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Abstract 
 
In this work we introduce the approach for an interpretation of a large variety of 
streetside image datasets. We suggest the complete workflow, starting with a single 
image, or with large datasets of aligned and matched images and finishing with 
semantic information about the scene, sufficient to reconstruct façades of buildings and 
other principal areas.  We present a set of state-of-the-art algorithms which tackle 
different problems with streetside image processing. Each algorithm presents 
innovations and focus on the two primary aspects – context and multi-view. We 
suggest that our dataset domain (streetside images) present an opportunity to 
understand the context and its impact on object detection/recognition. Urban scenes 
adhere to an inherent organization of man-made objects; therefore contextual cues 
contribute in an analysis effort. In several different algorithms described in this work 
we utilize these contextual relationships using global graph models. We examine 
different Random Fields models, present several applications of the context and in the 
final chapter we introduce a new global model for a multi-view scenario. 
Our second focus of research is a multi-view, or « redundant » dataset. We not only 
extend algorithms (semantic segmentation, window detection, façade separation) into a 
multi-view scenario but also examine different organizations of datasets, consider 
different sources of multi images (industrial datasets, crowd sourcing) and suggest 
specific approaches for different multi-view scenarios. We compare single and multi-
view results for each algorithm and different scenarios of multi-view datasets 
processing.  
Problems of streetside image processing and analysis are currently a focus of many 
research teams [Simon et al., 2011], [Agarwal et al., 2010], [Müller et al., 2007]. Our 
work is specific in providing a complete workflow, addressing many problems that are 
present in this domain, but also our focus on two specific aspects provided us with an 
opportunity to contribute into the field with new ideas. We achieve approx. 93-97% 
precision in semantic segmentation of principal areas in streetside photos (building, 
roof, sky, road, vegetation...), up to 97.1% precision is segmenting specific façades 
and approx. 96% detection rate for façade elements in average. 

  
 



 
 

Kurzfassung 
  
In dieser Arbeit stellen wir den Ansatz für eine Interpretation von einer Vielzahl von 
Datensätzen von Straßenbildern. Wir schlagen den kompletten Workflow vor, 
beginnend mit einem einzigen Bild, oder mit großen Datenmengen von Bildern 
ausgerichtet und aufeinander abgestimmt und endend mit semantischen Informationen 
über die Szene, die ausreicht, um Fassaden von Gebäuden und anderen wesentlichen 
Bereichen zu rekonstruieren. Wir präsentieren eine Reihe von topmodernen 
Algorithmen, die unterschiedliche Probleme mit Bildverarbeitung angehen. Jeder 
Algorithmus präsentiert Innovationen und konzentriert sich auf beide primären 
Aspekte - Kontext und Multi-View. Wir schlagen vor, dass unser Datenbestand-
Domain (Straßebildern) präsentiert die Möglichkeit, den Kontext und dessen 
Auswirkungen auf Objekterkennung / Anerkennung zu verstehen. Stadtbilder halten 
die inhärenten Organisation von Menschen geschaffenen Gegenständen ein und helfen 
den kontextuellen Regeln bei der Analyse. In dieser Arbeit beschreiben wir in 
verschiedenen Algorithmen diese inhaltlichen Zusammenhänge mit globalen Graphen-
Modelle. Wir prüfen verschiedene Random Fields Modelle, präsentieren mehrere 
Anwendungen des Kontexts und im letzten Kapitel führen wir ein neues globales 
Modell für ein Multi-View-Szenario ein. 
Unser zweiter Schwerpunkt der Forschung ist ein Multi-View oder «Redundanter» 
Datensatz. Wir Erweitern nicht nur Algorithmen (semantische Segmentierung, 
Erkennung von Fenstern, Fassaden-Trennung) in ein Multi-View-Szenario, sondern 
prüfen auch verschiedene Organisationen von Datensätzen, betrachten verschiedene 
Quellen von mehreren Bildern (Industrie-Datensätzen, Crowd Sourcing) und schlagen 
spezifische Ansätze für verschiedene Multi- Szenarien vor. Wir vergleichen Einzel-
und Multi-View-Ergebnisse in jedem Algorithmus und verschiedene Szenarien der 
Multi-View-Datensätz-Verarbeitung. 
Probleme der Straßenbildverarbeitung und analyse sind derzeit ein Schwerpunkt vieler 
Forscherteams [Simon et al., 2011], [Agarwal et al., 2010], [Müller et al., 2007]. 
Unsere Arbeit ist spezifisch bei der Bereitstellung eines kompletten Workflows, 
Adressierung an viele Aspekte, die gegenwärtig in diesem Bereich sind und fokussiert 
sich auf zwei spezifische Aspekte, die uns die Gelegenheit bieten, in das Feld mit 
neuen Ideen beizutragen. Wir erreichen ca. 93-97% Präzision in semantischer 

  
 



 
 

Segmentierung der wichtigsten Bereiche in Strassenbildern (Gebäude, Dach, Himmel, 
Straßen, Vegetation ...), bis zu 97,1% Präzision bei Segmentierung von spezifischen 
Fassaden und ca. 96% Erkennungsrate für Fassadenelemente im Durchschnitt. 
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Chapter 1 
 
 
 
 

Introduction 
 
 

1.1     Motivation 

In the modern world, the urban environment is a place where majority of human 
population spends most of its time and where the Internet has the greater impact. 
“Virtual Earth”, the virtual habitat and virtual cities are concepts that have a very short 
history of approximately 10 years and imply the evolution of 3D models of urban 
environments [Kimchi, 2009], [Leberl, 2003]. Their creation would be exceedingly 
costly were it not possible to automate. Scene understanding and object recognition in 
such an environment has become essential for many computer vision algorithms 
applied in this domain. However, even rapid progress in computer vision has left 
recognition task a challenging problem. The best algorithms today cannot compete 
with a human vision in a scene understanding. A possible reason for this is that in a 
human vision, object recognition is a global process. In computer vision, many 
algorithms are focused on a specific object class and tend to neglect overall context 
information in the image. Background information around such object is considered 
ineffective and gets removed. But in a human vision, background and contextual 
information play a major role in a recognition task [Oliva and Torralba, 2007]. It is 
therefore suggested that the context is a basic improvement of a successful recognition 
algorithms [Heitz and Koller, 2008], [Rabinovich et al., 2007].  
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Figure 1.1: Evolution of Microsoft’s environment mapping projects. (a) satellite 
image (b) bird’s-eye view (c) virtual earth (d) streetside view. In each of iteration a 
level of detail and data interpretation has increased. Currently, Microsoft abandoned 
the 3D modeling of cities and uses 3D only in the street level presentation. Aerial view 
has evolved from 2D (a) into 3D (c), however the streetside view is still composed of 
geo-registered 2D images (textures) arranged in a 3D structure of the scene and not 3D 
models (images show New York center) [Bing Maps, 2011]. 
 
For example, many pedestrian detection algorithms do not account for the fact that all 
pedestrians are walking on a ground plane [Liping and Wentao, 2009], [Huang et al., 
2010]. This approach is based on the assumption that objects are defined primary by 
their visual features. But for example, windows can be defined as visual objects 
(frame, reflective surface, rectangular shape), or as objects in a context of urban 
environment (objects at a façade plane, arranged in well defined, repetitive patterns). 
In visual-based recognition algorithms, it is sufficient to know the visual features for 
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successful recognition, which is often an easier approach. However, in a context-based 
approach, additional information about the scene needs to be extracted from an image 
(e.g. spatial/geometric relations, background classes…). The motivation to use 
contextual information came from the fact, that the urban environment has very strong 
geometric and utility organization. This organization was developed as a natural 
requirement during habitats construction and can provide effective cues for any 
computer vision algorithm working within this environment [Lee and Nevatia, 2004]. 
From the application point of view, our motivation is based on two computer vision 
efforts – Urban Modeling and Scene Understanding 
 
Urban Modeling 
An effort to map human surroundings has been present long before a digital 
photography was introduced. With the application of a digital image processing and 
computer vision come automation of the task with superior precision and utilization. 
Combination of terrain data and additional (e.g. geographic, municipal, utility…) 
information is known as the Geographic Information System (GIS) [Pidwirny, 2006]. 
An introduction of GIS into internet-hosted environmental models have been presented 
in geospatial internet mapping platforms like Microsoft Bing Maps [Bing Maps, 2011] 
(see Figure 1.1), or Google Maps [Google, 2012(III)]. In first iterations of such 
projects satellite/aerial images have been implemented and basic data interpretation 
has been introduced (e.g. roads, businesses). These platforms are now undergoing the 
transformation into 3D, human-scale environments – urban models. A demand for 
improved levels of detail, a quality of visualization and an introduction of novel 
applications lead to the need to interpret urban environments even further. Such 
interpreted data cannot only be stored in a compact form and thereby reduce the 
amount of data needed to be transferred through internet connections, but also 
represent the opportunity for users to build applications that would not be possible if 
the Internet maps were merely images. In the next iteration, mapping platforms utilized 
street-view models to cope with requirements for human scale details and an 
immersive experience of the internet user [Google, 2012(II)]. Subsequently, the 
demand for an interpretation at this level has arisen. In our work, we examine 
streetside data for the purpose of interpretation and extraction of information relevant 
for modeling.  
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          (a)      (b)     (c)      (d) 

Figure 1.2: Demonstration of the workflow described in Simon et al. for single-view 
3D modeling of building. (a) building façade, (b) shape grammar, (c) façade model, (d) 
street model [Simon et al., 2011]. 
 
Given the predefined geometry of urban objects, semantic information can also be 
used directly in a reconstruction process. [Hoeim et al., 2005] and more recently, 
[Simon et al., 2011] show how 3D models can be constructed from single image using 
a semantic segmentation or shape grammars (see Figure 1.2). In our work, we focus a 
large portion of the research on the interpretation of façades and façade’s elements, but 
we also provide general information about most of the street level image’s areas. 
Building façades are objects of major importance in streetside view scenes and as such, 
the primary targets of many urban modeling efforts. Due to a large amount and variety 
of data, interpretation process has to be fully automated and robust as the results would 
be unaffordable. 
 
Scene Understanding  
Many applications of computer vision algorithms working in an urban environment 
could benefit from the scene understanding. When the context information about a 
scene is available as an a-priori knowledge, surveillance, traffic control, or tracking 
algorithms could better cope with problems like occlusions or false positive detections, 
even if a 3D model of a scene is not available, or implemented [Perko and Leonardis, 
2008]. Interpreted areas can remove false correspondences (e.g. from occlusions, sky, 
moving objects) using only context information. Scene understanding is essential in 
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most automatic navigation algorithms (robot navigation, car driving assistance, 
automatic driving) [Correa, 2009], [Micusik et al., 2012]. In recent years, the demand 
for computer vision algorithms working in urban environments has greatly increased 
with the introduction of new generations of smart phones with digital camera and 
increased computational power. Many mobile applications such as photo processing, 
augmented reality or geo-location require a certain level of image understanding [Hays 
and Efros, 2008]. Such applications require fast and reliable computing with limited 
data. To meet these requirements, a context in an urban environment can play a crucial 
role. 
 
When considering such requirements, we decided not to focus on a specific element of 
streetside scenes, but instead introduce novel methods and approaches in a computer 
vision that work with a specific geometry and datasets of urban scenes. Such methods 
provide means to interpret streetside images in different detail levels - from general 
surfaces to façade elements.  

1.2     Urban Environment 

We can divide human habitats into rural areas and urban areas by the properties they 
exhibit [Census, 2012]. Rural areas are defined as low population density regions with 
specific type of buildings. Most villages and hamlets are considered rural areas. On 
contrary, urban areas exhibit large population density and are considered core 
population and economic activity centers within a larger metropolitan area. Urban 
areas can be further divided into residential, commercial and industrial zones (see 
Figure 1.3). Zoning has been introduced as an architectural paradigm during the end of 
19th century in Europe [Wikipedia, 2012]. Before this date, only naturally evoked 
zoning can be observed.  
Residential zones are areas, where most of population housing is concentrated. The 
most common building type is a residential building. We can identify different types of 
residential building as single family housing, multiple family housing (apartments, 
duplexes, town homes, condominiums) and mobile homes. As residential zones cover 
a majority of the urban space, it is important to perform more detailed analysis of this 
type of environment. 
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        (a)              (b)            (c) 

Figure 1.3: Examples of images from (a) residential zone, (b) commercial zone, (c) 
industrial zone. Notice different styles of buildings and different sets of objects 
(vegetation, pedestrian concentration, etc.) in each zone. Images obtained from Google 
search engine [Google, 2012(II)]. 
 
Commercial zones are areas, which provide a community with economic resources. 
The majority of buildings in the commercial zones are business oriented. We can 
identify retail business buildings, wholesale/distribution oriented buildings, financial 
establishments and offices. Commercial zones generally cover approximately 5% of an 
urban area.  
Industrial zones are areas with concentrated industry infrastructure. Factories, 
manufacturing plants, storing depots, light industry buildings and offices are 
commonly located in industrial zones. 
 
Additionally, specific building types may vary due to a historical context, when the 
building was build. Many European cities have a historical centre, where most of 
buildings were preserved from several centuries ago. Compared to this, modern 
architecture buildings, even with the same function as historical ones, may exhibit very 
different visual features. Therefore, it might by useful to establish some kind of 
historical and location context before we will attempt any kind of façade element 
detection or recognition.  
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           (a)            (b) 

Figure 1.4: The examples of building façades. Each “façade” is marked with a 
different color. In the first picture (a) building is composed of several façades – each 
façade is limited by (projected) corners of the building. In the second image (b) several 
buildings are present, each displaying one façade. In both examples, there are other 
façades present that are not clearly visible, thus are unmarked. In both images, 
occlusions (from vegetation, car…) to the façades are disregarded. Such occlusions are 
not considered to be parts of façades from the definition. 

1.2.1     Definitions 

In our work we refer to several specific terms extensively. In this section, we present 
the definitions for such terms. 
 
Streetside Image – A digital image obtained from a street level in an urban 
environment. In general, such image is obtained by a human agent, or an automated 
system, using a digital camera with optical axis roughly parallel to the ground (± 30 
degrees). We also assume such image is properly aligned (sky on the top, ground on 
the bottom). Streetside images are our primary application domain. 
 
Façade – In the general definition, a building façade refers to one side of a building 
(usually a front side). Given such definition, we apply this term for a section of 
building bordered by two vertical building corners (see Figure 1.4 (a)). If buildings are 
connected to each other, we consider a corner to be located at the border between two 
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buildings (see Figure 1.4 (b)). Therefore, buildings can be sectioned into several 
façades vertically, but we do not consider horizontal sections – in all cases façades 
stretch form the ground to the roof, or to the building tops. A roof is not part of a 
façade and is considered a different object class. In digital images, the term “façade” 
refers to an area of an image, where a building façade (as defined before) is projected. 
We often refer to such area as a “planar façade” (or a façade plane), where the term 
“planar” refers to the shape of a building – as such area represents roughly a line in a 
floor plan. Therefore façades can be referred to as planar even if the actual building 
façade is not and does contain non-planar reliefs (e.g. pillars) or sections (e.g. opened 
windows).  Such non-planar elements are usually approximated in a final application, 
if the 3D information is available. 
This definition of “façade” can be extended in our work, if the application requires it. 
For example, if the façades are required to be rectified, this requirement is presented in 
the introduction for such application and from that point on the term “façade” refers to 
a rectified façade. 
Note that the term “façade” is different from the term “façade class”, which refers to 
all areas in the image projected from any façade. Therefore there can be several 
façades in the image, but only one façade class. 
 
Façade elements – This term refers to any coherent object that is located on a façade 
and is part of it (window, ornament, relief…) or was added to a façade (shop sign, 
paintings…). In general, façade elements are considered parts of a façade in our work. 
All façade elements except windows are considered as parts of the façade class (this is 
due to the specifics in hand labeling of our ground truth). As this is not always the case 
in other methods and applications, we refer to this problem in discussion sections for 
specific methods. Complementary, parts of the façade that are not façade elements 
(such as an areas between windows) are referred to as “façade area”. 
 
Circulation space – Refers to a section of ground in urban environment that is not 
vegetation and serves a transportation purpose in general (e.g. roads, pavements). The 
term “Circulation space elements” refers to integral parts of such areas, such as traffic 
lights, poles, sidewalks, parking lots, etc. 
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Context – A high level, non-visual information about a projected scene is denoted as 
context. Contextual information describes relations (semantic, geometric, temporal, 
etc.) between objects in the scene. In our work, we use either geometric relations 
between objects to help in classification (e.g. windows are arranged in rows and 
columns), or semantic relations to limit search area for detection algorithm (e.g. 
windows are located on building façades).  The term “local context” indicates that only 
a limited section of an image was examined for contextual cues, whereas if the term 
“global context” is used, entire image area was considered for contextual cues. For a 
more detailed context definition, see Section 3.1. 
 
Multi-View – Is a notion that point towards a presence of a dataset containing a 
number of overlapping and matched images of the same scene. A “multi-view 
scenario” indicates that such dataset was used in a process, whereas a “single-view 
scenario” indicates a dataset with unmatched images.  In our work, matching in a 
multi-view scenario was achieved either through 3D point clouds, LiDAR, or a manual 
labeling. 
 
Industrial System Dataset (IS) – A dataset created by a professional camera setup, 
designed for an urban environment mapping. Such system is generally mounted on a 
vehicle and supplemented by additional sensor data, such as LiDAR, or a GPS. Several 
camera sensors with a fixed geometry are used for taking images while the vehicle is 
moving. The example of such system is given in Section 3.5. 
 
Crowd Sourced Dataset (CS) – A dataset composed of images from different users, 
usually equipped with different, amateur, hand-held cameras. Images were collected 
without the intention for an urban mapping application. Such datasets are located at 
open online image hosting sites e.g. [Flickr, 2012], [Photobucket, 2012]. Images are 
unorganized; geo-tagging, camera calibration, or image labeling can be missing. 

1.3     Framework for Urban Modeling 

In this section we propose a framework for processing streetside image data. Our goal 
is to start with a single image or a stack of multiple images and end up with a semantic  
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Figure 1.5: Framework diagram describing the workflow in more details. Red – input 
data, blue – involved methods, green – output data.  
 
model of a scene. Our focus is to provide not just data for 3D modeling, but also 
labeling and descriptions of the scene and objects involved. The workflow is 
visualized in Figure 1.5.  Three main lines of method-output chains represent tree main 
steps of framework which is described in separate chapters of this work – semantic 
segmentation (Chapter 4), façade separation (Chapter 5) and façade elements 
detections (Chapters 6 and 7).  
Workflow can be described in following steps: 
 
Algorithm 1.1 
 

Input: single streetside image, or a stack of multiple images with additional data 
for matching; 
1. Identify principal areas in the image and label them into classes – façade class 

(building), roof, vegetation, ground, grass area, sky, cloud, shadow and 
unidentified; 
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2. Identify separate façade in the image; 
3. Detect and label façade elements; 
Output: Principal areas labeled, separate façades identified, façade elements 
detected. 

 
In each step, we consider separate cases for single and multi-view scenarios. We 
present novel methods, addressing existing problems in current applications. Our 
primary focus of research aims at the following: 
 

- Involvement of context in each step of the framework. We aim to address 
global rather then local context, giving us the advantage of superior input data, 
as we examine context between real objects, not artificial ones (like pixels or 
superpixels). 

 
- We examine the effect of redundancy (multi-view) for each algorithm we 

describe. We consider different means of image matching and different 
precisions of matching. The evaluations of the transition effect between single 
and multi-view is presented for each step. 

 
- We address two primary image acquisition methods for streetside imaging 

available – crowd sourced (community photos) datasets and industrial system 
datasets. We work with general images provided by arbitrary user with hand-
held camera as well as with datasets created by industrial environment mapping 
setups. We provide detailed comparisons and evaluations for both approaches. 

 
- We examine principal problems with each state-of-the-art algorithms involved 

in our research (e.g. locality of context in Random Fields model, limitations of 
Gradient Projection methods in complex façades) and provide solutions. 

 
We tested given framework on real-world data (see Figure 1.6), namely on three 
streets and one square of city Graz. Two of the streets were complemented with laser 
scanner data as a part of an industrial system setup. Images from the third street and 
the square were matched using a 3D point cloud obtained by visual matching methods.  
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       (a)    (b)           (c)    (d) 

Figure 1.6: Framework for a streetside dataset processing presented in the example. 
(a) original images from a streetside dataset, (b) semantic segmentation of principal 
areas (each area label is coded with color, e.g. dark green for the façade class), (c) 
separate façades identified in each image, (d) labeling of façade elements for each 
façade. Element’s class is coded with color (for explanation of color codes, see Figure 
7.4). Each step uses results from a previous one as an input. Note that in each step, 
other images from a dataset are involved in a process to establish a multi-view 
scenario. In specific steps, other information can be involved in the process, such as 
3D point clouds, laser scanner data or GPS data for image matching and registration. 
Final façade elements’ interpretation is performed for each façade in each image, 
however involve information from all matched images. 
 
Altogether, we involved around 600 images in this workflow. The size of this dataset 
is largely limited by the need of hand-labeled ground truth involvement in the testing 
process. For a comparison with automated methods, appropriate parts of images had to 
be hand-labeled – a process that is unfeasible for larger, city scale dataset. However, 
there is no reason, why the workflow could not be considered in city scale situations. 
Required results can be provided primary for historical city centers of European cities, 
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as such buildings spot repetitive patterns in a form of multi store levels and columns of 
windows. The workflow is also suitable for stand-alone single houses, even they do 
not spot repetitive patterns. Such houses are not connected to different façades from 
either side, thus don’t need to be separated from other objects.  
Results given by workflow are semantic information about the scene. Pixel-wise 
labeling of images is achieved, where major areas are identified – namely façades, 
roofs, ground, vegetation, sky, clouds and grass areas. Subsequently, a façade class is 
further processed – individual façades are identified and façade elements are detected. 
Such results provide all necessary data for a procedural modeling of urban spaces and 
construction of shape grammas models, such as [Simon et al., 2011]. 

1.4     Challenges 

Objects in urban environments can be divided into two sets – temporal (pedestrians, 
vehicles, animals…) and permanent (buildings, vegetation, circulation spaces…). 
Urban modeling algorithms are focused primarily on permanent objects, as these 
provide essential information about an environment structure [Simon et al., 2011], 
[Müller et al., 2007]. Temporal objects in this case are mostly ignored and when 
present are considered occlusions (e.g. pedestrians occluding façades). This is due to a 
requirement for urban modeling to provide general information about the scene not 
bound to a specific timeframe. On the other hand, most scene understanding 
algorithms (surveillance, traffic control, tracking…) are focused on specific temporal 
objects and can use permanent objects only as contextual information [Perko and 
Leonardis, 2008]. As our focus is on the urban modeling applications, temporal objects 
are not considered our objects of interest.  
The problem of data interpretation from streetside images can be compared to the data 
interpretation from aerial images, as both works in a same urban environment and to 
the same goal. But the different points of view influence the scale, level of detail and 
overall composition of the scene. In recent years, there has been a fast progress in 
automated image understanding and reconstruction methods from aerial photographs 
[Zebedin, 2010], [Kluckner, 2011]. The main advantage of aerial data as an input for 
computer vision algorithms is that the objects of interests (e.g. roofs, façades) play 
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dominant role in a composition of an image and are usually less occluded by temporal 
objects than in a streetside view.  
The disadvantage is that at this scale, the level of detail of such objects is lower than in 
streetside images. For example, aerial cameras are limited by minimal flying altitude 
and resolution [Leberl et al., 2010(II)] (currently allowing to take images with 
resolution up to 3 cm/pixel), but streetside resolution can be arbitrary increased by 
closing the distance to the object to a required level. However, both the advantage and 
disadvantage make data processing in the domain of aerial data easier when compared 
to streetside data. In streetside images, the compositions of a scene are often more 
variable and the objects of interests are often occluded by temporal objects or 
vegetation. The viewing angle at the objects of interests and camera positions are more 
variable. The increased level of detail provides more challenge for visual algorithms.  
Because of these factors, a simple application of visual classifiers to process streetside 
data is insufficient and additional cues are included in the process:  
 

- In addition to present state-of-the-art methods, we also examine different 
sources of streetside images and evaluate the methods according to the 
organization of datasets (variation of viewpoints, additional data, etc.). Such 
evaluation provides information, which type and organization of dataset is most 
suitable for a specific urban environment. 

 
- We employ context to provide an additional source of information as a prior 

knowledge in computer vision algorithms. This approach (in contrast to purely 
visual-based methods) benefits from the increased level of detail in improved 
robustness -more details provide more context to work with.  

 
When processing data from urban environments, one must consider a different value 
(historical, cultural, social…) of different locations. Most urban modeling efforts are 
focused on generic urban locations (e.g. generic houses, shops, offices), but some 
specific locations, like monuments, historical buildings or landmarks require a special 
attention.  

  
 

14



 
 

 
Figure 1.7: A response to a “Rathaus Graz” query in Flickr – an open source image 
database. Notice several images with a good point of view at the actual Rathaus 
building, providing a good source of information, but also some mislabeled images in 
the set (e.g. group of people) [Flickr, 2012]. 
 
Therefore, for generic locations, the industrial systems designed for general urban 
modeling and mapping provide sufficient information, but for special locations, we 
must search for additional sources of data. As the possible source of information, we 
examine the crowd sourced datasets. For important urban locations, there usually 
exists a large number of images located on online image hosting sites [Flickr, 2012], 
[Photobucket, 2012], [Picasa, 2012]. The primary problem with such datasets is the 
lack of organization (see Figure 1.7). Therefore, when working with multi-view 
scenarios, we examine two different strategies, each applicable for different levels of 
organization: 
 

- Interpretation first, matching second. In this strategy, we first apply computer 
vision algorithm in each image in a stack separately (as if working in single-
view mode). Subsequently, we match the interpreted images, and improve 
interpretation according to the matches. This strategy is useful, when the 
matching data is insufficient to match point-to-point (sparse 3D point cloud) or 
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inaccurate. In this case we can match object-to-object or segment-to-segment, 
disregarding small inaccuracies in matching 

 
- Matching first, interpretation second is the strategy applicable, when the point-

to-point matching is available. In this case, we match images in a stack first. 
For each image pixel, we obtain a multi-dimensional vector consisting of data 
from corresponding pixels in other images. Subsequently, we apply vision 
algorithms on such vectors to interpret the data. The interpretation is enhanced 
by information from other images. 

 
Considering these two strategies, we describe which is more suitable for a specific case 
(input data), apply it in our algorithm and provide results. However, our final goal in 
this work is to introduce more universal methods, which will be applicable in generic 
situations. Therefore, we modify the Conditional Random Field approach [Lafferty et 
al., 2001] (as a standard method of context application in most vision algorithms) to be 
applicable directly in a multi-view scenarios in Chapter 7. This method can not only 
transfer visual data between images in a stack, but also examine the context 
information between images and transfer context information from one image to 
another. Such approach is especially useful for images with objects in different scales. 
For example, in one image an object is projected from close distance, providing good 
visual cues for interpretation, but lack the context from other objects. Another image 
projects the same object from a longer distance, giving good contextual information, 
but low level of details. Transferring context/visual information between images can 
lead to improvements in interpretation in such cases.     
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Chapter 2 
 
 
 
 

State of the Art in Urban Modeling 
 
 

2.1     Introduction 

Our work is focused on the interpretation of urban scenes; however from the 
application point of view it is necessary to understand different aspects of urban 
modeling first. The ultimate goal of urban modeling is to approximate real world data 
as precise as possible. To this end, we must examine the collection of real world data, 
it’s representation in a digital format and applications that use such data. In this 
chapter, we describe the state-of-the-art in acquisition of digital data used for a 
construction of Geographic Information Systems (GIS) and 3D models of urban 
spaces. We describe parameters and methods for processing of satellite and aerial 
imagery, terrestrial vehicle-based industrial systems, crowd sourced open data 
collections, video feeds, micro aerial vehicle systems and laser rangefinder scanners 
(LiDAR). Subsequently, we describe how data is processed into a 3D representation 
and interpreted. 
However, before we start with the data processing methods, we introduce a brief 
history and trends in a GIS modeling as an exemplary application in Section 2.2. This 
will allow us to better explain what data are relevant for urban modeling and why a 3D 
representation and data interpretation is important. 
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Section 2.3 describes different data sources and Section 2.4 presents methods for 3D 
information extraction from such sources in a form of 3D point clouds. 
In the Section 2.5 we show, why the interpretation is useful for visualization, data 
handling and implementation of user applications. We describe standards in modeling 
(defined as level of details- LOD) and basics for procedural modeling in a form of 
shape grammars. We also give the set of objects that are relevant for interpretation in 
an urban environment. We describe, why terminal and non-terminal objects require 
different approach for interpretation and what are the most common methods in use. 
An introduction to semantic segmentation is presented and different area 
representations are described. In the subsequent section, we also provide a more 
detailed overview for façade processing methods (with emphasis on gradient 
projection methods), as they are the most relevant to our research. 
In the last section, we provide the overview of the research community in the urban 
modeling and GIS construction field. We list and describe several commercial 
companies, research centers/groups and influential research journals that contribute to 
the field. 

2.2     GIS – History and Trends 

Advances in information technologies enabled and inspired the development of 
software for an analysis, storage and display of geographical data, currently known as 
Geographic Information System (GIS) [Pidwirny, 2006]. GIS can be broadly defined 
through its function: 
 

- The measurement of natural and human made phenomena and processes from 
a spatial perspective. These measurements emphasize three types of properties 
commonly associated with these types of systems: elements, attributes, 
and relationships. 

 
- The storage of measurements in digital form in a computer database. These 

measurements are often linked to features on a digital map. The features can 
be of three types: points, lines, or areas (polygons). 
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-  The analysis of collected measurements to produce more data and to discover 
new relationships by numerically manipulating and modeling different pieces 
of data. The depiction of the measured or analyzed data in some type of display 
- maps, graphs, lists, or summary statistics.  

 
The first predecessor to a modern GIS is considered to be a method of 
Photozincography [James, 1806], introduced in the nineteen century. Using this 
method, maps of the Earth surface were separated into several layers, each containing 
different sets of objects (roads, vegetation, water…). However this method is not 
considered GIS, since it did not provide any additional native functionality. 
First true GIS in operation was the Canada Geographic Information System (CGIS), 
developed in 1964 as the project of Rehabilitation and Development Agency Program. 
System was designed to regulate the land use and for resource management monitoring 
[Tomlinson, 1967], [Fisher, 1972]. In 1964, the Harvard Lab for Computer Graphics 
was established by Howard Fisher, where a research on GIS was centered. Several 
systems were developed, including SYMAP (Synagraphic Mapping System), 
CALFORM, SYMVU, GRID, POLYVRT, and ODYSSEY [Pidwirny, 2006], 
providing the basis for further industrial and government projects. In these early 
stages, two data models were considered in a competitive manner – a vector data 
model that represents stored data as a set of lines (useful for representing boundaries, 
roads…) and a raster data model where a grid is placed over a terrain and data are 
represented as part of each cell (useful as area descriptors). Later systems implemented 
both models for different data structures. Subsequently, a methodology was developed 
for the geospatial data handling and the standardization was introduced. In particular, 
standardization was presented by the Open Geospatial Consortium, in a form of 
OpenGIS specification [OGC, 2012], enabling geo-information on the internet. Such 
standards allowed GIS to evolve into its modern form – internet hosted large scale GIS 
applications. The functionality of GIS was also extended, from a simple descriptive 
query to spatial map analysis. This was allowed due to a numerical representation of 
spatial information and the introduction of a new mapping theory in a form of spatial 
statistics and spatial analysis [Godchild, 2002].  
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Figure 2.1: The example of volumetric data in the 3D GIS – shadow maps of 
buildings, that allows to visualize for the shadow effect of proposed building on 
neighboring buildings. This image is presented by the ArcGIS 10 application [ArcGIS, 
2012]. 
 
First GIS models were represented in 2D and as such had some limitation in 
visualization as well as in applications. Notably, noise prediction, water flood, air 
pollution and geological models require the third dimension for computation. Other 
fields that could benefit from introducing GIS into 3D are urban and landscape 
planning, environment monitoring, telecommunications or real estate market [Stoter 
and Zlatanova, 2003]. The rapid progress in development of 3D GIS circa decade ago 
was initiated from the one side by such market requirements and from the other side by 
improvements in 3D data collection techniques and sensors (aerial and close range 
photogrammetry, laser scanners, GPS…) as well as new hardware technologies 
(increase in storage space, faster processors and GPU computing). 
The first step into the third dimension represents concept of 2.5D GIS, where the 
height information has been added for each terrain point. This is generally known as 
Digital Elevation Model (DEM) [Zhilin et al., 2005]. However, it is still a general 
model of a surface, as no objects are usually semantically identified. Even the semantic 
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interpretation is not present, additional functionality can be implemented, such as 
increased range of measurements and new topological models. Height (elevation) 
information can be represented as a surface model (see Section 2.4.1 for more details), 
or when triangulation, such as Delaunay triangulation [Delaunay, 1934] is applied, a 
wire-frame model [Koch and Heipke, 2005].  
The transition of a GIS into 3D requires identification of objects as volumetric models. 
For this purpose, an urban modeling research field was developed. 3D modeling of real 
urban objects can be done in several ways, such as binary raster (voxels either belong 
to the object, or not), subdivision of space with an octree, or using constructive solid 
geometry in a form of geometric primitives. Such representations allow for volumetric 
measurements such as hydrogeological simulations and others (see Figure 2.1). Given 
an urban modeling, 3D GIS allows for interpretation of urban structures, such as 
buildings, or more detailed circulation spaces.  
In current models, time parameter is commonly represented as a set of map layers that 
can be animated to display changes, e.g. in terrain data. Extending this concept, time 
can be added directly into a model as a fourth dimension in a 4D GIS application. This 
would allow for additional functionality, such as predictive modeling [Van Ruymbeke 
et al., 2008].  
However, most of first 3D GIS platforms required manual work for construction. It 
soon become clear, that given large volumes of data and the extension of urban 
reconstruction into a global level would raise the cost of projects significantly, due to a 
costly (financial and temporal) manual input. The need for automation has risen as an 
answer to this problem. Difficulties with automated workflows were tackled with the 
increase in data redundancy on one side and the improvement of data processing 
hardware on the other. These circumstances enabled current interest in urban modeling 
research in computer vision and graphics communities and led to an expansion of GIS 
applications to many aspects of our personal life.  
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Figure 2.2: Two examples of augmented reality applications in an urban environment. 
Left – commercial apps for smartphone or tablet users use augmented reality for 
navigation, information retrieval or assistance (the image is a design concept by Mac 
Funamizu [Funamizu, 2012]). Right – industrial use of augmented reality in a form of 
AR scout device [ICG TUGRAZ, 2012]. 

2.2.1     Trends in GIS and Urban Modeling 

In recent years, GIS has moved from several highly specialized industrial professionals 
to a common every-day user - to our smartphones, tablets and laptops. Such rapid 
development opened new fields of research and greatly stimulated and increased GIS 
research. For example, U.S. Department of Labor identified “Geotechnology” as one 
of the three “mega-technologies” of the 21

st 
century, together with Biotechnology and 

Nanotechnology [Berry, 2012]. New and exciting developments in several related 
technological fields show us some possible trends in GIS and Urban Modeling. The 
boom of camera phones and the reality of broadband internet connection worldwide 
introduced the phenomena of an internet hosted media. Currently, around 22% of 
mobile internet traffic is taken by YouTube videos [IBTimes, 2012]. Similar 
development is observed in digital photography in a form of open community photo 
collection, such as Flickr, where around 5 million digital photographs are uploaded 
daily [Scribbal, 2012], many containing useful urban data. It has become clear that 
such data source cannot be ignored and research in data acquisition and processing 
from community photo collections is currently under intensive research [Gösele et al., 
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2010]. A common requirement is a fully automated workflow, as the sheer volume of 
data would make any manual input unfeasible [Leberl and Gruber, 2009]. 
However, this process is also working the other way around. Current smartphones with 
enhanced computational capacity and internet connection are able to provide additional 
services in urban navigation for a user. Coupled with a GPS system, such combination 
represents a navigation device, which can present users with required information 
about surroundings (e.g. close restaurants, offices, tourist attractions…). This moved 
GIS applications to mobile platforms, with different paradigms of visualization, 
processing, and input formats.  
Such development is also important for professional applications in urban 
environments, such as urban planning, municipal community services or critical 
situation management, where professionals can visualize important location-based data 
directly in the field (see Figure 2.2). These requirements are pushing towards the 
augmented reality in mobile devices that allows visualizing hidden data, such as 
underground pipelines in a real urban background. 
Combination of mobile smartphones with GPS devices, internet hosted services and 
the availability of information about local businesses has led to the introduction of 
term Location-Aware Internet. This concept makes location based search function 
available and allows displaying user relevant data [Leberl, 2008]. Such transformation 
of GIS applications from professionals to everyday user is fueling more research into 
human-scale urban models and risen the need for indoor models. However, it had also 
changed the paradigm for general GIS construction and use. Up to this point, GIS were 
used strictly in a professional environment and as such were designed to work on an 
optimal “scientific solution”. Opening a GIS application to a new, different market – 
everyday users raised a need for implementation of different parameters to find “social 
solution”. This has extended a set of measurements from strictly physical parameters 
to more indefinable variables, such as human values, attitudes, trust, etc. It has also 
opened a question, how to present users with relevant data such that they will be 
accepted. In general, a user has to fell like a part of the model – be provided with an 
immersive experience. 
This model can transform even further into the concept of “Internet-of-Things” 
[Ashton, 2009], where important objects in real world will be catalogued, using 
wireless technology, such as RFID chips [Weis, 2007] and the location awareness for 
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human surroundings will be established. Cataloguing has to be in a human-scale, in 3 
dimensions and with accuracy ± 10 cm range [Leberl, 2010]. In such model, 
computing, sensing and connecting will extend to all aspects of human presence. This 
model can be denoted as an Ambient Intelligence.  
Given the requirement to model urban environment at the worldwide level, one has to 
consider the amount of data to be processed. When the standard redundancy of an 
aerial photography is set to 10 images per object, streetside mapping at 40 images per 
structure and 100 images per interior, the final volume of data would be around one 
exabyte [Leberl, 2010] and additional data have to be collected for upkeep. Such 
volumes would put strong constrains on work automation and time efficiency of 
processing. 

2.3     Image Data Sources 

We divide relevant data sources into three groups: 
- Above ground group for satellite (orbital platforms) imagery and aerial data 

(aerial vehicles with the altitude in order of hundred meters). Such data sources 
are used to generate orthophotos, surface models, or basic object models for 
urban spaces; 

- Streetside group for user collected photos, vehicle based industrial systems, 
micro-aerial vehicles (even factually an aerial platform, data output is more 
related to the streetside group); 

- Underground mapping for a below-ground data acquisition  

2.3.1     Satellite/Aerial Imagery 

Satellites with digital camera apparatus present fast mean to cover large areas of 
Earth’s surface and it was initially available quickly and globally.  
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Figure 2.3: The aerial eight-lens UltraCam with storage and processing unit. Four 
panchromatic sensors are arranged linearly along the flight direction (left). Method of 
stitching the input from different sensors triggered sequentially into one large image 
(right) [Leberl et al.,  2010(II)]. 
 
However, the subsequent effort to interpret and reconstruct objects of interest in a 
human scale from such digital data proved to be problematic. This is due to a 
resolution of satellite images at a pixel size in a 50 cm range – a resolution that is 
insufficient for a modeling task. This limitation is largely present due to the 
government restrictions on satellite imagery. Plans for a new – 30 cm resolution 
sensors are scheduled at mid 2014 to be put into service as a part of WorldView-3 
project [SatImagingCorp, 2012]. The 3D modeling effort is also hindered by a low 
geometric variety of the projections, as the optical axis of a satellite cameras are nearly 
orthogonal to the Earth’s surface, preventing disparity measurements for 
corresponding points, but also limiting side views at objects like building façades. 
However, satellite images (as well as aerial images) are used to generate an orthophoto 
by warping the input images on a reference surface [Oda et al., 2004], [Gruber, 2011]. 
This type of image is geometrically rectified such that it can be superimposed on the 
planar map of the region which can provide labels for objects such as roads, or 
landmarks. The combination of such information represents a GIS generated by an 
automatic interpretation of geographic data. To this day, satellite imagery for 
orthophoto generation and other user application is still feasible in the areas of globe, 
where aerial imagery is restricted or denied.  
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Problems observed with satellite images are mostly avoided in a modern, high 
resolution aerial photography. Most common aerial platforms today are propeller 
aircraft flying at the low altitude, equipped with a camera system. These were 
traditionally equipped with film cameras, providing a stereo view of the earth surface. 
However the low level of redundancy and the quality of film made the automation of 
work problematic. This resulted in a high (linear) cost per photo processing as the 
manual processing was involved and made large scale reconstruction efforts 
unfeasible. The situation changed with the introduction of modern large format aerial 
digital cameras and low cost, high capacity data storage system in 2003.  Current aerial 
cameras, such as UltraCam  (see Figure 2.3) provide a pixel size at 3 to 15 cm 
(considered a human scale), multiple area charge coupled devices (CCD) and up to 
eight separate lens [Leberl et al., 2003]. The data is parsed in RGB color and infrared 
channels at 13 bits per pixel. Such data provide superior resolution and depth when 
compared to satellite images. For 3D modeling and reconstruction efforts, the increase 
in redundancy and more variable point of views are similarly important than the 
increase in resolution.  
In a current typical aerial dataset provided by such camera, an object point is 
commonly located at ten or more images. When compared to traditional film 
photogrammetry maps (where object was located in a stereo pair), such increase in 
redundancy is shown to improve the accuracy of measurements by a factor of six as 
demonstrated by systematic error measurements of UltraCam dataset compared to a 
traditional stereo pair [Ladstätter and Gruber, 2008]. This level of redundancy is 
achieved by a high overlap present in a dataset – 80% in a direction of flight and 60% 
sideways, practically at no additional cost. Due to the lower attitude of a plane, each 
object is projected from several different view points, providing views at the sides and 
diminishing the effect of occlusions. The increase in data output (from 260 Mbytes per 
traditional film photograph to 1.6 Gbytes per digital photo) and redundancy level 
resulted in large volumes of data [Leberl et al.,  2010(II)]. However the processing of 
such volumes comes to no additional cost in an automatic workflow, but the time cost. 
To this end, current applications use parallel GPU processors with embedded tolls for 
computer vision tasks that can process such quantities in a reasonable time.  
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Figure 2.4: R7 camera system currently in development by Google. System is 
composed of 15 small, 5 Mpix CMOS sensors [Anguelov et al., 2010]. 
 
In the future, aerial imagery resolution may increase up to the range of 2-3 cm per 
pixel. This requirement may be motivated by advanced data collection application, to 
read signs on the façades, traffic signs, or suspended wires. Such resolution can be 
achieved with current technology, using 100 mm focal length camera mounted on a 
plane flying at 600 m altitude. Aerial dataset can be complemented with additional 
data from remote sensing devices, such as LiDAR (see Section 2.4.3), or 
Interferometric synthetic aperture radar (InSAR). Such devices provide additional 
height information in a form of a digital elevation and can be considered as an input 
for building an urban model [Bolter and Leberl, 2002].  

2.3.2     Street-Level Imagery 

Since the requirement for systematic mapping of an urban environment has been 
presented, camera systems based on a terrestrial vehicle (commonly van or car) has 
been became a commercial commodities as a platform for environment mapping. Such 
“industrial systems” (IS) are designed for collection of panoramic views, employing 
multiple centrally perspective cameras, sometimes fish-eyed imaging (catadioptric 
camera).  
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Figure 2.5: MAV system used for mapping of an urban environment (left) and the 
semi-dense point model obtained from refined sparse reconstruction from MAV’s data  
with original image from the scene (right) [Wendel et al., 2011]. 
 
Industrial systems are usually complemented with additional sensors, such as LiDAR 
and GPS positioning systems and are designed to map “street canyons” – sections of 
the urban environment closed from both sides by buildings. The structure of the 
camera system and the moving pattern of a vehicle provide high overlaps and view 
variation for building façades. Figure 2.4 displays an example of such camera system, 
currently in development by Google. This system is designed to capture wider sections 
of a scene, including more detailed street (pavement) and road sections, however it 
lacks fish-eyed sensors [Anguelov et al., 2010]. 
Comparatively to a systematic approach to an urban mapping, a significant source of 
streetside image data is present in online open image hosting sites and databases. 
Primary challenges in utilizing such data are the organization of crowd sourced dataset 
(missing camera calibration data and relative poses), selection of relevant images 
(missing geotagging, mislabeling of photos), photo quality and a volume of data 
[Snavely et al., 2006], [Frahm et al., 2010]. However, crowd sourced images are 
usually well focused on object details and abundant, mainly for landmark objects and 
city centers, for which can be seen as a significant source of digital data. As both 
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industrial system and crowd sourced datasets are primary sources of data in our work, 
we will present more details and examples in subsequent chapters. 
Alternative to a human agent, or vehicle based industrial systems, Micro Aerial 
Vehicles (MAV) (see Figure 2.5) have been proposed as a source of digital data for 
mapping of urban canyons and reconstruction for example in [Wendel et al., 2011]. 
Primary advantages are that MAV can provide more variable points of view of objects 
and access areas not previously accessible by a land based sources. Current MAVs can 
carry up to 1 kg of equipment (camera system, data storage unit, data processing) and 
stay in the air up to 15 minutes before landing for a recharge. In such a session, about 
5 GB of data can be collected for a scene reconstruction [Lionel et al., 2011]. 

2.3.3     Underground mapping 

Technology for an underground data acquisition has found important utilization in an 
urban environment. Human cities are supported by extensive underground 
infrastructure which is also relevant for many GIS-related applications, such as urban 
planning, risk control, etc. Several possibilities for underground mapping are available, 
such as Ground-penetrating radar (GPR). GPR is a nondestructive method that works 
in the microwave band of the radio spectrum, and detects the reflected signals from 
subsurface structures. GPR can be used in a variety of media, including rock, soil, ice, 
fresh water, pavements and structures. It can detect objects, changes in material, and 
voids and cracks. [Daniels, 2004].  GPR can collect a profile view of the subsurface in 
a one run, thus it can provide a 3D image composed of connected “slices” if used 
methodically. Other methods for underground mapping are for example - Electrical 
resistivity tomography, Induced polarization, or Seismic tomography [Loke and 
Barker, 1996], [Dziewonski, 2004]. 

2.4     3D Point Clouds 

In this section, we present methods for 3D point clouds acquisition from aerial and 
surface sources. We describe how sparse/dense reconstruction can be achieved. We 
also include the description of LiDAR as a method for a 3D point cloud acquisition. 
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Figure 2.6: Elevation measures for an aerial image. Dark pixels indicate ground level, 
while bright color defines height of objects [Kluckner, 2011]. 

2.4.1     Surface Models from Aerial Photography 

The extraction of surface models (range images) form redundant datasets of aerial 
images is established on a principle of multiple view geometry [Hartley and 
Zisserman, 2004], thus based on the detection and matching of corresponding points.  
In an aerial imagery domain, the problems with repetitive patterns, occlusions and 
low-textured areas are addressed through the effect of redundancy.  
If each object is located within at least 10 images, high resolution of data and camera 
calibration established an improved estimation of the underlying scene geometry is 
possible [Kluckner et al., 2011]. Dense scene geometry estimation can be achieved 
through two processing steps:  

  
 

30



 
 

 
– Structure from Motion (SfM) recovers the camera parameters and the 

extraction of a 3D sparse point cloud determines pixels correspondences 
[Irschara, 2011]. This is performed in an automaton of a manual process of 
triangulation, where measurement points are identify in overlapping images 
and camera positions and orientations are refined. Given that GPS and Inertial 
Measuring Units (IMU) measurements of aerial cameras are known, this 
process can be seen as refinement of camera parameters into a sub-pixel 
accuracy.  

 
– For many applications, the sparse point cloud provided by SfM is not 

sufficient. When required, the dense matching techniques are used to estimate 
depth information for every pixel. These can be divided into three groups, 
according to the set of pixels on which the optimization is performed: local 
methods [Yoon and Kweon, 2006], semi-global methods [Hirschmüller, 2006] 
and global optimization methods [Pock et al., 2008]. Advanced techniques 
consider also occlusions and matting at depth continuities [Bleyer et al., 2009]. 
Many stereo and multi-image dense matching methods are based on a plane-
sweep technique, as this concept also allows for accumulation of matching 
costs through multi-image datasets [Hirschmüller and Sacherstein, 2009].  

 
Scene geometry is represented in a form of range image, where the depth information 
is computed for each pixel (see Figure 2.6). A range image is computed for each aerial 
image, forming a surface model when transferred into a 3D world coordinates. The 
merging of range information from multiple redundant images into one surface model 
can provide additional refinement of depth information [Kluckner, 2011]. Surface 
models can be directly used to recover the 3D structure of objects (e.g. wireframe 
models). Several techniques have been presented, such as 3D point segmentation 
algorithms [Dorninger and Nothegger, 2007]. In this work, the initial clustering of the 
parameter space allows to identify segments in a high resolution dataset (20 or more 
points per square meter).  
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Figure 2.7: Reconstruction of city block from streetside images. Projections positions 
and directions are shown in color. Note that most detected corresponding points are in 
the areas with high texture (windows, other façade elements) [Klopschitz et al., 2010]. 
 
Such resolution can be achieved by a modern image matching algorithm. 
Segmentation was also designed to identify vertical planes of 3D structures, such as 
façades. Another approach are shape recognition methods, such as [Zebedin, 2010], 
based on energy optimization and geometry hypotheses sets. In this work, multiple 
data terms (second order regularization) impose the regularization of the shape. The 
method is based on a probabilistic approach and in a final step, an evaluation of 
multiple hypotheses is used to derive labeled footprints of urban structures. 

2.4.2     3D Modeling from Streetside Images 

Image matching based 3D structure modeling from digital streetside images is derived 
from the same principle as 3D modeling in aerial images domain [Hartley and 
Zisserman, 2004].  
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Figure 2.8: Workflow for geometry reconstruction from a community photo 
collection, as presented by S. Agarwal. Examples of user provided images with 
variable parameters (left), sparse 3D point cloud reconstruction acquired through SfM 
(middle) and the dense reconstruction using multi-view stereo algorithm (right) 
[Agarwal et al., 2010]. 
 
The construction of 3D point clouds is based on a detection of corresponding points 
which is the primary problem in reconstruction efforts and still provides challenge for 
reconstruction algorithms. This is mostly due to the presence of repetitive textures in 
an image and unorganized datasets. The greater variability in viewing positions and 
directions, increased occlusion problems (pedestrians, vehicles, vegetation…) and 
imaging equipment often not dedicated for reconstruction efforts leads to a greater 
need for dataset organization.  
Therefore, advanced methods for dataset alignment, such as incremental structure from 
motion [Klopschitz et al., 2010] have been proposed. Such methods rely on more 
stable parts of a dataset to build the initial structure and incrementally improve results 
with additional digital data (see Figure 2.7). In 2006, N. Snavely introduced his work 
on reconstruction of urban objects from an unorganized crowd-sourced dataset 
[Snavely et al., 2006]. Initially named Photo Tourism, the project evolved into the 
online application that allows for image triangulation and point cloud generation from 
community photo collection – Photosynth. This research is continued by Microsoft 
Research as the part of the Bing project. In a work of [Agarwal et al., 2009] a 3D 
reconstruction from a large crowd-sourced dataset (approx. 150K images) was 
demonstrated. The method is implemented on a highly distributed parallel system and 
experiments with various algorithms in each step of the pipeline provide comparison 
for current state-of-the-art methods. A sparse 3D points reconstruction is provided as a 
result. This can be achieved with the application of a Structure from Motion method on 
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a detected visual word – clustered SIFT features in a photo collection. Subsequently, 
dense reconstruction can be recovered, using a multi-view stereo algorithm. This 
method measures depth values for corresponding points in all matched images and 
selects the depth value with the highest consistency through a photo collection as a 
value for a 3D point in world coordinates (see Figure 2.8). Thus the reliability of 
correct depth estimation is increased with redundancy present in a dataset. 
This approach is however unfeasible with the current technology at the city scale and a 
clustering method has to be introduced in a photo collection dataset to reduce the 
problem into a smaller scale, therefore in [Agarwal et al., 2010], dense reconstruction 
is extracted in each cluster separately and fused in a final model. Following this work, 
[Frahm et al., 2010] introduced a system of dense 3D reconstruction from 3 millions 
unregistered photos. This method is implemented on a single PC with high-end graphic 
processors and is able to process all images in a single day. Method is based on four 
steps – appearance based clustering of gist features to obtain canonical views, 
geometric cluster verification based on RANSAC [Fischer and Bolles, 1981], local 
iconic scene graph reconstruction and dense computation.  
Methods of organizations, data mining and data processing in open online datasets 
were summarized in a work of [Gösele et al., 2010]. 
[Pollefeys et al., 2008] introduced a real-time 3D reconstruction system, using a 
mobile camera system for video acquisition with GPS and inertia sensors to place data 
into geo-registered coordinates. The 3D model of the environment is generated online 
from a video stream and is based on tracking 2D feature points in video frames. Dense 
3D reconstruction is achieved by plane sweeping and optimized in a fusion step. In this 
step depth maps from related frames are combined into one depth map, thus correcting 
possible errors generated in depth computation for individual maps. 

2.4.3     Light Detection and Ranging in 3D Reconstruction 

In an urban reconstruction effort (aerial as well as streetside), Light Detection and 
Ranging (LiDAR) has been proposed as an alternative to sparse and dense 3D point 
clouds acquisition via image based solutions. The success of LiDAR application is 
based on the ability to provide instant 3D point clouds without need to process 
additional data [Lato, 2010]. The density of the point cloud provided by LiDAR is 
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commonly in a scale of 50 pts/m2 up to 500 pts/ m2 in terrestrial setup [Glennie, 2009], 
[Lynx, 2012]. A measurement precision of between 0.029 m and 0.031 m had been 
achieved in elevation for a mobile LiDAR setup [Barbera et al., 2008]. 3D modeling of 
urban environments with a help of laser scanner observe similar problem with the 
alignment and registration of scanner data and visual data, primary due to the 
inaccuracy of GPS registration [Haala et al., 2008]. This problem can be addressed by 
the involvement of 2D image features in a process of registration, as demonstrated by 
[Yang et al., 2011]. It can be also addressed with the introduction of new positioning 
devices, such as the European positioning system Galileo [Galileo, 2012]. Current 
methods based on the image matching can provide similar or better results than 
LiDAR, however the use of laser scanners have gained momentum, due to a large 
number of laser sensors currently in use and the ability to display results directly in the 
field. The viability of laser scanner data in the future will depend on the advances in 
positioning techniques and improvements in scanning resolution [Leberl et al., 2010]. 
However the greatest challenge for laser data will provide possible paradigm change 
from scanning technologies to image-based solutions, such as SfM and multi-view 
stereo methods. 

2.5     Data Interpretation 

The interpretation of urban data is important for additional functionality (e.g. 
navigation, geo-locations, urban planning or risk control), improved user experience, 
visualization and augmented reality [Leonardis et al., 2000]. In this chapter, we 
describe an interpretation from aerial and streetside sources. We show how the 
interpretation of urban scene elements can provide ground for urban modeling based 
on shape grammars [Stiny and Gips, 1972]. In this setup, object surfaces are not 
described by their texture, but are visualized as elements of shape grammars. Such 
parsing of objects into smaller elements resulted in the formulation of modeling 
standards. [Kolbe et al., 2009] provide the CityGML standard in a form of five levels 
of details for multi-scale modeling – from a simple 2.5D model (LOD0), building 
block (LOD1) with roof shape (LOD2), details of a façade (LOD3) to a detailed 
semantic model including interior rooms (LOD4) (see Figure 2.9).  
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Figure 2.9:  Different Levels of Details visualized in the example [Kolbe et al., 2009]. 
 
This standardization can provide bases for large scale urban modeling, as the results 
from different platforms can be interconnected. In the last subsection, we describe how 
the selection of image areas representation in a form of pixels, superpixels and 
segments can influence the process of interpretation if the context is involved. As our 
work is focused on interpretation from streetside images, the distinction between 
interpretation from pixels and from segments is the key idea in our semantic 
segmentation method described in Chapter 4.  

2.5.1     Interpretation from Aerial Images 

With the requirement for utilization of aerial images (e.g. planning, traffic control, land 
value estimation), methods for data interpretation in this domain were introduced. For 
example, interpretation of tall structures in aerial photos is applied in tracking methods 
(vehicle, pedestrian tracking), to detect occlusions [Prokaj and Medioni, 2011].  
In general, interpretation is performed in a pixel-wise semantic classification, either in 
dual-class (buildings-background, cars-background), or multi class (buildings, 
vegetation, roads, grass, water…). Interpretation techniques utilize visual cues, 3D 
information (surface models) and other information obtained during the image 
requisition, such as laser scanner data. In the work of S. Kluckner (see Figure 2.10), 
pixel-wise semantic interpretation is achieved through combination of low level visual 
features (true color, edge responses) and 3D information. Both data sources are 
combined in the region descriptors, where boundaries are refined through unsupervised 
segmentation and energy minimization. [Kluckner, 2011]. 
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Figure 2.10: Interpretation of aerial photos. Detected classes are color coded – 
buildings (red), vegetation (dark green), roads (gray) and grass (light green). Labeling 
is based on combination of visual cues and surface models [Kluckner, 2011]. 
 
Other methods for semantic interpretation use only visual data without any height 
values initially assigned to images [Grubner et al., 2005] or only height information in 
a form of surface models [Lafarge et al., 2008]. Similary to surface models, LiDAR 
data has been applied to identify structures such as buildings in aerial images [Toshev 
et al., 2010]. Aerial pixel-wise data interpretation is based on a high redundancy of 
aerial datasets [Kluckner and Bischof, 2010]. In a work of Meixner et al. [Meixner et 
al., 2011] a method for separate façade detection from aerial images and the semantic 
segmentation of the roof elements are presented.  Results of the interpretation are 
applied in building 3D models of urban environments, or directly in customer’s 
applications, such as a land value estimation [Meixner and Leberl, 2010]. 
In a work [Ferreira and Bernardino, 2006], a method for 3D urban modeling and 
interpretation from satellite images is presented. Based on these data a simple 
prismatic model of an urban surface is created. The method also uses context 
knowledge of a segmented satellite image to simplify the final model.  
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2.5.2     Interpretation from Streetside Images 

In a streetside dataset, the complexity and variety of data provides challenge for 
interpretation not only in a single image scenario, but also additional problems in 
image matching and interpretation merging in a multi-view. For these reasons, several 
methods working with such datasets have been semi-automatic, thus requiring human 
interaction (in a façade labeling for example). In a work of [Fabritius et al., 2008] on 
urban data modeling, a fusion of aerial data and streetside images is presented to a 
provide framework in a multi-view image environment. However, the streetside data 
require manual labeling.  
Similar to aerial datasets, the basic goal of many methods is to detect and identify 
building structures for further processing (texture extraction, occlusion detection…). In 
a work of C. Fruh a method for interpretation of building structures is presented [Fruh 
et al., 2005]. Input data consist of vertical surface scans and camera images. Processed 
data are divided into segments which represent individual building façades, or blocks 
of buildings. Segments are bordered by gaps between buildings, or corners and are 
consequently transformed into depth images. Building structures are detected in a 
depth field and missing information is interpolated. This method presents a common 
approach for identification of structural parts of an urban scene for 3D urban modeling. 
A large number of sensors provide enough data for precise building identification and 
representation. Problems of laser scanners with windows and occlusions are solved by 
using camera data in these areas. Regions of the scene are divided between the 
background layer and foreground layer. Most of the processing is then applied to the 
background layer, containing building façades. Due to the precision of a laser scanner, 
most of the details are preserved. It also employs basic segmentation in 3D data.  
Methods of specialized object recognition and 3D urban modeling are combined in a 
work [Cornelis et al., 2006] to achieve better visual results. During the urban scene 
modeling, a semantic level is used to enhance the final 3D model. As an example, 
detection of cars is used to insert car models into an urban scene. Also the results of a 
scene modeling are used to increase the reliability of car detection, therefore the 
algorithm process is modeled as a cognitive loop. 
Additional works on data interpretation from 3D information provide methods of 
segmentation directly in 3D data or combination of 3D and visual information [Kim et 
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al., 2008], [Sithole and Vosselman, 2003]. In these examples, image interpretation has 
been enhanced by multi-view approaches and/or additional data sources.  

2.5.3     Shape Grammars 

To define objects, which are relevant in the 3D modeling of massive urban spaces, we 
must first consider an effective method to describe and visualize them. Detailed levels 
of representation for a building façade can be provided by shape grammars. This 
method is very effective in describing the repeating patterns of a façade [Fruh et al., 
2005]. For a procedural modeling of computer graphics architecture, a novel variation 
of shape grammar – CGA shape has been proposed by Pascal Müller [Müller et al., 
2006]. This approach allows modeling of large urban spaces with a high level of detail. 
Also, the problem with modeling of volumetric shapes with arbitrary orientation is 
solved by this method.  
Shape grammars are based on a hierarchical representation. Objects located at the 
building façade can be represented as non-terminal and terminal symbols. Non-
terminal symbols (floors, oriels, risalits…) are at the higher stages of the hierarchy and 
can be further subdivided.  
Terminal symbols (Figure 2.11) are the smallest (defined in application) achievable 
details (windows, arches, ornaments…). Relations between symbols can be defined as 
replacement rules (floor -> row of windows). The level of details for the shape 
grammar visualization is defined by the terminal symbols definition. In the CityFit 
project [Hohmann et al., 2008] the goal is to detect elements >50cm in the façades as 
terminal symbols. As proposed by Müller, shape grammars can be also used to 
describe and model a large variety of elements in urban spaces, besides building 
façades. In his work, Müller used 190 rules to model a complete city, including roads, 
vegetation, buildings and other urban objects [Müller et al., 2007].  
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Figure 2.11: Representation of façade elements as non-terminal (inner nodes) and 
terminal (leaves) symbols as described in a work of Simon et al.. On the left is one 
possible building model generated from such grammar [Simon et al., 2011]. 
 
Recent work on building modeling presented by [Simon et al., 2011] present shape 
grammars as a method of 3D building representation (see Figure 2.11). 
Urban objects can be defined as a set of terminal and non-terminal symbols in a shape 
grammar. We exclude temporal objects (e.g. pedestrians, vehicles) from the 
consideration.  
 
Building 
Non-terminal: 

- building façade 
- floor, oriel, risalit, stair shaft, ground floor section, external elevator shaft, 

glass section, garage section, access staircase, fire staircase 
Terminal: 

- window, arch, door, pillar, garage door, balcony, column, ledge, cornicle, 
decorative element, statue, pillar, stairs, shop windows, shop signs, painted 
ornaments, gutters 

 
Roof 
Non-terminal: 

- roof section 
Terminal: 

- attic window, satellite dish, antenna, handrails, chimney 
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Circulation space 
Non-terminal: 

- road, bridge, road ramp, traffic sign, traffic light, railway, square, parking space 
- lane, pavement, cycleway 

Terminal: 
- horizontal signalization, crosswalk, crossing island, bus-station, handrails, 

noise barrier, overpass, roadworks, pole, sign plate, ramp, monument, manhole 
-  

Vegetation/Nature 
Non-terminal: 

- tree, bush, grass area, river, lake 
Terminal: 

- trunk, branch, leaf section, flower section, river bank 
 
To model a real urban scene, using procedural modeling, an appropriate level of 
interpretation is required. Principal information about the presence and properties of 
objects must be known. These can be subsequently assigned to specific terminal/non-
terminal symbols.  

2.5.4     Pixels, Superpixels and Segments in Semantic Segmentation 

In computer vision methods, several types of contextual information are usually 
considered at a different level and organization of visual data. The spatial smoothness 
of labels can be examined on the lowest level in a digital image – between neighboring 
pixels. In this case we can assume that the labels of neighboring pixels will not change 
rapidly. As this is usually a simplest type of context, one can consider in the image, it 
has been applied in a number of computer vision applications [Korč and Förstner, 
2008], [Jiten and Merialdo, 2006]. However, this type of context does not model 
spatial relations between real objects in the image. The size of the neighborhood 
considered for a context examination is usually too small in comparison with real 
objects in an image. Random fields working with such neighborhood cannot encode 
context between two or more real objects in the image. 
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Figure 2.12: Workflow introduced in a work of Derek Hoiem build the structural 
knowledge from pixels (a), to superpixels (b), to multiple potential grouping of 
superpixels (c), to the final geometric labeling of the image (d) [Hoeim et al., 2005]. 
 
Therefore researchers working with context in a projected scene are beginning to 
consider larger areas. In a work [Felzenszwalb and Huttenlocher, 2004], the efficient 
graph-based segmentation has been introduced. The segmentation of an image into 
regions is provided by this method, while the number and the properties of regions can 
be easily modified by segmentation parameters. Also, the ability to preserve details in 
low-variability image regions while ignoring details in high-variability regions is an 
important feature of this method.  
This segmentation has become popular in recent years, as a basis for different over-
segmentation techniques [Hoeim et al., 2005], [Daure, 2006], [Chari et al., 2008]. In 
general, the over-segmentation method uses the graph-based segmentation to create a 
large number of small segments over the image. In a work of Derek Hoiem, labeling is 
performed on an over-segmented image and the regions are subsequently merged, 
based on their labeling results (see Figure 2.12).  
This approach introduces a notion of “superpixels”, as the labeling is performed not on 
the standard image pixels, but on the small patches (segments). While the patches 
naturally provide more information for labeling then standard pixels, it is not obvious 
that the visual properties of patches allow correct labeling. 
Also, the superpixels are not the correct representation of objects located in the scene 
therefore (semantic, geometric) contextual information between objects cannot be used 
in the labeling process correctly.  
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Figure 2.13: An example of segmentation provided by D. Hoiem. Three main classes 
are supported (green), vertical (red) and sky (blue). Subclasses are indicated by 
symbols in the vertical class and represent the orientation of surfaces [Hoiem, 2007]. 
 
[Hoiem, 2007] and later [Xiao et al., 2009] applied his research on segmentation, MRF 
and CRF to extract spatial layout for 3D scene understanding. The basic idea of his 
work is that 3D information can be obtained directly from a single image using only 
visual cues. Given the visual features of detected superpixels and prior knowledge 
from trained random fields, one can estimate the geometric labels of detected areas in 
the image. The set of classes presented by Hoiem in his work are representations of 
surface layout (orientation of the plane).  
Thus Hoiem presents geometric, rather than semantic interpretation of the scene (see 
Figure 2.13). This indicates a different use of context, for which the superpixels are a 
suitable representation. In his work, the geometric labels are uniform in areas with 
similar texture; however this approach is problematic in semantic labeling. 
Semantically coherent objects (such as a building façade) can contain areas with 
different texture features. Another approach for detection of man-made structures was 
presented in a work [Kumar and Herbert, 2006], where an image was divided into a 
regular grid and a context was examined between the neighboring cells in a grid. 
Context is represented as pairwise potentials in the DRF.  
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Figure 2.14: An example from the work of S. Kumar on DRF [Kumar and Herbert, 
2006]. (a) original image, (b) man-made objects identified by visual features, (c) 
labeling with context in a form of MRF, (d) labeling with DRF.  
 
In this case, larger objects are also considered for contextual interactions, but cells still 
do not represent real objects in an image. Such approach does present robust results, 
but the borders of objects of interests are approximated only roughly, indicating 
application of the method in a detection task, but not in the modeling (see Figure 2.14). 
The approach of context in-between objects is also explained in the work of Daniel 
Heesch, but he does not provide any method for solving the segmentation problem in 
his work.  
Heesch suggests using a Non-Gibbsian Markov random field model to approximate 
spatial relations between classes in streetside datasets [Heesch et al., 2008]. He 
suggests a global context in a form of graph of segments located in the image. 
However, he does not provide the segmentation method, but involves manual 
segmentation to test spatial rules. 
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      (a)         (b)  

Figure 2.15: Horizontal (a) and vertical (b) projection profiles as described by Lee, 
Nevatia [Lee and Nevatia, 2004]. Spikes in the projections indicate horizontal/vertical 
gradients e.g. window frames.  

2.6     Façade Interpretation 

In this section, we present current trends in recovering a building façade’s structure 
(façade elements), as these represent objects of interests for several methods described 
in this work. Modeling façades poses several task specific problems. When working 
with streeside images, occlusions from pedestrians, vegetation, traffic structures and 
others are common. Windows exhibit reflections and transparency. Façade elements 
have a high in-class variety. However, one can also take advantage from domain 
specific features to help in processing. Many façade elements have a specific shape 
(e.g. windows, doors) and are organized in a predefined geometric style (e.g. rows of 
windows).  
Early works on façade processing [Debevec et al., 1996] utilized such features, but still 
relied on a manual input. Some geometric and contextual features of façades are 
projected into its 3D structure. Subsequently, several methods have been developed to 
exploit such 3D information [Stamos and Allen, 2001], [Fruh and Zakhor, 2001] and 
the combination of 3D structure and visual information [Coorg and Teller, 1999], 
[Taillandier, 2000]. T 
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Figure 2.16: (a) Digital photo of building façade with terminal symbols, (b) Shape 
grammar representation, (c) Shape grammar with applied textures [Hohmann et al., 
2008]. 
 
hese methods provided only limited semantic information and used strong assumptions 
(such us specific type of windows) in the process. In a different approach, methods for 
processing building façades from visual information have been introduced [Werner 
and Zisserman, 2002], [Lee and Nevatia, 2004]. In their work Lee and Nevatia 
presented a gradient projection based method for window detection as illustrated in 
Figure 2.15.  
Their method used a single, rectified building façade as an input and relied on the 
assumption that window frames are oriented almost exclusively horizontally/vertically. 
Single façade textures were obtained from a wire-frame model of the scene composed 
from aerial data and façades were considered projections into such frames.  
In a rectified façade texture, the horizontal projection profile of horizontal edges would 
indicate bottom/top frames of windows and vertical projection profiles of vertical 
edges left/right frames of windows (see Figure 2.16). Combination of both profiles 
indicated window location in a place where each profile exhibits spikes. Subsequently, 
a bounding box with variable borders is placed at the location and the borders of 
windows are refined more precisely. This approach provides a robust method for 
window detection as it is applicable for any type of windows with a rectangular (semi-
rectangular as a special case) shape as long as the windows form a regular pattern. 
However, it may fail for more complex façade types with rectangular elements other 
than windows.  
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Figure 2.17: Results from the eTRIMS group research. Top row – CRF based image 
interpretation with pixelwise approach [Korč and Förstner, 2008]. Bottom row – 
window detection based on AdaBoost [Šochman, 2006]. 
 
It is also designed specifically for window detection and it is not suitable for detection 
of different façade elements. 
Different top-down approach for façade modeling is based on a procedural generation. 
Architectural elements are modeled through shape grammars which are represented by 
a shape dictionary and a set of derivation rules.The recovery problem is formulated as 
a search in a space of shapes that is generated by grammar rules based on the input 
axiom (see Figure 2.16). For each configuration, an image-based score is computed 
based on trained classifiers to approximate the visual appearance of a building. As a 
result, such methods provide both texture and geometry descriptions of examined 
buildings [Wonka et al., 2003], [Müller et al., 2006].  
As demonstrated by Simon et al. this approach is robust enough to process large a 
variety of complex architectural styles [Simon et al., 2011].  
The basic problem with the approach is that the space of shapes and rules is potentially 
infinite and there is no straightforward relationship between intermediate grammar 
levels and the image.  
Another group of researchers working on a streetside image processing and façade 
analysis is the eTRIMS group. Its focus is on a structural learning, where relations 
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between components and compositional hierarchies play a central role in object 
categorization. Such learning is particularly relevant for the interpretation of man-
made objects, hence the project uses the recognition of buildings in outdoor scenes as 
its exemplary application domain. In general, the eTRIMS group views streetside 
datasets as a suitable testing domain for the research of context, giving more weight on 
methods and less on applications for dataset processing. 
 
Their research focus is at: 

- Application of MRF and CRF for image interpretation in a domain of man 
made structures at the pixel level [Korč and Förstner, 2008]. The focus is on a 
parameter learning of a MRF model. The examined method used for parameter 
approximation is pseudo-likelihood (see Figure 2.17). This research is centered 
at Bonn University. 

 
- Façade image parsing focused on a window detection in rectified façades. In 

this research, a regular structure of window array is assumed. AdaBoost is used 
as a classifier and applied in scale space to detect seed façade structures. 
Detected seed are processed with high level information to detect (or estimate) 
the location of repeated structures [Šochman, 2006], [Čech and Šára, 2008], 
[Zara, 2004] (see Figure 2.17). Group is centered at the Czech Technical 
University in Prague. 

 
- Bottom up interpretation of man-made scenes that uses blob detector algorithm, 

segmentation and MRF contextual classifier to extract semantic segmentation 
from digital photos [Jahangiri and Petrou, 2008]. Research is performed at the 
Imperial College London. 

 2.7     Centers of Excellence 

In current research community, several commercial companies and academic research 
centers focus on urban modeling, GIS and related topics. In previous section we gave 
the detailed example of one of them – eTRIMS. This section lists several others that 
provide complete or partial solution for specific problems in urban modeling and 
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describe most prominent result from each group. We divide subjects into a commercial 
and academic groups according to their status as companies, it they offer commercial 
product to markets, or a status as academic research centers. 

2.7.1     Commercial 

Esri 
Esri is the leading U.S. based software company with the focus on GIS development 
[Esri, 2012]. It is estimated that Esri products compose a 30% of the global market in 
the field, more than any of the competitors. The leading product of the company is an 
ArcGIS platform for creating, managing, analyzing and displaying any forms of 
referenced information. ArcGIS uses CityEngine software to model 3D data in an 
urban environment [Esri, 2012(II)]. It is based on a procedural modeling and GIS 
geometry. CityEngine software was developed by a company Procedural (spin-off of 
the Computer Vision Lab, ETH Zurich) and acquired by Esri in 2011. The research 
group of Procedural is centered around Dr. Pascal Müller with the research focus on 
shape grammars.  
 
 
3C Technologies  
This was a Swedish company acquired by Apple in 2011 and now reportedly working 
as a group under the name Sputnik [iMore, 2012]. 3C Technologies implemented a 3D 
mapping application originally developed as a military application by SAAB. This 
method is based on an aerial mapping with the resolution of 10 cm per pixel, but 
allows for integration of streetside images and user provided data. Terrain surface and 
objects are represented as a wire-frame model with applied textures. Basic 
interpretation of data is also performed in a form of terrain labeling. Workflow from 
digital data to surface models is fully automated. It is assumed that this technology will 
be fused with iOS Maps for 3D experience, as the terrain visualization is superior to 
currently used applications provided by Google.  
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Autodesk 
Is a multinational company focused on the development of 3D design software 
[Autodesk, 2012]. Leading product is the AutoCAD application for computer-aided 
design. With the acquisition of the 3D Geo GmbH company in 2008, Autodesk entered 
the GIS market with the LandXplorer Studio and the current version - 
Autodesk® Infrastructure Modeler product [Autodesk, 2012(II)]. This platform allows 
for integration of data from other Autodesk applications, for example models created 
in AutoCAD to be used in GIS environment. 
 
Interactive Visual Media Group – Microsoft Research 
Is a group focused primary on digital image and video processing [Microsoft, 2012]. 
The group formed around prof. Richard Szeliski work on street view as a part of Bing 
Maps. Part of the research is the development of the Photosynth. In particular, 
Photosynth application allows for 3D experience in a form of “Synth” and Panoramas. 
Synth methods use a set of 2D images capturing the details of specific objects to be 
stitched together through the extraction of basic object geometry. Subsequently, details 
of an object can be viewed as individual images arranged in a 3D comprehensive way. 
This method also allows for integration of large number of images from different 
sources. 
 
Google Research 
Is the Google’s equivalent to Microsoft for the research in this field [Google, 2012]. 
This research group is known mostly for the development of vehicle based sensors 
used for streetside city mapping. Group is formed around researchers, such as Richard 
F. Lyon. 

2.7.2     Academic 

The Graphics and Imaging Laboratory of the University of Washington's, 
Department of Computer Science and Engineering (GRAIL) 
A group with a wide research field including image processing, scene reconstruction 
and mobile imaging [GRAIL, 2012]. Relevant research is primary in a field of urban 
modeling from a set of photos and video, and modeling of building interiors. Research 
of urban modeling is centered on researchers such as Seven Seitz and Linda Shapiro.  
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ETH Computer Vision and Geometry Group (CVG) 
A group located at the ETH Zurich, focused on the geometric aspect of a scene 
reconstruction, such as calibration, extraction of shape and motion [CVG, 2012]. 
Relevant research is also in a modeling of large scale scenes. 
 
eTRIMS 
A group of several researchers from different universities (Bonn, Hamburg, Prague, 
London) with the focus on learning and semantic interpretation of urban images 
[eTRIMS, 2012]. Group works with aerial as well as streetside images.  
 
Institute for Computer Graphics and Vision (ICG) 
A group located at the Technical University Graz, with the focus on general computer 
graphics and vision fields [ICG, 2012]. Several researchers focus on the aspect of 
urban modeling, including aerial data processing, modeling and interpretation of 
streetside images. 
 
Laboratoire MATIS 
Focus of this research group is in the reconstruction of urban scenes, sensors and laser 
range data [MATIS, 2012]. Group also provides several open source application for 
researchers in this field. 
 
There are several other groups and individuals that contribute to the research in this 
field. We selected those listed above as an exemplary groups because they 
product/research is either relevant to our research or unique in the field.  

2.7.3     Journals and Conferences 

Relevant research can be also found in dedicated journals and conferences, such as: 
 
Journal Name Impact factor 
Remote Sensing of Environment 3.951
IEEE Geoscience and Remote Sensing 2.470 
ISPRS Journal of Photogrammetry and Remote Sensing 2.158
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Photogrammetric Engineering and Remote Sensing 0.926
IEEE Geoscience and Remote Sensing Letters 1.420
International Journal of Remote Sensing 1.182
The Photogrammetric Record 0.925
GIScience & Remote Sensing 1.000
Journal of Applied Remote Sensing n/a 
Remote Sensing Letters n/a 
IEEE Applied Earth Observations and Remote Sensing 1.140 
Remote Sensing n/a 
International Journal of 3-D Information Modeling n/a 

Table 2.1: The list of research journals relevant to urban modeling and their impact 
factor [SCImago, 2012]. 
 
Conference  Name Acronym 
Computer Vision and Pattern Recognition CVPR
International Conference on Computer Vision ICCV 
European Conference on Computer Vision ECCV 
British Machine Vision Conference BMVC
Asian Conference on Computer Vision ACCV
International Conference on 3-D Imaging and Modeling 3DIM
3D Data Processing Visualization and Transmission 3DPVT
International Conference on Pattern Recognition ICPR
Computer Vision, Imaging and Computer Graphics Theory and 
Applications 

VISIGRAPP 

International Conference in Central Europe on Computer 
Graphics, Visualization and Computer Vision 

WSCG 

SIGGPRAH SIGGPRAH 
IASTED International Conference on Computer Graphics and 
Imaging 

CGIM 

International Conference on Image and Signal Processing ICISP 

Table 2.2: Several conferences in computer vision research field relevant to urban 
modeling [Iris, 2012], [Academic, 2012]. 
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Chapter 3 
 
 
 
 

Background 
 
 

3.1     Context in a Streetside Urban Environment 

 
Much computer vision research in general has been focused on the problem of 
recognizing specific objects. However, until recently the problem of understanding and 
formulating general object recognition as a task of properly isolating and identifying 
classes of objects in an agent’s environment has been examined only marginally 
[Carbonetto et al., 2004]. This problem can be formulated as a presence of context in 
the image environment. Context plays important role in a human vision [Oliva and 
Torralba, 2007], [Halgren, 2006] and in general the application of context improves 
the performance in object recognition tasks, as was demonstrated by several authors 
[Carbonetto et al., 2004], [Singhal et al., 2003], [Heitz and Koller, 2008]. 
Many researchers in computer vision claim to use a context in their approaches, but the 
term itself has no clear definition. In a broad sense, the context is understood as “any 
and all information that may influence the way a scene and the objects within it are 
perceived” [Strat, 1993].  
A term “local pixel context” refers to a most simple and common application of 
context in computer vision [Santosh et al., 2009]. It is built upon the assumption that 
pixels around the examined region can provide additional information for a vision task.  
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Figure 3.1: Different levels in streetside images. Ground and building level separated 
by yellow lines, building and sky level separated by red lines. Notice different sets of 
objects located in each level. The building level contains most of the objects of interest 
for environment mapping algorithms. Note that the lines present only approximate 
separation, as some objects extend beyond lines to different level.  
 
This information can be accessed by simply extending the scanning window [Dalal 
and Triggs, 2005], [Wolf and Bileschi, 2006], or application of a Random Fields 
method in local neighborhood [Carbonetto et al., 2004], [Kumar and Hebert, 2005], 
[Shotton et al., 2006]. In general, the application of context at this level can identify 
misdetections caused by outliers, thus eliminate some false positives, but does not help 
in the recognition task itself significantly. More complex applications of context 
require detection of specific objects (segments, boundaries, shapes…). This approach 
will be discussed in more details in Section 2.5.4. Before the application of a specific 
method, we must examine what type of context can be used in our application domain.  
A general urban scene has a very specific composition and geometry. When compared 
to natural scenes, the presence of man made objects set in a well defined design can 
provide strong contextual information. For example, an urban scene can be divided 
into several horizontally oriented levels – ground, building and sky levels – (see Figure 
3.1) each containing very specific objects set in context with each other: 
 
- ground level contains often the largest variety of objects. It is composed mostly of 
circulation spaces (roads, walkways), transportation devices (cars, trams, bicycles), 
pedestrians, vegetation, animals, traffic control devices, and other objects. Buildings 
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(at the building level) close to a ground level have often different appearance than the 
rest of a building and contain objects such as doors, shopping windows, signs, cellar 
windows, stairs, and others. If the detection of any such object is the focus of a vision 
algorithm, the identification of the ground level in digital images can be of major 
importance in terms of context. Most of the temporal objects at the ground level 
present occlusion for façades at the building level (depending on the point of view). 
Correct recognition of permanent objects at the ground level (circulation space 
elements, bottom levels of building) can be very difficult in overcrowded areas or 
areas with high traffic due to such occlusions.  
 
- building level is where façades are located. As this work is largely focused at 
building façades, the detection of this level is a major task for our approach. Most of 
the façades are highly regular with many repetitive patterns. When the composition of 
a façade is considered, objects like windows, arches, ledges, are in strong contextual 
relationships. Occlusion from temporal objects is less significant at this level, but other 
sources can be present. Building façades are often occluded by vegetation or street 
elements (lamp poles, traffic control parts…). Many façades are also too large to fit 
whole into a photograph frame from a close point of view or are occluded by another 
façade, therefore only part of them are often present in the image. Roofs are also 
considered as part of a building level, however we do not include them in the façade 
class and are detected as a separate class. 
 
- sky level usually does not contain any object of interest, but its identification can be 
useful for removing false positives of streetside objects detections. Detection of the 
sky level is not a trivial task mainly because of several special cases – presence of 
specifically shaped clouds, different illuminations (sunset, sunrise), or specific object 
in the sky (birds, planes). When the orientation of the image is not certain, a sky area 
can provide significant cues. 
 
Many authors of computer vision methods use a only general term “context” when 
referencing the application of other-than-visual data. This led to very broad definition 
of what context is and what type of data is actually used. Subsequently, several 
researchers have tried to define different domains that are considered to provide 
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context for computer vision. Santosh in his work on empirical study of context 
[Santosh et al., 2009] defines several types of context. For our work, the most relevant 
are the semantic context and the geometric context: 
 
Semantic context indicates the presence and location of objects or materials in the 
scene. It can be also used to identify the scene category [Oliva and Torralba, 2001]. 
Semantic context is a more general term and as such, it is used regularly in our work. 
For example, we identify general surfaces in an image and continue with identification 
of the specific object only in semantically correct areas e.g. windows in façades. We 
also apply semantic context in the façade separation process, where the results are 
presented for the method without the context and with the context, giving the exact 
value of context application. In general, semantic context limit the area of image, 
where the object recognition is performed, thus eliminating false positives of objects 
that would be detected outside such area.  
 
Geometric context aims to capture the coarse 3D geometric structure of a scene, or 
the “surface layout”, which can be used to reason about supporting surfaces, 
occlusions, contact points, etc. This type of context plays an important role in human 
vision, as was demonstrated in [Bar and Aminoff, 2003]. The application of spatial 
(geometric) context as an early facilitator of object recognition in human vision is 
provided by an activation of cortical context neurons that appear to store spatial 
relationships. These spatial relationships can be determined without high frequency 
information, thus provide for a very early stage visual recognition [Bar et al., 2006]. 
Objects inside urban scenes have very strong geometric context e.g. windows are 
arranged in rows, arches above windows e.g. An urban scene itself is organized in a 
predefined geometric setup, but when projected into 2D image, geometric relation can 
be distorted. For example in a real scene clouds are always above buildings, but in a 
digital image, this may not be a case. For this reason, a probability method has to be 
applied when considering geometric context in streetside images. In a section 4.1.3 we 
examine a method of extracting spatial relations between classes in street-side images.  
 
[Santosh et al., 2009] also define a temporal context as a context from temporally 
proximal information e.g. nearby frames of video, images taken before or after the 
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given image. This type of context is similar to what we examine as an effect of 
redundancy (see Section 3.3), however we assume that the camera is moving and/or 
changing direction of optical axis. 
An example of context application is given in a work of [Perko and Leonardis, 2008].  
Authors use context to enhance a standard task of computer vision in an urban 
environment – pedestrian detection. In processed images, a specific area is selected 
with a help of visual and geometric cues as a “focus of attention”, where pedestrians 
are likely to be located. This is a principal example of semantic context, which is also 
extensively applied in our work.  

3.2     Random Fields 

In many computer vision applications, graphical models have been presented as a 
method to introduce context information into processes. Graphical models are 
explained as a combination of two areas – graph theory and probability theory 
[Murphy, 1998]. This combination provides several advantages: 
 

- When working with real world images, one must deal with special cases, in-
class variation, occlusions or image noise. The solution is in probabilistic 
modeling, giving required flexibility to the task. 

 
- Even the image should be considered a global model (and for a human vision, 

this is the case), in computer vision, the raw amount of data makes this 
approach often computationally intractable. Reducing context interaction to 
only a local level on the other hand does not often provide sufficient results. 
The graph theory can introduce required balance between local/global 
approaches. 

 
Graphical models in a vision framework are further differentiated as causal/directed 
and noncausal/undirected. The causal models are mostly used in segmentation 
problems [Cheng and Bouman, 2001], [Feng et al., 2002]. The most common 
noncausal graphical models in computer vision are Markov Random Fields (MRF) 
[Kindermann and Snell, 1980].  
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Figure 3.2: A typical application of Markov Random Field (MRF) in computer vision. 
At each node i, the observed data is denoted as yi and the corresponding label as xi. For 
each node, only local observations are possible. 
 
MRF have been used extensively in labeling problems for classification tasks from 
early works in computer vision [Cross and Jain, 1983], [Besag, 1972] and for image 
synthesis problems [Zhu and Wu, 1998]. In a labeling task, MRFs are considered to be 
probabilistic functions of observed data in measured sites of the image and labels 
assigned to each site. Given the observed data { } Sii ∈= yy  from the image, and 
corresponding labels , where S is the set of sites, the posterior distribution 

over labels for MRF can be written as  

{ } Siix ∈=x
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where Zm is the normalizing constant, βm is the interaction parameter of the MRF and 
Ni is the set of neighbors of site i. The pairwise term βmxixj in MRF can be seen as a 
smoothing factor. Notice that the pairwise term in MRF uses only labels as variables, 
but not the observed data from the image. In this arrangement, the context in a form of 
MRF is limited to be a function of labels, thus allowing for semantic context and 
limiting geometric context to a structure of MRF graph (see Figure 3.2). Any relations 
between sites observable from the image are disregarded. This makes the MRF 
applicable mainly for simpler forms of context.  
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Figure 3.3: The implementation of graphical models in our dataset. In both images, 
only some relations are visualized for better orientation. In left image a set of segments 
is identified in the image and a graph structure is placed over it such that each segment 
(site) is considered a node of the graph and an edge is placed between segments with 
common borders. In second image a façade is segmented into blocks. Each block is 
than considered a site, thus a graph node is placed in each block and two blocks are 
connected if they are neighboring.  
 
In our work we use the Discriminative Random Fields (DRF) [Kumar and Herbert, 
2006] to cope with such limitations. DRF are based on the concept of Conditional 
Random Fields (CRF) proposed by [Lafferty et al., 2001] for the segmentation and 
labeling a text sequence. In the Figure 3.3 we can see the application of RF in our 
methods. In a first case (left image) a graph structure is constructed over segments of 
an image. The number of nodes varies between 50 to 100 in general. In a second case 
(right image) a graph structure is placed over a set of blocks that segments a façade. In 
this case, a number of nodes can range from around 300 to 1000, depending on the 
complexity of façade (very low for simple façades, but rises significantly for more 
complex ones). In both cases, the visual features of segments/blocks and their spatial 
relations are considered as observations. Details of feature descriptors are located in 
relevant sections (4.1.2, 4.1.3 and 7.3.1). In subsequent text we will describe the 
concept of DRF in more detail, as the notation of this method is used extensively in 
our work. Our goal in this section is to make a clear distinction between visual feature, 
which are applied in RFs model as a unary potential and contextual features applied as 
a pairwise potential. This distinction is referred to a number of times in the text of this 
work and in this section we provide mathematical implementation of this idea. We 
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provide a simplified explanation of both potentials to demonstrate how the 
involvement of context in our work is used for classification. The CRF are 
discriminative models that represent the conditional distribution over labels.  

 
Definition 1. CRF: Let G = (S, E) be a graph such that x in indexed by the vertices of 
G. Then (x, y) is a conditional random field if, when conditioned on y, the random 
variables xi obey the Markov property with respect to the graph: P(xi|y, xS-{i}) = P(xi|y, 
xNi), where S-{i} is the set of all the nodes in the graph except the node i, Ni is the set 
of neighbors of the node i in G and xK represents the set of labels at he nodes in set K. 

 
Using the Hammersley-Clifford theorem [Hammersley and Clifford, 1971], assuming 
only pairwise cliques potentials to be nonzero, the conditional distribution in DRF over 
all labels x given the observation y can be written as, 
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where Z is the normalizing constant, -Ai is the unary and -Iij pairwise potential. The 
principal differences between the conditional model (2) and MRF distribution (1) are 
that the unary potential Ai(xi, y) is a function of all observations instead of only 
observation yi in specific site i and the pairwise potential in (2) is also the function of 
observation, not only labels as in MRF. In an example from our work (see Figure 3.3), 
this would mean that for each node/segment in the image, we have also visual and 
spatial information from all other segments. Given this information, we can involve 
classifiers based on global features, such as a position matrix described in Section 
4.1.2. Furthermore, in DRF as an extension of CRF, both unary and pairwise potential 
are designed using arbitrary local discriminative classifiers. This feature allows 
algorithms based on DRF to be specifically designed to work with particular structure 
of input data and is useful when applied to high-dimensional complex visual data. Also 
DRF are generally defined over 2-D lattices and allow graphs with loops. Even though 
this makes DRF more easily applicable to visual data, it makes parameter learning and 
inference significantly harder task.  
In DRF, the unary potential Ai(xi, y) is considered to be a measure of how likely a site i 
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will take label xi given the observation in image y. The unary potential is modeled as 
local discriminative model that label site i as class xi as 
 

Ai(xi, y) = log P’(xi | fi(y)),                               (3.3) 
 
where P’(xi | fi(y)) is the local class conditional at site i and can be any probabilistic 
discriminative classifier. In a work of Kumar [Kumar and Herbert, 2006] Generalized 
Linear Models are suggested as one possible option. In this case, the classifier function 
can be compactly expressed as  
 

P’(xi | y) = σ(xi wThi(y)),   (3.4) 
 
where w = {w0, w1}are the model parameters (w0 is a bias parameter) and hi(y) is the 
transformed feature vector at site i composed of a image feature vectors kernel mapped 
into a high dimensional space. This classifier function ensures the linearity of unary 
potential and can be seen as a discriminative counterpart of a generative unary function 
of MRF.   
In DRF, the pairwise term is considered to be a measure of how the labels at 
neighboring sites i and j should interact given the observed image y. The pairwise term 
is defined as: 
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(where 0 ≤ K ≤ 1, v and β are the model parameters) and µij(y) is a feature vector. This 
formulation can be seen as an extension of Markov’s pair wise term (if K = 1 in DRF, 
pair wise terms are identical to Markov’s), but allows us to apply more complex 
context as a feature vector µij(y). Parameter K determines the contributions of two 
terms present in the formula. The first term xixj is data independent and provides a 
label smoothing, while the second term map the pairwise logistic function. The value 
of K can determine what type of context is applied. For semantic context, high K value 
ensures, the relations between labels is examined. When K values is low, relationships 
between sites are examined, thus geometric context can be applied.  
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Parameter Estimation and Inference 
Given the equations (4) and (5) the parameters of a DRF model are θ = {w, v, β, K}. 
From the definition of DRF in [Kumar and Herbert, 2006], the parameters of class 
generative models p(yi|xi) and of the prior random field on labels P(x) are not learned 
separately in contrast to the MRF framework. In a work of Kumar, the standard 
maximum-likelihood method is applied to learn the parameters. This is a NP-hard 
problem due to evaluation of normalizing constant Z. For this reason, an estimation of 
parameters based on the pseudolikelihood is used and defined as 
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where m are indexes over training images and M is the total number of training 
images. The formula for single image ( )θ,,| yx

iNixP  is evaluated based on 

parameters from equation (2). As the pseudolikelihood is not a convex function, a 
good initialization is necessary to avoid local maxima. This can be achieved through 
the computation of standard maximum on log-likelihood in training data.  
In the inference process, our aim is to find the optimal label configuration x over the 
image sites, given the observation y. Maximum A Posteriori method is suggested as a 
solution to the optimization problem in [Kumar and Herbert, 2006]. The cost function 
for optimization is defined as C(x, x*) = 1 – δ(x – x*), where x* is the true label 
configuration. Exact solution can be computed if K ≥ 0.5 and β ≥ 0. Experiments 
shows, the Maximum A Posteriori method performs poorly when β takes large values. 
Other suggested methods for parameters interference are the Maximum Posterior 
Marginal and Iterated Conditional Modes [Besag, 1986]. In our work on semantic 
segmentation, we use Belief Propagation method to estimate DRF probability.  

3.3     Redundancy 

Even though the majority of computer vision algorithms is focused on a single image 
as an input dataset, the presence of multi-view datasets is a common reality in current 
settings. Automatic processing of real world digital image data continues to present 
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challenges for researchers and many computer vision tasks are considered unsolved. 
“Hard problems” may become more tractable if one generalizes the input data to 
consist not of a single image, but of a stack of multiple images. We can denote this as 
“redundant” or “multi-view” input data. Therefore in our image databases, we usually 
want to employ multiple images of any given scene. Before application of a computer 
vision algorithm in a multi-view scenario can be examined, two principal problems 
have to be addressed – the organization of a multi-view dataset and the image 
matching. 

3.3.1     Organization of Multi-View Dataset

Depending on the source of an image stack, different strategies can be used to exploit 
redundant information and different results can be expected. Some datasets are 
specifically designed to provide redundant information (e.g. organized datasets, 
industrial systems), but there is also a vast amount of unorganized sources (e.g. open 
online datasets, crowd sourcing). In our work, we focus on what type of redundant 
information can these sources provide. We can identify several types of redundancy in 
regard to the position of cameras: 
 

 

Figure 3.4: Camera setup in star formation. Gray areas denote overlapping regions in 
images taken form one single position. 
 
(a) Multiple views from a single position using rotation 

This type of redundancy is usually present from industrial systems, where the 
multiple cameras are aligned in a ”star formation” (see Figure 3.4). In this case, 
the rotation between images is well established and calibrated; the overlap 
areas between images provide “redundancy” in precisely defined manner. Also, 
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this kind of setup may occur in crowd-sourced type datasets, when a user 
(photographer) makes different images from one single position. The rotation 
parameters will not be known in this case and the redundant areas must be 
established through a search for correspondences in the images. There are no 
geometric differences for a given object, but the context may change in multi-
view (due to new objects in different views), as well as the visual features of 
the objects. 
 

 

Figure 3.5: Camera setup with parallel axes. Gray areas denote overlapping regions, 
typical for images acquired from a moving platform like a car.  

 
 (b) Multiple views from varying position using translation 

This type of redundancy is generally present in systematic environment 
mapping (see Figure 3.5). It will result from industrial systems or from hand-
held cameras if a purposeful “strip” of images is being collected, often this is 
the case in planning for a 3D reconstruction. The translation of the pose 
between the views is more or less regular, but in a natural environment, the 
high level of regularity is sometimes difficult to achieve. 
 

(c) Multiple views from varying position 
This type of redundancy is present in an unorganized dataset, usually obtained 
from hand held cameras. It can be observed in a crowd-sourced database that 
provides a large volume of data. The lack of organization causes difficulty with 
image alignment and matching. Even the state of the art block adjustment 
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algorithms today need dozens of views of the single object to correctly 
establish matches. Several approaches have been designed to create some kind 
of organization structure in this type of datasets. Usually, some number of 
correspondences have to be established first [Nister, 2004], [Bujnak et al., 
2008] and the camera parameters have to be determined [Irschara et al., 2007]. 
It is therefore assumed that the overlaps and thus the “redundant information” 
can be obtained from this type of data.  

 
We can also consider different viewing directions, when examining the redundancy. 
Digital images are usually taken with the intention to capture some specific 
information about the object. The viewing direction is subsequently set with this 
purpose. In a human held camera setup, view direction is usually set directly towards 
the object. But the position of the camera is often arbitrary, therefore the inclination 
and perspective distortion of the object is hard to establish. In the industrial system 
setup, the process of image capturing is usually designed to achieve desired viewing 
directions for each camera. In this case, we can process this information as a prior 
knowledge. 
When we are considering building façades, best data can be obtained, if the camera 
view direction is set directly towards a façade plane thus is orthogonal to this plane. In 
this case, the level of detail is dependent only from the distance between camera and 
the façade plane. Any redundant image taken from the same distance is likely to 
contain less information than the orthogonal view. This can be observed in the process 
of façade rectification, when the perspective distorted façades exhibit a large amount 
of blurring and distortion when rectified. Compared to this, façades captured from 
orthogonal view contain more accurate information about the edges and details 
[Liebowitz and Zisserman, 1998]. Usefulness of different view directions in the 
presence of an orthogonal view can be increased, when some part of the object is 
obscured in the orthogonal view, but visible in a non-orthogonal view.  
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   (a)                        (b) 

Figure 3.6: Original image with marked point (a) and paired image (b) with 
corresponding point (green) located at the epipolar line (light blue). False epipolar line 
(dark violet) introduced in [Recky, 2006] is applied to pinpoint the location of 
corresponding point. 

3.3.2     Image Matching 

Before the redundant information can be applied in a computer vision algorithm, 
images have to be matched (usually by the means of corresponding points). 
To establish the redundancy and image overlaps in a stack of images, multiple view 
geometry methods can be applied. This approach is explained in the book [Hartley and 
Zisserman, 2004]. A connection between two images can be established through 
epipolar geometry. This geometry is independent of scene structure and only depends 
on camera parameters and relative pose. These parameters can be used to obtain a 
fundamental matrix. Given the fundamental matrix F, an epipolar line defined by the 
equation Fx = 0 for an arbitrary point x from the first image can be computed. A point 
x’ in the second image, which is corresponding to the point x in first image is then 
located always on the epipolar line. We can assume from the definition of the 
fundamental matrix, that given the camera parameters, or enough correspondences in 
the images, we can estimate the relative pose of cameras, one to each other [Horn, 
1990].  If camera parameters are unknown, a fundamental matrix can be approximated 
using the normalized 8-point algorithm described in [Hartley, 1997]. Given arbitrary 
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eight corresponding points (from which neither three are co-linear), parameters of 
fundamental matrix can be estimated with the application of SVD decomposition of 
point matrix. 
In our previous work [Recky, 2006] we used this approach for fundamental matrix 
estimation and introduced a False Epipolar Constraint (see Figure 3.6) to increase the 
speed and precision of corresponding points detection. As shown by [Wang et al., 
2007], this approach can decrease the time consumption of a matching algorithm to 
almost 1/50 of the original without reducing accuracy. This approach can also provide 
us with the information about the type of redundancy, we are dealing with.  
In a controlled situation (e.g. a dataset taken by an industrial system, robot or by users 
for environment mapping/reconstruction) the camera parameters are known 
beforehand. A more complicated situation is when an unorganized image dataset is 
considered. In the work on PhotoTourism and subsequent online application 
PhotoSynth, [Snavely et al., 2006] demonstrated how such datasets can be 
automatically aligned and calibration can be extracted. This method allows 
construction of a sparse 3D point cloud from such datasets and estimates the camera 
positions to establish dataset alignment.  
When considering the problem of image matching for classification, the ideal situation 
is to apply pixel-by-pixel matching e.g. dense point clouds. However for current 
application (primarily in a crowd sourcing scenario, when calibration is not available), 
generally only some points are matched and a sparse 3D point cloud is created. When 
working with building façades as our objects of interest, we can resolve this problem 
by considering façades to be planar. This approximation allows us to interpolate 
between corresponding points in the image and compute correspondences also for 
points where the matching was not performed. Another approach is to consider 
segments as basic units of the image instead of pixels and perform segment-to-segment 
matching. This can be achieved when one or more matched corresponding points are 
located inside segments from matched images. However several problems have to be 
solved in this approach, namely when one segment is matched to several different 
segments in the corresponding image, when there are no matched points inside a 
segment and when segments are covering multiple classes. For these reasons, segment-
to-segment matching is practically feasible only when segmentation is more robust and 
precise then point matching. 

  
 

67



 
 

3.4     Objects of Interests 

In a Section 2.5.3, we discussed shape grammars as the tool for suitable representation 
of objects in an urban scene. In this model, non-terminal symbols in streetside images 
generally cover large areas and are composed of several different object classes 
(terminal symbols). Such large areas do not have a specific shape – even stable shaped 
non-terminal symbols (like façades) are mostly trimmed or partially obscured. Because 
of high visual variability, non-stable shape and area size, local descriptors are not 
suitable for detecting non-terminal symbols. For these reason, non-terminal symbols 
can be identified in the image by the mean of image segmentation (see Section 4.1).  
However, for the recognition of the small elements and details (most of the terminal 
symbols) general segmentation is usually not suitable. As we want a detailed definition 
of terminal symbols for better visualization, other methods than segmentation present 
better results, as they provide more precise borders. For this purpose, we apply 
gradient projection methods, which focus on a specific geometry and shape of façade 
elements. We combine our work on segmentation, context and redundancy with such 
gradient projection method to achieve state-of-the-art results in semantic segmentation 
and façade element detection.  
In our work, we primarily focus on building façades and objects contained within. We 
also identify other objects in street-side images, but only as non-terminal symbols e.g. 
one class for all circulation spaces, or vegetation, but not terminal symbols in these 
classes (e.g. tree branches, circulation spaces elements). There are two reasons for 
choosing building façades as our objects of research: 
 

- Façades are considered primary objects of interest for many environment 
mapping algorithms. They are usually the primary focus of reconstruction 
algorithms in urban environments, as they represent a large volume of 
streetside image data. The automatic and robust processing of building façades 
from a single streetside image or set of images would present a major 
contribution for urban environment reconstruction effort [Becker, 2011], 
[Simon et al., 2011].  
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- For the research of application of context in computer vision, façades present 
unique properties. The highly regular composition of façades suggests that 
context can play a crucial role in the recognition of a façade’s elements yet 
there is a high variety in visual appearance of these elements. This setup 
provides a challenge for visual recognition algorithms and an opportunity for 
context-based algorithm to contribute results. Similarly, façades present unique 
properties for our other focus of research – redundancy. As façades are static 
objects with very little moving parts (doors, windows…) the appearance and 
geometry of the façade would not change significantly in different timeframes. 
This allows examination of the effect of redundancy (multi-view) in a relative 
stable environment. 

 
In our work, we propose a workflow in which façades and subsequently façade 
elements are identified in a top-down process, from more general non-terminal objects 
to specific terminal objects. We first identify primary classes in streetside images, 
including the building class. In this class, we identify specific façades. In each façade 
we identify levels (street level and window levels) and in each level, terminal symbols, 
e.g. windows. In this process, each step provides semantic context information for 
subsequent steps, limiting the area of images where the objects of interest are located. 
This approach can be used also for other non-terminal objects in the image, with few 
exceptions. In a step from specific façade to façade levels, we rectify the façade. In this 
case, we make an assumption that the façade is planar. If it is not, the rectification will 
cause distortion in non-planar areas, but the identification of non-terminal symbols can 
still be performed in a case they are not distorted. This is due to our modifications to 
the gradient projection algorithm which makes it possible to process textured façades 
(in this case, a distortion is processed as a texture). For the identification of façade 
levels and elements, we rely heavily on the specific the geometry of building façades. 
In most other-than-façade non-terminal symbols (e.g. circulation spaces), these 
heuristics cannot be applied and a different approach has to be used.  
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3.5     Datasets 

Our primary source of input is a color digital photograph taken from the street level. 
As we focus our work to be as robust as possible, we use multiple sources with 
different photograph specifications. The resolutions range from 520x390 pixels to 
2576x1932 pixels. Lower resolution images would not display significant objects in a 
sufficient size for processing methods. Top resolution is limited by the depth of 
recursive procedure during segmentation (memory allocation limit in Visual C++). 
Methods were tested also on higher resolutions images, but the limitation of a 
recursive segmentation procedure caused unnatural segment borders and the 
subsequent application of contextual information was less effective. We use lossless 
raster images (BMP, PNG, TIFF) and lossy compressed images (JPEG) in our 
experiments. We observed minor issues with artifacts caused by compression in 
segmentation results (primary in low resolution, highly compressed images), but the 
impact on labeling was insignificant.  
 
We assume that all photographs are oriented correctly (ground level at the bottom, sky 
at the top). If this is not the case, orientation can be corrected. If calibration is 
available, rotation parameters of the camera shows how the photograph is oriented. If 
no calibration is available, visual cues can be used to estimate the orientation e.g. sky 
should be located on the top and its saturation should increase upwards. In our work, 
we use three different datasets: 
 
General Images 
A sataset of images was acquired from the internet and inside sources of ICG TUGraz. 
This dataset was applied to test special cases and increase the variation of test data. 
Parts of this dataset were acquired from the LabelMe database [LabelMe, 2011] and 
the eTRIMS [Korč and Förstner, 2008] database. These sections are partially labeled 
and were used as test and training data. The rest of the dataset was downloaded using 
an image search engine with queries “building”, “façade”, “urban”, “street side” or 
provided by colleagues at ICG TUGraz. No calibration information was used in this 
dataset nor was there 3D information and image matching involved during tests on 
images.  
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Figure 3.7: An example of images from General Images dataset. This dataset was 
designed to cover a large variety of different scenarios, including variations in façade 
types, occlusions, viewing angles and weather conditions. 
 
This dataset was used exclusively in single-view scenarios. Most images in ground 
truth for learning are from the General Images dataset, as it provides the largest variety 
of objects, visual features and scene compositions and consist of 250 images (see 
Figure 3.7).   
 
Tummelplatz Dataset 
A dataset was created specifically to simulate an open, multi-user image source. All 
images were acquired at Tummelplatz Graz, using two different cameras, in different 
weather conditions and times of a day. To achieve a required variety in illumination, 
images were taken between 10:00 AM and 17:00 PM, on three days with different 
cloud coverage (sunny, partially clouded, full cloud cover). Tummelplatz was selected 
as it provides a high variety of objects, scenarios and viewpoints. The dataset contains 
five primary building façades, each shown in approximately 60 different images (see 
Figure 3.8(b)). Façade types wary from historical building to modern architecture. 
Occlusions are caused by trees and pedestrians. Part of the dataset was calibrated and a 
3D point cloud for the purpose of image matching was created by Arnold Irschara 
[Irschara et al., 2007]. This dataset was used in both single and multi-view scenarios 
and include 290 images in total.  
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                           (a)                                                                 (b) 

Figure 3.8: An Example of the image type from the Industrial System database (a) 
with the parallel optical axes providing a high level of redundancy from sequential 
exposures in a moving vehicle; in this example the optical axes are pointing halfway 
forward. In the Tummelplatz-Graz database (b) the viewpoints and viewing directions 
of manually collected images can differ significantly for each object.  
 
Industrial system (CityFit) Dataset 
In the Industrial System dataset images are taken by a calibrated multi-camera 
apparatus mounted on a car (see Figure 3.9). This setup creates overlapping images 
with a rigorous and calibrated geometry from a single image-taking position, and 
delivering for each object point multiple images from that single sensor position.  
By moving the car and repeating the image collection, the level of redundancy gets 
further increased. Carrying along a scanning laser arrangement with the imaging 
sensors provides one with additional range information and means to match the 
images. Figure 3.8(a) is an example of a data set that consists of 250 images from each 
camera on the car platform. In our work, we used the input of only two cameras – one 
sideways and one frontal-sideways tilted camera (see Figure 3.8(a)). The data base 
supports investigations into the issues of the types of redundancies, namely multiple 
images, all taken with parallel optical axes from different camera positions; or multiple 
images all taken from a single position but with different directions for the optical 
axes, and various hybrids between these two concepts. 
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Figure 3.9: An example of a camera system mounted on a car. It is designed to cover 
wide viewing range. 
 
The dataset is complemented with LiDAR scanner data and a method for image 
matching was developed based on this data. In general, this kind of matching can be 
considered equivalent to a 3D point cloud obtained from vision based 
photogrammetry. In both cases, the quality and precision of matching highly depends 
on specific input data – in case of photogrammetry, the precision of camera 
calibration, in case of laser data, the GPS positioning precision. Given the precision of 
such inputs, both methods can achieve geometric accuracies in global coordinates up 
to ±1-2 cm. Both approaches are examined in more detail in a work of [Leberl et al., 
2010].  

3.5.1     3D information 

For part of the Tummelplatz dataset and for the Industrial System dataset we have 3D 
information about the scene in a form of either sparse 3D point cloud or LiDAR data. 
We use this information for image matching in a multi-view scenario; however we do 
not describe any use of 3D data in recognition process. This decision is based on two 
reasons: 
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Figure 3.10: An example of 3D point cloud in the Tummelplatz dataset. This point 
cloud was created from 28 views and consists of 3498 points (thus of 125 points per 
image in average). Of a given façade one has 2623 points to work with. Provided by 
the method designed by [Irschara et al., 2007]. 
 

- Due to a robustness requirement, we aim to provide results for very general 
input data. We do not consider any specific requirements for the input dataset 
and we designed our methods to work in single-view scenario (without image 
matching) as well as with multi-view scenario. This decision was based on the 
observation, that it is still difficult for current methods to obtain sparse point 
clouds, even when there is a good number of images of the scene in the dataset. 
This is especially the case in unorganized datasets, where calibration is missing 
or is not precise.  

- Even we do not apply 3D point cloud in the recognition process in this chapter, 
we use methods that allow for such application. For example, in a DRF model, 
3D data can be used in an observation vector y. We do not use such application 
in Chapters 4, 5 and 6 of this work as our primary focus is to examine the 
difference between single and multi-view scenarios and introduction of new 
data would not meet the back-compatibility requirement for results evaluation. 
However, we examine the involvement of 3D data for the recognition task in 
more details in Chapter 7. 

 
Figure 3.10 presents the example of a 3D point cloud for a single façade in the 
Tummelplatz dataset. We can observe that detected corresponding points are clustered 
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around objects of the façade, such as windows, door or ornaments. In smooth, planar 
areas, the detection of points is lacking. This type of clustering is useful in our 
approach, where we can interpolate between three closest corresponding points, to 
estimate correspondences, which are not detected automatically. In areas which are 
non-planar, the high density of detected correspondences assures good approximation 
and in planar areas, we can still approximate from far away points. However this type 
of clustering is only present in image-based sparse 3D point clouds and not in the laser 
scanner data in our IS dataset.  
We can also observe from Figure 3.10 that the sparse point cloud was created from 28 
views, however the dataset contain 64 images, where this façade is located (at least 
20% of façade area). The rest of the images were not matched automatically by the 
algorithm, thus cannot be matched through a point cloud. This omission was caused by 
automated matching algorithm, as it was not able to correctly identify interest points in 
other 36 mages. For this reason, we marked several façades manually, to increase the 
test dataset. We mark four or more points on the façade borders and place them in a 
global coordinates and for all points inside, we interpolate between three closest points 
the same way as with the point cloud. In this approach, the entire façade is considered 
planar and small reliefs are disregarded. In both cases (point cloud and manual 
marking), the interpolation is not linear, as we must consider perspective distortion for 
the façade. Thus we must compute the inclination of top and bottom borders. 
Subsequently, the interpolation is the function of perspective.  

3.5.2     Annotation 

 We developed several annotation tools to test various aspects of streetside image 
processing. For semantic segmentation testing, the pixel-by-pixel labeling has to be 
used as ground truth. We achieve this form of annotation by automatic segmentation 
and subsequent manual classification of segments. In locations where segmentation 
was not successful to separate different classes into different segments or the borders 
of objects were not approximated correctly, the error was corrected manually. We also 
used an open eTRIMS labeled database, as it provided ground truth data with 
sufficient accuracy. The eTRIMS dataset does not include “roof” and “cloud” classes, 
so these were labeled manually (see Figure 3.11, second row). The annotation of 
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LabelMe database proved not to be precise enough for our purpose. This is primarly 
due to insufficiently labeled borders of the objects, as occlusions are often neglected 
(and included in the object area), or vegetation class borders labeled only roughly. For 
this reason, we used only specific objects from this dataset, or made our own 
annotation. It should be also noted, that in our ground truth dataset, borders of some 
specific objects are not well defined. This is primary the case for borders between 
clouds and sky and borders for vegetation as it is a hard task to label such objects 
pixel-by-pixel manually. When manual labeling is involved in ground truth, we must 
consider errors in labeling to contribute in overall testing results. 
For our work with building façades, we developed another annotation tool capable of 
labeling specific façades in the image. In this tool, a façade is identified by its borders 
as a set of at least four points connected by lines. Four points are used, if the 
rectangular façade is fully visible in the image. More points can be used, if façade has 
different shape, or is only partially visible (see Figure 3.11, two bottom rows). In this 
annotation, façades are considered planar objects located inside marked borders. When 
two sides of a building are visible in the image, each side is labeled as a separate 
façade. Façades, which have large parts occluded, trimmed from the image or are 
under severe perspective distortion are not labeled. The database with labeled façades 
is used as a ground truth for a façade separation method, but also as an input for façade 
elements processing methods. In the automatic workflow (from streetside images to 
scene descriptions) façade separation algorithms would provide the input for these 
methods, but for the testing, we used hand-labeled datasets as the form of model input 
(see Figure 3.11). 
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Figure 3.11: Examples of ground truth annotation. Top row – semantic segmentation 
ground truth created to learn classifiers (each class is color coded). Second row – 
ground truth created from eTRIMS dataset (roof and cloud classes added). Below – 
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façade annotations ground truth created for methods focused on façade processing 
(each façade is marked with different color).  
 
We developed ground truth datasets for testing window detection algorithms. This is 
based on the testing dataset for segmentation, except windows are no longer labeled as 
unidentified, but a class label is assigned to them. Several more images from the 
Tummelplatz dataset had been labeled exclusively (only windows) to test multi view 
for window detection. Windows are marked by a rectangular bounding box and 
include the window frames. 

3.5.3     Software Implementation 

The implementation of methods was done in C++ in Microsoft Visual Studio 2008. All 
methods were processed on a CPU. Beside standard C++ libraries, we use OpenCV 
library1 and Jpeg library2. Tests were performed with a following hardware setup: Intel 
2660Mhz, 2 GB RAM, GeForce 8800. For 3D visualization we use OpenGL toolset3. 
All further open code solutions used in this work are marked as footnotes in relevant 
sections. 
 

                                                 
1 http://opencv.org/
2 http://gnuwin32.sourceforge.net/packages/jpeg.htm
3 http://www.opengl.org/
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Chapter 4 
 
 
 
 

Semantic Segmentation of Streetside Images  
 
 

4.1     Context-Based Semantic Segmentation 

 
The goal of a semantic segmentation algorithm is to retrieve the image content 
information through classification of each region in the image into some predefined 
classes (usually definable for an application domain and type of image). In this section, 
we consider single street-side images and introduce a semantic segmentation method 
for this specific domain [Recky and Leberl, 2009]. Subsequently, we extend the 
problem into multi-view [Recky and Leberl, 2010]. Common classes in street-side 
scenes are the building façades, sections of road (ground level) and sections of sky. We 
also consider vegetation, clouds, building roofs and grass areas. Following algorithm is 
presented in this chapter: 
 
Algorithm 4.1 
 

Input: Single streetsite image, or multi-view dataset of matched images 
1. Run low threshold Watershed Segmentation on an image to segment it into 

patches 
2. Merge patches into larger segments using the Visual Similarity measure 
3. Connect segments into graph and establish DRF model 
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4. Use Belief propagation to estimate optimal solution for DRF 
5. Establish final labeling of image’s areas 
6. if (multi-view is present) merge labeling from matched images 
Output: Semantically segmented images (image areas are labeled as specific 
classes) 

 
We introduce several innovations in this approach 

- Merging of patches into segments with a goal to represent real objects as a 
focus of context application. For this, we use our own criterion – Visual 
Similarity measure. 

- A global model of DRF where entire image is connected into a graphical model 
instead of local models 

- We examine several multi-view scenarios with regard to image overlaps and 
camera positions 

 
This workflow can also be described in more details as follows: 
At first, an image is segmented into large, logically coherent regions created from 
small, merged patches. It is assumed that only one object class is associated with one 
region. During the subsequent classification, only regions are considered as the objects 
of classification. To improve the result of classification, spatial relations between the 
segments are examined. An example of spatial rules is the fact that in a majority of 
properly oriented street-side images, building façades are located below sections of the 
sky. If in the classification output this probability rule is not met, it may indicate an 
error in classification. These spatial rules get represented as a Discriminative Random 
Field (DRF) as they represent a context between objects in the image. Visual 
classifiers and spatial relations in DRF are learned in a supervised process. As it is 
described in [Hoeim et al., 2005], only a small number of training pictures is required 
to train the classifiers. For this purpose, we use the hand-labeled ground truth database 
(see Figure 3.11(Top)). The same database is used for training of the DRF [Wallach, 
2002]. 

4.1.1     Segmentation 

Localization of the region borders and position is formulated as a segmentation 
problem. Several requirements must be met by the segmentation to cope with the 
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problems presented in street-side scenery. At first, regions have to be logically 
coherent. It means for example, a single region should contain only one building 
façade (or part of it) and should not extend to façades of different buildings, or to the 
sky or ground regions (for a definition of “façade”, see Section 1.2.1). But also, 
segmented regions should be as large as possible.  
When examining pictures of street-side scenery, it is obvious that texture covariance 
can change rapidly through a logically coherent region. As an example, in one building 
façade, regions with low covariance alternate with regions containing ornaments or 
pillars, where covariance is high. But both of these regions may still be part of the 
same building façade, so we would like it to be considered as one region. This 
requirement is not easily met, because segmentations are usually designed to 
distinguish between such regions. Also, borders between two regions can be well-
defined in street-side images, but they may also be very smooth (for example, between 
clouds and sky regions). 
To meet these requirements, we use a non-standard segmentation approach with a 
novel variation. Our segmentation process consists of two steps. First, we compute the 
over-segmentation of the image. In this step, our goal is to find suitable objects 
borders. We tested two approaches for the over-segmentation: the watershed-type 
segmentation and the graph-based segmentation [Felzenszwalb and Huttenlocher, 
2004]. Both approaches are parameter type segmentations and can be set such that 
different levels of segmentation precision and in-segment covariance can be achieved. 
During the testing, the graph-based segmentation proved to be more robust, as in some 
special cases the watershed-type did not approximate object borders correctly (primary 
when the borders were not sharp enough, or the quality of a picture was low and 
artifacts were present). However, the graph-based segmentation often over-segmented 
borders of the objects into multiple layers, which are shown to cause systematic errors 
in the next step of the method. Therefore we decided to run experiments and evaluate 
results with watershed-type segmentation. 
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Figure 4.1: Segmentation examples represented in three steps described in this 
section. From the left: original image, over-segmentation from the watershed process 
that use texture as image primitive and the final segmentation after segment merging 
(segments are represented by a random color). Notice that in the final segmentation, 
the façades are represented only by one, or few large segments (even the covariance of 
the original façades varies greatly).  
 
Watershed Segmentation 
We use the Meyer Flooding Algorithm to perform the segmentation [Meyer, 1991]. 
The process is initialized on a grayscale gradient image, provided by a Robert’s Edge 
Detector [Roberts, 1965]4. The gradient image is modified such that low gradients are 
truncated to zero by a threshold T1 to present large areas for flooding. This truncating 
allows areas with fine texture (such as façades or roofs) to be considered uniform. In 

                                                 
4 http://www.codeforge.com/article/19293
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each zero-gradient area a seed is placed from where a flooding is performed in a 
recursive process.  
Threshold T2 is set to represent a limit for flooding. In each direction of flooding, the 
gradients contribute to a height value. If this value reaches the threshold T2, the 
flooding in corresponding direction stops. After this process, segments are detected in 
the image; however some pixels (with high gradient value) might not be included in 
any segment. Such pixels are subsequently attached to the nearest existing segment. T1 
and T2 are the parameters of segmentation and represent the final uniformity and size 
of segments. Threshold T2 is deliberately set to a low value such that the image is over-
segmented (see Figure 4.1). After this step, the borders of small objects are detected 
often within one pixel precision but large coherent areas of the image (such as ground 
or façade) are segmented into a large number of regions. This kind of segmentation 
can also be considered as segmentation into superpixels; however as we aim to 
examine context between larger areas, we proceed with a merging step. 
 
Segment Merging 
In this step, segments which are geometrically close to each other and are visually 
similar (their color looks similar to a human expert/trainer) are joined into larger 
regions. Our goal is that final regions approximate real class objects (in this work – 
cloud, sky, roof, façade, ground, vegetation, grass) as precisely as possible. This is 
necessary for subsequent context application at the object level. For example, we want 
to define context of the façade as a location between roof/sky and a ground. This can 
be achieved best when only one region is located between roof and ground and such 
region is considered in context evaluation. Detection of such uniform segment is not 
an easy task for a gradient-based segmentation, as many façades are not uniform, e.g. 
façades can have slightly different color at ground level, or ledge between levels. Even 
when the façade is uniform, shadows can provide regions with different 
color/illumination or occlusion (e.g. wires, lamp posts) can dissect façade’s projection 
into several regions. In these cases the segmentation detects multiple segments in one 
class object. In this step we want to identify such cases and correct them.   
We define “Visual similarity” as a floating point value between 0 and 1 expressing 
how similar two color values look like (what is their visual difference). This value is 
considered a probability value, how likely two segments belong to one class object. 
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Alternatively, visual similarity can be computed in the CIE-Lab color space, as a 
Euclidean distance of Lab values. However, the implementation revealed that this 
approach is not suitable in the current application. The main reason is that in CIE-Lab 
space, hue and saturation have approximately the same weights in computing 
similarity. In street-side images, most building façades can be distinguished by their 
hue, but nearly all façades have a rather low saturation. Therefore, to differentiate 
between two buildings, a large weight must be put on hue, and smaller on saturation. 
To achieve this, visual similarity is computed through a specific formula in HSV color 
space: 
 

       ( ) =21 ,CCϕ ( )( ) ( )( )( )21221121 ,,,maxmin bbavgfssfhh ⋅− ,  (4.1) 

 
where C1 = [h1, s1, b1] and C2 = [h2, s2, b2] are colors in HSV color space and f1, f2 are 
logarithmic functions: 
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where Z1, Z2, Z3 are normalizing constants (normalizing f1 and f2 into <0,1>). 
Similar modifications are used for differences of saturation and brightness. A final 
visual similarity value is computed as maximum of the differences of hue, saturation 
and brightness. In this approach, several variable coefficients (k1, k2, k3, …) are used 
(in logarithmic functions). To achieve best results, these coefficients have been 
optimized in a supervised learning process. Hand-labeled validation dataset (with each 
façade marked as different object) was used, and for each set of coefficients, 
segmentation was performed. Coefficients that achieved the best results are 
subsequently used in segmentation. In this approach, it is not necessary to compute 
transformations between CIE-Lab and HSV color space and still compute similarity 
values with modifiable weights on hue, saturation and brightness. The logarithmic 
functions were chosen to simulate the requirements on HSV parameters, as these 
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functions can narrowly modify weights when required (close to zero) and still remain 
nearly constant in higher values. 
Merging of segments into regions is an iterative process. In the first step, only 
segments larger then 0.2% of the image and visually similar are merged into a 
composite region (more then two segments are allowed to merge in one step). 
Subsequently, smaller segments are merged into existing regions. Also, visual 
similarity is computed and required for merging, but the similarity threshold is reduced 
with each step. The representative color of the region is recomputed after each step. In 
this approach, it is assumed that large segments are more important for the subsequent 
classification, as they are usually representing some coherent areas in the image. On 
the other hand, small segments may represent some small objects, or texture elements. 
Therefore, large segments have the priority in the merging step, but the requirements 
for their merging are high. We allow merging segments that are geometrically close to 
each other, but not necessary connected. In each iteration step a scanning window is 
used to identify segments that can be merged. The size of the scanning window defines 
how far away the segments can be from each other and still be merged. Such approach 
allows final regions to be discontinuous. We use this method to prevent façades 
segmented into several regions when they are sectioned in projection. This is 
especially useful in urban areas, where building façades or other logically coherent 
areas are often dissected by wires, traffic lamps, poles, or other objects in the image. 
However, this approach also often causes two or more separate façades segmented into 
one region if their colors are similar. In this stage, it is not considered an error as we 
have only one class for buildings (thus it does not have significant effect on context 
application). 
This approach for image segmentation has several advantages over the non-parametric 
methods [Andreetto et al., 2007]. As described before, segmentation can be easily 
modified by adjusting the coefficients, obtained from ground truth data. By over-
segmenting the image in watershed segmentation, most details are preserved, so in the 
final output, borders of the regions are well-defined (see Figure 4.2).   
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Figure 4.2: Examples of image segmentation. Each segment is represented by it’s 
color. Borders of segments larger then 10% of the image are marked for better 
overview. For this reason, smaller segments are displayed without borders and some 
borders may look incomplete (due to location of small segments at that position).  
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4.1.2     Segment Classification 

In a segmentation step, several large regions are usually detected in the image. These 
regions are subsequently classified into building façades, sky, cloud, roof, ground, 
vegetation and grass classes. Regions with intensity <0, 1> lower then 0.1 are marked 
as dark/unclassified, as in our database they lack any features necessary for the 
classification (due to camera quality). Such regions are often parts of scenery in strong 
shadows and it is not possible to classify them based on their visual features. Only 
regions larger then 1% of the image are classified. As described in the previous 
section, smaller segments are merged into regions with increased visual similarity 
tolerance. Therefore, if the region smaller than 1% still exists in the image (was not 
merged into larger neighboring segment), it is unlikely it belong to one of the major 
classes. Such small regions are generally some small objects (pedestrian, animal, 
bicycle, street accessories…) and are marked as unidentified.  
In a classification step, we use Discriminative Random Fields to define the probability 
distribution over classes. In this definition, both visual features and spatial relations 
(representing context) are applied in one framework. Let us represent the conditional 
distribution P(x | y) over classes (x is a vector representing classes and y are the 
observations) as a conditional distribution described in Section 3.2 
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where Z is normalizing constant, S is the set of nodes, Ni is the set of neighbors of 
node . -ASi∈ i is the unary potential and -Iij is the pairwise potential.  
The unary potential Ai represents the measure of how likely node i belongs to class xi, 
given the observation vector y (and disregarding the neighborhood). In our approach, 
this potential is directly computed in a visual classification step.  
 
Visual classification is based on a decision tree. We use 30 hand labeled images as a 
training set, 100 images remain for testing purposes. 
In the process of classification, each region is considered a coherent object (only one 
class can be assigned to each region). Classification is based on color, position in the 
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image, size and texture (confidence scores are computed for each feature by comparing 
the feature vectors): 
 

- A single representative color value is computed for a region as an average of 
color of the pixels inside the region. In a learning process, a color histogram is 
created for each category. In a classification process, the color of the region is 
compared with a class histogram. 

- The position of the region in an image is represented in a position matrix. The 
image gets divided into a regular grid; each cell in the grid represents a 
coefficient in a matrix. It is computed if the region (or part of it) belongs to the 
cell. The same process is applied during the position classifier training. In the 
classification step, the position matrix of the region and the position matrix of 
the class are compared. The score value for position feature is computed as a 
sum of overlaps over position matrix. 

- The texture of the region gets expressed as a histogram of gradient values over 
the region area. This representation of the texture is sufficient to distinguish 
smooth regions from textured regions. In the process of image over-
segmentation, textured areas get segmented. As described in the previous 
section, these areas may be subsequently joined, so the insides of the regions 
may contain high gradient values. Therefore, classes like building roofs, or 
vegetation areas that contain some texture information relevant for 
classification, can be recognized thanks to this feature. 

 
In the decision tree used for classification, the last level contains the confidence values 
for each class computed as a joint probability of the classifiers located in the path from 
the root to the leaves. These values may be considered as the classification result, but 
as described in [Hoeim et al., 2005], features presented in this section may not be 
sufficient to discriminate between all classes. For example, regions of the sky and 
regions of façade windows (mirrored reflections of sky) can be very similar in color 
and texture and they may be located in similar positions in the image. Therefore, it is 
necessary to use some additional constraints in the classification. In the next section, 
we present spatial rules for verification of the classification. 
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4.1.3     Spatial rules in classification 

Pairwise potentials Iij in (4.4) represents the measure of interaction between two 
neighboring nodes i and j given the observation vector y. Pairwise potentials are 
derived from the training set during the learning process. Let us assume, that M is the 
set of training images, xk is the classification of the k-th image and yk is the 
observation of the spatial relation in the k-th image (see Table 4.1). We can represent 
the set of classified regions neighboring the region i in image M∈k  as . Then the 
probability that region i in the k-th image is classified into class x

iN
kx

i is ( )k
N
kik

ixP yx ,| . 

This value can be computed directly from the training set.  Inserting this value into 
equation (4.4) gives us the parameters for pairwise potential Iij, as described in [Kumar 
and Herbert, 2006] 

Real objects in street-side scenes are in specific spatial relations to each other. For 
example, sky and clouds are usually above the buildings, roofs are above the façades 
and ground is below the buildings. It is assumed that some of these rules are 
transferable into digital images as a central projection of the real scene. Using these 
rules may be valuable as constraints in the classification.  
Spatial rules are encoded as a probability of spatial relations between two different 
classes. To extract the spatial rules that are commonly valid in street-side images, we 
must have a labeled ground truth database, with all objects classified.  
Spatial rules are implemented as a DRF’s pairwise potential, representing every region 
in the image as a graph node. Regions close to one another are neighbors in the graph. 
In a classical approach, where each node represents a pixel, or a grid element in the 
image, spatial relations are implicit in the position of such element in the picture 
[Kumar, 2005]. In our model, regions are not assembled in any predictable fashion and 
they vary in shape and size. To extract the spatial relation, the graph structure is 
assembled with the image regions as the nodes (see Figure 4.3).  
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Figure 4.3: The example of the graph structure placed over the segmented image. 
Regions are represented as a graph node. An edge is placed between each two 
neighboring regions. This graph is the basic data structure for DRF and defines node 
areas as well as their neighborhood relationships. We can observe 19 nodes in the 
graph, each with 1-8 neighbors. In this example, only areas large than 15% of the 
image are displayed, as they represent significant objects in the image and are primary 
contributors for contextual relations. 
 
Edges of the graph are assigned between two neighboring regions. In this approach, 
only one graph structure exists for each image and the context information from the 
entire image is considered for the classification of each region. This makes the 
contextual classification a global process, yet the computation is very time effective. 
When compared to local methods, we have one graph for one image, instead one graph 
for each pixel, we compute context from the entire image instead of context from close 
neighborhoods and we represent context between real classes. However we make a 
strong assumption that our regions represent real objects. Our experiments will show 
that this assumption is reasonable.  
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Region i Relation Region j 
Inside 

Enveloping 
partially above 
partially below 

fully above 

Bounding box 

fully below 

Bounding box 

Inside 
Above Region centre 
Below 

Bounding box 

Above 
Region centre 

Below 
Region centre 

Table 4.1: Spatial relations are described based on relations between bounding boxes 
and centers of two regions. 
 
In the case of street-side images, mostly vertical spatial relations are relevant. This 
observation is based on a vertical division of the image, in which the classes relevant 
for this method are assembled into vertical levels. Other types of relations we examine 
are inside/enveloping, as these are often present in class relations such as cloud-sky, or 
vegetation-façade. Relations that are examined between the regions are described in 
Table 4.1. 

4.1.4     Evaluation of DRF 

We use belief propagation to estimate the conditional probability distribution of DRF. 
To speed up the process and achieve better results we limit the set of possible classes 
for each node based on the visual feature. This approach comes from observation, that 
in certain classes visual cues are too decisive in final labeling. For example, the 
possible color of the sky is too limiting for a vegetation to be considered into sky class 
(and vice versa). Therefore, before the evaluation of DRF, we exclude classes with too 
low a visual score from consideration in specific nodes. This step is also based on the 
assumption, that given an arbitrary high score from a pairwise potential, such score 
should not overcome a low unary potential score.  
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Belief propagation [Pearl, 1982] is computed in an iterative process. In each step, 
marginal probabilities (beliefs) Pb(xi, mji(xi, y)) for each possible label xi are computed 
for each node i of the graph. Variable mji(xi, y) is a message from node j to node i, how 
likely it is that the label of node i is xi given the observation in the image y. In each 
step, the class with top score of Pb is selected in each node and the messages mji(xi, y) 
directed from that node to neighborhood nodes are computed according to such class. 
In the initial step, only a visual score contribute to Pb (messages are considered as 
null). After several iteration steps over all nodes, the set of classes with top Pb in each 
node stabilize (if not, a threshold for the number of iterations is applied) and winning 
classes are taken as labels for the nodes. Such solution is implemented in C++ open 
source library5.  

4.1.5     Results 

For testing purposes, 230 images with different weather and lighting conditions were 
selected from the General Images and Tummelplatz database. These images contain a 
large variety of objects from historical buildings, standard city blocks, residential 
apartments and modern architecture. 
Thirty of these 230 images were used in a supervised training process as the hand-
labeled ground truth data.  Segmentation and classification of an image (640x480) 
takes approximately 2 seconds on un-optimized single CPU implementation.  
As a first experiment, we demonstrate the segmentation performance by using the 
visual similarity calculation described in Section 4.1.1. To test the performance of only 
segmentation (without any classification process), 50 testing images were selected and 
the precision of façade segmenting was tested. In this set of images, each building 
façade was manually labeled as separate area. The segmentation of images, based on 
visual similarity and CIE-Lab distance was computed and compared to manual 
labeling. For each image and each building façade, the area of the façade region 
extending to other than original coherent area was computed (thus marking the error).   
 
 

                                                 
5 http://cs.ru.nl/~jorism/libDAI/
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façade 

(%) 
roof  
(%) 

ground 
(%) 

sky  
(%) 

vegetati
on (%) 

grass  
(%) 

cloud  
(%) 

clas 89,3 76,5 92,4 97,6 80,4 93,5 57,5 
with 
DRF 

93,7 85.2 94,3 98,1 83,7 95,4 62,3 

Table 4.2: Results of the classification. In the first row, only visual features were used 
for the classification. In the second row classification was reinforced by Discriminative 
Random Fields. 
 
In the case of CIE-Lab distance, this was approximately 5.7% of the region (average of 
all façade regions in all testing images). In case of visual similarity, this area was 
reduced to 3.2%. The second experiment tested the performance of a classification. All 
200 images were semantically segmented (segmented and classified) and errors were 
manually marked. In Table 4.2 we can see the correct classification rates for each class 
in the testing database. The percentage numbers express the value of correctly 
classified pixels of each class presented in the image. When computing the average 
over all testing images, contribution of each image was weighted by a size of area 
covered by a class. Classification is performing worst in the cloud area. This is due to 
the weak visual differences between the sky and clouds and difficult segmentation of 
the area. Using DRF for verification provided best results in roof and façade areas, as 
these have strong contextual relations to other classes, but their appearance-based 
classification is difficult as there is a large variation in texture and color (see Figure 
4.4). For our future studies, the number for façade classification is most important, as 
this result will be used for the subsequent façade separation method. With the 
application of context in the form of DRF, the overall precision of façade pixels 
classification is 93,7%. The errors in classification are observed at the border of the 
façade, entire façades classified incorrectly and from windows labeled as façades (in 
ground truth, windows are mostly labeled as unidentified). The improvement in results 
between classification without context and with context mostly comes from the 
misclassification of entire façades. In the context-free approach, entire façades can be 
labeled as different class, when the visual properties are met (e.g. white buildings at 
the top of photos). This error can be corrected with the application of context (when 
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such white building has a roof, or a window, the label is changed from “cloud” to 
“façade”).  
In the final labeling, windows are often labeled as either unidentified or façade. In the 
ground truth we label windows as unidentified, unless they are too small (see Figure 
4.4). If the method labels such window as façade an error is produced by such labeling. 
In a Figure 4.4, it can be observed that most errors in a façade labeling are produced by 
mislabeled windows (for example, façades in third row have most windows labeled as 
façade class). However in our subsequent methods of façade separation, we consider 
both façade and unidentified classes to be parts of potential separate façades, so this 
kind of error is largely neglected. Because of this, the result for façade classification 
can be considered to have a higher value that given in Table 4.2 in some specific 
applications. 
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Figure 4.4: Examples of image context. Each class is marked in different color. Dark 
green (building façade), brown (roof), gray (ground), green (vegetation), blue (sky), 
light green (grass), dark gray (shadow), black (unclassified).  We can see in these 
examples that most problems are in false positives for the vegetation class (mostly 
façade areas labeled as vegetation due to similar color or low illumination) – images 
(b), (c), (j), (k) and false negatives for cloud class (clouds labeled as sky) – images (a), 
(d), (k). Unidentified areas are mostly small, visually distinctive regions, like 
windows, or pedestrians – images (a), (c), (d), (g). In several images, a building color 
is closely similar to a color of the sky/cloud – images (d), (i), (j), or to a color of 
ground – images (e), (f); however the building class was labeled correctly due to an 
involvement of context relations between classes. Notice a variety of architectural 
styles and scene compositions.    

4.2     Multi-view Streetside Scenario 

We examine the effect of multi-views in the semantic segmentation method. The task 
is to present experiments on how the semantic segmentation performs in different 
images that can be matched to one another [Recky and Leberl, 2010]. As the visual 
information generally differs only slightly in matching images, this experiment shows 
how the different context present in images has influence on a classification. For this 
purpose we do not modify the classification process for multi-view. Instead we run 
classification (semantic segmentation) for each image in the stack and decide the 
global classification of the scene based on the partial classifications from images. We 
apply the method in two datasets. First dataset is the Industrial System. In this section, 
we used the input of only two cameras – one sideways and one frontal-sideways tilted 
camera. The data base supports investigations into the issues of the types of 
redundancies, namely multiple images, all taken with parallel optical axes from 
different camera positions; or multiple images all taken from a single position but with 
different directions for the optical axes, and various hybrids between these two 
concepts.  
Our second dataset is the Tummelplatz set. In this data set we also have sufficient 
images to be able to group them by similarity of their optical axes by dissimilarity due 
to differences in position and orientation of the optical axes, and by geometric 
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resolution. The object range of these two datasets does not permit us to study the 
results as a function of various object types. For this to be possible, we need to 
increase the variation of objects and scenes being studied.  

4.2.1     Multi-Image Semantic Segmentation 

In the general case of urban imaging, a block of images would be triangulated in 
today’s typical workflows as illustrated by Photo-tourism and Photosynth [Kumar, 
2005]. We also employed this approach and created a sparse 3D point cloud from the 
subset of the Thummelplatz dataset. The algorithm described in [Irschara et al., 2007] 
was used to extract the point cloud. However in our case, we used a calibrated camera 
in the process. This allows us to work with more precise and reliable data for image 
matching. When working with crowd sourced datasets, one must account for errors 
caused by lack of calibration data. As our goal in this section is to match the building 
façades between two images pixel-by-pixel, a sparse point cloud does not provide us 
with enough data for this. It is necessary to develop a dense point cloud. If we can 
assume that the sparse point cloud do describe the 3D shape with sufficient detail, we 
ca interpolate the positions of pixels between the points belonging to the sparse point 
cloud inside the façade. We can operate with a simple assumption, that the area 
between two façade points is planar. In perspective imaging, a planar object is mapped 
into the image plane by a projective transformation. Establishing the parameters of this 
transformation can provide image matching even for pixels not belonging to a point 
cloud.  We merely need to identify at least 4 façade points in each image. We can use 
four non-collinear points from the point cloud, or when the point cloud is not present, 
we can mark these points manually and assign world coordinates to them. The 
perspective transformation matrix can be defined uniquely if image and object 
coordinates of at least four points are measured. The relation between the point in the 
image plane x and the point in the world plane x’ can be defined as x’ = Hx, where H 
is the projective transformation matrix.  The parameters of matrix H can be computed 
from 4 corresponding point coordinate sets, or alternately can be derived from the 
certain metric properties such as length ratios and angles, as described in the work of 
[Liebowitz and Zisserman, 1998].  
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Figure 4.5: Image segmentation and matching. Top row – original images of the same 
objects from different view point. Middle row – semantic segmentation of the 
individual images. Dark green – façade, brown – roof, light green – vegetation, white – 
clouds, gray – ground. Bottom row – building façade is marked and matched. 
 
For the purpose of testing the segmentation results, the borders and the inner area of 
the building façade were manually labeled. By associating with each façade in object 
space a unique identifier (number), we can automate the matching task for each group 
of images of the same façade (see Figure 4.5). In an Industrial System database, we 
used the laser scanner data in similar way as a point cloud. Given that each image is 
geo-tagged, the position of a laser scanner point on the building façade in the world 
coordinate system can be projected back into each image. This will provide us with 
image and object coordinates of a sufficient number of object points so that the image-
object relationship is fully defined. We use this simple method to relate the overlaps of 
the images to one-another and to then study the differences in the segmentation from 
image to image in the overlaps.  
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Figure 4.6: The segmentation of three different views of the same object. Each of the 
segmentations show errors (in a red box) different from the others. 

4.2.2     Simple application of multiple views 

For the purpose of testing the multiple-view image interpretation, we use an annotated 
ground truth. This allows us to identify façades and the correspondences between the 
planar objects in the images. For each façade, the perspective distortion is computed 
from the combinations of four non-collinear points from a point cloud (if present) or 
from points manually marked. 
The position in world coordinates for each point of the façade is computed through 
interpolation between three closest point cloud points. The identification number for 
each façade helps in automating the work with multiple images. We also identify 
objects that generate occlusions such as vegetation, pedestrians or cars. This type of 
annotation can provide us with pixel-by-pixel correspondences between the images.  
For each image, a semantic segmentation is being performed in accordance with 
Section 4.1.1. Our task in this experiment is to assess how the results of the façade 
segmentation differ between images, and the identical object areas do get defined by 
means of image matching as previously discussed.  
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The framework can be described in the following steps: 
1. For each façade object, identify the group I of images, where it is located and 

annotated.  
2. Compute the perspective transformation matrix Hi for each image  I∈i
3. For each point , where F is the façade in the image i with the 

identification number j, transform x
ijijx F∈

i,j into the world plane coordinates x’i,j = 
Hixi,j 

4. compute the new classification as ijx∀ ∑
∈

=
I

)().(1
i

ijijij xcxw
Z

s  

where c() is the classification of façade pixel xj as façade in image I and w() is 
the weight function. Z is the normalizing factor, setting sij into <0,1> interval 

5. Compute the new classification as a result of sij for each pixel of the façade. 
 
We designed several scenarios according to the concept of redundancy described in 
Section 3.3. Three scenarios are identified for the Tummelplatz database as follows:  

a) single position, rotated optical axes (SPRA) 
b) varying position, parallel optical axes (VPPA) 
c) varying position, varying axes (VPVA) 

The industrial system (IS) is considered as a separate case with a varying position, 
parallel optical axes and a high level of redundancy. 
For a testing purpose, we used 5 façades (3 hand-labeled and 2 with automatic 
matching) façades from Thummelplatz dataset, each on approx. 30-60 images (253 
image total) for SPRA, VPPA and VPVA scenarios and 4 façades from Industrial 
System dataset for IS scenario. In our first experiment, the weights w(xij) are set to 1 
for each image. This approach was chosen to demonstrate that even the simple 
summing of classification through all images can provide improved results over a 
single image. Pixel xij is then classified as a façade, if sij > 0.5 (see Figure 4.6). 
Results from this experiment are summarized in Table 4.3. For each of the 4 overlap 
cases, we produce three numbers. “# img” is the number of images used in the 
scenario; “Single img” is an average result of classification for each image in the 
scenario separately. This number is expressed in a percentage of all façade pixels that 
were correctly classified as a façade class. The row “Multi img” is the result of 
multiple view approach, as described in this section. 
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Scen. SPRA VPPV VPVA IS 
# img 24 22 55 250 
# img/obj 8 11 6 27 
Single img (%) 93.9 94.2 93.4 89.2 
Multi img (%) 96.2 96.9 95.7 93.3 

Table 4.3: Area labeling in different scenarios. “# img” is the number of images; “# 
img/obj” is the average number of views of a given object point. “Single img” is the 
average value of correct classification of pixels into a “façade” class in single image 
approach (in percentage); “Multi img” is the value of correct pixel classification in 
multiple views approach (in percentage). 
 
From the results of this experiment we can observe that the improvement in a multiple 
views approach can be achieved in all examined scenarios. The single image approach 
has the highest error rate in the industrial system dataset. This is probably due to lower 
quality of the images (lower resolution and lens quality). But the improvement in 
multiple views approach is also higher in this scenario. It is assumed, that the high 
level of redundancy may be the contributing factor in this result. It is therefore 
assumed that this scenario can benefit the most from the redundancy in a dataset.  

4.2.3     Classification consistency as a function of distance from a 
camera 

A second experiment examines the effect of redundancy in regard to the distance of the 
objects from the camera. It is assumed that distant objects are more difficult to 
classify, as they contain larger pixels and thus less information about the object, but 
the relationship between the distance and the classification result is unclear. In this 
scenario, we use the industrial system database with laser range data to classify and 
match objects. We are comparing the classification of areas of building façades at 
different distances from the camera. The area of the façade is considered consistently 
classified if it is labeled as a façade, or unidentified.  
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Figure 4.7: Relationship between the distance from the camera and the consistency of 
a façade classification. Values are plotted in blue for objects at various distances from 
the camera; the red line is an average value. 
 
The results can be read from Figure 4.7. We see that at a distance of 10 meters, 95% of 
the façade pixels are consistently being classified as “façade” or unidentified. Going 
further way to 40 m, this reduces to a level of 84%. 
This result can be used in the further experiments, to derive a distance dependent 
weight for the classification in image overlaps or redundant databases. The 
classification of an object closer to the camera is at a higher confidence than that of an 
object that is further away.  

4.2.4     Multi-view classification based on distance 

In this experiment, we apply our previously extracted function of distance based 
classification consistency to improve the algorithm described in Section 4.2.2. We set 
the weight function w(xij) as a function of distance from a camera. This will provide 
the weighting for each pixel, when the distance information is available. We used a 
subset of Tummelplatz dataset, for which the sparse 3D point cloud is available and 
the Industrial System dataset with laser range data for this experiment. The results can 
be observed in Table 4.4. 
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Scen. VPVA IS 
# img 28 250 
Single img (%) 93.5 89.2 
Multi img (%) 96.1 95.7 

Table 4.4: Area labeling based on distance. “# img” is the number of images; “Single 
img” is the average value of correct classification of pixels in single image approach 
(in percentage); “Multi img” is the value of correct pixel classification in multiple 
views approach using the distance as a weight function (in percentage). 
 
In this experiment, we can conclude that selecting a more appropriate weight function 
w(xij) for the classification in multiple views scenario can add some improvement. The 
selection of weight function is dependent on additional data, in this case, the presence 
of distance information. This will need to use the calibration of the camera 
(preprocessed or automatic), or some other source of data (laser scanner, for example).  

4.3     Discussion on Semantic Segmentation 

In the previous section, we introduced a semantic segmentation method for streetside 
images and extended it into a multi-view scenario. Our method is applied to detect 
only non-terminal symbols in the image, limiting the class set to {façade, roof, ground, 
vegetation, grass area, sky, cloud, shadow, unidentified}. Terminal symbols are 
labeled as part of the non-terminal class, or are left unidentified. This approach is 
based on our hierarchical framework for streetside processing; however additional 
classes of terminal objects can be added directly into the set of classes if necessary. For 
example, adding the “window”, or “cross-walk” class into the process would provide 
relevant results and the detection would benefit from the context of such objects.  
For further processing, our primary class of interest is the “façade” class. In a single-
view scenario, we achieved 93,7% pixel-wise precision of labeling for this class. This 
precision is further increased up to 96,1% in a multi-view scenario. In a single-view, 
the segmentation process (defining the borders of segments) does not depend on the 
context, thus the increase in precision between non-context approach and the context 
application comes from the changes of entire segments labeling. In this way, the 
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context helps primarily in systematic error cases, where entire façade (or large portions 
of the façade) are mislabeled (usually into ground, vegetation, or roof class). This 
could happen when the visual features are not discriminatory enough to distinguish 
between such classes. The application of context helps in these cases. This is in 
contrast with a local context application, where the correction of error is present 
mostly at the borders between objects, but it cannot change entire object mislabeling. 
In a single-view scenario, our method is more reliable in labeling entire objects 
(façades, roofs…), but the object borders are detected only in non-context 
segmentation. Therefore, if one only considers a single-image scenario, the additional 
application of local context, for example in a form of MRF in semantically segmented 
images would increase labeling precision further. The same effect is however achieved 
by the application of multi-view, as the borders of objects can be detected more 
reliably in corresponding images. In addition to this, the multi-view scenario can 
provide further correction of mislabeling at the object level. 
Another principal difference between our approach and a local context method is the 
computational complexity. In a local pixel-wise method, a random field is applied for 
each pixel and in a super-pixel method, for several sub-areas of the image. In our 
approach, only one DRF is computed for the entire image. The number of nodes of 
such DRF is usually in the order of ten and the number of neighbors for each node is 
usually up to ten. There are cliques in the DRF graph in general, so the evaluation 
methods usually lead to an approximation of solutions. Another method how to 
approximate a solution is the application of brute force for evaluation with some 
heuristics. In such approach, we can vary labeling in each node according to top values 
from visual classifiers and compute a set of hypotheses for image classification. 
Subsequently, we compute the conditional distribution of DRF for each hypothesis, 
given the fixed label in each node. This provides a very fast solution, but the 
optimality is hard to assess. The success of such approach is based on the assumptions 
that many classes are visually very different (for example, the colors of sky, vegetation 
and ground are exclusive), therefore, hypotheses provided from visual classifiers are 
very stable in many areas of the image.  
We can observe in a multi-view scenario, that the dataset based on the “crowd 
sourced” paradigm (CS) achieved better results than the industrial system dataset (IS). 
The possible explanation for this is that in the CS dataset, images are not organized in 
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a random fashion, but according to the expectation of the human agent. The users, 
when taking pictures were intentionally selecting a good viewing position, avoiding 
obstacles and were focusing on the details of objects. This results in a better “quality” 
of projected scenes. On the contrary, the IS was designed to provide results in general 
situations and was not intended to cope with specific types of scenes. Images for IS do 
not always provide a best viewpoint and as the camera positions are not very varying, 
the visual and contextual redundancy level in a multi-view is high.  
We described the application of the method in a multi-view scenario, where each 
image was interpreted separately and the interpretation was finally refined through 
image matching. The selection of this method was based on the fact that only a sparse 
point cloud was available in our dataset. Observed precision of matching was ±2 
pixels. In case, where a more precise, dense point cloud is available another approach 
can be chosen. For each pixel in the image, we can look for corresponding pixels and 
transfer visual information from them. This will provide a high dimensional feature 
vector in each pixel, which provides superior visual cues for segmentation and 
classification. However in this case, the geometry of the image is not influenced.  
We also described two methods of merging interpreted information for the images. 
First is the simple application of multi-view, when all interpreted information from 
each image has the same weight, second is when the information is weighted based on 
the distance from camera. Other possible weighting factors may include the quality of 
photos in the stack (especially useful for crowd sourced dataset from multiple users), 
geometry of the scene (inclination of planes, presence of occlusions), or variation of 
classes in the projected scene (when less classes are present, the probability of 
mislabeling is decreased). 
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Chapter 5 
 
 
 
 

Façade Separation 
 
 

5.1     Separation of Façades in Single Images 

 
In previous sections, we introduced a method to detect major non-terminal symbols in 
a street-side image. This represents the basis for image understanding. However, in the 
semantic segmentation, all building façades are considered to belong into one class. 
Many applications (e.g. 3D building modeling methods) require them to be labeled as 
separate objects. In general, street-side images present complex urban scenes and a 
building landscape with many façades. In this section, we introduce a robust approach 
to solve this problem and thereby increasing the likelihood of success of 3D modeling 
from street-side images [Recky et al., 2011]. In the most basic case, we consider a 
single street-side image as an input. First, we label principal areas into classes (sky, 
vegetation, ground, buildings). Subsequently, we proceed with the segmentation of 
building fronts into separate façades based on the detection of repetitive patterns built 
by windows and architectural styles.  This segmentation subsequently can be used to 
interpret the details in each façade. We present following algorithm: 
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Algorithm 5.1 
 

Input: Streetside images and their semantic segmentations 
1. Detect Repetitive Patterns in areas labeled as “building façade” class 
2. Find separation areas in Repetitive Patterns 
3. Label all segments between each two separation areas as unique façade 
4. if (image matching is available) match façades between images and merge 

results 
Output: Separate façades identified as areas in images   

 
We present following innovations over the previous state-of-the-art work: 

- Semantic context is used to limit repetitive patterns only to areas where it is 
relevant 

- Results are enhanced in a multi-view scenario by labeling from matched 
images 

Our approach is based on a convolution of two methods. First we apply the semantic 
segmentation method described in Chapter 4 to extract contextual information from the 
image. We use this information as prior knowledge for façade segmentation [Wendel 
et al., 2010]. We extend our method into a multi-view scenario, where a redundant 
dataset with overlapping street-level images exists. For this application, we use the 
Industrial System dataset, as it provides a large variety of different façades in each 
image. We select a challenging subset of images taken from a frontal-sideway camera. 
In this subset, most façades are under perspective distortion, testing the limits of 
detecting repeated patterns and of segmentation. The dataset is complemented with 
laser scanner data to help in matching overlapping images within pixel accuracy. We 
thus combine results from a previously described façade segmentation with a context-
based image segmentation and achieve an improvement of the segmentation towards 
97% effectiveness. 

5.1.1     Detection of Repetitive Patterns 

We build on the method of [Wendel et al., 2010] for finding repetitive patterns within 
a single image. First, the Harris corners [Harris and Stephens, 1988]  
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Figure 5.1: We describe the image content between Harris corners by extracting 
intensity profiles with 20 values for every RGB color channel [Wendel et al., 2010]. 
 
are detected as interest points. Subsequently, color intensity profiles are extracted on 
straight lines between each of them. The resulting complete graph structure has interest 
points in nodes and each edge corresponds to a color profile. We limit the complexity 
of the graph by connecting only the 30 closest neighbors to each node. The color 
profiles are constructed as 60-dimensional normalized descriptor: for every color 
channel of RGB, we compute a 20-dimensional descriptor sampled by linear 
interpolation along the line. In this approach, the scale invariance is achieved by 
setting the number of coefficients for interpolation as a constant. 
For an example of intensity profiles, see Figure 5.1. For matching of the descriptors, 
we use a kd-tree method [Friedman et al., 1977]. The tolerated threshold was set to 5% 
deviation off the descriptor prototype for finding repetitive patterns. Matches with 
more than 10 descriptors involved are ignored, as they showed to be insufficiently 
discriminative. To achieve the required robustness, an additional voting step has been 
included in the process. All matching profiles vote for their corresponding interest 
points. The vote is counted only if the descriptor has not contributed to a 
correspondence so far. This method is described in [Tell and Carlsson, 2000], [Tell 
and Carlsson, 2002] and removes the bias in a voting matrix.  
We finally locate the repetitive patterns in the voting matrix by thresholding the votes 
a correspondence received. Interest point correspondences are established if at least 3 
of 30 intensity profiles were matched. An example for arbitrarily shaped repetitive 
image areas obtained by this voting process can be observed in Figure 5.2(a).  
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          (a)                       (b)                    (c)                            (d)                         (e) 

Figure 5.2: From streetside data to separation (best viewed in color): (a) Matching of 
arbitrary areas (b) Detected repetitive patterns (color-coded lines) (c) Projection results 
in a match count along the horizontal axis (d) Thresholding the repetition likelihood 
with the uniform repetition likelihood (e) Resulting repetitive areas, separation areas 
(green), and unknown areas (red) [Wendel et al., 2010]. 
 
We eliminate outliers by the assumption that repetitive patterns are not likely to occur 
across an entire image, and are not likely to be very small. Therefore, we restrict the 
horizontal and vertical distances of accepted matches. The result of this approach can 
be observed in Figure 5.2(b) as color-coded lines.  

5.1.2     Façade Segmentation 

Several methods for processing a single façade have been introduced recently [Simon 
et al., 2011], [eTRIMS, 2012]. However, façade separation or segmentation itself has 
not received much attention. P. Müller introduced an algorithm which is able to 
summarize redundant parts of a façade and thus subdivide images into floors and tiles 
[Müller et al., 2006]. A major limitation is the dependency on single façade images, 
and automatic processing fails for scenarios with blurry texture, low contrast, chaotic 
ground floors, and occlusions caused by vegetation. Other works on façade separation 
[Hernandez and Marcotegui, 2009], [Xiao et al., 2009] are based on the evaluation of 
directional gradients, which only works for highly regular façades. 
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The previous section summarized a method for detecting areas of repetitive patterns. 
Due to the natural setting of objects in street-side images, we assume that the repetitive 
patterns are located along the horizontal direction and separations between façades 
occur in a vertical direction. Subsequently, we project lines between matched interest 
points into the horizontal axis, constructing the histogram of match counts (see Figure 
5.2(c)). We compute the repetition likelihood as a percentage of all matches in a given 
interval of the histogram.  
The next step is the detection of separation “areas”, as an extended interval between 
repetitive areas (marking the positions where one façade ends and another starts). 
Computing the separation areas from minima on the repetition likelihood is not 
sufficient, as the global minimum does not account for images with more than two 
connected façades and local minima can be detected in common false positive cases, 
such as between rows of windows. If all parts of the façade contribute equally, we 
would get uniform repetition likelihood. Setting this value as a threshold, areas with 
low likelihood are defined as separation areas and areas with higher likelihood as 
repetitive areas (see Figure 5.2(d)).  
To cope with narrow fields of view, where the location of repetitive areas is not 
detected, we define the areas on borders of an image as “unknown”. These areas start 
at the image boundary and end at the first repetitive area. An example of repetitive, 
separation and unknown areas can be seen in Figure 5.2(e). 

5.1.3     Façade Identification 

In this section, we enhance the previously presented method of façade separation using 
prior knowledge. Given the semantic segmentation described in Chapter 4, we 
consider all areas in the image labeled as building or unidentified to potentially be part 
of repetitive areas, defining a separate façade. Subsequently, we apply the repetitive 
pattern detection only to those pixels. The resulting set of Harris corners gives us a 
better basis for interest point matching (see Figure 5.3).  
Each repetitive pattern area identifies a unique façade. To detect the entire façade area, 
we use the results of the segmentation described in Section 4.1.  
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Figure 5.3: Set of Harris corners without prior knowledge of façade class (left) and 
with prior knowledge from semantic segmentation (right). 
 
As described, the segmentation was designed to detect natural objects in the scene 
such as a building façade. Therefore, façades are usually represented as one or a small 
number of large segments, labeled into a façade class.  
Subsequently, we compute the ratio of pixels of segments which belong into a 
repetitive pattern area to the number of pixels outside of that area. If the ratio is larger 
than one, segments are labeled as separate façade (see Figure 5.4). It is a matter of 
definition if objects like windows, doors or shop signs are considered part of the 
façade or separate objects. In the semantic segmentation, these objects are segmented 
separately and as there is no class for them, they are usually labeled as unidentified. 
However, in our ground truth, only the border of a façade is labeled, so these objects 
are included in the definition of a façade. To cope with this problem, we consider all 
unidentified segments as façade segments and we include them in the evaluation by 
repetitive areas. This solution sometimes gives unwanted results, as other objects, like 
cars, or pedestrians originally labeled “unidentified” are often included into façades.  
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         (a)                 (b)    (c) 

Figure 5.4: Façade identification in a single image: (a) Original image with repetitive 
area (b) Segmentation of the image (notice the façade segmented as one, brown 
segment) (c) Identified façade (original repetitive area is marked by red lines). 

5.2     Multi-View Scenario 

In this section, we examine a multi-view scenario for façade separation. We use the 
Industrial System dataset of 250 images from each camera on the car platform 
complemented with laser scanner data. In our work, we use the input of only one, 
frontal-sideways tilted camera. The data base supports investigations into the issues of 
the types of redundancies, namely multiple images, all taken with parallel optical axes 
from different camera positions [Recky and Leberl, 2010].  
In the dataset, we have identified 9 separate building façades, each located in 
approximately 20-50 images. 7 of the façades are under severe perspective distortion, 
which present the worst case scenario for a repeated pattern algorithm (as the 
repetition is less evident in the perspective) and provides a challenge for segmentation. 

5.2.1     Image Matching 

Matching the images of the stack is based on LiDAR laser scanner data, provided as a 
supplement to the Industrial System dataset. In each position of a car, a set of LiDAR 
points has been measured. Given the geo-position of the camera system, a set of global 
3D points of the scene is available from the LiDAR in the same coordinate system. 
The projection of these 3D points into individual images gives us an instrument for 
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superimposing the separate images. In this case, the set of LiDAR points can be 
considered an equivalent to an image-based sparse 3D point cloud. 
As the sparse distribution of points does not provide us with enough data to match 
pixel-by pixel, we proceed with matching segments. The precision of matching 
depends on the number of LiDAR points located in the segment. In the worst case 
scenario, there are no LiDAR points that can be projected into a segment. In this case, 
we use the assumption of planarity of the façade. As most of the façades are nearly 
planar objects (or are mostly composed of planar regions), we consider the 
interpolation between points to provide a valid approximation with sufficient accuracy. 
In the case of no LiDAR points projected into a segment, we find the two closest 
points and create a new point by interpolation. Considering the planarity, the 
corresponding interpolation between 3D coordinates of such points will provide the 
means of matching. This solution is necessary only for small segments, as major ones 
have usually a large number of LiDAR points projected into them. 

5.2.2     Labeling of Segments in a Multi-View Scenario 

Given the set of LiDAR points projected into a segment, we have the means of 
matching a segment to the points in other images. When the façade identification has 
been performed in these images, we can gather data from multiple images about the 
labeling of segments as part of separate façades. Subsequently, we can make the 
decision for the segment based on the following criteria: 
 

- If the segment was classified as a building in the semantic segmentation and 
was labeled as a part of separate façade in at least one image, we consider the 
segment to be part of that façade. 

 
- If the segment was classified as unidentified in the semantic segmentation and 

was labeled as part of a separate façade in the majority of images, we consider 
it to be a part of that façade. Segment classification can then be projected from 
corresponding images. 
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This distinction between façade class and unidentified class removes most of the 
problems with the labeling of unidentified objects like cars or pedestrians as façades, 
but still keeps windows and doors as parts of a façade. 

5.2.3     Results 

Our evaluation procedure is similar to that of Wendel et al. [Wendel et al., 2010] to 
ensure compatibility. We use precision and recall [Rijsbergen, 1979] to evaluate our 
algorithm and combine these by a harmonic mean to obtain the measure of 
effectiveness, also called F1-measure. We obtain ground truth by manually labeling 
individual façades. We estimate the point matching quality by clustering the matches 
and assigning them to the ground truth, resulting in a set of inliers and outliers for 
every segment. We only use the match precision (PRmatch), as it is not possible to 
estimate the amount of false negatives required to compute the recall. Façade 
separation quality (Separation F1) is estimated by checking if the detected repetitive 
area lies within the ground truth segment. More or fewer splits lower the effectiveness 
except when they occur in an unknown area. The façade segmentation quality 
(Segmentation F1) is estimated using a pixel-wise comparison between the 
automatically obtained segment and the ground-truth segment. Our approach depends 
on the parameters of the Harris corner detector: σD = 0.7, σ = 3.0. All other parameters 
are defined with respect to the image scale. 
In our first experiment, we compare the separation precision using the semantic 
segmentation as a prior knowledge to the original algorithm proposed by Wendel et al. 
[Wendel et al., 2010] (see Table 5.1). 
 

 Original Mask  
Matching precision (%) 43,7 45,5 
Separation precision (%) 83,6 96,1 
Separation recall (%) 75,3 85,3 
Separation F1 (%) 79,2 90.4 

Table 5.1: Separation result without (Original) and with the prior knowledge from 
semantic segmentation (Mask). 
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In the next experiment, we compare the results of façade segmentation. We tested 
three different approaches, namely the segmentation method of Wendel et al. as 
proposed in [Wendel et al., 2010] without prior knowledge, Wendel’s segmentation 
with the prior knowledge, and finally the approach described in this section – 
repetitive areas acquired with prior knowledge applied on context based segmentation 
(see Table 5.2). 
In these results, we can observe a significant improvement with the application of prior 
knowledge (more than 15%). The segmentation with prior knowledge (Single) has 
performed less effectively in segmentation precision, but outperformed the original 
approach in recall, resulting in better overall performance (by 3%). 
 

 Original Mask Single 
Segmentation precision (%) 53,2 91,3 90,2 
Segmentation recall (%) 79,7 69,5 74,6 
Segmentation F1 (%) 63,8 78,9 81,7 

Table 5.2: Segmentation results for three different approaches. Wendel’s segmentation 
without prior knowledge (Original), with prior knowledge (Mask) and the 
segmentation described in this section (Single). 
 
Our final experiment is focused on the difference between the single-view and multi-
view scenarios. In both approaches, we use the prior knowledge from semantic 
segmentation to extract repetitive areas. The segmentation method for both scenarios is 
the one described in this section. In this test, we also examine the effect of 
segmentation post-processing, using morphological operators. As there were some 
gaps within the segmentation due to patches not completely merged into the segments, 
or mislabeled areas of the façade, we applied the morphological closing and opening to 
close the gaps and avoid false negatives (see Table 5.3). Results show that given the 
laser scanner 3D point cloud, or another robust image matching method, the transition 
from single-view to multi-view can improve the output by approximately 15%. Also, 
with the segmentation described in this section, we can achieve better results with 
larger kernels of morphological operators. 
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Single 
(small)

Single 
(large)

Multi 
(small)

Multi 
(large) 

Segmentation precision (%) 92,5 90,2 96,9 97,1 
Segmentation recall (%) 68,2 74,6 92,3 96,2 
Segmentation F1 (%) 78,5 81,7 94,6 96,6 

Table 5.3: Segmentation result in the single-view and the multi-view scenario. In both 
scenarios, we tested the effect of morphological operators with kernel diameter of 3 
(small) and kernel diameter of 30 (large). 
 
An example for the separation and segmentation of façades is presented in Figure 5.5 
for a single-view scenario and in Figure 5.6 for a multi-view scenario (both with large 
kernels). The visual comparison shows that the multi-view scenario does not only 
provide more complete façade segments in terms of coverage, it also enables our 
algorithm to detect more separate façades in a single image. For better visualization, 
videos are provided online. 
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Figure 5.5: Separation and segmentation results for different façades in a single-view 
scenario (large kernel setting). While separate façades are found in general, the 
algorithm in the single-view scenario does not always provide complete façade 
segments and is not able to detect as many separate façades as in the multi-view 
scenario. 
 

     

Figure 5.6: Separation and segmentation results for different façades in a multi-view 
scenario (large kernel setting). Even for façades under perspective distortion, the 
multi-view scenario provides robust results. 
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5.3     Discussion on Façade Separation 

The necessity to have a single façade representation is essential for further work on 
streetside image analysis. In many previous works on façade analysis/processing, this 
problem was either unaddressed (input was provided manually), or some additional 
data was introduced as prior knowledge [Werner and Zisserman, 2002][Šochman, 
2006][Hohmann et al., 2008]. As an example, [Lee and Nevatia, 2004] proposes the 
use of a wire-frame model obtained from the aerial view to project façades from the 
streetside image into planes of such model. This is applicable for a single building, but 
when the buildings (façades) are connected with each other, a wire-frame model 
cannot distinguish between such façades. We argue that enough information to 
separate façades properly is directly observable in streetside images themselves. This 
information must be obtained from visual cues, as geometric features of two different 
façades are usually not too discriminative.  
For testing purposes, we select a left-forward view oriented subset of the Industrial 
System dataset. This decision was made for two reasons: 
 

- Most façades in the subset are under strong perspective distortion. These 
provide a challenge for both the segmentation and detection of repetitive 
patterns methods. Results from the subset thus provide a better understanding 
about the robustness of the algorithms. As it can be observed in several 
examples from the test set, less perspective distortion would cause fewer errors 
in both methods. Therefore, we can expect even better results in easier datasets, 
where façades are projected from more perpendicular angle. 

- As the selection of a challenging dataset caused problems in the original 
repetitive pattern detection algorithm, the introduction of semantic context as a-
priori knowledge and the translation of the process into multi-views 
demonstrated greater success in error correction. Processing of the difficult 
dataset cases benefit mostly from the workflow described in this section. Based 
on this observation, we can assume that the benefit of context and multi-view is 
best demonstrated in hard cases rather than in systematic improvement of 
original algorithm.  
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The output of this method is in a form of semantic labeling of separate façades in the 
image. The shape of the façade’s borders is arbitrary; however for the future 
processing, we still make the assumption of the façade’s planarity. In a dataset, where 
the profiles of the façades are expected to be highly non-planar, we recommend the 
involvement of 3D information to better approximate actual façade form. As argued 
before, geometric information is not enough to separate façades (for example of two 
buildings that are connected), so it has to be combined with visual information, such as 
with the result of our method. In our framework, we assume the planarity, even in the 
presence of balconies, pillars or various reliefs as such objects do not represent 
significant deviation from planarity assumption (as defined in section 1.2.1).  
The method of repetitive pattern detection was designed to separate (or identify) 
façades that spot some repetitive pattern on the surface (usually in a form of windows). 
If a façade does not contain such pattern, the method would eventually fail. However, 
in our approach, we can still use semantic segmentation to identify the façade. As we 
consider “separator lines” to be indicators of façade split, the absence of such 
indicators will keep façade detected through semantic segmentation intact. This is 
usually a correct action, as if two connected façades without repetitive patterns would 
be present in the image, there are no general cues to distinguish between them. 
Transition of the method into a multi-view scenario registered significant improvement 
in results. This improvement is evident mainly in two cases: 
 

- Many images in our dataset contain façades that are too far away, thus are too 
small and distorted for a repetitive pattern algorithm to detect them. However 
as the camera system gets closer, such façade is projected visually better and it 
is detected in another subset of the dataset. This information is transferred into 
images, where façade is not detected and they score better in test scenario.  

- Repetitive patterns are usually located in the middle section of the façade, thus 
the separator lines do not approximate façade borders well. This is corrected by 
the segmentation, as we label façades based on segments marked by separator 
lines. However, the segmentation itself can not often approximate façade 
borders correctly, especially when two neighboring façades have similar visual 
features. In a multi-view scenario, errors in approximation of borders are often 
corrected, when results from multiple images are merged. 
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From these observations, we can conclude that the multi-view scenario helps detect 
façades in more images and better approximates vertical façade borders as displayed in 
Table 5.3. Façades still do not get identified when the façade area is very small/thin 
(façades with length of less then 50-70 pixels). This is usually the case for façades 
trimmed by image borders, façades far away from the camera or under a strong 
perspective distortion (angle of less than 25 degrees between a façade and a camera 
axis). Such façade can be labeled correctly in the segmentation, but the façade’s 
borders are not identified, as the repetitive pattern algorithm does not provide the 
response. This is not considered a significant error in our workflow, as such façade 
would not provide relevant visual cues for a further processing.  
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Chapter 6 
 
 
 
 

Window Detection in Complex Façades 
 
 

6.1     Window Detection in Single Façade 

With the semantic segmentation method introduced in previous sections, we have 
general surfaces in the image identified. Subsequently, we can focus on more specific 
objects of the urban scenes. With the introduction of the façade separation method, we 
can now consider building façades to be separate objects and can proceed with 
identification of terminal symbols inside a façade. In this section we introduce a 
method based on a gradient projection approach to segment a façade area into blocks. 
We label each block into window and non-window classes and examine how the 
performance of the method changes in a transition from single to multi-view [Recky 
and Leberl, 2010(II)]. We selected façades as a representative of non-terminal symbols 
because we have the façade borders well defined in an automated process and 
windows as a representative of terminal symbols because they are usually major 
objects located on each façade. In a subsequent section we introduce a multi-view 
context into the process and extend a class set. 
We present following workflow: 
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Algorithm 6.1 
 

Input: Separate Façades identified in the images 
1. Use vertical gradient projection to identify levels in the façade 
2. In each level, apply horizontal gradient projection to segment façade into 

blocks 
3. Use k-means clustering in a CIE-Lab color space to establish descriptors for 

façade area in an iterative process. 
4. Identify windows an non-façade object in block segmentation 
5. if (multi-view dataset is present) merge results from matched images 
Output: Window areas and Façade areas identified in the images 

 
We introduced following innovations over previously established methods: 

- Gradient Projection method is modified such that it can provide more robust 
detection in complex (highly textured) façades. This is done by segmenting a 
façade into blocks, instead of detection of windows in gradient projection 
peaks  

- We introduced a k-means clustering in CIE-Lab color space descriptor that can 
represent areas with multiple colors and is illumination invariant 

- Window detection method was extended into a multi-view, where errors from 
segmentation and labeling can be rectified 

 
We focus our work at complex façades – façades with a large number of different 
façade elements. In general, the most common façade element is “window”; however 
many façades in our datasets contain other elements, such as different ornaments, 
reliefs, arches or patterns. The measure of “façade complexity” is a gradient value over 
the façade area, as the edges of such elements increase this value systematically.  
The complexity of a building façade provides challenges for window detection 
algorithms. Especially in the gradient projection approach, the presence of gradients 
outside window areas significantly reduces the quality of results. We present a 
modified gradient projection method robust enough to process complex façades of 
historical buildings. 
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Figure 6.1: Four different types of façades in our database. The vertical gradient 
projection is marked in a green and the horizontal gradient projection is in a red color. 
Façade (a) has relative simpler texture and windows can be directly extracted from the 
projections. Façade (b) has additional horizontal structures, which make the horizontal 
separation difficult. Façades (c) and (d) have both projections highly non-regular and 
the extraction of windows is more complex. 
 
In a single image scenario, this method is able to provide results even for façades 
under severe perspective distortion (for façades projected under sharp angles). Our 
algorithm is able to detect many different window types and does not require a 
learning step. In this section, we also extend this method into a multi-view scenario. 
We examine the results of the method in multi-view and evaluate its benefits.  

6.1.1     Gradient Projection for Complex Façades 

The description of an algorithm for processing a single façade located in a single 
image is given in this section. Our work is based on horizontal/vertical gradient 
projection approaches, primary on a work of [Lee and Nevatia, 2004]. This is a 
straightforward approach for the façade analysis as it takes advantage of specific 
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geometry of windows. But in the original form, it is not suitable for complex façades, 
where the high levels of gradient in vertical/horizontal direction can be located also 
outside the windows area (see Figure 6.1). We therefore introduce a new method to 
deal with this problem – Gradient Projection for Complex Façades. 
The gradient projection methods are based on observation, that in the simple building 
façades, the strongest vertical and horizontal gradients are located at the edges of the 
windows. In more complex façades (with multiple different objects other then 
windows), this observation is usually not valid. Strong horizontal responses can be 
generated at the façade rims, shop signs or aches and vertical responses at columns or 
stone plates. Therefore, we approach this problem in a different way. The general idea 
is to segment the façade into rectangular areas – blocks. Subsequently, we use visual 
features to label each block as “façade” or “window”.  
In addition to standard gradient projection method [Lee and Nevatia, 2004], we 
introduce several new terms: 
 
Separator lines / Levels 
We base our method upon observation that in a single façade, the number of 
horizontally oriented objects is greater than the number of vertically oriented ones. In a 
most simple façade, only windows top/bottom rims are horizontally oriented, but as 
the complexity of the façade increases, more objects divide a façade into horizontally 
oriented levels (e.g. ledges, arches, brick patterns…). Based on this observation, we 
use the vertical projection to establish a horizontal division of the façade. For each 
local peak in the vertical projection a horizontal separator line is created. In this step, a 
façade is divided into a set of levels (bordered by separator lines) (see Figure 6.3(1)). 
In simple façades, separator lines will be located on the borders of windows, but for 
more complex façades, there will be many more separator lines dividing façades into 
more complex structures. Areas between two separator lines are denoted as Levels. 
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Figure 6.2: Gradient projection in our approach (on the left) and original façades (on 
the right). Horizontal projections are computed for each area between separator lines 
(green lines) independently. Value of the horizontal projection is visualized as an 
intensity of white lines. 
 
Blocks 
Subsequently, the horizontal projection of gradients is computed for each level 
separately. Only gradients in the area between separator lines are considered for 
projection (see Figure 6.2). In this step, “level” is divided into a set of blocks. The 
application of thresholds on the horizontal projection in each level will provide the 
borders for the block. The areas with the overall projected gradient above the threshold 
and the areas below the threshold are separated into different blocks. Left/right borders 
of the blocks are also established at the gradient peaks in the projection (see Figure 6.3 
(2)). This division will result in blocks with high and low gradient content.  
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Figure 6.3: Analysis of a simple (a) and a complex (b) façade. In the first column, the 
separators between the levels are displayed. First image (1a) contains 16 levels, second 
image (1b) 46 levels. The second column displays the blocks located in the façades – 
122 blocks for the first façade (2a), 1021 blocks for the second façade (2b). Third 
column shows the separation between the window levels and the façade levels. 
 
In this method, “block” can be considered a segment and the above described process a 
geometry specific segmentation of the façade. As we don’t only consider 
vertical/horizontal gradients, but combined gradient detector for each projection, also 
objects with non horizontal/vertical edges are segmented into such blocks 
 
Block Descriptor 
The goal of the algorithm is to label each block as window or non-window (façade). 
This decision is computed based on visual descriptors for each block, namely the size 
of the block, color and the gradient content of the block. The introduction of visual 
descriptors into the process is the main reason for additional robustness in datasets 
with complex façades when compared to standard gradient projection methods. These 
methods apply only gradient information – i.e. shape, disregarding other visual cues.  
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Figure 6.4: k-means clustering in CIE-Lab color space. Top row – façade with 
uniform color and it’s clustering visualization on the right side. The façade in the 
bottom row consist of areas with several different colors. This non-uniformity express 
by itself as several different clusters in a color space. 
 
The color descriptor is especially useful, when shape/gradient information is 
ambiguous. As the gradient information and method of its processing is designed 
specifically for the geometry and properties of façades, we can also use the same 
approach for color information. For this reason we will describe the color descriptor in 
more detail with the focus on specific façade’s properties. Building façades usually 
consist of large areas of a uniform color, or small number of different colors (in 
clusters). The changes of illumination (mostly shadows) are often present and the same 
color may be displayed in different levels of brightness.  

As a color descriptor for block areas we tested a novel method: the k-means 
clustering in CIE-Lab color space (see Figure 6.4). This method can describe areas 
with different color regions in a 2D space, instead of standard 1D histograms. 
Selection of CIE-Lab  color space can provide two significant advantages: 

 
1. Euclidean distance of two colors in CIE-Lab space is directly proportional to 

the visual similarity of the colors. This can provide simple metric for a 
clustering. 

2. The clustering can be performed only in “a”, ”b” space, which represent the 
color value component. The “L” component in CIE-Lab space represents the 
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luminosity. A single value of L computed as a mean of each color in the cluster 
can be used as representative for each cluster to cope with shadows and 
illumination problems. 

We describe façade area as a set of clusters in a color space [Recky and Leberl, 
2010(II)]. For the purpose of clustering, we selected k-means method, as it can be built 
incrementally and we can easily estimate the value of k in O(n) time, where n is the 
number of pixels. As an input for a k-mean clustering process, the value of k (number 
of clusters) has to be given. Computing the k value is a method specific problem and 
the effectiveness of final clustering is largely dependent of computation of k. In our 
method, the k value is computed as follows: 

 
1. k = 0; S = Ø 
2. ( )( ) S:S:F →≤−∈∀¬∈∀ cthscsifc  

3. k = |S| 
 

Where k is the number of clusters, F is the set of façade pixel’s colors and th is 
threshold for the distance of two colors belonging into the same cluster. K-means 
clustering process in C++ can be implemented from an open source library, such as 6. 
In an iteration process of block labeling (described below) we are provided with blocks 
labeled as the façade in each iteration step. The color of pixels in these blocks is 
transformed into a CIE-Lab color space and the process of clustering is performed. The 
façade color descriptor is built in a labeling process.  

 
Labeling 
Our next step is to decide if the block is part of the window, or part of the façade. This 
is done in an iterative process, where in each loop, the decision for each block is made 
if it is part of façade, or not.  
 

- In the initial step, the blocks horizontally longer than 1/3 of the façade width 
are automatically labeled as façade blocks. This step is based on an observation 
that in uniform areas horizontally longer than 1/3 of the façade a window is 
unlikely to be located (windows are thinner than one third of the façade). Also 

                                                 
6 http://www.koders.com/cpp/fid05CA27827355FE202A774065DAB0D4EFD8B0299E.aspx
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in a large majority of façades, areas like these can be easily located (between 
window levels, at ground level below windows…). After this initial step a 
clustering is performed for each such block to extract first estimation of 
façade’s color descriptor.  

 
- In each subsequent step all blocks are re-labeled (as façade or non-façade) 

according to the actual color description of the façade. After the re-labeling, a 
façade’s color descriptor is refined with the color information from blocks 
currently labeled as façade. When all blocks in one level are labeled as the 
façade, the entire level is excluded from the reclassification, but still 
contributes to the façade’s color descriptor. 

 
After several iterations – usually less then five, depending on the number of blocks – 
there are no more changes in labeling. After this step, all blocks are labeled as façade, 
or non-façade. Window blocks are identified as a non-façade blocks with gradient 
content. 
 
Window Levels 
In a simple façade, the methods of horizontal/vertical projection of gradient are able to 
identify windows and non-windows levels directly from the projections. This is also 
the case in our approach. Since there is no extensive gradient outside the windows 
area, the divisions between the levels are located on window frames. However, the 
presence of different patterns on the façade of more complex historical buildings is the 
reason why there are many more levels identified in the horizontal projection of these 
types of objects. There are usually multiple levels covering one windows row and the 
next step is to group these levels. The problems with grouping can be observed in the 
blocks bordering windows. Frames of the windows in the historical buildings are often 
irregular and may contain extensions into the façades, or different ornaments. Also the 
different types of arch windows are usually divided into several non-similar levels.  
Therefore, we identify the inside window and façade levels at first as levels containing 
blocks with strongest response to color and gradient classifiers. Subsequently we move 
into the in-between levels. The identification of a level as the façade/window is based 
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on the presence of window blocks, the identification of neighboring level and the 
height of the level (see Figure 6.3(3)).  
In the next step, we proceed with the identification of windows inside the window 
levels. As the levels are assumed to be located horizontally – parallel to the ground 
plane, the borders of the windows are vertical objects inside the window levels. As the 
blocks inside levels are already labeled as window/non-window, the identification of 
window borders is straightforward. The assumption is that the border is located in the 
area of intersection between the most window and non-window blocks. In this process, 
“windows” are defined as blocks with window label clustered together and “façade 
areas” as remaining non-window blocks. For testing purposes, the window borders are 
projected into the original image. 

6.2     Multi-View Scenario 

The focus here is on the crowd-sourced, online open image dataset. The images are 
contributed by a large number of users and are taken in various lighting and weather 
conditions. The dataset is natively unorganized and often lacks additional information 
(camera calibration, geo-tagging…). For the purpose of testing the multi-view 
scenario, we use the Tummelplatz dataset, which simulates the crowd-sourced 
paradigm. The dataset is complemented with a 3D point cloud. 
In the presence of multiple images of the same façade we consider again two 
approaches: 
 

- Merging the images into a single, rectified façade and performing the window 
detection on the merged data.  

 
- Applying window detection in each image separately and merging the results 

in a world coordinate system 
 

Merging multiple images into one rectified façade is trivial when the means of image 
matching in a form of point cloud are present. We simply reconstruct the façade in the 
world coordinates by assigning a color into each façade pixel. This color is computed 
as a median from the hue, saturation and intensity from each corresponding pixel in the 
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multiple views. The selection of median would provide the elimination of outliers on 
the façade, like shadows, temporal object occlusions, or specific illumination 
problems. The façade analysis and window detection algorithm is applied to the 
rectified façade without any modification. We can consider this approach as providing 
the best possible input for the algorithm, given the different views and projections of 
the façade; however results are largely dependent on the accuracy of matching.  
When the matching methods (point clouds, laser scanner…) are not precise enough, 
artifacts such as distorted objects, false edges or blurred borders can occur at the 
composed façade. For this reason, this method is less reliable at processing open 
sourced datasets, as the calibration is usually not present and subsequent matching is 
less precise.  
 
The second approach - application of the method on each image in the multi-view 
stack of the façade is straightforward except in some special cases. After the window 
detection is performed for an image in the stack, we have the candidates for the 
windows in each image located. In case, windows are matched one-to-one in images, 
the coordinate of the corners are projected into the world coordinates for each window 
candidate. For each window, the corners are computed as the average of the corners of 
window candidates. To eliminate inaccuracies caused by matching, we can perform a 
factorization procedure over the set of windows, uniforming the results over each row. 
However, there can be a situation, when two or more window detections are matched 
to single detection in another image (see Figure 6.5). This may happen when façade 
section between two windows is not labeled and windows are fused in one image, but 
separated in other image, or when one window is incorrectly labeled into several 
sections. If this problem with specific windows is present only in small subset of the 
dataset, it can be considered an outlier and discarded from the merging step (thus it 
will not contribute to the corner coordinates computation).  
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Figure 6.5: Differences in window detections for the same façade in different 
projections. Notice the fused detection (first image) and split detection (second image) 
in blue boxes that are corrected in other image. 

6.2.1     Results 

In our experiments we use 5 façades (each at 20-60 images, 253 images total), located 
at multiple images and their corresponding point clouds. The average probability of 
detecting the window is 91.4%. In subsequent experiments, we evaluate the precision 
of window placement (only for windows that were detected). 
We compare our method in a single image scenario with the typical gradient projection 
method, as described in the paper [Lee and Nevatia, 2004]. For testing purposes, the 
windows were manually marked in the images. The precision of window placement (in 
percentage) is computed from pixel-wise comparison between detected window and 
ground truth as a ratio of mislabeled area (labeled area outside ground truth and area in 
ground truth not labeled) to the area of ground truth. In a geometric measure for a 
window with dimensions 80x135 cm, thus the area of ground truth of 10800 cm2, each 
1% of precision decrease means that the area of 108 cm2 was mislabeled. For example 
in 90% precision of window placement, 1080 cm2 was mislabeled. This could mean 
that for example the detected area had a geometric dimension of 88x135 cm, thus the 8 
cm of window area width was a false positive. In results, the “Precision” value is 
computed as an average of precisions of placements for all windows. 
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Figure 6.6: Relationship between the gradient content of the façade (excluding 
windows) and the precision of windows placement (in percentage). The blue line is 
displaying the relationship for the standard gradient projection method; the red line is 
for the method described in this section. One point is plotted for each façade and the 
“Precision” is computed as an average precision placement from all windows located 
in the façade. 
 
In a first experiment, we examine a relationship between the gradient content, as the 
measure of façade complexity and the precision of window placement. The gradient 
content of the façade is computed as an average of gradient value {0,...,255} for each 
façade pixel (windows pixels are not considered as part of the façade in this case). The 
results are displayed in the Figure 6.6. 
From the results of this experiment we can conclude that method described in this 
chapter performs significantly better for the façades with high gradient content. Most 
of historical building in our database (city core in Graz) has a gradient content between 
40 and 50. In this group, the precision of window detection can improve up to 22%, 
using our method. 
Our second experiment is focused on an implication of multi-view approach. We 
examine the dependency between the precision of window detection and the number of 
different views of the façade. Both approaches described in Section 6.2 have been 
examined. The results can be observed in the Figure 6.7. 
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Figure 6.7: The relationship between the number of images in the multi-view scenario 
and the precision of window detection (compared in a hand-labeled, rectified façade). 
The blue line is for the method a) (first merging, then detection), the red line is for the 
method b) (first detection, then merging). 

 
This experiment shows that at the certain number of images, the precision in window 
detection is reaching the limit for both methods. Also, the method of first detection, 
then merging provides better improvements in the multi-view scenario, when more 
images are available. This is considered to be an effect of a more robust error 
management for this type of approach, as the outliers are averaged and subsequently 
over-weighted in the merging step. 
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Figure 6.8: Examples of window detection results (single-view scenario). Successful 
detection has been performed even for the complex façades with other-than-window 
rectangular objects and patterns. Mislabeling is present mainly in cases, where 
windows are close to each other and façade section between them is too thin.  
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6.3     Discussion on Window Detection 

When datasets created in European city centers are established, a large number of 
façades with complicated patterns can be observed. Standard gradient projection 
methods have problems with such façades, as non-window objects with 
vertical/horizontal lines provide similar responses in the algorithm than windows. This 
method was designed to present the same results for simple façades as the standard 
gradient projection method, but includes visual cues to detect non-window rectangular 
objects in complex façades. We applied Robert’s edge detector that is able to identify 
directions of gradients. This allows us to identify not only rectangular objects, but also 
objects with different shapes (e.g. arches above windows) when an inclined gradient 
(from cross Robert’s mask) is extracted, as is shown in Chapter 7.  
We also use images with occluded façades for testing; however we identified 
occlusions by vegetation from the semantic segmentation. When the occlusion is not 
excluded from the façade areas, the method can fail as color features from vegetation 
gets included into façade descriptors or high gradients in such areas can cause false 
positives. Therefore, having the prior information about the occlusion improves results 
significantly.  
As we compute color descriptors only for façade areas, this method can be viewed as 
façade area detector instead of window detector. We do not compute any visual 
descriptors for windows, as the reflective properties of window glass can cause 
windows to have very different color/shape features even in one single façade. 
Because of this, other objects at the façade can get labeled as windows (e.g. doors, 
shops, signs), but only if they have a different color than the façade. We considered 
such cases as false positives, as in our ground truth, only windows are labeled.  
As demonstrated before, we allow façade areas to be composed of sections with 
different colors. These get represented as clusters in color space. However to initiate a 
cluster in a color space, a section with corresponding color must be present in the 
façade, that is at least 1/3 of façade length long, without significant gradient inside. If 
such section is present, a cluster is created in the first step of the color descriptor 
formation and is subsequently refined in the next steps. If the long section with façade 
color is not present, areas with such colors will be identified as non-façade, but if they 
are not enclosed in a rectangular box with high gradient at borders, they will not be 
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identified as windows. An example of this can be observed in Figure 6.8, left bottom 
images, where the white sections of the façade are not included into façade color 
descriptor and are subsequently identified as windows at the window levels. 
Even in the final results, we represent windows by their bounding box (to be 
compatible with ground truth), the shape of the windows is approximated much more 
precisely in gradient projections. For example, the top section of arch windows 
(curvature) is usually sectioned into several levels and in each level, the curvature is 
approximated by start/end gradient. This results in arch shape to be evident in 
projections. Also in a case of sectioned windows, each section is identified as a 
separate level. Therefore, additional information about the shape and composition of 
windows can be extracted directly form the gradient projections and levels if needed.  
Extension of the method into multi-view, as described in this work, can provide 
benefits in two cases: 
 

- Window borders are not precise. If there are other images in the dataset, that 
contain the same window and the window borders are estimated more 
precisely in them, this error will be corrected. Such error may be present when 
gradient at the border is distorted, e.g. window borders are partially obscured, 
shadow is present at the border, or there are illumination defect in the image. 
To estimate window borders better in other images, such errors should not be 
present. Therefore the most significant improvements are in very variational 
datasets, such as crowd sourced. 

 
-  A window is dissected into several detections or two/more windows are 

merged into one detection. Such errors get corrected, if windows involved are 
labeled correctly in the majority of images where they are present. If this is not 
the case, it is difficult to decide, which detection is correct, as there are no 
additional visual cues to make the decision. Such errors may be present when 
there is some object between windows. If this object is temporal, the error can 
get corrected eventually from other images, where the object is not present; 
however if the object is permanent and part of the façade, it may cause 
mislabeling in most of the images. An example of this can be observed in 
Figure 6.8 (right, middle row), where a banner is placed between windows and 
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causes merged detection and in the image above, where merged detection is 
caused by distorted gradient at the door border. 

 
The cause of a false negative (when a window is present, but not detected) is not 
addressed in a multi-view scenario. This decision was made based on the observation 
that even when the window can be actually present in the scene, it may be occluded. If 
such window is detected in other images (from different points of view, or at different 
time, the occlusion may not be present) and the detection would be transferred to the 
original image, it would case a false positive. Therefore, the extension of the method 
into multi-view does not solve a missed detection in our approach.  
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Chapter 7 
 
 
 
 

Multi-View Random Fields 
 
 

7.1     Context in Multi-View 

In previous sections, we described the concept and importance of context in our 
application domain and described several methods of context application in streetside 
image processing. However, the great majority of computer vision algorithms is 
considering context only in a single image [Kumar and Herbert, 2006], [Hoiem, 2007], 
[Heesch et al., 2008], [Korč and Förstner, 2008]. Exception from this rule is the 
application of context in algorithms working with video streams, or with 3D point 
clouds (or other 3D data) composed from multi-view input. But even in these cases, 
the application of context is based on a principally different approach than in the 
single-view scenario, making these approaches incompatible [Fruh et al., 2005]. For 
example, Random Fields (RF) methods are natively constructed for single image data 
[Lafferty et al., 2001], [Kumar and Herbert, 2006]. One can consider the generalization 
of a Random Field model to include 3D data as a kind of observation in the image. 
This will include the context in the process as a form of observation data from other 
matched images, but this context is not at the same level as single image context 
encoded in pairwise potential of RF.  
In this section, we introduce a model of RF, which is designed to work with context in 
a multi-view scenario. The basic idea is to consider context in the image as observation 
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data transferable between images, when matching is available. This idea is based upon 
the assumption that real 3D objects are assembled in a contextual 3D scene which is 
unique and unambiguous. Subsequently, each digital photo is only a projection of 
scene into a 2D plane and the context of such projection is only an incomplete 
approximation of the scene’s context. Given multiple images of the scene, we can 
improve the approximations of the contexts in separate images to retrieve a context 
data superior to ones located in each image. For this process a 3D model of the scene 
is not required, however if available, it can be used as an observation data in RF 
model. 
A motivation behind this approach is in the duality of data used in computer vision 
methods. In a vision algorithm, we can use visual features (color histogram, texture 
covariance…) and context features (spatial relations, semantics…) to perform 
recognition [Recky and Leberl, 2009]. The efficiency of visual and contextual features 
varies in different images. In general, visual features are most effective, when a 
detailed view at the object of interest is present (e.g. object is not obscured, it is not 
located far away from the camera and it is projected from suitable angle). Contextual 
features are effective when strong context data is present in the image (e.g. more 
objects are located in the image – scene is projected from longer distance) [Recky and 
Leberl, 2010]. This observation was also confirmed in our experiment described in 
Section 4.2.3 (Classification consistency as a function of distance from the camera). In 
one digital image of the scene, the visual features can provide strong cues for 
recognition, but the context can be inefficient. However, a second image of the same 
scene can provide stronger contextual features (see Figure 7.1). For these reasons, we 
developed a method to transfer contextual features between matched images. 

7.1.1     Context from Different view positions 

Many computer vision works have been focused on the idea, how visual information 
changes in images of the same scene projected from different view points. Such 
research is the primary focus of scene reconstruction algorithms. For example, in a 
work of Hartley and Zisserman, Multiple View Geometry in Computer Vision [Hartley 
and Zisserman, 2004] a multi-view dataset is used for 3D reconstruction of the scene. 
For such task, the knowledge of an object’s changing geometry between different 
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views is essential. It has been observed that for local visual information on geometry, 
affine transformations are sufficient to describe the changes. Therefore, local 
descriptors used for image matching, such us SIFT [Lowe, 1999] are constructed 
affine invariant.  
However, it is less well understood how context of the scene can change between 
images taken from different view points [Santosh et al., 2009]. When comparing 
context as a feature that can change between images in multi-view datasets, we 
consider what objects are located in the scene, how are they aligned and what spatial 
relations exist between them. These features can change rapidly, even if images are 
taken from a single position, rotating optical axes of camera (as new objects can 
appear in different photos, providing new semantics and spatial relationships – see 
Figure 7.1). Even though the context information started to play a more important role 
in computer vision, a focus of a majority of algorithms is on the context in a single 
view scenario. The reasons for such limitation are: 
 
Local vs. Global Context 
Most algorithms claiming to work with context are applying only local information. 
For example, the most common application of MRF is at the pixel level, extending the 
patch around an examined area and considering several more pixels as context 
information [Santosh et al., 2009]. This locality of context information makes the 
information from different view points highly redundant and non-usable. As it was 
demonstrated by multi-view geometry methods, one can expect only affine 
transformed information in such local context. However, when the context of an entire 
image (we can denote this as Global Context) is considered, very different context 
information can be expected. For example, taking two digital images from the same 
position, but with different optical axes, objects on such images do not change 
geometry or their geometric relations to each other, but the context in images can 
change dramatically, as different sets of objects can be located in both images, 
providing new spatial relationships. For such reasons, local context change only 
slightly, or not at all, but global context can be very different (see Figure 7.1). 
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Figure 7.1: Two examples of façade set in different context in each image (from 
Thummelplatz dataset). Red lines represent the context features (spatial relationships) 
between objects detected in the images. For each example, the top row represents the 
façade in context with other objects in the scene (other façades, vegetation, ground, 
temporal objects…) and at the bottom row, façade is primary set in context with its 
elements (windows, shops…). For better overview, only segments larger than 15% of 
the image area are displayed and only for such segments, red edges are visualized, 
representing the spatial relations between segments. Notice that in closer views, the 
visual elements are better represented (more details, better angle), however the context 
with other scene objects is missing (as they are not in the view). Transferring the 
context in such cases form other image would help in vision task. 
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Context vs. Reconstructed Scene 
Algorithms working with multi-view datasets deal with 3D scene reconstruction. 
When such reconstruction is achieved (for example in a form of 3D point cloud), one 
could expect from it to contain most information that would be extracted as contextual 
features in all involved images. For example, a 3D point cloud would contain all 
spatial relationships between objects, as the 3D structure of the scene is known.  
For this reason, the 3D reconstruction can be considered to provide superior context 
information about the scene to all partial context information from individual images. 
However, this is usually not the case. The focus of 3D reconstruction is commonly at 
one central object, or few such objects [Irschara et al., 2007]. In a final reconstruction, 
only these objects are actually reconstructed and large areas of the involved images are 
neglected. This is due to insufficient matching in such areas, as the objects in them are 
not located on adequate set of images to be reconstructed. For this reason, each image 
in the stack used for reconstruction can usually provide additional context information, 
which is not observed in 3D reconstruction. 

7.2     Global Context as a Feature of an Image 

In a multi-view image stack, each image can be considered a unique unit of 
information. Even if a large volume of data from the image can be transferable to 
different images in the stack (redundant information) each image usually contains also 
exclusive information. For this reason a global context can be considered a feature 
assignable to each image separately. Let’s define context as a relationship (semantic, 
geometric…) between two objects that occur in an observed scene. Image context is a 
set of context relations between each two or more objects located in the image. In 
computer vision methods, objects are usually represented by pixels or segments. In 
case of pixels, the application of global context would require to establish contextual 
relations between each two pixels in the image, which is for current computation 
power considered unfeasible. Therefore we consider segments to be most suitable 
representations of objects for contextual examination, but other representations could 
also be possible (e.g. cells of regular grid). We can denote the elemental representation 
of objects between which context is examined by the more general term “site”. 
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Sites 
In a Random Field framework, object representation is denoted in more general term 
as site and the set of all sites in one RF model is denoted as S. In a local context 
approach, all sites in S are usually located on a small patch of the image. The global 
context framework requires the sites from S to cover entire image, or at least a large 
majority of the image. From the application point of view, an area of image is assigned 
to each site. Areas from different sites are not overlapping and represent specific 
objects of the scene. As such, a single label is assigned to each site after RF evaluation. 
Visual features of the area assigned to specific site are denoted as image observation ys 
from site s. In a graphical model, if there is an edge between nodes assigned to sites s1 
and s2, let’s denote this relation as Φ(s1, s2) = 1 and consequently if there is no edge 
between s1 and s2, denote this as Φ(s1, s2) = 0. 
 
Context between sites in multi-view 
In a most simple application of context transfer, we can select each site from the 
image, find corresponding sites from other images in the stack and in every such image 
replace the corresponding site with the original site from the first image. After 
evaluation of RFs from all images, we get scores for each class. We can subsequently 
select the best score or most top scores as winning classification. This approach is 
roughly equivalent (with the exception of different visual features in transferred site) 
with the evaluation of each image separately and merging results through the image 
matching – a method that has been examined in previous chapter. The advantage of 
such approach is that we can use standard Random Fields models for evaluations, 
making the application straightforward. However we only examine partial context in 
each image separately in this way, making no assumptions that some images can 
provide superior context information than others. This approach is also computational 
demanding and redundant, as we often examine context between same objects in each 
image, which usually does not change. Therefore, we can examine different approach 
that eliminates such disadvantages. 
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Transferable sites set 
Our proposed solution is to transfer sites that are not located in the original images, but 
are in the spatial relationship with examined site in other images (see Figure 7.1). This 
is not a trivial task, as matching sites between images is a hard problem. One site can 
be matched through corresponding points to multiple sites in other image or can even 
represent different object. However, let’s first assume that each site from the first 
image can be only matched to a single site in the other image. For a single image from 
the image stack, let’s define the transferable set of sites as: 
 
Definition 2: If Sk = {s1, s2, … , sn} is the set of sites for single image k∈  I, where I is 
the set of images and correspondences have been established between the images from 
I such that  S'

is ∈ l is a site from image l∈  I-{k} corresponding to a site si, than the        

Rk = {r1, r2, … , rm} is the set of transferable sites for the image k if 
( ) 1,| ' =∈∃∈∀ ijkikj srΦSsRr  and . Rkjkj SrR∈r ∈¬∃∀ '

k is constructed such that 
, rkji Rrr ∈∀ , i and rj are not correspondent to each other in any two images from I.  

 
Thus the Rk is the set of sites from other images than k, that are in the relationship in 
graphical model with some corresponding site to sites from Sk, but themselves have no 
correspondences in Sk. Set of transferable sites can be seen as a context information, 
that is available in the image stack, but not in the examined image. If sites are the 
representations of objects, than in a transferable set, there are objects in context with 
the scene of the image that are currently not located in the projection, thus are 
occluded, out of the view or in a different timeframe. This also means that the visual 
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Figure 7.2: Transfer of sites from the image l∈  I to the image k∈  I, as presented in 
Definition 2. Only sites from l that are not corresponding to any sites from k are 
transferred. This figure demonstrates only transfer between two images. If more 
images are involved, the set Rk include sites from all such images. An example of 
transferable sites in specific application can be observed in Figure 7.7. 
 
information from sites in Rk is not present in the image k. If the sites from Rk are 
included in vision process, they can provide additional context and visual information 
that is not originally present in the examined image. 
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7.2.1     Multi-view Random Fields Definition 

Our next step is to examine the compatibility of existing random field models with the 
application of transferable sites set. The new model, incorporating transferable sites 
can be denoted as Multi-view Random Field (MVRF) [Recky et al., 2012]. 
Transferable sites have the same set of visual features than sites native to the image 
and they can be assigned the same set of spatial and contextual relations in a graphical 
model, however the status of these sites is not equal to native sites. Transferable sites 
lost all original contextual relationships except for the relationships to the sites they are 
connected within the examined image. This makes them harder to label. But the 
labeling of transferable sites is not the aim in the case of an examined image (the goal 
is to label only native sites), thus transferable sites can contribute information for 
image labeling, but the labeling of themselves is irrelevant. This makes the concept of 
transferable sites difficult to use in standard Markov Random Field model 
[Kindermann and Snell, 1980]. In the posterior distribution of MRF defined as 
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P β|logexp1| yyx ,          (7.1) 

 
the pairwise potential is independent from observations in the image (only from 
labeling) and the unary potential is defined only based on observations in a specific 
site. This model in inherently not able to consider different type of sites (native, 
transferable), as this observation cannot be considered. The other reason why the 
standard MRF model in not suitable for the task is that as described in the previous 
chapter, the MRF model is primarily suitable for a simple formulation of context, thus 
it is generally used in local context applications. Therefore, in our work, we focus on 
the Conditional Random Field model. The definition and posterior distribution of CRF 
is given in Section 3.2 Random Fields. We extend this posterior probability 
distribution into MVRF model framework.  
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Figure 7.3: A graph structure of MVRF. In this example, segments in the image 
represent sites and the green area is a native image. We assume that there are other 
images in a dataset matched to a native image and sites l and k were detected in such 
images, but not in a native image. Blue is the set of native sites (nodes) and their 
relationships (edges). We connect transferable sites into this structure, which will 
provide additional visual information (zl, zk …) and contextual information (edges 
between i and l, j and k …). Observe that a transferable site can be connected to 
multiple native sites (if such relations are detected in some of matched images), but no 
to transferable sites can be connected directly in the graph structure.  
 
Given the observed data  from the image, corresponding labels , 

where S is the set of sites from the image and observations from transferable set 
 (see Figure 7.3) with corresponding labels 

{ } Sii ∈= yy { } Siix ∈=x

{ } Tii ∈= zz { } Tiix ∈= ~~x  the posterior 

distribution over labels is defined as: 
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where Z is the normalizing constant, Ni is the set of native sites neighboring i and Ki is 
the set of transferable sites neighboring site i. - Ai and -  are unary potentials, - I'

iA ij and 
-  are pairwise potentials (for native sites and transferable sites respectively). The 

differences between potentials for transferable sites and for native sites are as follows: 

'
ijI

 
- In the unary potential, only observations from the transferable site itself is 

considered, instead of observation from the entire image for native sites. This 
is due to the fact, that transferable site does not to have any connections to the 
image except for the site it is neighboring. Even if other connections exist 
(with other sites in the image), it is hard task to establish relationships. In the 
discriminative model – DRF, discriminative classifiers are allowed to be 
included directly in the unary potential. Therefore such classifiers has to be 
modified to accept only local features (from single site), when unary potential 
for transferable site is considered. For native site, there are no changes to 
standard conditional model. 

 
- In the pairwise potential, in addition to observation from the image, local 

observation from the transferable site is considered, when a pairwise relations 
are examined between native site and transferable site. The inclusion of all 
image observation grant at least the same level of information in pairwise 
relations computation as in a standard CRF model pairwise potential and the 
additional observation from a transferable site represent extended context for 
native image observation. Because of this, the computation of pairwise 
potentials must be modified to include such additional information. In the 
DRF model, this also means the modification of discriminative classifier, as is 
the case in the unary potential. The pairwise potential for two native sites is 
the same as in standard CRF model.  
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- No pairwise relations are considered between two transferable sites. This is 
based on the construction of a transferable sites set. A site from such set can 
be neighboring several native sites, but not an other transferable site. This can 
be seen as a limitation for the model, however without additional high 
frequency information about the scene (as a prior knowledge), it is virtually 
impossible to establish relationships for transferable sites.  

 
- The computational complexity of the model is not increased significantly. 

Pairwise potentials are computed only for native sites, as it is in the standard 
CRF model. The difference is in the number of neighbors for each site, 
however even this number should not increase significantly. When considering 
a global model, each new neighbor (transferable site in relation to the native 
site) represents a new object in the projection. This is dependent on the 
differences between projection parameters – camera positions, optical axes…, 
but even for very different parameters, the number of objects should not differ 
significantly for the same scene. From the general observation, the number of 
neighboring transferable sites is notably lower than the number of neighboring 
native sites.  

 
Unary potential modification 
As described in Section 3.2 Random Fields, the unary potential for native image sites 
in the DRF is a measure of how likely a site i will take label xi given the observation in 
image y. Given the model parameter w and a transformed feature vector at each site 
hi(y), the unary potential can be written as: 
 

( ) ( )( )( )ywy i
T

iii xxA hlog, σ= ,                (7.3) 

 
Assuming that Generalized Linear Models (GLM) are applied as local class 
conditional. For the transferable sites, feature vector is limited to the observations from 
single site. This limitation define a new expression for unary potential, exclusive to 
transferable sites as 
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The feature vector at the transferable site i given the feature space vectors fi(zi) is 
defined as ( ) ( )( ) ( )( )[ ]TiiLiiiii zzz f,...,f, ϕϕ1= kh , where ϕ  are nonlinear functions 

mapping feature vectors into high dimensional space. Model parameter w = {w0, w1} 
is composed of bias parameter w0 and model vector w1.This model is designed for 
dual-class labeling problems, where xi = {-1, 1}, but can be easily extended into multi-
class (as described in [Kumar and Herbert, 2006]) with introduction of step function:  
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where ( )ik x~δ  is 1 if = k and 0 otherwise and C is number of classes. In this 

formulation, separate model parameters w
ix~

k are used for each class k in local class 
conditional [Lafferty et al., 2001].  
 
Pairwise potential modification 
The pairwise potential for two native sites from the image remains the same as 
described in Section 3.2, given the GLM are applied to compute class conditional: 
 

( ) ( ) ( )( )( )( )121 −−+= yvy ij
T

jijijiij xxKxKxxxI µ,, σβ ,  (7.6) 

 
where 0 ≤ K ≤ 1, v and β are the model parameters and µij(y) is a feature vector. For 
the native sites, this formula remains the same as in standard CRF model. For 
transferable sites, we introduce additional feature vector in a form of observations 
from specific site: 
 

( ) ( ) ( )( )( )( )121 −−+= jij
T

jijijjiij xxKxKxxxI zyvzy ,µ~~,,~,' σβ ,    (7.7) 

 
where ( ) ( ) ( )( )jjijij zyzy ψ,ψµ,µ =  is a feature vector defined in domain 

such that functions qℜ→ℜ×ℜ γγ:µ ( ).ψ s  are mapping observations from the 
image/sites related to site s into a feature vector with dimension γ . Note that the 
smoothing term  is the same as in standard DRF definition. Thus if K = 1, the 

pairwise potential still perform same function, as in a MRF model, however given new 
ji xKx ~
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transferable sites, the smoothing function will depend also on their classification . 

In this case, visual information from transferable sites is not involved in pairwise term 
and is only applied in unary term. If K<1 the data-dependent term 

jx~

( )( ) 12 −jij
T

ji xx zyv ,µ~σ  is included in pairwise potential. Observations from the 

image related to the examined native site and observation from transferable site are 
transformed into feature vector and involved in computation.  
The pairwise potential for standard DRF in a multi-class case is defined in a work 
[Kumar and Herbert, 2006]. We use the same definition for native sites. For 
transferable sites, the pairwise potential in multi-class formulation is defined as: 
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where C is a number of classes, ( )xmδ  is a step function defined as 1 if x=m and 0 
otherwise. Vector  is a class dependent model parameter. Note that the pairwise 

potential in this formulation contain only data-dependent term, forcing feature vector 
 to encode all relevant contextual relations between classes, including smoothing 

function if necessary. In this formulation, similar to the binary class DRF, feature 
vector can be seen as discriminative model, partitioning the feature space into 
C(C+1)/2 regions.  

klv

ijµ

7.2.2     Parameter Learning in Multi-view 

For DRF training in multi-view, we use a labeled ground truth dataset that has a means 
of image matching available, particularly images from an Industrial System dataset and 
parts of General Images dataset without matching. Given the assumption, that 
parameters of unary potential can be learned without image matching, as the visual 
features does not change for transferable sites, therefore they can be learned from 
original image. The spatial relations defined for pairwise potential also do not change 
significantly for the pair native-transferable site. For such reasons, we can assume that 
multi-view random fields can be learned even directly from single images without 
dataset matching. This assumption is based on a mechanism, how transferable sites set 
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is constructed, and how such sites are involved in process, providing no new spatial 
relationships, or visual features. 
Similar to standard DRF model, the parameters of multi-view random field are θ = {w, 
v, β , K}. The suggested approach in [Kumar and Herbert, 2006] for an estimation of 
parameters is based on the pseudolikelihood and defined as 
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where m are indexes over training images and M is the total number of training 
images. The formula for single image ( )θ,,,| zyx

iNixP  is evaluated based on 

parameters from equation (). As the pseudolikelihood is not a convex function, a good 
initialization is necessary to avoid local maxima. This can be achieved through the 
computation of standard maximum on log-likelihood in training data.   
In a multi-class model, parameters are { } { }{ }ClkklCkk ...,.. , 111 =−== vwθ . The maximum 

likelihood estimates of the given parameters are defined as: 
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where M is the number of training images. The computational complexity of such 
formulation scale with the number of classes dramatically, therefore the analytical 
computation is untraceable for larger number of classes. As suggested in [Kumar and 
Herbert, 2006], computation of pseudo-marginal can be applied to reduce the 
complexity. A Belief Propagation [Pearl, 1982] approach is applied in a work of 
Kumar to get a Pseudo-Marginal Approximation. Similar approach can be applied, if 
the problem get complex due to a large number of transferable sites. 

7.2.3     Inference in Multi-view 

As described in Section 4.1.4, we used Belief Propagation to infer a standard DRF 
model for semantic segmentation. It was demonstrated in previous works that using the 
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same method for parameter approximation and inference minimizes the classification 
error.   
Parameter inference in MVRF can be implemented much the same way as in DRF. In 
a Belief Propagation framework, messages are exchanged between neighboring nodes 
in each iteration, until no more changes in classification is observed. Other possible 
methods for Random Fields parameter inference are Tree-Based Reparameterization 
and Expectation Propagation [Wainwright et al., 2002], [Kolmogorov and Wainwright, 
2005]. 

7.3     Application of Multi-View Random Fields 

The introduction of Multi-View Random Fields (MVRF) in a properly aligned 
redundant dataset and the involvement of transferable sites in image processing have 
two primary applications: 
 

- The introduction of new context and visual features from the sites which are 
not located in the original image. This is mostly the advantage in datasets, 
where the images contain less redundant information and more novel visual 
sites between each other. Therefore this application is relevant mostly in 
crowd sourced datasets, where each image is projected from different view 
points and angles. In this case, the novel sites are usually located at the borders 
of images. To involve such information to have impact on classification of 
more sites, we can increase the size of neighborhoods for each examined site. 
This approach also requires matching to be available for objects (sites) in the 
image. This is not an easy task as for example, there is no general matching 
method for object classes, like “sky”, or “cloud” and the matching of many 
other classes is difficult (vegetation, temporal objects, etc.). With limited 
success, we can match such sites directly by their visual features and location 
in the image. For these reasons, the application of MVRF with aim on 
introduction of new context information is difficult in street-side scenes. 
However in different scene settings (for example in indoor scenes), it can be 
much more straightforward.  
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- Improvement in robustness of site detection. The method of site detection can 
occasionally fail for several reasons, such as temporal or spatial illumination 
anomaly (shadow or specular reflection), occlusion, image quality problem, 
etc. This is primary the problem, when high order of organization is expected 
from objects in the image and such misdetection can create gap in contextual 
arrangement. For example, if arches above windows require window to be 
detected right below them in a context-based classifier, the misdetection of the 
window can present problem also for the detection of corresponding arch. The 
introduction of transferable sites in a MVRF model can largely correct this 
problem, as the undetected site can be located in other images and can provide 
appropriate context for native sites. This application of MVRF is mostly useful 
in highly redundant datasets, where the same object is located in multiple 
images, therefore primary in industrial system datasets. In such cases, the 
application of MVRF allows for much stronger application of context-based 
classification, as in a standard MRF or CRF models. In standard models, the 
possibility of misdetection has to be accounted for by assigning less weight on 
contextual cues and more weight on visual cues. This limitation was mostly 
notable in highly organized scenes, as building façades. With the application 
of MVRF we can establish stronger contextual relationships between objects 
in such scenes. 

 
In subsequent sections, we will present the application of MVRF in building façades 
for the purpose of façade elements detection and classification. This application is 
based on Industrial System dataset, however the image matching is provided by 
corresponding point detection method instead of LiDAR. We selected left camera 
subset of dataset, which provides clear view of building façades, not distorted by 
perspective, that are easy to rectify and provide good visual cues. As described before, 
this setting will demonstrate the advantages of MVRF in cases, when a site was 
misdetected and present lost contextual information in standard models. It should be 
noted, that in most images, building façades are not projected whole and parts of them 
are located in other images. Therefore in such cases, the MVRF will also provide new 
contextual and visual information in a form of transferable sites based on the objects 
that are not located in the original image. However, the usefulness of such information 
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is in this case diminished by the presence of similar native sites. For example, if the 
transferable site represents a window in other images which is not located in the native 
image, the presence of similar windows in a native image decrease the contextual 
impact of such transferable site.  
In MVRF framework, every image is processed separately (with the additional 
information from transferable sites) and there is no comparison of classification 
between images afterwards embedded in the model itself. This is the main difference 
between the multi-view approach described in the previous chapter and MVRF. In 
previous multi-view approach, results were compared, when classifications were 
available for all images and errors/inaccuracies were corrected based on all results. 
This approach is not a part of the MVRF model, therefore it can be assumed that 
results for separate images will differ and can contain inaccuracies that can be 
removed when results from other images are compared. For this reason, processing 
based on MVRF could still benefit from results unification, but this approach will not 
be described in this chapter, as it has been discussed and described in Chapter 6 and 
can be applied without any modifications.  

7.3.1     Façade Elements Detection 

In this section, we describe the application of MVRF for detection and labeling of 
façade elements. The method is based on the gradient projection approach and 
segmentation of façade into blocks similar to the method described in Section 6.1.1. 
However, as our goal is to present a more detailed façade labeling, we introduce 
several modifications to façade segmentation, establish contextual relationships 
between blocks (sites) and apply MVRF.  
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Figure 7.4: Set of classes: a) clear façade; b) brick façade; c) window centre; d) 
window top; e) window bottom; f) window margins; g) arch top; h) arch bottom; i) 
basement window; j) door; k) ledge; l) ledge ornament; On the right side, color 
representation of each class is displayed. In the Result section, processed images have 
labeled areas overlaid with corresponding class color. 
 
We introduce the following algorithm: 
 
Algorithm 7.1 
 

Input: Separate Façades identified in a multi-view dataset 
1. Segment façades into blocks 
2. Establish the MVRF model (with blocks as sites) for each façade 
3. Project a set of blocks of examined façade from one image to another and mark 

non-overlapping blocks as transferable 
4. Introduce transferable sets of blocks from other images into a MVRF model of 

an examined façade 
5. Approximate optimal solution of MVRF using Belief Propagation 
6. Compute final labeling from probability distribution of MVRF 
Output: Façade elements detected in a set of blocks 

 
This workflow is novel in using the central method – MVRF in a process. The image 
matching is established with the help of a sparse 3D point cloud. As our goal is no 
longer to detect only windows, but also other façade elements, we must account for 
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differently oriented and non-rectangular objects. We must also consider that not all 
objects are located in a grid pattern.  
Our goal is to label given set of objects (see Figure 7.4). These represent architectural 
façade elements and may contain several subclasses or variants. We label façade areas 
into these classes: clear façade (façade area with no pattern), brick façade (façade area 
with brick pattern, including rectangular bricks and bricks with inclined edges), 
window centre (central area of window, including window glass, opened window, 
sectioned window), window top (top part of the window, usually un-sectioned 
area/blinds), window bottom (area at the bottom of window, including balcony or 
ledge), window margins (areas on sides of window, included extended window 
margins, window lesen, or window pilaster), arch top (area with inclined edges on top 
of window, including arch, window pediment, triangular/semicircular ornament), arch 
bottom (area on top of window without inclined edges, usually between window and 
arch), basement window (small windows/doors for basement spaces located below 
bottom window row), door (including doors, portals, door pilasters), ledge (uniform 
area of façade running through entire façade length, such as cornice or molding), ledge 
ornament (ornamented area running through the entire façade length, such as frieze, 
usually located below ledge)  
 
Horizontal Level Division 
Similar to our previous approach, the first step is to divide the façade into horizontal 
levels with separator lines. To account for different object types, we establish three 
different gradient images of the façade – horizontal gradient, vertical gradient and 
inclined gradient image. We use the Roberts Edge detector [Roberts, 1965], but for 
each gradient image only the corresponding direction of the gradient is computed. 
Vertical gradient projections are computed for each gradient image – for each line of 
pixels, a value of projection is computed as a sum of the gradients of all pixels on the 
horizontal line. Values of all projections from all lines in the façade are considered a 
vertical gradient projection of the façade.  Subsequently, separator lines are established 
in steps of the vertical projection function. The façade is divided into levels bordered 
by separator lines. Each level indicates different types of objects based on what 
directions of gradients are contained within: 
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Figure 7.5: An example of façade division into set of blocks. Blocks are marked by 
red lines borders and each represents a uniform patch of the façade. Blue separator 
lines are detected from horizontal gradient image and indicate the presence of rims. 
Note that windows are divided into several blocks (window’s planes, tops, frames, 
margins). In this façade, 1231 blocks have been detected, divided between 36 levels. 
 

- Levels with vertical gradient indicate the presence of windows, doors, 
columns, bricks and other rectangular patterns. 

- Levels with horizontal gradient indicate the presence of rims, balconies, strips 
and other objects horizontally dividing the façade. 

- Levels with inclined gradient indicate arches and arched windows 
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We set the levels to be minimum 4 pixels high, preventing multi responses from the 
same source (the Roberts edge detector has a 3x3 size kernel). To achieve high 
precision of projection, we mark façade borders manually for the testing (part of 
labeled ground truth) and interpolate projection lines between borders. In an automated 
workflow, this can be achieved by automatic façade rectification and/or vanishing 
point detection. Subsequently, we process each level separately, without considering 
information from neighboring levels.  
 
Vertical Division - Blocks 
For each level detected in the façade, we perform horizontal gradient projection. For 
each gradient image (vertical, horizontal, inclined), separate horizontal projection is 
computed and in steps of horizontal projection function, vertical separator lines are 
detected. A set of blocks is established such that the top/bottom borders of the blocks 
are set at the horizontal separator lines of given level and left/right borders are set at 
any two neighboring vertical separator lines. Blocks thinner than four pixels are 
removed as noise (due to a 3x3 Robert’s kernel) and to disregard multiple responses. 
In this approach, blocks represent uniform patches of the façade, indicating presence of 
some façade element. Blocks are also organized into levels, which represent 
architectural division of the façade (see Figure 7.5). In this approach, significantly 
larger set of blocks is detected when compared to the method described in Section 
6.1.1 (Gradient Projection in a Single Image). This modification is necessary to detect 
sites for all required façade elements, instead of just detection of windows. This 
increase in blocks number and the number of classes makes the previous method not 
applicable, as one color descriptor for the façade area is no longer sufficient. Therefore 
we use a similar set of descriptors for the blocks as in the previous method, but also 
include several other features, namely pairwise blocks relations between blocks in a 
MVRF graph. 
 
Block Descriptors 
For a single block, we use similar descriptors as in the Section 6.1.1 based on color, 
gradient and size. A gradient descriptor is computed from vertical projections inside 
the block as mean and average values.  
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Figure 7.6: Highlighted blocks are the neighborhood of examined block (in green). 
For the examined block, all blocks in the same level and all blocks at the same vertical 
position are considered neighborhood. On the left image, a façade block is examined. 
Notice the row of windows at the level, but no window blocks at vertical position. On 
the right image, a window block is examined. Notice another window blocks at the 
vertical positions essential for context examination. 
 
 In general, façade blocks contain low values of gradient when compared to a window, 
or other element blocks. The size of the block is described as ratio of block 
width/façade width and block height/façade height. Some elements require minimum 
size (e.g. rims) or maximum size (e.g. window frames) of the blocks. The color 
descriptor is based on k-means clustering in a CIE-Lab color space [Recky and Leberl, 
2010(II)]. Clustering is performed in “a”, “b” space. For each cluster, a representative 
“L” value is computed as a mean of all colors in the cluster. The euclidean distance of 
CIE-Lab colors is used as a metric.  
 
Pairwise Blocks Relations 
To establish pairwise relations between blocks, a graph is created for the block 
structure. For each block, a graph node is created. Edges are created between each two 
blocks that are vertically at the same position in the façade (both blocks have pixels at 
some vertical line going through a façade). Moreover, an edge is also placed between 
each two blocks at the same level. This setup allows for examinations of relationships 
between blocks that are at the same vertical position, thus implement relations between 
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façade elements such as window-arch, but also the column of windows and blocks at 
the same level that exhibit repetitive patters, such as row of windows. 
This graph structure is further used in MVRF model with the same definition of 
neighborhood (see Figure 7.6). 
For each two blocks, that are neighboring each other, we define following descriptors: 
 
Spatial Descriptors 

- Vertical position to each other, if the blocks are not in the same level. It is 
defined if one block is on top of other, or below other.  

- Distance relative to façade width, if the blocks are in the same level. The ratio 
of blocks distance/façade width is computed. 

- Distance relative to façade height, if blocks are in different levels. The ratio of 
blocks distance/façade height is computed  

- Number of blocks between them, if they are in the same level 
- Number of levels between them, if they are in different levels. 
 
 
Visual Descriptors 
- Color visual similarity based on the CIE-Lab clustering of each block. Visual 

similarity is a number <0, 1>, where 0 means blocks have no similar clusters 
in color space and 1 means block have same clusters in color space. 

- Gradient visual similarity for the horizontal projection inside the blocks. For 
inside of each block, an average of horizontal gradient projection is computed. 
Gradient visual similarity is a number <0, 1> computed from the Euclidean 
distance of gradient averages in blocks. 

 
Our observation of streetside scenes shows that there is high intra-class variability in 
many façade elements, even for objects in the same façade. For example, windows in 
one façade can have different color characteristics due to specular reflections on the 
glass, open or half open windows, blinds, etc. Also the repetitive patterns can be 
disrupted by occlusions or incomplete façade projections in the image. These problems 
can be largely solved by introducing transferable sites (blocks) from other images and 
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examining inter-class relationships. Both of these solutions can be implemented as a 
MVRF model.  

7.3.2     MVRF Model for Building Façade 

Given the graph structure introduced in the previous section, we can establish the 
MVRF model for the façade element detection. In this model, nodes of the graph 
(blocks) are considered sites and edges define pairwise relations between sites. Only 
one graph structure is defined over the entire façade. The neighborhood for each site is 
defined as all sites at the same level and sites at neighboring levels that have common 
borders with the examined site. Such parameters define this specific MVRF model as 
global and the entire examined scene is processed at once.  
However, given this definition, only native sites are considered. To complete MVRF 
model, we have to introduce transferable sites from other images. This require the 
entire database to be processed for block detection and matched before the 
classification of specific images can begin. Block detection can be performed in each 
image separately, as was described in previous sections. This process includes 
performing vertical and horizontal projections for each façade, detection of blocks and 
establishing block descriptors. Image matching is performed through spars point cloud. 
For the points of the façade, where no matched points of point cloud are located, we 
can perform linear interpolation from three closes matched points.  
In this application, we define transferable sites for examined image as blocks in other 
images, that are located at the same façade, but have no relevant counterpart block 
detected. This situation can occur in two different cases: 
 

- Transferable blocks are located in a part of façade that is not visible in 
examined image, i.e. it is either occluded (if occlusion is detected), or trimmed 
by image border. 

 
- Transferable blocks are at the visible part of the façade, but due to a detection 

error were not located. This case is harder to identify, as in general borders of 
the blocks in the same façade are not the same in different images. Division 
into blocks was designed such that blocks represent uniform patches of the 
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façade, however edges of the façade elements are seldom sharp enough to 
define block borders with pixel level precision. This is also the case for 
horizontal division into levels. Therefore we consider two levels of the same 
façade that are located in different images to be corresponding to each other if 
they have at least 2/3 of area composed of corresponding points. This is 
mostly the case, when one level is at least 2/3 of height of other level and are 
located approximately at the same position at the façade. Subsequently, we 
search for transferable sites only in corresponding levels. Likewise, two blocks 
are considered corresponding to each other if they are at the corresponding 
level, they intersection is at least 2/3 width of the longer block length. Given 
this definitions, transferable sites are blocks that are located at some 
corresponding level, but have no corresponding blocks in the examined image. 
In general, such blocks are usually patches of the façade, that are somehow 
bordered by edges (or gradients of edges), but these edges were not detected in 
examined image.  

 
In both cases, transferable sites import new information into the examined image. In 
first case, such information is not located anywhere in the examined image, in second 
case the information was processed differently, resulting in misdetection. Transferring 
the information from other images provide additional robustness for the MVRF graph 
model.  
In Figure 7.7 (bottom right image), an example of set of transferable sites is displayed. 
This set represents sections of image that are described by blocks with no equivalent in 
examined image (top left corner of Figure 7.7). These are either blocks, that are out of 
view in examined image (blocks on the left side of the façade), or blocks that 
represents patches not detected in examined image (e.g. frames of windows, parts of 
arches). Subsequently, set of blocks in examined image (middle left of Figure 7.7) is 
complemented with the set of transferable blocks. 
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Figure 7.7: Two images of the same façade. Top row – matched corresponding points, 
middle row – blocks located in each façade, bottom row – blocks from first façade 
projected into second façade (on the left) and highlighted set of transferable sites (on 
the right). Notice the inaccuracies in projection of blocks between image (inclined 
edges of blocks) in bottom left image caused by imprecise matching of points. 
However these errors are not significant in computation of transferable sites.  
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Training and Classification 
Our training dataset is composed of mostly single images with no matching available 
(12 images) and small set of matched images (5 images). As described before, MVRF 
can be trained on single images, as unary and pairwise features are essentially the same 
for native and transferable sites. Therefore, single images provide same level of 
information for the training as matched dataset. The purpose of training is to primary 
obtain pairwise relations between classes. Visual features are less important, as these 
are continuously refined in an inference process for the specific façade. From the 
training set, we obtain representative color, gradient and size signature for each class, 
but these are applied only for initialization of classification. In a training process we 
retrieve spatial relations between classes (pairwise feature) for all neighboring blocks 
(neighborhood defined in MVRF graph). These are described in the section Spatial 
Descriptors and are observed from established graph structure and measurement in 
examined façade. 
 
The process of classification can be performed on either single image and/or matched 
images. In case of single images, only native sites are considered and MVRF model is 
equivalent to DRF model introduced in [Kumar and Herbert, 2006]. If the images are 
matched and the same façade is located in some subset, we involve transferable sites 
set in the process of classification, as described in previous sections. The process of 
classification is performed iteratively. Workflow for classification, together with 
previously described process of MVRF construction can be described as: 
 
Algorithm 7.2 
 
Input: Separate façades identified and matched in multi-view dataset 
1.  Segment each façade into a set of blocks 
2.  For each façade in each image { 

2.1 Define façade as “examined” 
2.2 Project all blocks from examined façade to all matched façades 
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2.3 Consider any block from matched façades as “transferable” if such block does 
not have any correspondence in the projected set of blocks 
2.4  Use all bocks from examined façade as native sites and all transferable blocks    
       as transferable sites to construct the MVRF model in examined image. 
2.5 In the initialization step of iterative process, assign each site (block) initial 

class based on trained visual features.  
2.6 In the iterative step, a belief propagation method is applied to infer MVRF 

model parameters and establish site labeling.  We maximize a site’s class 
posterior probability, based on actual visual descriptors for the class and 
pairwise relations with the neighboring site’s classes. Such relations are 
propagated as beliefs, exchanged between neighboring sites.  

2.7 After each round of belief propagation process, new visual descriptors are 
computed for each class. This process is similar to one described in Section 
3.6.1, subsection Block Descriptor, where color clustering was computed for a 
façade area. We perform similar clustering in the CIE-Lab color space for each 
class in this step. We also compute a new representative L (illumination) 
histogram and gradient histogram for each class.  

2.8 Steps 3.6. and 3.7 are repeated until there are no more changes in classification 
for each block or after some number of rounds, to cope with non-convergent 
situations. Usually, the process converges after 6-10 rounds. 

Output: final block classifications are considered labels for areas covered by blocks 
 

In a step 2.6, marginal probabilities (beliefs) Pb(xi, mji(xi, y)) are computed for each 
possible label xi in each native and transferable site i. Variable mji(xi, y) is a message 
from site j to site i, how likely the labeling of site i is xi given the observation in the 
image y. In case of transferable sites, only local observations from the site are 
considered. Messages mji(xi, y) are recomputed after each step according to changes in 
sites classification. Values mji are computed from pairwise parameters of the MVRF 
obtained from training and are based on similarities between neighboring sites. Before 
the iterative process, we pre-compute color, gradient and positional similarities for 
neighboring sites and weight beliefs mji according to these similarities. For example, 
façade sites in a single row have very similar color features, giving high values of 
color similarity. Window sites in one row, on the other hand, can have different color 
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features, but usually have high values of gradient similarity and they are located in 
uniform spaces, giving high value of position similarity. Application of this 
observation in MVRF model helps in convergence of iterative process, as detection 
and classification of one window site reinforce classifications of all neighboring 
window sites with the same gradient and position similarity. Weights for all 
similarities are obtained in a training process, as observations between sites. Note that 
this process is different than the one described in step 3 of iterative process, where the 
visual descriptors are computed for each class. These visual descriptors are applied in 
unary classifiers as representatives for each class, giving better visual features for 
classification. 

7.3.3     Results 

Our testing dataset consist of 44 matched images. This dataset cover three full building 
façades and one half façade. A sparse point cloud of 1429 3D points is used to match 
images. Approximately 800 – 900 points are projected into each image. In the testing 
process, we compare the number of façade elements to the number of detected 
elements with applied method. We use overall numbers of elements through entire 
dataset, as displayed in Table 7.1. For example, total number of 536 “window centre” 
elements can be observed in all images, that is approximately 12 “window centers” per 
image. Each façade was processed separately, that is if there were two façades in one 
image, such image was processed two times (each time for different façade). After 
running the algorithm, number of detected elements is counted visually. Façade 
element is defined as detected, if at least 2/3 of its area is labeled with corresponding 
class.  
We examine results for three different scenarios:  

- MVRF for single images. In this case, we do not apply image matching and 
process each image separately. In a MVRF framework, no transferable sites 
are applied in a process and MVRF model is equivalent to standard DRF.  

- MVRF in multi-view without transferable sites in results. This case is standard 
MVRF approach with images matched and transferable sites applied in a 
process of classification. However in the final results, only native sites are 
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considered as area labels. In this case, information from matched images is 
used in classification process, but only native detections are used for labeling. 

- MVRF in multi-view with transferable sites in results. Transferable sites are 
used for classification in MVRF model as in previous case, however if 
transferable sites give different labels than native sites in certain image areas, 
median of labels is preferred in results. This approach solves the problem, 
when certain façade elements are not detected in native image. If there are two 
or more transferable sites that give different labels in such areas, these areas 
are labeled according to the transferable sites instead of native site (this is only 
applicable for transferable sites that can be projected inside native image area). 

 
Results can be observed in Table 7.1, where each scenario is displayed in separate 
column and each façade element class in separate row. 
 

Class # elements single img. multi/native multi/trans. 
Clear façade 61 61 (100%) 61 (100%) 61 (100%) 
Brick façade 54 54  (100%) 54  (100%) 54  (100%) 
Window centre 536 485 (90%) 531 (99%) 531 (99%) 
Window top 311 270 (87%) 303 (97%) 308 (99%) 
Window bottom 300 227 (76%) 273 (91%) 288 (96%) 
Window margin 683 572 (83%) 618 (90%) 654 (95%) 
Arch top 199 176 (88%) 189 (95%) 192 (96%) 
Arch bottom 199 184 (92%) 194 (94%) 194 (94%) 
Basement window  121 98 (81%) 115 (95%) 117 (97%) 
Door 34 32 (94%) 33 (97%) 33 (97%) 
Ledge 90 90 (100%) 90 (100%) 90 (100%) 
Ledge ornament 34 32 (100%) 34 (100%) 34 (100%) 

Table 7.1: Results for the MVRF application. “# elements” displays the overall 
number of each class for entire dataset (44 images). “single img.” displays detected 
elements in MVRF single image scenario, “multi/native” displays results for multi-
view scenario with only native sites in results and “multi/trans.” display results for 
multi-view scenario with transferable sites labels in results. Numbers displayed are the 
detected façade elements in all images of dataset.  
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Elements can be not detected in two cases a) element was not labeled with appropriate 
class and b) element was not correctly segmented in set of blocks. In first case an error 
can be corrected in both multi/native and multi/trans scenario, as correct label can be 
identified through additional context from transferable sites. In second case, only 
multi/trans scenario can yield correct labeling, as missing site is not located in a set of 
native sites and the labeled area must be overlaid with transferable site. This is mostly 
evident for not well defined areas, such as “window bottom” or “window margin” (as 
it is often uncertain, where is the border between “window centre” and “window 
bottom/margin”), where the improvement from multi/native to multi/trans is at 5%. 
From experiments, we can observe that the transition from a single-view to a multi-
view in MVRF model helps in detection of façade elements that have less well defined 
borders (window margins window bottoms), but also correct some mislabeling of 
similar classes (window centre/window top). These corrections are particularly 
effective, when blocks do not cover borders between such classes correctly. For 
example, blocks that are located at window top also cover parts of window centers. In 
that case, window top can be labeled as centre (as block have similar visual 
characteristic and tops/centers are usually in the same neighborhoods in graphs with 
similar contextual cues). Extending this case in multi-view can provide better 
neighborhoods (with transferable sites) for such façade element to be labeled correctly.  
Difference in multi/native and multi/trans scenario can be observed primary in cases, 
when class was detected correctly, but blocks does not cover entire objects (blocks 
with other classes interfere into the area of façade elements). In this case, element is 
not considered detected if at least 2/3 of its area is not labeled correctly. When 
transferring labels from transferable sites in multi/trans. scenario, correctly labeled 
area of façade element may extend over 2/3 object area and change status from not-
detected to detected. Two examples of results can be observed in Figure 7.8. 
The precision of placement of elements can be evaluated as a ratio of an area of 
element not correctly labeled (false positive and false negative) to an area of ground 
truth. As the dataset contained 2622 elements in total, the hand labeling of entire set 
was not feasible due to time constraint. Instead, we labeled only “window centre” class 
in one façade. The average precision of placement was 88% in multi/trans scenario. 
This is consistent with Section 6.2.1, as both methods use the same segmentation of 
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façade into blocks. The difference is in correction of labeling through transferable 
sites. In geometric measure, this would mean that for example for a window with 
80x135 cm dimensions (10800 cm2 area), 1296 cm2 area would be mislabeled in 
average.  

7.4     Discussion on MVRF application 

In Figure 7.7, top row display part of projected point cloud. Notice that the point cloud 
is sparse and there are only few corresponding points located at façade elements (8-15 
points per window). This number is sufficient for matching, as we can apply the 
assumption of façade planarity and interpolate/extrapolate any point of the façade for 
matching. However the sparsity of point cloud prevents examination of 3D structure 
for classification. In MVRF model, 3D structure of the scene can be directly used as an 
observation and provide cues for classification. For example, balconies, window 
frames or arches have specific signature in 3D façade relief that can be used as a 
feature. This would however require densier point cloud to provide more precise 
information about local changes in façade planarity. 
The process of classification is constructed such that in each step, it is equivalent with 
previous applied methods. In the initialization step, where only visual features are 
applied, the classification is equivalent to a gradient projection method, with no 
application of context. This can be compared with Nevatia’s method described in [Lee 
and Nevatia, 2004], with the exception that not only gradient descriptors are used, but 
also color descriptors. As described in previous section, Nevatia’s method can be 
successfully applied for simple façades and does not cope with multi-view datasets. 
Introduction of graph structure and MVRF model into the process, but for single 
images is equivalent to Discriminative Random Field (DRF) model, as no transferable 
sites are present. In this step, the context between classes is considered, but no multi-
view data is utilized. 
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Figure 7.8: Results for two building façades. Top row – original images, middle row – 
images overlaid with class colors (for color codes, see Figure 7.4), bottom row – 
rectified façade schemes with class colors. In the classification process, each block was 
assigned a class label and the corresponding color for each class in the result images 
represents the detection of the façade element. 
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This can prove beneficial for single images, as it provides strong contextual cues for 
façade elements, but misdetections of sites cannot be corrected without multi-view. 
Also with the introduction of transferable sites in full MVRF model, we get the benefit 
of additional data that was trimmed of the image, or occluded. 
Set of classes defined in this section encompass a large variety of objects per class. For 
example, class “window margins” may indicate the presence of window pilaster 
(slightly projecting column build into a façade), extended window frame (area of 
façade next to the window with different color), ornament located next to the window, 
etc. In our method, such objects are labeled into one encompassing class and indicated 
by rectangular bounding box. This type of output presents a façade analysis, but may 
not by directly suitable for some façade modeling applications. For example, if the 
method of façade modeling is based on shape grammars, additional detection of shapes 
has to be performed inside bounding boxes to better identify objects that are present. 
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Chapter 8 
 
 
 
 

Conclusion 
 
 

8.1     Façade Processing using Context and Multi-View 

In chapters 4, 5 and 6 we described a workflow for analysis of streetside dataset. Every 
method described can be viewed as a part of complete study on street-side image 
processing, presenting an automated and robust workflow. We examined the context of 
a scene projected into an image and how the context influence results in semantic 
segmentation. This segmentation was designed to identify basic classes in the image 
and their context using graph model namely Discriminative Random Fields. In our 
method, the context of an entire image is considered, not only a local context near the 
examined object. We described a method for façade separation, identifying individual 
façades in the images. Subsequently, we introduced a method for façade analysis based 
on a gradient projection.  
In addition to introducing several improvements and critical modifications to state-of-
the-art methods, we extended each method into a multi-view. For every method in this 
chapter, we examined single-view and multi-view scenarios separately. This approach 
makes the application of method more robust, as it is making no assumptions about the 
availability and the level of image matching. Subsequently, our methods can be 
applied to single image, multiple images when no matching is available, sparsely 
matched imaged dataset and finally, densely matched dataset, reflecting different 
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image matching techniques (manual matching, laser scanner, projections into aerial 
wire-frames, 3D point clouds obtained through epipolar geometry…). We also 
examined two principal approaches when dealing with multi-view data interpretation – 
interpretation first, matching second and matching first, interpretation second, 
addressing different precision level in matching techniques. We presented novel 
approaches and methods in each step of the process, examining the effect of context, 
multi-view and presenting new solutions for existing problems. For each involved 
method and given result, we present an extensive discussion about the 
advantages/disadvantages and alternatives for such method.  
In Chapters 4, 5, 6 and 7 we introduced a number of novel methods to improve upon 
existing state-of-the art: 

• Visual Similarity: a trainable measure which can give a probability value if 
two segments belong to a same class, based on their colors. This measure is 
applied to iteratively segment a real world objects in an image. 

• Global DRF model for classification. Instead of number of graph structure as 
local models, we implemented a single graph structure for entire image, 
encompassing all detected objects for context examination. 

• We implemented a semantic segmentation for a multi-view scenario. 
• Semantic segmentation as a prior knowledge for façade separation method. In 

this case, repetitive patterns are only detected in façade class areas. 
• Iterative segmentation with Visual Similarity measure for façade separation 
• Refining of individual façades in multi-view scenario. 
• Segmentation of façades into a set of blocks using gradient projection method. 
• k-means clustering in CIE-Lab color space descriptor. 
• Windows detection for complex façades. 
• Windows detection in multi-view. 
• Multi-View Random Fields 

8.2     Multi-View Random Fields 

In Chapter 7, we utilized our research on multi-view and context and combined it into 
a new model in Random Field framework. When considering multi-view scenario in a 
dataset of images, one must decide between two principally different approaches. As 
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each image is a separate unit of information, it is possible to process each image 
separately and after that, merge results through image matching. This is a 
straightforward process and as such, it is a first approach in multi-view (as it does not 
require any modification for algorithms designed for single-view scenario). This 
approach was tested in previous chapters and applied for three different algorithms in 
streetside datasets.  
The second approach is to merge information from images before vision algorithms 
are applied. However before an application, several problems have to be solved. First, 
each image is a separate unit and as such, information from the matched images has to 
be put in context with the native image. Second, an important decision is the volume of 
information to be transferred between images. One can decide to merge all information 
from all matched images into one, but in general, this would make computational 
complexity of the processing algorithm often unfeasible. To cope with this problem, 
we can assume that most of the information in matched dataset is highly redundant, 
thus will not provide new data. Therefore, we can transfer only new, or low redundant 
information to maximize the usefulness of transferred data. In this chapter, we 
considered both these problem and introduced a Multi-View Random Field model. We 
used a native graph structure of Random Field models to establish context with 
transferred data and introduced the term “transferable site”, which represent a unit of 
information from matched images that is most useful in processing of a native image 
(as it is missing in the native image structure). We built a MVRF framework on the 
Discriminative Random Field model, as it allows application of more complex 
contextual relationships that is applicable on a global level of the image. In this 
chapter, we introduced mathematical model for MVRF and presented an example of its 
application. We applied MVRF in a highly contextual system of building façade for 
detection of façade elements.  
Together with methods introduced in previous chapters, we presented a complete 
workflow for streetside images processing. Starting with single streetside image, or 
matched dataset, we identify principal areas in the image, separate building façades 
and process façades into set of façade elements. We introduced new methods and 
approaches in each step of the workflow, examined different multi-view scenarios and 
applied context at each level. We compared our approach with related methods in the 
vision field and improved upon state-of-the-art.  
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