total Generalized Variation (ITGV) by

introducing a positive-definite diffusion tensor M
1
2 : <2 → <2×2:

ITGV 2
α(u) = min

w∈R2

{
α1

∫
Ω
|M 1

2 (Du− w)|+ α0

∫
Ω
|Dw|

}
. (3.35)

It is important to note that the diffusion tensor is typically spatially varying and de-

pends on some guidance image I. We drop this explicit spatial dependence to allow for

uncluttered notation.

Proposition 2. The dual form of ITGV 2
α is given by

ITGV 2
α(u) = sup

||div q(x)||M−1(x)≤α1

||q||∞≤α0

∫
Ω
udiv2 q dx, (3.36)

were ||x||Q = 〈x,Qx〉
1
2 .

Proof. We follow the same argument as in Proposition 1. The primal-dual form of ITGV 2
α

is given by

ITGV 2
α(u) = sup

||p||∞≤α1

||q||∞≤α0

min
w

{
−
∫

Ω
u divM

1
2 p dx−

∫
Ω
w · (div q +M

1
2 p) dx

}
. (3.37)
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Optimality with respect to w is reached if p = −M−
1
2 div q holds. By substituting p and

noting that

〈
Q−

1
2x,Q−

1
2x

〉1
2

= ||x||Q−1 , (3.38)

the dual version (3.36) follows.

We again employ a one-dimensional example to show the effects of such a data-driven

parametrization of the regularizer. The one-dimensional case can be reduced to the form

ITGV 2
α(u) = sup

||q′(x)||2≤α1m(x)
||q||∞≤α0

∫ 1

0
uq′′ dx. (3.39)

If we consider the piecewise linear function upl and assume that m(x) > 2α0/α1 and

smooth on the sub-intervals ]0, c[ and ]c, 1[ then

ITGV 2
α(upl) = sup

||q′(x)||2≤α1m(x)
||q||∞≤α0

q′(c)(h2c+ b2 − h1c− b1) + q(c)(h1 − h2)

= α1m(c) |h2c+ b2 − h1c− b1|+ α0 |h1 − h2| , (3.40)

by applying integration by parts twice and using the compactness of q. With this approach

it is obviously possible to steer the cost of jumps according to the function m(x). High

values of m(c) incur a high cost for a jump at c, which will result in the tendency to

produce no jump in the solution. Conversely low values incur similar costs as without the

weighting and will allow for jumps at this location. Figure 3.4 shows a graphical example

with a piecewise linear function u, that has two constant pieces and a middle piece with

slope k. For a general guidance function m we have

ITGV 2
α(u) = α1m(c1) |j1|+ α1m(c2) |j2|+ 2α0|k|. (3.41)

In Figure 3.4a the guidance function is constructed in a way such that jumps which

are not near c1 incur a high cost. This is the case for the jump at c2. Any model that

minimizes ITGV 2
α will thus prefer to smooth out the jump at c2 and exactly localize the

jump at c1. Figure 3.4b shows the same example for a shifted version of u. In this case both

jumps incur high cost, which indicates that this solution is unlikely. With the guidance

function shown in Figure 3.4c, both jumps get assigned a low cost, and thus are likely to

be in the solution of a model that minimizes this regularizer. The guidance function does

not influence the second-order part: The example in Figure 3.4d in fact gives a lower cost

than 3.4c, since both show the same kink, but Figure 3.4d completely lacks the jump. For

very small m(c2), however, the costs of both configurations are approximately equal. A
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one-dimensional denoising example is shown in Figure 3.5, where the guidance function

was constructed based on the jumps in the groundtruth signal. It can be seen that ITGV

provides sharper jumps and is better able to reconstruct the piecewise linear groundtruth

signal.
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m
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Figure 3.4: Example of ITGV on a piecewise linear function with different guidance functions.

In the two-dimensional case the behavior can also be steered along a specific direction

by forming the diffusion tensor M
1
2 appropriately. If we choose a diagonal matrix with

entries which are equal, we reflect a prior for a jump discontinuity which is equally likely

in both directions. A more sophisticated choice is a positive-definite matrix, which allows

to prefer certain directions (e.g. the directions of the eigenvectors via the magnitude of

the corresponding eigenvalues of the operator). One such choice is given by the Nagel-

Enkelmann operator [107]:

M
1
2 = exp(−γ |∇I|β2 )nnT + n⊥n⊥

T
, (3.42)

where I is a guidance image, n is related to the gradient of I as

n(x) =

 ∇I
|∇I|2

if |∇I|2 ≥ ε
(1, 0)T else

.

n⊥ is a unit vector perpendicular to n. Finally, γ, β > 0 are user-chosen parameters

and ε is a small, positive threshold . This choice of diffusion tensor anisotropicaly scales
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Original
Noisy
Denoised

(a) TGV

Original
Noisy
Denoised

(b) ITGV

Figure 3.5: Comparison of 1D denoising with ITGV and TGV . The guidance function was set
to one everywhere, except near the location of the jumps, where it was set close to zero. ITGV
results in sharper jumps. For small jumps in the groundtruth data, TGV tends to approximate
the jump by a series of kinks (right jump), whereas ITGV can successfully recover a jump.

the first-order term based on the image content: For areas with small gradients in the

guidance image the matrix is approximately the identity matrix, thus the regularizer shows

no preference for a particular direction. In areas with a large gradient M
1
2 ≈ n⊥n⊥

T
,

which has eigenvectors n and n⊥ and associated eigenvalues 0 and 1, respectively. As a

consequence the jump term Du − v is attenuated if it lies in the direction of the image

gradient (i.e. accross the guidance edge). Directions perpendicular to the gradient (i.e.

along the guidance edge) are still (approximately) subject to the full cost. In a energy

minimization framework, this results in solutions which are smooth along edges and sharp

across edges. An important factor in practice is also that in stereo or optical flow models

this data-driven approach leads to much better localized edges, since the data term is not

the only source of information for the location of discontinuities.

A schematic example of this operator is shown in Figure 3.6. We also show the degree

of anisotropy for an example image measured as the ratio of eigenvalues λ+

λ−
.

3.1.2 Non-Local TGV

The inherent locality of the previously discussed priors is often problematic when large

areas have ambiguous data terms. In this case the regularizer has to be able to effectively

propagate information over those areas. It is often possible to build stronger priors for

matching problems by incorporating large areas of interest and conditioning them on the

reference image [166].
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Reference image

n · λ−

n⊥ · λ+

y

x

(a) Schematic overview (b) Anisotropy. Warmer colors denote higher anisotropy.

Figure 3.6: Graphical illustration of the Nagel-Enkelmann operator. (a) On an edge, the eigen-
vector associated to the smaller eigenvalue λ− points across the edge (skewed ellipse). In homo-
geneous regions the both eigenvalues are equal to one (circles). (b) Anisotropy of the operator

plotted as λ+

λ−
. The anisotropy is high along image edges and low in homogeneous regions.

Non-Local Total Variation (NLTV) [61] for example can be defined as:

NLTV (u) =

∫
Ω

∫
Ω
α(x,y)|u(x)− u(y)|dy dx. (3.43)

Here, the non-negative support weights α(x,y) allow to incorporate additional prior in-

formation into the regularization term, i.e. α(x,y) can be used to strengthen the reg-

ularization in large areas, which is especially useful in the presence of ambiguous data

terms. Variants of this regularizer have been successfully applied to the task of optical

flow estimation [91, 145, 166].

Motivated by NLTV , a non-local extension of the TGV 2 regularizer was introduce in

[123]:

Definition 5. Let u : Ω → <, w : Ω → <2 and α0, α1 : Ω × Ω → <+ be support weights.

We define the Non-Local Second-Order Total Generalized Variation regularizer NLTGV (u)

as

NLTGV (u) = min
w

∫
Ω

∫
Ω
α1(x,y) |u(x)− u(y)− 〈w(x),x− y〉| dy dx

+
2∑
d=1

∫
Ω

∫
Ω
α0(x,y)

∣∣∣wd(x)− wd(y)
∣∣∣ dy dx, (3.44)

where vector components are denoted by super-scripts, i.e. w(x) = (w1(x), w2(x))T .

The reasoning behind this definition is as follows: Considering a point x ∈ Ω, the

expression u(x) − 〈w(x),x− y〉 defines a plane through the point (x, u(x)), with normal
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vector (w(x),−1)T . Consequently the inner integral of the first expression,∫
Ω
α1(x,y)|u(x)− u(y)− 〈w(x),x− y〉 |dy, (3.45)

measures the total deviation of u from the plane at the point x, weighted by the support

function α1. A one-dimensional example of this first-order part is visualized in Figure 3.7.

The outer integral evaluates this deviation at every point in the image. This term can be

understood as a linearization of u around a point x. The linearization is not constant,

i.e. as we are interested in a field w which minimizes the total deviations from the (in

the continuous setting infinitely many) local planes, the normal vector w(x) can vary,

although not arbitrarily as the term

2∑
d=1

∫
Ω

∫
Ω
α0(x,y)

∣∣∣wd(x)− wd(y)
∣∣∣ dy dx (3.46)

forces the field w to have low Non-Local Total Variation itself. Intuitively (3.44) assigns

low values to functions u which can be well approximated by affine functions.

Analogous to TGV , we now derive primal-dual and dual representations of (3.44),

which will later serve as the basis for the optimization of functionals that incorporate this

regularizer.

x̂
x y

u(x) + 〈w(x), x̂− x〉

u

Figure 3.7: One-dimensional visualization of the first-order part of Non-Local Total Generalized
Variation (NLTGV). The difference between the linearization and the original function u (visualized
in red) is integrated over the whole domain of u.
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Proposition 3. The dual of (3.44) is given by

NLTGV (u) = sup
|p(x,y)|≤α1(x,y)

|qd(x,y)|≤α0(x,y)

∫
Ω

(∫
Ω
{p(x,y)− p(y,x)} dy

)
u(x)dx

s.t.

∫
Ω
qd(x,y)− qd(y,x) dy =

∫
Ω
p(x,y)(xd − yd) dy ∀d ∈ {1, 2}

(3.47)

Proof. Dualizing the `1-norms in (3.44) yields

NLTGV (u) = min
w

sup
|p(x,y)|≤α1(x,y)

∫
Ω

∫
Ω

(u(x)− u(y)− 〈w(x),x− y〉) · p(x,y) dx dy

+

2∑
d=1

sup
|qd(x,y)|≤α0(x,y)

∫
Ω

∫
Ω

(wd(x)− wd(y)) · qd(x,y) dx dy

= min
w

sup
|p(x,y)|≤α1(x,y)

|qd(x,y)|≤α0(x,y)

∫
Ω

(∫
Ω
{p(x,y)− p(y,x)} dy

)
u(x) dx

+

2∑
d=1

∫
Ω

(∫
Ω

{
qd(x,y)− qd(y,x) + p(x,y)(yd − xd)

}
dy

)
wd(x) dx. (3.48)

By taking the minimum with respect to w we arrive at the dual form.

We will now show two basic properties of NLTGV :

Proposition 4. NLTGV (u) is a semi-norm.

Proof. To show this statement, consider that the supremum in (3.47) is taken over linear

functions with additional linear constraints on p and q. It is well-known that the supre-

mum over linear functions is convex [21]. Since the constraints on p and q form a linear

and thus convex set, NLTGV (u) is convex. Moreover it is easy to see from (3.47) that

J(u) is positive one-homogeneous. As a consequence the triangle inequality holds, which

establishes the semi-norm property.

Proposition 5. NLTGV (u) = 0 if and only if u is affine.

Proof. Assume that u is affine, i.e. u(x) = 〈a,x〉+ b, a ∈ <2. By plugging into (3.44)

it is easy to see that the minimum is attained at w(x) = a. As a consequence we have

J(u) = 0. Conversely assume that NLTGV (u) = 0. In any case this requires that

2∑
d=1

∫
Ω

∫
Ω
α0(x,y)

∣∣∣wd(x)− wd(y)
∣∣∣ dy dx = 0, (3.49)
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which implies that w(x) = c ∈ <2, ∀x ∈ Ω. Consequently

min
c

∫
Ω

∫
Ω
α1(x,y) |u(x)− u(y)− 〈c,x− y〉| dy dx = 0, (3.50)

if and only if u(x) is of the form u(x) = 〈a,x〉+ b and hence affine.

Since the properties in Proposition 4 are shared by TGV and NLTGV , it can be

expected that both behave qualitatively similar when used in an energy minimization

framework. The main advantage of NLTGV is the larger support size and the possibility to

enforce additional prior knowledge using the support weights α1 and α0. This is especially

advantageous for optical flow and stereo estimation, where support weights can be readily

computed from a reference image, in order to allow better localization of motion and depth

boundaries and to resolve ambiguities. Akin to [166] the support weights α1 and α0 can be

used to incorporate soft-segmentation cues into the regularizer, e.g. in the case of optical

flow or stereo estimation it is possible to locally define regions which are forced to have

similar motion or lie on the same plane based on the reference image, respectively. We

compute support weights based on color similarities and spatial proximity as

α1(x,y) =
1

Z(x)
exp(− ||I1(x)−I1(y)||

wc
) exp(− ||x−y||wp

), α0(x,y) = cα1(x,y), (3.51)

where wc and wp are user-chosen parameters that allow to weight the influence of the

individual terms and Z(x) ensures that the support weights sum to one. An example of

patches and their associated support weights is shown in Figure 3.8. It is important to

Figure 3.8: Examples of guidance patches (top row) and their associated support weights (bottom
row). Pixels with similar color get high weight and thus are forced to approximately lie on the
same plane. The influence of the weight is regulated also by spatial proximity, which decays
exponentially.
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note that the exponential decay of the support weights in terms of proximity is not a pure

modeling choice. It also enables a tractable implementation, since models which feature

support weights that are non-zero over very large areas quickly lead to intractable models.

If the support weights are vanishing outside of a certain region they can simply be ignored

in the final model, which enables efficient minimization of non-local models in practice.

Figure 3.9 shows a synthetic experiment which demonstrates the qualitative behavior of

NLTGV . We denoise a piecewise linear function using a quadratic data term with TGV

and NLTGV , respectively. We assume prior knowledge of jumps in order to compute

the support weights and set α1(x,y) = 1 if there is no discontinuity between x and y

and α1(x,y) = 0.1 otherwise. Support weights outside of a 5 × 5 window were set to

zero. While prior knowledge of jumps is not available in real denoising problems, similar

support weights can be easily derived in optical flow estimation from the input images.

It can be seen that NLTGV nearly perfectly reconstructs the original image, while TGV

has problems with accurate localization of the discontinuities.

(a) Groundtruth (b) NLTGV (RMSE = 1.17)

(c) Noisy (d) TGV (RMSE = 5.59)

Figure 3.9: Comparison of NLTGV and TGV for the denoising of a synthetic image. NLTGV
is able to perfectly reconstruct the groundtruth image. TGV tends to oversmooth jumps.
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Figure 3.10: Construction of discrete NLTGV . The example shows the connections for three
pixels (red, green, blue) and their connections to neighboring pixels, assuming a patch size of 3×3.
Numbers in the grid denote pixel indices k.

Discretization For the discretization of NTLGV we adopt the convention that the

data is stacked column-wise into a vector and the integers k, l index specific elements

in this vector. In order to allow for a simpler notation, we introduce a signed distance

dkl = (d1
kl, d

2
kl)

T = lk − ll, where lk = (x1(k), x2(k))T is the location of pixel k in the

image plane. Using these conventions, the spatially discrete Non-Local Total Generalized

Variation of u ∈ <K is given by

NLTGV (u) = min
w

∑
k

∑
l>k

[(α1)kl|(uk − ul + dklwk)|+ (α0)kl ||wk − wl||1] , (3.52)

where w ∈ <2K .

Let pkl ∈ < and qkl ∈ <2 be the dual variable associated to the connection of pixels k

and l. The discretized model can be written in its primal-dual formulation as

NLTGV (u) = min
w

max
|pkl|≤(α1)kl
||qkl||∞≤(α0)kl

∑
k

∑
l>k

[(uk − ul + dklwk) · pkl + (wk − wl) · qkl] (3.53)

Remark 2. In order to prevent double counting of edges we set the support weights in

(3.53) to zero for all y1(k) ≤ x1(l) or (y2(k) ≤ x2(l))∧ (y1(k) ≤ x1(l)), where x and y are

points in the image plane and superscripts denote their horizontal and vertical coordinates,

respectively. This convention is implicitly handled by the inner sum
∑

k>l, since it only

runs over pixels which have not been traversed previously. An example of this construction

is shown in Figure 3.10.
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3.1.3 Vectorial TGV

Many practical applications deal with vectorial data. Image restoration algorithms need

to be able to handle color images, for example. For correspondence problems vectorial

regularizes are also of interest, since optical flow is a two-dimensional quantity. The

straight-forward approach to extend scalar regularizers to vectorial data is to simply apply

the regularizer on each channel individually. Correlation between channels is not exploited

in this approach and it thus may lead to artifacts.

For TV there have been proposed several valid, but distinct, vectorial extensions [19,

27, 63], which aim to exploit the inter-channel correlations. Note that there is no correct

extension to the vectorial setting, since the results and the form of a good prior for vectorial

data strongly depend on the application, or more accurately on the properties of the

vector space for which it is defined. TGV has also been extended to the vectorial case:

Bredies [25] defines a vectorial variant of TGV 2
α, which acts on multi-channel images

u : Ω→ <C :

VTGV 2
α(u) = sup

{∫
Ω

C∑
c=1

uc div2 qc dx
∣∣∣ q ∈ Ckc (Ω,Sym2(<2))C ,∣∣∣∣∣∣divl q
∣∣∣∣∣∣
∞,∗,l

≤ αl, l = 0, 1
}
. (3.54)

An important feature of this definition is that it preserves the most important properties

of TGV [25]. ||.||∞,∗,l are generic dual tensor norms, which need to be defined based on the

properties of the multi-channel image. Bredies [25] defines these norms via the Euclidean

norm over the image channels. This results in a tensor variant of the Frobenius norm in

the dual. Based on (3.54), the discrete primal vectorial TGV 2
α is given by:

VTGV 2
α(u) = min

w
α1 ||∇u− w||o,1 + α0 ||∇v||o,1 , (3.55)

where ||.||o,1 denotes the dual norm to the discrete variant of ||.||∞,∗ and the linear op-

erators are replicated for each color channel. By choosing the Euclidean norm over color

channels, we get:

||v||o,1 =
∑
i,j

√√√√ C∑
c=1

K∑
k=1

(vkc )i,j , (3.56)

where K corresponds to the number of components per pixel (i.e. K = 2 for the first-order

term and K = 3 or K = 4 for the second-order term in symmetric and asymmetric TGV ,

respectively).

The choice of the Euclidean norm is arbitrary and other norms are possible. Miy-

ata [105] argues that due to the averaging in the Euclidean norm over the channels,

directional information is lost. This information is valuable in color image processing,
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where true jumps in the image are mostly present in all color channels, whereas jumps in

a single channel can be mostly attributed to noise. To account for this he proposes to use

the ∞-norm instead of the Euclidean norm:

||v||o,1 =
∑
i,j

K∑
k=1

∣∣∣max
c
|vkc |
∣∣∣ . (3.57)

The numerical experiments [105] on color image denoising indeed show that this variant

shows less artifacts around color edges. This definition is less useful for optical flow, since

the strong assumption on the correlation of the channels (i.e. the x- and y-directions of

the flow) does not hold for this type of data.

3.2 Other Higher-Order Priors

TGV is a versatile convex higher-order prior, but of course not the only one that was

proposed in the literature. One way to define a prior which accounts for higher-order

derivatives is to directly penalize the second-derivatives of a sufficiently smooth function

along with the first derivatives. This gives rise to the TV -TV 2 regularizer [115], which

can be defined as

Φ(u) = αTV (u) + βTV 2(u), (3.58)

with

TV 2(u) =

∫
Ω
|D2u|, (3.59)

where D2u the distributional Hessian. The scalars α and β allow to trade-off the influ-

ence of both terms. Related higher-order priors where only the distributional Hessian is

considered were also proposed earlier [101]. Another variant that considers the Hessian

was proposed by Danielsson et al. [43] and later also used for optical flow estimation [152].

Recently, Lellmann et al. [95] introduced and analyzed a regularizer based on a non-local

Hessian and gradient, which shares some conceptual similarities with Non-Local TGV :

(G∗u(x), H∗u(x)) = arg min
Gu,Hu

1

2

∫
Ω−{x}

(
u(x− z)− u(x)−GTu z− 1

2
zTHuz

)2
α(z) dz,

where the integration domain is given by Ω− {x} = {y − x : y ∈ Ω}.
The goal of all of these regularizers is similar to TGV , i.e. their main aim is to reduce

staircasing and allow for piecewise affine solutions. In contrast to TGV they are strictly

focused on the second-order case and can not be generalized to arbitrary order k. Moreover

they exhibit a few undesirable properties and visual artifact, which can be seen in the

comparison in Figure 3.11.
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Chambolle and Lions [35] considered the inf-convolution of two convex functionals

INF(u) = min
u1+u2=u

∫
Ω
|Du1|+ α

∫
Ω
|D2u2|, (3.60)

which is strongly related to TGV 2
α. To see this connection simply set u1 = u − u2 and

substitute to get

INF(u) = min
u2

∫
Ω
|D(u− u2)|+ α

∣∣D2u2

∣∣ . (3.61)

The difference to TGV 2
α is now easy to see: The distributional gradient in the first-order

term is applied to u− u2 not only to u. Moreover, the second term measures the second-

variation of u2. Not surprisingly, the inf-convolution regularizer behaves qualitatively

similar to TGV 2
α, but may exhibit some undesirable artifacts such as residual staircasing

(Figure 3.11), which are not present in TGV .

Ishikawa [84] proposed to use the Absolute Gaussian Curvature as a prior for stereo

estimation. Gestalt psychological considerations and preliminary experiments indeed show

that this may be an excellent prior for stereo data. Since the Gaussian Curvature is

non-convex, the work resorted to a discretization of the disparity space and Simulated

Annealing for the optimization of a stereo model involving this prior, which is known to

be inaccurate and slow.

3.3 Discussion

TGV offers a flexible way to model higher-order variations in variational models. In this

section we introduced the basic TGV prior along with several variants and extensions. We

have shown how the continuous prior can be discretized and optimized using a theoretically

optimal convex minimization algorithm. Our preliminary experiments on piecewise affine

functions have clearly shown that TGV is indeed able to model such functions. Moreover,

it was shown that the introduction of additional information in the form of a guidance

image can significantly improve the prior. What remains open is the question if stereo or

optical flow data is indeed well modeled by the proposed higher-order priors.

Stereo: TGV (of order two) in a variational stereo algorithm softly enforces the as-

sumption of a piecewise planar world. Most scenes, especially in man-made environments,

can be very well approximated using this assumption.

One important point for TGV is that the planarity assumption is not a hard constraint.

Planar areas emerge automatically, wherever this is supported by the data. This, in

principle, allows to preserve details in the estimates, and does not require a preliminary

segmentation of the scene into a set of planar regions. This feature may also be detrimental

if the data is contradictory over large areas, however.
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(a) Groundtruth (b) Noisy Image (c) TV

(d) TGV 2
α (e) Inf-Convolution (f) TV-TV2

Figure 3.11: Denoising a piecewise affine image using different higher-order priors. We use a
colormap to emphasize the differences between the methods.

Optical Flow: TGV is able to enforce piecewise affine flow fields, which model the flow

of bodies undergoing rigid motions well. The assumption encoded by TGV is thus again

well-justified. Non-rigid motions can be approximated using a set of smaller rigid motions,

which again is supported by the TGV prior. We will later show in the experimental section

that TGV as an optical flow prior is especially strong in the presence of motions, which

significantly differ from the classical assumption of piecewise constant motion.
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Optical flow is the apparent motion between images acquired at different times. In

general, it is a matching problem and closely related to the stereo matching problem.

Optical flow may be induced by moving objects, by a moving camera or both. In contrast

to stereo estimation, in optical flow estimation, pixels may move freely along both image

dimensions, not only along a epipolar line. As such optical flow is generally regarded as

a harder problem than the stereo matching problem. Also, except for a few special cases,

modeling optical flow estimation as a discrete labeling problem is not feasible since the

computational complexity is very high due to a very large label space. Consequently, most

optical flow models are continuous in nature and many can be understood as variants of

the seminal Horn-Schunk model [80].

In this section we introduce the general optical flow problem. We discuss adaptions of

data terms to the special circumstances of this problem. Different variants of the Total

Generalized Variation (TGV) regularizers will be used and evaluated for this task and we

will show how such models can be optimized in practice.

4.1 Related Work

Optical Flow and motion estimation is a long standing research topic in Computer Vision.

Arguably the two most influential early works on optical flow estimation are the work by

57
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Lucas and Kanade [100] on feature tracking and the work on dense optical flow computa-

tion by Horn and Schunk [80]. The following section includes a historic overview of optical

flow methods, which can be traced back to these works. Moreover, we try to broadly

categorize the approaches into four categories, based on their fundamental philosophy:

1. Local Methods: Pixels only locally contribute to the flow estimate. Many models

in this category are variants of [100]. They are versatile and can be adapted to a

variety of different tasks apart from optical flow estimation.

2. Continuous Global Methods: The flow estimate at each location depends on the

estimate of all other locations. Models in this category are typically variational

models or directly based on PDEs and are embedded into a coarse-to-fine framework.

They are heavily inspired by the Horn-Schunk model and currently constitute the

majority of models.

3. Discrete Global Methods: Optical flow estimation is modeled as a discrete labeling

problem. This approach often provides higher accuracy but results in very high

computational complexity.

4. Interpolation-based Methods: A recent development, which tries to eliminate the

coarse-to-fine approach by interpolating from high-quality sparse initial matches.

These approaches sometimes include continuous or discrete models as additional

refinement steps.

For many models no hard categorization is possible, since ideas from any category are

often applicable to models in other categories.

Local Methods In contrast to a pixel-based optical flow approach, the aim of the Lucas-

Kanade algorithm is to find corresponding patches between two images. The incorporation

of patches instead of single pixels into the optical flow estimate allows to resolve ambiguities

which are inherent to the optical flow problem and also provides robustness to some degree

of noise. The method is local in the sense that each patch is considered for itself, without

regard to the other patches in the image. Due to the locality only patches which exhibit

some degree of structure can be correlated, thus the Lucas-Kanade algorithm is only

able to provide optical flow estimates around image edges. Completely homogeneous

regions can not be resolved, since there is no mechanism to propagate information from

the edges into these regions. The original formulation, which is directly based on the

brightness of the input images, and correlates patches under a least-squares criterion, has

been modified and extended in several ways over the years. These modification range

from changing the motion model from purely translational motion to affine motion [137],

selection of image features which are easy to track using a local method [137], modification

of the numerical algorithm [6, 137], changing the composition of the warping process

[6, 68, 139] and modification of the least-squares matching criterion to a more robust
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matching criterion [48]. A comprehensive overview of a modern implementation of the

Lucas-Kanade method can be found in a series of papers by Baker et al. [4–8].

Local methods have the inherent advantage that they are highly data-parallel and

can be extremely efficient [119]. Tao et al. [151] introduced a (practically) sub-linear time

algorithm, which computes dense optical flow estimates using a local approach. In contrast

to most other algorithms, their approach is not based on an iterative energy-minimization

scheme, but purely on local probabilistic reasoning.

Continuous Global Methods The Horn-Schunk model [80] relies on the pixel-based

brightness constancy assumption for optical flow estimation and augments this simple

criterion with a smoothness assumption on the flow field. The smoothness assumption

again resolves ambiguities and provides robustness to noise. In contrast to the Lucas-

Kanade algorithm, the Horn-Schunk method is able to provide optical flow estimates also

in homogeneous regions, since the smoothness assumption can propagate information to

these regions. As a result, the optical flow estimates resulting from this model are dense,

every pixel has a corresponding estimate of its apparent motion. This is often a highly

desirable property, since it gives more flexibility to any algorithm that is based on the

optical flow estimates. The model is a global variational model, i.e. every pixel of the

flow estimate depends implicitly on all other pixels.

The Horn-Schunk model forms the basis of many modern optical flow algorithms and is

also the basis of the algorithms presented in the following sections. The three main ingre-

dients of the model are: (1) a dataterm for correlating the input images. (2) a smoothness

assumption, which resolves ambiguities and propagates information to homogeneous re-

gions. (3) the optimization procedure used to solve the model. It is important to note that

the choice of the dataterm and the smoothness assumption is tightly interwoven with the

choice of optimization procedure. All of the individual components have a large impact on

the final performance. Again, countless enhancements have been proposed to these basic

components, which try to tackle different shortcomings of the original model. Black and

Anandan proposed to use robust penalty functions in the data term to gain robustness

to outliers [15, 16]. Brox et al. [28] used a linear combination of brightness and gradi-

ent constancy to increase robustness with respect to illumination changes. Later, Xu et

al. [169] introduced a method that locally selects between gradient and brightness con-

stancy and show that this approach can lead to improved accuracy. Similarly, Bruhn and

Weickert proposed to separately penalize brightness and gradient constancy using a robust

penalty function [30], which favors solutions where at least one of the two assumptions

hold. Higher-order constancy assumptions based on the Hessian and Laplacian have been

incorporated by Papenberg et al. [116]. Bruhn et al. [31] combine a global model with the

Lucas-Kanade algorithm, which results in a modified patch-based data term.

Another source of error in the classical Horn-Schunk model is the smoothness term,

which tends to oversmooth motion boundaries. A typical modification to tackle this

problem is the use of robust penalizers for the smoothness assumption. One of the first
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approaches was to use the Total Variation (TV) norm as an edge-preserving regularizer [39,

92]. To this day TV and smooth approximations of TV are among the most popular

regularizers for optical flow estimation [28, 30, 162, 164, 176]. TV has the advantage of

being convex, which simplifies optimization of the model, provided that the dataterm is

also convex. Nonetheless non-convex penalizers have been successfully incorporated into

optical flow models [15, 73, 138]. Further extensions consist of higher-order priors in order

to better model the flow fields. Trobin et al. [152] introduce a convex second-order prior

which penalizes deviations from affine functions. Demetz et al. [45] use a regularizer that

is directly based on the Hessian of the flow components. The potential of conditioning

the regularizer on the image content has been explored early on. Nagel and Enkelmann

[107] proposed an anisotropic regularization term, which can be conditioned on a guidance

image. A scalar spatially varying weighting of the regularization was proposed in [1]. Other

approaches try to adapt the regularization directly to the optical flow estimate [135, 138].

Continuous global models are typically embedded into a coarse-to-fine warping frame-

work in order to support the recovery of large motions. The drawback of this strategy

is that motion of small structures can not be recovered reliably. There have been some

efforts to circumvent this problem. Brox and Malik introduced descriptor matching into a

global model [29] to recover large motions of small structures. Braux et al. [24] generalized

this approach and also incorporated line-based features into a TGV -based global model.

Xu et al. [169] refine the estimates in the coarse-to-fine pyramid using a discrete global

model, which is solved using fusion moves.

Discrete Global Methods Discrete global methods model optical flow estimation as a

discrete labeling problem. The task is to assign to each pixel a label which is chosen from a

discrete set of possible labels. Each label corresponds to a specific flow vector. Since the set

of possible flow vectors is typically very large, these algorithms are computationally very

demanding. On the positive site, they allow for very flexible data terms and completely

circumvent the problems introduced by a coarse-to-fine warping strategy.

The main challenge in these approaches is to handle the potentially huge label space

efficiently. One approach is to exploit the specific structure of the optical flow label space,

which can be modeled as a product label space. The resulting problem is a combinatorial

optimization problem, which can be solved or approximated using different approaches,

like convex relaxations [62, 143] or mean-field inference [156]. Goldstein et al. [64] present

a functional lifting approach for the optical flow problem, which allows to compute globally

optimal solutions. All of these approaches are interesting from a mathematical point of

view, but are currently computationally too expensive for practical applications.

Move-making algorithms try to find a middle-ground between the accuracy of discrete

models and the speed of continuous models. The basic idea of these approaches is to

iteratively fuse proposals (which are provided by an external process) under a global model

using a series of discrete binary problems. Trobin et al. [153] used this idea together with

a convex relaxation of the binary subproblems. Lempitsky et al. [96] solved the binary
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problems using Quadratic Pseudo-Boolean Optimization (QPBO) [20].

The last large class of models in this category is given by layer-based models. These

approaches are inherently related to motion segmentation, i.e. they try to decompose the

motion field into a set of regions of similar motions. Such models support strong reasoning

about geometric relationships and occlusions and typically result in discrete-continuous

energies. Sun et al. [146, 147] decompose the scene into a small set of layers and jointly

reason about their motion and geometric relationship. Unger et al. [154] jointly model

motion segmentation and optical flow estimation. They use fine-grained segmentation and

show how occlusion estimation procedures can be incorporated directly into the model.

Interpolation-based Methods Interpolation-based methods interpolate dense optical

flow from a sparse set of initial matches. Ren et al. [127] use an approach similar to the

Lucas-Kanade method, which additionally groups flow vectors based on the content of

the reference image. They propose to interpolate dense optical flow from the irregularly

sampled feature locations using a Delaunay triangulation and use linear interpolation in

the interior of the resulting triangles. Leordeanu et al. [97] use a custom sparse matching

approach on large patches, which are subsequently interpolated to a complete dense optical

flow and refined using a classical continuous model. Revaud et al. [128] use sophisticated

sparse matches [164] and propose to interpolate a dense flow field in an edge-preserving

way. They again use a continuous global model to refine the results in a post-processing

step.

4.2 A Basic Optical Flow Model

In this section we describe a prototypical optical flow model, which will form the basis

for various enhancements in the subsequent sections of this chapter. We introduce funda-

mental components of variational optical flow models, such as the optical flow constraints

and the coarse-to-fine warping strategy, and discuss their properties.

The fundamental assumption in optical flow models is the so-called brightness con-

stancy assumption. It models that fact that under ideal conditions, pixels do not change

their brightness under motion. Given two input images I1 : Ω → < and I2 ∈ Ω → < and

the motion u : Ω→ <2, this assumption can be formally stated as

I1(x + u) = I2(x). (4.1)

Deviations from this assumptions are called the warping error. It is natural to directly use

this relationship to model optical flow estimation, by measuring how much this relation is

violated by a given flow field:

D(I1, I2,u) =

∫
Ω

Φ(I1(x + u)− I2(x)) dx. (4.2)
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A B
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Figure 4.1: An illustration of the aperture problem. The triangle is moving to the left. Viewed
through apertures A and B, the apparent motion is contradictory and does not correspond to
the true motion. No movement can be observed through aperture C. In general only movement
perpendicular to an edge can be perceived trough a small aperture.

The function Φ is typically a `2- or `1-norm, but also more robust non-convex functions

can be used. (4.2) shows a complex relation between the (unknown) flow field u and the

overall matching score D(I1, I2,u): u arises in the argument of I1. This warping operation

will be in general non-convex. This form also prevents direct analytical treatment of the

data term in a continuous model. The standard approach to remedy these problems is to

perform a first-order Taylor expansion of the image I1(x+u) around some displacement u0:

I1(x + u) ≈ I1(x + u0) + (u− u0)T∇I1|x+u0 (4.3)

By setting It(x) = I1(x + u0)− I2(x), this leads to the Optical Flow Constraint (OFC)

It + (u− u0)T∇I1 = 0, (4.4)

which forms the basis of many optical flow models. The OFC is an equation in two

unknowns and thus underdetermined. It is thus not possible to unambiguously find a

flow field from this equation alone. The fact that many different flows can fulfill the

OFC is known as the aperture problem. This is a well-known physical phenomenon and

is illustrated in Figure 4.1. The aperture problem shows that the problem of optical

flow estimation is ill-posed. Clearly additional information is necessary to find reasonable

flow fields. In a variational model this additional information is explicitly modeled using

regularization terms, which typically model a prior assumption on the form of a flow field.

In a variational model the OFC is integrated by penalizing deviations from the constraint:

D(I1, I2,u,u0) =

∫
Ω

Φ(It + (u− u0)T∇I1) dx (4.5)

Together with a regularization term R(u), the general variational optical flow model, which
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Figure 4.2: An illustration of the coarse-to-fine approach.

was already introduced in the introductory chapter, is given by

min
u
R(u) +D(I1, I2,u,u0) (4.6)

This formulation has clear practical merits over (4.2): The OFC is linear and thus

convex. Moreover (4.5) is differentiable, if Φ is differentiable and it is convex if Φ is

convex. A well-designed regularization term R(u) gives additional information, which

allows to resolve the ambiguities introduced by the aperture problem. As a consequence

the model can be efficiently treated in modern optimization frameworks, for appropriate

choices of the penalizer Φ and regularization term R. Of course there is a price to pay

for this tractability: The Taylor expansion is an approximation to the originally warped

image I1(x+u), which is only valid in the vicinity of u0. If the flow u is far away from u0,

a data term based on the OFC does not reliably measure the warping error. This problem

can be solved by an iterative re-linearization: The optical flow model (4.6) is solved for

an initial flow field u0 (which is typically equal to zero). The image is again linearized

around the solution and the model is again solved. This process repeats iteratively until

some stopping criterion is met.

This process allows for larger optical flows to be found but easily gets stuck in a non-

optimal solution. As an additional remedy the whole process is thus integrated into a

coarse-to-fine framework. The input images are subsampled to form an image pyramid

(typically in a Gaussian scale space). The optical flow is computed on the subsampled

input images, where the computation is started on the coarsest level. The solution of

the coarse level is propagated to the next finer level by upsampling the optical flow and

starting linearization at this initial solution. This process is repeated until the finest level

(the original image size) is reached. An overview of this approach is shown in Figure 4.2.

The coarse-to-fine approach results in fast convergence, since on the higher, computational

demanding levels a good initial solution is already available. Larger motion can be found,

provided that the image pyramid is computed up to a sufficiently coarse level and that the



64 Chapter 4. Optical Flow

scale space is sufficiently fine sampled. A major down-side is that due to the subsampling,

fine motion details, like the motion of thin structure or small objects, cannot be captured.

4.2.1 Classical Instances of the General Model

We now briefly examine three different classical optical flow models, which can be un-

derstood as instances of the general variational model 4.6. We start from the very early

Horn-Schunk model, and show two different more advanced models, which can be viewed

as robust variants of this model and are very similar in spirit, but are nonetheless solved us-

ing fundamentally different strategies, namely the Euler-Lagrange framework and convex

optimization.

4.2.1.1 Horn-Schunk

The oldest instance of our prototypical variational optical flow model is given by the

seminal Horn-Schunk model. This model already included all the main building blocks

that were described so far. The Horn-Schunk model is given by a quadratic penalization of

the optical flow constraint and a quadratic penalization of the gradients of the flow field. Its

specific form allows for a simple mathematical treatment in terms of optimization: Since

both terms in the model are quadratic and convex, the resulting optimization problem

is an instance of Thikhonov regularization, which allows for a closed-form solution, by

solving a linear system of equations. The model is given by

min
(u,v)

∫
Ω

(|∇u|2 + |∇v|2) dx + λ

∫
Ω
|It + (u− u0)∇xI1 + (v − v0)∇yI1|2 dx, (4.7)

where we explicitly split the flow u = (u, v)T into its horizontal and vertical component.

This model can be discretized analogous to the ROF model shown in Section 2.3.2. After

discretization we have

min
(u,v)
||∇u||2 + ||∇v||2 + λ ||It + diag(∇xI1)(u− u0) + diag(∇yI1)(v − v0)||2 , (4.8)

where we used the operator diag(x) for notational convenience, which generates a NxNy×
NyNy diagonal matrix with its argument x ∈ <NxNy on the main diagonal. All other

quantities are given by column vectors of dimension NxNy which result from stacking the

images.

Using the first-order optimality conditions the unique optimal solution necessarily ful-

fills the linear relation

∇T∇u+ λÎx(It + Îx(u− u0) + Îy(v − v0)) = 0

∇T∇v + λÎy(It + Îx(u− u0) + Îy(v − v0)) = 0, (4.9)

where we used the short-hand notation Îx = diag(∇xI1) and Îy = diag(∇yI1). This can
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be written more compactly as(
∇T∇+ λÎ2

x λÎxÎy
λÎxÎy ∇T∇+ λÎ2

y

)
︸ ︷︷ ︸

A

(
u

v

)
= λ

(
Îx(Îxu0 + Îyv0 − It)
Îy(Îxu0 + Îyv0 − It)

)
︸ ︷︷ ︸

b

. (4.10)

Excluding a pathological case, matrix A is positive-definite [104], thus the system has a

unique solution and the matrix is invertible. In practice the system of equations will be

large but sparse, in which case iterative methods for the solution of linear systems can be

used [76].

Figure 4.3 shows an exemplary result obtained from the Horn-Schunk model, which

makes its main properties immediately obvious: The model gives dense and smooth flow

fields, but motion boundaries are not well preserved. This behavior stems from the

quadratic penalization of the gradients in the penalizer. Large jumps at motion bound-

aries are disproportional penalized, which results in a strong smoothing effect. The second

drawback is that deviations from the OFC constraint can not be robustly handled, again

due to the quadratic penalization. In any realistic scenario there will be strong deviations

of the OFC for occluded or disoccluded pixels, since in these regions there are pixels in

one frame, which have no corresponding pixel in the second frame.

4.2.1.2 The Euler-Lagrange framework

It was already noted that the quadratic penalization is the main source of error in the

Horn-Schunk model. It is thus natural to replace the quadratic penalization with a more

robust function. This results in a model that is able to recover sharper motion boundaries

and also is more robust at pixels where the assumptions of the data term are heavily

violated. Note, however, that this comes for a price: Deviating from the quadratic penal-

ization renders optimization of the models much harder, since the optimality conditions

will in general be non-linear. There are two prevalent approaches to handle optimization

of the resulting functionals: Solutions based on the Euler-Lagrange framework, where

the necessary conditions (the Euler-Lagrange equations) for optimality of the continuous

model are discretized and then typically solved using iterative linearizations. The second

approach is to discretize the functional itself and apply (convex) optimization algorithms

to find a solution. The Euler-Lagrange framework offers the advantage that arbitrary

smooth penalizers can be used [180]. Convexity is typically not a driving issue in this

framework. On the other hand the classical Euler-Lagrange framework requires smooth-

ness of the functional, which can be detrimental to the sharpness of the motion boundaries.

This is not the case for the convex optimization framework, which allows for non-smooth

penalizations, but requires convexity of the penalizers. Moreover, convex optimization

approaches can be parallelized trivially, which allows for easy implementation on graphics

processing units. The Euler-Lagrange approach can also be parallelized but requires more

sophisticated implementations [66].
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To exemplify the Euler-Lagrange framework, we briefly describe a simplified variant of

the approach by Brox et al. [28]. They propose to replace the quadratic penalizers with

robust functions:

min
(u,v)

∫
Ω

Φ(|∇u|2 + |∇v|2) dx + λ

∫
Ω

Φ(|I1(x + u)− I2(x)|2) dx. (4.11)

The model uses the original non-linear brightness constancy as data term. Brox et al. [28]

propose to use the Charbonnier penalty Φ(x2) =
√
s2 + ε2 as subquadratic penalizer,

which results in an overall convex model. The smoothness term can be interpreted as

a smooth approximation to TV , whereas the data term can be interpreted as a smooth

approximation to the `1-norm. The necessary conditions for a optimum of this continuous

model are given by the Euler-Lagrange equations:

Φ′(I2
t ) · IxIt − λdiv(Φ′(|∇u|2 + |∇v2|)∇u) = 0

Φ′(I2
t ) · IyIt − λ div(Φ′(|∇u|2 + |∇v2|)∇v) = 0, (4.12)

where Ix and Iy denote partial derivatives and It is the difference between the second

image and the first image after warping:

Ix = ∂xI1(x + u), Iy = ∂yI1(x + u), It = I1(x + u)− I2(x). (4.13)

Equation (4.12) constitutes a non-linear Partial Differential Equation (PDE), which will

be subsequently discretized, and iteratively solved based on linearizations of the non-linear

PDE . There are two-sources of non-linearity: First, the warping operation It is non-linear,

but can linearized using a first-order Taylor expansion. Second, the functions Φ′ are also

non-linear. In order to handle both non-linearities Brox et al. use nested fixed-point

iterations.

(Φ′)k,lD · (Ikx(Ikt + Ikx duk,l+1 + Iky dvk,l+1))− λ div((Φ′)k,lS ∇(uk + duk,l+1)) = 0

(Φ′)k,lD · (Iky (Ikt + Ikx duk,l+1 + Iky dvk,l+1))− λ div((Φ′)k,lS ∇(vk + dvk,l+1)) = 0, (4.14)

where k and l are iteration counters for the outer and inner fixed point iterations, respec-

tively. The update is written in terms of increments

uk = uk + duk,l+1, vk = vk + dvk,l+1 (4.15)

and the term It was linearized using a first-order Taylor expansion:

Ik+1
t ≈ Ikt + Ikx duk,l+1 + Iky duk,l+1. (4.16)
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The terms (Φ′)k,lD and (Φ′)k,lS are short-hand for:

(Φ′)k,lD = Φ′((Ikt + Ix duk,l + Iky dvk,l)2)

(Φ′)k,lS = Φ′(|∇(uk + duk,l)|2 + |∇(vk + dvk,l)|2). (4.17)

The system (4.14) is linear in the unknown increments duk,l+1 and duk,l+1 and thus can

be solved using any solver for linear systems. For the spatial discretization of the gradient

and divergence operators, the standard finite differences scheme from Section 2.3.2 can be

used. Example results of this model can be seen in 4.3. Obviously, motion boundaries

are well preserved and outliers in the data term can be handled, which overall leads to

significantly better results.

4.2.1.3 TV-L1

The last classical model is given by the TV-L1 model [176]. As the name already indicates,

this model uses the non-smooth Total Variation as a prior and penalizes deviations from

the optical flow constraint using the `1-norm:

min
(u,v)

∫
Ω

√
|Du|2 + |Dv|2 + λ

∫
Ω
|It + (u− u0)∇xI1 + (v − v0)∇yI1| dx. (4.18)

This model is very similar to the previous model, which was solved using the Euler-

Lagrange framework. The main difference is the use of the non-smooth L1 norm for both

the smoothness and the data term (i.e. this model can be recovered from (4.11) by setting

Φ(s2) =
√
s2 and direct use of the OFC in the data term). The model is convex, which

enables the usage of convex optimization algorithms to solve this model.

The first step for the solution if this model is to discretize the functional, which yields

min
u=(u,v)

∑
i,j

|(∇u)i,j |2 + λ
∣∣(It)i,j + (ui,j − (u0)i,j)

T (∇I1)i,j
∣∣ , (4.19)

where we set (∇u)i,j = ((∇u)i,j , (∇v)i,j)
T . The original work [176] used a quadratic

splitting approach for the solution of this model, which allowed for the iterative splitting

into a ROF model and a pixel-wise optimization problem, which can be solved in closed

form. Since then, advancements in convex optimization made it possible to directly solve

the non-smooth model. We will adopt the later approach, since it comes with convergence

guaranties and will also be the basis for solving models throughout the rest of this thesis.

The basic idea is, like for the ROF model in Section 2.3.2, to rewrite (4.19) as an equivalent

convex-concave saddle-point problem, which can then be solved using the primal-dual

algorithm 2.6. To achieve this, we rewrite (4.19) using the dual definition of TV :

min
u

max
p∈P

∑
i,j

(ui,j div pui,j + vi,j div pvi,j) + λ
∣∣(It)i,j + (ui,j − (u0)i,j)

T (∇I1)i,j
∣∣ , (4.20)
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where the feasible set of the dual variables is given by

P = {p ∈ <4NxNy , pi,j = ((pu)Ti,j , (p
v)Ti,j)

T :

√
|(pu)i,j |22 + |(pv)i,j |22 ≤ 1}, (4.21)

i.e. there are four dual variables per pixel, which are feasible if they lie in the four-

dimensional Euclidean unit ball. Note that in this formulation the dual variables of the

flow components are coupled via the constraint (4.21). This is because the model (4.18)

was defined via an isotropic vectorial variant of TV [27]. An alternative definition could

be to penalize the components of the flow independently, e.g. by defining the model as

min
(u,v)

∫
Ω

(|Du|+ |Dv|) + λ

∫
Ω
|It + (u− u0)∇xI1 + (v − v0)∇yI1| dx. (4.22)

This would yield the same objective function (4.20), but a different feasible set for the

dual variables:

P = {p ∈ <4NxNy , pi,j = ((pu)Ti,j , (p
v)Ti,j)

T : |(pu)i,j |2 ≤ 1, |(pv)i,j |2 ≤ 1}, (4.23)

It is now possible to again apply the primal-dual algorithm to solve the saddle-point

problem: 
pk+1 = proxp∈P (pk + σ∇ūk)

(uk+1, vk+1) = proxτg(uk − τ∇∗puk+1, vk − τ∇∗pvk+1)

ūk+1 = 2uk+1 − uk,

(4.24)

where we have g(u) = λ
∑

i,j

∣∣(It)i,j + (ui,j − (u0)i,j)
T (∇I1)i,j

∣∣. It remains to show how

the proximal operators can be evaluated. For the dual variables it suffices to project the

variables to the four-dimensional unit ball:

p = proxp∈P (p̂)⇔ pi,j =
p̂i,j

max
(

1,

√∣∣∣p̂ui,j∣∣∣2
2

+
∣∣∣p̂vi,j∣∣∣2

2

) . (4.25)

The proximal operator with respect to the data term is a pointwise optimization problem

in two variables:

u = proxτg(û)⇔ ui,j = arg min
u

1

2τ
||u− ûi,j ||2 + λ|(It)i,j + (u− (u0)i,j)

T (∇I1)i,j |,

which can be reduced to an equivalent one-dimensional optimization problem. To see this

let n =
(∇I1)i,j
|(∇I1)i,j |2

be the direction of the image gradient and n⊥ be a vector perpendicular

to n. u can be expressed in terms of a update along the directions spanned by the vectors
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n and n⊥:

ui,j = ûi,j + δn + δ⊥n⊥, (4.26)

Plugging into (4.25) it is easy to see that the magnitude of update along the direction

perpendicular to the gradient δ⊥ necessarily is equal to zero (since δ⊥n⊥ · ∇I1 = 0 for all

δ⊥ and the quadratic term forces the minimum to lie as near as possible to û). Thus, the

proximal operator can be equivalently stated as a one dimensional optimiziation problem

of the variable δ along the direction n:

min
δ

1

2τ
δ2 + λ|ρ(ûi,j) + δ |(∇I1)i,j |2 |, (4.27)

where ρ(u) = (It)i,j+(u−(u0)i,j)
T (∇I1)i,j . This optimization problem can be solved using

a soft-thresholding operation. After solving for δ and substituting the result into (4.26)

the final update scheme is given by

u = proxτg(û)⇔ ui,j = ûi,j +


τλ(∇I1)i,j if ρ(ûi,j) < −λτ |(∇I1)i,j |22
−τλ(∇I1)i,j if ρ(ûi,j) > λτ |(∇I1)i,j |22
−ρ(ûi,j)

(∇I1)i,j
|(∇I1)i,j |22

if |ρ(ûi,j)| ≤ λτ |(∇I1)i,j |22
(4.28)

One very practical property of the convex optimization approach is that it is trivially

parallelizable, since all operations in each iterations of the primal-dual algorithm are purely

local. This allows for simple and real-time capable implementations on graphics processing

units [176].

4.2.1.4 Discussion

Figure 4.3 shows a comparison of the classical models we have described. Evidently the

model based on the Euler-Lagrange framework as well as the TV-L1 model provide much

cleaner and sharper results than the Horn-Schunk model. Both models qualitatively pro-

vide similar results, which is not surprising since they optimize very similar objective

functions. Qualitatively TV-L1 provides slightly sharper motion boundaries. The Euler-

Lagrange-based approach on the other hand benefits from the smooth penalizer, which

results in a less strong assumption of piecewise constancy and consequently less staircasing

in areas where this assumption is violated.
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(a) Groundtruth

(b) Horn-Schunk

(c) Brox et al.

(d) TV-L1

Figure 4.3: Example results for classical optical flow models.
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4.3 Enhancements

Multiple enhancements are possible to the variational optical flow model from the preced-

ing section. In the light of this work, the most obvious enhancement is given by replacing

the simple regularizer by one that better models a typical optical flow and also can be

conditioned on additional input modalities. The robustness of the estimation can be sig-

nificantly enhanced by using more robust, but also more complex, data terms. In this

section we will describe both variants and the adaptions which are necessary to integrate

them into the model.

4.3.1 Complex Data Terms

In practical situation the brightness constancy assumption is almost always violated for

at least some parts of the image. Algorithms, which directly rely on this assumption

will necessarily fail to provide robust results. Other sources of optical flow error include

violation of the Lambertian assumption on specular surfaces, violation of the 1-1 mapping

assumption due to occlusions and artifacts in the input images due to noise or physical

distortions. There are different approaches to tackle violation of the basic assumptions,

which can be broadly classified as: (1) Pre-processing of the input images, (2) explicit

modeling of the error (e.g. the illumination change), (3) robustification of the data term.

Wedel et al. [162] proposed a pre-processing step, called structure-texture decomposi-

tion, where the input images are decomposed into a low-frequency structure part and a

high-frequency texture part. Since differences in intensity can be assumed to be of low-

frequency or even globally constant in some cases, most of these changes will be contained

in the structural part. The intensity image thus is replaced by the texture image, or a

blended version of the structure and texture images, in order to increase robustness to

illumination changes. Another preprocessing approach is to derive photometric invariants

from color input images [103, 155]. Preprocessing approaches are appealing, since they

can be applied to existing models with minimum effort.

Chambolle and Pock [36] explicitly modeled illumination changes in a variational model

using an additive compensation in the data term. Similar to [162] the fundamental as-

sumption is that the illumination change is of low frequency, which is imposed using a

Total Variation penalization of the compensation term. Modeling illumination change as

an additional unknown results in a larger model and also is somewhat constraint to specific

forms of illumination changes (in this case additive illumination changes are modeled). In

a similar spirit, Demetz et al. [45] learn the basis of a Brighness Transfer Function (BTF)

from training data and incorporate online estimation of the coefficients of the BTF into

a variational optical flow model.

The last approach to handle challenging illumination conditions is to replace the bright-

ness constancy assumption by a more robust correlation measure. Steinbrücker et al. [142]

used the truncated `1-norm for measuring deviations from brightness constancy, which is
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more robust to outliers. Their optimization scheme is based on a successive quadratic re-

laxation approach [176], which allows for arbitrary matching terms. Werlberger et al. [166]

proposed to use quadratic approximations of the truncated normalized cross correlation in

a coarse-to-fine warping framework. The brightness constancy assumption can be replaced

by, or augmented with, a gradient constancy assumption [28, 169] to gain robustness to

illumination changes. Also various measures based on higher-order derivatives have been

proposed for matching [116].

In practice the introduction of complex data terms, which are robust to typical prob-

lems encountered in optical flow estimation, has shown to be a promising approach [59].

The incorporation of complex data terms automatically raises the question on how to inte-

grate them into the model, without sacrificing overall tractability. A flexible approach was

introduced in [166], where the complete data term is approximated using a second-order

Taylor expansion. The basis of continuous optical flow models is a convex approximation

of the non-convex data term:∫
Ω
ρ(x,u(x), I1, I2) dx ≈

∫
Ω
ρ̂(x,u(x), I1, I2) dx. (4.29)

Similar to the linearization approach presented in the previous section, the pointwise

matching cost ρ can be locally approximated using a second-order Taylor expansion:

ρ(x,u(x)) ≈ρ(x,u0(x)) + (u(x)− u0(x))T∇ρ(x,u0(x))

+
1

2
(u(x)− u0(x))T∇2ρ(x,u0(x))(u(x)− u0(x)) = ρ̂(x,u(x)). (4.30)

The explicit dependence on the input images was dropped for notational simplicity. Ap-

proximating the data term directly allows for arbitrary data terms and makes this ap-

proach very flexible. Again, due to the inaccuracies introduced by the approximation,

models which use this approach to handle the data term need to be embedded into a

coarse-to-fine warping framework to be able to handle large displacements.

Since the Hessian ∇2ρ(x,u0(x)) is not guaranteed to be positive semi-definite, which

would lead to a non-convex data term, in practice a positive semi-definite approximation

H ≈ ∇2ρ(x,u0(x)) is used to ensure tractability of the model. A simple approach is to

use a diagonal matrix with non-negative approximations of the second-derivatives on the

main diagonal:

H =

(
max(0, ρxx(x,u0(x))) 0

0 max(0, ρyy(x,u0(x)))

)
. (4.31)

This form guarantees that the matrix H is positive semi-definite and thus the approxi-

mation ρ̂(x,u(x)) is convex. Since the second-derivatives ρxx, ρyy and ρxy are typically

not available for complex data terms analytically, they need to be approximated using

finite differences. Some data terms may not be twice-differentiable everywhere. While in
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this case the derivatives are not well-defined, the proposed scheme serves as guideline and

motivation to get a reasonable quadratic approximation based on finite differences.

Another, slightly more accurate variant to ensure convexity of the approximation is to

first compute the full, possibly not positive-definite, Hessian

∇2ρ(x,u0(x)) =

(
ρxx(x,u0(x)) ρxy(x,u0(x))

ρyx(x,u0(x)) ρyy(x,u0(x))

)
(4.32)

and subsequently project it to the space of positive semi-definite matrices. This can be

achieved using an eigendecomposition and clamping the eigenvalues to ensure that they

are non-negative [165]. While the resulting approximation to the Hessian will in general

be better using this approach, it incurs higher computational cost than (4.31) and only in

some cases results in significantly better optical flow results [165].

Now that we are able to use arbitrary data terms in an optical flow model, the main

question is, which matching cost to use in practice. While there is a multitude of different

terms (which will be discussed in more detail in the following chapter on stereo estimation),

one of the most successful is given by the Census transform [175]. The Census transform

is a popular approach to gain robustness against illumination changes in optical flow [106,

124, 157] on realistic data sets. Most of the top performing methods on the KITTI optical

flow benchmark [59] incorporate this matching term. The principal idea is to generate a

binary or ternary representation, called Census signature, of an image patch and measures

patch similarity using the Hamming distance between signatures.

Let us define the per-pixel Census assignment function for an image I : Ω→ < as:

Cε(I,x,y) = sgn(I(x)− I(y))1|I(x)−I(y)|>ε + 1, (4.33)

(a) Input patch (b) Census transform

Figure 4.4: Example of the Census transform Cε(I,x,y) applied to a 3 × 3 patch. The center
value of the input patch (a) is taken as reference value. To each pixel in the patch one of three
values is assigned, based on their relative graylevel magnitude when compared to the center pixel.
(b) The Census transform provides a robust description of the patch in terms of a ternary string,
which for this example is given by ‘20212122’ (assuming the upper left pixel as starting point and
clock-wise gathering of entries). This example assumes ε = 20.
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which assigns to the pixel at location y one of the values {0, 1, 2} based on the value of the

pixel x. An example of this transformation applied to a 3×3 patch is shown in Figure 4.4.

Given two images I1, I2 and a flow field u : Ω→ <2, the Census matching cost of the flow

u is defined via the Hamming distance of the two strings as

ρc(x,u(x), I1, I2) =
1

|B| − 1

∫
Ω
1Cε(I1,x,y)6=Cε(I2,x+u(x),y+u(x))B(x− y) dy, (4.34)

where B denotes a box filter, which defines the size of the matching window, and normal-

ization by |B| − 1 provides a normalization between 0 and 1.

This data term is highly non-convex and non-smooth. Different variants have been pro-

posed to still incorporate it into variational models in the literature. [106, 124] proposed

a simple direct linearization of the data term based on finite differences and additionally

ensured non-negativity of the approximation by taking the absolute value of the approxi-

mation. The resulting data term is convex and can be solved using a shrinkage operation,

when used in the context of the primal-dual algorithm. [157] linearized the warped im-

age and showed that a non-convex proximal mapping based on this term can be solved

in closed form. While they propose to use the primal-dual algorithm, in this approach

the overall energy remains non-convex. As a result this strategy is not rigorously defined

from an optimization point of view. Hafner et al. [67] showed strong relations of Census

matching to the gradient constancy assumption. They use a smooth approximation and

(a) I1 (b) I2 (c) Groundtruth

(d) Brightness constancy (e) Census

Figure 4.5: Census vs. brightness constancy. We simulated a multiplicative brightness change in
one of the images. The model based on brightness constancy completely fails, whereas the Census
data term is still able to correctly recover the optical flow.
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s

(a) SCensus (b) Census

Figure 4.6: Example of the proposed sampling strategy analogous to a 5x5 census transform.
The center value is computed by averaging the sampling positions on the inner most ring (red). A
ternary string of length 24 is generated from the sampling positions on the outer rings (green).

optimize the overall model based on the Euler-Lagrange framework. Here we propose to

approximate the data term using the quadratic approximation (4.30). Figure 4.5 compares

a model with TGV regularization and the classical brightness constancy assumption to a

model which uses the Census data term on a pair of images with illumination changes.

4.3.2 Scale-Robust Census Transform

Classical patch-based matching approaches are problematic when scale changes between

two images occur, since the patch in the first image will capture different features than

the patch in the second image. This is a common motion pattern in many applications,

especially where a forward facing camera is mounted on a mobile platform, for example a

car or a robot. If one knew the amount of scale change, a simple remedy to this problem

would be to appropriately rescale the patch, such that the local appearance is again the

same. Unfortunately the scale change in optical flow estimation is unknown a-priori.

To this end we draw ideas from SIFT descriptor matching under scale changes in

order to alleviate these problems: Consider SIFT descriptors h1 and h2 computed from

two images I1 and I2 at points p1 and p2 respectively. Hassner et al. [71] showed that if

descriptors are sampled at different scales si and the min-dist measure, which is defined

as

min
i,j

dist(h1
si , h

2
sj ), (4.35)

is used as matching score, it is possible to obtain accurate matches even under scale

changes. Since SIFT descriptors are based on distributions of image gradients and [67] has

shown a strong relationship of the Census transform to an anisotropic gradient constancy

assumptions, it is reasonable to assume that a similar strategy might be applicable to

Census transform matching.

We define a variant of the Census transform, which is easily amenable for multi-scale
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resampling, by using radial sampling instead of a window-based sampling strategy. An

example of this sampling strategy is shown in Figure 4.6. We sample radially around

the center point. Samples from the inner ring are averaged and serve as the basis value

for generating the Census string, i.e. the average takes the role of the center pixel when

compared to the standard Census transform. To generate the Census string, samples on

the outer ring are compared to the average value. All samples are extracted using bilinear

interpolation, whenever a sampling point is not in the center of a pixel. This strategy allows

simple rescaling of the descriptor, which is important for an efficient implementation. The

radial sampling shares similarities to Local Binary Patterns [112].

Formally, we fix some radial discretization step θ = 2π
K and a radius r and introduce

scale depended coordinates x̂ = (x̂1, x̂2)T

x̂1(k, s, r) = x1 + rs cos(kθ), x̂2(k, s, r) = x2 + rs sin(kθ) (4.36)

We define the difference between the average value of the inner ring ri = s
4 and the l-th

sample from an outer ring r as

f(I, x̂, l, s, r) = 1
K

K∑
k=1

(Gs ∗ I)(x̂(k, s, s4))− (Gs ∗ I)(x̂(l, s, r)), (4.37)

where Gs denotes a Gaussian kernel with variance s. Analogous to the Census assignment

function (4.33) we define the scale-dependent Census assignment function as

Csε (I,x, l, r) = sgn(f(I,x, l, s, r))1|f(I,x,l,s,r)|>ε, (4.38)

This definition allows to compare descriptors at different scales s1 and s2 using the Ham-

ming distance:

ρs1s2(x,u(x), I1, I2) =
L∑
l=1

R∑
r=1

1C
s1
ε (I1,x,l,r)6=Cs2

ε (I2,x+u(x),l,r). (4.39)

By introducing the min-dist measure we finally arrive at the scale-robust Census data

term:

ρ(x,u(x), I1, I2) = min
s1,s2

ρs1s2(x,u(x), I1, I2). (4.40)

While this data term is highly non-linear and non-convex, it can still be easily integrated

into our continuous model using the convex quadratic approximation (4.30).

In practice we fix the scale in the first first image to the original scale and compute

ρ1
s2 for a number of scales s2. This definition is slightly biased toward forward motion,

but is also able to handle moderate scale changes in the other direction. Figure 4.7 shows

the qualitative behavior of the scale-robust data term in areas that undergo a strong scale
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(a) I2 (b) I1

(c) Census - Flow (d) Census - Error

(e) SCensus - Flow (f) SCensus - Error

(g) Selected Scale

Figure 4.7: Example behaviour of the Census dataterm and the scale-robust Census dataterm.
The wall to the right undergoes a strong scale change. Census fails in these areas. Using scale-
robust Census we are able to find a correct flow field.

change. It can be seen that the proposed data term is able to successfully choose the

correct scale on many points, which allows the global model to achieve accurate results.

4.3.3 Higher-Order Priors

Now that we have discussed enhancements to the data term we can turn our attention

to the enhancement of the optical flow prior. The basic optical flow model, which was
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introduced in the beginning of this chapter, models the prior based on the gradients of the

flow fields. A TV -based prior supports jumps in the optical flow field but has a strong

assumption of piecewise constant flow fields. This not only results in staircasing but may

also be detrimental in areas where the data term is ambiguous, like on slanted surfaces

with a homogeneous texture. Higher-order priors can remedy this problem. We already

introduced TGV and different variants which can be conditioned on the reference image.

All these higher-order priors are convex, as a consequence they can be easily incorporated

into our general optical flow model.

For sake of completeness, in this subsection we discuss how a optical flow model with

the quadratic approximation of the (scale-robust) Census transform and a higher-order

prior can be optimized. We also compare the different variants of the higher-order priors

discussed in the preceding chapter visually. A quantitative comparison follows at the end

of this chapter.

Total Generalized Variation We have already seen in Section 3, how a general TGV -

based model with convex data terms can be optimized (see Algorithm 3.1). Now consider

the following optical flow model

min
(u,v)

TGV 2
α(u) + TGV 2

α(v) + λ

∫
Ω
ρ̂(x, (u(x), v(x))T , I1, I2) dx, (4.41)

where the flow component u(x) = (u(x), v(x))T are individually penalized (there is now

coupling among horizontal and vertical displacements in the prior) and the data term ρ̂

is of the form (4.30). We assume the same discretization on a regular grid as shown in

Chapter 3, which results in the spatially discrete model:

min
u,wu,v,wv

α1 ||∇u− wu||2,1 + α0 ||∇wu||2,1 + α1 ||∇v − wv||2,1 + α0 ||∇wv||2,1 +

λ
∑
i,j

ρ̂((i, j)T , ((u)i,j , (v)i,j)
T , I1, I2) (4.42)

Algorithm 3.1 can be applied to solve this model using some minor modifications: First,

the gradient descent steps and projections which are related to the prior are decoupled in

the variables u and v. They thus can be performed independently. Second, the proximal

operator proxτg(û) needs to be specified. This term is dependend on both displacement

directions and is thus coupled in general. The iterations of this algorithm are shown in

Algorithm 5.3. The proximal mapping reduces point-wise to a quadratic program, which

can be easily solved in closed-form. We have

u = proxτg(û)⇔ ui,j = arg min
u

1

2
||u− ûi,j ||2 + λτρ̂((i, j)T ,u, I1, I2). (4.43)

We will use the short-hand notation ui,j = proxτ ρ̂(ûi,j) to denote this pointwise proximal

operator for the remainder of this thesis.
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1. Set u = ū ∈ <M , v = v̄ ∈ <M , wu ∈ <2M , wv ∈ <2M

2. Set pu, pv ∈ P , qu, qv ∈ Q, set k = 0

3. While not converged

puk+1 = projp∈P (puk + σ(∇ūk − w̄uk ))

pvk+1 = projp∈P (pvk + σ(∇v̄k − w̄vk))

quk+1 = projq∈Q(quk + σ∇w̄uk )

qvk+1 = projq∈Q(qvk + σ∇w̄vk)

(uk+1, vk+1) = proxτg((uk − τ∇∗puk+1, vk − τ∇∗pvk+1))

wuk+1 = wuk − τ(∇∗quk+1 − puk+1)

wvk+1 = wvk − τ(∇∗qvk+1 − pvk+1)

ūk+1 = 2uk+1 − uk
v̄k+1 = 2vk+1 − vk
w̄uk+1 = 2wuk+1 − wuk
w̄vk+1 = 2wvk+1 − wvk
k = k + 1

Algorithm 4.1: Primal-Dual algorithm for optimization of (4.41).

Now, by substituting (4.30) and dropping constant terms, the proximal operator can

be equivalently written as

ui,j = arg min
u

1

2λτ
||u− ûi,j ||2 +

1

2
uTHi,ju + (∇ρi,j −Hi,j(u0)i,j)

Tu, (4.44)

where Hi,j is a positive semi-definite approximation to the Hessian of the data term and

∇ρi,j is the spatial gradient at pixel (i, j), respectively. This is a convex quadratic program

in two unknowns. We can state it in the standard form of quadratic programming by

expanding the quadratic norm term and again dropping constants:

arg min
u

1

2λτ
(uTu− 2ûTi,ju) +

1

2
uTHi,ju + (∇ρi,j −Hi,j(u0)i,j)

Tu

= arg min
u

1

2
uT (Hi,j +

1

λτ
Id)u + (∇ρi,j −Hi,j(u0)i,j −

1

λτ
ûi,j)

Tu

= arg min
u

1

2
uTAu + bTu (4.45)

The a minimum of (4.45) is given by the solution of the linear system

Au = −b. (4.46)

For the diagonal approximation (4.31) the solution again decouples in the two unknowns,
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whereas for the full approximation (4.32) the inverse of the matrix A can be explicitly and

efficiently formed.

Image-driven Total Generalized Variation We now replace the standard TGV reg-

ularizer by the image-driven variant discussed in Section 3.1.1, i.e. we consider the model

min
(u,v)

ITGV (u) + ITGV (v) + λ

∫
Ω
ρ̂(x, (u(x), v(x))T , I1, I2) dx. (4.47)

Again, assuming the standard discretization on a rectangular grid, we can apply the

primal-dual algorithm using some small modifications. The difference between optimiza-

tion of (4.41) and (4.47) is that an additional linear operator is applied in the descent

and ascent steps of the algorithm, which reflects the conditioning on the image content

I1. Moreover, it is convenient to replace the constant step-sizes τ and σ with the pre-

conditioning scheme discussed in Section 2.2.3.1, since they would otherwise have to be

estimated for every input image I1 separately.

Using the discretization on a grid of size Nx × Ny, the optical flow model with an

image-driven TGV prior reads:

min
u,wu,v,wv

α1

∣∣∣∣∣∣∣∣M 1
2 (∇u− wu)

∣∣∣∣∣∣∣∣
2,1

+ α0 ||∇wu||2,1 + α1

∣∣∣∣∣∣∣∣M 1
2 (∇v − wv)

∣∣∣∣∣∣∣∣
2,1

+ α0 ||∇wv||2,1 +

λ
∑
i,j

ρ̂((i, j)T , ((u)i,j , (v)i,j)
T , I1, I2), (4.48)

where the entries of the operator M
1
2 ∈ <2M×2M are given by

M
1
2 =

(
Ma Mc

Mc Mb

)
=

(
diag(ma) diag(mc)

diag(mc) diag(mb)

)
. (4.49)

It is assumed that the first M rows of ∇ correspond to finite differences in x-direction and

the last M rows of ∇ correspond to finite differences in y-direction. Different orderings

are of course possible, but the form of M
1
2 has to be adapted accordingly.

The coefficients ma,mb,mc ∈ <M are given according to the anisotropic diffusion

tensor defined in (3.42):(
(ma)i,j (mc)i,j
(mc)i,j (mb)i,j

)
= exp(−γ |(∇I1)i,j |β2 )ni,jn

T
i,j + n⊥i,jn

⊥T

i,j . (4.50)

Note that the operator M
1
2 has a block diagonal structure and that it is symmetric.

Problem (4.48) can be transformed into a saddle-point structure by rewriting the norms
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in terms of duality:

min
u,wu

v,wv

max
pu∈P,qu∈Q
pv∈P,qv∈Q

〈
M

1
2 (∇u− wu), pu

〉
+ 〈∇wu, qu〉+

〈
M

1
2 (∇v − wv), pv

〉
+ 〈∇wv, qv〉

+ λ
∑
i,j

ρ̂((i, j)T , ((u)i,j , (v)i,j)
T , I1, I2). (4.51)

Application of the primal-dual algorithm with preconditioning to this saddle-point problem

yields the iterations shown in Algorithm 4.2. The algorithm includes additional diagonal

preconditioning matrices Σ and T , which ensure convergence of the algorithm and can be

computed efficiently on the fly. This approach was already discussed in Section 2.2.3.1

for general linear operators. For this specific instance, the preconditioning matrices can

be decomposed into submatrices based on the variables they are acting on (denoted by

subscripts). The preconditioning matrices can be derived by summing the coefficients of

the linear operators along the horizontal and vertical directions, respectively. We assume

a preconditioning exponent of α = 0, which results in the following diagonal entries in the

preconditioning matrices for the variable u and v:

1

(Tu,v)k,k
= ((ma)i,j + (mc)i,j)

2 + ((mb)i,j + (mc)i,j)
2

+ (ma)
2
i−1,j + (mb)

2
i,j−1 + (mc)

2
i−1,j + (mc)

2
i,j−1, Tu,v ∈ <M×M , (4.52)

where k is the linear index corresponding to pixel i, j. For the second-order variables w, we

need to discriminate between the components related to horizontal and vertical derivatives

(w has two entries per pixel!):

(Tw)k,k = ((ma)
2
i,j + (mc)

2
i,j + 4)−1

(Tw)k+M,k+M = ((mb)
2
i,j + (mc)

2
i,j + 4)−1, Tw ∈ <2M×2M (4.53)

Finally due to the choice of α, computing the preconditioning matrices for the dual steps

amounts to merely counting the number of entries in each row of the operator, which

results in constant dual step sizes:

Σp =
1

5
Id, Σq =

1

2
Id (4.54)

In a practical implementation, the linear operators ∇, M
1
2 and the preconditioning

matrices need not to be formed explicitly. All operations can be performed locally. Finite

differences can be computed locally in an explicit form (see explicit computation in Sec-

tion 2.3.2) and reweighted by multiplication with the local 2 × 2 matrix that is given by

the diffusion tensor (4.50). The step-sizes which result from the preconditioning matrices

can also be computed explicitly. This locality enables efficient implementations on graph-
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ics processing units, with only moderate overhead when compared to the baseline TGV

model 4.41.

1. Set u = ū ∈ <M , v = v̄ ∈ <M , wu ∈ <2M , wv ∈ <2M

2. Set pu, pv ∈ P , qu, qv ∈ Q, set k = 0

3. While not converged

puk+1 = projp∈P (puk + ΣpM
1
2 (∇ūk − w̄uk ))

pvk+1 = projp∈P (pvk + ΣpM
1
2 (∇v̄k − w̄vk))

quk+1 = projq∈Q(quk + Σq∇w̄uk )

qvk+1 = projq∈Q(qvk + Σq∇w̄vk)

(uk+1, vk+1)Ti,j = proxτi,jλρ̂((uk − Tuv∇∗M
1
2 puk+1, vk − Tuv∇∗M

1
2 pvk+1)Ti,j)

wuk+1 = wuk − Tw(∇∗quk+1 −M
1
2 puk+1)

wvk+1 = wvk − Tw(∇∗qvk+1 −M
1
2 pvk+1)

ūk+1 = 2uk+1 − uk
v̄k+1 = 2vk+1 − vk
w̄uk+1 = 2wuk+1 − wuk
w̄vk+1 = 2wvk+1 − wvk
k = k + 1

Algorithm 4.2: Primal-Dual algorithm for optimization of (4.47).

Non-Local Total Generalized Variation Non-Local Total Generalized Variation can

be expected to yield improved results over ITGV since larger areas can interact and it

is possible to model segmentation cues directly into the prior. Consider the optical flow

model with Non-Local TGV prior:

min
(u,v)

NLTGV (u) + NLTGV (v) + λ

∫
Ω
ρ̂(x, (u(x), v(x))T , I1, I2) dx, (4.55)

The discretization of the NLTGV term for scalar functions u was already shown in Sec-

tion 3.1.2. For the two-dimensional flow model, we introduce a signed distance matrix

Dkl =

(
d1
kl d2

kl 0 0

0 0 d1
kl d2

kl

)
∈ <2×4, (4.56)

where dkl = (d1
kl, d

2
kl)

T = lk − ll again denotes the difference in spatial location between

pixels k and l. Let pkl ∈ <2 and qkl ∈ <4 be the dual variable associated to the connection

of pixels k and l. Since it differs from our previous notation, it is important to note
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that this grouping is in terms of the flow components, i.e. the first component in pkl
is related to the horizontal displacement u and the second component is related to the

vertical displacement v. Analogously for each qkl the first two components are related to

horizontal displacement and the last two components are related to vertical displacement.

The discretized model can be compactly written in its primal-dual formulation as

min
u,w

max
||pkl||∞≤(α1)kl
||qkl||∞≤(α0)kl

∑
k

∑
l>k

[(uk − ul +Dklwk) · pkl + (wk −wl) · qkl]

+λ
∑
k

ρ̂(lk, (u)k, I1, I2). (4.57)

The primal-dual algorithm applied to this saddle-point problem is shown in Algorithm 4.3.

We specified the iterations on the pixel level, since the linear operators arising from

NLTGV are very complex. The feasible sets for the dual variables are given pointwise as

Pkl = {pkl ∈ <2 : ||pkl||∞ ≤ (α1)kl}
Qkl = {qkl ∈ <4 : ||qkl||∞ ≤ (α0)kl}. (4.58)

A projection onto Pkl can be achieved by clamping each component to the interval

[−(α1)kl, (α1)kl]. Projection onto Qkl can be handled analogously. The algorithm again

features a preconditioning scheme via the step-sizes τw, τu and σp, σq. Since the spatially

varying weights are captured by the convex sets Q and P , these are constant whoever and

fully determined by the support size of the regularizer. If we consider a window of size h,

then

(Tu)k,k = (τu)k = (4((h− 1)/2)((h− 1)/2 + 1))−1

(Tw)k,k = (τw)k = (8((h− 1)/2)((h− 1)/2 + 1))−1

(Σp)kl,kl = (σp)kl = (2 + ||dkl||2)−1

(Σq)kl,kl = (σq)kl =
1

2
(4.59)

The support weights are computed as bilateral weights as shown in (3.51). Other

choices, such as geodesic distances [42], are possible, as long as the weights remain non-

negative.

4.4 Experiments

In this section we evaluate the performance of the proposed models on two challenging

data sets. The models were implemented using CUDA; all experiments were conducted

on a Geforce 780Ti GPU. We use a scale factor of 0.8 for the coarse-to-fine pyramid and

15 warps per pyramid level. For the scale-robust data term we evenly sample 7 scales
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1. Set u = ū ∈ <2M , w ∈ <4M

2. Set pkl ∈ Pkl, qkl ∈ Qkl, set n = 0

3. While not converged

pn+1
kl = projpkl∈Pkl

(pnkl + (σp)kl(ū
n
k − ūnl +Dklw̄

n
k ))

qn+1
kl = projqkl∈Qkl

(qnkl + (σq)kl(w̄
n
k − w̄n

l ))

un+1
k = prox(τv)kλρ̂

(unk − (τv)k
∑

k>l(p
n+1
kl − pn+1

lk ))

wn+1
k = wn

k − (τw)k
∑

k>l(q
n+1
kl − qn+1

lk +DT
klp

n+1
kl )

ūn+1
k = 2un+1

k − unk

w̄n+1
k = 2wn+1

k −wn
k

n = n+ 1

Algorithm 4.3: Primal-Dual algorithm for optimization of (4.57). The algorithm is formulated
in terms of local per-variable updates.

between 0.5 and 2 in both image. For NLTGV, we fix wp = 2, which gives a good trade-off

between accuracy and computational complexity. The remaining parameters were adapted

for each benchmark individually. With these settings the runtimes of TGV and ITGV

are approximately 4 seconds, whereas the NLTGV -based models take approximately 16

seconds. Faster runtimes, for the price of reduced accuracy, can be achieved by using a

smaller pyramid factor or less warps.

Throughout our experiments we use the average End-Point Error (EPE) in pixels as

evaluation metric, which is defined as the average distance of the estimated displacement

from the groundtruth displacement ugt:

EPE(u) =
1

NxNy

∑
i,j

||ui,j − (ugt)i,j ||2 . (4.60)

For visualization we follow the methodology of the Middlebury benchmark [9], which

visualizes optical flow as a color-coded image, where hue indicates direction and saturation

indicates magnitude of the flow. Figure 4.8a shows this color-coding together with an

example of a color coded flow in Figure 4.8b. An alternative visualization as a subsampled

quiver plot is shown in Figure 4.8c. The color-coding of error images is shown in Figure

4.8d, where color codes pixels with EPE below a certain threshold.

4.4.1 KITTI Benchmark

The KITTI Benchmark [59] features an optical flow benchmark with realistic sequences

taken from a moving car. The data set is split into a training set of 194 images pairs and

a test set of 195 image pairs. Optical flow groundtruth on this benchmark was computed

directly from groundtruth stereo data, which was obtained using a Velodyne laserscanner,
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(a) Color code of flow (b) Color coded flow (c) Quiver plot

≤ 0.1875 ≤ 0.375 ≤ 0.75 ≤ 1.5 ≤ 3 ≤ 6 ≤ 12 ≤ 24 ≤ 48 < ∞

(d) Color code of error images

Figure 4.8: Color-coding.

and by projecting a 3D point cloud to a temporally neighboring frame. We use the training

set, where groundtruth optical flow is available, to show the influence of Non-Local TGV

as well as the scale-robust data term. As a baseline model we use standard TGV with gra-

dient constancy assumption. We compare different combinations of regularizers and data

terms: Standard TGV (TGV ), Image-Driven Total Generalized Variation (ITGV) as well

as Non-Local Total Generalized Variation (NLTGV). Each regularizer was evaluated in

combination with the gradient constancy assumption (GRAD), normalized cross correla-

GRAD NCC CENSUS SCENSUS

T
G

V

2px 12.52 10.23 9.17 8.73
3px 10.20 7.72 6.84 6.59
4px 8.83 6.48 5.78 5.53
5px 7.85 5.71 5.12 4.84
EPE 2.40 1.77 1.66 1.54

IT
G

V

2px 11.36 8.81 8.11 7.97
3px 9.27 6.67 6.27 6.01
4px 8.10 5.63 5.38 5.04
5px 7.28 4.98 4.82 4.44
EPE 3.88 2.71 1.64 1.48

N
L
T

G
V 2px 10.19 8.46 7.58 7.35

3px 8.12 6.31 5.74 5.50
4px 7.06 5.35 4.90 4.59
5px 6.24 4.72 4.34 4.00
EPE 1.92 1.52 1.44 1.32

Table 4.1: Average error in % for different models and different error thresholds on the KITTI
NOC-training set.
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Out-Noc [%] Out-All [%] Avg-Noc [px] Avg-All [px] RT [s]

3px 2px 3px 2px

NLTGV-SC 5.93 7.64 11.96 14.55 1.6 3.8 16
DDR-DF [163] 6.03 8.23 13.08 16.01 1.6 2.7 60
TGV2ADCS [24] 6.20 8.04 15.15 17.87 1.5 4.5 12
DataFlow [157] 7.11 9.16 14.57 17.41 1.9 5.5 180
EpicFlow [128] 7.19 9.53 16.15 19.47 1.4 3.7 15
DeepFlow [164] 7.22 9.31 17.79 20.44 1.5 5.8 17

Table 4.2: Average error on the KITTI test set for error thresholds 3px and 2px. Suffixes “Noc”
and “All” refer to errors evaluated in non-occluded and all regions, respectively. “RT” denotes
runtime in seconds.

tion (NCC) (exact expressions for these terms will be given in the upcoming chapter), the

Census data term (CENSUS), as well as the scale-robust Census data term (SCENSUS)

discussed in this chapter. For all data terms we used the quadratic approximation in order

to arrive at a convex model. The Census, NCC and NLTGV window sizes were set to 5×5.

We used a subset of the training set (20% of the images) to find optimal values for the

remaining parameters of each method using grid-search. Since the groundtruth flow fields

in this data set are not pixel-accurate, we follow the officially suggested methodology of

evaluating the percentage of pixels, which have End-Point Error above some threshold [59].

Table 4.1 shows a quantitative comparison between all possible pairings of data terms

and regularizers. It shows the percentage of wrong pixels for different standard error

thresholds, as well as the average endpoint error. It is evident from this table that a more

sophisticated regularizer leads to smaller errors in all considered error metrics. ITGV

consistently outperforms TGV and NLTGV consistently outperforms ITGV , regardless

of the type of data term used. This can be attributed to better behaviour around motion

boundaries and in the case of NLTGV also due to a larger support size that is included

locally for regularization. Secondly, it can be seen that gradient constancy is consistently

outperformed by more advanced data terms. NCC already shows large improvements. The

Census transform again gives an improvement over NCC. Last, the scale-robust Census

transform outperforms all other data terms. This is not surprising, since forward motion

is the dominant motion in this data set. Finally, Figures 4.9 and 4.10 show qualitative

results on this benchmark. All examples where computed with the SCENSUS data term.

Both figures show that the large support size of NLTGV is able to overcome artifacts, like

large occluded areas or a moderate amount of highlights on the windshield. Figure 4.11

shows a failure case of the proposed methods. Illumination artifacts which are present on

large parts of the image lead to conflicting estimates of the data term. This can not be

overcome by any of the proposed priors. Such cases will always be problematic for two-

frame optical flow methods, since they highlight the difference between apparent motion

and true object motion.
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The combination of NLTGV with the scale-robust Census transform leads to a state-

of-the art optical flow method, as is indicated by the results on the KITTI test data

set in Table 4.2. The proposed method NLTGV -SC was at the time of writing ranked

first among two-frame optical flow methods. In general we can conclude that TGV -

based models are an excellent choice for applications similar to the KITTI benchmark:

Estimating optical flow from a moving vehicle in man-made environments. For this setup

TGV -based regularizer provide strong prior cues for the task at hand and can be paired

with robust data terms.

Influence of the support weights for NLTGV So far the support weights for the

NLTGV regularizer were given by normalized bilateral weights computed from gray value

images. We repeat the experiment for the model with NLTGV regularizer and SCENSUS

data term with unnormalized support weights. The general equation used for the support

weights is given by

α1(x,y) =
1

Z(x)
exp(− ||I1(x)−I1(y)||

wc
) exp(− ||x−y||wp

), α0(x,y) = cα1(x,y). (4.61)

For normalized support weights, Z(x) ensures that all weights in a patch sum to one. This

normalization factor is given by

Z(x) =

∫
Ω
α1(x,y) dy. (4.62)

For unnormalized support weights we simply set Z(x) = 1.

Table 4.3 shows the average errors on the KITTI training data set. Unnormalized

support weights give a slightly lower error rate. The difference, however, is striking visu-

ally, where it is evident that motion boundaries which have corresponding high-contrast

edges in the reference image are sharper for unnormalized support weights. Motion bound-

aries are more strongly blurred, however, if the corresponding edge is of low-contrast (cf.

Figure 4.12) in the case of unnormalized weights. This is not surprising, since the normal-

ization balances the influence of an edge, based on the local structure of the patch under

consideration.

Figure 4.13 shows an evaluation of different window sizes and color weights wp on the

accuracy. We used the Middlebury Optical Flow benchmark [9] for this evaluation. Figure

4.13a shows the average EPE for an increasing spatial parameter wp, where the window

size was set to 2wp + 1. It can be seen that the error decreases up to a window size of

7× 7 and slowly rises after that. Figure 4.13b shows the influence of the color parameter.

There is a sweet spot between being too strict in terms of color/intensity distance, which

may result in isolated regions and being too lenient, which does not allow for an effective

grouping based on color.
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Figure 4.9: Comparison between TGV , ITGV and NLTGV . NLTGV can successfully extrapolate the flow in the challenging occluded
area in the lower right of the reference image. From top to bottom: Input images, TGV , ITGV , NLTGV . From left to right: Flow and
corresponding error.
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Figure 4.10: Comparison between TGV , ITGV and NLTGV . Note that the error introduced by the highlights on the windshield are less
pronounced for NLTGV and ITGV , when compared to the TGV result. From top to bottom: Input images, TGV , ITGV , NLTGV . From
left to right: Flow and corresponding error.
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Figure 4.11: Failure case. Due to the dominant highlights on the windshield the data term completely fails for large areas. None of the
regularizers is able to overcome such problems. From top to bottom: Input images, TGV , ITGV , NLTGV . From left to right: Flow and
corresponding error.
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(a) I1 (b) I2

(c) Normalized (d) Unnormalized

(e) Normalized - Horizontal displacement (f) Unnormalized - Horizontal displacement

(g) Normalized - Vertical displacement (h) Unnormalized - Vertical displacement

Figure 4.12: Comparison between unnormalized and normalized support weights.
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Figure 4.13: Evaluation of NLTGV parameters.

4.4.2 Sintel Benchmark

The synthetic Sintel Benchmark [32] features large motion, challenging illumination con-

ditions and specular reflections. In our evaluation we use the final sequence, which addi-

tionally contains motion blur and atmospheric effects. We use two image pairs from each

subsequence of the training set to find optimal parameters and report the average EPE

as error measure.

Since this benchmark features sequences of strongly varying difficulty, we show a break-

down of the error on its individual subsequences in Table 4.4. It can be seen that TGV

and ITGV perform similar on this data set, with ITGV being slightly more robust for

very challenging sequences. NLTGV on the other hand clearly leads to the best results on

sequences of low to moderate difficulty. The failures on very difficult scenes are typically

due to very large motions and artifacts like strong motion blur. Algorithms which are

based on coarse-to-fine warping completely fail on such sequences.

Table 4.5 show results on the Sintel test set. We see an improvement over the TGV -

based model [157] and an NLTV -based model (NLTV -SC). As already noted, the most

critical regions for the overall error are high-velocity regions, which are problematic in

purely coarse-to-fine-based methods. Hence, it is not surprising that methods which in-

tegrate some form of sparse matching [97, 164] work better than classical coarse-to-fine-

based approaches on this dataset. A-priori matches could be easily integrated into our

2px 3px 4px 5px EPE

Normalized 7.35 5.50 4.59 4.00 1.32
Unnormalized 7.18 5.36 4.45 3.88 1.30

Table 4.3: Comparison of different strategies for computing the NLTGV support weights.



4.4. Experiments 93

TGV ITGV NLTGV

alley1 0.47 0.47 0.36
alley2 0.43 0.44 0.32

ambush2 43.16 41.97 43.57
ambush4 34.38 33.99 34.15
ambush5 13.84 12.74 14.20
ambush6 22.92 25.40 22.96
ambush7 1.74 1.41 1.50
bamboo1 0.56 0.56 0.46
bamboo2 1.61 1.95 1.32
bandage1 0.83 0.82 0.72
bandage2 0.69 0.68 0.58

cave2 14.60 13.86 14.93
cave4 6.94 6.78 5.95

market2 1.47 1.53 1.18
market5 20.36 23.07 21.88
market6 6.05 5.65 4.26

mountain1 0.98 0.85 0.70
shaman2 0.46 0.43 0.34
shaman3 0.78 0.71 0.49
sleeping1 0.16 0.17 0.09
sleeping2 0.14 0.16 0.08
temple2 4.00 4.11 3.59
temple3 20.03 18.89 19.30

Average 6.77 6.75 6.61

Table 4.4: Average EPE in pixels on the Sintel training data set with different regularizers.
The data term was fixed to SCENSUS. NLTGV outperforms TGV and ITGV consistently on
sequences of small to medium difficulty. ITGV and TGV are slightly more robust on sequences
of high difficulty, where the coarse-to-fine warping completely fails.

model [24]. We leave such an extension for future work. Finally, Figures 4.14 and 4.15

show a qualitative comparison between TGV and NLTGV on this benchmark.

Rank Method EPE all s0-10 s10-40 s40+

1 EpicFlow [128] 6.469 1.180 4.000 38.687
4 DeepFlow [164] 7.212 1.284 4.107 44.118
21 NLTGV-SC 8.746 1.587 4.780 53.860
23 DataFlow [157] 8.868 1.794 5.294 52.636
28 NLTV-SC 9.855 1.202 4.757 64.834

Table 4.5: Average EPE for a selection of different models on the Sintel test set. The columns
“sA-B” refer to EPE over regions with velocities between A and B.
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(a) Input images

(b) Groundtruth

(c) TGV

(d) ITGV

(e) NLTGV

Figure 4.14: Results on Sintel dataset.
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(a) Input images

(b) Groundtruth

(c) TGV

(d) ITGV

(e) NLTGV

Figure 4.15: Results on Sintel dataset.
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(a) Input images

(b) Groundtruth

(c) TGV

(d) ITGV

(e) NLTGV

Figure 4.16: Failure cases on Sintel. Sequences with very large motions and dominant occlusions
can not be resolved by the coarse-to-fine approach.
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4.5 Discussion

In this chapter we have introduced various robust higher-order variational models for

optical flow estimation. Census-based data terms provide robust matching results, the

proposed second-order models have been shown to provide state-of-the-art results on chal-

lenging optical flow benchmarks. It is notable that TGV and its proposed extensions

perform especially well on the realistic KITTI dataset. One of the main reason is that the

motion which is mainly featured in this data set is very well modeled by the assumption of

a piecewise affine optical flow field. On the synthetic Sintel benchmark, which features a

wider array of motions, we also observe an increase in robustness and accuracy, but not to

such a large degree. This benchmark highlights one of the main drawbacks of coarse-to-fine

based models: they have problems with very large motions, especially of small structures.

Examples of such failure cases are shown in Figure 4.16. The problems get only worse if

additional adverse conditions, such as atmospheric effects or large untextured regions, are

present in the images.
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The task of stereo matching is to estimate the depth of scene points from two images

viewing a scene from different angles. This concept can be extended to multiple images,

each viewing the scene from different angles. Typically, two slightly shifted cameras are

used to acquire stereo images simultaneously. Note, however that all principles presented

here still ably to a single camera viewing a static scene from different positions at different

times, provided that the two positions of the camera are known.

Variational stereo methods give an estimate of scene depth for every point. The stereo

problem is intrinsically a matching problem, in order to give an estimate of scene depth

it is necessary to find matching pixels or patches between the input images. While this

problem is severly ill-posed, a few geometric considerations from the setup of the cameras

viewing the scene can simplify the overall matching problem. In this section we give an

overview of state-of-the-art variational methods. We introduce the geometric principles

governing multi-view camera setups, and show how variational methods can be used to

exploit the special structure of the stereo matching problem.

99
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5.1 Epipolar Geometry

Images of stereo cameras full-fill an interesting relationship, which can be explicitly de-

scribed using epipolar geometry. Points x in one camera are constrained to lie on a line

in the second camera, the so-called epipolar line. This relationship reduces the stereo

correspondence problem to a one-dimensional matching problem along the epipolar lines,

which is arguably simpler than the optical flow problem. In this section we aim to give

a brief overview on camera geometry and especially the geometry of binocular camera

setups. A comprehensive treatment can be found in [70].

Let us first consider a single pinhole camera model with intrinsic calibration matrix

K =

f 0 px
0 f py
0 0 1

 , (5.1)

where f is the focal length (determining the distance of the image plane from the camera

center) and (px, py) is the principal point in the image plane (the origin of the image

coordinate system). If we assume that the camera is placed in the center of the world

coordinate system and the camera coordinate system is aligned with the world coordinate

system, the projection of a world point X = (X,Y, Z)T to the image plane of the camera

can be described in homogeneous coordinates as:

x =

zuzv
z

 = K

XY
Z

 = KX, (5.2)

where u and v are the coordinates in the image plane. The perspective transformation

incurs a loss of information since any point tX along the ray between the camera center

and the object point leads to the same projected coordinates u and v. Obviously it is

not possible to directly recover the depth of a point from a single general image. The

3D information is invariably lost (although 3D geometry can sometimes be recovered,

provided that the image admits some special structure [90]).

For cameras, which are not aligned with the world coordinate frame, we may introduce

the so-called extrinsic camera parameters, R and t which bring the coordinate systems

into alignment:

x = K[R|t]


X

Y

Z

1

 . (5.3)

Here R ∈ SO(3) is a rotation matrix and t = −RC ∈ <3 is a translation vector, where
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z
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I1
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I2

(
u
v

)

X

Figure 5.1: Binocular stereo vision. A 3D point on a surface is imaged by two cameras. Given
two matching pixels (the intersection of the blue rays with the image plane) the 3D point can be
triangulated.

C ∈ <3 is the camera center in the world coordinate frame. The matrix P = K[R|t] ∈ <3×4

is the projection matrix and fully describes the projective transformation of any 3D point

to the image plane assuming an ideal pinhole camera. Projected points in the image plane

can be back-projected to a ray X(λ), which passes trough the camera center and the point

in the image plane:

X(λ) = P+x + λC, (5.4)

where P+ denotes the pseudo-inverse of the projection matrix P .

Now consider two cameras C1 and C2 with projection matrices P1 and P2 viewing

the same scene (cf. Figure 5.1). Since both cameras view the same scene there will be

corresponding points. If these correspondences are known, it is possible to reconstruct

the original 3D point X using triangulation: The 3D point necessarily is at the location

where the back-projected rays intersect. It is now obvious that two cameras in principle

suffice for 3D reconstruction of a scene (up to some scale), provided that one can establish

correspondences between the images of the cameras.

So far we have established that 3D reconstruction is fundamentally a correspondence

problem, similar to the optical flow problem. One important difference is that the search

space in the stereo problem can be reduced to a one-dimensional space by exploiting the

inherent geometry of the camera setup. A fundamental observation is that if two camera

view the same scene point, the projections in the camera planes can not be at arbitrary

points. Instead one can deduce from the geometry of the cameras alone that for any given

point in one camera, the projection in the second camera is constrained to be on a specific
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Figure 5.2: Epipolar geometry.

line. To see this consider the back-projection of the point x1 from the first camera:

X(λ) = P+
1 x1 + λC1. (5.5)

Now consider the two world points point P+
1 x1 and C1 which both lie on this back-

projected ray. The second-camera images these points as x̃2 = P2P
+
1 x1 and e2 = P2C1,

respectively. e2 is called the epipole, which is the image of the first camera center in the

second camera (we can analogously define a point e1, which is the image of the second

camera center in the first camera). Now consider the line joining the points x̃2 and e2,

which is given by

l2 = e2 × x̃2. (5.6)

This line is denoted as epipolar line. In this representation a point y lies on the line if and

only if lT2 y = 0. By rewriting the cross product in matrix form, we arrive at the relation

l2 = [e2]×P2P
+
1 x1 = Fx1. (5.7)

The matrix F is called the fundamental matrix. It is important to note that the choice

of world point P+
1 x1 is arbitrary, any other point on the ray leads to the same epipolar

line l2 (cf. Figure 5.2). To see this simply plug in an arbitrary point on the ray

[e2]×P2(P+
1 x1 + λC1) = [e2]×P2P

+
1 x1 + λ [e2]×e2︸ ︷︷ ︸

=0

= l2 (5.8)

This shows that any point on the ray X(λ) is constrained to lie on a line in the second
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image, irrespective of its distance to the first camera. Thus in order to establish correspon-

dences in the stereo estimation problem, it suffices to search for correspondences along the

epipolar line. Moreover, the epipolar line is completely defined by the fundamental matrix

F , which itself is completely defined by the projection matrices of the two cameras. A

fundamental relation that corresponding points necessarily full-fill is given by

xT2 Fx1 = 0. (5.9)

This can be easily seen from geometric principles, e.g.the back-projected rays of the points

x1 and x2 intersect in some world point X̃, whos projection in the second-camera lies on

the epipolar line Fx1 (and vice-versa).

The fundamental matrix is a 3×3 matrix of rank 2, which has seven degrees of freedom.

It can be estimated linearly from 8 correspondences [69], no knowledge of the camera

calibration is necessary. The projection matrices can be recovered from the fundamental

matrix up to a projective ambiguity. However, if the camera calibrations are known, the

fundamental matrix can be specialized to the so-called essential matrix [99]:

E = KT
2 FK1 = [t]×R. (5.10)

The essential matrix has only 5 degrees of freedom (due to scale ambiguity). Moreover,

the projection matrices of the cameras can be recovered from the essential matrix up to

some unknown scale.

5.1.1 Rectification

Rectification is the process of reprojecting the images of two cameras to a common image

plane. This transformation results in horizontal epipolar lines, which is more convenient

for the subsequent matching stage. Rectification is tantamount with setting up two virtual

cameras which are related by a pure horizontal motion along the line connecting the optical

centers of the two cameras (the so-called baseline). As a result the stereo correspondence

problem is simplified to a search along the horizontal scanline.

The basic step of rectification algorithms is to rotate the cameras around their centers

such that their image planes are parallel to the baseline. Moreover, the intrinsic parameters

are adjusted such that the image planes are co-planar and corresponding points lie on the

same scanline. It is desirable to minimize the amount of distortion that is introduced

by the rectifying tranformation. While there are multiple different ways to achieve a

rectification, we briefly explain the simple approach by Fusiello et al. [58]. Consider two

cameras described by the projection matrices

P1 = K1[R1| −R1C1], P2 = K2[R2| −R2C2]. (5.11)
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The goal of the rectification algorithm is to find new projection matrices

P̃1 = K̃[R̃| − R̃C1], P̃2 = K̃[R̃| − R̃C2], (5.12)

which fulfill the previously mentioned requirements. The rotation matrix R̃ is chosen as

R̃ =

rT1
rT2
rT3

 , (5.13)

where the individual vectors r denote the axes of the new coordinate frame and are given

by

r1 =
C1 −C2

||C1 −C2||
, r2 = k× r1, r3 = r1 × r2, (5.14)

(a) Unrectified

(b) Rectified

Figure 5.3: Example of image rectification. A few salient image points in the left image together
with their corresponding epipolar lines in the right image are shown. Note that in the rectified
pair, the epipolar lines are horizontal and on the same scanline as the points to be matched in the
left image.
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where k is some arbitrary unit vector. The new intrinsic parameters K̃ can be set arbi-

trarily (it is only important that they are the same for both cameras), but are computed

by averaging the original intrinsic parameters in practice.

The final rectifying tranformation, which transform points from the original camera to

the new rectified camera, i.e. the homography x̃1 = T1x1, can be computed from the old

and the new camera matrices by

T1 = Q̃1Q
−1
1 , (5.15)

where P̃1 = [Q̃1|q̃1] and P1 = [Q1|q1], i.e. Q̃1 and Q1 are 3× 3 submatrices of the old and

new projection matrix, respectively. The rectifying transformation for the right camera

can be computed analogously.

Figure 5.3 shows an example of stereo rectification. Note that in the unrectified setup

the epipolar lines are slanted and the corresponding point-epipolar pairs do not lie on the

same scanline. After rectification, the epipolar lines are parallel and coincide with the

horizontal scanline.

The described rectification process will fail if the original cameras are related by a

pure forward translation [58], and result in strongly distorted rectified images if there is

a dominant forward translation between the cameras. While such a setup will not arise

in a classical binocular stereo system, it may arise in the case of a single forward moving

camera. For such cases it is often still possible to perform a rectification using more

sophisticated methods [113].

5.1.2 Computing Depth from Rectified Image Pairs

For rectified image pairs we have shown that the stereo problem reduces to a matching

problem along the horizontal scanline. It remains to show how depth can be recovered

from this setup. Consider the rectified stereo setup shown in Figure 5.4. A 3D world

point X = (X,Y, Z)T is imaged in the left and right cameras at horizontal positions x1

and x2 and at vertical position y, respectively. If we assume the first camera (the reference

camera) to be in the origin of the world-coordinate system, then from similar triangles,

we get the relations

Z

f
=
X

x1
,

Z

f
=
X − b
x2

,
Z

f
=
Y

y
, (5.16)

where the length of the horizontal translation between the cameras is denoted by the

baseline b. By rearranging it is possible to compute the position X of the world point:

Z =
bf

x1 − x2
, X =

x1Z

f
, Y =

yZ

f
. (5.17)
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The defining quantity is the horizontal displacement dx = x1 − x2 between the images of

the world point in the two cameras. We call this quantity the disparity, which is typically

directly the sought after quantity in two-view stereo matching algorithms. It is inversely

proportional to the depth of a world point and offers the benefit that it is a natural

quantity to search for correspondence, since it can be directly estimated by correlating

pixels or patches at uniformely spaced positions on the horizontal scanline.

C2

C1

b

Image plane

(X,Y, Z)T

Z

f

X − b

x1

x2

Figure 5.4: Recovery of depth from disparity. We assume that the world coordinate system
coincides with the coordinate system of camera C1 (the reference view).

5.2 Related Work

Stereo models can be similarly categorized into different classes of models as optical flow

models. In view of the most prevalent approaches, however, it becomes obvious that in

contrast to optical flow, the vast majority of models for stereo matching are discrete, i.e.

the matching problem is modeled as a discrete labeling problem. This is due to the fact that

for common image sizes and stereo setups, discrete modeling is computationally feasible,

since the label space is only one-dimensional. Since large displacements are not an inherent

problem in discrete models, they are especially appealing for stereo setups with a large

baseline. We will later introduce a variational model that is motivated and formulated in

continuous space, but reduces to a discrete problem in the actual implementation.

Based on the dominant approaches, we distinguish three classes of stereo algorithms:

1. Local methods

2. Global methods

3. Semi-Global methods
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Again, it is often not possible to perform a hard categorization of any given algorithm,

since many of them draw ideas from the different categories (in particular, local methods

typically directly form the basis of global and semi-global methods).

Local Methods Local methods are the earliest approaches to compute depth from

binocular camera setups [98]. Local methods match patches or pixels along the epipolar

line at some predefined discrete intervals (disparities). They then assign to each pix-

els the disparity giving the lowest matching error/cost. The accuracy and robustness

can be increased by aggregating costs in some neighborhood of a pixel. This can be

achieved by simple averaging [50] or median filtering or by more sophisticated edge-aware

approaches [81].

The most popular correlation methods will be discussed in the following section. Apart

from the used correlation method, local methods may differ in the way how the cost is

aggregated in order to increase robustness to outliers and allow for well-aligned depth

boundaries and how the results are post-processed. Yoon and Kweon [174] propose to us

a bilateral weighting scheme to increase the accuracy along depth boundaries. Zhang et

al. [178] propose an efficient cross-based edge-aware aggregations scheme based on integral

images. Einecke and Eggert [51] relax the inherent assumption of fronto-parallelism in the

cost aggregation stage, which allows for larger correlation windows even in the presence

of slanted surfaces.

Since local methods do not explicitly model global smoothness, the results are often

noisy and ambiguous areas are not handled well. On the positive side, local methods are

very fast and easy to implement. Moreover, the local matching often forms the basis of

global or semi-global methods, it is thus of significant interest to find robust and accurate

local methods.

Global Methods Global methods on the other hand also have a global smoothness

assumption. Global methods themselves again can be divided into discrete and continuous

models. Discrete models model disparity as a discrete quantity. As such local methods

form the basis of these type of global models. Discrete models have the advantage that

fairly general energies, both in terms of the prior and the data term, can be considered.

But this comes for the price of large memory demand and computational complexity (this

is especially striking if the number of possible disparities is large). Continuous models

on the other hand are comparatively fast and have low memory demand, but are not as

flexible when it comes to the form of the energy.

There is a large body of work on discrete stereo models. A classical paradigm is

to directly model disparity as a label and solve the resulting combinatorial optimization

problem using Graph Cuts [88] or Belief Propagation [54, 118, 148, 149, 173]. Another

popular approach is to use external proposals and perform a series of fusion moves to

iteratively optimize the global model [96, 167]. Recent state-of-the-art approaches abandon

the pixel-wise labeling in favor of higher-level reasoning on super-pixels or small segments
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of the scene [170, 171]. Other recent state-of-the-art models include more frames into the

estimate and perform a simultaneous estimation of optical flow and stereo [172] or directly

model the 3D scene flow and reproject it to get stereo and optical flow estimates [158, 159].

Most of these methods rely on standard stereo approaches like Semi-Global Matching [77]

to generate accurate initial proposals, which are then refined.

Continuous global models are less popular for the task of stereo matching, since they

tend to miss small-scale structure and large disparity ranges may pose significant challenges

to the optimization procedure. Nonetheless there are a few examples of these models: Wei

et al. [163] used a continuous Markov Random Field (MRF) formulatiom for stereo and

optical flow, with a learned regularization term. Heise et al. [74] incorporated the Patch-

Match stereo algorithm [18] into a continuous model. A classical optical flow-style stereo

model was proposed in [124] and later augmented with a discrete search procedure [93].

Semi-Global Methods It is worth to note that there are also Semi-Global Methods,

which try to find a middle ground between the speed of local methods and the accuracy of

global methods. The most prevalent approach is Semi-Global Matching (SGM), which has

proven to be a fast and robust method in real-world applications [56]. There are various

modifications and extensions to this approach which aim to enhance the robustness and

accuracy of SGM [75, 78, 82, 140].

A last class of algorithms, which can be considered semi-global in natures, is based

on the PatchMatch algorithm [11]. These algorithms perform randomized propagation

of disparities based on a smoothness assumption, but do not optimize a global energy.

The PatchMatch algorithm has been adapted to stereo by Bleyer et al. [18]. They greed-

ily propagate local plane parametrizations across the image. This approach was later

successfully combined with global models [13, 74].

5.3 Data terms

This section introduces the most important matching terms for stereo estimation. We will

later evaluate these correlation measures in the context of a global model. For the stereo

matching problem we assume rectified image pairs. Thus the displacement vector is given

by d = (dx, 0)T .

Absolute differences and Related data terms The simplest matching criterion is

given by performing a simple pixel-wise test

ρbright(I1, I2,x,d) = |I1(x + d)− I2(x)| . (5.18)

This is a reasonable matching criterion under ideal conditions, but will quickly fail oth-

erwise. A simple approach to get more robust estimates is to consider a patch centered

around the pixel of interest and to apply the very same matching criterion by summing
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over all pixels in the patch. This gives the Sum of Absolute Differences (SAD) cost:

ρSAD(I1, I2,x,d) =
∑

x̂∈P (x)

|I1(x̂ + d)− I2(x̂)| , (5.19)

where P (x) denotes the patch centered at coordinate x.

SAD is more robust than pixel-wise absolute differences, but introduces an additional

artifact, known as foreground fattening: Pixels along a depth edge get wrongly assigned to

the foreground. This effect is visible in any patch-based approach, which does not explicitly

account for this effect (for example through a adaptive aggregation scheme [178]), but can

often be mitigated in a later stage using a global model that supports an image-driven

regularization. The absolute value can be replaced for example by a quadratic function

(although the sum of quadratic differences is less robust than SAD). In any case, direct

measurements on pixels are prone to fail if there are slight variations between the input

images.

A more robust data term can be computed by matching image gradients instead of

pixel values:

ρgrad(I1, I2,x,d) = ||∇I1(x + d)−∇I2(x)||2 . (5.20)

This measure is robust to illumination changes, but results in more noise in the estimates

(which is hardly a problem in global models, since they are robust to noise). Again it is

possible to get more robust estimates by summing the gradients in a patch around the

pixel of interest.

Normalized Crosscorrelation A measure that is more robust than brightness or

gradient-based cost functions is given by the normalized cross correlation [53]. Normalized

crosscorrelation is a window-based method, where windows from the left and right images

are correlated using the equation:

NCC(I1, I2,x,d) =

∑
x̂∈P (x)(I1(x̂ + d)− µ1)(I2(x̂)− µ2)√∑
x̂∈P (x) |I1(x̂ + d)− µ1|2|I2(x̂)− µ2|2

, (5.21)

where µ1 and µ2 denote the mean gray value of the patch under consideration in I1 and

I2 respectively, i.e. we have

µ1 =
1

|P (x)|
∑

x̂∈P (x)

I1(x̂ + d) µ2 =
1

|P (x)|
∑

x̂∈P (x)

I2(x̂) (5.22)

The resulting values are in the range [−1, 1], where a correlation value of 1 denotes perfect

correlation. Since we are formulating the stereo matching problem as a minimization
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problem, the NCC-based matching term is given by

ρNCC(I1, I2,x,d) = min(1, 1−NCC(I1, I2,x,d)), (5.23)

where the minimum operations ensures that patches with negative correlations are assigned

a constant high cost. The normalized crosscorrelation is invariant to affine transformations

of the intensities of the image patch, which provides additional robustness when compared

to brightness or gradient-based cost functions.

Mutual Information Mutual Information is a statistical quantity that describes the

mutual relation between two random variables. It is defined via the joint entropy of the

images Iw1 and I2, where Iw1 is the image I1 after warping:

MI(Iw1 , I2) = H(Iw1 ) +H(I2)−H(Iw1 , I2), (5.24)

where the joint entropy is defined as

H(Iw1 , I2) = −
∫ 1

0

∫ 1

0
PIw1 ,I2(i1, i2) logPIw1 ,I2(i1, i2) di1 di2. (5.25)

PIw1 ,I2 denotes the joint probability of images Iw1 and I2 and the entropies H(Iw1 ) and H(I2)

are defined via the marginal distributions of the joint probability PIw1 ,I2 . Similar images

have high Mutual Information, whereas dissimilar images have low Mutual Information.

Egnal [49] computed the mutual information between patches for stereo matching.

This approach provides robustness to illumination changes, but is expensive to evaluate

in practice. Kim et al. [87] showed how Mutual Information can be used for the stereo

matching problem, without resorting to a patch-based approach. They use the fact that

H(I2) does not depend on the disparities and assume that H(Iw1 ) is almost constant,

these terms can thus be neglected in an energy minimization/maximization framework.

They then use a first-order Taylor approximation to rewrite the Mutual Information as

an integration over pixels in contrast to the integration over the joint distribution (5.25),

which again allows to build a cost volume: The normalized joint histogram can be defined

as

P 0
f (i1, i2) =

1

NxNy

∑
x

T [(i1, i2) = (Iw1 (x), I2(x))], (5.26)

where T [a = b] is 1 if a equals b and 0 otherwise. The histogram is smoothed using a

Gaussian kernel of (user-defined) variance σ to obtain an estimate of the joint probability

Pf (i1, i2) = P 0
f (i1, i2) ∗ gσ(i1, i2). (5.27)
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Define

D(i1, i2) = − 1

NxNy
logPf (i1, i2) ∗ gσ(i1, i2), (5.28)

then the per-pixel mutual information cost is given by

ρ(I1, I2,x,d) = D(I1(x + d), I2(x)). (5.29)

This can again be used to build a cost volume for stereo matching. Hirschmüller [77]

argued that the marginal entropies should not be assumed to be constant (the constancy

assumptions fails in the presence of occlusions) and also included the computation of the

marginal distributions in an analogous way.

Rank transform The Rank transform [175] is a non-parametric transformation of an

image. It encodes the relative magnitude of the center pixel of a patch by determining

the rank among its neighbors, i.e. the number of pixels in the patch which are smaller

than the center pixels. The Rank transform is morphological invariant, two patches will

be assigned the same rank if they are related by a monotonically increasing function of

the gray values. Formally, the rank transform of an image I at position x is given by

R(I; x) = |{y ∈ P (x) | I(y) < I(x)}|, (5.30)

where P (x) again denotes the patch centered at position x. After both input images have

been transformed using the Rank transform, absolute differences or the sum of absolute

differences are used as correlation measure.

Demetz et al. [44] introduced an extension to the Rank transform, called Complete

Rank transform. The approach is to compute a signature of each patch by considering the

ranking of each pixel in the patch, where again rank is determined by the number of pixels

with smaller gray value than the pixel under consideration. Figure 5.5 shows an example

of this approach. This signature again is morphologically invariant, but in contrast to the

Rank transform, it retains the local structure of the patch and thus is more discriminative

when used for subsequent correlation.

Census transform Another non-parametric transformation is given by the Census

transform, which was already introduced in the context of optical flow estimation. The

Census transform [175] is well-known for its robustness to illumination changes and is

frequently used in stereo algorithms. For global continuous models Müller et al. [106]

recently showed its usefulness in the context of optical flow estimation.

Similar to the Rank transform and the Complete Rank transform, the Census cost is

morphologically invariant. It is interesting to note that the Complete Rank Transform

can be interpreted as |P (x)| Census transforms, each using a different reference pixel in

the patch under consideration [44]. As such the Census transform takes a middle-ground
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(a) Input patch (b) RT (c) CRT

Figure 5.5: Example of Rank transform (RT) and Complete Rank transfom (CRT). The resulting
CRT signature for this patch is ‘601523784’ (assuming the upper left pixel as starting point and
clock-wise gathering of entries).

between the Rank transform and the Complete Rank transform. Moreover it can be

implemented very efficiently on modern computing architectures using only comparisons

and bitwise manipulations.

Modifications Patch-based matching approaches can be made more robust using a

simple truncation scheme:

ρT (I1, I2,x,d) = min(t, ρ(I1, I2,x,d)). (5.31)

This approach is especially useful for brightness and gradient-based matching, but also

enhances the robustness of normalized crosscorrelation.

Matching is often carried out at integer disparities, which limits the theoretical ac-

curacy of these approaches since they are subject to artifacts introduced by the discrete

nature of the image sensor. The straightforward approach to increase the accuracy to sub-

pixel ranges is to sample at fractional disparities, where the warped image is interpolated

at non-integer disparities. This approach, while simple, has the drawback that the costvol-

ume gets larger, which increases the overall computational load not only for the matching

stage but also for subsequent smoothing stages. Birchfeld and Tomasi [14] introduced an

approach to increase the subpixel accuracy of discrete matching approaches by resampling

the disparity at subpixel locations and taking the minimum of the local neighborhood as

cost for the integer disparities. The resulting costvolume has the same dimensions as the

costvolume sampled only at integer locations, but is less prone to introduce artifacts which

stem from pixel discretization. The basic approach is given by

ρBT (I1, I2,x,d) = min
a∈A

(ρ(I1, I2,x,d + a), ρ(I2, I1,x,d− a)), (5.32)
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where A denotes a set of subpixel shifts along the scanline, e.g.

A = {[0, 0]T , [1
2 , 0]T , [−1

2 , 0]T }. (5.33)

Birchfeld and Tomasi [14] showed how this modified matching term can be computed

for brightness-based matching with only a small constant overhead. Note, however, that

this approach can in principle be applied to any patch-based matching cost, although it

results in increased computational complexity. In many cases, however, the computational

complexity of subsequent stages far surpasses the complexity of the matching stage, so

that this increase is not of concern. In practical applications it is sometimes useful to also

resample not only along the scanline but also in vertical direction [126] in order to increase

robustness with respect to slight calibration error (which result in not perfectly horizontal

scanlines):

A = {[0, 0]T , [1
2 , 0]T , [−1

2 , 0]T , [0, 1
2 ]T , [0,−1

2 ]T }. (5.34)

Another modification is to use linear combinations of different, complementary data

terms. Sun et al. [150] empirically observed that a combination of Census matching and

absolute differences results in increased robustness.

5.4 A Lifting-based Higher-Order Model

The epipolar geometry of a stereo setup constraints the possible matching locations be-

tween pixels to the epipolar line. The unconstrained two-dimensional matching problem

can thus be reduced to a one-dimensional matching problem. In this section we intro-

duce a model that exploits this one-dimensionality and the specific physical meaning of

disparity in order to find accurate solutions [126]. The basic building block is a convex

reformulation of the non-convex stereo matching problem.

We focus on models with second-order Total Generalized Variation (TGV) regulariza-

tion, as this is the most widely used and also the simplest instance of TGV (besides TV ),

i.e. we consider functionals of the form

min
u,w

E1(w|u)︷ ︸︸ ︷
α

∫
Ω
|Dw|Γ +

∫
Ω
|Du− w|Σ + λ

∫
Ω
ρ(u)︸ ︷︷ ︸

E2(u|w)

dx, (5.35)

where u : Ω → < and w : Ω → <2, D is the distributional derivative, which is also well

defined for discontinuous functionals, and the norms are defined as |x|M = 〈x,Mx〉 1
2 , M

symmetric and positive definite. The introduction of the operator M will later allow us to

easily incorporate anisotropic edge-weighted diffusion into the model. Note that for Γ = I

and Σ = I, the definition reduces to the standard definition of second-order TGV [26]. We
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will assume throughout the rest of this section that the data term ρ(u) is non-convex. An

extension of this basic formulation to higher-order instances of TGV is straight-forward,

as it only involves a modified version of subproblem E1(w|u), the main difficulty of the

model lies in E2(u|w), since it includes the non-convex data term. We will shortly see,

however, that the special structure of the regularizer together with the ordering properties

of the disparity space still allow for solutions of this problem.

Our main observation is as follows: It is possible to decompose problem (5.35) into

the two subproblems E1(w|u) and E2(u|w). Let the pair (u∗, w∗) be a stationary point

of (5.35), then it is obvious that the relation

u∗ = arg min
u
E2(u|w∗) (S1)

w∗ = arg min
w
E1(w|u∗) (S2)

holds, i.e. given w∗ it is possible to deduce u∗ by solving a possibly simpler subproblem and

vice versa. Note that (S1) is a non-convex problem, while (S2) is a convex problem, which

is equivalent to a generalized vectorial TV -L1 denoising problem [111]. This observation

points to an iterative scheme for finding approximate solutions to (5.35):

un+1 = arg min
u
E2(u|wn)

wn+1 = arg min
w
E1(w|un+1). (A1)

Note that by definition we have E(un, wn) ≥ E(un+1, wn) ≥ E(un+1, wn+1) and 0 ≤
E(u,w) < ∞, ∀(u,w), therefore the procedure will converge in the functional value,

although not necessarily to a global optimum.

The update steps in (A1) already constitute the basic iterations of the proposed al-

gorithm for optimizing (5.35), which can be interpreted as a non-smooth block-descent

scheme. It remains to show how to solve the individual subproblems in each step.

5.4.1 Global Solutions for First-Order Models

The subproblem E2(u|w) is a non-convex variational problem with a non-convex data term

and a convex regularization term. It was shown by Pock et al. [121] that problems with

this special structure can be solved globally optimal using the framework of calibrations,

provided that the regularization term admits some additional structure. The basic idea is

to lift the problem to a higher-dimensional space, where a globally optimal solution to the

original problem can be computed. A similar construction was proposed in the context

of discrete graphical models by Ishikawa [83]. We will shortly discuss both variants in

the following and establish their relation, before we proceed to the actual optimization

of E2(u|w).
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(a) Groundtruth (b) TGV (c) TV

Figure 5.6: Comparison between the proposed lifting-based higher-order model and a lifting-
based model with TV prior. The higher-order model is able to capture the piecewise affine nature
of the scene, leading to an almost perfect estimate. The TV -based model on the other hand shows
strong staircasing on slanted surfaces.

5.4.1.1 Variational Construction

Consider a TV -based stereo problem with some arbitrary non-convex data term:

min
u

∫
Ω
|Du|+ λ

∫
Ω
ρ(x, u(x)) dx. (5.36)

Pock et al. [122] showed how this non-convex problem can be equivalently formulated as

a convex problem using a functional lifting approach. The basic idea is to decompose the

unknown function u in terms of its sub-level sets. Consider the indicator function of the

t-th upper level 1{u>t} : Ω→ {0, 1}, which is defined as

1{u>t}(x) =

{
1 if u(x) > t

0 else
. (5.37)

We define a binary function on the joint image and level-set domain Ω× T

v(x, t) = 1{u>t}(x). (5.38)

Assume without loss of generality that disparities lie in the interval T = [0, tmax] (if the

minimum disparity is not equal to zero, the label space can be simply shifted accordingly).

By the definition of upper level sets, for any u which takes values in T , it must hold that

its corresponding function v(x, t) fulfills v(x, 0) = 1 and v(x, tmax) = 0 and is monotone

decreasing in t . Thus the function v is restricted to lie in the set

D = {v : Ω× T → {0, 1} | v(x, 0) = 1, v(x, tmax) = 0, Dtv ≤ 0} (5.39)

For a level-set representation v(x, t) its corresponding function u(x) can be recovered by
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Figure 5.7: Example of the subgraph indicator function 1{u>t}(x) and corresponding func-
tion v(x, t) for a one-dimensional function. (a) The original function and its subgraph indicator
1{u>t}(x). (b) The corresponding lifted function v(x, t), which is equal to one wherever u(x) > t
(blue) and zero otherwise (red).

integrating along the level-set variable t:

u(x) =

∫
T
v(x, t) dt. (5.40)

It is important to note that both u(x) and v(x, t) are two different representations of the

same underlying function. A one-dimensional example for this representation is shown in

Figure 5.7.

The core observation of [122] now is that by rewriting energy (5.36) in terms of the

function v, it is possible to arrive at an equivalent problem with convex objective function

but non-convex domain (due to the binary domain of v):

min
v∈D

∫
Ω×T
|Dxv|+ ρ(x, t)|Dtv|. (5.41)

This approach uses a fundamental relation between the Total Variation of a function and

the Total Variation of its level-sets, known as the (generalized) co-area formula [34, 55]:∫
Ω
|Dxu| =

∫
Ω×T
|Dxv|. (5.42)

The data term can also be decomposed in terms of the level sets as∫
Ω
ρ(x, u(x)) dx =

∫
Ω×T

ρ(x, t)δ(u(x)− t) dx =

∫
Ω×T

ρ(x, t)|Dtv|, (5.43)

where we denote by Dx the usual spatial distributional derivative and by Dt the distri-

butional derivative in direction t. It is now easy to see the equivalence between (5.41)
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and (5.36). For every valid level set indicator function the energy of the corresponding

function u can be computed directly on the level sets, without explicit recovery of u.

Moreover the objective is convex, the only remaining non-convexity is due to the binary

constraints, which ensure that v indeed is a valid level set indicator. A further relaxation

of the binary domain to the interval [0, 1], yields an overall convex functional. The most

remarkable property of this relaxation is that exact minimizers of the non-convex problem

can be recovered by thresholding the solution of the relaxed problem [38, 122].

5.4.1.2 Ishikawa’s Method

Ishikawa [83] earlier showed a similar lifting approach for the stereo problem based on the

formalism of discrete MRF s. The fundamental idea of lifting the label space to a higher-

dimensional space by using a (discrete) level set representation for the unkown labeling

and exploiting the ordering properties of the stereo label space is also leveraged in this

approach. The fundamental difference is that here the stereo problem is treated as an in-

herently discrete problem. The practical differences between the discrete construction and

the variational model are not as large as one might think, however. Since the previously

presented variational lifting approach boils down to an effectively discrete label space after

discretization of the variational model, the resulting energies share strong similarities. In

fact, for certain types of regularizers, namely the ones which can be decomposed into a

sum over pairwise pixel interactions, the discretized energy of the variational model and

the MRF energy of the Ishikawa construction are exactly equivalent. The last difference

is that the model is solved using a (also globally optimal) combinatorial solver instead of

using convex optimization.

Let us introduce the general notion of a pairwise MRF : A pairwise MRF is defined

on an undirected graph G = (V,E) consisting of a set of nodes V and a set of edges E.

The nodes V can be labeled with values from some predefined label set. The edges model

interactions between nodes. One can define an energy for some labeling u on this graph

as

E(u) =
∑
k∈V

gk(uk) +
∑

(k,l)∈E
h(k,l)(uk, ul). (5.44)

We assume that uk takes values in some discrete set (the label space). Minimization of

such a discrete energy is typically intractable, depending on the specific form of the graph,

the label space and the pairwise potentials h(k,j). Global minimization of MRF s which

include loops and a label space with more than two labels is in general NP-hard [17]. The

two label case is tractable provided that the pairwise potentials are submodular [89], i.e.

they fulfill the condition:

h(k,j)(0, 1) + h(k,j)(1, 0) ≥ h(k,l)(1, 1) + h(k,l)(0, 0). (5.45)
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Figure 5.8: Example of Ishikawa’s graph construction for a chain MRF of length 4 and 4 labels.
Dashed edges correspond to edges with infinite capacity. Horizontal edges correspond to pairwise
potentials, vertical solid edges correspond to unary potentials. (a) A valid cut cuts each column
exactly once. (b) An invalid cut has infinite energy, since an edge with infinite capacity is cut (red).

The prevalent approaches for solving submodular energies are combinatorial min-cut/max-

flow algorithms [22]. Other tractable energies are multi-label energies on graphs without

loops (trees) or two-label energies on loopy graphs which admit the additional structural

property of outer-planarity [136].

Ishikawa’s approach considers energies of the special form

E(u) =
∑
k∈V

gk(uk) +
∑

(k,l)∈E
αklf(uk − ul), uk ∈ L, (5.46)

where αkl ≥ 0, uk takes values in the discrete set L = {0, . . . , T} and the function

f : < → < is assumed to be convex. An important choice here is that that the pair-

wise potential only depends on differences uk − ul of their labels. The idea now is to

perform minimization of the multi-label energy (5.46) by constructing an auxiliary binary

graph, in which the minimum cut energy is equivalent to the minimum energy of (5.46).

This is achieved by lifting the label space to a higher-dimensional space and introducing

a directed graph construction, which ensures that the minimum cut solution represents a

discrete level set indicator function.

A graphical illustration for a one-dimensional MRF is shown in Figure 5.8. The key

ingredients are constraint edges (dashed) which ensure that each column is cut exactly

once. Data edges (black) directly correspond to the unary cost of assigning a specific label

to a node. Finally, penalty edges (gray) can be directly computed from the individual
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pairwise terms in (5.46). This construction ensures that every cut corresponds to a valid

configuration û. Moreover, the energy of the cut (the sum over the edge capacities which

where cut), is equal to the energy E(û). Thus by finding a minimum cut (a cut with

minimum cost), it is possible to find the labeling with minimum energy. It turns out that

the graph is not only binary but also submodular, thus finding this minimum cut is indeed

possible in polynomial time using combinatorial max-flow/min-cut algorithms.

Relation to the Variational Approach Consider the following instance of the discrete

model (5.46):

E(u) =
∑
k∈V

gk(uk) + λ
∑

(k,l)∈E
|uk − ul|, uk ∈ L, (5.47)

We adopt a discrete variant of the subgraph representation (5.40), i.e.

uk =
∑

i∈L∪{T+1} vk,i, with vk,0 = 1, vk,T+1 = 0 and vk,i+1 ≤ vk,i, where we extended the

label space with an additional label T + 1. Then it is easy to check that the energy can

be equivalently written as the binary energy

E(v) =
∑
i∈L

∑
k∈V

gk(i)|vk,i+1 − vk,i|+ λ
∑

i∈L∪{T+1}

∑
(k,l)∈E

|vk,i − vl,i|, vk,i ∈ {0, 1}. (5.48)

This is a spatially discrete variant of the variational model (5.41), if we assume anisotropic

Total Variation and that the edge set E contains edges between direct horizontal and

vertical neighborhoods in a 4-connected grid graph. It remains to show that this energy can

be represented as a minimum cut problem in a directed graph. The key in the construction

are again the constraints, since (5.48) is not submodular due to the data term. Constraints

can be incorporated by including infinite capacity edges (since cuts which include these

edges have infinity energy). The first constraint vk,0 = 1 can be realized by infinite

capacity edges from the source to all vk,0. The second constraint, monotonicity along the

label space, is equivalent to stating that each path from node vk,0 to vk,T+1 can be cut

exactly once. This constraint can be realized by introducing constraint edges from vk,i+1

to vk,i. Having the constraints in place, the data cost is counted exactly once per column

k, namely where vk,i − vk,i+1 = 1, we thus add an edge from vk,i to vk,i+1 with capacity

gk(i). Finally, for each neighbor in the image grid we have the smoothness penalty

f(vk,i, vl,i) =

{
λ if (vk,i = 0 ∧ vl,i = 1) ∨ (vk,i = 1 ∧ vl,i = 0)

0 if (vk,i = 1 ∧ vl,i = 1) ∨ (vk,i = 0 ∧ vl,i = 0).
(5.49)

This can be realized by adding an edge with capacity λ from vk,i to vl,i and an edge with the

same capacity in the reverse direction. Finally note that all nodes vk,T+1 are constrained

to be equal to 0, they can thus be merged into the sink t, which makes they constraint

edges from vk,T+1 to vk,T redundant. They can thus be removed. The resulting graph
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is exactly equal to Ishikawa’s graph, who more directly arrived at this graph, without

explicitly definition of the auxiliary MRF (5.48).

Remark 3. It is possible to arrive at an alternative graph representation by exploiting the

monotonicity property. The data edges in fact can be represented as unary potentials:∑
i∈L

gk(i)|vk,i+1 − vk,i| =
∑
i∈L

gk(i)(vk,i − vk,i+1)

=
∑
i∈L

vk,i(gk(i)− gk(i− 1)), (5.50)

with gk(−1) = 0. Thus these terms can be expressed as unary terms, which means

that instead of the data edges, they can also be modeled as edges from node s to vk,i with

capacity gk(i)− gk(i− 1).

5.4.2 Solving the Non-Convex Part

It turns out that the idea of lifting the functional to a higher-dimensional space in order

to arrive at a tight convex relaxation of the original problem can be extended to a larger

class of problems [121]. The key insight is that∫
Ω×T
|Dv(x, t)|+ ρ(x, t)|Dtv(x, t)| (5.51)

represents an interfacial energy of the boundary Γu of the function u. The framework [121]

shows that in order to find a minimizer u∗ of functionals of the form

min
u

∫
Ω
f(x, u(x), Du), (5.52)

where f(x, u(x), Du) is assumed to be convex in the last argument, we can solve the

auxiliary problem

min
v∈C

sup
φ∈K

∫
Ω×<

φ ·Dv, (5.53)

where the convex sets C and K are given by

C =

{
v ∈ BV (Ω×<; [0, 1]) : lim

t→−∞
v(x, t) = 1, lim

t→∞
v(x, t) = 0

}
and

K = {φ = (φx, φt) ∈ C0(Ω×<;<d ×<) :

φt(x, t) ≥ f∗(x, t, φx(x, t)),∀x, t ∈ Ω×<} . (5.54)

Here f∗ denotes the convex conjugate of the function f with respect to its last argument.

The sets C and K are defined point-wise. The intuition behind this formulation again is
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that instead of minimizing u directly, one represents the energy in terms of characteristic

functions of the upper level sets 1{u>t}(x). Again the function v : Ω × <, represents this

characteristic function which is indicated by the constraint set C. The duals φ represent a

flux through the boundary Γu of u. Given a minimizer v∗ the corresponding minimizer u∗

can as before be recovered by integrating v over the lifted dimension: u∗(x) =
∫
< v
∗(x, t)dt.

This formulation is very general, the specific form of the convex regularization term only

influences the set K. Pock et al. [121] derived the set K for Quadratic, TV, Huber and

Lipschitz regularization terms.

Let us establish the connection of this formulation to the first-order model (5.51).

Using duality (5.51) can be equivalently written as

sup
|φx(x,t)|2≤1
|φt(x,t)|≤ρ(x,t)

∫
Ω×T
〈Dxv(x, t), φx(x, t)〉+ 〈Dtv(x, t), φt(x, t)〉 (5.55)

Since v(x, t) needs to be monotone in direction t we have Dtv(x, t) ≤ 0. As a consequence

the supremum with respect to φt(x, t) will be reached if φt(x, t) is non-positive. We can

thus give an equivalent formulation as

sup
|φx(x,t)|2≤1

φt(x,t)≥−ρ(x,t)

∫
Ω×T
〈Dv(x, t), φ(x, t)〉 , (5.56)

where φ(x, t) = (φx(x, t), φt(x, t))
T and Dv(x, t) = (Dxv(x, t), Dtv(x, t))T . The objective

of this problem is equal to the objective function of the general problem (5.53). Now

consider the general formulation (5.53). We need to specify the convex set K, which in

turn is specified via the convex conjugate of the function

f(x, t, p) = |p(x)|2 + ρ(x, t). (5.57)

Note that this function is related to the original, non-convex problem (5.36). The convex

conjugate is given by

f∗(x, t, φx) = −ρ(x, t) + sup{〈p(x), φx(x, t)〉 − |p(x)|2}

=

{
−ρ(x, t) if |φx(x, t)|2 ≤ 1

∞ else
(5.58)

It follows that the feasible set of the dual variables can be written as

K = {φ = (φx, φt) ∈ C0(Ω×<;<d ×<) :

φt(x, t) ≥ −ρ(x, t), |φx(x, t)|2 ≤ 1,∀x, t ∈ Ω×<} , (5.59)

which is equivalent to the feasible set of the duals in (5.56).
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(a) TV (b) TGV

Figure 5.9: The feasible set K for (a) TV and (b) TGV .

In problem E2(u|w), the regularization term is similar to TV regularization, with the

difference that a constant vector is subtracted from the gradient, before the absolute value

is measured. We identify f(x, t, p) = |p(x) − wn(x)|Σ + λρ(x, t). The convex conjugate

with respect to p is

f∗(x, t, φx) = sup
p(x)

{
〈φx(x, t), p(x)〉 − |p(x)− wn(x)|Σ

}
− λρ(x, t)

= sup
q

{
〈φx(x, t), q〉 − |q|Σ

}
+ 〈φx(x, t), wn(x)〉 − λρ(x, t)

=

{
〈φx(x, t), wn(x)〉 − λρ(x, t), if |φx(x, t)|Σ−1 ≤ 1

∞, else.
(5.60)

The resulting set K is illustrated in Figure 5.9(b). The feasible set for TV regularization is

shown in Figure 5.9(a). It can be seen that for problem E2(u|w) the feasible set is slightly

more complicated than in the TV case. While for TV the set is given by the interior

of a cylinder with radius 1, which is bounded from below by a vertical plane centered at

(0, 0,−λρ(x, t))T , the set in the TGV case is bounded from below by plane that includes

the point (0, 0,−λρ(x, t))T but can be arbitrarily oriented (in fact the normal of this

plane is given by (wn,−1)T ). This makes projection onto this set slightly harder, as a

closed-form solution is no longer available.

Discretization and Optimization. In order to solve (5.53) it is necessary to discretize

the domain Ω × < of the continuous functions v and φ. For the sake of simplicity let us
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only consider the case Ω ⊂ <×<, higher-dimensional cases can be derived analogously.

We discretize on a three-dimensional grid of size Nx×Ny×Nt with discretization steps

∆x, ∆y and ∆t:

G∆ = {(i∆x, j∆y, k∆t) : (0, 0, 0) ≤ (i, j, k) < (Nx, Ny, Nt)} . (5.61)

Here the triple (i, j, k) denotes the location in the grid.

For numerical reasons we replace the vector field φx, with a rotated version Σ
1
2φx,

which leads to a simplification of the convex set K∆, without changing the formulation.

The feasible sets for the discrete version of (5.53) are then given by

C∆ =
{
v∆ ∈ [0, 1]NxNyNt : v∆

i,j,0 = 1, v∆
i,j,Nt−1 = 0

}
(5.62)

and

K∆ =
{
φ∆ = (φ∆

x , φ
∆
y , φ

∆
t ) ∈ <3NxNyNt :

(φ∆
t )i,j,k + λ(ρ)i,j,k ≥

〈
(φ∆
x , φ

∆
y )Ti,j,k,Σ

1
2wi,j

〉
,

|(φ∆
x , φ

∆
y )Ti,j,k|2 ≤ 1, ∀(i, j, k) ∈ G∆

}
. (5.63)

In order to discretize the differential operator D, we use forward differences with

Neumann boundary conditions. Furthermore we allow Σ to vary locally, which allows us

to incorporate image-driven TGV regularization similar to [124] into the framework, i.e.

we define a linear operator ∇Σ : <NxNyNt → <3NxNyNt , with

(∇Σv
∆)i,j,k =

 Σ
1
2
i,j

0

0

0 0 1


 (δxv

∆)i,j,k
(δyv

∆)i,j,k
(δtv

∆)i,j,k

 (5.64)

and

(δxv
∆)i,j,k =

{
(v∆
i+1,j,k − v∆

i,j,k)/∆x if i < Nx − 1

0 else
(5.65)

(δyv
∆)i,j,k =

{
(v∆
i,j+1,k − v∆

i,j,k)/∆y if i < Ny − 1

0 else
(5.66)

(δtv
∆)i,j,k =

{
(v∆
i,j,k+1 − v∆

i,j,k)/∆t if i < Nt − 1

0 else.
(5.67)

Operator (5.64) reduces to the standard discretization of a gradient operator, if Σ
1
2
i,j is

set to identity everywhere. On the other hand, it is possible to incorporate image-driven

diffusion into the model by setting the matrix appropriately. We will later again use the
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Nagel-Enkelmann operator 3.42 in our experiments.

The discrete version of (5.53) is now given by

min
v∆∈C∆

max
φ∆∈K∆

〈
∇Σv

∆, φ∆
〉

(5.68)

For optimization of the convex-concave saddle-point problem (5.68) we use the primal-

dual algorithm [36]. The iterations of this algorithm are shown in Algorithm 5.1.

A crucial part of this algorithm are the pointwise projections projK∆(.) and projC∆(.)

respectively. The projection of the primal variables is simple and can be carried out in

closed-form:

(projC∆(v̂))i,j,k =

{
max{0,min{1, v̂i,j,k}} if k > 1

1 else.

The projections for the dual variables projK∆(.), although also point-wise, are more com-

plicated. The feasible set K∆ is defined point-wise via the intersection of two convex

sets. We experimented with different variants to incorporate these constraints: Lagrange

multipliers, solving the projection problem in each iteration of the primal-dual algorithm

using FISTA [12] (including a preconditioned variant) and finally Dykstra‘s Projection

algorithm [23]. Our experiments show that Dykstra‘s algorithm provides the best perfor-

mance for this type of problem and is very light-weight, we therefore resort to this variant

to incorporate the dual constraints. The iterations of Dykstra‘s algorithm are shown in

Algorithm 2, where we set n̂ = (wni,j,k,−1)T and c = λρi,j,k. In practice we run the al-

gorithm until the distances to both convex sets (|xn − yn|2 and |yn − xn+1|2) are below a

tolerance of 10−3 (which is typically achieved in under 10 iterations).

5.4.3 Solving the Convex Part

The subproblem E1(w|u) is a non-smooth convex optimization problem, which can be

solved using standard techniques. We will show how to cast this problem in a saddle-point

1. Initialize

Set v∆
0 ∈ C∆, φ∆

0 ∈ K∆, v̄0 = v∆
0 , l = 0

Choose time-steps τ, σ > 0, τσ < 1
||∇Σ||2

2. While not converged

φ∆
l+1 = projK∆(φ∆

l + σ∇Σv̄l)

v∆
l+1 = projC∆(v∆

l − τ∇TΣφ∆
l+1)

v̄l+1 = 2v∆
l+1 − v∆

l

l = l + 1

Algorithm 5.1: Primal-Dual algorithm for optimization of (5.68).
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1. Initialize

Set l = 0, x0 = φi,j,k, p0 = 0, q0 = 0

2. Iterate

yl = (xl+pl)
max{1,|xl+pl|2}

pl+1 = pl + xl − yl

xl+1 =

{
yl + ql if 〈yl + ql, n̂〉 ≤ c
yl + ql − 〈yl+ql,n̂〉−c〈n̂,n̂〉 n̂ else

ql+1 = ql + yl − xl+1

l = l + 1

Algorithm 5.2: Algorithm for projecting onto the set K.

formulation and again apply the primal-dual algorithm [36].

The optimization problem reads

min
w

∫
Ω
|Dun+1 − w|Σ + α

∫
Ω
|Dw|Γ, (5.69)

where un+1 is given by the last solution of problem E2(u|w). This problem corresponds

to denoising the gradients of un+1.

Using the definition divM z = div(M
1
2 z), the equivalent saddle-point formulation is

given by:

min
w

sup
||p||∞≤1
||q||∞≤1

−
∫

Ω
un+1 divΣ p dx−

∫
Ω

〈
w,Σ

1
2 p+ α divΓ q

〉
dx. (5.70)

Discretization of (5.70) follows analogously to the lifted problem: The two-dimensional

grid is given by

Ĝ∆ = {(i∆x, j∆y) : (0, 0) ≤ (i, j) < (Nx, Ny)} , (5.71)

where the tuple (i, j) again denotes a location in the grid, which also coincides with the

spatial coordinates of the lifted problem. The discrete saddle-point problem can be written

as

min
w∆

max
||p∆||∞≤1

||q∆||∞≤1

〈
∇Σu

n+1, p∆
〉
−
〈

Σ
1
2w∆, p∆

〉
+ α

〈
DΓw

∆, q∆
〉
, (5.72)

where the discrete differential operators ∇Σ and DΓ are again based on forward differences

with Neumann boundary conditions, i.e. we have

(∇Σu
∆)i,j = Σ

1
2
i,j

(
(δxu

∆)i,j
(δyu

∆)i,j

)
(DΓw

∆)i,j = Γ
1
2
i,j

(
(δxw

∆
1 )i,j (δyw

∆
2 )i,j

(δyw
∆
1 )i,j (δxw

∆
2 )i,j

)
.
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In practice direct usage of (5.69) for the estimation of the second-order part w may be

problematic if the discretization step ∆t for the solution of the lifted problem was chosen

too coarsely. In this case discretization artifacts are propagated from the lifted problem

to problem (5.69), which may deteriorate the estimation of the second-order part, since in

the context of this subproblem such artifacts are merely additional edges.

To cope with this problem, we modify (5.72) to allow un+1 to slightly vary in a neigh-

borhood of half the discretization step ∆t of the lifted problem:

min
w∆,u∆∈B

max
||p∆||∞≤1

||q∆||∞≤1

〈
∇Σu

∆ − Σ
1
2w∆, p∆

〉
+ α

〈
DΓw

∆, q∆
〉
, (5.73)

where B =
{
u∆ ∈ <NxNy : |(u∆)i,j − (un+1)i,j | ≤ ∆t/2

}
.

1. Initialize

Set u∆
0 = un+1, w∆

0 = ∇Σu
n+1, ū0 = u∆

0 , w̄0 = w∆
0

Set (p∆
0 )i,j = (0, 0)T , (q∆

0 )i,j =

(
0 0

0 0

)
, l = 0

Choose time-steps τ, σ > 0, τσ < 1
||A||2 , where A =

(
∇Σ −I
0 DΓ

)
2. Iterate

p∆
l+1 = proj||p||∞≤1(p∆

l + σ(∇Σūl − Σ
1
2 w̄l))

q∆
l+1 = proj||q||∞≤1(q∆

l + σ(DΓw̄l))

u∆
l+1 = projB(u∆

l − τ∇TΣp∆
l+1)

w∆
l+1 = w∆

l − τ(DTΓ q∆
l+1 − Σ

1
2 p∆
l+1)

ūl+1 = 2u∆
l+1 − u∆

l

w̄l+1 = 2w∆
l+1 − w∆

l

l = l + 1

Algorithm 5.3: Primal-Dual algorithm for optimization of (5.73).

The iterations for optimizing (5.73) are shown in Algorithm 3. As before, we again

have to perform projections onto convex sets in each iteration of the algorithm. The

projections of the dual variables are given by (proj||r||∞≤1(r))i,j =
ri,j

max{1,|ri,j |2} . For the

primal variables u, the projection onto B can be computed by clamping (u)i,j to the

interval [
(un+1)i,j −

∆t

2
, (un+1)i,j +

∆t

2

]
.
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5.5 Solution via Coarse-To-Fine Warping

Another approach for optimizing variational models for stereo estimation is the solution

via an optical flow-like coarse-to-fine warping approach, i.e. to treat the stereo model as

a one-dimensional optical flow model. All models, which where described in the previous

chapter can be applied, the only difference is that there is no vertical flow component.

As an example we show a simple TGV -based model. Models with Image-Driven Total

Generalized Variation (ITGV) or Non-Local Total Generalized Variation (NLTGV) regu-

larization can be handled analogously:

min
u

TGV 2
α(u) + λ

∫
Ω
ρ̂(x, (u(x), 0)T , I1, I2) dx, (5.74)

where the disparity is given by u : Ω → < and the data term is given by the convex

quadratic approximation 4.30. After standard discretization, the discrete model is given

by

min
u,w

α1 ||∇u− w||2,1 + α0 ||∇w||2,1 + λ
∑
i,j

ρ̂((i, j)T , ((u)i,j , 0)T , I1, I2) (5.75)

To optimize this model, a simplified version of Algorithm 5.3 can be used. The only

difference is that variables corresponding to vertical flow component are always zero and

thus can be neglected. The complete algorithm is specified in Algorithm 5.4. Moreover,

the proximal mapping can be simplified since it is effectively a pointwise quadratic program

in only one dimension, instead of the two-dimensional problem in the optical flow case.

The proximal mapping is given by

u = proxτg(û)⇔ ui,j = arg min
u

1

2
(u− ûi,j)2 + λτρ̂((i, j)T , u, I1, I2), (5.76)

where the quadratic model of the data term is given by

ρ̂(x, u(x)) ≈ ρ(x, u0) + (u(x)− u0(x))∇xρ(x, u0(x))

+
1

2
(u(x)− u0(x))2ρxx(x, u0(x)), (5.77)

and ρxx are second-derivatives in x-direction. The explicit solution of the proximal map-

ping is given by

ui,j =
λτ(ρxx · (u0)i,j −∇xρ) + ûi,j

1 + λτρxx
, (5.78)

were we dropped the explicit arguments for notational simplicity and ρxx and ∇xρ are

evaluated at pixel (i, j).

Approaches based on coarse-to-fine warping suffer from the same drawbacks as in the
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optical flow task: Fine structures will not be well preserved and large baseline setups,

which result in large disparity spaces, may not be handled well. On the positive side these

approaches are fast and the complexity does not rise with the number of disparities.

1. Set u = ū ∈ <M , w ∈ <2M

2. Set p ∈ P , q ∈ Q, set k = 0

3. While not converged

pk+1 = projp∈P (pk + σ(∇ūk − w̄k))
qk+1 = projq∈Q(qk + σ∇w̄k)

uk+1 = proxτg(uk − τ∇∗pk+1)

wk+1 = wk − τ(∇∗qk+1 − pk+1)

ūk+1 = 2uk+1 − uk
w̄k+1 = 2wk+1 − wk
k = k + 1

Algorithm 5.4: Primal-Dual algorithm for optimization of (5.75).

5.6 Post-Processing

Stereo matching pipelines typically include some inexpensive post-processing steps such

as depth map filtering, occlusion estimation, rejection of low confidence matches and

inpainting of missing values.

Occlusion Estimation Explicit handling of occluded areas that inevitable arise in

stereo estimation is currently not supported in the proposed model. The output of the

model is a dense disparity map, were a disparity value is assigned to each pixel. Occluded

areas typically result in a smearing of the estimated depth maps along the edges of an

object. For the estimation of occluded areas one can resort to one of two simple post-

processing approaches: The first approach is known as the Mapping Uniquness Criterion

(MUC) [46]. In this approach candidate occlusions are found by searching for pixels that

warp to the same pixel position. This non-unique mapping clearly violates the physical

constraint that every 3D world point can only be projected to a single 2D point in the im-

age plane by a projective transformation. To resolve the ambiguity that arises from such

a non-unique mapping, one labels the pixel with the smallest depth value as occluding

whereas the remaining pixels are labeled as occluded.

Another popular approach for occlusion handling is backmatching [57] (also known as

left-right consistency checking). This approach requires the computation of two disparity

maps: The initial computation of the disparity map is followed by a second disparity

estimation, where the roles of the warped and the reference image are interchanged. Finally
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(a) Backmatch: Given two disparity maps, one computed with reference image I0 and the other
computed with reference image I1, the backmatching approach models consistency between the
two estimates. Occluded (red): Matching from left to right and then from right to left does not
yield the original position. Not Occluded (green): The matching yields the original position, which
is consistent.

(b) Mapping Uniqueness Criterion: Given one disparity map, this measure models physical plau-
sibility in the sense that an object can only occupy a single point in space. The example shows
the configuration of a occlusion: The disparities of two-pixels (red and blue) from the left image
map to the same position in the right image.

Figure 5.10: Illustration of occlusion estimation, both examples show disparities which would be
classified as occlusion.

both maps are compared for consistency, i.e. pixels with a disparity difference over a (user-

defined) threshold are marked as occluded. This approach typically yields better and less

cluttered results than the MUC criterion. The computational cost of the second disparity

estimation may however be simply too large for some applications. Direct incorporation of

occlusions into the stereo estimation procedure would be clearly desirable, but the resulting

energies typically become much more complicated to optimize [85, 148]. Occlusions are a

minor problem in the long-range, small-baseline stereo estimation task, however.

The differences between Backmatching and MUC can be seen in Figure 5.11. Back-

matching produces occlusion maps of higher quality, at the cost of a significant higher

computational effort. The occlusions maps that are generated using MUC show artifacts
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on slanted surfaces and are generally more cluttered.

Inpainting The occlusion estimation procedure provides a binary map of “invalid” pix-

els, which can be understood as occluded. This includes occlusions but often also image

regions with gross errors which are due to untextured regions. In many practical applica-

tions a disparity map with hundred percent density is desirable. Thus invalid pixels need

to be inpainted. A simple approach, which also exploits the specific geometry of the stereo

setting, is to find the next valid pixels along the scanline (to the left and right) and assign

the smaller disparity to the invalid pixel. This approach reflects the specific geometric re-

lationship of occluder and ocludee, e.g. areas that are occluded necessarily are part of the

background. An example of this post-processing is shown in Figure 5.12. This approach

is fast and simplistic, but may result in some artifacts. More sophisticated algorithms for

occlusion inpainting have been proposed in the literature [161], but are beyond the scope

of this work.

5.7 Experiments

We evaluate the proposed algorithms on two different benchmarks, which have different

scopes. Both benchmarks feature realistic scenarios and are well-suited to judge the prac-

tical applicability of the proposed approaches. We compare the alternating minimization

approach to the coarse-to-fine warping approach with different TGV -based regularizers.

We quantify the error using the average absolute distance from the groundtruth disparity

and as the percentage of pixels with absolute error above a certain threshold.

We refer to the lifting-base higher-order model as ATGV. For all experiments the

discretization of the disparity range was fixed to ∆t = 1px and Algorithm (A1) was run

for 5 iterations. The optimization of each subproblem was run for 2000 iterations in the

(a) Backmatching (b) Mapping Uniqueness Criterion

Figure 5.11: Example of Backmatching and Mapping Uniqueness Criterion. Detected occlusions
are shown in black.
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(a) Before (b) After

Figure 5.12: Example of occlusion inpainting. The results are based on the ATGV algorithm,
occlusions were computed using backmatching. Inpainting leads to sharper discontinuities, but
due to the simple scanline approach streaking artifacts emerge in some areas.

first run and subsequently reduced by a factor of 1
i+1 , where i refers to the number of

outer iterations. In order to allow for a fair comparison no post-processing was used,

unless otherwise stated.

5.7.1 Middlebury v3 Benchmark

The Middlebury Benchmarks [79, 131–134] are a series of stereo and groundtruth images

featuring semi-realistic data, which defined the standard stereo benchmarks in the last few

years. Its newest incarnation, the Middlebury v3 Benchmark [131], features 30 stereo pairs.

For 15 images groundtruth is provided, whereas for the remaining 15 images groundtruth

is withheld and only used for an online evaluation. A unique feature of this benchmark is

that it includes images of very high resolution (up to 6 megapixels) with disparity ranges

of up to 800 pixels. Groundtruth was computed using a high-accuracy structured light

approach. All experiments where performed on the quarter size images.

The first quantitative evaluation in Table 5.1 shows a comparison of different data

terms when used in conjunction with the lifting-based ATGV model. For the patch-

0.5px 1px 2px 4px Avg-Err

SAG 24.51 14.60 9.91 6.70 1.30
MI 47.74 29.47 20.8 13.76 3.01

NCC 26.68 17.16 12.16 8.33 1.59
RT 24.72 15.55 11.01 7.63 1.38

CRT 24.69 15.12 10.53 7.10 1.34
CENSUS 24.02 14.31 9.39 6.10 1.24

Table 5.1: Evaluation of ATGV with different data terms.
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based methods normalized-cross correlation (NCC), rank transform (RT), complete rank

transform (CRT) and Census transform (CENSUS) we used a window size of 5 × 5. For

the sum-of-absolute gradient differences (SAG) term we used central differences together

with an aggregation window of 3× 3, which again results in an effective support window

size of 5 × 5. The mutual information term (MI) was not aggregated, making it weaker

than the other terms. For the Census term we used the ternary Census transform with

ε = 0.01. This table shows some interesting results. On this data set the Census data

term performs best, but the simple SAG term already performs second-best, much better

than NCC and slightly better than CRT.

Table 5.2 shows a quantitative comparison between ITGV , NLTGV , both based on

coarse-to-fine warping, with the lifting-based ATGV. For all evaluations the ternary Census

data term of the previous evaluation was used. The settings for the coarse-to-fine warping

are identical to the optical flow case. The remaining parameters were tuned for optimal

performance using grid search. We report the percentage of pixels with absolute error

below a threshold of 1 pixel as well as the average absolute error. The quantitative results

show that the specialized ATGV model clearly outperforms the other models on the stereo

task. The difference is most pronounced for images, which show small structures, which

tend to be missed by the coarse-to-fine approaches. The lifting approach on the other hand

is better able to handle such cases, which results in a significantly smaller error. NLTGV

shows a similar improvement over ITGV as for the optical flow task. In summary NLTGV

is more robust, but shows a similar accuracy as ITGV on average. Figure 5.13 shows

disparity maps, computed using ATGV, together with a 3D reconstruction. It can be seen

that the proposed approach provides qualitatively good reconstructions, where also small

structures can be resolved. Finally, Figure 5.14 compares ATGV to failure cases of the

coarse-to-fine approach. Small structures and dominant occlusions are the main sources

of error. When compared to the state-of-the-art (Table 5.3), the ATGV model compares

favorably. The model provides high accuracy, but is slightly less robust than SGM.
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1px Avg-Err

ITGV NLTGV ATGV ITGV NLTGV ATGV

Adirondack 12.732 12.873 6.291 2.212 2.303 0.441

ArtL 24.253 22.632 12.141 2.362 2.423 1.181

Jadeplant 48.293 46.192 17.901 22.893 22.092 3.541

Motorcycle 10.243 9.782 7.041 1.313 1.282 0.711

MotorcycleE 9.433 9.352 6.431 1.262 1.273 0.681

Piano 12.902 12.821 13.733 0.641 0.641 0.693

PianoL 37.803 36.802 28.991 11.142 11.803 3.691

Pipes 21.743 20.662 10.961 3.903 3.752 1.431

Playroom 19.653 19.452 18.581 1.873 1.862 1.161

Playtable 13.462 13.161 16.673 1.013 1.002 0.981

PlaytableP 11.503 11.262 10.751 0.872 0.903 0.601

Recycle 10.893 10.472 9.501 0.833 0.722 0.631

Shelves 37.622 38.453 35.141 1.771 1.812 1.903

Teddy 6.393 4.921 5.272 0.422 0.381 0.463

Vintage 22.312 20.791 23.043 1.512 1.523 1.271

Average 19.952.67 19.311.87 14.831.47 3.602.27 3.582.27 1.291.29

Table 5.2: Results on the Middlebury training data set. We show the percentage of pixels with
an error larger than 1 pixel (1px) and the average error (Avg-Err). A ranking among the methods
is shown as superscript. ATGV outperforms the coarse-to-fine based approaches on most images.
The difference is largest for images which show many thin structures (e.g. Pipes, Jadeplant).

0.5px 1.0px 2.0 4.0px Avg-Err RMS

BSM [177] 82.2 61.9 37.1 23.4 13.40 35.8
SGM [77] 64.6 37.3 21.0 12.9 5.29 17.1

LCU 67.3 38.2 17.3 9.63 3.63 11.9

ATGV 68.8 45.3 23.8 13.3 4.85 14.9

Table 5.3: Comparison to the state-of-the-art on Middlebury benchmark. We show the average
over different error measures. We compare to methods which have been computed on the quarter
size images. Method LCU was unpublished at the time of writing.
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(a) Disparity (b) 3D reconstruction

(c) Disparity (d) 3D reconstruction

(e) Disparity (f) 3D reconstruction

Figure 5.13: Qualitative results on the Middlebury benchmark. Left column: Disparity images
computed using ATGV and Census transform. Right column: 3D reconstruction rendered from a
novel viewpoint.
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(a) Groundtruth

(c) ATGV (d) NLTGV -CTF

Figure 5.14: Failure cases of coarse-to-fine warping and comparison to ATGV. Thin structures
and dominant occlusions can significantly deteriorate the performance of the CTF approach. The
lifting-based ATGV model is able to handle such situations more gracefully.
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2px 3px 4px 5px Avg-Err

ITGV-CTF 9.62 7.03 5.78 5.00 1.36 px
NLTGV-CTF 9.05 6.67 5.49 4.70 1.29 px

ATGV 7.56 5.24 4.12 3.44 1.10 px

Table 5.4: Results on the KITTI training benchmark.

5.7.2 KITTI Benchmark

We compare the proposed approach to the baseline algorithm using the KITTI stereo

benchmark [59]. This benchmark consists of 195 test images and 194 training images

captured from an automotive platform. Groundtruth data is given in the form of semi-

dense disparity maps that were captured using a Velodyne laser scanner.

Table 5.4 shows a comparison between ATGV and coarse-to-fine-based methods with

TGV regularizers. We used the Census data term for all evaluations. We observe a similar

trend as before. NLTGV performs slightly better than ITGV . ATGV outperforms the

coarse-to-fine-based methods by a comfortable margin. In general ATGV again compares

favorably with the state-of-the-art. This can be seen in Table 5.5. ATGV shows a similar

robustness as SGM, but a higher accuracy (Avg-Err). The currently leading methods

MC-CNN [160], which is based on a learned matching function, and PCBP-SS [171],

which refines estimates from SGM using a sophisticated model, are more robust than

our approach, but again show similar accuracy. Figure 5.15 shows qualitative results for

the ATGV model on this benchmark. Finally, Figure 5.16 shows a direct comparison

between ATGV and NLTGV . It can be seen that ATGV is better able to preserve small

details like poles or small trees and also is more robust. This comes at the price of a

significantly higher computational complexity. The KITTI benchmark includes disparity

ranges of more than 200 pixels, the ATGV model thus is very computationally demanding.

With the presented settings computation takes roughly 3 minutes per image, whereas the

coarse-to-fine approaches take between 1 (for TGV ) and 15 seconds (for NLTGV ) per

image.

2px 3px 4px 5px Avg-Err

MC-CNN [160] 4.34 2.61 2.04 1.75 1.0 px
PCBP-SS [171] 5.19 3.40 2.62 2.18 1.0 px

wSGM [140] 7.27 4.97 3.88 3.25 1.6 px
SGM [77] 8.66 5.76 4.38 3.56 1.3 px

ATGV 7.08 5.02 3.99 3.33 1.0 px

Table 5.5: Results on the KITTI testing benchmark and comparison to the state-of-the-art.
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5.8 Discussion

In this section we have introduced the problem of stereo estimation. We have described the

fundamental geometric principles governing stereo camera setups and shown how higher-

order variational models can be used to solve the stereo estimation problem. Specifically

it was shown how the special one-dimensional structure of the matching problem can be

leveraged in order to more directly solve a non-convex global variational model. We further

adapted the coarse-to-fine warping approach to the stereo setting, which can be used to

solve the stereo problem faster, although not as accurately.

In the case of the lifting-based model we have seen that TGV serves as an accurate prior

for stereo estimation. The main challenge lies in robustness, which is mostly addressed

by the data term. While the Census and related data terms are robust, they still fail

under some conditions, like in the presence of heavy artifacts. Novel developments, like

learned matching functions [160], could be directly incorporated into this model in order to

address this issue. A last major challenge of the lifting approach is its dependence on the

number of possible disparities. This currently prevents application of the model to larger

input images, which typically also have a large range of possible disparities. One possible

approach to address this issue is a technique known as narrow-banding [141], which could,

depending on the number of disparities, possibly lead to a speed-up of one or two orders

of magnitude, with only moderate loss in accuracy. Additionally, Problem (5.68) can be

transformed to an equivalent ROF problem [33], which is strongly convex and thus could

be optimized using accelerated algorithms like FISTA.

Last, it is possible to apply the proposed block-coordinate descent approach also to

stereo models involving a NLTGV prior, since the lifting approach is specified for quite

general convex regularizers. This variant would very likely further enhance the accuracy

and robustness.
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Figure 5.15: Qualitative results of ATGV on KITTI benchmark.
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(g) NLTGV (h) ATGV

Figure 5.16: Qualitative comparison between NLTGV and ATGV on KITTI benchmark. Rows 1 to 3: ATGV is better able to preserve
fine details and is also more robust. Row 4: In the absence of small details both results are comparable.





6
Summary

In this thesis we have introduced higher-order variational methods for dense correspon-

dence problems. We have shown that Total Generalized Variation (TGV) is a prior which

is very well suited for the tasks of stereo and optical flow estimation. We have focused

on TGV of order two, which models the assumption of piecewise affine solutions. This

is in general an excellent assumption for both stereo and optical flow estimation, espe-

cially for scenes depicting man-made structures. We have proposed extensions to the

TGV prior which are aimed at increasing robustness and accuracy. Image-Driven Total

Generalized Variation (ITGV) can incorporate prior cues on likely locations of motion or

depth discontinuities based on the reference image. This leads to sharp and well-localized

discontinuities. Non-Local Total Generalized Variation (NLTGV) takes this idea one step

further and allows to incorporate soft-segmentation cues, which model the assumption

that connected pixels with similar color typically undergo the same motion or are part of

the same surface. We have shown that this assumption can strongly increase the accuracy

of optical flow and stereo models.

Variational models also consist of a data term, which evaluates the likelihood of the

solution given the observed data. As our experiments have shown, careful design of this

term is as important as the selection of a good prior term. We have shown that data terms

based on the Census transform are well-suited for realistic scenarios, where challenging

illumination conditions are the norm. For the optical flow task, we have introduced a

scale-robust version of the Census data term, which accounts for scale changes between

the observed images. Scale changes are most prominently encountered in the case of a

forward or backward moving camera. This scenario is for example frequently given for

cameras mounted on a car or moving robot. Our experiments have shown that accounting

for scale changes in the data term can lead to increased accuracy and robustness. It is

worth noting that the Census data term gains its robustness by discarding much of the

information that is included in an image patch. It is thus important to couple this data

term with a strong prior in order to get an overall accurate model.

We have shown that our proposed modifications lead to state-of-the-art optical flow

141
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models. For the case of optical flow estimation from a moving vehicle, the proposed

NLTGV prior together with the scale-robust Census transform leads to very accurate

results. At the time of writing this combination was among the top-ranking two-frame

optical flow methods on the KITTI benchmark.

For stereo estimation we have shown how the specific properties of this problem can

be exploited to build a more accurate optimization procedure. We applied this approach

to a model based on the ITGV prior and the Census data term. Our experiments show

that the resulting stereo estimation algorithm outperforms classical coarse-to-fine warping

approaches by a large margin. This can be mainly attributed to increased robustness and

the lack of problems introduced by the classical coarse-to-fine warping approach. The

resulting stereo estimation algorithm compares favorably to state-of-the-art methods on

common benchmarks, especially in terms of accuracy.

6.1 Limitations and Future Work

For optical flow estimation the coarse-to-fine warping is the major source of errors. Se-

quences, which feature very large motions are problematic in such approaches, regardless

of the used priors and data terms. This problem could be tackled by augmenting the

variational models with feature-based costs [24, 29, 164]. This, however, requires the

availability of a sufficiently large number of high quality features, which may not be avail-

able for weakly textured scenes. Since replacing the coarse-to-fine approach by a more

sophisticated method has clearly shown increased accuracy for the stereo problem, it would

be worthwhile to further explore a similar approach for the optical flow problem. For first-

order regularizers there exist tight convex relaxations for the optical flow problem, which

are reminiscent of the lifting approach employed in our stereo model [64, 143]. Thus a

similar strategy of non-smooth block descent is applicable. The main problem that needs

to be overcome in such a formulation is the huge computational complexity that arises

from the discretization of the label space. A different variant to get rid of the coarse-to-fine

warping could be to use convex fusion moves, similar to the approach proposed in [153].

This approach in principle is also applicable to TGV -based energies, but has the drawback

that an external process needs to be specified in order to generate high-quality candidate

solutions.

Another source of errors in both stereo and optical flow estimation are occlusions,

which are not directly handled in the proposed models since they are notoriously hard to

model accurately in a convex optimization framework [3, 10]. Occlusion constraints can be

modeled more directly in discrete frameworks [154, 167] which have larger computational

complexity, however. How occlusions can be incorporated in a principled way in continuous

models is an open question.

While models based on TGV and ITGV can achieve near-realtime performance when

used in the coarse-to-fine framework, NLTGV incurs a significantly higher runtime. It

might be possible to use filter-based optimization approaches [91] by slightly reformu-
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lating NLTGV , which would allow for faster optimization and also to incorporate larger

neighborhoods into the prior.

Both ITGV and NLTGV could be enhanced by using more sophisticated edge de-

tectors or segmentation procedures. Since they currently are directly conditioned on the

reference image, oversegmentation artifacts may arise on strong image edges if the edge

does not coincide with a true object boundary. Examples of this are often given by cast

shadows or surfaces with strong texture. One approach to remedy this effect would be

to derive the diffusion tensor of ITGV and the support weights of NLTGV from a more

advanced edge detector [47].

The Census transform has shown to be a good generic data term and is extensively

used nowadays. Recently it was shown that matching terms which were learned from

groundtruth data can outperform generic matching terms by a large margin [160]. It would

be interesting to incorporate such terms into variational models. Going one step further

it could be possible to learn both the prior as well as the data term of a variational model

for dense correspondence problems from training data [125]. This would also alleviate the

need to set the parameters of the model by hand and thus would make the algorithms

generally easier to use.





A
List of Acronyms

BTF Brighness Transfer Function

EPE End-Point Error

FISTA Fast Iterative Shrinkage Thresholding Algorithm

ITGV Image-Driven Total Generalized Variation

MRF Markov Random Field

MUC Mapping Uniquness Criterion

NLTGV Non-Local Total Generalized Variation

NLTV Non-Local Total Variation

OFC Optical Flow Constraint

PDE Partial Differential Equation

QPBO Quadratic Pseudo-Boolean Optimization

SGM Semi-Global Matching

TGV Total Generalized Variation

TV Total Variation
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My work at the Institute for Computer Graphics and Vision led to the following peer-

reviewed publications. They are listed in chronological order along with the respective

abstracts.

B.1 2012

Pushing the Limits of Stereo Using Variational Stereo Estimation

Ranftl, R., Gehrig, S., Pock, T., and Bischof, H.

In: Proceedings of IEEE Intelligent Vehicles Symposium (IV)

June 2012, Alcala de Henares, Madrid, Spain

Abstract: We examine high accuracy stereo estimation for binocular sequences that

where obtained from a mobile platform. The ultimate goal is to improve the range of

stereo systems without altering the setup. Based on a well-known variational optical flow

model, we introduce a novel stereo model that features a second-order regularization,

which both allows sub-pixel accurate solutions and piecewise planar disparity maps. The

model incorporates a robust fidelity term to account for adverse illumination conditions

that frequently arise in real-world scenes. Using several sequences that were taken from a

mobile platform we show the robustness and accuracy of the proposed model.

Approximate Envelope Minimization for Curvature Regularity

Heber, S., Ranftl, R., and Pock, T.

In: ECCV Workshop on Higher-Order Models and Global Constraints in Computer

Vision

October 2012, Firenze, Italy
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Abstract: We propose a method for minimizing a non-convex function, which can be

split up into a sum of simple functions. The key idea of the method is the approximation

of the convex envelopes of the simple functions, which leads to a convex approximation

of the original function. A solution is obtained by minimizing this convex approximation.

Cost functions, which fulfill such a splitting property are ubiquitous in computer vision,

therefore we explain the method based on such a problem, namely the non-convex problem

of binary image segmentation based on Euler’s Elastica.

B.2 2013

Multi-Modality Depth Map Fusion using Primal-Dual Optimization

Ferstl, D., Ranftl, R., Rüther, M., and Bischof, H.

In: International Conference on Computational Photography (ICCP)

April 2013, Cambridge, USA

Abstract: We present a novel fusion method that combines complementary 3D and 2D

imaging techniques. Consider a Time-of-Flight sensor that acquires a dense depth map

on a wide depth range but with a comparably small resolution. Complementary, a stereo

sensor generates a disparity map in high resolution but with occlusions and outliers.In

our method, we fuse depth data, and optionally also intensity data using a primal-dual

optimization, with an energy functional that is designed to compensate for missing parts,

filter strong outliers and reduce the acquisition noise. The numerical algorithm is efficiently

implemented on a GPU to achieve a processing speed of 10 to 15 frames per second.

Experiments on synthetic, real and benchmark datasets show that the results are superior

compared to each sensor alone and to competing optimization techniques. In a practical

example, we are able to fuse a Kinect triangulation sensor and a small size Time-of-Flight

camera to create a gaming sensor with superior resolution, acquisition range and accuracy.

Minimizing TGV-based Variational Models with Non-Convex Data

Terms

Ranftl, R., Pock, T., and Bischof, H.

In: International Conference on Scale Space and Variational Methods in Computer

Vision (SSVM)

June 2013, Schloss Seggau, Graz, Austria

Abstract: We introduce a method to approximately minimize variational models with

Total Generalized Variation regularization (TGV) and non-convex data terms. Our ap-

proach is based on a decomposition of the functional into two subproblems, which can be
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both solved globally optimal. Based on this decomposition we derive an iterative algo-

rithm for the approximate minimization of the original non-convex problem. We apply

the proposed algorithm to a state-of-the-art stereo model that was previously solved using

coarse-to-fine warping, where we are able to show significant improvements in terms of

accuracy.

Variational Shape from Light Field

Heber, S., Ranftl, R., and Pock, T.

In: International Conference on Energy Minimization Methods in Computer Vision and

Pattern Recognition (EMMCVPR)

August 2013, Lund, Sweden

Abstract: In this paper we propose an efficient method to calculate a high-quality depth

map from a single raw image captured by a light field or plenoptic camera. The proposed

model combines the main idea of Active Wavefront Sampling (AWS) with the light field

technique, i.e. we extract so-called sub-aperture images out of the raw image of a plenoptic

camera, in such a way that the virtual view points are arranged on circles around a fixed

center view. By tracking an imaged scene point over a sequence of sub-aperture images

corresponding to a common circle, one can observe a virtual rotation of the scene point

on the image plane. Our model is able to measure a dense field of these rotations, which

are inversely related to the scene depth.

Revisiting loss-specific training of filter-based MRFs for image restoration

Chen, Y., Pock, T., Ranftl, R., and Bischof, H.

In: German Conference on Pattern Recognition (GCPR)

September 2013, Saarbrücken, Germany

Abstract: It is now well known that Markov random fields (MRFs) are particularly ef-

fective for modeling image priors in low-level vision. Recent years have seen the emergence

of two main approaches for learning the parameters in MRFs: (1) probabilistic learning

using sampling-based algorithms and (2) loss-specific training based on MAP estimate.

After investigating existing training approaches, it turns out that the performance of the

loss-specific training has been significantly underestimated in existing work. In this paper,

we revisit this approach and use techniques from bi-level optimization to solve it. We show

that we can get a substantial gain in the final performance by solving the lower-level prob-

lem in the bi-level framework with high accuracy using our newly proposed algorithm. As

a result, our trained model is on par with highly specialized image denoising algorithms

and clearly outperforms probabilistically trained MRF models. Our findings suggest that
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for the loss-specific training scheme, solving the lower-level problem with higher accuracy

is beneficial. Our trained model comes along with the additional advantage, that infer-

ence is extremely efficient. Our GPU-based implementation takes less than 1s to produce

state-of-the-art performance.

Image Guided Depth Upsampling using Anisotropic Total Generalized

Variation

Ferstl, F., Reinbacher, C., Ranftl, R., Rüther, M., and Bischof, H.

In: International Conference on Computer Vision (ICCV)

December 2013, Sidney, Australia

Abstract: In this work we present a novel method for the challenging problem of depth

image upsampling. Modern depth cameras such as Kinect or Time of Flight cameras

deliver dense, high quality depth measurements but are limited in their lateral resolution.

To overcome this limitation we formulate a convex optimization problem using higher

order regularization for depth image upsampling. In this optimization an anisotropic

diffusion tensor, calculated from a high resolution intensity image, is used to guide the

upsampling. We derive a numerical algorithm based on a primal-dual formulation that is

efficiently parallelized and runs at multiple frames per second. We show that this novel

upsampling clearly outperforms state of the art approaches in terms of speed and accuracy

on the widely used Middlebury 2007 datasets. Furthermore, we introduce novel datasets

with highly accurate groundtruth, which, for the first time, enable to benchmark depth

upsampling methods using real sensor data.

B.3 2014

A bi-level view of inpainting-based image compression

Chen, Y., Ranftl, R., and Pock, T.

In: Computer Vision Winter Workshop (CVWW)

February 2014, Krtiny, Czech Republic

Best Paper Award

Abstract: Inpainting based image compression approaches, especially linear and non-

linear diffusion models, are an active research topic for lossy image compression. The major

challenge in these compression models is to find a small set of descriptive supporting points,

which allow for an accurate reconstruction of the original image. It turns out in practice

that this is a challenging problem even for the simplest Laplacian interpolation model. In

this paper, we revisit the Laplacian interpolation compression model and introduce two

fast algorithms, namely successive preconditioning primal dual algorithm and the recently
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proposed iPiano algorithm, to solve this problem efficiently. Furthermore, we extend the

Laplacian interpolation based compression model to a more general form, which is based on

principles from bi-level optimization. We investigate two different variants of the Laplacian

model, namely biharmonic interpolation and smoothed Total Variation regularization. Our

numerical results show that significant improvements can be obtained from the biharmonic

interpolation model, and it can recover an image with very high quality from only 5%

pixels.

Insights into analysis operator learning: From patch-based sparse models

to higher-order MRFs

Chen, Y., Ranftl, R., and Pock, T.

In: IEEE Transactions on Image Processing (TIPS)

Vol. 23, No. 3, 2014

Abstract: This paper addresses a new learning algorithm for the recently introduced

co-sparse analysis model. First, we give new insights into the co-sparse analysis model

by establishing connections to filter-based MRF models, such as the Field of Experts

(FoE) model of Roth and Black. For training, we introduce a technique called bi-level

optimization to learn the analysis operators. Compared to existing analysis operator

learning approaches, our training procedure has the advantage that it is unconstrained

with respect to the analysis operator. We investigate the effect of different aspects of

the co-sparse analysis model and show that the sparsity promoting function (also called

penalty function) is the most important factor in the model. In order to demonstrate the

effectiveness of our training approach, we apply our trained models to various classical

image restoration problems. Numerical experiments show that our trained models clearly

outperform existing analysis operator learning approaches and are on par with state-of-

the-art image denoising algorithms. Our approach develops a framework that is intuitive

to understand and easy to implement.

A higher-order MRF based variational model for multiplicative noise re-

duction

Chen, Y., Feng, W., Ranftl, R., Qiao, H., and Pock, T.

In: IEEE Signal Processing Letters

Vol. 21, No. 11, 2014

Abstract: The Fields of Experts (FoE) image prior model, a filter-based higher-order

Markov Random Fields (MRF) model, has been shown to be effective for many image

restoration problems. Motivated by the successes of FoE-based approaches, in this let-

ter we propose a novel variational model for multiplicative noise reduction based on the

FoE image prior model. The resulting model corresponds to a non-convex minimization
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problem, which can be efficiently solved by a recently published non-convex optimization

algorithm. Experimental results based on synthetic speckle noise and real synthetic aper-

ture radar (SAR) images suggest that the performance of our proposed method is on par

with the best published despeckling algorithm. Besides, our proposed model comes along

with an additional advantage, that the inference is extremely efficient. Our GPU based

implementation takes less than 1s to produce state-of-the-art despeckling performance.

A Deep Variational Model for Image Segmentation

Ranftl, R., and Pock, T.

In: German Conference on Pattern Recognition (GCPR)

September 2014, Münster, Germany

GCPR Best Paper Award - Honorable Mention

Abstract: In this paper we introduce a novel model that combines Deep Convolutional

Neural Networks with a global inference model. Our model is derived from a convex

variational relaxation of the minimum s-t cut problem on graphs, which is frequently used

for the task of image segmentation. We treat the outputs of Convolutional Neural Networks

as the unary and pairwise potentials of a graph and derive a smooth approximation to the

minimum s-t cut problem. During training, this approximation facilitates the adaptation

of the Convolutional Neural Network to the smoothing that is induced by the global model.

The training algorithm can be understood as a modified backpropagation algorithm, that

explicitly takes the global inference layer into account. We illustrate our approach on

the task of supervised figure-ground segmentation. In contrast to competing approaches

we train directly on the raw pixels of the input images and do not rely on hand-crafted

features. Despite its generality, simplicity and complete lack of hand-crafted features, our

approach is able to yield competitive performance on the Graz02 and Weizmann Horses

datasets.

Non-Local Total Generalized Variation for Optical Flow Estimation

Ranftl, R., Bredies, K., and Pock, T.

In: European Conference on Computer Vision (ECCV)

September 2014, Zürich, Switzerland

Abstract: In this paper we introduce a novel higher-order regularization term. The

proposed regularizer is a non-local extension of the popular second-order Total Gener-

alized variation, which favors piecewise affine solutions and allows to incorporate soft-

segmentation cues into the regularization term. These properties make this regularizer

especially appealing for optical flow estimation, where it offers accurately localized mo-

tion boundaries and allows to resolve ambiguities in the matching term. We additionally
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propose a novel matching term which is robust to illumination and scale changes, two

major sources of errors in optical flow estimation algorithms. We extensively evaluate the

proposed regularizer and data term on two challenging benchmarks, where we are able

to obtain state of the art results. Our method is currently ranked first among classical

two-frame optical flow methods on the KITTI optical flow benchmark.

B.4 2015

Bilevel Optimization with Nonsmooth Lower Level Problems

Ochs, P., Ranftl, R., Brox, T., and Pock, T.

In: International Conference on Scale Space and Variational Methods in Computer

Vision (SSVM)

June 2015, Lége Cap Ferret, France

Abstract: We consider a bilevel optimization approach for parameter learning in non-

smooth variational models. Existing approaches solve this problem by applying implicit

differentiation to a sufficiently smooth approximation of the nondifferentiable lower level

problem. We propose an alternative method based on differentiating the iterations of

a nonlinear primal-dual algorithm. Our method computes exact (sub)gradients and can

be applied also in the nonsmooth setting. We show preliminary results for the case of

multi-label image segmentation.
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[112] Ojala, T., Pietikäinen, M., and Harwood, D. (1996). A comparative study of tex-

ture measures with classification based on featured distributions. Pattern Recognition,

29(1):51–59. (page 76)

[113] Oram, D. (2001). Rectification for Any Epipolar Geometry. In British Machine

Vision Conference, pages 653–662. (page 105)

[114] Ostrovsky, Y., Meyers, E., Ganesh, S., Mathur, U., and Sinha, P. (2009). Visual

parsing after recovery from blindness. Psychological Science, 20(12):1484–1491. (page 2)

[115] Papafitsoros, K. and Schönlieb, C. (2014). A combined first and second order varia-

tional approach for image reconstruction. Journal of Mathematical Imaging and Vision,

48(2):308–338. (page 36, 54)

[116] Papenberg, N., Bruhn, A., Brox, T., Didas, S., and Weickert, J. (2006). Highly accu-

rate optic flow computation with theoretically justified warping. International Journal

of Computer Vision, 67(2):141–158. (page 59, 72)

[117] Parikh, N. and Boyd, S. (2014). Proximal Algorithms. Foundations and Trends in

Optimization, 1(3):123–231. (page 19)

[118] Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann

Publishers Inc. (page 107)

[119] Plyer, A., Besnerais, G. L., and Champagnat, F. (2014). Massively parallel Lucas

Kanade optical flow for real-time video processing applications. Journal of Real-Time

Image Processing. (page 59)

[120] Pock, T. and Chambolle, A. (2011). Diagonal preconditioning for first order primal-

dual algorithms in convex optimization. In International Conference on Computer Vi-

sion (ICCV), pages 1762–1769. (page 23)

[121] Pock, T., Cremers, D., Bischof, H., and Chambolle, A. (2010). Global Solutions of

Variational Models with Convex Regularization. SIAM Journal on Imaging Sciences,

3(4):1122–1145. (page 114, 120, 121)

[122] Pock, T., Schoenemann, T., Graber, G., Bischof, H., and Cremers, D. (2008). A

Convex Formulation of Continuous Multi-Label Problems. In European Conference on

Computer Vision (ECCV), pages 792–805. (page 115, 116, 117)

[123] Ranftl, R., Bredies, K., and Pock, T. (2014). Non-local total generalized variation for

optical flow estimation. In European Conference on Computer Vision (ECCV), pages

439–454. (page 8, 47)

[124] Ranftl, R., Gehrig, S., Pock, T., and Bischof, H. (2012). Pushing the Limits of

Stereo Using Variational Stereo Estimation. In Intelligent Vehicles Symposium, pages

401–407. (page 8, 36, 43, 73, 74, 108, 123)



BIBLIOGRAPHY 165

[125] Ranftl, R. and Pock, T. (2014). A Deep Variational Model for Image Segmentation.

In German Conference on Pattern Recognition (GCPR), pages 107–118. (page 143)

[126] Ranftl, R., Pock, T., and Bischof, H. (2013). Minimizing TGV-based variational

models with non-convex data terms. In International Conference on Scale Space and

Variational Methods in Computer Vision (SSVM), pages 282–293. (page 8, 113)

[127] Ren, X. (2008). Local grouping for optical flow. In Conference on Computer Vision

and Pattern Recognition (CVPR), pages 1–8. (page 61)

[128] Revaud, J., Weinzaepfel, P., Harchaoui, Z., and Schmid, C. (2015). EpicFlow: Edge-

Preserving Interpolation of Correspondences for Optical Flow. Technical report, INRIA,

CNRS, Universite de Grenoble. (page 61, 86, 93)

[129] Rockafellar, R. T. (1997). Convex analysis. Princeton Landmarks in Mathematics.

Princeton University Press, Princeton, NJ. (page 9, 35)

[130] Rudin, L. I., Osher, S., and Fatemi, E. (1992). Nonlinear total variation based noise

removal algorithms. Physica D, 60(1-4):259–268. (page 24, 25, 26)

[131] Scharstein, D., Hirschmüller, H., Kitajima, Y., Nesic, N., Wang, X., and Westling,

P. (2014). High-Resolution Stereo Datasets with Subpixel-Accurate Ground Truth.

German Conference on Pattern Recognition (GCPR), pages 31–42. (page 131)

[132] Scharstein, D. and Pal, C. (2007). Learning conditional random fields for stereo. In

Conference on Computer Vision and Pattern Recognition (CVPR), pages 1–8. (page )

[133] Scharstein, D. and Szeliski, R. (2003). High-accuracy stereo depth maps using struc-

tured light. In Conference on Computer Vision and Pattern Recognition (CVPR), pages

195–202. (page )

[134] Scharstein, D., Szeliski, R., and Zabih, R. (2002). A taxonomy and evaluation of

dense two-frame stereo correspondence algorithms. In International Journal of Com-

puter Vision, volume 47, pages 7–42. (page 131)

[135] Schnorr, C. (1994). Segmentation of visual motion by minimizing convex non-

quadratic functionals. Proceedings of 12th International Conference on Pattern Recog-

nition, 1. (page 60)

[136] Schraudolph, N. and Kamenetsky, D. (2008). Efficient exact inference in Planar

Ising Models. In Advances in Neural Information Processing Systems (NIPS), pages

1417–1424. (page 118)

[137] Shi, J. S. J. and Tomasi, C. (1994). Good features to track. In Conference on

Computer Vision and Pattern Recognition (CVPR), pages 593–600. (page 58)



166

[138] Shulman, D. and Herve, J.-Y. (1989). Regularization of discontinuous flow fields. In

Workshop on Visual Motion, pages 81–86. (page 60)

[139] Shum, H. Y. and Szeliski, R. (2000). Systems and experiment paper: Construction

of panoramic image mosaics with global and local alignment. International Journal of

Computer Vision, 36(2):101–130. (page 58)

[140] Spangenberg, R., Langner, T., and Rojas, R. (2013). Weighted semi-global match-

ing and center-symmetric census transform for robust driver assistance. In Interna-

tional Conference on Computer Analysis of Images and Patterns (CAIP), pages 34–41.

(page 108, 136)

[141] Stangl, F., Souiai, M., and Cremers, D. (2013). Performance Evaluation of Narrow

Band Methods for Variational Stereo Reconstruction. In German Conference on Pattern

Recognition (GCPR), pages 194–204. (page 137)
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