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Abstract (English)

Classification is a common task in data mining and knowledge discovery. Usually classi-
fiers have to be generated by machine learning experts. Thus, the user who applies the
classifier has no idea whether, how and why the classifier works. This lack of understan-
ding results in a lack of trust in the algorithms. Further, excluding domain experts from
the classifier construction and adaptation process does not allow to fully exploit users’
domain knowledge.

In this thesis the concept of Visually Supported Supervised Learning is introduced. It
is investigated whether a tighter coupling of the data mining process with the user by
the means of interactive visualizations can improve construction, understanding, assess-
ment, and adaptation of supervised learning algorithms. Different classifier-agnostic vi-
sualizations are designed and implemented and the concept of Visual Active Learning is
deduced. Various experiments evaluate the suitability of these visualization with respect
to assessment, understanding, creation and adaptation of classifiers.

The experiments show that, first, classifier-agnostic visualizations can help users to asses
and understand arbitrary classification models in various classification tasks. Second, a
specific (classifier-dependent) visualization for text classifiers can be used to asses certain
aspects of the internal classification model in more detail. Third, a combination of data
visualization and classifier visualization enables domain users to create classifiers from
scratch. Fourth, Visual Active Learning outperforms classical active learning in classifier-
agnostic settings. Fifth, automatically extracted key phrases are a fast and accurate
representation for document labeling and thus allow for fast and efficient training data
generation.

The results show, that the combination of classification algorithms and information
visualization, Visually Supported Classification, is a reasonable approach. Tighter inte-
gration of domain users in classification applications can be beneficial for both, the users
and the algorithms.

Keywords: Supervised Machine Learning, Classification, Information Visualization, Vi-
sual Active Learning, User
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Abstract (German)

Klassifikation als Teilgebiet des überwachten Lernens ist ein wichtiges Gebiet des Data
Minings und der Wissenserschließung. Normalerweise werden Klassifikatoren von Exper-
tInnen auf dem Gebiet des Maschinellen Lernens erstellt. Daraus folgt aber auch, dass
die EndanwenderInnen im Allgemeinen nicht wissen, wie und warum der Klassifikator
welche Entscheidungen trifft. Dieses fehlende Verständnis führt wiederum zu fehlendem
Vertrauen in die Algorithmen. Außerdem ist es nicht möglich, wertvolles Domänenwissen
in die Algorithmen zu integrieren, wenn man die AnwenderInnen aus dem Erstellungs-
und Adaptionssprozess von Klassifikatoren ausschließt.

In dieser Arbeit wird das Konzept von visuell unterstützter Klassifikation beschrieben.
Es wird untersucht, ob eine stärkere Integration von EndanwenderInnen in den Data
Mining Prozess mit Hilfe von interaktiven Visualisierungen die Erstellung, das Ver-
stehen, die Beurteilung und die Adaption von Klassifikatoren verbessern kann. Dafür
werden mehrere Visualisierungen, die unabhängig vom spezifischen Klassifikator ange-
wendet werden können, entworfen und implementiert. Weiterhin wird das Konzept des
Visuellen Aktiven Lernens als Erweiterung des Aktiven Lernens im Data Mining ein-
geführt. In Experimenten werden diese Visualisierungen und das Visuelle Aktive Lernen
hinsichtlich ihrer Verwendbarkeit für das Verstehen, die Beurteilung und die Adaption
von Klassifikatoren evaluiert.

In Experimenten konnte Folgendes gezeigt werden: Erstens, die entwickelten Visuali-
sierungen können AnwenderInnen das Verstehen und Beurteilen von Klassifikations-
modellen ermöglichen. Zweitens, eine Visualisierung für einen speziellen Textklassifi-
kator erlaubt AnwenderInnen Zugriff auf das interne Klassifikationsmodell. Drittens, ei-
ne Kombination aus Datenvisualisierungung und Klassifikatorvisualisierung ermöglicht
DomänenexpertInnen, Klassifikatoren neu zu erstellen. Viertens, Visuelles Aktives Ler-
nen liefert bessere Ergebnisse als klassisches Aktives Lernen in klassifikator-unabhängigen
Fällen. Fünftens, eine Darstellung von automatisch extrahierten Schlüsselphrasen aus
Texten ermöglicht ein schnelles und akkurates Annotieren von Textdokumenten und da-
mit schnelles und akkurates Generieren von Trainingsdaten für die Textklassifikattion.

Es kann geschlussfolgert werden, dass die Kombination aus Klassifikation und Visualisie-
rung, d.h. visuell unterstütze Klassifikation, ein sinnvoller Ansatz ist. Von einer engeren
Einbindung von DomänenexpertInnen in Klassifikationsanwendungen profitieren sowohl
die Algorithmen, als auch die AnwenderInnen.
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“What we’ve got here is a failure to communicate.”

(Captain (Strother Martin) in Cool Hand Luke)

1 Introduction

Classification is a common task in data mining and knowledge discovery. Application
include spam-filtering of emails, categorization of web pages, gene-sequence classification
and object recognition.

The generation of a good classifier is a hard task, usually performed by data mining
experts. Features have to be engineered, training data has to be generated and an
appropriate classification algorithm has to be selected, parametrized and trained. Un-
fortunately, as stated by the no-free-lunch theorems [Wol96b], there is no such thing as
the best classification algorithm. Empirical studies may give a hint which algorithm to
use for a given problem. Experts in data mining know which algorithm surely will not
work in a given setting. But at the end, it comes down to testing multiple classifiers and
evaluating them on the task at hand to find the best performing one.

Given that the classifiers are created by data mining experts, the user who applies the
classifier has usually no idea whether, how and why the classifier works. Sometimes, the
performance of classifiers is accessible to users only, if they detect obvious misbehavior
while applying the classifier. Performance of a classifier means its efficiency on real-
world data in real-world applications, i.e. how often does the classifier make which
mistakes.1 But still, the classifier is a black-box for users, many questions about its
behavior remain unanswered. Thus, generally, users of classifiers do not understand why
the classifier is doing what and how well it is performing. Further, it is questionable
why users then should trust classifiers. Understanding and trust of data mining models
has been identified as desirable property of the models [TBD+01]. This is the reason
why less powerful, but easy to communicate classification models such as decision trees
are in some applications preferred to very powerful classification models, like artificial
neural networks and support vector machines [Koh00].

There is another problem with the current practice of users applying black-box classi-
fiers generated by data mining experts. Besides the lack of understanding and trust, this
approach does not exploit the potential of the user – specifically the domain knowledge.
Domain knowledge can not always be encoded in machine-readable form and integrated

1Performance in terms of computational complexity is equally important but not the focus of this thesis.

1



1 Introduction

into the algorithms. Further, domain knowledge may become explicit only in the pro-
cess of working with the data and the algorithm. Thus, excluding domain users from
the classifier construction and adaptation process does not allow to fully exploit users’
domain knowledge.

As argued above, current practice of classifier generation leads to (i) lack of understand-
ing and trust for end users and (ii) little or no exploitation of domain knowledge for
classifiers.

These problems have already been identified in the literature, most prominently by Ben
Shneiderman [Shn02]. The general approach to solving this problem is to tighter couple
the automatic approaches and the user using information visualizations. Appropriate
interactive visualizations can be used to (i) convey details about the data mining process
to the user, and subsequently generate trust and understanding [KT03], and (ii) integrate
background knowledge of the user into the algorithm [WEH+01].

Existing approaches to combine information visualization and classifiers are either tai-
lored towards specific classifiers (e.g., [CCWH08, MK08a]) or otherwise restricted. Other
restrictions are for instance the limitation to binary classification problems (e.g., [Rd00,
FH03]) or the non-interactivity of the visualizations, such that user feedback to the
model is not possible (e.g. [KLM+00, DA08]). It is important that the visualization
is independent of the classifier, i.e. the actual classification model should be oblivious
to the user. This independence of classifiers is desired in order to require the user to
learn only one visualization and in order to compare classifiers by the means of the
visualization.

In this thesis it is investigated whether a tighter coupling of the data mining process
with the user by the means of interactive visualizations can improve construction, un-
derstanding, assessment, and adaptation of classifiers. A detailed discussion on what
construction, understanding, assessment, and adaptation of classifiers means can be
found in the next section where the research question of the thesis is defined. Thereby
the focus lies on using classifier-agnostic interactive visualizations.

Thus, in this thesis, two classifier-agnostic visualizations are designed and implemented.
Further, the concept of Visual Active learning is derived, as an extension of classical
active learning. Various experiments evaluate the suitability of these visualizations to
improve assessment, understanding, creation and adaptation of classifiers. Furthermore,
in the experiments Visual Active Learning is compared to classical active learning to
answer the question whether this concept – which gives the user more power in the
process – can lead to improved classifiers.

During the thesis work and the experiments another problem became obvious, which
is not directly related to interactive visualizations of classifier models. Especially for
text classification problems we found that the time for generating the training data
(which relates to classifier construction) heavily depends on the time the user requires
to comprehend the text. Thus, the overall time required for constructing the classifier
depends on the time used for text comprehension. We exploit different forms of text
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representations to investigate whether this time can be reduced by altering the way the
text is presented to the user. These presentations are visualizations of certain aspects of
texts, i.e., they are visualizations of the data required for classification, not visualizations
of the classification models. In user studies these developed data visualizations are
evaluated for their suitability for faster training data generation.

1.1 Research Question

The aim of this thesis is to bridge the gap between classification algorithms and users.
The chosen means to achieve this goal are interactive visualizations. More specifically,
the research question this thesis aims to answer is:

RQ “Can interactive visualization improve construction, understanding, assessment,
and adaptation of supervised machine learning algorithms?”

In the following we will describe in detail what “construction”, “understanding”, “as-
sessment” and “adaptation” of supervised machine learning algorithms mean. In this
thesis, the term classifier is used to refert to a supervised machine learning algorithm.2

Construction of Classifiers: Usually, classifiers are constructed by (i) selecting an ap-
propriate algorithm, (ii) defining the algorithm’s parameters, if needed, and (iii) train the
classifier by providing a training data set.3 Algorithm selection and parameter settings
are performed by machine learning experts, usually in an iterative way by evaluating
different combinations of algorithm and parameters. The creation of the training data
set happens independently by domain experts. What shall be investigated in this thesis
is whether the steps can be tighter coupled and domain users can be enabled to con-
struct their classifies themselves by the use of interactive visualizations. This means,
they should be enabled to take an algorithm, set the parameters (or take default param-
eters), generate the training data and provide the training data to the classifier in order
to construct a trained classification model.

Assessment of Classifiers: Once a classifier has been trained it is desirable to assess
its quality and behavior. Usually, this is again a task for machine learning experts. Us-
ing different evaluation measures machine learning experts can say whether the classifier
performs good or bad and, if it performs bad, they may be able to point out reasons
for it after investigating the model beyond simple evaluation measures. Domain users
usually do not have the means to assess classifiers at all. In terms of this thesis it will be
investigated whether interactive visualization (i) can aid machine learning experts, and
(ii) can be a means for domain experts in order to assess classifiers. Typical results of
assessing a classification model include: How many training samples were used to build

2Classifiers and classification are known in many research fields such as biology. In this thesis we use
the term classifier from the field of machine learning.

3Feature engineering is equally important, but in the scope of this thesis it is assumed that features
are already engineered.
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the current classifier? Were there enough? How does the classifier label the test exam-
ples? How well does the classifier perform? Are there any conspicuousnesses regarding
the classes or the samples? What was the decision for a sample based on? Additionally,
observing a classification procedure could enable the user to answer questions like: How
many training samples are necessary to get a stable classifier? Are there any “problem”
samples for which the classifier constantly changes its decision?

Understanding of Classifiers: The assessment of the classifier and being able to an-
swer the questions described above may eventually lead to some kind of understanding of
the classification model. Users may be able to draw conclusions about the classification
model and be able to argue why the classifier is doing what. Further, they may be able
to understand when and when not to use the classifier and to recognize when it performs
wrongly. Understanding a classification model is a prerequisite to communicate classi-
fiers. Communicating classifiers means to express its behavior, performance and features
in natural language understandable by lay persons. The importance of understanding
models should not be underestimated. Understanding is crucial to generate trust in the
models. And why should one use a model that one does not trust?

Or, as Caragea et al. put it: “Although the predictive accuracy is an important measure
of the quality of a classification model, for many data mining tasks understanding the
model is as important as the accuracy of the model itself.” [CCWH08]

Adaptation of Classifiers: The adaptation of classifiers is related to the construction
of classifiers. Adaptation implies to correct wrong decisions or provide additional infor-
mation to update the classifier’s internal models. Clearly, assessment and understanding
are the basis for adaptation. A user can only corrects decisions once she assessed (and
optionally) understood them. Adaptation aims at enhancing already trained models.

1.2 Methodology

In this section the methodology used for this thesis work is described. An overview of the
pursued steps can be seen in figure 1.1. The general problem that the thesis tries to tackle
is bridging the gap between classification algorithms and the user. Using interactive
visualization seems a reasonable approach (À) and has been applied already in this
context. State-of-the art research leads to research hypotheses (Á). These hypotheses
were at first abstract hypotheses of the form “Can interactive visualizations ..?”

In order to formulate more concrete hypotheses, which can be tested in practice, the ab-
stract ”interactive visualizations“ was substituted with concrete visualizations. There-
fore, based on the state-of-the art research, different visualizations and one interaction
concept were developed as modules (Â). These modules are

M1 Class Radial Visualization

M2 Confusion Maps visualization
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M3 Tag Layout

M4 Voronoi Word Cloud visualization

M5 The concept of Visual Active Learning

To test the concrete hypotheses multiple experiments were designed (Ã) to evaluate
the construction, understanding, and adaptation part of the research questions. More
specifically, experiments to answer the following questions were performed4:

Exp1 In which way can visualizations, more specifically the Class Radial Visualiza-
tion and the Confusion Maps help experts to understand arbitrary classification
models?

Exp2 Can user feedback on classification models through interactive visualizations,
more specifically an interactive version of the Class Radial Visualization, be used
to improve classification models? Is there a benefit over automatic methods?

Exp4 Can pure data visualizations be used to allow domain experts to generate their
own classifiers?

Exp5 In which way can a model of a specific text classifier, namely the Class-Feature-
Centroid (CFC) classifier be visualized and made accessible to users?

From the results and observations of the experiments, especially Exp2 and Exp4, a
crucial bottleneck for classifier adaptation and construction was identified: Using the
interactive visualization was relatively quickly accomplished by users. In terms of inter-
action methods users were able to instantly provide feedback to the classifier. However,
for text classification tasks the bottleneck was the time needed by users to actually un-
derstand and categorize the content of a text document (Ä). This insight resulted in a
new hypothesis (Å) and the design of a new experiment to test this hypothesis (Æ):

Exp3 What are good representations of the data to classify, more specifically of text
documents, to speed-up the manual labeling process?

1.3 Focus of the Thesis

This section defines the focus of the thesis and names relevant research fields. As visual-
ized in figure 1.2 this thesis covers three main research areas, Information Visualization,
(supervised) Machine Learning, and Human Computer Interaction. The broad scope of
the thesis is the intersection of these research fields Information Visualization, Machine
Learning and Human Computer Interaction.

4The numbering of the experiments corresponds to the sequence in which they are described in the
experiment section of this thesis
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Figure 1.1: Overview of the methodology of the thesis. ÀThe approach to answering
the research question is investigating interactive visualizations. ÁReviewing
state-of-the-art literature leads to research hypotheses. ÂTo test the hy-
potheses suitable modules (i.e. visualisation components, interaction con-
cepts and feedback concepts) are developed and implemented. ÃIn the first
series of experiments the hypotheses concerning classifier assessment, under-
standing, adaptation and construction are verified using the modules. ÄThe
first series of experiments lead to the insight that a crucial bottleneck for
classifier adaptation and construction is human text comprehension, which
Ålead to an new hypothesis and a Æsecond experiment to test the new
hypothesis.
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Figure 1.2: The scope of the thesis visualized in a Venn diagram. The scope is the
intersection of three research fields.
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1.3.1 Demarcation

In terms of the Knowledge Discovery pipeline[FPSS96] depicted in figure 1.3 the focus of
this thesis is inside the blue boundary (large rounded rectangle), covering the Data Min-
ing and the Evaluation and Interpretation step. In terms of the extended Information
Visualization pipeline [MK08a] depicted in figure 1.4 the thesis focuses on the feedback
loop inside the magenta border (large dashed rectangle). More specifically the thesis
covers the steps Interaction in Visualization, Classifier Update and Classifier Model.

Figure 1.3: Focus of the thesis (blue boundary) in terms of the Knowledge Discovery
Pipeline [FPSS96].

Figure 1.4: Focus of the thesis in terms of the extended Information Visualization
pipeline [MK08a].

In detail the demarcation of this thesis is as follows:

• This thesis focuses on single-label, multi-class classification problems, multi-label
classification will only be briefly touched.
• We investigate supervised learning, more specifically classification; semi-supervised

learning is not the focus of this thesis.
• The focus application area is text classification. Some experiments use other data

sets as well to show the general applicability of the visualizations and concepts.
• For this thesis we assume that preprocessing (e.g. feature engineering) is already

finished and we start with example-feature matrices.

7



1 Introduction

• In terms of Information Visualization the focus lies on classifier visualization that
are independent of the actual classifier used. The reason is threefold: First, only a
small number of visualizations have to be developed which reduces the development
time. Second, the user only needs to learn to interpret only few visualizations and
does not need to adapt to new visualizations. Third, the usage of standardized
visualizations allows to visually compare different classifiers.

1.4 Contributions

The contributions of this thesis are the following:

Contribution 1: Interactive Classifier-Agnostic Visualization: Common prop-
erties of classifiers are identified. Desired properties of interactive visualizations for
classification models are derived from the tasks assessment, understanding, construction
and adaptation of classifiers. Combining the desired properties with common properties
of classifiers leads to the design and implementation of two classifier-agnostic visualiza-
tions. The suitability of these visualizations for assessment, understanding, construction
and adaptation is confirmed in various experiments.

Contribution 2: Concept of Visual Active Learning: The concept of Visual Ac-
tive Learning is developed as an extension of classical active learning. Experiments on
various classifier-data set combinations using the developed classifier-agnostic visualiza-
tions prove the concept. Further, the experiments show that classical active learning is –
at least for the tested combinations of classifiers and data sets – outperformed by Visual
Active Learning. This finding points toward the beneficialness of integrating the user in
data mining processes.

Contribution 3: Classifier-Dependent Visualization for Text Classification:
For the special case of text classification a classifier-dependent visualization was de-
veloped to visually access the feature level. This visualization shows which features
contribute to the classification model in which way and how the trained classes relate to
each other in terms of the features used by the classifier.

Contribution 4 - Tag layout Algorithm for Arbitrary Convex Shapes: Sup-
porting for the visualization in Contribution 3 a new tag layout algorithm was developed.
This allows the space-filling layout of tags or words inside arbitrary convex shapes.

Contribution 5: Evaluation of text representations for faster labeling: For the
purpose of minimizing the time required to generate training data for text classification
alternative text representation forms were investigated. More specifically, only the key
sentences or the key words of the texts were presented to the users. The latter one was
represented as a word cloud using the layout algorithm of Contribution 4. In a user
evaluation these representations were compared to the commonly used full-text. It was
shown that the key word representation allows users to label training data accurately
and fast.
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1.5 Publications

This section summarizes my own and joint publications and outlines how they relate to
this thesis.

The idea of the classifier visualization was first published in 2009 at the Information
Visualization conference and later extended with the idea of feedback as a poster at the
EuroVis conference. Both publications are a shorter version of Section 4.1 on page 65.

Christin Seifert and Elisabeth Lex. A novel visualization approach for
data-mining-related classification. In Proc. of the International Conference
on Information Visualisation (IV), pages 490–495. Wiley, July 2009. (see
[SL09a])

Christin Seifert and Elisabeth Lex. A visualization to investigate and give
feedback to classifiers. In Proceedings European Conference on Visualization
(EuroVis), Jun 2009. poster. (see [SL09b])

In the following joint work, classifiers were evaluated for a cross-domain text classifi-
cation task. In the context of this work, the Class Radial Visualization was supportively
used to assess the quality of different classifiers. My contribution was the application of
the Class Radial Visualization to the data sets and guiding the interpretation. The find-
ings are summarized in the experiments chapter, in section 5.2.2 on page 107. Further,
in the third publication, the class confusion map visualization was introduced.

Elisabeth Lex, Christin Seifert, Michael Granitzer, and Andreas Juffinger.
Cross-domain classification: Trade-off between complexity and accuracy. In
Proceedings of the 4th International Conference for Internet Technology and
Secured Transactions (ICITST), 2009. (see [LSGJ09a])

Elisabeth Lex, Christin Seifert, Michael Granitzer, and Andreas Juffinger.
Automated blog classification: A cross-domain approach. In Proc. of IADIS
International Conference WWW/Internet, 2009. (see [LSGJ09b])

Elisabeth Lex, Christin Seifert, Michael Granitzer, and Andreas Juffin-
ger. Efficient cross-domain classification of weblogs. International Journal
of Computational Intelligence Research, 1(1):7382, 2010. (see [LSGJ10])

An application allowing users to construct classifiers from scratch on their data
has been proposed in the following publication. In this publication the Information
Landscape from [SKM+09] was combined with a classification interface and the classifier
visualization. Application and results are described in section 5.5 on page 147.

Christin Seifert, Vedran Sabol, and Michael Granitzer. Classifier hypothe-
sis generation using visual analysis methods. In Filip Zavoral, Jakub Yaghob,
Pit Pichappan, and Eyas El-Qawasmeh, editors, Networked Digital Technolo-
gies, volume 87 of Communications in Computer and Information Science,
pages 98–111. Springer, 2010. (see [SSG10])
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Based on the classifier visualization the concept of user-based active learning5 was
proposed in the workshop on Visual Analytics and Knowledge Discovery at the Inter-
national Conference in Data Mining (ICDM). Section 3.4 of this thesis describes the
concept in more detail and the experiments are described in section 5.3 on page 113.

Christin Seifert and Michael Granitzer. User-based active learning. In
Wei Fan, Wynne Hsu, Geoffrey I. Webb, Bing Liu, Chengqi Zhang, Dim-
itrios Gunopulos, and Xindong Wu, editors, Proceedings of 10th Interna-
tional Conference on Data Mining Workshops (ICDM2010), pages 418–425,
Sydney, Australia, Dec 2010. (see [SG10])

The visualization Voronoi Word Cloud was applied to the CFC classifier, visualizing
the model of this specific classifier. The Voronoi Word Cloud was presented as a
poster. It builds upon previous work on tag layout in arbitrary polygons. The tag
layout algorithm is described in detail in section 4.3 on page 82; the general idea of the
Voronoi Word Cloud can be found in section 4.4 on page 91 and its application to the
special classifier in section 5.6 on page 155.

Christin Seifert, Barbara Kump, Wolfgang Kienreich, Gisela Granitzer,
and Michael Granitzer. On the beauty and usability of tag clouds. In Pro-
ceedings of the 12th International Conference on Information Visualisation
(IV), pages 17–25, Los Alamitos, CA, USA, July 2008. IEEE Computer
Society. (see [SKK+08])

Christin Seifert, Wolfgang Kienreich, and Michael Granitzer. Visualiz-
ing text classification models with Voronoi Word Clouds. In Proceedings
15th International Conference Information Visualisation (IV), 2011. poster.
(see [SKG11])

Further, the experiment investigating effective text representations for fast training
data generation has been presented recently at the Discovery Science conference.

Christin Seifert, Eva Ulbrich, and Michael Granitzer. Word clouds for
efficient document labeling. In The Fourteenth International Conference on
Discovery Science, October 2011. (see [SUG11])

Finally, a book chapter about Visual Analytics for text has been accepted and will
appear in 2012 in the book Large Scale Data Analytics. This chapter covers the whole
Knowledge Discovery Pipeline [FPSS96], whereas the focus of this thesis is a part of the
pipeline (see section 1.3).

Christin Seifert, Vedran Sabol, Wolfgang Kienreich, Elisabeth Lex, and
Michael Granitzer. Gkoulalas-Divanis, A. and Labbi, A. (Eds.) Large Scale
Data Analytics Visual Analysis and Knowledge Discovery for Text Springer,
toAppear (see [SSK+ar])

5User-based active learning is synonymously used to Visual Active Learning
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1.6 Terminology

Depending on the historical background of the data mining algorithm different terms
are used in the literature. Here we describe the terminology used throughout this thesis.

First of all, in this thesis the phrase supervised machine learning is usually replaced by
the term classification – which is a synonym in the field of machine learning. The type
of algorithm that is the focus of this thesis, a supervised machine learning algorithm, is
referred to as classification algorithm throughout this thesis. We use the term classifier
for both, the learning component and the classification component. A trained classifier
has learned a model of the training data and is therefore referred to as classification
model.6.

We will refer to the object that is to be classified as (data) item or example. Data
items used for creating (training) a classifier are referred to as training items or training
examples. All training items form the training set. A specific feature of the training
items is that they have a class label assigned.7 This class label describes the category
the corresponding object in the real world belongs to. In this thesis, data items used for
the evaluation of a classifier are called evaluation items and form the evaluation set.8

Evaluation items also have a label assigned. In some training scenarios, a third set of
items, the test set, is used. Test items usually do not have a label. To emphasize this
fact, they are sometimes also called unlabeled data items. Data items are represented by
features to make them processable by machine learning algorithms.9

Furthermore, the term visualization is used synonymously to information visualization.

1.7 Outline

This thesis consists of 6 chapters. Figure 1.5 gives an overview of the chapters, which
are also described in the following:

Chapter 1 - Introduction: Introduces and motivates the work of this thesis. Defines
the research question. Describes scope of the thesis as well as goal and non-goals. States
the contributions. Introduces terminology used in this work. →page 1

Chapter 2 – Foundations: Describes the foundations necessary to understand this
thesis. Can be skipped by readers familiar with the following topics: Supervised learning
(classification), k-Nearest Neighbor (KNN) classifier, Support Vector Machine (SVM)
classifier, Naive Bayes (NB) classifier, CFC classifier, text classification, active learning
and Voronoi diagrams. →page 15

6An alternative term is classification hypothesis.
7The neural network community uses the term target for labels of training items.
8In other contexts, the evaluation or validation set is used for parameter estimation of algorithms.
9On other contexts features are also referred to as attributes.
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Figure 1.5: Overview of the outline of this thesis
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Chapter 3 – Theory: Develops theory of visually supported supervised learning.
Identifies requirements for visualizations supporting visual supervised learning. Identi-
fies common properties of classifiers. Reviews state-of-the art. Sketches visualizations.
Develops the concept of visual active learning. →page 37

Chapter 4 – Implementation: Describes implementation details for the visualizations
sketched in chapter 3. Describes the developed Class Radial Visualization, Confusion
Maps, a specific tag layout algorithm and Voronoi Word Clouds. →page 63

Chapter 5 – Experiments: Describes five experiments performed to answer the re-
search question using the visualizations developed in chapter 3 and implemented in
chapter 4. More specifically, the experiments cover assessment and understanding of
classifiers (experiment in section 5.2 and 5.6), Visual Active Learning (experiment in
section 5.3), efficient training data generation for text classification (experiment in sec-
tion 5.4), and creation of classifiers (experiment in section 5.5). →page 95

Chapter 6 – Conclusion and Future Work: Summarizes the work of the thesis
with respect to the research question and goals. Self-assessment of the achieved results.
Gives directions for future work. →page 159
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“An investment in knowledge pays the best interest.”

(Benjamin Franklin)

2 Foundations

This chapter describes the foundations necessary to understand the concepts of the the-
ory chapter and the experiments. Those familiar with the topics, can omit this chapter.

The chapter is structured as follows: The terms information visualization, visual an-
alytics and visual data mining are defined and explained in section 2.1 on page 15.
Classification as a concept of supervised machine learning is introduced in section 2.2
on page 17. This section includes the definition of types of classification problems, the
concept of trivial classifiers and describes in detail the four different classification algo-
rithms that are used in this thesis. Specialties for text classification, mostly the feature
generation part are covered in section 2.3 on page 25. Evaluation methodology and
measures for classifiers are described in section 2.4 on page 27. The concept of active
learning is explained in section 2.5 on page 33. Voronoi diagrams are briefly explained
in section 2.6.

2.1 Information Visualization, Visual Analytics, Visual Data
Mining

As described in section 1.3 this thesis roughly covers the research fields Information
Visualization, classification as a subfield of Machine Learning by taking the user into
account. How these research fields relate to Visual Analytics and Visual Data Mining
will be described in this section.

Defining Visualization can be very simple or very hard. The simplest definition of
Visualization is: ’If you can see it, it’s a visualization“ (Pat Hanrahan, Keynote at the
European Conference of Visualization, 2009). According to this definition, a car, a cloud
and a TreeMap [Shn92] all are visualizations.

The InfoVis wiki 1 defines Visualization as ”A graphical representation of data or con-
cepts, which is either an internal construct of the mind or an external artifact supporting

1http://www.infovis-wiki.net
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decision making.“ Note, that according to this definition visualizations not necessarily
make use of computers (as opposed to many other definitions which explicitly define the
use of computer hardware).

Visualization can be further subdivide into Scientific Visualization, Information Visu-
alization and, more recent Knowledge Visualization [EB04]. Basically, the difference
between these three is the kind of data that is represented. Scientific visualizations
represent scientific data, like for instance measurements, in the original data space. Ex-
amples of scientific visualizations are time series of measurements of size of a glacier or
the speed of a vehicle. Scientific visualizations reflect the data precisely. Information
visualizations [CMS99, War04, Spe06] represent more abstract data. These visual-
izations need not necessarily be precise, they aim at conveying latent information in
the data. Examples of information visualizations are the TreeMap [Shn92] – visualiz-
ing directory structure and content, and PhraseNets [vHWV09] – visualizing document
structure. Keim et al.[KMSZ06] defines Information Visualization as follows: ”Informa-
tion visualization (InfoVis) is the communication of abstract data through the use of
interactive visual interfaces.“ Knowledge visualizations visualize even more abstract
concepts – namely knowledge. The main purpose of knowledge visualizations is commu-
nication. An example is the TubeMap visualization for project management [BM05].

Visual Analytics [TC05] can be seen as an extension of Information Visualization
by including the human in the visualization process. Thomas and Cook define Visual
Analytics as follows: ”Visual analytics is the science of analytical reasoning facilitated
by interactive visual interfaces.” [TC05]. The focus are interactive visualizations which
allow users to steer the analytical reasoning process. This process is depicted in figure 2.1.
Based on (transformed) data, models are generated automatically. These models are
visualized. The user can interact with the visualization and her feedback is integrated
back into the model.

Figure 2.1: Overview of the Visual Analytics Process as defined in [KMOZ08]

The aim of Visual Analytics is to include human knowledge (with the help of interactive
visualizations) into analytic models and thus be able to solve problems that would be
unsolvable by either human or algorithms themselves. In other words, Visual Analytics
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tries to combine the human knowledge and intuition with the power of computational
models. Applications of Visual Analytics include advances in genomics (multi-scale
information visualization) and analysis of massive unstructured text repositories [WT04].

Visual Data Mining [Ros06] has its origin in the the field of Data Mining and is
sometimes interchangeably used with Visual Analytics, which has its origin in the field
of Information Visualization. However, in Visual Data Mining, the algorithms used are
mining algorithms, whereas Visual Analytics include all types of computational methods.
Thus, Visual Analytics is the more general, more recent and more often used term.

The boundaries between Information Visualization and Visual Analytics are not clearly
defined. Bob Spence expressed this fact in his keynote at the International Conference
of Information Visualization 2011 about the relatively young discipline Visual Analytics
as follows: “Visual Analytics is nothing new – I have been doing it for 40 years.” –
meaning that, Visual Analytics is just another term for interactive visualizations with a
special purpose.

In this thesis Visual Analytics is understood as an extension of Information Visualiza-
tion focusing on interactive visualizations, whereas Information Visualization may also
include non-interactive visualizations.

2.2 Supervised Learning – Classification

Classification in the scope of this thesis means the inductive supervised machine learning
process. Inductive means, that the learner learns a general model from examples. Su-
pervised learning means, that the learner gets the information about the target function
along with the examples. Thus, in the case of classification the learner gets examples
and associated class labels. Several types of classification problems can be distinguished,
depending on the output and the input type, the task and so on. For more details see
section 2.2.1.

A wide variety of classifiers exists, an example categorization can be found in [Seb02].
The author distinguishes the following categories: probabilistic classifiers, artificial neu-
ral networks, decision rule-based classifiers, instance-based learners and Support Vector
Machines (SVMs).

Probabilistic classifiers investigate the statistical distributions of attributes to predict
the class label. A prominent example of probabilistic classifiers is the Naive Bayes (NB)
classifier, see Section 2.2.4. Artificial Neural Networks (ANNs) try to model the func-
tioning of the human brain. Decision-rule based classifiers include decision trees and try
to learn simple rules from the data (in case of trees these rules are hierarchically related).
Both, neural nets and decision trees are not commonly used in text classification, and
therefore not further referenced in this thesis. Instance-based learners are represented
by the k-Nearest Neighbor (KNN) algorithm described in section 2.2.3. SVMs are orig-
inally binary classifiers attempting to calculate a hyperplane in the high-dimensional
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space that best distinguishes positive and negative training samples. SVMs have been
generalized to multi-class problems, a detailed description of the algorithm can be found
in section 2.2.5.

Interestingly, three of the four classifiers used in this work (NB, SVM, and KNN) were
identified amongst the 10 most influential algorithms in data mining by the IEEE Inter-
national Conference in data Mining (ICDM) 2006 [WKRQ+08].

The choice of the classifier depends not only on the type of the classification problem (see
sec 2.2.1). Restrictions imposed by the classification problems are for instance: multi-
label algorithms can not be used for single-label or binary classification, but vice-versa
is possible, since the multi-label case can be constructed from the single-label case, for
details see the review in [dCF09]. Further the requirements of the application influence
the choice of the classifier. Requirements of the application may be the runtime perfor-
mance, storage restrictions, online-learning requirements, performance and the necessity
to interpret the model. It has been shown empirically [Kot07] and theoretically [Wol96a]
that no single classifier can outperform other algorithms over all data sets. The predic-
tive performance of the classifier has to be estimated separately for each classification
task (see section 2.4).

This section is structured as follows: First, a categorization for classification problems is
described in section 2.2.1. Trivial classifiers are introduced as baseline for classifier com-
parison in section 2.2.2. Four different common classifiers are described in detail, KNN
in section 2.2.3, SVM in section 2.2.5, NB in section 2.2.4, and Class-Feature-Centroid
(CFC) classifier in section 2.2.6. These four classifiers are the main classifiers used in this
thesis. Section 2.2.7 discusses the calculation of a-posteriori probabilities from general
classifier outputs. The general framework for evaluating classifiers is presented in detail
in section 2.4 for binary classification and multi-class classification problems. Multi-label
and other classification problems are not covered here, because they are not in the focus
of this thesis and not used in the experiments.

2.2.1 Types of Classification Problems

Classification problems can be categorized along various dimensions. Classification prob-
lems may be differentiated by the number of classes, the relation between classes, the
number of labels assigned to one item, the type of the output, the type and the repre-
sentation of the items’ features, and the item type. An overview over these dimensions
is given in table 2.1. For instance, classifying emails into the classes ”spam“ and ”not
spam“ would be a binary, single-label text classification problem, the features can be
numerical, and sparsely represented. Furthermore one can distinguish between offline
and online learning. Offline learners are trained once with the complete training data
set. Online learners are trained incrementally, and update their model when getting new
training data. Online learning can be further differentiated into serial (one instance at
a time) and batch learning (multiple instances at a time).
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Table 2.1: Dimensions of classification problems

Dimension Characteristics

number of classes binary or multi-class

relation between classes flat, hierarchical, arbitrary structure

number of labels single-label or multi-label

input (feature type) numeric, ordinal, ..

output binary, ordinal or ranking; with or without confidence
value; a-posteriori distribution

feature representation sparse or dense

item type e.g., images, texts, genes

The classification problems covered in this thesis are multi-class, single-label, flat with
probabilistic output. Considered item types in the experiments are images and text,
whereas for the image features a dense feature representation and for the text features
a sparse representation is used.

2.2.2 Trivial Classifiers

The concept of trivial classifiers is used to better asses the performance of trained classi-
fiers. Trivial classifiers do not have a model that was learned from the training data, but
a fixed internal classification rule. For a so-called trivial rejector the internal rule would
be to assign all items to the class ”false“ in the binary classification task. The trivial
acceptor on the other hand, assigns all items to the class ”true“. Generalizations for
multi-class problems are the trivial majority classifier and the trivial minority classifier.
The former assigns all items to the most occurring class, the second to the least occur-
ring class. Also of interest is the random classifier or random guessing, a classifier which
assigns the items to the classes randomly, sampling either from a uniform distribution
or based on the a-priori distribution of the class labels.

The actual value of the accuracy measure and therefore the quality of a classifier has
no meaning until compared to the trivial cases. This comparison can either be done
explicitly by denoting the performance measures for the trivial classifiers or implicitly
by knowing the underlying data set and classification problem. The latter is mostly used
in publications which use standard data sets.

I will given an example to illustrate the importance of the comparison to the trivial cases.
A classifier that correctly classifies 82% of the data set seems to be a good classifier. 4
out of 5 items are classified correctly. However, in case of the Shuttle data set 2 this
is only marginally more than the trivial majority classifier would do, because 80% of

2http://archive.ics.uci.edu/ml/datasets/Statlog+(Shuttle)
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the items belong to class 1. So actually, this classifier performs bad, a judgment that
can only be made when either knowing the data set, knowing the performance measures
for the trivial classifiers, or using alternative performance measures more suitable for
skewed data.

2.2.3 K-Nearest Neighbor Classifier (KNN)

Nearest neighbor algorithms [CH67] are prominent examples for so called lazy learners.
Lazy learners do not build an abstract model of the training data, but simply store it.
The calculations are deferred to the classification time.

The KNN algorithm determines the k closest items in the training data and then decides
the label based on the class labels of these neighbors. The decision for the label can
simply be based on majority voting (see equation 2.1) taking the predominant label of
the nearest neighbors as result.

y′ = arg max
v

∑
(xi,yi)∈N(x)

I(v = yi) (2.1)

I(a) =

{
1 if a is true

0 otherwise
(2.2)

N(x) ⊆ Dl is the set of identified nearest neighbors from the training set Dl for the test
item x. yi is the label of the training example xi, v is the class label currently counted
by the sum, and the function I indicates whether the current label yi is the same as the
class label under investigation v. The resulting decision is the label y′ for the test item
x.

An alternative decision for the label of an item x is based on distance weighting, which
can improve the classifiers performance if the nearest neighbors vary widely in their
distances. Distance weighting (see equation 2.3) multiplies the votes for each class label
with a weight depending on the distance of the respective neighbor and thus makes the
decision more insensitive to the choice of the parameter k. For the weighting function
wi usually the reciprocal of the squared distance is chosen.

y′ = arg max
v

∑
(xi,yi)∈N(x)

wi · I(v = yi) (2.3)

wi =
1

d(x, xi)2
(2.4)

An important choice to make is the distance function d. A prominent and widely applied
distance measure is the Euclidean distance. However, when the number of attributes
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increases, the Euclidean distance becomes less discriminating. Thus, for the task of text
classification the cosine similarity is more appropriate. Another issue regarding distance
functions are the difference in attribute ranges. Usually scaling the attribute ranges or
weighting the attributes prevents them from unequally influencing the distance measure
and consequently the classification result.

Another important choice to make is the choice of the basic parameter k. If k is chosen
too small, the classifier becomes too sensitive to noise, if k is too large, to many irrelevant
neighbors are found. Furthermore, for k ≥ |Dl|, all training items become nearest
neighbors and the KNN classifier degenerates to a simple trivial majority classifier when
using majority voting (compare section 2.2.2).

The informative KNN [SHZ+07] is one extension of the basic algorithm aiming at finding
the optimal k for a task at hand. Other extensions aim at reducing the number of stored
training samples and thus the classification costs while retaining the predictive power of
the algorithm, see for instance [Har68]. The class of instance-based learning algorithms
extend the basic KNN focusing on reducing storage requirements [AKA91]. The advan-
tages of the KNN algorithm are its fast training time, its easy understandability and its
power to correctly classify items that are not linearly separable. KNN has successfully
been applied to text categorization problems [Seb02].

2.2.4 Naive Bayes Classifier (NB)

The NB classifier is a probabilistic classifier based on the Bayes theorem. The NB
classification scheme makes two assumptions about the data set: First, all attributes are
independent of each other. Second, all attributes are equally important.

The NB classifier learns a model for the joint probability of the class label y and fea-
tures fi and makes its predictions by applying Bayes’ rule to calculate the conditional
probability for the class labels when given the features. In other words, the classifier
learns a model for p(y, f1, . . . , fn) and makes its predictions calculating the conditional
probability p(y|f1, . . . , fn).

p(y|f1, . . . , fn) =
p(y) · p(y|f1, . . . , fn)

p(f1, . . . , fn)
(2.5)

The NB classification model allows to calculate the probability of each class y given the
values for the features fi. To make the computation of the model feasible the conditional
independence assumption p(fi|y, fj) = p(fi|y) is used. Applying the Bayes formula, the
conditional independence assumption and the chain rule for conditional probabilities to
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equation 2.5 leads to the formula for the joint probability distribution in equation 2.6.

p(y, f1 . . . , fn) = p(y) · p(f1|y)p(f2|y) . . . p(fn|y) (2.6)

= p(y)

n∏
i=1

p(fi|y) (2.7)

Thus, the class label can be estimated by the class with the highest conditional a-
posteriori probability as given in equation 2.8. The calculation factors in the class prior
p(y) and the independent conditional probability distribution for each feature p(fi|y).

y′ = arg max
y

(p(y|f1, . . . , fn)) (2.8)

As both assumptions, conditional independence and equal importance of attributes,
are usually not met in real-life data sets, the NB classifier is often outperformed by
other classification schemes. However, experiments have also shown, that the NB can
outperform decision tree induction, instance-based learning and rule induction [DP97] on
standard data sets. The advantages of the NB classifier are that it performs reasonable
well even if little training data is given, it has a short training time and a straight-forward
incremental version. Further, it is parameter-free and thus no model-selection step is
needed. Important in the context of understanding is its easily interpretable classification
scheme. NB classifiers are widely used in text classification and spam filtering.

2.2.5 Support Vector Machines (SVMs)

SVMs have been introduced by Vapnik [Vap95, Vap98]. A SVM aims at defining decision
boundaries between classes in the high-dimensional space. In the linear, binary case, this
decision boundary is a hyperplane given by equation 2.9 where w ∈ RN and b ∈ R. The
decision function f in equation 2.10 then decides the class label depending on which side
of the hyperplane the data point lies.

w · x+ b = 0 (2.9)

f(x) = sgn(w · x+ b) ∈ {−1, 1} (2.10)

For linearly separable data, so called hard-margin SVMs are applied. For a set of labeled
data D = {(x1, y1), . . . , (xn, yn)} where xi ∈ RN and yi ∈ {0, 1}, the optimal hyperplane
is the hyperplane that separates positive and negative samples and maximizes the mar-
gin. This means the sum of the distance of the data points and the hyperplane is
maximized while keeping negative and positive samples separated:

max
w,b

{
min
xi
{||x− xi|| : xi ∈ RN , w · x+ b = 0}

}
(2.11)
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Soft-margin classifiers are used when the data is not (linearly) separable. Soft-margin
classifiers introduce a misclassification cost c for each misclassified training example. For
details about how to solve the optimization problems refer to [DHS00].

The decision space of the SVM is characterized by the support vectors only, which
makes SVM prone to errors. Another approach for nonlinear data is to apply a kernel
function to map the input data in a higher-dimensional space where it will be linearly
separable. However, this projection to a high-dimensional space increases not only the
discriminating power of the SVM but also the training complexity. As the SVM is only
directly applicable for binary problems, multi-class classification task must be split into
multiple binary classification tasks (one-versus-all or one-versus-one).

For text classification linear SVMs have shown to achieve good performance and the use
of kernels did not improve the performance [Joa98, DPHS98].

2.2.6 Class-Feature-Centroid Classifier (CFC)

The CFC classifier [GZG09] was especially designed for multi-class, single-label text
classification problems. The centroid-based classifier applies a special centroid construc-
tion taking into account both, the inter-class term distribution and the inner-class term
distribution. Both term distributions are then combined to generate the weight for the
i-th term of centroid j as follows:

wij = b

DF
j
ti

|cj | × log(
|c|
CFti

) (2.12)

whereDF jti is term ti’s document frequency in class cj , |cj | is the number of documents in
class cj , |c| is the total number of document classes (i.e. the total number of centroids).
CFti is the number of classes containing term ti, and b is a constant, b > 1. This
weighting scheme produces highly discriminant centroids, each of which represents a
class.

A text document is then classified by labeling it with the class label (y′) of the most

similar class centroid. For computing the similarity of document vectors
−→
di to class cen-

troid vectors (−→cj ) a denormalized cosine similarity (sim) is used. This similarity measure
was chosen by the authors of the original paper, because it preserves the discriminant
capabilities of the centroids. Thus, the final class label y′ is computed from the distance

of the document vector
−→
di to all centroid vectors −→cj as follows:

y′ = arg max
j

(sim(
−→
di ,
−→cj )) (2.13)

sim(
−→
di ,
−→cj ) = cos

−→
di · ||−→cj ||2 (2.14)

The CFC classifier is very fast in terms of training and classification, its training time
complexity is linear and the classification complexity is constant in the number of classes.
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Guan et al. [GZG09] report classification performance of the CFC algorithm comparable
to SVM on standard text data sets.

2.2.7 A-Posteriori Probabilities

As described in section 2.2.1 the output of a classifier for a test item may either be
a binary value, one or more class labels and confidence values for each label, or a-
posteriori probability distribution over the class labels. In order to combine the outputs
of different classifiers the outputs must be converted to comparable values, usually to a-
posteriori probabilities. Also in the context of classifier visualization comparable outputs
are desirable to design classifier-agnostic visualizations of classification results.

Usually SVMs output a binary decision: the item belongs to the class or it does not be-
long to the class. In the multi-class case the output is a class label. Additionally to the
class decision SVMs output the distance of the data item to the decision boundary. This
distance is an uncalibrated value that is not a probability. An intuitive means for assign-
ing probabilities to data points classified by a SVM was introduced by Platt [Pla99]. All
examples are projected onto an axis perpendicular to the hyperplane and then logistic
regression is performed to extract class probabilities.

Duin and Tax [DT98] summarize and compare different methods to calculate posterior
probabilities depending on the type of the classifier. Bayes estimation is used for density-
based classifiers, e.g KNNs and Decision Trees. For classifiers outputting a distance to
the boundary as SVM and Linear Discriminant Analysis (LDA) the authors propose
fitting of a sigmoidal function as described above. Sigmoidal functions for estimating
a-posteriori probabilities can have also been applied to hierarchical classification [Gra03]
(on page 43).

2.2.8 Summary

The choice of classifier depends on the type of classification problem, see section 2.2.1 and
on the task at hand. Kotsiantis et al.[Kot07] compared various classifiers by training
time, incremental, missing values, noise tolerance, number of parameters, and inter-
pretability. Four classifiers were described in this chapter, namely KNN (section 2.2.3),
SVM (section 2.2.5), NB (section 2.2.4) and CFC (section 2.2.6).

The no-free-lunch theorems [WM97] state that no single algorithm outperforms all others
on all data set. Sometimes random guessing might work best on the test data set. Thus,
performance estimation is used to find the most appropriate classifier. However, one
needs to carefully interpret the various available performance measures. Performance
evaluation for classifiers is described in section 2.4.
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2.3 Text Classification

This section briefly describes the general approach and the specific feature used for text
classification.

A text classifier takes as input a document d and outputs a category from a predefined
set. The learning algorithm for a text classifier takes as input a set of labeled documents
Dl and outputs a trained classifier. The general types of classification, e.g., single- vs.
multi-label as defined in section 2.2.1 apply to text classification. The specialty of text
classification is the representation of the documents. In the experiments of this thesis
the vector-space representation of documents is applied.

The feature generation for text classification consists of two steps: (i) text preprocessing,
and (ii) vectorization. For the preprocessing step we give the full possible pipeline here,
however, depending on the problem single steps, e.g. Part-of-speech (POS)-tagging,
may be unnecessary and can be omitted. Figure 2.2 summarizes the text classification
pipeline.

Preprocessing

sentence detection

stemming

4
3

1

2

6

tokenization

POS-tagging

stop-word removal

named-entity 
recognition

Vectorization

token-type filter

feature weighting
Classification

5

...
...
...
...

...
...
...
...

Figure 2.2: Overview of the text classification pipeline. ÀThe input is a set of docu-
ments. ÁOn the documents various preprocessing steps are applied. ÂThe
output of preprocessing step are annotated/enriched documents. ÃThe
vectorization step converts the annotated documents to a feature matrix,
Äwhich is the input for the classification Å.

Preprocessing: First, the document is tokenized, i.e. separations between words and
punctuations are marked. Second, start and endpoints of sentences are detected. These
two steps are mandatory for text classification. Third, stop-words, e.g., “and”, “or”, are
marked or removed. The rationale for stop-word removal is that they do not contribute
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to the information in the document, but rather improve fluency and readability of the
text. Fourth, words are stemmed, i.e. replaced by their word-stem, i.e. “originally” and
“originates” are stemmed to “origin”. Fifth, the grammatical function of the tokens is
detected and annotated with so-called POS-tags. Now we know for each token whether
it is a noun, an adjective, a punctuation and so on. The so enriched document serves as
input for the vectorization step. Optionally, named entities, such as names of persons,
or organizations, can be recognized and marked in the document.

Vectorization: In the vectorization step, a vector-space is generated from the enriched
documents. In the simplest case, each unique token (term) constructs one dimension of
the vector-space. The mapping between the tokens and the dimension in the vector-space
is called the dictionary. Each document is then represented as a vector in the vector
space as follows: For each document the occurrences of each token are counted and
this count, the so-called term frequency, is assigned to the dimension of the vector that
corresponds to the token. Optionally, one might choose to only use nouns or punctuation
to generate the vector-space and apply different feature weighting schemes. In this thesis
two different weighting functions are used, namely Term Frequency - Inverse Document
Frequency (TF-IDF) [MRS08] weighting and Okapi BM25 ranking (BM25) [JWR00].

The TF-IDF weight of a term t for a document d is defined as the product of the term’s
frequency (tft,d) in this document and the term’s inverse document frequency (idft) as:

tf-idft,d = tft,d · idft

= tft,d · log

(
N + 1

dft + 1

)
where N is the total number of documents in the corpus and dft the number of documents
containing term t. In short, this means a term gets a large weight for a document d if
it is contained in only few documents and occurs often in d. On the contrary, a term
is weighted low for a document, if it is contained in many documents and has very few
occurrences in d.

BM25 does refer to a whole family of functions, the most commonly BM25 weighting
function is defined as follows for term t in document d:

bm25t,d =
(k1 + 1) · tft,d

k1

(
(1− b) + b · ( Ld

Lavg
)
)

+ tft,d · idft

where Ld is the length of document d and Lavg is the average document length in the
corpus. k1 and b are tuning parameters, scaling the influence of document length nor-
malization and the document term frequency respectively. idft is the inverse document
frequency of term t as above and dft,d is the frequency of term t in document d.

To give an example for the terminology, the expression “noun-vector space with TF-IDF
weighting” refers to a vector-space created from all words POS-tagged with “noun” using
the TF-IDF weighting function.
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Because some of the experiments in this thesis apply classification for a cross-domain
task, this term will be explained here. A cross-domain classification task is a task
where the training set to build the classification model has other characteristics (another
underlying data distribution) than the documents the trained classifier will be applied
to. One reason for training a classifier on another domain is for instance the availability
of training data. For example, in the experiments of this thesis various classifiers are
trained on news articles and evaluated on blog posts.

For more details about text classification refer to [Seb02, MRS08].

2.4 Performance Evaluation for Classifiers

In this section an overview of commonly applied performance measures for evaluating
single-label classifiers are presented. The contingency table, which is the basis of the
definition of the performance measure is introduced in section 2.4.2. The derived mea-
sures are then summarized in section 2.4.3 for binary classification problems and in
section 2.4.4 for multi-class problems. Finally, a summary is given in section 2.4.5.

In general, as stated by the no-free-lunch theorems [Wol96a, DHS00] there is no single
classifier that is known a-priory to perform best for a given task. In fact, there is no single
classifier that is guaranteed to outperform random guessing on a arbitrary classification
task. That means, the performance of a classifier must be evaluated for each learning
problem (data set, prior knowledge) at hand. To judge the performance of a classifier
the so called off-training error is used, i.e., the error (or another performance measure)
for items that are not part of the training set. The main reason for using the off-training
error is that a sufficiently powerful classification algorithm can learn the training set
perfectly. A perfectly learned training means not necessarily a perfect behavior on off-
training items, on the contrary, it could indicate overfitting. A classifier is said to overfit
the training data if it performs well on the training data but poorly on the off-training
data. The classifier is then said to have a poor generalization performance. Methods to
estimate classifier performance including cross-validation are described in section 2.4.1.

The following sections assume items from an off-training set, either a separate evaluation
set or a split of the training set that was not used to train the algorithm.

2.4.1 Evaluation Methods

To assess the performance of a classifier the evaluation must be performed on data that
has not been used for training. Otherwise the classifier might seem to perform very well
(high accuracy on the training set), but actually has not learned a model from the data.
It only memorized the data and thus generalizes badly to new data.

There are three main methods to estimate the performance of a classifier. First, by
providing a separate, labeled data set (evaluation data set) and calculate the measure
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on this set. Second, by splitting the training set to create the evaluation set. These
methods are valid if it can be guaranteed that the evaluation data set is a representative
sample of the whole data set, which is usually not the case. The third method is called
cross-validation. Cross-validation is used if the training set is relatively small, and
labeling new items is costly. The training set is split into n subsets (n ∈ {5, . . . , 10} in
practice). The classifier is trained and evaluated n-times (runs) whereas the i-th split
is used as evaluation split and all other splits are used for training. The performance is
then averaged over all runs. Cross-validation is the state-of-the-art method to evaluate
classifiers. But, even with cross-validation one might not be able to correctly asses
and compare classifier performance. Raeder et al. [RHC10] have shown, that classifier
performance varies depending on data set, cross-validation method (number folds) and
the random seed for the specific fold. The authors propose to perform multiple cross-
validation runs to tackle this problem.

2.4.2 The Contingency Table

The contingency table, also called confusion matrix is a tabular representation of different
types of errors produced by a classifier. In this table the desired output is compared to
the prediction made by the classifier. The desired output is the correct label of the item,
the so called actual class. The information of all actual classes is called ground truth. The
predicted class is the class label the classifier assigned to a specific item. The predicted
class can and mostly does vary for different classifiers. The actual class is invariant to
specific classifiers because it represents the real-world. Table 2.2 shows a prototypical
contingency table for binary classification problems. For binary classification problems
four different cases can be distinguished: (i) Both, the actual and the predicted class is
“true”. Such items are counted as True Positives (TP). (ii) Both, the actual and the
predicted class is “false”. Such items are counted as True Negatives (TN). (iii) The
actual class is “true”, but the prediction is “false”. Such items are counted as False
Negatives (FN). It means the item is classified as “false” (negative), but this prediction
is incorrect. (iv) The actual class is “false”, but the prediction is “true”. Such items are
counted as False Positives (FP), meaning the item is classified as “true” (positive) but
this prediction is incorrect. In some application domains the prediction “true” is also
called an accept, whereas the prediction “false” is called a reject. Consequently, a TP is
a correctly accepted item, and FP an incorrectly accepted one.

Table 2.2: Contingency table for binary classification problems.

actual Class

true (positive) false (negative)

predicted class
true (positive) True Positives (TP) False Positives (FP)

false (negative) False Negatives (FN) True Negatives (TN)
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Based on the contingency table the following performance measures can be defined
(amongst others).

accuracy a: Rate of correctly classified examples (TP+TN). The number of cor-
rect classifications divided by the total number of samples. a ∈ [0, 1].

error e: Rate of incorrectly classified examples. The number of incorrect clas-
sifications divided by the total number of samples. Also called the
Zero-One-Loss e ∈ [0, 1].

Precision π: Ratio of correct positive predictions (TP) to the total number of
positive predictions. π ∈ [0, 1].

Recall ρ: Ratio of correct positive predictions (TP) to the total number of
positive samples. Also called sensitivity. ρ ∈ [0, 1].

Specificity s: Rate of correct rejections (TN) to the total number of negative sam-
ples. s ∈ [0, 1]

F-measure Fβ: Averages precision and recall, prefers precision for β > 1. Usually
the F1-measure is used, which is the geometric mean of precision and
recall.

The calculation of these measures is straight-forward for binary classification problems,
but more complex for multi-class problems. Both cases are described in detail in the
following sections.

2.4.3 Binary Classification

The performance measures introduced in section 2.4.2 can be directly derived from the
contingency table shown in table 2.2 as follows:

a =
TP + TN

TP + TN + FP + FN
(2.15)

e = 1− a (2.16)

π =
TP

TP + FP
(2.17)

ρ =
TP

TP + FN
(2.18)

s =
TN

FP + TN
(2.19)

Fβ =
(β2 + 1) · π · ρ
β2 · π + ρ

(2.20)

Less commonly applied performance measures, e.g. precision-recall-break-even and cov-
erage are listed in [Seb02, KP98]. Further, Sokolova et al. suggested to use measures
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commonly applied in medical diagnosis, e.g., Youden’s index and discriminative power
for classifier evaluation [SJS06]. Recently also aggregated measures have been proposed,
for instance the relative performance metric (RPM) [SKVH09]. However, most com-
monly applied measures in the scientific community are accuracy, precision and recall.

2.4.4 Generalization to Multi-Class Problems

There are two ways of generalizing the performance measures from binary classification
problems to multi-class problems, namely based on (i) contingency-tables or (ii) class
confusion matrices. In the first method, the contingency tables for all classes are cal-
culated, one for each class. Each classification of a sample is then counted c-times (c
- number of classes). For instance, an item with actual class C1 and predicted class
C2 is counted as FN for class C1, as FP for class C2 and as TN for all other classes
Ci, i 6= 1, 2. The final performance measures can be either calculated for each class and
then averaged or can be calculated over the sum of all decisions (see for instance [Seb02]).
The former is called micro-averaging and the latter is called macro-averaging. Macro-
averaging uses a so-called global contingency table derived as the sum of the contingency
tables for all classes. The difference between micro- and macro-averaging is, that micro-
averaging equally weights each sample, but implicitly gives higher weights to classes
with many samples (item-pivoted measure), whereas macro-averaging equally weights
each class (class-pivoted measure). The following formulas show the calculation of the
micro- and macro-averaged performance measures, wheres micro-averaging is indicated
by a superscripted µ and macro-averaging is indicated by a superscripted M .

aµ =

∑
i TPi +

∑
i TNi∑

i TPi +
∑

i TNi +
∑

i FPi +
∑

i FNi
(2.21)

πµ =

∑
i TPi∑

i TPi +
∑

i FPi
(2.22)

ρµ =

∑
i TPi∑

i TPi +
∑

i FNi
(2.23)

aM =
1

c
·
∑
i

ai (2.24)

πM =
1

c
·
∑
i

πi (2.25)

ρM =
1

c
·
∑
i

ρi (2.26)

The above formulas can be simplified for the classification problems discussed in this
thesis, namely single-label multi-class problems. For these problems

∑
i FPi =

∑
i FNi.

This is because for each prediction which does not equal the actual class, the sample is
counted once as FN for the predicted class and once as FP for the actual class. From
this follows that πµ = ρµ = Fµ1 for the single-label case. The next subsection shows the
results of micro- and macro-averaging for a small example data set.
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The second method of generalizing performance measures is only applicable to accuracy,
error and micro-averaging, but commonly used in evaluation of classifiers [WF05]. The
method uses the class confusion matrix. The class confusion matrix is a generalization
of the contingency table for multiple classes. The rows of the matrix represent the
prediction, the columns represent the actual classes. Each cell then contains the number
of items actually belonging to the class of the row for which the prediction of the column
was made. A general class confusion matrix is shown in table 2.3. The method based on

Table 2.3: General class confusion matrix for three classes A, B and C and all possible
predictions A’, B’, C’. A’|B means that B is the actual class and A’ was
predicted by the classifier.

actual A actual B actual C

predicted A’ A’|A A’|B A’|C
predicted B’ B’|A B’|B B’|C
predicted C’ C’|A C’|B C’|C

the class confusion matrix only differentiates correct and incorrect classifications. This
viewpoint reduces the problem to a binary decision (correct/incorrect). The classification
error is then calculated as the total number of misclassifications divided by the total
number of classifications. Similarly, the accuracy is calculated as the total number of
correct classifications divided by the total number of classifications. In terms of the
class confusion matrix, accuracy a is the ratio between the sum of all diagonal elements
and the total sum of elements, whereas the classification error e is the the sum of all
off-diagonal elements divided by the total sum of elements. Micro-precision πµ and
micro-recall ρµ can be calculated from the class confusion matrix with

∑
i TPi being the

sum of all diagonal elements in the confusion matrix, and
∑

i FNi =
∑

i FPi being the
sum of all off-diagonal elements. In contrast to the first method, where each sample is
counted once for each class, here each sample is counted only once (either as correct
decision or as incorrect decision).

Example

This section discusses the calculation of the above mentioned performance measures for
a simple classification problem. One of the three classes A, B and C should be assigned
to each of the data items. The classifier to be evaluated has already been trained. The
output of the classifier and the ground truth are summarized in table 2.4. Tables 2.5
show the contingency tables for each of the classes and the micro-averaged contingency
table and table 2.6 shows the confusion matrix. Using the formulas for the multi-class
problems, the performance measures are calculated as in equations 2.27 to 2.32. Note:
error and accuracy without a superscript notation are calculated from the class confusion
matrix.
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Table 2.4: Ground truth and predictions of a hypothetic classifier for a classification
problem with three classes

label (predicted) target (actual class)

item 1 A A

item 2 B B

item 3 C C

item 4 A B

item 5 A C

Table 2.5: Class contingency tables for classes A, B and C and the aggregated (micro-
averaged) contingency table for example in table 2.4

class A

true false

true 1 2

false 0 2

class B

true false

true 1 0

false 1 3

class C

true false

true 1 0

false 1 3

micro-averaged

true false

true 3 2

false 2 8

Table 2.6: Class confusion matrix for example in table 2.4

class confusion matrix

actual A actual B actual C

predicted A 1 0 0

predicted B 1 1 0

predicted C 1 0 1

e =
2

5
= 0.4, a =

3

5
= 0.6 (2.27)

aµ =
11

15
≈ 0.733, aM =

1

3
· (3

5
+

4

5
+

4

5
) ≈ 0.733 (2.28)

πµ = ρµ = Fµ1 =
3

5
= 0.6 (2.29)

πM =
1

3
· (1

3
+ 1 + 1) ≈ 0.778 (2.30)

ρM =
1

3
· (1 +

1

2
+

1

2
) ≈ 0.667 (2.31)

FM1 =
1

3
· (1

2
+

2

3
+

2

3
) ≈ 0.661 (2.32)
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2.4.5 Summary

As outlined in this chapter there is a wide variety of performance measures for evalu-
ating classifiers. Only the most commonly used were mentioned in the above sections.
Additionally, there are at least three ways of generalizing from measures defined in the
binary case to multi-class problems. This means, in order to interpret and compare
classifiers it is important to know how the performance values were calculated (is the
accuracy macro-averaged, micro-averaged or calculated from the class confusion matrix).
Furthermore, because there is no single standard value with straight-forward interpre-
tation it is not easy for non-expert users to assign the performance of classifiers. It is
also important to consider the data set on which this measures were calculated, whether
it was a separate evaluation split or cross-validation was performed. But even with the
state-of-the-art approach cross-validation results might be misleading (see section 2.4.1).
Also, as outlined in section 2.2.2 it is necessary to consider the trivial classifiers in order
to asses the performance of classifiers.

It can be concluded, that assessment of classifier performance based on evaluation mea-
sures is difficult, even for experts.

2.5 Active Learning

Active Learning is a method to tackle the problem of too little training data. In an
active learning scenario, a learner gets presented new training data which were selected
by a sampling algorithm and labeled by a so-called oracle. The aim of active learning is
to reduce the number of training samples while retaining the same performance of the
learning algorithm. This is done by intelligently selecting the next training sample such
that they provide as much as possible new information to the learning algorithm. The
general active learning process is depicted in figure 2.3.

build  model select examples label examplesevaluate  model
1 2 3 4

5

Figure 2.3: The active learning scenario. ÀA classification model is built on labeled
data. ÁThe classifier is evaluated on the unlabeled data. ÂAn oracle selects
the next items to label. ÃA human labeler assigns the labels. ÄThe newly
labeled instances serve as training data for the new classifier. The process
continues in a loop.

Active learning approaches mainly differ in their selection strategy – the way the oracle
selects unlabeled samples to be labeled. A straight-forward approach that is independent
of the classifier is so called uncertainty sampling. The idea of uncertainty sampling is to
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chose the example of which the classifier is most uncertain about, expecting that by label-
ing it the most possible information is added to the classification model. The uncertainty
can be measured in different ways. In this thesis two uncertainty sampling methods will
be applied, maximum-entropy sampling and minimum-maximum confidence selection.

Maximum-Entropy Sampling From the set of unlabeled samples Du the sample xc
with the minimal entropy in the a-posteriori distribution is selected:

xc = arg max
x

(
−
∑
i

(P (yi|x) · log(yi|x))

)
, x, xc ∈ Du (2.33)

Minimum-Maximum Confidence Sampling From the set of unlabeled samples Du the
sample i which has the least maximum value in the a-posteriori distribution is selected:

xc = arg min
x

(
arg max

y
P (y|x)

)
, x, xc ∈ Du (2.34)

Further, batch and serial active learning are distinguished. In batch active learning mul-
tiple samples are selected at once in each selection step and presented to the classifier to
update its model. In serial active learning one item at a time is selected and the classifi-
cation model is updated instantly. In the experiments we use serial active learning, since
batch active learning combined with uncertainty sampling has been shown to perform
badly [Set10].

Settles [Set10] presents a survey also covering classifier-dependent active learning meth-
ods and empirical results.

Note, that the training set generated with a specific active learning algorithm (classifier
and selection strategy) is inherently coupled to the active learner. This is because, the
training set is built to optimize the current classifier. However, if classifiers are switched
(to newer state-of-art classifiers, to classifiers more understandable to users), the training
set may not be as useful anymore.

2.6 Voronoi Diagrams

This section briefly introduces the foundations of Voronoi diagrams as needed in this
thesis.

A Voronoi diagram is a separation of a two dimensional space into several regions. Each
region is defined by a single point, the so-called site or generator point. A region of
a generator point pi consists of all points in the space that are nearer to pi according
to a given distance measure than to any other point pi, i 6= j. The Voronoi diagram
is fully defined given a set of points P = {p1, . . . , pn} and the description of the space

34



2.7 Summary

(including the distance metrics). Figure 2.4 shows an example of a Voronoi diagram with
11 generator points in the two-dimensional Euclidean space. For an extensive discussion
on Voronoi diagrams see [OBSC00, AK00].

Figure 2.4: Voronoi Diagram in the two-dimensional Euclidean space with 11 generator
points. Figure taken from [AK00].

2.7 Summary

This chapter introduced the foundations necessary to understand this thesis. First, the
terms Information Visualization, Visual Analytics and Visual Data Mining were defined.
Second, an overview of classification, evaluation measures and evaluation methodology
is given. Further, the classification algorithms used in this thesis were presented in
detail. Moreover, the general text classification pipeline was outlined. The concept of
active learning described will later be extended using a visual approach. Finally, a brief
introduction into Voronoi diagrams was given.
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He who loves practice without theory is like the
sailor who boards ship without a rudder and
compass and never knows where he may cast.

(Leonardo da Vinci)

3 Theory

In this chapter the theoretical foundations of this thesis are developed, concrete imple-
mentations are described in the next chapter.

Remember, the research question of the thesis

RQ “Can interactive visualization improve construction, understanding, assessment,
and adaptation of supervised machine learning algorithms?”

We identified five different levels of understanding of and user feedback to classifiers,
namely the data set level, the class level, the item level, the feature level and the classi-
fier level. These levels are summarized in table 3.1. More specifically, aspects that can
in principle be understood about a classifier include (i) how well the classifier performs
on the given data, which decisions it makes, what the basis for its decisions are, (ii) the
distribution of the data items (linearly separable, topic overlap, two distinct subtopics
integrated in one), (iii) dependencies of attributes, (iv) redundancy of attributes, (v) at-
tribute relevance in the model. Some aspects may be communicated to machine learning
experts by specifying the classification algorithm, the training parameters, the statistics
of the training data and tables of evaluation measures. However, it is not feasible to
communicate with lay persons in the same way and also for experts the visualizations
can be a supportive tool. Aspect that can in principle be feed back to the classifier
include (i) correct or approve label, (ii) identify and remove outliers, (iii) modify the
relevance of attributes, (iv) remove attributes, (v) define interesting classes.

Assessment and Understanding: In general, visualizations for classifiers can be
either classifier-agnostic or classifier-dependent. Classifier-agnostic visualizations are
visualization that can be applied to more than one or all classification algorithms. On
the contrary, classifier-dependent visualizations are designed for one specific classification
algorithm. In general, a classifier-dependent visualization can be tightly coupled to the
model and therefore reveal more details about the classifier. On the other hand, a
classifier-agnostic visualization would need to be designed only once, and would allow
for comparison amongst different classifiers. Further, users of the visualization would
only need to learn to interpret one visualization. Because of the latter reasons in this
thesis the focus lies on classifier-agnostic visualizations.
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Table 3.1: Aspects of classifiers, classification models and results communicated from
classification models (understanding) and to classification models (feedback)
on the level of items, the classes, the data set, features and the classifier.

Aspects communicated
Level From the Model

(Understanding)
To the Model (Feedback)

Data Set number of samples add, remove, split, merge class(es)
class distributions add and remove items
performance measures for classifier
performance compared to trivial
cases

Class performance for each class
conflicts between classes

Item assigned label correct/approve label
confidence of the decision remove outliers
items hard to classify
similar items

Feature relevance of features for decision select key features for classes
ambiguous features remove irrelevant/ambiguous

features
dependency of features indicate dependency of features

weight features

Classifier decision boundaries
(specific) boundary items

..

As detailed in table 3.1 there are five levels of understanding a classifier:

1. data set level
2. item level
3. class level
4. feature level
5. classifier level

In the following it is argued (in section 3.1.1) that only the first three levels (data set,
class and item) can be visualized in a classifier-independent manner. The properties
of such a visualization are derived in section 3.1.2. Reviewing the state-of-the art in
section 3.1.3 points toward two different types of visualizations covering the item level
and the class level. An explicit discussion of the data set level will be omitted, because
all of its aspects (performance measures, number of items, class distribution) are already
commonly used in classification processes by either printing the specific values or using
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well-known visualizations, such as histograms. Although the data set level is not dis-
cussed in detail, all of its aspects are displayed in the prototypical application without
further being mentioned.

Visualizing the classifier level (decision boundaries, boundary items) is already well
covered in the literature for almost all classifiers and is thus not the focus of this thesis.
An overview of existing literature is given in table 3.2 in section 3.1.3.

The feature level can only be visualized in a classifier-dependent manner. Therefore,
we chose a specific classification problem, namely text classification, and one specific
classifier to show what can be done regarding assessment and understanding on the
feature level. The theory towards this visualization is discussed in section 3.3.

Thus, at this point in discussion, we have the following state for the assessment and
understanding part of the research question:

1. data set level, classifier-agnostic → existing visualizations, implemented, but not
mentioned further

2. item level, classifier-agnostic → visualization will be designed (Class Radial Vis)
3. class level, classifier-agnostic → visualizations will be designed (Class Confusion

Maps), some aspects also conveyed by Class Radial Visualization
4. feature level, classifier dependent → visualization will be designed for text classi-

fication problem (Voronoi Word Cloud).
5. classifier level → covered in literature, not focus of the thesis

Until now only the assessment and understanding parts of research questions were dis-
cussed. Naturally, assessment and a basic understanding is necessary for adapting a
classifier.

Adaptation: For the same reasons as discussed in the assessment and understanding
part we focus on classifier-agnostic adaptation of classifiers. This limits the possible
influence on classifiers to correcting decisions that are obviously wrong. Using the levels
described above, this kind of adaptation belongs to the item level. This seems a quite
simple concept, but there is more to it. From the point of classifier performance it is
crucial which decisions are corrected – some may not influence the classifier at all, some
may have a greater influence on the model and its performance. Correcting decisions
can be viewed as the generation of new training data. A classical approach to efficiently
achieve this is Active Learning. We will develop a corresponding visual concept, called
Visual Active Learning, which grants more influence to the user on the training data
generation process. The concept of Visual Active Learning is outlined in section 3.4
by reviewing classical active learning, arguing differences and identifying properties of
appropriate visualizations.

Construction: Regarding the construction part of the research question, we focus on
a bottleneck in constructing classifiers that has been identified during the experiments
performed for this thesis. Namely, for text classification tasks, the time for generating
training data depends to a large degree on the time the human labelers need for compre-
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hending the texts. Thus, we investigated whether an alternative representation of texts
would speed-up the labeling process. These alternative text-presentations are developed
in section 3.2.

Summing up the necessary theoretical ingredients for this thesis, the outline of this chap-
ter is as follows: The theoretical foundations for classifier-agnostic visualization covering
class and item level are described in section 3.1. The alternative text-presentations for
faster text-comprehension in the training data generation step are developed in sec-
tion 3.2. The theoretical foundations for classifier-dependent visualization for text clas-
sification covering the feature level are identified in section 3.3. The theoretical concept
of Visual Active Leaning is developed in section 3.4.
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3.1 Towards Visualizations for Arbitrary Classifiers

In order to derive a visualization for arbitrary classifiers, it will be investigated in sec-
tion 3.1.1, what classifiers do have in common, because only these common parts can be
represented in a classifier-agnostic way. Second, from the identified common properties
of classifiers, the desired properties of a classifier-agnostic visualization are discussed in
section 3.1.2. Third, in section 3.1.3 the state-of-the-art literature is reviewed focusing
on the suitability of available visualizations for the topic of this thesis. Finally, know-
ing the state-of-the-art and the desired properties, section 3.1.4 summarizes the gap
in state-of-the art which lead to the design of the visualizations described in the next
chapter.

3.1.1 Common Properties of Classifiers

Metaphorically speaking, a classifier is just a box as in figure 3.1a where one puts some-
thing in, which is somehow transformed into something different. The transformation
rule is either given or has to be learned beforehand. However, this is only the applica-
tion view – with the input of the classifier being some data and the output being any
or more categories. Without loss of generality, this discussion focuses on single-label
classification (see section 2.2.1), so we assume to have only one category as output.

Properties of Classifiers: Going one step further, a classifier consists of a training al-
gorithm and a classification algorithm as depicted in figure 3.1b. The training algorithm
gets some specific kind of data – the training data – as input and generated a hypotheses
from the data. The classification algorithm then uses this hypothesis to make predictions
on new, previously unseen data – the test data. Learning the hypothesis is also called
the training phase and doing predictions on new data is called the classification phase.
Usually, the training algorithm and the classification algorithm are tightly coupled. This
means, a Support Vector Machine (SVM) classifier can only apply hypothesis learned
by a SVM training algorithm. Due to this tight coupling, sometimes, this division into
training algorithm and classification algorithm is ignored and the unity of both is called
the classifier or classification algorithm while knowing that it has to be trained first.

Classifier
something something

(a) black box

Training
 Algorithm

training data

Classification
 Algorithm

test data decision

hypothesis

(b) internals

Figure 3.1: Views of a classifier. Black box (application) and internal (algorithmic) view.
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Depending on the classifier, the learning algorithm generates different hypotheses classes.
An examples is shown in figure 3.2. In this example, the data items have only two fea-
tures, making the data visualization in the two-dimensional space feasible. Even a single
classifier may generate different hypotheses classes, see for instance the SVM classifier
in figure 3.2c (linear) and in figure 3.2d (Gaussian kernel). The different hypotheses
classes for single classifiers are another argument for classifier-agnostic visualizations,
aside from the already discussed arguments (only one visualization to design for experts
and learn for users, one visualization allows for comparison).

(a) Decision Tree (b) KNN, k = 2 (c) linear SVM (d) SVM with Gaussian
kernel

Figure 3.2: Example classifier hypothesis for 30 points of class 1 (blue circles) and 30
points of class 2 (red squares) in the 2-dimensional space. Pictures generated
using the LocBoost applet1.

Properties of the Data: In principle, a classifier can classify any general object or
entity if the object is represented in a suitable form. Usually, the data is represented in
form of a table (or matrix) where each row corresponds to a data item and each column
corresponds to a feature. The process from a general object to the feature representation
is called feature generation or feature engineering. Feature generation is not the focus
of this thesis, the important point here is, that any data can be represented by feature
vectors which serve as input for classifiers. Of course, depending on the input data,
the feature vectors may have different dimensions and have different values (e.g. binary
features, real-valued features) – but all of them can be represented as a number ∈ R.
Data items that are explicitly given a relation to other items are used in statistical
relational learning, which is beyond the scope of this thesis.

The difference between the training data and the test data is: the training data comes
with a label for each data item. This label is also called the ground-truth for an item.2

Thus, in the training phase the learning algorithm gets presented a set of data item –
label pairs. In the classification phase the input data has no label assigned, but the
classifier should decide the label. One might know the ground-truth label for test items
and use them to compare the output of the classification with the true label. By judging

1http://www.cs.technion.ac.il/ rani/LocBoost/
2There are classifiers that can deal with weighted input data, but thats not the focus of this thesis.
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the difference in the true label and the classifier’s prediction one can get an estimate of
the classifier’s performance for unseen data.

Many classifiers not only output the predicted label but also a confidence value with the
label. The confidence value is an estimate of the classification algorithm itself on how
good the prediction is. More generally, the classifiers not only output one label and its
confidence, but all possible class labels and for each of it a confidence value. Subsequent
post-processing steps are applied to select the most probable label [KHDM98]. For clas-
sifiers, such as the Naive Bayes (NB) classifier, the labels and confidences are already an
a-posteriori distribution over the classes, for other classifier the outputs can be mapped
to a-posteriori distributions as described in section 2.2.7.

3.1.2 Properties of a Classifier-Agnostic Visualization

In the previous section the need for classifier-agnostic visualizations and following this
way, common properties of classifiers were discussed. The following list summarizes,
what a classifier-agnostic visualization must provide in order to aid in construction,
understanding, assessment, and adaptation of classifiers.

1. To be applicable to a wider variety of classification problem the visualization should
support multiple classes (not only binary, but multi-class classification).

2. Since a-posteriori probabilities are available or can be constructed from almost
all classifiers, the visualization should use this information.

3. The classifier’s final decisions and confidences should be shown. The confi-
dences give the user an idea on how sure the classifier is about its decision and is
necessary to thoroughly judge its behavior.

4. All classes known to the classifier should be shown. When viewing only a subset of
the classes one may miss some important information. For instance, if two classes
can not be distinguished well by the classifier, and only one of them is shown, the
user will not be able to assess this information.

5. Visualizations of different classifiers should be comparable. This is desirable in
order to allow a straight-forward visual comparison of two or more classifiers by
only learning one visualization scheme.

6. The underlying original data should be accessible, because this is the data users
can understand and reason about. Feature representations may be too abstract
in this regard, e.g. Term Frequency - Inverse Document Frequency (TF-IDF)-
weighted features for a text document are not understandable in a straight-forward
way.

7. The visualization should give an overview of the classifier’s performance to let
users get the gist of whether the classifier performs well or bad. This general
information is usually the first information needed when assessing a classifier.
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8. Because outliers may indicate errors in the classification pipeline (e.g. in pre-
processing), the visualization should allow detection of special data items like
outliers. Further, outliers may also influence the classifiers performance, that’s
why their identification is desirable.

9. The visualization should be interactive to allow the user to adapt the classification
model through the visualization.

3.1.3 State-of-the-Art

Table 3.2 on page 48 ff. summarizes existing classifier visualizations. From the listed 32
visualizations, 22 are designed for specific classifiers, i.e, they use the structure of the
classifiers model for visualization. 10 of the 32 visualization are classifier-agnostic and
can be applied to almost any classifier. Among these 10, the 5 visualizations [Dol07,
Rd00, FH03, PES+06, PF97] depicted in figure 3.3 are for binary classification tasks
only and thus not suitable for this thesis, which deals with multi-class classification. The
remaining 5 classifier-agnostic visualizations support multi-class classification problems.
Examples of these visualizations are shown in figure 3.4 and will be discussed in the
following.

(a) Gridview, for 2D data [Dol07] (b) SOM projection of classi-
fier output [Rd00]

(c) Scatterplot, 2 fea-
tures [FH03]

(d) Proteome Analyst, binary [PES+06] (e) Comparing ROC-
curves [PF97]

Figure 3.3: Example of classifier-agnostic visualizations: For binary classification prob-
lems.
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3.1 Towards Visualizations for Arbitrary Classifiers

(a) CobWeb for 3 classes [DA08] (b) MDS projection of the
training data [KLM+00]

(c) Visualix [LC09]

(d) Proteome Analyst: feature importance in training
data [SLG+03]

(e) EnsembleMatrix for classi-
fier ensembles [TLKT09]

Figure 3.4: Example of classifier-agnostic visualizations: For multi-class classification
problems. (a), (b), and (d) non-interactive, (c) and (e) interactive visualiza-
tions.

The CobWeb visualization [DA08] (see figure 3.4a) is based on the class confusion matrix
showing how often one class is confused with another. The proposed CobWeb visualiza-
tion is only suitable for a very small number of classes; in the paper examples for three
classes are shown. This is because the regular polygon used for the CobWeb visualiza-
tion consists of c · (c − 1) edges (c = number of classes). Moreover, the visualization is
non-interactive and does not allow feedback to the underlying classification model.

Kontkanen et.al [KLM+00] (see figure 3.4b) propose a Multi-Dimensional Scaling (MDS)-
based projection of the data using the output of a trained Bayesian Network as similarity
measure. Thus, data items classified similarly by the Bayesian Network will be placed
near each other in the visualization. The projection reflects the trained model of the
Bayesian network. The visualizations can be applied to any classifier that outputs a-
posteriori probabilities using a suitable distance measure (e.g. Euclidean distance) for
the projection. The authors show the applicability to various data sets with 2 to 4
classes. However, this visualizations is not interactive and does not allow the user to
influence the underlying classification model.
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Proteome Analyst [SLG+03] (see figure 3.4d) is a classification application tailored to-
wards the bio-informatics domain. It is targeted at expert users in genome annotations.
Experts may build and apply their own classifiers, whereas building a classifier means
choosing training data and classifier. No further interaction is possible. According to
the authors, the visualization shows which feature contributed most evidence to the clas-
sifier. But the visualization shows the training data and the relevance of the features in
the training data, but there is not guarantee that the classifier does indeed use the identi-
fied features. Thus, the Proteome Analyst does not truly visualize classification models.
Further, the visualization is non-interactive, this means an already trained model can
not be adapted using the visualization.

The EnsembleMatrix of Talbot et al. [TLKT09] (see figure 3.4e) visualizes the class
confusion matrices for classifiers. It is not clearly stated in the paper whether the
confusion matrix of the training or the test data set is represented. The authors use
the confusion matrix visualization of the classifiers to construct classifier ensembles in
an interactive way. With this application the performance of classifiers can be assessed,
and the ensemble can be interactively rearranged, such that the combined hypothesis
changes. However, there is no access to single training items, and a single classifier can
not be influenced, only the ensemble can be adapted.

The Model Uncertainty Visualization (see figure 3.4c) in the Visualix application [LC09]
visualizes the uncertainty of classifiers decisions in the 3D space. The visualization is
based on confidence values for each class (not necessarily a-posteriori probabilities) –
which does not ensure that the visualization for two different classifiers are comparable.
The color of a data item is derived from the colors of the classes by linear combination
using the confidence values for each class. As this gives another clue of the kind of
uncertainty of the classifier (which two classes compete for the item) – the final decision
is not necessarily accessible. For the Visualix system a patent application3 has been
made.

The derived visualization (Class Radial Visualization) in this thesis is in its basics similar
to the Model Uncertainty Visualization, and has been published at the same time (both,
July 2009) without being aware of the Visualix system. Section 4.1.9 points out the
differences in detail after explaining the visualization derived in this thesis.

Inherent Restrictions: All multi-class visualizations aiming at visualizing classifier
decisions use coloring to indicate the classes, i.e. each class has a unique color assigned.
With this color-coding of classes, the number of classes that can be unambiguously visu-
alized is restricted by human color vision. As Healey [Hea96] shows in his experiments,
humans with normal or corrected-to-normal vision can only instantly distinguish 7 col-
ors. This means when using color-coding of classes, other means have to be designed to
make the visualization unambiguous.

3The patent application can be found here: http://www.faqs.org/patents/app/20090252404, last
accessed 2011-11-12.
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3.1 Towards Visualizations for Arbitrary Classifiers

3.1.4 Summary

This section discussed requirements for classifier visualizations suitable to help answering
the research question of this thesis. First, the need for a classifier-agnostic visualization
was argued. Then, requirements for such a visualization were identified, which are in
summarized form (i) interactivity, (ii) applicability to multi-class problems, (iii) showing
decisions and confidence for decisions, and (iv) allow comparative assessment of classifier
performance.

Reviewing state-of-the art it was found that only one such visualization exits, Visualix,
which has been developed at the same time as the visualization presented later in this
thesis. Although Visualix is a 3D-visualization, the idea behind both is very similar.
Both visualize all data points in a layout that visually encodes the model uncertainty.
Section 4.1.9 compares both approaches in detail. This visualization concept is par-
ticularly helpful for assessing classifiers on the general level and on the item-level (see
section 3.1 for details of these levels).

Further, a visualization based on the confusion matrix seems suitable for assessing clas-
sifiers on the class-level, similar to the EnsembleMatrix [TLKT09] described above, but
used for both, training and test data.

Thus, in this thesis two visualizations for assessing classifiers were implemented, the
interactive Class Radial Visualization (see section 4.1) based on the model uncertainty
for data items and the Confusion Maps (see section 4.2) based on the class confusion
matrix.
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3 Theory

3.2 Towards Summarized, Visual Representations of Text

The generation of training data for text classification is usually done manually by domain
experts. This means, the texts are presented to domain experts, who manually assign
class labels for each text – a repetitive, time consuming work. Approaches to reduce the
overall labeling time can be grouped into approaches to reduce the amount of necessary
training data and approaches to reduce the time for labeling a single text document. The
former include active learning [Set10] and semi-supervised learning strategies [Zhu08];
an example of the latter is the “labeled feature approach” [DMM08]. In this section
we aim at reducing the time required to label a single text document. Note, that this
approach can then be combined with e.g., active learning, which means in total the time
per text document as well as the total amount of texts will be reduced.

The goal is to find a condensed representation of (potentially large) text documents
that would be faster processable by human labelers. While the text comprehension time
should be reduced, it is crucial that the information important for labeling of the texts
still remains in the alternative representation. In other words, the goal is to reduce
the time humans require to make a decision about the correct label of the text, i.e. to
minimize t1 − t0 in figure 3.5.

Text Comprehension

decision

Labeling

t0

time

t1 t2

Figure 3.5: Overview of the labeling process for text classification. The time needed to
comprehend texts by far extends the time for the actual labeling.

The assumption is that the information the user needs to identify the category is hidden
in some key parts of the document. Conversely most parts of the document can be
considered as irrelevant, they do either not contribute information for the task of finding
the correct category or even distract the user from identifying the correct category.
Especially for long documents, the cognitive effort for filtering irrelevant information is
high. The approach of reducing time for human text comprehension by using alternative
representations is only beneficial for the overall training data generation process if the
alternative representations can be derived automatically.

In the next section we review state-of-the art of automatic text summarization and text
visualizations methods and finally discuss their suitability for the task of generating
training data for text classification.
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3.2 Towards Summarized, Visual Representations of Text

3.2.1 State-of-the-Art

In this section we review the state-of-the art in text summarization and visual text
presentation.

Text Summarization aims at producing a shorter version of the text while retaining
the overall meaning and information content. Gupta and Lehal [GL10] present a review
for extractive summaries from texts. Extractive summaries are a selection of meaningful
document parts, while abstractive summaries are shorter re-phrasings of the text. We
chose to use the TextRank algorithm [MT04] as it allows for text summarization on two
different levels of granularity by extracting (i) key sentences and (ii) key phrases.

Also the field of Information Visualization has to offer ideas on alternative text rep-
resentations [uB10]. Some examples are shown in figure 3.6. Most of the visualiza-
tions show additional aspects of the text which are not instantly accessible in full-text
representations. The Word Tree [WV08] for example, is a application of a keyword-in-
context method and visualizes word concordances. In TextArc [Pal02] word frequencies
and distributions of all words in the text are visualized. These visualizations allow to
interactively investigate and explore the texts, but are neither condensing the text nor
designed as topical summaries. PhraseNet [vHWV09] shows inter-word relations and
may be considered as a condensed visualization of a text as two occurrences of the same
phrase are collapsed into one node in the graph. True visual text summarizations are
word clouds (see section 3.3.1, such as Wordle [VWF09], or the Document Cards visu-
alization [SOR+09]. The latter one also resembles a normal word cloud in absence of
tables or images in the documents and uses the layout algorithm presented in this thesis
(and published in [SKK+08]).

Regarding our task of identifying the label for a given text as fast as possible, a clear
and simple layout seems most beneficial. Visualizing non obvious text features like
word-concordances and contexts of keywords is not necessary and could easily distract
the user. Thus, word clouds seem a suitable visualization for this task.

3.2.2 Summary

Summing up, existing text summarization methods allow for summarizing text on dif-
ferent levels of granularity: (i) key sentences, and (ii) key phrases. It is not clear which
of both would be more suitable for the task of labeling documents. Therefore, we will
perform a comparative user evaluation to assess their suitability. Regarding the layout,
we will use normal line-by-line layout for key sentences. Presenting key phrases as word
clouds seems to be straight-forward. Using the word cloud representation allows for
an additional encoding of the importance of each key phrase, which is usually done by
varying the font size in the word cloud.
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(a) TextArc [Pal02] (b) Wordle [VWF09]

(c) PhraseNet [vHWV09]

(d) Word Tree [WV08]

Figure 3.6: Examples of visual text representations. Only the Wordle word cloud can
be regarded as true text summarization. All others visualized aspects of the
text than is instantly accessible in the full-text.
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3.3 Towards Visualizations for Text Classification

This section discusses possibilities of visualizing the feature level. As argued in the
introduction of this chapter (on page 37) we focus on the task of text classification. This
means, the original data to classify are text documents. Using a vector-space model
representation, simply speaking each feature dimension corresponds to a word.8

In table 3.1 the following aspects of the feature level were identified:

1. Relevance of features for decision
2. Ambiguity of features
3. Dependency of features

For texts this can be specified to

1. Relevance of single words for decision
2. Polysemy and synonymy of words
3. Dependency of words

Clearly, the first aspect (relevance of words for decision) is the most important one.
Polysemy and synonymy of words as well as dependency of words would not give any
insight in the classification model if these words were actually never used for making
predictions. Further, humans are better than any automatic method to detect polysemy
and synonymy of words. Natural-language texts inherently consists of many dependent
features, which can also be exploited for text classification, see for example [NSC06].
Because feature ambiguity and dependency is more the rule than the exception for text
documents in this work we focus on visualizing the relevance of single words for the
decision.

In order to visualize the relevance of features for a decision it is necessary to represent
(i) the decision, i.e. the class and (ii) the features for each class. Additionally, it
would be helpful to visualize the similarity of the classes on the basis of the features
they were trained on. In the previous section (see page 52), state-of-the art for text
visualization has been reviewed already. For the task of visualizing the feature level,
only a visualization similar to tag clouds seems reasonable. This is because: (i) In
classification tasks, usually many features are present, thus a space-filling visualization
is desirable. (ii) In the vector-space model no inter-dependence between features is
represented, thus visualizations showing feature relations are not applicable. Thus, we
sketch the visualization as follows:

• Use an area to represent a class.
• Place the relevant key words for this class inside the area.
• Place the area such, that nearby areas correspond to classes similar to each other.
• Use a space-filling approach.

8More specifically, this representation depends on the creating of the vectors space, which is explained
in detail in section 2.3.
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The conditions (i) area for a class, and (ii) space-filling approach point towards the
application of Voronoi diagrams to create the area subdivision of a 2D space. Voronoi
diagrams are briefly introduced in section 2.6. A Voronoi subdivision of a 2D space
generates convex polygons. Therefore we need an algorithm that can place key words
(or simply words) in arbitrary, convex polygons, preferably in a space-filling way. The
next section reviews state-of-the art of such algorithms – mostly used in context of tag
clouds.

3.3.1 Tag Layout

The standard tag cloud layout used by Web 2.0 websites such as del.icio.us and flickr
uses a rectangular line-by-line layout with different font sizes to indicate the relevance of
the tags. The tags are sorted by their relevance or alphabetically. Kuo et. al [KHGW07]
further include color for the tags to indicate the recency of the tag, which is calculated
from the average publication data of the underlying documents (see figure 3.7c). These
visualizations naturally produce a lot of white space, an issue which was tackled by Kaser
& Lemire [KL07] who used an Electronic Design Automation (EDA) packing algorithm
to layout tags in nested tables for HTML based websites (see figure 3.7e). Shaw [Sha05]
was the first who broke-up with the rectangular layout and further introduced the vi-
sualization of relations between tags. His tag map is a graph-like 2D representation
of tags, where tags correspond to nodes and related tags are connected by an edge
(see figure 3.7b). However, the visualization contains a lot of white space and tags are
overlapping each other, problems that were also not solved by Stefaner [Ste07] who in-
troduced elastic tag maps. In the elastic tag maps visualization the tags are placed in
an nearly circular 2D space using Principal Component Analysis (PCA) and Curvilinear
Component Analysis (CCA), with the most relevant tags defining the extremes of the
spanned space (see figure 3.7d). Bielenberg and Zacher [BZ05] also proposed a circular
layout, where the font size and position from center to orbits show the relevance of the
tags. The most relevant tags are placed in the center of the circle and referred to as
focus. Also in this visualizations huge white space areas and overlaid tags remain (see
figure 3.7a).

Note, that the the tag layout algorithm presented in this thesis was published in 2008
in [SKK+08], i.e. before the following papers.

Wordle, a web-based application [VWF09] creates space-efficient word clouds but aligns
some of the words vertically (see figure 3.7f), which makes them hard to read. This
issue is tackled by the word bridge tag layout [KKEE11]. In the word bridge layout,
tag cloud serves as nodes and links in a node-link diagram, therefore space-efficiency
and readability of single tag clouds is of high interest. The tag layout of word bridge
is inspired by Wordle but positions all words horizontally (see figure 3.7g and 3.7h). A
tag cloud preserving semantic relations between tags has recently been proposed by Wu
et al. [WPL+11]. The semantic tag cloud is constructed in three steps. First, extracted
keywords are placed in a scatter-plot layout. Then overlap is reduced. Second, irrelevant
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words are removed and the resulting rectangular white space areas (called seams) are
cut resulting in a compact layout. Third, bubble sets are added to enclose related tags.
An example of the semantic word cloud is shown in figure 3.7i. Schrammel et al. [SLT09]
investigated the influence on different tag orderings in a user study. User’s tasks in this
study were finding specific tags, finding tags related to a topic and recalling tags. The
authors found out, that there is no single optimal layout, but the best layout depends
on the task at hand.

All presented algorithms can either not compute a space-filling layout inside a restricted
boundary or can only handle rectangular boundaries. The algorithm developed in this
thesis (section 4.3) and published in [SKK+08] is the only one that is able to lay out
tags compactly inside an arbitrary, convex polygon.

3.3.2 Summary

In this section a visualization for text classification models on the feature level was
sketched. This visualization is able to represent the relevance of features for the final
decision (the class). We described desired properties of such a visualization and found
that a combination of Voronoi diagrams and tag layout in arbitrary, convex polygons
fulfills these properties. Review of existing tag layout literature indicated that no such
tag layout algorithm exists. Therefore, we designed such an algorithm (see section 4.3).
The implementation of the sketched visualization is described in section 4.4.
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(a) Circular layout [BZ05] (b) Graph layout [Sha05] (c) PubCloud layout [KHGW07]

(d) Elastic tag maps[Ste07] (e) Nested HTML tables [KL07] (f) Nested HTML ta-
bles [VWF09]

(g) Word bridges lay-
out [KKEE11]

(h) Word bridges exam-
ple [KKEE11]

(i) Semantic tag
clouds [WPL+11]

Figure 3.7: Tag cloud examples sorted by year of publication. (a) and (b) 2005, (c) to
(e) 2007, (f) 2009, (g) to (i) 2011
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3.4 Towards Visual Active Learning

In this section the concept of Visual Active Learning is introduced. Visual Active Learn-
ing can be seen as a modification to active learning giving more power to the user. This
concept has first been published in [SG10].

In short, in classical active learning an algorithm selects new items to label based on
the classifier’s decisions and statistics on the unlabeled data set. The algorithm aims at
selecting the presumably most informative items, i.e. the items that – if the label were
known – would increase the classifier’s performance most. (see section 2.5 for details).

In Visual Active Learning, not the algorithm selects the items to label, but the human
herself. Similarly, to the algorithm that uses different statistics to make its decision, the
user bases her decision on a visualization of the current classification model. Clearly,
the crucial point for successful Visual Active Learning is the visualization. The idea is
that in this way the user’s background knowledge can be used and indirectly integrated
into the classification model.

The concept of Visual Active Learning is outlined in the following. First, state-of-the-
art of active learning is briefly reviewed in section 3.4.1. The differences and similarities
between active learning and Visual Active Learning are described in section 3.4.3. Re-
quirements of the crucial ingredient of Visual Active Learning – the visualization – are
listed in section 3.4.4.

3.4.1 Active Learning

This section briefly reviews state-of-the art literature for active learning focusing on
classifier-agnostic active learning strategies. Detailed description of the Active Learning
scenario can be found in the foundations section 2.5 on page 33.

Settles presents an up-to-date review [Set10] of active-learning literature focusing on
querying strategies and reviewing experimental findings. While the active learning ap-
proach (see section 2.5 for details) seems quite natural, users have to fully trust the
active learning strategy which is not always the case [TO09]. Interestingly, depend-
ing on the application scenario, some active learning strategies require more labeled
instances than passive learning or have been outperformed by the random baseline
([SU07, Gas09, Set10, GS07, LC06]). Furthermore, Baldridge and Palmer present evi-
dence [BP09], that the efficiency of active learning correlates with the proficiency of the
annotator. Active learning strategies tailored towards a special hypothesis class, as for
instance for support vector machines [SC00] are not the focus of this work.
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3.4.2 Concept

The key idea of Visual Active Learning is to give the user the power and responsibility
to select the items as opposed to let them be selected by an automatic procedure. The
main motivation concerns a better utilization of human intelligence which goes beyond
simple labeling. The idea is that the user may select examples that are important and
informative for the classification task using her domain knowledge.

If the selection is supported by a visualization showing the uncertainty of the classifier’s
decision, and thus showing which examples would be selected by an automatic greedy
active learning procedure, the user may also simply accept the examples proposed by the
automatic procedure. This means, Visual Active Learning tightly integrates automatic
and manual approaches letting the user make the final decision which item to select.

The general procedure of Visual Active Learning is outlined in figure 3.8. À A classifi-
cation model is built on labeled data. Á The classifier is applied on the unlabeled data.
Â The classification results on the unlabeled data are visualized. Either the visualiza-
tion is specifically designed for the used classifier or a classifier-agnostic visualization
is used. Ã The user selects the next items to label in the visualization based on her
knowledge and the patterns in the visualization. Ä The human labeler assigns the label.
Å The newly labeled instance serves as additional training data for the classifier. The
process continues at step À with the extended labeled data set.

build  model

select examples label examplesvisualize  model

evaluate  model
1 2

3 54

6

Figure 3.8: The Visual Active Learning scenario. ÀA classification model is built on
labeled data. ÁThe classifier is evaluated on the unlabeled data. ÂThe
classifier’s results on the unlabeled data are visualized. ÃThe user selects
the next items to label. ÄA human labeler assigns the labels. ÅThe newly
labeled instances serve as training data for the new classifier. The process
continues in a loop.

Obviously, the visualization is the crucial point for the successful selection of unlabeled
data items by the user. Requirements for such a visualization are described in detail in
section 3.4.4.
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3.4.3 Comparing Active Learning and Visual Active Learning

In table 3.3 active learning and Visual Active Learning are compared. In Active Learn-
ing, an algorithm selects the example and the human labels it. In Visual Active learning,
humans do both, selecting and labeling. In order for the human to be able to reason-
ably select examples, the classifier’s results on the unlabeled data is visualized. Both,
Active Learning and Visual Active Learning can be performed classifier-dependent and
classifier-independent by the appropriate choice of the selection strategy or visualiza-
tion. Active Learning degrades the user to a pure labeling machine, while Visual Active
Learning allows her to select and label examples herself. Conceptually, the key moti-
vation of Active Learning is, that the automatic selection algorithm knows best which
examples would be best suited to improve the classifier’s performance. However, exper-
iments show, that this assumption is not valid in general [Set10]. The key motivation of
Visual Active Learning is, to find a way of exploiting the annotators domain knowledge
beyond the simple labeling of data items.

Table 3.3: Comparison of Active Learning and Visual Active Learning.

Active Learning Visual Active Learning

item selector algorithm human

basis for selection
decision

classifier results and
statistics on unlabeled
data

visualization of classifier
results on unlabeled data

item labeler human human

classifier types depending on selection
strategy,
classifier-independent and
dependent available

depending on visualization

3.4.4 Requirements for a Visualization for Visual Active Learning

A visualization supporting Visual Active Learning should retain four crucial properties.
First, the visualization should allow to judge problematic behavior of classification mod-
els like for example biases towards particular classes. Second, fast and easy identification
of false and/or problematic examples, e.g. outliers should be supported. Third, users
should be able to rapidly select and label batches of examples, not only single exam-
ples. Fourth, the visualization should be classifier-independent and usable on top of
any multi-class, single-label classification task which provides a-posteriori probabilities.
This requirement for classifier-independence comes from practical reasons. As outlined
in a recent survey on the use of active learning strategies in the natural language pro-
cessing domain [TO09], practitioners highly appreciate classifier-independent strategies.
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In general, Visual Active Learning could not only be applied to single-label, but also
multi-label classification problems. However, the latter are beyond the focus of this
thesis.

3.4.5 Summary

In this section the concept of Visual Active Learning was presented. In Visual Active
Learning not the algorithm selects the items to label – as in classical Active Learning –
but the human herself. Similarly, to the algorithm that uses different statistics to make
its decision, the user bases her decision on a visualization of the current classification
model. Clearly, the crucial point for successful Visual Active Learning is the visualiza-
tion. The Class Radial Visualization is suitable for Visual Active Learning and used in
the experiments in section 5.3.
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“Data! Data! Data!” he cried impatiently. “I can’t
make bricks without clay.”

(Sherlock Holmes in The Adventure of the Copper
Beeches)

4 Implementation

In this chapter four visualization modules are presented which have been developed to
answer the research questions of this thesis. Table 4.1 gives an overview of the modules.

Table 4.1: Overview of all developed visualization presented in this chapter.

Visualization Represented Data Aspect

Class Radial Vis classification results, classi-
fier quality, underlying data

Assessment, Understanding,
Adaptation

→Sec 4.1

Confusion Maps class confusion matrix Assessment
→Sec 4.2

Tag Clouds key words or tags of docu-
ment or document collection

indirectly Construction, see
experiment in Section 5.4, in-
directly Understanding (used
for Voronoi Word Clouds)

→Sec 4.3

Voronoi Word Clouds details of document classes
learned from examples

Understanding

→Sec 4.4

The Class Radial Visualization is designed to visually assess and understand decisions
and results of a classifier. It is based on a-posteriori probabilities and can therefore be
applied to any classifier that outputs or whose output can be mapped to a-posteriori
probabilities. A simple-to-use interaction mechanism allows users to adapt the classifi-
cation model.

Confusion Maps are a visual representation of class confusion matrices, allowing faster
assessment and detection of patterns in the class confusion matrix. Further, aspects of
classifiers, like over-fitting, can be visually identified by comparing Confusion Maps of
training and evaluation sets.
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The family of Tag Layout algorithms allows to place tags in arbitrary, convex polygons.
The special tag layout is a prerequisite for the Voronoi Word Cloud and used in the
experiments for classifier construction in section 5.4.

Voronoi Word Clouds combine Voronoi subdivision and the tag layout for arbitrary
convex polygons mentioned above. Voronoi Word Clouds can be applied to visualize the
model of a specific text classifier as shown in section 5.6 on page 155.
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4.1 Class Radial Visualization

The Class Radial Visualization is designed to visually access the decisions and the quality
of a trained classifier. Further, it allows to adapt the classifier by simple drag and drop
interaction. Basically the visualization shows representations of all classes and all items
in the classified data set. The item’s color indicates the classifier’s decision and the items
position indicates the confidence of the decision. The visualization allows to find items
that are probably misclassified and further, to correct the decision of the classifier. The
visualization was first published in [SL09a] and the idea of the feedback mechanism was
published in [SL09b].

4.1.1 Method

In the Class Radial Visualization all class items are displayed equally distributed around
the perimeter of a circle. Each class item is represented by a square and its border is
drawn in the unique class color. Initially, all squares are unfilled. Then, the square of the
class with the maximum number of assigned test items is completely filled with its class
color. The squares of all other classes are filled with their colors proportionally to the
number of assigned items. The class items are placed according to the order of the classes
in the input set. The trained classifier is used to calculate the a-posteriori probability
distribution for each test item. Each test item is initially positioned in the center of the
circle. The direction vectors from the test item to all class items are computed. The
initial length of these vectors is set to the radius of the circle. Then, each direction
vector is weighted by the according class probability. The vector sum of the weighted
direction vectors yields the final position of the test item. Finally, a test item is colored
according to the class with the highest confidence.

Algorithm 1 summarizes the layout step (without the coloring of the items and classes).
Intuitively, one can think of springs attached between items and classes. Each spring
attracts the item towards the position of the class in the plane with a force proportional
to the a-posteriori probability p(y|x) of assigning item x to class y. The final position
of the item then corresponds to the equilibrium state where all spring forces sum up to
zero.

For instance, an item with probability distribution p = (p1, .., pc), pi = 1, pj = 0 ∀j 6= i
lies exactly on the location of the class item associated with class i. In this case the
classifier is 100% sure that the test item belongs to class i. On the contrary, a test item
whose a-posteriori probability corresponds to a uniform distribution is placed in the
center of the circle. This indicates that the classifier can not confidently assign the item
to one class. The color of the item is defined by the class with maximum confidence.
If the probability distribution does not have a unique maximum, the class of the first
maximum found defines the color of the item.

Yet, the Class Radial Visualization can be ambiguous due to a dimensionality problem.
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Require: classifier, set of classes C, data set D
α ← 0;
∆α ← 2Π

|C| ;
for all c ∈ C do
−→p c ← (cos(α), sin(α));
α ← α + ∆α;

end for
for all x ∈ D do
{(c, v)} ← classify(x), v .. confidence for class c;
−→p x ← (0, 0)T ;
for all (c, v) ∈ {(c, v)} do
−→
d c ← v· −→p c;
−→p x ← −→p x +

−→
d c;

end for
end for
return positions of examples (px) and classes (pc) in the unit square

Algorithm 1: Layout algorithm for the Class Radial Visualization

The visualization space is two-dimensional in contrast to the dimensionality of the prob-
ability distribution space that depends on the number of classes c. Clearly, for c > 2 the
mapping from the probability distribution to the two-dimensional visualization space
can not be an injective function. More specifically, different probability distributions
can map to the same position in the visualization space. This ambiguity is illustrated in
the following examples: Figure 4.1 depicts six example distributions for c = 4 and c = 5.
The x-axes show the class labels and the y-axes the corresponding classifier confidences.
In figure 4.2a the layout for the examples in the 4-class case is shown. It can be seen that
Example 2 (p = (0.5, 0, 0.5, 0)) and Example 5 (p = (0.25, 0.25, 0.25, 0.25)) map to the
same location, the center of the circle. However, when comparing the distributions for
Example 2 and 5, it is obvious that the classifier is more unsure for Example 5: Example
5 is assigned to all four classes with equal confidence, whereas Example 2 is assigned to
only two classes with equal confidence. In figure 4.2b Examples 2 and 5 for c = 5 are
shown. With five classes the visualization of Examples 2 and 5 is no longer ambiguous,
because they map to different locations. Yet, other probability distributions might exist
that exhibit ambiguities. Examples that can be reliably predicted by the classifier (e.g.
Examples 1 and 6) are clearly mapped next to the according class item.

To sum up, the examples show that the visualization enables the user to distinguish
between items that could be clearly classified and items with no confident prediction.
Yet, in the latter case, the visualization does not reflect all degrees of the classifier’s
uncertainty. Hoffman [Hof99] also reports the ambiguity problem and proposed several
variants of the RadViz visualization, which, for a given dataset, could reduce the over-
lapping problem. However, the general problem of mapping a higher dimensional space
to a lower-dimensional still remains.
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(a)

(b)

Figure 4.1: Histograms of different examples in the 4 and 5-class case.

(a) 4 classes (b) 5 classes

Figure 4.2: Layout for the examples histograms in figure 4.1
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The problem of ambiguity is resolved by adding interaction mechanisms. Additional
information is shown when the user moves the mouse over a test item. Lines are drawn
from the test item to all class items, while line thickness indicates the confidence for the
respective class. A line to a class is only drawn when the confidence value is above a
threshold θ to reduce clutter in the visualization (see section 4.1.4 for further discussion).

Feedback

By using drag and drop the user can move an item towards a class. While moving the
item lines indicate the current target of the movement. If the mouse button is released
the item is removed from view – it is not displayed anymore because it does not belong
to the items with unknown target label anymore.

The actual influence of user feedback to the underlying model can be implemented in
various ways. First, there can be instant feedback, i.e. after moving one item the classifier
is updated. Alternatively, the labels can be collected for multiple items and pushed to
the classifier at once. The former is an instance of serial-mode active learning, the latter
would be batch-mode active learning. The visualization is updated once the classification
model has changed, that is after one item in the serial-mode and after multiple items in
batch-mode, has been moved by the user. The implemented application allows the user
to chose the type of this feedback in the preferences panel.

4.1.2 Special Views

Two extension have been made to the standard visualization described above. The first,
the magic lens view, tackles the problem of ambiguity. The second, the misclassification
view, shows more aspects of classifier performance in terms of class confusion. Both
views are described in the following.

Magic Lens

By the definition of the layout algorithm (see Algorithm 1), there might be multiple data
samples on the same location in the visualization. There are two possible causes: First,
the items can have the same a-posteriori probability distribution or a very similar one.
Second, even items with different a-posteriori distributions can be located at the same
point in the visualization, i.e. the visualization is ambiguous as described above. The
solution to make such items accessible to mouse clicks, is the implementation of a magic
lens [FS95]. Moving the lens over the area with multiple items overlays an rectangle
at the location of the mouse pointer in the visualization. Inside this rectangle all items
from inside the lens area are aligned next to each other which makes them accessible
by the mouse pointer. The lens can be fixed on a spot, thus making the drag-and-drop
style feedback possible. Figure 4.3 shows an example of the magic lens view.
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Figure 4.3: Magic lens view of the Class Radial Visualization. The user can change the
(pixel) size of the lens, move over the visualization and fix the lens on an
area of interest. The content of the lens (left, smaller rectangle) is displayed
in the larger rectangle without overlap. Now, previously not selectable items
become selectable.
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Misclassification View

For assessing the performance of a classifier it is not only important how many errors
it made, but also which types of errors were made. For instance, class confusion matri-
ces 2.4.4 can give insights into which class could be clearly separated from another or
whether any two classes are always confused. Confusion matrices are based on binary
decisions, e.g. one could not say whether the correct class was missed by a large margin
or only slightly. Even if the correct class was missed, there is a qualitative difference in
an a-posteriori distribution which is nearly uniform and an an a-posteriori distribution
with a clear peak for the wrong class.

One method to make the quantity and quality of class confusion accessible is the misclas-
sification view. It is based on the layout algorithm shown in Algorithm 1. This means,
the items’ location in the normal view and the misclassification view are the same. Thus,
both views are directly comparable. The only differences in the views are the symbol
and color used for the item. Correctly classified items are displayed using a green cross
(“+”) and incorrectly classified items are displayed using a red X (“x”).

The misclassification view can also be applied to only one class, which will display all
items correctly assigned to this class with a green cross (“+”), all misclassifications for
this class with a red X (“x”). All other items are marked with a gray circle (“o”). Note
that, in order to use this view it is necessary that the data set contains the ground truth
labels. Figure 4.4 shows the misclassification view for all classes (left) and a single class
(right).

(a) all classes (b) class “grain”

Figure 4.4: Misclassification view showing the distribution of correctly (green “+”) and
incorrectly classified items (red “x”). (a) misclassification for all classes, and
(b) misclassification for class “grain”.
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4.1.3 Embedding in an Application

The Class Radial Visualization is the main part of the application depicted in figure 4.5.
The application is briefly described here to show the idea how the visualization compo-
nents may be combined.

1

4

3

2

5 6

Figure 4.5: The Class Radial Visualization application consists of: Àthe Class Radial
Visualization, Áa table of performance measures, Âthe class confusion ma-
trix, Ãa performance plot showing the performance of the classifier depend-
ing on the number of training items, Äcontrols for the magic lens and Åthe
misclassification view (the latter two are described in section 4.1.2).

The top menu contains data management tools (load, save data sets) and settings (change
classifier, toggle instant retraining). The “Tools” menu allows access to the class Con-
fusion Map visualization and histogram visualization showing the distribution of items
over the classes. The main frame consists of the Class Radial Visualization À and the
evaluation panel (on the right). The evaluation panel shows a table of evaluation mea-
sures Á, a colored class confusion matrix Â and a performance plot Ã. The evaluation
panel can be switched to either show the performance measures on the training data set
or on the evaluation data set (if available). Comparing the training data set and the

71



4 Implementation

evaluation data set might help to identify whether a classifier is over-fitting, i.e. if the
performance measures are (nearly) perfect on the training data set and very bad on the
evaluation data set. The performance plot Ã shows the accuracy of the classifier over
time (i.e. over subsequent training steps). When the slope of the accuracy line is nearly
zero for multiple subsequent training steps, this indicates that new training examples do
not provide any more information to the classifier, i.e. the classifier does not improve
any more. The button Ä toggles the magic lens view as described in section 4.1.2.
The size of the lens can be adapted to suit the item distribution in the Class Radial
Visualization À. The the tool-bar Åprovides access to the misclassification view as de-
scribed in section 4.1.2. For a fully labeled test data set this allows to see which items
are misclassified and whether there is a certain pattern in the misclassifications. At the
bottom of the application window detailed logging output is available.

4.1.4 Parameters

The parameters of the visualization are the color palette, and the icons for both, classes
and items. Further, the threshold θ defines which confidence lines are drawn. An a-
posteriori probability of an item for a classes below θ is not displayed by a line while
hovering over the item. Throughout this thesis θ = 0.1. Depending on the classification
problem other values for θ may be more suitable or required by user.

4.1.5 Feedback Example

The example in figure 4.6 shows the process of the user feedback. The COIL-20 image
data set (see section 5.1.2 for a description) was classified with the k-Nearest Neighbor
(KNN) classifier. In figure 4.6a a test item obviously assigned to the wrong class is
selected. The selected item is assigned to the class “cup” (indicated by the thickest
a-posteriori line) whereas the test item actually belongs to the class “duck” (shown by
the underlying original data). The user now can move the item towards the correct
class “duck” as shown in figure 4.6b. The moved item then serves as new training
example for the particular class and the classifier is re-trained and re-evaluated. The
new visualization for the test items can be seen in figure 4.6c.

4.1.6 Properties

The Class Radial Visualization is suitable for classifiers that output a probability distri-
bution over classes or whose output can be mapped to a probability distribution.

All desired properties for a classifier-agnostic visualization listed in section 3.1.2 are
fulfilled. In detail, the Class Radial Visualization

1. supports multiple classes,
2. uses a-posteriori probabilities,

72



4.1 Class Radial Visualization

(a) before feedback (b) during feedback (c) after feedback

Figure 4.6: The feedback process with the Class Radial Visualization. Data items are
moved by drag and drop. (a) The image of the duck is obviously misclassified.
(b) The user moves the item to the correct class. (c) The classifier is retrained
and has one more training example.

3. shows the final decisions and confidences,
4. shows all classes known to the classifier,
5. is comparable (two visualizations of different classifiers can be visually compared),
6. allows access to the underlying data,
7. gives an overview over the performance (and more so by embedding it in the

proposed application),
8. allows to detect outliers, and
9. is interactive.

The number of classes to distinguish visually is limited by the number of colors that
the human eye can distinguished. For nominal encoding – i.e. one color for each class –
this is limited to to 5-10 different colors [Hea96]. This means, 5-10 different colors can
be distinguished immediately by the human eye. If more colors/classes are needed, the
visualization becomes ambiguous and the ambiguity has to be resolved. In the interactive
mode this can be done by lines connecting the items to the classes, using a highlighted
line for the most probable class.

Moreover, the visualization does not reflect the similarity of classes. A similarity-based
layout can be achieved as follows: (i) for each class calculate the mean vector of its
training items, (ii) apply 1-dimensional Force-Directed Placement (FDP) using any sim-
ilarity measure on the mean vectors. However, the current implementation does not use
this similarity-based layout of the classes, because the similarities would change in every
training step (as the mean vectors of the training data change), which would cause a
rearrangement of the classes. A rearrangement of the classes would confuse the user,
because the whole visual context changes (all class items and all test items).

Currently the visualization is not context preserving over time. This means when the
layout changes, it changes in one step. Due to change blindness and inattentional blind-
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ness in human perception [CMS99] users will not be able to detect all changes in the
visualization if it moves from one layout to another. A solution to this problem would
be morphing the visualization and/or clearly highlighting important parts of the visual-
ization.

The computational complexity of calculating the layout of the visualization is O(n) with
n being the number of items to lay out. This linear-time layout makes the visualization
suitable for interactive (real-time) usage.

4.1.7 Supported Tasks

This section gives an overview of tasks supported by the visualization and shows some
examples. More examples are given in the implementation section 5.2 on page 103.

Get a Gist of the Classification Model: The visualization allows to get a general
overview of the classification model. The following questions can be answered:

Q1: Are there classes that attract more items than others? See for example class “earn”
in figure 4.7b (leftmost class, light blue color). It attracts nearly all items.

Q2: Are there classes that attract no items? See for example class “crude” in figure 4.7b
(rightmost class, red color). It attracts no item.

Q3: Are there any two competing classes (items have high probability of belonging to
either of them). See for example the classes “politics” and “economy” in figure 4.7a
(topmost and rightmost class). Many items are positioned along the boundary
between the two classes.

Q4: Is there a general pattern how items are assigned to classes? In figure 4.7c all items
are nearly symmetrically assigned to the classes, in contrast to figure 4.7b where
most items are assigned to only a subset of the classes. The general pattern of
the item distribution in figure 4.7c seems not very informative (many items in the
center, equally distributed to the borders). It seems as if the classifier could not
learn much on the data set, which turns out to be true. The features were badly
engineered for the classification task (using nouns for sentiment detection), such
that the classifier basically did randomly guess the class label.

Furthermore, access to the underlying data via mouse-over revealed noise in the data
set, as can be seen in figure 4.7c. An item with no textual content is present in the
training set. This discovery can be a hint for further investigating the correctness of the
preprocessing steps (web crawling, text preprocessing).

Find Items with Low Confidence: The task to find item with low confidence is well
supported in the visualization. These low-confidence items are either in the center of
the circle or at the boundary lines between classes. Such items can be instantly accessed
and via the mouse over function it becomes clear between which classes the item is not
clearly decidable. See for instance the item in figure 4.7a. Its text is about a soccer
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(a) ambiguous item (b) asymmetric class pattern (c) symmetric pattern, outlier

Figure 4.7: Examples visualizations revealing different phenomena: (a) competing
classes and undecidable items, (b) dominant classes, and (c) outlier.

trainer getting a prize for his work in the cultural domain. From the text, the classifier
can not decide whether the document belongs to the class “sports” or “culture” (which
also seems no obvious decision for human labelers).

Further, one can select items for certain classes and investigate the item’s neighborhood.
Suppose one would only work with a tabular user interface, and the items are sorted
by their confidence. With this interface one can also easily access undecidable items
but with less additional information. The part of information one gets depends on
the sorting strategy of the table. Sorting might be implemented by class, by highest
confidence value, or by entropy of the a-posteriori distribution.

4.1.8 Suitability for Visual Active Learning

This section investigates the suitability of the Class Radial Visualization for Visual
Active Learning based on the requirements identified in section 3.4.4.

1. Judge problematic behavior: The Class Radial Visualization allows to judge prob-
lematic behavior, for instance a bias towards specific classes. (see class “earn” in
figure 4.7b).

2. Identification of problematic items: The Class Radial Visualization allows to iden-
tify problematic items. (see figure 4.7c and 4.7a).

3. Batch selection: The Class Radial Visualization allows for batch selection in prin-
ciple. For instance, lasso selection could be easily implemented. However, the
current interaction mechanism only allow to select single items. For batch selec-
tion, the feedback mechanism to the classification model would need to be adapted,
because lasso selection might select items that belong to different classes. For a
detailed discussion of this, see the future work (section 6.2).
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4. Classifier independence: The Class Radial Visualization can be applied to any
multi-class single-label classifier that outputs a-posteriori probabilities.

The Class Radial Visualization satisfies 3 of the 4 conditions for a visualization for Visual
Active Learning. The condition batch selection is not satisfied in the current implemen-
tation. While batch selection could be easily be implemented in the visualization, the
classifier backend would need major adaptations (see future work in section 6.2). How-
ever, this condition is more nice-to-have and would speed up the labeling process even
more.

4.1.9 Comparison to Related Work

In this section the Model Uncertainty Visualization of the Visualix [LC09] and the Class
Radial Visualization are compared to each other. Visualix has been identified as similar
related work in section 3.1.3. An overview of the comparison of Visualix and the Class
Radial Visualization is given in table 4.2.

Both are classifier-agnostic and represent the uncertainty of a classification model on the
unlabeled data. However, the Visualix application uses confidence values as basis for the
visualizations which are not necessarily a-posteriori probabilities (except for classifiers
like the Naive Bayes). This means, the Model Uncertainty Visualizations of two different
classifiers are, in general, not visually comparable. The items in the Visualix are colored
according to a linear combination of class colors and according confidence values in
the RGB color space. This schema of coloring allows to assess the uncertainty of the
classifiers decision via the color of the item, but does not necessarily allow to asses
the final decision of the classifier. On the contrary, the Class Radial Visualization uses
the color of the most probable class as the color of the item. Here, the uncertainty of
the decision is not reflected in the color of the item. This means, that in the Visualix
visualization, the uncertainty of the decision is encoded twice – in the placement and
the color of the item, but the final decision is not shown.

Summing up, compared to Visualix the Class Radial Visualization has the following
advantages: (i) It allows to compare between visualizations of any two classifiers which
is basis for a relative judgment. (ii) The classifiers final decision are encoded in the
visualization.

4.1.10 Summary

In this section an interactive visualization, the Class Radial Visualization, was presented.
This visualization is designed to visually assess and understand decisions and results of
a classifier. It is based on a-posteriori probabilities and can therefore be applied to
any classifier that outputs a-posteriori probabilities or whose output can be mapped to
a-posteriori probabilities. A simple-to-use interaction mechanism allows users to adapt
the classification model. Furthermore, extensions of the visualization were described in
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Table 4.2: Comparison of the Model Uncertainty Visualization of the Visualix applica-
tion [LC09] and the Class Radial Visualization

Visualix Class Radial Visualization

visualization space 3D 2D

data confidence values a-posteriori probabilities

type of problem multi-class, single-label multi-class, single-label

feedback correct decisions by drag and
drop

correct decisions by drag and
drop

item coloring linear combinations of class
colors, weighted by confidence

color of most probable class

comparability visualizations not comparable
to each other

visualization comparable to
each other

this chapter, the magic lens and the misclassification view. The magic lens view is a
means to overcome the problem of overlapping items. The misclassification view allows
for deeper understanding of the classification model – if labeled test data is available.

The suitability of the Class Radial Visualization for assessment and understanding of
classifiers is shown in experiments in sections 5.2 and 5.5. An implementation of he
concept of Visual Active Learning (see section 3.4) presented in section 5.3 uses the
Class Radial Visualization to support users in selecting items for labeling.
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4.2 Confusion Maps

Confusion maps are a simple tools to visualize the class confusion matrix or contingency
table (see Sec. 2.4.2). In this matrix the rows correspond to the classifier’s decisions
(labels) and the columns correspond to the ground truth (target). Confusion maps for
visualizing classifier properties were introduced in [LSGJ10]. Visualizing matrices as
a heat map is nothing new, the original idea has been proposed by Bertin [Ber83] (a
translation from the original French book from 1967) without using a computer display.
Here we describe the application to a special matrix, the class confusion matrix. Further
it is shown, why this visualization is suitable in the context of classification problems.

4.2.1 Method

The idea is derived from the heat map visualization [Ber83, WF09]. Where in the heat
map visualization a value is represented by one pixel, in the Confusion Maps, each value
is represented by a uniformly colored square. The color of a square is determined by
linearly mapping the value range to a color palette, usually a palette ranging from white
to any other color. This means the lowest (possible) value is mapped to the color white
and the highest (possible) value to any other color. In RGB space the color (rgb) for a
given value x is then be calculated as follows:

mr =
rmax − rmin
vmax − vmin

mg =
gmax − gmin
vmax − vmin

mb =
bmax − bmin
vmax − vmin

rx = mr · x+ rmax −mr · vmax
gx = mg · x+ gmax −mg · vmax
bx = mb · x+ bmax −mb · vmax

where vmax is the maximum value to display, vmin the minimum value to display,
(rmin, bmin, gmin) the RGB value of the color assigned to vmin and (rmax, bmax, gmax)
the RGB value of the color assigned to vmax.

4.2.2 Parameters

Parameters of the visualization are the size of the squares (size of matrix cells) and the
colors used for the highest and the lowest value, respectively.
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4.2.3 Examples

Figure 4.8 shows the confusion matrix for a fully trained Support Vector Machine (SVM)
classifier on the APA data set. As can be instantly seen the training set is perfectly
classified (left). On the evaluation set (right) however, there are many off-diagonal
(misclassified) elements. Especially, the first class has many items wrongly assigned.
The huge difference of the Confusion Map on the training data set and the evaluation
data set indicates that the classifier is not perfectly trained. Indeed, the pictures show
results of a cross-domain experiment, where the classifier was trained on news articles
and evaluated on blog entries which led to a decreased classifier performance.

(a) training set (b) evaluation set

Figure 4.8: Confusion Maps. APA News Blog Data Set, 5 classes, trained with SVM.

In figure 4.9 confusion matrices and Confusion Maps for a data set with more (19) classes
are shown. In this example, the results on the training and the evaluation set are similar
and only the visual representation can instantly reveal the locations of the differences
(e.g., top right off-diagonal elements). However, the visualization does not allow to assess
accurate values. For instance in the Confusion Map of the evaluation set (figure 4.8b),
the two darkest values on the diagonal seem to be colored in the same gray, but as can
be seen in the matrix have different values (48 and 51).

4.2.4 Properties

The Confusion Map visualization is suitable for getting an overview of the confusion
matrix. It is especially helpful if the matrix is very large, such that single values can not
be processed any more. Because the numbers are not shown and the human ability of
distinguishing different hue values is limited [CMS99], the visualization can only show
tendencies. However, certain patterns (e.g. a filled diagonal) and differences in the
Confusion Maps for the training and evaluation data set can be easily detected.
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 10 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 10 40 0 0 0 2 0 0 0 3 0 0 1 0 0 0 1
0 0 0 0 16 6 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 20 0 1 0 0 4 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 2 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 1 17 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 7 10 5 5 5 0 3 40 13 5 0 0 0
0 0 0 0 0 0 2 8 4 2 0 0 2 0 26 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(a) confusion matrix, training set

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 10 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 10 48 0 0 0 1 0 0 0 4 0 0 3 0 0 0 1
0 0 0 0 18 3 0 0 0 0 0 0 0 0 0 0 7 0 0
0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 6 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 25 0 5 0 0 2 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 1 20 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 0 0 2 0 0 0 0 0 0
0 0 0 0 0 0 9 9 8 3 4 0 4 51 12 8 0 0 0
0 0 0 0 0 0 1 15 1 1 1 0 2 0 36 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 2 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(b) confusion matrix, evaluation set

(c) Confusion Map, training set (d) Confusion Map, evaluation set

Figure 4.9: Comparison of confusion matrices and maps. Soybean data set (19
classes) [FA10], trained with KNN classifier (k=10)
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4.2.5 Summary

This section presented the Confusion Maps visualization in detail. A Confusion Maps is a
visual representation of class confusion matrix, allowing faster assessment and detection
of patterns in the matrix. Confusion maps allow assessment of classifiers on the class
level. Furthermore, aspects of classifiers, like over-fitting, can be visually identified by
comparing Confusion Maps of training and evaluation sets. Confusion Maps have been
implemented in the same application as the Class Radial Visualization (see section 4.1.3).
Thus, the application covers all classifier-independent levels of classifier assessment (item,
data set, class).
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4.3 Tag Clouds

This section describes a family of tag layout1 algorithms suitable for placing tags inside
arbitrary, convex polygons without overlap. Placing tags inside a polygon can be reduced
to placing the tags’ bounding boxes, which is known to be a computational NP-hard
problem (related to packing rectangles in irregular shapes). We apply a heuristics to
find a good (not necessarily globally optimal) solution meeting the following criteria:

• lay out as many tags as possible,
• at least lay out the most important tags,
• avoid unnecessary white spaces between tags,
• avoid overlap between any two tags,
• use arbitrary, convex polygons as boundaries (i.e., not only rectangles, and includ-

ing circles which can be approximated by polygons).

The special tag layout algorithm is used for the Voronoi Word Cloud visualization de-
scribed in section 4.4 and applied in the experiments for classifier construction in sec-
tion 5.4 as visual summary for texts. This tag layout algorithm has been published
in [SKK+08] and includes an additional user study. Further, the tag layout visual-
ization was implemented as module in the visualizing framework for the news article
domain [LSKG08].

4.3.1 Method

In this section we describe the layout algorithm. First, we show possible ways to influence
the tags’ visual representation. Second we explain the calculation of the bounding boxes,
and, third, we describe the core of the algorithm – the layout of the bounding boxes.
Finally, we show possible combinations of the previous steps and obtain four different
algorithms.

T is the set of all tags: T = {ti|ti is a tag, 1 <= i <= n}. A tag ti is given by a tag
string tsi and a tag relevance value tri (also called the weight of the tag). The algorithm
assigns a certain position and font size to a subset of the tags, or ideally, all tags. We
have no a-priory knowledge about the tags, however, there are some constraints on the
layout: (i) the font size is not fixed, but has to be in a sensible interval (too small
font sizes are not readable, too large font size range does not give a visually attractive
layout) [HK07, Hof06], (ii) strings can be truncated, but have to consist of at least three
letters, and (iii) the font family should be unique for all tags to not influence the perceived
relevance of a tag. To account for these constraints we introduced three parameters for
our algorithm: thresholds for the maximum and minimum font size allowed θmax and
θmin, and an initial value for the font size assigned to the least relevant tag s0

min. The
initial value for the font size for the most relevant tag, s0

max is set to θmax. The current
minimum and maximum font sizes s0

min, s0
max define the current font range interval s0

r .

1We use the term tag here from the application point of view, technically it can be an arbitrary string
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There are two possible ways to change the size of the visual representation of a tag: (i)
to shrink/enlarge the font size, i.e., the height and width of the tag, or (ii) to truncate
the tag’s string, i.e. to reduce the width of the tag. Given the input parameters θmax,
θmin and s0

min we identified three processes to influence the tags’ visual representation
and therewith the bounding boxes of the tags: (i) shifting the font size interval, (ii)
scaling the font size interval and (iii) truncating of tags’ strings. If the initial layout trial
was not successful (i.e. not all tags could be laid out with initial parameter settings),
one of these processes changes the tags’ visual representation leading to new, smaller
bounding boxes. Another layout trial based on the new bounding boxes is then started.
An overview of the algorithm is depicted in figure 4.10.

Adapt
Parameters

scale font interval

truncate strings

4 3

1 2

shift font interval

border polygon

assign font size to tag

Determine
Bounding Boxes

5

Place Bounding
Boxes and Tags

calculate bounding box

font size thresholds

initial minimum
font size

tags with weights

font interval

tags with weights

bounding
boxes

layout successful?
current layout

yes

no

Figure 4.10: Algorithm Overview: ÀDepending on input values and success rate of pre-
vious layout attempts a new font interval is determined by one of the three
processes. ÁThe font size and the bounding boxes for all tags are calcu-
lated based on the current font interval. ÂBounding boxes and tags are
laid out inside the given border. ÃIf all tags could be laid out or there
are no more parameter changes possible the algorithm outputs the current
layout. ÄIf not, a new layout trial is started with the adapted parameter
values.

We do not claim to achieve globally optimal layouts, we heuristically find a good layout
that meets the following criteria:

1. The most relevant tags are laid out, i.e.: if a tag ti is laid out, all tags tj which
could not be laid out have a lower or equal relevance value (tri ≥ trj for ti, tj ∈ T ).

2. The tags are laid out comparable to an orbital layout, starting with the most
relevant tag in the center of mass of the polygon. The center of mass was chosen,
because it is defined for arbitrary polygons and yields consistent layouts over a
wide range of shapes.

3. The bounding boxes of two distinct tags do not overlap.
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4. Two tags with the same relevance value are use the same font size.

5. A tag with a higher relevance value as another tag is drawn with an at least equal
font size.

Influencing the Tags’ Visual Representation

This section describes possibilities to adapt parameters after an unsuccessful layout trial.
Section 4.3.1 then discusses possible combinations of these steps.

As mentioned above, the tags’ visual representation can be changed by (i) shifting the
font size interval, (ii) scaling the font size interval, and (iii) truncating the tags’ strings.

The goal of the first method is the reduction of all font sizes in a linear way in order
to get smaller bounding boxes. The interval shift is defined by: s′min = smin − 1 and
s′max = smax−1, which means the font size range keeps constant, s′r = sr. The minimum
font size must not be less than the minimum font threshold: s′min ≤ θmin. Figure 4.11a
depicts the procedure.

The scaling of the font size interval leads to a smaller range of font sizes by reducing
the maximum value (s′max = smax − 1) while keeping the minimum value constant
(s′min = smin). Therefore the font range decreases: s′r = sr − 1, with s′max ≥ s′min (see
figure 4.11b).

The third method, the string truncation, substitutes the last letter of the tag string ts
with three dots. If this is done iteratively, the string becomes shorter while retaining as
much information as possible (the beginning of the word and the indication, that the
word continues). The minimum string length is set to 3. The truncation of strings leads
to shorter strings and therefore to bounding boxes with smaller widths.

(a) Font Size Shift (b) Font Size Scale

Figure 4.11: The font size interval can be shifted and scaled to decrease the size of the
bounding boxes.

Determining the Tags’ Bounding Boxes

This section describes how the bounding boxes are determined depending on the current
font size settings and the tags’ relevance value. First, each tag gets a font size value
assigned and second, the bounding box for the current graphics display is determined
from the tag’s font size and the tag string. We are given the relevance values tri ∈ R
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of the tags ti and the maximum and minimum font size values smin and smax. We
define a function m that maps tag relevance values to font sizes: m : tri → tsi , such
that smin ≤ tsi ≤ smax, 1 ≤ i ≤ n. Hoffmann [Hof06] identified three different font size
distribution algorithms, the linear method, the logarithmic method and a clustering of
font sizes. We implemented the linear and the logarithmic distribution. For the linear
distribution, the font size tsk of the tag tk is calculated as

tsk = (trk −min
i
tri ) ·

smax − smin

maxi tri −mini tri
+ smin

Accordingly, for the logarithmic distribution, the following equation is used

tsk = (log trk −min
i

log tri ) ·
smax − smin

maxi log tri −mini log tri
+ smin

Independently on which of the above methods was used, each tag ti ∈ T now has a
valid font size tsi assigned. The width and the height of the bounding box tboxi for
the current graphics display is now determined by using library functions calculating a
string’s bounding box given a font size and a string.

Rectangle Placement

In this section we describe the core algorithm – the layout of rectangles in a convex poly-
gon B. A rectangle r = (w, h) is given by its width w and height h. R is the set of all rect-
angles R = {ri|1 ≤ i ≤ n}. The goal is to determine a subset R′ ⊆ R, |R′| = k ≤ n, and
a set P of align points P = {pi = (xi, yi) | 1 ≤ i ≤ k, pi is the bottom left corner of ri}
such that

• all ri are fully inside the polygon B,

• no two ri and rj do overlap for i 6= j,

• R′ contains all rectangles with the largest height, i.e. hi ≥ hj ,∀ri = (wi, hi) ∈
R and rj = (wj , hj) ∈ R\R′.

The last condition arises from the overall goal to layout tags. In case, that not all
rectangles would fit in the polygon, we want to drop the rectangles that represent the
least relevant tags. The rectangles represent tags, their height is proportional to the
tags’ font size and therefore proportional to the relevance of the tag (see section 4.3.1).
There are three more requirements to the layout algorithm arising from the tag layout
application: (i) horizontal layout should be preferred to vertical layout to take the human
westernized reading direction into account, (ii) compact layout is preferred, such that
there is as little white space between boxes as possible, (iii) the most important tags
should be in the center of the polygon as suggested by the notion of focus in [BZ05].

The algorithm is as follows: The rectangles are sorted descendingly by their height. The
first rectangle is placed centered in the center of mass of the polygon. The edges of
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this rectangle split the polygon into four new polygons as depicted in figure 4.12a. The
resulting polygons are stored in a list L together with the align point P and an align
hint. The align point and the align hint are used for placing the next rectangle in the
polygon. For the clipped top-polygon, the align hint will be bottom and the align point
is the center point of the top-edge of the rectangle, see figure 4.12a for an example.
Additionally, for each new polygon a priority value is stored. The priority v of a region
is calculated from the distance d of its center of mass to the center of mass of the original
polygon B and a weight value θ: v = 1

d · θ, with

θ =

{
1, if region is top or bottom region

1.5, if region is left or right region

This choice enforces the algorithm to create a compact and preferable line-by-line layout
of the rectangles.

(a) clipping regions (b) alignment example

Figure 4.12: Rectangle Layout. (a) Clipping regions for the first rectangle, (b) 18 of 20
aligned random rectangles laid out in a polygon.

Four new polygons were created by placing the first rectangle. For each of the remaining
rectangles (remember that the rectangles were sorted by height), all polygons with a
larger area than this rectangle are processed in order of their priority value. When a
rectangle could be placed in a polygon at the align point’s location according to the align
hint, zero to three new polygons are created and added to the list and the old polygon is
removed from the list. In case the rectangle did not fit in the polygon the next polygon
(next less priority value) gets tested. The algorithm stops, if for a rectangle all polygons
from the list which at least the area as the rectangle were tested and the rectangle did
not fit in one of these.
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Combining the Steps

This section describes how the individual steps are combined into a system for tag layout.
In figure 4.10 we gave a coarse overview of the whole procedure without describing the
sequence of the individual steps. We identified four sensible possibilities to combine the
steps (in a static way):

Shift-Trunc (ST): Try font interval shift first, if no success start to truncate tag
strings. After one truncation reset the font interval. Try to lay out again. Go on with
the interval shift. If no more shift possible, truncate again, and so on. Stop, if all tags
are laid out or no more truncation is possible.
Shift-Trunc-Scale (STC): An extension of Shift-Trunc, which does not stop if no
more truncation is possible, but tries to scale the font size interval instead. It stops if
the interval can not be scaled anymore.
Shift-Scale-Trunc (SCT): Try font interval shift first, if no success try font interval
scaling. If no success, try further with string truncation.
Trunc-Shift-Scale (TSC): Try string truncation first, if no success try font interval
shifting. If still no success try font interval scaling.

As can be seen, the four proposed combination differ in the presence and sequence of
their elements. As an example, Algorithm 2 shows the pseudo-code for the combination
Trunc-Shift-Scale. The first operation of this algorithm (truncation) is inside the inner-
most loop. Thus, the algorithm tries to fit all tags by first truncating the tag strings as
much as possible.

while not all boxes laid out and scaling possible do
while not all boxes laid out and shifting possible do

while not all boxes laid out and truncation possible do
createBoundingBoxes()
layOutBoxes()
truncateTagStrings()

end while
shiftFontInterval()

end while
scaleFontInterval()

end while
Algorithm 2: Algorithm pseudo-code for Trunc-Shift-Scale (TSC)

4.3.2 Parameters

One parameters of the visualization is the boundary polygon (shape, size). Further
parameters are the minimum initial font size, the maximum initial font size and the
minimum allows font size. Good parameter settings for the font sizes can not be (easily)
estimated automatically as they depend on the boundary polygon.
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4.3.3 Examples

Figure 4.13 shows example tag clouds. In each column of the figure one layout algorithm
has been applied to different tags and boundary polygons. In row (a) 10 tags were laid
out in a polygon that approximates a circle. Row (b) shows the layouts for 138 tags
from the del.icio.us website in a rectangular octagon. Row (c) shows the names of the
European countries, the font size corresponding to the number of inhabitants. Row (d)
shows 30 randomly chosen tags from the technorati website in a square. For all examples
the parameters were set as follows: Minimum initial font size was set to 16 pt, maximum
initial font size was set to 40, minimum allowed font size was set to 10. String truncation
was only allowed until at least three characters of the string remained (excluding the
dots). Table 4.3 shows the performance measures for all layouts of figure 4.13.

Algorithm (ST) fails to layout all tags in row (b) and (c). This is because the algorithm
does not use scaling of the interval. However, the relative weight of the tags is better
reflected by using this algorithm than by using any of the others. This fact is also
reflected in table 4.3: using algorithm ST always results in different minimum and
maximum font size. For the other algorithms, minimum and maximum font size may
and usually does differ. Furthermore, it can be seen that the layouts differ little when
the parameters and the bounding polygons are appropriately set (row (d) of the figure).

Table 4.3: Overview of the (technical) quality measures for the layouts of specific tag
and border combinations as depicted in figure 4.13. (The table has the same
arrangement in rows and columns as in the figure.)

Examples ST SCT TSC STC

100 100 100 100 tags laid out in %
78 36 61 78 area filled in %
22 0 39 22 truncated characters

17. . . 34 17. . . 34 17. . . 34 17. . . 34 font interval in pt

42 64 76 67 tags laid out in %
76 79 78 78 area filled in %
2 6 266 86 truncated characters

10. . . 34 10. . . 10 10. . . 10 10. . . 10 font interval in pt

11 100 100 100 tags laid out in %
31 43 47 47 area filled in %
10 0 73 75 truncated characters

10. . . 34 10. . . 13 10. . . 20 10. . . 19 font interval in pt

100 100 100 100 tags laid out in %
68 63 74 68 area filled in %
10 0 76 10 truncated characters

10. . . 34 10. . . 34 12. . . 36 10. . . 34 font interval in pt
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ST SCT TSC STC

(a)

(b)

(c)

(d)

Figure 4.13: Examples of tag layouts produces by the four algorithms Shift-Trunc (ST,
first column), Shift-Scale-Trunc (SCT, second column, Trunc-Shift-Scale
(TSC, third column), Shift-Trunc-Scale (fourth column) with different tags
and different borders: (a) 10 tags in a polygon approximating a circle, (b)
138 tags from del.icio.us in a regular octagon, (c) EU states weighted by
the number of inhabitants in a rectangle, (d) 30 tags from technorati in a
square.
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4.3.4 Properties

The tag layout has the following properties:

• Tags can be laid out in arbitrary, convex polygons.

• The most important tag is placed in the center-of-mass of the polygon. All other
tags are laid out in a circular manner around the most important tag in descending
importance.

• It can not be guaranteed that all tags are laid out, but it can be guaranteed that
the ones that are laid out are the most important ones.

• There is no overlap between any two tags.

• No unnecessary white spaces occur between any two tags.

• The runtime of the tag layout algorithm heavily depends on the initial settings of
the parameters.

4.3.5 Summary

This section presented a family of tag layout algorithm suitable for producing compact
tag layouts in arbitrary, convex polygons. The layout algorithms can be applied to any
set of weighted words. The layout is performed using heuristics and not necessarily
globally optimal. The algorithm tries to fit the next most important tag in the available
area next to already laid out tags. If the tag fits, the area is cropped along the tag’s
bounding box. The next tag is then tried to be placed in the remaining area. In this
iterative process it might occur that different cropped nearby areas may yield place for
another tag but are not considered because they are threated separately by the algorithm.
Thus, further improvements to the algorithm include joining together these areas.

The special tag layout algorithm is used for the Voronoi Word Cloud visualization de-
scribed in section 4.4 and used in the experiments for classifier construction in section 5.4
on page 131 as representation of text summaries.
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4.4 Voronoi Word Clouds

4.4 Voronoi Word Clouds

The Voronoi Word Cloud visualization is an extension of the tag cloud visualization
described in Section 4.3. It has been published in [SKG11]. The idea of this visualization
is to represent not only one tag cloud, but multiple tag clouds and their relationships.
Or in other words, the visualization can be used to represent multiple sets of documents,
showing the tags or most important words for each set of documents.

Each set of documents Di is characterized by a set of words Wi. These words can for
example be tags associated to the set, key words automatically extracted from the docu-
ments or extracted named entities. Further, a similarity relationship between document
sets can be displayed in this visualization. Therefore, for each pair of document sets
(Di, Dj) a similarity value needs to be given. This similarity value can for example be
the cosine similarity of the median document vectors for both sets or a user given value
for the semantic similarity of the sets.

4.4.1 Method

This section describes the method in general. An example use case for visualizing a text
classification model is described in section 5.6.

1. For each pair of documents (Di, Dk) a similarity value is calculated (for instance
as the cosine similarity of the average document vector in the vector-space repre-
sentation).

2. Each document set (Di) is mapped into the 2D-space using a FDP algorithm. The
attractive forces between two document sets are set to their similarity value. As a
result for each Di a corresponding point pi in the 2D-plane is generated.

3. A Voronoi diagram is calculated using the points pi as generator points obtaining
a polygon Pi for each document set.

4. For each document set Di the associated set of words Wi is calculated. This can
for instance be all named entities mentioned in all documents. Optionally, a weight
may be added to each word of Wi.

5. The weighted words for document set Di are laid out inside the polygon Pi using
the tag layout algorithm described in section 4.3.

6. For a similarity-based coloring of the polygons Pi each document set is projected
into the 3D-space (similarly to step 2.), and their projection is used to select the
background color for polygon Pi from the RGB color space according to formu-
las 4.1, 4.2 and 4.3.

r = min(255, 255 · (s+ sx)) (4.1)

g = min(255, 255 · (s+ sy)) (4.2)

b = min(255, 255 · (s+ sz)) (4.3)
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The scaling parameter s in the equations 4.1 to 4.3 is used to achieve a lighter background
color to keep the foreground text readable. In the experiments s was set to 0.7.

4.4.2 Parameters

Parameters of this visualization are the number of words to display for each document
set, the specific tag layout algorithm and its parameters. In an interactive visualization
the number of words per document set could also be automatically adapted based on
the zoom level. Further, the similarity measure for comparing document sets can be
chosen. Also the formula for coloring the polygons can be substituted and might be due
to future research to get colors that better reflect the similarity for the human eye. The
mathematical distance in the RGB color space is not proportional to perceived similarity
of colors.

4.4.3 Examples

Figure 4.14 shows an example Voronoi Word Cloud representing three document sets.
The borders are set to a regular dodecagon. The feature vectors for the sets were set as
f1 = (1, 0, 0, 0)T , f2 = (0, 1, 0, 0)T , f1 = (1, 1, 1, 0)T . This means, document set 1 and 2
show no similarities and document set 3 is equally similar to the other twos.

The words were weighted by wij = i
j , for i = 1, 2, 3 indicating the document set and

1 ≤ j ≤ 10 indicating the word index. The string of the word was simply set to ”word”
for i mod 3 6= 2, and ”long word” for each third word. The region for document set
1 is colored yellow, for document set 2 is colored blue, colors that are at far apart in
the RGB color space. The region of document set 3 is colored green, a color that is a
mixture of blue and yellow. This coloring reflects the similarity of the document sets.

4.4.4 Properties

By the process of construction, the Voronoi Word Cloud visualization has the following
properties. First, similar document sets are places near each other. Second, similar
document sets are colored in similar colors (in RGB) space. Third, a document set is
represented by a set of multiple words. Note that the importance of the words can not
be directly compared across different document sets. The same absolute size does not
mean the same global importance. This is because the tag layout is done independently
in each polygon. However, the relative size of words can be compared across document
sets, i.e. the larger the word, the more important it is for the specific set.
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4.4 Voronoi Word Clouds

Figure 4.14: Example Voronoi Word Cloud for 3 document sets and 10 words per docu-
ment set.

4.4.5 Summary

In this section a visualization called, Voronoi Word Clouds, for multiple sets of documents
is described. This visualization combines Voronoi subdivision and the tag layout for
arbitrary convex polygons described in section 4.3. Voronoi Word Clouds can be used to
reflect the relatedness between documents sets (by the spatial layout) and an overview
of the content for each set. The experiment in section 5.6 applies the Voronoi Word
Clouds to visualize the model of a specific text classifier.
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4.5 Summary

In this chapter four different visualizations were described. The experiments presented
in the next chapter answer the research question of this thesis using these visualizations
and the concept of Visual Active Learning.

In section 4.1 an interactive visualization, the Class Radial Visualization, is described.
This visualization conveys classification results based on a-posteriori probabilities. This
visualization is classifier-agnostic and can be applied to any classifier that outputs a-
posteriori probabilities or whose output can be mapped to a-posteriori probabilities.
Further, an integration in an application was described. The Class Radial Visualization
was designed to support assessment, understanding and adaptation of classifiers. The
experiments described in section 5.2 experiments evaluate the aspect of assessment and
understanding, the experiments in section 5.3 and 5.5 evaluate the aspect of adaptation.

In section 4.2 the Confusion Maps visualization was presented. Confusion maps are a
visual representation of class confusion matrices, allowing faster assessment and detection
of patterns in the class confusion matrix. Further, aspects of classifiers, like over-fitting,
can be visually identified by comparing Confusion Maps of training and evaluation sets.

Section 4.3 describes a special layout algorithm for tag clouds in arbitrary, convex poly-
gons. This visualization is the basis for the experiments in section 5.4 dealing with fast
classifier construction for text classification.

The tag layout algorithm is applied in the Voronoi Word Cloud visualization presented
in section 4.4. This visualization is applied to a special text classifier in the experiments
in section 5.6 in order to allow detailed assessment of this specific classifier.
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’It is a capital mistake to theorize before you
have all the evidence. It biases the judgment.”

(Sherlock Holmes in A Study in Scarlet )

5 Experiments

This chapter describes the experiments performed to answer the general research ques-
tion of the thesis (see section 1.1):

RQ ’Can interactive visualization improve construction, understanding, assessment,
and adaptation of supervised machine learning algorithms?”

First, the proposed visualizations Class Radial Visualization and Confusion Maps (see
section 4.1 and 4.2) are applied on different data sets by expert users in an exploratory
way (Experiment Set 1). Results show, that visualizations are suitable for experts to
assess and understand arbitrary classifiers.

Having covered the assessment and understanding part of the research question in Exper-
iment Set 1, Experiment Set 2 tackles the adaptation part. In these experiments, in
(i) a small user study, and in (ii) more extensive user simulations Visual Active Learning
is compared to active learning. More specifically, it is evaluated whether the selection
of training data by the user outperforms random and automatic approaches. These
experiments do not take the time in to account that is required for labeling the data
items.

However, specifically for text classification the labeling time has the most influence
on the total time of training data generation. Thus, in Experiment 3 alternative
representations of text documents are compared in a user study for their suitability
to efficient labeling. The findings relate to the adaptation and generation part of the
research question.

Until now, in all experiments it was assumed that the classes are known beforehand. In
most applications this is a feasible assumption, however there are some cases were the
classes only emerge while the users explores a data set. The latter case is explored in
the Experiment 4. This experiment is to be considered a proof-of-concept. Starting
with a pure data visualization the user can interact with the data and explore potential
classes and construct the classifier from scratch.

Having considered mostly the domain of text classification in previous experiments,
Experiment 5 further investigates the understanding of a specific text classifier.
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5 Experiments

More specifically with the experiments presented in this chapter the following questions
are answered:

1. Can visualizations, more specifically the Class Radial Visualization and the Con-
fusion Maps help experts to assess and understand arbitrary classification models?
Experiment Set 1 → see Sec 5.2.

2. Can user feedback on classification models through interactive visualizations, more
specifically an interactive version of the Class Radial Visualization, be used to im-
prove classification models? Is there a benefit over automatic methods? Experi-
ment Set 2→ see Sec 5.3

3. What are good representations of the data to classify, more specifically of text doc-
uments, to speed-up the manual labeling process? Experiment 3 → see Sec 5.4

4. Can pure data visualizations be used to allow domain experts to generate their
own classifiers? Experiment 4 → see Sec 5.5

5. In which way can a model of a specific text classifier, namely the Class-Feature-
Centroid (CFC) classifier, be visualized and made accessible to users? Experi-
ment 5→ see Sec 5.6

Section 5.1 gives an overview of the data sets used in the experiments. Table 5.1 sum-
marizes the experiments in this chapter by their (i) topics (the aspects of the research
question), (ii) the visualization modules used, (iii) the methodology used in the experi-
ment, and (iv) the results.
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5 Experiments

5.1 Data Sets

In this section the data sets use in the experiments are presented in detail. Section 5.1.1
discusses the famous Iris flower data set, section 5.1.2 the COIL-20 data set, a well known
data set for image classification. Three text data sets are presented in sections 5.1.3
(Reuters-21578), 5.1.4 (APA Blog and News) and 5.1.5 (20 Newsgroup).

5.1.1 Iris Flower Data Set

The Iris flower data set is very famous and frequently referenced in the pattern recog-
nition literature (see for instance [WF05]). The data set was initially published by R.
Fischer in 1936 [Fis36]. The classification task is to distinguish three different types of
the Iris flower: Iris Setosa, Iris Versicolor and Iris Virginica. Each flower is represented
by four attributes, namely (i) sepal length in cm, (ii) sepal width in cm, (iii) petal length
in cm, and (iv) petal width in cm. The class Iris Setosa is linearly separable from the
other two classes, whereas the classes Iris Versicolor and Iris Virginica are not linearly
separable from each other. For the experiments the data set was randomly split into
train (34%), test (33%) and evaluation set (33%) as shown in table 5.2.

Table 5.2: Overview of the 34:33:33 split of the Iris Flower data set. Showing the number
of instances in each set.

class (flower) total train test eval

Iris Setosa 58 20 18 20

Iris Versicolor 50 19 18 13

Iris Virginica 42 12 14 16

total 150 51 50 49

5.1.2 COIL-20 Image Data Set

The Columbia Object Image Library (COIL-20) [NNM96] consists of images of 20 dif-
ferent objects. For each object 72 different images were taken using a turntable yielding
1440 images in total. Each image of an object shows the object from another angle,
while the angle is increased by 5 degrees in subsequent views. Figure 5.1 shows the 20
objects from a 0 degree angle. In the experiments the processed version of the images
are used, where the background has been discarded and the images are cropped to the
smallest square which contains the object. Different splits of the data set were generated
as shown in table 5.3. For the 50:50 split the even view numbers serve as train images,
i.e. all 0,10,20,.. degree images are contained in the training data set.
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Figure 5.1: Objects of the COIL-20 image data set

Table 5.3: Overview of the splits of the COIL-20 data set

split train test eval total

50/50 odd-even 720 720 0 1440

60/20/20 random 864 289 287 1440

34/33/33 random 490 476 474 1440

5.1.3 Reuters-21578 Text Corpus

The Reuters-21578 data set1 is a standard data set for text classification tasks. The data
set contains news articles published by Reuters in 1987. The news articles were manually
categorized by publisher. The full data set is a multi-label data set. This work focuses
on single-label classification tasks and therefore the single-label R8 category subset was
used. This subset contains only documents with a single topic and classes which still
have at least 2 documents (one for training, one for test). The data set was split into
train (60%), test (20%), and evaluation set (20%). Table 5.4 gives an overview of the
R8 subset and the splits used in the experiments. The data was vectorized as described
in section 2.3, the dictionary for the noun-vector-space contains 23, 534 nouns in total.

1http://www.daviddlewis.com/resources/testcollections/reuters21578/
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Table 5.4: Overview of the R8 subset of the Reuters-21578 data set

class total train test eval

acq 2394 1454 487 453

crude 510 320 93 97

earn 3953 2328 795 830

grain 566 349 119 98

interest 306 158 77 71

money-fx 553 334 100 119

ship 182 114 35 33

trade 473 305 81 87

total 8937 5362 1787 1788

5.1.4 APA Blog and News Corpus

This data set is designed for cross-domain classification task and consists of news articles
collected by the Austrian Press Agency (APA) and related blog posts crawled from the
World Wide Web. The details of this data set were published in [LSGJ09b, LSGJ09a,
LSGJ10].

The news corpus contains 27, 570 documents, the blog corpus contains 10, 977 documents.
Each news article is labeled with one of the five categories ’sports”, ’culture”, ’politics”,
’economy”, ’science”. Each class consists of ≈5500 documents, thus the corpus is nearly
balanced (see table 5.5).

The blog corpus contains posts of 56 blogs which were selected according to the given
newspaper categories: 10 politics blogs, 10 economy blogs, 10 sports blogs, 11 culture
blogs, and 15 science blogs. Each blog post is labeled by one of the news categories,
according to the labeling of the whole blog. The number of blog posts for each category
can be seen in table 5.6. Because the blog posts were labeled with the category of the
blog, all entries of a single blog belong to the same category. The blogs were randomly
checked whether this assignment is true. Not all blogs and blog posts were examined
manually, thus it can not be ensured that there is no mislabeled blog post. Because of
the potential mislabelings in the training data the resulting accuracy of a classifier is
limited by a number less than 100%.

The news articles and blog entries were preprocessed as outlined in section 2.3 on page 25.
Two noun-vector spaces was created using (i) Term Frequency - Inverse Document Fre-
quency (TF-IDF) weighting and (ii) Okapi BM25 ranking (BM25). The news data set
contains ≈237,000 nouns with an average document length of 92.5 nouns. The blog
data set contains ≈110.000 nouns with an average document length of 61.5 nouns. The
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merged dictionary consists of ≈302,000 different terms, the sum of the distinct terms
in the news and blogs dictionary is ≈347,000. This means, that the news and the blog
corpus share only ≈45,000 terms.

Both corpora were randomly split into training, test and evaluation set, whereas the
training set contains ≈60%, the test set ≈20%, and the evaluation set ≈20% of the
documents. The detailed numbers can be found in table 5.5 for the news corpus and in
table 5.6 for the blog corpus.

Table 5.5: Overview of the APA News Topic Dataset

class (topic) all train test eval

science 5556 3349 1158 1049

politics 5302 3173 1077 1052

sports 5595 3421 1058 1116

culture 5548 3267 1132 1149

economy 5569 3333 1087 1149

total 27570 16543 5512 5515

Table 5.6: Overview of the APA Blog Topic Dataset

class (topic) all train test eval

science 1411 871 273 267

politics 2786 1657 565 564

sports 2478 1480 495 503

culture 1106 638 241 227

economy 3196 1941 620 635

total 10,977 6587 2194 2196

5.1.5 20 Newsgroup Corpus

The 20 Newsgroup data set2 is well known in the text classification and clustering
literature. It consists of newsgroup posts (netnews) organized in 20 different news-
groups (classes). The posts are nearly uniformly distributed across the classes (see
table 5.7). Some of the newsgroups are topically related to each other, for instance

2http://people.csail.mit.edu/jrennie/20Newsgroups
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talk.religion.misc and soc.religion.christian, while others are topically unrelated, for in-
stance talk.politics.guns and sci.crypt. In the experiments, the original data set is used
which contains 19.997 newsgroup posts in total.

Table 5.7: Overview of the 20 Newsgroup data set

class (newssgroup) all train test eval

alt.atheism 1000 349 339 312

comp.graphics 1000 320 346 334

comp.os.ms-windows.misc 1000 323 321 356

comp.sys.ibm.pc.hardware 1000 341 319 340

comp.sys.mac.hardware 1000 349 335 316

comp.windows.x 1000 331 331 338

misc.forsale 1000 348 328 324

rec.autos 1000 346 317 337

rec.motorcycles 1000 333 343 324

rec.sport.baseball 1000 322 330 348

rec.sport.hockey 1000 368 305 327

sci.crypt 1000 327 333 340

sci.electronics 1000 344 318 338

sci.med 1000 331 319 350

sci.space 1000 359 311 330

soc.religion.christian 997 321 345 331

talk.politics.guns 1000 340 327 333

talk.politics.misc 1000 362 342 296

talk.politics.mideast 1000 349 333 318

talk.religion.misc 1000 336 357 307

total 19,997 6799 6599 6599
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5.2 Experiment Set 1: Quality Assessment of Classifiers

The first set of experiments considers the understanding part of the research question.
These experiments investigate whether two of the developed visualizations, namely the
Class Radial Visualization and the Confusion Maps, may aid expert users in understand-
ing classification models.

More specifically the experiments try to answer the following question:

Can the Class Radial Visualization and the Confusion Maps help experts to
assess and understand arbitrary classification models?

The experiments presented in this section differ in the analyzed data set. In the first
experiment (see section 5.2.1), an image data set was used. The second experiment in
section 5.2.2 investigates a text classification scenario. In both cases the users applying
the visualization were machine learning experts – namely all co-authors of the papers
where the experiments have been published. A shorter version of the experiments for
the image classification task described in section 5.2.1 was published in [SL09a]. The
experiments on the cross-domain text corpus described in section 5.2.2 were published
in in [LSGJ09b, LSGJ09a, LSGJ10].

5.2.1 Quality Assessment for Image Classification

This experiment investigates whether the Class Radial Visualization may aid machine
learning experts in understanding classifier behavior on an image data set. Classically,
experts would refer to various performance measures of trained classifiers. Here we will
investigate if experts could benefit from additional visualizations.

Procedure

For the first experiment an object recognition task was chosen. A classifier should predict
object labels for unseen images given a set of training images that contain different
objects. The COIL-20 image database was used for this purpose (see section 5.1.2 for a
description of the data set). Two different feature transformation methods were tested:
Principal Component Analysis (PCA) [TP91] and Fisher-Linear Discriminant Analysis
(LDA) [BHK97] and two different classification models: k-Nearest Neighbor (KNN) with
k = 10 and Naive Bayes (NB).

For the feature transformation methods, LDA features are known to outperform PCA
features for object recognition tasks. Regarding the classifiers, KNN and NB per-
form similar in general, it depends on the data at hand which model yields better re-
sults [Kot07]. The aim of the experiment is to find out whether those facts are reflected
in the visualization. We assume that with our visualization we gain insights into the
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classifier performance as well as the classification process. For the classifiers, we used
the implementation of the WEKA machine learning library [WF05].

For each of the four scenarios – (i) PCA features and KNN classifier, (ii) PCA features
and NB classifier, (iii) LDA features and KNN classifier, and (iv) LDA features and
NB classifier – we set the step size to 72 items (10% of the training set) and apply our
procedure stepwise until the classifier has seen all trainings items.

Results

The screenshots in figures 5.2 and 5.3 show the resulting visualization for all combinations
for the fully trained classifier.

(a) PCA features and KNN (b) PCA features and NB

Figure 5.2: Classifier visualization on PCA features for the COIL-20 database

(a) LDA features and KNN (b) LDA features and NB

Figure 5.3: Classifier visualization on LDA features for the COIL-20 data set
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It is obvious that the KNN classifier cannot learn a reliable model using the PCA features
(figure 5.2a). The items are widely distributed and the colors are mixed. This indicates
that the classifier cannot confidently predict most of the items. In figure 5.2a an item is
selected and via mouse over the original data and the class probabilities are shown. A
user can instantly see that the classifier was not able to correctly assign this item to one
class because seven lines are drawn. The visual information on classifier level correlates
well with the measures calculated on the evaluation set (given on the right-hand side of
the figure). A precision of only 0.32 is reached for this trial.

Figure 5.2b shows the result for the NB classifier on the PCA feature set. Although
there seems to be less chaos in the Class Radial Visualization compared to the KNN
case, the NB classifier also has a low precision value of 0.27. In the NB case, the visual
information on classifier level does not correlate well with the performance measure
results. Therefore, to correctly assess the classifier performance it is necessary to also
consider the class level and the test item level: It can be seen that the squares of nine
out of 20 classes are not filled at all. This means that no test item is labeled with these
classes. Also, many test items are mapped to the same location which can be seen via
mouse over.

In contrary, the classification based on LDA features generates a completely different
layout (see figure 5.3). Almost all test items are placed near their corresponding class
items and the center of the circle is empty. Both KNN and NB perform well on the
LDA features. This can be observed in the Class Radial Visualization as well as in the
performance table. The precision value is 0.88 for KNN and 0.89 for NB. From the
performance plots on the right-hand sides of figures 5.3a and 5.3b we conclude that NB
needs less training items (72 items) than KNN (210 items) to reach the final precision
on the evaluation set.

Figures 5.3a and 5.3b also show the detailed information for a single class. Obviously the
KNN missed some of the objects ’cup-with handle” (True Positives (TP)-rate = 0.69)
but made no false assignment (False Positives (FP)-rate=0). The NB classifier found
more correct objects ’cup with handle” (TP-rate = 0.89) but classified at least one item
incorrectly as ’cup-with-handle” (FP-rate=0.01).

Discussion

To sum up, the experiments revealed that the visualization clearly reflects the difference
between PCA and LDA features for the used data set. The visualization also clarified
that the KNN and the NB classifier perform quite equally on the LDA feature set.
Furthermore, from the visualization we were able to conclude that the NB needs less
training items than KNN. However, we also found that an interactive investigation in
the visualization is necessary to assess the classifier correctly.
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Summary

This experiment investigated whether the Class Radial Visualization can aid machine
learning experts in understanding classifier behavior. We applied the Class Radial Vi-
sualization on and image data set on two different feature-space with two different clas-
sifiers and showed which conclusion could be drawn from the visualization – beyond the
conclusions obvious from evaluation measures.

In one sentence the outcome of this experiment can be summarized as follows:

The Class Radial Visualization and can help machine learning experts to
assess and understand arbitrary classification models for image classification
tasks.
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5.2.2 Quality Assessment for Cross-Domain Text Classification

This experiment investigates whether the Class Radial Visualization may aid machine
learning experts in understanding classifier behavior on an text data set. The chosen
classification task is a cross-domain task. In cases without training data available for a
domain a possible approach is to train on a domain which exhibits similar features and
characteristics. However, it is not clear how a trained model generated on one domain
would perform on another domain. Correctly applied machine learning algorithms avoid
over-fitting on the training set to maximize the generalization capabilities. In case of
cross-domain text classification, an implicit fitting to the training corpus vocabulary is
unavoidable.

The cross-domain classification task is to classify blogs into commonly agreed upon
newspaper categories, where only training data from the news article domain is available.

Given the labeled news articles and the unlabeled blog corpus, the question is: Can
this data be used to apply high quality cross-domain classification from news to blogs?
Further, the question arises whether the classification can be performed in a fast and
efficient way, because the corpora are highly dynamic and grow daily.

Several text classification algorithms are applied on the problem setting and the per-
formance of these algorithms is evaluated for different scenarios. We claim that the
generalization abilities of text classification algorithms are sufficient when the classifiers
implicitly concentrate only on the most important text features weighted with state-
of-the-art techniques. For a visual evaluation, we use the classification visualization
described in section 4.1

Procedure

The classification task is a cross-domain multi-class problem with five classes. The corpus
consists of two sub corpora. The first corpus consists of news articles, which have been
manually labeled with one out of five news category. The second corpus, further referred
to as blog corpus, was crawled from the World Wide Web. For a detailed description of
the data sets see section 5.1.4.

Because the classification task is highly dynamic (daily changing news articles and blogs),
a classifier with low computational complexity is desirable. Centroid based classifiers are
known to achieve good results in terms of accuracy and time complexity [HK00, LT04].
We chose a relatively new centroid-based text classifier, the CFC (see section 2.2.6)
which has been reported to be extremely fast and outperform Support Vector Machines
(SVMs) and all other centroid based text classifiers. For the cross-domain classification
task, the CFC classifier, and two standard text classifiers were compared: the KNN (see
section 2.2.3) and SVM (see section 2.2.5), namely the LibLinear implementation with
a linear kernel [FCH+08]. As outlined by Sebastiani [Seb02], SVM and KNN classifiers
are the best performing standard text classification algorithms.

107



5 Experiments

Experimental Settings For a description of the APA news and blog data set see sec-
tion 5.1.4. For the visualization and the evaluation of our classification task, we split
the data sets into a fixed training and test set. We randomly selected 70% of the data
as training set and 30% as test set. To measure the performance of the classifiers the
algorithms were evaluated in the following four scenarios:

NewsNews: The training set of the news corpus has been used to train the classifiers
and we report the performance on the news evaluation set.

BlogBlog: The training set of the blog corpus has been used to train the classifiers
and we report the performance on the blog evaluation set.

NewsBlog: The training set of the news corpus has been used to train the classifiers
and we report the performance on the blog evaluation set.

BlogNews: The training set of the blog corpus has been used to train the classifiers
and we report the performance on the news evaluation set.

For a weighting schema, we used BM25 [JWR00] for KNN and SVM with the standard
parameters k = 2 and b = 0.75. We also experimented with variants of TF-IDF for both
algorithms, yet the algorithms performed best with BM25. For CFC, we used a standard
TF-IDF weighting, as recommended by the authors. We also tested the algorithm with
BM25, but the results got worse than with TF-IDF weighting, as expected.

For the KNN algorithm, we conducted a manual parameter search and identified k = 10
to be the best parameter setting. For the SVM, we used a linear kernel which is reported
to outperform non-linear kernels in text classification [YL99]. We also experimented with
various values for parameter b in the CFC algorithm. However, different from findings
in the original publication, where b = e − 1.7, we found that b = e − 1.0 performs best
for our problem.

Results

For the evaluations first the performance of all three classifiers was computed for the
single-domain classification task (scenarios NewsNews and BlogBlog). These results
indicate the maximum achievable performance for all classifiers for the cross-domain
task. The experiments revealed that the CFC achieves an accuracy value of 0.95 in the
single-domain task, equally good as the accuracy of the SVM. The KNN performs slightly
worse with an accuracy of 0.93. Similar results were achieved for scenario BlogBlog, where
KNN, SVM, and CFC perform all with accuracy of 0.94.

For scenario NewsBlog, the most interesting scenario, the performance of all three clas-
sifiers drops significantly. The KNN algorithm is best with accuracy of 0.80, the CFC
algorithm performs with accuracy of 0.78, and the SVM with accuracy of 0.76. Addi-
tionally, we reduced this scenario NewsBlog to a binary classification task, taking only
news articles and blog entries from the classes ’politics” and ’sports”. The results for
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the binary task versus the five classes problem are shown in table 5.8. Note, in this
scenario, the accuracy dropped less from scenario NewsNews to scenario NewsBlog due
to the lower complexity of the binary classification task.

Table 5.8: Accuracy, training and classification time for cross-domain scenario NewsBlog
with 2 and 5 classes

accuracy
2-classes

accuracy
5-classes

training time
5-classes

classification
time 5-classes

total time

KNN 0.85 0.80 ∼7sec ∼166sec ∼173sec
SVM 0.82 0.76 ∼900sec ∼24sec ∼924sec
CFC 0.84 0.78 ∼10sec ∼2sec ∼12sec

For completeness of the experiments we also evaluated the classifiers on cross-domain
scenario BlogNews. The KNN algorithm performs slightly better (accuracy of 0.83) than
the CFC classifier with accuracy of 0.82. The SVM is worst with accuracy of 0.78. From
the results of the conducted experiments, we can derive that in many cases, the KNN
algorithm works slightly better than the CFC and the SVM. However, when regarding
the computation time, the CFC is by far the best as can be seen in table 5.8.

We visually analyzed the classification results with the Class Radial Visualization. The
visualizations for scenarios NewsNews and NewsBlog are depicted in figure 5.4. The
three different classifiers result in three different shapes in the visualization. The KNN
exhibits a polygonal shape, the CFC a star-like shape and the SVM a polygonal shape
with emphasized diagonals. Further, KNN exhibits a discrete probability distribution.
This can be derived from the fact that between two classes a maximum of 11 discrete
confidence steps can occur, if majority weighting is applied. This also holds for the
multi-class assignment.

In the visualization for the CFC classifier it can be seen that there are many items on
the boundary between classes ’sports” and ’politics” as well as between ’politics” and
’economy”. Obviously the classifier has problems separating texts about politics from
texts about sports and economy. The class ’sports” seem to be best separable. In the
cross-domain case (figure 5.4e), the star-like shape is contracted compared to the single-
domain case (figure 5.4b). This indicates that the classifier became more uncertain in
the cross-domain task although the accuracy is still high.

From the visualization, it can be derived that the SVM has a clear tendency towards the
category ’politics”. Also, the visualization gives the impression that the SVM analyses a
set of binary classification problems since the test items are placed along the connecting
lines between all classes. Also in the cross-domain case (figure 5.4f) the bias towards the
class ’politics” remains visible and seems to be extended, since the rectangle for the class
politics is filled more, i.e. the class attracts more items. (Note: this can be concluded
because we have a nearly uniform distribution of classes in our data set).
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(a) KNN-10 NewsNews(a=0.93) (b) CFC NewsNews (a=0.95) (c) SVM NewsNews (a=0.95)

(d) KNN-10 NewsBlog (a=0.80) (e) CFC NewsBlog (a=0.78) (f) SVM NewsBlog (a=0.76)

Figure 5.4: Visually comparing classifier visualization for different scenarios and different
classifiers. ’a” denotes accuracy. KNN, CFC, and SVM classifier. NewsNews
(first row) and cross-domain NewsBlog scenario (second row).

Additionally, we visually investigated the generalization abilities of the classifiers in
the cross-domain setting using the Confusion Maps. The Confusion Maps are shown in
figure 5.5 for scenarios NewsNews and NewsBlog. In the single-domain task (NewsNews)
the Confusion Maps for the training and evaluation set are quite similar to each other
indicating that all classifiers exhibit a good generalization behavior. In the cross-domain
task (NewsBlog), the evaluation maps show darker colored off-diagonal elements whereas
the Confusion Map for the training data reveals a distinct diagonal. From this, it can
be derived that the classifiers overfit towards the training data in the cross-domain task,
which means that their generalization abilities are lower than in the single-domain task.

Discussion

The KNN classifier is best in terms of accuracy but worst computation complexity for
classification. The CFC classifier has second best accuracy in the cross-domain task.
Its accuracy drops less than that of the SVM from the single-domain task to the cross-
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News News Blog
Training Evaluation Evaluation

KNN

CFC

SVM

Figure 5.5: Comparing Confusion Maps for single-domain and cross-domain classifica-
tion. First and second row correspond to scenario NewsNews, first and third
row correspond to scenario NewsBlog.

domain task. Comparing the visualizations of SVM and CFC, the CFC places less test
items on the outer boundaries, between the categories ’politics” and ’economy”, as well
as ’politics” and ’science”. The reason for this is that the centroid vectors overlap to a
certain extent.

The visualization also reveals that the CFC does not prefer any class, in contrast to
SVM (’politics”). This better reflects the a-priori probabilities that we train on an
equally distributed corpus. For the NewsBlog scenario, all classifiers exhibit a very
similar visual distribution compared to the single-domain task. That is why we expect
that the algorithms perform similar on the cross-domain task. However, the correctness
of the algorithms’ decisions can only be verified when investigating the misclassifications
(as depicted in figure 5.6). The misclassification of KNN is equally distributed as one
can see in figure 5.6a. The SVM has several misclassifications in category ’science”
with confidence nearly 1. This indicates that some of the support vectors cannot be
generalized from the news domain to the blog domain.

The visual impression is reflected in the accuracy result. In contrary, the CFC has
nearly no misclassification very close to the classes whereas the really misclassified items
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are placed more in the center of the visualization (region of low confidence). However,
comparing the visualizations for the single-domain task and the cross-domain task, the
shape changes most for the CFC classifier. It becomes more uncertain in its decisions
for all items. This may give a hint, that if the vocabulary of the domains changes even
more, the model of the CFC classifier may not be a good predictor any more.

(a) KNN NewsBlog (a=0.80) (b) CFC NewsBlog (a=0.78) (c) SVM NewsBlog (a=0.76)

Figure 5.6: Visualizing misclassification of the classifiers KNN, CFC, and SVM for the
cross-domain scenario (NewsBlog).

Summary

This experiment investigated whether the Class Radial Visualization and Confusion
Maps may aid machine learning experts in understanding classifier behavior on an text
data set. The chosen classification task is a cross-domain task. Several classifier-data
set combinations were compared, by standard evaluation measures and further, using
visualizations. It was shown that the visualizations allowed the machine learning experts
to draw several additional conclusions – beyond the performance measures. An example
is the bias towards special classes of the SVM classifier. Other aspects shown by the
performance measures were reflected in the visualizations (e.g. generalization ability).

In one sentence the outcome of this experiment can be summarized as follows:

The Class Radial Visualization and Confusion Maps can help experts to
understand arbitrary classification models for text classification tasks.
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The question answered by this set of experiments on Visual Active Learning is:

Can user feedback on classification models through interactive visualizations,
more specifically an interactive version of the Class Radial Visualization,
be used to improve classification models? Is there a benefit over automatic
methods?

The classical approach to active learning incorporates the user only to label examples
previously automatically selected. In the classical active learning setting the procedure
is as follows: (i) the learning algorithm is bootstrapped, (ii) the learning algorithm is
applied on the evaluation data, (iii) the learning algorithm selects examples from the
evaluation data whose labeling seems most beneficial in terms of a target function (i.e.
classifier accuracy), (iv) the selected examples are labeled by an oracle (e.g., a user), (v)
the learning algorithm updates its hypothesis by using these newly labeled examples.
Steps (ii) to (v) are repeated until no more unlabeled examples exists, or a threshold for
the target function is reached. The proposed user-centered approach to active learning
alters step (iii), instead of letting the learning algorithm select the examples to label,
the user herself selects these examples. Apparently, the user needs tools to estimate the
benefit of selecting examples.

Two different experiments were performed to answer the question mentioned at the
beginning, a single-user experiment and user simulations.

Single user experiment: In this experiment a user labels training items using the Class
Radial Visualization. Using these labels, a classifier is trained. The measured accuracy of
the trained classifier is compared to a classifier trained on randomly selected examples.
The goal is to compare Visual Active Learning to random selection and investigate
whether larger scale experiments may give further insights.

User simulations: In this experiment, Visual Active Learning is compared to classical
active learning and the random baseline. Due to the huge number of tested classifiers
and data sets the experiment uses models of user selection strategies. A shorter version
of the user simulations described in section 5.3.2 is published in [SG10].

General Procedure: The general procedure of both, the single user experiment and the
user simulations is essentially the same. The procedure is summarized in algorithm 3.
The input for the procedure are a classifier, the set of classes C, initial training data
set Dl, the test data set Dt, the evaluation data set De, and some selection strategy s.
Note, that for the single user experiment, the test data set need not be labeled. On the
contrary for the user simulations we need a fully labeled test data set.
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1. bootstrap classifier on |C| randomly selected training examples
2. evaluate the classifier on De

3. loop
4. for i = 1→ |C| do
5. if s is a visual selection strategy then
6. visualize model
7. end if
8. select next item to label from Du according to s
9. label selected item, add to Dl

10. retrain classifier on Dl

11. end for
12. evaluate the classifier on De

13. end loop
14. return collected performance measures for each step

Algorithm 3: Overall procedure of the experiments on Visual Active Learning

5.3.1 Single User Experiment

In this section two classifier learning scenarios are compared: random sampling and
selection in the interactive visualization Class Radial Visualization by a user. This
experiment is designed to investigate whether Visual Active Learning can outperform
random sampling (it does not compare to classical active learning strategies, this is part
of the second experiment).

More specifically, the question answered by this experiment is:

Can user feedback using the Class Radial Visualization be used to improve
classification models? Is there a benefit over random sampling?

Procedure

We run the experiment on four different data sets and five classifiers with one user. The
data set and classifier combinations were as follows: The Iris data set (see section 5.1.1)
was trained with a Mulit-Layer Perceptron (MLP) from the Weka Machine Learning
library [HFH+09]. On the COIL-20 data set (see section 5.1.2) we run a SVM classifier
from the LibSVM library [CL01] and a KNN classifier using our own implementation.
On the R8 subset of the Reuters2178 text data set (see section 5.1.3) a linear SVM from
the LibLinear library [FCH+08] was trained. The the R8 subset of the Reuters2178 text
collection is abbreviated with REU-R8 in the experiments. On the second text data set,
the APA Topics (see section 5.1.4) our own implementation of the CFC classifier was
applied. For the text data sets we used a noun vector space, and TF-IDF weighting. We
chose to use k = 7 for the KNN classifier on the COIL-20 data set because [SHZ+07]
reported k = 7 to perform best on this data set.
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All data sets were fully labeled. The classifier was bootstrapped with c (c=number
of classes) randomly selected items for both conditions. Subsequently, c samples were
selected either by random choice or by the user and the classifier was retrained on these
samples and evaluated on the test set (batch-mode). The accuracy of the classifier on
the test set was recorded. The employed user strategy was as follows: the user does not
label items that seem to be already well classified, she aims at the seemingly uncertain
items first (items in the center of the visualization). For the combinations Iris data set
with MLP, and COIL-20 data set with SVM classifier the user does not label correctly
classified items, i.e. if such an item is selected it is not labeled.

Results

In this section the results for both, random sampling and visual active learning for all
data set and classifier combinations are reported.

Iris data set with MLP: Table 5.9 and figure 5.8a show the results for the MLP on the
Iris data set. Note, that the user strategy for this data set and classifier combination was
to only label misclassified examples. The accuracy of the bootstrapped classifier (trained
on 3 items) is 69%. After the first training step the accuracy for the user-trained classifier
heavily drops to 57% whereas the classifier trained with random sampling reaches an
accuracy value of 94% on the evaluation data. In every subsequent step, the visual
classifier performs better than the classifier trained on random samples. After the third
step (10 items) no more misclassified items are present in the test data set, still the
accuracy increases when more labeled items are added to the training set. After 18
training samples, the classifier obviously does not get any additional information, the
accuracy value remains stationary in both conditions: 96% for the visual classifier and
90% for the classifier trained on randomly selected samples.

Table 5.9: MLP on Iris data set: accuracy on evaluation data for random sampling and
visual sampling, * means, no more misclassified items in test data

#items 3 6 9 12 15 18 21 24

random 69.4 93.9 89.8 73.5 89.8 89.8 89.8 89.8
user 69.4 57.1 95.9 91.8* 93.9 95.9 95.9 95.9

COIL-20 data set with KNN and SVM classifiers: Table 5.10 and figure 5.8c
show the results for the KNN classifier on the COIL-20 data set. The accuracy after
bootstrapping the classifier is 8.6%, which is slightly better than the accuracy of the
trivial classifier (trivial accuracy = 5%). Subsequently, user sampling always outperforms
random sampling in each step. After 200 trained samples the accuracy of the classifier
trained with random samples from the data set is 53.4%. The classifier trained by the
user performs better, yielding an accuracy value of 58.6% after 200 training samples.
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Table 5.11 and figure 5.8b show the results for the SVM classifier on the COIL-20 data
set. Note, that the user strategy for this data set and classifier combination was to only
label misclassified examples. The accuracy after bootstrapping the classifier is 2.7%,
which is worse than the accuracy of the trivial classifier (trivial accuracy = 5%) and the
KNN classifier with the same training samples. Subsequently, user sampling sometimes
outperforms random sampling and vice versa until the classifier has seen 100 training
samples. After 120 training samples, random sampling is always outperformed. After
200 trained samples the accuracy of the classifier trained with random samples from the
data set is 63.5%. The classifier trained by the user performs better, yielding an accuracy
value of 73.5% after 200 training samples, which is by far better than the trained KNN
classifier.

Table 5.10: COIL-20, PCA features, KNN, Comparing accuracy values on evaluation
item set for random sampling and user selection

#items 20 40 60 80 100 120 140 160 180 200

random 8.6 12.4 20.9 28.9 33.8 41.4 46.4 49.4 52.1 53.4
user 8.6 16.5 30.2 33.3 36.9 43.9 46.8 53.4 56.8 58.6

Table 5.11: COIL-20, PCA features, SVM. Comparing accuracy values on evaluation
item set for random sampling and user selection

#items 20 40 60 80 100 120 140 160 180 200

random 2.7 7.4 11.8 19.8 31.0 35.7 44.1 52.2 56.5 63.5
user 1.9 1.7 7.0 25.7 26.6 38.2 61.0 62.7 69.8 73.0

REU-R8 with SVM classifier: In table 5.12 and figure 5.8d the results of the SVM
classifier on the Reuters data set are reported. The accuracy after bootstrapping the
classifier is 50.4%. Until 32 items were selected for training, random sampling always
outperforms user sampling. In suqsequent steps, however, the behavior changes, and user
sampling outperforms random sampling. After 88 trained samples the accuracy of the
classifier trained with random samples from the data set is 76.2%. The classifier trained
by the user performs better, yielding an accuracy value of 83.9% after 200 training
samples.

Table 5.12: SVM classifier on REU-R8 data set: accuracy on evaluation data for random
sampling and user selection

#items 8 16 24 32 40 48 56 64 72 80 88

random 50.4 56.4 59.8 59.3 62.3 65.3 67.8 71.6 72.3 72.8 76.2
user 50.4 55.5 57.9 64.6 74.4 79.4 80.9 81.3 82.7 85.0 83.9
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APA data set with CFC classifier: Table 5.13 and figure 5.8e show results for the
CFC classifier on the APA data set. The accuracy of the classifiers after bootstrapping
with 5 items is 32%, 12% higher than the trivial accuracy of 20% (5 classes, evaluation
data nearly uniformly distributed over the classes). Up to the last simulated step, the
accuracy of the visual classifier is higher that of the classifier trained with randomly
selected items. The difference ranges from 1.1% (95 items) to 17% (20 items).

Table 5.13: CFC on APA data set: accuracy on evaluation data for random sampling
and user selection

#items 5 10 15 20 25 30 35 40 45 50

random 32.5 38.5 40.2 39.4 45.2 47.9 48.8 51.0 49.8 52.5
user 32.5 43.8 54.4 56.8 57.4 60.5 63.2 64.1 65.3 67.1

#items 55 60 65 70 75 80 85 90 95 100

random 59.5 61.9 62.1 63.2 63.4 65.5 67.3 70.0 70.5 69.8
user 67.8 68.9 68.8 69.6 68.3 68.3 69.7 71.4 71.6 71.9

The accuracy curve for the visual classifier (compare figure 5.8e) is steeper at the be-
ginning, the slope decreases after 15 items, whereas the slope of the accuracy curve of
the classifier trained on random samples has a steadily increasing slope. In this scenario
the classifier largely benefits from the user selection. The visualization of the test item
set after having trained 100 items is shown in figure 5.7. For the classifier trained with
random samples it can be seen that the class ’science” has less items (confidently) as-
signed than the classifier trained on user selected items. This means, this class seems
to be not well discriminated from at least one other class. This fact is confirmed by the
class confusion matrix on the right-hand side of figure 5.7b: The class ’science” can not
well be distinguished from the class ’culture”.

The accuracy in the uncertainty sampling case (compare figure 5.8e) shows a steeper
curve at the beginning than the curve for random sampling. E.g., with as little as 20
training samples in the uncertainty sampling case we already reach an accuracy of 56.8%,
a value that is reached in the random case with approximately 50 items (accuracy =
52.5%). Further, with user sampling the curve shows an asymptotic behavior, whereas
in the random case the curve is more linear with local minima. Although the accuracy
of the classifier after being trained on 100 items is nearly equal in both cases (69.8% for
random, 71.9% for uncertainty) in the uncertainty case it seems more clear that a step
is reached where only marginal changes in the accuracy are to be expected. Remaining
data items would only contribute to a much lesser extend, than the previously trained
ones. This is not the case in the random case, each item approximately contributes
equally to the classifier’s accuracy (linear curve). If one needs to make a decision when
to stop the (probably costly) training process, this decision is better supported in the
latter case.

Figure 5.8 shows the accuracy plots comparing Visual Active Learning and random
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(a) Random Selection (b) User Selection

Figure 5.7: Screenshot classifier visualizations: CFC APA NewsNews, random selection
and user selection.

sampling for all data set and classifier combinations. It can be seen, that after enough
training samples were provided Visual Active Learning always outperforms random sam-
pling. However the margin differs for each data set and classifier combination.

Discussion

The results of this experiment show, that in almost all data set and classifiers combina-
tions Visual Active Learning outperforms random sampling. This fact is summarized in
table 5.14. Further, it seems to make no difference whether the user selects uncertain
examples or uncertain examples that are misclassified. However, since only one trail was
performed, it is not clear how well the finding generalize. The experiments in the next
section aim at providing more statistical evidence in this regard.

Table 5.14: Overview of the results comparing random selection and user selection. R�
U means, random is worse than visual selection in terms of accuracy. R ==
U means, no difference. (* means that the user selected only misclassified
examples)

Data Set Classifier

Iris* Multilayer Perceptron R � U
COIL-20* SVM R == U
COIL-20 KNN R � U
REU-R8 SVM R � U
APA CFC R � U
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(a) Iris, ANN (b) COIL-20, SVM (c) COIL-20, KNN

(d) Reu8, SVM (e) APA News, CFC

Figure 5.8: Accuracy plots of all data set and classifier combinations. For random sam-
pling and Visual Active Learning.

Summary

This experiment considered the adaptation and construction part of the research ques-
tion. It was investigated whether a user-centered approach to active learning can out-
perform naive learning strategies. More specifically, it was tested, whether Visual Active
Learning using the Class Radial Visualization outperforms random sampling. The user
was trained in the usage of the Class Radial Visualization and therefore, knew where to
search for potential, new training items. The experiment was performed on four different
data sets and five classifiers. The results show, that in almost all cases Visual Active
Learning outperforms random sampling, in one case there was no significant difference.
Also, the results suggest, that it makes no difference in terms of classifier performance if
the user only selects misclassified examples (instead of all uncertain examples). This lat-
ter fact and whether Visual Active Learning also outperforms classical Active Learning
will be investigated in the next experiment (see section 5.3.2).

In one sentence the outcome of this experiment can be summarized as follows:

Visual Active Learning with the Class Radial Visualization outperforms ran-
dom sampling in nearly all tested conditions and never performs worse.
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5.3.2 User Simulations

This section describes performed user simulations to investigate whether it is beneficial
to not only let the user label the example, but also let the user select the example
to label. The means to help the user to investigate, assess and select examples is the
visualization described in section 4.1. This setting is more general than the experiment
described in the previous section.

In section 5.3.1 we found out that letting the user label examples with the visualization
lead to an increased accuracy of the classifier in the range of a small number of samples.
However, these experiments were performed by a single user in one single trial and can
not be generalized. This section describes experiments that try to model user behavior
in order to generate a sufficient number of trials to allow for statistical analysis. If
the user is modeled appropriately a large number of labeling experiments could be run
automatically allowing to test the hypotheses without time-consuming user experiments.

On order to make a rather general conclusions a variety of combinations must be tested.
The independent variables for this experiments are (i) the selection mode, (ii) the clas-
sifier (with standard parameter settings), and (iii) the data set. The outcome of the
experiment could depend on a certain choice for either of them. Thus, for the experi-
ment, we chose four data sets and three classifiers.

The huge amount of simulations could not have been done with real users (The com-
plexity of the evaluation: 4 data sets, 3 classifier, 2 user selection and 2 user labeling
strategies, 10 runs for each setting. 4× 3× 2× 2× 10 = 480 user. 100 samples to label
on average. Estimated user labeling time for on sample: 3 s for image data sets, 30 s
for text data set per example. This means ≈50 min per user for one text data set.).
Instead the obtained statistical results show a direction for user experiments and allow
an estimate what to expect in real user studies. In turn, we plan to derive new visual
selection models from the user studies which then can be statistically evaluated using
the simulation framework.

The question answered by this experiment is:

Can user feedback using the Class Radial Visualization be used to improve
classification models? Is there a benefit over random sampling and classical
active learning?

Hypotheses

The hypothesis for this experiment is that Visual Active Learning with trained users
outperforms random selection but in turn is outperformed by classical active learning.
Further, we expect an accuracy increase of the classifier if we only use misclassified
examples as further training examples. One can argue that using only misclassified
samples is a rather artificial setting, because in practice one does not have this infor-
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mation. However, since we include the user in the selection process this information
will be available at the time of the selection (since the user can decide whether a given
item is misclassified). In short, the hypotheses we investigate in this experiment are the
following:

H1 Visual active learning outperforms greedy active learning.

H2 Visual active learning is outperformed by random sampling.

H3 Labeling only misclassified (uncertain) examples significantly improves classifier
accuracy compared to labeling all uncertain examples.

One may argue that there is not much benefit if visual active learning outperforms greedy
active learning. Greedy active learning has been outperformed by other active learning
strategies [Set10] – such as SVM-specific strategies [TK01]. And thus we would not
compare our approach to state-of-the art. However, greedy active learning is state-of-
the art for classifier-agnostic active learning and our proposed strategy is independent
of specific classifiers, too.

Procedure

Figure 5.9 depicts an overview of the experimental procedure. From observations in
the single-user experiment and knowledge about the layout principles of the underlying
visualization two selection models (’gaussian” and ’convhull”) were derived. They are
probabilistic descriptions of a user’s selection behavior. Furthermore, a clear benefit of
Visual Active Learning could be that users may choose to label only misclassified exam-
ples – not the ones that are uncertain and correct. This decision about a misclassification
can not be done by any automatic procedure, it must be done by humans. Thus, we
implemented two different labeling strategies to verify their influence on the classifier
performance (’all” and ’misses”).

In order to compare with classical active learning, two classifier-agnostic active learn-
ing strategies (’minconf” and ’entropy”) were chosen. For details about this selection
models see equations 2.33 and 2.34 in section 2.5. Finally we compare the two ac-
tive learning selection strategies and the visual active learning strategies to the random
baseline (’random”) in our user simulations.

The tested combinations of classifiers and data sets are summarized in table 5.15. The
used classifier implementations are the same as in the single user experiment: SVM
from the LibSVM library [CL01] and the LibLinear library [FCH+08] and our own
implementation of the CFC and KNN classifier.

The user selection models and classical active learning selection models compared in the
evaluation are summarized in table 5.16.
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Observation User
Experiment

Selection 
Models

gaussian

Labeling
Strategies

convhull

Active Learning
Literature

Selection 
Models

entropy

minconf

random

all

misses

C
o
m

p
a
ri

so
n31

2

4

Figure 5.9: Overview of the experimental procedure: ÀIn the user experiment in sec-
tion 5.3.1 two selection models and two labeling strategies were observed and
mathematically modeled. ÁTwo selection models were taken from the active
learning literature, the ’random” model serves as baseline. ÂThe selection
models and the labeling strategies from the user experiment are combined.
ÃVisual Active Learning strategies are compared to classical active learning
on different data sets and different classifiers.

Evaluation approach For each of the classifier and data set combinations five different
selection modes are compared: random selection, entropy-based selection, minimum
confidence selection, and two selection modes that model user behavior. The selection
modes are described in more detail in the following. For all selection modes the classifier
was bootstrapped with c randomly chosen samples (c = number of classes). The learner
was trained in serial-mode, i.e., one example at a time was labeled and added to the
training set. Afterwards, the model was retrained and the test data set reclassified.
After every c examples we evaluated the classification error on the evaluation date set.
To avoid random biases due to initialization or within the different selection strategies,
we run every experiment ten times and averaged the results.

Models of User Selection Strategies In the first selection model, ’gaussian’, we sim-
ulate user selecting examples mostly from the center of the visualization. This selection
model assumes that the user tries to select the most ambiguous samples, i.e. those
samples classes are mostly competing for. These samples are placed in the center of
the visualization. To simulate this behavior we select an example with probability ac-
cording to a bivariate Gaussian distribution over the center of the visualization. This
means, the probability p(x, y) to select an example at position (x, y) is proportional to
p(x, y) ≈ N2(µ1, µ2,Σ) with µ1 = µ2 = (0.5s, 0.5s), Σ = diag(0.1s) and s being the
diameter of the circle. However, the center does not contain the most ambiguous exam-
ples in all cases. For example, if during active learning only two classes have assigned
training examples, the remaining test examples are distributed along the line connecting
both classes which not necessarily runs through the center.
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Table 5.15: Overview of compared data set and classifier combinations

Data Set Classifier Corresponding single-user
experiment

COIL-20 KNN see section 5.3.1
SVM see section 5.3.1

20NEWS CFC
SVM

APA CFC see section 5.3.1
SVM

REU-R8 CFC
SVM see section 5.3.1

Table 5.16: Overview of compared selection strategies and user labeling strategies

Strategy Type Strategies

baseline random

active learning entropy
minconf

visual active learning gaussian-all
gaussian-misses
convhull-all
convhull-misses

The second selection model ’convhull’ simulates user who do not pick from the center
of the visualization but rather judge the distribution of the samples and then select the
presumably most ambiguous sample based on this distribution. In particular, the ”con-
vhull” selection model calculates the convex hull around the visible unlabeled examples
and centers a bivariate Gaussian distribution around the point with the smallest distance
to the center of the circle. If the center of the visualization is inside the convex hull then
the center of the visualization is taken as the central point of the Gaussian; hence, the
”convhull” selection model becomes the ’gaussian’ selection model described above. The
covariance matrix for the ’convhull” model is set the same as in the ’gaussian” model.
The convex hull is calculated using Graham’s algorithm [Gra72]. An example for both
user selection models, ’convhull” and ’gaussian”, is shown in figure 5.10.

Of course there are other possible selection behaviors. For example, the user can select
items uniformly across the visualization. We do not consider this selection model because
it is equivalent to the random selection and we assume users familiar with the concepts of
the visualization. We also not consider changes in user behavior for reasons of simplicity.

123



5 Experiments

most probably
picked item

(a) gaussian

convex hull

anchor point

most probably
picked item

(b) convhull

Figure 5.10: Models of user selection strategies

Models of User Labeling Strategies Independent of the selection model – which items
to select next for investigation, the user may have different labeling strategies – whether
or not to label the selected example. For the experiments two different strategies will
be investigated. The first strategy is the so-called ’all” strategy: independent whether
the item under investigation is correctly classified or not, the user labels it. The second
considered labeling strategy is ”misses’ – which means the user only labels items that are
wrongly assigned by the classifier. This latter strategy means that the user investigates
items one after another and after she found a misclassification she would correct the
label.

There are two reasons why only following the ”misses’ strategy would not work in the
experiments. First, there might occur situations where no more misclassified items occur
in the visualization (the classifier perfectly classifies the test data set). Second, no user
would have the patience to investigate dozens of items before eventually being allowed
to label one. Therefore, the ”misses’ strategy uses a threshold to limit the number of
unsuccessful subsequent investigations. If this threshold is reached the item is labeled
anew, independent of whether it was misclassified or not.

Results for Testing Hypothesis H1 and H2 (selection strategies)

Most noteworthy, there is no clear winning active learning strategy over all data sets.
Moreover, we can not confirm that the compared uncertainty based sampling strategies
have a clear advantage over random sampling.
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(a) 20News + CFC (b) 20News + SVM

(c) APA + CFC (d) APA + SVM

(e) COIL-20 + KNN (f) COIL-20 + SVM

(g) Reu8 + CFC (h) Reu8 + SVM

Figure 5.11: Comparing selection strategies for all data set and classifier combinations:
Error rates averaged over 10 runs, showing mean and standard deviation.
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In particular, on the APA data set (see figure 5.11c for CFC), both non-visual learning
strategies, ’entropy” and ’minconf”, have not been able to improve the classification
accuracy. The random baseline outperforms ’entropy” and ’minconf” by a large margin.
The visual active learning strategies tend to be slightly worse at the beginning compared
to the random baseline but could beat the random baseline by a significant fraction at
the end.

On the REU-R8 data set the classifiers shows quite different behaviors (see figure 5.11h
for SVM). The CFC seems to converge faster, since after 20 examples the classification
error drops below 0.3 independent of the selection strategy. Moreover the standard
deviation significantly decreases after 30 examples for all selection strategies, indicating
a more stable behavior. The SVM classifier shows a different behavior. The random
baseline is outperformed by all other strategies by a large margin. Moreover, the classical
active learning strategies are outperformed by the user selection strategies, while the
’convhull” strategy performs best.

The COIL-20 data set is the only data set where classical active learning strategies
outperform the visual (see figure 5.11f). In particular ’minconf” outperforms the random
baseline in case of the SVM classifier while entropy-selection outperforms the random
baseline in case of the KNN classifier (see figure 5.11e). Our visual strategies, especially
the ’convhull’ strategy performs quite similar to the random baseline.

The 20NEWS data set shows a special behavior (see figure 5.11b for SVM). All active
learning strategies got beaten by the random baseline by a large margin of nearly 20%.
However, visual active learning strategies perform better than classical ones.

On all data sets, classical active learning approaches have a smaller standard deviation
over the runs than our visual approaches. However, on most data sets our visual methods
perform still better taking worst-case runs, i.e. those with the highest standard deviation,
into account.

From these results we can draw the following conclusions: (i) Our visually inspired
active learning strategies outperform classical uncertainty based sampling strategies in
most cases (20NEWS, REU-R8 and APA). (ii) We can confirm the findings summarized
in [Set10], that the best sampling strategy depends on the application, the data set and
the classifier and that the random baseline is not always outperformed.

Results for Testing Hypothesis H3 (labeling strategies)

Figure 5.12 summarizes the results of the experiments varying the labeling strategy (”all’
and ”misses’).

The results are partly surprising. We expected to see a clear gain in accuracy when com-
paring the standard ’all’ strategies to the respective ’misses” strategies. The hypothesis
of improving the accuracy when applying the ’misses’ strategy can for instance be con-
firmed for REU-R8 with SVM ”gaussian” (see figure 5.12h). In this case labeling only
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(a) 20News + CFC (b) 20News + SVM

(c) APA + CFC (d) APA + SVM

(e) COIL-20 + KNN (f) COIL-20 + SVM

(g) Reu8 + CFC (h) Reu8 + SVM

Figure 5.12: Comparing labeling strategies for all data set and classifier combinations:
Error rates averaged over 10 runs, showing mean and standard deviation.
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misclassified examples leads to a significant improvement of the classifier accuracy. On
the contrary, there is no effect on the accuracy when changing the ’all” to the ’misses”
labeling strategy, for example in the setting APA and CFC using ’gaussian’ selection
(see figure 5.12c). Table 5.17 summarizes the effect of applying the ”misses” strategies
for all combinations of data sets and classifiers.

One possible explanation for the above described behavior is the following: The COIL-
20 data set contains no noise and no outliers. The ’misses” strategy on this data set
labels data items which are no outliers, are uncertain and misclassified and thus provides
more (correct) information to the classification model than the ’all” strategy which leads
to improved accuracy. On the contrary, the text data sets (REU-R8, APA, 20NEWS)
contain outliers. Applying the ’misses” strategy could result in selecting outliers or noisy
data items. The similar behavior of ’misses” and ’all” for the CFC algorithm could be
explained by the properties of the CFC algorithm: The influence of one example on the
class centroid is relatively small, the CFC regularizes well. Thus, neither the additional
information of (uncertain and misclassified) nor selection of outliers have strong influence
on the accuracy. In case of the SVM classifier (hard margin), outlier selection can result
in a strong change of the hyperplane and thus in loss of generalization ability.

Table 5.17: Effect of labeling only misclassified examples. ’+”: labeling only misclassified
examples increases accuracy, ’◦’: no difference between labeling all or only
misclassified examples

gaussian convhull

20NEWS CFC + +
SVM + ◦

REU-R8 SVM and CFC + +

APA SVM + ◦
CFC ◦ ◦

COIL-20 SVM and KNN + +

Summary

With our experiments we showed that trained users would perform better than greedy
active learning strategies in all cases and at least not perform worse than the random
strategy while given more choice in the active learning process. The experiments for the
different labeling strategies showed that the benefit of these strategies depends on the
data set and the classifier.

The last finding points towards a crucial property in active learning: users have to be
able to find out whether the chosen active learning strategy works or not and to switch
the active learning strategy as needed. The selection using the interactive visualization
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allows such switching of active learning strategies. Although, the ”misses’ strategy
performs never worse than labeling all selected examples, there is no huge effect on
the classifier accuracy in all tested conditions. This means, using the human knowledge
about correctness of current decisions does not always improve the efficiency of a trained
classifier. Therefore, for practical applications users do not have to be trained to focus
on misclassified examples.

From conducted experiments and user simulations we conclude, that utilizing humans to
only label examples in active learning settings is suboptimal. Giving users a more active
role in terms of a visual selection of examples and in adapting their labeling strategies
on top of tailored visualization techniques could increase labeling efficiency.

In one sentence the outcome of this experiment can be summarized as follows:

Visual Active Learning with the Class Radial Visualization outperforms clas-
sical active learning in all tested conditions and performs never worse than
random sampling.
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5.4 Experiment 3: Document Representation for Efficient
Labeling

This section describes the experiment designed to answer the question whether the bot-
tleneck identified in the experiments in section 5.5 and 5.3 can be overcome. Both previ-
ous experiments dealt with text classification, one with classifier construction alone, and
the other with classifier construction and adaptation. In both cases, new training data
has to be generated. Also, classified text document have to be assessed whether they
are correctly classified. For text classification this means, users have to read the texts in
order to make the assessment and/or assign the correct label. It is not surprising, that
the time needed to comprehend the texts is by far longer than the time required for the
actual labeling (which can easily be implemented by drag and drop).

Thus, this experiment was designed to investigate, whether alternative representations
of text (other than the obvious full-text) may support users in finding the category
faster. It is crucial that these alternative representations can be generated automatically,
otherwise the gain in speed would be nullified. More specifically, the question that will
be answered by the experiment in this section is

What are good representations of the data to classify, more specifically of text
documents, to speed-up the manual labeling process?

The experiment comprises of two steps:

1. Identification and application of automatic text representation forms.
2. Comparative user study to assess the possible speed up by using any of these

text representation forms compared to the full-text representation. Furthermore,
it is assessed whether the labeling accuracies changes when using different text
representation forms.

The experiment presented in this section has been published in [SUG11].

5.4.1 Procedure

This section presents the methodology to evaluate the effect of different text represen-
tations on manual labeling speed and accuracy.

Information 
Extraction

TextRank for
Key Sentences

TextRank for 
Key Words

Tag Layout

User Eval

Figure 5.13: Overview of the evaluation methodology
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Figure 5.13 gives an overview of our methodology. Starting from text documents (on
the left) three different paths for generating the three different text representation forms
are shown. In this paper we use the word ’condition” as a synonym for the text rep-
resentation form, because each text representation form resembles a condition in our
user evaluation. The three different conditions are denoted as F for full-text, S for key
sentences (and named entities) and P for key phrases. In the following subsections the
steps to generate the key phrases and key sentences are explained in detail. The full-text
conditions serves as baseline to which we compare the users’ labeling accuracy.

Keyword and Key Sentence Extraction

We applied the TextRank algorithm [MT04] to extract key sentences and key words
from a document. The TextRank algorithm is a graph-based ranking algorithm. The
relevance of a node in the graph is determined by a voting mechanism. All predecessor
nodes vote for a specific node, the score of a node is calculated from the scores of its
predecessors. The final score for all nodes is determined by iteratively calculating the
score for each node until the algorithm converges. To apply the TextRank algorithm, the
documents need to be preprocessed. For preprocessing we used a standard information
extraction pipeline consisting of the following steps: tokenization, stemming, stop-word
removal, Part-of-speech (POS)-tagging and named entity extraction. The named entities
of type ’person” were added to the extracted key phrases and together they represent
the key phrase condition P in the experiments.

TextRank for Key Sentence Extraction: For extracting key sentences the graph
is constructed as follows: One node is created for each sentence. An edge between two
nodes is created if their sentences are similar to each other. The similarity between two
sentences is a function of their overlapping words, for instance the cosine similarity of
the feature vectors of the sentences in a vector-space representation. On this weighted,
undirected graph the graph-based ranking algorithm is applied. After the algorithm
has converged, the nodes are sorted according to their score and the topmost nodes are
selected.

TextRank for Keyword Extraction: For extracting keywords the graph is con-
structed as follows: (i) the text is split into tokens, (ii) POS-tags are assigned to each
token, (iii) for each token or all tokens for a specific POS-tag a node is created, (iv) a
link between two nodes is created if the words co-occur within a given window. On this
unweighted, undirected graph, the graph-based ranking algorithm is applied. After the
algorithm has converged, the nodes are sorted according to their score and the top T
words are taken for post-processing. In the post-processing step, sequences of adjacent
keywords are collapsed to multi-word keywords also termed key phrases.

The experiments used a slightly adapted version of the TextRank algorihtm, namely,
only one graph was constructed containing both, words and sentences.
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Keyword Layout

The key phrases extracted by the TextRank algorithm may originate from any location
of the source text. Two key phrases may belong to the same sentence and share the
same context but they also may not. Consequently two key phrases have a relation as
they are extracted from the same text but we do not know (anymore) which relation it
is. We chose to use a layout for the key phrases and named entities that reflects this
uncertainty in the relations. A line-by-line (Western reading-direction) layout would
indicate either a relation in reading direction between the words, or none relation at
all for people used to read tag clouds. We chose a layout algorithm from the family of
tag layout algorithms described in [SKK+08], where the words are laid out in a circular
manner, starting from the center-of-mass of the visualization boundary. The interesting
property of this layout algorithm for our use case is that words are not strictly aligned
on a line and thus reading line-by-line is not possible. Compared to other words clouds,
such as Wordle [VWF09] the words are still easily readable, because all words are aligned
horizontally.

5.4.2 User Evaluation

In the user evaluation we wanted to examine whether the text representation form (full-
text, key sentences, key phrases) had an influence on the correctness of the labels assigned
to the documents and the time required for labeling. Moreover we wanted to examine
the influence of the potential mislabelings on different classifiers. In particular we tested
the following hypotheses:

H1 The time required for labeling key phrases or key sentences is significantly less
than for labeling full-text documents.

H2 There is no difference in the number of correct labels between key phrases, key
sentences and full-text.

H3 There is no difference in classifier accuracy when using labels generated in the key
phrases, key sentences or full-text condition.

Furthermore, we were interested in the users’ perception of their performance when using
the different types of representation. Also we wanted to find out whether they preferred
a particular representation form or disliked another one. More specifically, beyond the
hypotheses enumerated above we investigated the following assumptions:

A1 Users prefer the key sentence representation to the other two, because it is more
familiar than the word clouds and more concise than the full-text representation.

A2 Users feel performing most accurately using the full-text representation, because
it contains most information.
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time

...

user 1

user 2

Figure 5.14: Overview of the evaluation procedure, I abbreviates an Introduction step,
F (full-text), S (key sentences), and P (key phrases) denote the different
conditions. Q abbreviates the final questionnaire.

Design

We used a within-subjects design, i.e., each user performed all conditions. The indepen-
dent variable is the text representation form with three different levels (full-text F , key
sentences S and key phrases P). We measured task completion time and correctness
of the task (dependent variables). The task completion time is measured as the time
difference between the user first seeing the document and finishing the assignment for
this document. Correctness of the task is calculated as the number of correct user labels
by comparing the user labels to the ground truth of the annotated corpus.

Procedure

Figure 5.14 gives an overview of the evaluation procedure. For each participant, the
study started with an introduction of the task and with an example document for each
condition. Then the participant had time to ask questions. Thereafter the participant
was asked to fill out a demographic questionnaire. Then, the three trials on the computer
started. The sequence of conditions (F, S and P) and the documents were randomly
chosen from the data set (see section 5.4.2 for details).

For one trial (10 subsequent documents) the presentation form was the same (e.g., all
documents presented as full-text). Each trial started with an introductory screen. After
the participant had clicked the ’OK” button, the measurements started. We measured
the task completion time (the time between the two subsequent clicks on the ’OK”
button) and collected the labels that the participants assigned to the presented articles.
For each of the three conditions, we computed the mean value for the completion time
and counted the number of correct labels. Thus, for each participant i, 1 ≤ i ≤ 37 we
obtained one single value for the number of correct labels lci , and completion time tci per
condition c ∈ {F,S,P}.

The study finished with a questionnaire for the participants in which we asked questions
about the perceived overall task difficulty, and the perceived stress. Further, for each
presentation form, we asked the participants to rate the perceived helpfulness, speed
and difficulty and how much they liked to work with the representation. The users
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rated these aspects on a 5 point Likert scale. In the following the questions are listed
(translated from German) and the meaning of the different values is noted in brackets.

• ’How helpful was this presentation form for finding the correct topic?’ (1-not
helpful, .., 5-very helpful). We abbreviate this condition with helpfulness.

• ’How difficult was it to find the correct topic with this presentation form?’ (1-
difficult, .., 5-very easy). We abbreviate this condition with difficulty.

• ’How fast could you identify the correct topic with this presentation form?’ (1-slow,
.., 5-fast). We abbreviate this condition with speed.

• ’Was it stressful to identify the topics for the texts using this presentation form?’
(1-very stressful, .., 5-not stressful). We abbreviate this condition with stress.

• ’How much did you like to use this presentation form?’ (1-did not like it, .., 5-liked
it very much). We abbreviate this condition with like.

• ’Were there enough hints for the topics in this presentation form? ’ (1-too little,
..., 5-enough). We abbreviate this condition with hints.

• ’How difficult was it, to map the texts to the topics?’ (1-very difficult, .., 5-very
easy). We abbreviate this condition with overall difficulty.

• ’How stressful was the task in general?’ (1-very stressful, .., 5-not stressful). We
abbreviate this condition with overall stress.

Further we asked the participants two open questions: (i) Which text representation
forms could you imagine to make texts accessible in a fast way? (ii) How could we
improve the presented text representation forms in your opinion? Here the users were
no given any choices to select by could write their answer in free-form text.

Test Material

We used a German news corpus from the Austrian Press Agency consisting of 27570 news
articles from the year 2008 (see section 5.1.4 for description of the data set). We chose to
use 3 year old news articles to reduce the effect of remembering recent news. The corpus
is fully labeled, i.e., each news article is annotated with one of the five classes ”economy’,
”sports’, ”culture’, ”politics’, ”science’. The articles are nearly equally distributed over
the classes. The length of the articles varies between 2 and 2720 words, the average
length is 247.2 words.

We investigate how often the class names (e.g. politics) occur in the extracted key words.
For 616 of 27570 (≈2%) of the documents an extracted key phrase is equal to a word
describing the class. This means, it is very unlikely that users can use the class name as
a clue for labeling.
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We chose the longest articles of the corpus for our experiment, i.e. the articles longer
than the third quantile (> 337 words) without the statistical outliers (articles with
>655 words), see figure 5.15. This leaves 6328 articles for the experiment, 1508 in class
”culture’, 1023 in ”economy’, 1409 in ”politics, 1457 in ’science” and 931 in ”sports’.

Figure 5.15: Box plot of the word distribution in the data set. Green (horizontal) lines
bound the region of the documents used for the experiment.

For each condition a set of documents is presented to the user, we chose to take 10
documents per condition. The document set for a condition is denoted as DF, DS,
DP respectively. For a user k the sets are denoted as DF

k , DS
k , DP

k . All articles in all
document sets are distinct, i.e., no user gets one document twice. For articles in set DS

key sentences, for articles in set DP key phrases and named entities were extracted as
described in section 5.4.1. The key sentences and the full-text were displayed in a normal
text windows (see figure 5.16 for an full-text example and figure 5.17 for key sentences).
The key phrases and named entities were laid out with the tag layout algorithm described
in section 5.4.1. In order to visually distinguish key phrases and named entities, the key
phrases were colored black and the named entities were colored blue. An example for a
key phrases representation is shown in figure 5.18.

Participants

37 German-speaking volunteers participated in the evaluation, 18 females and 19 males.
23 of the participants were technical professionals while 14 were experts of other domains.
The age of the participants ranged from 25 to 58 years (average 32.5 years).

Environment

The participants were tested in a calm environment without noise distractions or ad-
ditional attendees. The task was performed on a Dell Latitude e650 notebook running
Windows XP Professional. The notebook was equipped with an Intel Core Duo 2.26
GHz and 3 Gb RAM. The display resolution was 1440 x 900 pixels. All users were
required to use the USB mouse (and not the touch pad).
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Figure 5.16: Screenshot of the application for the full-text condition F. Data is extracted
from the German test corpus.

Figure 5.17: Screenshot of the application for the key sentences condition S. Data is
extracted from the German test corpus.
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Figure 5.18: Screenshot of the application for the key phrases condition F. Data is
extracted from the German test corpus. Named entities are colored blue.

5.4.3 Results

In this section we present (i) how we tested the three hypotheses enumerated at the
beginning of section 5.4.2 (measured performance), (ii) the results of the quantitative
evaluation of the questionnaire (perceived performance), (iii) answers to the question-
naire’s open part (suggestions and improvements).

Measured Performance

Table 5.18 and figure 5.19 summarize the measures for the number of correctly labeled
examples and the task completion time. Altogether, the users assigned 290 correct labels
in the full-text condition, 281 in the key sentences condition and 305 in the key phrases
condition. In total 370 documents (10 documents per user, 37 users) were labeled in
each condition. In the following sections we describe in detail how we tested the three
hypotheses enumerated at the beginning of section 5.4.2.

Influence on Labeling Accuracy We tested whether the difference in the correct num-
ber of labels reported in table 5.18 are significant (Hypothesis H1). The correct number
of labels is denoted as lci for person i and condition c. As can be seen from the histograms
of figure 5.20 the three variables lf , ls and lp seem to be not normally distributed and
thus the precondition for performing ANOVA or paired T-tests is not satisfied. However,
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Table 5.18: Overview of labeling time and number of correct labels (out of 10) for each
condition. Values averaged over all users, showing mean and standard devi-
ation.

full-text key sentences key phrases

correct labels 7.84 ± 1.24 7.59 ± 1.38 8.24 ± 1.23
completion time [s] 19.9 ± 13.8 10.7 ± 4.4 10.4 ± 4.1

(a) correct labels (out of 10) (b) task completion time in sec

Figure 5.19: Box plots for task completion time and number of correct labels averaged
over all users

we still tested the variables lf , ls and lp for normal distribution using the Shapiro-Wilks
test. All variables are not normally distributed, assuming α < .05. Therefore, we tested
on equal means with Wilcoxon rank sum test for unpaired samples. The null hypothesis
for the test was that the means are equal, we set α = .05. No difference in the mean
values was found between full-text and key phrases (W = 563,p = .177) and between
full-text and key sentences (W = 754, p = .441). Comparing key sentences to key
phrases we found a significant difference in the mean values (W = 504, p = .46).

Summing up, we found that users assigned significantly less correct labels when using
the key sentence representation of the documents, but performed equally well with the
full-text representation and the key phrases.

Influence on Labeling Time We tested further whether the differences in task comple-
tion time reported in table 5.18 are significant (Hypothesis H2). The average time for
labeling is denoted as tci for person i and condition c. As can be seen from the histograms
of figure 5.21 the three variables tf , ts and tp seem to be not normally distributed and
thus the precondition for performing ANOVA or paired T-tests is not satisfied. However,
we still tested the variables tf , ts and tp for normal distribution using the Shapiro-Wilks
test. All variables are not normally distributed, assuming α < .05. Therefore, we tested
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(a) full-text (b) key sentences (c) key phrases

Figure 5.20: Histograms of the number of correct labels averaged over all users

(a) full-text (b) key sentences (c) key phrases

Figure 5.21: Histograms for the task completion times averaged over all users

on equal means with Wilcoxon rank sum test for unpaired samples. The null hypoth-
esis for the test was that the means are equal, we set α = .05. No difference in the
mean values was found between the full-text and key sentences (W = 705, p = .830).
On the contrary, we found a significant difference comparing full-text and key phrases
(W = 956, p = .003) and full-text and key sentences (W = 982, p = .001).

Summing up, we found that users labeled the items significantly faster when using the key
sentence or the key phrases representation than when using the full-text representation
of the documents.

Influence on Classifier Accuracy As reported in section 5.4.3 we found that users
labeled less accurately when using the key sentence representation of the text documents.
We further wanted to test, whether this mislabeling would have an influence on classifiers
trained on the erroneous labels (Hypothesis H3). To do so, we created two different
training data sets for each condition, resulting in six different training data sets. Both
training sets for one condition contained the documents processes by all users in this
condition, one was extended by the original labels (the ground truth) and the other one
was extended by the user labels. We further created an evaluation data set of 6000
randomly selected items from the data set. None of the evaluation items was contained
in any of the training data sets. We trained various classifiers on both training data sets
for each condition, and evaluated the trained classifiers on the evaluation data set. aco

140



5.4 Experiment 3: Document Representation for Efficient Labeling

denotes the accuracy of the classifier trained on original labels, acu denotes the accuracy
of the classifier trained on user labels for condition c. We used the following classifiers:

• Bagging with Decision Stumps (denoted Bagging-DT) from the Mallet machine
learning library [McC02]

• AdaBoost with Decision Stumps (denoted Adaboost-DT) from the Mallet machine
learning library [McC02]

• Naive Bayes from the WEKA machine learning library [HFH+09]

• Hyperpipes from the WEKA machine learning library [HFH+09]

• Linear Support Vector Machines from the LibLinear library [FCH+08] (described
in section 2.2.5)

• K-Nearest Neighbor classifier (denoted KNN-10 for k=10, and KNN-20 for k = 20,
described in section 2.2.3) (own implementation)

• Class-feature-centroid classifier [GZG09] (denoted CFC, described in section 2.2.6)
(own implementation)

Table 5.19: Comparing classifier accuracy when trained on original labels (ao) versus
trained on user labels (au)

full-text key sentences key phrases

classifier afo afu aso aso apo apu

KNN-10 0.76 0.72 0.77 0.73 0.76 0.73
Bagging-DT 0.45 0.45 0.51 0.48 0.47 0.45
LibLin 0.80 0.74 0.80 0.76 0.79 0.74
KNN-20 0.75 0.71 0.76 0.73 0.76 0.72
Adaboost-DT 0.36 0.41 0.39 0.38 0.33 0.31
NaiveBayes 0.81 0.77 0.78 0.76 0.79 0.76
CFC, b=2.3 0.78 0.73 0.78 0.73 0.78 0.72
Hyperpipes 0.78 0.72 0.77 0.71 0.77 0.67

Table 5.19 reports the accuracy of the classifiers on the evaluation data set. Not sur-
prisingly, the accuracy of the classifier trained on user labels was lower in nearly every
case than when trained on the original (ground truth) labels. This is because the ground
truth was labeled by domain experts and we did not explicitly communicate the rules
for assigning an article to a specific category. Thus, for the boundary articles, i.e., news
about a politician attending a sports event, the decision whether the article belongs to
category ”sports’ or ”politics” was subjective. Because all articles were randomly se-
lected and aligned to the three conditions this effect is likely to occur equally often in
all conditions. The one exception is the Adaboost classifier in the full-text condition.
However, this is also the classifier that performs worst for this classification task.

141



5 Experiments

Table 5.20: Comparing original labels and user labels: Difference in number of correct
labels and classifier accuracy (mean and standard deviation)

full-text key sentences key phrases

∆correct labels 71 80 65
∆a 0.034 ± 0.037 0.034 ± 0.017 0.040 ± 0.022

Table 5.20 reports the differences in classifier accuracy averaged over all classifiers for
the three conditions. When using the user-labels the accuracy decreases by less than 4%
in all conditions. The difference in accuracy for the key phrases seems to be larger (∆ap

= 0.040) than for the sentence and full-text conditions (∆as = 0.034, ∆af = 0.034).
We investigated whether these differences are statistically significant. First we tested
the variables ∆af , ∆as and ∆ap for normal distribution using the Shapiro-Wilks test
(α = 0.05). The two variables ∆as and ∆ap follow a normal distribution, but ∆af does
not. This means, the preconditions for calculating ANOVA or paired t-Tests was not
fulfilled. Therefore we used the Wilcoxon rank sum test for unpaired samples to compare
the mean values using α = .05. We found no significant difference between any of the
conditions, the test statistics are as follows: full-text vs.key phrases W = 39, p = .462,
full-text vs.key sentences W = 34, p = .833, key sentences vs.key phrases W = 29,
p = .753.

To sum up, we found no influence of the different representation forms on classifier
accuracy.

Perceived Performance

In this section the qualitative and quantitative results of the questionnaire analysis are
presented. Table 5.21 gives an overview of averaged values of the perceived helpful-
ness, speed, difficulty, stress, hints, and how much the user liked the respective text
presentation form. A detailed description of the questions and the scale can be found in
section 5.4.2. Note, that the second column shows the values for the overall task, which
the participants had to rate first. This means after the experiments they were first asked
how difficult and stressful they perceived the experiment as a whole. From table 5.21
we can draw the following conclusions:

• The full-text condition was perceived as most helpful and least difficult. Further,
participants felt that it presented nearly all information they needed to complete
the task (hints). Also full-text was liked the most.

• Participants perceived themselves as performing fastest in the key phrases condi-
tion, however they were more stressed and liked it less than the other two condi-
tions. Further, the key phrases condition gave them the least hints on the topic of
the document.
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Table 5.21: Overview of questionnaire answers. Results are averaged over all partici-
pants. Showing mean and standard deviation. Best values (least stressful,
fastest, ..) for each row are marked bold. * one missing value in the data
set was replaced by the median

question overall task full-text key sentences key phrases

helpfulness – 4.1 ± 1.0 3.9 ± 1.0 3.4 ± 1.1
speed – 3.6± 1.0∗ 3.9 ± 1.0 4.0 ± 1.0
difficulty 3.7 ± 0.6 4.1 ± 1.0 3.8 ± 1.2 3.4 ± 1.2
stress 4.1 ± 0.8 3.4 ± 1.3 3.9 ± 1.0 3.4 ± 1.3
hints 4.7 ± 0.8 3.8 ± 1.1 3.2 ± 1.1
like – 3.7 ± 1.2 3.5 ± 1.4 3.4 ± 1.4

• The key sentence representation caused least stress for the participants. Further,
participants felt that they were nearly as fast in this condition as in the key phrases
(fastest) condition.

To sum up, we can conclude that users preferred full-text, were least stressed by the key
sentences and found that they performed fastest in the key phrases condition.

Suggested Improvements

We asked two open questions dealing with suggestions to improve the representation
forms or find substitutes as well as possible amendments. Not all participants answered
both or either question. The question ”How could the representation be improved?” was
answered by 57% of all participants while 65% of them had suggestions on ”Which other
representation could be used to allow a quick understanding of information in texts?”
As most of the answers headed into similar directions we defined three categories for all
given answers to both open questions. The categories for the first question are:

• Formatting and Highlighting
• Content
• Structure

The first category includes formatting issues like paragraphs, font, or the font size.
The second category covers the represented content as for example selected words or
sentences. The third category is about the structure of the given representation form
itself; e.g. the order of the given information. The categories for the second question
are:

• Formatting and Highlighting
• Representation
• Visualizations and Graphics
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The first category again deals with formatting issues. The second category includes
representation structures like tree maps and the third category covers visual aids like
tables or pictures.

For the first question we found that 14 answers contained suggestions about formatting
issues, three dealt with the represented content, and four suggested different structuring
of the text examples. Examples for answers to the first category of the first question are:
”formatting of the full text examples, paragraphs, font”, ”bigger font, different font”.
The second category of the first question contained suggestions like: ”Key sentences:
they are hard to read. Relations between the sentences are not logical”. The third
category of the same question had answers including: ”Group words by the kind of
words at key phrases (named entities, names, adjectives)”.

The second question contained eight answers to the first category. 12 answers were
related to the first category Formatting and Highlighting and four answers suggested an
alternative visual representation of the text information. Examples for the first category
are: ”Highlight keywords in long texts”, ”Formatting (breaks, fat, italic, colours!)”.
The second category contains: ”A combination between full-text and key phrases (more
key phrases)” and ”Hypertree, TreeMap”. The third category of the second question
includes: ”Pictures, Graphics, Icons”, ”No idea (pictures, tables, graphics)”.

5.4.4 Discussion

In this section we discuss our hypotheses outlined at the beginning of section 5.4.2 in the
light of the results of the previous section. The evaluation showed that users can label key
phrases twice as fast but with the same accuracy as full-text documents. Labeling of key
sentences is fast too, but the labeling accuracy is significantly lower than in the full-text
condition. This means we can accept hypotheses H1: that a compressed representation
leads to faster decisions, regardless whether this decision is correct or not.

Hypothesis H2 must be rejected, there is a difference in the number of correct labels when
varying the representation form. More specifically, users are most accurate when using
full-text or key phrases, indicating that the TextRank algorithm for keyword extraction
performs well in filtering out information irrelevant for text categorization while keeping
the information required to identify the category. On the contrary, the labeling accuracy
for key sentences is significantly lower, indicating that key sentences are less informative
on average, obviously either irrelevant or ambiguous sentences are extracted.

In our experiments we found no influence of this different labeling accuracy on classifier
performance, thus confirming hypothesis H3. This might be due to the noise tolerance
of the used classifiers and the practically low amount of noise. In our experiment, it
makes no difference for the classifier whether 65 or 80 out of 370 documents are labeled
incorrectly. We expect this difference to become significant when the number of training
items (and thus the number of mislabeled items) increases.

144



5.4 Experiment 3: Document Representation for Efficient Labeling

Analyzing the questionnaire lead to interesting results. We found that on average users
preferred the full-text to the key sentences and key phrases. Furthermore, they found
full-text and key phrases more stressful than key sentences. We suppose that this is
because, (i) they are used to read sequences of sentences (as opposed to word clouds)
and (ii) the texts are shorter than full-text, i.e. less text to read in total. Further, users
felt labeling fastest in the key phrases condition and slowest in the full-text condition.
Thus, our assumption A1 could only be partly confirmed.

slow

fast

inaccurate accurate

Figure 5.22: Infographics showing perceived (filled circles) and measured performance
(empty circles) for all conditions (P – key phrases, S – key sentences, F –
full-text)

Interestingly, in some aspects the perceived performance does NOT conform to the
measured performance. First, users felt that they were least hints in the key phrases
condition which was also perceived least helpful, but our measurements show, that they
performed as accurately as in the full-text condition. Thus, our assumption A2 can
be confirmed. Second, users felt to have more hints in the key sentences condition and
found the presentation more helpful than the key phrases condition, but according to the
measurements performed worst in the key sentence condition. Note, that participants on
average did like the key phrases condition less than the others. We assume that this is
because the former was unfamiliar. For applications this would mean that users need to
be convinced of the helpfulness of the key phrases representation and get used to it. The
infographics in figure 5.22 summarizes the differences between perceived and measured
values. (Note that this infographics visualizes tendencies, not accurate values).

The answers to the open questions of the questionnaire gave interesting hints on how to
improve representation of text and led to new ideas on how to structure information in
texts. The utmost answers to question one, how to improve the given representations,
regarded formatting and highlighting. We therefore believe that a way to change font
and size of texts – like buttons to control the font size – could be of much help to faster
understand the text information. Furthermore, coloring keywords could help users to
find relevant information faster. To satisfy suggestions regarding the content other ways
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to select words and phrases could be tested. As for the structuring of the representation
forms most of the answers suggested a different ordering of key phrases. Ordering of the
words could be made selectable like nouns and names first. The second open question of
the questionnaire showed that many users had similar ideas about highlighting important
word in full texts. This could be met by giving users the possibility to automatically
highlight all nouns or names. Users also had suggestions on how to combine different
representation forms. Combinations of key phrases and full-text, like full text with
selected key phrases – on demand could be useful. Also, interesting ideas emerged
regarding visualizations and graphics. Tables containing words of a category or a graph
showing the count of keywords could be shown.

Summing up, our evaluation shows that: Key phrases are a fast and accurate represen-
tation for document labeling. In fact, users labeled key phrases twice as fast and as
accurately as full-text documents. Further, the questionnaire shows, that users did not
trust their labellings with the word cloud representation, although they performed most
accurately.

5.4.5 Summary

We investigated two different condensed representations of text, key phrases and key
sentences, for the purpose of faster document labeling. Both representation forms can
be generated in a fully automatic way. In a user evaluation we compared the labeling ac-
curacy and time of the users when using these condensed representations to the baseline,
the full-text representation of the texts. Our evaluation shows that the users labeled
key phrases twice as fast but as accurately as full-text documents. This finding points
toward a feasible way to decrease the time and cost for the generation of training data.
Key phrases represented as word clouds for labeling can be easily combined with other
approaches such as active learning.

In one sentence the outcome of this experiment can be summarized as follows:

Key phrases, automatically extracted by the TextRank algorithm, are a fast
and accurate representation for document labeling.
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In this section a prototypical implementation of a Visual Analytics tool for generating
classifier hypotheses from scratch is described. All previous experiments considered the
case when the set of classes is already known beforehand. In this experiment the case is
explored where the classes are not known and will only emerge when analyzing the data
at hand.

The question that will be answered by the experiment in this section is

Can pure data visualizations be used to allow domain experts to generate their
own classifiers?

In order to answer this question the following steps are taken:

• The prototype is built using existing visualizations and data processing modules.

• The application is applied on a standard text set and results are recorded.

The experiment presented in this section has been published in [SSG10].

The proposed application supports the following user-centered approach to text classifi-
cation: (i) structure the data fully unsupervised, (ii) present the data to the user using
information visualization techniques, (iii) support the user in exploring the data and
the precomputed structure, (iv) support the user in employing an additional structure
(supervised) on the data, (v) visualize the imposed additional structure and allow the
user to assess the quality and the appropriateness for the task at hand.

For the automatic structuring of the data clustering techniques are employed. Classi-
fication techniques are used to impose an additional user-generated structure. In this
application, the data is automatically analyzed, structured and then presented in an
interactive visualization. The interactive visualization can then be used to build a clas-
sifier from scratch, i.e. defining the classes as well as the training items for each class.
Noteworthy, the user does not need to know the classes of interest beforehand, but they
can be created, changed and deleted as demanded. Furthermore, this combination of
interactive visualization of the data and a classifier further allows a personalization of
the classifier. Depending on the data and what a specific user is interested in the data,
the classes, the training data and finally the classifier can be built. From the data mining
perspective, the application implements a user-centered approach to on-line, multi-label,
multi-class text classification.

5.5.1 Procedure

In the proposed application the analytic task of the user is supported by fully-automatic
processes. This section describes the overall process and necessary visualization modules
for the application.
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Process Overview

Figure 5.23 depicts the process of the proposed application. Analytic processed per-
formed by the user (gray round boxes) alternate with fully-automatic processes (white
boxes). In the following the necessary building blocks (white boxes) are described in
detail.

Data Preprocessing

Hiearchical Clustering

Information Landscape

Classification

Classifier Training

Classifier Visualization

Analyse and Select
 Documents

Analyse and Assess
 Classifier

Analyse and Assess
 Results

Figure 5.23: Process overview of the combined approach: Analytic processes performed
by users (grey round boxes) are supported by fully-automatic processes
(white boxes). The (re-)training of the classifier is done iteratively and stops
when the user is satisfied with the quality of the classification hypothesis.

Note that the majority of the applied algorithms and visualizations are implemented
within the KnowMiner knowledge discovery framework [KSM+09] and VisTools visual-
ization library [SKM+09].

Data Preprocessing The data is preprocessed and vectorized with an information ex-
traction and vectorization module based on OpenNLP 3. The POS-tags are used to con-
struct the noun vector space. The result of the data preprocessing steps are documents
represented as feature vectors. For details of the preprocessing step see section 2.3

Hierarchical Clustering A hierarchical clustering algorithm is applied on the feature
vectors of the documents to reveal the inherent structure of the document space. An
adapted K-Means algorithm [Mac67] is recursively applied using the cosine similarity to
measure similarity between documents. Cosine similarity is known to perform well for
text data [ZK02]. The recursive application of the K-Means clustering algorithm creates
a cluster tree, in which the leaves represent single documents. The resulting cluster
hierarchy is suitable for browsing the document set and can be thought of as a virtual
table of contents.

3http://opennlp.sourceforge.net
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Creating the Information Landscape The information landscape visualization is com-
puted from the topical cluster tree by a combination of Force-Directed Placement (FDP)
algorithms and spatial tessellations. First, the top-level cluster centroids (the children
of the root cluster) are positioned inside a rectangular area using FDP (FDP). This
rectangular area corresponds to the overall available display space for the information
landscape. The similarity of the cluster centroids used by the FDP algorithm is calcu-
lated as the cosine similarity of the document vectors. Second, a Voronoi subdivision
is calculated using the centroids as generator points for the Voronoi regions yielding
polygonal regions representing a document cluster. This process is recursively applied
inside the polygonal region for all sub-clusters of a specific cluster. The leafs of the
bottom-most clusters (documents) are places within the Voronoi area of their parent
cluster using the same FDP method.

Text Classification We applied an adapted KNN algorithm for multi-label text classi-
fication. As similarity we use the cosine similarity on the TF-IDF weighted vector-space
representation of the documents. The output of the classifier for each classified document
is a list of classes and a confidence value for each class. The visual analytics application
is in principle independent of the specific classifier, as long as multi-label classification
is supported.

The Classification Panel The classification panel provides the interface to the classifier.
It gives an overview of the available classes, the associated training documents and
classification results. Moreover it incorporates the Class Radial Visualization to see the
trained classifier at a glance – all classes and associated trainings documents.

Class Radial Visualization in the Multi-Label Case For single-label classification, the
case for which the classifier visualization was designed, the location of a test item shows
the uncertainty of the classifier for this item. In single-label classification one item can
only belong to one class. In multi-label classification it is possible that one item belongs
to more than one class. In this case, the Class Radial Visualization shows an overview
how many documents are assigned to multiple classes (how much and to which). When
the mouse is moved over an item, lines are drawn connecting the item and all classes the
item belongs to. The thickest line (red) indicates the connection to the class the item
belongs with the highest confidence. The classification assignments for items located at
the same position are aggregated, the item is threated as a new hyper-item.

5.5.2 Interaction Methods

The clustering view (information landscape) and the classification panel support different
tasks. Table 5.22 gives an overview of possible interactions that can be performed in the
different interfaces.
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Table 5.22: Overview of the tasks that can be performed from both interfaces infor-
mation landscape (IL) and classifier window (CW).

Task
Invoked in

Results in
IL CW

create class X
A new class is created from the selected doc-
uments. The classifier is retrained.

delete from class X X
The selected documents are removed from
the class. The classifier is retrained.

delete class X1 X
The selected class is deleted. The classifier is
retrained.

classify X
The classifier predicts the selected docu-
ments. The prediction is presented to the
user in a table.

inspect documents X X
An information landscape of the selected doc-
uments is displayed.

inspect class X
An information landscape of the training doc-
uments of the selected class is displayed.

inspect classifier X
The classifier visualization for the training
data is displayed.

1 Deleting of classes can not explicitly be invoked from the information landscape,
but a class is automatically deleted if all its training documents are removed.

5.5.3 Results

We performed our experiments on the Reuters-21578 text collection (see section 5.1.3).
The hierarchical clustering results in 10 top-level clusters as shown in figure 5.24a. This
structure of the information space is purely unsupervised. The information landscape
in figure 5.24a gives an overview of the entire text collection, showing clusters of similar
documents and associated labels. The user can investigate the cluster hierarchy and get
an insight in the overall content of the collection.

The user might be interested in other partitions of the data set which are not detected
by the unsupervised methods. For example, the user might want to distinguish the
categories ’politics”, ’computers”, ’cars”, ’sports” and ’planes”. First, these categories
are not explicitly represented, they only exist as a mental model in the user’s mind.
While investigating the information landscape the user might come across documents
that belong to one of these categories. The user can then select these documents (as
shown in figure 5.24a) and can create a new category from the selected documents. In
the background, the selected documents are added to the classifier as new training data
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for the specific category (if the category does not yet exist in the classifier, it will be
created). After repeating the steps ’investigation” and ’adding training documents to
the classifier” the user might have found example documents for each of the categories
of interest.

(a) initial landscape (b) classification results

(c) training data set visualization (d) landscape for class’plane”

Figure 5.24: Screenshot of the text classification application. (a) information landscape
of the data set with documents selected by user, (b) classification results for
selected documents (classifier has been trained beforehand) (c) visualization
of the training data set, (c) landscape visualization of training data for class
’plane”

151



5 Experiments

The user might then be interested of the current available documents for each category
and the quality of the classifier that she has implicitly generated. This information
is provided by the classification window. The training document for each class are
presented as a list to the user. If the user detects wrongly assigned documents for a
category she can simply remove them from the list and the classifier is retrained on the
reduced training data set. For assessing the overall classifier quality the user can switch
to the classification visualization view as shown in figure 5.24c.

In the figure, it can be seen that there are many documents belonging to more than one
class (the central area). Only for the class ’car” there are documents belonging to no
other class. Further, there are some documents belonging to exactly 2 classes, these are
the documents lying on the imaginary line between the ’cars” and the ’sports” rectangle
as well as on the imaginary line between ’cars” and ’computers”. The user might inves-
tigate the content of the interesting documents by moving the mouse over the items and
eventually discover misclassified items. If the user discovers that the classification model
is not in line with her mental model of the categories, e.g., that the categories should be
more distinct (i.e. lesser documents in the center of the visualization), the user could
select the conspicuous documents and generate a new information landscape in order to
further investigate them. Similarly a new information landscape can be generated for all
training documents of one category. The resulting landscape is shown in figure 5.24d.
Investigating this new landscape might lead to further insights and actions, for instance
finding and deletion wrongly assigned training documents.

After cleaning up the classifier by consolidating the training sets, the user might be inter-
ested if there are more documents inside the collection that fit into these categories. Back
in the information landscape she then selects documents and gets them classified. The
classification result for the documents selected in figure 5.24a is shown in figure 5.24b.
Then the classification results can be investigated and, in case the classifier correctly
classified the documents, can be added to the trainings data set.

5.5.4 Discussion

Generating classifier hypothesis for large dynamic text data repositories is a challenging
and time-consuming task. We described a prototypical application, which combines
automatic and visualization-based approaches. The user is presented an interactive
visualization of the text collection, the information landscape, which is useful for gaining
insights into topical structures present in the data set. The newly discovered information
is useful for defining the training set of the classifier. The resulting classifier can be
evaluated by the means of a classifier visualization and refined further if necessary. We
see clear advantages of our approach in the case when the categories are not pre-defined,
but emerge during investigation of the document set. However, we also believe that the
information landscape is useful for analysis and improvements of existing training sets,
for example when the quality of the classifications is deemed unsatisfactory by the user.
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5.5 Experiment 4: Visual Hypothesis Generation

5.5.5 Summary

In this section an application to generating classification models from scratch was de-
scribed. The application was applied to a standard text data set. The proposed appli-
cation supports the following user-centered approach to text-classification: (i) structure
the data fully-unsupervised, (ii) present the data to the user using information visual-
ization techniques, (iii) support the user in exploring the data and the pre-computed
structure, (iv) support the user in employing an additional structure (supervised) on
the data, (v) visualize the imposed additional structure and allow the user to assess the
quality and the appropriateness for the task at hand.

In one sentence the outcome of this experiment can be summarized as follows:

The information landscape as unsupervised data layout embedded in an inter-
active application allows domain experts to generate classifiers from scratch.

The application has been deployed and applied in two companies, Mimos4 and M2N5.

4www.mimos.my
5www.m2n.at
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5.6 Experiment 5: Visualizing Text Classification Models

This experiment considers the understanding part of the research questions of this the-
sis. We applied the Voronoi Word Cloud visualization (see section 4.4 on the internal
representation of the CFC text classifier (see section 2.2.6). Thus, some aspects of the
internal model of the CFC classifier are accessible to users by the visualization. In this
experiment the CFC classifier is trained on the 20NEWS data set (see 5.1.5) and the
trained classification model is visualized as Voronoi Word Cloud.

The question that will be answered by the experiment in this section is

In which way can a model of a specific text classifier, namely the CFC clas-
sifier, be visualized and made accessible to users?

The experiment presented in this section has been published in [SKG11].

5.6.1 Procedure

This section describes the detailed procedure of applying the Voronoi Word Cloud visu-
alization to text data sets classified with the CFC classifier. We assume that the text
data set has already been preprocessed and is represented in a vector-space-model (for
details see section 2.3).

The steps to generate the Voronoi Word Cloud for a trained model of the CFC classifier
are as follows:

1. Define the border of the surrounding region. An arbitrary convex polygon can be
used. Circles and ellipses can be approximated by polygons.

2. The CFC classifier is trained on the data set (or a subset) obtaining feature vectors
fi for each class i.

3. The class feature vectors fi are placed into the 2D-space using an FDP algorithm.
The cosine similarity between two feature vectors fi and fj is taken as the high-
dimensional distance for the FDP. The results of this placements are 2-dimensional
points pi.

4. A Voronoi diagram is calculated using the projected class feature vectors pi as
generator points obtaining a polygon Pi for each class.

5. For each class feature vector fi, the k dimensions with the highest values are
selected. For each term represented by this dimension, the feature value is added
as weight obtaining k keyword-weight pairs for each class. Additionally, the class
name is added to the keywords with a weight value larger than the weights of all
keywords.

6. The weighted keywords for each class i are laid out inside the polygon Pi for this
class using the tag layout algorithm (see section 4.3).

7. The class feature vectors fi are placed into the 3D-space, and their projection is
used to select the background color for polygon Pi from the RGB color space.

155



5 Experiments

5.6.2 Results

(a) rectangular borders (b) circular borders

Figure 5.25: Voronoi Word Clouds for the CFC classifier trained on the 20NEWS data
set. Different coloring in both examples is caused by non-deterministic
version of the FDP algorithm.

The Voronoi Word Cloud visualization of the fully trained CFC classifier on the 20NEWS
data set is shown in figure 5.25. Two examples with two different borders (square and
circle) are shown. Because the FDP algorithm used in step 3 (projection in 2D) is
deterministic, the placement of the class centroids is identical in both cases.

On the contrary, the FDP algorithm applied in step 7 (projection to 3D) is not de-
terministic, therefore the colors in both visualization differ. The 10 terms with the
highest TF-IDF weight in the full data set, i.e. independent of the classes, are ’arti-
cle’, ’people’, ’X’, ’time’, ’way’, ’God’, ’system’, ’anyone’, ’something’, and ’problem’.
These words do not occur in the visualization, i.e. are not important for the classifica-
tion of the documents. The visualization reveals, that for instance for the newsgroup
comp.windows.x, which covers topics of the X-Windows system, the words ’Xdefaults’,
’xdm’ and ’mdm’ are highly informative. Further, one can see that the newsgroups
alt.atheism and talk.religion.misc are similar to each other, as they are positioned next
to each other and are colored similarly. Obviously their documents cover the same topics,
although they do not have one of the 10 most informative words in common. Further,
one can judge the quality of the data and preprocessing: i.e. the term ’Cowards“-Happy’
in talk.politics.misc is obviously not well tokenized and for the class sci.crypt the terms
’cryptosystem” and ’cryptosystems” are considered as different features.
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5.6.3 Discussion

In the light of this thesis this experiments contributes to the understanding part of the
research question and can be further extended to allow for adapting a classification model
as well. The adaptation mechanisms are not part of the thesis but will be conceptually
described in the following:

• The user can remove (irrelevant) words for a class. This will set the according
feature in the centroid vector of the CFC model to the value 0 resulting in the
classifier further ignoring the word.
• The user can add a word to a class. This will increase the weight of the word

either by a user-specific value such that it is ranked among the displayed words.
This will result in a changed value in the centroid feature.
• The user can change the weight of a word. This will result in a changed value in

the centroid feature.

All these interactions directly manipulate the model of the classifier. For an application
it is therefore necessary to also make the classifiers performance accessible to the user,
for instance by incorporating the Class Radial Visualization in the application.

Furthermore, one can design an interaction mechanism to allow deeper understanding
of the classification model by enabling users to access the relevant underlying data.
This interaction mechanism will be described conceptually and is not implemented in
the current visualization. Clicking on a keyword could reveal all documents containing
the word. These documents can either be filtered by the class for which the word was
displayed or all documents can be displayed with a visual indication whether they belong
to the chosen class.

5.6.4 Summary

The experiment in this section described a prototypical, classifier-dependent visualiza-
tion derived from the Voronoi Word Cloud. It allows users to access the internal model
of the CFC text classifier. The visualization was applied to the 20NEWS data set. It
was shown to be suitable for displaying certain aspects of the classifier’s internal model.
Further interaction mechanisms were conceptually proposed, which could allow users to
also adapt the classifier’s internal model.

In one sentence the outcome of this experiment can be summarized as follows:

The Voronoi Word Cloud visualization can be used to asses certain aspects
of the internal model of the CFC text classifier.
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5.7 Summarizing the Experiments

The findings in the experiments of this chapter can be summarized as follows:

1. The Class Radial Visualization and Confusion Maps can help experts to assess
understand arbitrary classification models for text classification tasks.

2. Visual Active Learning with the Class Radial Visualization outperforms classical
active learning in all tested conditions and performs never worse than random
sampling.

3. Key phrases, automatically extracted by the TextRank algorithm, are a fast and
accurate representation for document labeling.

4. The information landscape as unsupervised data layout embedded in an interactive
application allows domain experts to generate classifiers from scratch.

5. The Voronoi Word Cloud visualization can be used to asses certain aspects of the
internal model of the CFC text classifier.
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“We can only see a short distance ahead, but we
can see plenty there that needs to be done.”

(Alan Turing in Computing Machinery and
Intelligence)

6 Conclusion and Future Work

This section reflects on the goals set at the beginning of the thesis and assesses the
generalizability of the achieved results.

This thesis investigated the usage of interactive visualizations for assessment, under-
standing, creation and adaptation of classifiers for multi-class, single-label classification
tasks. The need for classifier-agnostic visualizations, i.e. visualizations that can be ap-
plied to any classifier, was argued. The independence of the visualization from specific
classifiers is desired in order to require the user to learn only one visualization and in
order to compare classifiers by the means of the visualization.

Thus, common properties of classifiers were identified and two classifier-agnostic visu-
alizations – Class Radial Visualization and Confusion Maps – were designed and im-
plemented. These visualizations were then evaluated in various experiments for their
suitability for assessment, understanding, creation and adaptation of classifiers. Various
aspects of the classifiers on the class level (i.e. conflicts between classes) and the item
level (i.e. confidence of decision) were revealed by the visualizations.

Furthermore, the concept of Visual Active Learning was developed. Visual Active Learn-
ing aims – like classical active learning – at minimizing the amount of training data
required for achieving a specific accuracy of a classifier. Experiments using the devel-
oped Class Radial Visualization showed that Visual Active Learning, i.e. giving the user
more power in the active learning process, outperforms classifier-agnostic active learning
strategies.

However, classifier-agnostic visualizations can not be applied to visualize the feature
level, i.e. which features had which kind of influence for the final decision. This limitation
arises from the fact, that knowledge about the used features can not be derived from all
classifiers in an explicit form. Therefore, to visualize aspects of the feature level we chose
a specific application scenario and classifier. This led to the design and implementation
of a visualization for text classification models, called the Voronoi Word Cloud. In
order to achieve the desired properties of the layout (space-filling and similarity based),
a special layout algorithm for words in arbitrary complex shapes was developed (tag
layout algorithm).
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The problem of fast training data generation for classifier creation was addressed in
the setting of text classification. Training data has to be generated manually, and
the time required for this task heavily depends on the time human labelers need for
comprehending the text. We investigated the benefit of text representations alternative
to the simple full-text representation. Two text representations were identified, which
can be generated fully automatically – key sentences and key phrases. In a user study,
these two alternative representations were compared to the full-text representation. The
study showed that human labelers performed best in terms of accuracy and time when
using the key phrases representation.

In the following (section 6.1) the results of this thesis are discussed in more detail and
assessed for their generalizability. In section 6.2 directions to future work are given.

6.1 Assessment

This thesis answers the research question defined in section 1.1: Interactive visualization
can improve construction, understanding, assessment, and adaptation of classifiers. In
the following, the results of the experiments are critically discussed in detail.

Interactive Classifier-Agnostic Visualization: The identification of principles and lim-
itations for classifier-agnostic visualizations support the design of such visualizations.
The two implemented example visualizations show the applicability of these principles.
However, as no usability study has been done, the implementation might not be optimal
in terms of ease-of-usage.

The performed experiments show that these two visualizations can help experts to assess
and understand arbitrary classification models for text classification tasks. However, the
visualizations do not support the feature level, because this can not be addressed in a
classifier-agnostic way. Thus, the knowledge that can derived when using these visual-
izations is limited. Further, the known limitations of visualizations apply: (i) Because
color-coding of classes is used in the visualization, the number of classes that can be
distinguished by the human eye is limited [Hea96]. (ii) Due to limitations of the display
space and the resolution of displays the number of visuals that can be displayed without
cluttering effects is limited. The results suggests that, visualizations can help experts to
assess and understand classification models in various ways, but the expressiveness of
classifier-agnostic visualization is limited.

Tag Layout in Arbitrary Convex Shapes: As prerequisite for the Voronoi Word Cloud,
a layout algorithm was developed. This allows the space-filling layout of tags or words
inside arbitrary convex shapes. Because this algorithm is a heuristic approach to a
NP-hard problem, it is not guaranteed to find optimal solutions. Although not being
necessarily optimal, certain properties of the layout are guaranteed, e.g, that the most
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important tags are laid out first. The results suggests, that the tag layout algorithm is
able to layout words in arbitrary convex shapes, but is not guaranteed to be optimal for
all parameter and data combinations.

Classifier-Dependent Visualization for Text Classification: The Voronoi Word Cloud
visualization represents an example of a visualization that addresses the feature-level for
the task of text classification. Combined with a specific text classifier, the visualization
shows, which features contribute to the classification model in which way and how the
trained classes relate to each other in terms of the features used by the classifier. For
text classification, the feature-space has usually thousands of dimensions. Thus, it is
not feasible to show the relevance of all features, but only the most important ones.
Further, the similarity layout of the classes only approximates the true similarity in
the high-dimensional space. Thus, insights derived from this layout can also only be
approximations. The results suggests, that the Voronoi Word Cloud visualization can be
used to asses certain aspects of the internal model of the Class-Feature-Centroid (CFC)
text classifier.

Interactive Data Visualization for Generating Classifiers: This work proposes an ap-
plication to generate classifiers from a visualization of the data. The information land-
scape embedded in an framework can be applied by domain experts to create classifiers
from scratch (using arbitrary classification algorithms). The application has been de-
ployed in two companies, however, as no extensive user study has been done, it can only
be argued that users benefit from this kind of classifier creation. The results suggest,
that the information landscape as unsupervised data layout embedded in an interactive
application allows domain experts to generate classifiers from scratch.

Concept of Visual Active Learning: The concept of Visual Active Learning is pro-
posed as an extension of classical active learning. Experiments using the developed
classifier-agnostic visualizations show that classical active learning is – at least for the
tested combinations of classifiers and data sets – outperformed by Visual Active Learn-
ing. This finding points toward the beneficialness of integrating the user in data mining
processes. However, due to the complexity of the experimental space (data sets and clas-
sifier combinations, various runs for each combination), the findings are mostly based
on simulations that model user behavior. We can only assume that experiments with
trained users would lead to the same conclusions. The experiments compared Visual
Active Learning and classical active learning in a classifier-independent way. We can
not conclude that classical active learning strategies tailored towards classifiers are also
outperformed by its visual pendant. The results suggests, that Visual Active Learn-
ing with the Class Radial Visualization outperforms classical classifier-agnostic active
learning and performs never worse than random sampling.
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Evaluation of Text Representations for Faster Labeling: For the purpose of minimiz-
ing the time required to generate training data for text classification key phrases and
key sentences were identified as alternative text representation forms. This approach
minimizes the time required to label single documents and can be easily combined with
approaches minimizing the total amount of training data, like active learning. The ex-
periments show, that the key phrases representation allows users to accurately and fast
label training data. The user study was performed on a German data set for the task
of topic detection. It is likely, that the key word extraction approach would have to be
adapted for other tasks, e.g. sentiment detection. The results suggests, that the key
word representation allows users to accurately and fast label training data for the task of
topic detection.

6.2 Directions for Future Work

In this work we presented evidence that it is beneficial to include the user in the processes
of generation and adaptation of classifiers using visualizations. On the one hand, better
performing classifiers can be created more efficiently using domain knowledge of the user.
On the other hand, users might get the chance to better understand and eventually trust
the automatic methods. The main directions for future work that can be concluded from
the discussion in the last section are the following:

This thesis focuses on single-label classification problems. Especially, text classification
problems are inherently multi-label problems. Although multi-label problems can always
be reduced to multiple single-label problems on the algorithmic side, it needs to be
investigated how generalization can be achieved for visually supported classification.

In this work we only partially exploited the potential of visualization techniques. Further
extensions include multiple coordinated views [WBWK00] combined with brushing and
linking techniques. For example, the Confusion Map could be extended such that by
clicking on a cell the corresponding items are shown – either in a pure data visualization
or in highlighted in the Class Radial Visualization. This might support further insights
to why some classes are confused by the algorithm.

Furthermore, the technique of lasso selection implemented in the information landscape
can be applied to the Class Radial Visualization. Lasso selection would give users the
possibility to select and move multiple items at once and thus, to faster generate labeled
data. However, this would also imply an adaptation of the classifier generation strategies,
because items belonging to different classes would likely be moved together. A natu-
ral possibility to address this issue would be the implementation of multiple-instance
learning [Bab08] techniques.

Extended users studies would allow to (i) strengthen or extend the experimental findings,
and (ii) assess usability aspects of single visualizations and the prototypical applications.

162



List of Abbreviations

ANN Artificial Neural Network.

BM25 Okapi BM25 ranking.

CCA Curvilinear Component Analysis.

CFC Class-Feature-Centroid.

EDA Electronic Design Automation.

FDP Force-Directed Placement.

FN False Negatives.

FP False Positives.

KNN k-Nearest Neighbor.

LDA Linear Discriminant Analysis.

MDS Multi-Dimensional Scaling.

MLP Mulit-Layer Perceptron.

NB Naive Bayes.

PCA Principal Component Analysis.

POS Part-of-speech.

SVM Support Vector Machine.
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List of Abbreviations

TF-IDF Term Frequency - Inverse Document Frequency.

TN True Negatives.

TP True Positives.
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