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Abstract

Neoclassical transport plays a significant role in toroidal magnetic confinement
systems. In this work a detailed calculation of the moments of the full
linearized Coulomb collision operator (collision matrix elements) in terms of
test functions proportional to the associated Laguerre polynomials has been
presented. These matrix elements have been implemented in the drift kinetic
equation (DKE) solver NEO-2 (which is based on the field line integration
technique) direct at the level of the DKE. Therefore, the NEO-2 code can
calculate the complete (including energy diffusion and momentum recovery)
local solution along the magnetic field line which is in contrast to most
DKE solvers where momentum conservation is completed with momentum
correction techniques.

As an application of the NEO-2 code involving the collision matrix elements
the neoclassical electron transport matrix (assuming stationary ions) for the
standard tokamak with circular cross section has been evaluated. The results
have shown good agreement with results of analytical theory. Moreover,
effects of simplifications of the linearized collision model (e.g., reduction to
a Lorentz model) have been studied in order to provide a comparison with
various momentum correction techniques used for the computation of transport
coefficients in stellarators. Furthermore, the NEO-2 code has been applied
to compute the generalized Spitzer function in the standard tokamak taking
into account finite plasma collisionality. The result has been compared to
the collisionless approximation computed by the SYNCH code. This function
is one of the main elements in computations of electron cyclotron current
drive (ECCD) efficiency and total ECCD current. The resulting generalized
Spitzer function has specific features which are pertinent to the finite plasma
collisionality. They are absent in asymptotic (collisionless or highly collisional)
regimes or in results drawn from interpolation between asymptotic limits.
These features have the potential to improve the overall ECCD efficiency if
one optimizes the microwave beam launch scenarios accordingly.

The code NEO-2 turns out to be a valuable DKE solver for ECCD problems
because of the unique feature that the full linearized collision operator can be
used locally. Thus the full 3D (4D) problem of local current drive efficiency can
be tackled in tokamaks (stellarators). At the moment however, usage is only
possible for tokamak problems due to limited speed of the code. A substantial
speed-up of the code is possible with improvements of the ODE-solver and
code parallelization. Such improvements are in development.






Kurzfassung

In toroidalen magnetischen Einschlusssystemen spielt der neoklassische Trans-
port eine maflgebliche Rolle. Die vorliegende Arbeit prasentiert eine aus-
fithrliche Berechnung von Momenten des linearisierten Coulomb Stofloperators
(StoB-Matrixelemente) mittels, zu verallgemeinerten Laguerre-Polynomen pro-
portionalen, Testfunktionen. Diese Matrixelemente wurden in den DKE (drift
kinetic equation) Solver NEO-2, der auf Integration entlang der Feldlinie
beruht, direkt auf Ebene der DKE implementiert. Daher ist NEO-2 auch
in der Lage, eine vollstédndige lokale Lésung (inklusive Diffusion der Energie
und Impulserhaltung) entlang der Magnetfeldlinie zu finden. Diese Fahigkeit
unterscheidet NEO-2 erheblich von den meisten DKE-Solvern, die die Im-
pulserhaltung mittels Korrekturmethoden erst im Nachhinein sicherstellen.
Als Anwendung der Matrixelemente wurde mit NEO-2 der Elektronenan-
teil der neoklassischen Transportmatrix (unter der Annahme stationérer
Ionen) fiir einen Standardtokamak mit kreisférmigem Querschnitt berechnet.
Die Ergebnisse zeigen eine gute Ubereinstimmung mit den entsprechenden
Ergebnissen der analytischen Theorie. Uberdies wurde die Auswirkung verein-
fachter Stooperatoren (z.B. Lorentzoperator) auf die Transportkoeffizienten
untersucht. Dies ermdglicht fiir Stellaratoren hinsichtlich Impulserhaltung
den Vergleich mit diversen Korrekturmethoden. Auflerdem wurde mittels
NEO-2 die verallgemeinerte Spitzerfunktion fiir einen Standardtokamak unter
Berticksichtigung eines endlichen Stofiparameters (collisionality) des Plasmas
berechnet und mit der stofifreien Naherung des Codes SYNCH verglichen. Sie
ist besonders wichtig bei der Berechnung der Effizienz der Stromgenerierung
mittels Elektronen (electron cyclotron current drive, ECCD) und des via
ECCD erzeugten Stroms. Die mit NEO-2 berechnete Spitzerfunktion weist
Besonderheiten auf, die auf die endliche collisionality des Plasmas zuriick-
zufiithren sind und in asymptotischen Regimen (stoffrei bzw. hochgradig
stoBbe- stimmt), sowie in der durch Interpolation zwischen diesen Limits
gewonnenen Losung, nicht auftreten. Dieses Charakteristikum konnte dazu
beitragen den Gesamtwirkungsgrad der ECCD zu verbessern, falls man den
Einstrahlwinkel der Mikrowellen dementsprechend optimiert.

Fir ECCD Probleme erweist sich NEO-2 als sehr niitzlich, da er in der
einzigartigen Lage ist, den linearisierten Stoloperator lokal zu verwenden.
Dadurch ist es iiberhaupt erst moglich das 3D (4D) Problem der Bestimmung
der lokalen Stromtriebeffizienz in Tokamaks (Stellaratoren) zu bewaltigen.
Die Verwendung von NEO-2 beschrankt sich im Moment aufgrund langer
Rechenzeiten auf Tokamaks. Eine Verbesserung des ODE-Solvers, sowie eine
Parallelisierung des Codes sollte zu einer betrachtlichen Beschleunigung von
NEO-2 fithren. Diese Verbesserungen sind gerade in Entwicklung.
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“Das ewig Unbegreifliche an der Natur ist ihre Begreiflichkeit”!
Albert Einstein in Physik und Realitat [1]

1“The eternal mystery of the world is its comprehensibility”
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Chapter 1

Prologue

Modern civilization is dependent on (cheap and reliable) energy and the
global demand for energy is continually rising. These days roughly 85% of
the worldwide energy consumption is supplied by fossil fuels [2] leading to
negative effects on the environment (pollution, releasing of greenhouse gases,
global warming). Beyond that, there is hardly doubt that the world is running
out of fossil fuels. Therefore, in order to ensure energy supply for future
generations, there is a great need to find cleaner and more sustainable energy
sources that will replace coal, natural gas and oil.

In addition to nuclear fission and renewable energy means, such as solar, wind
and hydro-power, nuclear fusion could also make an important contribution to
the future world energy mix [2]. In particular nuclear fusion has the potential
to provide (base-load) power supply offering key advantages [2-4] of, e.g.,
practically inexhaustible fuel (the major fuels deuterium and lithium are
abundant and available around the world), no COy greenhouse gas emissions
(that is, no contribution to global warming) and, furthermore, future fusion
power stations would be inherently safe (no meltdown possible).

The goal of controlled thermonuclear fusion is to harness on earth the process
powering all stars (including our sun). The nuclear fusion in the stars is
based on the proton-proton interaction, that is, hydrogen nuclei collide and
fuse (through a sequence of reactions, i.e. proton-proton as well as carbon
cycle [5]) into heavier helium nuclei (alpha particles) [6] releasing enormous
amounts of energy in the process'. Due to the fact that the cross section for
this reaction is by far too small it cannot be exploited in a fusion reactor here
on earth.

IThe sum of the rest masses of fusion products is lesser than the sum of the reactants
before the reaction (mass defect). Therefore, if two light nuclei fuse to form a heavier
nucleus, energy is liberated (cf. Fig. 1.1) according to Einstein’s relation AE = Amc?.
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Figure 1.1: Deuterium-tritium fusion reaction (left). Energy gain from nuclear
reactions (right).?

Because of its advantageous cross section the fusion reaction of primary

interest for controlled thermonuclear fusion is those involving deuterium (D)
and tritium (T) [7],

’D + T — *He (3.52 MeV) + 'n (14.06 MeV),

taking place at lowest plasma temperatures (= 10 keV) compared to other
fusion reactions (see Figure 1.1). Since tritium is radioactive (with the half-life
of 12.3 years) it does not occur naturally and, therefore, must be bred by
lithium in the blanket surrounding the plasma using reactions such as [5]

Li+'n — “*He+3T +4.80 MeV
i+ — *He+3T+'n—2.47 MeV.

The following reactions might be preferred from an economic and environ-
mental point of view (e.g. no tritium necessary), however, they possess less
favorable reaction rates, require considerably higher temperatures and provide
at the same pressure only 1 % of the D-T fusion power density [5],

D+2D — “He (0.82 MeV) + 'n (2.45 MeV) 50% probability
D+2D — 3T (1.01 MeV) + 'H (3.03 MeV) 50% probability
D+ *He — “He (3.67 MeV) + "H (14.67 MeV).

A D-T plasma has to meet the following requirements in order to yield net
fusion energy from a reactor - the product of density n; and energy confinement
time 7z of the fuel ions has to be n;7z > 1.5 x 102%m~3 (Lawson criterion)

ZSource left image: http://www.iter.org/sci/whatisfusion
Source right image: http://www.jet.efda.org/faq/fusion-principles



inner poloidal field coils

poloidal magnetic field
outer poloidal field coils

resulting helical magnatic field toroidalfisld coils

plasma electiic current

toroidal magnetic field

Figure 1.2: Scheme of the tokamak principle?

as well as the critical ion temperature 7; is approximately 10 kev (over 100
million degrees) [8].

In principle two different paths are being investigated in order to achieve
controlled thermonuclear fusion on earth, namely, inertial confinement and,
perhaps more promising, magnetic confinement. In inertial confinement fusion
small and frozen pellets of D-T are compressed to very high densities and
heated to fusion conditions by means of intense lasers or high power particle
beams (so-called energy drivers). The heating pulses are typically 1 to 10 ns
long [9].

A concept fundamentally different from that is the magnetic confinement
fusion, where a low density plasma (fully ionized gas) is confined in a strong
magnetic field relying on the fact that the magnetic field can influence the
motion of the charged particles and isolate them from the inner wall of the
containment vessel. The most advanced magnetic confinement systems are
toroidal, namely the tokamak [10,11] and the stellarator [12].

In a tokamak (a schematic diagram is shown in Figure 1.2) a toroidal magnetic
field is produced by currents in external field coils surrounding the vacuum

3Source: http://ec.europa.eu/research/energy/euratom/publications/fusion/
index_en.htm/
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vessel and a poloidal magnetic field is generated by a current flowing through
the plasma. The combined total magnetic field lines are helically twisted
around the torus center. Since the toroidal current is induced by transformer
action (the plasma itself acts as the secondary winding) a tokamak is intrin-
sically a pulsed device. Moreover, the large plasma current can drive large
scale plasma instabilities, the so-called disruptions (an abrupt termination of
the discharge where magnetic confinement is destroyed [13]).

Currently, the largest tokamak experiments are the JET (Joint European
Torus) [14], based in Culham (Great Britain) and the JT-60U [15,16] built in
Naka (Japan).

In a stellarator the helical twist of the confining magnetic field is generated
exclusively by currents flowing in external field coils. Consequently, stellarators
are non toroidally symmetric (i.e., fully three dimensional) plasma confinement
devices®. Due to the absence of a net toroidal current, stellarators have the
potential to be operated in steady-state and are believed to be disruption-
free [17]. At present, the largest stellarator is the LHD (Large Helical
Device) [18] in Toki, Gifu (Japan). A schematic diagram of the advanced
stellarator W7-X (Wendelstein 7-X) [19,20], that is currently being built in
Greifswald (Germany), is shown in Figure 1.3.

The next major step in fusion research is the ITER tokamak [5] (Interna-
tional Thermonuclear Experimental Reactor) which is currently being built in

4Source: http://www.ipp.mpg.de/ippcms/eng/pr/forschung/w7x/index.html
5A great advantage of the doughnut-shaped tokamak is the axisymmetry of the configu-
ration.



Figure 1.4: A cutaway view of the future ITER Tokamak®. © ITER Organi-
zation

Cadarache (France) with the aim to prove the scientific and technological fea-
sibility producing commercial energy from nuclear fusion [21] (see Figure 1.4).
ITER is projected to generate 500MW fusion power, ten times more than it
consumes as well as to test key technologies required for a future fusion power
plant [5,21] (the so-called DEMO, an industrial demonstration reactor).

In toroidal magnetic confinement devices substantial external” heating sys-
tems are required in order to bring the plasma to ignition temperatures,
that is, to temperatures where self-heating due to a-particles maintains the
thermonuclear fusion. The following two main techniques have therefore been
developed: Neutral-beam injection (or NBI) as well as radio-frequency (RF)
heating. In NBI, high-energy neutral atoms (typically hydrogen isotopes)
are injected across the confining magnetic field into the plasma transferring
their energy in repeated collisions to the plasma ions and electrons. In RF
heating, energy is transferred to the charged plasma particles via resonant

5Source: http://fusionforenergy.europa.eu/mediacorner /imagegallery.aspx?id=25

"In tokamaks the heat produced by the induced toroidal plasma current (ohmic heating)
is insufficient to reach self-sustained fusion and in stellarators, actually, all the energy
needed to attain the temperatures required for fusion has to be provided by external
heating.



6 CHAPTER 1. PROLOGUE

Lithium
Deuterium blanket  Tritium
Vacuum
vessel
. _‘Helium
Lithium He He He

Generator
Heat exchanger

Steam Turbine
generator

Electricity

Figure 1.5: Conceptual layout of a fusion power plant®

absorption of high-power electromagnetic waves at appropriate frequencies
(viz. the cyclotron frequencies of ions and electrons) [5,7,13].

Finally, Figure 1.5 shows the principle scheme of a magnetic fusion power
plant based on the D-T reaction. The hot plasma is surrounded by the first
wall, followed by the so-called blanket and the vacuum vessel protecting the
superconducting magnetic coils from the heat and high-energy neutron fluxes
produced by fusion reactions. Since the neutrons are not confined by the
magnetic field they escape the plasma, pass the first wall and penetrate the
lithium blanket where they are slowed down converting their kinetic energy
to heat. The heat in turn is removed by means of a coolant (helium or liquid
metals) and is used to generate electricity. Moreover, the neutrons which
enter the blanket are absorbed by lithium in order to breed tritium which is
then used as fuel [5,13,21].

A drawback in using the D-T fusion reaction is the induced radioactivity of the
reactor materials (particularly the blanket and vessel structure) caused by the

8Source: http://www.efda.org/multimedia/animations.htm



fast neutrons. However, the application of advanced, so-called low-activation,
structural materials (which are currently under development) will largely
reduce the total radioactivity. It is expected that most reactor materials
can be recycled after a decay time of about a hundred years after the end
of the power plant’s life [2,5,13]. Another problem in a D-T reactor is the
radioactive tritium which is difficult to contain and which requires careful
handling. The total amount of tritium present in the plant is estimated to
be on the order of a few kilograms (only a few grams in the plasma) and is
generated in a closed fuel cycle. Nonetheless, future nuclear fusion power
plants must preclude accident-caused release of tritium inventory [2,5,21].






Chapter 2

Introduction

In toroidal magnetic confinement systems, such as tokamaks and stellarators,
transport of particles and energy plays a significant role. In principle, plasma
transport can be divided into three different kinds of transport mechanisms,
namely the classical, the neoclassical and the anomalous transport. While
classical and neoclassical transport are driven by Coulomb collisions between
charged particles the anomalous transport is caused by turbulent processes
(e.g., fluctuating electromagnetic fields, micro-instabilities).

On the collisional transport the classical flux results from the interaction
of Coulomb scattering with particle gyromotion which is perpendicular to
the magnetic field (perpendicular friction) while neoclassical diffusion is
determined by the interaction of Coulomb scattering with guiding-center drift
motion. This motion is primarily along the magnetic field, thus neoclassical
transport is associated with parallel friction [22,23].

This work concentrates on the investigation of neoclassical transport pro-
cesses in tokamaks and stellarators, more precisely, on the evaluation of the
neoclassical transport matrix and the generalized Spitzer function.
Accurate computations of axisymmetric and non-axisymmetric neoclassical
transport coefficients, bootstrap current and the generalized Spitzer function
is an important problem for stellarator optimization, generation of neoclassical
data bases, and modeling of current drive. Based on the field line integration
technique [24], the generalized drift kinetic equation solver NEO-2 has been
developed for this purpose [25,26]. This code solves the linearized drift
kinetic equation in regimes where the effect of electric field on transport and
bootstrap coefficients is negligible.

Recently this code has been upgraded for computations of the full transport
matrix, that is, NEO-2 has been generalized for a full linearized collision op-
erator describing all aspects of Coulomb collisions including energy scattering
and momentum conservation. Applying the full linearized collision operator
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represents a considerable improvement to the previous version of the code,
where only the Lorentz (pitch-angle scattering) operator was implemented
and, furthermore, is a prerequisite for a complete description of neoclassical
transport and linear current drive efficiency (e.g., for solving the generalized
Spitzer-Harm problem in arbitrary stellarator geometry). The generalized
Spitzer-Harm function serves as current drive efficiency for ECCD and other
methods with a small distortion of the distribution function. Currently,
two limiting cases of this function are mainly used in ECCD modeling: (i)
high-collisionality limit (homogeneous magnetic field limit) and (ii) low colli-
sionality limit (bounce averaged Spitzer-Harm function). The intermediate
cases are obtained by some heuristic matching formulas. Detailed knowledge
about the collisionality dependence of this function is important for interpre-
tation of present-day experiments and also for reactor modeling in the case
of ECCD with near perpendicular microwave beam injection.

The implementation of the full linearized collision operator in NEO-2 is in
contrast to most DKE solvers where momentum conservation is completed
with so-called momentum correction techniques (based on three monoenergetic
transport coefficients) applied to flux surface averaged quantities [27,28]. Thus,
local information within a flux surface is lost. This makes NEO-2 especially
suited for ECCD computations where power deposition is highly localized.

The motivation for the work presented in this thesis was to provide the
moments of the full linearized Coulomb collision operator (also called collision
matrix elements) which are used in the code NEO-2 to solve the linearized
drift kinetic equation. In the following an elaborated derivation of these
matrix elements is shown.

Finally, it has to be pointed out that the development of the solver itself was
not part of this work.

The thesis is organized as follows.

In Chapter 3 the neoclassical electron transport matrix relating the neoclas-
sical fluxes and the thermodynamical forces is derived. The corresponding
transport coefficients are represented in thermal as well as in monoenergetic
form and it is shown that for the Lorentz operator the thermal transport
coefficients can be obtained from the monoenergetic ones using a convolution
over energy. Furthermore, it is demonstrated that the transport matrix is
Onsager symmetric and that it depends on the choice of fluxes and forces.
In Chapter 4 a brief description of the adjoint approach for ECCD com-
putations is given and it is shown how the generalized Spitzer function is
calculated in the NEO-2 code.
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The main part of this work is presented in Chapter 5, namely the calculation
of the collision matrix elements using the full linearized Coulomb collision
operator. The test particle matrix elements are computed in terms of the
orthonormal test functions ¢,, proportional to the associated Laguerre polyno-
mials whereas the field particle matrix elements are evaluated in the Burnett
function basis first followed by a transformation to the ¢,,-basis. Additionally,
the asymptotic behavior of the matrix elements is studied for the case when
the ratio of particle masses m,/m, < 1. Moreover, recurrence relations
are provided allowing for fast numerical evaluation of the collision matrix
elements and their numerical implementation is briefly described.

In Chapter 6 a standard problem in plasma physics, namely the calculation
of the classical Spitzer conductivity, is solved which serves as a test case for
the accuracy of the matrix elements.

Chapter 7 compares the results obtained from analytical formulas representing
the neoclassical transport matrix in the low-collisionality limit in an axisym-
metric test configuration with the corresponding numerical findings evaluated
by means of the NEO-2 code.

In Chapter 8 the computational results of the neoclassical transport matrix
and generalized Spitzer function in a standard tokamak with finite collisionality
obtained with the NEO-2 code are presented and discussed. Besides, a brief
description of the code NEO-2 is given.

Chapter 9, finally, contains the conclusions of this thesis.

In the appendices two complete sets of orthonormal functions applied in this
work are introduced (the test functions ¢,, as well as the Burnett functions).
In addition, various representations and properties of the Coulomb collision
operator are briefly reviewed. As an important by-product of this work the
Trubnikov potentials as well as the Braginskii matrix elements are calculated
in the Burnett function basis and presented in a compact form. Finally, in the
last part of the appendix the construction of a test configuration with circular
cross section (standard tokamak) is shown which is used for comparison
between numerical results obtained by the NEO-2 code and the analytical
predictions in the axisymmetric limit.

2.1 Publications associated with this thesis

In the following the list of articles as well as contributions to European Physical
Society conferences and International Stellarator Workshops co-authored by
the author of this thesis are presented.
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Additional criteria for optimization of trapped particle confinement in
stellarators

V. V. Nemov, S. V. Kasilov, W. Kernbichler and G. O. Leitold, 15th
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tors using a 6 f method
K. Allmaier, S. V. Kasilov, W. Kernbichler, G. O. Leitold and V. V.
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Chapter 3

Neoclassical transport matrix

In the following chapter a formalism is developed, based on the linearized drift
kinetic equation, which allows for a compact representation of the neoclassical
transport matrix relating the neoclassical fluxes to the thermodynamical
forces which drive them. The corresponding matrix elements are presented in
thermal as well as in monoenergetic form. Furthermore, a proof of Onsager
symmetry of the transport matrix is given and it is shown how the transport
matrix has to be transformed for two different sets of thermodynamical forces.

3.1 Drift kinetic equation

The first-order gyrophase-averaged distribution function (defined as the small
deviation from lowest-order Maxwellian) for particles of species a, fu1, is
determined by the linearized drift kinetic equation (see, e.g., Reference 22)

Ofar | yyOlen _ Fo = C 1, (3.1)

A B, T,

where the linearized Coulomb collision operator C., is defined by

Colfu] = Z (Cav[fars fro] + Cas|fao, fo1]) (3.2)

b

neglecting terms quadratic in f,; and f;;. Here, f,o and fyo represent Max-
wellian distribution functions satisfying Cup[fa0, fro] = 0 for equal species
temperatures T, = T,. The first and the last term on the RHS of Eq. (3.2)
correspond to the differential and integral part of the collision operator,
respectively. In Eq. (3.1), ¥ is a flux surface label, s is the distance counted
along the magnetic field line, A = v /v is the pitch angle variable, e, is the

17
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charge, E‘(‘A) is the induced parallel electric field and V¥ = V - V) is the

radial component of the drift velocity [24]

200 (A

where = (1 — A\?)/B, B = B/B, is the magnetic field module normalized to
a reference magnetic field By, w. = eBy/(m.c) and

~ 1 /4
Voe==-(=— Vylk 3.4
a=3 (5 ) Ivulk, (3.4
with kg being the geodesic curvature.

The local Maxwellian distribution function is represented by

feo(wa :E) =

TNe —x2?
7r3/—2vf’66 , (3.5)
where n, is the density, v, = \/2T./m, is the thermal speed and = = v/v is
the normalized particle speed, respectively. Here it has to be noted that the
temperature, the density and the electrostatic potential ® are assumed to be
constant on magnetic flux surfaces. From Eq. (3.5) one obtains for the radial
derivative (at constant total energy £ = muv?/2 + e¢,®) of the Maxwellian,

O fuo (1),
% = Ay () foo (¥, ) + As ()2 foo (1, 2), (3.6)
with A; and A, being the thermodynamic forces
1 On, 3 0T, e 0P
AW = e T aw  T.ow (3.7)
1 0T,
W) = Ty (3.8)

Using the fact that in neoclassical theory the induced parallel electric field
EI(IA) is often replaced by B<E|(|A)B> /{B?*) [22] the electron component of
Eq. (3.1) can be rewritten as

85 Ci[fel]

e <E|(|A)B>

VYA () + VP22 Ay () + UABT@W

= —feo (3.9)

VY VY
=Ja [<|W|>A1“) TV

22 Ay(r) — ’U)\BA;;(T)} . (3.10)
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In Eq. (3.10) the thermodynamic forces A; and Ay have been expressed
as functions of the effective radius r by means of the definition 9/0¢ =
(|IV4|)~10/0r, and the driving force
(4) A

e (BTB)

T. (B?)
has been introduced. Here, the notation (-) denotes the flux surface average
which can be evaluated using (see, e.g., [24])

o[ e

Upon defining the quantities @7,

Ay = (3.11)

VY
¢ = 3.13
A = % (3.13)
Q7 = Q7 (3.14)
Q5 = ovl\B, (3.15)

with o being the sign of v, the drift kinetic equation becomes

o
861

ov| | B

= Celfal = feo [QTAL(r) + Q3 Az(r) + Q3 As(r)]. (3.16)

Equations (3.13)-(3.15) may also be written via the compact notation

Q7 = v |Ngf , j=1,2,3 (3.17)
with p
Bi=fo = p3=1, (3.18)
(IVyl)
Pe0 = Vte/weo is the electron Larmor radius, and where the abbreviations
0 (|~

T=q5 = — | =W 3.19
a1 ds an (B G> ( )
@ = oB (3.20)

have been introduced.
Because Eq. (3.16) for f7 is linear, the solution is linear in the driving forces
and can be formally presented as a superposition of A;,

a = JTA1+ [3 A2+ f§As (3.21)
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where the functions f; are defined as the solutions of the single-drive problems

fO'

oo\ oL = Clff] = fo@f,  for j=1,2,3 (3.22)

Here it is convenient to introduce the normalized functions f7 via

=517 (3.23)

The energy dependence of the perturbation of the normalized distribution
function is now approximated by an expansion over a finite number of or-
thonormal test functions ¢, (see Appendix A), that is

F (W, s,2,0) & feo(t), o wa (), 8, \)om (). (3.24)

These functions are defined as follows,

3/4 2(m + 1)

(1) = LB (52 3.25
where L% represents the associated Laguerre polynomials [29] of the order

3/2. Upon multiplication of Eq. (3.22) on the left by the basis function ¢,,
followed by an integration over fooo dvv? the linearized drift kinetic equation
for the single-drive problems is transformed to a set of coupled two dimensional
ordinary differential equations for the coefficients fﬁ{(J ) (see Chapter 5),

a,(7) M .
U@J;"; —KZ{ w L En )+ Kt f?
m/=0

1 .
+|>\‘D€ f (j)} = a’%)q]‘j ) (326>

with the pitch-angle scattering operator

o) L0 19 0 )
0 nw

and the integral part of the linearized collision operator

. 1 e
ke ) !AIZN P\ /d)\’Pg(X)f;,’(])(w,s,)\’). (3.28)

-1
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Here, P, are Legendre polynomials, k = 1/(vTe) is the collisionality pa-
rameter (with v, 7. = [, being the electron mean free path due to electron
electron collisions alone [30]) and 7. is the collision time

3m2uv}
= £ 3.29
16y/mneetIn A’ (3:29)

7_6 €

where In A denotes the Coulomb logarithm. The quantities v, ./, I ﬁfzn,, Dy
(which is calculated from the energy scattering part of Cep[fe1, fro]) and ay
are matrix elements independent of plasma parameters and their calculation
is deferred to Chapter 5. In principle, the total effect on the electrons is given

by a sum over all background species b (including electrons), that is

Vs = > _ Vit (3.30)
b

D = > D2 (3.31)
b

K = > K& (3.32)
b

In this work the transport coefficients are computed only for the electron
component assuming the ions to be immobile, that is Eqgs. (3.30)-(3.32) can
be replaced by

szm' == I/:;fm/ + Zeﬁ'VrenO;L/ (333)
Ds ., = D, (3.34)
ce o= K, (3.35)

with the effective charge

Zs ans
Zet = =
ZS ans

and where a quasineutral plasma, n. = ), Z,n,, has been assumed.

(3.36)

In the code NEO-2, Eq. (3.26) is solved on a single field line using the
method of Green’s functions computed with the help of an adaptive third
order conservative finite-difference scheme over the normalized perpendicular

adiabatic invariant 7. For an advanced description of this method see, e.g.,
References 25,26 and 31 as well as Chapter 8.1.
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3.2 Transport coeflicients

The neoclassical transport fluxes of particles, energy and parallel electron
current density are derived from the first order distribution function. Here,
(T, - Vr) =(I'") and (Q, - Vr) = (QF) are surface averaged radial particle
and energy flux densities defined as total particle and energy fluxes divided
by the flux surface area and j is the total parallel electron current density.
Accordingly, the particle flux is expressed as

<f d3vV¢fel>
(V)

3 1 3 92 0 |>‘|A o
= —Zm</d ) |/\|8_77 (EVG) fk>Ak:

k=1

UtePe0 3,2 o fo
= — d A A 37

the energy flux reads

(o)

w |

([ dB3o(mv?/2)V¥ for)
(IV])

3
= Y e < / d3vx4|A|qgfz>Ak, (3.38)

k=1

(Qe)

and the surface averaged parallel current density is given by

—e <B/d3vv||fel>

3
— Z e </d3va£§v|)\|f,g> Ay,

k=1
S e, < / d3vx|A|q5”fg> A (3.39)

3
k=1

(i B)

respectively. With the following definitions,

L=, L= <?—> . L= ——<jeB>, (3.40)

the neoclassical fluxes in Eqgs. (3.37)-(3.39) may also be expressed as

Ij=— </d3UQj_Ufel> ; (3.41)
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where Eq. (3.17) has been applied. By means of Eq. (3.21) and upon defining
the electron transport coefficients L%, (electron transport matrix) the relation
between fluxes and thermodynamical forces can be written in the form

3
L= =) L5As, (3.42)
k=1

LY = < / d*oQ; 7 f,g>. (3.43)

Substituting into Eq. (3.43) the volume element in velocity space,

/d3v = vaeB Z

o==+1

with

oo 1/B(s) .
/dxa:Q / dnm, (3.44)
0 0

and using again the normalization fJ = [ f,? one gets for the transport
coefficients the equation

1/B

T | B :
L :47fvfeﬁjﬂk/dm2(j+l)_563j ) <Z / dnqj—"f,g> ) (3.45)

0 o==%1 0

with 7,k = 1,2,3. Formally, the transport coefficients may be obtained by
evaluating these integrals once the distribution function f,g for each single
drive problem has been found. These functions are solutions of the linearized
drift kinetic equation (3.22).

Finally, the full set of relations between the flux surface averaged thermody-
namic radial fluxes and forces may be represented as

(re)
Q) Ly, LYy, Lis Af
T o= s oLs | [ 4] 349)
(jHB) Lg Lsy Ly Ag
e

with

iane 3 0T, e 00

Af(r) = (ne B - 2T, o — i@) (IVY|) (3.47)

a5 = (7.5 ) 170D (3.48)
e (E]VB)
AS(r) —— (3.49)
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3.2.1 Thermal transport coefficients

Upon inserting the expansion of the normalized distribution function,
W, s,2,0) = falth Z FEE @, 5, N)pm ()
Ne _12 o
= me an{(k)(%&)\)@m(x) 5 (3.50)

into Eq. (3.45), one can perform the integration with respect to normalized
speed. This yields the expression for the thermal transport coefficients,

namely,
1/B

Tle —0 fo.
L= =183 > > bf>< / dng; fn;<’“>> : (3.51)
Tee m o==%x1 0
with
b%) = 4r (SOm, 2(171)75533')
= dze™® 220D =%y (1) (3.52)
|

for 7 = 1,2, 3 representing numerical coefficients independent of problem
parameters. These quantities are given by

47 )
bgrll) — _/dq; e’ x4cpm(x) = V670, (3.53)
ﬁ 0
47 ) V
b = = / e &%) = 205,00 — VT30, (3.54)
NG 2
0
4 7 32 Tm+1/2) 1Y
@ _ 4 3 _ |22
by, f/ " 2 om(2) Jrml(2m+1)2m +3)]| (3.55)
0

Here, Eq. (3.55) may be calculated using the following recurrence relation,

L) (m+1/2)
m V(m+1)(m+5/2) (3.56)

with initial value b = 4./2/3.
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It is convenient to define the dimensionless transport coefficients 7,5, which
depend only on the device geometry, the mean free path /. and the effective
charge Z.g,

1/B

o ] B —0 ro
Tk="7 D D b%)<1/dnqj fm’("”)> : (3.57)
¢ m o==x1 0
with ,
o] = Qg = c ’ ag =1, 3.58
R (2 ’ (3.58)
and A ) A
Bi=0 = po, Bz=le, (3.59)

respectively. Hence, the dimensional electron transport matrix, Eq. (3.51),
reads

Ne ~ ~
L;k = T—eeﬂjﬁk’}/jk. (360)

It should be noted that the transport matrices L, and 7, correspond to the
effective radius r used as a radial variable where dr = dV/S, V is a volume
limited by a flux surface and S'is a flux surface area. In order to obtain these
matrices for different definitions of plasma radius, e.g., for the radius defined
via the toroidal flux ¢, ry = (20)/ Boo) "%, coefficients oy and e should be
multiplied by dry/dr. The quantity By denotes the amplitude of the (0,0)
magnetic field harmonic in Boozer coordinates.

3.2.2 Monoenergetic transport coefficients

By neglecting in Eq. (3.22) energy scattering as well as momentum conserva-
tion one may obtain the monoenergetic transport coefficients L;;:‘D“”. After

substituting into Eq. (3.45) the normalized functions f7,
fo =g fe o for k=1,2,3 (3.61)

and replacing the Maxwellian distribution function by n.d(x — zg)/(47v3 x?)
one obtains
0o . 1/B
€,mono n(i/Ute/@'ﬂk ] B —0 fo
i - 298 s 2 (8 o)
0 0 o==%1 0
. 1/B
¢(4.k) B —0o fo
= N3 BT Z 1 dng;° J§
o==+1 0
— nD (3.62)
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with f3; introduced in Eq. (3.18). The monoenergetic transport coefficients
have been defined by

1/B

j B —o ro
D = vy 38§ Y <Z / dng;  (n) f7 (xo, n>> : (3.63)
o=+1 0
where the abbreviation
C(j k) =2(j + k) — 1 — 5(d3; + dar) (3.64)

has been used. Note that the monoenergetic transport coefficients depend on
the deflection frequency vf,, or strictly speaking,

Dy = D (vp(v) /v). (3.65)

3.2.3 Energy convolution

For the case when only pitch-angle scattering is assumed the elements of
the thermal transport matrix can be calculated from the convolution of
the Maxwellian distribution function with monoenergetic coefficients [32],
Dzere(v), that have been obtained in Chapter 3.2.2. From Egs. (3.45) and
(3.61), by using Eq. (3.63), it follows that

oo R I/B
e j B —0 fo
L5 = 4o}, 56 / daatUPH2f 0 (2) Y <Z / dng; f (sc,n>>
0 o=+1 0
- / A fo(2) D™ (2)
0
4”6 7d —1’2 2Dmono( ) (3 66)
ze Tt DR (). )
T gk
\/_0

Recalling Eq. (3.60), the corresponding dimensionless coefficients are given by

4] / 2
L C —T 2 mono
/ ﬁ/ijﬂkvte !

0

It has to be noted that the collisionality parameter in the monoenergetic case,
k™" = 1% (v) /v, is different from the one of Eq. (3.26), kK = 1/(vseTee), where
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the full linearized collision operator has been applied (see Chapter 3.1). The
connection between these quantities is as follows,
UteTee

K™ = K vh(v) (3.68)
v
_ VteTee ee es
= K " (VD + ZVD)
s#e
= kra(x,Z). (3.69)

The function « is defined by

o=l [Vf)e(v) - Z yeDs(v)] : (3.70)

s#e
with the deflection frequencies of electron and background ions,
3V [¢(x) — G(z)]
ee b = , 3.71
TeeVD 4 3 ( )
es 3ﬁ Zs2n8 [¢(y) — G(y)]
7—eeVD 4 Ne ZE?’ . (372)
Here, © = v /v, y = v/vs5, ¢(y) denotes the error function
o) = —= [ ate" (3.73)
Y) = — e ", .
VT Jo
and G(y) is the so-called Chandrasekhar function [22]
o(y) —yd'(y
Gly) = YT (3.74)

where the prime indicates a derivative with respect to the argument.
Assuming infinitely heavy background ions one obtains for Eq. (3.72)

37T Z2ng
eco ﬁs_ (3.75)

TeeVD L nat

Thus, the relation between the collisionality parameters £k and k can be
expressed as

K™ = ko, Zef) (3.76)
with function
(e, Zar) = 2T 6(0) ~ G(&) + Za]. 3.77)
and S 2o
Zop = =2 (3.78)

respectively. The sum in the last equation is taken over all ion species s.
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3.2.4 Onsager symmetry

The proof of the Onsager symmetry [33] (which is a consequence of the self-
adjointness property of the collision operator [23]) of the transport coefficients
follows References 34 and 35, respectively. From Eq. (3.22) one gets the
following equations

afjJr U f+ +
VAl = =Gl = fel; (3.79)
f i _ _
= =Gl = foQy (3.80)
Introducing for any functlon F (V) its even and odd part with respect to o,
that is
1
Feer = — == - )
Z P =g (FY+F) (3.81)
o/=+1
1
Fodd = - o’ _ — .
Z o'F 2 - F7), (3.82)
o'=+1
one obtains from Egs. (3.79) and (3.80),
8f9(ld
Nl = @ (38)
a even
oAl f SR = Qi (3.8)

whereupon in the last equatlon the index j has been changed to k. Now,
multiplying Eq. (3.83) by fi*"/f.o and Eq. (3.84) by f2%/fe, integrating
both equations over velocity space and averaging over a magnetic surface one
arrives at the relations

3 even a f]g)dd feven e
</d“’“' fo 05 >_</ v Gl ]>
= < / Qs fk> (3.85)
ded afeven 3 ded l odd>
</ T s > </d v Gl
— </d3 °ddf;dd>. (3.86)

W= Q5 =0 (3.87)
Qs = 0, (3.88)

Taking into account that
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it can be shown that the RHS of Egs. (3.85) and (3.86) are equal to the
transport coefficients, that is

< / d%cz;venf,:ven> — (51 + Bay) L (3.80)

and
< / Ao f;dd> = —0s Ly (3.90)

respectively. Due to the self-adjoint property of the linearized collision
operator (see, e.g., [36]),

3.9 sl 3Uiz
/d . eOCe[h]_/d Clg (3.91)

and upon using the antisymmetry relation

</d3vgv%> =— </dgvhv”%>, (3.92)

for the first term on the LHS of Eqs. (3.85) and (3.86), respectively, one
obtains the Onsager symmetry for the electron transport matrix Lg; in the
form

(015 + 095 + 035) LGy, = (O1r + ok + O3) L (3.93)
and
Li, = L3 (3.94)
LYy = Ly (3.95)
L3s = Li, (3.96)
accordingly.

3.3 Fluxes and forces

Here, it is worth noting that the choice of neoclassical fluxes and thermody-
namical forces is not unique [23,37] and, consequently, giving rise to differing
transport matrices. In this work the fluxes have been chosen to be the surface
averaged total radial fluxes of particles, (I'7), and energy, (Q"), as well as
the surface averaged total parallel current density ( j“é) [cf. definitions in
Egs. (3.37)-(3.39), respectively]. In the literature, however, the second flux
is often defined by means of the flux surface averaged radial heat flux (q})
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(see, e.g., References 28 and 38), which is connected to the energy flux by the
relation

b}

<Q2> = §Ta<FZ> + <q2>, (397>

where the first part on the RHS of Eq. (3.97) represents the convective energy
flux. From this it follows, that the set of fluxes can be written as

I, = (3.98)
, 5

I, = L-5h (3.99)
I, = I, (3.100)

which may also be expressed in terms of a transformation matrix, that is

1 00
I =M-1I, Mjpz=|a 10|, (3.101)
0 01
with @ = —5/2 and where matrix notation has been used. This new set of

fluxes requires the modification of the driving forces as well. If the matrix
L, defined via the fluxes I and forces A [cf. Eq. (3.42)], is symmetric and
the new matrix L  is defined by means of the new fluxes and forces, I' and
A’ respectively, such that I} = I, I, = al; + I, and Iy = I3, freedom in
definition of the new forces A" as linear combinations of old forces A is limited
to a scaling constant C', namely,

Al = O(Al—OéAQ) (3102)
A, = CA, (3.103)
A, = CAs. (3.104)

This transformation is obtained from the conditions that L is symmetric and
transformation coefficients from A to A’ are independent of L. Here, the
arbitrary constant C' is fixed to 1, which leads to

- 1 on,T, &8_@
Yo\nd, 0y T, 00

> (IV]). (3.105)

Furthermore, by using Egs. (3.42) and (3.101) one obtains

/

I = M1
~M-(L-A)
= —(M-L)- (M- A

’

= —(M-L-MT)-A,

(3.106)



3.3. FLUXES AND FORCES 31

where A = M - A" has been calculated from Eqgs. (3.102)-(3.104). Therefore,
the new neoclassical transport matrix is given by

L'=M-L-MT, (3.107)
from which it follows that

Ly, = Ly (3.108)
, 5 ,
Ly = Li=gln = Ly (3.109)
Ly = Lz = Ly (3.110)
, 25
L22 - L22—5L12+ZL11 (3111)
/ 5 /
Lyz = Loz — §L13 = L, (3.112)
Loy = Lag, (3.113)

where Onsager symmetry has been applied [cf. Egs. (3.94)-(3.96)].






Chapter 4

Generalized Spitzer function

The standard method for calculation of electron cyclotron current drive
(ECCD) generated current in tokamaks and stellarators is the adjoint ap-
proach where the flux surface averaged current is given by a convolution of a
quasilinear source term with the adjoint generalized Spitzer function (local
current drive efficiency). This function is well studied for high collisionality
regimes where it is equivalent to the classical Spitzer function [39], and in the
long mean free path (LMFP) regime where a bounce averaging procedure can
be used to reduce the dimensionality of the problem to 2D. For a detailed
discussion of various approaches to the LMFP regime see Reference 40. For
benchmarking results of various codes and pertinent models especially for
ITER see References 41,42 and citations within these papers.

In the general case of finite plasma collisionality, the kinetic problem to
compute the local efficiency remains essentially 3D for tokamaks and 4D for
stellarators. For this reason, this general case is not studied as well as cases
in the asymptotic limits [43].

In the linear approximation, generation of steady state plasma current by
ECCD is described by the linearized kinetic equation

vh- Vf—C'f] = Qrr, (4.1)

where f is the perturbation of the electron distribution function, h is a unit
vector along the magnetic field, v is the parallel velocity, C! represents the
full linearized collision integral and Q)rr is a quasilinear particle source in the
phase space.

By means of the adjoint approach (which allows one to compute the current
density without having to find f, see, e.g., Reference 44) the flux surface

A large part of this chapter has already been published in: W. Kernbichler, S. V. Kasilov,
G. O. Leitold, V. V. Nemov and N. B. Marushchenko, Generalized Spitzer Function with
Finite Collisionality in Toroidal Plasmas, Contrib. Plasma Phys. 50, 761 (2010).

33



34 CHAPTER 4. GENERALIZED SPITZER FUNCTION

averaged parallel current density may be calculated via the adjoint generalized
Spitzer function g (current drive efficiency), which is expressed through the
generalized Spitzer function g as follows, g(v) = g(—vj), where g(v)) is the
solution to the conductivity problem,

1

vh - Vfag = C'fug) = U (4.2)

and fy is a Maxwellian. Here, Eq. (4.2) represents a generalization of the
collisional Spitzer problem [39,45]. This equation may be recast to give

1)||h . VfMg -+ Cl [fMg] = LU”fM. (43)

lsp

Upon substitution of the RHS of Eq. (4.3) into the definition for the flux
surface averaged current density

<jH> =€ </d3p U||f> s (4.4)
it follows that

N f v fm
Uik = els </d3pf_M Isp >
. < / & fiM (g Vg + Cl[fMg])>

= elg, </d3p g (-Uuh Vf+ Cl[f]>> , (4.5)

where the antisymmetry relation

</d3p FU%> = — </d3p Gv|%—5>, (4.6)

as well as the self-adjoint property of the collision operator,

/ &p FC![f/G) = / &p GC'[f F) (4.7)

has been utilized. Finally, from Eqgs. (4.5) and (4.1) one obtains for the flux
surface averaged parallel current density

() = —elsp </ d*pg QRF> : (4.8)
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where p is the momentum, (...) denotes the flux surface average [average over
the volume between neighboring flux surfaces, see Eq. (3.12)], e is electron
charge, ls, is the free path length given by ls, = T7?/(7n.e*InA) where
ne, T, and In A are electron density, temperature and Coulomb logarithm,
respectively.

Using a more explicit form for the quasilinear source term,

0

Qrr = “op I'rr, (4.9)

the parallel current density is expressed via derivatives of the adjoint Spitzer

function .
(i) = —elsp </d3p % : FRF> . (4.10)

Here, T'gp is the momentum space flux density due to the wave-induced
quasilinear diffusion.

Within geometrical optics used for calculation of ECRH/ECCD, quasilinear
flux density can be described in local approximation. In this approximation
I'gF differs from zero in the velocity space only at the resonance line where
the (multiple) cyclotron resonance condition taking into account Doppler
shift is fulfilled, w = nw, + kv, where w, w., n and k| are wave frequency,
relativistic (energy dependent) cyclotron frequency, cyclotron harmonic index
and parallel wave vector, respectively. For weakly relativistic electrons these
resonance lines are close to circles on the (p,p)) plane whose centers are
located at p; = 0 axis. In this weakly relativistic case, the largest component
of the quasilinear flux density is over perpendicular momentum. Therefore, as
follows from Eq. (4.10), the behavior of the derivative of g over perpendicular
momentum at the resonance curve is of main importance for ECCD.

In the code NEO-2, the dependence of the generalized Spitzer function on
kinetic energy is presented in the form of expansion over the associated
Laguerre polynomials of the order 3/2 (Sonine polynomials),

M 2
=3 g LE? (L) 411
9(r, p) mzzog ()L 5o (4.11)
The expansion coefficients g,, are discretized on the adaptive grid over n which
reduces the kinetic equation (4.2) to a set of coupled ordinary differential
equations with the independent variable being the distance counted along the
field line (cf. Chapter 3.1). This set of equations is solved by numerical ODE

integration (see Reference 46 for details).






Chapter 5

Calculation of the matrix
elements

In Chapter 3 the derivation of the transformed drift kinetic equation [see
Eq. (3.26)] to be numerically solved by means of the NEO-2 code (see, e.g.,
References 25 and 46) has been presented without going into mathematical
details. In the following, this equation will be derived explicitly and the
matrix elements (moments of the Coulomb collision operator) arising will be
evaluated.

A solution to the drift kinetic equation for a single-drive problem [see Eq.
(3.22) in Chapter 3.1]
ofg

O-U|)‘|a_§ _C(lz [flg} = faovtax2k_563k|/\|QIg ) for k= 1,2,3 (51)

is obtained upon the substitution of the truncated series approximation for
the distribution function,

FE, 5.2, 0) & faolth, @ Z Fai @, 5, X o () (5.2)
m/=0
into Eq. (5.1), where the test functions ¢,, are defined as
3/4
Om(x) = ——=LB? (22), for m=0,1,2,..., M, (5.3)

\/_ m
and h,, = I'(m + 5/2)/(2m!) denotes the normalization factor (see Ap-
pendix A.1). This leads to the following equation,

5 (oo

m/=0

-C [faof;’,(k)gom/D — Faoveaa™ |\ g7, (5.4)
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where C., is the linearized Coulomb collision operator

Colfm] = Z (Cab [ fms foo] + Cab[ favs fm]) (5.5)

b

comprising a differential and an integral part, respectively (for details see
Appendix B) and where the expansion coefficients f;i;(’“> are to be determined.
The matrix elements are calculated from Eq. (5.4) upon multiphcation on the
left by the basis function ¢,, followed by an integration over (nqv2,)~ fo dvv3.
One obtains for the first term on the LHS of Eq. (5.4)

o0

1
dvvep,
navta / UU ()0 ZO
0 m’

M o,(k) o
0 1
= Z p\‘ f / dvv4fa0§0m()0m

(’9f

- nav2,
m= 0
M o,(k)
of
- A - my ¥m’
PILE o
Of™
= o\ 5.6
o (56)
where the orthonormalization relation for the basis functions ,,,
(Soma Spm’) = Omm, (5'7)

has been used (see Appendix A). The evaluation of the other parts of Eq. (5.4)
is somewhat more involved and will be carried out in the following chapters.
5.1 Source term

Performing the same steps as described above the RHS of Eq. (5.1) can be
transformed to

)
3 2k—564 o
/ VU Pm faOUta:E 8k |)\|Qk
navm
0

o0

1
4 2k—50.
2 /d?ﬂ) E‘meaom o

a“ta

= gt

= |Ag7ayy) (5-8)

m )
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where the abbreviation

a,(ﬁ) = (cpm, T

39

2k—1—553k) (59)

has been introduced. The scalar product between a test function ¢,, and an
arbitrary integer power of normalized speed x can be carried out, yielding

) 1 7 ;
((pmaxj) = na/U?a /d’U’U4fa0({E)(pm(fL')l'J
L [ pearapem (%)
w3/4/h,, "
0
_ 1 2m! 1V T[( +5)/20(m - j/2) (5.10)
/4 | T(m+5/2) 2m!T(—7/2) L
where
[ T()T(m+ s~ + 1)
dt tt*y 1L(u) t) = R 0 5.11

0

has been used [29]. The quantities al¥) for k =1,2,3 can now be evaluated
by means of Eq. (5.10) giving the results

al) = (P, x)

ag) = (SDma xg)

o

(‘Pma

1 om!  1Y2 T3 (m — 1/2)
3/ {F(m n 5/2)} 2mIT(—1/2)
- T(m—1/2) (512)
75/ 12mIT (m + 5/2)]"/% -
1 2m! 1Y T(4)T(m — 3/2)
3/ {F(m + 5/2)} 2m![(—3/2)
9 (m — 3/2) (5.13)
275/4 2T (m + 5/2)] "/ '
9 1
G (5.14)
%\/g(%m 900)
1 /3
NETS -

whereas in the last equation the orthonormalization relation for the functions
©m has been utilized [cf. Eq. (5.7)].
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5.2 Differential part of the collision operator

The test particle part of the Coulomb collision operator has the representation
(see, e.g., Reference 22 or Appendix B.4.2)

Cab[fmvfb()] _VD( ) [fm} +C [fm}v (516>

with £ denoting the pitch-angle scattering operator [see Eq. (B.87)] and where
Cﬁ’” accounts for energy scattering. The latter term is given by

0 Mg O fom
Cﬁy”[fm] = %% |:U3 (m Vg ( )fm ; H ( )U 8J; >] (5.17)

The collision frequencies appearing in Egs. (5.16) and (5.17) are defined
by [22]

V) = Db, (5.18)

where Dy, = 3T/ (47a0), © = 0/ V0, Y = 0/Vs = Yap, and Yap = Vgq /v, and
by

ab . A~ 2TG mb G(y)

v?(v) = D T, 1+ el B (5.19)
o . Gly

V”b( ) - 2Vab%7 (520)

respectively, designating the deflection frequency, the slowing down frequency
and the parallel velocity diffusion frequency. The quantity

o(y) —yo'(y)

G(y) = 7 (5.21)

is the so-called Chandrasekhar function [22].

5.2.1 Lorentz part of Cu[fa1, fio]

Applying the same operations as those used for obtaining Eqs. (5.4) and (5.6),
respectively, to the Lorentz part of the test particle operator [cf. Eq. (5.16)]
one gets

o2 M

o,(k) :|

T Rk DO AUL] [V
/ -

m
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o0

M
1 o
= 33 o [ttt | £ (1740
navta
m'=0 b 0
M
— kS [ f;’,(k)] , (5.22)
m/'=0 b

where the collisionality parameter £ = 1/(v47aq) and %, denotes the matrix
elements of the Lorentz operator defined as

ngm/ = VtaTaa (‘Pm |U71V%b‘ Spm’) . (5.23)
Employing the definitions of the test functions ©m, Eq. (5.3), as well as the
relation for the deflection frequency v%, Eq. (5.18), it follows from Eq. (5.23)
that

it = 2T [ i (o) (0 0 ()
aa r a 3 _G
— nzvta/dvv?)ﬂ-;;zvt @m( )4\7—/(;_1— [¢(y) = <y>]80m/(33)
0
3 Tus [
= ot | dre on@)ew (@)0(y) - Gly)]

3ﬁ T, / 9,9
Laa | Que=W /7 )L 3/2)
Wby 7ar ) /)

<L WP/ [oly) = Gy)]. (5.24)

The integral in the last equation may be evaluated upon substituting the
definition for the associated Laguerre polynomials [29],

- —1)k n (6%
L) =) ( kll) (nJ_r k) ", (5.25)

k=0

where the binomial coefficients are calculated from
p p! (p+1)

— — ) 5.26

(q) dp—q! T@+DT(p—-q+1) (5-26)

This leads to the following expression,

Taa " S kk/ T 2, 9 ,
= 7' Z Z 72(k+k, /dye yi /v )y2(k+k )[¢(y) _ G(y)], (5.27)

m
ab
k=0 k'=0 0
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with

S(kvk/)

mm/ -

3[ D(m+1I(m' +1) T/z
2 [T(m +5/2)T(m' + 5/2)

x % (mm+_3]/f) (“;f_?’]f) o (528)

Using the relation
2y —y? 2
= — M(1,3/2 5.29
o) = e ML3/2.y), (5.29)
with M (a, b, z) being the confluent hypergeometric (or Kummer’s) function
(see, e.g., References 29 and 47), and the integral

r
/dte_“tb_lM(a7 c, kt) = %F(a, bie k), s > k|, (5.30)

o

0

where F(a,b;c; z) denotes the Gauss hypergeometric function [29,47], one
obtains for the integral involving the error function ¢ in Eq. (5.24)

(22 2 /
VT / dye™ W/ 2 g (y)
0

[e.e]

- / dye™ W20 9ye v N1 (1,3/2,4%)

dte {4 A (1372, 1)

I
0\8 =}

D (k4K +1)y2kHE+1) ,
- (1 + 2)k+k/+1 F(L k4K +1; ;’, 1_7_7 )- (5.31)

Applying an integration by parts the integral involving the Chandrasekhar
function G can be reduced to Eq. (5.31). It follows that

ﬁ/dye—(yz/WQ) 26+ G (y)

\/;]Odye /7% y 2K {M _ i} o(y)

y? Y2
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2 /A2 / k k/ 1 2
dye™ W /77)y 2kt k) {Lg) — —2} 2ye™ M(1,3/2,y°)
Y 7
, tk+k/
dte—ta+7) {(k‘—i-k AR 7] M(1,3/2,1)

0\48 0\8

B F(k+l€,+1)’y2(k+k/)
o (1 + 72)l~c+k/
/3 2 / 2
{Fu,k+k,y117) u_%v)FT1k+k+J,wl+zﬂ,(53m
where o(0)
/ dyGly) = —2—;/ (5.33)

has been used. Now, from Eq. (5.27) together with Eqs. (5.31) and (5.32),
one obtains the individual species version of the matrix elements with respect
to the Lorentz operator,

Taa ~ab

Vi (Yab) = T—mem/ (Vab), (5.34)
where 02, is given by
D (Yab) = ) Z SEE) P (), (5.35)
k=0 k'=0
and with
P (1) = L(k+k+1)

7(1+v2>’f+’“’
F(1, k:+k:’+1,2,1+2 ) — F(1, k:+k’,2;1+22) . (5.36)

The quantity S,(fwlf,/ ) is given by Eq. (5.28) and the ratio of collision times is
expressed as [22]
5 2

Taa Vab nypep

—_— — = — 5.37

Tab ﬁaa naez ( )
One can easily show that the double sum in Eq. (5.35) can be converted to a
single sum giving the result

m-~+m/

v () = Y X9 0D (), (5.38)

J=0
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where

X9 — Z ST, (5.39)
and

| !
P (7)

(14 ~2)7

[F(l J+ L5 )—F(l,j;g;llﬁ)y (5.40)

Note that ST(:T’:,/) = (0for k > mor k' > m’. Due to the fact that Xr(rzzn, = Xr(i/)m
it immediately follows from Eq. (5.38) that the matrix elements are symmetric,
that is % , = 1% [this could have also been seen directly from Eq. (5.24)].

Finally, the matrix elements of the ‘full” Lorentz part of the collision operator
are given by
b
V;lnm’ - Z V;lnm’
b

S 2 (5.41)

b#a

In a plasma where several different ion species are present the treatment of
electron-ion collisions is simplified if one assumes the ions to be immobile [22].
That is to say, when infinitely heavy background ions are assumed, Eq. (5.40)
is given by

p(z) = Y0+ 1/2) - 017, (5.42)
where z = 1/(1 + ~+2,) tends to zero (for equal species temperatures the
parameter z approximately corresponds to the ratio of particle masses ma / mp).
A detailed derivation of the corresponding asymptotic expansion of pl, ) will
be given in Chapter 5.5. Using, e.g. MAPLE [48], the summation in Eq. (5.38)
can now be performed to give the following ‘closed’ form of the matrix elements

pob = Tajace 0,102y (5.43)

mm mm
Tab

with

m [m!I'(m/ 1/2
Urpmt = % {m,'!l;((m :[ ggﬂ Bm+1)—m], m>m —1. (5.44)

From Eq. (5.41) one obtains for the electron version of the matrix elements
regarding the pitch-angle scattering operator £ = £/[)|, [see Eq. (3.26) in
Chapter 3]

Ut = Vst F Lot Uy (5.45)

mm/
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with the effective charge
1
Zoit = o > n22, (5.46)
where the sum is taken over all ion species.

5.2.2 Energy scattering part of C,[fa1, fio]

By carrying out the same operations as for the calculation of the Lorentz
operator matrix elements one arrives at the expression

— / Ao Y 3B [faf o o]
0

m'=0 b

oo

/ Q0o C2 [fuome] | £700

nava
m/=0 t 0
M
= K Y Dt O, (5.47)
m'=0 b

where the quantities D , are the matrix elements of the energy scattering
part of the collision operator defined by

D™ = V4 Taq (gpm viebe gpm/> ) (5.48)
Recalling the definition of Cab , Eq. (5.17), the expression for the associated
matrix elements reads
VtaTaa
Dab A dUU m al m/
mm naUtQa / 12 ab [f 0¥ ]

T, T 0 m 1 0
= — [ dovpy—— [v° v+ —vfPv=— | | faospm-(5.49
navm/ vry ov [U (maersz + QVH va )] faospmr )
0

Substituting the definitions of the slowing down and parallel velocity diffusion
frequency, respectively, into Eq. (5.49) and after performing the derivative
with respect to normalized velocity in the second part of the equation one
gets

D, = 3 Taa dzrp, — [G(y)eﬁxag;n/
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—2 (1 - 2) G(y)x%—%m/] : (5.50)

where 0f,0/0x = —2x f,0 has been used. Provided that T, = T, = T and by
means of Eq. (5.3) the last formula yields

3V, r 0 2 0

sb _ ¥V a8 (3/2) (2 —z (3/2) (.2

D&, o dex L,/ (x )(%v {G(y):pe ame, (x )} , (5.51)
0

from which, by using Eq. (5.25), one obtains,

D 3V e o (—1)’“(m—|—3/2)

4\/ hmhm’Tab =0 k! m—k
X /dxx%“% {G(y)xe_IQ%ij{z)(ﬁ)} . (5.52)

Here, Eq. (5.52) is readily evaluated applying again Eq. (5.25) as well as
Eq. (5.32) along with an integration by parts. Thus, the individual species
version of the matrix elements pertaining to the energy scattering part of
Cab[fa1, fro] is given as follows

D () = VT3 ST SR 2k )2k / dze™ 22FH) G(y)
0

k=0 k'=0
_ Taa ab
Tab
with /
DI (var) = DD S P (), (5.54)

and where the ratio of collision times has been defined in Eq. (5.37). The

(kK"

quantity P, "’ reads

2 (2k + 1) (k + k)]
A+ 72

F(Lk+F+1:3; 755) — F(Lk+; 3

k.k'
PE* () =

3225)] . (5.55)

(14+9?)

Note that the the matrix elements D“0 = 0 following immediately from
Eq. (5.51). Represented in terms of a single sum Eq. (5.54) can be rewritten
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as
. m+m/’
D2 () = D Y9, 3 (), (5.56)
7=0
where
,_225“” Mk + 1) — k), (5.57)

with Sr(f;:,/) introduced in Eq. (5.28) as well as

) J!
Po(7) = V(1 +~2)7 {(1 +72)

2 i 2
F(Lj+1 5 755) = F(Lji 55 v5) | - (5.58)
Similar to the pitch-angle scattering case the full version of the matrix elements
is given through the sum of all contributions from collisions with particles of
species b, that is

DSy =Dt +> D . (5.59)
b#a

Due to the fact that D% , is of O(z) (for details see again Chapter 5.5), where
z tends to zero for the case when immobile background ions are assumed, it is
feasible to neglect the contributions from background particles. Thus, because
of D > D¢ one obtains from Eq. (5.59) for the electron version of the
matrix elements,

Dt~ D= .. (5.60)

5.3 Integral part of the collision operator

In this section the evaluation of collision matrix elements of the field particle
part of the Coulomb operator (see, e.g., Reference 22 or Appendix B.4.2) is
shown. This operator is responsible for momentum conservation and can be
expressed as

Coplfor] = Cab[faos for]
My 2 20 0 4p? 92
= L% f., |:_fb1 + 5Pt (1 — —) e wbl}
mp Uta

my ) vi Ov  wvi Ov?

3n.e™™ [m { 2 2y (1 B ma) dpp1  4y* 0%

— —— 5.61
Tab T my, fb1+?]2 Q0b1+ ay U;la ayg :| 7( )

ta
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with fi; being the unknown field particle distribution function approximated
by the expansion

vy = o) Y B (N e ()

M:

/

0

3

= be() f (A ), (5.62)

M:

3
L \

and where the test functions ¢, have been defined in Eq. (5.3). Here,
fo(y) = nye ¥ /(73%03) is the background Maxwellian and y = v /vy, is
the normalized speed. The functionals ¢, and 11, respectively, denote the
Trubnikov potentials (see Appendix C).

5.3.1 (-basis

The matrix elements of the field particle operator in terms of ¢,,-basis are
obtained from Eq. (5.61) acting on Eq. (5.62) followed by a multiplication
on the left by ¢,,(x) along with an integration over 1/(nqvz,) f;° dvv®. This
leads to

it M
3 z o,(k)
DI WATNEIE
— [, 3 30k [hariiV
0

m/'=0 b

ok f: S KD [ f,‘;’,(’“)} , (5.63)
m/'=0 b

with K%  representing an integral operator formally defined by
K:?rl;m’ = VtaTaa (Spm }U lc | Pm’ ) . (564)

From Eq. (5.61) it follows that the unknown distribution function f;;, or more
precisely the corresponding angular part f:;’,(k), appears under an integral (via
the Trubnikov potentials, 5 and 1, respectively). Since these functionals
are only known in terms of the so-called Burnett functions (see Chapter A
and also Appendix C) it is convenient first to evaluate the desired matrix
elements using these basis functions followed by a transformation to the
wm-test functions.
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In Chapter A the representatlon of an arbitrary function in terms of Bur-
nett functions, BY (/\ z) = Pg()\) ( ), has been derived. Applying the
corresponding results to ¢, and f,,,» one obtains

(0)
(@) =230 2 o 2, (5.65)

n n

and
fAb,m’()‘a y) = fU (k)(A)SOm (y)

B 4 )\7 o
- Z %<fm7/(k) ’PZ>)\’<()0m’ |p££)>v’7 (566>

4n! n’

respectively. The radial scalar product between the test function ¢,, and the
function p in Eqgs. (5.65) as well as (5.66) corresponds to a transformation
matrix which will be abbreviated by

o =) = (pn|pl), (5.67)

where the quantity p{ (z) = 2/LYT? (22). After substitution of Egs. (5.65)
and (5.66) into the relation for the integral operator K , it follows that

o0

(0)
ab ok)] _ Taa 3 By’ (7) (0)
,C |:f :| - navta/dvv 22 h%o) qun
0

n

BY(\Y) .0
<%, [fbo<y> > %m IONCN
gn/ /

/

Taa Tab 2¢mn 3 n(0)
dvv’B

xCE, [fbo@)Bffi o y)] ¢7ﬁ’m/<f;zf’“>\a>»

= @ }@zsm/ |:f:r;/(k)i| 3 (568)
Tab
with
b o,(k) 200 S0 (O po(k)
Kot |17 = 32RO D oyt B Uit 1P (5.69)

4 n,n’ n
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and where the quantity

A Ta
L) = 20 I
Ta
= 2 [ty [l 0] 610
N Vtq

denotes the radial part of the matrix elements of the field particle operator
in terms of Burnett functions. From Eq. (5.69) one can infer that the matrix
elements in the ¢,,-basis are given through

N N’
(¢ Y4
'Yab Z Z O h mn mz ¢SL’)m/7 (571)
=0 n/= /

n

where hY) = D(n + €+ 3/2)/[273nl(¢ + 1/2)]. The values for N and N’
have to be chosen as large as possible in order to achieve accurate numerical

results for 7517)%, In Chapter 5.4 it will be shown that the sum over n can be
truncated at n = m which, of course, is a considerable numerical advantage
gained by the fact that M <« N (roughly speaking, the order of magnitude
of M and N is 10 and 10°, respectively).

Upon defining the quantity

(5.72)

mm'’

K2 (AN) =Y PN PN
£=0

the individual species version of the integral operator l@f,fm, can be represented

as an angular scalar product between K , and the unknown function f;’/(k),
that is,

Kt [170] = (B P )

1

_ / ANE (0 N) 7B (0, (5.73)

1
whereas the full version follows from
K = Kt + > K2 (5.74)
b#a

In Chapter 5.5.2 it will be shown in detail that the second part on the RHS
of Eq. (5.74) is at least of O(z'/?), where z tends to zero for infinitely heavy
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background ions. Consequently, for the electron version of the matrix elements
it is sufficient, due to K¢ , > K¢ . to include only the term accounting for
momentum conservation in electron electron collisions,

Ke,. ~Ke . (5.75)

Putting together the above results, that is to say Egs. (5.6), (5.8), (5.22),
(5.47) and (5.63), the drift kinetic equation, Eq. (5.1), is transformed to a
set of coupled two dimensional differential equations for the coefficients fﬁi(k)
yielding

o,(k) M
o kS Lt 1]
m’=0

D £55 4 Ko [£787] | = Wil 6.70)

from which one obtains the desired Eq. (3.26) after dividing Eq. (5.76) by
pitch-angle parameter |\|. As mentioned above, the resulting equation is to
be solved numerically in the code NEO-2 [31,46].

5.3.2 Burnett basis

The next quantity to be calculated is fffg, (7) [cf. Eq. (5.70)] representing the
radial part of the matrix elements of the integral part of the collision operator
in the Burnett function basis. The field particle operator can be written as

3nae_“”2 Mg 2
cL [fbopff/)] = — [—fbopg/) T 5 Pb1y
TabMp | M Vta
2y me 8§0b1 y 4y2 82%1 Y
—([1—-— = =1, (.77
(1) e - e
where n
¢ b g2 +1/2
bep'Ez’) - 3/29)3 e’ yéL;,+ / )(y2)7 (578)
th
and the radial part of the Trubnikov potentials is given as
y .
Pbly = _27T3/2Utb (107(1/) (y) (579)
NpUth ~ (¢
Yoy = — 77500 (). (5.80)

 A3/2
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The evaluation of these functionals will be shown explicitly in Appendices C.1
and C.2. The corresponding results for @ﬁf’) and wr(ﬁ) are

~(0) (€ + 1/2792)

QOO = 2ye+1 (581)
1

@fﬁ) = Fe_yZ‘nyﬁﬁtll/Q)(y2), for n'>1 (5.82)
n

e L7 e N

H0 = Ly 553)

- 1

lﬂfﬁ) = —ngq(f,)_l, for n' >1. (5.84)

n

By means of Eq. (5.82), Eq. (5.78) may be expressed in terms of the function
5. 1t follows that
@,/ It follows tha

T A
fupy) = =2 + D), for w20, (5.85)
tb

The first derivative of gbff,) as well as the second derivative of 1%5), respectively,
with respect to normalized speed become (see again Appendices C.1 and C.2)

o A(Zl)
—gg — 2+ 1)gY,, — 20 + 0+ 1)) (5.86)
92" (L+1)(C+2) 0=1)
2% (0 (1) o A (0)
i e M e B MNCED)
82@(@
: 8;2_1 = 4n'(n' + 1)@, —2n'(4n’ + 20+ 1)g)
2 + 020 +0—1)Y . (5.88)

Summing up the above results Eq. (5.77) can be expressed in terms of the

function gbiﬁ). For n’ > 2 one obtains

CI [ (Z/):| _ .
ab fbopn 7T3/27_abvfbfy m/ Pr—1

3na67x2 {(an n £) (2%’ + 0 — 1) ~(0)
4

- [(27/ +04+1) (1 - %) + (20 +0)(1+ 72)] ol

1o\ .
+2(n' 4+ 1)(1 +~?) (1 — Tb) gpg)ﬂ}. (5.89)
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Assuming equal species temperatures, T, = T, = T, it follows from the last
equation that

3n.e™™ (20 4 0)
s A

et )| =

¢ (2n' + {— 1) ~(f
{(1 +7 )90() T@Eu)q :

(5.90)

The matrix elements of the field particle part of the collision operator in the
Burnett basis are calculated from

o¢]
T

i/dwfipﬁ?)(:c)cz [fb (y)pg/)(y)]

UZA%T

1%,(v)

3(2n' +¢) r
= ﬂ3/2 /dyy LU (2 [yP)e v
0
R 2n' +0—1
e ]

_ 3(2n' 4+ 0) {(1 LU, 2n'+0-1)

7T3/2’75 nn omn!

Uﬁfg,l} . (5.91)

for n’ > 2. Here, p\ (z )= L(l/Q)( ), y = vz and Eq. (5.90) has been applied
and the auxiliary quantity

Ui () = / dyyP LD (12 )42)e 17 0 () (5.92)
0

has been introduced. After substituting into this equation the definition of
the associated Laguerre polynomials [29]

N (—DF (n+1/2
P =3 * 5.93
R %k!y% n—k )Y (5.93)
as well as 1
5 2 g (0412
it follows that Eq. (5.92) may be rewritten in the form
1~ (=D n+1)2
@ =— (0
U = 2 2 el 2k ( o )V (B), (5.95)

k=0
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with

V(ﬂ) L 7 = /dye y2(14+v~2) €+2k+3L(Z+1/2)<y ) (596)
0

The solution of this integral can be obtained with the help of Reference 29
where one finds

o0

a2 N FB+1Ma+n+1)
/dt £26+1 7 (t2) 2T (n + 1)I(a + 1)sP+1

F(—n,f+1a+1;1), (5.97)
0

valid for Re > —1 and Re s > 0, and where F'(a,b;c; z) again denotes the
Gauss hypergeometric function. Thus, Eq. (5.96) has the result

D(0/2+ k+2)T(n+(+1/2)y 2
QF(U)F(K + 3/2)(1 + 72)2/2+k+2
XF(L=m 54kt 20+ 5 7). (5.98)

which can be utilized in Eq. (5.95) yielding

n 4r(77+1) 0 +3/2)( 1+7 )i £ k:' n—k
T(6/2 + & +2)
(T +72)*

F(1- ,§+k:+2€+2,1+i) (5.99)

In case that ¢ = 0 one can find a simpler relation instead of cumbersome
Eq. (5.99), that is to say

4 —5/2
v — T, R A
R DR
n+1/2

which has been computed by means of MAPLE [48].

Recalling Eq. (5.91) and taking into account Eq. (5.99) one finally arrives at
the following expression for the matrix elements of the field particle operator
in terms of Burnett functions,

3 20 +0T(n +£+1/2) 'yﬁ;l

70
) = SR T - DT+ 8/2) (L1 +2) 7
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y i (=¥ (n+1/2) /2 +k+ 2)P$)(k’ o) (5.100)

ok \n—k) (1T+92)F
hOBY  6r®2(2n + On! 75!

2 (20 420+ )T (04 1/2) (1 +72,)2H!
" (=1)F O]
(SN D2 kD) Py (k)

5.102
Lk (n—R)T(k+3/2) (1+42)% 102
valid for n’ > 0, and where
(2n' + 5 — 1) :
B F(o— 9: 1
CEE T ( 5+ E+204 3 155). (5.103)

The proof that Eq. (5.101) essentially includes n’ = 0 and n’ = 1 is not
difficult but somewhat tedious [by using Egs.(5.81)-(5.88), applying some
properties of hypergeometric functions and again by means of MAPLE] and
has been omitted here. Here it has to be mentioned that Iflo) = 0, following

directly from Eq. (5.101).

It turns out that for the case when the parameter ¢ is equal to one one

can derive a much simpler expression for the matrix elements than that in
Eq. (5.101). In virtue of Eq. (5.91) it follows that

3(2n' +1)
L) = = [+ U000 = U ()] (5.104)
where

_ 02 /A2 A
v = / dyyP LY (42 227 60 )
0

_ —/dye y?(1+v72) 4L1/2( 2/7 )L;?’/)(y)

oo

1 -
= ) dte IR LY (/) LED (1), (5.105)

By using the following recurrence relation for the associated Laguerre polyno-
mials [29] with respect to ¢

L2 (@) = LY @) = LD (@), (5.106)
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as well as the integral

o0

/ dte e L (/) L) (1)
0

_ I(M+N+a+1) A2(N+a+1) 1
— MIN! (1 + »2)M+NFat1’ (5.107)

valid for Re @ > —1 and Re (1 4+ v ?) > 0 (which has been found in
Reference 29) it follows from Eq. (5.105) that

Lln+n+3/2) ™"

(1)
Unn (v) = Anln! (1 4 ~2)ntn+3/2
nl'(n+n+1/2) 23 5 108
a 4nlny! (1 4 2)ntn+1/2” (5.108)

Upon substituting this result into Eq. (5.104) and after rearranging terms
one finds

7O 3@+ 1) I(n+n' —1/2) 22
nn’(V) - 1673/2 nin/! (1 +,Y2>n+n'+1/2
x [v(4nn' +2n + 20" — 1) = 2n(2n —1)] . (5.109)

This special case can be used as a first check for the numerical routine that
computes Eq. (5.101).

5.4 Transformation matrix

The radial scalar product of the test functions ¢,, and the radial part of the
Burnett functions pg ) defines the transformation matrix between these two
sets of orthonormal functions (see Appendix A.2),

B = i = (D)o (5.110)
Upon employing Eq. (A.22) it follows that

o0

1 npe V" 3/t 3/2) (. 2\ L7 (L+1/2) . 2
o), = — [ dov* = ——=LE ")y LY (y
[ g T )
1 .
_ dye*y y€+2L(3/2)(yQ)L(Hl/Q)(yQ)

3/4 /hm/ m n

i 0

T,

= e (5.111)
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where the integral in this equation has been given the abbreviated notation

.2
10 = [aye LY L

0

_ %/dte—tt(Hl)/?L?(??;/?)(t)LffHﬂ)(t). (5.112)
0

With the help of the orthogonality relation for the associated Laguerre
polynomials

oo

T(n+ A+ 1
/ dtettALgy(t)LA)(t):%anm, for ReA>—1, (5.113)
J .

and by using the following property with respect to finite summation [29],
Lo => "Ly, (5.114)
k=0

it is straightforward to calculate the transformation matrix for ¢ is equal to
zero. One has

o

TO) = / dte 2L (1) L) (1)

1
2

/ dte 2L (£) L/ (1)

I
= -
DO | —

k=0 )
" T'(n+3/2)
= ) —— T Onk, (5.115)
k=0
from which one can infer that
T 3/2
TO — 2n! (5.116)
0 for n > m.

An important detail concerning the numerical implementation of computation
of the matrix elements Iffzn, is the fact that the transformation matrix T},?T)L is
equal to zero for n bigger than m. In that case, the sum over n in Eq. (5.71)
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can be truncated at n = m, where the parameter m takes at most the value
M which, in turn, is several orders of magnitude smaller than N. Thus, the
computing time necessary for calculating the matrix elements is considerably
reduced.

The evaluation of Eq. (5.112) for arbitrary ¢ can be performed by means of
the relation (see Reference 29)

[e.o]

by Frn+p—v+1)
dte 7 LLW (1) = f . (511
/ e V() WT— 5D or Rey>0. (5.117)

0
By applying the definition [see Eq. (5.25)] of the associated Laguerre polyno-
mials as well as Eq. (5.117) one obtains two solutions for T 9 depending on
which of the Laguerre polynomial is being replaced by Eq. (5.25), that is

[e.e]

1
¢, = 2 / et 1D L/ () L2 ()

[
M: -

2k!
0 0

" (=1)F (n4-L+1/2\ D(k+£/2+3/2)0 (m+1—£/2—Fk)
k! ( —k ) 2mIT(1—£/2—k)

—1)* (MM/Q) / dte™"tFDATR L) )

k

, (5.118)
k=0
and

1 (o)
=g / dte D2 312) (1) L1/ ()

k=0

IS

k!
k=0

o (D fm+3/2 i b, (0+1) /24K T (041/2)
=) i G dte ™'t LUEF2)(¢)
0

(5.119)

1) (m—|—3/2) D(k+0/2+3/2)0(n+-£/2—k)

m—k 2n!T(¢/2—k) ’

respectively, from which one obtains the transformation matrix ¢£ﬁ)n upon
dividing the last two equations by the factor 73/4\/h,,,. Carrying out the sum
appearing in Eqs. (5.118) and (5.119) with MAPLE [48] yields the results

oo _ D/2+3/290(m+1-¢/2)
mn 2m!IT(1 — (/2)

n+0+1/2
X( n / >3F2( ,2,6—53,64—2,5—771 ].) (5120)




5.4. TRANSFORMATION MATRIX 29

and
o /24 3/2)I'(n+£/2)
mn 2nlT'(¢/2)
3/2
x(m—:n/ )3F2(—ma1_éa%ngl_”_gﬂ)v (5.121)

where 3F5 indicates a generalized hypergeometric function [29]. These equa-
tions are unrestricted valid for odd values of ¢, whereas for even ¢ > 0 the
elements of the transformation matrix are zero if m > n +¢/2 — 1. Here, it
has to be noted that in Eq. (5.120) the generalized hypergeometric function
3F5(ay, asz, asz; b1, be; 1) does not exist when an appropriate negative integer
[like in Eq. (5.121)] is missing in the first list of parameters to compensate
the negative integers (or zero) occurring in the second list for the case when
¢/2 —m < 0. This case is covered by the equation

"N (=1)F (nl4+1/2\ T(k+£/2+3/2)0 (m+1—(/2—k)
Tg‘_kﬂg;WQ k! < n—k ) 2mIT(1—4/2—k)
(=1)¥* 0 (m +5/2)T(n + £ + 3/2)

2r(m+2—¢/2)L(n —m+£/2)'(m + (/2 +5/2)

x sFy(m~+1,m+2,m+1-n—%m+2—£ m+£+5:1), (5.122)
which has again been computed using MAPLE. Because of the fact that
there exist various recurrence identities (see, e.g., Reference 49), for the
generalized hypergeometric functions 3Fy(ay, as, as; by, be; 1) one might easily
derive corresponding recurrence relations for the matrix elements presented
in Egs. (5.120)-(5.122), respectively (cf. Chapter 5.6).

In the following several elementary cases of the matrix T, are given, namely,

1 o
T® = 3 / dte 32 LB/ (1) LB (1)
0
n 1 o0
= 5 / dte 32 L3 (1) L2 (1)
k=0 0
“~T(m+5/2
_ _£_§;Jlllamk, (5.123)

e
Il
o
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which yields

0 for m >n
T® — 5.124
Lm +5/2) form <n ( )
2m! -
as well as
W _ CD™ Sy (nF9/2) (B + D(k +7/2)
ran 2m! Z< 1) < n—k Tk+2—m) (5.125)

k=0

producing for m < n + 1 the result [4§]

ww _ D7 i (_1>k(n—|—9/2> (k+DI(k+7/2)

mn 2m! A= n—k ['(k+2—m)
1) — r
_ Bn+1) = TmI'(m + 5/2)’ (5.126)
4m)

whereas Tih = 0 for m > n + 1. In deriving Eq. (5.125) the relation’

(=k), = (=D)"KY/(k —n)!, k,n € N with (z), being the Pochhammer
symbol [47] has been used. It is worth noting that Eqgs. (5.120) and (5.121) are
especially simple if one of the parameters a; in the generalized hypergeometric
function 3 F5 is equal to zero since then, for example, 3F5(0, as, ag; by, by; 1) = 1.

5.5 Asymptotic expansions

The goal of this section is to study the asymptotic behavior of the matrix
elements derived in the preceding sections for a small mass-ratio approx-
imation. That is to say, the case when the mass ratio of test and field
particles m,/my, < 1 will be considered which corresponds to electron-ion or
ion-impurity collisions, respectively (the opposite limit, i.e. m,/m, > 1, is
not examined but could be easily obtained by applying the same method to
be described below).

The quantity v, = vsa /vy representing the ratio of the thermal speeds reduces
to Yoo = \/Mup/m, for equal species temperatures from which, in turn, it
follows that 74, tends to infinity if m,/m, < 1.

All formulas listed below concerning the hypergeometric functions have been
taken from Reference 47 where one can find further details and useful proper-
ties of these functions (see also Reference 49).

thttp://functions.wolfram.com/06.10.27.0004.01 [49)



5.5. ASYMPTOTIC EXPANSIONS 61

The Gauss hypergeometric function is defined for |z| < 1 by the series
— (@) () 2"

F(a,b;c;2) = F(b,a;¢;2) = TLZ:O OR ol (5.127)
where (z),, denotes Pochhammer’s symbol,
(2)y = 1 (5.128)
r
(2)n = z(z+1)(z+2)---(z+n—1)zm. (5.129)
I'(z)
For z — 0 the hypergeometric function can be expressed as
ab ala+1)b(b+1) , 3
F(a,b;c;2) =1+ — : 1

(a,b;c; 2) + . z+ 2e(e+ 1) + O(2) (5.130)

In Sections 5.2.1, 5.2.2 and 5.3.2 it has been shown that the matrix elements
are proportional to hypergeometric functions of the form F(a, b; c; %) Since
v?/(1 4+ ~%) — 1 for v — oo such functions are not appropriate to analyze
the asymptotic behavior of the matrix elements [cf. Eq. (5.130)]. First of
all, one has to apply the following linear transformation formula relating the
hypergeometric functions F'(a,b;c; z) and F(a,b;c; 1 — 2), respectively.
F(a,b;c;z) = ?EZ)_FSF((Z_ZZZ;F(OL, b;a+b—c+1;1—2)
I(e)I(a+b—c)
I'(a)T'(b)

XF(c—a,c—b;c—a—b+1;1—2), (5.131)

for |arg (1 —2)| < m. Each term of Eq. (5.131) has a pole when ¢ = a+b+m,
with m = 0,1,2,.... For m = 0 this case is covered by the relation

L(a+b) 5~ (@)a(b)n
F(a)F(b)Z (n!)?

— (b+n) —In(1 - z)] (1—2)", (5.132)

+ (1 . Z)c—a—b

F(a,b;a+b;z) =

[Q@D(n +1)—¢(a+mn)

n=0

provided that |arg (1—2)| < m and |1—z| < 1, whereas for m = 1,2, 3, ... one
has

L(m)T (a+b+m) ’”Zl (@n®_ 1 _ o

F(a,b;a+b+m; 2) L(a+m)T(b+m) &= nl(1-m),

n—

['(a+b+m) m = (a+m)p(b+m), "
Tt U A= [m-2)

— Y(n+1) —p(n+m+1) + Y(a+n+m) + w(b+n+m)], (5.133)
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as well as

~(a—m)n(b—m),

nl(1—m),

I'(m)['(a+b—m)
['(a)T'(b)

F(a,b;a+b—m;z) =

(=)™ (a+b—m) o= (@)n(b)n "
~ T(a—m)T(b—m) nzzon!(nqu)!(l_z) [ln(l—z)

= b(n+1) = B(ntm+1) + Ylatn) + $(b+n)) (5.134)

if larg (1—2)] < m and |1 —2| < 1. Here, 9¥(z) is the psi (or digamma)
function [47] defined as

P(z) = % InT'(2), (5.135)

with
1) = — (5.136)
¥(1/2) = —y—2In2, (5.137)

where v designates Euler’s constant, and which obeys the recurrence formula
1
v(z+1)=vY(z)+ o (5.138)

5.5.1 Differential part

In Sections (5.2.1) and (5.2.2) the matrix elements with respect to the test
particle operator have been derived in the form

m+m’
et (Ya) = Z D09 () (5.139)
N m+m’
Det(var) = Y VI pE) (), (5.140)
j=0
where
i1
pl/ (7) - ’)/(1 +72)] [F(l ,] + ].; 2; 1+’Y ) F(l)]’ 27 1+'Y2):| (5141)
. ~ F(1,j+1; % 225)
() J! I 142 .3 A2
= . —F(1,j;5, )| . (5.142
Pp (’7) 7(1_’_72)] (]-+/7 ) ( I 27 14~ ) ( )
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Upon introducing the expansion parameter z

1 (1—2)1/2

=T 2 Yoo = 15— (5.143)

and in accordance with Eq. (5.131) the hypergeometric functions appearing
in Egs. (5.141) and (5.142) can be transformed to

F(lLb;b+3:2)  T(3/2)0(b—1/2) 227

F(1,b;3,1—2) = 5.144
N T fe - M
where the elementary case
F(a,b;b;2) =(1—2)" (5.145)
has been utilized [47].
By means of
. J 2
F(l,j;j+%2) =14+ ———2+ 0(z?), 5.146
(1,557 + 3:2) Gi19)° (2%) (5.146)
which has been obtained from Eq. (5.130), and after using
1 ~i+1/2
—_— = 5.147
ST T R o140

as well as Eq. (5.144) it follows that the function p(yj ) may be rewritten in
terms of expansion parameter z as

G o) # [P+ L5+ 35:2)
pl/ (Z) = Jz (1—2)1/2

1-2(+1)
_F(Lf;j;_ji;'z)]}_{_\/TEF(j_l/Q)(j _(11/_22_)‘7Z> (5.149)

Here, Eq. (5.149) may be expanded with the help of MAPLE yielding the
result

(j)(z) = VT

2I'(y + 1 .
VI +1/2) - gD

(1+27)(1 = 27)

— 4P(j —1/2)z — O(z7+3/?), (5.150)
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from which one obtains the pitch-angle scattering matrix elements as

Vo' = Vi — g

~ab a0 16 F(m—|—5/2)F(m’+5/2
mlm’!

)] 1/221/2 + O(2), (5.151)

keeping only the first two expansion terms. The leading order term, 22>, is

related to the case when infinitely heavy background ions are assumed and
can be expressed as

cas AT [mIT(m' +5/2) 1/2
o = D0+ 5/2) [B(m+1) —m'], (5.152)
valid for m > m’ — 1 (note that 02>, = pos° ).

For the energy scattering part one arrives at the expression

) A [Pt L 52
MR 1—2(j +1)

pP(z) = j

_F(Lf?_j ;Ljﬁ;z)} } _ glﬂ(j _ 1/2)(1 i m (5.153)

resulting, again by using MAPLE, in the expansion formula

P () ~ —\/T%F(j —1/2)z + O(z7+1/?), (5.154)

The corresponding matrix elements become

3T m!m’| 1/2

lA)abl_ ! 3/2 5.1
' = o | Tmas/ 2T ts)) it OET) (5:159)

provided that m’ > 0 (recalling that ﬁ;jfo is identically zero), with the

coefficients
8 m'T'(m'+7/2)
L e f I< 1
105 "y orm < m+

Cmm! =
1 / / —
Dm+5/2) [mi(m'+1) _ 2mm’  m(m=D| oy

m! 3 5 7
(5.156)
Therefore, it will be justified neglecting the contributions from background
particles to ﬁ%’ , assuming m,/my;, < 1 (for example, the electron-proton

m

mass ratio is approximately 1/1836).
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5.5.2 Integral part

According to Eq. (5.101) the matrix elements of the field particle operator in
the Burnett function basis are given as

3 2 +0T( +0+1/2) A41
47r3/2 F(n'+1) (C+3/2) (14732241

n+1/2\T((/2+k+2)
X Z Lk ( n — ) (1 + ,ygb)k Png’)(h’}/ab)a (5157)

19, (ap)

valid for n’ > 0, and where

P(E,)(k,’y) — F(l—n s+ k+2; €+271+27)
(2n’—|—€—1)

— F(2— k+2;0+32; 25, (5.158
v+ 20—+ 5k 20+ ). (5.158)
The quantity to be expanded in z is
e
ab PO (k, ya) = 25732(1 — 2)2 2P (k, 2), (5.159)

(1 + A2, )21k

where the function P (k; z) implies the transformed hypergeometric series

[cf. Eq. (5.131)]

Le+3/2)r(/2—-1/2—k—a)
Fl+3/2—a)l'(¢/2—-1/2—k)
X F(a,%—i—k—l—Q;a—i—k—f_T?’;z)

ttjanaD(C+3/2)T(a+ k +1/2 - €/2)
T(@)(/2+k +2)

X F(l+3—a, 5 — k5 —k—a;2),  (5.160)

Fla, s +k+2;0+3;1—2)

+ z

fora=1—n' and a = 2 — n/, respectively.

The poles appearing in Eq. (5.160) for n" = 0 and n’ = 1, assuming odd values
for ¢, are calculated from Eqs. (5.132)-(5.134). One arrives at the following
logarithmic cases retaining only low order terms with regard to expansion
parameter z.

F(L,b;0+1;1—2) = b(1) —(b) — Inz]
+ 0 [(2) — (b+1) —Inz] 2z + O(2?), (5.161)
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F(2,b;04+2;1—2) = b(b+1)[¢(1) =1 —(b) — Inz]
+ 02(b+1) [240(2) — 1 — 2p(b+1) — 2In2] 2z + O(2?),  (5.162)

(b+m) = (b)n
F(1.b:b+1 c1— = n
(1,b;b4+14+m;1—=2) - E T, 2

3

(&

+ (b+m) [Inz — (2) + p(b+m+1)] 2 + O(z )}, (5.163)

F2,b;b+2+m;1—2) =

(b+m b+m+ mz:l D)),
n=0 ( mn
— (_1)mr(b+2+m)zm{lnz—@/}(l) + (b+m)

L'(b)m!
1 (m+2)(b+m)
+(m—|—1) (m+1) [lnz—w(Z)
1 2
+Yb+m+1)+ (m+2>]z+0(2 )}, (5.164)
F(1,b;0+1-m;1—2) = L(m)I( b+1 m) § 1 )n Ln—m
_ %{lnz—@b(m—kl)—k@ﬂb)
T D) Inz —4p(m+2) +1/J(b+1)]z+(’)(z2)}, (5.165)

and

3

3 (2=m),(b—m)
(I1—m),n!

I'(m)['(b+2—m)
'(b)

n _n—m

F(2,0;04+2—m;1—2) =

Il
o

n

- (_1)m§l22—1n731()’;l—!m+1) { Inz — ih(m+1) + p(b) + 1

[2Inz — 2¢(m+2) + 2¢(b+1)+1] 2 + 0(22)}. (5.166)

b
(m+1)



5.5. ASYMPTOTIC EXPANSIONS 67

Keeping only leading order terms, it follows from Eqs. (5.163)-(5.166) that,

2 _
(b+m) O(z°lnz) form=1

2F(1,0;b+14m;1—2) = z+ (5.167)
m O(2?) for m > 2,
2F(2,b;b+24+m;1—2)
O(z*Inz) form=1
b b 1
_ (bm)( “17” ). 4 (5.168)
m(m-+1) O(2?) for m > 2,

2F(1,0;b+1—m;1 — 2)

0 form=1
I'(m)I’ 1-—

r() O(z*™™)  for m > 2,

as well as
2F(2,b;6+2—m;1 — z)
O(zlnz) form=1
T(m)L(b+2 — m)

= ) 2T 0 form =2 (5.170)

O(z*"™)  for m > 3.

An elaborated derivation of the expansion of the matrix elements is not
given here as it is straightforward though rather tedious. Hence, simply the
results are listed below which have essentially been obtained by means of
MAPLE [48].

n <1, even/

Recalling Eq. (5.157) one immediately obtains for n’ = 0 and ¢ = 0 the result

Iz =o0. (5.171)

I\{)(2) = (5.172)
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n' =0, 0>4:

02 = 3 er(€/2+2)<n+1/2>23/2+{ O(z%)  for £ =4 1

2wz (0-3) n O(*?) for £>6
n=1,0=0
“gniet O(=*?) for n =0
0 () = (5.174)
n=1,10>2:

O(z*) for =2
100 = 25219 4 9) (”*Tll/ 2) En { (5.175)

nl 3/2
am O(2°?) for £ >4

n <1, odd/
n' =0, ¢=3:
90 = 135 (n+1/2 24n 52
n0
27\ n J|5@2n+1) 15

—p(n+1/2) —y—1In z} B2 L0 nz)  (5.176)

n=0,0>5
~(0) B 3 [(n+1/2\I'(¢/2+2) 3/2
l(z) = 27T3/2< n (¢—3) :
O(z*?1nz) forl =5
+ (5.177)
O(2°?) for £ > 7
n=1,¢2>3
0y nA1/2Y s
Li(z) = T ((+2)(¢/2 + 2)( e /
O(z?Inz) for £ =3
+ (5.178)
O(z*?)  for £ > 5.
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n>2, /(>0

For the case when the parameter n’ > 2 the hypergeometric functions
reduce to a polynomial of degree n’ in the argument z. Thus, by using
Egs. (5.157), (5.160) and (5.130) the behavior of the matrix elements for small
values of z is characterized by the expression

o 3 (n+1/2\ T(¢/2+2)
L(z) = W( n )m
o GUAOVE2H=312) 52 52) (5179

n'l

n>0,/=1

If the parameter ¢ is equal to one the expansion of the corresponding matrix
elements may be obtained by means of Eq. (5.109). It follows that

IA?SB’(’Z) T (2n" + 1)(4nn’ + 2n +2n' — 1)
F ! - 1 2 ’ 7
v (n +7;L - / )Zn +1/2 O(2" +3/2)‘ (5.180)
nln/l

Consequently, from the above analysis of asymptotic behavior of the field
particle collision matrix elements, it is justified neglecting the contributions
from background ions to ffﬁz,, and I;Sflnh respectively, as well provided that
me/my < 1 is assumed.

5.6 Recurrence relations

The matrix elements derived in preceding sections have been mainly pre-
sented as sum of functions involving Gauss’ hypergeometric series [see, e.g.,
Egs. (5.38), (5.56), (5.71), and (5.101)]. These relations are not in a form
well suitable for numerical evaluation. Thus, it would be highly desirable to
have recurrence relations which makes them easy to calculate and, first of
all, allow for much faster numerical evaluation of the matrix elements than
a direct computation of the analytical equations. In the following sections
corresponding recurrence relations for the collision matrix elements as well
as the transformation matrix are derived based on standard properties of
associated Laguerre polynomials and recurrence identities of hypergeometric
functions, respectively, which can be found in References 29, 47, and 49.
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5.6.1 Source term elements a%)
The source term matrix elements (see Chapter 5.1)

a%) — (Spm’x21717553i), i=1,2,3 (5.181)
are defined recursively by the recurrence relation

MO :[m—i+(1+553i)/2]ai) 5 189
T+ D(m+5/2) " ( )

and the initial values

2 /2 2 1 /3
al?) = _\/;’ af) = ;\/5, ay) = S\ o (5.183)

5.6.2 Pitch-angel scattering part

Recalling Eq. (5.24), where the matrix elements 2% , have been defined by
the integral

3 o0
Vs = T %/dye(y%z)f/ﬁgm(yy’ya

< LEP (2 /) [0y) — Gly)],  (5.184)

it immediately follows that

pab = (5.185)

mm/ m/m*

Multiplying Eq. (5.184) (for m — m + 1) by m + 1 and with the help of
various properties of associated Laguerre polynomials [29],

(m+ 1LY @) = (2m+5/2—2) L3/ ()
— (m+3/2L8 @) (5.186)
eLy/P (@) = @m +5/2)L5" (@) — (m' + DL/ (x)

— (m' +3/2)L/? (2), (5.187)
one arrives at the recurrence relation
VI D452 =
—vm(m+3/2)0p_1ny
+2(m — m") Dy + /0 (M + 3/2) Dy 1

/() + 1) (M 45/2) D 41, (5.188)
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where
~ I(m+5/2)
hy, = T (5.189)
(m+5/2)
h = —h,, .190

with the initial value hq = 31/7/8, has been used. Here, Eq. (5.188) yields,
with m = 0,

\/gﬁlm’ = vV m/(Qm, + 3)ﬁ0m/_1 - Qﬁm,ﬁom/
+/ (m! +1)(2m/ + 5) Do 41, (5.191)

valid for m’ > 1, whereas the recurrence relation for 7y, remains to be
calculated. Having started from Eq. (5.184) with m = 0, that is,

3VA [ s
Doy = ——Ye [ dye= W/ LB/ (42 /42 ~G 5.192
e = o= [ AL o) ~ G (5192

0

one may define the auxiliary quantities

Py = / dye @I LGP (12 /4 (y) (5.193)
0

G = / dye~@ILEPD (12 142G (y), (5.194)
0

in which the error and the Chandrasekhar function, respectively, satisfy the
following equations,

2

/ dyply) = y¢<y>+§f_r (5.195)
/dyG(y) = —%. (5.196)

Integrating Eq. (5.193) by parts, remembering Eq. (5.195), gives

e~ IILED (42 42 <y¢<y> + )]

o0

Pm =

VT

0

[oe)
e~V

+ /dy [y¢(y)+ NG

0

2
e(yQ/'YQ)fy_ZLS//z) (y2/72)’ (5197)
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where in the second term on the RHS of last equation the following identi-
ties [29] of associated Laguerre polynomials have been utilized,

/ d
[Lﬁ)(ﬁ)} = L@ = -LeH) @) (5.198)

X
L@y = L) - L' () (5.199)
L) = (' +a+ DL (@) — (m' + 1)L, (2),  (5.200)

and the first term on the RHS of Eq. (5.197), using
@/ (M +

Ly, (0) = ( o ) (5.201)

adds up to
IO ) ( <y>+%>] (M) ey

Thus, Eq.(5.193) can be recast to the relation

1 /m' +3/2
2 + Dprss = —7< i R R
/dze A+ L0 (5), (5.203)

with z = y?/~4% and where again Eq. (5.200) has been used.
Similarly, one obtains for the function g,

g = | G |
—i i 2/7 L(5/2) 2/.2 5 904
7O/ o)L (2 /72), (5.204)
with
—e (y/72)L3/2( / ) () OOZL m' +3/2 (5205>
o VT m/ ' '

From the definition of the Chandrasekhar function G [see Eq. 5.21] the error
function can be expressed by

o(y) = 20°G(y) + %6‘y2, (5.206)
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which in turn may be substituted in Eq. (5.204) yielding, together with
Eq. (5.200), the result

1
2(m' + Dgmp1 = _ﬁ(

17 ) (5/2)

t— [ dze P LED (), (5.207)
™

\/_0

m' + 3/2

m/

Next, subtracting Eqs. (5.203) and (5.207), one easily sees that the terms
involving the binomial coefficients as well as the integrals with respect to z
cancel out yielding

(m' + ) (Pmr+1 = 1) = (M + 2) (P — &) — 8w (5.208)
from which, by means of Eqgs. (5.192)-(5.194), one can infer that
ST ma (! + Ditomtss =~y Ffor (1 + 2) ot — g (5.200)
3T 3T
This means that having found a recurrence relation for g, results in a

corresponding recurrence relation for g, .
The integral appearing in Eq. (5.207) may be evaluated applying [29]

r _ F'+DM(n+a+1)

sz B 1 (a) _ . . L1
/dze 2Ly (2) = AT (ot D)1 F(—n,B+1;a+1;1), (5.210)
0

valid for Re # > —1 and Re s > 0, which leads to
/dze‘z(1+72)L(5,/2)(z)
0

() r

(1+,y2) m/ 120 T2
m' +3/2 ~2
B ( m’ ) {1 N (1+72)F(_m,>1;%;ﬁ) , (5.211)

where in the last equation a Gauss’ relation for contiguous hypergeometric
functions [47],

(c—a)zF(a,b;c+1;2) = cF(a,b—1;¢,2) —e(l — 2)F(a,b;c; z), (5.212)
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has been employed [noting that F'(a,0;c;z) = 1]. Substituting Eq. (5.211)
into Eq. (5.207) gives rise to

2’ + Dgness = 2w’ + g

1 (m +3/2\ ~?
N ﬁ( m’ )mF( m', 155 7). (5.213)

After using another Gauss’ relation for F', namely
(c—a—b)F(a,b;c;z) = (c—a)F(a—1,b;c; z2)—b(1—2)F(a,b+1;¢; 2), (5.214)

one obtains from Eq. (5.213) the desired recurrence relation for the quantity
gm/,

(' + Dgmr = [m e (m)} .
- (11272) {(m’+2)gm/ 1+%(m/ ;,1/2)} - (5.215)

Finally, by using Eqs. (5.209) and (5.215), one finds the following recurrence
relation for the matrix elements 7y, satisfying

V1) (m +2) (m! +5/2) (/47 /2) D2 =

2
v 3 hm/ , m/ .
1 2)4 | —————— Vo —
1+ |Veem )\ hy OO gy e
2 142
— (m'+2) {m/ +3+ —(1?2 J Do + \/(m/+1)(m/ +5/2)
m’72 .
X [2(7”/ +3)+ m} Vom!+15 (5.216)
with the initial values
2 1 2
Doo(y) = NG {( —;Py ) arctan -y — 1] (5.217)

) O 2V2 [(3+297)
() = \/ﬁv[ v

2 Y . .
2 [m _ 6tm() + wmm)] . (5.219)

where the last equation has been found from Eq. (5.216) with m' = 0.

arctan -y — 3} (5.218)

Do2(7)
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5.6.3 Matrix elements 7>,

In Section 5.2.1 the matrix elements attached to pitch-angle scattering opera-
tor £ assuming infinitely heavy background ions have been found to be

oo VT [m!F(m’ +5/2)
v 5 |m'T(m +5/2)

mm’ 5

1/2
] B(m+1)—m/, m>m'—1, (5.220)
remembering that 22>, = 0% . Here, Eq. (5.220) gives

mm

P — g(zm +5), (5.221)

as well as the recurrence relation

1/2 o
ZA/aoo — ( m + 1 > [5(m + 2) m] ZA/aoo (5222)

m-+1m/ m+5/2 [B(m+1) —m/] mm’s
with )
a%o (m+2) pacs. (5.223)

Ym0 et D(m £ 5/2)

and initial value 7§5° = /7.

5.6.4 Energy scattering part

In accordance with Eq. (5.51) the matrix elements with respect to the energy
scattering part of the test particle operator Cg;” are evaluated by

b 3/
T A B oy
0

8 2.2 y2 /
I v/ (3/2)7, 2/ 2
*5r {G(y)e 2%y [Lm, (v%/~ )] } (5.224)

o

dyy LS (42 /%)

from which one can directly see [since L(()g/ 2 (y2/~2) = 1] that

N

D,.0 = 0. (5.225)

~

A recurrence relation for the matrix elements D,,,,, may be derived with the
help of the quantity d,,,, defined as

oo
2

/
d. = / dye L2 (2 G2 [LE2 23] (5.220)
Y
0
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which obeys the recurrence relation
(m+ Ddpmyrm = (M +3/2)dpmm—1 — (2m' — 2m — 1)d,
+ mldmm/+1 — (m + 3/2)dm71m/7 (5227)
where Egs. (5.198)-(5.200) have been used. By means of MAPLE [48] one

can show that d,,,,» can be expressed as a sum of matrix elements presented
in Eq. (5.224) as follows

3T - Vhi, .
N = —(2m +3) D
1y (2m + kz_o 2k+1)(2k+3) ¢

(5.228)

Substituting this relationship into Eq. (5.227) yields, together with Eqgs. (5.189)
and (5.190),

\/(m+1)(m+5/2)ﬁ /
(2m + 3) metm

1. " [hy 1

_Dmm’ 2 7

2 +(m+3){;\/hm(2kz+l)(2k+3)
5/2)

x{m W H5)2) by S+ 372) Do

(m' +1)
— (2m’ + %) [)km/] } (5.229)

from which one obtains, after some tedious but straightforward algebraic
manipulation (by carrying out Dipitmy — Dy and rearranging terms), a
recurrence relation for Dmm/ in the form

VG057 ot D = G+ 3D Do
! [ s = i 3720 Dy
[2<“1;m1¥4£;12;‘i”;; 22| D
oS (520

if m > 1 and m’ > 1, respectively. Here, Eq. (5.229) gives

o = Vb= (25
Dm/ = m’m’—i—32Dm/_— 2m/+— Dm/
N (' +3/2) Doy 3 ) Do
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(m’' +5/2) 4
+ o/ mDOm . (5.231)

By virtue of Eq. (5.224) and after an integration by parts one gets for m’ > 0,
by using properties of the associated Laguerre polynomials [cf. Eqgs. (5.198)
and (5.200)],

o0

4 N
%\/hohm’DOm’ = (2m' +3) / dye Gy LE (2 )7?)

0

—2m / dye = IGHL 0 7

= (2m +3)gm_1 — 2m g, (5.232)

where Eq. (5.194) has been employed. This result may be expressed in terms
of the matrix elements g, [see Eq. (5.209) as well as Egs. (5.189)-(5.190)]
yielding for m’ > 1,

Do = 2(m/ + 1)\/m/ (m! + 3/2)Dgmr—1 — 2m (2m + 7/2)i%
+2m/\/(m! 4+ 1) (m’ + 5/2) Do 11 (5.233)

5.6.5 Transformation matrix

In the following a recurrence relation for the quantity

/ dte D2 L B/2) () L2 (1) (5.234)

0

Tfﬁ% =

DO | —

as well as for the transformation matrix ¢, = Tl /(7%4y/ ) between the

two sets of basis functions ¢,, and B¢ ), respectively, will be derived.

From Eq. (5.234), by replacing m with m + 1 and upon multiplication with
m + 1, one gets the expression
(m+ 1T = @m—2n—0+1)TY, — (m+ 3/2)T§,? o

+n+ DT+ (n+0+1/2)TY | (5.235)

if m > 1 and n > 1, where the following identities of associated Laguerre
polynomials [29] have been used,

(m+ DL = (2m+5/2)LB — (m+3/2)L% — LB/ (5.236)
—(n+ 0+ 1/2) Sf“/?). (5.237)
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With the help of
ELE) = (n 4 0+ 5/2) LI — (n 4+ 1)Ly
and

e =3
k=0

it follows from Eq. (5.234), with ¢ — ¢ 4 2, that

o0

TE2) %/dte‘tt(“?’)m[/f’/?)(t)L$f+5/2)(t)
0
n n+1
= (n+0+52Y TG —(+1)Y 1Y
mk mk
k=0 k=0

/ /
= ((+3/2)) T —(n+ 1T,
k=0

which, in turn, leads with n — n +1 to

n+1
TGP = (0+3/2)Y T — (n+2)T)
k=0

= T 4 (n40+5/2T8 | — (n+2)T .

By using Eq. (5.119) it immediately follows that

o _TE2+3/2)
Oon 2n/!

(€/2)n

(5.238)

(5.239)

(5.240)

(5.241)

(5.242)

with (2), = I'(z + n)/I'(2) indicating the Pochhammer symbol [47] and,

accordingly,
0 _ m+l2) 0
On+1 (’I’L + 1) on

Likewise, from Eq. (5.119) one obtains

(L+3)(C—2)] o

T = |5/2 —

leading to
0 5@+l —((+3)(¢—=2)
In+1 4(7’1, + 1) On»

(5.243)

(5.244)

(5.245)
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where Eq. (5.243) has been utilized.
From similar considerations regarding the parameter m one obtains the
formulas [see Eq. (5.118)]

T(¢/2 +3/2)

o _ _
T, = Sy (1—=12/2), (5.246)
—0/2+1)
o _ (m Do 24
m+10 (m+ 1) m0» (5 7)
as well as (et
+ ¢
7O — lpy3/24 "2 |70 5.248
and, by using Eq. (5.247),
20+3)2m+2—0)+L(l+3)
0 | T®. 24
m—+11 4(m i 1) m0 (5 9)

The initial values follow directly from Egs. (5.242) or (5.246), respectively,

1
T = S L(/2+3/2) (5.250)
1
TO = \/T%’ ng>:§. (5.251)

Upon using Egs. (5.235) and (5.111) along with Egs. (5.189) and (5.190) one
gets

Vm+1)(m+5/2)p%, 1, = (2m—2n— 0+ 1)l
— m(m+3/2)¢%) 1+ (n+ Dl
+ (n+0+1/2)0" (5.252)

for m > 0 and n > 1. A recursion formula with respect to parameter ¢ follows
directly from Eqgs. (5.240) and (5.241), that is

SUED = (0+3/2) Y dh — (n+ 1)l i1, (5.253)
k=0

as well as

Pt = oD 1 (04 £+ 5/2)0 L — (n+2)¢l . (5.254)
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In order to be able to use Eq (5.252) one must provide corresponding relations

for the elements %n and quO, as well as ¢1n and <b
be calculated from Egs. (5.243) and (5.247),

1, Tespectively, which can

/2
¢é€7~3+1 = <T(Ln++ {) ) ¢on (5.255)
0) (m—0/2+1)
and accordingly [see Egs. (5.245) and (5.249)]
0 B+ = (L+3)(-2)V2
(204+3)2m+2—10) +L(L+3) @
O 4y/(m+1)(m +5/2) Py (5.258)
with the initial values
1 2
obtained from
B0 = \/g L2+ 3/2) 2: 3/ 2). (5.260)

An additional recurrence relation for T'%, may be derived starting from

Eq. (5.120),

oo DW/2+3/20(m+1-(/2)
e 2m!IT(1—4/2)

(+1/2
x("+; / )3F2( L B3+ 2 Lom;1),  (5.261)

202
and utilizing the following recurrence identity for consecutive neighbors,

sFy(a,a2,a3;b1,by;2) = (By+ Ch2) 3Fy(a+ 1,a2,a3; by, by; 2)
+ (BQ + CQZ) (CL —+ 2 CL2 CLB bl,bQ, )
+ (B3 + C5z2) 3sFy(a + 3,a2,a3;by,by; 2) , (5.262)
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which has been found in Reference 49? with
blbg + (Cl + 1)(3@ - 2b1 — 2b2 + 4)

B T T b 1) (5:263)

(—a+ay—1)(a—az+1)

O e h Db ) (5.264)
e
oo - ey -
o letlenn
Oy = —Bs. (5.268)

Using Egs. (5.261) and (5.262) one arrives at the three-term recurrence relation
(n+2)(n+/2—m+1)TY ., = [(6 +3/2)(€/2—m) + (n+1)
X (3n+30—2m+5) — (n+£/2+1)(n+0/2+ 5/2)] T
—(n4+£/2—m)(n+£+3/2)TY)

s (5.269)
valid for n > 0 and provided that m # n + ¢/2 + 1, which represents
also a recurrence relation for ¢, [with quantities ¢§f}0 and ¢,(7?1 shown in
Egs. (5.256) and (5.258)] since the proportionality factor does not depend on
m [see Eq. (5.111)].

Similarly, Eq. (5.262) can be applied accordingly to Eq. (5.121) yielding, for
m > 2 and m # n + £/2, the formula

2m(n +£/2 —m)TY =

(n+1—4m? + 4mn + 2ml +m — €2/2)T£5)71n
—@2m+1)(n+0/2+1-m)TY, | (5.270)
and, furthermore,
2m(n +£/2 —m)ol) =
(n+1—4m? + 4mn + 2ml + m — (*/2)\/m

40
— 3/2 m—1n
@A Dt 24 L)l =) (5.271)
V(m+1/2)(m +3/2)

2http:/ /functions.wolfram.com/07.27.17.0001.01
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with gb((f,z and ¢>§2 given by Eqgs. (5.255) and (5.257), respectively.

5.6.6 Integral part

Next, one must calculate a recurrence relation for the quantity UEQ defined
in Eq. (5.92),

e¢]
2

1
Ul = /dyy LDy fyP)e v el Y LY (42, (5.272)
0

from which one arrives at the formula

1
(n+1)UY, = l2n +3/2 - v (20 + 0 — 1/2)} U

2
¢ 1
4n+umU9m+74m+nUzH

t+ -1 =D ; D Ul 1}, (5.273)

valid for n > 1 and n > 1, and where again several identities of associated
Laguerre polynomials have been utilized [47], namely

(n+DLY(1) = @n+a+1— L) = (n+ )L, (t) (5.274)
tLE) = (n4 a4+ DL ) — (n+ 1LY, (1) (5.275)
L@ = L@ — L;"‘Jl(t). (5.276)

Here, Eq. (5.99) gives

o _ LE2+2T(n+0+1/2) 4™
o An'T (0 + 3/2) (14 2)/2+2

2

xF(1—n,{+2; £+2,1+7) (5.277)
from which one obtains the equation

_nn+£+1/2)
(n+ 1)1 +42) "
(n+1£/2 + 2)~?
(I+19%)

(n+2)UL.,

+ 20 +0+3/2— Uy, (5.278)
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where the Gauss’ relation for contiguous hypergeometric functions (cf. Refer-
ence 47)

(c—a)F(a—1,b;¢;2) = a(l—2)F(a+1,b;¢2)
+lc—2a+ (a —b)z|F(a,b;c; z), (5.279)

has been utilized. Due to L}m(t) =3/2 —t, Eq. (5.272) can be rewritten as
U(g) _ 1 OOd —y2(14y72), £+3 3 y2 L(“‘l/?) 2 5.280
17)_% ye Yy §_¥ n—1 (y )a ( )
0
which, upon using Eqgs. (5.275) and (5.276), yields for n > 1
v = 2= Loz v0 42 1y,
1n - §_¥(17+ _/) 07;"’?(77"’)07&1
-1
+(7777 %n+0—umU$4} (5.281)

The elements Ugg may be evaluated by using Eq. (5.99),

v v iiC%f n+1/2
no 220+ 1)(1+~2)22 =kl \ n—k
L/24+k+2)
(142
together with several Gauss’ relations for contiguous hypergeometric func-
tions [47], namely

F(LE+k+20+325),  (5.282)

b(1—2)F(1,b+ 1;¢52) =c—1—(c=b—1)F(1,b;¢; 2), (5.283)
and
(c+1) c(1—2)
F(1,b+1; 2;2) = —F—1— —[F(L,b;¢;2) — 1 5.284
(Lb+Lc+2;2) =) o Pz =1, (5.284)
provided that ¢ # b. The initial values with respect to F' are given by
2 (1+77) (1+7%)
F(1,2;3; 2) = 5 1+ e arctany| , (5.285)

as well as

2 T(1 4272
F(l,é;g;llvg) = Tln<7+\/1+72>
7(1 2)2(3 4 4~? 7(1 2
3~6 52
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Recalling Eq. (5.272),

o0

1 _

U =5 / dye VO LD (42 /2 )y 32 LR 2y (5.287)
7 0

a recurrence identity regarding the parameter ¢ may be obtained, yielding for

n>1

(¢ + 3/2 - )
U™ = > G+ DU — (+ UG, (5.258)
7=0

where Eq. (5.275) and the relationship [29]

L (2) = Zn: L () (5.289)

Jj=0

have been used. From Eq. (5.288), by shifting 7 — 1 + 1, one gets for n > 0
the result

(+2) _

Ui
nn+1 — (77 + )U(f-i-?) + (77 + f + 3/2) nn—l—l (77 + 2)U£“3+2 (5290)

In virtue of Eq. (5.277) with n = 0 and after applying Eq. (5.284) it follows
that

g _ L2427
A1) (L+A2)2+2
(20 +1)(20 + 3)

O 2(0—1)?

[(6+4)y* + 20+ 3]

U, (5.291)

valid for ¢ # 1. Since F(0,b;¢;z) = 1, one obtains from Eq. (5.99) the
expression

0 _ (n+1/2\T{/2+2) A . 4
Uni = < n 4 1+ 72)@/2+2F( c+2 3 ), (5.292)

which has been calculated by means of MAPLE [48]. From this relationship
it immediately follows that

U(g) o F(€/2 + 2) ”)/“_4
01 — 4 (1+72)z/2+2’

(5.293)
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and, furthermore,

er2y  (L+4) ()
= . .294
U 2 (1442 * (5.294)

The initial value for ¢ = 0 reads

(0) g .3..
U00 2<1 +72)2F(1727 2 1+72)
3
Y i
vy [(1 ey + arctany} , (5.295)

where Egs. (5.277) and (5.285) have been employed whereas Eqgs. (5.277)
and (5.286) add up to the initial value for ¢ = 3

u® = 15y/m {m <7+ m) —~ 37((3 e I } . (5.296)

16 14+42)3/2  5(1+42)%/2

One may derive corresponding recurrence relations for the special cases
¢ =0 and ¢ = 1, respectively, by revisiting Eqgs. (5.100) and (5.108). Here,
Eq. (5.100) yields the identity

o _ (m+Enph+3/2) 4 0
(77, -+ 2) Un+277 - (n + 1) (1 ¥+ 72) 7(177)
(n+mn+2)

+2n4+n+5/2— U, (5.297)

(1+9%)

where again Eq. (5.279) has been applied and where Ué%) and Ug%) follow from

Egs. (5.278) and (5.281). The initial value Ug%) has to be calculated by using
Eq. (5.100) yielding

4
T
[+
The simplest way to derive a recursion for Ugn) is to employ first Eq. (5.108)
yielding

v =— (5.298)

L(n+n+1/2)y**
Anlnl(1 + ~2)ntitl/2

(n+1/2)0(n +n +1/2)y*"* o1
- Anlnl(1 + ~2)rtn+1/2 F(=1ntn+50+3 1752), (5.300)
where F'(—1,b;¢;2) = 1 — bz/c has been applied [47], and then to use the
equation
b(1—2)F(=1,b4+ 1;¢;2) = (¢c=b)F(—=1,b—1;¢;2)
+ [20—c— (b4 1)2]F(=1,b;¢;2), (5.301)

(n+n+1/2)

U
" (1+92)

n+1/2— (5.299)
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producing the following the three-term recurrence relation

2

y
(n+2) ULy, = —(n+77+1/2)mU5«2
+n+5/2
+ 2n+77+5/2—% U, (5.302)

The recursions for U(() and U ) follow immediately from Eqgs. (5.299) and
(5.300), respectively,

(n+3/2) e

(1)
Ut = G+ (5:30%
vl = [(n+3/2) v ull, (5.304)
n (1 + ,-}/2) yl
where the initial value is given by
5
m VT q

In Section 5.3.1 [see Eq. (5.71)] the matrix elements of the field particle
operator in terms of ¢, test function basis were found to be

m N’
ZZ T o) 11, o), (5.306)
n=0n’ O

which, for numerical reasons, is rewritten in the form

m_ N’ (0) 7(0) O
€9 _ 2¢mn Inn’ ¢n’m’
M - 33 ()

n=0 n'=0 hff) hgﬁ)
m N’
= 3 N 496 a9 (5.307)
n=0 n'=0

With this definition values of the normalized matrices in the last equation
are approximately O(1) or less minimizing difficulties appearing during the
numerical evaluation of matrix elements, e.g., loss of significance due to
subtractive cancellation.

The normalizing factor A has been defined by

o 1 Tm+0+3/2)
(204 1) w3/2 ) ’

(5.308)
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from which one easily finds the relations
¢ (n+0+3/2)
h, = Wh;@, (5.309)

and
pey _ (20+1)
" (20 + 3)
Recalling the definition of transformation matrix, ¢im = T, /(T34 o), it
follows from Egs. (5.116) and (5.308) that

(n+¢+43/2)hY. (5.310)

2m!
/4 forn<m

9%, = L(m+5/2) (5.311)
0 for n > m,

where h,, = I'(m + 5/2)/(2m!) has been used. This leads immediately to the
recursion

(0) (m+1) ()
= — 5.312
gm+10 (m + 5/2) ng’ ( )
with the initial value
2T
g = 2 R (5.313)

The respective recurrence relation for the quantity g,(f% is obtained from

Eq. (5.252),
Vm+1)(m+5/2)g0 1, = —v/m(m+3/2)5% 1,

+V/(n+ 1)(n+£+3/2)§£n+1, (5.314)

where again Eq. (5.309) has been used (note that 94, = Qfﬁ%)

The recursions derived from a recurrence identity for the generalized hyper-
geometric function 3Fy(a, b, ¢;d, e; z) become [see Egs. (5.269) and (5.271) in
Section 5.6.5]

(n4€/2—m)\/(n+ 1)(n+0+3/2)5),, =
[(6 +3/2)(¢/2 —m) 4+ n(3n+ 3¢ — 2m + 2)

—(n+ /2 (n+ )2+ 3/2)| )
—(n+0/2—m—1)/n(n+0+1/2)3") |, (5.315)
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and

om(n 4 £/2 —m)gld) =
(n+1—4m?+4mn +2ml+m — ?/2)y/m o
Im—1n
m+3/2
_(2m+1)(n+€/2+1—m)\/m(m—1)g(g) (5.316)
Vim+1/2)(m +3/2) e |

respectively. By means of Egs. (5.254)-(5.260) along with Eqgs. (5.309)
and (5.310) one arrives at the following identities,

A (0) (n+10/2) L (0)
Jont1 = Jon 5.317
R m—{0/2+1 R
Oy = = 2HD) 0 (5318)
\/(m+1)(m+5/2)
and
R 52n+0) — (L4 3)(f —2)] .
g0, = BentH - Er3e-2)] 4o (5.319)
2¢/5(n+1)(2n + 20 + 3)
. 20+3)2m+2—0)+ (0 +3) .
Q%)Jru = ( )( ) ( )gr(ﬁg)a (5-320)
4/(m+1)(m +5/2)(0 + 3/2)
as well as

N R 120 + 5
v+l + 7/29%:_?1 = Vvn-+ 19%;’;2) + m

x <\/n 045290 . —Vnt 2g,§f31+2> . (5.321)
The initial values
. 1 . 2
0 = —= a0 =2/ — (5.322)

\/g? 37{_7

have been computed using the relation

o = LW2+3/2) | 2(20+1)

0o /4 3r(¢+3/2) (5.323)

from which one infers that

L(e+2) (+3) ()

0T Rl )@l (5.324)
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The normalized matrix elements in the Burnett function basis, Gnn,, can now
be calculated by means of the above presented recurrence identities regarding
the quantity Uffg Therefore, details of the calculations of the necessary
recursions are not given here, only the final forms of results are presented.

Upon introducing the quantity Uﬁfg = U,(f,g / [h%ﬁ)]l/ 2 the representation of
matrix elements in terms of Burnett functions [see Eq. (5.91)] may be rewritten
in the form

G(g) 3(2?1/ + 6)

_oken 8 (2n' +¢—-1) 0
nn 73/25

V22 +20+1) M

. (5.325)

(1+9%) U -

valid for n’ > 1, where Egs. (5.307) and (5.309) have been used. The matrix
elements Gfg may be evaluated according to Eq. (5.101),

f(z 271_3/2 1/2 .
{4 n 4
GO = \/L = {ml . (5.326)
yielding
A(6) (Vab) 3¢ ”Yﬁb_l
0 7r3/4(2£ + 1) AT (0 + 1/2) (1 + 2,0/
n+1/2\T(0/2 + k + 2
( / ) <({ + ) )P( )(k ’yab) (5327)
k= ' Vab
with
PY(k) = FOLE+k+20+3 )
(-1 2
(1) F(2,5+k+20+ 5 75), (5.328)

S @2-D(I+?)

noticing that (A};OO) = 0. The computation of the Gauss series is carried
out with the help of Eqgs. (5.283)-(5.286) and, additionally, by applying the
relation (cf. Reference 47)

(1=2)F(2,b;c;2) =c—1+[2—c+ (b—1)2]F(1,b;¢; 2). (5.329)

Due to the fact that the normalizing factor, h%), does not depend on index
n the above obtained recurrence relations with respect to n for the quantity
U%g can be used unchanged. All other relations must be adjusted in virtue
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of Egs. (5.309) and (5.310) noting that one needs to adapt the initial values
accordingly. The corresponding modified recurrence identities become

(8 1 .
n+1) 09, = 2n+3/2—¥(2n+€—1/2)} vy

n+{—1/2)(n—1) 7
i+ e+12) "

— (n+1/2)0Y +i2{( .

+ Vi+1)(n+0+3/2) Wl}, (5.330)
g0 _ nin+¢+1/2) us,
e VD)2 (n+0+3/2)(n++5/2) (1+1?)
 (h0/2+2) Uy
+ [2n+£+3/2 T } N T (5.331)
a0 i (n—=1n+0-1/2) ~u
Ui, = 7 Vin+1)(n+(+3/2) U on+1+ NCEESYE) U0n1]
+ B - %(zn (- 1/2)} s, (5.332)

The recursions involving the parameter ¢ have the form

o (1) N Frer2) 2045
T2 Ui \/mU”" Vo
n+{+3/2
X i/ﬁTiJré/ S —Vn+200) |, (5.333)
(-1 = wAT(0/2+3) A2 { (204 3) }
00 /‘2F<€+5/2) 1_}_,}/ €/2+2 €+4
2
e \/(€+ 1/2)(¢ +3/2) U (5.334)
and

2

(1 1/2)(0+7/2) 0% = (/2 4+2) —L 0O, 5.335

01

(1+19?)
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If the index ¢ = 0 and ¢ = 1 the respective relations read

(0) (n+n)n+3/2) ¥
2 _
(TL+ )Un+277 (7’L—|—1) (1+72) nmn
(n+n+2)] 2(0)
+2n+n+5/2————|U 5.336
|: n—+mn / (1 +72> n+1n ( )
2
(1) - Y (1
(n+2)U,, = —(n+n+ 1/2)(1 +72)Ufm)
n+n+5/2)] -
with
~ 3/2 ~
0w, - (n+3/2) o (5.338)
Vi +1)(n+5/2) (1+9?)
) 7’ W,
U, = +3/2 — 1| U§ 5.339
N O (5.839)
Finally, the normalized initial values are given by
0 = v 27r7—3 [ il 57 + arctan 71 (5.340)
(1+9?)

W (5.341)

™
4
5@ _ \/_ ) 3+472) 8]

as well as
A 1/2 4
po - 7 5.343
Y 234 038
5
~ (1) 3 ¥
U = , 5.344
01 4\/@(1 +,72)5/2 ( )
and
R 2 4
1§ P A (5.345)
4 (1+12)?

Furthermore, the elements U no are evaluated by means of Egs. (5.282)-(5.286)
and Eq. (5.308), respectively.
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According to Eq. (5.307) the recurrence relation for the matrix elements of
the field particle operator in terms of ¢, test functions is found to be

m+1 N’
L ) AL
[ﬁzl-lm’ Z Z gm—l—ln G( n’ gr(z)m
n=0 n/=

N/
o m—+1 (&) (0) © ()
= mlmm Im+10 7;) Gm+1n Gnrm! s (5346)

where Eqgs. (5.311) and (5.312) have been utilized.

5.6.7 Numerical implementation

In a concluding section the numerical implementation of the calculation of
collision matrix elements is briefly considered. First of all, it should be
mentioned that most of the analytical results obtained in Chapter 5 were
checked and partially derived, respectively, by means of the symbolic algebra
system MAPLE [48]. Due to the fact that the computing time required to
evaluate the matrix elements regarding the field particle operator became too
large using MAPLE the actual calculation of them, however, was performed
using FORTRAN90.

Since in neoclassical transport theory the expansion of the distribution func-
tion in terms of associated Laguerre polynomials [cf. test functions ¢, in
Eq. (5.2)] tends to converge quickly [22,37] only a small number of terms
(indicated by the radial index m) have to be retained in the expansion. For
the numerical computation m,,., and m! . were chosen to be 10.
Therefore, computing of the matrix elements of the test particle opera-
tor, 0% and Dfnbm,, respectively, by using their recurrence relations [see
Egs. (5.188), (5.220) and (5.230)] is possible without any difficulty with
respect to numerical accuracy.

Unfortunately, this is not valid for the matrix elements describing the field
particle operator, [ ffzn, [see Eq. (5.346)]. Because these elements have been
obtained via transformation from the Burnett function basis an additional
summation (over index n’, with N’ as large as possible) must be performed
producing a large numerical error for the case when conventional double
precision FORTRAN9O0 is used. Thus, in order to decrease round-off errors
a FORTRAN90 based multiple precision computation package, MPFUN90,
developed by D. H. Bailey [50-53] has been utilized. By means of these routines
the value of the parameter N’ (which is the only parameter determining the
accuracy of the matrix elements [ 7(57)71') could be chosen to be 6 x 10%, which

allowed to obtain highly accurate results for the matrix elements I T(fzn, They
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are correct to at least five (for larger values of ¢, m and m’) to eight (for smaller
values of £, m and m’) significant digits. In order to ensure that the calculations
provided numerically converged values (no round-off computational errors)
the code was run twice, namely using precision levels of 200 and 300 digits,
respectively.

Altogether the computing time for the matrices ¢ ,, ¢, and D , was
less than one second (for My, = m,,,. = 10), whereas for an individual
element with respect to the electron-electron version of the field particle part
I ﬁfzn, (polar index £,,,, = 20) average time of calculation was typically of the
order of 100 seconds (for N’ = 6 x 10°). All computations were performed
on an Intel Core2Duo CPU (E8500) 3.16GHz and 3GB RAM running Linux

(2.6.32-trunk-686).






Chapter 6

Spitzer conductivity

Below, the formulas derived in Chapter 3 together with the collision matrix
elements evaluated in Chapter 5 are used to compute the collisional Spitzer
(or classical) conductivity for a completely ionized gas. Since the correct
result is only obtained when the full linearized Coulomb collision operator is
applied, this problem serves as a benchmark for the matrix elements.

Cohen et al. [45] as well as Spitzer and Harm [39] calculated in their classical
papers the parallel electrical (DC-) conductivity for a uniform plasma when
no magnetic field is present and where a sufficiently small electric field is
assumed (see also References 54-57). In Reference 39 the following expression
for the conductivity was obtained

2mC3 2\ ¥?
7= €27 In(qC?) (3_7r> e (6.1)

where 7 is the ratio of conductivity to that in a Lorentz gas. Here, C' is the
root mean square electron velocity C' = /3T, /m, = vy, m, Ve = /2T /M
and In(qC?) designates the Coulomb logarithm. In terms of the notation used
in previous chapters Eq. (6.1) can be rewritten as

3
2mev;,

= Y. 6.2
WS/QQZZGHIHA,YE (6.2)

In order to obtain the Spitzer conductivity within the NEO-2 model one has
to assume a homogeneous magnetic field (that is, the magnetic field module
B does not depend on s being the distance counted along the magnetic field
line).
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From Eqgs. (3.40) and (3.42) one gets for the electric current density in response
to the induced parallel electric field,

(i) = eLiAs
= —eLg—(E"Y, (6.3)

in which the forces A; and A, have been put to zero. The parallel electric
conductivity is then defined as

o — 1) (6.4)

I = :
(B

Upon substituting the transport coefficient LSy, = n.l?7y33/T.. into Eq. (6.3)
one obtains from Eq. (6.4)

2

Ne o €
0'|1|\IEO = —T—eelc’}/ggi (65)
2Ne€%Tee
= - Y33 (66)
Me
3mev
= —— " o, 6.7
symerlnA (67)

From Egs. (6.2) and (6.7) the relation between the normalized Spitzer conduc-
tivity and the dimensionless NEO-2 transport coefficient 33 can be expressed

as
. 37TZeff

16

Te = ¥33- (6.8)

6.1 Lorentz conductivity

The electrical conductivity can be calculated analytically for the case when
the limit Z.,; — oo is assumed (the so called “Lorentz gas approximation”).
In such a fully ionized plasma the electrons do not interact with each other
and all the positive ions are at rest [54].

The single-drive problem [see Chapter 3, Eq. (3.22)] for the evaluation of the
parallel conductivity can be written as

CLfT] = f0Q57 (6.9)
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where the collision term is approximated by a Lorentz operator

N AT T
ce_c_QaA(l A)aX (6.10)

Equations of the form (6.9) are called Spitzer problems [23]. Assuming
stationary ions the deflection frequency here means [cf. Egs. (3.75) and (3.78)],

3\/_ Vte
C— ( ) , 6.11
YD 4766 ) ( )

keeping in mind that electron-electron collisions have been ignored and where
QF = v|A|¢§ and ¢ = 0B, respectively. With the help of the normalization

f feO sp? (612)
where the subscript L refers to the Lorentz approximation one gets
vp 0 2 9 .1 >
— —N) —fo = —vAB. 6.13
s ax M) gnfe = (6.13)

where B = 1 has been used. One can solve Eq. (6.13) for the Spitzer function
by applying the Legendre polynomial, P, expansion, that is

5= )P\, (6.14)

14

Since these polynomials are eigenfunctions of the Lorentz collision opera-

tor [58],

0 0

Y (1-X) =~ o Pi(N\) = =00+ 1) Py(N), (6.15)
it follows from Egs. (6.13)-(6.15) that
?({% (1 _ )\2) aﬁ [Z W(V)P(N) | = —UPl(A)B
—%D%: ((C+1)P(N) = —vPi(N\B. (6.16)

Upon multiplication of Eq. (6.16) by Py, integrating the result with respect to
A from —1 to 1 and exploiting the orthogonality of Legendre polynomials [29],

1

/ APV Pe(N) =

-1

2
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one easily recognizes the only nonvanishing coefficient

~

B

K-/mono :

Cc1 = (618)
Here, the abbreviation k™" (v) = vp(v)/v has been introduced. Therefore,
the normalized Spitzer function becomes

\B
L= : (6.19)

sp — H;mono

Using Eq. (3.63) one finds in the Lorentz limit for the monoenergetic transport
coefficient describing electric conductivity of a plasma along the magnetic

ﬁeld, D33,
1/B

B
Dy = vz Y <Z /dnqg“’ ";,> (6.20)

o==+1 0

Since )
1/B

> <§ / dnﬁA"(n)> = <%/d/\A(/\)> : (6.21)
o=%1

0
Eq. (6.20) becomes

B
oh = o3 (4 [t

= : (6.22)

where Eq. (6.19) has been utilized (note that here (B?) = B?). Furthermore,
using Eq. (3.67), the energy convoluted dimensionless transport coefficient
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can be written as

o0

4 .
7§3 = ﬁlcvte/d$e $2D§3(:1:). (6.23)
0

According to Eq. (6.11) the collisionality parameter ™™ may be replaced by

Klmono _ 3\/_

44

Lo (6.24)

where & = v/, lo = VeTee and k = 1/1., respectively. Hence, the dimension-
less Lorentz conductivity reads

Y33 =
3& 3T Z g
“0
16(5°) 7
— d 6.25
“orz. | ¢ (6.25)
0
If one recalls that

T 2 1 1

/d:z:x”e_’” = §F <n—2k ) , for n>-1, (6.26)

the velocity integral appearing in Eq. (6.25) yields I'(4)/2 = 3, and the
dimensionless Lorentz conductivity within the NEO-2 model is thus found to
be .
L 16(B%)
"33 = 32
Finally, the dimensional conductivity follows from Eq. (6.6),

(6.27)

I B 2nee Tee L

NEO me<B2>
2N0€%Tee 16<B2)
me<B2> 37TZeﬁ
32 nee? Top

= = 6.28
3T Me Loy (6.28)

g

which is in agreement with the well-known result for the Spitzer conductivity
in the Lorentz limit that can be found in any textbook on plasma physics
(see, e.g., References 22 and 57).
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6.2 Spitzer function

As a first benchmark for the results derived in Chapter 5 the collision matrix
elements are used to calculate the collisional Spitzer function. For these
purposes the linearized drift kinetic equation with respect to the first order
electron distribution function is to be solved using the full linearized Coulomb
collision operator taking into account electron-ion as well as electron-electron
collisions. The corresponding solution may then be compared with that by
Spitzer and Harm.

In References 45 and 39 the following ansatz for the distribution function was

used,
D(x)

FopAs2) = feol@)AA—=, (6.29)
with i
meEv
A=— e te ) '
2me3n, In(qC?) (6.30)

The numerical results for the quantity D/A can be found tabulated in [39].

As mentioned above, for purposes of comparison with the Spitzer-Harm
results one has to take the limit of a constant magnetic field B giving rise to
fsp # f(s). Thus, within the NEO-2 model the drift kinetic equation has the
form [see Eq. (3.26) along with Eq. (3.21) and A; = Ay = 0],

—HZ{ L 30l 4 Ko 12+ 5 Do f%/}:Agaﬁ’qéf, (6:31)

where A3 = —(e/TL(EB)/(B?), ¢§ = 0B, k = 1/lo, lo = VeTee, Ve =
V2T./m., and 7., = 3m2v3, /(16y/7n.e*In A). The pitch-angle operator and

the operator representing the integral part of the Coulomb collision term are

given by

o1 L 0 2y 9

and
1

7o = WZM Py / AN P,(N) 2, (N), (6.33)

respectively. It is convenient to introduce a normalized distribution function
as follows,

o Az
=~ fm- (6.34)
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Bearing in mind Eq. (6.29) one can infer that
Fn(N) = Xewm = PN (6.35)

Substituting Eq. (6.35) into Egs. (6.32) and (6.33) yields

ra1 10 N
AL [f] = 555 (1=23) 5Aem
= e (6.36)

and

L 1
INKE, [fm} - ZI“ P\ / AN Py(N)PL(N )

L 9
— 19 P(N)e,y B
ZO mm E( )C 2€+ 1 /1

2
= 210 e, (6.37)

3mm

respectively, where the orthogonality relation for Legendre polynomials [see
Eq. (6.17)] has been employed. Using Eqs. (6.35)-(6.37) the drift kinetic
equation (6.31) reduces to an algebraic system of equations for the coefficients

Cm,
M

2
D . T

m/=0

where v, = Vie .+ Zeglirm. Upon solving Eq. (6.38) for ¢, and recalling
that the distribution function is expanded in terms of test functions ¢,),,

fsp(xaA feO Z fa (639)

the Spitzer function is determined by the relation

As
fsp - feO)\? mz:ocm@m(ﬁ) (640)

The quantity As/k is related to Eq. (6.30) in the following way,

A
= - _T£<EH>UteTee

K e
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e 3 T?  m.2
= —=(B) =5

T, 4y /T neetIn A m, 2

<E||>Utem€ 3 o

213 In A8 /T
3Vm
I

(6.41)

Therefore, one finally obtains

T\/_ mzz CmPm () (6.42)

with the basis functions

V7O S L V2

om(x)=m Ton +5/2) LB (2?). (6.43)
The quantity D/A is to be compared with the “exact” numerical result
calculated by Spitzer and Hérm (see Reference 39). Their result was obtained
by integrating numerically the drift kinetic equation (where no expansion of
the distribution function was used) which is equivalent to using all the basis
functions ¢,,, that is M is equal to infinity.

Figure 6.1 shows, in principle, good agreement between the Spitzer-Harm
result and the Spitzer function evaluated by means of Eq. (6.42) using four
test functions (M = 3). However, when zooming in on the z-axis one observes
that D/A is negative in the range 0 < x < 0.21. This unphysical behavior is
still present, although considerably reduced, even when 51 terms have been
retained in the expansion of the distribution function (see Figure 6.2). From
this one can conclude, that the approximation of the Spitzer function in terms
of a few low order associated Laguerre polynomials is only meaningful in the
range = 2 0.21.

According to Eq. (3.57) the dimensionless transport coefficient describing the
parallel electric conductivity is given by

M 5 1/B
1 —0 [0
o= T D bffi)<z / dngy fm’(?’)> (6.44)
¢ m=0o==+1 0
1

1 & 1 .
= - b <5 / dAABfg§>> , (6.45)
¢ m=0

-1



6.2. SPITZER FUNCTION

103

D/IA

Figure 6.1: Spitzer function, D/A, vs. normalized particle speed, x, for
Zeg = 1. Blue: Spitzer-Harm result, red: result obtained from Eq. (6.42)

using M = 3.

0.25
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0.1

D/IA

0.05
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-0.1
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0.15 0.2 0.25 0.3 0.35 0.4

Figure 6.2: A zoomed-in view of Fig. 6.1. In addition: Green curve shows
function D/A calculated with 51 test functions.
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Table 6.1: Spitzer-Hérm result vs. Eq. (6.47)

M=1 M=2 M=10

Zg | Va" Ve or o
1 05816 0.5985 0.5824 0.5820

2 10.6833 0.6999 0.6871 0.6857
4 10.7849 0.7740 0.7847 0.7853
16 | 0.9225 0.8465 0.9221 0.9234
00 1 1 1 1

where again Eq. (6.21) has been applied. The quantity bS{) can be calculated
with the help of Eq. (3.56). Substituting into Eq. (6.45) the assumption
B = 1, and recalling the ansatz fr(;? ) = l.A¢y, the transport coefficient 33 can

be written as
M 1 1
_ @ /L 2
Y33 = mz_:obm <2/d)\/\ cm>

-1
1

al 1
- —Zb§3>cm§/dAA2
m=0

-1

1 M
- —§Zb§§>cm. (6.46)

In virtue of Eq. (6.8) the Spitzer-Harm coefficient 7, including electron-
electron effects can thus be computed by means of

3T Zeff

Te = 16 V33

M
_ T (3) 4
16 eﬁn;)bm Cm' (6 7)

Table 6.1 presents the “exact” Spitzer-Harm result for the normalized conduc-
tivity v for several values of Z.g as well as the corresponding semi-analytical
result calculated from Eq. (6.47) depending on the number M of terms in-
cluded in the polynomial expansion of the distribution function [see Eq. (6.39)].
One can see that sufficient accuracy is already obtained by taking M = 2
[the results of Eq. (6.47) for M = 1 match the Spitzer-Harm results to within
3-8% and for M = 2 to within 0.03-0.56%).
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These results confirm the correctness of the collision matrix elements for the
full linearized Coulomb operator numerically evaluated from Egs. (5.188),
(5.220), (5.230) and (5.346), respectively.






Chapter 7

Comparison to results reported
in literature

In this chapter the neoclassical transport coefficients for an axisymmetric
toroidal system are computed in the limit of low collisionality using analytical
results which are most widely used in the plasma physics literature. These
results are compared to the corresponding numerical results evaluated by
means of the NEO-2 code. The expressions representing the neoclassical
transport matrix within the NEO-2 model have already been derived in
Chapter 3 and are included here again for completeness.

The electron transport coefficients L, have been defined through

3
Ij=— Z L5, Ak, (7.1)
k=1
relating the fluxes
‘ JiB
IlEFe, ]25%, _[35—<”6 >, (72)

to the thermodynamical forces

1 dn, 3 dT, e dd
Air) = (n— W o du _i@) {|Vy]) (7.3)
) = 7 GEIvel) (7.4)
As(r) = _3% (7.5)
3 {5 |

107



108 CHAPTER 7. COMPARISON TO RESULTS IN LITERATURE

where B = B /Bo and By denotes some reference magnetic field. The dimen-
sionless transport matrix, -;;, has been defined in the form

e Te 5 4
Ly, = T—ﬁjﬁiﬁjk, (7.6)
where ) ) R
B = B2 = p, By =L, (7.7)
. B
p= Yt , Weo = € 0, lc = VteTee (78>
Weo eC
and 28
_ mevte
Tee = 164/7nee* In A (7.9)

is the collision time, respectively (for details see Chapters 3.1 and 3.2).

In the following the neoclassical electron transport matrix 7;; for the standard
tokamak test configuration (see Appendix F) evaluated using the NEO-2
code is benchmarked with the corresponding analytical results obtained by
Balescu [37,56], and Hirshman [59] in the low-collisionality (banana) regime (cf.
Chapter 7.5) as well as with the results reported by Hinton and Hazeltine [60]
and Sauter, Angioni and Lin-Liu [38,61-63] which are valid for arbitrary
collisionality regime (see also Chapter 8.2).

7.1 Balescu

The results for the neoclassical transport matrix in the low collisionality
limit were derived in the so-called twenty-one moment (21M) approximation
(applying an approximate collision operator). This corresponds to the fact
that the expansion of the distribution function in Laguerre polynomials is
truncated at the level M = 2 (that is to say, three polynomials are retained).
For details see References 37 and 56. Furthermore, the results are valid for
arbitrary aspect ratio.

In [37] the dimensional electron banana transport equations representing the
averaged radial particle flux, <F§>b, the averaged radial heat flux, <qf>b and

the averaged parallel electric current density, < B >b, have been written as
follows,

(Tg), = LSSX7+L9SXS+ L X5+ LipXp (7.10)
1 e ee ye ee e el 7 e
7_—v<q7‘>b = Ly Xy + L53 X5 + Lis X + Lyp Xg (7.11)

1 y e e e e 7 7
%Bal <jHB>b = LEle + LE3X3 + LE3X3 + LEEXE, (712)
0
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with the thermodynamic forces defined by

1

Xt = Xy = —V,P 7.13

1 1 T (7.13)
1

Xy = Xp = ==V, (7.14)
. 1

X; = X3 = VT (7.15)

_ L@
Xp = Xy = W@J” B). (7.16)

To leading order in the tokamak standard model used by Balescu one can re-
place V,. by 0/0r [37]. In the present work the electron part of the neoclassical
transport matrix, v;;, has been determined assuming immobile background
ions. Thus, T; = 0 and the coefficients L¢, LS, and L, do not contribute.
The dimensional electron transport coefficients are given by (see Table 3.4 in
Reference 37)

2
ee nepe 1 ee
LT = - 0/2590111(90) (7.17)
2
ee nepe 5 ee
Ly = T Of2190l33(90) (7.18)

Lig — Lg(i — nepeo /2 \/_ lee

- 2\/_ 5(v) (7.19)

and
. . _nedec
Lip=—-L% = %Bal / I ( ) (7-20)
. . _neTec
Lyp=—Lig = %Bal /\/ipl (7.21)

Nee?
Lgg = - Teplpe(p), (7.22)

e

where Eqs. (7.17)-(7.19) are the pure diffusive coefficients and Eqs. (7.20)-
(7.22) represent the electrical coefficients. Here, 7, is the electron relaxation
time

3 v m?
= Me 7.23
! 16y/m n; Z%e* In A (7.23)

the neoclassical factor ¢ = f;/f., where f; is the trapped particle fraction
and f. = 1— f;, the surface averaged reference magnetic field 252 = <BQ>1/ 2,
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the reference Larmor radius p?, = v /Q2, where v = 2T,/m. and Q% =
(eB5™ /mec)?, the scale factor I, = /g, = 1, the effective poloidal field is
PBp = (1/Ry)dx(r)/dr and # = JI,/(Ro#p). The quantity ¢ can also
be calculated using the contravariant angular magnetic field components,
respectively, that is ¢ = B¥ / B? and X is the poloidal flux.

In the case of the standard tokamak (see Appendix F), where the magnetic
field is expressed as

B(r,0) = __H (r)e(r) ég + /1 — €(r)? é@} : (7.24)

1+ €(r)cosb ’

one gets for these geometrical factors dy/dr = ZByr where 1 is the toroidal
flux, x'/¢’ = + denotes the rotational transform, Bp = (¢/Ry)PBor = A,
e = r/ Ry is the inverse aspect ratio,

Be Vi@
= —-— = 7.25
== (7.25)

and the trapped particle fraction is evaluated by means of a very accurate
approximation proposed in Reference 64 yielding

fi 2 1.4624\/€ — 0.2424¢%% + O(€2). (7.26)

The reference magnetic field is chosen to be the m = 0 Fourier mode of
magnetic field module B in Boozer coordinates (see Appendix F.3.2)

B(0p) =) _ b cosbp. (7.27)

Recalling Egs. (7.6)-(7.8) the transport coefficient in Eq. (7.17) can be ex-
pressed as

2 2
nep Tee peO 2 ]- ee
. T—e? —<Pl11(90) . (7-28)

L5 = '

-~

/Bal
Y11

J/

Upon replacing the ratio of electron collision times .. /7. by Z.g as well as
the ratio of Larmor radii by

Peo b 1 1

2 (B - <Bg> - (1— e2)3/2’

(7.29)
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the dimensionless banana transport coefficient v,5% becomes

Z
‘Bal __ eff ;2% ce
11 - <BQ> j 2 l11(90) (730)
Zeff f ee
= 2-5262\/1—7]: 11<ft/fc) (731)
where in the last equation the geometrical factors for the standard tokamak
have been substituted. Similarly, Eqs. (7.18) and (7.19) lead to

'Ba 'Ba/ ¥ jee
’Ylg)l ’Yz]?l = BQ>/ fz 155( (7.32)
5)

Ze t
= \@ ¢—§Z 15(fi/ £e), (7.33)
and
/ L )
5 = <B§>/Q§§l§§<w> (7.34)
b} Zeff ft [ee

= 4£262 /—f L5(fe/ fe), (7.35)

respectively. Using Xp = —BOT6<BZ>A3/(%§’&1€) = —BPIT, A3/ (Bye) the
last term on the RHS of Eq. (7.10) yields

%Bal T

LipXp = —Lj ?Aza( ), (7.36)

1E BO

from which it follows that the dimensionless transport coefficient characterizing
the Ware-Galeev pinch effect can be written as

Bal
'Bal Tee %0 T
T3 = nepl @Ba1/¢ (@) Boe

= -£ 7iis() (7.37)

e A (7.39)

Likewise, from Eq. (7.11) one gets

TRy = —\ﬁ/ 2 () (7.39)

\f g 5l 1) (7.40)

t€
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The transport coefficient representing the bootstrap current may be derived,
upon recalling the definition of I3 = —(j;B) /e, by means of the first term on
the RHS of Eq.(7.12),

%Bal %Bal 1 OP
0 e Xe=20 18— [ — A1
0 1t = 51— () (ra1)
leading to
'Bal Tee By n.T.c
= 5
V31 nepl Boe %;Bal / ( )
= ——/l g(®) (7.42)
Vi-éf
= 1 A4
e s/ 1) (7.43)
Similarly, the coefficient 755 B2l can be expressed as
g - \f S il (7.44)
5vV1—e?f e
i ft se(fi/ 1), (745)

and the electrical conductivity coefficient is obtained from the last term on
the RHS of Eq. (7.12),

@Bal T, BZ

Aj (7.46)

yielding

'Ba Toe Ne€? T.(B?
Tt = == ——T.plpp(p) <€2 )

= T elpr(p) (7.47)

- — golEE(cp). (7.48)

To compare with NEO-2 results one has to add the classical electrical con-
ductivity o (which is given in Table 3.2 of Reference 56),

'Bal __ <B2>

Y33 = QZeff [ (Zeff) + (PZEE((P)] (749>
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In contrast to Chapter 3.2 where the second flux has been defined as the
surface averaged total radial flux of energy, I, = Q./T., Balescu defined I,
via the flux surface averaged radial heat flux g., that is Iy = ¢./T.. Therefore,
the transport matrix 'y;%al has to be transformed using the following equations
(see also Chapter 3.3)

no= (7.50)
B = A (7.5)
7 = 75?31+571§al+%v1?a1 (7.52)
o= gt (7.53)
B = (754
T = Y- (7.55)

These coefficients are to be compared to the results of the NEO-2 code.

7.2 Hirshman

In Reference 59, Hirshman computed the bootstrap current in tokamaks, valid
for arbitrary values of aspect ratio (and flux surface geometry) and effective
ion charge in the collisionless limit (see also [22]) using an approximate
collision operator [30]. The results are equivalent to the thirteen moment
(13M) approximation [37] (retaining only two Laguerre polynomials in the
expansion of the distribution function).

The expression for the parallel current density has been given as [22]

, Ip. 1 dp. 1 dT, T; 1 dp; 1 d7T;
B) = — dy— dy— d - i
(iB) D "oy T Ay TN (pi dx YT dy
d3 ne€27_ee
) EB 7.56
D (E1B) (7.56)

where y is the poloidal flux and the quantities dy, ds and D are as follows

di(x,Z) = x[0.754+2.21Z + 2% + 2 (0.348 + 1.243Z + Z*)] (7.57)
dy(z,Z) = —x(0.884+2.074Z7) (7.58)
ds(x,Z) = 1.414+3.25Z + 2 (1.387 + 3.252) (7.59)
D(x,Z) = 1414Z + Z* 4+ 1 (0.754 + 2.657Z + 22?)

+27 (0.348 + 1.2437 + Z7) (7.60)
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with Z being the effective ion charge and x = f;/f. represents the ratio
between the trapped and circulating particles and «; = —1.173/(1 + 0.462x)
is the poloidal rotation coefficient [22]. Using ¢+ = x'/¢' = dx/dv, d/dx =
(1/¢)d/dv, B = B/by and —<j||B>/e = I3, respectively, Eq. (7.56) can be
recast to the form

Ip. 4L 1 dp. 1 dT, v Ti <1 dp; 1 dTi)}

L) = —P +d o
W) = Gobe |Ypcae T T @ ndy | “T a4y
d3 Ne€Tee
& (E|B) . (7.61)

D meT,

Upon applying
pi il T;

L N .62
p€ neTe ZTG, <7 6 )
where the quasi-neutrality condition n, = Zn; has been used and
dInp. T; dlnp; dl
D b _PCP (7.63)
dp —~ ZT. d¢  pe dy
one obtains
[pe ’ ’ 711 1;
I = —————— | A + LA + dy——;A)
3(7") 6b0D£<|v¢|> ( 1414 + as 2 + 1ZT604 2)
d3 neTeeTe 52 ’
————(B)AS .64
D m, < > 3 (7 6 )
with the driving forces
o 1 dp
Af(r) = <|W)|> (7.65)
o 1 dT
Ag(r) = T, d0 (7.66)
. 1 d7T;
Aj(r) = T 40 ) (7.67)
: e (B)B)
Af(r) = ——=—-—F—=. 7.68
0 = T (7.68)

In order to compare with the NEO-2 model the ion temperature is assumed
to be zero, that is 7; = 0. In accordance with Eq. (7.1) it follows that

4
ebot(|Vy|) D

‘ee
L3k -
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InJT, di2m,
ebot(|V|) D 2m,

2 I
— Delie [ _ L . for k=1,2, (7.69)
weo \ 2¢(|V¢]) D
e

and the transport coefficient representing the electrical conductivity is ex-
pressed as

' NeTeele ) 7o\ d
5 = e
éz
= nevfeTee <—<2—>%> (7.70)
—_——
¥a5e

Therefore, the dimensionless transport coefficients become

/ J dk
e _ I Ok 771
vV 1— 62 dk
= %o D for k=1,2, (7.72)

where, for the standard tokamak case, I has been replaced by J = %yRy
V1 — € as well as (|Vi|) = eZyRy (see Appendix F) and

"ee <BQ> d3
(1— )32 dy
= —-—— 7.74
2 D7 ( )

respectively, where Eq. (7.29) has been substituted. Finally, the electron
transport coefficients with respect to the radial density and temperature
gradients and the parallel electric field are

1 = (7.75)
ee ee 5 ee

Y32 = V32 +§”Y31 (7-76)
Ve = (7.77)

In Reference 65 Hirshman, Sigmar and Clarke calculated the neoclassical
transport matrix of a multispecies plasma in the low collision frequency
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regime for arbitrary aspect ratios where the averaged total cross-field fluxes
of particles and energy in terms of the thermodynamic forces have been
presented in the form

La(x) = >, Lo (7.78)

bn=1,2

0 = T 14w, (7.79)

b;n=1,2

with Ay, = dInn,/0x — (3/2)0InT,/dx and As, = 01InT,/0x, respectively.
Here, a plasma composed of electrons and a single ion species, with charge
Z;, is considered.

The diffusive transport coefficients have been obtained using the ansatz

L® = (F)2L® (f. — 0)+ F.L® (f, — 0), for m,n=1,2, (7.80)

where F, = f./({B*){(B™?%)), F, = 1 — F. and the coefficients for the small
aspect ratio limit, that is f. — 0, read
Zk;ﬁa{yak}
LY = .81
11 {Va} a (7 8 )
Zk;ﬁa{x2yak}
{ve} b
) S A S a7 S G733 S
{ree{vey  {we} {ve}

The velocity space averages (indicated by curly brackets) of the slowing down
frequency, v2 = >, v are given in Egs. (45a)-(45e) of Reference 65 and
the quantity L = n,J*v?,B3(B~2){v*}/(2w?). The coefficients for the large

aspect ratio case, f; — 0, are defined as follows

(7.82)

aa __ TaQ
L12 - L21

aa
L22

k
ming{v
Lo — _ Lia k’k{kD}La (7.84)
Zk mknk{VD}
aa aa {leja} aa
L12 - L21 = L2 L11 (7-85>

b}

w _ L) L (L) ()
1% = i) ({x%} i) ) (7.86)

with the velocity space averages of the deflection frequency, v§, = >, v,
presented in Eqgs. (33a)-(33c) of [65] and L, = fin,J?*vZ, B2{v%}/ (2w (B?)).
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Upon comparing Eqs. (7.78)-(7.86) with the corresponding quantities used
within the NEO-2 model [see Eqgs. (7.1)-(7.8)] one arrives at the following
expressions for the modified dimensionless diffusive transport coefficients

Yo" = (B v + Fevins (7.87)

where 7£9¢ = —7,, (fC — 0)/(nep*?*{|V¥|)?) and, accordingly, 7! =
_7-66 mn(-ft - )/(nep 2 <|V¢|>2)> Wlth
ee,c ‘]2<B_2> Tee ( ei
71 = WT—W{% Tei} (7.88)
ee,c ee,c ‘]2 B_Z Tee ez
Ti2© = Vo1 = WT {o*v'r} (7.89)
ee,c J2<B_2> {x2V§eT€€}2 4 ee Tee 4 ei
Va2 = _2ﬁ2<va|>2 {veer. ) — {2V Tee } — T_ez{$ V' Tei }
F{rtvter ) + et + %{x%;l@} , (7.90)
and
eet ftJ2 {VD 7_65} + Tee {VDTW} (7 91)
WS SEme(vey 1+ k |
ee,t eet ftJ2 {xzyeDeTee} + TEG {l’ VDTGZ} (7 92)
Y12t = V21T = 2<BQ>1&2<|V1/)|>2 T+ R‘” .
ee,t ftJ2 |: 4 ee 4
’ = ~ X Tee + - Tez
22 2B (V|2 VD Tee } Tez{ VpTei}

(7.93)

2
(i o) gy
{vireet + 2{vpr}  (1+Rp)]J

respectively, and where the abbreviation

mene {Vph}
Wﬂni{VE}
{VD Tee) + e {VDTel}
= — = (7.94)
{VDTZG} + w{’/DTu}
has been used. Assuming quasi-neutrality, that is n. = Z;n;, the ratios
of the collision times, T../7.; as well as 7;./7;, can be substituted by Z;.
In the case of the standard tokamak J2/(|Vy|)? = (1 — €%)/e?, By = by,

(B72) = (24362 /[2(1 — €2)?], (B%) = (1 — €2)*2 and the trapped particle
fraction f; has been given in Eq. (7.26).

[ -
R% =
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7.3 Hinton-Hazeltine

The next neoclassical transport model to be addressed is the one obtained
by Hinton and Hazeltine. In Reference 60 the transport coefficients were
calculated (in the 13M-approximation) for large aspect ratio tokamaks in the
limit of low collision frequency employing the small mass-ratio approximation
for the unlike-species collision term Cyy [60].

The averaged radial electron flux, the averaged radial electron heat flux as
well as the average of the parallel current density were written as

4

Lo = > (01, ne)Ane (7.95)
q nZI
T = ;mz,gmmne (7.96)
() - S (05200 ) A (7.97)
T, h !
where <E||B>
Jjs = o B B (7.98)

defines the Spitzer current density and h = B /B. The thermodynamic
forces were defined as follows

0 T, 0
A, = —1 A Y .
le ag npe‘|‘ ZiTe (‘3@ np; (7 99)
0
Ay = —InT, 7.100
2 oo ™ (7.100)
_ BB
A3e = BO W, (7101)

with g being the effective minor radius coordinate which reduces to the usual
minor radius r in the large aspect ratio, circular cross section case [60].
The inner products

(s Gne) = </d3vamgne> , for m,n=1,2,3 (7.102)
are the electron transport coefficients,

2
(s ge) = Kb 20Pe0 g i n =12 (7.103)
Te
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(m, g3¢) = (A3, Gme) = Kf;ﬁel/Q%, for m=1,2 (7.104)
p0

(7.105)

satisfying the Onsager symmetry (v, gne) = (i, gme) and where the set of
dimensionless banana regime (that is the collisionality parameter v, — 0)
transport coefficients are functions of ion charge,

Kb = —0.73 <1+ 0;’) (7.106)
Kb = 1.10 (1+ 0;) (7.107)
Kb = —2.37 (1+0;3) (7.108)
Kb = —1.46 <1+ 0;7) (7.109)
Kb = 1'Z7i5 (7.110)
Kb = —1.46 <1+0§4). (7.111)

The Z; dependence is an approximate fit based on the Z; =1 and Z; — oo
results [60]. An approximate analytical expression for the Z; dependence of
the parallel conductivity is

nee>T, 0.46 -1
= 0.29 + —— . 7.112
i < T8+ Z,-) (7.112)
Here,
3 v m?
- eMe 7.113
T 16y/7 n; Z2e* In A ( )

is the electron collision time, By = B /(RoBrg)0x/0r is the effective
poloidal field magnitude and p2y = v, /QZ, = 2m.c*T./(e’B},), where x is
the poloidal flux, Brg is a representative value of the toroidal magnetic field
and B{™ is an arbitrarily chosen function normalizing the magnetic field. In
the case of the standard tokamak test configuration (cf. Appendix F) Brg
has been chosen to be %, from which it follows that B, = bEB(I)_IH, where
+ =dx/dy, 0Y/0r = Byr and € = /Ry has been used.

Recalling Eq. (7.6) the dimensionless diffusion coefficients may be expressed
as

’_)/’HH . Tee (Oém, gne)
mn - T T 95
ne  p?
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2
= —PDALK) (Zen)

Te p?
Z, eff

_ b
= K Zen), (7.114)

valid for m,n = 1,2. Here, 7./, has been replaced by Z.s and

2 2
1
Peo _ b0 _ 1 (7.115)

2 T p2 T 2.2
p Bgy %€

where B{™M = By, = by has been utilized. Making use of the fact that
As. = — BT, /(Bye) Az leads to

HH
'mMH _ 'HH . Tee By E
7m3 *’73771 - neplc BO e (&magSe)
\/EB(IJ{H b

_ YR gz
2 BpO m3( ff)

Krl;z?)(Zeff)

= —— fi =12 A1
AR or m=1, (7.116)

A comparison between Eqs. (7.97) and (7.101) as well as Eqs. (7.2) and (7.5)
yields the dimensionless conductivity coefficient

2
'HH __ Tee Te2 B(I){H Te 32
RCE _UZ g( By (a3’936>+50”<3>
T.o BHHN 2 .
- () b )
1 [ >
Y ez + Bz], 7.117
2Zeq K||(Zest) so(Zor) (5% ( )

where K corresponds to the bracketed denominator in Eq. (7.112).
Finally, to obtain the desired banana regime transport coefficients v the
v matrix has to be transformed as described at the end of Chapter 7.1

[see Egs. (7.50)-(7.55)].

Hinton and Hazeltine also presented an approximate analytical representation
for the transport coefficients expressing them as continuous functions of
collisionality [60]. The results were obtained by least-squares fits to the
following functions

1 /22 v,

Konn = Ko o . (7118
mn 1 + Amn/ Vxe -+ bmnV*e T bmn(l + Cmny*e€3/2) ( )
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valid for m or n = 1 or 2 and

1
Kopg = K
K m3 (1 + @mS\/ Ve + bm3V*e)(1 + CmSV*e€3/2> ’

for n = 3, respectively, and where v,, represents the electron collisionality

parameter
V2rBM 2Ry Zg
BpOUteTe€3/2 tvt676663/2 ‘

(7.119)

Vie = (7.120)
The values for the numerical coefficients K,g%(Z,»), i (Zi), bmn(Z;) and
¢mn(Z;) are listed in Table IIT of Reference 60 for Z; = 1,2 and 4. It has
to be noted that the coefficients K% do not exactly agree with the banana
regime (where v,, tends to zero) values K,  since they were calculated from
least-squares fits [60].

The electron transport coefficients have been defined as follows

2
—(a1,g1) = K11€1/2% (7.121)
Te
5 nep?
—(a1, g2¢) = (e, 01) = Klge”?% (7.122)
25 nep?
(a2, g10) = 50, 920) = 7 = (a1, 91.) = K22 (7.123)
—(1,g3) = Kyze?2E (7.124)
Bpo
o NeC
(02, g50) = (01, 95c) = Kose'’ (7.125)
p0
—(a3,93) = K33€1/2% (7.126)
from which one may derive that
HH _ Deff
mn men(Ea Zeﬂ"a V*e), for m,n = 1, 2, (7127)
and Konle. )
m3\€; Leffy Vxe
Tong = — e for m=12 (7.128)

respectively. The transport coefficient representing the electrical conductivity

reads
1

" 2K (Ze)
Equations (7.127)-(7.129) have to be compared with the NEO-2 results.

V5 [\/' Ks3(€, Zegr, Vie) — <B2>] (7.129)
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In Reference 66 finite aspect ratio modifications to the neoclassical transport
coefficients L, (for Z; = 1) in the limit of small collision frequency were
obtained by a combination of large and small aspect ratio limit results. The
coefficients are not in general exact and are restricted to the case of nearly
concentric circular flux surfaces. The elements of the transport matrix are

punm %pgg (1.12/€ — 0.62¢) (7.130)

[ — %pge (1.27\/€ — 0.77c) (7.131)

[Em %pge (2.64+/€ — 0.933¢) (7.132)

L ;”e (2.44+/c — 1.44c) (7.133)
0

[ CB”e (4.35y/€ — 1.85¢) (7.134)
0

5= = % (1.95/€ — 0.950¢) , (7.135)

where the O(y/€)-terms correspond to the v, — 0 limit presented above.
Thus, the dimensionless modified transport coefficients become

0.62

= o (L =1) - - (7.136)
A = A (Za=1)— (7.137)
T2 = Yan (Zew =1) — 02‘33 (7.138)
= W= 1)+ 5 (7.130)
Yoz = Yoz (Ze = 1) + % (7.140)
Yz = s (Zewr = 1) — 22;3?;) (7.141)

7.4 Sauter-Angioni

In References 38,61 (see also [62,63]) the neoclassical transport coefficients
have been calculated for general axisymmetric equilibria and arbitrary collision-
ality regime applying the full linearized collision operator. Their expressions
have been obtained by solving numerically the Fokker-Planck equation (using
an adjoint function formalism [67,68]) varying the trapped particle fraction,
the collisionality parameter and the effective ion charge. Finally, a set of
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formulas representing the transport coefficients has been proposed fitting
these code results.

The expressions which relate the thermodynamic fluxes to forces have been
written as

3
In=> LopAe, for m=123, (7.142)
n=1
where 1 4
X ge AX
L=T.—, ILh=——= 7.143
! do 2 T, do ( )
and

respectively. Here, I', and ¢, are the perpendicular electron particle and heat
fluxes, jj| is the total parallel electric current, j, is the Spitzer current and
A., are the driving forces,

1 dpe 1 dpz
A, = — + = 7.145
1(x) PR (7.145)
1 dT,
Ae(x) = & I (7.146)
E/B
Aes(x) = < <B'2>>. (7.147)

The driving force A3 can be expressed in terms of As [cf. Eq. (7.5)] yielding
Aes = —A3T,./(eBy). The elements of the transport matrix satisfy the Onsager
symmetry, that is L, = L¢ .

The diffusive transport coefficients in the low collisionality limit (e, — 0)
have been defined as follows [38]

2 2
e Ne Py dX — e
Lo = "2 () BSPE AL, (as)
Te 0
for m,n =1, 2, where
3 v m?
- eMe 14
K 16/7 n; Z2e* In A (7.149)

p, = v /Q2, = 2T,m.c*/(e’By) is the square of the poloidal gyroradius,
Byo = [BS(x)/1(x)](dx/dp) is the poloidal magnetic field, By is an arbi-
trarily chosen function normalizing the magnetic field, y is the poloidal flux
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and K¢, represents the dimensionless electron transport coefficients in the
banana regime,

K (ff) = —05Fu(ff) (7.150)
Kiy(f) = 0.75Fu(f) (7.151)
e 13 V2
Kso(f) = — (g + ﬁ) Fy(ff), (7.152)
with
0.9 1.9X2 16X  0.6X*
Fux) = (1 X - - 7.153
(%) ( +Z+o.5) 7105  Z705 Zto5 199
0.6 0.95X2  0.3X3  0.05X%
Fu(X) = (1 X - 154
12(X) ( +Z+0.5) Z+05  Z705  Z7o5 U15Y
0.11 0.08X2  0.03X3
Fn(X) = (1- 1
2(X) ( Z+0.5) 7105 Z+05 (7.155)
and
1—J
d __ t
fi=1- (B (B %)’ (7.156)

with f; being the trapped particle fraction. For the standard tokamak test
configuration defined in Appendix F.3.2 the function f; is approximated
using Eq. (7.26). Here, B{® = By = b is assumed producing the averaged

A

quantities (B2) = (1 — €2)3/2 and (B~2) = (2 + 3¢?)/[2(1 — €2)?], respectively.

Thus,
24/1 — €2
d—1_22— __ (1—f). 1
ft 2+3€2 ( ft) (7 57)

The function I corresponds to the quantity J in Appendix F [see Eq. (F.45)].
After applying d/dx = (1/¢)d/dvy, (|VY|)d/dy = d/dr, ¢ = r, using Egs.
(7.1)-(7.5) and by means of

L L LE
Ln(r) = 572 s Aot (1) + e Ao (1) + 2B As(r),  (7.158
) #(|Vil)? 1) #(|Vyl)? A7) (Vi) o), (7158)
for m = 1,2 one may infer that
‘e,AS Tee Lo
S = 1

from which it follows that, by substituting Eq. (7.148),

2
e Tee e H— e
i = =T (L) (B2 g ) (7.160)
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The ratio of the collision times has to be replaced by Z.g, and the ratio of
the Larmor radii reads

2 2 2

pep) by  1—c¢

(_p ) -5 = (7.161)
p

where, for the standard tokamak case,

B _t%b_O_Lb
T e

has been substituted (noting that J = %y Rov/'1 — €2). Therefore, the diffusion
coefficients in the collisionless limit become

/ Z T (2 + 362)
e,AS __ € e d _
Yo = T3 e 62)/Cmn( ), for m,n=1,2. (7.163)

(7.162)

For arbitrary collisionality regimes Angioni and Sauter proposed for the
dimensionless transport coefficients the following expressions [38]

K& (fve) = Hf (7.164)
e e 5 e

Kl?(ftda Ver) = 127 57 (7.165)
e d e e 25 e

Koa(fi'ves) = Hip = 5Hiy + - Hiy, (7.166)

with
o (8, Ve = 0)
1 + amn<Z)\/Vef* + bmn(Z>Vef*
- dmn<Z)(ftd)3[1 + (ftd)ﬁ]’/ef*
L+ con(Z)(FE 1L+ (f)6]vess

where Fpg =1 —1/((B?*){B~?)), the collisionality parameter

Hinn(ftd’ Ve*) =

Fps, (7.167)

18 aneZeff hl Ae

Voo = 6.921 - 10~ T

(7.168)
where ¢ is the safety factor, the density is given in m~2 and the temperature in

eV, respectively and v, s = ve./(1+7f7) is a rescaled collisionality parameter.
Here, Eq. (7.168) may be converted to

. \/§R0 Zeﬁ

Ve Ton€3/2

(7.169)

Vex
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The coefficients HEY for m,n = 1,2 are given by

MY = K5 () (7.170)
€ e 5 [+

ngo) = ’C12(ftd) + §’C11(ftd) (7-171)
e e e 25 e

H2(20) - ’C22(ftd) + 5K12(ftd) + I’Cn(ftd)a (7-172>

where the functions @, (2), bypn(Z), ¢mn(Z) and d,,,(Z) can be found in
Appendix B of Reference 38.

The calculation of the neoclassical conductivity and the bootstrap current has
been presented in Reference 61 where the flux surface averaged total parallel
current has been given by the relation

<]|IB> = Uneo<E||B> - ](X)pe [[’glAel (X) + ‘C§2Ae2(X)] 5 (7173)

which can be rewritten as

1 - UneoTe >
—E<JHB> = 2 (B?) As(r)
InT,

T B (V)

(L5 A1 (1) + L5 Aea(r)], (7.174)

yielding the dimensionless electron transport coefficients

fy/AS _ Tee IneTe e
3n Nelep eBot(|Vap]) 2"
J
= —— - _r¢
2(|V[)

)

- e, for n=1,2 (7.175)
2¢€
as well as
'AS Tee Oneole 2
= — B
Y33 nelg e2 < >

. OSp <BQ>Teme Oneo

ne€?7..21,  ogp
196 (BY)  Oue
2 ZeffN<Zeff)) O'Sp ’

(7.176)
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where
T.[eV]3/? 1
= 1.9012-10* = 101 1
Osp 90 0 Zoa N (Zex) lnAe[m ] (7.177)
N2,
= 19— 1
96ZeffN(Zeﬂ>me7 (7 78)

and N(Z) = 0.58 4+ 0.74/(0.76 + Z) has been applied, respectively. The
functions £§, and the ratio 0ye0/0s, represent analytical fits to code results
(for details see Reference 61) and have the following form

14 1.9
£ = Bu(X = fih) = (1 ; —) x - 10 x

Z+1 Z+1
0.3 0.2
—= X34 ———_Xx? 7.179
+Z +1 + Z4+1 7 ( )
L) = Fap o X = o) + Fro (Y = fir™), (7.180)
with
0.05 + 0.627 W X2 Xt 12(X3 - XY
Fyp X)) = —2 222 x _x
(X)) = Za T 0mz) )+ 110227
1.2
x4 7.181
105z (7.181)
0.56 + 1.93Z 495[Y2 — Y4 — 0.55(Y3 — Y]
Fy (V) = —— 22902y ya
s2-ei(Y) 715 0412)" )+ 1 +2.482
1.2
" y4 7.182
14052 (7.182)
and
o 0.36 0.59 0.23
o po(X = By =1- (142X X2 2223 (7183
2 (X = ) =1- (1450 ) X+ 22X - 20, (asy)
as well as
et (Vex) = ) o (7.184)
1+ (0.55 — 0.1f,)\/Wer + 0.45(1 — fi)ven /27
31 ft
ex) — 7185
wtlVer) = T T 007 v + 050 = f)ves o (7.185)
32_ee ft
) = 7.186
et (Ver) 1+ 0.26(1 — f1)/Ver + 0.18(1 — 0.37,)Ver //Zot (7.186)
82el(1y,) = Ji (7.187)

1+ (1+ 0.6f,)\/er + 0.85(1 — 0.37f)ver(1 + Zogt)
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In the collisionless limit (v, — 0), these functions reduce to the trapped
particle fraction f; [61], that is f3k = f3%° = f3%° = £33, = f,.

Finally, the transport matrix to be compared with NEO-2 results is obtained
upon a transformation according to Egs. (7.50)-(7.55).

7.5 Numerical results

In this section, the dimensionless electron transport coefficients v, are calcu-
lated for a large aspect ratio tokamak (e = 0.05 and + = 0.52) with concentric
circular flux surfaces (see Appendix F).

The numerical values of the transport coefficients obtained from the analytical
models presented in the previous sections are valid in the collisionless limit
(Vex — 0) and for Zeg = 1 and are collected in Table 7.1 together with the NEO-
2 results. The NEO-2 results have been evaluated at the collisionality L./l =
27 Ry /(VieTee) = 107% using five Laguerre and four Legendre polynomials,
respectively. The computation accuracy of the transport coefficients improves
with both, grid resolution and (mainly) number of Laguerre polynomials in
modeling energy dependence.

Table 7.1: Transport matrix 75, in the collisionless limit: NEO-2 results vs.
analytical results presented in the literature (for Z.g = 1)

NEO-2  Bal Hir HH HH,.q SA

vi1 | 366.56 311.74 310.48 370.06 324.20 312.15
vie | 304.12  337.17 337.17 413.59 356.64 337.85
vo1 | 340.31 337.17 337.17 413.59 356.64 337.85
Yoo | 839.48 805.78 829.66 879.18 810.17 809.04

—m3 | 8.96 8.54 10.50 9.12 8.75
—31 | 8.56 8.54 8.52 10.50 9.12 8.75
—ve3 | 17.13  16.55 18.73  16.95  17.56

—v32 | 1697  16.55 16.46 1873 16.95  17.56
—v33 | 0.613  0.615 0.614 0.547  0.593  0.600

The NEO-2 results for the transport matrix are in very reasonable agreement
with results calculated by the formulas given in previous sections. The main
differences arise from the collision operator (Balescu, Hirshman) as well
as from using large aspect ratio expressions (Hinton and Hazeltine) and,
respectively, from the fact that the results have been fitted with respect to
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trapped particle fraction (that is to the aspect ratio), collisionality parameter
and effective charge (Sauter et al.).

The results for the transport coefficients as a function of the collisionality
parameter L./l. and for the effective charge number Z.g = 1,2 and 4 are
shown in Chapter 8 (see Figures 8.1-8.6) noting that the relation between the
collisionality parameters is given by

2Ry Z. Zug Lo
_ V2RoZer _ il (7.188)

Veyx = = —_—.
“)teTeeeg/Q \/§7Tt63/2 lc







Chapter 8

Computational results for a
standard tokamak

In this chapter the computational results for a standard tokamak with circular
cross section (see Appendix F) obtained by the NEO-2 code are presented.
It has to be noted that these results have meanwhile been published in the
following refereed journal articles:

e Recent progress in NEO-2 - A code for neoclassical transport computa-
tions based on field line tracing
W. Kernbichler, S. V. Kasilov, G. O. Leitold, V. V. Nemov and K. All-
maier, Plasma and Fusion Research 3, S1061 (2008)

o (leneralized Spitzer Function with Finite Collisionality in Toroidal Plas-
mas
W. Kernbichler, S. V. Kasilov, G. O. Leitold, V. V. Nemov and N. B.
Marushchenko, Contrib. Plasma Phys. 50, 761 (2010)

The neoclassical electron transport coefficients are compared to the analytical
results in the axisymmetric limit obtained by Hinton and Hazeltine and by
Angioni and Sauter, respectively. The Hinton-Hazeltine results have been
calculated using a small mass-ratio approximation for the unlike-species colli-
sion operator and are valid for large aspect ratio and all collisionalities [60]
whereas the Angioni-Sauter results have been computed for all aspect ratios
and collisionalities applying a full linearized collision operator [38,61]. Fur-
thermore, the generalized Spitzer function taking into account finite plasma
collisionality is computed by NEO-2 and is compared to the collisionless
approximation computed by the SYNCH code [69].

At the beginning the drift kinetic equation (DKE) solver NEO-2 is briefly
described.

131
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8.1 NEO-2 code

The code NEO-2 is a solver for the DKE in the case of negligible small
E x B drift which is based on the method of field line tracing. Originally,
it was developed to compute monoenergetic transport coefficients (that is,
only the Lorentz collision operator was implemented) with the special aim of
good convergence in low collisionality regimes. This is accomplished through
adaptive level placement over the normalized magnetic moment 7. With
this adaptive placement NEO-2 effectively resolves steep behavior of the
distribution function f at the trapped passing boundary. In this context
NEO-2 has been extensively benchmarked with DKES [70, 71] and various
Monte Carlo codes [26,72,73].

In addition, NEO-2 can also use the full linearized collision operator including
energy diffusion and momentum conserving integral response of the back-
ground particles. This has been managed by a transformation of DKE to a
set of coupled ordinary differential equations (see Chapter 3.1) with respect
to the parallel variable (distance counted along the field line) presenting
energy dependence of the distribution function in the form of an expansion
over associated Laguerre polynomials and discretizing dependence of the
expansion coefficients on the normalized magnetic moment on the adaptive
non-equidistant grid.

In NEO-2 the perpendicular (cross field) rotation of the plasma within the flux
surface (which is mainly in the poloidal direction), in particular the rotation
due to the radial electric field is ignored in the DKE. This limits its usage in
the computation of neoclassical transport data base entries for monoenergetic
transport coefficients. For ECCD computations, however, radial electric fields
play practically no role and therefore NEO-2 is not limited to certain regimes.
At the moment, a non-relativistic collision operator is used, but this is not an
intrinsic limitation and can be improved during further development.
Presently, the main limitation is the speed of the code which restricts practical
usage to tokamak problems. This limitation is caused by the stiffness of
the ODE set resulting from the discretization of the DKE over normalized
magnetic moment 7 and momentum module. Namely, the usual Runge-Kutta
ODE solver used up to now in NEO-2 needs an extremely small integration
step along the field line which is orders of magnitude smaller than the scale
of the solution. Partly such stiffness is present already in mono-energetic
computations due to the n-grid refinement in the trapped-passing boundary
layer (and transition layers between different classes of trapped particles in
the case of stellarators). This stiffness significantly increases in computations
with the full linearized collision operator because there one formally has to
solve simultaneously the problem for different energies (and, respectively,
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different collisionalities) using the same grid over 1 which results in excessive
grid density for low energies. This technical problem should be resolved
in future with implementation of an exponential integrator instead of the
usual ODE solver. An additional independent possibility to speed up the
computations is parallelization of the code. A parallel version of the code is
possible since the DKE is actually solved in NEO-2 on portions of the field
line (propagators) which are treated independently from each other and can
be distributed between the processors. Such independent solutions are then
linked together at the very end of the computation giving the final solution.
These improvements should make the code suitable also for computations of
the generalized Spitzer function in stellarators.

The code SYNCH [69] computes the generalized Spitzer function and its
derivatives in the long mean free path regime in general toroidal geometry
and all types of flux coordinates. Therefore it is suitable for tokamaks as
well as stellarators, only the magnetic field module B and the Jacobian /g
must be provided by the user. It is a fully relativistic code [it does not use
the “weakly relativistic” expansion over T'/(m.c?)| that has been originally
developed for studies of passive cyclotron current drive in tokamaks [69] and
has recently been upgraded to general geometry. In the context of this work
SYNCH is used to compute the reference cases for the collisionless limit.

8.2 Neoclassical transport matrix

For a large aspect ratio tokamak with circular flux surfaces the coefficients ;.
computed by NEO-2 are compared to the analytical results of References 38,60,
61. In particular, the dimensionless transport coefficients for the Hinton and
Hazeltine model [60], 7/i", are given by i = Kijq2€t_3/2Zeff fori,5 = 1,2,
VI = Kyqe, /2 fori=1,2and j=3 ori=3and j = 1,2,

Kse,”” — (B?)
2705 [0.29 + 046 (1.08 + Zog) ']

Vas = (8.1)

and the matrix K;; is defined by Eqgs. (6.125) and (6.126) of Reference 60. Here
q is the safety factor and ¢, = /R is the inverse aspect ratio. The results of the
comparison are presented in Figs. 8.1 to 8.6 for + = 1/¢ = 0.362 and ¢, = 0.075.
The results of NEO-2 are computed with associated Laguerre polynomials up
to fourth order and Legendre polynomials up to third order. For all coefficients
the dependence on collisionality as well as Z.g is well reproduced. The main
differences come from the finite toroidicity. Whereas NEO-2 does not assume
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smallness of the magnetic field modulation, theoretical approximations are
based on the expansion over ¢;. It should be noted that in NEO-2 all nine
transport coefficients are computed independently and Onsager symmetry
of these coefficients is used for the control of the computation accuracy
which improves with both, grid resolution and (mainly) number of Laguerre
polynomials in modeling energy dependence (see Figs. 8.10 to 8.12). For
the present computation violation of symmetries 13 = 31 and 93 = 735 is
around 1% and violation of symmetry 75 = 721 is around 10%.

Beside the full linearized collision operator, two different model operators
are used in Figs. 8.7 to 8.9 , namely, the mono-energetic collision model and
mono-energetic collision model with momentum recovery. Last two models
are obtained by putting in Eq. (3.26) D, = Iﬁfzn, =0 or only D,,,» = 0,
respectively. In particular, the mono-energetic model here corresponds to the
most common mono-energetic approach where transport coefficients are given
by the convolution over energy of the results for the Lorentz model. It can be
seen that mono-energetic model overestimates particle diffusion coefficient 7y,
while mono-energetic model with momentum recovery underestimates this
coefficient as compared to the full linearized collision model. The bootstrap
coefficient 731, in turn, is underestimated by the mono-energetic model while
the mono-energetic model with momentum recovery overestimates it. Finally,
conductivity coefficient is well reproduced by the mono-energetic model while
the mono-energetic model with momentum recovery significantly overestimates
it. Differences between all three models are naturally reduced with higher Z.g.
Currently NEO-2 has been and is being used for the benchmarking of various
methods for the computation of mono-energetic transport coefficients and
bootstrap coefficient [72,74] as well as momentum correction techniques [73,
75].
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Figure 8.1: Results of NEO-2 with full linearized collision operator (F)
and analytical models of Ref. 60 (HH) and Refs. 38 and 61 (AS) for the
dimensionless diffusion coefficient 7;; at three values of the effective charge
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Figure 8.2: The same as in Fig.8.1 for 7,.
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Figure 8.7: Dimensionless particle diffusion coefficient ~;; for the full linearized
collision operator (F), mono-energetic approach (L) and mono-energetic
approach with momentum recovery (M).
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Figure 8.8: The same as in Fig. 8.7 for the bootstrap coefficient —vs3;
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Figure 8.9: The same as in Fig. 8.7 for the conductivity coefficient —~33

10
WE--—-—---------°2 ::::::::\ B
s
= ~
N
- A
& N
- N
~ A
> N
3 — \\
——F ¥ Ze™L N
F: N\
10°H Yom O . i
—HH N\
F: Yinn ZeH:z \ N
F: Yom \\ N
AN
HH LY
-k Yinn Zeﬂ:4
F: Yom
~ — -HH
10" T I I I I I I
10° 107 10° 10° 10 10° 10” 10" 10°

Figure 8.10: Onsager symmetry for the coefficients v and 791, respectively.



140 CHAPTER 8. COMPUTATIONAL RESULTS

12

V130 Ve

Figure 8.11: Onsager symmetry for the coefficients —v;3 and —~s;, respec-
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Figure 8.12: Onsager symmetry for the coefficients —vo3 and —~39, respec-
tively.
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8.3 Generalized Spitzer function

The resulting generalized Spitzer function has specific features which are
pertinent to the finite plasma collisionality [43,76]. They are absent in
asymptotic (collisionless or highly collisional) regimes or in results drawn from
interpolation between asymptotic limits. These features have the potential to
improve the overall ECCD efficiency if one optimizes the microwave beam
launch scenarios accordingly.

To illustrate the difference between collisional and collisionless cases, the
generalized Spitzer function g and its derivatives dg/dv., 0g/0v) are presented
as functions of the pitch-angle parameter A = v /v. All computations were
done for a circular tokamak (see Appendix F) with major radius Ry =
100 cm, minor radius r = 25 cm (A = 4), rotational transform + = 0.52,
electron density n. = 6.65 - 10'3 cm™3, electron temperature 7, = 1 keV.
These parameters result in collisionality 2rqR/ (lspef / %) = 0.257. For NEO-2
computations the number of Laguerre polynomials was 6.

To highlight the different aspects of the influence of collisions on g, results
are presented for four different positions on the flux surface, namely B,
(outer side), Bq, (inner side), top and bottom. Velocities correspond ap-
proximately to the following important transport regimes: (i) Pfirsch-Schliiter
regime, v = 0.5v; (sub-thermal); (ii) plateau regime, v = v; (thermal); banana
regime, v = 2v; (intermediate); and deep banana regime, v = 3v; (fast). Here,
vy = +/2T./m, is the thermal velocity. Overall one sees good convergence
to asymptotic limits and various collisional results which are mainly caused
by a combination of the magnetic mirroring force and collisional detrapping
processes. Since the adjoint generalized Spitzer function has a simple physical
meaning - this is the amount of parallel current produced by a point particle
source at given location in the momentum space - further on the function g
is discussed in terms of particle motion in the phase space.

Minimum B point: Figure 8.13 presents the transition from sub-thermal
to fast particles at the B,,;, point. One can clearly observe how collisional
detrapping of particles results in current generation even from particles origi-
nally situated in the trapped region. These phenomenon gradually disappears
with increasing velocity and results finally converge to the collisionless limit.
Since the derivative of g with respect to the perpendicular velocity v, is
most important for ECCD, examples for dg/0v, are given in the thermal
and intermediate velocity ranges, respectively, in Figure 8.14.

Maximum B point: Figure 8.15 shows a fundamental difference between
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Figure 8.13: Generalized Spitzer function, g, vs. pitch parameter, A, at
the B, point for v = 0.5v; (top), v = v; (middle) and v = 3v; (bottom),
respectively. Results from NEO-2 (red) are compared to the collisionless limit
computed by SYNCH (blue).
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Figure 8.14: Perpendicular derivative of the generalized Spitzer function,
0g/0vy, vs. pitch parameter, A\, at the B,,;, point for v = v, (top) and
v = 2v; (bottom), respectively. Results from NEO-2 (red) are compared to
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the collisionless limit computed by SYNCH (blue).
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Figure 8.15: Generalized Spitzer function, g, vs. pitch parameter, A, at
the By point for v = 0.5v; (top), v = vy (middle) and v = 3v; (bottom),
respectively. Results from NEO-2 (red) are compared to the collisionless limit
computed by SYNCH (blue).
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collisional and collisionless cases in the range of small values of the pitch
parameter A. In results from NEO-2 the functional dependence of g at small
pitch values is similar to a cubic root. This is in contrast to results in the col-
lisionless case where this dependence is closer to a cubic parabola. This rapid
increase of g from NEO-2 at small pitch values is connected with acceleration
of electrons by the magnetic mirror force. Very slow electrons starting from
the top of the hill at B,,., are accelerated by the magnetic mirroring force
towards B,,.,. The velocity at B, is almost independent on differences
in small starting velocities, but is mainly determined by the change of the
magnetic potential energy thus resulting in roughly the same final values.
During this process of acceleration, collisions move half of those electrons
deeper into the passing region so that they are not decelerated back to the
starting velocity when approaching the field maximum for the next time, thus
producing a finite time averaged net current before their distribution becomes
a Maxwellian. Of course, this behavior is more pronounced in sub-thermal
and thermal regimes but it is still present in LMFP regimes in a small vicinity
of v = 0. Further away from v = 0, NEO-2 curves tend to a cubic parabola
similar to the collisionless approach (SYNCH). Because of the importance for
ECCD computations, again examples for dg/0v, are given in the thermal
and intermediate velocity ranges, respectively, in Figure 8.16.

Top and bottom points: It can be seen from Figure 8.17 that antisym-
metry of the generalized Spitzer function g pertinent to asymptotic regimes
and to magnetic field extrema is not existing anymore since particles starting
from the trapped region tend to produce the current flow in the direction of
the magnetic field minimum. The sign of this current depends on the position
of the source (the sign of such a current produced by a source at the top of
the flux surface is opposite to the sign of the current from a source at the
bottom). As pointed out in Reference 77, this feature allows to generate cur-
rents by waves with a symmetric spectrum introducing up-down asymmetry
of the microwave radiation. This behavior is again the result of the magnetic
mirroring force. Particles starting within the loss cone are accelerated (or
decelerated) by this force so that, independent on their initial velocity, all
of them finally have the same velocity sign at the magnetic field minimum
point. They, however, might not reach the next maximum as trapped ones
because they can be detrapped by collisions and will continue as passing ones,
thus producing a net time averaged current until their distribution becomes
a Maxwellian due to collisions. At higher velocities where electrons are in the
banana regime, such a behavior is preserved only for trapped electrons close to
the trapped passing boundary. Actually, the above feature is responsible also
for the bootstrap effect [77] where the source term (gradient drive) possesses
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Figure 8.16: Perpendicular derivative of the generalized Spitzer function,
dg/0vy, vs. pitch parameter, A, at the B,,,, point for v = v; (top) and
v = 2v; (bottom), respectively. Results from NEO-2 (red) are compared to

the collisionless limit computed by SYNCH (blue).
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Figure 8.17: Generalized Spitzer function, g, vs. pitch parameter, A, at the
top (dashed) and bottom points (dotted) for v = 0.5v; (top), v = v; (middle)
and v = 2v; (bottom), respectively. Results from NEO-2 (red) are compared
to the collisionless limit computed by SYNCH (blue).
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Figure 8.18: Perpendicular derivative of the generalized Spitzer function,
dg/dvy, vs. pitch parameter, A, at the top (dashed) and bottom points
(dotted) for v = v; (top) and v = 2v; (bottom), respectively. Results from
NEO-2 (red) are compared to the collisionless limit computed by SYNCH

(blue).
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Figure 8.19: Parallel derivative of the generalized Spitzer function, dg/0v,
vs. pitch parameter, A, at the top (dashed) and bottom points (dotted) for
v =1, (top) and v = 2v; (bottom), respectively. Results from NEO-2 (red)
are compared to the collisionless limit computed by SYNCH (blue).
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a natural up-down antisymmetry.

Formally, the loss of asymmetry of the Spitzer function in regimes with finite
plasma collisionality can be seen from Eq. (4.2) where the first term on the
left hand side (dynamic operator) and the second term (collision operator)
have different parity properties with respect to the parallel velocity. While
the collision operator conserves parity of the solution, the dynamic operator
changes parity to the opposite. The sum of these operators has no definite
parity which results in solutions without a definite parity. However, for either
very high or very low collisionality the dynamic operator is either small or
plays no role for the largest, bounce averaged part of the solution. As a result,
in these limiting cases the solution has the same parity as the right hand side
of Eq. (4.2), i.e. it is antisymmetric. At the same time, in a tokamak with
up-down symmetry the left hand side of Eq. (4.2) preserves exactly a more
general parity - parity with respect to simultaneous change of the sign of
parallel velocity and of the poloidal angle. This can be seen from Figure 8.17.
Such a behavior of the generalized Spitzer function g suggests a “naive”
recommendation for the choice between the upper and the lower deposition
points: One should choose the position of the source at the flux surface in
such a way that the desired direction of the electron flow velocity (which
determines the sign of parallel phase velocity of the microwaves in the case of
ECCD) at the position of the source is towards the magnetic field minimum.
In such a case the mirror force would serve to increase the current. However,
this recommendation would be correct for a beam-like source in velocity space
which does not change the sign. In the case of a ECCD source where there
is a change in sign (its velocity space integral is actually zero), mainly the
perpendicular derivative of g determines the effect, and, as it can be seen from
Figure 8.18, there is no general trend for this derivative. For slow particles
this trend is the same as for g but for fast particles the trend changes to the
opposite. Since the resonant line in velocity space goes through regions with
different values of the velocity module, the conclusion about the role of the
mirror force in such cases can be drawn only from direct calculations of the
ECCD current with a quasilinear source computed by a ray-tracing code.
(In Reference 77 where the basic idea of driving the current by waves with a
symmetric spectrum has been presented, a model expression for this source
has been used where the velocity dependence of the quasilinear diffusion
coefficient has been only due to the finite Larmor radius effect, while the
resonance condition has been omitted.)

These calculations must naturally include also the parallel derivative of g (see
Figure 8.19) which usually makes a smaller contribution than the perpen-
dicular one, but its role increases if the Ohkawa effect becomes significant.
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(There, the orientation of RF-diffusion lines with respect to this boundary
is of importance, and these lines cannot be truncated to v = const lines.)
Such calculations with the help of a combination of the code NEO-2 and the
ray-tracing code TRAVIS have been started recently [40].






Chapter 9

Conclusion

In this work a detailed calculation of the moments of the full linearized
collision operator (collision matrix elements) has been presented. These
matrix elements are employed in the drift kinetic equation solver NEO-2
for the computation of the full neoclassical transport matrix and of the
generalized Spitzer function with finite collisionality in toroidal plasmas.

In order to check the accuracy the collision matrix elements have been applied
to calculate the collisional Spitzer conductivity. The results show good
agreement with the “exact” numerical results of Spitzer and Harm.

As an application of the matrix elements the NEO-2 code has been used
to evaluate the full electron transport matrix (nine coefficients) assuming
stationary ions for the standard tokamak with circular cross section. The
results are in good agreement with results of analytical theory widely used in
the literature. Furthermore, effects of simplifications of the linearized collision
model (e.g., reduction to a Lorentz model) have been studied in order to
provide a comparison with various momentum correction techniques used for
the computation of transport coefficients in stellarators. Contrary to DKE
solvers which use momentum correction techniques, the implementation of
the full collision operator in NEO-2 has been done directly at the level of
the drift kinetic equation. Thus, the NEO-2 code can calculate the complete
local solution along the magnetic field line.

Moreover, the NEO-2 code has been applied to compute the generalized
Spitzer function in the standard tokamak. This work has concentrated on
the basic features of the generalized Spitzer function which is one of the
main elements in computations of ECCD efficiency and total ECCD current
in confinement regimes with finite plasma collisionality. It has been found
that in regimes where the collisional detrapping time is comparable to the
bounce time, particle acceleration due to the magnetic mirroring force plays an
important role in the generation of plasma current from ECCD. In particular,

153



154 CHAPTER 9. CONCLUSION

due to this mirroring force, there is a significant difference between upper
and lower electron cyclotron resonance zones on a given flux surface in the
efficiency of current drive in given toroidal direction. In tokamaks, effects
of finite collisionality are important only in the plateau regime and at the
beginning of the LMFP regime. For stellarators however, these effects extend
further into the LMFP regime because the length of a trapped orbit becomes
rather large (many toroidal turns) when approaching the trapped-passing
boundary. The reflection points of such an orbit in a stellarator are close to
the position of the global magnetic field maximum which is located in one
point on the flux surface. In contrast, in a tokamak only one poloidal turn is
needed to connect field maxima resulting in much shorter trapped orbits.
The code NEO-2 turns out to be a valuable DKE-solver for ECCD problems
because of the unique feature that the full linearized collision operator can be
used locally. Thus the full 3D (4D) problem of local current drive efficiency
can be tackled in tokamaks (stellarators). At the moment however, usage
is only possible for tokamak problems due to limited speed of the code. A
substantial speed-up of the code is possible with improvements of the ODE-
solver and code parallelization. Such improvements are in development. Any
usage for stellarators is only possible after such a speed-up. At the moment,
such a first principle solver can be used to check approximate models and
identify improvement possibilities for ECCD efficiency. Thorough studies
including ray tracing simulations have to follow this study to provide a better
insight into the topic. For this purpose, the coupling of the kinetic equation
solver NEO-2 and ray-tracing code TRAVIS has been performed. Preliminary
results on this topic have been presented in Reference 40.



Appendix A

Complete set of orthonormal
functions

In transport theory polynomial expansions of the distribution function have
been widely used for the kinetic equation. The distribution function could be
expanded in any complete set of orthogonal functions, however, it turned out
that associated Laguerre polynomials [29] (also called Sonine polynomials) are
especially suited for transport theory problems (see, e.g., [22,78-80]). Below,
two sets of orthonormal functions used in this work, namely the test functions
©m as well as the Burnett functions, are briefly described. In the test function
basis only the radial (velocity dependent) part of the perturbation of the
distribution function is expanded, wheres in the Burnett basis the angular
(pitch-angle dependent) part is expanded as well.

A.1 -basis

The scalar product of arbitrary functions «(v) and [(v) is defined by the
equation

(o, B) = 12 /dvv4fso(v)a(v)ﬁ(v), (A.1)

NgVig

which, upon introducing the normalized speed x = v/v;5 and substituting the
Maxwellian foo(1), ) = ng/(73/2v3,)e™*", can thus be rewritten as

(a, B) = #/dxeﬁx‘la(w)ﬁ(x). (A.2)
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The countable set of test functions {¢,,(x)} employed in this work to calculate
the collision matrix elements is defined by

_ (3/2) (.2
om(r) = —=—L x7), A3
with radial index m = 0,1, 2, ..., and where LB is an associated Laguerre

polynomial of order 3/2. The normalization factor h,, = I'(m + 5/2)/(2m!)
has been chosen such that the scalar product of ¢, by ¢, is orthonormal,
that is

(s omt) = — / Q00 o (@) (@) oy (2)
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where the orthogonality of the associated Laguerre polynomials,
/ dre= gL (2 [/ (g2) - T T h 2 5. (AS)
m m 2m! e '

0

has been applied [47].

This set of test functions constitutes a complete set of functions (or basis) if
an arbitrary function G(\, z) can be expressed in one and only one way in
terms of ¢,,. Hence,

GO2) = 3 gn(N)om(a). (A.6)

From Eqgs. (A.1) and (A.4) it follows that

1 o0
((pm7G) = 2 /dvv4f50@mG

NgVig
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o

= ng, / dvv* fioomPm

5 S

= ng’dmm/

= gm()‘) ) (A.7)

that is, the expansion coefficient g, of G on ¢, is therefore equal to the
scalar product of G by .

The closure relation is obtained by replacing the components g, in Eq. (A.6)
by (¢m, G),

G(x) = D gmpm(z)
= Z(SOm;G)QOm('T)

m

— Znsvt /dv V" foo(2')om ()G () pm ()

=§Z£/M”%o )G o)

— /da; x’4G Vis fso Z O (") o ( (A.8)
0

where the A dependence has been suppressed for clarity. From Eq. (A.8) the
closure relation can be deduced to be

3
v S
n—:x’4fs Z Om( =0(z —2'), (A.9)
where (x — 2’) is Dirac’s delta function. This relation expresses the fact that
the set {¢@,,(z)} constitutes a basis.

The collision matrix elements of the Coulomb operator Cy, (see Appendix B)
are defined as follows,

1

navta

(m|Caslipm) = /MM%MMU (@) (A10)
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A.2 Burnett basis

In kinetic theory an extensively used complete set of orthonormal functions is
the so-called Burnett basis (see, e.g., References 37,78,81-84). Generally, the
Burnett functions, Bff), are products of associated Laguerre polynomials and
spherical harmonics but for problems with azimuthal symmetry (which has
been assumed throughout this work) the spherical harmonics can be replaced

by Legendre polynomials. Thus, the Burnett functions are represented by
BY (N x) = 2" L2 (a?) P() (A.11)

where the radial index n = 0,1,2,..., and the polar index ¢ = 0,1,2,...,
respectively. The Legendre polynomials P, form a set of orthogonal functions,

that is
1

/ APV Po(A) =

-1

2
20+1

S (A.12)

Upon introducing the factor

o 2 T(l+n+3/2)

T4l 2mnl (A.13)
the normalized Burnett functions
B
b = : (A.14)
Vs
allows the orthonormality relation to be expressed as
omn /d31) bg)bfﬁ/)fso = 5ggl(57mf. (A15>

Here, the scalar product is defined by

alp) = — /d?’vfso(v)a(v,)\)ﬁ(v,)\)

2mng

1 0
1
= — dA dUUQfSQ(U)CY(U7/\)6(U7/\)
o]

1 0o
= #/d)\/dxe_ﬁﬁa(x, N)B(x, N), (A.16)
100
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where the differential velocity space volume element d3v = v2dvdAdyp has been
used. Combining the last two equations allows the orthonormality relation to
be rewritten as

For the case when integrations with respect to pitch-angle A and to normalized
speed z can be performed independently it might be useful to factor the scalar
product {«|f3) into a pitch-angle part and a component regarding normalized
speed. That is to say, providing that

alz,\) = a(N)A(x) (A.18)
Blx,\) = b\)B(z), (A.19)

the scalar product is thus given as
(a]B) = (alb)x(A|B)., (A.20)

where the relations

1
{alb), = %/dﬂab
1

_ / Aa(\b(N), (A.21)

-1

and
(AIB), = ni / dvv? fo(v) A(v) B(0) (A.22)
_ # / dze 22 A(x) B(x). (A.23)

indicate the angular and radial scalar products, respectively. The expansion
of an arbitrary function Q(\, z) on the Burnett basis is written as

Q) = 3 O, ), (A.24)
In

from which it follows, by inspecting Eq. (A.16) and making use of Eq. (A.17),
that

1

2mng

BO1Q) =

/ a® vb O (N, 2)Q(N, ) foo ()
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_ 3
= o [ P
! ]_ /
- >l | B0
2mng

g/ ’

_ Z ¢ Oy
= Z qn/ 5%’ 5nn’
on!

= q7, (A.25)

where the expansion coefficients q,(f) sometimes are called Burnett moments

[37]. Substituting the coefficients gt = <b,(f ) |@) into the expansion of function

Q,
QA z) = Y ¢\
ln

Z( D10 (@)

Z /d)\,/dv/ /2][80
In ns

xbﬁf (N, zYQN, 2 )b (N, x)

1 o)
= /d)\’/dx’x'QQ(X,x’)
10

3 /
Vs fso(2) YN0
—_ E by (A b, (A A.26
X n n ( ’x) n ( 7'7;)7 ( )

s
n

yields the closure relation for the Burnett function basis, namely

Utsfs() Z b b ©) )\ 1‘) 1 5(1; —x )5(/\ — /\,) (A27>

2

The test functions ¢, can be expressed in terms of the Burnett functions
basis as

1 e )

om(z) = /d)\//da:’xagom( )%5(x—x’)(5()\—)\')

-1 0
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_ d/\ da’ 12 'UtsfSO( ) b(é) )\/ b(() A
/ /xwm TSSO, a0, )

s In
= D BN 2) (pmlb)
In

b(f)

- ;\/hw
(0)
— 22 B

where Egs. (A.21) and (A.22) along with Eq. (A.12) have been applied and
the abbreviation p{) = z¢L{ /2 (2?) has been introduced. In Chap. 5.3.1 the
normalized distribution function appeared in terms of test functions ¢,,(y)

in the form f(y,A) = fm(A)@m(y), which can be transformed to the Burnett
basis via

(Po| Po) s {m [P0

“) (Em|p ), (A.28)

f ) = a ’yf2f<ycX>y—1,25<y — 60— X)

dy/y/2f<y/ Utbbe Zb(f) y \ bé,/)( )\)

on! b

1 00
/ 1 4
= 0w [ A [ @) ) ) 0 )
-1 0

B (4. A
%oﬂn Pl 0 (4.29)

b
0’ n'/

Finally, the matrix elements of the Coulomb collision operator Cy, (see Ap-
pendix B) in terms of Burnett functions are defined as follows,

/ 1 '
(OICa ) | e ]

21N,
1 00
1 ,
= — [ax / dvv2bOC [fao(v)bff,)] (A.30)

Ng
-1 0






Appendix B

Coulomb collision operator

In this Appendix some useful properties of the Coulomb collision operator
are reviewed. A more detailed description can be found in, e.g., References 30
and 57,58, 85.

The Coulomb collision operator acting on particles of species a,

Co=> Ca, (B.1)
b

is a sum of contributions from collisions of the scattered particles (‘test
particles’) with the background particles (‘field particles’).

B.1 Landau form

The Landau form [86] of the Coulomb collision operator C,;, describing the
effect of collisions of test particles a off field particles b can be represented as

rab g /d3v’U(u)~[ [¥) 0falv) _ fulv) 05(V)] (B.2)

mg OV mg OV my OV’

Cabfas fo] =

with T% = 27e2e2 In A, and where f, and f;, denote the distribution functions
for the scattered and background species respectively [23,58]. Here, U is the
so-called Landau (or scattering) tensor defined as

uu

U(u) = - <I - ?> , (B.3)
with | being the unit dyadic and u = v — v'. The collision operator conserves
number of particles, momentum and energy [22,23, 58], i.e.,

/d%Cab =0 (B4)

163
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/d?’vmavcab = —/dBUmeCba (B.5)
Mav? myv?
/dgv 5 Cap = —/d?’v 5 Cra- (B.6)

From Eq. (B.2) one can see that the operator has the form of a divergence
of a vector representing the flux in velocity space due to collisions between
particles [58,87,88],

Cab =-V 'jaba (B7>
with V = 0/0v being the divergence in velocity space and
re JaV) 0fs(v') — fo(v') Ofa(v)
sab - 3./ A a _ a ) B
J My /d vU(u) { my, OV’ m, OV } (B8)
The collision term is often expressed in a standard Fokker-Planck form
0 of 1
Cop=—|D- =%+ - =Ff], B.9
"7 v { ov. m f} (B-9)

where D is the velocity space diffusion tensor and F is the force of dynamical
friction [23]. By comparing Egs. (B.7) and (B.8) with Eq. (B.9) one can
identify the Fokker-Planck coefficients

" Fab
D“(f,) = — /d3v’U(u)fb(v’) (B.10)
and ) Oh(v')
I |V
F(f,) = — [ &*/U(u) - B.11
= [Evuw o, (B.11)
respectively. The particle flux density in velocity space can thus be rewritten
in the form )
j* = —F%f, —D".Vf,. (B.12)
Mg

B.2 RMJ form

The Landau form of the collision term is convenient only for analytical calcu-
lations. However, for numerical evaluation this operator is hardly manageable
[because of the Landau tensor, the derivatives with respect to velocity and in-
tegration over velocity of the background particles, see Eq. (B.8)]. A tractable
form is due to Rosenbluth, MacDonald and Judd (see Reference 89) who
recognized analogies with electrostatics and defined two scalar quantities
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(‘Rosenbluth potentials’) expressing the contributions of the background
species b to the diffusion tensor and friction force [23]. These potentials are

defined as
3 (1 n %‘;) /d%’# (B.13)

;/d?’v'uﬁ,(v'), (B.14)

and may be calculated by decomposing the background distribution function
fp in terms of, e.g., spherical harmonics [57] (see also Appendix C).

In the present work the more convenient notation of Trubnikov is used [58].
The so-called ‘Trubnikov potentials’ are defined as

>
S]
=

I

Q
—
<
N—
Il

o) =~ [t (B.15)
(V) = —% /d%’ufb(vl), (B.16)

and they are related to the Rosenbluth potentials by means of the equations

ha(v) = —4ry (1 + %> ou(V) (B.17)

m
b b

gv) = =81 ) h(v). (B.18)

b
By virtue of the following properties of the Landau tensor,
U = VVu (B.19)
2
V-U = V-, (B.20)
u

the diffusion tensor as well as the force of dynamical friction can be expressed
as

D™ = —L®VVi, (B.21)

and )
Fob = —lepabyg, (B.22)

my

respectively. Here, L is defined by

4 2
fob = 5T pab _ ( m“e”> In A. (B.23)
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To obtain Eq. (B.22), Eq. (B.11) has been integrated by parts and (9/9v’)-U =
—(0/0v) - U has been used. Calculating the divergence of the diffusion tensor
and with the help of the vector identity V?a = V(V -a) — V x V X a one
can show that F and D® are related to each other,

2

Fov = lay . po. (B.24)
my

After substituting Eqgs. (B.21) and (B.22) into Eq. (B.9) the collision operator
in terms of Trubnikov potentials reads

Caplfur o] = LPV - Z—:Nmfa—(vwb)-wa . (B.25)

Hence, by employing these potentials the integro-differential operator in
Eq. (B.2) is converted into a differential operator when the Trubnikov poten-
tials are explicitly provided [90].

It follows from the identities

Vi = 2 (B.26)
Uu
1
V2E = —47s(n), (B.27)

that the Trubnikov potentials satisfy the following differential equations [58]

Va3, = o (B.28)
Vi, = [, (B.29)

which reflects the similarity between these functionals to the electrostatic
potential (Poisson’s equation).

B.3 Linearized operator

When a plasma is not far from thermodynamic equilibrium the distribution
function of a particles species s is nearly Maxwellian and may be expanded as

fs(v) = fao(0) + fa(v), (B.30)

where the perturbation fy is assumed to be relatively small, that is fs1/fs0 ~
€ < 1. Hence the collision operator can be expressed as

Cab[faa fb] = Cab[fa07 be} + Ctlzb[fala fbl] + Cab[fab fb1]7 (Bgl)
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with C!, representing the linearized operator

Cop[far, for] = Caplfar, fuo] + Canlfa0s 1] (B.32)

The first term on the RHS of Eq. (B.31) vanishes for the case when both
distribution functions are Maxwellians at the same temperature T, =T, = T,
whereas the third term, Cyp[fa1, fp1], indicates the nonlinear part of the collision
operator which is of order €2 and thus will be neglected.

The first term on the RHS of Eq. (B.32) is a differential operator acting upon
fa1 (‘test particle part’) while the second term is an integral operator acting
upon fy; (‘field particle part’). The linearized collision operator obeys the
same conservation laws as the full operator (see, e.g., Reference 85).

B.4 Collision operator in curvilinear coordi-
nates

In the following chapter the expression for the Coulomb collision operator will
be represented in covariant form valid for arbitrary curvilinear velocity-space
coordinates (&1, €2, &%) (see, e.g., References 23 and 89).

From Eq. (B.7) and after recalling the expression for the divergence of a vector
field in arbitrary curvilinear coordinates [91] the covariant representation of
the Coulomb collision operator can be written as

Lo
V9 ¢!

with the following components for collision flux [see Eq. (B.12)],

(\/gg”“j,‘jb) , (B.33)

ab —

G = %F,ﬁb — (D" V), - (B.34)

a

By means of Egs. (B.21) and (B.22) the covariant components on the RHS of
Eq. (B.34) are

2
MO
o= e 5 (B.35)
a a m 6f‘1
(D*.Vf,), = Dig 5Em (B.36)
with %) 8
Dz? — D;llf — —Lab (W@Zl - ley’:> . (B37)
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Here, T" is the Christoffel symbol of the second kind [91] defined by

in Oni . OGnk _ 0gik
Ok /& oEn

J
Uik

g (B.38)

1
2
The Christoffel symbols are symmetric in the lower two indices, F;k = F‘}m As
usual, a sum over repeated indices is implied unless otherwise stated.

B.4.1 Spherical velocity-space coordinates

As an application of the results provided in the previous section the linearized
collision operator will be derived in spherical velocity-space coordinates.
The metric tensor g;; of this orthogonal coordinate system (¢!, &%,&%) =
(v, A, ) is diagonal, with

?}2

—1 — N =031 = \? B.39
g11 ; 922 (1—2) g3z = v°( ), ( )
where A = v /v = cos f is the cosine of the pitch-angle and ¢ is the gyrophase
angle, respectively, and with
- 1
ik
= —. B.40
9" = (B.40)
From Eq. (B.39) one immediately obtains the Jacobian of this coordinate
system, that is to say /g = v®. According to Egs. (B.38)-(B.40) the only

nonvanishing Christoffel symbols are

[

I, = -~ Tl = —u(1 =A%), (B.41)
2, =12 ——1 I ———)\ Iz, = \1—\? B.42
12 21 U? 22 (1 )\2>7 33 ( )7 ( : )
I, =13 = 1 Iy, =13, = ——/\ B.43

, o - .
13 31 v 23 32 (1 A ) ( )

B.4.2 Test particle part

The test particle operator (differential part), Cup[fa1, foo], describing the
collisions of an arbitrary species a with a Maxwellian background species b
is now calculated in spherical velocity-space coordinates. The distribution
function for the background particles is given by the Maxwellian

Fo(V) = frolv) = 2 _e(v/vw)? (B.44)

32,3
73203
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As a consequence of Eq. (B.44) the Trubnikov potentials only depend on the
magnitude of v, that is

er(v) = wp(v) = w0 (B.45)
V(v) = Yu(v) = tho. (B.46)
From Egs. (B.34) one obtains the collisional particle flux
-Q f‘l a a
g = m_leb— (D b'vfal)k ) (B.47)

wherein the covariant components of the diffusion tensor (in terms of ¢y) in
(v, A, @) coordinates [see Eq. (B.37)] can be written as

a a a a2w n 8¢
D = D = — 1% (agk;;gz - rklﬁ) : (B.48)
Applying the results of Section B.4.1 the particular components become
2
et = —L <aaf§° - %@O) (B.49)
a aZw /02 a
—Lte S = i), (B.50)
2
o =gt = - (e - TS ) o, (B.51)
9o 0o
ab ab ab n
D;, = Dg, = —L (c%&p —I'ls oen ) =0, (B.52)
a a [PV n OV
DY = —L b( &;’0 —rm%) (B.53)
= L (—rgz%) (B.54)
0o vt
— _Lab v — ab B.
0= ov ~ aa— )W) (B-55)
Py o
ab ab ab 0 n b0
DS, = D¢y = —L (0)\8@_F23 85") =0, (B.56)
as well as
o o
ab ab n
D, = —L ( a2 F33a—§n) (B.57)
= L™ (—F§3%> (B.58)
4
S O LA R B T (B.59)

ov 2
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where the parallel velocity diffusion frequency

9 [ ab aQw
ab _ b0
V” ('U) = —7 an2 s (B60)
and the deflection frequency
2L Oy
b)) = — B.61
)= 2 (B.61)

have been introduced [22], respectively. Using the expression for the physical
components of a second-order tensor,

D,y = vV g%g*%D; ., no summation (B.62)

as well as Egs. (B.39)-(B.40) the diffusion tensor for collisions of arbitrary
particles with a Maxwellian background is given by

X 2 Vﬁ‘b 0 O
D = 5| 0 v 0. (B.63)
0 0 v¥

The covariant components of the force of dynamical friction (in terms of ),

m; DPro
Pt = ——apab B.64
in spherical velocity-space coordinates are
m; Jpro
F® = a2 B.65
y e (B.65)
2
m(l a
= —mw/sb(v) (B.66)
F® = M pwdvm _ (B.67)
my o\
2 0
Fob = —%Lab$ =0, (B.68)
mp ¥
with 18
ab(p) = Lo (14 e} ~ZE0 B.69
v (0) o (5.69)

being the slowing down frequency [22]. The physical components can be
calculated using Fj, = /g**F} (no summation) from which it follows that

2

“—p (12,0,0). (B.70)

k:_(ma—i-mb)

~ m
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The Trubnikov potentials

evaluated in Appendix C.3.

for a Maxwellian distribution function will be
Here only the results are given,

890170 . ny

dv = 2w O W/v) (B.71)
0

550 - %[G(U/vtb)—cb(v/vtb)] (B.72)
Piho oy G(u/vg)

02 4r w0 (B.73)

where ¢ denotes the error function and G is the Chandrasekhar function (for
details see Appendix C.3), which allows one to express the three collision
frequencies, Eqs. (B.60), (B.61) and (B.69), in conventional form

- G(v/vy)

ab
V” (U) = 2Vabm (B74)
) v/vg) — G(v/v
) = 20l =Gl -
ooy o 2T (1 my Glv/un)
v(v) = Ugp T 1+ me ) Tojom) (B.76)
with A -
Doy = %;gjeb In A (B.77)

being the basic collision frequency [22].

By means of Eq. (B.36) the covariant components of the dot product between
the diffusion tensor D% and the gradient of the distribution function f,; are
given as

8fal
ab ab Im
(D 'Vfal)k D9 oEm
a mafa a mafa a mafa
= Diig' afni + Disg? 85"1 +Dig° 8§7i
a afa a afa a afa
Dkl{gn 8511 + Dkgg22 a§21 + Dkgg?)s 8531 ) (B-78)

where in the last equation an orthogonal coordinate system has been assumed.
Therefore, from this equation and with the results obtained above it follows
that

O

ab
(D vfal)v Oov

Do (B.79)
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(D™ Vi), = DM(l ;;\2)% (B.80)
(D Vfa), = 02(1D“’;“°A2) aé’:‘;l. (B.81)

Recalling Eq. (B.47),
S CER AN (B.52)

and upon inserting Eqs. (B.66) and (B.79) the covariant v-component of
collision flux j** can be written down as

j;j” _ falFab (Dab'vfal)v

o fal mg ab 8fal
= —— 7 U0V, — Dv’u_
mg ab afal

(B.83)

_ abp U
B (ma+mb)ws Jar 2"l

Similarly, the covariant A- and ¢-components can now be evaluated yielding

wo= %Ff”—(Dab-Vfal)A
(1—=X2)0fu
TN e O\
Uz abafal

= —5 Vp (‘)/\ y (B84>

and

jab = f‘ﬂ — (D Vfa),
Dsoso afal
v2(1 =A%) Op
UZ ab afal

= —3 (B.85)

respectively. Substituting the expressions for j& in spherical velocity-space
coordinates into Eq. (B.33) one finds

Cab[fdl?fbo] = (\/—glk ab)

fafl
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= _% |:a€1 (\/—glk ab) 852 (\/—9219 ab) 663 (\/—g3k ab):|
— _% |:a§1 (\/ggllj?b) 852 (\/—g22 ab) 853 (\/—g33 ab):|
1

_ 9 aab 0 _\2) sab d ]:Zb
2 [(?U(Uj”)+0A((1 A3 +8g0 1 — A2
_ 1 a 3 Mg ab abafal

w20 [U (ma+mb Jar 3 2" "9y >]

ab ab 2
vy 0 o Ofa1 Vp 0 far
——1 (1 - . B.
+ (( %) )+2(1_A2) 3,2 (B.86)

Upon introducing the pitch-angle scattering (or Lorentz) operator

L

1{3 )2 ! 82] (B.87)

—_ 2 —_—
ANt aTmaal

the resulting expression for the test particle part of the linearized Coulomb
collision operator finally reads

0 “ of,
ab[fal;fbo] —VD [fal] 1 81} |:U3 (mﬂlm abfa1+ B ﬂlb gl>} . (B88)

B.4.3 Field particle part

The field particle operator (integral part) Cup|fa0, fp1] includes the fact that the
test particles also change the state of the background species (field particles)
and thus involves the Trubnikov potentials of the non-Maxwellian part of the
distribution function [22,37]. Here, the test particle species a is described by
a Maxwellian distribution

fa(v) = faolv) = 37% e~ (v/ve)) (B.89)

which, according to Eq. (B.36), leads to the following expressions

mafa
(D-Viw) = Dug™ 5

afao 8fa0 afaO
_ 11 12 13
- D’”( ot 9 ae I a&*)




174 APPENDIX B. COULOMB COLLISION OPERATOR

11 afa[)
o0&t

afaO 2v
L s iy B,
k 81} k Utgafo ( 90)

= Dug

wherein the covariant components of the diffusion tensor in terms of 1 [see
Eq. (B.37)] are given as

% Oy
Do — _ab —rn =) B.91

Thus, in spherical velocity-space coordinates the particular covariant compo-
nents of Eq. (B.91) become

DZZ — _La,b (a2wb1 i Fn a¢b1)

o2 1 gen
_ _Lab% (B.92)
o — o (G -G
N
)
— L% (g;g’; — %a;’;l) : (B.94)

where again the results of Chapter B.4.1 have been applied. Using Eq. (B.90)
as well as Egs. (B.92)-(B.94) one obtains

0?1y 20
(D-Vify), = L af;’lv—QfaO (B.95)
ta
Py 10Pp\ 2v
. — ab - =Y
(B -V as L (8)\8@ v OA ) vfafao (B.96)
Py 10Pp\ 2v
. — ab - =Y
(D -V fa0), L < 9000 v 0o ) oz fa0- (B.97)

The covariant components of the force of dynamical friction in terms of the
non-Maxwellian part of the first Trubnikov potential ¢, is evaluated from
Eq. (B.35),

m_i 7ab dn

Fab —
K my 8fk ’

(B.98)
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from which it follows that

pab _ _Mayadon
v my ov
m; P
Fab — __'a Lab
A my 8)\
Fab - m_?LLab agpbl ]
v my, Op

(B.99)
(B.100)

(B.101)

Using Egs. (B.95)-(B.97) and (B.99)-(B.101) and bearing Eq. (B.34) in mind
the covariant components of collision flux in (v, A, ¢) coordinates become

jsb _ faOFab ( 'Vfa())v
™m,

a

— L, (%%’1 + 2—”8%)

my Ov  vi Ov?

i@ = e D.vh,),

a

o Opp | 20 (0P 10Uy
—_ _Lab m__ “v -
Jao [mb O\ + v, (8)\8”0 v O
- f(l a
j = OFb (D Vfu),
o ay [MaOpn 20 (PP 10Pn
= ~L%w [mb ) + v2, <8<,031) v O

Cab[faOafbl] = _%aaé_z (\/_gzk ab)
1

= _? [851 (vag' ) + 85’2 (Vg2 5) +

1

= \/_ |:a§1 (\/—gll ab) 852 (\/—922 ab)

I O B S PP 9
- F[%(M) E)A<(1 IS >+a¢ Y

Ma 20 Doy N My 2 (Uz&pbl> B

_ ab _a

= L faol my v, v myv? v ov
3 52

1 0 (2U 8’17Z1b1>+ mg 0 (1_)\2)

v20v \ v, Ov? mpv? OA

(B.102)

)} (B.103)
)] (B104)

These components can now be substituted into Eq. (B.33) yielding

o (Vas*it)]
o (Vas® “”)}
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2@881>\8wb1 231>\8¢b1

Ma oAl 2v 9 0y

+mbv2(1—)\2) Dp? i V2 02(1—N2) Qv 2

2 Y

_ (B.105)

via?(1=A%) 0p® |

Remembering the fact that the Trubnikov potentials satisfy Poisson’s equation
[see Egs. (B.28) and (B.29)] and applying the Laplacian in spherical velocity-
space coordinates to these equations one gets

fn

©b1

v2S0b1

1[0 [ ,000\ O N 1 0P |

2 | (” o )+8A(1 Mox T aow oz | (B100)
V1

1[0 [ ,00,\ 0 o\ Ot 1 0%y |

Utilizing Egs. (B.106) and (B.107) and after elementary manipulation of
Eq. (B.105) the field particle part of the linearized Coulomb collision operator
eventually becomes

ma
Cablfavs fr1] = L®fuo [—fm + 5 ¥n1
my Vta

2

2 4 2 |
vy, Ov Uy, OV

1— @
mp

2 92
N ( ma> 20 0pp 4v* 0P (B.108)



Appendix C

Trubnikov potentials for a
non-Maxwellian distribution
function f;; in the Burnett
basis

This appendix considers the evaluation of the Trubnikov potentials of the
non-Maxwellian distribution function of the background particles in the
Burnett function basis [81]. Due to Trubnikov [58] (see Appendix B.2 and
also Reference 89) these functionals are represented as follows

op1 (V) = —ﬁ/d%'% (C.1)
Py (v) = - B u(v, V) fr(v'), (C.2)

where the vector u = v — v’ has been defined [22].

The expansion of the perturbatlon of the back round dlstrlbutlon function

fp1 in terms of Burnett functions Bn = yzL (e+1/2 ) can be written as
fu(y) = fooly ZZﬁzB“ (C.3)
n=0 (=0
with the Maxwellian
Ny .2
fbo(?/) = We v, (C-4)
th
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and where the normalized velocity y = v/vy has been used. When the
Eq. (C.3) is substituted into Egs. (C.1) and (C.2) one gets

onl(y) = > > s (y) (C.5)

n=0 (=0
val(y) = > pYTO(y), (C.6)
n=0 (=0
where the definitions
o = o [av B o) 1)
v = 2 [y ) BO W) 9

have been introduced.

As in conventional potential theory the functions |y — y’|~! and |y — y’| may
be expanded as a superposition of spherical harmonics which can be replaced
by Legendre polynomials if azimuthal symmetry is assumed. Therefore, one
has (see, e.g., Reference 92)

oo
u-l = g
k=0

where y_ (y.) is the smaller (larger) of |y| and |y’|. In Appendix D the
calculation of |y —y’| is shown in detail yielding the result

k
y%ﬁ; Pe(A) P(N), (C.9)

a= ) 60 (yey.) B Pe(X), (C.10)
k=0
where s )
1 Yy 1 Y
. = el <. 11
Y (Y<, ys) (2k +3) yh+l  (2k — 1) yEL (C.11)

Taking into account the volume element in spherical velocity-space coordinates,
d3v = v’dudAdyp, Eq. (C.7) can be rewritten as

1 21 1 0o 1
(I)(Z) - / d // d/\// dv' 2
w ) Aoy Jo v —1 0 oY u(y,y’)
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—y'?
/fL(Z—f—l/Q)( )P (/\/) 3/QU e Y
_ Ty o —y'2 1042
- —27T3/2Utb/ d\ Pg()\)/o dy'e ™y
x L2 ()1, (C.12)
Substituting Eq. (C.9) into Eq. (C.12) one obtains
Ty o a2
2(y) = ——%3% | averyeenng)
1
k+1 / AN P(V) P(Y) (C.13)
-1

anZO‘) 2 /OO r—y'? 27 (0 ye
— dy/e V" y/ 2L (2 2= (C.14
2m3/20, 20+ 1 J ye ¥ n (y )ytzﬂ’ ( )

>
where the orthogonality of the Legendre polynomials [29]
1

/ AP\ Ps(N)

-1

2
2w+ 1

5“/ (015)

has been used. Therefore, Eq. (C.14) can be written as
ang(A) 0

OO (v) = — 5 C.16
n (Y) 2720, P (y), (C.16)
where the dimensionless quantity
1 1 ¥ /2
~ (f) _ d ! _—y /2€+2L(é+1/2) 12
P 7519 [y“l/o ye Ty n W)

+yf / dy'e "y LYTVD(y?)| (C.17)
y
remains to be calculated. In carrying out this last equation one may utilize
the results of Reference 49. The following integrals have been obtained!,

v(a+1,t) for n=0

dte "L (t) = (C.18)
/ E *ttO‘HL;a 1)( t) for n>1
n

Lwith the help of the formulas
http://functions.wolfram.com,/07.03.21.0008.01
http://functions.wolfram.com/07.21.16.0001.01
http://functions.wolfram.com/07.21.27.0001.01
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and
/luetLyxﬂ::—ethﬂay (C.19)

where v is the incomplete gamma function. Applying these integrals to
Eq. (C.17) yields for n =0

o l+1/2 y*)
e W (C.20)
044 e (LD A+ 1/2,97)
8—y = € Y Yy — B ye+2 s (C21)
and forn > 1
1 2
40 = See L) (©:22)
oy 2t (C+1) (a1
o et | LEE/2) 2 - H12) 2
S = T L) - L )
= gy - D0 (C.23)

respectively. Using Egs. (C.20) and (C.22), Eq. (C.21) can be rewritten to
give

ol 2 o (t+1)
) ) )
A(£=1)

where ¢; = @ﬁ” /y has been applied.

Due to the fact that the incomplete gamma function as well as the asso-
ciated Laguerre polynomials might be expressed in terms of the confluent
hypergeometric function M(a,b, z) [47] (also called Kummer’s function), that

1S
«

Y, z) = %e_ZM(l, a+1,2) (C.25)
and
L{(2) = (n—i—@) M(—n,a+1,2), (C.26)
n
with the binomial coefficient
n+a I'n+a+1)
= — C.27
(71) WT(a+ 1)’ (C.27)

the dimensionless part of the first Trubnikov potential can also be presented
as

. Fn+0+1/2) , -
0 — LoV M1 —n.f+3/2. 42 ‘ >0, (C28
n 2n!F(£+3/2)y‘e ( n,{+3/2,y°) or n > ( )
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Hence, one finally obtains for the general solution of the first Trubnikov
potential in terms of Burnett functions the following result

= — LV M1 —n, 0+ 3/2,°). C.29
W = I, wl (i) ¢ MRz (029)

For n > 1, this equation may also be expressed as @) = —vZ FoBY, /(4n).

From the recurrence relations and differential properties for the confluent
hypergeometric function one can derive corresponding expressions for the
quantity @ﬁf ). After introducing the abbreviation

o _Tn+e+1/2)

= C.30
= onT(C+3/2) (C-30)

one may express Eq. (C.28) as
O = Oyl M(1 —n, 0+ 3/2,9%), (C.31)

from which one can calculate the first derivative of @% ) with respect to y
yielding

8957(16) _ (© 9 (4 —y? 2
Y 8y = Yy 8_y<y€ )M(l_n>€+3/2ay>

cyfet L =m0+ 302, y2)]

dy
= dOyte™ L0 —29) M(1 —n, 0+ 3/2,9%)
—2(n = [M(2—n,0+3/2,y%) = M(1—n, 0 +3/2,y°)]}

. n+€—1 2 ~(¢ R
= (t-2y%) 0 - %Q(H — )¢, +2(n — 1)

n n—1»

—1
= 2n40—2—22)p" — M(zn +20—1)pY (C.32)
n
where the relations

d d
— M(a,b,y?) = 2y>*—M(a,b,?
Yy (a,b,9%) Y (a,b,y%)

= 2aM(a+1,b,y*) —2aM(a,b,y?) (C.33)
(see, e.g., Reference 47) and, obtained from Eq. (C.30),

¢—1/2
qo = ) o,

(C.34)
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have been applied. The recurrence relation [47]
aM(a+1,b,2) = (b—a)M(a—1,b,2) + (2a — b+ z)M(a,b,z)  (C.35)
yields

(n+l+1/2)M(—n, 0 +3/2,y*) = (2n+l—1/2—y*)M(1 —n, L +3/2,97)
—(n—1)M(2—n,0+3/2,y*) (C.36)

from which one obtains upon multiplication of Eq. (C.36) by cg)g/e’yQ (for
n>1)

—1
o+ g =@t 12960 — " D109, )

Substitution of Eq. (C.37) into Eq. (C.32) gives the result

o)
y gy =—2n+/0+ 1)@514) +2(n+ 1)@&21 for n>0. (C.38)

A relation with respect to the angular parameter ¢ can be calculated from

Eq. (C.31) together with
(e-1) _ (L+1/2) €39

n (n+l—1/2)™ (C.39)

and Eq. (C.34), as well as the following recurrence formula for the Kummer
function [47],

(b—1)M(a,b—1,2) =aM(a+1,b,2) — (a+1—>b)M(a,b,z). (C.40)
One arrives at the expression

—1
ypU=D = g0 _ m—)gsffll for n>1. (C.41)
n

Moreover, additional recurrence relations for the dimensionless first Trubnikov
potential can be derived from the recurrence relations (see Eqs. 13.4.1-13.4.7
in Reference 47) for the confluent hypergeometric function M (a, b, z). These
relations are as follows:
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C.2 i

After substituting Eq. (C.10) into Eq. (C.48) it follows that

g =

NpUth

U
A73/2

“aor W

where Eq. (C.15) has been used. Hence, one may write

183
(n+ €= 1/2)p ) = (n+ DR (C.42)
—(n 40— 1/2)yp D 1 (0 1/2 4+ )W (C.43)
(n+0=1/2)yp ™" + (n — )@}, (C.44)
R n—1)
(C+1/2 -y - =1 - ) ot (C.45)
o a0y, (R —1)
(1—n+y)g0n +T( +€—1/2) (046)
(C+1/2)p — (n+ Dy (CAT)
According to Eq. (C.8) one obtains for the second Trubnikov potential
Utb 27r d)\’ d ’02
v u(y,y’)
"0 (1z+1/2 —y'?
PPN o
1 00
Ny Uy / / ! —y'? 1+2
— d\ Py(A / dy'e ¥y
4m3/2 /—1 ) 0
x LY (/27 (C.48)
/OO dy/e—y'2yw+2Lg+1/2) (y'Q)
X Z/{“f Pe(A / AN Py(N)Pp(N)
2 /OO dy/efy’Qy/£+2L7(f+1/2) (y/Q)/i(Z), (C.49)
0
npUp Pr(N) +
W0(y) = - o ), (©.50)

n

Ar3/2
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where the dimensionless quantity

- 1 1 Y —
R Yo Y] L;m/o dye™"yPHALIED ()

+ ye+2 /Oo dylefy’Qy/L;eH/m (y/Q):|
Yy

1 1 Y 2
_ du/e Y /2€+2L(€+1/2) 2
20— 120+ 1)2) L// et yTTL T
+ / dy’e—y”y’%ﬁf“”)(y/?)}, (C.51)
Y

has been defined. This expression can be evaluated by recalling Egs. (C.18)
and (C.19), using [29]

L) = LD t) — L (@), (C.52)

n—1
performing an integration by parts and upon applying the recurrence relation
for the incomplete gamma function [47]
v(a+1,z2) =ay(a,z) — 2% * (C.53)

and further functional relations for the Laguerre polynomials [29]. One finally
obtains for n = 0,

NGO 1 7(6 + 1/27 y2) 7(£ - 1/27 y2)
vy = 2 oS, — = (C.54)
Py’ D(+2)(C+1/2,97)
Oy? o 4 yl+3
00 —1)~(0—1/2,4> 2
forn =1,
(e 7(6 + 1/27y2)
5) - = 4yt (0.56)
92" 1) (042) Y (0+1/2,92)  a
8y; _ _( L( )/ ny/r3 )+e y (yé 2_|_ye)7 (C.57)
and, finally, for n > 2
- 1 2
o= e V) (C.58)
5% ) (C+1)(0+2)
g¥n o =2 |\ )T A) p(e+1/2) 2
y? <Y dn(n —1) Ln ")

n (20 + 1)L 0-1/2)
2n ’n*l

(y) = L3Py (C.59)

n
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Similar to the calculation of the function gbgf ) the quantity @Eﬁf) can also be
cast to a form which is valid for arbitrary n. Utilizing the equations [47]

62

M(1,b,z) = (b—1)5=v(b—1,2) (C.60)

z

M(2,b,z) = M(1,b,2)+ ZaﬁM(l’ b, z)
2

= (b-—1)MA,b—1,2)— (b—2)M(1,b,2z), (C.61)

where the relation

L4

dz

has been applied [47, Eq. 13.4.13], the dimensionless part of the second
Trubnikov potential can be presented as

B Fin+¢—-1/2)

An!T (0 +3/2)

M(a,b,z) = (b—1)M(a,b—1,2) — (b—1)M(a,b, 2) (C.62)

DO = yle M2 —n,0+3/2,y%)  for n>0, (C.63)

from which one can infer that

~ 1
Pl = —2—@511 for n>1, (C.64)
n

where Eq. (C.28) has been used. With the help of Eq. (C.41) one can find an
additional representation for w,(f),

2(n — D =yl — ¥ for m#£1, (C.65)

from which one easily obtains the case for n = 0,

A 17, (-
3 = L[ v e, (c.60

Of course, the last equation could have also been derived from Eq. (C.54)

and, furthermore, the mode @éf—l) might be evaluated from Eq. (C.44) by
setting the lower index n equal to zero.

Using Egs. (C.50) and (C.63) it follows that the general solution for the

second Trubnikov potential in terms of Burnett functions may be written as

nbvtng()\) F(n + {— 1/2)
16732 nll'(L+3/2)

v (y) =

n

yle M2 —n,0+3/2,9%). (C.67)

For n > 2, Eq. (C.67) can also be presented in the compact form \115? =

i fo By /[16n(n — 1)].
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The derivatives of @Zq(f) with respect to the normalized speed y expressed

in terms of the function ¢ readily follow from Eqs. (C.64) and (C.38),

respectively, giving rise to

00 og),
dy dy
_ é 2000 — 20+ - 182, ], (C.68)
and
_Qnaj;g;(f) = —% [Qmﬁff) —(2n+0— 1)@,(511}
ﬂ% Qnyagf) - (2n+€—1)ya§§1] . (C.69)

and upon inserting of Eq. (C.68) into Eq. (C.69) it follows that

Ay 2n Y oy

i a ~ (£
L0200 s QnAl=1) o 09y (2n+0—1) 95,
ayg n m n—1

o @nri—1) . ;
_ g %g}g)l — 20+ 1)@ — @20+ £+ 1)¢0)]
o 40— 1
L i) ) 200 — (20 + 0 - 15, ] (C.70)
n

Hence, Eq. (C.70) can be simplified to give

invA
L 0%
0y?

= 2+ 1Y, + (4n + 20+ 1)p?

2 (-1
—%(Qn + 00, for n>1. (C.71)

The case n = 0 may be computed with the help of Eq. (C.55) yielding

2,7,(0) 1 2 -1
200 _ L+ D)(E+2) 0 M=) s o0 (C.72)

oy 2 0 2

C.3 Trubnikov potentials for a Maxwellian
distribution function

For the case when the field particles are in thermodynamic equilibrium
(Maxwellian background) the corresponding Trubnikov potentials may be
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calculated from Eqs. (C.29) and (C.67), respectively, by setting the parameters

n and ¢ equal to zero (and 33=1). Thus, for the functional py = @éo) one

obtains

___ ™ .0
SObO(y> - 27T3/2Utb %o (y)7 (073)
with
”‘(O) _ F<1/2) 7y2M 1 2 2
¥o - 2F(3/2)e ( 73/ 7y)
1
= —~(1/2,9? 74
Qy’y(/,y), (C.74)

where Eq. (C.25) has been used and where y(q, z) is the incomplete gamma
function. Utilizing v(1/2,y?) = v/7¢(y), where ¢ denotes the error func-
tion [47] one arrives at the expression

_m 9y)

TR (C.75)

Peo(y) = —

The first derivative of the quantity ¢,g with respect to y follows immediately
from the last equation, that is

w0 _ ™ ﬁ 9(y)
dy Ao Oy |y
w9 (o
_ 47rvtb0y< . ) (C.76)

Recalling the definition of the Chandrasekhar function, G = (¢ — y¢')/(2y?),
Eq. (C.76) finally yields
Ipro b
= G
dy 27U,

(C.77)

The second Trubnikov potential, ¢y = \If[()o), can be calculated in a similar

way by using Eq. (C.63). It follows that

Unoly) = — o 00 (v), (C.78)
with
W = e M3
= —% [Py (=1/2,9%) —7(1/2,9%)]
_ % \/Eygb(y)—i—e_yrz—l—g% . (C.79)
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Applying Egs. (C.60), (C.61) and (C.53) and again v(1/2,y%) = /7p(y) gives

vale) = g [+ TN Ry

8m3/2

where ¢ = d¢/dy = 2e7¥" /\/7 has been used.
The first derivative of 1,9 with respect to normalized speed is readily obtained

from Eq. (C.80),

O mvw 0 [¢ @
oy 8r ﬁy[ +2—y+y¢]
s [ (Yo' —9)
B 8w {2 e 2y? Tt gb}
= 16 - o). (C.81)

where ¢ = —2y¢’ has been substituted. From Eq. (C.81) and the following
relation for the derivative of the Chandrasekhar function G with respect to y,

(y) = d—yy) =) - # .

t
one gets by mpvy, O G _ e Gy) C.83
a—y2_8_7r(9_y[ (y) = o)l = ——— Ty (€59

The functions Oy /Ay, /Oy and 0*iy/dy? appear during the derivation
of the test particle collision operator Cyy( fa1, foo) and are closely related to the
three basic collision frequencies, namely the slowing down, the deflection and
the parallel velocity diffusion frequency, respectively. A detailed description
of the corresponding relationships has been given in Appendix (B.4.2).



Appendix D

Expansion of |v — v/| in
Legendre polynomials

In this Appendix the expansion of the absolute value of the relative velocity,
|[v — V|, of colliding particles in Legendre polynomials is shown. The cal-
culation utilizes the result for the corresponding expansion of the quantity
|v —v/|~!, which may be found in any textbook on electrodynamics (see, e.g.,
Reference 92).

The function u = |v — v'| is expanded in terms of Legendre polynomials Py as

[e.9]

u(a) =Y apPi(a), (D.1)

k=0

where o = cos~y, and v is the angle between the vectors v and v'. The
expansion coefficients are given by

2% +1 [1 2k+1 1 u?
a = — / dau(a)Py(a) = 5 / d@zpk(a)a (D.2)
—1 —1

2

wherein the function u” can be calculated to give

u? = v* + v — 200 cos . (D.3)

In Eq. (D.2) the representation of the quantity 1/u in terms of Legendre
polynomials is expressed as [92]

1 . ok
—=3 =R, (D.4)
k=0 >

189
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where v_ (v.) is the smaller (larger) of |v| and |v’|. Substituting Eqgs. (D.3)
and (D.4) into Eq. (D.2) yields

2k + 1
-9 ka’—i—l/ daPy(a) (v2 + 02 = 2vv.a) B(a).  (D.5)
k/

By virtue of the orthogonality of the Legendre polynomials [29],

1
2
/1 dosz/(a)Pk(a) = 2% + 15k’k (D6)

as well as the fact that the following integral vanishes unless &' = k £ 1 [92],

2(k+1)
for K =k+1
1
2k + 1) (2k + 3
/ daaPy (o) P(a) = ( ;li ) (D.7)
-1 for K =k—-1

(2k—1)(2k+1)

one arrives at the following result for the expansion coefficients,

vk k1 E+1  oFt k
ap = Ukjrl (vi —|—v§) — Z+22v<v> 13 ;k 20_0. Y]
> >
_ R 2k ok 2k
o okt 2k +3) vkl 2k — 1
AR ve 1 (D.8)

vbL(2k +3)  oFL(2k — 1)

The angle v can be expressed in terms of the spherical coordinates (6, ¢) and
(0, ¢"), respectively, by the formula (the geometry is shown in Figure D.1)

= cosfcosf + sinfsin b cos(p — ¢'). (D.9)

The addition theorem for spherical harmonics [92] is a generalization of the
last equation and states that

Py(cosy) = Py(cos H)Pk(cos ')

+ 2 Z Pk cos 0) P (cos ') cos [m (p — ¢')] ,(D.10)

1

where P are called the associated Legendre functions [29].



191

Vx

Figure D.1: Coordinates for the addition theorem for spherical harmonics.

In evaluating the Trubnikov potentials (see Appendix C) the functions u™*

and u might be replaced with u=! and @, respectively, where the overbar
denotes the average over (¢ — ¢') in spherical coordinates [82]. Thus, the
desired expansions become

o0
u :Z o
k=0 U>

(cos®) , (D.11)

and
G 1 ot 1 of
< —_—
=3 |G men

} Py(cos8)Py(cost'). (D.12)






Appendix E

Braginskii matrix elements

In this appendix the Braginskii matrix elements [79] of the linearized Cou-
lomb collision operator in terms of the so-called Burnett functions [81] are
evaluated.

In contrast to earlier works [79, 80, 82] where the calculations were based
upon the use of a generating function technique the method which is adopted
here calculates directly the moments of the collision operator. Moreover, the
obtained matrix elements are valid for arbitrary mass and temperature ratios.
The results are compared to results given in References 79, 80, and 82 as well
as to the results presented in Reference 90, which have also been obtained
without using a generating function technique.

According to Braginskii [79] integrals of the form

/d3UBv(7£)Cab |:fa0B7(£l)7fb0i| (E.1)
/dSUB,(f)Cab |:fa0aBT(7?.fb0:| (E.2)

are called matrix elements, where the quantities
BY (z,\) = 2’ LYY (12) Py(N) (E.3)

denote the Burnett functions. Here, © = v/, ¥y = /U = Yab®, Yab = Via/ Vb,
and A = v /v.
E.1 Linearized collision operator

When the gyrophase averaged guiding-center distribution functions of the
test and field particles are assumed to be close to Maxwellian one can write

fa = fao+ [ (E.4)

193
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Jo = Joo+ for, (E.5)

with f,0, and fy being Maxwellians and f,;, and f,; representing small
perturbations (that is f; < fo) it is convenient to approximate the full
Coulomb collision operator by its linearized form

Cab[fa1, for] = Cap[fao, froo] + Cav|far, foo] + Can[fao, for), (E.6)

in which the first term on the right-hand side of the last equation vanishes
in the equal temperature case. The second term defines the test particle (or
differential) part of the collision operator

1 8 me v afal
_ ,,ab I -} ab ~_ab
Cab[fabbe] - VD'C[fal] + 2 Ov |:U ( bys fal + v v ):| ) (E7)

in which £ represents the pitch-angle scattering operator (for the case when
the gyroangle ¢ can be ignored)

L= %_(1 2 (E.8)

and the third term in Eq. (E.6) denotes the field particle (or integral) operator

i’)?”oae_“”"2 e 2
Cab| fa0, fr1] = . |:Hfbl+v_2wbl
ab’lh b ta
2 u 4 2 92
+_2y LM Opop ?i " w 7 (E.9)
Vtq myp ay Utq, ay2

with the Trubnikov potentials (; and ¢,; being functionals of the field particle
distribution f;; (see Appendix C).

The following conservation laws [85,93] of the collision operator will be used
to derive corresponding properties for the matrix elements.

The particle conservation is written as

/ EoCos o1, foo] = / BoCas [fuor fin] = 0, (E.10)

the momentum conservation reads

/d3vmav(3ab [fal, fbo] = — /d3vmecba [fbo,fa1]> (E'H)



E.2. TEST PARTICLE PART 195

and, finally, the energy conservation is expressed as

2
/d%mgv Cab [falabe] = —/d3U

m;“ Coa Lfs0s for] - (E.12)

Furthermore, for equal species temperatures the differential and integral parts
of the collision operator are self-adjoint [85,93], that is

/d?’U%Cab [fa1, foo) = /d%%cab [Gat, fro] , (E.13)
/dgv%cab [faOa fbl] - /dgvﬁcba [be? gal] : (E'14)
a0 b0

E.2 Test particle part

The matrix elements of the differential part of the linearized collision operator
are defined by

M) = Tab / BvBO (2, \)Cap | fao(x) B (2, M), fro(y)| - (E.15)

Ng
From Eq. (E.13) it follows that

Mabv(g) —

mm/ T

MO for T, =T, (E.16)

m/'m

Introducing the volume element in spherical velocity-space coordinates, d3v =
vidvdAdyp (see Appendix B.4.1), it follows that

1 00
/d3v = 27mfa/d)\/dxx2 (E.17)
100
and one obtains from Eq. (E.15)
1 o)
MZS;Y(L{) = @277'”?(1/d>\/dl‘$€+2L£ﬁ+1/2)chab[faofL’KLiﬁj—l/Q)Pg,fb()]
¢ Z10

= o0 4 DI, (E.18)

The first part in Eq. (E.18) is related to the pitch-angle scattering operator
whereas the second part corresponds to the energy scattering term of the
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differential part of Cy [see, Eq. (E.7)]. Taking into account that the Lorentz
operator satisfies

1
LIPN)] = =5+ D), (E.19)
it follows that
1 o0
ol = / dA/ dwa 2 L2 P L] o L P
Ng
—1 0
1 oo
a 3 G
= lbm&/hﬂy/mﬂwLum4fﬁ<>ﬁ v))
a e 0 ab
n.e ™, (£+1/2)
Xﬁs/zvgax L, 7L
B0+ [
- 263:1 / dee= 2 LEP LI [6(y) - Gly)), (B.20)

0

where the deflection frequency [22]

3VT [o(y) — G(y)] (E.21)

47 3

V(o) =

has been inserted and where the orthogonality relation of Legendre polynomi-

als [29]

1

/ AP\ Ps(N)

-1

2
2 +1

Sow (E.22)

has been applied. After replacing the Laguerre polynomials by its series
representation (see, e.g., [29])

L(z) = En: (St (” + Of) o, (E.23)

= I \n—J

one obtains

/gg m / o0
) =~ 3o 2 S [ dae A0 0() - G, (21)
]:0 k=0 0

wherein

; 1)7+k 1/2 1/2
Sk _ (- '3{;' <m+€_+ / )(m +€+k / ) (5.25)
j m’
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In evaluating Eq. (E.24) one must perform integrals of the form

o0}

/dxe‘xzxa_lqb(y) = —/dye_yQ/7 \/y_ e V' M(1,3/2, %)

0

_ / dye PO e 0 (1,372, )

\/ﬁ‘”
_ ! dte ") le=D2 11, 3/2 ¢
7 / (1.3/2.
- F(\/T%) (lﬂg)(aﬂ)/gp(l,%ﬂ;g, ), (E.26)
where
/dteSttblM(a,c, kt) = %S)F(a,b; ¢ By, for |s| > |k| (E.27)

0

has been used [29]. From the above results it follows that

[ e a0t

0
L(j+k+0+1/2)y

V(AR

F(Lj+k+0+1:325).  (E.28)

After performing an integration by parts applying

/ dyGly) = —2W). (F.29)

2y
the integral corresponding to the term involving the Chandrasekhar function
G in Eq. (E.24) can be reduced to integrals of the form Eq. (E.26), that is
d —x? aflG( ) _ i d —y2 /2 aflG( )
xe y) = a ye Y Y
0 0

_ie—yQ/’y?ya—l ¢(y) >
o 2y

0

1 T d 2 /.2 _ ¢(y)
— — (e ¥y t) 2240 (E.30
,yao/ i e y ) % (E.30)



198 APPENDIX E. BRAGINSKII MATRIX ELEMENTS

The first term in the last equation vanishes for the case when o > 2. Substi-
tuting

d 2
d_y <6_92/72y‘”_1> = —Wy‘”e_lﬁ/72 + (o — 1)ya_2e_y2/72 (E.31)

into Eq. (E.30) the integral becomes (for a > 2)

[e.e]

/dxe_”'gxa_lG(y) =

0
1 T —u2/~2 a— (6%
—7a+2/dye vy 1¢(y)+(
0

B
>/dyey”y So(y)
0

r(=)

_ 2 a=1.3. 7
= VIt R [F“’ 7 e )

F(1, 954 55 )} (E.32)

(1492

where the result of Eq. (E.26) has been used. Thus, for (j + &+ ¢) > 1 one
obtains

o

2 o _ L(j+k+0+1/2)

xT 2( +k+€) 1 _

/dxe xY Gy) = STy (1 A2/
0

2 2
)[4 (L =1 3 1) = F(Ljrk+0+ 5 3 5)] - (B33)

Combining Egs. (E.28) and (E.33) one gets

[e.9]

2 o _ L(j+k+0+1/2)
xe 2 k+0)—1
/d:ce g2k [p(y) — G(y)] VAV(1 + A2)ith+=1/2
0
[F(l JHkH0+ 3 ) = F(Lj+k+0-3 3 255) | (E.34)

and one finally obtains for the matrix elements of the pitch-angle scattering
part of the collision operator

a.(0) 35 3(l+1) =& S(f)ak (0.5 E
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with S ot " given in Eq. (E.25) and

pogk _ _ LU+k++1/2)
v - ﬁ,y(l_i_,yz)jﬂc%—l/z
2 2
[F(l j+k+0— 2,2, 117 ) — F(1, g+l~c+£+2,2,117 )]. (E.36)

Recalling Eq. (E.18) the matrix elements corresponding to the energy scatter-
ing part of Cyp[fa1, fro] become

1 o)
peb® — Tabors / dA / dea 2L BB foa LETP P
0
1 o] 1 a
= @% / d\P, P, / dga 2 L) , (E.37)
22 O
where
ab
_ .3 Vs 07 (+1/2) || ( ¢ (€+1/2)>
R S S N ozt L . (E.38
U= [ e H 4 v (e | ®a

The terms involving the slowing down frequency v, and the parallel velocity
diffusion frequency IJH , respectively, can be replaced by [22]

(1+mb/ma) 4Tab Tb X .
ab
VL)
2 N 4Tab x3 ’ (E40)

and 0f,0/0x = —2x f,0. From this and Eq. (E.22) it follows that

32 3 [ 9 [ 2T, n
Dab({) _ T /d zL(e+1/2) 320a ¢—1 M L(z+1/2)
mm ne (20+1) o oz |" T, () T3/203,
0
2

G(y) nee”” B
3 a 12 ety 0 9 ety
3;'2 773/21)?@ 2x Lm’ — &lﬁ' Lm’ — X gl—/m,

- (%il) / dmzL(M/z)aa [(Z 1) 202 LG ()
a
0

2 2 8
+lzte™™ L(ejrl/Q)G(y) + ztle™® (—L(éflﬂ)) G(y)}
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- (1 - %) 2x2k+“26x2G(y)]. (B.41)

b

Performing an integration by parts one gets for the integral in Eq. (E.41)

/dxejM((% [ . ] =
0

{ AN [(2k+€) HH e Gy) — (1—%) 202~ Gy )]}

[e.9]

0

2] +£ /d 2j+4— 1|: 2k+£>x2k+€efx2G<y)
0

T, 2
o (1 o E) 2x2k‘+f+26—x G(y):|

(e 9]

—(2)+0)(2k+0) / dre= 201G )

0

b

+(2j+€) (1_%) 2/dxex2x2(j+k+2)+1G<y)’ (E.42)
0

where the integrals in the last equation can be carried out by using Eq. (E.32).
Thus, one obtains for the energy scattering part of the test particle operator

DAY = g 33 50
j=0 k=0
x {ng’j )+ (1 - %) ng’jk(’y)} : (E.43)
with
PUOM) = (202t l) ST TL2)

ST (1 + A2)i kL2

x| (L4 F( k=13 ) = F(L 0+ 5 3 )| (B44)

T(j+k+0+3/2)
VTY(1 + A2)ith+E+3/2
x[(1+72)F(1 JHk+0+1 3 1) - F(1, ]+k+€+2,2,1+22)} (E.45)

P () = 2(2i+0)
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Putting Eqgs. (E.35)-(E.36) and Egs. (E.43)-(E.45) together one obtains for
the matrix elements of the test particle operator in the Burnett basis

3 m+m’
Mo ) = > {X“) O ) = Y04 P ()
2V (20 +1) =
Ta 3 2
T (1 - _) 204 01, >}, (E.46)
Ty
where
X = (1) S (E.47)
5=0
Yy — Z VI 4 0)(2i — 25 + {) (E.48)
ANME Z S-3173 (95 1 ¢y, (E.49)
and
p0i(y) = F(i+€{1/2)
(1 _’_72)2-‘1-6—1/2
x [ (Lit 043 20 — F(Lit0+4: 8 %)} (E.50)
(@)71-( ) C(i+64+1/2)
pp V) = (1 +,Yz)i+e+1/2
2
x [(1+72)F(1 i+0-5 3 ) - F(Lite+ 3 25| (B51)
Noting that S Sq(j)njf , Snfm, = S 7 and using the fact that S
for the case When j > mor k> m, one can show that X( ) = Xﬁfim and
YW(WL, = Y(,) , respectlvely From thls it follows that for T, = T} the matrix

elements M , Satlsfy the symmetry property Eq. (E.16), that is

M2 () = MY (). (E.52)
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E.3 Field particle part

The matrix elements of the integral (momentum conserving) part of the
linearized collision operator are defined by

Notr) = =2 / EoBY (@, NCu | faolw), By, M) . (B.53)

Ng,
From the self-adjoint property of the collision operator, Eq. (E.14), it follows
that
N = 222 [ d* 0B (5, \Caa [fro(y), BY (2, A) fao()]

mm
Ng

— Tab % \jbay() (E.54)

m/'m *
Na Tha

Taking into account that
Tab Ty T2
L R WV E.55
Ny Th sz Vo ( )
one obtains
N2 — oy NP0 for T, =T, (E.56)

mm! — TbaNpim

Using Egs. (E.17) and (E.22), Eq. (E.53) becomes

mm/

1 [e/e]
NeBO _ Tabgo s / d\ / dza? Py (N2  LE2) (42)
ng
-1 0

%Cas [ fool), Froly) PN LU ()

[e.9]

2

Tap ATy, / v 7 (e41/2) 2y OMal "

= — d L ——13 - ¢- (E.57

. (2£+1) Tx m (QZ' )7_‘_3/27_(1171)?1)74 ( )
0

Provided m’ > 2 the expression in the curly brackets reads

{} _ _(2m’+€)w¢fﬁ_1 + {(2m’+€+1) (1—%)

2m/ b
Ta\ .
+ (2m' +0) (14+4?) }@f,?, —2(m'+1) (1+7?) (1—?) 2, (E.58)
b

where the main results of Appendix C have been substituted into Eq. (E.9).
Thus, Eq. (E.57) can be expressed as

ab,(¢ 2 2 3 (2m'+0-1)
Nmn(”/) = ﬁm&{_(2m,+£)Tlfn3ﬁ1
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T, ,
+ {(2m'+f+1) (1_T> +(2m'+0) (1+77) ]lfﬁnf
b

1,
—2(m'+1) (1+7?) (1_Tb) I,szn,ﬂ} : (E.59)

where the quantities 189 denote

I = /dxe”“"QxHQL%H/m(xQ)gbff)(y), (E.60)

mn

0

and wherein the quantity gbgf ) is related to the first Trubnikov potential (see

Appendix C.1),
—e ¥yl LY 11/2)(y2), for n>1. (E.61)

Using y = yx one obtains

o0

]’(Z) _ /dye y /72 €+2L(€+1/2 (y /’}/ ) QyZLT(fjll/Z)(yZ)

2 -2 f
dye™ (14~ )y25+2L%+1/2 42/~ )L 11/2)(y2)

dte™(IRELERD (1 LI @), (B.62)

In the evaluation of Eq. (E.62) one may use the following formula (see,
Reference 29),

7 My\N
—e(Mu) 0 7 (@) @¢ v _ T(M+N+a+pu"A
/dxe WLy, (Ax) Ly’ (n) = MIN! (A 4 p)M+N+a+1 (E.63)
0
provided that Re @ > —1, Re A 4+ p > 0, yielding

/dte—t(l-i-v2)t€+1/2L(€+1/2) (t/7 )L(€+1/2)< )

0

m! (n 1) (1 +72)m+n+€+1/2 )
(E.64)



204 APPENDIX E. BRAGINSKII MATRIX ELEMENTS

Thus, the integral (E.60) has the result

70 _ Fm+n+0+1/2) A 2mtt

mn 4Amn! (1 —+ 72)m+n+g+1/2' (E65)

Applying Eq. (E.65) to the corresponding terms in the curly brackets of
Eq. (E.59) gives

/ J—
(1442) 19, — @m'+0-1)

0 Dlmtm'+l41/2)m
2m! mm’—1 4m!m’!(1—|—72)m+m’+£—1/2
2m'+0—1)  T(m+m'+0—1/2)y*m+*
2m/ Am!(m/ —1)1(14~2)mtm/+=1/2
L(m+m/+0—1/2)y>m+t

= Ity () (E.66)

and

@+ e+ )15, = 2m'+1) (1492 10, =
L(m+m/+0+1/2)y2m+
4m!m/!(1+72)m+m’+f+1/2
L(m+m/+0+3/2)y*m+
Aml(m/ + 1)1(142)mtm'+i4+1/2
L(m+m/+0+41/2)y*m+

- _4m!m’!(1+72)m+m/+f+1/2(2m +4),  (E.67)

(2m'+0+1)

—2(m'+1)

respectively.
Substituting from Egs. (E.66) and (E.67) into Eq. (E.59), one obtains for the
matrix elements of the field particle operator in the Burnett basis

3 (2m+L) T(m+m/+0—1/2) 2l
2/ (20 + 1) m! m/! (1 + 2, )mtm 64172

Nab,(f) (’Yab> —

x | (2m' +0)(1 +92) — 2(m+m'+0-1/2) (1—%)} . (E.68)

After simple but somewhat tedious calculations [involving Eq. (E.57) as well
as Egs. (C.20)-(C.23) and (C.55)-(C.57)] one can show that this result is also
valid for m’ = 0 and 1, respectively. Here it is worth noting that, in contrast to
the results for the test particle operator where the matrix elements have been
expressed as finite sum of Gauss’ hypergeometric functions [cf. Egs. (E.46)-
(E.51)], the matrix elements of the field particle operator, Eq. (E.68), have
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been presented for the first time, to the author’s knowledge, in a compact
analytical form.

Assuming equal species temperatures, T, = Tj, Eq. (E.68) yields

N0 _ 3 (2m+0)(2m/+0) T'(m+m'+0—1/2) 'yzg'”e_l
mm’ /T (20+1) m! m/! (1 + 2, )mtm/+=1/2
(E.69)
from which it follows that
Nfﬁ;ﬁﬁ) (’Vab) = VEIgm,_m)Nfs;z(ﬁf) (’Vab) (E70)
Nfs;r(f) (’Yba) = fYabe:;y(ﬁ) (7ab)' (E71)

Here, Eq. (E.71) demonstrates the self-adjointness of the field particle part of
the collision operator [see Eq. (E.56)].

The matrix elements for the case when the test and field particle distribution
functions are Maxwellians at different temperatures can easily be calculated
from Eqgs. (E.46) or (E.68), respectively, using m’ = 0 and ¢ = 0. One finds
that

6 mI'(m+1/2) y2m=l T,
MO _ @O _ ab 1-22). (E72
mo m0 NZ3 m)! (1 4 A2, )m+1/2 Ty ( )

E.4 Conservation laws
In this section it is shown that the matrix elements of the linearized collision

operator calculated above satisfy the properties that can be derived from the
conservation laws of the collision operator.

E.4.1 Particle conservation

In view of Eqs. (E.10), (E.15) and (E.53), and with 1 = B{”) one has

MG () = No” (a8) = 0 (E.73)

om’

which follows directly from Eqs. (E.46)-(E.49) and Eq. (E.68), respectively.
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E.4.2 Momentum conservation

By making use of Eq. (E.11) one can derive

T, T,
2| PoaACap [far, fro] = ——2

Vta Utb

P*vyACoa [ fr0, far (E.74)

and with the help of Egs. (E.15) and (E.53) one obtains

Ty ng ab(l ba,(1)
——M ab) = ———Ng” (Vba E.75
Vta Tab (fy b) Vtb Tha om (fo ) ( )
which finally yields
ab,(1) T bay(1)
MOm’ ('Va,b) = _ENOm’ (/Vba)a (E76>

where Eq. (E.55) has been used. The matrix elements on the right-hand side
of the last equation reads [cf. Eq. (E.68)],

N (pa) = N mrl((nf :73/)2”)“3/2 {(1 + Vi) — <1 - %)} . (E77)

Recalling Eqgs. (E.46)-(E.51) one obtains for m = 0 and ¢ = 1,

/

. 1 < D, (1), (W& p).d
Mo () = > {Xémi P (Yab) = Youu" 2" (Yab)
2\/7_?7ab i=0
Ta 7 7
N (1 B E) ZWi p O )} (E.78)
with
Wi )di=] (=) (m +3/2

vyt = 9 Z S35 4 1)(2i — 25 + 1)

- 2@ (m +3/2) (2 +1) (E.80)

7! m —1
i

A J(2g+1)_4( 1) (m+3/2
i!

Om 0om/ m! — i

), (E.81)

J=0
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and
Wity = TUEB2) Mo jns 2y p g s 2] (m.82)
b= (1 + ~2)it1/2 T 2 T2 T2 2 T2 :
. 2
(1),1'( ) _ F(l+3/2> F(l + ~2 )_ F(l Z+gﬂ 27 117 )
pPp 7 (1 +72)z’+1/2 2’ 27 1+7 (1_’_7 )
I(i+1/2) 1.3
T 2(1 +A2)it2 [F(l TEE 1+7 2) — 1 (E.83)

In Reference 47 one can find the following relation for the hypergeometric
function F,

b(1—2)F(1,b+ 1;¢;2) = (c—1) = (c— 1 =b)F(1,b;¢; 2), (E.84)

from which it follows that
(20420— 1)
(1+9?)

Substituting Egs. (E.79)- (E.83) and Eq. (E.85) into Eq. (E.78) one can show
that

MO () = 1 Z (—1)z (m’—|—3/i2) (F(z + 3/2)

(1, +€+§a271+ 7) = 14 2(i+(—1)F (1, i+l 2’2’1+ ) (E.85)

\/;,y — Al m’ — 1_|_72)z+1/2
) T\ F(Li+3315) -1
x |1 —F(1,i+3;2; +(1-=2 T . (E.86
hit53 o) < Tb) (1+77) (50

The following relations have been obtained by means of Maple [48],

S5

<m +3/2) ((z +3/2)

2 i) T
V7 (m/'+3/2
= 7 m' F<_m,7 %7 gu 1_,_1.),2)7 (E87)

S5

=0

(m +3/2> ((z+3/2)F(1 e o

m/ —1 1_{_,72)7, 2’2’1+'y

=) (" et g ). E89)

2 m!
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Therefore, one has

vty _ (V2 (i 3/2) P 5553 1907)
om/’ (7) — 27 m’ (1+72>

m'+1/2 /1.3, _1 Ta 1
_< m’ )F(_m’§’5’1”2) ) e

XKm’H/z)F(_m, Lo 1 (m’+3/2) F(=m', 3; 3 12) (E.8)

m’ 12027 1497 m/ (14+~+?)

With the help of the following formula [47],
(1 =2)F(a,b;c;z) = cF(a,b—1;¢,2) — (¢ —a)zF(a,b;c+ 15 2), (E.90)

one arrives at the relation

3 9 3.3, 1 3 1.3._1
5 F(—mlag;g;w) = §F(—m/>§§§;w)
(m'+3/2) 3
T (—=m', 353 1552)- (E91)
The hypergeometric function on the left-hand side of the last equation can
be simplified to give

2m’

gl
(147%™
where F'(a, b; b; z) = (1—2)~ has been applied [47]. Thus, the matrix elements
related to the first collisional moment of the differential operator read
D(m' +3/2)  y2m+!
Vamll L+
(LD £3/2) g
T, Vm'l o (1 A28/
L(m’ +3/2)75" 2 1.
= — 2 1 —1—=).(E.93
\/7_Tm"(1 4 ,ygb)m/+3/2 ( + PYab) Tb ( )
The momentum conservation of particles can now be verified by replacing
Yab = 1/Ye in Eq. (E.93), that is
F(m' + 3/2) Tb Tb
Do ) — Tz (L) 2
Tzz 0Om (75 ) ﬁm/!(1+,}/§a)m/+3/2 Ta( +7ba) Ta Vba
I'(m' +3/2) 9 T
1 —(1—= E.94
Jrnigyee [\ ) (B9
which is in agreement with Eq. (E.77).

F(_m/ 3.3. _1 ):

12729 1442

(E.92)

Mo () = —

om’
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E.4.3 Energy conservation

From Eq. (E.12) one finds
Ta/dgvaCab [.fala be] - _Tb/d3vy26ba [bea fal] (E95)

After replacing 2% and y? with (3/ Z)Béo) - B%O) and using the particle conser-
vation property one obtains from Egs. (E.15) and (E.53)

n a
_T Mlm’ ( ab) = __bTbNb 7(())(’}/ba)' (E96)

1m/
Tab Tha

Combining Eq. (E.96) with Eq. (E.55) one arrives at the formula

a TCL a
MO () = —Tb%awb O (10), (E.97)

where the matrix elements on the right-hand side of the last equation reads
[cf. Eq. (E.68)],

3 D0n'+1/2)
VEml ()
Ty

X [2m'(1+7§a) — (2m'+1) (1_7)} : (E.98)

Nba,(/()) (’Yba) —

im

Replacing in Egs. (E.46)-(E.51) for m’ = 1 and for ¢ = 0, respectively, one
obtains

m/+1
I \/;%b 2; [X o D () = Y0 05 ()
+ ( - %) ZO o (e )]» (E.99)
with
x0F — o, (E.100)
YO = Qisﬂzﬂ‘%(% —2j) = (82_(:12);! (m”f/jlli 2@.), (E.101)

. —1) [ m +1/2
7O = 4N g Wiimigg _ 8= E.102
tm Z tm (i—D!\m +1—1)’ ( )
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and
- 2
Oigy = DOFY2) o s ey Flitsisins)
Pp\7) = (14_,}/2)1‘—1/2 ) 2727 1442 (1+7)
I(i—1/2) L
21+ A7) 172 [F(1,2—5; 5 T) 1} : (E.103)

Inserting Eq. (E.100)-(E.103) into Eq. (E.99) yields

6 "R Sm/+1/2
MO () = ——— : E.104
where the brackets represent

{} _ (=D TE-1/2) [F(l,z' 1.3, 72 )_1}

(i — 2)1 (1 4 7)i-1/2 272 1492

(1) R -

The following relations have been obtained by means of Maple [48]
’I’I’L,-‘rl i 12 .
(=2 \m/'+1—i/) (14 ~2)

=0

\/7_T m’+1/2 (1 magag;l_:,ﬁ)

_ VT (E.106)
2 \ m—1 )

5 (__1)z'!(m/+1/2>r(¢_1/2)F(1’i_%% ‘)

2 i \mr1-i) iy
3 1
_ V(=12 P 55 ) (E.107)
>\ m'—1 (117

Sy
VT (m’—|—1/2) F(—ﬂ(%l’, 5 3:)1% 2)
+7
_ VT (m/“/ 2) T gl (E.108)

1 + ,72)m’+1
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SR
7 (")
_ A <m/_1 /2>

2 m/

1=

These equations can be combined to yield

ab(0) .y _ 3 m'—1/2 13 1
Mlm/ (7) - _W{( m—1 F(l—m,,§a§71+72)

- (m/_|_1/2) F(l—mg%?g?ﬁ) n <1_£)

i e e
N (RG-S CEE NI |

Applying again Eq. (E.90) one obtains

3 92 3
s FA=m, 55 ) = SF(-m' 555 1)

(m/+1/2)
- WF(l—m’,%;%; =Ly). (B111)

When this equation is substituted into Eq. (E.110) one finally gets the matrix
elements related to the second collisional moment of the differential operator,
that is,

ab,(0) 3w mm +1/2) s
Mi (Yab) = (T +202  m'T(3/2) F(1 m,g,ayrﬁb)

(1B i r ()
Ty ) (14 z)™ 432 m'\T(3/2) 2
3 T +1/2) At
T R (AT

X [Zm/(l +v2) — (1 - ;) (2m/ —%%b)} (E.112)

b
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The energy conservation of particles can now be verified by replacing ~v,, =
1/9a in Eq. (E.112), that is

T ey~ 3 L0 1/2) 54 27
Topa ™ vroooml (14 )™ 372
2m/Ty(1 2 T 1
e () )
Tafyba Ta Vba
3 T(m' +1/2) Yoa
S o T
T T
<[mtaetagi s (1- 1) ntat - )
3 T'(m'+1/2) Voa

VA ml (Lag)n

X {2771/(1 +72,) — (2m' +1) (1 — %) } . (E.113)

a

which agrees with Eq. (E.98).

E.5 Comparison to results in literature

In this section it is briefly shown how the Braginskii matrix elements presented
in this appendix are related to the corresponding results obtained by various
authors during the last decades.

A comparison of Braginskii’s definition of matrix elements [cf. Eq. (A.1) of
Reference 79] with Egs. (E.15) and (E.53), respectively, yields

M = g2 e (E.114)
Tab
N® = vug N, (E.115)
Tab

The moments of the collision operator were evaluated by introducing the
generating function for the Laguerre polynomials which leads to the equations

Z—ZU;M = S5 emyrm, (E.116)
@ m=0m/=0
N — m, m' nra
T—’litaUth = Z ZS n lezm/ (Ell?)
ab

m=0m’/=0
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The generating formulas from which the matrix elements were calculated
of by Taylor expanding the functions M and N around £ = 0 and 1 = 0,
respectively, read [cf. Eq. (A.4) of Reference 79]

fYab
Mf,m%b,Ta,Tb - -
( ) = S —eprra—9u -
1
X ey {} (E.118)
I1+z+y+5
with
B _ T +y N oxY
I+z+y+72,  (I+a+y++3)2
21’3/’}/(1[) (1 Ta)|: 1
(1+z+y)(1+x+y+72,)? T, ) | 1+z+y++2,
5 202
B T —_— V5 . } (E.119)
(I+z+y+75)* (I+r+y)(I+r+y+95)?
as well as
T, (1+2)(1+vy) { }
N0, Yabs To, Tp) = -4 (E.120
(& %00, T ) zn(l—5)(1—n>\/1+x+vsb<1+y> (E.120)
with
{} Ty 3Ty,
Itz+2,(14y)  [I4+z+92,(1+y))?
T Yab 3170, }
+ (=21 a — a . (E.121
(Ta >{1+$+72b(1+y) [T+z+72,(1+y)]? ( )

where x = £/(1 — &) and y = /(1 — n). The matrix elements computed from
these expressions are valid for ¢ = 1 and for arbitrary species temperatures.

In Reference 80 Hirshman defined the matrix elements by

2
M, = b / oL LD (22)c,, [“”L?’”( )fao,fbo} (E.122)
Uy

Ng a
Ta v 2v
Ngv,bm’ = nb /d3 U” L 3/2)( ) ab |:fa0a HL 3/2) ( )fb0:| ) (E123)
a ta

and used more or less the same method as Braginskii in evaluating these
integrals. The corresponding matrix elements are valid for / = 1 and for
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T, = Tp. From Egs. (E.122) and (E.123) as well as Egs. (E.15) and (E.53)
one can conclude that

M, = amebl) (E.124)
N = N W), (E.125)

In the paper by Wong [82] the collision matrix elements were defined the
same way [see Eqgs. (6) and (7) therein] as in this appendix, therefore the
following equations hold

MO = Mo (E.126)
NO = N, (E.127)

The evaluation of these matrix elements was also based on a generating
function technique valid for arbitrary ¢ and for equal species temperatures
T, ="1T,.

Finally, in the work by Ji and Held [90] the collision matrix elements cor-
responding to the test and field particle operators [Eqgs. (56a) and (56b)
in Reference 90] have been obtained by a direct evaluation of moments of
the Coulomb operator (that is the product of velocity polynomials and the
collision operator has been integrated). The results are valid for arbitrary ¢
as well as for arbitrary species temperatures and are related to the matrix
elements calculated in the previous sections via the equations

Almn”— — (90 4 1)M™ ) (E.128)
Bimm' = (204 )N (E.129)



Appendix F

Toroidally symmetric test
configuration

In the axisymmetric limit analytic solutions of the standard neoclassical
transport theory are available. In this appendix a simple toroidally symmetric
test configuration (‘standard tokamak’) is constructed which can be used
to compare the numerical results obtained by the NEO-2 code with known
analytical results [22,37,38,56,59-61,94] and, therefore, serves as a benchmark
configuration.

The first two sections in this appendix present a compilation of the relevant
formulas which are needed in constructing the standard tokamak and are
mainly taken from References 91 and 95, respectively.

F.1 3D magnetic fields with nested surfaces

In 3D equilibrium configurations with nested magnetic surfaces the magnetic
field can be written in the contravariant (or Clebsch) representation [91,95]

B=Vi)xVv, (F.1)

where

v(,0,0) =0 —+(¢) o + A, 0, 0). (F.2)
One can show that this is a consequence of V-B = 0 and B - V¢ = 0.
Combining the equations j- V¢ = 0 and j = (¢/47) V x B, the magnetic field
in the covariant representation can be expressed as [91,95]

B=Vn+p5Vy, (F.3)

where

n,0,0) =1(1) 0+ J(¥) ¢ +w(¥,0, ), (F.4)
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and 3 = B(¢, 60, ). The three functions A\,w and 3 are periodic with respect
to the poloidal and toroidal angles. Using

VA=AV + ApVO+ A, Ve (F.5)

and

Vw=wyV+woVO+w, Vo, (F.6)

where, e.g., Ay = 0OA/0¢, one finds for the contravariant and covariant
representation of B, respectively,

B = (14Xg)Vx VO+ (¢t —\,) Ve x Vi (F.7)
I+ A - A

_ | ﬁﬁ)% L \/g*")ee (F.8)

= BYe,+ B’ey, (F.9)

and

B = (I+wg)VO+ (J+w,)Vo+ (B+014+ o]y +wy,)Vy (F.10)
= ByVO+ B,Vy+ B, V. (F.11)
The Jacobian of the (v,0,¢) coordinate system can be found by dotting

together the contravariant and covariant representation of B yielding

1
V9 = Vi -Vl x Vo
1

= I [(t=Ap) (U +wp) + (1+Ap) (J +wy). (F.12)

The single-valued function (¢, 6, ) can be determined from the condition
that the current density j lies in the flux surface,

i V=0, (F.13)
which is equivalent to
0B, 0By
=% . F.14
00 Oy ( )

From Ampere’s law, j = (¢/4m) V x B, it can be shown that the quantities /
and J are proportional to the total toroidal and poloidal current. The total
toroidal current inside a flux surface is ¢//2 and the total poloidal current
outside a flux surface is ¢J/2, where I and J are calculated from

2

I(y) = % dfBy (F.15)
0

2m
1
J@) = 5 / dyB,. (F.16)
0
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F.2 Transformation to Boozer coordinates

Magnetic coordinates with the property that the covariant components of the
magnetic field, By and B, respectively, represent flux functions are called
Boozer coordinates [22,96]. The stream functions v and 1 have the form

v(¥,0p,08) = 0 —+(Y)ps (F.17)
nW,0s,98) = 1)+ J()pp. (F.18)

The transformation from general flux coordinates (1,6, ¢) to Boozer coordi-
nates (¢, 0p, pp) is defined by [95]

0 = 0+60(0,9) (F.19)
e = ©+o(0,0), (¥.20)

where the periodic functions 8 and @ are computed from the solution of the
relations

Op—top = 0—tp+ A0, ) (F.21)
I0g+Jop = 10+ Jp+w(d o). (F.22)

Upon substituting Egs. (F.19) and (F.20) into Egs. (F.21) and (F.22), one
finds

tw+JA

0(0,0) = Tl (F.23)
- w—1M\
0.0) = S+ (F.24)

F.3 Tokamak with circular cross section

F.3.1 Construction of an “equilibrium”

By definition, in the toroidally symmetric test configuration the magnetic
surfaces are nested concentric circular tori with constant major radius Ry. The
best adapted coordinate system in this geometry is the toroidal coordinate
system (r, 6, ¢) defined by

R(r,0) = Ry+rcosf (F.25)
Z(r,0) = rsinf (F.26)
¢ = ¢, (F.27)
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where r is the minor radius and # and ¢ are the geometrical poloidal and
toroidal angles, respectively!. Further prescribed quantities are the rotational
transform + and the toroidal flux at the last closed magnetic surface, v'.
If one replaces the geometrical radius r by a+/s, where a is the radius of
the outermost flux surface and s = 1(s)/¢(1) is the normalized toroidal
flux, one obtains the quasi-toroidal coordinates (1,6, ). The quantity v
(or s, respectively) can be interpreted as a topological radius. Since the
quasi-toroidal coordinate system is an orthogonal one the off-diagonal metric
coefficients are all zero. The Jacobian of these coordinates and the covariant
metric coefficients are

oz, y,2) a*R ROR

= =—=—R, F.28
VI o000 " W A 29
as well as
a? 1

= = F.29

d 1502 | EBR (F.29)

goo = a’s = Ry (F.30)

Jop = RIR? (F.31)

where the abbreviations %y = 2¢'/a?, e =1/Ry and R = R/Ry = 1+ ecos 0
have been introduced.

Using the expressions from the previous sections and taking into account
the axisymmetry, /0y = 0, the contravariant components of B become [see
Egs. (F.8) and (F.9)]

BY — [CR)] B -t (F.32)

Voo V9
One can change the contravariant components into covariant components
with B; = ¢g;; B, leading to

By = gwB’ = &PByRyR™ (F.33)

B, = gup B = ByReR(1+ \y). (F.34)

In axisymmetric systems, Eq. (F.14) reduces to the fact that B, is a flux

A

surface quantity which, in turn, requires R(1 + X ) being independent of 6.
Hence,

A

fW)=R(1+Ap) (F.35)

LOf course, full vacuum equation, V x B = 0, cannot be satisfied if Eqs. (F.25)-(F.27)
are assumed. Some additional currents on the flux surfaces are needed. However, if the
configuration is such that the inverse aspect ratio € = a/Ry < 1 the proposed magnetic
field model should be a useful approximation to a realistic MHD equilibrium [97].
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and

Ao = CONY (F.36)
J

The integral with respect to ¢ of the function X y vanishes because A is periodic
in 0, that is

27 2

/deA,e = (1, 27) — A(@,0) = 0 = f() / C}g —or, (F.37)

0 0

from which it follows that

2w -1
1 dé .
=|— [ = = (RN, F.38
Fw) %O/R(w,m (i (F.33)
and the stream function A is finally given by
1 / de’
MW, 0) = — / LA (F.39)
(R71) ) R(v,0)
Here, Eq. (F.36) can be rewritten as
1
=B R (F.40)

and the co- and contravariant components of the magnetic field then have
the form

g = % _ T (F.41)
(R-YRyR?  RIR?

+ By ¢J(R™)

B! = g _— (F.42)
RoR R?
B, = Dol _ (F.43)
(B~1)
- I
By = &ByRR' = ——x | (F.44)
(R~ R

where the poloidal and toroidal currents in quasi-toroidal coordinates have
been calculated by means of Egs. (F.15) and (F.16), respectively,

Iw) = 5 [aeB, = B, = iR> (F.145)
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2w
1 R .
I(y) = %/CWBG = e BoRo(R7") = & J(R)?  (F.46)
0

Hence, it follows that the square of the magnetic field strength can be

represented by

WJ(RTY T L
R2R (R-YWR R:R?

where Egs. (F.41)-(F.46) have been applied. Finally, one obtains for the

magnetic field strength in quasi-toroidal coordinates the relation

B(y,0) = VI ) (F.48)

~ .

RoR

B?>=BBy+ BB, = J, (F.47)

F.3.2 Transformation to Boozer coordinates
From Egs. (F.10), (F.11) and (F.44) one obtains
I

wg=DBy—1= (]A%—lﬂ% —1I. (F.49)
Integration with respect to 6 yields
0
ww ) =1 (= [ ) —rnwe). s
(R71) ) R(v,0)

from which it follows that Egs. (F.23) and (F.24) reduce to

w—1M\ IAN—1\
5 = = =0 F.51
LA Sy (:51)
tw+JA eI AN+ J A
J++¢1 J+1 ( )
Therefore, on surfaces of constant toroidal flux 1) the quasi-toroidal coordinate

system is related to the Boozer coordinate system through

0p(0) = 0+ X0) (F.53)
Yp = @, (F.54)

R

or, more explicitly,

0
1 46’
0y = = 0/ ) (F.55)
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where Eq. (F.39) has been used. The integral appearing in Eq. (F.55) can be
evaluated to obtain

/ ;(Z,) - \/12_762arctan{(1 _\;%9/ 2)} : (F.56)

and the quantity (R™1) is
2w

. 1 do 1
RYH=— = f 2<1. F.57
< ) 27r/1+ecos€ Vi—e’ or € < ( )

The final step consists in calculating the Boozer spectra of R, Z and B. This
could be achieved by inverting Eq. (F.55) to get

V1 —e2tan(0p/2) }
(1—¢) ’

(F.58)

0(0p) = 2arctan{

and, upon using the relation

«Q 1 —cosa
tan — = 4/ ——— F.59
My T Vit cosa (F.59)

one obtains the following expressions,

cosfp — ¢
g = —2 - F.
cos 1 —€ecostp (F.60)
V1 —€2sinf
sing = Y- OB (F.61)
1 —e€cosbp

Therefore, the representation for R, Z and B [see Eqgs. (F.25), (F.26) and
(F.48)] in Boozer coordinates is given by

R 1—¢2

R(0 = — = — F.62
(05) Ry 1 —ecosfp ( )

A Z ev1 — e2sinfp
Z (0 = — = F.63
(05) Ry 1 —ecosbp ( )

J(J++I) (1 —ecosfp)
B(6 = . F.64
( B) R(] (1 _ 62) ( )
The Fourier expansion for R, Z and B has the following form

R(0p) = Z T'm COS0p (F.65)
Z(0p) = Y zmsinbp (F.66)

B(fg) = me cosOp, (F.67)
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with the Fourier coefficients

ro = i dfsR(05)
T Jo
2 T A

Tm = 25 d0gR(05) cos(mbp), for
T Jo

20 — 0
2Ry [T A

Z, = =2 d0pZ(0p) sin(mlp), for
T Jo

These coefficients may be calculated by using [29]

T
1+ acosx V1 — a2

as well as

0 (1 —2acosx +a?) 2

w — a2 — "
/ q cos(nx)  w <\/1 a 1) , for a? <1,
0

a

Hence, it follows that

Ro(1— €2
o = 0( 6) T :R0v1—62

m V1—¢2
L _ 2Ro(1- ) 7 1—vi—e\"
"o T V1 — €2 €

1—vI—e\"
= 2RyV1 — €2 <—€> , for m>1

€

2 2/1—v1I—e\"
2 = &6\/1_622_ (—6)

s 2€ €
1—-v1i—e\"
— RWI & <—>
€
= T, for m > 1.

m>1

m > 1.

(F.68)

(F.69)
(F.70)

(F.71)

(F.72)

(F.73)

(F.74)

(F.75)

(F.76)

The Fourier coefficients for B can be immediately obtained from Eq. (F.64)

leading to

J(J ++I)

b= R
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m
_ g (F.77)

1 —¢€2

bl = —Ebo. (F78)

F.4 Comparison with the standard model

A widely used magnetic field model in the literature is the so-called standard
model defined in the toroidal coordinate system (r, 6, @) by (for details see
Reference 56)

By

B = B e — €
(r,0) 0 €(r)¢(r) ég + T+ e(r) cos 0 €&, .

(F.79)

where By is a constant having the dimension of a magnetic field and €; are
the physical basis vectors. It has to be noted that this model field is not
divergence-free?. Using the relation ) = %yr?/2 between the toroidal flux ¢
and the minor radius r the magnetic field model calculated in Section (F.3.1)
can be expressed as

B(r,0) = — 2% [4(r)e(r) & + /T e(r)? é¢] . (F.80)

1+ ¢(r)cosd ’

Using %Ay = By the standard model is obtained from Eq. (F.80) by neglecting
terms of O(e?).

2more precisely, (r/By)V - B ~ O(€?)
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