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Kurzfassung

Die Leistungsfähigkeit moderner Kommunikationssysteme hängt stark von den eingesetz-

ten Analog-Digital-Umsetzer (ADU) ab, und um die Flexibilität und Genauigkeit neuar-

tiger Kommunikationstechnologien zu ermöglichen, sind Hochleistungs-Analog-Digital-

Wandler erforderlich. In dieser Hinsicht, können zeitlich versetzt operierende ADUs (ZV-

ADU) eine angemessene Lösung darstellen. Bei einem ZV-ADU erhöht sich der Daten-

durchsatz, indem M ADU Kanäle oder Subwandler parallel eingesetzt werden und das

Eingangssignal zeitlich versetzt gewandelt wird. Die Leistungsfähigkeit des ZV-ADUs

wird durch ungleiche ADU Kanäle stark herabgesetzt. Diese Fehlanpassung der ADU

Kanäle verfälscht das Ausgangsspektrum des ZV-ADU, indem unerwünschte Kompo-

nenten zusätzlich zu den eigentlichen Signalkomponenten generiert werden. Diese Ar-

beit befasst sich mit einer im Hintergrund ablaufenden adaptiven Kalibrierung von fehl-

angepassten Frequenzantworten eines ZV-ADUs. Indem jeder ADU Kanal als lineares

zeitinvariantes System modelliert wird, entwickeln wir zeitkontinuierliche, zeitdiskrete

und zeitvariante Modelle eines ZV-ADUs. Unter Zuhilfenahme dieser Modelle wird das

Verhalten des ZV-ADUs mit fehlangepassten Frequenzantworten charakterisiert. Zu Be-

ginn wird die Fehlanpassung der Frequenzantworten ausschließlich durch Verstärkungs-

und Abtastfehlanpassungen modelliert, welche durch Taylor Reihen erster Ordnung an-

genähert werden. Wir entwerfen anschließend eine blinde im Hintergrund operierende

Kalibrierungsstruktur, die einen filtered-X least-mean square (FxLMS) Algorithmus ein-

setzt um die Verstärkungs- und Abtastfehlanpassungen zu kalibrieren. Neben ihrer Ein-

fachheit und guten Skalierbarkeit funktioniert diese Kalibrierungstechnik auch gut für

verschiedene Arten von Eingangssignalen und verbessert die Leistungsfähigkeit des ZV-

ADUs beträchtlich. Weiterhin wird eine im Hintergrund operierende digitale und adapti-

ve Technik präsentiert, welche die fehlangepassten Frequenzantworten eines zwei Kanal

ZV-ADUs kalibriert. Im Gegensatz zu anderen Kabibrierungstechniken, hängt unsere

Kalibrierungstechnik nicht von der Art des Eingangssignals und der Modelle der Ka-

nalfehlanpassung ab. Wir repräsentieren die Fehlanpassung der Frequenzantwort durch

eine Reihe von Polynomen von konstanter Ordnung was es uns ermöglicht die Fehlan-

passung der Frequenzanworten durch die Koeffizienten der Reihe zu charakterisieren.
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Anschließend werden diese Koeffizienten mittels des FxLMS Algorithmus geschätzt, un-

ter dessen Zuhilfenahme das Eingangssignal rekonstruiert wird. Letztendlich wird ei-

ne nicht-blinde im Hintergrund operierende Kalibrierungsstruktur präsentiert, die einen

weiteren ADU mit niedriger Auflösung als Referenz und ein M -periodisch zeitvariantes

Filter verwendet, um die Fehlanpassung der Frequenzantworten zu kalibrieren. Alle ge-

nannten digitalen Kalibrierungstechniken ermöglichen es, die durch Fehlanpassung der

Frequenzantworten verursachten Leistungseinbußen des ZV-ADUs zu kompensieren.
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Abstract

The performance of today’s communication systems is highly dependent on the employed

analog-to-digital converters (ADCs), and in order to provide more flexibility and preci-

sion for the emerging communication technologies, high-performance ADCs are required.

In this regard, the time-interleaved operation of an array of ADCs (TI-ADC) can be a

reasonable solution. A TI-ADC can increase its throughput by using M channel ADCs

or subconverters in parallel and sampling the input signal in a time-interleaved manner.

However, the performance of a TI-ADC badly suffers from the mismatches among the

channel ADCs. The mismatches among channel ADCs distort the TI-ADC output spec-

trum by introducing spurious tones besides the actual signal components. This thesis

deals with the adaptive background calibration of frequency-response mismatches in a

TI-ADC. By modeling each channel ADC as a linear time-invariant system, we develop

the continuous-time, discrete-time, and time-varying system models of a TI-ADC. These

models help us to characterize the behavior of a TI-ADC in the presence of frequency

response mismatches. First we model the channel frequency responses with gain and

timing mismatches only which are approximated using a first-order Taylor’s series ex-

pansion. Consequently, we present a blind calibration structure that uses the filtered-X

least-mean square (FxLMS) algorithm to calibrate the gain and timing mismatches. Be-

sides its simplicity and ease of scalability, this calibration technique works well with

different types of input signals and significantly improves the performance of a TI-ADC.

Next a digital background blind calibration structure for frequency response mismatches

in a two-channel TI-ADC is presented. Contrary to the other calibration techniques in

the literature, our calibration technique is not dependent on the type of the input signal

and the channel mismatch models. We represent the frequency response mismatches by

a polynomial series of fixed order that allows us to characterize the mismatch by the

coefficients of this series. Later these coefficients are estimated by using the FxLMS

algorithm that helps in the reconstruction of the input signal. Finally, a flexible digital

background non-blind calibration structure is presented that uses an extra low-resolution

ADC as reference and an M -periodic time-varying filter to adaptively calibrate the fre-

quency response mismatches in a TI-ADC. This structure may be used to calibrate any

linear frequency response mismatches including gain and timing mismatches. All these

digital calibration techniques make it possible to overcome the performance artifacts of

frequency response mismatches in a TI-ADC.
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ĉ[n] Estimated polynomial series coefficients vector

XVIII



Symbols and Operators

General Notation

[.]T Transpose

δ( ) Dirac delta distribution

E{ } Expectation operator

Q Quantizer

QH Quantizer with high resolution

QL Quantizer with low resolution

σ2
x Variance of the input signal x[n]

Correlation

R Autocorrelation matrix

p Cross correlation vector

Frequency Symbols

Ω Analog frequency

ω Discrete frequency

Ωs Analog sampling frequency

Ωc 3 dB cutoff frequency

Adaptation Symbols

ε Adaptation error

µ Step-size parameter

µg Step-size parameter for gain mismatch

µr Step-size parameter for timing mismatch

Transfer Functions

Hd(e
jω) Discrete-time frequency response of a differentiator

Dp(e
jω) Discrete-time P -th order differentiator
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1
Introduction

Analog-to-digital converters (ADCs) are critical components in many communication

systems [1]. The current trend is to move more and more of the functionality of a

communication system into the digital domain in order to provide an increased flexibility

and reduced cost [2, 3]. To accomplish this, the requirements on the data converters

increase both in terms of higher accuracy and larger bandwidth. One way to increase

the bandwidth of an ADC is to use several ADCs in parallel and to sample data in a

time-interleaved fashion [4].

Unfortunately, the performance of the interleaved architecture suffers from mismatches

among the subconverters[1, 5]. This is mainly caused by the difference in the charac-

teristics of the components used in the ADCs. These mismatches are often expressed

as relative errors measured with respect to some nominal reference channel. In recent

years, due to the availability of several calibration techniques in the analog and digi-

tal domains, it has become possible to improve the performance of a time-interleaved

ADC (TI-ADC) [6–18].

This chapter gives an overview of the operation of time-interleaved ADCs and of the

mismatches which occur in the sampling process. It reviews previous blind and non-blind

calibration methods and outlines the contributions of this thesis.

1.1 Time-Interleaved ADCs

In this section the working principle of a TI-ADC is introduced. We further discuss the

performance degradation of the interleaved architecture due to the mismatches among

the sub-ADCs. This may be caused due to the difference in the characteristics of the

different components used in ADCs. By knowing the nature of the mismatches it is

possible to design calibration structures to reduce the effects of these mismatches.
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1.1 Time-Interleaved ADCs

input

x(t)

analog

MUX
y[n]

output
digital

ADCm

ADC0

ADCM−1

fs/M

fs/M

fs/M

ϕ = (M − 1)2π
M

ϕ = m2π
M

ϕ = 02π
M

TI-ADC with fs = 1/Ts

Figure 1.1: A time-interleaved ADC with M channels.

1.1.1 Working Principle

A time-interleaved ADC operates at a higher sampling rate by utilizing an array of

multiple ADCs with lower sampling rates [4, 19]. The bandlimited analog input signal

x(t) is processed by the sub-ADCs in a time-interleaved manner to produce the digital

output y[n]. As shown in Fig. 1.1, the conversion rate in each individual ADC is reduced

to fs/M where the phase of the clock for the mth channel ADC is given by ϕ = m2π
M ,

while the overall sampling rate is kept at fs, where M is the number of ADCs that are

used in parallel.

In terms of the timing of a TI-ADC, a sample is taken by another sub-ADC at each

time step and a digital output is produced. Hence each channel ADC has a sampling

period of MTs and the overall time-interleaved system has a period of Ts as illustrated

by Fig. 1.2. A multiplexer (MUX) merges the samples from the sub-ADCs into a single

data stream. It should be noticed, however, that the sampling unit in each sub-ADC

has to deal with the entire analog bandwidth of the input signal, otherwise the sampled

signal would be distorted.

1.1.2 Mismatch Errors

As mentioned before, the overall performance of a TI-ADC suffers from mismatches

among the sub-ADCs such as offset, gain, timing-skew, and bandwidth mismatches [20].

2



1.1.2 Mismatch Errors
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ADCM−1
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x((M + m)Ts)
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t
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x((M − 1)Ts)

MTs

Ts

Figure 1.2: Sampling principle of a time-interleaved ADC with M

channels.

The presence of mismatches among the sub-ADCs distort the TI-ADC output spec-

trum by introducing spurious tones beside the actual signal components. As shown in

Fig. 1.3 it is reasonable to model each channel ADC inside a TI-ADC by a linear time-

invariant (LTI) system with an analog frequency response Ĥm(jΩ) followed by a sampler,

where Ω is the analog frequency and m = 0, 1, . . . ,M − 1 [21, Ch 4]. The frequency re-

sponses include all linear characteristics such as gain, time offsets, and bandwidth. If the

frequency responses Ĥm(jΩ) differ among the channel ADCs, then frequency response

mismatches arise in a TI-ADC. Let us consider a two-channel TI-ADC (M = 2)with

channel frequency responses

Ĥm(jΩ) =
gm

1 + j Ω
(1+∆m)Ωc

ejΩTrm (1.1)

where Ωc is the 3-dB cutoff frequency of the first order response, gm are the gain mis-

matches, ∆m are the relative frequency offsets from Ωc, and rm are the relative timing

offsets from the ideal sampling instants. The input signal x(t) is a single sinusoidal tone

with unit amplitude at some frequency 0.1088Ωs/2, where Ωs/2 = π/Ts is half sampling

frequency as shown in Fig. 1.4(a). In addition to this tone, the frequency response mis-

match introduces a second tone in the TI-ADC output at frequency 0.8912Ωs/2 as shown

in Fig. 1.4(b). This leads to degradation in the performance of a TI-ADC that can be

characterized by different measures such as signal-to-noise and distortion ratio (SINAD),

and spurious-free dynamic range (SFDR) [22].
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y[n]

digital
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ADCm

(nM + (M − 1))Ts

ĤM−1(jΩ)

ADCM−1

ADC0

x(t)

TI-ADC

MUX
fs = 1

Ts

Figure 1.3: Model of a TI-ADC with M channels where each channel

is represented by an LTI system with analog frequency response Ĥm(jΩ)

with m = 0, 1, . . . ,M − 1 followed by a sampler.

1.2 Time-Interleaved ADC Calibration Techniques

As discussed in the last section the mismatches reduce the performance of a TI-ADC.

One solution to avoid mismatches is to use a single ADC with a higher sampling rate, but

this is costly and unrealizable. Hence there is need for calibration techniques that are

able to identify and correct the mismatches. Some techniques perform the calibration

in the foreground such that they need special calibration phases to inject a test signal

during the operation of an ADC, thus causing system interruptions. Alternatively there

are techniques that do not need any test signal and thus perform the calibration in

the background while the ADC is performing its normal operation. Furthermore, we

can categorize the calibration process as non-blind or blind. The non-blind calibration

requires knowledge about the input signal while the blind calibration works without

knowledge of the input signal.

Formally every calibration technique consists of two phases, i.e., identification and

reconstruction. The identification phase estimates the mismatches using either non-

adaptive or adaptive algorithms [23]. An adaptive algorithm self-adjusts itself according
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(a) Output of a two-channel TI-ADC without mismatches.
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(b) Output of a two-channel TI-ADC with frequency response mis-

matches.

Figure 1.4: These figures show the typical output spectra of a two-

channel time-interleaved ADC without mismatches Fig. 1.4(a) and

with frequency response mismatches Fig. 1.4(b), where signal power

is shown along y-axis in deciBels (below) carrier (dBc). For both

figures we have used a sinusoidal input signal with a frequency of

0.1088Ωs/2. Fig. 1.4(a) looks like the output of a conventional ADC,

whereas Fig. 1.4(b) has an additional spurious tone at 0.8912Ωs/2 (de-

noted with circles), which is caused by the frequency response mismatch.
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to an optimization criterion to get the optimum estimate of the mismatches. By con-

trast, a non-adaptive algorithm finds the mismatch estimates in a static way by explicitly

solving some equations. The correct estimation of the mismatches generates the recon-

structed input signal. In other words the performance of the reconstruction process is

highly dependent on the accuracy of the estimated mismatch values.

Since the invention of time-interleaved converter arrays by Black [4, 19], the analysis

and calibration of mismatch errors in TI-ADCs have attracted many researchers during

the last three decades. The mismatch analysis techniques have addressed the effects

of offset, gain, timing, and bandwidth mismatches beside quantization effects on the

performance of TI-ADCs [20, 24–29]. Beside that many calibration techniques for offset,

gain, and timing mismatches in analog and digital domains have been presented [6–

13, 30–47, 47–55].

The techniques addressing only the calibration of offset and gain mismatches in-

clude [6, 7, 47]. In [6] a digital background calibration scheme to overcome the effects

of offset and gain mismatches was presented. Background calibration was performed by

adding a calibration signal to the ADC input and processing both simultaneously. An

analog blind calibration technique using adaptive signal processing, an extra channel, and

mixed-signal integrators to calibrate the offsets and gains of time-interleaved channels in

a 10-b 40-MSample/s pipelined ADC was presented in [7]. With monolithic background

calibration, a peak SNDR of 58 dB, and power dissipation of 650 mW was achieved in

1 µm CMOS. In [47] a software method based on the fast Fourier transform (FFT) for

offset and gain error compensation was presented.

The problem of nonuniform sampling that leads to the timing mismatches in a TI-

ADC and the reconstruction of nonuniformly sampled signals has been investigated

in [30–36, 38–42, 48, 52, 53]. Jenq was the first who addressed this problem [30–33]. He

developed a unified representation of a TI-ADC output for the case of nonuniform sam-

pling. Marvasti et al. have investigated the theoretical aspects of nonuniform sampling

and have proposed iterative methods for recovering one and multidimensional signals

from their nonuniform samples in [34–36]. A discrete-time filter bank implementation

for the reconstruction of a periodically nonuniform sampled signal was presented in [48].

The reconstruction filters were evaluated based on a method approximating the perfect

reconstruction (PR) condition that gave an uniformly sampled output with negligible

distortions and transfer of alias components. Johansson et al. have investigated fore-

ground reconstruction of nonuniformly sampled signals using digital fractional-delay and

polynomial impulse response time-varying finite-impulse response (FIR) filters in [38–42].

They have used a multirate filter bank [56] based reconstruction system. Furthermore
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1.2 Time-Interleaved ADC Calibration Techniques

they have used a least-squares method to get an analytic solution for the synthesis filters

in a multirate filter-bank. A novel method for the reconstruction of two-periodic and

non-periodic nonuniformly sampled signals has been presented in [52, 53]. The authors

have proposed a differentiator-multiplier cascade based reconstruction structure that by

utilizing the values of timing deviations can reconstruct a replica of the error signal due

to the nonuniform sampling. This error signal is later subtracted from the nonuniformly

sampled output to get the reconstructed input signal. By far this is the simplest of

the available reconstruction schemes since it only involves fixed filters like differentia-

tors and a few multipliers. We have used a similar reconstruction strategy in our blind

background calibration techniques for gain, timing, and frequency response mismatches

that will be presented in chapters 3 and 4 of this thesis.

The techniques that jointly address the estimation and compensation of offset, gain,

and timing mismatches have been presented in [9–13, 43–46, 49–51, 54, 55, 57]. A robust

sampling time offset estimation algorithm to perfectly reconstruct the digital spectrum

of a TI-ADC from nonuniformly sampled signals was presented in [57]. Another digital

background calibration technique was proposed in [8, 37] to minimize the timing-error ef-

fects in a TI-ADC. This technique was based on the digital interpolation, which estimated

the correct output values from the output samples that suffer from timing errors. Jamal

et al. designed a two-channel time-interleaved ADC with digital background calibration

for the offset, gain, and timing mismatches [9, 43]. Elbornsson et al. have investigated

blind adaptive equalization of offset, gain, and timing mismatches in a TI-ADC with

measurement results in [10, 44–46]. Seo et al. have investigated blind calibration of

gain, and timing mismatches in [11, 49] using a multirate filter-bank structure. Vogel

et al. have worked on modeling, identification and compensation of channel mismatch

errors in TI-ADCs [58–60]. They have worked not only on the blind identification and

compensation of timing mismatches [50, 51] but on the compensation of nonlinearity

mismatches as well [61]. Huang et al. have investigated the blind calibration of gain

and timing mismatches in TI-ADCs [12, 54, 62]. Another blind calibration technique for

timing mismatches have been proposed in [13, 55]. The authors have calculated both

the least squares and LMS solutions for the calibration structure. Since the focus of

this thesis is to develop adaptive calibration techniques only, hence if we look at the

existing adaptive calibration techniques for offset, gain, and timing mismatches, e.g., [9–

13, 43, 49, 54, 55], then most of these techniques are limited to two-channel TI-ADCs

only [9, 11–13, 43, 49, 55], which simplifies the identification problem. Only the method

in [54] addresses the calibration of timing mismatches in a four-channel TI-ADC. The

authors of [10] have equalized the offset, gain, and timing mismatches for an M -channel
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TI-ADC. However their method has high complexity. In chapter 3 of this thesis we intro-

duce a different adaptive blind background technique to calibrate the gain, and timing

mismatches for an M -channel TI-ADC. This structure has limited complexity and gives

a significant improvement in the performance of a TI-ADC.

During the last five years the main emphasis has been on the calibration of frequency

response mismatches since this is a kind of generalized mismatch calibration that can lead

to further improvements in the performance of a TI-ADC [63]. In recent years several

techniques addressing the calibration of bandwidth mismatches [64–66] and frequency

response mismatches have been published [63, 67–75]. Most of these methods are neither

adaptive nor blind [67–72, 75]. The other methods either require special input signals [63,

74] or specific forms of the channel frequency responses [73]. In chapters 4 and 5 of

this thesis we present the fully blind and non-blind methods respectively to adaptively

calibrate the frequency response mismatches in a TI-ADC. Both of these methods are

able to work with different types of mismatch models and input signals.

1.3 Scope of the Work

The main objective of this work is to develop calibration methods in the digital domain

that can calibrate the frequency response mismatches in a TI-ADC. Since a TI-ADC is

also characterized as a time-varying system hence one property of the methods should be

their ability to track these time-variations which is possible if we use adaptive techniques

that are simple to implement and provide robust performance [23]. A second property is

the ability to work in the background, i.e., without interrupting the normal conversion

process. Another property is to perform the background calibration in such a way that

avoids any complex filter design methods.

The calibration methods can be roughly divided in blind and non blind methods. In

order to design such methods, we have developed system models of a TI-ADC both in

continuous time, and discrete time. On the one hand, these models help to describe

the mismatch behavior by explicitly dividing its output into a reference signal that is

less affected by the mismatches and an error signal that is due to the mismatches. One

part of our research was to approximate the error signal using the first-order Taylor’s

series (for the calibration of gain and timing mismatches) and a P -th order polynomial

(for the calibration of frequency response mismatches) such that the coefficients of the

polynomial implicitly carry the information about mismatches. Hence we have developed

the blind background calibration methods that adaptively estimate these coefficients in

order to produce an estimated error signal that is subtracted from the TI-ADC output
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to give us the reconstructed input signal. On the other hand, system models can also

characterize the TI-ADC output as that of an M -periodic time-varying system that

exhibits a different behavior at each sampling instant. Therefore, another part of our

research was to use an M -periodic time-varying filter to calibrate frequency response

mismatches in a high-resolution TI-ADC. However in order to find the coefficient sets of

the time-varying filter in an adaptive way we need a reference signal that was obtained

by using an additional low-resolution ADC. Such an ADC does not significantly increase

the power consumption of a high-resolution TI-ADC. In this way, we have also discovered

a non-blind method that can suppress the time-varying nature of a TI-ADC to produce

the frequency response mismatch compensated output. A more detailed conclusion and

a further discussion of the work is given in chapter 6.

1.4 Outline of the Thesis and Research Contributions

In this thesis we present the adaptive background blind and non-blind calibration tech-

niques for frequency response mismatches in a TI-ADC. However we do not focus on

some specific technology of ADCs [76, 77, Ch 3]. In the following we present a brief

outline of the thesis.

Chapter 2: System Models of a Time-Interleaved ADC

In chapter 2, we present the continuous-time, discrete-time, and M -periodic time varying

system models of an M -channel TI-ADC. These models provide a systematic way to

represent the output of a TI-ADC.

Chapter 3: Adaptive Blind Background Calibration of Gain and Timing Mismatches

In chapter 3 we discuss the blind calibration of gain and timing mismatches in an M -

channel TI-ADC. Gain and timing mismatches are special cases of frequency response

mismatches that effect the input signal amplitude and frequency respectively. We per-

form blind identification of gain and timing mismatches based on a first-order Taylor’s

series [78] approximation of the mismatches. The adaptive identification structure uses

only fixed filters that include one differentiator, 2(M − 1) modulators, 2(M − 1) time-

varying multipliers, and a single high-pass filter, where M is number of channel ADCs.

This efficient implementation of the blind identification structure is later exploited in

chapter 4 to identify and compensate polynomial-represented frequency response mis-

matches. The publications to this chapter are
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❏ Shahzad Saleem and Christian Vogel, “LMS-based Identification and Compensa-

tion of Timing Mismatches in a Two-Channel Time-Interleaved Analog-to-Digital

Converter”, Proceedings of the IEEE Norchip Conference 2007, Aalborg, Denmark,

November 2007 [16].

❏ Shahzad Saleem, “Adaptive Blind Calibration Techniques for Gain-Timing and

Generalized Mismatch Models in Time-Interleaved Analog-to-Digital Converters”,

Technical Report, Signal Processing and Speech Communication Laboratory, Graz

University of Technology, Austria [79].

❏ Christian Vogel, Shahzad Saleem and Stefan Mendel, “Adaptive Blind Compen-

sation of Gain and Timing Mismatches in M -Channel Time-Interleaved ADCs”,

Proceedings of the 15th IEEE International Conference on Electronics, Circuits

and Systems (ICECS 2008), St. Julians, Malta, pp. 49-52, September 2008 [17].

❏ Shahzad Saleem, “A Comparative Analysis of Adaptive Blind Calibration Tech-

niques for Time-Interleaved ADCs”, Proceedings of the 16th Austrian Workshop

on MicroElectronics (Austrochip 2008), Linz, Austria, pp. 33-37, October 2008 [80]

❏ Shahzad Saleem and Christian Vogel, “On Blind Identification of Gain and Tim-

ing Mismatches in Time-Interleaved Analog-to-Digital Converters”, Proceedings of

the 33rd International Conference on Telecommunications and Signal Processing,

Baden, Austria, pp. 151-155, August 2010 [14]

Chapter 4: Adaptive Blind Background Calibration of Frequency Response

Mismatches Represented by Polynomials

Chapter 4 introduces an adaptive calibration structure for the blind calibration of fre-

quency response mismatches in a two-channel TI-ADC. By representing frequency re-

sponse mismatches as polynomial series of fixed order, we can exploit slight oversampling,

to estimate the coefficients of the polynomials by using the filtered-X LMS (FxLMS) al-

gorithm [81, 82]. Utilizing the coefficients in the adaptive structure, we can compensate

frequency response mismatches including gain, timing, and bandwidth mismatches. We

develop an analytical framework for the calibration structure and analyze its perfor-

mance. The publication to this chapter includes

❏ Shahzad Saleem and Christian Vogel, “Adaptive Blind Background Calibration of

Polynomial-Represented Frequency Response Mismatches in a Two-Channel Time-

Interleaved ADC”, IEEE Transactions on Circuits and Systems I: Regular Papers,

Accepted for Publication, 2010 [15]
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Chapter 5: Adaptive Non-Blind Background Calibration of Frequency Response

Mismatches

In chapter 5 we present a structure comprising an M -channel high resolution TI-ADC

and an additional low-resolution ADC. The output of the low-resolution ADC acts as

reference to adaptively estimate the coefficient sets of an M -periodic time-varying FIR

filter that can calibrate the frequency response mismatches in a TI-ADC. The publication

to this chapter is

❏ Shahzad Saleem, and Christian Vogel, “Adaptive Compensation of Frequency Re-

sponse Mismatches in High-Resolution Time-Interleaved ADCs using a Low Reso-

lution ADC and a Time-Varying Filter”, Proceedings of IEEE International Sym-

posium on Circuits and Systems (ISCAS 2010), Paris, France, pp. 561-564, May-

June 2010 [18]
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2
System Models of a Time-Interleaved ADC

In this chapter1, we present the continuous-time, discrete-time, and M -periodic time

varying system models of an M -channel TI-ADC. These models provide a systematic

way to represent the output of a TI-ADC. By choosing an appropriate form for the

frequency responses of the channel ADCs with mismatches, we can decompose the TI-

ADC output into a reference signal without mismatches and an error signal due to the

mismatches. This decomposition allows to design the calibration structure based on the

analytical form of the error signal as discussed in chapter 1. Another possibility is to

represent an M -channel TI-ADC as an M -periodic time-varying system where at each

sampling instant we get a different response of the TI-ADC system.

In Sec. 2.1 we introduce time-interleaved ADC modeling with mismatches. Sec. 2.2

demonstrates the continuous-time system model of an M -channel TI-ADC and in Sec. 2.3

we develop an alternate representation of the system model, i.e., the discrete-time system

model. Finally Sec. 2.4 discusses the M -periodic time-varying system model of a TI-

ADC.

2.1 Introduction

In a signal processing system, an ADC converts an analog signal into a digital signal, i.e.,

a sequence of finite-precision or quantized samples [21]. This task is accomplished by the

system shown in Fig. 2.1. The A/D conversion is started and completed every Ts seconds

under the control of a clock. However, this conversion is not instantaneous and because

of this reason the input value must necessarily be held constant during the time that the

converter performs a conversion. This task is accomplished by a sample-and-hold (S/H)

circuit that stores the input sample value at the sampling instant and holds it for the

1Parts of this chapter have been published in [15, 18, 71]
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S/H Q

Ts

x(t) y(t) ŷ[n]

Ts

Figure 2.1: Analog-to-Digital Conversion Model.

IT/SC Q
x(t)

∑+∞

n=−∞
δ(t − nTs)

y(t) y[n]
H(jΩ)

ŷ[n]

Figure 2.2: Linear model of an ADC with a LTI frequency

response H(jΩ) followed by the multiplication with an impulse

train
∑+∞

n=−∞
δ(t − nTs) that yields the sampled signal y(t) which is

passed on to an impulse-train to sequence converter (IT/SC) to result

in the output sequence y[n]. Afterwards a quantizer Q produces the

quantized samples ŷ[n].

next sampling time [21]. The output of the S/H is later quantized by a quantizer to

produce the digital output ŷ[n].

The model shown in Fig. 2.1 can be replaced by a linear model of an ADC as shown

in Fig. 2.2. The model assumes that the S/H can be represented by a filter H(jΩ)

followed by the multiplication with an impulse-train
∑+∞

n=−∞
δ(t − nTs) where δ(t) is

the Dirac delta distribution. Although this is not fully true in practice, it was shown

in [64, 66], that even a model which considers the transient effects of a S/H can be

transformed with some modifications of the frequency responses into the model shown

in Fig. 2.2. The multiplication with the impulse-train produces the analog output y(t)

which is passed on to an impulse-train to sequence converter (IT/SC) to produce the

output sequence y[n]. Later the sequence y[n] is passed through a quantizer to produce

the quantized samples ŷ[n].
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IT/SC

TI−ADC

Ĥ0(jΩ)

ADC0

ADCM−1
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P+∞

l=−∞
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P+∞

l=−∞
δ(t − lMTs − 0Ts)

Figure 2.3: Continuous-time system model of an M -channel TI-

ADC [71]. The sampled sequences ym(t) for m = 0, 1, . . . ,M − 1,

are added and passed on to IT/SC to produce the output sequence y[n].

2.2 Continuous-Time System Model

In this Section, we present the continuous-time system model of an M -channel TI-ADC

as shown in Fig. 2.3 [71]. This model is based on the linear model of an ADC as

shown in Fig. 2.2 where the frequency response of the mth channel ADC is represented

by Ĥm(jΩ). The impulse-train contains the time-shift mTs that accounts for the time-

interleaving and MTs denotes the sampling period of each channel ADC. The sampled

signals ym(t) are merged into the output stream y(t), which becomes y[n] after passing

through IT/SC.

From Fig. 2.3, we can write the output of the mth channel ADC as

ym(t) =

+∞∑

l=−∞

(

ĥm(t) ∗ x(t)
)

δ(t − lMTs − mTs), (2.1)

where * denotes convolution operation and

ĥm(t) =
1

2π

∫ +∞

−∞

Ĥm(jΩ)ejΩtdΩ (2.2)

is the inverse continuous-time Fourier transform (CTFT) of Ĥm(jΩ).
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Adding the outputs of the M channels gives the sampled output of the TI-ADC

y(t) =
M−1∑

m=0

ym(t). (2.3)

By replacing ym(t) with (2.1) and rearranging, we obtain [5]

y(t) =

M−1∑

m=0

(

ĥm(t) ∗ x(t)
︸ ︷︷ ︸

x̃m(t)

) +∞∑

l=−∞

δ(t − lMTs)

︸ ︷︷ ︸

s(t)

∗ δ(t − mTs). (2.4)

From (2.4), we see that y(t) is the product of x̃m(t) and s(t), therefore the CTFT of

Y (jΩ) is the convolution of the CTFTs of x̃m(t) and s(t), i.e., [21, Ch 2]

Y (jΩ) =
M−1∑

m=0

1

2π

(

X̃m(jΩ) ∗ S(jΩ) · e−jΩmTs

)

. (2.5)

The CTFT S(jΩ) of the periodic impulse train with period MTs is given by [83, Ch 4]

S(jΩ) =
2π

MTs

+∞∑

q=−∞

δ

(

Ω − q
2π

MTs

)

, (2.6)

and the CTFT X̃m(jΩ) of x̃m(t) using the convolution theorem can be written as

X̃m(jΩ) = Ĥm(jΩ)X(jΩ). (2.7)

Substituting (2.6)-(2.7) in (2.5) and manipulating gives

Y (jΩ) =
1

Ts

+∞∑

q=−∞

H̆q

(

j

(

Ω − q
2π

MTs

))

X

(

j

(

Ω − q
2π

MTs

))

, (2.8)

with

H̆q(jΩ) =
1

M

M−1∑

m=0

Ĥm(jΩ)e−jqm 2π
M . (2.9)

Equation (2.8) gives the CTFT representation of the output y[n] of an M -channel TI-

ADC. If the frequency responses Ĥm(jΩ) differ from each other then we experience

frequency response mismatches in a TI-ADC that distort its output spectrum by intro-

ducing spurious images beside the input signal. In order to get a representation for the

error introduced by mismatches, we will use (2.8) as starting point to develop a discrete-

time system model, where we can explicitly divide the TI-ADC output into a reference

signal without mismatches and an error signal due to mismatches.
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2.3 Discrete-Time System Model

In this section, we develop the discrete-time representation Y (ejω) for the output Y (jΩ)

in (2.8). However, we first exploit a useful relation between the analog frequency Ω and

the discrete frequency ω.

In the time-domain we can represent the process of sampling through the modulation of

a continuous-time signal with a periodic impulse-train
∑+∞

n=−∞
δ(t−nTs). The sampled

signal can be expressed as [21]

xs(t) =
+∞∑

n=−∞

x(t)δ(t − nTs). (2.10)

The CTFT of (2.10) is

Xs(jΩ) =

+∞∑

n=−∞

x(nTs)e
−jΩTsn. (2.11)

Since a sequence of samples x[n] is obtained from a continuous-time signal x(t) through

sampling with period Ts using the relation

x[n] = x(nTs). −∞ < n < ∞. (2.12)

The discrete-time Fourier transform (DTFT) of the sequence x[n] is given by

X(ejω) =

+∞∑

n=−∞

x[n]e−jωn. (2.13)

If we compare (2.13) with (2.11), then it follows that

Xs(jΩ) = X(ejω)|ω=ΩTs = X(ejΩTs). (2.14)

By developing the term δ(t − nTs) into a Fourier series, we get another representation

for the CTFT of (2.10) which is

Xs(jΩ) = X(ejΩTs) =
1

Ts

+∞∑

n=−∞

X(j(Ω − nΩs)). (2.15)

The equivalent DTFT representation of (2.15) while using (2.14) can be written as

X(ejω) =
1

Ts

+∞∑

n=−∞

X

(

j

(
ω

Ts
− n

2π

Ts

))

. (2.16)
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To get Y (ejω), we can express the summation index q in (2.8) as

q = k + nM, −∞ < n < ∞, 0 ≤ k ≤ M − 1. (2.17)

Substituting (2.17) in (2.8) and rearranging gives the DTFT representation of Y (ejω) as

Y (ejω) =
M−1∑

k=0

[

1

Ts

+∞∑

n=−∞

H̆k

(

j

(

ω − k 2π
M

Ts
− n

2π

Ts

))

X

(

j

(

ω − k 2π
M

Ts
− n

2π

Ts

))]

.(2.18)

If we assume that the input signal x(t) is bandlimited, i.e., its CTFT X(jΩ) satisfies

X(jΩ) = 0, |Ω| ≥ B, BTs ≤ π, (2.19)

where B is the signal bandwidth then using (2.16) we can finally express (2.18) in discrete

time as

Y (ejω) =
M−1∑

k=0

H̆k(e
j(ω−k 2π

M
))X(ej(ω−k 2π

M
)), (2.20)

where

H̆k(e
jω) =

1

M

M−1∑

m=0

Hm(ejω)e−jk 2π
M

m, (2.21)

and the discrete-time channel frequency responses Hm(ejω) are the 2π-periodic extension

of the analog channel frequency responses Ĥm(jΩ), i.e.,

Hm(ejω) = Ĥm(j
ω

T
) for − π ≤ ω < π. (2.22)

In order to get an expression for the error signal due to the frequency response mis-

matches, we decompose (2.20) as

Y (ejω) = X̄(ejω) + E(ejω) (2.23)

with

X̄(ejω) = H̆0(e
jω)X(ejω) (2.24)

is the DTFT of the input signal X(ejω) multiplied by the average channel frequency

responses H̆0(e
jω) given by

H̆0(e
jω) =

1

M

M−1∑

m=0

Hm(ejω) (2.25)
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and

E(ejω) =

M−1∑

k=1

Q̆k(e
j(ω−k 2π

M
))X̄(ej(ω−k 2π

M
)) (2.26)

is the DTFT of the error signal E(ejω) due to the normalized frequency response mis-

match

Q̆k(e
jω) =

H̆k(e
jω)

H̆0(ejω)
. (2.27)

Now taking the inverse DTFT of (2.23) we get

y[n] = x[n] + e[n], (2.28)

where

x[n] = h̆0[n] ∗ x[n], (2.29)

and

e[n] =

M−1∑

k=1

q̆k[n] ∗ x̄[n]ejk 2π
M

n. (2.30)

The discrete-time system model of an M -channel TI-ADC represented by (2.38)-(2.30)

is shown in Fig. 2.4. The ideally sampled signal x[n] = x(nT ) is filtered by the impulse

response h̆0[n] resulting in the desired signal x[n]. The signal x[n] represents the output

of an ideal TI-ADC without any frequency response mismatches. Furthermore, we see

the error signal e[n], which is the outcome of the signal x̄[n] being first filtered by the

discrete-time filters q̆k[n] and then modulated by ejk 2π
M

n, k = 1, 2, . . . ,M − 1. The

filters q̆k[n] represent the frequency response mismatches in a TI-ADC leading to the

error signal e[n]. At the output of our system model, the error signal e[n] is added to

the desired signal x̄[n] resulting in the distorted TI-ADC output y[n]. For the system

model discussion we can conclude that we have to remove the error signal e[n] from the

TI-ADC output signal y[n] to mitigate the distortions caused by the frequency response

mismatches.

Representing the Model as System of Real Filters and Modulators

Even though the signals x̄[n] and e[n] in (2.30) are real signals, the discrete-time fil-

ters q̆k[n] and the modulators ejk 2π
M

n are complex. In order to get a representation
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IT/SC

TI−ADC

x[n]

ej 2π

M
n

ejk 2π

M
n

ej(M−1) 2π

M
n

e[n]

q̆1[n]

q̆M−1[n]

q̆k[n]

∑+∞

n=−∞
δ(t − nTs)

x(t)
h̆0[n]

x[n] y[n]

Figure 2.4: Discrete-time system model of an M -channel TI-ADC.

The ideally sampled signal x[n] is filtered by the average channel fre-

quency response h̆0[n] resulting in the desired signal x[n] which is later

filtered by the discrete-time filters q̆k[n], k = 1, 2, . . . ,M − 1 to produce

the error signal e[n] due to the frequency response mismatches. The

error e[n] is added to x[n] to result in the distorted TI-ADC output y[n].
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2.3 Discrete-Time System Model

for e[n] as a combination of real filters and modulators, we can rewrite (2.30) for an odd

number of channels as

e[n] =

(M−1)/2
∑

k=1

[

q̆k[n] ∗ x̄[n]ejk 2π
M

n + q̆M−k[n] ∗ x̄[n]e−jk 2π
M

n

]

. (2.31)

Since

q̆M−k[n] = q̆∗k[n], (2.32)

where x∗ refers to the complex conjugation of x.

According to [21] the complex impulse response q̆k[n] can be split into an even and an

odd part

q̆k[n] = q̆e
k[n] + jq̆o

k[n], (2.33)

where q̆e
k[n] and q̆o

k[n] are the inverse DTFTs of the frequency responses

Q̆e
k(e

jω) =
1

2
(Q̆k(e

jω) + Q̆∗

k(e
−jω)) (2.34)

and

Q̆o
k(e

jω) =
1

2
(Q̆k(e

jω) − Q̆∗

k(e
−jω)) (2.35)

respectively.

Using (2.32) and (2.33) and the fact that x + x∗ = 2ℜ{x}, where ℜ{x} denotes the

real part of x, (2.31) can be rewritten as

e[n] =

(M−1)/2
∑

k=1

2

[

q̆e
k[n] ∗ x̄[n] cos

(

k
2π

M
n

)

− q̆o
k[n] ∗ x̄[n] sin

(

k
2π

M
n

)]

. (2.36)

In a similar way we can represent e[n] for an even number of channels M as

e[n] =

M/2−1
∑

k=1

2

[

q̆e
k[n] ∗ x̄[n] cos

(

k
2π

M
n

)

− q̆o
k[n] ∗ x̄[n] sin

(

k
2π

M
n

)]

+ q̆M
2

[n] ∗ x̄[n](−1)n, (2.37)

where we have an additional real-valued term for k = M
2 .

Figure 2.5 illustrates q̆k[n] as a real-valued filter following the representation derived

in (2.36) where ek[n] is the output of the k-th stage of the discrete-time system model

of Fig. 2.4. It will be shown in Chapters 3 and 4 that this representation of the filters

q̆e
k[n] and q̆o

k[n] can be exploited for the adaptive identification and compensation of gain,

timing, bandwidth, and frequency response mismatches.
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q̆o
k[n]

ek[n]

q̆e
k[n]

x[n]

2 cosk 2π
M

n

−2 sink 2π
M

nq̆k[n]

Figure 2.5: Representation of q̆k[n] as combination of real-valued

filters q̆e
k[n] and q̆o

k[n] to get a real-valued error ek[n] at the output of

k-th stage of the discrete-time system model of Fig. 2.4.

2.4 TI-ADC as an M-Periodic Time-Varying System

As has been shown in Section 2.2 that for each sampling instant m+ lM (cf. Fig. 2.3), a

different channel with corresponding frequency response Hm(jΩ), m = 0, 1, . . . ,M − 1,

is active and processes the sample. If all frequency responses Hm(jΩ) are identical,

there is no difference to a single channel ADC. But when there are mismatches among

the channels, then for each sampling instant m + lM a different frequency response

processes the sample and hence, we have a time-varying system. Moreover, after M

sampling instants, the same frequency response is active again. Hence we have an M -

periodic time-varying system that accounts for the frequency response mismatches in an

M -channel TI-ADC [84]. Next we develop a model to characterize the output y[n] of an

M -channel TI-ADC as the output of an M -periodic time-varying system.

After taking the inverse DTFT of (2.20), the output y[n] of an M -channel TI-ADC

can be rewritten as

y[n] =
M−1∑

k=0

+∞∑

l=−∞

h̆k[l]x[n − l]ejkn 2π
M (2.38)

where

h̆k[l] =
1

M

M−1∑

n=0

hn[l]e−jkn 2π
M (2.39)
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TI−ADC

x[n]x(t)
nTs y[n]

hn[l]

Figure 2.6: Time-varying system model of a TI-ADC.

and

hn[l] =

M−1∑

k=0

h̆k[l]e
jkn 2π

M . (2.40)

From (2.39) and (2.40) it can be noted that h̆k[l] and hn[l] form discrete-time Fourier

series (DTFS) pairs [21].

Using (2.40) we can simplify (2.38) as

y[n] =
∞∑

l=0

hn[l]x[n − l], (2.41)

where the starting value of l is 0 since a TI-ADC is a causal system.

From (2.41) it can be concluded that the output y[n] of an M -channel TI-ADC can be

generated by passing the input sequence x[n] through a discrete-time time-varying filter

with impulse response hn[l] as shown in Fig. 2.6, where hn[l] is M -periodic, i.e., hn[l] =

hn+M [l]. As will be demonstrated in Chapter 5 that by using an M -periodic time-varying

filter in combination with a low-resolution ADC as reference, it is possible to adaptively

calibrate frequency response mismatches in an M -channel TI-ADC.

2.5 Conclusions

In this chapter, we have developed the continuous-time, discrete-time, and the time-

varying system models of an M -channel TI-ADC. These models characterize the output

of a TI-ADC either as the sum of a reference signal without mismatches and an error

signal due to the mismatches or as an M -periodic time-varying system. Hence these

models analytically represent the effect of mismatches in a TI-ADC and thus can be

helpful in designing the calibration techniques to minimize these effects.
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3
Adaptive Blind Background Calibration of

Gain and Timing Mismatches

In this chapter1, we present adaptive blind calibration of gain and timing mismatches

in a TI-ADC. Gain and timing mismatches in a TI-ADC cause spurious images in its

output spectrum thus affecting its performance. We present an efficient digital blind

calibration structure to adaptively estimate and correct gain and timing mismatches.

Hence the method removes the spurious images from the TI-ADC output spectrum and

thus increases the signal-to-noise ratio (SNR). Following methods from the literature [9,

12, 51], we assume a slightly oversampled input signal that helps in the identification of

mismatches, but, contrary to them, we can apply our method to an arbitrary number of

channels in a straightforward way as will be explained later.

After a brief introduction in Section 3.1, we approximate the discrete-time system

model of a TI-ADC presented in Chapter 2 with a truncated Taylor’s series in Sec-

tion 3.2 that helps in getting a representation for the output of a TI-ADC suffering

from gain and timing mismatches. In Section 3.3 we first introduce the main idea of the

blind calibration and later we present the design of the blind calibration structure that

estimates and compensates the gain and timing mismatches. Section 3.4 demonstrates

the performance of the blind calibration structure through numerical examples while we

conclude the chapter in Section 3.5.

3.1 Introduction

Gain and timing mismatches are special cases of frequency response mismatches. Gain

mismatches are a form of magnitude response mismatches except that their value does

not depend on input signal frequency. They arise when each channel ADC has a different

1Parts of this chapter have been published in [14, 17]
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MUX

input

x(t)

analog

y[n]
output
digital

g0

gm

gM−1

ADCM−1

ADCm

(nM + m)Ts + rmTs

(nM + 0)Ts + r0Ts

ADC0

fs = 1/Ts

(nM + (M − 1))Ts + rM−1Ts

TI-ADC

Figure 3.1: Model of an M -channel TI-ADC with gains gm and the

relative timing offsets rmTs for m = 0, 1, . . . ,M − 1.

gain. The timing mismatches are linear phase mismatches that cause a deterministic

deviation between the ideal sampling period and the real sampling period if several

channel ADCs are combined. An M -channel TI-ADC with each channel ADC being

characterized by the gain gm and the relative timing offset rmTs for m = 0, 1, . . . ,M − 1

is shown in Fig. 3.1. For an ideal TI-ADC without gain and timing mismatches gm = 1

and rm = 0. The effect of gain and timing mismatches on the sampling process of a

four-channel TI-ADC is depicted in Fig. 3.2.

In recent years, calibration of gain and timing mismatches in a TI-ADC have been

considered in [10–12, 43]. There are few other methods where only the calibration of

timing mismatches have been presented [8, 9, 13, 51, 54, 85].

The calibration methods presented in [11, 12, 43] deal with a two-channel TI-ADC

only. In [43], the authors have presented a digital background calibration structure

for the offset, gain, and timing mismatches. They reported a sampling rate of 120

MS/s with 10-bit resolution. The power dissipation was 234 mW. In [11] gain and

timing mismatches have been estimated by minimizing the norm of the autocorrelation

function of a TI-ADC output. Later the estimated values have been used to design

correction filters that can reconstruct the input signal. In [12] authors have used a

multirate filter bank structure to model mismatches. By using the digital fractional
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0 t2Ts1Ts 3Ts 4Ts 5Ts

x(t)

2Ts + r2Ts 4Ts + r0Ts

3Ts + r3Ts 5Ts + r1Tsr0Ts Ts + r1Ts

g1

g2

g3

g0
g1

g0

Figure 3.2: Effect of gain and timing mismatches on the sampling

process of a four-channel TI-ADC (M = 4).

delay filters in combination with an ideal low-pass filter timing and gain mismatches

have been estimated. Later the reconstructed input signal has been obtained by using

the correction filters. In [10], the authors have investigated blind adaptive equalization of

offset, gain, and timing mismatches in an M -channel TI-ADC. First they developed the

corresponding loss functions for each of the individual mismatches, and later they have

got the respective mismatch estimates by minimizing those loss functions. Nevertheless,

the performance of this technique has been demonstrated for a multitone input signal

only. Furthermore, they have used a gradient minimization algorithm to adaptively

estimate the mismatches that itself requires a lot of computations.

The blind calibration method presented in this chapter requires a bandlimited and

oversampled input signal just like the other methods reviewed above. Contrary to them,

however, we use a structure that does not require any correction filters. For the iden-

tification of gain and timing mismatches, we use the FxLMS algorithm [81, 82]. The

estimated gain and timing mismatches are utilized to produce an estimated error sig-

nal. The estimated error signal is subtracted from the TI-ADC output to give us the

reconstructed input signal as shown in [53].

In order to get explicit representations for the reference and the error signals in the

presence of gain and timing mismatches, we will first approximate the discrete-time

system model of Chapter 2 by applying a first-order Taylor’s series approximation to the

channel frequency responses. This approximated system model will be later utilized to

design the blind calibration structure for gain and timing mismatches.
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3.2 Taylor’s Series Approximated System Model

3.2 Taylor’s Series Approximated System Model

Using the discrete-time system model of a TI-ADC developed in Chapter 2, we can

represent the discrete-time channel frequency response Hm(ejω) for the case of gain and

timing mismatches as

Hm(ejω) = gmeHd(ejω)rm , (3.1)

where

Hd(e
jω) = jω for − π < ω ≤ π (3.2)

is the frequency response of the ideal discrete-time differentiator [21].

Hence using (3.1) and (2.20)-(2.21), we can rewrite the discrete-time output Y (ejω)

of a TI-ADC suffering from gain and timing mismatches as

Y
(
ejω

)
=

M−1∑

k=0

H̆k

(

ej(ω−k 2π
M )

)

X
(

ej(ω−k 2π
M )

)

(3.3)

with

H̆k

(
ejω

)
=

1

M

M−1∑

m=0

gmeHd(ejω)rme−jk 2π
M

m. (3.4)

Since in a typical TI-ADC the relative time offsets rm are small compared to the

sampling period Ts, a first-order Taylor’s series approximation can be applied to the

term ermHd(ejω) by neglecting the higher order terms, which results in

eHd(ejω)rm ≈ 1 + Hd

(
ejω

)
rm. (3.5)

After substituting (3.5) in (3.4) we get

H̆k

(
ejω

)
= Gk + RkHd

(
ejω

)
(3.6)

with

Gk =
1

M

M−1∑

m=0

gme−jk 2π
M

m,

Rk =
1

M

M−1∑

m=0

gmrme−jk 2π
M

m.

(3.7)

Substituting (3.6) in (3.3) gives

Y (ejω) = X̄(ejω) + E(ejω) (3.8)
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with

X̄(ejω) = (G0 + R0Hd

(
ejω

)
)X(ejω) (3.9)

where (G0 + R0Hd

(
ejω

)
) is the average response among all channels and

E(ejω) =
M−1∑

k=1

[

GkX
(

ej(ω−k 2π
M )

)

+ RkHd

(

ej(ω−k 2π
M

)
)

X
(

ej(ω−k 2π
M )

)]

. (3.10)

is the error introduced by gain and timing mismatches.

Without loss of generality, it can be assumed that the average value of all timing

mismatches rm is zero, since an overall delay does not introduce any mismatch effects.

Accordingly, and with the further assumption that the gain mismatches are small, i.e,

g0 ∼ g1 ∼,∼ . . . ∼ gM−1, then R0 in (3.9) is close to zero as well and can be neglected.

The inverse discrete-time Fourier transform of (3.8) can therefore be written as

y[n] = x̄[n] + e[n] (3.11)

with

x̄[n] = G0x[n] (3.12)

and

e[n] =

M−1∑

k=1

[

Gk · x[n]ejk 2π
M

n + Rk · hd[n] ∗ x[n]ejk 2π
M

n
]

. (3.13)

Since the modulators ejk 2π
M

n are complex, hence following the analysis in Section 2.3 of

Chapter 2, the error e[n] can be expressed for even M as

e[n] =

M
2
−1

∑

k=1

ek[n] + eM
2

[n]. (3.14)

where

ek[n] = 2

[

ℜ{Gk} cos

(

k
2π

M
n

)

−ℑ{Gk} sin

(

k
2π

M
n

)]

x[n]

+ 2

[

ℜ{Rk}2 cos

(

k
2π

M
n

)

−ℑ{Rk} sin

(

k
2π

M
n

)]

hd[n] ∗ x[n] (3.15)

and

eM
2

[n] = GM
2

(−1)nx[n] + RM
2

(−1)nhd[n] ∗ x[n], (3.16)

where ℜ{x} is the real part of x and ℑ{x} is the imaginary part of x. For the case of a

two-channel TI-ADC, i.e., M = 2, the error e[n] equals (3.16).
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By introducing the coefficient vectors

cg =

(

ℜ{G1},ℑ{G1}, . . . ,ℜ{Gk},ℑ{Gk}, . . . ,ℜ{GM
2
−1},ℑ{GM

2
−1}, GM

2

)T

(3.17)

cr =

(

ℜ{R1},ℑ{R1}, . . . ,ℜ{Rk},ℑ{Rk}, . . . ,ℜ{RM
2
−1},ℑ{RM

2
−1}, RM

2

)T

(3.18)

and the modulation vector

m[n] =

[

2 cos

(

1
2π

M
n

)

,−2 sin

(

1
2π

M
n

)

, . . . ,

2 cos

(

k
2π

M
n

)

,−2 sin

(

k
2π

M
n

)

, . . . ,

2 cos

((
M

2
− 1

)
2π

M
n

)

,−2 sin

((
M

2
− 1

)
2π

M
n

)

, (−1)n
)T

(3.19)

the signal vectors can be defined as

xg[n] = m[n]x[n] (3.20)

and

xr[n] = m[n]hd[n] ∗ x[n]. (3.21)

Therefore, the error e[n] in (3.14) can finally be written in vector notation as

e[n] = cT
g xg[n] + cT

r xr[n]. (3.22)

The first-order Taylor’s series approximated discrete-time system model of an M -channel

TI-ADC represented by (3.11) is shown in Fig. 3.3.

3.3 Adaptive Blind Calibration

In this section we present the design of the blind calibration structure as shown in

Fig. 3.4 to estimate gain and timing mismatches. In general, this structure requires

a differentiator, 2(M − 1) modulators, 2(M − 1) time-varying multipliers, and a single

high-pass filter. It gives the estimated gain and timing offset coefficient vectors ĉg and ĉr

by using the FxLMS algorithm. The need for the FxLMS algorithm arises because of

the high-pass filter f [n] in the error-path of the blind calibration structure as shown in

Fig. 3.4. Therefore, the FxLMS algorithm uses the filtered reference and error signals

that help in increasing the convergence rate of the standard LMS algorithm [81, 82].

The estimated values generated by the FxLMS algorithm help in getting an estimated
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x[n]

m[n]

hd[n]

cr

cg

G0

m[n]
xg[n]

xr[n]

e[n]

y[n]x̄[n]

Figure 3.3: The first-order Taylor’s series approximated discrete-

time system model of an M -channel TI-ADC with gain and timing

mismatches.

error signal ê[n] that is subtracted from y[n] to get the reconstructed input signal x̂[n]

as

x̂[n] = y[n] − ê[n]

= G0x[n] + e[n] − ê[n]. (3.23)

where

ê[n] = ĉT
g [n]yg[n] + ĉT

r [n]yr[n]. (3.24)

with

yg[n] = m[n]y[n] (3.25)

yr[n] = m[n]y[n] ∗ hd[n].

3.3.1 Main Idea

For blind identification, the bandlimited input signal with bandwidth B is slightly over-

sampled leading to the creation of a frequency band in the TI-ADC output spectrum

near half the sampling frequency Ωs/2, known as the mismatch band. This mismatch

band only contains the aliasing components due to e[n] as shown in Fig. 3.5 for a four

channel TI-ADC.

By minimizing the error signal energy in the mismatch band it is possible to adaptively

identify the coefficient vectors ĉg and ĉr by using the FxLMS algorithm as

ĉg[n] = ĉg[n − 1] + µgyg[n − D]ε[n]

ĉr[n] = ĉr[n − 1] + µryr[n − D]ε[n], (3.26)
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FxLMS f [n]

hd[n]

yr[n]
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Figure 3.4: The proposed adaptive blind calibration structure for gain

and timing mismatches.
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Figure 3.5: Main idea of blind identification for a four-channel

TI-ADC, where G0X(jΩ) (solid lines) and E(jΩ) (dashed lines) are
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3.3.2 Analysis

where ε[n] is the error signal of the blind identification structure (cf. Fig. 3.4), yg[n−D]

and yr[n − D] are delayed versions of yg[n] and yr[n] with D denoting the delay of the

high-pass filter f [n], whereas µg and µr are the step-size parameters for the FxLMS

algorithm. It should be noted that the FxLMS algorithm actually requires high-pass

filtered version of yg[n] and yr[n], but in order to reduce the implementation complexity

it is demonstrated in Section 3.4 that simply delaying the signals is sufficient.

3.3.2 Analysis

To estimate gain and timing mismatches, we use a single high-pass filter f [n] that at-

tenuates the input signal energy in x̂[n] to leave only the mismatch band, i.e.

ε[n] = x̂[n] ∗ f [n]. (3.27)

Substituting (3.23) in (3.27) gives

ε[n] = G0x[n] ∗ f [n] + e[n] ∗ f [n]− ê[n] ∗ f [n]. (3.28)

Since f [n] strongly attenuates G0x[n], we are left with

ε[n] ≈ e[n] ∗ f [n] − ê[n] ∗ f [n]

≈ ef [n] − êf [n], (3.29)

where

ef [n] = e[n] ∗ f [n] (3.30)

and

êf [n] = ê[n] ∗ f [n]. (3.31)

Substituting (3.22) in (3.30) gives

ef [n] = cT
g xg[n] + cT

r xr[n], (3.32)

where

xg[n] = m[n]x[n] ∗ f [n] (3.33)

xr[n] = m[n]x[n] ∗ hd[n] ∗ f [n]. (3.34)

In a typical TI-ADC where the input signal energy is significantly greater than the

mismatch signal energy, therefore, for a first order analysis, we can approximate yg[n]

and yr[n] in (3.25) by using (3.20)-(3.21) as

yg[n] ≈ G0xg[n] (3.35)

yr[n] ≈ G0xr[n]
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and consequently ê[n] in (3.24) as

ê[n] ≈ G0ĉ
T
g [n]xg[n] + G0ĉ

T
r [n]xr[n]. (3.36)

Substituting (3.36) in (3.31) gives

êf [n] = G0ĉ
T
g [n]xg[n] + G0ĉ

T
r [n]xr[n]. (3.37)

Substituting (3.32) and (3.37) in (3.29) and simplifying gives

ε[n] = G0

(
1

G0
cg − ĉg[n]

)T

xg[n] + G0

(
1

G0
cr − ĉr[n]

)T

xr[n]. (3.38)

If the estimated coefficients vectors ĉg[n] and ĉr[n] match cg and cr, i.e.,

ĉg[n] =
1

G0
cg

ĉr[n] =
1

G0
cr (3.39)

then ε[n] ≈ 0.

Finally the reconstructed input signal x̂[n] can be obtained by substituting (3.22)

and (3.36) and simplifying

x̂[n] ≈ G0x[n] + G0

(
1

G0
cg − ĉg[n]

)T

xg[n] + G0

(
1

G0
cr − ĉr[n]

)T

xr[n]. (3.40)

If (3.39) holds then

x̂[n] ≈ G0x[n] (3.41)

and the reconstructed input signal does not contain any signals due to the mismatches.

3.4 Simulation Results

To illustrate the performance of the proposed adaptive calibration structure we have

simulated a 4-channel TI-ADC with gain and timing mismatches as shown in 3.1. For

the given gain and timing mismatches given in Tab.3.1, the corresponding values of cg

and cr were computed by using (3.17) and (3.18) as

cg = [0.005, 0.001, 0] (3.42)

and

cr = [−0.001, 0.0015, 0.00014]. (3.43)
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3.4.1 Bandlimited White Gaussian Noise Input Signal

Table 3.1: Simulated gain and timing mismatch values

ADC gm rm

ADC0 1.01 −0.007Ts

ADC1 0.98 +0.002Ts

ADC2 0.99 −0.003Ts

ADC3 1.02 +0.008Ts

The differentiator hd[n] was designed using the Matlab function ‘firpm’ whereas the high-

pass filter f [n] was an equiripple filter designed by using the Matlab filter design tool

‘fdatool’. The number of taps for both hd[n] and f [n] were 33. The overall performance

of the blind structure was characterized by the signal-to-noise ratio (SNR) for y[n] as

SNR = 10log10

( ∑N−1
n=0 |G0x[n]|2

∑N−1
n=0 |G0x[n] − y[n]|2

)

(3.44)

and for x̂[n] as

SNR = 10log10

( ∑N1−1
n=0 |G0x[n]|2

∑N1−1
n=0 |G0x[n] − x̂[n]|2

)

, (3.45)

where N denotes the number of samples used to calculate the SNR before calibration,

and N1 denotes the number of samples used to calculate the SNR after calibration (once

the FxLMS algorithm has converged).

3.4.1 Bandlimited White Gaussian Noise Input Signal

First we simulated a bandlimited white Gaussian noise (WGN) input signal with band-

width 0.7Ωs

2 and variance σ = 1. We took N = 220 samples of the input signal. The

step size parameters µr and µg for FxLMS were chosen as 0.01. This choice of µr and µg

is based on the experimentation, however, their values lie within the stability bounds of

FxLMS algorithm, as specified in [81, 82]. Same is true about the value of µr and µg in

the next simulation example that considers a bandlimited multitone input signal. The

corresponding cutoff frequencies of f [n] and hd[n] were set to 0.7π.

Figure 3.6 shows the energy density spectrum of y[n] (last N1 = 211 samples out of the

220 samples), where the SNR was about 35.2 dB. In Fig. 3.7 the energy density spectrum

of x̂[n] (last N1 = 211 samples) is shown once the FxLMS algorithm has converged.

The computed value of the SNR was 69.3 dB, hence, leading to an improvement of

almost 34.1 dB.
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Figure 3.6: Power spectrum of the uncalibrated output y[n] for the

case of a WGN input signal bandlimited to 0.7Ωs

2 . The SNR was com-

puted as 35.2 dB.
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Figure 3.7: Power spectrum of the reconstructed input signal x̂[n].

The value of the SNR once the FxLMS algorithm converged was 69.3

dB which is an improvement of 34.1 dB.
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3.4.2 Bandlimited Multitone Input Signal

The convergence behavior of the estimated gain coefficients vector ĉg[n] and the timing

offset coefficients vector ĉr[n] are shown in Fig. 3.8 and Fig. 3.9 respectively. As can be

seen ĉg[n] and ĉr[n] correspond well to cg and cr.
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Figure 3.8: The convergence behavior of the estimated gain mismatch

coefficients ĉg[n] (solid lines) for the case of bandlimited WGN in-

put signal, compared to their expected values (dashed lines) as given

by (3.42).

3.4.2 Bandlimited Multitone Input Signal

Next we simulated a multitone input signal with 42 sinusoids bandlimited to 0.8Ωs

2 and

having constant amplitudes, uniformly spaced frequencies, and random phases. Once

again we took N = 220 samples of the input signal. The cutoff frequencies of f [n]

and hd[n] were set to 0.8π. The step sizes µg and µr were both chosen as 0.0001.

The power spectra of the uncompensated output y[n] and the reconstructed input

signal x̂[n] are shown in Fig. 3.10 and 3.11, respectively. It can be seen that not only the

energy in the mismatch band is reduced considerably but also the energy of the aliasing

components that are overlapping with the input signal spectra has been minimized. the

computed SNR value for y[n] was 35 dB while for x̂[n] it was 67.3 dB, which in fact was

an improvement of almost 32.3 dB.

The convergence behavior of the estimated gain and timing mismatch coefficient vec-

tors, i.e., ĉg[n] and ĉr[n] are shown in Fig. 3.12 and 3.13, respectively. Both ĉg[n]

and ĉr[n] have nicely converged to their computed values given by (3.42) and (3.43),

respectively.
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Figure 3.9: The convergence behavior of the estimated timing mis-

match coefficients ĉr[n] (solid lines) for the case of bandlimited WGN

input signal, compared to their expected values (dashed lines) as given

by (3.43).

3.5 Conclusions

In this chapter we have presented an efficient blind identification structure for gain and

timing mismatches in an M -channel TI-ADC. The identification is based on the FxLMS

algorithm that uses a single high-pass filter. While using the bandlimited WGN and

multitone input signals, we have identified gain and timing mismatches in a 4-channel

TI-ADC that has led to a significant improvement in the SNR. The proposed blind

identification structure can be scaled to an arbitrary number of channel ADCs, where

the complexity linearly scales with the number of channels. For each additional channel

ADC, we only need two modulators and two multipliers for scaling. Hence we have

an efficient calibration structure that requires minimum extra hardware if additional

channel ADCs are added.
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Figure 3.10: Power spectrum of the uncalibrated output y[n] for the

case of a multitone input signal with 42 sinusoids bandlimited to 0.8Ωs

2

and having constant amplitudes, uniformly spaced frequencies, and ran-

dom phases. The SNR is 35 dB.
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Figure 3.11: Power spectrum of the reconstructed output x̂[n] using

a 1st order calibration structure. The SNR is 69.2 dB which is an

improvement of 34.2 dB.
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Figure 3.12: The convergence behavior of the estimated gain mis-

match coefficients ĉg[n] (solid lines) for the case of a multitone in-

put signal, compared to their expected values (dashed lines) as given

by (3.42).
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Figure 3.13: The convergence behavior of the estimated timing mis-

match coefficients ĉr[n] (solid lines) for the case of a multitone in-

put signal, compared to their expected values (dashed lines) as given

by (3.43).
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4
Adaptive Blind Background Calibration of

Frequency Response Mismatches

Represented by Polynomials

This chapter1 introduces an adaptive calibration structure for the blind calibration of

frequency response mismatches in a two-channel TI-ADC. By representing frequency

response mismatches as polynomials, we can exploit slight oversampling, to estimate the

coefficients of the polynomials by using the FxLMS algorithm. Utilizing the coefficients

in the adaptive structure, we can compensate frequency response mismatches including

time offset and bandwidth mismatches. We develop an analytical framework for the

calibration structure and analyze its performance.

At this stage we would also like to highlight the main differences between the blind

calibration methods presented in this chapter and in chapter 3. In chapter 3 we have

used a first order Taylor’s series approximation for the channel frequency response mis-

matches while in this chapter we use a polynomial series of fixed order to model the

mismatches. Moreover, the method in chapter 3 was only applicable to special form of

channel frequency response mismatches, i.e., gain and timing mismatches while in cur-

rent chapter we present a method that can handel different types of channel frequency

response mismatches including gain, and timing mismatches.

After the introduction in 4.1, Section 4.2 develops a polynomial representation of

the normalized frequency response mismatches using a p-th order polynomial. Based

on this polynomial approximation we present the design of the calibration structure

in Section 4.3, which includes the calibration principle, the calibration structure, the

identification algorithm, and a performance analysis. In Sec. 4.4 simulation results

1Parts of this chapter have been published in [15]
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4.1 Introduction

show the performance of the calibration method by using different examples from the

literature.

4.1 Introduction

In this chapter we study the digital correction of frequency response mismatches, since

digital postcorrection techniques of analog circuits are getting increasingly attractive [3]

and can pave the way to high-resolution TI-ADCs [5].

In recent years, the digital calibration of frequency response mismatches has been

considered in [64–67, 69, 70, 72], as this can lead to further improvement in the over-

all performance of TI-ADCs [5]. In [67] a method to compensate frequency response

mismatches based on multi-rate theory and least-squares filter design is presented. The

approach works well, but the required special calibration signals and the high complex-

ity of the filter design limit this approach to applications where time-consuming extra

calibration cycles are tolerable [86]. A different least-squares filter design method for

frequency response mismatches is presented in [72]. The correction of bandwidth mis-

matches for a two-channel TI-ADC was first introduced in [66], where the correction

is basically done as in [67]. A more comprehensive model to correct bandwidth mis-

matches in a two-channel TI-ADC was developed in [64]. In contrast to [66] the authors

also introduce a tailored correction based on a single FIR filter that further reduces

the design complexity. By injecting a test tone of some known frequency below the

Nyquist frequency the same authors have shown in [65] an adaptive way to estimate

the bandwidth mismatches in a two-channel TI-ADC. The compensation of magnitude

response mismatches in TI-ADCs was presented in [69, 70] and further developed to the

compensation of frequency response mismatches in [71]. Compared to other methods as

for example to [67], the methods have a reduced filter design complexity. In particular,

for frequency response mismatches where the mismatches only depend on a single free

parameter like the time offsets or the bandwidth, the method leads to very efficient

filter structures [52, 53, 71] that can be adapted in real-time [16, 80]. However, it was

not shown in [71] how to extend this structure to the calibration of more general fre-

quency response mismatches. The compensation of frequency response mismatches by

using polynomial representations has been investigated in [63, 74, 75]. In [63, 74] the

authors have presented a blind calibration structure based on a multirate filter bank for

a two-channel TI-ADC. The authors need to know channel frequency responses analyt-

ically to derive the analysis filters, which are weighted by coefficients to be identified.
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Unfortunately, this work has not further been presented in a more comprehensive man-

ner, which would allow to decide on the quality and the validity of the identification

procedure. In [75] a compensation structure based on polynomial approximations for

frequency response mismatches is introduced. The proposed structure uses differentia-

tors and variable multipliers corresponding to the parameters in polynomial models of

the channel frequency responses. Unfortunately, the paper does not discuss the identifi-

cation of these parameters.

The main features of our calibration approach are as follows.

Polynomial model of frequency response mismatches

We use a P -th order polynomial to model the frequency response mismatches in a two-

channel TI-ADC. This is an approach similar to the one presented in [75], where the

authors have modeled the frequency responses as polynomial series. The basic assump-

tion of our model approach is that for a certain TI-ADC design we can identify a model

order P , which does not change over different chip realizations and time. Accordingly,

the change of frequency response mismatches, for example, over time can be described

by a change of the coefficients of a polynomial series of order P .

Adaptive calibration structure

We present a calibration structure that exploits the adaptability of the polynomial rep-

resentation of frequency response mismatches. It, therefore, extends the structure pre-

sented in [71], which can reconstruct the ideally sampled signal, but was not adaptable

to general frequency response mismatches.

Blind adaptive background calibration

By combining the calibration structure with the spectral properties of slightly over-

sampled input signals, we can show how to utilize the filtered error least-mean square

(FxLMS) algorithm [81, 82] to blindly identify frequency response mismatches and, con-

sequently, exploit the identified frequency response mismatches to remove the mismatch

artifacts from the TI-ADC output signal.

Remarks on the Calibration Method

The proposed calibration method requires that the spectrum of the sampled signal con-

tains a region which we call the mismatch band and where no significant signal energy

is present. The simplest option is to oversample the bandlimited analog input signal,
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4.2 Polynomial Representation of Frequency Response Mismatches

where we obtain a mismatch band close to the Nyquist frequency. This option is also

utilized in this chapter. The mismatch band, however, can be at any other position in

the frequency band or can even consist of non connected regions[59]. To this end, the

used filter for the mismatch band in the calibration method has to be adapted appro-

priately. Moreover, as long as there is a mismatch band, the method can also work if

the input signal lies even in the other Nyquist zones.

Another requirement is that the input signal contributes significant error energy to the

mismatch band. Narrow band signals or even sinusoidal input signals do not fullfill this

criterion, but for such signals we can either use a simple filter to remove the mismatches

or, if we are interested in the mismatches, can use simple and very precise identification

methods [32, 59].

We represent the frequency response mismatches using a polynomial series. On the one

hand, the coefficients of the polynomial do not directly correspond to typical mismatch

parameters such as the bandwidth, which could be a drawback. On the other hand, we

obtain a model that is linear in its parameters and we can use simple algorithms like the

FxLMS to identify the coefficients.

The calibration method identifies and corrects the mismatches in the digital domain.

Although a multi-rate implementation is possible, an analog tuning of the parameters [50,

86] is likely to be more energy efficient, but does not have the flexibility and accuracy

of digital methods [3].

4.2 Polynomial Representation of Frequency Response Mis-

matches

Starting with the discrete-time system model of an M -channel TI-ADC developed in

Chapter 2, the error e[n] given by (2.30) is simplified for a two-channel TI-ADC as

e[n] = q̆[n] ∗ x̄[n](−1)n. (4.1)

This simplification leads to discrete-time system model of a two-channel TI-ADC as

shown in Fig. 4.1

Since the channels of a TI-ADC are designed to match as well as possible and eco-

nomically viable. Therefore, all channel frequency responses should have the same char-

acteristics but will differ due to component mismatches caused by process variations,

temperature changes, and aging. Hence, we do not exactly know the channel frequency

responses of a TI-ADC design, but can assume that all the channels of different TI-ADCs

from the same design will share the same frequency characteristic. Therefore, similar
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TI−ADC

x(t) x[n]
h̆0[n]

x[n]

q̆[n]

(−1)n
e[n]

y[n]

Figure 4.1: Discrete-time system model of a two-channel TI-ADC.

to the approach in [75] it seems reasonable to represent the normalized frequency re-

sponse Q̆(ejω) by a polynomial series of fixed order, and to characterize the mismatches

by different coefficients of this series.

For sufficiently large P , the discrete-time frequency response Q̆(ejω) can be represented

as a P -th order polynomial, i.e.,

Q̆(ejω) =
P∑

p=0

c̆pDp(e
jω), (4.2)

where c̆p is the pth coefficient of the polynomial series and

Dp(e
jω) = (jω)p for − π < ω ≤ π (4.3)

is the discrete-time representation of a bandlimited continuous-time P -th order differen-

tiator. To relate the polynomial representation of the filter with our time-domain model,

we need the inverse DTFT of (4.2), which is

q̆[n] =

P∑

p=0

c̆pdp[n], (4.4)

where dp[n] is the inverse DTFT of Dp(e
jω).

Substituting (4.4) in (4.1) gives

e[n] =

P∑

p=0

c̆pdp[n] ∗ x̄[n](−1)n (4.5)

which can be expressed in a more concise way by using vector notation as

e[n] = cT xd[n], (4.6)

where the coefficients vector is

c =

[

c̆0, . . . , c̆p, . . . , c̆P

]T

(4.7)
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TI−ADC
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Adaptive

f [n]
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q̂[n]

x̂[n]

ê[n]

ε[n]

Figure 4.2: Calibration of frequency response mismatches.

and the signal vector is

xd[n] =

[

x0[n], . . . , xp[n], . . . , xP [n]

]T

(4.8)

with

xp[n] = dp[n] ∗ x̄[n](−1)n (4.9)

and [.]T denotes the transpose. We can conclude that for a given order P the coeffi-

cients c̆p in (4.7) characterize the mismatch between the two channels in a TI-ADC. To

compensate the mismatches we have to identify those coefficients.

4.3 Adaptive Blind Calibration

In this section we present a blind calibration method to calibrate frequency response

mismatches. For this purpose, we exploit the system model including the polynomial

representation of the normalized frequency response mismatches and some slight over-

sampling of the input signal.

4.3.1 Calibration Principle

In Fig. 4.2 the principle of the calibration method is shown. On the left we see a TI-

ADC producing the distorted output signal y[n] given by (2.38), and on the right we

have the calibration structure for compensating the distortions in y[n]. It has been

shown in [71] that this structure can significantly improve the output signal y[n] by

using the normalized filter Q̆(ejω) defined in (2.27). It was, however, not shown how to

find the frequency response of this filter blindly without employing a training signal. In

the following we introduce a blind background calibration method that uses the FxLMS
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Figure 4.3: As long as there are uncorrected mismatches, the mis-

match band contains signal energy.

algorithm [81, 82] to estimate the normalized frequency response Q̆(ejω) as shown in

Fig. 4.2.

Firstly, in order to estimate the normalized frequency response Q̆(ejω), we represent

the response by a polynomial as in (4.4). Secondly, we exploit oversampling as we did

for the identification of gain and timing mismatches in Chapter 3, to obtain a mismatch

band in the output spectrum, where in the ideal case no signal energy is present, unless

there are mismatches. Since we only consider a two-channel TI-ADC, there will be only

one aliasing component as illustrated in Fig. 4.3. Thirdly, we use a high-pass filter f [n]

to spectrally separate parts of the error signal e[n] from the output signal y[n], and,

in a final step, we minimize the filtered error energy ǫ[n] by finding estimates ĉp of the

coefficients c̆p.

4.3.2 Calibration Structure

For the calibration we exploit the structure shown in Fig. 3.4. The structure duplicates

the polynomial filter representation we used for the TI-ADC model where the time-

varying filter coefficients

ĉ[n] =

[

ĉ0[n], . . . , ĉp[n], . . . , ĉP [n]

]T

(4.10)

of the calibration structure have to be identified.

As shown in Fig. 4.4, the reconstructed input signal x̂[n] is the difference of the TI-

ADC output y[n] and estimated error signal ê[n] which results with (2.38) in

x̂[n] = x̄[n] + e[n] − ê[n]. (4.11)
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ê[n]

q̂[n]

y[n] = x̄[n] + e[n] x̂[n]

Figure 4.4: Calibration structure.

The estimated error ê[n] is the result of adding up the weighted outputs of the P

branches in Fig. 3.4, which is

ê[n] = ĉ[n]Tyd[n], (4.12)

where

yd[n] =

[

y0[n], . . . , yp[n], . . . , yP [n]

]T

(4.13)

and

yp[n] = dp[n] ∗ y[n](−1)n (4.14)

is the p-times differentiated and modulated input signal y[n]. Inserting (4.12) and (4.6)

in (4.11) gives

x̂[n] = x̄[n] + cT xd[n] − ĉ[n]Tyd[n]. (4.15)

We can rewrite yd[n] in (4.15) by using (2.38) and (4.8) as

yd[n] = xd[n] + ed[n], (4.16)
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where

ed[n] =

[

e0[n], . . . , ep[n], . . . , eP [n]

]T

(4.17)

and

ep[n] = dp[n] ∗ e[n](−1)n. (4.18)

Substituting (4.16) in (4.15) and rearranging gives

x̂[n] = x̄[n] + (c − ĉ[n])Txd[n] − ĉ[n]Ted[n] (4.19)

which explicitly shows that if the estimated coefficients vector ĉ[n] equals the actual

coefficients vector c, i.e., ĉ[n] = c, the reconstructed output becomes

x̂[n] = x̄[n] − ĉ[n]Ted[n], (4.20)

where ĉ[n]Ted[n] is the remaining error signal after reconstruction. As it has been shown

in [71] the energy of the remaining error signal is much smaller than the energy of the

mismatch error signal e[n], whereby the signal x̂[n] is a much better approximation of

x̄[n] as y[n].

4.3.3 Coefficient Adaptation

After introducing the calibration structure, we have to formally relate the minimization

of the error ε[n] with the identification of the coefficients ĉ[n] of the calibration structure.

The filtered error ε[n] is given by

ε[n] = x̂[n] ∗ f [n]. (4.21)

where f [n] is a high-pass filter that spectrally separates the desired signal x[n] from

the error signal e[n] by attenuating x[n]. Assuming that the adaptation rate of the

coefficients ĉ[n] is slow enough, we can interchange the filter f [n] and the time-varying

coefficients ĉ[n] [81], which leads with (4.15) and (4.21) to

ε[n] = cT
(

y
f
d [n] − e

f
d [n]

)

− ĉ[n]Ty
f
d [n] (4.22)

where x̄[n] is removed by the filter f [n] and

y
f
d [n] = x

f
d [n] + e

f
d [n]. (4.23)
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Figure 4.5: Model of the identification structure illustrating the iden-

tification of ĉ[n] coefficients.

with

x
f
d [n] = [x0[n] ∗ f [n], . . . , xp[n] ∗ f [n], . . . , xP [n] ∗ f [n]]T

(4.24)

and

e
f
d [n] = [[e0[n] ∗ f [n], . . . , ep[n] ∗ f [n], . . . , eP [n] ∗ f [n]]T .

(4.25)

With (4.22)-(4.23) we have a classical identification problem illustrated in Fig. 4.5 that

can be solved by using the FxLMS algorithm [81, 82] as

ĉ[n] = ĉ[n − 1] + µ · ε[n] · yf
d [n] (4.26)

where µ is the step-size parameter.

4.3.4 Performance Analysis

In analyzing the identification performance of (4.22), we resort to the classical stochastic

minimum-mean square analysis [81] of the FxLMS algorithm given in (4.26). The error

of the structure can be written as

ε[n] = cT
(

y
f
d [n] − e

f
d [n]

)

− ĉ[n]Ty
f
d [n]. (4.27)

where the term cT (yf
d [n] − e

f
d [n]) represents the desired signal and y

f
d [n] is the input

signal to the adaptive filter. Therefore, the adaptive filter is driven by an additional

signal component e
f
d [n] that will lead to a certain bias in the MMSE solution. For the
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4.4 Simulation Results

derivation of the MMSE solution we assume that x
f
d [n] and e

f
d [n] are uncorrelated, which

can be justified by the fact that LMS based algorithms rather use averages of the time

series than using ensemble averages, where the time-averaged cross-correlation between

x
f
d [n] and e

f
d [n] will tend to zero. Using this assumption we can derive the estimated

coefficient vector as [81]

ĉ[n] =
(

R
y

f

d
y

f

d

)
−1

p (4.28)

where R
y
f

d
y
f

d

is the autocorrelation matrix of y
f
d [n], i.e.,

R
y
f

d
y
f

d

= E{yf
d [n]yf

d [n]} (4.29)

and p is the cross-correlation vector given by

p = E{cT
(

y
f
d [n] − e

f
d [n]

)

y
f
d [n]}

=
(

R
y

f
d
y

f
d

−R
e

f
d
e

f
d

)

c (4.30)

Substituting (4.29) and (4.30) in (4.28) results in

ĉ[n] =
(

I − (R
y

f
d
y

f
d

)−1R
e

f
d
e

f
d

)

c (4.31)

where the auto-correlation matrix R
e

f
d
e

f
d

of the signal ef
d [n] causes a bias in the estimate.

However, since the energy of the signal x
f
d is several orders of magnitude larger than the

energy of the signal e
f
d , the bias has only a minor influence on the overall performance

of the calibration structure.

4.4 Simulation Results

In this section we present the simulation results for the proposed blind calibration struc-

ture to characterize its performance. The overall performance of the blind calibration

structure was evaluated by the signal-to-noise ratio (SNR). The SNR before calibration

was evaluated as

SNR = 10log10

( ∑N−1
n=0 |x̄[n]|2

∑N−1
n=0 |x̄[n] − y[n]|2

)

(4.32)

and after calibration as

SNR = 10log10

( ∑N1−1
n=0 |x̄[n]|2

∑N1−1
n=0 |x̄[n] − x̂[n]|2

)

, (4.33)
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Figure 4.6: Implementation example of the blind calibration structure

for P = 3.

where N denotes the number of samples used to calculate the SNR before calibration

and N1 denotes the number of samples used to calculate the SNR after calibration (once

the FxLMS algorithm has converged). For all simulations, we used an input signal

bandlimited to ΩbTs = 0.8π, from which we took 222 samples according to the presented

mismatch model.

4.4.1 Implementation of the Calibration Structure

A possible implementation of the blind calibration structure for P = 3 as it was used

for the simulations is shown in Fig. 4.6. The complexity of the structure is reduced by

some minor modifications. By shifting the modulators (−1)n to the start of the blind

calibration structure, they can be combined into a single modulator. To maintain the
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4.4.1 Implementation of the Calibration Structure

same output signals as before, the coefficients of the differentiators have to be modulated

as well. Additionally, we have cascaded differentiators of first order d1[n] to obtain

higher order differentiators. The order of the differentiator d1[n] was 40, and it was

designed using the MATLAB function ‘firpm’. The high-pass filter f [n] was designed

using MATLAB filter design tool ‘fdatool’. The number of taps of f [n] were 41 and its

magnitude response is shown in Fig. 4.7. Ideally, the signal y
f
d [n] is the filtered version
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Figure 4.7: Magnitude response of the high-pass filter f [n] used in

Example 1 with order 40 and a starting passband frequency at 0.8π.

of the signal vector yd[n], but as we will show in the simulation for gain and timing

mismatches, we can also use a much simpler update equation

ĉ[n] = ĉ[n − 1] + µ · ε[n] · yd[n − K] (4.34)

where K is the delay of the linear-phase high-pass filter f [n]. Hence, a delayed version

instead of a filtered version is used. This reduces the implementation complexity con-

siderable, as we only need a single high-pass filter, but, as drawback, the convergence

time increases.

The following examples describe the simulation results using different types of mis-

match models and input signals. In all of these examples, the choice of step size parame-

ter µ was based on the experimentation, however, it never exceeded the stability bounds

of FxLMS algorithm as defined in [81, 82].
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4.4.2 Calibration of Frequency Response Mismatches: White Gaussian

Noise Input Signal

First, we considered a white-Gaussian noise (WGN) input signal bandlimited to ΩbTs ≤

0.8π and with zero-mean and variance σ2 = 1. The step-size µ was 0.5 whereas the

coefficients vector c was taken randomly as

c = [−0.025, 0.005,−0.0015,−0.0001]. (4.35)

Figure 4.8 shows the power spectrum of the uncompensated TI-ADC output y[n]. The

SNR according to (4.32) was 32.6 dB. The power spectrum of the reconstructed input

signal x̂[n], once the FxLMS algorithm has converged (approximately after 4 × 105),

is shown in Fig. 4.9, where the SNR according to (4.33) was 60.3 dB. This was an

improvement of 27.7 dB and equals the result one would obtain by directly using the

coefficient vector c and the first stage of the calibration structure presented in [71]. The

convergence behavior of the estimated coefficients is shown in Fig. 4.10. The estimated

coefficients settle nicely to the optimum coefficient values.

4.4.3 Calibration of Frequency Response Mismatches: Multitone Input Sig-

nal

Next we considered a multitone input signal consisting of 42 sinusoids bandlimited

to 0.8π and having a constant amplitude, uniformly spaced frequencies, and random

phases. Moreover, the signal was quantized to 16 bits where the quantization step size

was given by 2/(216 − 1). The channel frequency responses were taken as in [75], i.e.,

Ĥm(jΩ) =
1

1 + j Ω
Ωc

(1 + ∆m)
ejΩTrm (4.36)

where Ωc is the 3-dB cutoff frequency of the first order filter, rm are the relative timing

offsets and ∆m are the deviations from Ωc. The cutoff frequency was taken equal to the

sampling frequency i.e. Ωc = Ωs. The step-size parameter µ was chosen as 0.09 while

the values of rm were [−0.02,+0.02] and of ∆m were [−0.005,+0.005] similar to the

setting in [75], but for a two-channel TI-ADC. The power spectrum of the uncalibrated

output y[n] is shown in Fig. 4.11. The calculated SNR was 31.1 dB. The power spectrum

of the reconstructed input signal x̂[n] using a 2nd order calibration structure (P = 2)

is shown in Fig. 4.12. The calculated value of the SNR, once FxLMS algorithm has

converged, was 62.6 dB; thus doubling the initial SNR. By using the multitone signal

we can explicitly recognize that not only the energy in the mismatch band is reduced

considerably but also the energy of the aliasing components that are overlapping with

the input signal spectra has been minimized.
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Figure 4.8: Power spectrum of the uncalibrated output y[n] for a

white Gaussian noise (WGN) input signal. The SNR is 32.6 dB.

0 0.1 0.2 0.3 0.4 0.5
−120

−100

−80

−60

−40

−20

0

Normalized Frequency

S
ig

na
l P

ow
er

 [d
B

c]

Figure 4.9: Power spectrum of the reconstructed WGN input sig-

nal x̂[n]. The SNR after calibration is 60.3 dB, which is an improve-

ment of 27.7 dB.
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Figure 4.10: Convergence behavior of the estimated coefficients ĉ0[n],

ĉ1[n], ĉ2[n], and ĉ3[n] (solid lines) for the case of a WGN input signal.

For a step-size of µ = 0.5, the estimated coefficients are converging

well towards the given coefficient values (dashed lines).
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Figure 4.11: Power spectrum of the uncalibrated output y[n]. The

input was a multitone signal composed of 42 sinusoids and bandlimited

to 0.8π. The SNR is 31.1 dB.
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Figure 4.12: Power spectrum of the reconstructed input signal x̂[n]

after using a 2nd order calibration structure. The SNR after calibration

is 62.6 dB, which was an improvement of 31.5 dB,

4.4.4 Calibration of Bandwidth Mismatches: Multitone Input Signal

In this example we demonstrate the calibration of bandwidth mismatches as modeled

in [64, 66]. We again used a multitone input signal with 42 sinusoids bandlimited to 0.8π

and had a constant amplitude, uniformly spaced frequencies, and random phases.

According to [64, 66], the channel frequency responses are given for a two-channel

TI-ADC as

Ĥm(jΩ) =
1

1 + j Ω
(1+∆m)Ωc

1 − e−(1+∆m)ΩcT e−jΩT

1 − e−(1+∆m)ΩcT e−j2ΩT
(4.37)

where Ωc is the 3-dB cutoff frequency of each sample-and-hold of the individual chan-

nel ADCs, and ∆m are the deviations from Ωc, i.e., bandwidth mismatches. For this

simulation, we assume a cutoff frequency of Ωc = 3/2Ωs with mismatch values given in

Tab. 4.1, and used a step-size of µ = 0.03 for the FxLMS algorithm. In Tab. 4.2 the

initial SNR and the SNR after calibration is given for the different mismatch values and

for different orders P of the polynomial series. From Tab. 4.2 we see that for increasing

order we obtain better SNRs after calibration as the mismatch model is represented more

accurately. The power spectra for the uncalibrated output y[n] and the reconstructed

input x̂[n] for the case of 5% bandwidth mismatch are shown in Fig. 4.13 and 4.14,

respectively.
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Table 4.1: Simulated bandwidth mismatch values.

Mismatch ∆1 ∆2

2% 0.99 1.01

5% 0.98 1.03

10% 0.95 1.05

Table 4.2: Initial and final SNR for bandwidth mismatch values

from Tab. 4.1 and for different orders of the calibration structure.

Final SNRs

Mismatch Initial SNR P = 1 P = 2 P = 3

2% 56.4 dB 70 dB 80.1 dB 84.3 dB

5% 48.5 dB 62.1 dB 72.5 dB 75.6 dB

10% 42.4 dB 56 dB 66 dB 70 dB
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Figure 4.13: Power spectrum of the output y[n] with 5% bandwidth

mismatches. The SNR is 48.5 dB.
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Figure 4.14: Power spectrum of the reconstructed output x̂[n] for

the case of bandwidth mismatch calibration. For a 3rd order calibra-

tion structure and the SNR after calibration is 75.6 dB, which is an

improvement of 27.1 dB.

4.4.5 Calibration of Gain and Timing Mismatches: White Gaussian Noise

Input Signal

In this example we considered a WGN input signal bandlimited to 0.8π and having zero

mean and variance σ2 = 1. By modeling the channel frequency responses as

Ĥm(jΩ) = gmejΩTrm (4.38)

where gm and rm are the relative gain mismatches and timing offsets, respectively. The

calibration of gain and timing mismatches for an M -channel TI-ADC has been demon-

strated in Chapter 3, however this example uses only a two-channel TI-ADC and it

further demonstrates the difference in the convergence time for the filtered and delayed

versions of LMS algorithm given by (4.26) and (4.34) respectively.

The simulated values were [1, 1.01] for gm and [0,−0.02] for rm as given in [12]. For

the given gain and timing mismatches, the coefficient vector c can be sufficiently closely

approximated by using a first order truncated Taylor’s series, which gives

c = [−0.00498, 0.01]. (4.39)

Figures 4.15 and 4.16 show the power spectra of the uncalibrated output y[n] and re-

constructed output x̂[n], respectively. For the uncalibrated signal the SNR was 36.3 dB,

and, for the reconstructed output signal with a step size of µ = 0.06, the SNR was

72.8 dB, i.e., an improvement of 36.5 dB. Figures 4.17 and 4.18 show the convergence

59



4.4 Simulation Results

0 0.1 0.2 0.3 0.4 0.5
−120

−100

−80

−60

−40

−20

0

Normalized Frequency

S
ig

na
l P

ow
er

 [d
B

c]

Figure 4.15: Power spectrum of the uncalibrated output y[n] with

gain and timing mismatches. The SNR is 36.3 dB.
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Figure 4.16: Power spectrum of the reconstructed output x̂[n] using

a 1st order calibration structure. The SNR is 72.8 dB which is an

improvement of 36.5 dB.
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of the estimated gain and timing mismatches. It can be seen that the filtered version

of LMS given by (4.26) converges faster than as compared to the delayed version given

by (4.34). This behavior supports the usage of extra high-pass filters to speed up the

convergence rate in the implementation structure shown in Fig. 4.6.

4.5 Conclusions

In this chapter we have presented a blind calibration structure to calibrate frequency

response mismatches in a two-channel TI-ADC. We have presented the system model of a

two-channel TI-ADC with frequency response mismatches. Later this system model has

been approximated by a P -th order polynomial resulting in approximate expressions for

the error signals. Based on the approximate system model we have developed the blind

calibration structure that uses the FxLMS algorithm to identify the unknown coefficients

of the polynomials and thus compensates the frequency response mismatches. We have

demonstrated the flexibility of the blind calibration structure by calibrating not only the

frequency response mismatches but also the gain, timing, and bandwidth mismatches by

using when multitone and WGN input signals. The simulation results have confirmed

that we can achieve a considerable amount of improvement in the SNR after calibration.

Furthermore, the structure is easily scalable for higher-order polynomial approximations

where each increase in the polynomial-order requires one additional differentiator, one

time-varying multiplier, and one adder. However, the straight forward extension to more

than two channels works well for gain and timing mismatches, and, therefore, is an open

research question for general frequency response mismatches.
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Figure 4.17: Convergence behavior of the estimated gain mismatch

coefficients according to (4.26) and (4.34).
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5
Adaptive Non-Blind Background Calibration

of Frequency Response Mismatches

This chapter1 investigates the non-blind background calibration of frequency response

mismatches in an M -channel TI-ADC. The non-blind calibration structure comprises

an M -periodic time-varying compensation filter. The coefficients of the time-varying

filter are estimated by using an M -periodic LMS algorithm. The introduced calibration

structure may be used to calibrate any linear frequency response mismatches.

After the introduction in Section 5.1 we analyze the cascade of an M -channel TI-

ADC with an M -periodic time-varying filter in Section 5.2. The coefficient sets of

the compensation filter are determined adaptively by using an additional low-resolution

ADC as reference to an M -periodic LMS algorithm as described in Section 5.3. The

simulation results are presented in Section 5.4 to characterize the performance of the

proposed adaptive non-blind compensation structure. Finally the chapter is concluded

in Section 5.5.

5.1 Introduction

As discussed in Chapter 2, a TI-ADC can be modeled as an M -periodic time-varying

system, where for each time instant we get a different response of the M -channel TI-

ADC. Such a behavior is usually caused by fabrication errors, temperature variations,

and aging effects. In such a scenario, the calibration of frequency response mismatches

requires an appropriate discrete-time M -periodic time-varying filter. Such a filter is

characterized by M time-invariant impulse responses or M coefficient sets. Whenever

the behavior of the TI-ADC changes, these coefficient sets need to be recomputed. The

1Parts of this chapter have been published in [18]
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5.1 Introduction

computation of the coefficient sets either can be performed adaptively or in a non-

adaptive fashion such as using a least-squares design. In both cases, a reference is

needed to compute the underlying coefficients sets. The reference can be the ideal input

signal itself or can be an estimated or measured version of it. For a typical calibration

scenario, we usually do not have any access to the ideal input signal, hence such a

choice of reference seems unrealistic. However, an additional low-resolution ADC can be

employed that operates at the sampling rate of the corresponding M -channel TI-ADC

to obtain a measured version of the input signal. The TI-ADC and the low-resolution

ADC are operated by the same input signal. An immediate issue that arises in this

scenario is the increased power consumption due to the usage of an additional ADC.

Since the power consumption of an ADC is directly proportional to its resolution, a

low-resolution ADC does not significantly increase power consumption of a TI-ADC.

For example, compared to the power dissipation of 33 mW for a 10-bit 100MS/s pipeline

converter a 4-bit 1.25GS/s flash converter has a power dissipation of only 2.5 mW [87].

Furthermore, technology scaling has also helped to improve the power efficiency of low-

resolution ADCs over time. On average, the power dissipation for flash and pipeline

ADCs has halved every 2.5 years over the past ten years [87].

The use of an M -periodic time-varying filter to compensate frequency response mis-

matches in an M -channel TI-ADC has been earlier investigated in [71–73, 88]. A least-

squares filter design method for frequency response mismatches is presented in [72]. It

is an extension to the work presented in [89] and has a reduced filter design complex-

ity compared to [67], but the complexity is still demanding and the method requires

known frequency responses or special input signals to identify them. The same could

be said about the filter design method using multi-channel filters introduced in [88]. To

simplify the identification task, the authors investigated the special case of bandwidth

mismatches. An adaptive technique utilizing an M -periodic time-varying feedforward

equalizer to correct gain, timing, and bandwidth mismatches is shown in [73]. Basi-

cally, the method uses the decoded symbols to generate a reference signal on sampling

rate for the mismatch calibration, which is a non-trivial task. In [71] a flexible and

scalable structure to compensate frequency response mismatches in a TI-ADC has been

presented. The authors have used the output of the TI-ADC as a reference to determine

M impulse responses of the time-varying compensation filter. But in this regard they

need to know the average frequency response of the TI-ADC. This average frequency

response was determined by using sinusoidal test signals. Moreover, the authors have

demonstrated the flexibility of their time-varying compensation structure by compen-

sating also the bandwidth, and time-offset mismatches beside the frequency response
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Figure 5.1: Time-varying system model of a high-resolution TI-ADC

with a quantizer QH .
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Figure 5.2: A low-resolution ADC with an impulse response r[n] and

quantizer QL.

mismatches. Such a flexibility has earlier been demonstrated in Chapter 4 of this dis-

sertation for the frequency response model of a two-channel TI-ADC represented by

polynomials.

We start with the time-varying system model of a TI-ADC introduced in Section 2.4

but here we explicitly include a quantizer QH that yields the output ŷ[n], i.e.,

y[n] =

∞∑

l=0

hn[l]x[n − l] and ŷ[n] = QH(y[n]). (5.1)

The resulting system is shown in Fig. 5.1.

The output ŷ[n] is passed to an M -periodic time-varying calibration filter gn[l]. To

obtain the coefficients sets of gn[l], we need a reference. For this purpose we use the

output of an additional low-resolution ADC with an impulse response r[n] followed by

a quantizer QL, as shown in Fig. 5.2. The output d̂[n] of the low-resolution ADC can

be written as

xr[n] =
+∞∑

l=0

r[l]x[n − l] and d̂[n] = QL(xr[n]) (5.2)

This output acts as reference for an M -periodic LMS algorithm that computes the

coefficient sets of gn[l]. Hence the adaptive calibration technique presented in this chapter

and in [73] are similar but obtain their reference signals in different ways. Finally, the

output of gn[l] is the frequency response mismatch calibrated output yc[n].
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filter        TI−ADC
        calibration

QHhn[l]

fn[l]

gn[l]
yc[n]x[n] ŷ[n]

Figure 5.3: Cascade of the two M -periodic time-varying filters hn[l]

and gn[l] results in a new time-varying filter fn[l].

5.2 Cascaded Time-Varying Filters

Since the output ŷ[n] of the TI-ADC acts as input to the M -periodic time-varying com-

pensation filter gn[l], which is thus cascaded with the M -periodic time-varying filter hn[l].

This cascading of the two M -periodic time-varying filters results in a new M -periodic

time-varying filter fn[l] as shown in Fig. 5.3. Next we present a detailed analysis to get

an analytic representation for fn[l].

Analysis

Using (5.1) we can rewrite the output ŷ[n] of the TI-ADC as

ŷ[n] =

∞∑

l1=0

hn[l1]x[n − l1] (5.3)

and the output of gn[l] as

yc[n] =

L∑

l2=0

gn[l2]ŷ[n − l2], (5.4)

where L denotes the order of gn[l].

Substituting (5.3) in (5.4) results in

yc[n] =

L∑

l2=0

∞∑

l1=0

gn[l2]hn−l2 [l1]x[n − (l1 + l2)]. (5.5)

Defining

l = l1 + l2 (5.6)

and

p = l2 (5.7)
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we can rewrite (5.5) as

yc[n] =
∞∑

l=0

L∑

p=0

gn[p]hn−p[l − p]x[n − l]. (5.8)

which can be rewritten as

yc[n] =

∞∑

l=0

fn[l]x[n − l] (5.9)

with

fn[l] =

L∑

p=0

gn[p]hn−p[l − p]. (5.10)

Equation (5.10) represents the cascade of the two M -periodic time-varying filters hn[l]

and gn[l] as shown in Fig. 5.3. The resulting cascaded time-varying filter fn[l] is also

M -periodic i.e. fn[l] = fn+M [l].

5.3 Adaptive Calibration

Based on the time-varying system model of a TI-ADC and the cascaded time-varying

filters structure, we now present a calibration structure comprising a cascaded FIR

filter fn[l] and an additional low-resolution ADC d[n] as shown in Fig. 5.4. This structure

filter        TI−ADC

reference ADC

Calibrated

        calibration

Output

x[n]
r[n]

xr[n]
QL

QH

yc[n]

ε[n]d̂[n]

hn[l] gn[l]
yc[n]ŷ[n]

LMS

fn[l]

Figure 5.4: Adaptive non-blind calibration structure comprising an

M -periodic time-varying causal FIR filter fn[l] and a filter r[n] rep-

resenting an additional low-resolution ADC generating the desired in-

put d̂[n] for the M -periodic LMS algorithm that is used to adapt the

coefficient sets of gn[l] to yield the calibrated output yc[n].
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represents the typical channel equalization problem where the response of an M -channel

TI-ADC, i.e., hn[l], replaces the communication channel and gn[l] is an M -periodic

equalizer. The coefficient sets of gn[l] are estimated by using the M -periodic LMS

algorithm.

The adaptation error ε[n] is given by

ε[n] = d̂[n] − yc[n]. (5.11)

Substituting yc[n] and d̂[n] from (5.9) and (5.2) in (5.11) and rearranging

ε[n] =

+∞∑

l=0

(r[l] − fn[l]) · x[n − l]. (5.12)

Ideally, the filter r[n] is chosen in a way so that ε[n] in (5.12) becomes small. In our

case, ε[n] is minimzed by using an M -periodic LMS algorithm as

Gn+M [l] = Gn[l] + µ · y[n − l] · ε[n], (5.13)

where G is the matrix of the coefficient sets of gn[l] whereas ŷ[n] is the input vector,

and µ is the adaptation step size for the M -periodic LMS algorithm. Equation (5.13)

is different from a standard LMS algorithm because it updates a different coefficient set

out of M sets during each iteration. Once the M -th coefficient set is updated then it

starts again from the first coefficient set and continues in a round robin fashion.

5.4 Simulation Results

Simulations were performed to investigate the performance of the compensation structure

with a four-channel TI-ADC suffering from frequency response mismatches. The channel

frequency responses being used for the simulations were

Ĥm(jΩ) =
αm

1 + j Ω
(1+∆m)Ωc

ejΩTrm (5.14)

where Ωc is the 3-dB cutoff frequency, αm are the gain mismatches, rm are the relative

timing offsets from the ideal sampling instants, and ∆m are the relative frequency offsets

from Ωc, i.e., bandwidth mismatches. We have simulated a 16-bit four-channel TI-ADC

with sampling rate Ωs = Ωc.

For all the examples that follow we considered a multitone input signal bandlimited

to 0.8Ωs/2 and having random amplitudes, frequencies, and phases. The simulated gain

mismatches, relative timing, and frequency offset values are shown in Tab. 5.1. The
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Table 5.1: Simulated gain mismatches, relative timing and frequency

offsets values

ADC αm rm ∆m

ADC0 1.01 −0.007Ts +0.10

ADC1 0.98 +0.002Ts −0.02

ADC2 0.99 −0.003Ts −0.05

ADC3 1.02 +0.008Ts +0.05

frequency response of the low-resolution ADC was taken as the first-order frequency

response given by

R(jΩ) =
1.03

1 + j Ω
Ωc

. (5.15)

For the adaptation, the step size µ was computed as

µ =
2

Lσ2
x100000

, (5.16)

where L is the order of the compensation filter gn[l] and σ2
x is the variance of the input

signal.

The performance before compensation was measured by computing the value of the

SNR as

SNR = 10log10

( ∑N−1
n=0 |xr[n]|2

∑N−1
n=0 |xr[n] − y[n]|2

)

(5.17)

and after compensation was measured as

SNR = 10log10

( ∑N1−1
n=0 |xr[n]|2

∑N1−1
n=0 |xr[n] − yc[n]|2

)

, (5.18)

where N denotes the number of samples used to calculate the SNR before calibration,

N1 denotes the number of samples used to calculate the SNR after calibration (once the

M -periodic LMS algorithm has converged), and xr[n] is the convolution of x[n] and r[n]

as shown in Fig. 5.2.

Example 1

In this example we demonstrate the performance of the compensation structure. We

took N = 224 samples of the input signal. The values of QL and QH were 2 bits and

16 bits, respectively, while we used a compensation filter gn[l] with L = 17 taps.
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Figure 5.5 shows the power spectrum of the uncompensated output signal y[n]. The

SNR was 28.3 dB. The power spectrum of the compensated output signal yc[n] is shown

in Fig. 5.6. The computed value of the SNR (once the M -periodic LMS algorithm has

converged, i.e., for N1 = 4096) was 49 dB which was an approximate improvement of 21

dB as compared to the uncompensated output.

Example 2

In this example we show the effect of the resolution of QL on the SNR, using different

numbers of samples for a compensation filter gn[l] with 17 taps as shown in Fig. 5.7.

By increasing the number of reference bits QL and the number of samples, the SNR

increases. For QL = 2 bits, an SNR improvement up to 21 dB was observed using 224

samples while for QL = 6 bits, an SNR improvement up to 28 dB was observed using 224

samples.

Example 3

This example demonstrates the effect of the filter order L of gn[l] on the SNR. For this

simulation we used QL = 2 bits and 224 samples of the input signal. As can be seen in

Fig. 5.8 that value of the SNR decreases for longer filters. This effect can be improved

either by increasing the number of samples or alternatively by increasing the value of QL

as shown in Fig 5.8. However with the increase of QL, convergence can be achieved with

less samples while using a similar step size µ. For a filter gn[l] with 9 taps we observed

an improvement of up to 22 dB in the SNR.

5.5 Conclusions

In this chapter we have presented an adaptive non-blind compensation structure to com-

pensate the frequency response mismatches in an M -channel TI-ADC. By modeling an

M -channel TI-ADC as an M -periodic time-varying system, we have used an M -periodic

time-varying FIR filter for compensation. The coefficient sets of the compensation fil-

ter have been estimated by using the output of an additional low-resolution ADC as

reference to an M -periodic LMS algorithm. Simulations have shown that by using a

large number of samples with a reasonably smaller step size, the M -periodic LMS al-

gorithm has well estimated the coefficient sets of the time-varying compensation filter.

Furthermore we have seen that, by using a time-varying compensation filter with smaller

number of taps, we can achieve a considerable improvement in SNR.
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Figure 5.5: Power spectrum of the uncompensated output y[n] with

QH = 16 bits and QL = 2 bits. The tones marked with circles are the

aliasing components due to the frequency response mismatches. The

computed SNR is 28.3 dB.
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Figure 5.6: Power spectrum of the compensated output yc[n] using a

compensation filter with 17 taps (once LMS has been converged). Due

to the reduction in the energy of the aliasing components the computed

SNR is 49 dB thus leading to an approximate improvement of 21 dB

compared to the uncompensated output.
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Figure 5.7: QL vs SNR using a compensation filter with 17 taps

(QH = 16 bits).
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6
Summary & Concluding Remarks

In this thesis we have investigated the adaptive calibration of frequency response mis-

matches in time-interleaved ADCs. We have presented the continuous-time, discrete-

time, and time-varying system models of a TI-ADC where we have modeled the m-th

channel ADC by using a linear time-invariant frequency response Hm(ejω). The fre-

quency response Hm(ejω) has been defined to cater for the frequency response mis-

matches including gain, timing, and bandwidth mismatches. Using these models, we

have represented the output of a TI-ADC in two different forms, i.e., first as the sum of

a reference signal without mismatches and an error signal due to the mismatches, and

second as the output of a time-varying system where with each sampling instant the input

signal is convolved with a different impulse response and thus the frequency response

mismatches arise. In the former case our calibration philosophy has revolved around

adaptively generating an estimated error signal that was subtracted from the TI-ADC

output to get the reconstructed input signal. In the latter case we have used an adaptive

M -periodic time-varying filter to compensate the frequency response mismatches.

In chapter 3 we have introduced an accurate adaptive blind background calibration

technique to calibrate gain (constant magnitude) and timing (linear phase) mismatches

in an M -channel TI-ADC. In the first half of this chapter we have first approximated

the discrete-time system model introduced in chapter 2 with a first-order Taylor’s se-

ries expansion. This has helped us to get a unified vector representation for gain and

timing mismatch coefficients. In the second half of this chapter, we have presented the

details of the blind calibration structure that takes advantage of the slight oversam-

pling of the input signal to estimate and compensate the mismatches. The proposed

method has shown significant improvement in the performance of a TI-ADC both with

the bandlimited multitone and white Gaussian noise input signals.

In chapter 4 we have presented a fully blind background method to calibrate the fre-

quency response mismatches in a two-channel TI-ADC. By characterizing the frequency
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response mismatch between the channel ADCs through the coefficients of a P th order

polynomial has helped us to simply identify those coefficients in order to compensate the

mismatches. The unique feature of this structure when compared to the other methods

in the literature [63, 73, 75] is its flexibility because it has performed equally well with

different channel mismatch models and input signals. However, the extension of this

method to an M -channel TI-ADC is an open research question.

An adaptive non-blind background calibration that uses an additional low-resolution

reference ADC in combination with a time-varying filter to calibrate frequency response

mismatches due to the time-varying behavior of a TI-ADC has been presented in chap-

ter 5. The simulations have shown that, by using a 2-bit ADC as reference and waiting

for around 223, it is possible to adaptively calibrate frequency response mismatches.

However the convergence time can be decreased by increasing the resolution of the refer-

ence ADC which, however, will increase the total power consumption of the compensated

TI-ADC. A possible extension to this non-blind structure, is to use multirate theory such

that the time-varying compensation filter gn[l] may be represented as an M -channel max-

imally decimated multi-rate filter bank [56]. Furthermore, an implementation on the low

rate using polyphase filters can make it more efficient for the digital circuit design.

To summarize, we have found a comprehensive model for time-interleaved ADCs and

have analyzed channel mismatch errors. With our background blind and non-blind

calibration methods we can precisely identify and compensate the channel mismatches,

which significantly improves the performance of a time-interleaved ADC. Therefore, in

the future high-rate time-interleaved ADCs can be used for high-resolution applications.
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[72] H. Johansson and P. Löwenborg, “A least-squares filter design technique for the

compensation of frequency-response mismatch errors in time-interleaved A/D con-

verters,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 55,

no. 6, pp. 1154–1158, Nov. 2008.

[73] T.-H. Tsai, P. J. Hurst, and S. H. Lewis, “Correction of mismatches in a time-

interleaved analog-to-digital converter in an adaptively equalized digital commu-

nication receiver,” IEEE Transactions on Circuits and Systems I: Regular Papers,

vol. 56, no. 2, pp. 307–319, Feb. 2009.

[74] M. Seo and M. Rodwell, “Generalized blind mismatch correction for a two-channel

time-interleaved ADC: Analytic approach,” in IEEE International Symposium on

Circuits and Systems, ISCAS, New Orleans (USA), May 2007, pp. 109–112.

[75] H. Johansson, “A polynomial-based time-varying filter structure for the compensa-

tion of frequency-response mismatch errors in time-interleaved ADCs,” IEEE Jour-

nal of Selected Topics in Signal Processing, vol. 3, no. 3, pp. 384–396, June 2009.

[76] W. Kester, Mixed-Signal and DSP Design Techniques. Newnes, 2003.

[77] R. Khoini-Poorfard, L. B. Lim, and D. A. Johns, “Time-interleaved oversampling

A/D converters: Theory and practice,” IEEE Transactions on Circuits and Systems

II: Analog and Digital Signal Processing, vol. 44, no. 8, pp. 634–645, Aug. 1997.

[78] E. Kreyszig, Advanced Engineering Mathematics. 8th Ed., John-Wiley and Sons,

1998.

[79] S. Saleem, “Adaptive blind calibration techniques for gain-timing and generalized

mismatch models in time-interleaved analog-to-digital converters,” Technical Re-

port, Signal Processing and Speech Commuincation Laboratory, Graz University of

Technology, Austria, 2008.

82



Bibliography

[80] ——, “A comparative analysis of blind calibration techniques for time-interleaved

ADCs,” in Proceedings of 16th Austrian Workshop on Microelectronics, AustroChip,

Linz (Austria), Oct. 2008, pp. 33–37.

[81] B. Widrow and S. D. Stearns, Adaptive Signal Processing. Prentice-Hall, 1985.

[82] E. Bjarnason, “Analysis of the filtered-X LMS algorithm,” IEEE Transactions on

Speech and Audio Processing, vol. 3, no. 6, pp. 504–514, Nov. 1995.

[83] A. V. Oppenheim and A. Willsky, Signals and Systems. Prentice Hall, 1983.

[84] C. Vogel, “A signal processing view on time-interleaved ADCs,” pp. 61–78, 2010.

[85] D. Marelli, K. Mahata, and M. Fu, “Linear LMS compensation for timing mismatch

in time-interleaved ADCs,” IEEE Transactions on Circuits and Systems I: Regular

Papers, vol. 56, no. 11, pp. 2476–2486, Nov. 2009.

[86] K. Poulton, R. Neff, B. Setterberg, B. Wuppermann, T. Kopley, R. Jewett,

J. Pernillo, C. Tan, and A. Montijo, “A 20-GS/s 8-bit ADC with a 1 MB memory in

0.18µm CMOS,” in IEEE International Solid-State Circuits Conference, Digest of

Technical papers, ISSCC, San Francisco, CA (USA, vol. 1, Feb. 2003, pp. 318–496.

[87] T. Sundstroem, B. Murmann, and C. Svensson, “Power dissipation bounds for

high-speed Nyquist analog-to-digital converters,” IEEE Transactions on Circuits

and Systems I: Regular Papers, vol. 56, no. 3, pp. 509–518, Mar. 2009.

[88] Y. C. Lim, Y. X. Zou, J. W. Lee, and S. C. Chan, “Time-interleaved analog-to-

digital converter (TIADC) compensation using multichannel filters,” IEEE Trans-

actions on Circuits and Systems I: Regular Papers, vol. 56, no. 10, pp. 2234–2247,

October 2009.
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