Dissertation

Model-Based Mutation Testing
with Constraint and SMT Solvers

Elisabeth Jobstl!

Institute for Software Technology (IST)
Graz University of Technology
A-8010 Graz, Austria

TU

Grazm

Supervisor/First reviewer: A.o. Univ.-Prof. DI Dr. Bernhard K. Aichernig
Second reviewer: Prof. Robert Hierons, Ph.D.

Graz, April 2014

! E-mail: joebstl @ist.tugraz.at
© Copyright 2014 by the author

Dissertation

Modell-basiertes Mutationstesten
mit Constraint- und SMT-Solvern

Elisabeth Jobstl!

Institut fiir Softwaretechnologie (IST)
Technische Universitit Graz
A-8010 Graz

TU

Grazm

Betreuer/1. Gutachter: A.o. Univ.-Prof. DI Dr. Bernhard K. Aichernig
2. Gutachter: Prof. Robert Hierons, Ph.D.

Graz, April 2014

Diese Arbeit ist in englischer Sprache verfasst.

! E-Mail: joebstl @ist.tugraz.at
© Copyright 2014, Elisabeth Jobstl

Abstract

Today, software is omnipresent in our everyday life. Computers and embedded systems are used
naturally in telephones, cars, railway signalling systems, etc. For some of these applications, a malfunc-
tioning is inconvenient — for others life-threatening. Hence, a thorough verification and validation of
software systems is essential. In practice, it is mostly conducted via software testing.

In the last decade, model-based testing has been identified as a promising approach to software testing
as it allows for automated test case generation. Instead of manually designing many individual test cases,
the test engineer creates a formal model of the system under test and uses tools to automatically derive
test cases. A crucial matter in model-based testing is the choice of the test criterion specifying which
test cases shall be generated. In this work, we follow a fault-centred approach. The original test model is
syntactically altered to produce a set of mutated models. We perform a conformance check between the
original and the mutated models. In case of non-conformance, we automatically generate a test case that
reveals the non-conforming behaviour of the mutant. When executed on the system under test, these test
cases will detect whether one of the faulty models has been implemented instead of the correct, original
model. Hence, the generated test suite covers all of the failures caused by the model mutation operators
and has a high chance of covering many additional similar failures.

As a modelling formalism, we rely on action systems, which are well-suited to model reactive and
non-deterministic systems. A main factor influencing the quality and performance of model-based mu-
tation testing concerns the underlying conformance check, which is the main focus of this thesis. We
designed and implemented an efficient test case generator for action systems based on two conformance
relations: refinement and Input-Output Conformance (ioco).

For refinement checking, we defined a predicative semantics for action systems that is close to a con-
straint satisfaction problem. This allows for utilising modern constraint and SMT solvers. We optimised
our refinement checker to efficiently analyse a large number of mutated models. Experiments showed
that our optimisations reduced the runtimes by up to 90% compared to our first implementation.

Despite its efficiency, our notion of refinement is not completely satisfying the needs of model-based
mutation testing. A more suitable conformance relation is ioco. However, previous work has shown
that ioco checking is rather demanding in terms of runtime and memory consumption. Therefore, we
use our optimised refinement check as a preprocessing step for the efficient computation of an under-
approximation of an ioco test suite. Instead of performing a full ioco check between the original and a
mutated model, we first perform a refinement check. Only in case of non-refinement, the ioco check is
initiated from the point where non-refinement has been detected. In this way, the subsequent ioco check
is more target-oriented.

Our test case generator has been integrated into a tool chain that generates test cases from UML state
machines. It has been applied to two case studies conducted with industrial partners from the automotive
domain in the context of two research projects.

Keywords: Test Case Generation, Model-Based Testing, Mutation Testing, Conformance, Refinement,
Input-Output Conformance (ioco), Action Systems, Constraint Solving, SMT Solving.

i

Kurzfassung

Software ist allgegenwirtig in unserem tidglichen Leben. Computer und eingebettete Systeme finden
sich in Telefonen, Autos, Eisenbahn-Signalanlagen, etc. In manchen dieser Anwendungen ist ein Funk-
tionsfehler unangenehm, in anderen lebensbedrohlich. Eine griindliche Verifikation und Validierung von
Softwaresystemen ist deshalb unumgénglich. In der Praxis geschieht dies meist durch Softwaretesten.

In den letzten Jahren hat sich modellbasiertes Testen als vielversprechender Ansatz zum Software-
testen erwiesen, weil es sich fiir automatisierte Testfallgenerierung eignet. Der Test-Ingenieur erstellt
ein formales Modell des zu testenden Systems und verwendet Tools um automatisch Testfille abzulei-
ten, anstatt diese manuell zu entwerfen. Ein wichtiger Punkt im modellbasierten Testen ist die Wahl
des Testkriteriums, das angibt welche Testfille generiert werden sollen. In dieser Arbeit folgen wir ei-
nem fehlerorientierten Ansatz. Das originale Testmodell wird syntaktisch abgedndert um so eine Menge
von mutierten Modellen zu erzeugen. Wir iiberpriifen die Konformitit zwischen dem originalen und den
mutierten Modellen. Im Falle von Nichtiibereinstimmung generieren wir automatisch einen Testfall der
das unterschiedliche Verhalten des Mutanten aufzeigt. Wenn diese Testfille auf dem zu testenden System
ausgefiihrt werden, erkennen sie ob eines der fehlerhaften Modelle anstelle des korrekten, urspriinglichen
Modells implementiert wurde. Somit decken die generierten Testfille alle Fehler die durch die Mutati-
onsoperatoren beschrieben werden ab und haben auch gute Chancen dhnliche Fehler zu finden.

Als Formalismus zur Modellierung verwenden wir Action-Systeme. Diese eignen sich gut um reak-
tive und nichtdeterministische Systeme zu modellieren. Ein Hauptfaktor fiir die Qualitit und Effizienz
von modellbasiertem Mutationstesten ist die zu Grunde liegende Konformititspriifung, die auch den
Hauptfokus dieser Arbeit darstellt. Wir haben einen effizienten Testfallgenerator fiir Action-Systeme
entworfen und implementiert. Er basiert auf zwei Konformititsrelationen: Refinement und Input-Output
Conformance (i0co).

Zur Uberpriifung von Refinement haben wir eine pridikative Semantik von Action-Systemen defi-
niert, die einem Constraint-Satisfaction-Problem #hnelt. Dies erlaubt es uns moderne Constraint- und
SMT-Solver zu verwenden. Wir haben unseren Refinement-Checker optimiert um effizient eine grof3e
Menge von mutierten Modellen verarbeiten zu konnen. Experimente haben gezeigt, dass unsere Opti-
mierungen die Laufzeiten im Vergleich zur Basisimplementierung um bis zu 90% reduzieren konnten.

Trotz der hohen Effizienz kann unsere Refinement-Relation die Anforderungen fiir modellbasier-
tes Mutationstesten nicht zur Génze erfiillen. Eine passendere Konformitétsrelation ist ioco. Vorherige
Arbeiten haben allerdings gezeigt, dass die Uberpriifung auf ioco-Konformitit hohere Laufzeiten und
groBeren Speicherbedarf mit sich bringt. Deshalb verwenden wir unseren optimierten Refinement-Check
als Vorverarbeitungsschritt fiir die effiziente Berechnung einer Unterapproximation der ioco-Testsuite.
Anstelle eines vollstindigen ioco-Checks zwischen dem originalen und einem mutierten Modell, fiihren
wir zuerst einen Refinement-Check durch. Nur im Falle einer Verletzung der Refinement-Relation wird
ein ioco-Check angestof3en. Dieser beginnt an dem Punkt wo der Refinement-Verstof3 identifiziert wurde.
Auf diese Weise ist der nachfolgende ioco-Check zielgerichteter.

Unser Testfallgenerator wurde in eine Toolchain integriert, die Testfille von UML-Zustandsdia-
grammen generiert und wurde in zwei Fallstudien angewendet. Diese stammen aus der Automobilbran-
che. Sie wurden in Zusammenarbeit mit zwei Industriepartnern im Rahmen von zwei Forschungsprojek-
ten durchgefiihrt.

Schlagworte: Testfallgenerierung, Modellbasiertes Testen, Mutationstesten, Konformitit, Refinement,
Input-Output Conformance (ioco), Action-Systeme, Constraint-Solving, SMT-Solving.

il

v

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used other than the declared
sources/resources, and that I have explicitly marked all material which has been quoted either literally or
by content from the used sources.

place, date (signature)

Eidesstattliche Erklirung

Ich erkldre an Eides statt, dass ich die vorliegende Arbeit selbststindig verfasst, andere als die angege-
benen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wortlich und inhaltlich entnom-
menen Stellen als solche kenntlich gemacht habe.

Ort, Datum (Unterschrift)

vi

Acknowledgements

I would like to thank numerous people who supported me while I was writing this thesis
and accompanied me during my doctoral studies.

First of all, I express my gratitude to my supervisor Bernhard Aichernig. Long before this
dissertation, he sparked my interest in software testing. He is a good teacher, who always
has an open ear and motivating recommendations.

Furthermore, I am grateful to Robert Hierons for reviewing this thesis.

I thank all co-authors of the papers that formed the basis of this work, my colleagues of
the research projects MOGENTES, TRUFAL, and MBAT, as well as my colleagues at the
institute. Furthermore, I thank Matthias Kegele and Martin Tappler for their assistance.

I would like to address special thanks to my partner Robert for his support and understand-
ing — especially in the final writing phase. Last but not least, I want to thank my parents
Rupert and Helene and my whole family for keeping me grounded.

This work has been financially supported by the Austrian Research Promotion Agency
(FFG) via the project TRUFAL (project number 829583), by the EU FP7 project MO-
GENTES (ICT-216679), and by the ARTEMIS Joint Undertaking MBAT (grant agreement
number 269335).

Elisabeth Jobstl
Graz, Austria, April 2014

Danksagung

Ich mochte mich herzlich bei allen bedanken, die mich wihrend des Verfassens dieser Arbeit
sowie im gesamten Doktoratsstudium unterstiitzt haben.

Insbesondere gilt mein Dank meinem Betreuer Bernhard Aichernig. Lange bevor ich meine
Dissertation begann, hat er mein Interesse fiir das Softwaretesten geweckt. Er ist ein guter
Lehrer, der immer ein offenes Ohr hat und motivierende Worte findet.

Des weiteren danke ich Robert Hierons dafiir, dass er diese Arbeit begutachtet hat.

Ich bedanke mich bei allen Co-Autoren der Publikationen, die im Zuge dieser Arbeit ent-
standen sind. Des weiteren danke ich meinen Kollegen aus den Forschungsprojekten in
denen ich mitwirken durfte. Ein grofer Dank gilt auch all meinen Kollegen am Institut fiir
Softwaretechnologie und den Studenten, die ich betreuen durfte und die dadurch einen Teil
zu dieser Arbeit beigetragen haben.

Ganz besonderer Dank gilt meinem Partner Robert fiir sein Verstdndnis und fiir seine Un-
terstiitzung besonders wihrend des Verfassens dieses Dokuments. Nicht zuletzt mochte ich
meinen Eltern Rupert und Helene sowie meiner gesamten Familie fiir ihren Riickhalt und
die moralische Unterstiitzung danken.

Diese Arbeit wurde finanziell unterstiitzt von der Osterreichischen Forschungsférderungs-
gesellschaft (FFG) im Rahmen des Projekts TRUFAL (Projektnummer 829583), vom EU-
FP7-Projekt MOGENTES (ICT-216679) und durch das ARTEMIS-Projekt MBAT (Kenn-
ziffer 269335).

Elisabeth Jobstl
Graz, Osterreich, April 2014

vii

viii

Contents

List of Figures

List of Tables

List of Algorithms

List of Listings

Abbreviations

1 Introduction

1.1
1.2
1.3
1.4
1.5

1.6

1.7

1.8

Motivation o e e e e e e e e e e e e e e
Model-Based Mutation Testing
Problem Statement
Thesis Statement e e e e e e
Research ConteXt e e e e e
1.5.1 The MoMuT::UML Tool Chain
Use Cases o v v it e e e e e e e e e
1.6.1 CarAlarm System e
1.6.2 Particle Counter e e e e
Contributions and Publications,
1.7.1 Contributions e e e e e e
1.7.2 Listof Publications
Structure of this Thesis e

2 Software Testing Background

2.1
2.2
2.3

Verification and Validation
Software Testing L e e

Software Testing Approaches

3 Conformance

3.1

3.2

33

Refinement e
3.1.1 Axiomatic Refinement L o
3.1.2 Traces Refinement
3.1.3 Failures(-Divergences) Refinement
3.1.4 Weakest-Pre-condition Refinement
3.1.5 Relational Refinement
Input-Output Conformance e
3.2.1 Assumptions of 10CO L. L L
3.2.2 Other Conformance Relations for Labelled Transition Systems
Classifying Conformance Relations

ix

xiii

XV

xvii

xvii

Xix

11
11
11
14

4 Model-Based Mutation Testing

4.1

4.2
4.3

Model-Based Testing e
4.1.1 The Model-Based Testing Process
4.1.2 Benefits and Limitations of Model-Based Testing
4.1.3 A Taxonomy of Model-Based Testing
Mutation Testing L e
Model-Based Mutation Testing

5 Action Systems

5.1
52

53
5.4

Classical Action SyStems v it e e e
Action Systems inthis Work oL oL L
5.2.1 An Action System Modelling the Car Alarm System
5.22 Plain Action Systems
5.23 Complex Action Systems
Relating Predicates and Weakest Pre-Conditions
Extensions and Related Formalisms
5.4.1 Object-Oriented Action Systems it
5.4.2 Action Systems for Hybrid System Modelling
543 Action-Oberon L e
544 Event-B e
545 UNITY . . .
5.4.6 Temporal Logic of Actions (TLA)
547 Circuso e e e

6 Refinement Checking of Action Systems

6.1
6.2
6.3

6.4

6.5
6.6

Model-Based Mutation Testing using Refinement
Non-Refinement of Action Systems oL
Refinement Checking of Action Systems
6.3.1 Finding a Mutated Action
6.3.2 Reachingan Unsafe State
Pitfalls o e
6.4.1 Conformance Relation
6.4.2 Semantics L.
6.4.3 Constraint Logic Programming
[lustration with the Car Alarm System
Experimental Results L
6.6.1 Car Alarm System
6.6.2 ParticleCounter

29
29
29
32
33
34
37

41
41
43
43
45
48
51
54
54
55
56
56
56
57
57

7

9

Efficiency in Refinement Checking

7.1 Optimisation Techniques L
7.1.1 Variable and Value Selection Heuristics
7.1.2 Mutation Detection Strategies Lo
7.1.3 Pre-computation of Reachable States
7.1.4 Incremental Solving
7.1.5 Analysis of Optimisations
7.2 Experiments with the Car Alarm System
7.2.1 Variable and Value Selection Heuristics
7.2.2 Mutation Detection Strategies
7.2.3 Pre-computation of Reachable States
7.2.4 Incremental Solving L
7.3 Experiments with the Particle Counter

7.3.1 Variable and Value Selection Heuristics and Mutation Detection Strategies

7.3.2 Pre-computation of Reachable States and Incremental Solving

Test Case Construction

8.1 Test Case Construction Approach,
8.2 Experimental Results
82.1 CarAlarm System L e
8.2.2 ParticleCounter
8.2.3 Comparisonof Results L
Integration into the MoMuT::UML Tool Chain
9.1 MoMuT::UML e
9.1.1 Frontend e
9.1.2 Backend.
9.2 Required Extensions
9.2.1 ClassDataTypes i e
9.22 Methods
9.2.3 Prioritising Composition
9.2.4 Sequential Composition in the do-od Block
9.25 Internal Actions
9.2.6 Integration of the SMT SolverZ3
9.3 Complexity of Action Systems Generated by MoMuT::UML
9.4 Experimental Results e
9.4.1 CarAlarm System
9.4.2 Particle Counter e e e e
9.5 DISCUSSION v v vt e e e e e e e e e e e

X1

79
79
79
79
80
81
83
85
85
86
87
87
89
89
90

10 Combining Refinement and Input-Output Conformance

10.1
10.2

10.3

10.4

Checking for Input-Output Conformance

Combination of Refinement and Input-Output Conformance

10.2.1 Under-Approximation i

Experimental Resultso
10.3.1 CarAlarm System e e e
10.3.2 Particle Counter e

Discussion . . .

11 Final Optimisations and Experiments

11.1 Final Optimisations o . v v vttt it et e e
11.1.1 Kill Check with Existing Test Cases

11.1.2 Combination with Random TestCases

11.2 Experiments with the Car Alarm System,

11.2.1 TestCase Generation v v v v v v i i e e e e e e
11.2.2 TestCase Execution o i i it

11.3 Experiments with the Particle Counter
11.3.1 TestModel e
11.3.2 TestCase Generation v v v v v vt et et et e e e
11.3.3 TestCase Execution

11.4

Discussion . . .

12 Related Work

12.1 Model-Based Testing e
12.1.1 Model-Based Testing Tools
12.2 Fault-Based Test Case Generation
12.2.1 Model-Based Mutation Testing
12.2.2 White-Box Approaches

13 Conclusion

13.1 Summary and Conclusions L e

13.2

Future Work . .

Bibliography

Appendix

A
B

Full Action System Model of the Car Alarm System

Extended Tables

Xii

117
118
119
120
123
124
131
139

143
143
143
145
145
145
148
150
150
151
156
159

161
161
162
164
165
166

167
167
169

171

List of Figures

1.1
1.2
1.3
1.4

2.1

3.1
32
33
3.4
3.5

4.1
4.2
43
4.4
4.5
4.6
4.7

5.1
5.2
53

6.1
6.2
6.3
6.4

7.1
7.2

8.1
8.2
8.3
8.4

9.1
9.2
9.3
94

Overview of model-based mutation testing 2
Architecture of the MoMuT::UML toolchain 3
The testing interface of the CAS o o 5
UML state machine of the CAS oo oo 5
The relation between faults, errors, and failures 12
Examples for LTSs with inputs and outputs 23
Three LTSs that were created from the LTSs in Figure 3.1 by adding quiescence (§) . . 24
Three LTSs representing the suspension automata of the LTSs in Figure 3.2 24
Examples for Input Output Transition Systems (IOTSs) 25
Example implementation 26
The model-based testing processo 30
Abstraction and concretion in model-based testing 32
A taxonomy of model-based testing Lo oo 34
The mutation testing ProCesS v v v v v v v v i e e e e e e e e 35
The model-based mutation testing process« . v v v et e e 38
UML state machine of amutated CAS, 39
Test case distinguishing the mutated CAS model from the original model 40
Syntax for plain action Systems e e e 46
Predicative semantics of actions o oo 47
Syntax for complex action Systemso e e e 48
Process for test case generation via arefinementcheck 62
Predicative semantics for Listing 6.2 L o . 73
Quantifier-free predicative semantics for Listing 6.2 73
Overview of the lengths of the traces leading to the unsafe states forthe CAS 76
Reduction of the computation time for the CAScasestudy 88
Reduction of the computation time for the particle counterusecase 91
LTS of the CAS action system shown in Figure 5.1 95
Construction of atest case forthe CAS 96
Overview of the lengths of the test casesforthe CAS 98
Overview of the lengths of the test cases for the particlecounter 99
Semantic difference between Ulysses and ouriococheck 105
Diagram stating how many mutants showed non-refinement for the CAS_AS model . . 109

Diagram stating how many mutants showed non-refinement for the CAS_UML model . 110

Diagram stating how many mutants showed non-refinement for the PC_AS model . . . 112

Xiii

9.5 Diagram stating how many mutants showed non-refinement for the PC_UML model .

9.6 Comparison of the average, median, and maximum computation times per mutant

10.1 Two LTSs that cannot be distinguished by their visible traces
10.2 Our refinement check results in a too short test case for the given LTSs
10.3 Our combined refinement/ioco check allows for partial models
10.4 Code snippets of an original action system and two possible mutants

10.5 The LTSs representing the action systems shown in Figure 104

10.6 Two LTSs demonstrating differences due to the input-enabledness assumption of ioco

10.7 Our refinement/ioco check does not generate a test due to missing backtracking
10.8 CAS_AS: test case generation with our combined refinement/ioco check
10.9 Overview of the ioco depths for CAS_AS
10.10 CAS_AS: test case generation with ioco checking
10.11 CAS_UML.: test case generation with our combined refinement/ioco check
10.12 Overview of the ioco depths for CAS.UML
10.13 CAS_UML.: test case generation with ioco checking
10.14 PC_AS: test case generation with our combined refinement/ioco check
10.15 Overview of the ioco depths for PC_AS
10.16 PC_AS: test case generation with ioco checking
10.17 PC_UML.: test case generation with a combined refinement/ioco check
10.18 Overview of the ioco depths for PC.UML
10.19 PC_UML.: test case generation with ioco checking
10.20 Mutants that are conforming with refinement/ioco, but not conforming with ioco
10.21 Percentage of non-refining model mutants that did not propagate to an ioco difference .
10.22 Comparison of the average computation times per mutant for the CAS

10.23 Comparison of the average computation times per mutant for the particle counter

11.1 Overview of the lengths of the test cases in test suite M forthe CAS
11.2 Overview of the lengths of the test cases in test suite C forthe CAS
11.3 Mutation scores forthe CAScasestudy
11.4 One orthogonal region of the state machine modelling the particle counter
11.5 Overview of the lengths of the test cases in test suite M for the particle counter
11.6 Overview of the lengths of the test cases in test suite C for the particle counter

11.7 A sample test case for the particlecounter

11.8 Breakup of computation time and final model fault coverage for the particle counter

X1V

. 113
. 114

117
118
120
122
122

. 122

123
124
125
127
129
129
131
132
132
134
136
136
138
139
140
140
141

147
147
149
150
153
153
154

. 155
11.9 Evaluation results for the three test suites generated for the particle counter

List of Tables

6.1
6.2

7.1
7.2
7.3
7.4
7.5

8.1
8.2
8.3

9.1
9.2
9.3
9.4
9.5

10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8

11.1
11.2
11.3
11.4

B.1
B.2
B.3
B4
B.5

Computation times required by our refinement checker for the four CAS versions

Metrics describing the test models of the particle counter and the CAS

Execution times using different variable/value selection strategies for the CAS
Execution times for the CAS case study using syntactic analysis
Execution times for the CAS case study for our last two optimisations
Execution times for the particle counter based on Algorithm 7.1

Execution times for the particle counter for our last two optimisations

Computation times of our test case generator for the four CAS versions
Computation times of our test case generator for the particle counter

Comparison of our most optimised refinement checker with Ulysses

Metrics for the CAS and particle counter modelled either as action system or in UML . .
Test case generation via refinement checking up to depth 20 for the CAS_AS model . . .
Test case generation via refinement checking up to depth 20 for the CAS_UML model . .
Test case generation via refinement checking up to depth 30 for the PC_AS model
Test case generation via refinement checking up to depth 15 for the PC_UML model . . .

Test case generation via the combined refinement/ioco check for the CAS_AS model
Test case generation via ioco checking up to depth 20 for the CAS_AS model
Test case generation via the combined refinement/ioco check for the CAS_UML model
Test case generation via ioco checking up to depth 20 for the CAS_UML model
Test case generation via the combined refinement/ioco check for the PC_AS model
Test case generation via ioco checking up to depth 20 for the PC_AS model
Test case generation via the combined refinement/ioco check for the PC_UML model . .

Test case generation via ioco checking up to depth 10 for the PC_.UML model

CAS_UML.: Test case generation via the combined conformance check with kill check
Metrics describing the intermediate and the final UML models of the particle counter . .
Details for the mutation, random, and the combined test suites for the particle counter . .

Test case execution results for the faulty SUTs of the particle counter

Extended versionof Table 6.1
Extended versionof Table 7.1
Extended versionof Table 7.2
Extended versionof Table 7.4
Extended versionof Table 7.5

XV

107
108
110
111
113

. 126

128

. 130

130

. 133

135
137
139

XVi

List of Algorithms

6.1
6.2
7.1
7.2
7.3
7.4
10.1
11.1

findMutatedAction(ASC, ASM 5,7 a, P) : (AM, CS_nonrefine) 64
reachNonRefine(AS©, CS_nonrefine, v, v, a, P, maz, init) : (unsafe, trace) 66
chkRef (as, mutants) : unsafes 80
chkRefl (as, mutants) : unsafes o 80
chkReflIncremental(as, mutants) : unsafes 33
chkRefIncremental(as, mutants) : unsafes 84
combinedReflocoTcq(as, init, mutants, mazRef, mazxloco) 121
tegWithKillCheck(as, init, mutants, maxRef , mazloco, te_dir) 143

List of Listings

5.1
6.1
6.2
7.1
11.1

Code snippet from an action system model describing the Car Alarm System (CAS) . . . 44
Code snippet of an action system modelling a variant of the CAS 72
Normalisation of the action AlarmOn’ defined in Listing 6.1 73
Prolog’s backtracking facility is used for incremental solving 82
The C# test case corresponding to the abstract test case of Figure 11.7 157

XVii

XVviil

Abbreviations

AGSL
API
CAS
CLP
cipfd
CSP
EFSM
FDR
FSM
IDE
ioco
I0TS
LTS
MBT
OCL
OOAS
RAISE
SMT
SSA
STS
SUT
TLA
UML
UTP
VDM

Activity and Guard Specification Language
Application Programming Interface

Car Alarm System

Constraint Logic Programming

Constraint Logic Programming over Finite Domains
Communicating Sequential Processes
Extended Finite State Machine
Failures-Divergence Refinement

Finite State Machine

Integrated Development Environment
Input-Output Conformance

Input Output Transition System

Labelled Transition System

Model-Based Testing

Object Constraint Language
Object-Oriented Action System

Rigorous Approach to Industrial Software Engineering
Satisfiability Modulo Theories

Static Single Assignment

Symbolic Transition System

System Under Test

Temporal Logic of Actions

Unified Modelling Language

Unifying Theories of Programming

Vienna Development Method

XiX

XX

1 Introduction

1.1 Motivation

Quality assurance is an important task in every engineering discipline — also in software development.
Today, software is omnipresent in our everyday life. Computers and embedded systems are used naturally
in telephones, entertainment electronics, cars, railway signalling systems, air traffic control systems, etc.
Depending on the application domain, a malfunctioning can be inconvenient or even life-threatening for
the users. For the manufacturers, incorrect system behaviours potentially entail enormous costs.

For example, the Ariane 5 rocket got uncontrollable and had to be exploded just 40 seconds after
initiation of the flight sequence in 1996. The software system calibrated for the Ariane 4 rocket had
been reused without proper testing. This fault caused costs in the amount of $ 370 million [83]. Another
tragic example for serious consequences of a software failure comes from the medical domain. Until
2005, a therapy planning software at the National Cancer Institute of Panama City caused at least 18
deaths. Although incorrect data sequences have been input to the software, it did not alert the user and
calculated improper dosages of radiation for cancer patients [47]. These are just two examples out of a
long list of exemplary software failures. Many rankings of the worst software bugs can be found on the
internet [97, 145] — pointing out the need for high quality standards in software engineering.

Quality assurance in software engineering is a challenging and labour-intensive task. In practice, it is
mostly conducted via software testing. Already in the 1970s, it was known that about 50% of the elapsed
time and more than 50% of the total costs of a software project are spent on testing. Decades later, this
still holds true [162]. Furthermore, the later a software failure is detected, the higher the costs for fixing
it [108]. Testing is not only expensive, the costs for testing are also often underestimated and poorly
planned [55]. Hence, tools and techniques to assist testers are demanded by industry. Software testing
consists of three main tasks: test design, test execution, and test evaluation. In general, each task can be
supported or even fully automated by testing tools [23]. In this work, we develop a formal approach to
software testing and evaluate its applicability in an industrial setting. We follow a model-based approach
that we combine with mutation testing to automatically generate a high-quality test suite.

1.2 Model-Based Mutation Testing

Model-based testing has become a well-known technique to automate test case generation [194, 195, 80,
113, 56]. Instead of designing many individual test cases, the test engineer creates a formal model of
the System Under Test (SUT). It describes the expected behaviour of the SUT and is used as input to
model-based testing tools that automatically derive test cases. A crucial matter in model-based testing
is the choice of the test criterion. It specifies which test cases shall be generated and hence, has a great
influence on the quality of the resulting test suite. Exhaustive testing, i.e., using all of the test cases
that can possibly be created from the test model, is impractical for real-world applications. Examples
for commonly used test criteria are coverage criteria (e.g., used in [201]), random traversals (e.g., [193,
158]), equivalence classes (e.g., [153]), or specified testing scenarios (so-called test purposes, e.g., [126,
198]). As illustrated in Figure 1.1, we follow a fault-centred approach, i.e., use mutations for test case
generation. The original test model is syntactically altered to produce mutated models that represent
a set of faults. We then automatically generate test cases that kill the model mutants, i.e., reveal their
non-conforming behaviour. This is accomplished by a conformance check between the original and the
mutated models. A particular feature of the generated test suites is their fault coverage. The generated
tests will detect whether one of the given faulty models has been implemented instead of the correct,

Chapter 1. Introduction 2

(-
)
=) > Mutation
Tool
Model Mutated
Models
Test Case

Generator

) J

Y

System Test
Under Test Driver |® Test Cases

Figure 1.1: Overview of model-based mutation testing.

original model. Hence, the generated test suite covers all of the failures caused by the model mutation
operators and has a high chance of covering many additional similar failures.

1.3 Problem Statement

The quality and performance of model-based mutation testing is influenced by two main factors. One
issue concerns the required conformance check. Usually, industrial-sized systems show complex be-
haviour comprising a large-scale or even infinite state space. This poses a challenge for the conformance
check, which has to compare the behaviour of the system with its mutants. We identified that the choice
of an appropriate conformance relation is essential. First of all, this choice depends on the kind of sys-
tems to be tested and it affects the quality of the generated test suite. Finally, it has a great influence on
the performance of the conformance check and hence on the overall test case generation. The importance
of an efficient conformance check is reinforced by the nature of mutation testing. It typically involves
a high number of mutations, i.e., the conformance check has to be performed numerous times for the
generation of one test suite.

This directly leads us to the second main influencing factor of model-based mutation testing: the
choice of the fault models, i.e., model mutations. On the one hand, they need to compose a representa-
tive set of faults in order to induce a high-quality test suite. On the other hand, they should not contain
redundancies that make model-based mutation testing inefficient. The set of modelled faults is influenced
by the modelling formalism and modelling style: depending on the modelling language and more specif-
ically on the elements actually used in the model, different mutation operators are applicable leading to
varying model mutations.

Each individual problem forms an own area of research. In this thesis, we focus on the conformance
check. The modelling formalism (action systems [28]) and mutation operators were predetermined.

1.4 Thesis Statement

The applicability of model-based mutation testing can be improved by optimising the performance of
the underlying conformance check. This can be established by choosing an appropriate conformance

Chapter 1. Introduction 3

MoMuT::UML backend

|
frontend g A
1 Enumerative TCG

[‘ (Ulysses)

UML200AS | | OOAS2AS Prolog
Java Java Constraint-Based

- TCG
UML model Prolog abstract test cases
Papyrus MDT/ $ Aldebaran aut format

Visual Paradigm

Java

Il

Constraint/
SMT Solver

Figure 1.2: Architecture of the MoMuT::UML tool chain.

relation, and by the application of symbolic techniques utilising modern constraint/SMT solvers for the
implementation of the conformance check.

1.5 Research Context

This work has been conducted within several research projects. Early work and some foundations were
established throughout the European project MOGENTES (Model-based Generation of Tests for De-
pendable Embedded Systems)'. Ten partners from academia and from industry, which were located in
six European countries, participated in the project. MOGENTES aimed for significantly enhancing ver-
ification and testing of embedded systems by automated test case generation. One of the approaches
followed was model-based mutation testing.

MOGENTES initiated the Austrian follow-up project TRUFAL (TRUst via Failed FALsification of
Complex Dependable Systems Using Automated Test Case Generation through Model Mutation)?. TR-
UFAL is funded by FFG (Osterreichische Forschungsférderungsgesellschaft)®, and settled in the pro-
gramme FIT-IT (Forschung, Innovation und Technologie fiir Informationstechnologien). Four partners
contribute to the project: two research partners (AIT Austrian Institute of Technology and Graz Univer-
sity of Technology) and two industrial partners (AVL List GmbH and THALES Austria GmbH). The
main parts of this thesis have been conducted within TRUFAL.

The tools and concepts developed in the course of the TRUFAL project are to be used and integrated
in two further projects: MBAT (Combined Model-based Analysis and Testing of Embedded Systems)*
and CRYSTAL (CRitical sYSTem engineering AcceLeration)’. MBAT has also financially supported
this work.

1.5.1 The MoMuT::UML Tool Chain

Within the MOGENTES and TRUFAL projects, the MoMuT::UML tool chain for automated model-
based mutation testing from Unified Modelling Language (UML) models has been developed. Figure 1.2

"http://www.mogentes.eu (last visit 2014-04-18)

2http ://trufal.wordpress.com (last visit 2014-04-18)
*https://www.ffqg.at/ (last visit 2014-04-18)
‘https://www.mbat-artemis.eu (last visit 2014-04-18)
Shttp://www.crystal-artemis.eu (last visit 2014-04-18)

http://www.mogentes.eu
http://trufal.wordpress.com
https://www.ffg.at/
https://www.mbat-artemis.eu
http://www.crystal-artemis.eu

Chapter 1. Introduction 4

gives an overview of MoMuT::UML’s architecture, which consists of several components that form a
frontend and a backend.

The frontend deals with model transformations to bring the input model into a format suitable for
the backend, i.e., the actual test case generator. First, the UML model is transformed into a labelled and
Object-Oriented Action System (OOAS) [140]. This executable intermediate representation has a formal
semantics and is based on Object-Oriented Action System (OOAS) as introduced in [45]. This transfor-
mation is performed by the UML20O0AS component, which also implements the mutation operators for
UML state machines. Subsequently, the resulting OOAS representing the original UML model and the
set of OOAS models produced by applying the mutation operators are translated into non-object-oriented,
but still labelled action systems, which are an extension of Back’s action system formalism [28]. This
second transformation is implemented in the OOAS2AS component. Both transformations were devel-
oped in the MOGENTES project and revised for further usage in the TRUFAL project. Note that both of
these transformations are preliminaries for this work. The UML2OOAS component was developed by
AIT Austrian Institute of Technology Vienna. The OOAS2AS component was developed by Willibald
Krenn at Graz University of Technology. For details on the transformations in the frontend, we refer to
Krenn et al. [140].

The action system models generated by the frontend, serve as input for the test case generation
backend. In the MOGENTES project, an enumerative, mutation-based test case generator called Ulysses
has been developed. It is a conformance checker for action systems and performs an explicit forward
search of the state spaces. Thereby, the action systems generated by the frontend are explored. This
process yields the Labelled Transition System (LTS) of the UML model. The conformance relation
used is Input-Output Conformance (ioco) [191]. Ulysses has been developed by Harald Brandl at Graz
University of Technology. For further information on the underlying theory and techniques, we refer to
the following publications [10, 7, 9, 8, 50].

Ulysses was developed with a special focus on hybrid systems, i.e., systems consisting of discrete
and a continuous behaviour. The discrete part modelling the controller of such systems was assumed to
be rather simple. For complex discrete models, like the ones generated from UML state machines, exper-
iments have shown that the performance of the explicit conformance checker Ulysses is lacking [10]. Es-
pecially, the tool suffers from a high memory consumption. Therefore, an alternative backend exploiting
constraint/SMT solving has been developed in the course of this thesis. This component is highlighted
in yellow in Figure 1.2. By setting the action system language and its semantics, MoMuT::UML fixes
prerequisites for the test case generator developed in this work.

1.6 Use Cases

Throughout this thesis, we use two industrial use cases from the above described projects.

1.6.1 Car Alarm System

One use case in the MOGENTES project was from the automotive domain: a Car Alarm System (CAS).
The following requirements describe the system:

R1 Arming. The system is armed 20 seconds after the vehicle is locked and the bonnet, luggage
compartment, and all doors are closed.

R2 Alarm. The alarm sounds for 30 seconds if an unauthorised person opens the door, the luggage
compartment, or the bonnet. The hazard flasher lights will flash for five minutes.

R3 Deactivation. The anti-theft alarm system can be deactivated at any time, even when the alarm is
sounding, by unlocking the vehicle from outside.

Chapter 1. Introduction 5

+ opticalAlarm

«system_under_test» - «signal»
AlarmSystem + acousticAlarm Lock
+ alarmArmed —
«signal»
® Lock \V 1] . [1] . [Uik
é‘:] k «environment» «environment» «environment»
k% Unloc! AlarmArmed AcousticAlarm OpticalAlarm -
ﬁ Close «signal»
Open Close
& SetOn() # SetOn() & SetOn() «signal»
@& SetOff() & SetOff() & SetOff() Open
Figure 1.3: The testing interface of the CAS.
(AlarmSystem_StateMachine h
Unlock
o— OpenAndUnlocked
- o Lock (Alarm R
en ose
P e Activate Alarms /entry
Deactivate Alarms /exit
ClosedAndUnlocked ‘ OpenAndLocked
o> FlashAndSound
Unlock Lock Close Open
30 / Deactivate Sound
ClosedAndLocked
Flash
20
&)
[] Close SilentAndO
Armed llentAndOpen 300
Unlock
Show Armed /entry
kShow Unarmed /exit J Open
S J

Figure 1.4: UML state machine of the CAS.

In the following, we illustrate the behaviour of the CAS by means of a UML model, which was pro-
vided by our project partner AIT. It comprises four classes and four signals as can be seen in Figure 1.3.
The class AlarmSystem is tagged as System Under Test (SUT). It receives the specified signals Lock,
Unlock, Close, and Open. These signals are possible inputs to the SUT and are controllable by the tester.
Furthermore, the AlarmSystem may call methods of the three classes AlarmArmed, AcousticAlarm, and
OpticalAlarm representing the system’s environment. These methods represent outputs from the SUT.
They are observable by the tester.

Figure 1.4 illustrates the behaviour of the CAS by means of a UML state machine. Starting at state
OpenAndUnlocked one can traverse to ClosedAndLocked by closing all doors and locking the car. As
specified in requirement R1, the system is armed after 20 seconds in ClosedAndLocked. Upon entry of
the Armed state, the method AlarmArmed.SetOn is called. Upon leaving the state (either by unlocking
the car or by opening a door), AlarmArmed.SetOff is called. Similarly, when entering the Alarm state,
the optical and acoustic alarms are enabled. When leaving the Alarm state, either via a timeout or
via unlocking the car, both acoustic and optical alarms are turned off. Note that the order of these
two events is not specified, neither for enabling nor for disabling the alarms. Hence, the system is not
deterministic. When leaving the alarm state after a timeout (cf. requirement R2) the system returns to the
Armed state only if it receives a close signal. Turning off the acoustic alarm after 30 seconds, as specified

Chapter 1. Introduction 6

in requirement R2, is reflected in the time-triggered transition leading to the Flash sub-state of the Alarm
state. As the CAS is simple, but still not trivial, it is used for demonstration throughout this thesis.

1.6.2 Particle Counter

A second use case from the automotive domain was provided for the TRUFAL project by the industrial
partner AVL. It is a particle counter device®, which measures the particle number concentration in the
exhaust gases of combustion engines. More precisely, the control logic of this device shall be tested.

The user can choose between continuously measuring the current concentration and accumulating
the total particle counts. During the measurement, the ratio by which the exhaust gas is mixed with
particle-free dilution air can be adjusted by a factor between 1 and 7. Additionally, there is a command
to measure pure, particle-free air to check whether the sensors are correctly calibrated. Other commands
are provided for necessary maintenance tasks like a leakage test, a response check, or for purging the
sampling line.

In total, the particle counter distinguishes between eight different operating states that can be trig-
gered by the used testing interface. They include two idle states (Pause and Standby) as well as states
like Measurement for Purging. Additionally, there are two different communication modes: Manual
for controlling the particle counter directly via the buttons at the device and Remote for controlling the
system remotely via a client, which shall be tested. Furthermore, the system may switch from a Ready
to a Busy status when processing a command.

The device receives commands from the user interface and shows its current state and each change
between different internal modes. Commands from the user may be rejected due to several reasons: (a)
the command may not be available in the current operating state, (b) the system may be in the wrong
communication mode, or (c) the system may be busy. In each case, the system returns an appropriate
error message.

Initially, the system is idle (in operating state Pause), Ready to accept commands, and expects Man-
ual communication. In order to receive commands via the testing interface, it has to be set into the
Remote communication state.

For example, a possible scenario would be to start the measurement, adjust the dilution ratio, switch
the measurement method to accumulating the total particle counts, and turn the measurement off again.
Including the operations for switching the system into the right modes and observing all the output events
from the system, a test case performing this scenario consists of 17 steps, i.e., input and output events.

1.7 Contributions and Publications

1.7.1 Contributions

The main contributions of this thesis can be summarised as follows.

* We designed and implemented an efficient conformance checker for action system models. The
used conformance relation is refinement, which allows for non-determinism. For efficiency rea-
sons, our refinement check is based on constraint/SMT solving techniques.

* To encode action systems into constraints that can be processed by constraint/SMT solvers, we
defined a formal predicative semantics for action systems. We proved that this semantics is equiv-
alent to the standard semantics, which is defined via weakest pre-conditions.

*https://www.avl.com/particle—counter (last visit 2014-04-18)

https://www.avl.com/particle-counter

Chapter 1. Introduction 7

» We furthermore enhanced the efficiency of our refinement checker by several optimisation tech-
niques. The evaluation on two industrial use cases showed that the computation time of the refine-
ment check could be reduced by several orders of magnitude.

* We extended our refinement checker to an actual test case generator, where the counterexamples
from the conformance check serve as basis for the test cases.

* We integrated our refinement-based test case generator into an existing tool chain, which allows
for model-based mutation testing using UML models. Therefore, we had to enhance our test case
generator by more complex modelling language constructs.

* Additionally to our refinement checker, we added an Input-Output Conformance (ioco) checker
to our tool set. The motivation was to strengthen the generated test suites as refinement does not
perfectly fit the needs of model-based testing. However, ioco checking is more expensive than
refinement checking. In order to cope with complex, industrial-sized models, we approximate an
ioco check by combining our refinement check with a subsequent ioco check.

* To avoid redundancies in the generated test suites, we introduce a check whether existing test cases
already kill a mutated model. Furthermore, we combine our mutation-based test case generation
approach with random test cases.

* All of our intermediate implementations as well as the final tool were applied on two industrial use
cases. The test suites generated by the final tool were evaluated by assessing their fault detection
capabilities on a set of faulty implementations.

1.7.2 List of Publications

Partly, the work presented in this thesis has already been published in international workshops, confer-
ences, and journals. All of these publications have been formally peer reviewed.

Main Publications

The following publications directly form the basis of this thesis:

MBT 2010 [14] This is the first paper dealing with the work conducted within this thesis. It presents
our basic approach for refinement checking of action systems. The paper was mainly written by myself
with contributions from Bernhard Aichernig on the action systems and the refinement relation. He also
proofread and revised the paper. I presented this work at the 7" Workshop on Model-Based Testing in
Tallinn, Estonia at March 251 2012.

CSTVA 2012 [15] This paper deals with problems I experienced during the implementation of our
refinement checking approach for action systems. Bernhard Aichernig contributed text on action systems
and refinement. Again, he revised the paper. I presented this work at the 4™ Workshop on Constraints in
Software Testing, Verification, and Analysis in Montreal, Canada at April 21% 2012.

QSIC 2012 [13] This publication contains three optimisation techniques for our previously presented
refinement checker for action systems. Again, I did the implementation and experimentation as well
as the main paper writing. Bernhard Aichernig was concerned with the introduction and conclusion. I
presented this work at the 12" International Conference on Quality Software, which was very competitive
with the low acceptance rate of only 17.6%. The conference was held in Xi’an, China in August 2012.

Chapter 1. Introduction 8

TAP 2013 [16] This publication is based on joint work with Bernhard Aichernig and Matthias Kegele.
It introduces two further improvements on efficiency in our refinement check. Moreover, the paper
relates our refinement checker implemented in Prolog with a re-implementation in Scala, which was
written by Matthias Kegele. The experiments with the Prolog implementation were conducted by me.
Matthias Kegele provided results for his Scala implementation. The paper was mainly written by me
with contributions from Bernhard Aichernig. I presented our work at the 7 International Conference on
Tests and Proofs in Budapest, Hungary at June 18" 2013.

SCP journal article [17] We were invited to extend our QSIC 2012 conference paper [13] for a spe-
cial issue of the Science of Computer Programming (SCP) journal. This article gives a comprehensive
overview of our refinement checking approach and all implemented optimisations. We conducted a sec-
ond, industrial case study used for the evaluation of our optimisations. Furthermore, we presented how
we construct test cases from the counterexamples witnessing non-refinement. This article is mainly based
on my own work. However, Stefan Tiran developed the action system model for the additional case study
and helped with the experiments. Furthermore, Bernhard Aichernig revised the paper.

Additionally to the above publications, a research abstract [132] has been prepared at the beginning of
this thesis. However, it was not formally published. I presented it at the Doctoral Symposium of FM
2011 in Limerick, Ireland on June 20 2011.

Other Related Publications

Our following publications are also related to the topic of this thesis:

ICST 2010 [133] This paper is a very condensed version of my master’s thesis [131], which dealt with
model-based testing via symbolic execution of input-output transition systems. I presented the paper
at the 3™ International Conference on Software Testing, Verification and Validation in Paris, France at
April 61" 2010.

FMCO 2009 [7] This paper dealt with Harald Brandl’s work on the enumerative ioco checker and test
case generator Ulysses. I implemented and described parts of the test case extraction approaches and
helped with the experiments.

UML & FM 2010 [9] This paper also dealt with Harald Brandl’s work on the Ulysses tool. I con-
tributed to the experiments, related research, and the presentation of the test case generation tool.

ICST 2011 [8] This work described test case generation with the Ulysses tool. My contributions
comprise parts of the implementation of the test case generation approaches and assistance with the
experiments. I presented the paper at the 4" International Conference on Software Testing, Verification
and Validation in Berlin, Germany at March 21% 2011.

SAFECOMP 2011 [176] The main authors are Rupert Schlick and Wolfgang Herzner from AIT Vi-
enna. | contributed text on related work and the description of the test case generation methodology.

Chapter 1. Introduction 9

STVR 2014 [10] This article in the journal of Software Testing, Verification and Reliability resulted
from an invitation to extend our publication from ICST 2011 [8]. I was involved in the design of the
newly added experiments, which were then mainly performed by Stefan Tiran and to a smaller extent by
me. I also contributed to the evaluation and description of the experimental results as well as to more
detailed descriptions of the test case selection strategies including examples.

1.8 Structure of this Thesis

The rest of this thesis is structured as follows. Chapter 2 gives an overview of software testing and puts
the work conducted in this thesis into context. Chapter 3 discusses conformance relations. It focuses on
refinement and Input-Output Conformance (ioco), which are applied in this work. Chapter 4 presents
model-based mutation testing. The modelling formalism used in this work are action systems, which are
introduced in Chapter 5.

Chapter 6 presents our refinement checking approach for action systems and Chapter 7 reports on
optimisations. Chapter 8 shows how test cases are constructed from the counterexamples of our refine-
ment check and Chapter 9 reports on the extensions required to integrate our test case generation tool
into the MoMuT::UML tool chain.

Chapter 10 extends our refinement check by an ioco check and compares our combined approach to
pure ioco checking. Chapter 11 presents two optimisations of the generated test suites and reports on our
final experimental results including test case execution and evaluation.

Chapter 12 gives a brief overview of related work and Chapter 13 summarises and concludes the
thesis. Finally, it gives an outlook on future work.

Chapter 1. Introduction

10

2 Software Testing Background

In the following, we introduce the main terminology used in software testing required for this work.

2.1 Verification and Validation

Quality assurance in software engineering is divided into verification and validation [23]:

Definition 2.1 (Verification)

Verification checks whether the product is built in the right way, i.e., if its functions are implemented
correctly according to a given specification.

Definition 2.2 (Validation)

Validation addresses the evaluation of the software according to the needs of the users. It asks, whether
the right product has been built.

It can happen that a product is successfully verified, but that validation fails. Often, this can be led back
to misunderstandings between the developers and the users during the collection of the requirements,
which serve as basis for the specifications used in verification.

In this thesis, the focus lies on verification. There exist two major categories of software verification:
static and dynamic verification techniques:

Definition 2.3 (Static Verification)

Static verification comprises verification techniques that do not require the actual execution of the pro-
gram.

Examples for static verification techniques are model checking [71], static code analysis [163, 48, 66],
or correctness proofs, e.g., in the style of Hoare logic [117].

Definition 2.4 (Dynamic Verification)
Dynamic verification comprises verification techniques that require program execution.

2.2 Software Testing

Dynamic verification basically refers to software testing, which is the topic of this thesis. In order to give
a definition of testing, the following three terms need to be defined:

Definition 2.5 (Fault)
A software fault is a “static defect in the software” [23].

Definition 2.6 (Error)
A software error is “an incorrect internal state that is the manifestation of some fault” [23].

Definition 2.7 (Failure)
A software failure is an “external, incorrect behaviour with respect to the requirements or other descrip-
tion of the expected behaviour” [23].

The relation between these three terms is depicted in Figure 2.1. A fault is some wrong expression
in the source code. In most cases, it is caused by human mistakes, e.g., by a misunderstanding of the
requirements. This fault is not necessarily a problem. If it is never reached, i.e., executed, it will not
become an issue. In case it is executed, it must cause the program to enter an incorrect state in order to
produce an error. This is also referred to as infection. A failure only occurs, if the wrong program state
propagates to an incorrect, observable output. Hence, only failures can be observed during testing.

11

Chapter 2. Software Testing Background 12

reachability . .
fault /LP & infection 4% error /L> propagation —7/fallure

Figure 2.1: The relation between faults, errors, and failures.

Definition 2.8 (Software Testing)
Software testing is the process of executing a program with the intent of revealing failures.

This definition is based on Glenford Myers [162] and points out the nature of testing. The objective
of testing is not showing correctness, but revealing as many failures as possible. This directly reflects
Dijkstra’s opinion on testing: “Program testing can be a very effective way to show the presence of bugs,
but it is hopelessly inadequate for showing their absence” [81]. Exhaustive testing, i.e., checking all
possible inputs and the expected outputs of a program, is not possible in general. Hence, revealing all
failures of a program is infeasible. Testing can only increase the confidence into a system. It cannot
prove correctness.

It turned out that formal, static verification techniques and testing are complementary tasks [100].
Proofs always rely on assumptions, e.g., assumptions about the execution environment. Testing is the
only way to verify a running system and to check the underlying assumptions. For example, the binary
search algorithm of the Java JDK 1.5 library has been proven correct, but still contained a very subtle bug
that was detected nine years later [43]. In this case, integer overflows have not been considered. Hence,
the wrong assumption was that integers are unbounded, which holds in mathematical theory. However,
hardly any programming language provides unbounded integer data types.

Furthermore, in most cases, full formal verification of a piece of software is not feasible. Possible
reasons are the increasing complexity of software systems, the lack of highly-educated staff, or monetary
restrictions. In such cases, testing is a viable alternative to full verification if it is systematic and auto-
mated. In 1995, Gaudel argued that “festing can be formal, too”. She presented a formal framework for
testing that also included hypotheses on the system for the systematic selection of test cases [99].

However, not only full verification, but also testing is a challenging and labour-intensive task: about
50% of the elapsed time and more than 50% of the total costs of a software project are spent on test-
ing [162]. Thus, as many software testing activities as possible should be automated. Software testing
consists of three main tasks: test design, test execution, and test evaluation. In general, each task can be
supported or even fully automated by testing tools [23]. In this work, we focus on the automation of the
test design, i.e., the creation of a meaningful set of test cases. Generally, each test case consists of inputs
and outputs, which are defined in the testing interface:

Definition 2.9 (Testing Interface)

The testing interface specifies the interaction between the SUT and its environment. It states how to send
inputs to the SUT and declares all outputs that can be emitted by the SUT. In the context of testing, inputs
are referred to as controllable events as inputs are controlled by the tester. Outputs are also denoted as
observations (or observable events) as they are observable by the tester.

Depending on the type of the SUT, the shape of the test cases varies. The literature often distinguishes
between transformational and reactive systems.

Definition 2.10 (Transformational System)

Transformational systems take an input, process it by performing computations, and return the resulting
output [110].

Definition 2.11 (Reactive System)

Reactive systems are repeatedly prompted by the environment and respond continuously to external
inputs. Hence, they are maintaining an ongoing interaction with their environment instead of calculating
some final result [110].

Chapter 2. Software Testing Background 13

Examples for reactive systems are operating systems, communication networks, or avionics systems. In
most cases, reactive systems involve concurrency and non-determinism.

Definition 2.12 (Non-Deterministic System)
A non-deterministic system may produce different outputs for the same inputs.

Now, the shape of test cases can be defined for the different kinds of systems:

Definition 2.13 (Test Case)
* For transformational systems, a test case is an input/output pair.

 Test cases for reactive systems are sequences of controllable events (inputs) and expected obser-
vations (outputs).

* Test cases for non-deterministic, reactive systems are not only linear sequences of controllable and
observable events, but may include branching over several possible observations.

Test cases are categorised into positive and negative test cases:

Definition 2.14 (Positive Test Case)
A positive test case tct only contains expected behaviour as specified in the test model M, i.e., tc™ C
M. An SUT must not show any observation that is not specified in tc™.

Definition 2.15 (Negative Test Case)
A negative test case tc~ explicitly states what is not expected. Hence, it is not included in the test model
M,ie., tc- € M. An SUT must not show any observations specified as undesired in tc™.

As the majority of other testing approaches, we focus on positive test cases. In the rest of this work, we
always mean positive test case, although we may simply write test case. Independently of this distinc-
tion, (un)expected outputs are always an essential part of a test case. However, it is not always easy to
determine the expected outputs of a system. This is also referred to as the oracle problem.

Definition 2.16 (Test Oracle)
An oracle provides the correct, expected system outputs.

In manual test design, the test engineer is the oracle and decides what is expected from the SUT. Further
examples for test oracles are mathematical formulas or formal models that specify the expected outputs.

The outcome of the test design phase is a test suite:

Definition 2.17 (Test Suite)
A test suite denotes a set of test cases.

During test execution, the previously designed test cases are executed on the SUT:

Definition 2.18 (Test Run)
The execution of a test case on an SUT is referred to as test run, where the tester provides inputs specified
in the test cases to the SUT and observes outputs from the SUT.

Finally, during test evaluation, it is decided whether a failure has occurred. The outcome of a test run is
denoted as verdict:

Definition 2.19 (Verdict)
A verdict can be fail, pass, or sometimes also inconclusive. It is determined using the observations from
test execution.

* Fail: Observations that do not correlate to the expected outputs specified in the test cases lead to a
fail verdict and the SUT fails for the given test case. An SUT fails for a test suite if it fails for one
of the test cases.

Chapter 2. Software Testing Background 14

 Pass: If all observations emitted by the SUT comply with the expected outputs of the test case, the
SUT passes the test case. An SUT passes a test suite if it passes all test cases.

* Inconclusive: Inconclusive verdicts state that the test goal, i.e., the functionality that should have
been tested by the test case, could not be reached. This may happen due to non-determinism in the
SUT. According to Definition 2.12, a non-deterministic SUT possibly delivers different outputs
for the same input. If only one of the allowed outputs leads to the test goal, but the SUT chooses
another one, the SUT behaves correctly, but the test goal cannot be reached any more.

Note that this definition of verdicts refers to positive test cases as defined in Definition 2.14.

The subsequent phase of fault localisation (finding the cause of a failure detected by testing), and
repair (fixing the fault), are not part of software testing. They belong to software debugging. This work
focuses on software testing. In particular, on the automation of test case generation for reactive systems.
As reactive systems are often non-deterministic, we provide support for non-determinism. Of course, we
can also deal with deterministic systems.

2.3 Software Testing Approaches

Many approaches to software testing exist. They can be classified by many characteristics. In the follow-
ing, we present the ones most commonly used in the literature to set our approach into context. A very
rough, but common classification is the distinction between white-box and black-box testing [162].

Definition 2.20 (Black-Box Testing)
Black-box testing techniques only know the interface of the SUT. Test cases can only be derived accord-
ing to requirements documents, formal specifications, etc.

Definition 2.21 (White-Box Testing)
White-box testing techniques assume access to the internals of the SUT, i.e., the source code.

Later on, also gray-box testing approaches emerged, mixing concepts of black- and white-box test-
ing [135]. Another way to classify software testing approaches is to distinguish between functional
and non-functional testing [194].

Definition 2.22 (Functional Testing)
Functional testing checks whether the SUT correctly implements the functional requirements, e.g., a
given protocol specification.

Definition 2.23 (Non-Functional Testing)
Non-functional testing aims at requirements such as robustness, timing, performance, or usability.

According to the stages in software development, it is furthermore distinguished between unit, module/-
component, integration, system, and acceptance testing [194, 23].

Definition 2.24 (Levels of Software Testing)
* Unit testing is applied at the most detailed level. It tests small units of the system, e.g., individual
functions or methods.

* Module or component testing is settled one level higher. It tests components of a system, e.g., a
class or a group of logically connected classes.

* Integration testing focuses on the interoperability and consistency between groups of components.

» System testing is applied to the overall software product to be delivered.

Chapter 2. Software Testing Background 15

* Acceptance tests are mostly conducted together with the end users to determine whether the soft-
ware product fulfils the user requirements.

Note that all testing levels except for acceptance testing deal with verification. Acceptance testing aims
for validation. Regarding test execution, we can distinguish between offline and online testing.

Definition 2.25 (Offline Testing)
In offline testing, test design and execution are separate tasks. A set of executable test cases is generated.
Afterwards, this test suite is executed on the SUT.

An advantage of this methodology is that test cases can be reused. They are generated once and can be
executed several times. This is beneficial for testing several implementations of the same system like in
regression testing. Furthermore, test cases for offline testing can be generated before the system under
test is implemented.

Definition 2.26 (Online Testing)

In online testing, test generation and execution are conducted on the fly, i.e., inputs are generated and
directly delivered to the SUT. The outputs from the SUT are observed and compared with the expected
outputs. Then, test input generation is continued.

Online testing is mainly applied to non-deterministic systems. It has the advantage that the tester does
not need to be prepared for all possible outputs. It can continue test case generation for the actually
produced output of the SUT.

The testing approach followed in this thesis can be classified as follows: we conduct black-box testing
to verify the functional requirements on the system level. We automatically generate a test suite that is
executed offline.

Chapter 2. Software Testing Background

16

3 Conformance

Parts of this chapter are based on our STVR article [10].

In the context of verification (cf. Definition 2.1), testing is sometimes also referred to as confor-
mance testing. In conformance testing, a SUT is tested to find possible violations of its specification.
In 1991, the International Organization for Standardization (ISO)’ published the ISO/IEC 9646 stan-
dard: Information technology - Open Systems Interconnection - Conformance testing methodology and
Sframework [91]. In 1992, Tretmans [190] formalised the main concepts introduced in this standard.

The central question in conformance testing is:
When is a SUT (in)correct with respect to its specification?

The answer to this question is given by conformance relations. In order to formally relate a formal
specification s € JF, with an implementation ¢+ € Z, it is assumed that each implementation ¢ can be
represented by a formal object iy € F;, such that the formalisms F; and F, are compatible. This is
a common test hypothesis in the literature [38, 190]. Note that the concrete formal description of the
implementation does not need to be known. The hypothesis only assumes its existence. In many cases,
the formalisms for describing the expected behaviour and the implementation’s behaviour are assumed to
be the same, i.e., F; = F5. For example, the specification of a communication protocol can be expressed
by a Labelled Transition System (LTS), which can also be used to describe the behaviour of protocol
implementations. However, it is not necessary that both formalisms are the same, they just need to be
compatible. Consequently, conformance relations can be defined as follows.

Definition 3.1 (Conformance Relation)

A conformance relation specifies in which cases an implementation is correct with respect to its specifica-
tion. Formally, a conformance relation conf is a relation over formal descriptions of the implementation
behaviour F; and formal specifications Fg: conf C F; X F.

In the literature, many conformance relations have been defined specifying different notions of cor-
rectness. Some conformance relations are stricter than others, i.e., they require stronger conditions to be
fulfilled for conformance. One of the strictest conformance relations based on external observations is
observational equivalence: given the same inputs, the same observable behaviour has to be emitted by
both systems.

To mathematically define an equivalence relation, the following properties of relations are needed [75]:
Definition 3.2 (Reflexivity)
A binary relation R on a set P is reflexive iff Va € P:a R a.

Definition 3.3 (Symmetry)
A binary relation R on a set P is symmetric iff Va,b € P: a Rb= bR a.

Note that we use = to denote logical implication.

Definition 3.4 (Transitivity)
A binary relation R on a set P is transitive iff Va,b,c€ P: a RbAVbRc=aR c.

Definition 3.5 (Equivalence Relation)
An equivalence relation is a binary relation that is reflexive, symmetric, and transitive.

"Thttp://www.iso.org (last visit 2014-04-18)

17

http://www.iso.org

Chapter 3. Conformance 18

As already pointed out, equivalence is a very strict conformance relation. However, specifications
should specify what shall be implemented and not how it shall be done. Hence, they should grant
some implementation freedom. In other words, good specifications are more abstract than their concrete
implementations. This requires conformance relations that are preorder or partial order relations [75]:

Definition 3.6 (Preorder Relation)
A preorder relation is a binary relation that is reflexive and transitive.

Hence, symmetry is given up in preorder relations. This enables a specification .S to be more abstract
than its implementation /. The implementation must fulfil the specification. However, the specification
does not need to conform to the implementation. Hence, a preorder does not need to hold in both
directions.

Partial order relations additionally require antisymmetry leading to a stricter ordering [75]:

Definition 3.7 (Antisymmetry)
A binary relation R on a set P is antisymmetric iff Va,b € P: a RbAbRa = a=hb.

Definition 3.8 (Partial Order Relation)
A partial order relation is a preorder relation that is antisymmetric.

In the following, we discuss the two conformance relations that are relevant for this work: refinement
and Input-Output Conformance (ioco). For a comprehensive overview of various kinds of conformance
relations for different specification formalisms, we refer to Hierons et al. [113].

3.1 Refinement

Refinement relations are preorders or partial orders [64]. They were originally used in program re-
finement, which deals with the step-wise development of programs. The basic idea is to have initial
programs that are successively replaced by improved, refined versions. Every refinement step is for-
mally verified. This principle is used in the Vienna Development Method (VDM) [134], the Rigorous
Approach to Industrial Software Engineering (RAISE) [107], or the B-method [1]. Instead of verifying
possible refinements, refinement calculi are used to formally derive refined programs by following given
refinement laws [34, 160]. For a comparison of these two concepts, we refer to the article of Litteck and
Wallis [154].

Refinement can be divided into operational refinement and data refinement [73]:

Definition 3.9 (Operational Refinement)
Operational refinement deals with the refinement of behaviour, i.e., more abstract algorithms are replaced
by more concrete ones with reduced non-determinism.

Definition 3.10 (Data Refinement)
Data refinement addresses different representations of the program’s state, i.e., coarse data representa-
tions are refined by more detailed data structures.

Data refinement requires a mapping between abstract and concrete data. For details on data refinement,
we refer to deRoever and Engelhardt [77]. Operational refinement and data refinement can be used in
combination — like in Event-B [2] for example. In this work, we concentrate on operational refinement.
Diverse definitions of operational refinement relations exist as there are various modelling formalisms
and different semantic models at hand. The semantics of a programming or modelling language describes
the meaning of the syntactical constructs available in that language.

Chapter 3. Conformance 19

There exist three main semantic models: operational, denotational, and algebraic semantics [119].
An operational semantics uses abstract mathematical machines, e.g., automata, to describe the opera-
tional behaviour of a language, i.e., the individual steps in its execution. For example, the operational
semantics of Boolean expressions defines their evaluation order, e.g., from left to right. A denotational
semantics maps each syntactical construct to some value in a mathematical domain. It describes only
the effect of a computation, not how this computation is executed. For example, truth tables for Boolean
expressions represent their interpretation function. It maps the operators and operands to their semantic
truth values. Finally, algebraic semantics define the algebraic properties of a language by equational ax-
ioms. For example, Boolean algebra defines the algebraic semantics of Boolean expressions. According
to these styles of semantics, different refinement relations have been defined. In the following, we give a
brief overview of refinement relations. For more details, we refer to Cavalcanti et al. [64].

3.1.1 Axiomatic Refinement

Axiomatic refinement relates algebraic semantics. Informally, an implementation refines a specification
if it satisfies all axioms of the specification. For example, all implementations of a stack must fulfil the
axioms for a stack, e.g., pop(push(Stack, Elem)) = Stack or top(push(Stack, Elem)) = Elem.
This style of refinement is used in the RAISE method [107] for example.

The following refinement relations address denotational semantics.

3.1.2 Traces Refinement

The (denotational) semantics of reactive systems is often defined via traces. The traces of a system
represent all possible sequences of events, i.e., synchronisations between the system and its environment.
Refinement is defined as trace inclusion, i.e., all traces of the implementation I must be included in the
set of traces of the specification S, i.e., traces(I) C traces(S) [175]. Obviously, specifications must be
complete. Consider a vending machine that may produce coffee or tea after insertion of a coin. A correct
implementation I would show the traces 71 = (coin, coffee) and To = (coin, tea). An incomplete
specification S; may only consider the tea functionality, i.e., only trace 75. Traces refinement for the
full implementation against the incomplete specification does not hold since traces(I) = {11,T2} <
{T>} = traces(S1). However, S; conforms to I with respect to traces refinement, since traces(S;) =
{T>} C {T1,T>} = traces(I) holds.

3.1.3 Failures(-Divergences) Refinement

Additionally to the rather course traces semantics, failures and divergences have been introduced. Traces
specify what a system can do, not what it must do. Therefore, refusal sets have been introduced to
add information about which events a system may refuse to do. A failure relates a finite trace to its
refusal set. Failures refinement extends traces refinement by additionally requiring failures inclusion,
i.e., traces(I) C traces(S) A failures(I) C failures(S). Still, one behaviour cannot be specified yet:
divergences or livelocks. Divergences are those traces, after which an infinite sequence of consecutive
internal events can occur. Failures-divergences refinement is defined as failures(I) C failures(S) A
divergences(I) C divergences(S). The traces inclusion is implied by this definition, i.e., the inclusion
between traces do not need to be explicitly mentioned [175].

3.1.4 Weakest-Pre-condition Refinement

A common denotational semantics uses weakest pre-conditions, which were originally defined by Dijk-
stra [82]. In a weakest-pre-condition semantics, program statements are seen as predicate transformers,

Chapter 3. Conformance 20

which map a given post-condition to the weakest pre-condition that the statement must fulfil in order to
satisfy the post-condition. Refinement is defined via implication. An implementation I refines a speci-
fication .S if and only if for all post-conditions (), the weakest pre-condition of I is stronger than that of

S,ie.,VQ :wp(S, Q) = wp(l,Q) [63].

3.1.5 Relational Refinement

Another form of denotational semantics employs relations between pre- and post-states of statements.
Intuitively, refinement is defined such that an implementation must not reach states that are not specified.

The state relations can be expressed as pre-/post-condition pairs and refinement has two require-
ments: pre-condition weakening and post-condition strengthening. The pre-condition of an implementa-
tion has to be weaker than the pre-condition of the specification and the post-condition of the implemen-
tation has to be stronger than that of the specification [63, 119]. The pre-/post-condition approach allows
for incomplete specifications.

More generally, state relations can be represented by any kind of predicates and refinement is defined
as implication over these predicates [119]: the implementation must imply the specification. In the rest
of this work, the term refinement will refer to this kind of relational refinement:

Definition 3.11 (Refinement)

Letv = (z,vy,...) be the set of variables denoting observations before execution (the pre-state) and let
v = (2/,y/,...) be the set of variables denoting the observations afterwards (post-state). The fact that
an abstract specification S is refined by a concrete implementation [is denoted as S T I. Given a

predicative semantics for S and I, then
SCI =, Yo,v: I(v,v)) = S(v,7)

Example 3.1. Again, consider a simple vending machine, which delivers tea or coffee. We express
this via a variable bev representing the chosen beverage. It is assigned the value 1 for tea or the value

2 for coffee, i.e., bev := 1 O bev := 2, where the operator O denotes non-deterministic choice. In
terms of predicates, we have S1(7,7') = (bev’ = 1V bev’ = 2), where v = (bev) and v = (bev').
Analogously, we consider a system that always delivers tea, i.e., bev := 1 or in terms of predicates

So(v,v") = (bev' = 1) withv = (bev) and ¥’ = (bev’). S is refined by Ss, i.e., S; T S as we show
in the following:

S1 E 5 {Definition 3.11}
=vo,7 : (S2(1,7") = S1(7,7')) {v = (bev)} and {v' = (bev’)}
{S1(0,v") = (bev' =1V bev’ = 2)} and {S2(v,7’) = (bev' = 1)}
= Vbev, bev' : ((bev' =1) = (bev' =1V bev' = 2)) {first-order predicate calculus}
= Vbev, bev' : (—=(bev' = 1)V (bev' = 1V bev' = 2)) {first-order predicate calculus}
= Vbev, bev' : (true V bev' = 2)) {first-order predicate calculus}
= Vbeuv, bev’ : true {first-order predicate calculus}
= true

However, the other direction does not hold: Sy is not refined by S1, i.e., =(S2 T S7). The proof
works analogously to above. O

Chapter 3. Conformance 21

In the above example, the observations were pre- and post-states, i.e., variable valuations before and
after execution. However, also traces can be observations. In the following, we reconsider the vending
machine example with traces instead of states.

Example 3.2. As already shown in Section 3.1.2, the vending machine example can be characterised
by events (coin, coffee, and tea). Sequences of these events form traces of the system, which can be
used as observations. Then, the predicate for the full system is Sy (tr,tr') = (tr' = tr™ (tea) V tr' =
tr~(coffee)). Note that the observations before and after execution are traces. The trace afterwards (tr")
is a concatenation of the trace before (¢r) with the executed event. Analogously, So(tr,tr') = (tr' =
tr~ (tea)). Again, we can show that S; is refined by So, i.e., S1 T Sa:

S1 C 5 {Definition 3.11}
=vu,v : (S2(v,7) = S1(v,7v)) {v=(tr)} and {v' = (t2')}
=Vtr,tr' . (So(tr,tr’) = Sy(tr,tr'))
{S1(tr,tr') = (tr' = tr™ (tea) V tr' = tr~ (coffee))} and {Sa(tr,tr') = (tr' = tr™~ (tea))}
=Vtr,tr' : ((tr' = tr~ (tea)) = (tr' =tr~(tea) Vtr' = tr~ {coffee)))
{first-order predicate calculus}
=Vtr,tr' : (=(tr' = tr~ (tea)) V (tr' = tr~ (tea) V tr' = tr~(coffee)))
{first-order predicate calculus}

= Vtr,tr' : (true V tr' = tr~ (coffee)) {first-order predicate calculus}
= Vtr,tr' : true {first-order predicate calculus}
= true

Again, the other direction does not hold: S is not refined by S, i.e., =(Sy T 5). O

As will be seen in Chapter 6, our notion of refinement will be based on both kinds of observations,
i.e., on states and also on traces observed before and after execution.

Refinement relations do not distinguish between the inputs and outputs of a system. In the following
section, we present the Input-Output Conformance (ioco) relation, which treats inputs and outputs in a
different way.

3.2 Input-Output Conformance

The ioco relation was originally presented by Tretmans [191]. Informally, an implementation is input-
output conform to a specification if it does not show output that is not specified. For unspecified inputs,
the system may behave arbitrarily. The ioco relation is defined over LTSs with inputs and outputs, i.e.,
on an operational semantics. It can be used for all modelling formalisms with semantics that can be
described via LTSs with inputs and outputs. For example, the process description language LOTOS [44]
has a formal LTS semantics. Furthermore, the semantics of Symbolic Transition Systems (STSs) is
defined in terms of LTSs. The following descriptions are mainly based on papers by Tretmans [191, 192].

Definition 3.12 (Labelled Transition System (LTS) with Inputs and Outputs)
An LTS M is tuple M = (S, (LU {r}), T, so) where

¢ S is a finite set of states,

Chapter 3. Conformance 22

» = L;U Lo is afinite alphabet, i.e., a set of labels, partitioned into an input alphabet L and an
output alphabet Lo with Ly N Lo = 0,

e 7 ¢ L denotes an unobservable, internal action,

T C S x (LU{r}) x S is the transition relation, and

e 59 € S is the initial state.

We refer to the class of LTSs with inputs and outputs as LT'S(Ly, Lo) in the following. Furthermore,
we use the following common notations.

Definition 3.13 (LTS Notation)
Given an LTS M = (S, (L U {7}),T,s) and let s,5",s1...,8, € S, and let S’ C S, and let
a,ai,...,an € L,and let o € L*, then

s5 =y (s,a,8)eT 3.1

s 3 =y 35 :(s,a,8') €T 3.2)

87(2 =y 75 :(s,a,8) €T (3.3)

s= g =4 s:s'\/ﬂsl,...,sn:s:sll>521>---l>sn,1l>sn:s' 3.4)

s =g =4 351,52:8 =5 B sy =8 3.5
s> = Elsl,...,an:s:slgszg~-%sn+1zsl

with o= (ay,...,a,) or oc=¢€e= () (3.6)

s > =4 I s> 4 (3.7

safterc =4 {§]s>5} (3.3)

M after o =4 s after o 3.9

traces(s) =4 {0]s>} (3.10)

traces(M) =, traces(so) (3.11)

Informally, these notations can be described as follows. Equation 3.1 introduces s — s’ as an
alternative notation for the transition (s, a, s’). Then, s — states that there starts a transition labeled by
a from state s leading to some successor state (Equation 3.2). Equation 3.3 states the contrary, i.e., that
there does not exist such a transition. s = s’ means that either both states are the same (s = s') or that
there exists a set of intermediate states such that s’ is reachable from s via a sequence of internal (7)
transitions only (Equation 3.4). s = s’ means that it is possible to reach state s’ from state s by action
a, while internal transitions may be needed before or afterwards (Equation 3.5). Equation 3.6 states that
state s’ is reachable from state s by a trace o. If o is a non-empty sequence of transitions labeled with
(a1, ...,ay), internal actions may be required before, after, or between the transitions. If o is the empty
trace, then either s and s’ coincide or there are only 7 transitions between the states. Equation 3.7 defines
that there exists a state s’ that is reachable from s by trace o. The relation after (Equation 3.8) determines
the set of states reachable after trace o starting from state s. For an LTS M, this set is defined beginning
at the initial state sg (Equation 3.9). The set of traces of a state s is defined as all possible sequences
of events starting at this state without internal events (Equation 3.10). The set of traces of an LTS M is
defined by all traces starting from its initial state (Equation 3.11).

Definition 3.14 (Finite LTS)
AnLTS M = (S,(LU{7}), T, so) has finite behaviour if all of its traces have finite length, i.e., if there
exists a natural number n such that all traces in traces(M) have a length smaller than n.

Chapter 3. Conformance 23

cir comn ctr coin

obs coffee
e

obs coffe obs tea

—E—o
o
=
3
o
S
S
()
=
g

OF
S
N

obs coffe

E—CE—Er—r
(=)

Figure 3.1: Examples for LTSs with inputs and outputs. Input actions are identified by prefix ctr,
output actions are prefixed by obs.

Definition 3.15 (Deterministic LTS)
AnLTS M = (S, (LU {7}),T, so) is deterministic if Vo € L* : |sg after o| < 1 holds.

Example 3.3. Figure 3.1 shows three LTSs with inputs and outputs: P, (), and R. They describe vari-
ations of vending machines that deliver coffee and tea after insertion of one or several coins. The LTSs
are represented as graphs. Nodes represent the states and labelled edges represent the transitions. The
initial state is marked by an incoming arrow. For example, () represents the LTS (S, (L; U Lo), T, so)
with the following components:

e S= {QO7Q1,(]2,Q3}
* Ly ={coin} and Lo = {coffee, tea}
e T'= {(QOv CO?;?L Q1)7 (QIa Coﬁee7q2)7 (qh teav q3)}

®* S0 =4qo

.. . . . j ¢
The transition relation 7" can alternatively be written as {qo . coffee G2, q1 —% g3 }. It holds
coin, coffee coin,tea

that qp % but qg Lea Furthermore, qq % Qo , and gqg =—==>. Hence, the traces of LTS
Q are traces(Q) = {(), (coin), (coin, coffee), (coin, tea)}. The set of states that can be reached from
state go following trace (coin, tea) is a singleton: qo after (coin, tea) = {q3}. O

A state s from which the system cannot proceed without additional inputs from the environment is
called quiescent, denoted as d(s). In such a state, all output and internal events are disabled.

Definition 3.16 (Quiescent State)
Given an LTS M = (S,(L; U Lo U {7}),T,s0). A state s € S is quiescent, denoted as J(s), iff

Vae (LoU{r}):s &

For observing quiescence, the transition relation 7' is extended by adding self-loops with the special
label 0 at quiescent states: Ts =, T U {(s,9,s) | s € S Ad(s)}. Let M5 be the LTS over the alphabet
L U {r,d} resulting from adding § self-loops to an LTS M.

Example 3.4. Figure 3.2 shows the three LTSs Pjs, ()5, and Rs that result from the LTSs P, @, and
R depicted in Figure 3.1 by adding quiescence. The transitions representing quiescence are self-loops
labelled by ¢ and have been added in each quiescent state. They are highlighted in blue. O

Chapter 3. Conformance

ctr coin

obs coffe

oot

Figure 3.2: These three LTSs were created from the LTSs in Figure 3.1 by adding quiescence ().

Tp,

(&—
(=%}

ctr coin

obs coffe

?%

Figure 3.3: These three LTSs represent the suspension automata of the LTSs Ps, Q5, and Rs in
Figure 3.2. Note that P; = I'p; and Qs = I'g;.

Qs
i
O=Y;
ctr coin

obs coﬂeAhs tea

O=LENO=Y

e

§
(@
ctr coin

obs coffee obs tea

O=Y; O=Y;

ctr coin ctr coin

() 5

obs coffee ctr coin

O=LIN®

obs tea

()0 6

I'gr;

obs tea

() s

24

The deterministic automaton obtained via subset construction [120] from Mj is called suspension
automaton ' [191]. Its behaviour is defined via the set of suspension traces of Mj:.

Definition 3.17 (Suspension Traces)
Given an LTS Ms = (S, (L U{,0}),Ts, so), then its suspension traces are defined as:

Straces(Ms) =4 {o € (LU {8})° | 502}

Example 3.5. Figure 3.3 shows the suspension automata I'p;, I'g,, and I'g; of the LTSs Ps, @5, and
R in Figure 3.2. Note that P5 = I'p; and Q5 = 'y, as those LTSs were already deterministic. I'g; is
obtained by determinising Rs via subset construction.

|

The set of outputs that are enabled in a state, or in a set of states respectively, is defined as follows:

Definition 3.18 (Outputs of States)
Givenan LTS M = (S, (L; U Lo U{7}),T,s¢) and s € S and S’ C S, then

out(s) =4 {a € Lo | s 3} U{d]6(s)}

out(S") =, U out(s)

ses’

Chapter 3. Conformance 25

P; Q5 Rj

Q=% O=Y; Q=X

ctr coin ctr coin

ctr coin ctr coin
ctr coin 4
ctr coin @ ctr coin @
obs coffee ctr coin
obs coffee obs tea
obs coffee

@ 1) @ 9 ctr coin C@:} 1) @ ctr coin
ctr coin 1) ' '
0

. , bs tea
ctr coin ctr coin
ctr coin C@Q 4

Figure 3.4: Examples for Input Output Transition Systems (IOTSs).

Example 3.6. Consider again the LTS Qs of Figure 3.2. For example, out(qp) = {d} and out(q1) =
{coffee, tea}. O

For the ioco relation, SUTs are considered to be weakly input-enabled, i.e., all inputs (possibly
preceded by 7-transitions) are enabled in all states. This class of LTSs is referred to as IOT'S(L;, Lo):

Definition 3.19 (Input Output Transition System (I0TS))
An input output transition system is an LTS M = (S, (L;ULoU{7}), T, so) with the following property:
Vae Lp,¥se€S:s=

Hence, IOTSs are a subclass of LTSs, i.e., IOT'S(L;,Lo) € LTS(Lt, Lo).

Example 3.7. Figure 3.4 shows three IOTSs. The used input alphabet has only one element: coin. It
is enabled in each state. The IOTSs Pg, Qfs, and Rf; have been created from the LTSs in Figure 3.2 by
adding self-loop transitions labelled by inputs that are not enabled in a state. This way of making an LTS
input-enabled is called angelic completion. The basic idea behind it is that unknown inputs are always
accepted, but ignored. The transitions added during angelic completion are highlighted in blue. O

The ioco relation states that for all suspension traces of the specification, the outputs of the imple-
mentation after such a trace must be included in the set of outputs produced by the specification after the
same trace. Formally, we have the following definition.

Definition 3.20 (Input Output Conformance (ioco))
Given an implementation model I € IOT'S(L;, Lo) and a specification S € LT'S(L;, Lo), then the
relation ioco is defined as:

I ioco S =, Vo € Straces(S) : out(I after o) C out(S after o)

Example 3.8. Consider the IOTSs in Figure 3.4 as implementations. The suspension automata in Fig-
ure 3.3 serve as specifications. We hgve that Pg toco I'p, Qfs ioco I'gy, and Rg toco I'g;. We have
also that P ioco T'q,. However, ~(Q5 ioco I'p;) due to the unspecified output tea after the coin input.
Furthermore, —(Rj ioco I'p,) as the specification does not include quiescence after the coin input. How-
ever, considering an implementation I as depicted in Figure 3.5, then I ioco I'p; holds, as tea is only
delivered after the input button, which is not a trace of the specification. In this case, underspecification
in I'p; allows for arbitrary behaviour in I after unspecified inputs. O

Additionally to refinement (Definition 3.11), we also use ioco in this work. The ioco formalisation of
Tretmans [191] is based on an operational semantics. In contrast, Weiglhofer and Aichernig [199] used

Chapter 3. Conformance 26

ctr coin/button

ctr coin/button a

obs coffee

ctr coin/button @

0 0

obs tea

@- ctr coin/button

Figure 3.5: Example implementation.

the denotational predicative semantics of UTP [119] to define ioco. In this way, refinement and ioco are
both defined using the same theory and can be related directly. Weiglhofer and Aichernig proved that
refinement implies ioco, i.e., if an implementation refines a specification, it is also ioco-conform to the
specification. Note that the other direction does not necessarily hold.

One of the main advantages of ioco is that it allows for incomplete (partial) specifications since it is
only defined over traces of the specification. For unspecified inputs, the system may behave arbitrarily.
This concept is similar to pre-/post-conditions, where post-conditions do not have to be fulfilled if the
according pre-condition is violated. Partial modelling is important in practice. Often, the full behaviour
of complex systems cannot be specified in one monolithic model. Instead several partial models, each
focusing on different aspects of the system, can be created.

Many variations of ioco exist. For timed systems, different notions of input output conformance
have been presented: the relativised timed input output conformance (rtioco) is used by the UPPAAL
tools [112, 147]. Furthermore, tioco [141] and Cyoeo [594] have been defined. In contrast to rtioco
and tioco, the latter considers quiescence. For a more detailed relation of the three timed conformance
relations, we refer to Krichen and Tripakis [142]. As the assumption of input-enabledness of imple-
mentations is too strong for many SUTs, Lestiennes and Gaudel developed the rioco relation, which is
focused on testing systems that are not input-enabled [151, 150]. For hybrid systems, hioco has been
presented [196]. A symbolic variant of ioco, named sioco, has been defined over symbolic transition
systems (STSs) [93].

Furthermore, Hierons et al. [116] identified problems with the ioco relation in testing of distributed
systems. If the SUT has physically distributed interfaces, so-called ports, then a tester is placed at each
port. Moreover, it is assumed that the individual testers cannot communicate with each other and that
there is no global clock available. In such a setting, ioco may lead to incorrect verdicts. Hierons et
al. defined three ioco variants. The first one is p-dioco and corresponds to the setting described above.
The second relation is called dioco. It is designed for situations, when there is a central agent that can
gather all of the information from the individual agents. Finally, c-dioco has been developed for use
with controllable test cases only. Recently, the dioco relation has been adapted for timed, distributed
systems resulting in the dtioco relation [98]. Another conformance relation (named mioco) for systems
with multiple ports has been presented by Brinksma et al. [S3]. However, it assumes only one central
tester that controls and observes all of the ports.

3.2.1 Assumptions of ioco

The ioco relation relies on several assumptions, which were formalised by Weiglhofer and Aichernig
[199]. Some of them have already been mentioned above. In the following, we summarise all assump-
tions underlying ioco.

Chapter 3. Conformance 27

No Divergence (Livelocks): The ioco relation does not consider livelocks, i.e., divergence, which
denotes infinite sequences of internal actions. In the ioco theory, implementations, specifications, and
hence also the test cases, which are derived from the specifications, must not contain livelocks. Note
that there exist conformance relations that can handle livelocks, e.g., the failures divergences refinement
relation already described in Section 3.1.3.

Observability of Quiescence: In order to check for ioco, the absence of outputs or internal actions of
the implementation, i.e., quiescence, has to be observable in specifications as well as in implementations.

The following assumptions concern only the implementation of the SUT.

Distinction between Internal and External Choices: Implementations that can be checked for ioco
conformance have to adhere to the following rules for choices over inputs and outputs:

» For implementations, choices over its outputs are internal choices, i.e., it is up to the SUT to decide
which output it wants to send.

* In contrast, choices over inputs to the SUT are external choices from the implementation’s point
of view. The environment may choose which input will be sent to the SUT.

* Furthermore, an implementation may be in a state where inputs and outputs are enabled at the
same time. In this case, it is up to the environment to decide if it either sends an input to the SUT
or if it accepts outputs from the SUT. In other words, choices over inputs and outputs are external
choices. As a consequence, the environment may prevent the SUT to provide an output.

For the latter two items, i.e., choices over sets of actions that contain inputs, the following property of an
implementation is essential.

Input-Enabledness: The ioco relation only works for implementations that always accept every input
out of their alphabet. Such implementations are denoted as input-enabled.

Fairness: The fairness assumption affects non-deterministic implementations. It requires that an im-
plementation eventually shows all of its possible non-deterministic behaviours provided that it is re-
executed often enough. Without this fairness assumption, an incorrect, non-deterministic implementation
could always provide only the correct, but never the incorrect non-deterministic behaviour in response to
a test case. Hence, the erroneous implementation would have to be classified correct.

3.2.2 Other Conformance Relations for Labelled Transition Systems

The ioco relation defined above (Definition 3.20) can be varied in the set of traces that has to be consid-
ered. In this way, a generic ioco relation can be defined [192]:

Definition 3.21 (Generic Input Output Conformance)
Given an input alphabet L; and an output alphabet Lo then iocor C IOTS(Lr, Lo) x LTS(Lt, Lo)
is defined as:

Liocor S =4 Yo € F: out(I after o) C out(S after o)

For ioco, iocor is instantiated by F = Straces(S). Using different sets of event sequences for F,
various other conformance relations can be defined:

Definition 3.22 (Input Output Testing Relation)
The input output testing relation <;,; can be defined by instantiating iocor with F = L*.

Chapter 3. Conformance 28

Definition 3.23 (Input Output Refusal Relation)
The input output refusal relation <;,, can be defined by instantiating iocor with F = (L U {d})*.

Definition 3.24 (ioconf)
The conformance relation ioconf can be defined by instantiating iocor with F = traces(S5).

Note that the input output testing relation and ioconf do not consider quiescence. The input out-
put refusal relation already knows about quiescence, but is not restricted to sequences of events of the
specification. Hence, it cannot support partial specifications like ioco. For a detailed comparison of the
defined conformance relations and their strengths and weaknesses, we refer to Tretmans [191, 192].

All of the above defined conformance relations for LTSs distinguish between inputs and outputs. In
the following, we briefly present the most relevant conformance relations without this distinction [191,
113]. Trace preorder is given if the traces of the implementation [are included in the traces of the spec-
ification S, i.e., traces(I) C traces(S). Note that trace preorder corresponds to traces refinement (cf.
Section 3.1.2). Sometimes, it is also called trace inclusion. Testing preorders differentiate conformance
between two systems not only by their normal traces, but also by their complete traces, i.e., deadlocks.
A further conformance relation is called conf. It weakens testing preorder by considering only specified
behaviour. Hence, conf checks whether the implementation does not show unspecified deadlocks or
traces, but does not check for extra behaviour of the implementation. Finally, refusal preorder considers
so-called failure traces, which are traces including both the accepted and the refused actions. Refusal
preorder resembles failures refinement (cf. Section 3.1.3).

3.3 Classifying Conformance Relations

Conformance relations can be divided into two categories: those checking global properties and others
relying on local properties [21]. Global properties denote sequences of observations, i.e., all kinds of
traces. Global conformance relations include the already mentioned traces refinement or trace preorder,
failures refinement, as well as ioco. Local properties are bound to specific states, e.g., observations
enabled in a specific state or the state information itself. Local conformance relations include all kinds
of simulation preorders, for example alternating simulation [21]. Alternating simulation is a relation
between the states of two systems and hence a local conformance relation. Informally, it requires that
the implementation can only make outputs that the specification allows, and the specification can only
make inputs that the implementation can also make. This has to hold for all related states. In this case,
the implementation is not considered to be input-enabled. Hence, the specification is restricted to give
only inputs that can be processed by the implementation.

Generally, checking for global conformance relations is computationally more expensive than check-
ing for local conformance. Considering global properties, all non-deterministic choices along a specified
trace have to be considered. For local conformance checks, it is sufficient to consider only the next
events enabled in a certain state. However, local conformance relations do not interpret non-determinism
as underspecification. They are very strict and check whether the local choices of the SUT correspond to
the local choices in the specification. In this way, implementations may be rejected due to wrong internal
choices. A possibility to counteract would be to determinise beforehand. Considering only deterministic
systems, some local conformance relations coincide with global conformance relations. For example,
for deterministic systems, ioco and alternating simulation are equivalent [197]. However, in black-box
testing determinisation of the SUT is no option since we do not have access to its source code.

4 Model-Based Mutation Testing

Parts of this chapter are based on the author’s master’s thesis [131], which already
dealt with model-based testing. Additionally, some parts have been published in
MBT 2012 [14], CSTVA 2012 [15], OQSIC 2012 [13], and TAP 2013 [16].

This chapter presents model-based testing as well as mutation testing and explains a combination
thereof called model-based mutation testing.

4.1 Model-Based Testing

There are various definitions of Model-Based Testing (MBT) (sometimes also called specification-based
testing) in the literature. All of them involve the use of a model for testing, whereas the modelled subject
and the aim of MBT can differ. In the following, a few perceptions of MBT will be presented. Of course,
this list cannot be exhaustive.

Frantzen et al. [93] describe MBT as a black-box testing technique. The goal of MBT is to test
whether a SUT conforms to a formal specification (model) of the SUT. The model can be used for
automatic test case generation and as an oracle (cf. Definition 2.16), i.e., test result evaluation can be
performed automatically, which requires a formal conformance relation (cf. Chapter 3).

Utting and Legeard [194] relate MBT very closely to automation. They focus on MBT in terms of
generating test cases with oracles based on behavioural models. MBT covers the generation of (a) input
values, (b) call sequences and (c) oracles for checking the test results, whereas the automating aspect is
emphasised. The authors define MBT as “the automation of the design of black-box tests”.

Similarly, Pretschner and Philipps [172] describe the main idea of model-based testing as the use of
models to express the intended behaviour of a system. These models are then used to derive test cases
including input and expected output, which can be run on the SUT. Unlike the two already introduced
approaches, the authors do not identify automation as a characteristic of MBT. The manual derivation of
test cases from a model also belongs to MBT.

Binder [40] claims that testing should always be model-based. Testing can be seen as searching for
bugs. Exhaustive testing is infeasible. Hence, testing has to be systematic, focused, and automated. MBT
has all of these three attributes.

Three further approaches, which are sometimes interpreted as MBT, are mentioned by Utting and
Legeard [194]:

* The generation of test input data from a domain model.

* The generation of test cases from a model of the environment of the SUT.

* The generation of test scripts from abstract tests.

This work does not correspond to these three approaches, but deals with MBT as defined above:

Definition 4.1 (Model-Based Testing)
Model-based testing (MBT) denotes the generation of test cases including oracles based on behavioural
models.

4.1.1 The Model-Based Testing Process

According to Utting and Legeard [194], the process used in MBT consists of the following five steps:

29

Chapter 4. Model-Based Mutation Testing

1) model creation

A

requirements S
q and validation

model

30

test case
specification

concrete
test cases

SUT

(black-box)

3) concretion

v

2) test case
generation

abstract

Y

4) test case - test
execution | results

test cases

e

5) analysis

Figure 4.1: The model-based testing process: Based on the requirements, a formal model is cre-
ated and validated. The model and a test case specification are used for the automatic
generation of abstract test cases. After concretion of the abstract test cases, the tests are
executed on the SUT and verdicts are assigned. Finally, the test results are analysed.

1. Model creation of the SUT and/or its environment.

A

Analysis of the test results.

Generation of abstract test cases from the model.

Execution of the concrete test cases on the SUT and assignment of verdicts.

Generation of concrete, executable test cases by concretion of the abstract test cases.

Figure 4.1 was influenced by Figure 2.4 of Utting and Legeard [194] and Figure 10.1 of Pretschner
and Philipps [172]. It depicts the MBT process as defined above and completes it by inserting model
validation, which should accompany the creation of the model. Additionally, a test case specification
was introduced, which serves as selection criterion [172].

Hence, the process of model-based testing is the following [194]:

1. Model Creation and Validation Based on the requirements, the system and/or its environment has
to be modelled. According to Stachowiak [185], a model has the following three properties:

* A model is a mapping from a concrete (“original”) into a more abstract (“model”) world.

* A model serves a specific purpose.

* A model is a simplification. It does not reflect all attributes of the concrete world.

Models created in this step are referred to as test models:

Chapter 4. Model-Based Mutation Testing 31

Definition 4.2 (Test Model)

A test model is a formal model that describes the expected behaviour of the SUT. It shows all of the
above defined properties of a model. It is much simpler and smaller than the SUT, it should be focused
on the aspects of the SUT that shall be tested, and details should be abstracted.

Since the test model will be used for verification of the SUT, it has to be validated. It is necessary to
check whether the test model correctly represents the user requirements.

2. Test Case Generation The created model is now used to automatically generate test cases, which
are sequences of operations of the model (cf. Definition 2.13). To define which tests shall be generated
from the model, a test case specification is necessary. Without such a specification, usually an unlimited
number of test cases could be generated. For automatic test case generation, different algorithms and
heuristics are used. The resulting test cases are abstract:

Definition 4.3 (Abstract Test Case)
Since the model is a simplification of the SUT, the resulting test cases are not detailed enough to be
directly executable. For example, parameters may be uninstantiated.

3. Concretion To make the abstract test cases executable, they have to be concretised. The goal of
this step is to close the gap between the abstract test cases and the concrete SUT. Figure 4.2 is based
on a figure by Pretschner and Philipps [172] and illustrates how concretion and abstraction are used to
connect the “model” world with the “original” world. The abstract input ¢, which is defined for the
“model” world, has to be transferred into the “original” world. In order to be a valid input for the SUT,
the abstract input ¢ has to be concretised via the concretion function . The resulting test cases are called
concrete test cases:

Definition 4.4 (Concrete Test Case)
Concrete test cases are on the same level of abstraction as the SUT and are directly executable on the
SUT.

4. Test Case Execution and Assignment of Verdicts By now, the concrete test cases can be executed.
Again, Figure 4.2 will be used for illustration. The SUT processes the concrete input -y(¢) and produces
some concrete output o’. When executing a test case, the actual output of an SUT has to be compared to
the expected output to assign verdicts for each test (cf. Definition 2.19). In MBT, the test model serves
as an oracle (cf. Definition 2.16), i.e., the expected output o can be derived from the model. This means
that the expected output is defined in the “model” world. Hence, the concrete output from the SUT has
to be abstracted via the abstraction function « in order to be compared to the abstract expected output o
to generate a verdict.

5. Analysis of the Test Results Finally, the results of the test executions have to be analysed. For each
test reporting a failure, the fault causing this failure has to be found. This fault is not necessarily located
in the SUT. It could lie within the implementation of the concretion function ~. It could also be in the
test case, which means that it would be in the model used for test case generation. Thus, the analysis of
the test results also helps validating the model [36, 194].

This work mainly focuses on the generation of test cases (Step 2). However, Chapter 11 also covers
the remaining steps including concretion, and execution of the abstract test cases as well as the analysis
of the results.

Chapter 4. Model-Based Mutation Testing 32

model
expected
abstract input i abstract output o
verdict
actual
abstract output (o)
concretion Abstraction ,,model*“ world (abstract)

Y
,,original “ world (concrete)

SUT
concrete input y(i) (black-box) actual concrete output o’

Figure 4.2: Abstraction and concretion are needed in model-based testing to connect the “model”
world with the “original” world.

4.1.2 Benefits and Limitations of Model-Based Testing

According to Utting and Legeard [194], MBT achieves good results. In several case studies, the model-
based testing approach found the same number of errors in the SUT or even more compared to manually
designed tests. The authors also state that the quality of model-based test cases is better than the quality
of manually designed tests. Manual testing requires an experienced tester, who is good at guessing
sources of error. In addition, the manual test design process is often not reproducible. Since MBT uses
algorithms and heuristics to automatically generate test cases, the test design is more systematic and
reproducible. Due to automation, it is possible to produce a great number of test cases, which can help
to find more bugs.

The requirements for the SUT are typically informal and formulated in a natural language. Hence,
they are possibly ambiguous, incomplete, or contradictory. When building a model from the require-
ments to describe the intended behaviour of the system, problems in the informal requirements can be
revealed. Since the model is formal, which means it has precise semantics, encountered problems in
the requirements have to be resolved. The clarification of requirements issues is crucial, because each
resolved requirements problem means less faults during design and implementation. The earlier an error
is found, the cheaper it is to fix. Frequently changing requirements necessitate the adaption of tests. The
update of test suites written manually is time-consuming. With MBT, this task is easier. Only the model
has to be updated and the tests can be generated anew [194].

According to Utting and Legeard [194], traceability, which is “the ability to relate each test case to
the model, to the test selection criteria, and even to the informal system requirements”, is improved by
MBT. For example, this can help to optimise test execution. In the case of changes to the model, only
tests affected by changes need to be executed again.

Since models are a simplified version of the SUT, they are easier to understand, validate, and main-
tain than the SUT itself [36]. Particularly, models make it easier to automatically generate test cases.
According to many scientists, e.g., Hierons et al. [113] or Tretmans [192], this is actually the main
benefit of explicit model building and model-based testing.

All of the above described advantages of MBT help to reduce testing costs and time. Nevertheless,
MBT has also drawbacks, which may outweigh the benefits and may prevent the cost and time balance

Chapter 4. Model-Based Mutation Testing 33

to be positive. MBT involves an extra effort compared to conventional software testing: model building,
validation, and maintenance. The analysis of the failed tests is also more complex, because there exist
several sources of error: the SUT, the model, and the implementation of the concretion function [172,
194].

Although good results have been achieved with MBT, it is not the silver bullet to find software bugs.
The abstraction and modelling skills of the tester as well as the selection of the test case specification
have a great impact on the success of MBT. This may cause additional training costs when MBT is
deployed the first time [194].

According to Utting and Legeard [194], the main field of application of MBT is functional testing.
However, MBT can also be applied to non-functional requirements. For example, the UPPAAL tools
COVER and TRON have been successfully used for MBT of real-time applications [112, 147].

The practicability of MBT also depends on the type of SUT. Not in every case, MBT is applica-
ble. Sometimes, the deployment of manual testing is easier and leads to better results. Experience is
required to decide whether MBT or conventional testing is more beneficial for testing a certain SUT. In
order to apply MBT to generate appropriate test cases, the requirements and models have to be updated
continuously. Otherwise, wrong properties of the SUT will be tested.

4.1.3 A Taxonomy of Model-Based Testing

Utting et al. [195] presented a taxonomy of model-based testing approaches that facilitates the com-
parison of different MBT tools and techniques. Figure 4.3 gives an overview of the taxonomy. The
dimensions have been chosen according to the MBT process. Model specification obviously refers to
the first step of model creation and validation. Here, the authors distinguish between the scope of the
model, the model characteristics, and the modelling paradigm to classify an MBT approach. The test
generation category addresses both test selection criteria (i.e., the choice of test specifications) and the
technology used for test case generation. Finally, test case execution states the last dimension.

In the following, we classify the MBT approach used in this work according to this taxonomy. In
Figure 4.3, we highlighted the characteristics of our approach using bold, blue font. Regarding the model
scope, we clearly want to cover inputs as well as expected outputs that serve as an oracle. Our modelling
formalism are action systems, which are described in detail in Chapter 5. In action systems, we support
a limited notion of time. Furthermore, we allow for non-deterministic models. This is important for two
reasons. First, non-determinism in models is required in order to support non-deterministic implemen-
tations. Second, good test models (Definition 4.2) are more abstract than the system under test. In this
case, non-determinism is used in models to express implementation freedom (cf. operational refinement,
Definition 3.9). Our models focus on discrete systems. Typical action systems are solely state-based.
However, we customise them to add an event-based view, i.e., we cover both paradigms: state-based
modelling (denoted pre-post or input domains in the taxonomy) and transition-based modelling. As al-
ready mentioned, we combine MBT and mutation testing for test case generation. Thus, our main test
selection criterion is fault-based. However, our tool also supports the derivation of random test cases
from the model. Hence, one used test generation technology is based on random generation. For fault-
based test generation, we combine model-checking and constraint solving techniques. The resulting test
cases are executed offline (cf. Definition 2.25).

For further literature on MBT, we refer to the surveys of Dias Neto et al. [80] and Hierons et al. [113].
Furthermore, Broy et al. [56] collected various articles on MBT. The book resulted from a research
seminar at Schloss Dagstuhl in January 2004.

Chapter 4. Model-Based Mutation Testing 34

scope ——— input-only/input-output

untimed/timed
mOd?'. . characteristics deterministic/non-deterministic
specification

discrete/hybrid/continuous

pre-post or input domains
transition-based
history-based

paradigm functional
operational
stochastic
data flow

structural model coverage
data coverage
MBT test selection requirements coverage
criteria test case specifications
random and stochastic

test fault-based

generation i
random generation
search-based algorithms
model-checking

technology . .
symbolic execution
theorem proving
constraint solving

test)) online
execution online/offline { offline

Figure 4.3: A taxonomy of model-based testing proposed by Utting et al. [195].

4.2 Mutation Testing

Mutation testing is a method to assess and increase the quality of a test suite. It was already introduced
in the 1970s [109, 78]. Recently, Jia and Harman conducted a detailed survey on mutation testing [130].
Figure 4.4 illustrates the workflow of mutation testing [130]:

1. Run Test Suite on Original Program An original program P is tested given an initial test suite
TS. If there are failing test cases, P has to be revised (Step 1a). This may need several iterations.

2. Mutation If the program P is correct according to the test suite 75, it is mutated. A set of mutation
operators is applied on P resulting in a set of mutants P’.

Definition 4.5 (Mutation Operator)
Mutation operators are patterns of typical programming faults. They specify how to syntactically alter
the source code of the original program P.

3. Run Test Suite on Mutants The test cases are then executed on the generated mutants. If a test case
fails on a mutant, it kills the mutant. If a mutant cannot be killed by a test case in the test suite 7'5, it is
a live mutant. If all mutants have been killed by the test suite, mutation testing is finished.

Chapter 4. Model-Based Mutation Testing 35

original 2)a .
pply mutation set of
PR - operators mutants P'
1a) correct P
" 1) run TS test suite 3)run TS on
?
Failing tests? onP |® TS ™ live mutants P' [*]

false

All mutants
killed?

4) analyse live
P', improve TS

end

Figure 4.4: Mutation testing is an iterative process: An original program P is tested to be correct
according to a given test suite 7'S. Afterwards, P is mutated resulting in a set of
mutants P’. The test suite 7°S is then run on these mutants. If all mutants have been
killed, mutation testing is finished. Otherwise, the live mutants are analysed, the test
suite 7'S' is improved if possible and the whole process is repeated.

4. Analyse Live Mutants and Improve Test Suite Otherwise, the remaining live mutants are anal-
ysed. Additional test cases that kill the remaining mutants are added to the test suite 7°S. The whole
mutation testing process is iterative and aims at continuously improving T'S. In the best case, all mutants
get killed eventually.

Unfortunately, mutation testing is not that straightforward as not all mutants are faulty:

Definition 4.6 (Equivalent Mutant)
An equivalent mutant P’ does not behave differently from the original program P. Consequently, it
cannot be killed by any test case.

For example, the application of mutation operators on unreachable code has no effect and results in
equivalent mutants. These mutants need to be identified by means other than testing. Traditionally,
this is done by manual inspection, because program equivalence is undecidable in general. Jia and
Harman [130] identified the equivalent mutants problem to be “a barrier that prevents Mutation Testing
from being more widely used”.

Mutation testing relies on two assumptions that have been empirically confirmed [130]:

Definition 4.7 (Competent Programmer Hypothesis)
The competent programmer hypothesis states that programmers are skilled and do not write completely
wrong implementations. It assumes that they only make small mistakes.

Definition 4.8 (Coupling Effect)
The coupling effect states that test cases that are able to detect simple failures (like the ones caused by
mutation operators) are also able to reveal more complex bugs.

Chapter 4. Model-Based Mutation Testing 36

Additionally to test suite improvement, mutation testing can also be used for test suite assessment.
The mutation score measures the effectiveness of a test suite in terms of its mutation detection ability. It
is defined as the ratio of killed mutants to the number of non-equivalent mutants [130]:

Definition 4.9 (Mutation Score (MS))

number of killed mutants

~ ‘total number of mutants — number of equivalent mutants

Hence, the best possible value for MS is 1. In this case, all non-equivalent mutants are killed by the test
suite. The worst value is 0, i.e., the test suite was not able to kill any mutant.

In addition to the equivalent mutants problem mentioned above, the potentially high runtimes for
executing the large number of mutants against the test suite is a problem in mutation testing. Hence, one
important field of research deals with reducing the number of mutants while preserving a high mutation
score. A simple approach to reduce the number of mutants is mutant sampling [4, 60]. The full set
of mutants is generated and a certain percentage of these mutants is subsequently selected for mutation
testing. The spare mutants remain unused. A similar idea is used in mutant clustering [124, 128]. Here,
the set of mutants is partitioned into clusters. Each cluster contains mutants that are killed by a similar set
of test cases. A small set of mutants is selected from each cluster to be used in mutation testing. Selective
mutation [157, 169] is also a technique to reduce the number of mutants to be processed. It avoids the
generation of the full set of mutants by reducing the number of mutation operators. It is based on the
observation that some mutation operators produce redundant mutations. Another direction of research to
reduce the number of mutants investigated higher-order mutants [129]. Typically, first-order mutants are
used in mutation testing.

Definition 4.10 (First-Order Mutant)
First-order mutants contain one syntactic change compared to the original program, i.e., one mutation
operator is applied at one location in the source code.

Definition 4.11 (Higher-Order Mutant)
Higher-order mutants contain several mutations, i.e., mutation operators are applied several times.

DeMillo and Offutt [79] identified two conditions that must be fulfilled to kill a mutant:

Definition 4.12 (Necessity Condition)

The necessity condition says that the state of the mutated program after some execution of the mutated
statement must be incorrect with respect to the original program. This implies that the mutated statement
must be reached. This is necessary, but not sufficient.

Definition 4.13 (Sufficiency Condition)

The sufficiency condition says that the final state of the mutant must differ from the final state of the
original program, i.e., the necessary incorrect intermediate state must propagate to an incorrect final
state.

Both conditions have to hold in mutation testing as introduced by Hamlet [109] and DeMillo et al. [78].
It is often referred to as strong mutation testing:

Definition 4.14 (Strong Mutation Testing)
Strong mutation testing requires the necessity condition and the sufficiency condition to be fulfilled.

Later on, Howden [121] suggested weak mutation testing:

Definition 4.15 (Weak Mutation Testing)
In weak mutation testing, the satisfaction of the necessity condition alone is sufficient to kill a mutant.

Chapter 4. Model-Based Mutation Testing 37

Note that this distinction between strong and weak mutation testing is related to the concepts of faults
(Definition 2.5), errors (Definition 2.6), and failures (Definition 2.7). In weak mutation testing, the
identification of an error is enough to kill a mutant. The necessity condition correlates to reachability
and infection (cf. Figure 2.1). In strong mutation testing, only identified failures cause a mutant to be
killed. Here, the additionally required sufficiency condition corresponds to the propagation from an error
to a failure. Note that weak mutation testing assumes access to the internals of the SUT. This is always
the case in mutation testing. Otherwise no mutants could have been generated.

The advantage of weak mutation testing is that it requires less computational efforts as the program
does not always have to be fully executed. On the other hand, it potentially results in less effective test
sets. However, experimentation has shown that weak mutation testing can result in test suites that are
almost as effective as test sets from strong mutation testing. Furthermore, it has been experienced that at
least 50% of the execution time can be saved [23]. For example, one of these studies was conducted by
Offutt and Lee [168]. They compared weak and strong mutation testing for unit testing. They came to the
conclusion that weak mutation testing is a cost-effective alternative to strong mutation testing. However,
for safety-critical applications they still recommend the use of strong mutation testing.

4.3 Model-Based Mutation Testing

In MBT, test cases are automatically derived from the test model. However, exhaustive testing, i.e., using
all of the test cases that can possibly be created from a model, is impractical. Test selection criteria are
required in order to select a proper subset of the possible test cases:

Definition 4.16 (Test (Selection) Criterion)
A test selection criterion, or shortly test criterion, provides information about what shall be tested. It is
sometimes also referred to as test case specification.

Test selection criteria form one dimension of Utting et al.’s taxonomy of MBT (cf. Figure 4.3). Examples
for test selection criteria are manifold. Often, some coverage criterion or random traversal on the test
model are used. They do not involve extra effort, but do not systematically cover functionality. Some
strategies use test purposes stating that for example a specific transition or a sequence of transitions shall
be traversed. A disadvantage thereof is that they have to be designed manually.

We follow a fault-centred approach, i.e., use mutations for test case generation. This combination
of MBT and mutation testing is called model-based mutation testing. Figure 4.5 depicts the process of
model-based mutation testing, which is for the most part the same as in MBT (cf. Figure 4.1). The parts
specific to model-based mutation testing are highlighted in yellow in Figure 4.5. The mutation concept
is employed on the test model instead of the source code. Like in conventional mutation testing, the
mutation can be fully automated via mutation operators that are defined for the model elements. Then,
given the original model and a set of mutated models, we automatically generate test cases that kill the
model mutants, i.e., reveal their non-conforming behaviour. This is accomplished by a conformance
check between the original and the mutated models. The generated abstract test cases (cf. Definition 4.3)
are then concretised and executed on the SUT and will detect whether one of the given faulty models has
been implemented instead of the correct, original model. Hence, the generated test suite covers all of
the failures caused by the model mutation operators and has a high chance of covering many additional
similar failures. The underlying hypotheses are the same as those of classical mutation testing, i.e., the
competent programmer hypothesis (cf. Definition 4.7) and the coupling effect (cf. Definition 4.8). Ad-
ditionally, model-based mutation testing assumes that the mutated models sufficiently represent realistic
faults in the SUT.

Example 4.1. Consider the CAS described in Section 1.6.1. Figure 4.6 depicts a possible mutation of
the model. It replaces the exit action of the Alarm state. Originally, on exit of this state the alarms are

Chapter 4. Model-Based Mutation Testing 38

mutation
operators

- 1a) model
mutation

1) model creation

requirements S
q and validation

mutated
models

model

v

2) test case generation
by conformance check

v

abstract
test cases

concrete
test cases

SUT

3) concretion [«

(black-box)

Y

4) test case test
execution results

—— 5) analysis

Figure 4.5: Model-based mutation testing: As in conventional MBT, test cases are derived from
a formal model (cf. Figure 4.1). As a test specification, model-based mutation testing
uses mutation operators to generate a set of mutated models. The test case generator
performs a conformance check between the original and the mutated models to gener-
ate test cases that kill the model mutants, i.e., reveal their non-conforming behaviour.

deactivated. In our mutated version, the system will become armed. The left-hand side of Figure 4.7
shows a test case that distinguishes this mutated model from the original model. Note that we do not
consider mutations of the testing interface (cf. Definition 2.9). However, this test case refers to a simpler
testing interface than that introduced in Figure 1.3. Instead of individual actions for turning the sound
and flash on/off, we consider one action ActivateAlarms, and one action DeactivateAlarms. Furthermore,
arming and disarming the system is represented by ShowArmed and ShowUnarmed respectively. In this
way, the actions directly correspond to the entry/exit actions in the state machine. In our test cases,
controllable events are marked by prefix ctr, while observable events have the prefix obs. Furthermore,
the first parameter of each event in our test cases denotes time. For controllable events, it states the
number of time units the tester has to wait before sending the input to the SUT. For observable events, it
denotes the number of time units after which the SUT might deliver an output.

The distinguishing test case in Figure 4.7 starts with closing and locking the doors. After 20 seconds,
the system becomes armed. Afterwards, a door is opened causing the system to become disarmed and to
activate the alarms (flash and sound) immediately. Then, the test case unlocks the car and the alarms are
deactivated instantly. The test case is completed by a pass verdict after this observation. The right-hand
side of Figure 4.7 shows the execution of this test case on the mutated model introduced in Figure 4.6.

Chapter 4. Model-Based Mutation Testing 39

(AlarmSystem_StateMachine h
‘ Unlock
OpenAndUnlocked | @<
- & Lock (Alarm R
en ose
P Jinlzels Activate Alarms /entry
Deactivate-Alarms-/exit
%{ ClosedAndUnlocked ‘ OpenAndLocked ‘ — Show Armed 1
@= FjashAndSound
Unlock Lock Close Open
30 / Deactivate Sound
ClosedAndLocked ‘
Flash
20
NS J
Close SilentAndO %l
<—— | SilentAn en
Armed p 300
Unlock
Show Armed /entry
Show Unarmed /exit Open
. /

Figure 4.6: UML state machine of a mutated CAS: the original exit action of the Alarm state is
DeactivateAlarms. 1t is replaced by the ShowArmed action.

Expected observable events are coloured in green. Unexpected observations are coloured in red indi-
cating a fail verdict. Closing and locking all doors correctly causes the SUT to become armed after 20
seconds. By opening a door, the SUT becomes disarmed and activates the alarms, which is still correct.
However, the next step of the test case is to unlock the car. This event triggers the incorrect behaviour of
the model mutant. Instead of deactivating the alarms, the SUT gets armed and the test case fails. With
our model-based mutation testing approach, we generate such test cases automatically. O

The used conformance relation is essential for model-based mutation testing in two ways. First of all,
it specifies whether a SUT is correct with respect to its specification — in our case the (original) formal
model of the SUT. This aspect is already known from conformance testing in general (cf. Chapter 3).
The additional importance of the conformance relation in model-based mutation testing concerns test
generation. The conformance relation defines if a syntactic change in a mutant represents a failure, i.e.,
if a mutated model conforms to the original model or not. Only if the mutated model does not conform
to the original model, a distinguishing test case can be generated.

This implies that equivalent mutants (Definition 4.6) are a special case in model-based mutation test-
ing — just like in conventional mutation testing. In our approach, equivalent model mutants are identified
automatically. This is non-trivial as it involves an equivalence (conformance) check between original
and mutated models. Since, equivalence is undecidable in general, we have to restrict ourselves to a
bounded conformance check. This applies in two ways: (1) The domains of all variables in our models
are bounded. (2) The behaviour of the original and the mutated models is compared up to a given bound.

Note that the aim of our work is not to test models, but to generate test cases that cover certain
faults. Thereby, we work in a field that has not got very much attention yet. Jia and Harman describe the
situation on mutation-based test case generation in their recent survey on mutation testing [130]: So far,
much more effort has been spent on the definition of mutation operators and classical mutation testing and
not so much work has been done on test case generation from mutations. Hence, “at present, practical
software test data generation for mutation test adequacy remains an unresolved problem”. Furthermore,
they identified a “pressing need” to address this problem. One particular issue is scalability, which is
one topic of this thesis.

Chapter 4. Model-Based Mutation Testing 40

distinguishing test case test run on mutated model

ctr Close(0) ctr Close(0)
ctr Lock(0) ctr Lock(0)
obs ShowArmed(20) obs ShowArmed(20)
ctr Open(0) ctr Open(0)

obs ShowUnarmed(0)

obs ActivateAlarms(0) obs ActivateAlarms(0)

ctr Unlock(0) ctr Unlock(0)

obs DeactivateAlarms(0) obs ShowArmed(0)

Crot+——@0+—0<+ @0+ @4+ @<+ @+ 0<+———@

%
l
J obs ShowUnarmed(0)
I
I
I

pass Jail

Figure 4.7: The test case on the left-hand side distinguishes the mutated CAS model (Figure 4.6)
from the original model (Figure 1.4). The execution of this test case on the mutated
model is shown at the right-hand side.

To conclude, model-based mutation testing is fault-centred. It rather aims at falsifying non-conform-
ance than at verifying conformance. To cite Dijkstra [81]: “Program testing can be a very effective way
to show the presence of bugs, but it is hopelessly inadequate for showing their absence.” Of course, it is
true that testing cannot show the absence of all bugs. However, we can at least say which bugs are not
present in a piece of software. Hence, model-based mutation testing can show the absence of specific
bugs [6].

5 Action Systems

Parts of this chapter have been published in MBT 2012 [14], CSTVA 2012 [15],
OSIC 2012 [13], and TAP 2013 [16].

This chapter gives an introduction to the original action system formalism. Subsequently, it presents
our variant of action systems, which will be used throughout this work. Finally, it reviews extensions of
action systems and other closely related formalisms.

5.1 Classical Action Systems

Action systems are a variant of Dijkstra’s guarded command language [82] for modelling concurrent
reactive systems. They have a formal semantics with refinement laws and are compositional. Many
extensions exist, but the main idea is that a system state is updated by atomic, guarded actions that may
be enabled or not. The action system continuously loops and determines which actions are enabled. If
no action is enabled, the action system terminates. If several actions are enabled, one is chosen non-
deterministically. Hence, concurrency is modelled in an interleaving semantics.

Action systems were introduced by Back and Kurki-Suonio in 1983 [28]. Since then, a lot of research
has been conducted on action systems. For example, Back et al. defined a temporal logic framework [28,
29] and a refinement calculus framework [31, 33, 32] for action systems.

A common notation to represent an action system .4 is defined in the following.

Definition 5.1 (Classical Action System Notation)

A=|[var v,w* e Sy;do Ay []...[] Apod]|: T

The var section contains the variable declarations. The set of all declared variables defines the state
space of the action system. Each variable is of a certain type. The set of variables v denotes variables
that are internal to the action system. Variables marked with an asterisk w* are exported by the action
system and become global variables. They can be imported by other action systems via the import list
1. Sy is the initialisation action. The do-od block (do ... od construct) is the central part of the action
system. It is basically a loop and contains the non-deterministic choice [] over the actions Ay, ..., A,,.
An action A; is a guarded command [82]. It consists of a guard, which is a Boolean expression, and a
body, which is composed of statements that will be shown later.

In order to facilitate the modelling of compositional systems, where each component can be modelled
by an individual action system, the parallel composition of action systems has been defined.

Definition 5.2 (Parallel Composition of Action Systems)
For two action systems

A=|[var vA, w?" o S&t:do AP [] ... [] A2 od]| : I

and
B=|[var B wB" o SB; doAB[]..[] ABod]|: I

with v* N vB = (), the parallel composition C is defined as follows:
C=A||B =, |[var O ut" e 564;58 ; do Af []...[] Aé [] A? []...[] AE od || 1€

with v¢ = vA U8B, wC = wA™ UwB”, and I¢ = (T4 U IB) \ (A" UwB").

41

Chapter 5. Action Systems 42

A pre-condition for parallel composition is that the sets of internal variables v** and v? are disjoint. For
parallel composition, the new sets of internal and global variables v€ and wC" are obtained by joining the
respective individual variable sets. The initialisation is the sequential composition of the initialisations
of A and B. The new do-od block is the non-deterministic choice over all actions defined in both action
systems. Finally, the set of imported variables is the union of the import sets of both action systems,
excluding the union of those variables exported by the individual action systems.

Typically, the semantics of action systems is specified via weakest pre-conditions like originally
defined by Dijkstra [82]. Pre- and post-conditions are predicates over the state variables of an action
system. The weakest pre-condition predicate transformer wp(S, Q) states the weakest pre-condition
that must hold such that statement .S can establish a given post-condition (). Weakest pre-conditions are
defined recursively. In the following, we give an overview of the most important action system statements
and their weakest pre-conditions [31, 33].

Definition 5.3 (Weakest Pre-conditions)

Actions are defined as guarded commands g => B where the guard ¢ is a Boolean condition, and the
body B is a sequential, possibly non-deterministic statement on the state variables of an action system.
Furthermore, v denotes a state variable, and e is some expression over state variables. Assumptions
and assertions are predicates over the state variables and denoted by a. Moreover, () denotes a given
post-condition over the state variables.

wp(g => B, Q) =y g = wp(B,Q) (guarded command)
wp(magic, Q) =y true (miraculous action)
wp(abort, Q) =y false (aborting action)
wp(skip, Q) =y Q (stuttering action)
wp(B1; Ba, Q) =y wp(B1, wp(Ba, Q)) (sequential composition)
wp(By [] B2, Q) =y wp(Bi1, Q) N wp(Ba, Q) (non-deterministic choice)
wp(v:=e,Q) =y Qv « €] (assignment)
wp([a], @ =y a=Q (assumption)
wp({a}, Q) =y alQ (assertion)

The weakest pre-condition of an action, i.e., a guarded command g => B and a post-condition) is
defined as implication (Equation guarded command). The action magic establishes any post-condition
regardless of the pre-condition (Equation miraculous action). However, it is only a theoretical concept
and not implementable. The action abort is used for modelling disallowed behaviour. Hence, its weak-
est pre-condition is false (Equation aborting action). The skip action does nothing (Equation stuttering
action). Statements may be composed in sequence. The weakest pre-condition of a sequence of state-
ments is calculated backwards: the weakest pre-condition of the second statement B serves as the post-
condition of the first statement B; (Equation sequential composition). For non-deterministic choices, the
conjunction of both weakest pre-conditions has to hold, in order to guarantee post-condition () regardless
of which action has been chosen (Equation non-deterministic choice). For an assignment, the weakest
pre-condition is obtained from () by substituting the assigned variable v with expression e. This substi-
tution is expressed by the notation Qv < e] (Equation assignment). The weakest pre-condition of an
assumption is defined by implication: the assumption implies the post-condition (Equation assumption).
As a consequence, false assumptions lead to magic behaviour. The weakest pre-condition of an assertion
is defined via conjunction (Equation assertion). Hence, false assertions lead to abort.

If an action is enabled, is determined by its enabledness guard [33]. Informally, it states that an action
is not enabled in states where it leads to abort, i.e., post-condition false. Formally, it is defined as follows.

Chapter 5. Action Systems 43

Definition 5.4 (Enabledness Guard)
The enabledness guard g A of an action A is defined as gA = —wp(A, false).

Skip, abort, and assignments are always enabled. Consider for example the skip action. Its enabled-
ness guard is defined as ~wp(skip, false). By using the definition of the weakest pre-condition of skip
(Definition 5.3, Equation stuttering action), we have —false < true.

Additionally, the termination of an action is determined by its termination guard [33]. It ensures that
some post-state is reached eventually. Formally, it is defined as follows.

Definition 5.5 (Termination Guard)
The termination guard ¢ A of an action is defined as tA = wp(A, true).

5.2 Action Systems in this Work

In the following, we describe the language for action systems that is underlying this work. Aside from a
few minor changes, it has been established by colleagues during the MOGENTES project. The language
was designed to facilitate the expression of UML state machine and OOAS constructs (cf. Section 5.4.1)
in action systems and already served as input language for MoMuT::UML’s existing test case generation
backend Ulysses [10]. As Ulysses is implemented in Prolog, the concrete syntax has also been defined
using Prolog language constructs. This accommodates parsing and further processing within Prolog.
The language was given an operational semantics in terms of LTSs with inputs and outputs (cf. Def-
inition 3.12). Both, the concrete syntax and the operational LTS semantics have only been described
informally [140, 50, 10]. In this work, we formally present the syntax and give a relational predicative
semantics for action systems, which is well-suited for our constraint-based approach. Our work was
incremental. We started with a restricted language called plain action systems and later on extended this
language by the missing features required for the integration into the MoMuT::UML tool chain. We refer
to the latter as complex action systems.

We start this section with an example to illustrate our variant of action systems. Subsequently, we
describe the concrete syntax and present our relational predicative semantics — first for our plain action
systems, then for our complex action systems.

5.2.1 An Action System Modelling the Car Alarm System

Listing 5.1 shows code snippets from an action system modelling the CAS as described in Section 1.6.1.
It is based on an OOAS originally created for the MOGENTES project by Willibald Krenn, who relied
on the UML state machine depicted in Figure 1.4. Note that this particular action system is only one
way to model the CAS. There are many other possibilities to specify the desired behaviour in an action
system. For example, the state space could be reduced by a more efficient encoding. However, this
model has been created in a real-world setting. It was developed incrementally, while the requirements
still changed and hence it is not optimal. The full model can be found in Section A in the appendix.

After these general comments on the model, we explain its individual parts in the following. The
first three lines of Listing 5.1 contain user-defined types, which are basically integers with restricted
ranges. In Line 1, a type with name enum _state is defined. Its domain begins at 0 and ends at 7. Line 6
declares a variable with name aState, which is of type enum_state. It represents the states (including
nested states) used in the UML state machine of the CAS (Figure 1.4). Additionally to integers, the
Boolean data type bool with the elements true and false is supported (Line 4). In Line 8, three variables
of type bool are declared. Note that lists are enclosed by square brackets as in Prolog. For exam-
ple, [fromSilentAndOpen, flashOn, soundOn] is a list with the three elements fromSilentAndOpen,
flashOn, and soundOn. The var predicates in our Prolog syntax correspond to the var section in the

Chapter 5. Action Systems 44

1 type(enum_state, X) :— X in 0..7.

2 type(int_.0_4, X) :— X in 0..4.

3 type(int_0.270, X) :— X in 0..270.

4 type(bool, X) :— member(X, [true, false]).

5

6 var([aState], enum_state).

7 var ([fromAlarm, fromArmed], int_0_4).

8 var ([fromSilentAndOpen, flashOn, soundOn], bool).
9

10 state_def ([aState, fromAlarm, fromArmed, fromSilentAndOpen, flashOn, soundOn]).

12 init([6, 0, 0, false, false, false]).

13

14 as :—

15 actions (

16 >ArmedOn’ (Wait_time) :: (true) =>

17 (

18 % case 1: arm the system after 20 seconds in closed and locked

19 ((Wait_time #= 20 #/\ aState #= 3) => (aState := 2))

20 []

21 % case 2: arm the system immediately when closing the car after an alarm
22 ((Wait_time #= 0 #/\ aState #= 2 #/\ fromSilentAndOpen #= true) =>
23 (fromSilentAndOpen := false))

24)

25 ’Lock’ (Wait_time) ::(true) =>

26 (

27 % case 1: in initial state , where car is open and unlocked

28 ((aState #= 6 #/\ fromAlarm #= 0) => (aState := 5))

29 [1

30 % case 2: in state , where car is closed and unlocked

31 ((aState #= 4 #/\ fromArmed #\= 1) => (aState := 3; fromArmed := 0))
32)

33

34)

35 dood

36 >Lock” (0)

37 [T [T:int_0_.270]: ArmedOn’ (T)

38 [

39).

Listing 5.1: Code snippet from an action system model describing the CAS.

notation for classical action systems presented earlier (cf. Definition 5.1). However, we do not support
composition (Definition 5.2) on the level of action systems. Hence, all variables are internal to the action
system. These internal variables were denoted by v in the notation for classical action systems. Further-
more, there are neither exported variables, which were represented by the set w*, nor imported variables,
which were given by an import list I in Definition 5.1.

The reason why we do not need to address compositions of action systems is that composition is
handled earlier in the MoMuT::UML tool chain (cf. Section 1.5.1). Action systems are only an inter-
mediate format for the test case generation backends of MoMuT::UML. Originally, models are given
as UML class diagrams and state machines. Of course, they may consist of several components. This
compositional structure is also transferred to the intermediate Object-Oriented Action System (OOAS)
model. However, during the transformation from the OOAS model into an action system, the parallel
composition of the individual components is resolved and as a result, one single action system comprises
the whole modelled functionality.

Chapter 5. Action Systems 45

The structure of the state of the action system is defined in Line 10 in Listing 5.1. It is specified
by a list of variables that have been declared earlier. In contrast to the classical notation, we do not
automatically include all declared variables as part of the state space. This is sometimes helpful during
the development of a model. Furthermore, the init predicate in Line 12 defines the initial values for the
state. It corresponds to the initialisation action Sy in the classical notation. At Line 14, the description
of the behaviour of the action system begins. It consists of an actions block (Lines 15 to 34) and a do-od
block (Lines 35 to 39). In the classical notation, the actions are directly given in the do-od block. In
contrast, we decoupled the definitions of the actions in the actions block from their composition in the
do-od block. This is possible since each action in our notation has a unique name, which can be used
in the do-od block. The purpose of this separation will be seen later, when we extend our language and
allow additional operators (not only non-deterministic choice) for the composition of actions in the do-od
block.

Like in classical action systems, an action is a guarded command, but in our case it has a name and
optionally also parameters. Hence, in our language an action consists of a name, optional parameters,
a guard and a body: name(parameter list) :: guard => body (cf. Lines 16 to 24 and Lines 25 to 32).
The actions in our example have one parameter, which models the number of time units that have passed
since the previous action. For example, the sequence 'Lock’(0) ; ' ArmedOn'(20) means that the car is
being locked immediately after the previous action, and that ' ArmedOn’ occurs 20 time units afterwards.
It is also possible to have actions with more than one parameter or without any parameters. Sequential
composition is represented by the ; operator. The operator || denotes non-deterministic choice. We use
it in our example together with guarded commands to distinguish between different cases in which an
action is enabled. Consider for example the definition of the action ' ArmedOn’ (Lines 16 to 24). We
distinguish between two situations. In the first case (Lines 18 and 19), ' ArmedOn’ has to be fired after
20 seconds in the state where the car is closed and locked. The guard constrains both the time parameter
(Wait_time #= 20) as well as the condition that the state of the system must be closed and locked
(aState #= 3). The body of the guarded command updates the state variables of the action system. In
this case, we move on to a state that represents that the system is armed (a.State := 2). The other case is
modelled analogously. It refers to the situation in which the alarms were triggered by opening the armed
car without unlocking it before. After a timeout, the alarms are deactivated and the system becomes
armed immediately after closing the doors. This last part is modelled in the Lines 22 to 23.

The do-od block (Lines 35 to 39) connects previously defined actions via non-deterministic choice.
Note that the action ' Lock’ may only occur without waiting. This is accomplished by using the constant
value 0 as parameter for 'Lock’ in the do-od block. Thus, it is not necessary to further restrict the
Wait _time parameter in the guards of the definition of ' Lock’ (Lines 28 and 31). The action’ ArmedOn’
has a variable T" as parameter. It is restricted to be an integer in the range of 0 to 270. The parameter
is further constrained to be either 20 or 0 in the guards of the definition of 'ArmedOn’ (Lines 19 and
22). The execution of an action system is a continuous iteration over the do-od block. In each iteration,
an enabled action is non-deterministically chosen for execution. In our example, at least one action is
always enabled. Hence, the CAS never terminates, but continuously interacts with its environment.

In the following, we present the syntax and semantics of a first subset of our action system language,
which we refer to as plain action systems.

5.2.2 Plain Action Systems

Syntax. The above example already gave an impression of our syntax for action systems. Figure 5.1
gives a formal definition of the syntax for our plain action systems, which is restricted and has been used
as a starting point for our work. An action system AS consists of basic definitions D, action definitions
A, and a do-od block P. Note that the overbar notation is used to represent sequences of the given
elements. Hence, A denotes a sequence of action definitions, where one action definition is given by A.

Chapter 5. Action Systems 46

AS ::= D as - actions(A), dood(P).

D ::=type(t,X) = X inni..ny. var([v],t). state def([7]). init([¢]). input([l]). output([]]).
Aux=L:u:g=>DB
L:=1]1X)

n=e|eVe|ene|e=e] ..

NS

Bu=v:=e¢| g=>B | skip| B;B| B[]B
ex=v|c| X |ete] ..

P:=FE | E[]P

Ex=1] [X:t]:l(c]|X)

X ::= Prolog variable

Figure 5.1: Syntax for plain action systems.

The basic definitions D comprise the definition of types ¢, the declaration of variables v of type ¢, the
definition of the system state as a variable vector U, and the definition of the initial state as a vector of
constants ¢. Furthermore, it states which actions represent inputs for the SUT and which actions represent
outputs of the SUT to define the testing interface (cf. Definition 2.9). Both input as well as output actions

are stated at the end of the definitions D as lists of action labels [(input([l]). output([l]).), which must
not overlap.

An action A is a labelled guarded command with label L, guard g and body B. Actions may have
a list of parameters X. An action’s guard is basically a condition over constants, state variables, and
parameters. We support common operators like disjunction, conjunction, equality, etc., as well as arith-
metic operators such as addition, subtraction, etc. The body of an action may assign an expression e
to a variable v, it may do nothing (skip), or it may comprise guarded commands. Action bodies may
be composed by sequential composition ; or non-deterministic choice []. The do-od block P provides
an event-based view on the action system. It composes the actions by their action labels [and optional
parameters via non-deterministic choice. If necessary, it also defines the data types of local variables
used as parameters for actions.

Although our concrete syntax is rather different to the notation for classical action systems given in
Definition 5.1, both languages are similar in the following aspects. Action systems have variables that
constitute its state space, an initialisation construct, and actions, which are guarded commands that are
non-deterministically composed in a do-od block. The greatest difference between the classical notation
and our language is the labelling of the actions and optional parametrisation. However, assigning names
to actions is not new. For example, labels for actions have already been used to link action systems and
the process algebra Communicating Sequential Processes (CSP) [159, 61].

Semantics. For constraint-based approaches [103, 70, 208, 173], the semantics of programs is often
encoded via Static Single Assignment (SSA) form [20]. Yet for our refinement check, the SSA form is
not suitable as will be demonstrated in Section 6.4.2. For action systems, the formal semantics is typi-
cally defined in terms of weakest pre-conditions (cf. Definition 5.3). However, for our constraint-based
approach we chose a relational predicative semantics, which is very similar to a constraint satisfaction
problem. We follow the style of He and Hoare’s Unifying Theories of Programming (UTP) [119], where
predicates are used to describe the relations between observations before and after execution of a pro-

Chapter 5. Action Systems 47

¢(l:: g => B) =y 9N OB)Atr'=trT]]
p((X)=g=>B) =y 3IX:(g A B)Atr'=tr"[I(X)])
¢(g => B) =y g9 N ¢DB)
d(v1 == e) =y vi=eAvi=vy A---A v, =,

with ¥ = (v1,v2,...,v,) and ¥ = (v}, v5,...,vp)
¢(B1; Ba) =y 370 : ¢(B1)[v' < To] A ¢p(B2)[v +)
¢(B1 [] B2) =5 ¢(B1) V ¢(B2)
¢ (skip) =y U =0
¢(B1// Bz2) =y ¢(B1) V (m¢(B1) A ¢(B2))
p(\m) =y ¢(getB(m))
¢(obj\m) =y ¢(getB(obj-m))
p(v\m) =y Objegri}ém(v)(v = obj A ¢(getB(obj-m)))

Figure 5.2: Predicative semantics of actions: lines written in black are already relevant to plain
action systems (Figure 5.1), lines written in blue become only relevant for complex
action systems (Figure 5.3).

gram. A predicate p over a set of observations before execution o = (z,y, ...) and a set of observations
after execution ' = (2/,3/,...) is represented as p(v,7’). Note that all variables in T and ¥’ denote
relevant observations and occur as free variables in p. They are called the alphabet of predicate p.

Figure 5.2 presents our formal semantics of our actions in the form of a function ¢, which maps
concrete syntax to predicates. These predicates relate the pre-state of variables ¥ and their post-state
v’ and represent the state changes of actions. Furthermore, the labels form a visible trace of events ¢r
that is updated to ¢r’ whenever an action runs through. Hence, the alphabet of predicates representing
labelled actions comprises both the state variables before and after execution (v and v’) as well as the
trace of performed actions before and after execution (¢ and t7'). A guarded action’s transition relation
is defined as the conjunction of its guard g, its body B, and the consecution of the action’s label [to the
previously observed trace. Note that the guard g is a condition and directly represents a predicate. In
case of parameters X, these are added as local variables to the predicate. An assignment updates one
variable v; with the value of an expression e and leaves the rest unchanged. For sequential composition,
there must exist an intermediate state Ty that can be reached from the first body predicate ¢(B;) and
from which the second body predicate ¢(Bs2) can lead to its final state. Note that our notation uses
substitutions to represent this. The post-state 7" of the first body predicate ¢(Bj) is substituted by 7g.
Furthermore, the pre-state of the second body predicate ¢(Bs) is also substituted by 7g. Hence, the
alphabet of ¢(By) comprises U and 7, and the alphabet of ¢(Bs) comprises Ty and ¥’. The alphabet of
the overall sequential composition is T and ¥’ again. Non-deterministic choice is defined as disjunction.
Finally, the skip statement does not change anything, i.e., ¥ = v. The just described constructs are
relevant for our plain action system language and are written in black in Figure 5.2. Blue parts only
concern complex action systems and will be described in the next section.

The semantics of the do-od block of plain action systems is as follows: while actions are enabled in
the current state, one of the enabled actions is non-deterministically chosen and executed. An action is
enabled in a state if it can run through, i.e., if a post-state exists such that its semantic predicate can be
satisfied. The action system terminates if no action is enabled.

Chapter 5. Action Systems 48

AS ::= D as :— methods(M), actions(A), dood(P).

D =T var([t],t). state_ def([v]). init([d]). input([l]). output([]]).

!

n=type(t, X) = X innj..na. | type(t, X) :— member (X, [0bj]).

M:= H = B,,

Hi=m | m(X) | objm | objm(X)
Au=L:g=>B
La=1]U(X)
gi=el|eVel|eAele=e]| ..|C|CX)
Bui=v:i=e|g=>B|skip| B Op B|C | C(X)
ex=v|c| X |ete] ..
Bui= B | unify(X,e)
Cii=\m | obj\m | v\m
Puzl 1@ | 1) | @) | X71):Pi | P Op P
Pii=E | i(E) | P. Op P,
Ba=1] Uc]X)

Op==I[] 15 1//

X ::= Prolog variable

Figure 5.3: Syntax for complex action systems: extensions with respect to plain action systems
(Figure 5.1) are highlighted in blue.

5.2.3 Complex Action Systems

We had to extend our plain action systems to a richer language, which is required for interoperability
with the already existing MoMuT::UML tool chain presented in Section 1.5.1. In MoMuT::UML, action
systems are derived from UML state machines via Object-Oriented Action Systems (OOASs), which
are briefly presented later on (Section 5.4.1) in the context of action system extensions and related for-
malisms. Aside from a few minor changes, the extended language has already been defined prior to
this work with the intent to facilitate the transformation from UML state machines via OOASs into ac-
tion systems. We refer to this extended language as complex action systems and describe its syntax and
semantics in the following.

Syntax. The syntax for complex action systems is presented in Figure 5.3. Modifications with respect
to our plain action systems (cf. Figure 5.1) are highlighted in blue. The first extension affects the data
type definitions 7. In plain action systems, a data type 7" could only be an integer with a defined
range, cf. first option for 7" in Figure 5.3: type(t, X) :— X in nj..n9). For the representation of the
classes of an OOAS, a special enumeration data type has been introduced as a second option for 7":
type(t, X) :— member (X, [obj]). In this way, the possible instances of a class can be represented as
members of lists containing object identifiers (0bj). Note that OOASs used in MoMuT::UML do not
allow dynamic object creation or destruction (cf. Section 5.4.1). Hence, all possible objects are known
in advance and can be enumerated as a finite list of object identifiers. The member variables of an object

Chapter 5. Action Systems 49

are given as state variables of the action system and are prefixed by the object identifier.

Another extension is the introduction of methods. Our action systems are not object-oriented. How-
ever, in MoMuT::UML they are derived from object-oriented models (UML state machines and OOASs).
The translation of OOASs into our complex action systems creates one method per object, i.e., each pos-
sible object of a class has its own definitions of the methods of its class. Each method is prefixed by
the object identifier and directly refers to the object’s member variables, which are state variables of the
action system that are also prefixed with the object’s identifier. This is possible since there is no dynamic
creation or destruction of objects in MoMuT::UML’s OOASs (cf. Section 5.4.1). Hence, methods in our
complex action systems are basically procedures. The concept of procedures in action systems is no
new invention. Already in the 1990s, procedures have been introduced to action systems as a means of
communication between action systems. As we do not consider compositions of action systems, we do
not use procedures for the purpose of communication, but for encapsulation. The method definitions M
have been inserted into the action system definition AS before the definition of the actions. Each method
M consists of a head H and a body B,,,. Each method’s head H consists of a name m possibly followed
by parameters X. When derived from an OOAS, the method name has a prefix obj that refers to an
object identifier. A method’s body B,, is basically the same as an action’s body B, i.e., it may contain
assignments, guarded commands, etc. However, it furthermore allows for the unification of parameters
with expressions, which is used to express return values. Methods may be called in the body of an action
or method. For the use in guards, methods must be side-effect free, i.e., they must not contain assign-
ments to state variables. For the sake of simplicity, we did not explicitly express this in our overview
of the syntax. As already mentioned, methods may be called in method/action bodies or in guards, and
may have parameters. For a method call C, the \ operator is used. The expression \m denotes the call
of a procedure with name m. When derived from OOASs, methods have a prefix for the object they are
called with. This is either an object identifier obj like in obj\m or a state variable v containing an object
like in v'\m.

Furthermore, the body B of actions or methods has been enriched by an additional operator //
for prioritising compositions, which was formally presented by Sekerinski and Sere [181]. A prioritising
composition By // Bs gives priority to the left-hand side B;. The right-hand side B is only chosen if the
left-hand side B; is not enabled. Hence, in contrast to non-deterministic choice, prioritising composition
is deterministic.

Another major difference to plain action systems affects the do-od block P, which has been com-
pletely restructured. Previously, the do-od block composed actions solely via the non-deterministic
choice operator and possibly contained definitions of local variables that serve as arguments for the
actions. In complex action systems, the do-od block may also use sequential composition and the newly
introduced prioritising composition to compose actions. Furthermore, the definitions of local variables
may range over compositions of actions, not only over one action as before. However, note that param-
eters for actions must either be constants or must be defined as local variables (therefore the additional
rule P;). This enhanced structure of the do-od block is the main reason why we decoupled the definitions
of the individual actions from the do-od block. Actions are defined only once and can be composed in
the do-od block in a flexible manner.

Our last extension concerns internal actions. In complex action systems, an action label [in the do-od
block may be enclosed in (), which expresses that this action is internal and hidden. Internal events are
a well-known concept in modelling. They correspond to 7-transitions in LTS [137]. In Communicating
Sequential Processes (CSP) [118, 175], there also exists a hiding operator to hide a set of events. Butler
introduced internal actions to action systems [61].

Semantics. For our complex action systems, add-ons for the semantics of the actions have been in-
cluded in blue font in Figure 5.2. Prioritising composition By // Bj expresses prioritisation of By over

Chapter 5. Action Systems 50

Bs. Whenever B is enabled, it will be chosen. If B is not enabled, Bs is executed provided that it is
enabled. Just like for non-deterministic choices, if neither B; nor By is enabled, the whole prioritising
composition is not enabled. This is expressed by ¢(B1) V (=¢(B1) A ¢(Ba)).

Method calls are inlined. So basically, the semantics of a method call consists of its body’s semantics.
We assume a function getB that returns the body for a given method name. For plain procedure calls
\m, finding the definition including the body is straightforward as it is identified by the name m. For
method calls on object identifiers obj\m, the according method definition is identified by obj_m, i.e.,
the backslash from the call is replaced by an underline. For methods called on state variables v\m,
we have to find the data type of the variable and have to check whether it is representing a class. In
general, we cannot decide statically which concrete object is assigned to the used state variable. This
may only be known at execution time. Hence, we have to consider each possible object and construct
a disjunction over all possibly called methods. Each method call is guarded by a constraint that checks
at runtime which object, i.e., which method call has to be activated (v = obj). We assume a function
getClass, which takes a state variable, checks whether its type represents a class, and returns a set of
all object identifiers associated with this class. This is inefficient as nesting might cause an exponential
blowup of possibilities. However, this design of methods is predefined by MoMuT::UML. Figure 5.2
does not include the full semantics for method parameters, which was also specified by MoMuT::UML.
Parameters for methods are passed by Prolog’s unification. Actual parameters are either constants or
local variables represented as Prolog variables. Furthermore, formal parameters are also represented as
Prolog variables. Hence, we can unify formal and actual parameters. Note that actual parameters that
are not constants, but Prolog variables may be used as return values by unifying them with a value or
expression in the method body.

Internal actions are almost treated like normal actions. To be enabled, their guard and their body must
hold. However, the action’s label and possibly existing parameters are not added to the trace variable ¢r,
but the special label 7. This 7-action is always of arity zero, because parameters of internal actions are
also hidden.

The extended do-od block may contain non-deterministic choices as well as prioritising and sequen-
tial compositions of actions. Like for conventional action systems, the do-od block determines enabled-
ness and loops until nothing is enabled any more. We changed the type of the constructs for which
enabledness has to be decided. Previously, these were plain actions. Now, actions and nested constructs
of sequential compositions, prioritising compositions, and non-deterministic choices of actions have to
be considered. The enabledness thereof is defined via the semantics of the used actions and operators.

The extension of the do-od block by sequential and prioritising composition facilitates the translation
of UML state machine constructs. For example, exit actions are executed on exit of a state. They can be
easily expressed by the sequential composition of the exit action with the outgoing transition, which is
also mapped to an action. Prioritising compositions mainly help to keep action guards simpler. Consider
the following example. Let v and exec be Boolean variables. The action reset is only enabled if the
exec flag is true: reset :: (exec) => (v := false). Furthermore, another very simple action toggles
the value of the Boolean variable v. It is defined as toggle :: (true) => (v := —v). It shall only be
enabled if the reset action is not enabled. This can be achieved by using prioritising composition in the
do-od block: reset // toggle. If only non-deterministic choice was available (reset [] toggle), then the
guard of the toggle action would need to be strengthened to exec = false. Note that the ezec flag may
be set by additional actions in the action system. For translating UML state machines to OOASss and
action systems respectively, prioritising composition is often used in the context of concurrency, e.g., for
broadcasting events over several orthogonal regions. For further explanations on the transformation of
UML state machines to OOASs and action systems, we refer to Krenn et al. [140].

Chapter 5. Action Systems 51

5.3 Relating Predicates and Weakest Pre-Conditions

In the following, we discuss the relation between our predicative semantics (Figure 5.2) and the original
weakest pre-condition semantics (Definition 5.3) for action systems. In their book on the Unifying
Theories of Programming (UTP) [119], Hoare and He defined the weakest pre-condition of a statement
B for a given post-condition () by predicates:

wp(B,Q) = ﬂ<B;ﬂQ)

We use this relation between weakest pre-conditions and predicates to show the equivalence of our pred-
icative semantics and the weakest pre-condition semantics for common statements in the languages (skip
statements, assignments, guarded commands, sequential compositions, and non-deterministic choices).

Theorem 5.1 (Equivalence of Semantics)
Our predicative semantics of action systems is equivalent to the weakest pre-condition semantics of
action systems in the sense that

wp(B, Q) = ~¢(B; ~Q)
for B € {skip, v:=e, g=> By, Bi; Ba, B1[]Ba} with $(Q) = Q.
Proof: We prove Theorem 5.1 by induction over the recursive definition of B, with skip and v := e

forming the base cases. For the recursively defined cases g => Bj, Bj; B and Bj [] Ba, we can then
rely on wp(Bi1, Q1) = ~¢(B1 ; Q1) and wp(Ba, Q2) = —¢(Bz ; =Q2) as induction hypotheses.

Stuttering action skip:

—¢(skip ; —Q) {Fig. 5.2: ¢(B1; B2)}
= (37 : (¢(skip)[v' 7] A G(-Q)[F « 7)) {Fig. 5.2: 9(skip). 6(Q)}
— (3w (0 = D) «] A ~Q[v « 7)) {apply [¢" « o]}
— (3w (5 ="1) A Qv 7)) {apply 7 = 7}
:ﬂ<3*0 (o =17) A —|Q[U<—W])) {Q does not depend on Tp }
=-(~Q 37 : (10 =1)) {simplify}
=-(-Q ANtrue) = Q {Def. 5.3: stuttering action}
= wp(skip, Q)

Assignment vy = ¢:

—¢((v1:=¢€); =Q) {Fig. 5.2: ¢(B1; Ba)}
== (37 (8(01 1=)) A H(-Q)[p ¢ 7)) {Fig. 5.2: 6(v1 =€), (Q)}
—-(3m (= Ath=va A+ A vh =)' 0] A ~QE < w])) {apply [o' ¢ 7]}
:ﬁ(a 0 (Vo1 =€ Atoo =02 A Avgp =) A QT m)) {apply 75 = (€,v2,- .., vp)}
= ﬂ(a 70 ((vog =eNvga=va A Avgp =vy) A=Q[T0 ¢ (e,vg,... ,vn)])) {move -Q}

==(-Q + (e,v2,...,v,)]ATT0: (vo1 =€ A vo2 =02 A+ A Vo ="p)) {simplify}

Chapter 5. Action Systems 52

==(-QU ¢ (e,v2...,v5)| Atrue) = Q[v1 + €] {Def. 5.3: assignment}

:wp(vl =€, Q)
Guarded command g => B:

~¢((g => B); ~Q) {Fig. 5.2: ¢(B1; Ba)}
=37 (6olg => BT <] A 6(-Q)v 7)) {Fig. 5.2: 6(g => B))
- ﬁ(a T - ((g A ¢(B)[T < 0] A ¢(~Q)T UO])) {g does not depend on Tg}
=-(9 A3 (@B 7] A G(-Q)[v) {Fig. 5.2: ¢(B1; Ba)}
==(9 ANo(B; ~Q)) {induction hypothesis}
=-(9 Awp(B,Q)) = g=wp(B,Q) {Def. 5.3: guarded command}
=wp(g => B,Q)
Sequential composition By ; Ba:

=¢((B1; Ba); =Q) {Fig. 5.2: ¢(Bi1; Ba)}
=~ (3% (0(Br: B « W] A 6(-Q)[1 ¢])) {Fig. 5.2: 6(B1 ; By)}

:ﬁiaro; (3 i (¢(B)[o <—vl]/\¢(32)[v<—v1])>[§/<—v70] A ¢(ﬁQ)[m—mH {do subst.}
:{370; :(371 (6(B)[T 71) A $(Ba) [< 71][0" (—UO])> A ¢@Q)[@+WH {widen o7}

:ﬂ:ElvT): :EI U1 ((B1)[V' « 01] A ¢(B2)[v + 01][v + Tg] A gb(ﬂQ)[zu—vg])H {swap Js}

Il

J
0"

=
/—\

_ S(B)[T < T1] A $(B2)[T +][0 ¢ 7o) A H(—Q)[T vg])” {move B;}
—-[3: :¢(B1)[@) A3 (6(B2)o < T[T 7] A S(-Q)[F « 75])|| {mod. subst.}
=37 [6B « T A (3T (6B] A o(~Q)[F - T5)]))7« 5]

{Fig. 5.2: ¢(B1; B2)}

—= 37 [@(BOI T A 6(By 5 ~Q)[« 7] | {induction hypothesis}
== [[e(BO « 1] A (~up(Ba, Q)5+ 7] {Fig. 5.2: (B1; By)}
=—¢(B1 ; ~wp(Bs, Q)) {induction hypothesis}
— wp(By, wp(Ba, Q) {Def. 5.3: sequential composition}
=wp(Bi1 ; B2,Q)
Non-deterministic choice B [] Ba:

—¢((B1 [] B2) ; ~Q) {Fig. 5.2: ¢(B1; B2)}

Zﬁ(ﬂvioi (¢(B1 [] B2)[t' = wg] A ¢(—Q)[V + 70])) {Fig.5.2: ¢(B1 [] B2)}

Chapter 5. Action Systems 53

== (37 ((2(B1) v o(B2) I 7] A 6(-Q)[p ¢ 7)) {distribute 6(~(Q)}
==(3m: (6BOF « W A S(-Q)F) V (9(B2)F 7] A d(-Q)[F +-75]))) {split I}

3
(3% : (3BT] A d(-Q)F « 7))) v (375 ((B2)[0' - T6) A 6(~Q)[F < 75])))
{apply Fig. 5.2: ¢(By; Bs) two times}

—(¢(B1; Q) V ¢(Bz; =Q)) {induction hypothesis, two times }

=-(~wp(B1,Q) V ~wp(B2,Q)) = wp(B1,Q) Awp(Bz, Q) O

The following corollary shows the relation between the enabledness guard in terms of weakest pre-
conditions (Definition 5.4) and the satisfiability of our semantic predicates.

Corollary 5.1 (Equivalence of Enabledness)
The enabledness in our predicative semantics of action systems is equivalent to the enabledness in the
weakest pre-condition semantics in the sense that

—wp(B, false) = 30y : ¢(B)[V + vy

for B € {skip, v:=e, g=> Bi, By; Ba, Bi|[]Ba}. Existentially quantifying the pre-state v in
the right-hand side of the equation, i.e., 37,75 : ¢(B)[V + g, corresponds to a satisfiability check of

¢(B).

Proof:

~wp(B, false) {Theorem 5.1}
= —¢(B ; ~false) {simplify }
— ¢(B; true) {Fig. 5.2: ¢(By ; Ba)}
=37 : (¢(B)V' 0] A ¢(true)[v wg)) {simplify}
=375 : (¢(B)[v" + o)) O

Regarding termination, we assume that the step relation, i.e., one iteration of the do-od block always
terminates. This is a valid assumption as our language does not include abort statements or assertions.
Therefore, it is sufficient to use relations instead of UTP’s designs [119]. Relations do not explicitly
consider termination, while designs have special observations ok and ok’ indicating that the program has
started and terminated respectively. In the following, we show that the termination guard (Definition 5.5)
for our predicates is always true.

Corollary 5.2 (Termination Guard True)
The termination guard of an action B in our predicative semantics of action systems is always true, i.e.,

wp(B, true) = true

for B € {skip,v :=e,g => B1,B1; B2, B [] Ba}.

Chapter 5. Action Systems 54

Proof:

wp(B, true) {Theorem 5.1}
=—¢(B ; —true) {simplify}
=—¢(B ; false) {Fig. 5.2: (B ; Ba)}
=~ (37 (6(B) « 5] A o{false)[t 7)) {simplify}
—(3% : (BT] A faise)) {simplify}
= (375 : (false)) {simplify}
=—(false) = true O

Having clarified the relation between the classical weakest pre-condition semantics and our predica-
tive semantics of action systems, we conclude this chapter by giving an overview of extensions of action
systems and related formalisms.

5.4 Extensions and Related Formalisms

Various extensions of the classical action system formalism have been developed. In the following,
we describe an extension regarding object-orientation: Object-Oriented Action Systems (OOASs). It
is relevant for this work as it is used as an intermediate language in the MoMuT::UML tool chain for
transforming UML state machines into action systems as described in the previous section. Subsequently,
we briefly discuss extensions of action systems allowing for modelling of hybrid systems. Furthermore,
there exist many formalisms that are closely related to action systems. In the following, we shortly
review Action-Oberon, Event-B, UNITY, and TLA.

5.4.1 Object-Oriented Action Systems

Bonsangue et al. [45] integrated object-orientation into action systems resulting in the OOAS formalism.
OOASs model classes. Instances thereof (objects) can be dynamically created, may be active, and dis-
tributed. Hence, several objects can be executed in parallel, where objects interact via remote procedure
calls and shared variables.

An OOAS consists of a finite set of classes. A class defines data and behaviour. The data part
comprises attributes, which are divided into shared attributes and local attributes, as well as object
variables. Shared attributes may be used by all active objects — also by objects that are instances of
another class. Local attributes can only be used by one instance of the class. Object variables are a
special kind of local attributes. They contain names of objects used for calling methods thereof. It is
assumed that the set of shared attributes, the set of local attributes, and the set of object variables are
pairwise disjoint. The behavioural part of a class defines methods, procedures, and actions. Methods
are procedures of an instance of the class that can be called by the object itself or by other objects. In
contrast, a procedure is local to the object and can only be called by the object itself. Finally, the actions
of a class are defined and composed in a do-od block like in classical action systems (cf. Definition 5.1).
The do-od block is executed whenever an instance of the class becomes activated. It can refer to all
shared attributes, its own local attributes, as well as to its own object variables. Furthermore, it may call

Chapter 5. Action Systems 55

its own procedures as well as methods of its own and of other objects. Hence, communication between
objects takes place via shared variables and via remote method calls.

Some classes of an OOAS are marked to be roots. The execution of an OOAS starts by instan-
tiating one object of each of these root classes. Each object iterates over its do-od block and non-
deterministically chooses an enabled action for execution. Actions may be executed in parallel if they do
not rely on shared data or if they operate on disjoint sets of shared data. They can also create and kill other
objects. OOASs can be composed in a similar manner as original action systems (cf. Definition 5.2).

OOASSs can be transformed into regular action systems. This translation relates methods to ex-
portable procedures, shared attributes to shared variables, local attributes and object variables to internal
variables, and classes to entire action systems. Furthermore, object constructors correspond to initiali-
sation actions. A collection of classes is translated into a parallel composition of action systems. This
relation between OOASs and action systems allows to reuse existing theories for action systems. For
example, refinement can be used to model class inheritance.

The OOAS formalism used as an intermediate language in the MoMuT::UML tool chain (cf. Sec-
tion 1.5.1) has been described in a conference paper [140] and in a manual for the Argos tool [188].
Argos is a predecessor of MoMuT::UML’s OOAS2AS component and implements the transformation
of these OOASSs into the variant of action systems that is used in this work (cf. previous section). Mo-
MuT::UML’s OOASs are based on the OOAS formalism of Bonsangue et al. [45] as described above.
However, MoMuT::UML’s OOAS formalism has been enriched by the labelling of actions and by the
possibility to prioritise objects of a particular class with respect to objects of another class. Objects
of one class are assumed to have the same priority. The desired priorities between objects of different
classes are stated in the so-called system assembling block. This is also the reason why classical action
systems have been extended by an prioritising composition operator [181] (cf. Section 5.2). Bonsangue
et al. [45] restrict their OOASS to be a finite set of classes. This also holds for MoMuT::UML’s OOASs,
but furthermore it is assumed that also the set of objects is finite. This means that object instantiation
is only allowed during the initialisation of the variables and permits an easier check for finiteness. The
mapping from MoMuT::UML’s OOASs to our complex action systems is based on the transformation
described by Bonsangue et al. [45]. The basic idea is to create one action system per object and subse-
quently perform a composition of all action systems either by non-deterministic choice or by prioritising
composition as specified in the system assembling block. Note that in this way, the result is one single
action system — not a composition of several action systems.

Other approaches for incorporating object-orientation into formalisms similar to action systems in-
clude the DisCo specification language [127] and Action-Oberon, which is presented later in this section.

5.4.2 Action Systems for Hybrid System Modelling

For the modelling of hybrid systems, i.e., systems showing discrete and continuous behaviour, several
extensions of action systems have been developed. Continuous action systems [30] use continuous func-
tions as values for variables and have an implicit variable now to represent the current time starting at
zero. Similarly, hybrid action systems [174] introduce differential actions to model continuous behaviour.
They describe how the values of variables evolve starting at their initial values. When the evolution ter-
minates, the variables are fixed to their reached values. Inspired by hybrid action systems, gualitative
action systems [11] have been introduced. They are more abstract than continuous and hybrid action
systems. They replace quantitative, differential actions by qualitative actions relying on the ideas of
qualitative reasoning [144]. Only the piecewise monotonic behaviour of functions is considered, i.e., if
they are increasing, steady, or decreasing. Furthermore, the domain and range of functions are abstracted
to points and intervals between them.

Chapter 5. Action Systems 56

5.4.3 Action-Oberon

The programming language Oberon-2 [161] is the successor of Modula-2 [206], which emerged from
Pascal [205]. Action-Oberon by Back et al. [27] extends Oberon-2 with actions and guarded procedures
to express action systems. An action system in Action-Oberon is a module. Just like in original action
systems, the actions are iterated in a loop and enabled actions are chosen non-deterministically. As a
difference to action systems, there is a way to control this selection of actions. The execution environment
allows to write an own scheduling algorithm or to manually choose the next action. Oberon-2 supports
object-orientation. In Action-Oberon, object-orientation can also be expressed via so-called type-bound
actions.

5.4.4 Event-B

The formal method B [1] has recently adopted the action-system style in the form of Event-B [2]. An
Event-B specification consists of two parts: contexts and machines. Contexts describe the static part of
the model. Roughly speaking, they contain type definitions including constants, axioms, and theorems.
Machines represent the dynamic part, i.e., they describe the behaviour of Event-B models. They corre-
spond to action systems by containing variables, which define the system state, and events. Note that
in Event-B, actions as known from action systems are named events, while the term action is used for
the body of an event. Events may have parameters. In contrast to action systems, there is no possibil-
ity to differentiate between different cases of an action, i.e., there is no possibility to react differently
to individual guards. Hence, the distinction of cases must be expressed by splitting the event into sev-
eral events. As already pointed out, the body of an event is called action in Event-B. It describes the
state update the event performs. In contrast to our form of action systems, it only allows assignments
to variables, but no nested guarded commands, non-deterministic choice, sequential composition, etc.
All assignments are performed in parallel. However, the assignments may not only be deterministic as
in our case, but can also be non-deterministic. Event-B makes heavy use of sets. Hence, one way for
expressing a non-deterministic assignment is to assign an arbitrary element of a set. Another way is to
assign values fulfilling a predicate. Event-B machines also comprise invariants that have to be ensured by
the events. This was not included in the original action system formalism. The initial states are specified
via a dedicated initialisation event. Event-B states proof obligations, which must be proven to show that
the defined properties hold or that refinement between specifications holds. Event-B has tool support
in the form of the Rodin Eclipse-plugin [3]. It provides an Integrated Development Environment (IDE)
for Event-B including support for refinement and mathematical proofs. Furthermore, ProB [152] is an
animator and model checker for the B-method (including Event-B). It can also be used for test case gen-
eration [203]. Two kinds of test purposes may be specified to guide test case generation: (1) either a
predicate that has to be fulfilled in the end state of the test cases (with limited length), or (2) a certain
operation that has to be covered by the test cases. In this way, transition coverage can be specified as a
test goal. Furthermore, the animation feature of ProB has been used indirectly for test case generation
using test scenarios [156].

5.4.5 UNITY

UNITY is a programming and proof theory by Chandy and Misra [65]. The main motivation was to
make the design of programs independent of the architecture. UNITY programs are very similar to action
systems. They include non-determinism and have no explicit means to steer the control flow. They have
a system state that is updated by possibly parallel assignments. An initial state may be defined for some
or all variables. Assignments may also be expressed in a quantified way, e.g., instead of the parallel
assignment of array entries A[0], A[1], ..., A[n] := B[0], B[1], ..., B[n], it is possible to use a quantified

Chapter 5. Action Systems 57

assignment with an index variable ¢: (|| ¢ : 0 < i < n = A[i] := BJi]). Furthermore, an assignment
may be conditional, e.g., x := 0 if y < 0. The execution of a UNITY program starts in an initial state
(there can be more than one). In each execution step, a statement of the program body is selected non-
deterministically. An assumption of UNITY is fairness in statement selection: in an execution with an
infinite number of steps, each statement is executed infinitely often. Furthermore, in contrast to original
action systems, UNITY supports invariants.

5.4.6 Temporal Logic of Actions (TLA)

Leslie Lamport combined two logics in TLA [146]: a logic of actions and a standard temporal logic. TLA
uses familiar mathematical operators (e.g. logical conjunction) and introduces just three new operators,
mainly for expressing temporal properties. Like action systems, TLA is state-based. The first additional
operator is the prime operator ’. Actions are relations between old states (unprimed variables) and new
states (primed variables). This corresponds more or less directly to our predicative semantics for action
systems. Like in the action system formalism, actions are considered to be atomic. What makes the main
difference to action systems is the temporal component. The O operator is a unary operator expressing
that its operand has to hold al/ways. The execution of a TLA specification is considered to be a sequence
of steps resulting in new states, i.e., a sequence of states. Hence, OF expresses that F' is true in each state,
i.e., at all times. In combination with negation, it allows to express safety as well as liveness properties.
Furthermore, TLA presumes stuttering, which does not change the state. The reason is to adjust to
different sampling rates such that more fine-grained specifications can refine more coarse-grained ones.
To prevent infinite stuttering, a liveness property has to be added. This is accomplished by a fairness
condition that states that if an action is possible, it must be executed eventually. Finally, the 3 operator
has been added to support the hiding of variables.

5.4.7 Circus

A further language for modelling concurrent and reactive systems is called Circus. Like the refinement
calculus for action systems, there is also a theory of refinement for Circus. Circus combines Commu-
nicating Sequential Processes (CSP) [118, 175] and the Z notation [207]. Therefore, it is possible to
describe both state information and communication aspects with Circus. Circus specifications consist
of processes, which are related to action systems. Processes comprise a state, actions, and a distin-
guished nameless main action. The state of a process is defined as a Z schema and is internal to the
process. Hence, unlike in action systems variables cannot be used for communication. Instead, Circus
offers channels for inter-process communication. In action systems, actions are (nested) guarded com-
mands. This also holds for the actions of a Circus process. However, more constructs may be used in
Circus actions: Z schema expressions or invocations of other actions possibly combined via CSP oper-
ators. These CSP operators may also be used in the main action of a process to compose actions. In
this way, the main action defines the overall behaviour of the process and can be seen as the counter-
part of an action system’s do-od block. However, Circus permits more control over the overall process
behaviour. In action systems, the do-od block is an iteration over the enabled actions. Circus allows
to model this via recursion, but does not necessarily require any iteration. Furthermore, original action
systems non-deterministically choose between the actions. Circus allows for a wide range of CSP op-
erators: sequential composition, parallel execution with specified synchronisation channels, interleaving
composition, event hiding, external/internal choice, etc. These operators can also be used to construct
a process from other processes. What is also noticeable is that not only actions but also processes may
have parameters in Circus. In contrast, an action system usually does not have parameters. Note that
the semantics of Circus is based on UTP [119], which also inspired our predicative semantics for action
systems.

Chapter 5. Action Systems

58

6 Refinement Checking of Action Systems

Parts of this chapter have been published in MBT 2012 [14],
CSTVA 2012 [15], and QSIC 2012 [13].

In Chapter 4, we presented our model-based mutation testing approach, which depends on the used
modelling formalism and a suitable conformance relation. The conformance relation determines whether
a mutated model conforms to the original model. We discussed conformance relations in Chapter 3. In
particular, we defined relational refinement for predicative semantics (Definition 3.11). In Chapter 5, we
introduced action systems to model reactive systems and defined a relational predicative semantics for
action systems. In this chapter, we link the individual components to implement a model-based mutation
testing approach for action systems using the defined refinement relation. We start by relating refinement
to model-based mutation testing. Subsequently, we focus on refinement of action systems. We describe
our refinement checking approach and point out pitfalls that have to be considered. Finally, we illustrate
our refinement checking process on the Car Alarm System (CAS) and report on experimental results for
this CAS and for the particle counter use case.

6.1 Model-Based Mutation Testing using Refinement

The key idea in model-based mutation testing is to create a test case whenever a mutated model does not
conform to the original model. The resulting test cases witness non-conformance, i.e., they are able to
distinguish the mutated from the original model.

Aichernig and He [12] developed a mutation testing theory based on our notion of refinement (Def-
inition 3.11): using refinement as a conformance relation, a test case is generated whenever a mutated
model MM does not refine an original model M O je. if M© Z M M Hence, test cases are based on
counterexamples to refinement. From Definition 3.11, it follows that such counterexamples exist if and
only if implication does not hold.

Proposition 6.1 (Non-Refinement)

MOz MM <= 35,7 : MM©,v) A -MO(T,7)

Proof:

MMz MO {Definition 3.11}
=-v7,7: MM@,7) = MO©,7)) {first-order predicate calculus}
=37,7 : (MM (@,7) = MP©,7)) {definition of implication}
=37,7 : «(-MM@,7) v M° (3,7")) {De Morgan}
=37,7 : MM (@,7") A-M° (3,7 O

Proposition 6.1 expresses non-refinement. It states that there are observations 7,7’ in the mutant
MM that are not allowed by the original model M©. We call a state, i.e., a valuation of all variables,
unsafe if it enables unspecified observations.

59

Chapter 6. Refinement Checking of Action Systems 60

Definition 6.1 (Unsafe State)
A pre-state T is called unsafe if it shows wrong (not conforming) behaviour in a mutated model A
with respect to an original model M ©. Formally, we have:

me{v|37 : MM @,7) A -M°([@,7)}

An unsafe state can lead to an incorrect next state. Model-based mutation testing aims at generating
test cases that cover such unsafe states. Hence, the fault-based testing criteria are based on the notion of
unsafe states.

6.2 Non-Refinement of Action Systems

In the previous section, we have introduced non-refinement as a general criterion for identifying unsafe
states, which are crucial for mutation-based test case generation. In the following, we deal with the
special case of action systems. More precisely, we concentrate on plain action systems as presented in
Section 5.2.2.

Our predicative semantics (cf. Figure 5.2) defines the observations in our action system language as
the event traces and the system states before (7, tr) and after one execution (7', tr') of the do-od block.
A mutated action system AS™ refines its original version AS© if and only if all observations possible
in the mutant are allowed by the original. Hence, our notion of refinement is based on both, event traces
and states. However, in an action system not all states are reachable from the initial state. Therefore,
reachability has to be taken into account. We reduce the general refinement problem of action systems to
a step-wise simulation problem only considering the execution of the do-od block from reachable states.

Definition 6.2 (Refinement of Action Systems)

Let ASC and ASM be two action systems with PO (%, @, tr, tr') and PM (7,7, tr, tr') being the seman-
tics of their corresponding do-od blocks. Furthermore, we assume the existence of a function “reach”
that returns the set of reachable states for a given trace in an action system. Then

ASO € ASM —, Vo, v, tr,tr' : (U € reach(ASO, tr) A PM (0,7, tr,tr")) = PO (0,0, tr,tr'))

This definition is different to Back’s original refinement definition for action systems, which is solely
based on state traces [31]. Here, also the possible event traces are taken into account. Hence, also the
action labels have to be refined.

Negating this refinement definition and considering the fact that the do-od block P(v,v’, tr,tr') of a
plain action system is a non-deterministic choice of actions A;(v, v, tr, tr’) (cf. Section 5.2.2) leads to
the following formula.

Lemma 6.1

ASO 7 ASM o I, tr tr (ve reach(ASO,tr) A

(AM@, 0 trtr')V - -V AM (@, T tr tr')) A AL @, 0 tr tr') A - A =AQ (B, T, tr, tr'))

Proof:

AS9 iz ASM {Definition 6.2}
=-Vo,v tr,tr' . (v e Teach(ASO,tr) APM @ T tr tr')) = PO(E, v tr tr')))

{first-order predicate calculus}

Chapter 6. Refinement Checking of Action Systems 61

= 33,7, tr,tr' : ~((T € reach(ASC, tr) A PM (T, 7, tr, tr')) = PO (@,7,tr tr'))
{definition of implication}
= 33,7, tr,tr' : =(=(T € reach(ASC,tr) A PM (7,7 tr,tr")) v PO(T, 7, tr, tr'))

{first-order predicate calculus}

Il
LLI
<

T, tr,tr' - (T € reach(ASC, tr) A PM (5,7, tr,tr")) A ~PO (3,7, tr, tr"))
{(PM @0 tr,tr) =, (A (@, 0,tr,tr')V --- v AM (5,7 tr, tr'))}
PO@, @ tr,tr") =, (A9@, 7, tr,tr')V---V A9 (5,7, tr, tr'
if 1 m
=3v,7,tr,tr' : (v € reach(ASO, tr)
AN AN @ T tr 'y v v AM (@ Tt) A (AL @, Tt tr) V- AQ (5, Tt tr)))
{De Morgan}
=3v,7,tr,tr' : (v € Teach(ASO, tr)

A (A{w(@, vitrtr’) V-V A%(@, v tr,tr')) A —\Alo(@, vitr tr) A A —|An01(6, v tr,tr')) O

By application of the distributive law, disjunction becomes the outermost operator and the following
set of constraints for detecting non-refinement of action systems is obtained.

Theorem 6.1 (Non-refinement of Action Systems)
A mutated action system AS™ does not refine its original AS© iff any action AM (@0 tr,tr') of the
mutant shows trace or state-behaviour that is not possible in the original action system:

n
ASO 7 ASM o \/ 30,0, tr, tr'
i=1
(@ € reach(ASO, tr) A AM (@, T tr tr') A =AQ @, T, tr, tr') A ... A—=AQ (B, T tr, tr'))
Proof:
ASC iz ASM {Lemma 6.1}
= 37,7, tr, tr' : (v € reach(AS®,tr) A
(AM@, 0 tr,tr'Y v -V AM @, T tr, tr)) A AL @, Tty ') A - A=AQ (B, Tt tr))
{distributive law}
=30,0,tr,tr' :

(T € reach(ASC tr) AN AM (T, 0 tr tr') A =AL @, tr,tr') A - A=A (5,7, tr, tr')) v

(@ € reach(ASC tr) N AM (@, T tr,tr') A —AQ (0,0, tr tr') A - - A=A (0,7, tr, tr")))

{first-order predicate calculus}

Chapter 6. Refinement Checking of Action Systems 62
find

7/ ASO
mutated
N o

check
reachability &
non-refinement

yes _ /non-refinement
Y7 constraint

found

ASM
refines
ASO

yes

unsafe state
& trace

V%
g P test case ¢

construction

Figure 6.1: Process for test case generation via a refinement check.

= 3,0, tr,tr' :
(T € reach(ASC tr) N AM @, T tr,tr'") A AP (@, T, tr tr') A - A=A (0,7, tr, tr'))) v
SV
30,0 tr tr -

(@ € reach(ASC tr) N AM (@, T tr,tr') A —AQ (0,0, tr tr') A - A =AQ (0,7, tr, tr')))

{notation}
n
= \/ 30,7, tr, tr':
i=1
(T € reach(ASC tr) N AM (@, T tr,tr') A AL (@, T, tr, tr') A ... A=AQ (T, T, tr, tr")) O

In the next section, we show how Theorem 6.1 is applied in our refinement checking process.

6.3 Refinement Checking of Action Systems

Our refinement checking approach for action systems focuses on mutation testing, i.e., the inputs are an
original action system and a mutated version, which differs from the original only by small syntactical
changes. For now, we concentrate on plain action system as defined in Section 5.2.2. For the integration
into the MoMuT::UML tool chain (Chapter 9), we will adapt our approach in order to support complex
action systems introduced in Section 5.2.3. Furthermore, we check for operational refinement (cf. Defini-
tion 3.9) and do not consider data refinement (cf. Definition 3.10). Hence, if a mutation operator changes
the structure of the states of an action system, i.e., removes, adds, or renames variables that constitute the
state, it will be considered as not conforming. Furthermore, we assume that the testing interface is not
mutated, i.e., action signatures are not mutated and no new actions are introduced by a mutation operator.

Chapter 6. Refinement Checking of Action Systems 63

Figure 6.1 gives an overview of our approach to find an unsafe state (Definition 6.1). The inputs are
an original plain action system AS® and a mutated version AS™. Each plain action system consists
of a set of actions ASZ-O and AS JM respectively, which are connected via non-deterministic choice. The
first step is a preprocessing activity to check for refinement quickly. It is depicted on the left-hand side
of Figure 6.1 as box find mutated action. If there does not exist an unsafe state at this point, we cannot
find any mutated action that yields non-conformance. Hence, we already know that refinement holds
between the action systems. If we find an unsafe state in this phase, we cannot be sure that it is reachable
from the initial state of the action system. But we know which action has been mutated and are able to
construct a non-refinement constraint, which describes the set of all unsafe states. The next step performs
a reachability analysis and uses the non-refinement constraint to test each reached state whether it is an
unsafe state. In the following, we give more details.

6.3.1 Finding a Mutated Action

The non-refinement condition presented in Theorem 6.1 is a disjunction of constraints. Each constraint
deals with one action Afw of the mutated action system AS™ . Due to disjunction, it is sufficient to satisfy
one of these sub-constraints in order to find non-refinement. We use this insight in our implementation as
we perform the non-refinement check action by action (with regard to the mutant’s actions Aﬁ‘/f). In this
section, we first concentrate on finding a possibly unreachable unsafe state. Reachability is dealt with
separately in the next section.

Algorithm 6.1 gives details on the action-wise non-refinement check, which is depicted on the left-
hand side of Figure 6.1 (box find mutated action). As inputs it takes an original action systems A4S, a
mutated version AS™, and variables (7,7, a, P) that will be used to represent the observations that can
be made in one do-od block. It returns the name A of the action that has been mutated together with
its corresponding non-refinement constraint C'S_nonrefine.

In Line 1, we transform the whole do-od block of the original action system AS® into a constraint
system C'S_AS© according to our predicative semantics for plain action systems (cf. black parts in
Figure 5.2). We then translate one action AzM of the mutated action system AS™ into a constraint
system CS,AZM (Line 3). To decide about non-refinement between two action systems (Theorem 6.1),
the observations from both systems are expressed by the same alphabet (7, v/, tr, tr'). We only deal with
one iteration of the do-od block and use plain action systems, which do not allow sequential compositions
of actions. Hence, only one action can be executed in one iteration of the do-od block, which makes it
sufficient to encode the new part of the trace with one variable a representing this action. The consecution
of the executed action to the previous trace is performed externally. Therefore, our translation relies on a
pre-state encoded by a variable vector T, a post-state given as variable vector 7, and one action variable a
as well as a sequence of variables for its parameters P. These variables are fixed outside of our algorithm,
i.e., they are inputs for our algorithm, and are passed to the trans function such that the observations of
the original action system and those of the mutated action systems are encoded using the same variables,
ie., CS_ASC aswell as CS ,Ai‘/f have the same alphabet comprising v, ¥, a, and P. The set of variables
P representing the parameters is used for each action to encode its parameters. As actions may have a
different number of parameters, our implementation determines the size of the set P by the maximum
cardinality of an action. For actions with less or no parameters at all, the spare parameter variables are
constrained to a special value indicating that they are unused. Note that the action parameters P belong
to the observations of both systems. Hence, they must not be existentially quantified in each individual
action system as suggested in our predicative semantics for an action system (cf. Figure 5.2), which
would mean that they had local scope in each system and would not be related at all.

The non-refinement constraint CS_nonrefine is the conjunction of the constraint system represent-
ing the actually mutated action (C’S,AZM) and the negated constraint system representing the original
action system (—C'S_AS©, cf. Line 4). Apart from ignoring reachability, the non-refinement constraint

Chapter 6. Refinement Checking of Action Systems 64

Algorithm 6.1 findMutatedAction(AS©, ASM 5,7, a, P) : (AM, CS_nonrefine)
. CS_AS© := trans(AS°, 7,7, a, P)

1

2: forall AM € ASM do

3. CS_AM .= trans(AM v, v'a, P)

4 CS_nonrefine :== CS_AM N -~CS_AS©

5. if sat(CS_nonrefine) then

6: return (AM, CS_nonrefine) // mutated action found
7. endif

8: end for

9: return (nil, false) // refinement holds

CS_AM A ~CS_AS© corresponds to one sub-formula of Theorem 6.1. Its alphabet is the same as for
its individual components, i.e., v, 7', a, and P.

The non-refinement constraint for the just translated action is then given to a constraint solver to
check whether it is satisfiable by some ©,7’, a, P (Line 5), i.e., whether there exists an unsafe state T
for ASM and AS©. If yes, we found the mutated action and return it together with the according non-
refinement constraint CS_nonrefine. Otherwise, the next action AZM is investigated (loop in Line 2).
If no action leads to a satisfiable non-refinement constraint, then AS™ refines AS° (Line 9). Algo-
rithm 6.1 is sound for first-order mutants that only incorporate one syntactical change per mutant (cf.
Definition 4.10). It aborts after finding the first action that leads to an unsafe state. Note that we do not
know yet whether an unsafe state is actually reachable. For higher-order mutants with more than one
syntactical change per mutant (cf. Definition 4.11), it could happen that our algorithm finds a mutated
action for which no unsafe state is reachable. In this case, it is necessary to backtrack and search for
another mutated action until an unsafe state is actually reachable or all actions are processed.

Example 6.1. Consider an action system comprising one state variable s of type int with a range be-
tween 0 and 4. Furthermore, assume two actions a and b. The action a has no parameters and is defined
as:

a :: (true) => skip
while the action b has one parameter B and is defined as:
b(B) :: (B #>=0) => (s := B)

Let the do-od block of this action system be a non-deterministic choice of the two actions:

a []b(2)

To demonstrate our translation, let V' be the Prolog variable used to represent the pre-state variable s. Let
the variable Vp encode the post-state variable s’. Let the variable A be used to encode the chosen action.
Furthermore, the variable P will be used represent the parameter of action b in the resulting constraint
system. Moreover, let the integer representing the action a be 1, and the integer encoding the action b
be 2. The special integer indicating that a parameter is unused is represented by a special integer, e.g.,
—1000. The translation of action a is then:

A=1ANP=—-1000N Vp =V
Similarly, action b is translated to:

A=2AP=2A2>0AVp=2

Chapter 6. Refinement Checking of Action Systems 65

Note that unification is used to relate the actual parameter 2 with the formal parameter B. Hence, the
resulting formula directly uses the value 2. We encode that this action is named b by A = 2 as b is
represented by the integer 2. Similarly, we state that its observable parameter P is equal to its actual
parameter, i.e., 2. The whole do-od block is the disjunction of these two formulae:

(A=1AP=—1000AVp=V)V(A=2AP=2A2>0A Vp=2)

This formula corresponds to C'S_AS® in Algorithm 6.1.

An action of a mutated version of this action system is translated analogously. Let
a:: (true) =>s:=0
be the mutated version of action a. The resulting constraint system is
A=1ANP=—-1000N Vp=0

and was denoted with C'S ,AZM in Algorithm 6.1. What is important is that the same variables (V, Vp,
A, and P) are used to encode the observations. Note that this is possible as we presume that the state
variables are the same in both action systems and that the testing interface is not mutated, i.e., the action
signatures are not mutated and no new actions are introduced. The resulting non-refinement constraint,
denoted CS_nonrefine in Algorithm 6.1, is:

(A=1AP=—1000A Vp =0) A
~(A=1AP=—=1000AVp=V)V(A=2AP=2A2>0A Vp=2)) O

What needs to be stated additionally are the domains of the used variables. The range of variable A is
determined by our integer encoding for the action names. In this example, it ranges from 1 to 2. The pre-
and post-state variables V' and Vp range from 0 to 4 as defined by type ¢nt. Finally, the parameter P may
be either unused (—1000), or the constant 2. As the used constraint solver always needs restricted ranges,
we constrain parameters to a given range, e.g., between —1000 and 1000. If this is not sufficient for a
given action system, these values can be adjusted. Given these ranges, the non-refinement constraint is
satisfiable, e.g., by A = 1, P = —1000,V = 1, Vp = 0. This is checked in Line 5 of Algorithm 6.1.
Remember that this non-refinement constraint was built on the action a of the mutated action system.
Due to its satisfiability, Algorithm 6.1 returns the action a as the mutated action and the corresponding
non-refinement constraint.

Identifying the mutated action is important for performance given the used constraint solver. We
experienced that solving the non-refinement constraint CS_nonrefine for one action of the mutant is by
far faster than solving a non-refinement constraint encoding all actions of the mutated action system at
once. Experiments showed that the latter is impractical with the used constraint solver.

6.3.2 Reaching an Unsafe State

Now we know whether there exists an unsafe state. If this is the case, we also know which action has
been mutated and we have determined a non-refinement constraint that describes the set of all possible
unsafe states. But we do not know yet, whether an unsafe state is actually reachable from a given initial
state. It is possible that an unsafe state exists theoretically and has been found in the previous step, but
that no unsafe state is reachable from the initial state of the system. In this case, the mutated action
system conforms to the original, i.e., the mutant refines the specification (cf. Definition 6.2). To find
out whether an unsafe state is actually reachable, we perform a state space exploration of the original
action system ASC. During this reachability analysis, each encountered state is examined if it is an

Chapter 6. Refinement Checking of Action Systems 66

Algorithm 6.2 reachNonRefine(ASC, CS_nonrefine,©,v, a, P, max, init) : (unsafe, trace)
1: if sat(CS_nonrefine N0 = init) then
2: return (init,[])
3: end if
4: Visited := {init}
5: ToEzxplore := enqueue((init,[]),[])
6
7
8
9

: while ToExplore # || do
(sg,tr-sg) := head(ToEzxplore)
ToEzplore := dequeue(ToEzplore)
if length(tr_sp) < maz then

10: for all (s;, as, params;) € succ(sg) : s; & Visited do
11: tr_s; == add(tr_sg, a; (P))

12: if sat(CS_nonrefine AU = s;) then

13: return (s;,tr_s;) // unsafe state

14: end if

15: Visited := add(s;y, Visited)

16: ToEzplore := enqueue((sy, tr_s;), ToExplore)

17: end for

18: endif

19: end while
20: return (nil,[|) // refinement holds

unsafe state. This test is realised via a constraint solver that checks whether the reached state fulfils our
non-refinement constraint (see right-hand side of Figure 6.1).

The pseudo-code shown in Algorithm 6.2 gives more details on our combined reachability and non-
refinement check. The algorithm requires the following inputs: (1) the original action system AS©,
(2) the constraint system CS_nonrefine representing the non-refinement constraint obtained from Algo-
rithm 6.1, (3) the variables v encoding the pre-state in the non-refinement constraint, (4) the variables
¥’ encoding the post-state, (5) the variable a encoding the action, and (6) the variables P representing
the action parameters in the non-refinement constraint. Further inputs to the algorithm are (7) an integer
maz restricting the search depth, and (8) the initial state init of the action system AS©. The algorithm
returns a pair consisting of the found unsafe state and the trace leading there.

At first (Lines 1 to 3), we check whether the initial state is already an unsafe state. That is, we call
the constraint solver with the non-refinement constraint and require the pre-state variables v to be equal
to the given initial state init of AS?. If these constraints are satisfiable, we detected non-refinement.
We found either a state that can be reached from init only in the mutant but not in the original, i.e.,
a valuation for ¥, or an action with parameters, i.e., values for a and P, that is enabled at state init
only in the mutant but not in the original. In this case, init is returned as unsafe state together with the
empty trace. Otherwise, we perform a breadth-first search (Lines 6 to 19) starting at init. The queue
ToFEzxplore holds the states that have been reached so far and still have to be further explored. It contains
pairs consisting of the state and the shortest trace leading to this state. The set Visited holds all states that
have been reached so far and is maintained to avoid the re-exploration of states. To ensure termination,
the state space is only explored up to a user-defined depth max (Line 9).

The function succ(sg) (Line 10) returns the set of all successors of state sg. Each successor is a
tuple consisting of (1) the successor state s1, and (2) the action a; with (3) parameters params; leading
from sy to s;. The successors are calculated via the predicative semantics of our plain action systems
(cf. black parts in Figure 5.2). The semantic predicates represent a constraint system encoding the

Chapter 6. Refinement Checking of Action Systems 67

transition relation of our original action system. It describes one iteration of the do-od block. Again,
the observations in the form of the pre-state v, the post-state 7, and the action a with parameters P are
encoded by using specified variables in the constraint system. For finding the successors of a given state
so, the constraint that v, which encodes the pre-state in the constraints, is equal to sqg is added to the
constraint system. We then use a constraint solver to determine valuations for the action variable a, the
parameters P, and the variables ¥’ that represent the post-state. By calling the constraint solver multiple
times with an extended constraint system (with the additional restriction that the next solution has to be
different from the previous ones), we get all transitions that are possible from sg. Note that we stop when
the extended constraint system is unsatisfiable. In this case, there are no further solutions.

Each state s; that is reached in this way and has not yet been processed (s; ¢ Visited) is checked
for being an unsafe state (Line 12). This works analogously to Line 1. If an unsafe state is found, it
is returned together with the trace leading there (Line 13). Otherwise, the state is included in the set
of visited states (Line 15) and enqueued together with its trace for further exploration (Line 16). If no
unsafe state is found up to depth max, the mutant refines the original action system and we return the
pair (nil,[]) as a result (Line 20). Note that the recording of the trace is not encoded in the constraint
systems, but is performed in Line 11 by appending the actions and parameters obtained by the solver to
the trace that leads to the pre-state.

If the mutated action system does not refine the original up to the maximum search depth, our re-
finement check results in an unsafe state and a sequence of actions leading to this state. Based on this
trace, it is possible to create a test case. This test case extraction step is already included in Figure 6.1.
However, we delay its description to Chapter 8. In this chapter, we concentrate on the refinement check.
In the following section, we point out pitfalls that we encountered during the implementation of our
conformance check and explain our solutions for each pitfall.

6.4 Pitfalls

Implementing model-based mutation testing via refinement checking of action systems is not totally
straightforward. The following pitfalls range from obvious to more subtle problems and concern different
aspects of our approach as will be seen in the following.

6.4.1 Conformance Relation

The goal of model-based mutation testing is to generate test cases that are able to distinguish two systems
(an original and a mutated model). For this purpose, we need to check for conformance between the
mutated and the original model. Our first pitfall affects the choice of an appropriate conformance relation.

Pitfall 1. For deterministic systems, non-equivalence checking is a standard approach for finding coun-
terexamples to conformance that allow the derivation of distinguishing test cases, e.g., [208, 173]. How-
ever, it is not suitable when non-determinism is involved (as it is the case for action systems). Just
assuming the same inputs and asserting that at least one output of the mutated system differs from the
output of the original one is not sufficient and leads to wrong results. O

Example 6.2. A system returns either 1 or 2 as an output regardless of the input. This can be expressed
by the constraints C'©:
C9 = (out® =1V out? = 2)

The variable out© represents the return value of this original system. A mutated version could return 2
or 3. The variable out™ represents the output of the mutated system in the corresponding constraints
cM:

cM = (out™ =2 v outM = 3)

Chapter 6. Refinement Checking of Action Systems 68

The return values out® and out™ represent our possible observations. In order to reveal that equivalence
does not hold, it is required that the observations differ:

CO ACM A out™ + out®

There exist three solutions satisfying these constraints: (1) out™ =2, out® =1, (2) out™ = 3, out® =
1, and (3) out™ = 3, 0ut® = 2. Obviously, the second and the third are real counterexamples, since
the mutant returns 3, which is not specified by the original system — neither in the first nor in the second
branch. The first solution is not a real difference between the two systems. Value 1 is not the only
specified output. Also 2 is allowed by the original. Hence, the mutant shows correct behaviour if it
returns 2. O

Example 6.3. The problem becomes even more obvious if we check whether a non-deterministic spec-
ification is equivalent to itself. In this case, we should not find any counterexample for conformance,
since each system conforms to itself. Again, consider the system’s specification C© from above and the
very same specification as implementation. The following constraints encode non-equivalence:

C9 = (out® =1V out® = 2)
M = (out™ =1 v out™ = 2)

CO A CM A out™ +# out®

There exist solutions for these constraints (out™ = 2, 0ut® = 1 and out™ = 1, 0ut® = 2), which is
not what we expect. Hence, for non-deterministic systems, equivalence checking leads to false-positive
counterexamples. O

These examples illustrate that an equivalence relation assuming the same inputs and at least one
different output is not a suitable conformance relation for non-deterministic systems. We already consid-
ered conformance relations in Chapter 3, where we defined the characteristics of an equivalence relation
(Definition 3.5). We also pointed out that equivalence is very strict and does not allow specifications
to be more abstract than their implementations. Abstraction often involves non-determinism. We also
pointed out that useful conformance relations are relations relying on some ordering from abstract to
more concrete models. One of these order relations is relational refinement (Definition 3.11). Earlier
in this chapter, we already showed how non-refinement expresses the main idea behind model-based
mutation testing (Proposition 6.1).

Example 6.4. Reconsider the above examples. Using non-refinement as expressed in Proposition 6.1,
we now get the following constraints (note that we assume the same observations, i.e., post-states repre-
sented by out™ and out©):

CM A =CO A outM = out®

Considering C© and CM as stated in Example 6.2, we now get only one solution (out™ = out® = 3),
which is the only real counterexample. Considering C© and C™ from Example 6.3, where C was
actually equal to C'°, we get no solution any more. This reflects what we would naturally expect since
we compared two identical systems. O

6.4.2 Semantics

In Figure 5.2, we already defined the semantics of action systems via predicates. In the following, we
explain why we chose this semantics.

Chapter 6. Refinement Checking of Action Systems 69

For encoding deterministic programs as constraints [103, 70, 208, 173], a common approach is to use
Static Single Assignment (SSA) form [20]. The SSA form is an established intermediate representation
for programs, where each variable is defined only once. This is accomplished by introducing a new
identifier for each variable on the left-hand side of an assignment. This works fine for the positive case,
i.e., for the exploration of the state space of a system, but in general entails problems when negation is
required as in model-based mutation testing using refinement (cf. Proposition 6.1).

Example 6.5. Consider the following specification using sequential composition and its constraint rep-
resentation via SSA form:

out ;= 1;0ut == out +1

C9 = (out? =1 A outd = out? + 1)
A possible implementation could be:

out := 2

cM = (out™ = 2)

Since both systems return 2 in any case, refinement holds and we should not find a counterexample.
Non-refinement is expressed by the following constraints:

CM A =CO A out™ = out?

Unfortunately, these constraints can be satisfied by out™ = outlo = outg) = 2, which wrongly classifies
our implementation out := 2 as incorrect. O

Pitfall 2. The above example demonstrates that deriving constraints via the SSA form is problematic
for specifications comprising sequential compositions. It may result in false positive counterexamples —
even for deterministic systems. o

The problem is that the SSA form does not reflect the semantics of sequential composition in a
completely correct way. During the transformation of a program into SSA form, a new intermediate
variable is introduced for each variable occurring as left-hand side of an assignment. As in Example 6.5,
out := 1;out := out + 1 is transformed into out; = 1 A outy = out; + 1. In this way, an inter-
mediate variable out; is introduced as free, i.e., observable, variable and causes a false counterexample
as our implementation did not show such an intermediate observation. Note that we are only interested
in observing final states whereas intermediate states shall be hidden. Our relational predicative seman-
tics for action systems (Figure 5.2) correctly expresses this by existential quantification of intermediate
variables, i.e., they become bound variables.

Example 6.6. Reconsider Example 6.5, where out := 1;out := out + 1 served as specification and
out := 2 as implementation. Using our predicative semantics, the specification is represented as

cO = (F outp : outg =1 A out? = outy + 1)
Furthermore, the implementation is CM = (out™ "= 2). The constraint system expressing non-

refinement is C™ A —=CO A outM’ = out?’. It cannot be satisfied any more, i.e., the implementation
refines the specification, as we show in the following:

Chapter 6. Refinement Checking of Action Systems 70

CM A =CO A out™ = out? {apply CM, C°}
outM =2 A —(F outy : outyg = 1 A out? = outy + 1) A out™' = out®’

{set out™" = out® = 2, outy = 1, otherwise contradiction}
out™ =2A-Foutg: 1=1A2=1+1)Aout™ = out? {first-order predicate calculus}
out™ =2 A = (true) A out™’ = out® {first-order predicate calculus}

false O

The semantics via SSA form and our predicative semantics differ in case of negation. In the posi-
tive case, the SSA form of a sequential composition B; ; By corresponds to the predicates p1 (7, 7g) A
p2(Tg,v") where p; represents the semantics of By and po represents the semantics of By. Existen-
tial quantification of vy is done implicitly by the constraint solver. Basically, this makes it equal to
our predicative semantics for sequential composition, which is 3 7y : (p1(v,79) A p2(70,v’)) given
that ¢(B1)[v" + To] = p1(7,7p) and ¢(Bo)[v < vg] = p2(To,v’). However, if we negate our pred-
icative semantics, we get =(3 vy : (p1(U,70) A p2(v0,7'))). If we negate the SSA form, we get
=(p1(v,9) A p2(vg,v')). Again, the constraint solver implicitly existentially quantifies all variables
and we get 30,79, 7" : (—p1(U,00) A p2(vg, 7)), which is wrong as the existential quantification is not
negated. Hence the source of Pitfall 2 is a wrongly placed existential quantification. This leads us directly
to the next pitfall.

Pitfall 3. Our predicative semantics leads to the following constraints for a sequential composition
Bi ; Bo that is negated:

=(370 1 (B(B1)[V' < W] A $(B2)[v < w)))
By resolving negation, we get
V15 1 (~(¢(B1)[v = W] A ¢(B2)[v + 7))

This constraint system expresses exactly what is intended, but uses universal quantification. Universal
quantification can only be expressed in quantified constraint satisfaction problems [101], which are not
supported by common constraint solvers. O

A possible solution to this problem is the so-called one-point rule.

Definition 6.3 (One-Point Rule)
Given a variable x, an expression e, and a predicate P over variable x. Given that x does not occur free
in e, then:

(Fz:z=eNP(z)) < Ple)

This means that if the variable is fixed to one value, it is possible to substitute the value for the

variable and eliminate existential quantification.

Example 6.7. Consider the formula 3 = : x = 2y A = > 0. By application of the one-point rule where
P(z) = (z > 0), we can eliminate the existential quantification. This yields 2y > 0. O

Chapter 6. Refinement Checking of Action Systems 71

Pitfall 4. The application of the one-point rule is only possible if the left-hand side of a sequential
composition is deterministic, i.e., it if binds a variable to one value. This is the case for assignments.
Nevertheless, constructs like (out := 1 [] out := 2) ; out := out + 1 are possible. Its constraint
representation is 3 outy : ((outg = 1V outy = 2) A out’ = outy + 1). In this case, the left-hand side of
the sequential composition is not deterministic and as a consequence we cannot substitute since we do
not know which value will be assigned to out. |

We can avoid such problems by introducing a normal form which requires that non-deterministic
choice is always the outermost operator and not allowed in nested expressions. In this way, the left-hand
side of a sequential composition is always deterministic and existential quantification can be eliminated.
Given that sequential composition corresponds to conjunction and non-deterministic choice corresponds
to disjunction, this required normal form can be related to the disjunctive normal form (DNF) in predicate
logic. Hence, we can automatically rewrite each action system into this normal form.

Example 6.8. Reconsider the example used in Pitfall 4, i.e., (out := 1 [] out := 2) ; out := out + 1.
By normalising this statement, we transform it into:

(out :=1; out := out + 1) [] (out := 2 ; out := out + 1)
The constraint representation of this normalised form is:
(Foutg : outy = 1 A out’ = outg + 1) V (3 outy : outg = 2 A out’ = outy + 1)

Here, the one-point rule is applicable and yields the constraints (out’ =14 1) V (out’ = 2+ 1). O

6.4.3 Constraint Logic Programming

As already presented in Figure 5.2, the semantics of an action also comprises its action label and optional
parameters. Hence, we also have to encode action names (labels) and their parameters. At the moment
we use SICStus Prolog’s built-in constraint solver [62]. As it only supports integers, each action and
its parameters has to be associated with an integer. Richer data structures are supported by Constraint
Logic Programming (CLP), which combines logic programming with constraint solving. In this way, it
becomes possible to encode actions and their parameters as Prolog terms and use unification to compare
them. This facilitates the treatment of actions, but also leads us to another pitfall.

Pitfall 5. All operators dealing with operands that contain Prolog clauses must be Prolog operators.
Operators from the constraint solver will not work on Prolog clauses. Prolog’s operator for conjunction
is acomma ’,” and Prolog’s operator for negation is *\+’. Hence, our constraints to find a counterexample
(cf. Proposition 6.1)
37,7 MM@,7) A -MO(©,7)
would have to be rewritten to
37,7 : MM@,7), \+ M°@,7)

Unfortunately, Prolog’s negation is not equivalent to logical negation — as is well known. Prolog im-
plements negation as failure, i.e., \+ P means that P is not provable, whereas - P means P is not true. For
a more detailed explanation, we refer to Sterling and Shapiro’s comprehensive book on Prolog [186]. O

Example 6.9. Again, consider the specifications introduced in Example 6.2. From Example 6.4, we
know the following counterexample: out™ = out® = 3. If we use Prolog’s negation as described
above, we get the following CLP problem:

out™ = out®, (out™ =2V out™ = 3), \+(out® =1V out® = 2)

Chapter 6. Refinement Checking of Action Systems 72

1 wvar([f, s], bool).

2 state_def ([f, s]).

3 init ([false, false]).

4 as :—

5 actions (

6 >AlarmOn’ :: (true) => (

7 ((f #= false => f := true) % mutation: ((f #= false => f := false)
8 []

9 (s #= false => s := true))
10 ;

11 ((f #= false => f := true)
12 [1

13 (s #= false => s := true))
14)

15)
16 dood (’AlarmOn’).

Listing 6.1: Code snippet of an action system modelling a variant of the CAS.

Given that the domains for all variables range from 1 to 3, Prolog’s answer for this query is no, i.e., it
cannot find a counterexample. The reason is that the variables out™ and out© are not instantiated before
the negated term. They are just fixed to be 2 or 3. In this case, Prolog can prove out® = 1V out® = 2
as the right-hand side of the disjunction is true for out® = 2. As the goal out® = 1V out® = 2 is
provable, the negated goal fails. Hence, the whole CLP goal fails and no counterexample is found. O

The problem with negation as failure could be avoided by instantiation of all variables before the
call of negation. This can be established by letting the constraint solver enumerate all possible values
for the variables. Prolog’s backtracking would then ensure that all possibilities are tested. This solution
corresponds to other techniques that use explicit enumeration. For performance reasons, we rather stick
to pure constraint solving techniques and encode actions and their parameters as integers.

6.5 Illustration with the Car Alarm System

In the following we demonstrate our refinement checking approach that resolves all of the presented
pitfalls using the CAS introduced in Section 1.6.1. We already showed code snippets from an action
system modelling the CAS in Listing 5.1. However, for this demonstration we introduce a simpler action
system, which focuses on the activation of the alarms. Furthermore, we do not consider separate events
for turning the alarms on, i.e., 'FlashOn’ and 'SoundOn’, but only use one event 'AlarmOn’ for turning
on both alarms. Listing 6.1 presents code snippets of this action system. Line 1 declares two Boolean
variables f and s. They are used to indicate whether the flash and sound are turned on. It is not specified
in which order these two alarms are turned on. This is modelled by the sequential composition (;) of
two non-deterministic choices ([]) in the ’AlarmOn’ action. Lines 7 to 13 non-deterministically either
activate the flash lights (f) or the sound (s). Subsequently, the other alarm is turned on.

The first step is to normalise the action system depicted in Listing 6.1 to avoid Pitfall 4. Remember
that this normal form requires that non-deterministic choice is always the outermost operator and not
allowed in nested expressions. Normalisation has to be applied to each action’s body as this is the only
place where our syntax allows a combination of non-deterministic choice and sequential composition (cf.
Figure 5.1). Listing 6.2 shows the normalisation of the action AlarmOn, which is a non-deterministic
choice of four sequential compositions.

Next, the action must be encoded as constraints. By applying our predicative semantics of Figure 5.2,

Chapter 6. Refinement Checking of Action Systems 73

1 >AlarmOn’ :: (true) => (

2 (f #= false => f := true) ; (f #= false => f := true)
?1 [](f #= false => f := true) ; (s #= false => s := true)
Z [](s #= false => s := true) ; (f #= false => f := true)
; [](s #= false => s := true) ; (s #= false => s := true))

Listing 6.2: Normalisation of the action *AlarmOn’ defined in Listing 6.1.

true N
(3 fo, 80 : (f = false \ fo = true A so = s A fo = false A f = true N s’ = sg) V
3 fo,s0 : (f = false A\ fo = true A sg = s A sg = false A f' = fo N s’ = true) v
3 fo,50 : (s = false A fo = f A sg = true A fo = false A f' = true A s’ = s9) V
3 fo,50 : (s = false A fo = f A sg = true A so = false A f' = fo N’ = true)) A
a=1

Figure 6.2: Predicative semantics for Listing 6.2.

we avoid Pitfall 2. The resulting constraints are depicted in Figure 6.2 assuming that the integer encoding
for label AlarmOn is 1. Remember that unprimed variables belong to the pre-state and primed variables
represent the post-state. Furthermore, the variable a is used to encode the executed action label (cf.
Equation 6.6) and there are no parameters that need to be considered. To avoid Pitfall 3, we apply the
one-point rule to eliminate the quantifiers such that the constraints can be processed by a constraint
solver. The result is depicted in Figure 6.3. By simplification, we can skip Equation 6.1. Equations 6.2
and 6.5 are part of a disjunction and eliminated since they are contradictions. Altogether, this results in
the following constraints for the action AlarmOn:

((f = false A s = false A f' = true A s’ = true)V
(s = false A f = false A\ f' = true A s’ = true)) Na =1

Both cases of the disjunction are equivalent and may be reduced to one. We refer to the resulting con-
straints as C'© in the following:

CO:(f:false/\s:false/\f’:true/\s’:true/\azl)

true A (6.1)
((f = false A true = false A f' = true A8’ = s) V (6.2)
(f = false A\ s = false A f' = true A s’ = true) v (6.3)
(s = false A f = false A f' = true A s’ = true) v (6.4)
(s = false A true = false A f' = f A8’ = true)) A (6.5)
a=1 (6.6)

Figure 6.3: Quantifier-free predicative semantics for Listing 6.2 obtained by applying the one-point
rule to the constraints in Figure 6.2.

Chapter 6. Refinement Checking of Action Systems 74

This expresses what was intended to be modelled: the action AlarmOn (encoded by 1) is executed if
neither sound nor flash are activated yet and turns on both alarms. In Algorithm 6.1 this relates to Line 1,
i.e., CS_ASC in the algorithm is equal to C'.

The comment (%) in Line 7 of Listing 6.1 represents a possible mutation of the action system. It sets
the variable f to false instead of true. For this mutated action system, we derive the constraints C'*
analogously to C©:

CM =(((f = false A f' = true As' = s) V (6.7)
(f = false \ s = false A f' = false \ s’ = true) v (6.8)
(s = false A f = false A f' = true A s' = true)) A (6.9)
a=1) (6.10)

This corresponds to Line 3 in Algorithm 6.1. For action systems with more than one action, Algo-
rithm 6.1 performs this transformation for each action in the mutated action system until the non-
refinement constraint can be satisfied. In our simple example, we have only one action. This action
has been mutated and the non-refinement constraint CS_nonrefine is C™ A ~C©. Given that all vari-
ables are either Booleans or integers ranging from O to 1, the constraints are satisfiable by two solutions:

1. f=s= false, f' = true, s’ = false,a = 1 and
2. f=s= false, f' = false,s' = true,a =1

Both solutions serve as counterexamples for refinement as they reveal wrong behaviour and are reachable.
In our simple example, reachability of the unsafe state is trivial as the unsafe state is equal to the initial
state. The original action system activates both alarms (flash and sound), i.e., it sets the variables f
and s to true. The mutated action system can establish different behaviour. Consider Listing 6.1 again.
Although the mutated action system can establish the correct post-state by first activating the sound
(Line 9) and then enabling the flash lights (Line 11), it also might end up in an incorrect post-state by first
executing the mutated statement of Line 7. Afterwards, both branches of the second non-deterministic
choice are enabled. In case of choosing Line 11, the flash lights will be turned on, but no sound. This
corresponds to the first solution from the constraint solver, which satisfies Equation 6.7 of CM. If
Line 13 is executed, the sound will be enabled, but no flash lights, which corresponds to the second
solution from the constraint solver, which satisfies Equation 6.8. Note that Algorithm 6.1 does not
enumerate all solutions. It only checks whether a solution exists and since this is the case, it returns
AlarmOn as the mutated action and the non-refinement constraint CS_nonrefine. The variable valuations
f = false and s = false represent the pre-state, in which different post-state observations are enabled.
Hence, f = false,s = false represents an unsafe state (cf. Definition 6.1). As already mentioned, the
reachability check described by Algorithm 6.2 is trivial for our simple example as the unsafe state is
equal to the initial state.

6.6 Experimental Results

We implemented our refinement checking approach for plain action systems in SICStus Prolog. SIC-
Stus comes with an integrated constraint solver clpfd (Constraint Logic Programming over Finite Do-
mains) [62], which we used.

The translation of the actions into constraints is straightforward except for the application of the
one-point rule to eliminate the quantifiers. Therefore, we normalise the actions such that all branching
happens at the beginning of each iteration through the do-od block. The application of the one-point
rule is implemented via symbolic execution [138] during the translation of the do-od block. Note that

Chapter 6. Refinement Checking of Action Systems 75

our symbolic execution is simpler than in the general case as no branching occurs in between due to
normalisation. In each guard, we replace all references to variables by their current symbolic values.
Consecutive guards are combined via conjunction leading to our path condition. At each assignment, we
update the symbolic value for the assigned variable. At the end of each path, the final symbolic value for
each variable v; is added to the path condition pc. Having a lookup function symbVal that takes a variable
and returns its symbolic value, we have constraints of the form pc A v] = symbVal(vi) A ... A, =
symbVal(v],) Aa = action_id for each path through the action system. Note that the variable a encodes
the action to which the path belongs via a unique integer. The parameters are constrained in the guards
of the actions, i.e., in the path condition pc.

In the following, we report on experimental results with the CAS and the particle counter (cf. Sec-
tion 1.6) using the above described implementation. We also conducted experiments with an early imple-
mentation that did only work for very simple action systems like the CAS model. As this implementation
was an intermediate result and no general solution, we refrain from reporting results here. However, they
can be found in our first workshop publication [14].

6.6.1 Car Alarm System

We used a plain action system model of the CAS that is almost the same as the action system depicted
in Listing 5.1. The only difference is the modelling of time. In Listing 5.1, time is modelled as the first
parameter of each action, while in the used action system, there is an additional action after to encode
the passage of time.

We conducted our experiments for four different versions of the CAS: (1) CAS_I: the CAS as pre-
sented in Section 1.6.1 with parameter values 20, 30, and 270 for waiting times, (2) CAS_10: the CAS
with parameter values multiplied by 10 (200, 300, and 2700), (3) CAS_100: the CAS with parameters
multiplied by 100, and (4) CAS_1000: the CAS with parameters multiplied by 1000. These extended
parameter ranges shall test the capabilities of our constraint-based approach.

As we do not have a mutation engine for action systems, we manually created first-order mutants for
these four original CAS models by applying the following three mutation operators:

* guard true: Setting all possible guards to true resulted in 34 mutants.

* comparison operator inversion: The action system contains two comparison operators: equality
(#=) and inequality (#\=). Inverting all possible equality operators (resulting in inequality) yielded
52 mutants. Substituting inequality by equality operators resulted in 4 mutants.

* increment integer constant. Incrementation of all integer constants by 1 resulted in 116 mutants.
Note that at the upper bound of a domain, we applied the smallest value in the domain in order to
avoid domain violations.

From these mutation operators, we obtained a total of 206 mutated action systems for each CAS version.
Additionally, we also included the original action system as an equivalent mutant, i.e., we considered
207 mutants for each CAS version.

Our refinement checker yielded the following results: 30 mutants refine the original action system.
The remaining 177 mutants do not refine the original. Note that the state space of this model could be
fully explored: within 13 steps, i.e., 13 consecutive actions, all possible states of the system have been
reached. Figure 6.4 illustrates the lengths of the traces leading to the unsafe states. Many mutations can
already be identified in the initial state (trace length 0). However, there are also mutations that can only
be revealed in the deepest states at depth 13.

We conducted our experiments on a MacBook Pro with an Intel i7 dual-core processor (2.8 GHz) and
8 GB RAM with a 64-bit operating system. Table 6.1 states the computation time required to check for

Chapter 6. Refinement Checking of Action Systems 76

40 T34
35
30
25 23 22
20 17 17 17
15
9
10 7 8 7
5 5 4
5
1l1 el
0
o 1 2 3 4 5 6 7 8 9 10 11 12

13

mutants [#]

trace length

Figure 6.4: Overview of the lengths of the traces leading to the unsafe states for the CAS case
study.

refinement between the original model and the 207 mutated models for each of our four CAS versions.
We state the time needed to process all 207 mutants (3), the average time needed for one mutant (¢),
and the maximum amount of time needed for one mutant (max). We divide the execution time into
two parts: (1) the time to find the mutated action, i.e., for checking whether there possibly exists an
unsafe state and which action has been mutated as described in Algorithm 6.1 (column /: find mutated
action), and (2) the time needed for the combined reachability and non-refinement check as described
in Algorithm 6.2 (column 2: reach & non-refine). The sum thereof results in the overall execution time
for refinement checking (column fotal). For CAS_1, our refinement checker needs 41 seconds to process
all 207 mutants. For CAS_10, it needs already 179 seconds, then half an hour for CAS_100, and finally
approximately 4 hours for CAS_1000. Note that Table 6.1 does not contain minimum values as they are
0 ms for our refinement checker, i.e., not measurable in practice. Also note that the refinement check
for most mutants requires only a small amount of time. OQutliers rise the average value. The arithmetic
mean is between 13 seconds for CAS_1 and 3.4 hours for CAS_1000. In contrast, the median value is
0.12 to 0.15 seconds for each CAS version and 75% of the mutants can be processed in < 0.17 to 0.23
seconds per mutant. More information can be found in Table B.1 in the appendix. It is a more detailed
version of Table 6.1 as it additionally states values for the quartiles. What makes up the major part of
the total computation time is finding the mutated action. It takes more than half of the time for the total
refinement checking process and this already for the smallest CAS. For the largest CAS, it almost makes
up 100% of the total runtime (4.2 hours for the 207 mutants). In contrast, the combined reachability and
non-refinement check stays rather constant (18 - 23 seconds per CAS version for all mutants).

6.6.2 Particle Counter

We also applied our refinement checker for the particle counter use case. In particular, we used a plain
action system that models the control logic of the particle counter, which was created by Stefan Tiran.
Discussing the whole model goes beyond the scope of this thesis. However, to illustrate the complexity
of the model, Table 6.2 relates some model metrics of this industrial use case to the corresponding values
of the CAS action system models used in the previous section. Note that the metrics stated under CAS
hold for each of our four models (CAS_1, CAS_10, CAS_100, and CAS_1000). The model of the particle
counter consists of 26 actions and 10 state variables compared to 11 actions and 6 state variables of the
CAS model. Considering the domains of these variables, this leads to a combinatorial state space of
~ 1.6 x 10? possible state variable valuations for the particle counter compared to 1600 possible state

Chapter 6. Refinement Checking of Action Systems 77

1: find 2: reach &
. total
mutated action non-refine
CAS_1 by 23 18 41
¢ 0.11 0.09 0.2
max 13 0.37 13
CAS_10 by 160 19 179
¢ 0.77 0.09 0.86
max 127 0.38 127
CAS_100 by 32.4 min 23 33 min
¢ 9.39 0.11 9.5
max 28 min 0.49 28 min
CAS_1000 X 42h 18 4.2 h
¢ 73 0.09 73
max 3.4h 0.35 34h

Table 6.1: Computation times required by our refinement checker for the four versions of the CAS.
All values are given in seconds unless otherwise noted.

particle counter CAS

actions [#] 26 11
state variables [#] 10 6
possible states [#] ~ 1.6 x 10° 1600
reachable states [#] 1725 21
required exploration depth 28 13
LOC ~ 390 ~ 160

Table 6.2: Metrics describing the test models of the particle counter and the CAS.

variable valuations for the CAS. However, only 1725 of them are actually reachable compared to 21
reachable states of the CAS. Since our search is bounded, the chosen exploration depth is important.
In order to reach all possible states in the particle counter model, an exploration depth of 28 steps is
required; for the CAS it is 13. We measure the exploration depth as the number of events in a trace. For
these models, a full state space exploration is possible and was performed for our experiments. However,
note that if the used model is too complex and the state space cannot be fully explored, we might not
detect mutations that can only be observed deep in the system. This is a general problem of bounded
techniques, e.g., bounded model checking [69]. Note that Ulysses [10], the existing test case generation
backend for MoMuT::UML (Section 1.5.1) also performs a bounded ioco check up to a given depth limit.

From the model described above we again generated first-order mutants. We applied the following
mutation operators: setting guards to true resulted in 101 mutants, swapping equal and unequal operators
resulted in 249 mutants, and incrementing integer constants by one resulted in 322 mutants. In total, we
obtained 672 mutants. We started the refinement check up to depth 28 for all 672 mutants. However,
only 5 mutated models could be processed within 6 hours, when we aborted due to the poor progress.
The refinement checks of 4 mutants could be finished. Thereof, one mutant refines the original action
system. The other 3 mutants do not refine the original. For one mutant the initial state is unsafe. The
other two mutants have unsafe states at depth 5.

We conducted these experiments on the same machine we already used for the CAS experiments.
Hence, the runtimes are comparable between the two case studies. As in the CAS case study (cf. Ta-
ble 6.1), the vast majority of the overall computation time is needed for finding the mutated action. Only
41 seconds of the 6 hours were used for the combined reachability and refinement check. The search for

Chapter 6. Refinement Checking of Action Systems 78

the mutated action requires to check for satisfiability of the non-refinement constraint without a specified
pre-state, i.e., the constraint solver has also to search for a variable valuation for the pre-state. In contrast,
during our reachability analysis, the non-refinement constraint is always solved with respect to a given
pre-state. To have a specified pre-state seems to immensely simplify the search for the other variables
(action, parameters, and the post-state variables) for the used constraint solver.

In the next chapter, we present optimisations that allow us to cope with more complex models like
the one for the particle counter.

7 Efficiency in Refinement Checking

Parts of this chapter have been published in QSIC 2012 [13] and TAP 2013 [16].
Furthermore, parts of this chapter will appear in an issue of the SCP journal [17].

The particle counter use case demonstrated that our refinement checking implementation does not
yet show a reasonable performance. In this chapter, we present four optimisation techniques and report
on their effect for the CAS and the particle counter models.

7.1 Optimisation Techniques

7.1.1 Variable and Value Selection Heuristics

In the previous chapter, our implementation always used the default settings of SICStus Prolog’s inte-
grated constraint solver Constraint Logic Programming over Finite Domains (clpfd) [62]. Obviously,
different settings should be tried to see whether the performance can be improved. We modified the
search strategy of the constraint solver by trying different combinations of variable and value selection
strategies. Variables are provided to the solver in a list. By default, the solver selects the next variable
for assignment from left to right in the given list (leftmost). Note that we tried different orders of the
variables in the list. We found out that the best sequence is to first state the pre-state variables, then the
variables used for the action its parameters, and at last the post-state variables. Other variable selection
strategies that do not depend on the order of the variables in the given list include the first-fail principle
(ff) and the most-constrained heuristic (ffc). The first-fail principle selects the variable with the smallest
domain. The most-constrained heuristic selects the variable that has the smallest domain and additionally
the most constraints suspended on it. For value selection, the default is to try values in ascending order
(up). The other alternative is to use descending order (down).

7.1.2 Mutation Detection Strategies

In the previous chapter, we described our refinement relation for action systems. In Theorem 6.1, we
showed that non-refinement can be expressed by a disjunction of constraints of which each one deals
with one action AZM of the mutated action system AS™ . Due to disjunction, it is sufficient to satisfy one
of these sub-constraints in order to prove non-conformance. We tested which of these sub-constraints
is satisfiable, i.e., which action has been mutated. The satisfiable sub-constraint was referred to as non-
refinement constraint and used in the subsequent reachability check. So far, mutation detection has
been realised by passing non-refinement constraints to the constraint solver one after the other for each
action of the mutated action system. This has the advantage that only “real” semantical mutations are
detected. However, for both use cases, we experienced that this is rather demanding in terms of runtime
(cf. Section 6.6). A simpler and faster way to identify the mutated action is to perform mutation detection
on a syntactic level, i.e., by comparing the source code of the actions. We are aware that this information
could also be delivered from the mutation engine. However, we did not want to introduce unnecessary
dependencies. Furthermore, it will be seen from our experiments that a syntactic check does not cause
significant efforts (cf. Sections 7.2 and 7.3).

For the syntactic check, we have to consider the definitions of the actions. Additionally, their calls
in the do-od block are important, where actual parameters could be manipulated, e.g., parameters could
be replaced by constants or other variables. Our syntactic comparison is not sensitive to the renaming of

79

Chapter 7. Efficiency in Refinement Checking 80

Algorithm 7.1 chkRef (as, mutants) : unsafes Algorithm 7.2 chkRef1(as, mutants) : unsafes

1: unsafes := [] 11 unsafes := []

2: 2: states := findAllStates(as)
3: for all asm € mutants do 3: for all asm € mutants do
4: s:= getInitState(as) 4:

5. wisited := {} 5:

6: u:=nil 6: = mnil

7. while s # nil do 7. for all s € states do

8: if unsafe(s, as, asm) then 8: if unsafe(s, as, asm) then
9: uU:=Ss 9: uU:=S

10: break 10: break

11: end if 11: end if

12: visited := wvisited U s 12: end for

13: s := findNextState(as, visited) 13:

14: end while 14:

15 unsafes.add(asm, u) 15: unsafes.add(asm, u)

16: end for 16: end for

17: return unsafes 17: return unsafes

parameters and local variables, which are represented by Prolog variables. This is implemented via SIC-
Stus Prolog’s term utilities library. The predicate variant /2 checks whether two terms are identical
modulo renaming of variables.

Our syntactic check requires some pre-conditions. Firstly, we do not support overloading of actions,
i.e., each action is uniquely identified by its name. There must not exist two actions having the same
name but a different number of parameters. Furthermore, we suppose that no action call is added/deleted
from the do-od block by mutation operators. Note that actions may still be added/deleted from the tran-
sition relation by weakening/strengthening their guards. Finally, we do not allow the mutation of data
types. If some of these pre-conditions are violated, we possibly miss a mutation. Our implementation
checks the last assumption: each type defined in the original and in the mutated action system must have
the same definition. The other assumptions are not checked automatically. Hence, we implemented our
mechanism for finding the mutated action conservatively: If we cannot find any mutated action syntacti-
cally, we perform our semantic mutation detection strategy. However, using our mutation operators that
respect our pre-conditions, this semantic mutation check is never triggered.

7.1.3 Pre-computation of Reachable States

In model-based mutation testing, we typically deal with a large set of mutated models derived from
the original model. So far, the refinement checks between the original action system and each mutant
were completely decoupled. However, the check for the reachability of unsafe states is always performed
via an exploration of the same original action system (cf. Algorithm 6.2).

Algorithm 7.1 shows the straightforward approach for this reachability check for a given set of mu-
tants. It is more abstract than Algorithm 6.2 as it focuses on the calculation of the reachable states. The
inputs for Algorithm 7.1 are one original action system (as) and a set of corresponding mutated action
systems (mutants). The result is a map unsafes linking the mutants and their unsafe states. The algo-
rithm iterates over the set of mutants (Line 3). The variable s represents the current state of the original
action system, which is the initial state in the beginning (Line 4). Successor states are retrieved by the
procedure findNextState (Line 13). It implements a breadth-first search, whereas it does not explore any

Chapter 7. Efficiency in Refinement Checking 81

state more than once (by considering a list of visited states). To ensure termination, it stops exploration
at a user-specified depth limit. At each call, it returns the next reached state or nil in case of termination.
Each state is tested whether it is an unsafe state (Line 8). If this is the case, the state space exploration
is stopped and the mutant and the unsafe state are added into the map unsafes (Line 15). If no unsafe
state could be found, nil is inserted and the mutant is considered to refine the original up to the specified
depth limit. For the next mutant, state space exploration is performed again. For the sake of simplicity,
we omitted the recording of the traces to the unsafe states, the passing of the non-refinement constraints
as parameters, etc.

An advantage of Algorithm 7.1 is that the state space is explored on demand, i.e., it is only explored
until an unsafe state is found and not fully up to the given depth. For small sets of mutants, this is
appropriate. For large sets of mutants, it is not very clever as the same state space is explored again and
again. An alternative is to pre-compute all reachable states up to the given depth and then search for
unsafe states in this set. Exploring the full state space up to the given depth is not really an overhead.
It is done for equivalent mutants anyway and the probability that a large set of mutants contains at least
one equivalent mutant is rather high.

Algorithm 7.2 describes the refinement check with a pre-computed state space. It takes the same input
as Algorithm 7.1 and results in the same output. In contrast to Algorithm 7.1, Algorithm 7.2 explores
the state space only once and then reuses the reached states during mutation analysis. The procedure
findAllStates (Line 2) works analogously to findNextState of Algorithm 7.1, but does not return one
reachable state after the other. Instead, it returns the full set of states that are reachable up to the given
search depth at once. Afterwards, iteration over the mutants starts (Line 3), where each of the reached
states is tested whether it is unsafe (Line 8). The loop in Line 7 iterates over the states with increasing
depth to get the shortest counterexamples. Once an unsafe state is found, we stop searching for unsafe
states (Line 10), save the result (Line 15), and proceed with the next mutant without exploring the state
space again.

7.1.4 Incremental Solving

Incremental solving is a technique to efficiently solve a sequence of constraints cy, ..., ¢, that have large
parts in common. The constraints are related by adding or removing small parts. Incremental solving ex-
ploits the findings made during solving the constraint ¢; for solving the subsequent constraint c; 1 [202].
Most modern SMT solvers, e.g., Microsoft’s Z3 [76], MathSATS [67], or OpenSMT [57], provide this
functionality. They regard their clause database, i.e., constraint store, as a stack where constraints can be
pushed and popped. Pushing a constraint means that it is added by conjunction to the current constraints.
The pop operation discards the most recently pushed constraint including clauses that were learnt due to
this constraint. However, learnt clauses from constraints that are still on the stack remain unaffected.

Our refinement check is well suited to exploit incremental solving, as will be shown later. While most
modern Satisfiability Modulo Theories (SMT) solvers support incremental solving, our used constraint
solver does not offer such a functionality out of the box. Nevertheless, as we use Prolog as a program-
ming language we were able to implement incremental solving using constraint logic programming and
backtracking. Analogously to the incremental solving interface of SMT solvers, the constraint store is
regarded to be a stack, where constraints can be pushed (posted) or popped (retracted). The method solve
succeeds if the current store is satisfiable and a model may be retrieved. Otherwise, the constraints in
the store are unsatisfiable and solve returns false. Pushing constraints is straightforward, while popping
constraints has to be simulated via backtracking, i.e., we deliberately fail after we solved a constraint.

This principle is illustrated in Listing 7.1. We define a predicate pushSolvePop, which takes a con-
straint and returns a solution, i.e., a variable valuation that satisfies the constraint store. The first clause of
this predicate, pushes the given constraint by calling it in Prolog (Line 2). Then it invokes the constraint

Chapter 7. Efficiency in Refinement Checking 82

1 pushSolvePop(Constraint, _) :—

2 call (Constraint), % push given constraint on constraint store

3 solve (Solution), % solve the current constraint store

4 assert(solution (Solution)), % assert solution to Prolog’s database
5 fail . % deliberately backtrack to remove the last

6 % constraint from the constraint store

7

8 pushSolvePop (-, Solution) :—

9 retract(solution (Solution)). % retrieve and remove solution

10 % from Prolog’s database

Listing 7.1: Prolog’s backtracking facility is used for incremental solving.

solver to determine a solution for the current constraint store. This is encapsulated by a solve predicate
that invokes the constraint solver’s search for a solution (Line 3). Finally, the asserted constraint is re-
moved from the constraint store by an explicit fail statement (Line 5). It causes Prolog to backtrack,
which means that also the push operation of the constraint in Line 2 will be reverted. Furthermore, the
found solution will be dropped. In order to preserve the solution, we assert it into Prolog’s database as
a fact with functor solution, before we fail (Line 4). In this way, we can retrieve it from the database
in the alternative clause of our predicate in Lines 8 and 9. Note that the retract statement also removes
the solution fact from Prolog’s database. Overall, if the constraints in the store are satisfiable, our push-
SolvePop predicate does not fail, but returns the desired solution. The predicate fails if the constraints
are unsatisfiable. In this case, the first clause fails as the solve predicate fails if the constraint solver does
not find a solution. Furthermore, the second clause cannot succeed, since the retract predicate fails as
there is no solution fact in Prolog’s database. In any case, the constraint store after calling the pushSolve-
Pop predicate is in the same state as it was before calling the predicate. For background information on
Prolog, we refer to Sterling and Shapiro’s comprehensive book on Prolog [186].

Example 7.1. Assume that the current constraint store consists of the constraints X #>0 #/\ X#<10.
Note that we directly use SICStus Prolog’s syntax, where #> denotes greater than, #< means smaller
than, and #/\ represents conjunction. Furthermore, #= denotes equality. By calling our predicate
pushSolvePop (X #=2, Solution), the given constraint will be pushed (Line 2 in Listing 7.1). The con-
straint store now comprises the constraints X #>0 #/\ X#<10 #/\ X #=2. In Line 3, these constraints
are solved and the Prolog variable Solution will be unified with the only solution for these constraints,
i.e., X = 2. Subsequently, this solution is asserted, i.e., the fact solution(X = 2) is added to Prolog’s
database. Finally, we fail, which causes Prolog to backtrack. The unification of the variable Solution
with X = 2 is reverted and the constraint store is restored to its initial state, i.e., X#>0 #/\ X#<10.
Backtracking causes Prolog to search for other solutions. Hence, the second clause of the pushSolvePop
predicate is considered. There, the just asserted solution is retrieved and deleted from the store (Line 9)
and the predicate succeeds. O

Note that push, solve, and pop can also be implemented as separate predicates by splitting Listing 7.1
into its individual parts. In the following, we will use these operations separately.

Algorithm 7.3 is a more detailed version of Algorithm 7.2 and gives additional information on the
application of incremental solving. In Line 2, the original action system is translated. The resulting
constraint system represents its transition relation (trans_rel). It is posted to the constraint solver’s store
(Line 3). In Line 4, the state space is explored. The procedure findAllStates starts at the initial state of
as and recursively searches for all possible successor states. It uses the solve method and can reuse the
transition relation that is already in the constraint store. As the state space is now fully explored (up to
a given depth limit), the transition relation is not needed any more and can be removed from the store

Chapter 7. Efficiency in Refinement Checking 83

Algorithm 7.3 chkRef1Incremental(as, mutants) : unsafes

1: unsafes := [] 14: if solver.solve() then

2: trans_rel := trans(as) 15: U=

3: solver.push(trans_rel) 16: solver.pop() //pop (v=1s)
4: states := findAllStates(as, solver) 17: break

5: solver.pop() // pop trans_rel 18: end if

6: solver.push(—trans_rel) 19: solver.pop() //pop (v=1)
7: for all asm € mutants do 20: end for

8: w:=nil 21: unsafes.add(asm, u)

9: a™ := findMutatedAction(as, asm) 22: solver.pop() //pop mut_act
10: mut_act := trans(a™) 23: end for

11: solver.push(mut_act) 24: solver.pop() // pop —trans_rel
12: for all s € states do 25: return unsafes

13: solver.push(v = s)

(Line 5). In exchange, the negated transition relation is required for each refinement check with a mutant
(cf. Theorem 6.1). It is added to the store in Line 6. The actual refinement check starts in Line 7. It
iterates over the set of mutants. In Line 9, findMutatedAction syntactically compares the original and the
mutated action system. Thereby, it identifies the mutated action a™, which represents the second part of
our non-refinement constraint (cf. Section 6.3). It is translated into constraints (Line 10) and added to
the solver’s store (Line 11), which now contains the complete non-refinement constraint for the current
mutant. The loop in the Lines 12 to 20 performs the search for an unsafe state in the list of reachable
states. Each state s is used as the pre-state v of the non-refinement constraint (Line 13). If the current
constraint store is satisfiable, we just found an unsafe state — a state from which the mutant behaves in a
way that is not specified by the original (Lines 14 and 15). In this case we stop iterating over the states
(Line 17). In any case, the constraint v = s is removed from the store (Line 16 and Line 19 respectively).
To process the next mutant, the part of the non-refinement constraint that is specific to the current mutant
has to be removed from the store (Line 22). After finishing all mutants, we finally remove the negated
transition relation from the constraint store (Line 24).

Algorithm 7.3 shows that both the reachability analysis and the check for unsafe states are well suited
to exploit incremental solving. During reachability, the transition relation is solved again and again —
only the pre-states change (Line 4). While testing states whether they are unsafe, the non-refinement
constraint has to be solved repeatedly — again with changing pre-states (Line 13). Each non-refinement
constraint contains the negated original (Line 6). Thus, when processing several mutants, there is a
common part remaining in the store.

Algorithm 7.4 shows the incremental version of Algorithm 7.1. The use of incremental solving
is very similar to Algorithm 7.3. However, note that for Algorithm 7.4, we use two instances of the
solver. One for solving the transition relation (solver_tr), the other one for solving the non-refinement
constraint (solver). As the exploration of the state space and the non-refinement checks interleave, both
the transition relation and the negated transition relation are needed in the constraint store at the same
time. Using only one solver would result in an inconsistent constraint store.

7.1.5 Analysis of Optimisations

Roughly speaking, all of our refinement checking approaches with/without optimisations are in the same
class of complexity. As we check for the satisfiability of constraint systems, we are dealing with NP-
complete problems.

Chapter 7. Efficiency in Refinement Checking 84

Algorithm 7.4 chkRefIncremental(as, mutants) : unsafes

1: trans_rel := trans(as) 15: ui=s

2: solver_tr.push(trans_rel) 16: solver.pop() // pop (v =15)
3: solver.push(—trans_rel) 17: break

4: unsafes := [] 18: end if

5: for all asm € mutants do 19: solver.pop() //pop (v=1s)

6: s := getInitState(as) 20: visited := visited U s

7. wisited 1= {} 21: s := findNextState(as, visited, solver_tr)
8: u:=mnil 22: end while

9: ™ := findMutatedAction(as, asm) 23: unsafes.add(asm,u)

10: mut_act := trans(a™) 24: solver.pop() //pop mut_act

11: solver.push(mut_act) 25: end for

12: while s # nil do 26: solver_tr.pop() // pop trans_rel
13: solver.push(v = s) 27: solver.pop() // pop —trans_rel

14: if solver.solve() then 28: return unsafes

Nevertheless, we analyse our refinement checking approaches for their potential of improving ef-
ficiency. A practicable method is to give the upper bound for the number of constraint solver calls
required. We are aware that there is not necessarily a direct correlation to solving time. However, this
metric still gives valuable insights. The number of solver calls of our algorithms depends on the num-
ber of mutated models (Jmutants|), the number of actions defined in the action systems (|actions|),
the number of states (|states|), and the number of transitions in the equivalent Labelled Transition Sys-
tem (LTS) (cf. Definition 3.12) (|transitions|). It holds that |transitions| < |states|* x |actions| x
|parameter valuations|. For our unoptimised refinement checker as described in Section 6, we call the
solver at most once per action for finding the mutated action. For the state space exploration, the solver
is called at most |transitions| + |states| times: |transitions| times for enumerating the enabled tran-
sitions, and |states| times to find out that there are no further transitions enabled in the states. This is an
upper bound as the exploration is stopped as soon as an unsafe or visited state is found. In this search
for unsafe states, the solver is called at most once per state. Hence, the upper bound for the number of
solver calls in the unoptimised algorithm for all mutants is

|mutants| x (|actions| + |transitions| + |states| + |states|)
——— ———
find mutated action state space exploration check for unsafe states

This limit also holds for our first optimised version (Section 7.1.1). The different variable and value
selection heuristics are implemented in the constraint solver itself. Hence, they do not influence the
number of solver calls. As we deal with heuristics, the performance strongly depends on the given
problems and no general best solution can be predicted. Nevertheless, the variable selection heuristics
first-fail principle and most-constrained heuristic are more sophisticated. They dynamically adapt to the
current state of the search. Thereby, they have better chances of achieving good results.

Syntactic mutation detection (Section 7.1.2) reduces the number of solver calls. For finding the
mutated action, no solver calls are required any more. Hence, the upper bound for the number of solver
calls for all mutants is reduced to

|mutants| x (|transitions| + |states| + |states|)
——
state space exploration check for unsafe states

The upper bound for the number of solver calls for all mutants is furthermore reduced by the pre-
computation of the state space (Section 7.1.3). As the state space is only explored once (not for every

Chapter 7. Efficiency in Refinement Checking 85

mutant), it reduces to

|transitions| + |states| + (|mutants| X |states|)
~——
state space exploration check for unsafe states

This also holds if incremental solving is applied (Section 7.1.4). With incremental solving, parts of the
constraint systems can be reused. More specifically, the transition relation of the original action system
can be reused at most |transitions|+|states| times. Its negation (for the non-refinement constraints) can
be reused for each mutant, i.e., at most |mutants| x |states| times. Finally, we can reuse the constraints
for the mutated actions. However, this varies for each mutant. Hence, we can reuse |mutants| constraints
— each one for at most |states| times.

To assess our optimised implementations, we repeated our previous experiments described in Sec-
tion 6.6. We start by reporting results for the CAS.

7.2 Experiments with the Car Alarm System

For our experiments with the CAS, we use the same setting as in our previous experiments described in
Section 6.6.1. We deal with the same four versions of our CAS model: CAS_1 with parameter values
20, 30, and 270 for waiting, CAS_10 with parameter values multiplied by 10, CAS_100 with parameters
multiplied by 100, and CAS_1000 with parameters multiplied by 1000. For each CAS version, we reuse
our 207 mutated models. Furthermore, our experiments were conducted on the same computer, i.e., on
a MacBook Pro with an Intel i7 dual-core processor (2.8 GHz) and 8 GB RAM with a 64-bit operating
system. Hence, the results of our optimised implementation can be directly compared with our previous
results.

7.2.1 Variable and Value Selection Heuristics

We experimented with the constraint solver’s search strategy by trying different combinations of variable
and value selection strategies (see Section 7.1.1). Variable selection strategies include: (1) leftmost,
which selects variables from left to right in a given list, (2) ff - the first-fail principle, and (3) ffc - the
most-constrained heuristic. For value selection, up or down may be chosen, i.e., values are either selected
in ascending or in descending order.

We tried all six combinations of these variable and value selection strategies. The runtimes of our
refinement checker using the default setting (leftmost-up) were already reported in Table 6.1. However,
we restate them in Table 7.1 to have an overview of all strategies. Again, we partition the total runtime
into the time needed for finding the mutated action “/” and the time for the combined reachability and
non-refinement check “2”. Note that the semantic mutation detection via the constraint solver is used for
finding the mutated action. Results with syntactic mutation detection will be reported in the next section.

The default setting leftmost-up is the worst setting for our example. It takes up to 3.4 hours to deal
with one mutant of the CAS_1000 model (see Table 6.1). As can be seen from Table 7.1, also leftmost-
down does not scale well for larger parameter domains. For CAS_100 and CAS_1000, some mutants take
particularly long. For example, for CAS_1000 the maximum time spent on one mutant is 509 seconds,
which is the main part of the time needed for all mutants. 75% of all mutants do not take longer than
0.17 seconds per mutant. While leftmost-up also showed outliers, the other four combinations did not.
Note that information about outliers is given in Table B.2 in the appendix by stating values for quartiles.
In general, the first-fail principle (ff) as well as the most-constrained heuristic (ffc) show good results
regardless of the value selection strategy and the size of the variable domains. This makes sense as
these heuristics are more sophisticated than the static selection of the leffmost variable. They adapt to

Chapter 7. Efficiency in Refinement Checking 86

CAS_1 CAS_10 CAS_100 CAS_1000
> ¢ max| X ¢ max by 10} max by ¢ max
1 |23 011 13 |160 0.77 127 | 324 min 939 28min |42h 73 34h
Lepftm.— 2 |18 0.09 037| 19 0.09 0.38 23 0.11 0.49 18 0.09 0.35
total |41 0.2 13 |179 0.86 127 | 33min 9.5 28 min [42h 73 34h
1 9 004 055| 13 0.07 525 87 042 75 517 25 509
Leof‘t,vn:l'_ 2 |18 0.09 035| 18 0.09 0.34 24 0.12 047 17 0.08 0.34

total | 27 0.13 0.63| 31 0.16 5.33 111 054 75 534 2.58 509
1 {31 015 031] 32 0.15 0.31 45 022 043 31 015 03
ff-up 2 |18 0.09 046| 18 0.09 0.45 25 0.12 0.75 18 0.09 0.44
total | 49 0.24 0.68| 50 0.24 0.68 70 034 1.1 49 024 0.67
1 |38 0.18 035]| 38 0.18 0.37 54 026 0.53 37 0.18 0.36
2 (19 0.09 038| 19 0.09 0.37 26 0.13 0.51 19 0.09 0.35
total | 57 0.27 056 | 57 0.27 0.61 80 0.39 0.89 56 027 0.56
1 |24 012 032] 23 0.11 0.26 32 0.16 0.33 22 0.11 0.26
ffc-up 2 (19 0.09 049| 19 0.09 047 26 0.12 0.62 18 0.09 0.46
total | 43 0.21 0.66| 42 02 0.65 58 0.28 0.84 40 02 0.62
1 |25 012 026 26 0.12 0.27 35 0.17 0.37 24 012 0.26
2 (20 0.09 038| 20 0.1 0.56 27 0.13 0.6 18 0.09 0.35
total | 45 0.21 048 | 46 0.22 0.58 62 0.3 0.76 42 021 046

down

ffc-
down

Table 7.1: Execution times of our refinement checker using different variable/value selection strate-
gies for the four CAS versions. “7” stands for “find mutated action”, “2” for “reach
& non-refine”, and “fotal” is the sum thereof. All values are given in seconds unless
otherwise noted.

the current state of the search and select the next variable dynamically. Nevertheless, the combination
leftmost-down also accomplishes good results. For example, it achieves the shortest runtimes (27 and 31
seconds respectively) for CAS_1 and CAS_10. For CAS_100 and CAS_1000, ffc-up, i.e., the combination
of the most-constrained heuristic and the ascending order for value selection, is the fastest combination.
So there is no setting that consistently performs best for all CAS versions. Nevertheless, using the first-
fail principle or the most-constrained heuristic seems to be the best overall choice. They scale for all
four CAS versions (although CAS_100 seems to be a small outlier). We will check this hypothesis in our
second experiment with the particle counter use case (Section 7.3).

7.2.2 Mutation Detection Strategies

Although the above results are already promising, they can be further improved. As can be seen in
Table 7.1, the time needed for finding the mutated action “/” still takes a considerable amount of time
(33 - 97% of the total time needed for refinement checking). As already proposed in Section 7.1.2, a
syntactic analysis to find the mutated action should solve this problem. Table 7.2 lists the execution
times in seconds needed for syntactic mutation detection “/” for our four CAS versions and the six
combinations of variable and value selection strategies. Syntactic mutation detection leads to runtimes
that are drastically decreased compared to semantic mutation detection using the constraint solver. For
each CAS version and for each combination of variable/value selection strategies, the time to find the
mutated action for all 207 mutants is below one second. Hence, the total time needed for refinement

Chapter 7. Efficiency in Refinement Checking 87

CAS_1 CAS_10 CAS_100 CAS_1000

by ¢ max | X ¢ max | X ¢ max | X ¢ max
leftm.- 1 {054 0 008,057 0 007(048 0 0.07]051 O 0.08
up total [20 0.1 125} 20 01 123} 20 01 124| 20 0.1 1.22
leftm.- 1 {057 0 008,052 0 008[054 0 0.09] 0.6 0 0.08
down total | 19 0.09 039 | 20 0.1 04 | 20 0.1 047| 20 009 04
1 0.7 0 026069 0 02408 0 03308 0 0.26

total | 19 009 048 | 19 0.09 047 | 23 0.11 049 | 23 0.11 0.59

ff- 1 0.8 0 031,081 0 028| 09 0 031,09 0 029
down total | 20 0.09 038 | 19 0.09 037 | 23 011 045| 22 0.11 045
1 069 0 01905 0 018 0.7 0 0211065 0 021

total | 19 009 048 | 19 009 046 | 23 0.11 049 | 20 0.1 047

ffc- 1 (071 0 021055 O 02 {063 O 02105 0 0.19
down total | 20 0.1 037 19 009 036| 21 0.1 037| 19 0.09 037

ff-up

ffc-up

Table 7.2: Execution times for the CAS case study with our refinement checker using syntactic
analysis for finding the mutated action (“/”). Time values for “reach & non-refine” are
missing as they are almost the same as in Table 7.2. All values are given in seconds.

checking now basically consists of the time needed for the combined reachability and non-refinement
check. For this Step “2” of our process, we have omitted the runtimes in Table 7.2 as they are almost the
same as in Table 7.1. Using syntactic mutation detection, we achieved runtimes of 19 - 23 seconds to
process all 207 mutated models for each version of the CAS. Hence, the settings for the constraint solver
on how to choose variables and values have become irrelevant. The appendix includes Table B.3, which
extends Table 7.2 by values for the quartiles.

7.2.3 Pre-computation of Reachable States

All results presented so far were based on Algorithm 7.1, where the state space of the original action
system was explored for each mutant. In Section 7.1.3, we proposed a pre-computation of all reachable
states up to a certain depth (Algorithm 7.2).

Table 7.3 gives an overview of the computation times for all mutants of each CAS version using
the combination of the most-constrained heuristic with ascending value selection. Row “Algorithm 7.1”
restates the execution times needed without the pre-computation of reachable states with syntactic muta-
tion analysis (cf. Table 7.2). Additionally, Table 7.3 gives values for Algorithm 7.2, which performs the
reachability analysis only once. Here, we divide the total runtime into (1) the time needed for the state
space exploration (“reach”), which is performed only once for all mutants, and (2) the time needed to
find an unsafe state in the set of pre-computed states (“find unsafe”). The total runtime is a bit higher
than the sum of these two items as it also contains input/output operations such as parsing or logging of
the results. For each CAS version, the time needed for refinement checking 207 mutants could be further
decreased from about 20 seconds to approximately 7 seconds by the pre-computation of the state space.

7.2.4 Incremental Solving

Our last suggested improvement concerned the use of incremental solving as explained in Section 7.1.4.
We implemented incremental versions of Algorithm 7.1 as well as of Algorithm 7.2 resulting in Algo-
rithm 7.4 and Algorithm 7.3. The execution times of these two algorithms on the CAS case study are

Chapter 7. Efficiency in Refinement Checking 88

CAS_1 CAS_10 CAS_100 CAS_1000
Algorithm 7.1 total 19 19 23 20
reach 0.07 0.08 0.07 0.08
Algorithm 7.2 find unsafe 5.64 5.28 5.75 5.08
total 7.03 6.6 7.02 6.38
Algorithm 7.4 total 2.82 2.84 3.38 8.55
reach 0.01 0.01 0.02 0.01
Algorithm 7.3 find unsafe 1.5 1.59 1.53 1.71
total 2.63 2.62 2.66 2.69

Table 7.3: Execution times for the CAS case study. Different versions of our refinement checker
with/without optimisations regarding the state space pre-computation and incremental
solving have been run using the most-constrained heuristic combined with ascending
value selection (ffc-up). All values are given in seconds.

100000
15138
10000

1967
1000

179

100 T
a1 3 a2 8

seconds (log)

19 19 23 20

10 7.03°6.60 7.02 6.38

2.63 2.62 2.66 2.69

[l
—'ho

i o o o - o o o - o o o — o o o — o o o

| — o o | — o o | — o o | — o o | — o o

(%] | — o (%] | — o [%)] | — o (%) | — o (%) | — o

< (] | — < (] | — < 2] | — < (%] | — < (%) | —

O 3 2 LY & 2 L Y 3 92 L O T 2 L YT 2

g < g < S < S < o <

(o] [S] (8] S S

unoptimised 1) var./val. selection | 2) syntactic mutation 3) pre-comp. of |4) incremental solving

implementation heuristics detection reachable states

Figure 7.1: Reduction of the computation time for the CAS case study.

given in Table 7.3. Algorithm 7.4 achieves runtimes from 2.82 to 8.55 seconds for checking refinement
of 207 mutants. The runtimes are not constant with increasing domains of the parameters. Algorithm 7.3
performs better. It is faster (less than 3 seconds per CAS version) and the runtime is constant. Again,
the options ffc-up were used for constraint solving as our experiments in Section 7.2.1 indicate that this
combination is a reasonable choice.

To summarise the results of our optimisations, Figure 7.1 compares the computation times of our
implementations for the CAS case study. The stated values give the time required to process all 207
mutated models. As can be seen from the diagram, each optimisation was beneficial. Note that the time
in seconds on the Y-axis is scaled logarithmically, i.e., each grid line means an improvement by factor 10.
The left-hand side of the diagram shows the execution time required by our basic implementation as
described in Chapter 6, which did not scale for larger parameter domains. By applying more sophisticated
variable and value selection heuristics of the constraint solver, the runtimes could be drastically reduced
and stabilised for all CAS versions. For the combination of the most-constrained heuristic for variable

Chapter 7. Efficiency in Refinement Checking 89

. semantic syntactic
Algorithm 7.1 by mutants by 1) max
1 >598h 23.8 0.04 3.6
leftmost-up 2 > 41 22h 11.5 52.9
total >6h 5/672 22h 11.6 53.0
1 >599h 18.8 0.03 2.9
leftmost-down 2 > 1 1.8 h 9.6 44.1
total >6h 4/672 1.8 h 9.6 44.1
1 >598h 17.0 0.03 0.6
ff-up 2 > 87 1.9h 10.2 39.4
total >6h 71672 19h 10.2 394
1 > 596 h 16.0 0.02 0.29
ff-down 2 > 2.4 min 22h 11.9 47.2
total >6h 8/672 22h 11.9 47.2
1 >597h 16.9 0.03 0.6
ffc-up 2 > 1.4 min 1.9h 10.2 394
total >6h 6/672 19h 10.2 394
1 >597h 15.8 0.02 0.3
ffc-down 2 > 1.6 min 22h 11.8 46.9
total >6h 71672 22h 11.8 46.9

Table 7.4: Execution times of our refinement checker for the particle counter based on Algo-
rithm 7.1 using semantic and syntactic mutation detection strategies. All six variable/-
value selection strategies were used. “I” stands for “find mutated action”, “2” for
“reach & non-refine”, and “fotal” is the sum thereof. All values are given in seconds
unless otherwise noted.

selection and the ascending value selection, we achieved computation times between 40 and 58 seconds.
By our syntactic mutation detection, the runtimes could be further decreased by approximately 50% and
now vary between 19 and 23 seconds. The pre-computation of the reachable states could reduce the
runtimes to approximately 7 seconds for all mutants for each CAS version. Finally, incremental solving
decreased the computation time once more and achieves runtimes of less than 3 seconds.

In the next section, we investigate whether our optimisations show equally good results for the parti-
cle counter use case.

7.3 Experiments with the Particle Counter

Like for the CAS, we ran our optimised refinement checker implementations on the particle counter use
case. Again, we used the same setting as in Section 6.6.2, i.e., the same action system model, the same
672 mutated models, and the same computer to run our experiments.

7.3.1 Variable and Value Selection Heuristics and Mutation Detection Strategies

Table 7.4 summarises results for our first two optimisations applied on the particle counter use case. It
contains values for the runtimes of two different implementations of our refinement checker: one uses
semantic mutation detection, the second uses syntactic mutation detection (cf. Section 7.1.2). Both use
Algorithm 7.1, i.e., they explore the state space several times (once for each mutant). Both implementa-
tions were run six times due to varying configurations for the constraint solver. For each configuration,

Chapter 7. Efficiency in Refinement Checking 90

ffc-up leftmost-down
by ¢ max by ¢ max
Algorithm 7.1 total 19h 102 394 1.8h 9.6 44.1
reach 51.4 0.07 - 52.7 0.08 -
Algorithm 7.2 find unsafe | 44.1 min 3.9 17.0 | 42.8 min 3.8 17.4
total 45.1 min 4.0 - 43.8 min 4.0 -
Algorithm 7.4 total 32.1 min 29 18.3 | 33.2 min 3.0 17.3
reach 22.4 0.03 - 27.01 0.04 -
Algorithm 7.3 find unsafe 1.6 min 0.2 2.23 1.7 min 0.2 1.5
total 2.0 min 0.2 - 2.2 min 0.2 -

Table 7.5: Execution times for the particle counter. Different versions of our refinement checker
with/without optimisations regarding the state space pre-computation and incremental
solving have been run in two constraint solver configurations: ffc-up and leftmost-down.
All values are given in seconds unless otherwise noted.

we divide the total computation time “fofal” into two parts: “I” stands for the time needed to find the
mutated action, and “2” represents the time needed for the combined reachability and non-refinement
check. Note that the semantic mutation detection with the default constraint solver settings leftmost-up
corresponds to the results of our unoptimised implementation already reported in Section 6.6.2.

The implementation using semantic mutation detection performed rather poor. For none of the six
constraint solver strategies, it managed to check all 672 mutants for refinement with the original model
in a reasonable amount of time. We quit the execution of each run after a timeout of 6 hours. The
progress can be characterised in terms of mutants being processed. For no configuration, more than 8
mutants could be handled within 6 hours. As in the CAS case study (cf. Table 7.1), the vast majority of
the overall computation time is needed for finding the mutated action. Again, syntactic mutation analysis
resolves this problem. The time required for finding the mutated action syntactically lies between 16
and 24 seconds. We would expect that this time is constant for all constraint-solver configurations. We
repeated the experiments and found out that this variance is reproducible. We assume that it is caused
by internals of the Prolog runtime, e.g., by different needs for garbage collection. Anyway, these times
required for finding the mutated actions does not have great influence on the overall computation times
any more. The total time for the refinement check is 1.8 to 2.2 hours for checking all 672 mutants. Hence,
each constraint solver configuration achieves almost equally good results. The average time per mutant
amounts to ~10 to ~12 seconds. Again, there are a couple of mutants taking longer than most others.
The median value for checking one mutant is around 2 seconds. 75% of the mutants can be processed
in < 14 to 20 seconds per mutant. The time needed for finding the mutated actions shrank from several
hours to a few seconds and takes almost equally long for each mutant. As in the CAS experiment, the
strategy ffc-up still belongs to the fastest strategies. Note that the appendix includes Table B.4, which
extends Table 7.4 with values for quartiles.

Due to the syntactic mutation analysis, all 672 model mutants could be processed. Thereof, 121
refine the original model. The remaining 551 mutants have unsafe states between depth 0, i.e., the initial
state is unsafe, and depth 21.

7.3.2 Pre-computation of Reachable States and Incremental Solving
Table 7.5 presents the effect of our last two optimisations on the particle counter model. We ran all

experiments with two constraint solver configurations: ffc-up, which performed very good for the CAS
(cf. Table 7.1), and leftmost-down, which achieved the best results for the particle counter with syntactic

Chapter 7. Efficiency in Refinement Checking 91

400

> 360 > 360
350
300
»n 250
]
s 200
c
E 150 120
100
50 45
] 2
0 _c
unoptimised 1) var./val. 2) syntactic 3) pre-comp. of 4) incremental
implementation selection mutation reachable states solving
heuristics detection

Figure 7.2: Reduction of the computation time for the particle counter use case.

mutation detection (cf. Table 7.4). For both strategies, we state the time required for all mutants (X), the
average time for one mutant (¢), and the maximum time required by one mutant (max). The first data row
(Algorithm 7.1) restates the execution times from Table 7.4 for the two constraint solver configurations.
Algorithm 7.2 improves Algorithm 7.1 by exploring the state space of the original action system only
once (cf. Section 7.1.3). For Algorithm 7.2, the table distinguishes between various sub-tasks. The row
“reach” states the time needed for the exploration of the state space up to the maximum depth of 28. Note
that we do not state a maximum value per mutant for “reach”, as the state space is explored only once for
all mutants. The row “find unsafe” gives the time required to check these states for non-refinement. The
row “total” states the overall time needed for the refinement check. For Algorithm 7.1, we cannot make
this distinction since these tasks are entangled. The computation of the state space takes almost 1 minute
for both solver strategies. For 672 mutants, it is a considerable performance reduction to do it just once.
The runtimes could be reduced from almost 2 hours to about 45 minutes, a reduction of ~58%.

Table 7.5 further contains our results regarding the exploitation of incremental solving (cf. Sec-
tion 7.1.4). Algorithm 7.4, which is the incremental version of Algorithm 7.1, achieves runtimes of 32
and 33 minutes respectively. It is faster than Algorithm 7.2. Hence, incremental solving was able to
reduce the runtime from almost two hours to half an hour for the algorithm re-exploring the state space
for each mutant. This is a reduction of almost 75%. For Algorithm 7.2, which explores the state space
only once, incremental solving reduced the runtime from 45 to 2 minutes (Algorithm 7.3). Here, the per-
formance gain is even higher: a reduction by 95%. For the incremental algorithms, the pre-computation
of the state space reduces the runtime from 32 to 2 minutes, meaning a reduction by ~94%. Each setting
produced some outliers. For example, Algorithm 7.1 using strategy ffc-up has an arithmetic mean of
10.2 seconds, whereas the median value is less than 2 seconds. 75% of the mutants could be processed in
< 17 seconds per mutant. Further details can be found in Table B.5 in the appendix. It extends Table 7.5
by giving values for the quartiles.

Figure 7.2 shows the reduction of the computation times for the particle counter achieved with our
optimisations. The stated values give the time required to process all 672 mutated models. The left-
hand side of the diagram shows the execution time required by our basic implementation as described
in Chapter 6. While the application of more sophisticated variable and value selection heuristics of the
constraint solver helped with our CAS models (cf. Figure 7.1), the runtimes did not improve noticeably
for the particle counter. In both cases, we stopped our experiments after a timeout of 6 hours as no
significant progress could be observed. Only by our syntactic mutation detection, the runtimes could
be significantly decreased to approximately 2 hours. The pre-computation of the reachable states could
further reduce the runtimes to approximately 45 minutes. Finally, incremental solving achieved a further
performance gain. The 672 mutants can be checked for refinement in approximately 2 minutes.

Chapter 7. Efficiency in Refinement Checking 92

As can be seen from Figure 7.1 and Figure 7.2, our optimisations significantly reduced the computa-
tion times for the simple CAS as well as for the more complex, industrial particle counter use case and
led to a highly-optimised implementation of a refinement checker for action systems.

8 Test Case Construction

Farts of this chapter are going to be published in an issue of the SCP journal [17].

The previous two chapters concentrated on the refinement check between a mutated and an original
action system. In case of non-refinement, it results in an unsafe state and a trace leading to this state.
However, model-based mutation testing aims at generating test cases. In this chapter, we explain how
we construct test cases from traces leading to unsafe states and report results from experiments with our
two use cases. As in the previous two chapters, we concentrate on plain action systems as defined in
Section 5.2.2. The required extensions to support complex action systems will be discussed in Chapter 9.

8.1 Test Case Construction Approach

If the mutated action system does not refine the original, our refinement check provides an unsafe state
(Definition 6.1) and a trace leading to this state, which we extend to a test case.

Remember that our action system language (cf. Section 5.2) provides means to classify actions as
input or output actions. So far, we did not use this classification as refinement does not distinguish
between inputs and outputs. However, for testing, a well-defined testing interface (Definition 2.9) is
essential. In case of an input action in the test case, the tester has to become active and has to send the
input to the SUT. In case of outputs, the tester has to be ready to receive outputs from the SUT and
checks whether they are specified in the test case. Remember that inputs to the SUT are also denoted as
controllable, because they are controlled by the tester. Similarly, outputs from the SUT are also called
observable, since they can be observed by the tester. In our test cases, we prefix controllable actions by
ctr and observable actions by obs to comply with MoMuT::UML’s existing test case generation backend
Ulysses (cf. Section 1.5.1). A further guideline of MoMuT::UML is the generation of test cases that
satisfy the following properties defined by the ioco theory, which we introduced in Section 3.2.

Definition 8.1 (ioco Test Case)
According to the ioco theory [191], a test case is a Labelled Transition System (LTS) with inputs and
outputs (S, (L U {d}), T, so) (cf. Definition 3.12) with the following properties:

1. It is deterministic (cf. Definition 3.15).

2. It has finite behaviour (cf. Definition 3.14).

3. All of its terminal states assign a verdict (cf. Definition 2.19).
4.

The test case is controllable, i.e., each state either specifies one input to be sent to the SUT or
accepts all outputs including quiescence (Definition 3.16) from the SUT.

The last property concerning controllability may be changed by requiring that a test case always
accepts any output of the SUT [171, 192]. As a consequence, during test execution it has to be decided
non-deterministically whether to send an input or to wait for an output from the SUT. In order to conform
to MoMuT::UML’s existing test case generator Ulysses, we stick to the original definition.

A further property of the generated test cases, which was predefined by MoMuT::UML, is that the
produced test cases are positive test cases (Definition 2.14). We do not explicitly state fail verdicts.
Hence, we satisfy the property that a test case accepts all outputs from the SUT (Definition 8.1, Item 4)
only implicitly. We presume that every observable action not specified by the test case leads to a fail
verdict. Thus, the test case is a subset of the behaviour of the original model. Note that the original

93

Chapter 8. Test Case Construction 94

action system is sufficient for expanding a given trace to a test case. The pass verdict is characterised by
successfully passing an unsafe state, i.e., only specified observable actions are allowed after an unsafe
state. Hence, we extend the trace to the unsafe state by all observable actions that are enabled in the
unsafe state in the original model. Each of these transitions leads to a pass verdict.

For non-deterministic systems (Definition 2.12), we additionally need inconclusive verdicts. Reach-
ing an inconclusive verdict does not mean that the test case failed, but that the test purpose, which is a
given unsafe state in our case, could not be reached in the test run. Consider a non-deterministic SUT,
which is allowed to choose between several possible output actions. If only one of these outputs leads
to the test purpose, but the SUT chooses another one, the SUT behaves correctly but cannot reach the
test purpose any more. We augment our test cases with inconclusive verdicts by following the trace to
the unsafe state. In each state followed by an observable action, we test whether alternative observable
actions are enabled. If this is the case, we add a transition leading to an inconclusive verdict for each
additional observable action. Note that we only add transitions to states followed by observable actions,
but not to states that specify controllable actions, in order to respect the controllability property of ioco
test cases (Definition 8.1, Item 4).

To comply to the ioco theory [191], we have to consider quiescence (cf. Definition 3.16), which is
disregarded during our refinement check. Quiescence is represented by an additional observable action
0. As we concentrate on plain action systems for now, we do not have internal events and thus, the
d-action is only enabled whenever there are no other observable actions. As a consequence, § may only
occur directly before pass verdicts in our refinement-based test cases. Earlier in the test case, it cannot
be enabled whenever there are other observable actions. If there is a controllable action in the test case,
there must not be observable actions (cf. Definition 8.1, Item 4). Furthermore, it is not part of the trace
to the unsafe state itself as our refinement relation does not consider quiescence.

To implement the above described test case construction based on LTSs, we explore the relevant parts
of the action system’s state space. As in the reachability analysis for our refinement check, the transition
relation is encoded as a constraint satisfaction problem using our predicative relational semantics of
action systems (cf. Section 6.3.2). The exploration is started at the initial state of the action system
and the enabled actions and their successor states are determined by repeatedly solving the transition
relation. This yields the LTS semantics of the action system, where the actions form the alphabet of
the LTS and the states of the action system correspond to states of the LTS. For the use with ioco, the
resulting LTS still has to be enriched by J-transitions to incorporate quiescence, which is not considered
by the constraints representing the transition relation. By Definition 8.1 (Item 4), an ioco test case is
a deterministic LTS. Hence, if the obtained LTS is not deterministic, i.e., if any trace of the LTS leads
to more than one state, it is determinised to generate a deterministic test case. A standard approach for
determinisation is the subset construction [120].

Example 8.1. The LTS representing the behaviour of the action system model of the CAS, which was
presented in Section 5.2.1, is depicted in Figure 8.1. Like in Section 3.2, the LTS is represented as a
graph. Remember that controllable actions are marked by prefix ctr, while observable actions have the
prefix obs. Furthermore, the first parameter of each action denotes time (cf. Listing 5.1). For controllable
actions, it states the number of time units the tester has to wait before sending the input to the SUT. For
observable actions, it denotes the number of time units after which the SUT might deliver an output.
Note that this LTS is already deterministic (Definition 3.15). O

In our implementation, we do not fully explore the action system and compute the complete under-
lying LTS to extend one specific trace into a test case. In practice, we step through the given trace and
only explore those parts of the action system that are relevant to the test case. If we assign a verdict to a
state in the test case, we do not need to further explore this state. Also determinisation is performed on
the fly. If an action leads to more than one successor state, we merge all of them into one LTS state. If

Chapter 8. Test Case Construction 95

obs FlashOff(0)

ctr Lock(0) Close(0)

obs SoundOff(0)

ctr Unlock(0)

obs ArmedOff(0) obs ArmedOn(20)

ctr Close(0) p obs &
ctr Unlock(0) obs ArmedOn(0)
ctr Open(0)
obs SoundOff(270) | | 0bs FlashOffi270)
obs ArmedOff(0)
obs FlashOff(0) b
obs SoundOff(0)
obs SoundOn(0) obs FlashOn(0)
obs FlashOn(0) obs FlashOff(270)
obs SoundOn(0)
obs SoundOff(270)
ctr Unlock(0) obs SoundOff(30)

ctr Unlock(0)

Figure 8.1: LTS of the CAS action system shown in Figure 5.1.

this state needs to be further explored, this means that all its individual action system states are explored
and again, the resulting transitions are determinised as described above.

Ulysses, the enumerative test case generation backend of MoMuT::UML, performs the ioco check
between two action systems in a similar way. It explores both systems in parallel and performs the de-
terminisation and the check for ioco violations on the fly [5S0]. However, Ulysses does not use constraint
solving to determine possible parameter valuations, but is based on trial and error. It enumerates all
possible values for parameters and then tests whether these values fulfil the guard of a given action. For
large domains, this is inefficient and our constraint-based approach usually performs better.

Example 8.2. Figure 8.2 illustrates the construction of a test case for the CAS action system shown in
Listing 5.1. The left-hand side depicts a trace that leads to an unsafe state. It closes and locks all doors.
After 20 seconds, the system gets armed. Then the car is opened, which causes the system to become
disarmed. Furthermore, the optical and the acoustic alarms are activated. After 30 seconds, the sound is
turned off and the unsafe state is reached.

The test case resulting from the given trace is shown in the middle of Figure 8.2. It is constructed
by exploring the action system from the initial state. The LTS representing the full CAS behaviour
modelled in the action system is depicted in Figure 8.1. Those parts that are actually explored during
test case construction using the given trace are highlighted in blue. In each state that is followed by an

Chapter 8. Test Case Construction 96

trace to unsafe state test case test case in Aldebaran format

|

des(0, 14, 12)

(10, ”pass”, 10)
(9, ”obs SoundOff(270)”, 11)
obs FlashOff(270) Ns SoundOff(270) (11, ”pass™, 11)

[
passo 5 pass

Figure 8.2: Construction of a test case for the CAS.

obs SoundOff(30) obs SoundOff(30) I

ctr Close(O)I ctr Close(O)I (0, "ctr Close(0)”, 1)
? (1, "ctr Lock(0)”, 2)
ctr Lock(0) l ctr Lock(0)
(2, ”obs ArmedOn(20)”, 3)
obs ArmedOn(ZO)I I)hsArmedOn(ZO)I (3, ”ctr Open(0)”, 4)
[4 (4, 7obs ArmedOff(0)”, 5)
ctrOpen(O)l ctr Open(O)I (5, "obs FlashOn(0)”, 6)
obsArmedOﬁ"(O)I obsArmedef(O)I (6, "inconc”, 6)
h4 (5, ”obs SoundOn(0)”, 7)
obs SoundOn(O)l obs SoundOn(0) I\:bs FlashOn(0) (7, ”obs FlashOn(0)”, 8)
5 (8, ”obs SoundOff(30)”, 9)
obs FlashOn(O)I obs Flathn(O)I inconc (9. “obs FlashOff(270)”. 10)
.
i

observable action in the trace, additional observable actions found in this state during exploration are
added to the test case. In our example, this is the case for the activation of the alarms, which may happen
in arbitrary order. Hence, after the ArmedOff action, the system may either first turn on the sound or
it may first turn on the flash. The action SoundOn is already part of the test case. We add a transition
labelled by FlashOn leading to an inconclusive verdict, which is represented by a self-loop labelled with
“inconc”. There are no other states in the trace where additional outputs add a new transition leading
to an inconclusive verdict. However, we still have to add pass verdicts. In our example, two observable
actions are enabled in the unsafe state: FlashOff and SoundOff, which is turned off a second time in this
model. Both lead to pass verdicts represented by self-loops labelled with “pass”. Implicitly, all other
observable actions not specified in the test case lead to fail verdicts. Note that we do not fully explore
the action system: only the blue parts in Figure 8.1 are explored for this trace. In verdict states, the
exploration is truncated. Furthermore, alternative input actions do not need to be considered. O

According to Definition 8.1, ioco test cases are LTSs. An LTS can be represented in many different
ways, e.g., as a graph as in Figure 8.2. A simple textual format for LTSs is the so-called Aldebaran
format® originally used in the CADP toolbox”. It is furthermore supported by many other tools relying
on LTSs like the ioco-based testing tool JTorX'® or MCRL2!!, which is a formal specification language
with an associated toolset for modelling, verification, and validation of concurrent systems. Also Mo-
MuT::UML adopted this format to represent the generated test cases. Hence, also our produced test cases
adhere to this format.

Example 8.3. Reconsider Example 8.2, where we constructed the test case depicted in the middle of
Figure 8.2. Its textual representation in the Aldebaran format is shown at the right-hand side of Figure 8.2.
Each state of the LTS is represented by a natural number. The first line in an Aldebaran file is the so-
called descriptor. It states general information about the LTS: the initial state (represented by 0), the

Shttp://www.inrialpes.fr/vasy/cadp/man/aldebaran.html#sect6 (last visit 2014-04-18)
*http://cadp.inria. fr (last visit 2014-04-18)
Yhttp://fmt.ewi.utwente.nl/tools/jtorx (last visit 2014-04-18)

Uywww.mcrl2.org (last visit 2014-04-18)

http://www.inrialpes.fr/vasy/cadp/man/aldebaran.html#sect6
http://cadp.inria.fr
http://fmt.ewi.utwente.nl/tools/jtorx
www.mcrl2.org

Chapter 8. Test Case Construction 97

number of transitions (14 in our example), and the number of states (12 in our example). Each of the
following lines represents one transition and consists of the start state, the label, and the target state. For
example, the first transition starts in the initial state 0, is labelled by the input action (prefix ctr) Close
with parameter 0, and leads to the state represented by the number 1. O

Test cases as the one shown in Figure 8.2 are sometimes denoted as linear test cases.

Definition 8.2 (Linear Test Case)
A linear test case contains exactly one path to the unsafe state. Since a model’s behaviour may branch,
an observation may lead away from the linear path, which is marked by an inconclusive verdict. When
executed, a linear test case may result in an inconclusive verdict although it is still possible to reach the
unsafe state by an alternative path.

Alternatively, adaptive test cases can be generated. For example, MoMuT::UML’s existing test case
generation backend Ulysses generates adaptive test cases [10].

Definition 8.3 (Adaptive Test Case)
An adaptive test case integrates several paths to the unsafe state into one test case. It only gives an
inconclusive verdict if it is impossible to reach the unsafe state. An adaptive test cases may be cyclic.

Despite their advantages, adaptive test cases are harder to handle in test drivers due to potentially
cyclic behaviour. This is often not desired by industry, so we decided to generate linear test cases.

As already explained in Chapter 4, the test cases generated by model-based testing are on the same
level of abstraction as the test model. Hence, they are often referred to as abstract test cases (Defini-
tion 4.3). In order to be executed on the SUT, they have to be concretised, i.e., brought to the level
of abstraction of the SUT (cf. Figure 4.2). In Chapter 11, we will run through the whole model-based
mutation testing process (cf. Figure 4.1) including concretion and execution of the abstract test cases for
the CAS and the particle counter use cases. In the following, we focus on test case generation for our
two use cases.

8.2 Experimental Results

Our test case generator, which combines our most optimised refinement checker presented in the previous
chapter and the test case construction described above, was applied on the CAS and the particle counter
models already used in our previous experiments.

8.2.1 Car Alarm System

We continue our experiments presented in Section 7.2, which indicated that the ffc-up constraint solver
setting is a reasonable choice for the CAS. Hence, we also use this setting for test case generation. We
used Algorithm 7.3 to determine traces to unsafe states, from which we construct test cases. For each of
the CAS versions, our refinement check reported 30 conforming mutants (~15%) up to the maximum
exploration depth of the system, which is 13. For each of the remaining non-refining mutants, one test
case is generated, i.e., we have 177 test cases. Thereof, 158 are duplicates of others (89%) and 19 unique
test cases remain. Figure 8.3 gives an overview of the lengths of these 19 test cases. We measure the
length of a test case as the maximum number of consecutive actions in the test case. Hence, the length
of a test case does not necessarily correlate with the number of transitions in the test case. For non-
deterministic models like the CAS, additional transitions are required for actions leading to inconclusive
verdicts. For example, the test case shown in Figure 8.2 has a length of 9, but it consists of 11 transitions

Chapter 8. Test Case Construction 98

unique test cases [#]
N

0

1 2 3 4 5 6 7 8 9 10 11 12 13 14
length

Figure 8.3: Overview of the lengths of the unique test cases for the CAS.

CAS_1 CAS_10 CAS_100 CAS_1000
tc constr. total | tc constr. total | tc constr. total | tc constr. total
computation time [sec] 1.67 3.65 1.4 3.48 1.6 3.59 1.52 3.45

Table 8.1: Computation times of our test case generator for the CAS case study. The constraint
solver setting was ffc-up (most-constrained heuristic/ascending value selection).

(excluding pass/inconclusive loops). Figure 8.3 looks the same for all four CAS versions. The longest
test case consists of 14 consecutive actions. Hence, an unsafe state has been identified at the maximum
depth of 13. As explained above, our test case is one step longer than the trace to the unsafe state in order
to check that the implementation only shows specified outputs in the unsafe state.

Table 8.1 gives the computation times required for test case generation for all four CAS versions.
Column “tc constr” states the time needed for the test case construction for all 207 mutants. It is
approximately 1.5 seconds for each CAS version. Column “fotal” gives the overall time needed for test
case generation (refinement check plus test case construction).

As can be seen from these experiments, our test case generation is fast for the CAS case study, but it
results in a large amount of test cases for a system of that size. Anyway, most of them are duplicates and
can simply be removed by file comparison tools. We present a technique to avoid this high redundancy
in the generated test suites in Section 11.1.1.

8.2.2 Particle Counter

Table 8.2 contains the runtimes achieved for test case generation for the particle counter. We used the
same action system and model mutants as for evaluating our refinement checker in Section 7.3. In these
earlier experiments, we achieved good results with the solver configurations ffc-up and leftmost-down.
Hence, we also used these two configurations for test case generation. The time needed for test case
construction of all test cases is approximately 26 seconds for the ffc-up configuration and 34 seconds for
the leftmost-down configuration. The overall test case generation time including the time required by
our most optimised refinement checker amounts to 2.2 minutes for ffc-up and 2.6 minutes for leftmost-
down. Note that we do not state maximum values for the total time as it includes the time required for
finding the states, which is only performed once for all mutants. The test case construction consumes
little runtime compared to the refinement check.

Similar to the CAS case study, the number of generated test cases is rather high and the resulting test
suite contains a lot of duplicates. For the particle counter, 121 of the mutated action systems refined the

Chapter 8. Test Case Construction 99

/ 6

— 6

X 5

5

a 4 4 4 a4

S 4

% 3 3 3

S 3

v 2 2 2 2 2

=)

c 1 1 1 1 1 1 1
! 0
0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
length

Figure 8.4: Overview of the lengths of the unique test cases for the particle counter.

ffc-up leftmost-down
tc constr. total tc constr. total
by ¢ max by ¢ by ¢ max by 10}
computation time | 25.8 0.04 0.1 |22min 0.2 | 343 005 0.1 |[2.6min 0.2

Table 8.2: Computation times of our test case generator for the particle counter. All values are
given in seconds unless otherwise noted.

original (18%). For each of the remaining 551 non-refining mutants, one test case has been generated.
Thereof, 53 test cases remain after removing 498 duplicates (90%). The lengths of the 53 unique test
cases are shown in Figure 8.4. The longest test case consists of 22 consecutive actions. Note that both
constraint-solver settings result in the same test cases.

8.2.3 Comparison of Results

To have at least a weak reference point for our performance, we have also utilised MoMuT::UML’s ex-
plicit test case generation backend Ulysses [10] to generate tests for our two use cases. This comparison
is not totally fair for two reasons. First of all, Ulysses uses a different conformance relation. While
we use our rather strict relational refinement for action systems, Ulysses uses ioco, which was already
presented in Section 3.2. Furthermore, the generated test cases differ. While our refinement-based imple-
mentation generates linear test cases (Definition 8.2), Ulysses creates more complex, adaptive test cases
(Definition 8.3).

Table 8.3 summarises the runtimes needed for test case generation with both tools for the CAS and
the particle counter models. Both tools were run with the same exploration depths (13 for the CAS
models and 28 for the particle counter). Our most optimised test case generator based on refinement
needs less than 4 seconds to process all 207 mutants for each CAS version. Ulysses needs 1.7 minutes
for CAS_1. For CAS_10 (ten times larger parameter domains), Ulysses runs into massive problems. The

CAS_1 CAS_10 CAS_100 CAS_1000 particle counter
Ref.-based TCG 3.65 sec 3.48 sec 3.59 sec 3.45 sec 2.2 min
Ulysses 1.7 min 8.8h - - 40.1 h

Table 8.3: Comparison of the test case generation times of our most optimised refinement checker
(row Ref.-based TCG) and the explicit ioco checker Ulysses for the four CAS versions
and for the particle counter.

Chapter 8. Test Case Construction 100

execution time drastically increases to almost 9 hours. Like our refinement checker, also Ulysses shows
outliers. For CAS_10, Ulysses can process 75% of the mutants in <6 seconds per mutant, while the
average mean per mutant is 2.7 minutes. One mutated model is a particular outlier as it caused a runtime
of 2.6 hours. We observed a memory usage of up to 6 GB of RAM. We suspect that a significant amount
of the execution time is spent on swapping. For CAS_100 and CAS_1000, we did not run Ulysses as the
runtimes would be even higher.

We also applied Ulysses to the particle counter model. While our implementation needs only 2.2 min-
utes for all 672 mutants, Ulysses requires more than 40 hours for the same set of mutants. Due to this
long computation time, we transferred this experiment with Ulysses to a server machine different from
the PC where all the other experiments were conducted. The server has two 2.5 GHz quad-core proces-
sors and 32 GB RAM. Still, in one case, the test case generation for one particular mutant was aborted
due to a lack of memory. Processing this mutant took 1.3 hours until it ran out of memory and is included
in the total runtime of 40 hours. This was also the maximum amount of time for processing one single
mutant.

Our experiments showed that our refinement checker is efficient in terms of runtime. However, it
produces a large set of test cases that contains many duplicates. The reduction of this high redundancy
in the generated test suites will be addressed in Section 11.1.1.

The comparison with Ulysses showed that our refinement checker is faster by several orders of mag-
nitude. However, the quality of the generated tests is not the same. Ulysses relies on ioco, which is
solely based on visible actions. In contrast, our refinement relation also incorporates the states. Hence,
if a mutated model reaches a deviating state, this immediately causes non-refinement and a test case is
generated. However, if this state discrepancy does not involve a different output action, then the gener-
ated test case will not be able to distinguish the mutated from the original model and the fault coverage
promised by model-based mutation testing (cf. Chapter 4) may not be guaranteed any more. The rea-
son is that test cases only incorporate action labels and no state information. For model-based testing,
which is a black-box testing technique (cf. Definition 2.20), this makes sense as internals like the state
of the implementation are not accessible and hence not observable. We enhance our test case generator
in Chapter 10 to avoid the generation of non-distinguishing test cases. Prior to that, we generalise our
refinement-based test case generator to be able to cope with complex action systems, which is necessary
for the integration of our backend into the MoMuT::UML tool chain.

9 Integration into the MoMuT::UML Tool Chain

In the previous chapters, we presented our refinement-based test case generation approach for action
systems, which we implemented in Prolog. As already mentioned in the introduction, our test case
generation tool shall be integrated into the MoMuT::UML tool chain developed by AIT Austrian Institute
of Technology Vienna and colleagues at Graz University of Technology (cf. Section 1.5.1). Therefore, it
was necessary to enhance our test case generator to support action systems produced by MoMuT::UML.
Before we discuss the required extensions, we give an overview of MoMuT::UML.

9.1 MoMuT::UML

The first version of MoMuT::UML was developed in the MOGENTES project and revised for further us-
age in the TRUFAL project. MoMuT::UML implements model-based mutation testing for UML models.
Figure 1.2 in the introduction gives an overview of the inputs, outputs, and the architecture. As input,
it requires (1) a UML class diagram and (2) a UML state machine modelling the SUT. For example, a
possible input model for the CAS has already been used in the introduction to describe the functionality
of the CAS. The class diagram is depicted in Figure 1.3 and the according state machine is shown in
Figure 1.4. There exist plenty of UML modelling tools. Most of them work with a very specific or even
proprietary format. Hence, it is not feasible to support all UML modelling tools and MoMuT::UML
focuses on Papyrus MDT (an Eclipse Kepler plugin)!? and Visual Paradigm for UML 10.2'3. Like
all model-based testing tools, MoMuT::UML delivers abstract test cases (Definition 4.3). As already
described in Chapter 8, abstract test cases generated by MoMuT::UML are Labelled Transition Sys-
tems (LTSs) and are specified in the Aldebaran format. As can be seen from Figure 1.2, MoMuT::UML’s
architecture distinguishes between frontend and backend.

9.1.1 Frontend

The frontend deals with model transformations that bring the input model into a format suitable for the
backend, i.e., the actual test case generator. To give the UML model a precise formal semantics, it is
transformed into a labelled and Object-Oriented Action System (OOAS) [140], which we briefly de-
scribed in Section 5.4.1. Most UML elements can be directly mapped to the corresponding OOAS struc-
tures, e.g., classes, member fields, and methods. Transitions of the state machine are roughly speaking
mapped to actions. Only the time- and event semantics of UML needs to be expressed by more complex
OOAS structures. This transformation is implemented in the UML2OOAS component (cf. Figure 1.2).
Subsequently, the OOAS is transformed into a complex action system as introduced in Section 5.2.3.
Note that during this transformation, the parallel composition of the individual components is resolved
and as a result, one single action system comprises the whole modelled functionality. The transformation
from OOASS into action systems is implemented in the OOAS2AS component (cf. Figure 1.2) and has
been sketched in Section 5.4.1.

Furthermore, the frontend is responsible for the injection of faults into the original model to construct
a set of model mutants as required for model-based mutation testing (cf. Chapter 4). The mutation oper-
ators are defined on the UML level and are implemented in the UML2OOAS component. The mutation
operators are applied to the following state machine elements: triggers, guards, transition effects, as well
as entry- and exit actions. The elements are either removed or replaced with another element of the same

Phttps://www.eclipse.org/papyrus (last visit 2014-04-18)
Bhttp://www.visual-paradigm.com/product/vpuml (last visit 2014-04-18)

101

https://www.eclipse.org/papyrus
http://www.visual-paradigm.com/product/vpuml

Chapter 9. Integration into the MoMuT::UML Tool Chain 102

type from the model. This leads to O(n) mutants for the removals and O(n?) mutants for the replace-
ments (with n being the number of corresponding elements in the model). Additional mutation operators
exist for change trigger expressions, for guards expressed in Object Constraint Language (OCL)'%, as
well as for effects, entry/exit actions, and method bodies (expressed in the Activity and Guard Spec-
ification Language (AGSL) [85]). The modifications made here are the exchange of operators or the
modification of literals. Furthermore, (sub-)expressions are replaced by true/false or negated. They all
lead to O(n) mutants. After all model mutants have been generated, they are converted into action
systems similarly as the original UML model.

The UML20OOAS component was developed by AIT Austrian Institute of Technology Vienna. The
OOAS2AS component was developed by Willibald Krenn at Graz University of Technology and revised
in the course of his occupation at AIT Austrian Institute of Technology Vienna. For details on the trans-
formations in the frontend, we refer to Krenn et al. [140]. The following project deliverables date back to
the MOGENTES project and describe the mutation operators (Deliverable D3.1b [86]) and the supported
UML modelling language features including OCL and AGSL (Deliverable D3.2b [85]). The basics de-
scribed in these deliverables still apply. However, some details changed since then due to technical
reasons. For example, the UML editor Papyrus UML, which had been used in MOGENTES, has under-
gone a substantial redesign including a modified file format specification. Hence, also MoMuT::UML’s
frontend had to be adapted to support the up-to-date modelling tool, which is called Papyrus MDT and
is an Eclipse plugin.

9.1.2 Backend

The action systems created by the frontend serve as input for the backend — the actual test case generation
engine. In the MOGENTES project, the tool Ulysses has been developed to generate mutation-based test
cases. It explores a given original and a mutated action system in parallel yielding their LTS semantics.
For example, the LTS representing the behaviour of the CAS action system shown in Listing 5.1 has
already been depicted in Figure 8.1. Ulysses uses the Input-Output Conformance (ioco) relation already
introduced in Section 3.2. For the ioco check, it performs the determinisation of the LTSs and the
check for ioco violations on the fly, i.e., it does not fully explore both action systems, but stops if an
unsafe state is found. If the mutated action system is not ioco-conform to the original action system,
a test case is generated that distinguishes the original from the mutated model. As already described
in Section 8.1, these test cases are adaptive (Definition 8.3), i.e., they incorporate all possible paths to
a given unsafe state. For further information on the underlying theory and techniques, we refer to the
following publications [10, 7, 9, 8, 50].

Ulysses does not only support complex action systems as described in Section 5.2.3. It additionally
allows for complex data types like lists. With the Ulysses backend, MoMuT::UML uses lists. However,
for our constraint-based approach, MoMuT::UML offers an alternative transformation to action systems
without lists. Another feature of Ulysses is its support for qualitative action systems [11, 50], which
allows for generating test cases for hybrid systems (cf. Section 5.4.2). However, this functionality is not
incorporated by MoMuT::UML.

Like our refinement-based test case generator, Ulysses is also implemented in SICStus Prolog. It
performs the exploration of the action system’s state spaces in a similar way as we explore the original
action system for test case construction (cf. Chapter 8). However, Ulysses only uses a constraint-based
approach for qualitative reasoning over continuous behaviour, which is not incorporated in complex
action systems as generated by MoMuT::UML’s frontend. For the discrete behaviour of our complex
action systems, Ulysses does not use constraint solving to determine possible parameter valuations, but
is based on trial and error. It enumerates all possible values for parameters and then tests whether

Yhttp://www-st.inf.tu-dresden.de/ocl (last visit 2014-04-18)

http://www-st.inf.tu-dresden.de/ocl

Chapter 9. Integration into the MoMuT::UML Tool Chain 103

these values fulfil the guard of a given action. For large parameter domains, this is inefficient and our
constraint-based approach usually performs better (cf. Section 8.2.3). However, our constraint-based
refinement checker described in the previous chapters is not able to process complex action systems and
hence cannot interact with MoMuT::UML’s frontend. In the next section, we discuss how we adapt our
implementation for compatibility with MoMuT::UML'’s frontend.

9.2 Required Extensions

To integrate our refinement-based test case generator into MoMuT::UML, we had to add support for com-
plex action systems, which extend plain action systems as described in Section 5.2.3. In the following,
we explain the effects of each language extension on our implementation.

9.2.1 Class Data Types

Complex action systems introduce an enumeration data type, which is used to represent classes as lists
of object identifiers. For the usage with constraints, our implementation maps each object identifier to an
integer value — similarly as we already map action labels to integers. We use consecutive integer values
such that we can state the domain of the data type as one interval. For example, consider a data type
myClass defined as type(myClass, X) :— member(X, [0bj1, 0bj2, 0b3]). We map each object identifier
to an integer, e.g., obj1 to 1, 0bj2 to 2, and 0bj3 to 3. The type can then be defined as an integer between
1 and 3.

9.2.2 Methods

As already explained in Section 5.2.3, method calls are inlined. In order to translate a method call into
constraints, we need the method’s definition, i.e., its head and body. Parameters are passed by Prolog’s
unification, i.e., the actual parameters from the method call are unified with the formal parameters in
the method’s head. This is possible since formal parameters are represented by Prolog variables. Actual
parameters are also either Prolog variables or constants. By this unification, the formal parameters are
also “substituted” by the actual parameters in the method’s body, which can now directly be translated
into constraints.

To determine the required method definition, we have to consider that the translation of OOASs into
our complex action systems creates one method definition per object. Each of these definitions directly
refers to the object’s member variables, which are state variables of the action system. Both, the state
variables and the methods belonging to a specific object are prefixed by the object’s identifier. Remember
that this is possible since there is no dynamic creation or destruction of objects in MoMuT::UML’s
OOAS:s (cf. Section 5.4.1). In a method call, the operator \ is used. For example, obj1\ foo(3) calls the
method foo for object 0obj1 with parameter 3. The according method definition is identified by obj1_foo,
i.e., the backslash operator is replaced by an underline. In our predicative semantics, we assumed a
lookup function getB, which takes this method identifier and returns the method’s body. Implementing
this lookup function is straightforward. Note that parameters are not considered for finding the definition
of a method, i.e., we do not support overloading of methods.

Additionally to methods that are called with a given object identifier, methods may be called on a
state variable containing an object. For example, v\ foo(2) calls the method foo with parameter 2 on the
object assigned to the action system variable v. In such a case, we do not know which method definition
we have to use as we cannot determine at compile time which object will be assigned to v at runtime.
Hence, we lookup the data type of the variable v and consider each possible object obj of this class. In
Figure 5.2, this lookup function was denoted as getClass. The constraint representing a method call on

Chapter 9. Integration into the MoMuT::UML Tool Chain 104

a state variable is a disjunction over all instances of this method and each method is guarded by a test
whether the variable v currently holds the corresponding object (cf. Figure 5.2). Note that we do not
need to perform a type check as this is already handled in the OOAS2AS component of the frontend.

Finally, our syntax allows for plain procedure calls in the form \m. Its implementation is straight-
forward as the procedure name m directly serves as identifier for the definition. Plain procedure calls do
not occur in complex action systems that are created by MoMuT::UML. However, they are convenient
for manual modelling.

9.2.3 Prioritising Composition

Complex action systems introduce an additional operator for composition, which gives priority to the
left-hand side operand. It can be applied both in action bodies as well as for composing actions in the
do-od block. B; // Bs states that if By is enabled, Bs must not be enabled. In our semantics, this is
expressed as ¢(B1) V (m¢(B1) A ¢(Bz2)) and can be directly used in our constraint representation.

However, we have to take care for the prioritising composition of actions with parameters. Remember
that our translation of actions into constraints uses one set of variables P to encode action parameters in
both the mutated and the original action system (cf. Section 6.3.1, especially Example 6.1). In this way,
the parameters between the original and the mutated action system are synchronised for the refinement
check. However, for determining the enabledness of B2, we need to hide, i.e., existentially quantify
the parameters of B in its negation. Hence, we use the original semantics for actions with parameters
(cf. Figure 5.2) where parameters are local, i.e., existentially quantified. Note that this quantification
is essential due to the required negation. A similar issue has already been discussed with respect to
sequential composition (cf. Section 6.4.2, Pitfall 2).

9.2.4 Sequential Composition in the do-od Block

For one iteration of the do-od block of a plain action system, it was sufficient to use one variable to
represent the chosen action and one vector of variables representing the parameters of this action (cf.
Section 6.3.1). Due to the introduction of the sequential composition operator in the do-od block, we
have to consider that sequences of actions may be executed in one iteration. Therefore, we analyse the
do-od block to determine the greatest possible number n of consecutive action calls and use n variables
in our constraints to represent these actions. Furthermore, we use n variable vectors representing the
parameters of these actions. For parameters in plain action systems, we already introduced a special
integer representing that a parameter variable is unused (cf. Section 6.3.1). We apply the same concept
for unused action variables and parameter variables in the traces as we again have to deal with varying
numbers of parameters and consecutive actions. For example, the do-od block (a ; b) [] ¢ may either
execute the two actions a followed by b or it may execute only one action, i.e., action c¢. In the latter case,
the second action variable is unused.

Note that sequential composition hides intermediate states (cf. Figure 5.2). Hence, states between
actions that are sequentially composed in the do-od block are not observable from the outside. The
only points at which states are observable are before and after the execution of an iteration of the do-od
block. This causes a difference to the LTS semantics used by Ulysses, which affects non-deterministic
choices of sequential compositions in the do-od block. We illustrate this difference in the semantics by
the following example.

Example 9.1. Consider an action system where the state consists of one variable s, which is an integer
between 0 and 3. Let the initial state be s = 0. Furthermore, the following three actions are defined:

Chapter 9. Integration into the MoMuT::UML Tool Chain 105

P
obs c? obs %bs “
@ =%

obs ﬂtr x obs b l l ctrx

s o s (o

Figure 9.1: Semantic difference between Ulysses and our ioco check.

Let a and b be output actions and x be an input action. Furthermore, let the do-od block be defined as
a; (x[]b), i.e., the action a is sequentially composed with the non-deterministic choice of = and b.

Figure 9.1 shows the LTS representation P of this action system as generated by Ulysses on the left-
hand side. The labels of the LTS states correspond to the valuation of the state variable s. The LTS () that
is derived from the same action system by our constraint-based approach is depicted on the right-hand
side. The LTS () splits the intermediate state valuation s = 1 into two separate LTS states. This is due
to the fact that intermediate states of sequential compositions are unobservable. Hence, our constraint-
based approach does not know about the intermediate state valuation s = 1, which is indicated by the
gray colour of these states.

In our implementation, one iteration of the do-od block is encoded in constraints, which are re-
peatedly solved using varying pre-states. For the initial state s = 0, the constraint solver returns two
successor states: s = 2 with trace (a, b) and s = 3 with the trace (a, z). From this information, it cannot
be determined whether the action a leads to the same state or to different states in the two traces. In our
implementation, we assume different states. As a consequence, additional quiescence (Definition 3.16)
is introduced: the LTS state with label 1 on the right-hand side is quiescent as it only has one outgoing

transition, which is an input. In contrast, the LTS P is not quiescent in state s = 1 as 1 — and b € Lo.
Note that if we merge the intermediate states, we possibly face the opposite problem, i.e., we could miss
quiescence. O

This discrepancy only arises if the intermediate state is a mixed state, i.e., it has outgoing input as well
as outgoing output/internal transitions. This semantic difference has to be considered during modelling.
In the given case studies, it has not been an issue.

9.2.5 Internal Actions

In complex action systems, each action may be hidden by enclosing it in i(...) in the do-od block. In
the LTS semantics used by Ulysses, internal actions are mapped to 7, which denotes an internal action
in LTSs (cf. Definition 3.12). For our constraint representation, we map action labels to integers. For
internal actions, we introduce an additional integer for encoding the 7-event. A hidden action may have
parameters. However, they are not observable, i.e., the resulting 7-action does not have parameters. Like
for the prioritising composition of actions in the do-od block, we use the original semantics for actions
with parameters (cf. Figure 5.2) where parameters are local, i.e., existentially quantified, to hide them.

Internal actions have the following consequences for our refinement relation. If the mutant performs
an internal action, it must also be allowed by the original. Note that in case of consecutive internal
actions, it must be exactly the same number of internal actions.

Chapter 9. Integration into the MoMuT::UML Tool Chain 106

9.2.6 Integration of the SMT Solver Z3

For the prioritising composition of actions and internal actions, we need existential quantifications to
hide parameters. However, explicit quantifications are not supported by the used constraint solver. We
faced a similar problem with sequential composition (cf. Section 6.4.2, Pitfall 3). Our solution was to
rewrite our actions into a normal form that allows for the application of the one-point rule to eliminate
the existential quantifications (cf. Section 6.4.2). We can neither apply this solution to the prioritising
composition of actions, nor to internal actions. In these cases, we need to quantify over parameters, which
are not assigned to one single value, but are constrained arbitrarily in the guards of actions. Hence, it is
in general not straightforward to eliminate the required quantifiers and we decided to rely on an SMT
solver that supports a theory for quantifiers. Furthermore, most modern SMT solvers directly support
incremental solving, which we had to emulate with the used constraint solver by backtracking in Prolog
(cf. Section 7.1.4). We decided to use Microsoft’s SMT solver Z3 (version 4.3.1), which supports both
quantifiers and incremental solving.

We prepare the constraints as SMT-LIB v2 [35] formulas. This facilitates the possible integration of
other SMT solvers. We interface with Z3 via its C-API, which we encapsulated in SICStus Prolog as a
foreign resource. Therefore, each C function needs to be mapped to a Prolog predicate. In particular,
the data types of the parameters and return values need to be specified. Further required glue code is
automatically generated by SICStus Prolog [88].

By default, Z3 does not apply all of its implemented quantifier elimination tactics. We experienced
that the simple eliminations that are performed by default are not sufficient for our type of constraints.
Some quantifiers have been instantiated, which caused the solving time to become unreasonable. Hence,
we use Z3’s “ge” tactic, which performs all of Z3’s quantifier elimination techniques that preserve
equivalence for the given formula. This is not straightforward in combination with incremental solving.
In Z3, a solver that applies the quantifier elimination tactic can be created. However, it will not be
incremental. Our solution is to use the quantifier elimination tactic as a pre-processing step, i.e., we use
the tactic to rewrite our formulas and pass the resulting quantifier-free formulas to an incremental solver
instance of Z3.

Note that all of the following experiments in this thesis are conducted using the SMT solver Z3.

9.3 Complexity of Action Systems Generated by MoMuT::UML

We experienced that action systems automatically generated by MoMuT::UML are more complex than
manually designed action systems. This is not a surprise, however the actual dimension is astonishing.
We compared manually designed plain action systems (cf. Section 5.2.2) with complex action systems
(cf. Section 5.2.3), which were generated by MoMuT::UML from UML models, with the prerequisite
that both models specify exactly the same visible behaviour. Therefore, we used the CAS as well as
the particle counter use case. In the following, we denote the plain action system directly modelling the
CAS use case as CAS_AS. Parts of this action system have already been shown in Listing 5.1. Although
it models the same system, it is not exactly the same as the action system of the CAS that was used in
our previous experiments. As already stated in Section 6.6.1, the action systems differ in the way time
is modelled. The complex action system generated from the UML model by MoMuT::UML is referred
to as CAS_UML. Analogously, we name the plain action system modelling the particle counter use case
PC_AS and the complex action system model generated by MoMuT::UML is called PC_UML.

Table 9.1 states model metrics on the action system level for both use cases and both modelling ap-
proaches. For the CAS use case, CAS_AS comprises 10 actions, while CAS_UML defines 51 actions (41
of them are internal actions). The approximate complexity of the models can be estimated by considering
the types of the state variables, which are either Boolean or bounded integers. Theoretically, the 6 state

Chapter 9. Integration into the MoMuT::UML Tool Chain 107

CAS_AS CAS_UML PC_AS PC_UML
actions [#] 10 51 26 109
state variables [#] 6 35 10 74
possible states [#] 1600 1.7 - 1018 1.6 - 10° 1.2-10%
reachable states [#] 19 229 1725 > 850700
required exploration depth 11 17 28 >25
time needed for exploration ~ 1 sec ~ 3 sec ~ 12 sec > 4 days

Table 9.1: Metrics for the CAS and particle counter (PC) use cases modelled either directly as an
action system (AS) or modelled in UML and automatically transformed into an action
system by MoMuT::UML.

variables of CAS_AS span a state space of 1600 states, while CAS_UML comprises 35 state variables
that theoretically build a state space of 1.7 - 10'® states. However, not all of these states are reachable
from the initial system state. In CAS_AS, 19 states are actually reachable. The depth in terms of the
number of consecutive visible actions required to reach all of these states is 11. In CAS_UML, 229 states
are reachable. The required exploration depth is 17. The computation time for exploring the state space
up to these depths is 1 and 3 seconds respectively.

For the particle counter use case, PC_AS consists of 26 actions, while PC_UML defines 109 actions
(83 thereof are internal). PC_AS uses 10 state variables that theoretically build a state space of 1.6 -
10° states from which 1725 are actually reachable. The depth to find all reachable states is 28. The
exploration needed approximately 12 seconds. Again, the state space of the automatically generated
action system is several orders of magnitude larger than the state space of the manually designed plain
action system model. PC_UML requires 74 state variables resulting in a state space of 1.2 - 103! states
from which more than 850 000 states are reachable. We can only give a lower bound for the number of
actually reachable states as it was not possible to fully explore this model. The exploration up to depth
25 took approximately 4 days. A deeper exploration would require even longer runtimes. Therefore, we
stopped at depth 25.

These metrics illustrate that the automatically generated action systems are several orders of mag-
nitude more complex compared to manually written plain action systems that encode exactly the same
behaviour. Furthermore, MoMuT::UML’s action systems have a special structure that hinders our ap-
proach to take full advantage of its optimisations. In particular, we observed that the do-od block of an
action system generated by MoMuT::UML usually has a prioritising composition as the outermost oper-
ator. Hence, the do-od block is one monolithic construct, which cannot be split into individual actions
or at least several compositions of actions. The decomposition of the do-od block was originally used
in our refinement check to construct a smaller constraint representing non-refinement (cf. Section 6.3.1).
For action systems generated by MoMuT::UML, our non-refinement constraint comprises the whole
negated original action system as well as the whole mutated action system. We could circumvent this
by rewriting the do-od block to a similar normal form as used for the application of the one-point rule
(cf. Section 6.4.2). However, this would not fully resolve the problem as prioritising composition is not
distributive. Although

A/f(BIIC) = (A//B)[](A/]C)

holds, the other direction does not hold in general [181]:
AflB)//C # (A//C)[](B//C)

In the following, we report on test case generation with our refinement checker for both use cases and
compare the runtimes between the manually written plain action systems and the automatically created
complex action systems. All experiments were conducted on the same PC, which runs a 64-bit Linux

Chapter 9. Integration into the MoMuT::UML Tool Chain 108

non-refining refining total
mutants [#] 176 79 255
time — find states by - - 0.2
by 1.15 0.43 1.58
time — ref. check ¢ 0.01 0.01 0.01
max 0.02 0.02 0.02
by 68.23 - 68.23
time — tc constr. 10) 0.39 - 0.27
max 1.33 - 1.33
by 7.5 min 2.7 min 10.2 min
total computation time 10) 2.55 2.05 2.39
max 4.19 3.51 4.19
total computation time > 69.44 0.46 69.9
without log 10) 0.39 0.01 0.27
max 1.34 0.02 1.34

Table 9.2: Test case generation via refinement checking up to depth 20 for the CAS_AS model. All
values are given in seconds unless otherwise noted.

(Ubuntu 12.04). It is equipped with 8 GB RAM and an Intel i7 quad-core processor (3.4 GHz). However,
our implementation utilises only one core.

9.4 Experimental Results

9.4.1 Car Alarm System

Plain Action System

We mutated the CAS_AS model using the following mutation operators. Setting guards to true resulted in
37 mutations. By swapping the equals and unequals operators, 71 mutations were created. Furthermore,
we model off-by-one errors by incrementing each integer constant by one, which resulted in 120 mutants.
Finally, inverting Boolean constants caused 27 mutations. Overall, we have 255 mutated models.

Table 9.2 gives an overview of test case generation with our refinement checker for the CAS_AS
model. The used exploration depth was set to 20, which covers the full state space of the model as all
reachable states were discovered up to depth 11 (cf. Table 9.1). We used all 255 mutated models from
which 69% did not refine the original model. In total numbers, 176 model mutants did not refine the
original model, whereas 79 model mutants refined the original. The following rows in the table state
the computation times for finding all reachable states up to the given search depth, the time required
for the refinement check, the time needed to construct test cases from the traces to the unsafe states (cf.
Chapter 8), and the total computation time. Note that the total computation time does not include the
time for finding the reachable states as this task is only performed once for all mutants (cf. Section 7.1.3)
and cannot be split between non-refining and refining mutants. Furthermore, the total computation time
is not equal to the sum of the time for the refinement check and the time for test case construction due
to input/output operations such as parsing, writing logs, etc. We noticed that writing logs for our results,
which mostly concerns recording the runtimes for the individual tasks in a file on the hard drive, takes
a considerable amount of time (more than 88% of the total computation time). As this is only required
for our analysis and is not needed in practice to generate test cases, we also state the total time without
writing this log file. For each category, we state the total time needed to process all 255 model mutants

Chapter 9. Integration into the MoMuT::UML Tool Chain 109

40
34
35
30 27
25 22
20 17 16 18
1
1 8 27 5 8 77
; H I il
. 0
0 1 2 3 4 5 6 7 8 9

10 11

mutants [#]
o wun

depth

Figure 9.2: Diagram stating how many mutants showed non-refinement at a specific depth for the
CAS_AS model.

(2), the average value for one mutant (¢), and the maximum value for one mutant (max). As can be
seen from the table, for this simple example the refinement check is very fast (less than 2 seconds for
all mutants) compared to the test case construction (almost 70 seconds in total), which includes writing
the generated test case into a file. Furthermore, the refinement check for a refining mutant takes almost
equally long as for a non-refining mutant (0.01 seconds on average). Overall, we could not identify any
mutant to be a noticeable outlier. Hence, we did not explicitly state values for the median or for quartiles.

Figure 9.2 gives an overview of the depths at which an unsafe state (Definition 6.1) was found. The
unsafe states are distributed over all depths. In 34 models, the initial state (depth 0) is an unsafe state,
i.e., it either leads to an incorrect next state or it allows an action (possibly including parameters) that is
not specified by the original model.

Complex Action System from UML Model

As described above, MoMuT::UML provides a rich set of mutation operators for UML state machines.
For our CAS model, the following mutation operators were applied: setting guards to false resulted in
22 mutations, removing AGSL statements caused 13 mutations, and removing entry and exit actions
resulted in 1 mutant each. By removing effects from transitions, 7 mutations were created. Further
42 mutations were caused by replacing effects with other effects in the model. Furthermore, 14 mutations
were generated by removing signal triggers and 3 mutations were caused by removing time triggers. The
replacement of signal events caused 42 mutations, and mutating time events resulted in 17 mutations. In
total, 162 mutated models have been created.

Table 9.3 reports on the test case generation with our refinement checker for the CAS_UML model.
It has the same structure as Table 9.2. We again report computation times for finding the reachable
states, for the refinement check, the test case construction, and the total time with and without writing
of log files. The computation times for all 162 mutated models is given by X, the average value for
one mutant is represented by ¢, and finally we state the maximum value for one mutant (max). Again,
there were no noticeable outliers and we refrained from stating quartiles. The used exploration depth
was 20, which again covers the full state space of the model (cf. Table 9.1). The ratio between refining
and non-refining mutants is 149 to 13, i.e., for this example most mutants were non-refining (92%). The
time required to find all 229 reachable states was 3 seconds. This task is only performed once for all
mutated models. Hence, it is not split between non-refining and refining mutants. Again, there is no
considerable difference in the average time needed to check for refinement between a non-refining and a
refining mutant (0.38 and 0.31 seconds respectively). While the refinement check for CAS_AS required
less than 2 seconds for 255 mutants, it took approximately 1 minute for 162 mutants of the CAS_UML

Chapter 9. Integration into the MoMuT::UML Tool Chain

non-refining refining total
mutants [#] 149 13 162
time — find states by - - 3
by 56.22 4.09 60.31
time — ref. check 10} 0.38 0.31 0.37
max 0.52 0.44 0.52
by 67.30 - 67.30
time — tc constr. 10} 0.45 - 0.42
max 1.27 - 1.27
by 7.1 min 33.62 7.7 min
total computation time 0] 2.87 2.59 2.85
max 4.06 3.00 4.06
total computation time > 2.1 min 4.29 2.2 min
without log 10} 0.84 0.33 0.80
max 1.72 0.45 1.72

110

Table 9.3: Test case generation via refinement checking up to depth 20 for the CAS_UML model.
All values are given in seconds unless otherwise noted.

40
35
30

35

9 10 11 12 13 14 15 16 17

N
(]

mutants [#]
= RN
v O U»u1 O

o

depth

Figure 9.3: Diagram stating how many mutants showed non-refinement at a specific depth for the
CAS_UML model.

model. The construction of test cases takes almost the same amount of time (67 seconds). Again, writing
our log file requires the majority of the overall computation time (about 5 minutes). Without log file
writing, the total computation time for all mutants is 2.2 minutes.

We analysed the depths of the found unsafe states. As can be seen from Figure 9.3, the unsafe states
are not located very deep in the model. Although new states could be discovered up to depth 17, the
deepest unsafe states are located at depth 10. The lack of unsafe states in depths 5 and 6 is due to the
structure of the action system’s do-od block and can be explained as follows. We count the depth in terms
of consecutive, visible actions. Furthermore, states are only observable before and after one iteration of
the do-od block. The analysis of the do-od block of CAS_UML showed that from states at depth 4 it is
only possible to move on via a sequence of 3 sequential actions in one do-od block: disarm, turn flash
on, turn sound on (the last two actions may happen in any order). Hence, the next state reached is at
depth 7 and there are no visible states at depths 5 or 6. The lack of unsafe states at depth 9 has the same
explanation. In this case, the actions for turning off the flash and sound are sequentially composed in
the do-od block. Why there are no unsafe states located at depths 11 or higher cannot be explained in
this way. Instead, a possible explanation is that the used mutation operators did not trigger failures in

Chapter 9. Integration into the MoMuT::UML Tool Chain 111

non-refining refining total
mutants [#] 573 141 714
time — find states Y - - 7
)y 39.96 59.43 99.39
time — ref. check 10) 0.07 0.42 0.14
max 0.46 0.59 0.59
by 4.9 min - 4.9 min
time — tc constr. 10) 0.52 - 0.42
max 1.55 - 1.55
by 25 min 5.9 min 30.9 min
total computation time 0] 2.62 2.50 2.60
max 5.32 5.08 5.32
total computation time > 5.6 min 1 min 6.6 min
without log o) 0.59 0.42 0.56
max 1.86 0.60 1.86

Table 9.4: Test case generation via refinement checking up to depth 30 for the PC_AS model. All
values are given in seconds unless otherwise noted.

these depths. However, it is more likely that the mutations cause failures deep in the model, but at the
same time they trigger failures in lower depths. As we perform a breadth-first search, we first detect the
failures in lower depths and stop our checks.

9.4.2 Particle Counter
Plain Action System

We also applied our test case generator on the particle counter models. We used the same mutation
operators to mutate the PC_AS model as we used for the CAS_AS model. Setting guards to true yielded
101 mutations, swapping equality and inequality operators caused 249 mutations, and the incrementation
of integer constants by 1 resulted in 178 mutations. Finally, 186 mutations were generated by inverting
Boolean constants. In this way, a total of 714 mutated models were created.

Like the two CAS models, we could fully explore the plain action system PC_AS. We set the maxi-
mum search depth to 30. New states could be found up to depth 28. Results are listed in Table 9.4. Again,
we give the same values as for the CAS models in Table 9.2 and Table 9.3. The computation times for
all 714 mutated models is given by 3, the average value for one mutant is represented by ¢, and finally
we state the maximum value for one mutant (max). Again, there were no noticeable outliers and we
refrained from stating quartiles. Like for CAS_AS, the ratio between the runtime of the refinement check
(99 seconds) and the test case construction (4.9 minutes) is unbalanced. The time required to log com-
putation times makes up the majority of the overall runtime, whereas the time for finding the reachable
states is negligible (7 seconds). Approximately 80% of the 714 mutants do not refine the original model.
The average value for the refinement check of one refining mutant is 0.07 seconds, while a non-refining
mutant requires 0.42 seconds. We assume that this is due to the fact that this model has more reachable
states (1725) than the CAS models (19 and 229 respectively). Hence, the number of checks whether a
state is an unsafe state is higher than for the CAS models. Note that for refining mutants all reachable
states have to be checked, whereas for non-refining mutants only a fraction of the overall number of
states need to be tested. Figure 9.4 gives an overview of the depths at which an unsafe state was found.
Like for the CAS_UML model, most unsafe states were discovered in lower depths. Between depth 20
and the full depth of 28, only 1 unsafe state was discovered. As already explained for the CAS_UML

Chapter 9. Integration into the MoMuT::UML Tool Chain 112

120

mutants [#]
r o ® O
o o o o

N
o

98
75
60
48 >t
29 28
z
I 131616

1 ||I :
oo . I Ilo 0 00O0O0TO 0O

0 1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

o

depth

Figure 9.4: Diagram stating how many mutants showed non-refinement at a specific depth for the
PC_AS model.

model, we suppose that some mutations in fact cause failures deeper in the model, but at the same time
they inject faults in lower depths where we detect them first due to our breadth-first search.

Complex Action System from UML Model

The UML state machine for the particle counter has been mutated with MoMuT::UML yielding 1185 mu-
tated models. The following mutation operators were applied. Guards were set to true and false yielding
39 and 23 mutations respectively. Furthermore, the following elements were removed from the model:
AGSL statements (23 mutations), change triggers (1 mutation), effects (14 mutations), entry actions
(11 mutations), exit actions (5 mutations), signal triggers (27 mutations), and time triggers (6 mutations).
The following elements were replaced by other elements of the same type: effects (182 mutations), entry
actions (110 mutations), exit actions (20 mutations), and signal events (506 mutations). Furthermore,
time events were mutated (36 mutations), e.g., by incrementation by 1. Finally, the exchange of OCL
operators caused 29 mutations, and the mutation of OCL subexpressions yielded 153 mutations.

While both CAS models and PC_AS could be fully explored, we could not cover the complete state
space of PC_UML. As already shown in Table 9.1, we explored the model up to depth 25 and there
were still states remaining for further exploration. As this took 4 days, we limited our search depth
for our test case generation experiments to a depth of 15, which results in more reasonable runtimes
as can be seen in Table 9.5. Again, X denotes the computation times for all 1185 mutated models,
the average value for one mutant is represented by ¢, and finally we state the maximum value for one
mutant (max). For this model, we identified outliers in the refinement check and hence also in the total
runtimes. Therefore, we stated also values for the quartiles (Q1/Q2/Q3). Finding all reachable states up
to depth 15 required almost 13 minutes. However, this is only performed once for all mutated models.
Approximately 84% of all 1185 mutants were non-refining up to depth 15. Thereof, 75% could be
processed in less than 10 seconds per mutant (cf. Q3 for the refinement check of non-refining mutants).
However, outliers (like the maximum of 3.6 minutes) raised the arithmetic mean value (¢) to almost 23
seconds. The median (()s) is approximately 6 seconds. For refining mutants the situation is similar.
The median is 13.5 seconds, while the arithmetic mean is 100 seconds. The third quartile ()3 is already
192 seconds per mutant. We checked the data and found out that many refining mutants are identified in
around 14 seconds, while many others required about 200 seconds, i.e., there were hardly any values in
between.

The analysis of the depths of the unsafe states for the refining mutants led to Figure 9.5. Again, there
are depths without any unsafe state. This can be explained by the structure of the action system’s do-od

Chapter 9. Integration into the MoMuT::UML Tool Chain 113
non-refining refining total
mutants [#] 996 189 1185
time — find states by - - 12.8 min
by 6.3h 5.3h 11.6 h
time — ref. check 10) 22.88 100.14 35.20
’ Q1/Q2/Qs3 5/6/10 12/13.5/193 5/8/16
max 3.6 min 3.8 min 3.8 min
> 22.4 min - 22.4 min
time — tc constr. ¢ 1.35 - 1.13
max 3.96 - 3.96
by 7.3h 54h 12.7h
total computation time ¢ 26.38 102.25 38.48
Q1/Q2/Q3 8/9/13.5 14/16/195 9/11/20
max 3.7 min 3.8 min 3.8 min
by 6.7h 53h 12h
total computation time o) 24.27 100.18 36.38
without log Q1/Q2/Qs3 6/7/11.5 12/14/193 6/9/18
max 3.7 min 3.8 min 3.8 min

Table 9.5: Test case generation via refinement checking up to depth 15 for the PC_.UML model.

All values are given in seconds unless otherwise noted.

250

200

[uny
v
o

[any
o
o

mutants [#]

Ul
o

209
105 116 116
85
67
I 0 0 I 0
0
o 1 2 3 4 5 6 7 8

depth

94 100

9 10

59

29
6 10
W

11 12 13 14 15

Figure 9.5: Diagram stating how many mutants showed non-refinement at a specific depth for the
PC_UML model.

block, which contains sequential compositions of actions that hide states at certain depths — similar as
for CAS_UML (cf. Figure 9.3). Note that we could not fully explore the model. Hence, there might be
unsafe states with a depth higher than 15, which were missed by our bounded refinement check.

9.5 Discussion

We described how we extended our test case generator in order to support action systems generated by
MoMuT::UML’s frontend and we compared the complexity of manually created action systems with
automatically created complex action systems. Therefore, we calculated a number of metrics for four
action system models (Table 9.1). Two action systems represent the same behaviour of the CAS. While
one was directly modelled as a plain action system, the other one was derived from a UML model by

Chapter 9. Integration into the MoMuT::UML Tool Chain 114

1000
average median ™ max 225.5
100 36.4
o
9]
= 10
g 9.0
§ 13 1.7 1.9
@ 1 08 0.6
0.3
0.8
0.5
0.2
0 == 8 ———a 8 ———a 8 — NN
CAS_AS CAS_UML PC_AS PC_UML

Figure 9.6: Comparison of the average, median, and maximum computation times per mutant for
our four models.

MoMuT::UML. Furthermore, we compared two action systems modelling the particle counter. Again,
one was a manually modelled plain action system, while the other one was a complex action system
automatically generated from a UML model.

The given metrics indicate a significantly higher complexity of the action systems generated from
UML models compared to directly modelled action systems. We also checked whether this is directly
reflected in the computation times required by our refinement-based test case generation tool. This
is obviously the case. However, for the rather simple CAS model, the growth of complexity is not
as dramatic as for the particle counter as can be seen from Figure 9.6. It compares the average, the
median, and the maximum time required for one mutant of each action system. Note that the Y-axis
has a logarithmic scale. The action system derived from UML is still manageable, although the average
computation time per mutant has more than doubled. However, for the particle counter, the average time
per mutant was raised from less than one second to more than 36 seconds. Considering the maximum
values, CAS_AS and CAS_UML do not significantly differ. For PC_AS, the maximum computation
time for one mutant was below 2 seconds, but raised to almost 4 minutes for PC_UML. Hence, action
systems automatically derived from UML models are more complex and require longer runtimes than
manually created plain action systems. We conclude that there is room for improvement in the model
transformations implemented in MoMuT::UML’s frontend.

In the following, we relate the results for the plain action systems we reported in the previous sec-
tion with the computation times we achieved before the integration into the MoMuT::UML tool chain
(cf. Section 8.2). For the CAS, the computation time was approximately 4 seconds before. After our
adaptations to support complex action systems, it is 70 seconds without log file writing. Note that during
our adaptions to integrate our tool into MoMuT::UML, we significantly increased the information that
is included in the log files. Hence, we compare values that do not contain the time for log file writing.
Furthermore, the CAS_AS model used in this chapter directly corresponds to the action system shown in
Listing 5.1, while the CAS action system used in our earlier experiments was slightly different regarding
the modelling of time. Moreover, the number of mutated action systems slightly increased. In our earlier
experiments, we used 207 mutated models. In this section, we considered 255 mutated models of the
CAS. This is partly because of the minor changes in the model and mainly due to an additional mutation
operator, which inverts Boolean constants. Hence, we compare the average time per mutated model,
which increased from 0.02 seconds to 0.27 seconds.

For the particle counter, the runtimes also increased. In our previous experiments, test case generation
from the particle counter action system required approximately 3 minutes. With our adapted tool, it
increased to 7 minutes without writing logs. Note that for the particle counter, the used action systems are

Chapter 9. Integration into the MoMuT::UML Tool Chain 115

identical. However, due to the additionally introduced mutation operator, the number of mutants raised
from 672 to 714. The average time per mutated model increased from 0.27 seconds to 0.59 seconds.

Finally, we have to indicate that these experiments were not conducted on the same computer. How-
ever, though a theoretically faster CPU was used now (an Intel i7 with 3.4 GHz instead of an Intel i7 with
2.8 GHz), the runtimes increased by our adaptations to support complex action systems. This cannot be
traced back to one single reason, but is a conglomerate of different factors. We now support a richer ac-
tion system language, which caused us to use a more powerful SMT solver. Instead of SICStus Prolog’s
built-in constraint solver, we now use Microsoft’s Z3, which is an external library and requires additional
communication overhead. To conclude, we now support a richer action system language. However, the
price to pay is an increased runtime.

Chapter 9. Integration into the MoMuT::UML Tool Chain 116

10 Combining Refinement and Input-Output
Conformance

This chapter is based on joint work with Martin Tappler. Under my supervision, he
implemented the ioco check based on my existing code. Furthermore, he performed
the experiments and assisted in the analysis of the results.

At the end of Chapter 8, we already pointed out the problem that arises when our refinement relation
is used for model-based mutation testing. Our refinement relation is very strict and also leads to non-
conformance due to unspecified states in the mutant. However, states are not incorporated in our test
cases. Hence, a test case that results from a mutant that differs from the original by an unspecified state,
but not by observations, is not able to distinguish the mutated from the original model as we illustrate in
the following example.

Example 10.1. Consider an action system that comprises one state variable s, which is an integer be-
tween 0 and 2. The initial state is defined as s = 0. Furthermore, the action system comprises one
observable action a defined as a :: (true) => (s := 1), which is called in the do-od block. The corre-
sponding LTS is depicted on the left-hand side of Figure 10.1. The labels of the LTS states correspond
to the valuation of the state variable s. Consider a mutated version of this action system, which redefines
action a to be a :: (true) => (s := 2), i.e., the post-state of the action is set to 2 instead of 1. This
yields the LTS depicted in the middle of Figure 10.1. According to our refinement relation, the mutant
does not refine the original action system due to an unspecified state. The initial state s = 0 is unsafe,
the trace to the unsafe state is the empty trace. As described in Chapter 8, we construct a test case, which
goes one step beyond the unsafe state. In this case, this yields a test case consisting of action a depicted
on the right-hand side of Figure 10.1. Obviously, this test case cannot distinguish the original from the
mutated system. O

For this example, the generated test case is superfluous as the two systems cannot be distinguished by
their traces. However, in other cases we miss mutations because we generate too short test cases. Again,
we use an example for illustration.

Example 10.2. We extend the mutated and the original action system from Example 10.1 by an addi-
tional action b defined as b :: (s # 1) => (skip). The corresponding LTSs are depicted on the left-hand
side of Figure 10.2. Our refinement check again identifies the initial state as unsafe. The generated test
case is depicted in Figure 10.2 as the second from right LTS. This test case again cannot distinguish
the original from the mutant, although the mutant shows unspecified output actions. The test case is
too short. A distinguishing test case needs to be one step longer to identify that the mutant allows the

unspecified output action b after action a. O
original mutant test case
obs a
obs a obs a

o< pass
a obs a @:D obsa

Figure 10.1: The original system cannot be distinguished from the mutant by their visible traces.
However, our refinement relation does not hold due to an unspecified state in the
mutant. We generate a superfluous test case.

117

Chapter 10. Combining Refinement and Input-Output Conformance 118

original mutant too short test case distinguishing test case

| i i |

0 obs b obs b
obs a obs b obs a obs b
obs a

obs a 5 5 o 6
o obs a obsh C@:} obsa pass pass obs a J inconc

oD pass

Figure 10.2: Our refinement check results in a too short test case for the two LTSs depicted on the
left-hand side.

Additionally to the above described problems with unobservable states, our refinement relation also
certifies non-conformance on occurrences of internal actions that are not specified. This may lead to
similar problems. In this chapter, we address these problems by additionally considering the Input-
Output Conformance (ioco) relation, which is based on visible traces (more precisely the suspension
traces, cf. Section 3.2). The ioco relation does not only help in resolving the above described problems.
It additionally offers a further advantage as it allows for partial models. It allows an implementation
to react arbitrarily to unspecified inputs. Partial-model support is an important feature of model-based
approaches as incorporating all aspects of a complex SUT in one monolithic model is hard.

Our idea is to combine our efficient refinement check with a subsequent ioco check, which is more
costly in general. We start with a brief description of our implementation of the ioco check and then
explain how we combine our refinement relation with ioco. Finally, we report on experimental results.

10.1 Checking for Input-Output Conformance

Our implementation of the ioco check is based on the same concept as used by Ulysses [50, 10]: the
synchronous product modulo ioco of the two underlying LTSs is computed on the fly. That is, the LTSs of
the mutated and the original action system are explored and immediately checked for ioco conformance.
If non-conformance is detected, the exploration of the LTSs is stopped. This on-the-fly approach for ioco
checking was first presented by Weiglhofer and Wotawa [200]. The synchronous product modulo ioco
of a specification and an implementation is characterised by the following rules:

1. The two systems synchronise on common actions.

2. Inputs that are allowed in the implementation, but not in the specification are not further inves-
tigated. They lead to a pass state in the synchronous product modulo ioco. This rule reflects
implementation freedom, i.e., implementations may behave arbitrarily after unspecified inputs.

3. The implementation may show fewer outputs than the specification, i.e., an output that is only
allowed in the specification, but not by the mutant leads to a pass state in the product LTS.

4. Furthermore, input-enabledness of the implementation is considered by performing the angelic
completion of the implementation (cf. Section 3.2), i.e., for inputs in the specification that are not
enabled in the implementation, a self-loop labelled by this input is added to the implementation.
In this way, the implementation accepts, but ignores the input.

5. Finally, if the implementation shows an output that is not specified, the ioco relation is violated.
This leads to a fail state in the synchronous product modulo ioco.

For a formal definition of the synchronous product modulo ioco and a pseudo-code algorithm of its
on-the-fly calculation, we refer to Weiglhofer and Wotawa [200].

Chapter 10. Combining Refinement and Input-Output Conformance 119

In our setting, the mutated action system represents the implementation, and the original action sys-
tem serves as specification. Our implementation of the ioco check explores both action systems in a
breadth-first search. It adds d-loops in quiescent states (Definition 3.16) and performs the 7-closure, i.e.,
follows internal actions until a visible action is reached. Furthermore, determinisation is applied on the
visible actions. This corresponds to the on-the-fly creation of the suspension automaton yielding the
suspension traces (Definition 3.17). These suspension traces form the basis for the ioco check (Defini-
tion 3.20), i.e., they are used for calculating the synchronous product modulo ioco as described above.
Like our non-refinement check, the ioco check is also bounded, i.e., it stops either if non-conformance
is identified or if a specified maximum exploration depth is reached. Analogously to our refinement
check, we record the trace to the unsafe state with respect to ioco and construct a test case as described
in Chapter 8.

As already pointed out in Chapter 8, our exploration of the action systems is based on constraints
representing the transition relation. In contrast, Ulysses enumerates all possible parameter valuations
and then tests whether these values fulfil the guard of a given action. For large domains, this is ineffi-
cient and our constraint-based approach usually performs better — particularly with respect to memory
consumption. This was also the main reason why we decided for a re-implementation instead of directly
using Ulysses.

10.2 Combination of Refinement and Input-Output Conformance

As already explained above, our refinement relation for action systems is a rather strict conformance
relation. It disallows differences of states, which are usually not observable in black-box testing. Fur-
thermore, it is sensitive to 7-actions: if the mutant performs an internal action, this must be specified
by the original model. Moreover, refinement does not distinguish between inputs and outputs. Hence,
additional inputs in the SUT lead to non-refinement and partial models become useless.

The ioco conformance relation and its variations are better suited for black-box testing, which is
illustrated by its application in many tools [37, 126, 112, 68]. It is also used by Ulysses [10], the existing
test case generation backend of MoMuT::UML. However, we experienced that a full ioco check of two
action systems can be rather costly. This can also be seen from our experimental results, which we
present in the next section.

To counteract, we combine our strict, but efficient refinement check with an ioco check. We consider
our refinement check, where internal states, internal actions, or unspecified input actions already kill a
mutant, as weak mutation testing (Definition 4.15). It determines, whether the necessity condition (Def-
inition 4.12) is fulfilled, i.e., whether a mutation has been reached and has infected the mutated system.
To achieve the stronger mutation testing (Definition 4.14), the sufficiency condition (Definition 4.13) has
to hold additionally. It states that the observed internal error must propagate to an observable failure.
With respect to ioco, it must propagate to an unspecified output action. Hence, we first perform a re-
finement check. Only if non-refinement is identified, we append an ioco check starting from the unsafe
state identified by our refinement check. In this way, the ioco check is more targeted to those parts of the
system, which are actually affected by the mutation. This allows for higher exploration depths and hence
longer test cases.

Note that our combined approach preserves ioco’s support for partial models. If non-refinement is
caused by an additional input action in the mutant, it does not propagate in the subsequent ioco check as
illustrated below.

Example 10.3. Reconsider the original action system introduced in Example 10.1. Its LTS representa-
tion is depicted on the left-hand side of Figure 10.3. The right-hand side shows a mutant that introduces
an additional input action x, which is always enabled. This mutant is ioco-conform to the original as the

Chapter 10. Combining Refinement and Input-Output Conformance 120

original mutant

obs a ctr x

obs a
ctrx c@:j obs a 9 ctrx
o- obs a '

Figure 10.3: Our combined refinement/ioco check allows for partial models.

§

additional action is an input action and unspecified inputs in the mutant may lead to arbitrary behaviour
(cf. Section 3.2). However, the mutant does not refine the original due to the additional action x, because
refinement does not distinguish between inputs and outputs. The initial state is unsafe according to our
refinement check. In our combined conformance check, this is the starting point for the ioco check,
which does not find non-conforming behaviour. Hence, our overall combined conformance check results
in conformance. O

Our combined refinement and ioco test case generation is sketched in Algorithm 10.1. As input, it
requires the original action system as, its initial state inet, and a corresponding set of mutated action
systems mutants. Furthermore, the maximum depths for the refinement check (maxRef) and the ioco
check (maxloco) need to be specified by the user. As our most optimised refinement checker (cf. Chap-
ter 7) is used, we pre-compute the state space up to the given depth for the refinement check in Line 1.
Then, we iterate over the mutants (Line 2). Each mutant is checked for refinement in Line 3. If non-
refinement is detected, the function checkRefinement returns the unsafe state u together with a trace
leading to this state (tr2UnsafeRef). If the mutant asm refines the original as up to the given depth, nil
is returned for the unsafe state and we move on to the next mutant. If an unsafe state v has been found
(Line 4), we perform an ioco check starting at the unsafe state v with a maximum depth specified by the
user. The function checkloco returns a trace that leads from the unsafe state «, which was determined by
the refinement check, to the unsafe state of the ioco check. If the mutant is ioco-conform to the original
(up to the given depth maxloco), the returned trace is n:l. In this case, no test case is generated and we
move on to the next mutant. If the trace to the unsafe state of the ioco check is unequal to nil (Line 6),
it is appended to the trace of the refinement check forming the overall trace to the unsafe state (Line 7).
This trace starts at the initial state of the action system and leads to the unsafe state, which triggers an
ioco difference. It serves as the basis for a test case (Line 8). The function constructSaveT'c performs
the test case construction (cf. Chapter 8). It takes the complete trace to the unsafe state, the original
action system, and its initial state. The resulting test case is saved in a file. Note that the resulting test
cases may have a length of up to mazRef + maxloco, i.e., the sum of the maximum depths of the two
conformance checks.

10.2.1 Under-Approximation

This combination of our refinement check with a subsequent ioco check results in a notion of confor-
mance that is slightly weaker than ioco. Our refinement check classifies certain mutants as refining,
although they are not ioco-conform. In this way, also our combination of refinement/ioco classifies such
mutants as conforming and does not generate a test case, where a pure ioco check would result in a test
case. Therefore, our combined approach results in an under-approximation of the test suite that would
be generated by a pure ioco check given the same set of mutants. On the other hand, our combined
approach has also advantages. It is significantly faster than an ioco check as will be seen later from our
experimental results. In the following, we discuss the three cases where non-conformance with respect
to ioco is not detected by our combined approach.

Chapter 10. Combining Refinement and Input-Output Conformance 121

Algorithm 10.1 combinedRefloco Tcg(as, init, mutants, mazRef , mazxloco)

1: states := findAllStates(as, init, mazRef)

2: for all asm € mutants do

3: (u, tr2unsafeRef) := checkRefinement(states, as, asm)
4. if u # nil then

5: tr2Unsafeloco := checkloco(as, asm, u, mazxloco)

6

7

8

9

if (tr2Unsafeloco # nil) then
tr2Unsafe := tr2UnsafeRef ~ tr2Unsafeloco
constructSaveTc(as, init, tr2Unsafe)
end if
10: end if
11: end for

Quiescence

In our refinement relation, we neglect quiescence (Definition 3.16) as it is not encoded in our predicative
semantics for action systems. For the ioco check, it is added during the exploration of the underlying
LTSs similarly as explained in Chapter 8. As a consequence, an implementation may conform to a spec-
ification with respect to our refinement relation, but not with respect to ioco. In this way, our combined
refinement/ioco check classifies certain mutants as conforming, although ioco does not hold. Consider
the following example.

Example 10.4. Consider the three action system snippets depicted in Figure 10.4. Assume that the state
of each action system consists of one variable s, which is an integer between 0 and 2. The first two lines
of each listing define two actions @ and b. Their composition via non-deterministic choice in the do-od
block is shown in the last line. Furthermore, assume that the initial value for the state variable s is 0
in each action system. The listing at the left-hand side represents the original model, while the other
two action systems are mutations thereof. In fact, both mutants disable action . Mutant 1 in the middle
establishes this by setting b’s guard to false. Mutant 2 on the right-hand side makes the only state that
satisfies b’s guard, i.e., s = 1, unreachable by changing the post-state of action a from 1 to 2. The LTSs
representing these action systems are depicted in Figure 10.5.

Our refinement relation does not consider quiescence, i.e., the d-loops highlighted in blue in Fig-
ure 10.5 have no influence on refinement and mutant 1 refines the original as it does neither reach unspec-
ified states nor shows unspecified actions. Although mutant 1 refines the original, it is not ioco-conform
to the original as {0} = out(mutant 1 after (a)) Z out(original after (a)) = {b} (cf. Definition 3.20).
Since refinement holds, our combined refinement and ioco check also considers mutant 1 as conforming
and no test case will be generated in contrast to a pure ioco check.

Regarding ioco, the situation with mutant 2 is completely the same as with mutant 1. However, for
refinement mutant 1 and mutant 2 are different. While mutant 1 refines the original, mutant 2 does not
refine the original as it reaches an unspecified state by action a (2 instead of 1). O

This example demonstrates that the ignorance of quiescence causes our refinement check and as a
consequence our combination of refinement and ioco to classify certain mutants as conforming, although
they are non-conforming with respect to ioco. In this way, our combined refinement/ioco check generates
fewer test cases than a stand-alone ioco check. Note that this difference is restricted to cases where
quiescence is not caused by an unspecified state in the mutant.

Chapter 10. Combining Refinement and Input-Output Conformance 122

original mutant 1 mutant 2
a::(s =0) = (s := 1) a::(s =0) = (s := 1) a::(s =0) = (s 1= 2)
b::(s =1) = (s = 2) b::(false) => (s := 2) b::(s = 1) => (s := 2)
[1Db a [1Db a [1Db

Figure 10.4: Code snippets of an original action system and two possible mutants.

original mutant 1 mutant 2

|
©

obs a obs a obs a
(1) (Do (2)os
obs b

©O=X;

Figure 10.5: The LTSs representing the action systems shown in Figure 10.4.

Input-Enabledness

Furthermore, the differences between our combined refinement/ioco check and a pure ioco check are
partly caused by the ioco-assumption that implementations are input-enabled (Definition 3.19). For ioco,
implementation models are implicitly made input-enabled by angelic completion, i.e., by adding self-
loop transitions labelled by inputs that are not enabled in a state (cf. Section 3.2). In this way, unknown
inputs are always accepted, but ignored by implementations. Again, we use an example for illustration.

Example 10.5. Consider the LTSs depicted in Figure 10.6. The left-hand side represents the original
model, while the right-hand side is a mutant created by setting the guard of the input action x to false.
The mutant refines the original model as the blue loops labelled by ctr x in the mutant are not part
of the mutant originally and not considered for our refinement check. They have only been added for
the ioco check to fulfil ioco’s requirement that the implementation, in our case the mutant, has to be
input-enabled. This input-enabledness causes the mutant to be not ioco-conform to the original model:
{a} = out(mutant after (x)) € out(original after (x)) = {b} (cf. Definition 3.20). For this example,
our refinement check and as a consequence our combination of refinement and ioco does not generate a
test case, for which the pure ioco check results in a distinguishing test case. O

original mutant

i

obs a

5 c@:) ctrx

ctr x

Figure 10.6: Two LTSs used for demonstration of differences between a pure ioco check and our
combined refinement/ioco check, which are caused by the input-enabledness assump-
tion of ioco.

Chapter 10. Combining Refinement and Input-Output Conformance 123

original mutant

obs b

Figure 10.7: These LTSs are used to demonstrate that our combination of refinement and ioco
misses a test case due to unimplemented backtracking.

Stop at First Unsafe State

Finally, our refinement/ioco check might wrongly classify mutants as conforming due to the stopping
criterion of our refinement check. Our refinement check searches for only one unsafe state with respect
to refinement and then performs an ioco check starting at this state. If this ioco check does not find
violations of ioco, then the mutant is classified to be conforming. However, it is possible that there exist
further unsafe states with respect to refinement that actually propagate to an ioco difference. Hence, to
avoid this problem we would have to backtrack, search for another unsafe state with respect to refinement
and check if this one propagates. This iterative process stops either if a violation of ioco can be identified,
or if no further unsafe states can be found by our refinement checker.

Example 10.6. Consider the LTSs depicted in Figure 10.7. Clearly, the mutant is not ioco to the original
since {b} = out(mutant after (b)) Z out(original after (b)) = {d} (cf. Definition 3.20). However, it
is possible that our implementation combining refinement and ioco classifies the mutant as conforming.
In our notion of refinement, state 1 is an unsafe state due to unspecified successor states: from state 1,
the mutant reaches state 4 by action b, while the original only specifies state 3 after action b. Hence, we
start an ioco check in state 1, which results in conformance. Currently, our implementation stops here
and hence, misses the ioco violation in the other branch. If we had implemented a backtracking facility
that returns to the refinement check, a second unsafe state would be found at state 2 and the subsequent
ioco check beginning in state 2 would immediately reveal the non-conformance. O

As described above, our combination of refinement and ioco may wrongly classify mutants to be
conforming, although they are not ioco to the original. Hence, our combined approach results in an
under-approximation of the test suite that would be generated by a pure ioco check given the same set
of mutants. However, our approach seems to be a good trade-off between computation time and fault
coverage, as will be seen from our experimental results that we describe in the following.

10.3 Experimental Results

To evaluate our combined refinement/ioco checker implementation, we applied it to the four models
already used with our pure refinement checker (Section 9.3). The model CAS_AS specifies the CAS
directly as a plain action system, while CAS_UML is a complex action system that models exactly
the same behaviour, but has been derived by MoMuT::UML from a UML model. Similarly, PC_AS
models the particle counter control logic as a plain action system and PC_UML is a complex action
system derived from a UML model specifying the same behaviour as PC_AS. We use the same mutated
models as in Section 9.3. We also conducted a stand-alone ioco check for these models and compare
it to our combined refinement/ioco check. All experiments were performed on the same computer as

Chapter 10. Combining Refinement and Input-Output Conformance 124

¥ not conforming

(non-ref. & not ioco) 61

formi unique TCs
conforming

(refining) duplicate TCs
conforming 105

(non-ref., but ioco)

(a) Breakup into conforming and not con- (b) Breakup into unique and duplicate
forming model mutants. test cases.
10 9
9
= 8
o 7
w
S 6
-
§ 5
g
g 37
52
i B B
0 - T T T

12 3 45 6 7 8 9 10111213 14151617 18 19 2021
length

(c) Lengths of the unique test cases.

Figure 10.8: Test case generation with our combined refinement and ioco check for CAS_AS.

in Section 9.3. It runs a 64-bit Linux (Ubuntu 12.04), is equipped with 8 GB RAM, and an Intel i7
quad-core processor (3.4 GHz).

10.3.1 Car Alarm System
Plain Action System

For CAS_AS, we set the exploration depth limit of the refinement check to 20 and we allowed for further
20 steps for the ioco check. As the model shows new states only up to depth 11 (cf. Table 9.1), this
ensures that the whole model is covered.

Figure 10.8 gives an overview of the test case generation results from our combined refinement/ioco
check. Figure 10.8a divides the given model mutants into conforming and non-conforming mutants. In
total, we used 255 mutated models. Thereof, 79 (31%) conform to the original as they refine the original.
Another 10 mutants (4%) are conforming although they do not refine the original, because the non-
refinement did not propagate to an ioco difference. Hence, in most cases non-refinement propagates to an
ioco violation. In total, we have 89 conforming mutants (35%). The remaining 166 model mutants (65%)
do not conform to the original, i.e., they do not refine the original and the non-refinement propagates to
an ioco violation. For each of these non-conforming mutants, a test case has been generated. As already
pointed out in Chapter 8, many test cases are duplicates in our current setting. Figure 10.8b illustrates
that 105 test cases (63%) are duplicates of others, and 61 unique test cases remain after the removal of
these duplicates. The lengths of the unique test cases are depicted in Figure 10.8c. The longest test cases
comprise 21 consecutive actions, although the model shows only new states up to depth 11. This is due

Chapter 10. Combining Refinement and Input-Output Conformance 125

70

59
60

50 44
40

30 25

mutants [#]

20 1617

10
1 2

1 2 3 4 5 6 7 8 9 10 11 12
ioco depth

Figure 10.9: Overview of the ioco depths in our combined refinement/ioco check for CAS_AS.

to our combination of refinement and ioco. If non-refinement is identified deep in the model and the ioco
check also requires many steps, this leads to longer test cases. For example, one test case had an unsafe
state for refinement at depth 9 and the ioco check needed 12 steps to find an unsafe state. In this way, the
overall test case has a length of 21 steps.

The depths needed for propagation of non-refinement to an ioco difference are depicted in Fig-
ure 10.9. As can be seen from the diagram, most non-refinement issues propagate to an ioco violation
within 5 steps. For 59 mutants, non-refinement immediately leads to an ioco difference (depth 1). This is
the case if non-refinement was caused by an unspecified output action, which coincides with an ioco vio-
lation. Only 1 model mutant required an ioco depth of 6 steps and 2 mutants required 7 steps. However,
there are also 2 mutants that require 12 steps for the ioco check. Note that the depths of the unsafe states
found by the refinement check coincide with those reported in the previous chapter, where we reported
on the stand-alone refinement check (Section 9.4.1).

Table 10.1 gives detailed information about the computation times required for our combined refine-
ment and ioco check. It splits the total computation time into those parts spent on conforming and not
conforming mutants, which are restated in the first row of the table. For conforming mutants, it fur-
thermore distinguishes between those that refine the original and those that are non-refining, but did not
propagate. The table gives computation times for all mutants considered in a column (X2), for the average
per mutant (¢), and the maximum time per mutant (max). We state runtimes for the following tasks:

1. The time required for finding all reachable states. Note that this is performed once for all mutants
and cannot be split between conforming and non-conforming mutants.

2. The time required for the refinement checks.
3. The time for the ioco checks.

4. The time used for test case construction, i.e., the time to make a test case out of the traces to the
unsafe states. It includes the time for writing the test cases into files on the hard drive.

5. Finally, we state the total computation time. It comprises the time for both conformance checks
and the time used for test case construction. However, it does not include the time for finding
the reachable states as this is done once and is reused for all mutants. Hence, it cannot be split
between conforming and non-conforming mutants. Furthermore, we use two categories for the
total computation time: one with activated logs and one without log files. As already discussed
in the previous chapter, our tool writes comprehensive log files, which can be used for debugging
and our evaluations. However, this is a considerable overhead for such small examples and is not
required for test case generation in practice, where it can be deactivated.

Chapter 10. Combining Refinement and Input-Output Conformance 126

conforming conforming not conforming total
(refining) (non-ref., butioco) (non-ref. & not ioco)
mutants [#] 79 10 166 255
time — find states by - - - 0.2
by 0.43 0.04 0.94 1.41
time — ref. check 10} 0.01 0.00 0.01 0.01
max 0.02 0.01 0.02 0.02
by - 0.89 13.58 14.47
time — ioco check 10} - 0.09 0.08 0.06
max - 0.10 0.57 0.57
by - - 71.2 71.2
time — tc constr. 10} - - 0.43 0.28
max - - 1.64 1.64
fotal computation b 3.1 min 27.3 8 min 11.6 min
time 10} 2.39 2.73 291 2.74
max 3.14 4.10 4.18 4.18
total computation by 0.45 0.93 1.4 min 1.5 min
time without log 10} 0.01 0.09 0.52 0.34
max 0.02 0.10 1.75 1.75

Table 10.1: Test case generation via the combined refinement/ioco check for the CAS_AS model.
The maximum search depth for the refinement check was set to 20, the subsequent ioco
check was also limited by a depth of 20, i.e., the overall maximal search limit was 40
steps. All values are given in seconds unless otherwise noted.

We will not discuss all values in Table 10.1 in detail. Instead we highlight the most interesting numbers.
First of all, the refinement check uses 1.4 seconds of the overall computation time, while the ioco check
requires 14.5 seconds. Furthermore, for this simple model, the test case construction takes longer than
both conformance checks together (71 seconds vs. 16 seconds). However, the majority of the overall
runtime is used for our extensive logs as can be seen from the two sections at the bottom of the table.
The overall computation time including logs is almost 12 minutes. By exclusion of the time required for
writing the logs, it decreases to 1.5 minutes.

For comparison, we also performed a pure ioco check using our implementation described in Sec-
tion 10.1. We specified a maximum depth of 20, which is sufficient to fully cover this model. In this way,
we have a comparable setting to our combined conformance check, where we used 20+20 steps for the
search depths. Figure 10.10 summarises the results. Out of the 255 mutated models, 56 are ioco-conform
to the original (22%) and the remaining 199 mutants are non-conforming (cf. Figure 10.10a). For each
of these mutants, a test case has been generated. Again, there were many duplicates among the test
cases (156, i.e., 78%), which indicates that there is a certain redundancy in the used model mutations.
Hence, we obtain a test suite consisting of 43 unique test cases (Figure 10.10b). These test cases have a
maximum length of 16 consecutive actions (cf. Figure 10.10c).

Comparing the diagrams for our combined conformance check (Figure 10.8) and this pure ioco check
(Figure 10.10) leads to the following observations. The ioco check classifies 56 mutants to be conform
to the original, while our combined conformance check results in 89 cases in conformance. Hence, our
combined conformance check wrongly classifies 33 model mutants as conforming. This is not a surprise.
We already explained possible reasons in Section 10.2.1. We analysed all 33 concerned mutants and
found out that the reason was either that our refinement check disregards quiescence or that it does not
consider input-enabledness of the mutant. We used Ulysses to execute the 61 test cases generated by our
combined conformance check on the 33 affected model mutants. Each model mutant was killed, i.e., our

Chapter 10. Combining Refinement and Input-Output Conformance 127

43

¥ not ioco unique TCs
ioco duplicate TCs
156
reakup into conforming an reakup into unique and duplicate
a) Breakup int f g and b) Breakup int q d duplicat
not conforming model mutants. test cases.

unique test cases [#]
O = N W & U1 OO N

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
length

(c) Lengths of the unique test cases.

Figure 10.10: Test case generation based on a stand-alone ioco check for CAS_AS.

generated test suite does effectively achieve the same coverage of model mutants as the full test suite
generated by the ioco check. However, the test suite generated by our combined check is larger than the
ioco test suite — both in terms of the number of test cases as well as in the length of the generated test
cases. Our combined approach yields 61 unique test cases with a maximum length of 21. The ioco check
results in 42 unique test cases with a maximum length of 16. This can be explained by the fact that the
ioco check in our combined approach is only applied on sub-parts of the model, which are specified by
the refinement check. In contrast, the ioco check starting from the initial state investigates the whole
state space and has more possibilities to identify an ioco violation. It may find ioco differences in lower
depths, which are not considered by the combined approach if non-refinement was found in another part
of the model.

Table 10.2 summarises the computation times for the ioco check. It is structured analogously to
Table 10.1. Again, we will not discuss the whole table, but highlight interesting facts. As in our combined
refinement and ioco check, the test case construction needs more time than the conformance check itself
(78 vs. 19 seconds). Furthermore, the log files cost a considerable amount of time (73% of the overall
time). The ioco check and our combined conformance check, take almost the same amount of time
(given that we do not produce log files). The ioco check required 1.6 minutes, while our combination
needed 1.5 minutes (cf. Table 10.1). Hence, for this small model, we cannot achieve a performance
gain by combining refinement and ioco checking. However, compared to Ulysses, our implementation
is faster. Ulysses was used in a comparable configuration, i.e., we used the same search depth of 20,
stop at the first unsafe state, etc. While we need 1.5 minutes with both of our approaches, Ulysses runs
approximately 6.5 minutes. Hence, our re-implementation of the ioco check is faster for this example.
However, this improvement is not crucial for the small CAS example. In the following, we discuss the

Chapter 10. Combining Refinement and Input-Output Conformance 128

not ioco ioco total
mutants [#] 199 56 255
h 16.21 2.68 18.89
time — ioco check 10} 0.08 0.05 0.07
max 0.91 0.09 0.91
hM 78.16 - 78.16
time — tc constr. 10} 0.39 - 0.31
max 1.17 - 1.17
by 4.9 min 59.63 5.9 min
total computation time 10} 1.49 1.06 1.40
max 3.20 1.40 3.20
total computation time > 1.6 min 2.68 1.6 min
without log 10} 0.47 0.05 0.38
max 1.57 0.09 1.57

Table 10.2: Test case generation via ioco checking up to depth 20 for the CAS_AS model. All
values are given in seconds unless otherwise noted.

results achieved with the complex action system of the CAS generated by MoMuT::UML.

Complex Action System from UML Model

For the CAS_UML model, we conducted the same experiments as for CAS_AS. Again, we used 20 as
the maximum exploration depth for both the refinement and the ioco check.

Figure 10.11 gives an overview of the results from our combined refinement/ioco check. Fig-
ure 10.11a illustrates that the majority of all model mutants was non-conforming (90%). For the other
10%, conformance was either caused by refinement (13 mutants) or by the fact that non-refinement did
not induce an ioco difference (4 mutants). As for CAS_AS, non-refinement propagated to an ioco viola-
tion in most cases. Thereby, 145 test cases were generated, whereof 115 are duplicates of others (79%).
The final test suite consists of 30 unique test cases (Figure 10.11b). Figure 10.11c shows the lengths of
these 30 test cases. The longest test case consists of 13 consecutive actions.

For the non-conforming mutants (non-refining and not ioco-conform), Figure 10.12 illustrates the
depths required by the ioco check, i.e., the depths required for the propagation of non-refinement to
an observable failure with respect to ioco. Like for the CAS_AS model (cf. Figure 10.9), the required
depths are below 5 steps for the majority of the mutations. Only 7 mutations required a depth of 8 and 9
respectively.

Table 10.3 summarises the computation times of our combined refinement and ioco check. It has
the same structure as Table 10.1. Again, the time used by the refinement checks is shorter than the
time required for the ioco checks (1 vs. 2.2 minutes). The time used by test case construction is smaller
than the time for the conformance checks (1.3 minutes vs. 3.2 minutes). Again, our log files cause a
substantial amount of the runtime (59%). Overall, the test case generation takes 4.6 minutes if no log
files are produced.

The results of our ioco check for the CAS_UML model with a maximum search depth of 20 are
illustrated in Figure 10.13. Figure 10.13a shows that 17 mutants were ioco-conform to the original
model (10%). Each of the remaining 145 mutants produced a test case. Thereof, only 27 test cases
(19%) remained after removing the duplicates (Figure 10.13b). The unique test cases show lengths up to
13 consecutive steps (Figure 10.13c). Compared to our combined refinement/ioco check, the generated
test cases have the same maximum lengths. Also, the number of test cases is almost equal: 27 test cases

Chapter 10. Combining Refinement and Input-Output Conformance

¥ not conforming

(non-ref. & not ioco)

conforming
(refining)

conforming

(non-ref., but ioco)

30

unique TCs

duplicate TCs

115

(a) Breakup into conforming and not con- (b) Breakup into unique and duplicate

forming model mutants. test cases.
6

Figure 10.11: Test case generation with our combined refinement and ioco check for CAS_UML.

80
70
60
50
40

mutants [#]

30
20
10

wv

unique test cases [#]
w

1 2 3 4 5 6 7 8 9 10 11 12 13
length

(c) Lengths of the unique test cases.

69
43
20
6
0 0 0 3 N 0 0 0
—mm B
1 2 3 4 5 6 7 8 9 10 11 12

ioco depth

Figure 10.12: Overview of the ioco depths for CAS_UML.

129

were generated by the ioco check and 30 test cases by our combined conformance check. Furthermore,
both conformance checks resulted in the same set of conforming mutants, i.e., for this model and the
given model mutants, we did not under-approximate, but correctly identified all non-conforming mutants.
We took a deeper look into the model and some mutations and found out that this model assigns many
intermediate results in state variables. Thereby, most mutations involve a difference in the states of the
mutated models, which is detected by our refinement check.

Table 10.4 gives information on the computation times required by the ioco check. It has the same
structure as Table 10.2 describing the runtimes for the CAS_AS model. The time required for ioco
checking amounts to 3.7 minutes, while the time for test case generation is approximately 1.4 minutes.

Chapter 10. Combining Refinement and Input-Output Conformance 130
conforming conforming not conforming total
(refining) (non-ref., butioco) (non-ref. & not ioco)
mutants [#] 13 4 145 162
time — find states by - - - 3
by 4.03 1.63 56.41 62.07
time — ref. check 10} 0.31 0.41 0.39 0.38
max 0.41 0.44 0.53 0.53
b - 17.71 1.9 min 2.2 min
time — ioco check 10} - 443 0.79 0.81
max - 4.48 2.01 4.48
b - - 1.3 min 1.3 min
time — tc constr. 10} - - 0.55 0.49
max - - 1.48 1.48
total computation by 35.97 28.54 10.1 min 11.2 min
time 10} 2.77 7.14 4.20 4.16
max 3.29 7.23 7.53 7.53
total computation by 4.25 19.4 4.2 min 4.6 min
time without log 10} 0.33 4.85 1.74 1.7
max 0.43 4.89 2.77 4.89

Table 10.3: Test case generation via the combined refinement/ioco check for the CAS_UML model.
The maximum search depth for the refinement check was set to 20, the subsequent ioco
check was also limited by a depth of 20, i.e., the overall maximal search limit was 40
steps. All values are given in seconds unless otherwise noted.

not ioco ioco total
mutants [#] 145 17 162
b 2.7 min 59.97 3.7min
time — ioco check 10} 1.11 3.53 1.36
max 2.52 4.84 4.84
X 83.21 - 83.21
time — tc constr. 10} 0.57 - 0.51
max 1.47 - 1.47
b)) 6.5 min 78.31 7.8 min
total computation time 10} 2.69 4.61 2.89
max 4.53 6.21 6.21
total computation time > 4.1 min 39.97 3.1 min
without log 10} 1.69 3.53 1.88
max 3.54 4.84 4.84

Table 10.4: Test case generation via ioco checking up to depth 20 for the CAS_UML model. All
values are given in seconds unless otherwise noted.

The overall computation time including the time consumed by producing log files is almost 8 minutes.
For this model, the time required by writing statistics into log files is not the main part of the overall time.
Without log files, the runtime reduces to 5 minutes. What is also worth mentioning, is that the average
time required by the ioco check for a conforming mutant is higher than the average time for a non-
conforming mutant (3.5 vs. 1.1 seconds). The fact that equivalent mutants raise the overall computation
time for ioco checking has already been observed with Ulysses [10].

Chapter 10. Combining Refinement and Input-Output Conformance 131

27

¥ not ioco unique TCs

ioco duplicate TCs

118

(a) Breakup into conforming and (b) Breakup into unique and duplicate
not conforming model mutants. test cases.
6

(O]

unique test cases [#]
w

length

(c) Lengths of the unique test cases.

Figure 10.13: Test case generation based on a stand-alone ioco check for CAS_UML.

Again, we compare the runtime achieved with our ioco-based test case generator to the computation
time required by Ulysses. Given the same search depth of 20, Ulysses needs approximately 10 minutes,
which is acceptable. However, our re-implementation is more efficient: it takes only 5 minutes. In
the next section, we will see that our efficiency in the ioco checker implementation is crucial for more
complex systems like the particle counter.

10.3.2 Particle Counter
Plain Action System

The results of our combined refinement/ioco check for the PC_AS model are depicted in Figure 10.14.
We used a maximum depth of 30 for the refinement check and 20 for the subsequent ioco check. Note that
the depth required to find all states of this model is 28. As can be seen from Figure 10.14a, 538 (75%)
of the 714 model mutants are non-conforming. The remaining 25% split into refining mutants (141
mutants) and non-refining mutants, where the non-refinement did not propagate to an ioco difference (35
mutants). From the 538 generated test cases, 354 are duplicates of others (66%). After their removal,
the resulting test suite consists of 184 unique test cases (Figure 10.14b). The lengths of these test cases
is illustrated in Figure 10.14c. The longest test case consists of 22 consecutive actions. There are only a
few very short test cases (only 4 test cases up to depth 4). The most common length is 12 (29 test cases).

For those non-refining mutants where a propagation to an ioco difference was identified, Figure 10.15
summarises the depths required by the ioco check to find a difference. Like for our previous models, in
most cases a maximum depth of 5 is sufficient. Only two mutants required higher depths (7 and 10).

Chapter 10. Combining Refinement and Input-Output Conformance 132

H not conforming

(non-ref. & not ioco) 184

. unique TCs
conforming
(refining) duplicate TCs
conforming 354

(non-ref., but ioco)

(a) Breakup into conforming and not con- (b) Breakup into unique and duplicate
forming model mutants. test cases.

35

30

25

20

15

10

unique test cases [#]

1 2 3 45 6 7 8 9 101112 13 14 15 16 17 18 19 20 21 22

length
(c) Lengths of the unique test cases.

Figure 10.14: Test case generation with our combined refinement and ioco check for PC_AS.

350

304

300

250

200

150

mutants [#]

112
100

50 25

ioco depth

Figure 10.15: Overview of the ioco depths in our combined refinement/ioco check for PC_AS.

Table 10.5 reports on the required computation times. It is structured analogously to the tables
presented earlier in this chapter. The only difference is that we added values for the quartiles where
appropriate (Q1/Q2/Q3). For this model, the analysis of the runtimes of the individual tasks gives
interesting insights. First of all, the overall time for the refinement checks up to depth 30 amounts to
less than 3 minutes. In contrast, the ioco checks, which are bounded by a depth of 20, almost require
5 hours. By trend, equivalent mutants cause longer runtimes of our ioco checker. As can be seen from
the table, the average time for the ioco check of a mutant that is non-refining, but afterwards ioco is 7.9
minutes. For a mutant, where non-refinement propagates to an ioco violation, the average time for the

133

Chapter 10. Combining Refinement and Input-Output Conformance

SEM Iy juauauyal 9y} J0J -.ﬁ@o@ [oJeas wnuwixewl 9y J, ‘[opowr S Dd 24} 10J JI3Y4d 0201 Auduauyal paurquiod 3y} BIA QOﬁﬂHOGDM ased 18], :G'0| 9|qelL

“PIIOU ASTMISYIO SSOTUN SPUOIDS
ur uoAIS are sanfeA [[v "sdols ()¢ seam JIWI] YoIeas [eWIXBU [[BISA0 Y} “9'T ‘0 JO yidop & AQ pajrwuI] sem Yooy 0001 Juanbasqns ay} ‘0¢ 03 198

yze L6l yce 7'l Xew
8T/1'1/90 81/T1/90 T61/€91/201 1/60/80 £0/0O/'0O 3o oM owm
SY¥C Sl ur 6°/ €L0 ¢ uoneinduwod [e30)
yo'v U 9'¢| yoy ur /] X
yce (44 yce 14 Xew
crisele Er/9¢e/T'e U g /Ut ¢ / Ui /7] ve/cele £0/°0/10 aun
LT 6¢ un ¢/, s 0] uonenduwos [ejo}
yeg Ut 1°¢¢ 4oy Ut €/ X
86°1 86°1 - - Xew
S0 L9°0 - - 0] “T)SU0D I} — WN)
uru 9 uru 9 - - X
yce €81 yce - Xew
80/20/10 80/€0/20 U ¢ / UIWE L7 / Uit /] - FO/*0I'0 yoouo 001 - oum
9L°€T L0 ur 6°/ - ¢
ULy uru ¢'9 yoy - X
6¢'l SL0 Y0 6¢’l Xew
€0/500/100 c0/¥00/100 100/ 100/ 100 1/60/80 £0/c0/10 oo Jo1 — o
¥T'0 Tro 200 €L°0 ¢
ur ¢ ur T°| 8S°0 ur /] X
€Tl - - - ¢ S9IeIS puly — oW
VIL 8¢€¢C S¢ 44! [#] syueynua
(0901 10U 29 “JOI-UOU) (0901 1nq ‘"Jo1-UOU) (Suruyar)
1210} SurwIoJuood jou SuruoJuod Surwiojuod

Chapter 10. Combining Refinement and Input-Output Conformance 134

123

M not ioco unique TCs
ioco duplicate TCs
484
a) Breakup into conforming and b) Breakup into unique and duplicate
p g p q p
not conforming model mutants. test cases.
18

16
14
12
10

unique test cases [#]

o N b O

1 2 3 45 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

length
(c) Lengths of the unique test cases.

Figure 10.16: Test case generation based on a stand-alone ioco check for PC_AS.

ioco check is only 0.7 minutes. The high average for the ioco-conforming mutants seems to be caused
by a particular outlier, which required 3.2 hours for its ioco check. Overall, the computation time for our
combined conformance check is approximately 5 hours. Given these high runtimes caused by the ioco
check, our log files do not cause a substantial overhead.

Again, we also performed a stand-alone ioco check. To achieve computation times in the same order
of magnitude, we decided not to use the same depth as for the refinement check for this more complex
model. While the refinement check was limited to a depth of 30, we restricted the maximum depth for
the ioco check to 20, which entails that we cannot fully explore the whole model and in turn possibly
cannot identify some non-conforming mutations. Figure 10.16 summarises the results. Approximately
15% of the model mutants are ioco-conform up to depth 20. The remaining 85% of the model mutants
resulted in 607 test cases. Thereof, 80% were duplicates. The final test suite consists of 123 unique test
cases (cf. Figure 10.16b). Their lengths are depicted in Figure 10.16¢c. The longest test cases consists of
20 consecutive steps, which is the maximal possible length due to our depth restriction. Similarly as our
combined check, the ioco check produced only 4 short test cases with a length of up to 4 steps.

In comparison to our combined refinement and ioco check, the ioco check produces a smaller test
suite (123 test cases with a maximum length of 20 vs. 184 test cases with a maximum length of 22).
We furthermore compared the sets of conforming and non-conforming mutants of both approaches. We
found out that the ioco check finds 10 mutants to be ioco-conform, while they are not in our combined
check. This is due to the limited depth of the ioco check. Hence, a depth of 20 is not sufficient for this
model and the given mutants. In turn, our combined conformance check cannot kill 79 model mutants
that are identified as non-conforming by the ioco check. This is due to the differences between refinement
and ioco, which we described in Section 10.2.1. However, we executed the test suite produced by our

Chapter 10. Combining Refinement and Input-Output Conformance 135
not ioco ioco total
mutants [#] 607 107 714
by 1.7h 52h 6.9 h
time — ioco check 4 10.1 2.9 min 35
Q1/Q2/Q3 02/19/12 70/71/79 0.2/3.4/729
max 1.2 min 3h 3h
by 6 min - 6 min
time — tc constr. ¢ 0.6 - 0.5
max 1.5 - 1.5
by 2h 52h 7.2h
total computation time ¢ 1.7 2.9 min 36.4
Q1/Q2/Qs3 1.5/35/14 717721780 1.6/5.1/31
max 75.3 3h 3h

Table 10.6: Test case generation via ioco checking up to depth 20 for the PC_AS model. All values
are given in seconds unless otherwise noted.

combined refinement and ioco check on these 79 model mutants. Actually, all of them are killed by our
test suite, i.e., the fault coverage of our approximated test suite is not reduced for the given set of model
mutants. Actually, it is even higher than that of the ioco test suite. This is due to the higher exploration
depth we could reach with our combined approach (depth 30). The ioco check was limited to a depth
of 20 and hence cannot kill 10 mutants that are revealed as non-conforming by our combined approach.
Note that these 10 mutants are also not killed by other test cases generated by the ioco check.

Our combined approach does not only result in a higher fault coverage on the model mutants. It
is also faster than the ioco check as can be seen from Table 10.6. While our combined conformance
check required approximately 5 hours, the ioco check took more than 7 hours. Note that we do not state
runtimes without logs in Table 10.6 as it is only a small fraction of the total computation time for this
example. The table also shows that the ioco check suffers from an outlier in the conforming mutants,
which caused a runtime of 3 hours. This corresponds to our findings from the combined conformance
check, where the ioco check also took very long for this particular mutant (cf. Table 10.5). For Ulysses,
this mutant is even more problematic. It causes Ulysses to run out of memory on a machine with 8§ GB
RAM. For this reason, we did not finish the experiments with Ulysses and aborted after 4.7 hours and
318 finished mutants. Hence, less than 50% of the given model mutants were processed.

This model clearly demonstrates the benefits of our combined refinement and ioco check. These
findings are also confirmed by the UML model of the particle counter as will be seen in the next section.

Complex Action System from UML Model

Due to the complexity of the PC_UML model generated by MoMuT::UML’s frontend (cf. Table 9.1),
we restricted the depth for the refinement check to 15 and the maximum depth for the subsequent ioco
check to 5. Hence, the model is explored up to depth 20. Figure 10.17 shows the results of our combined
refinement and ioco check. As can be seen from Figure 10.17a, 189 model mutants refine the original
and 68 mutated models are conform as the found non-refinement does not propagate to an ioco violation.
The remaining 78% of the mutants are non-conforming and result in 928 test cases. The vast majority
of these test cases can be removed as they are duplicates of others. Hence, the test suite consists of 111
unique test cases. The lengths of these test cases are depicted in Figure 10.17c. The longest test case
comprises 16 consecutive actions.

Figure 10.18 illustrates the number of steps required in the ioco checks to identify an ioco violation

Chapter 10. Combining Refinement and Input-Output Conformance 136

111
¥ not conforming

(non-ref. & not ioco)

. unique TCs
conforming

(refining) duplicate TCs
conforming

(non-ref., but ioco)
817

(a) Breakup into conforming and not con- (b) Breakup into unique and duplicate
forming model mutants. test cases.

30

25

20

15

10

unique test cases [#]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
length

(c) Lengths of the unique test cases.

Figure 10.17: Test case generation with our combined refinement and ioco check for PC_UML.

500

400
300

200

mutants [#]

100

ioco depth

Figure 10.18: Overview of the ioco depths in our combined refinement/ioco check for PC_UML.

after the non-refinement. In most cases, a depth of 1 or 2 is sufficient. A depth of 3 is still required by
44 model mutants. Some were also found at depths 4 or 5.

Table 10.7 summarises the computation times for our combined conformance check. In this setting,
the refinement check consumes the majority of the runtime. While 13.3 hours are spent on refinement
checking, only 2.4 hours are used for the ioco check. However, for refinement we allowed for a search
depth of 15, while the ioco check was restricted to a depth of 5. The overall computation time amounts
to 16.2 hours.

The stand-alone ioco check was performed with a maximum depth of 10. We experienced perfor-
mance problems with ioco depths higher than 5 for the combined conformance check. However, we can

137

Chapter 10. Combining Refinement and Input-Output Conformance

"PIIOU 9STMIIYIO SSO[UN SAINUIL UT
uoAIS a1e son[eA [V "sde)s (g Sem JIWI[YOIeas [BWIXBU [[BIOAO 9} ' ‘G Jo 3dop ' AQ pojrwuI] Sem Yoayd 0001 Juenbasqns ay) ‘G| 03 10S sem
09U JusWAUYRI Ay} JoJ Yidop yoreas wnwirxew Y], ‘[opowt TINN - Dd Y 10J YYD 0J01JUAWAUYAI PIUIGUIOD) BIA UONRISUAT 9sed 1S, 120} d|qeL

1284 I'v (e 1974 Xew
90/¢€0/70 ¥'0/€0/C0 I't/L0/20 8¢€/€C0/TO £0/°0/10 3o noyim o
80 90 80 6'1 ¢ uoneinduwoo [e30)
Yol yco 60 Ur9 X
7% I'v (e vy Xew
9'0/¢€0/T0 ¥0/¢€0/C0 C¢1/80/C0 6¢/¢€0/20 £0/c0/10 [umn
60 90 Q0 ré 0] uonenduwos [ejo}
U89l ULeé 60 uco X
298 /'€ 208 L€ - - Xeuw
s 7] 208 G'] - - 0] “T)SU0D I} — WIN
6'CC 6'CC - - X
7 208 /7 z - Xeuw
098 G'9 /935 Q9 /I9S G'G 095 G'9 /998 Q9 / J9S 9°G 098 [G /098 [€ /98 G'Q - €0/°O/0 PO 0901 — o
298 {7/ 208 /. 298 §¢ - 0] : ‘
Uy'e ULl ULo - €4
ey 6'¢ 81 £ Xew
J98 LT /9988 /I9S ¢ 98 T /9989 /I98 ¢ 98 69 /3989 /D98 8¢/€C0/T0 £0/c0/10 oo “jo1 — o
298 O 208 /7 298 8°9 6’1 0]
qyeel UrlL L'L yro9 X
Sel - - - ¢ S9IE]S pul — own
G811 8C6 89 681 [#] syueinu
(0901 10U 29 “JOI-UOU) (0901 1nq “'Jo1-UOU) (Suruyar)
1210} Surwiojuood jou Surwiojyuoo Surwiojuoo

Chapter 10. Combining Refinement and Input-Output Conformance 138

59

466

not ioco unique TCs
ioco duplicate TCs
719
660
(a) Breakup into conforming and (b) Breakup into unique and duplicate
not conforming model mutants. test cases.
30
26
25
T 20
w
2 15
8 12 12
a
g 10
[
g 5 |
€ 1 1 1 1 1 22

0
1 2 3 4 5 6 7 8 9 10

length

(c) Lengths of the unique test cases.

Figure 10.19: Test case generation based on a stand-alone ioco check for PC_UML.

allow for this depth in the pure ioco check, which always starts from the initial state. The reason is that
the particle counter model is very narrow in the beginning. The model starts with a sequence of three
actions for reporting its state. Only then, the state space slowly widens. For our combined approach, the
ioco check starts in deeper states and has to cope with a relatively larger branching factor, i.e., each state
has many successor states.

Figure 10.19 summarises the results of the ioco check. For this model, the number of ioco-conform
mutants is rather high (39%). This can partly be explained by the fact that we do not fully cover the
model’s state space. The remaining non-conforming mutants result in 719 test cases (cf. Figure 10.19a).
Thereof, 92% are duplicates and only 59 unique test cases remain (Figure 10.19b). The majority of these
test cases are 10 steps long. This is also the maximum length of the generated test cases as we restricted
the ioco check by this limit. We analysed the sets of conforming and non-conforming mutants produced
by the ioco check and the combined conformance check. The combined approach wrongly classifies 14
mutants as conforming. However, all of them are covered by other test cases that were generated by
our combined conformance check. In turn, the ioco check missed 223 mutants due to the smaller search
depth. Note that these 223 mutants cannot be killed by the ioco test suite. Hence, our combined approach
achieves a higher mutation score on the model mutants than the ioco check.

Although the search depth was very limited compared to our combined approach, the ioco check
takes considerably more time. While our combined approach took approximately 16 hours, the ioco
check required 33.3 hours as can be seen from Table 10.8. Thereof, 22.8 hours were spent on checking
39% of the model mutants, which are the conforming mutants. On average, a non-conforming mutant
requires 0.8 minutes, while a conforming mutant amounts to 2.9 minutes. As for PC_AS, the time
required for writing logs is a negligible fraction compared to the overall runtime. Therefore, we did not

Chapter 10. Combining Refinement and Input-Output Conformance 139

not ioco ioco total
mutants [#] 719 466 1185
by 9.8h 22.8h 32.6h
time — ioco check 4 0.8 2.9 1.7
Q1/Q2/Q3 4.6sec/0.3/1.6 2.8/29/3 03/24/72.8
max 3.9 5.2 5.2
by 19 - 19
time — tc constr. 10} 1.6 sec - 1 sec
max 5.8 sec - 5.8 sec
by 10.3 h 23 h 333 h
total computation time 4 0.9 3 1.7
Q1/Q2/Q3 6.4sec/04/1.6 2.8/29/3 03/24/2.8
max 3.9 5.2 5.2

Table 10.8: Test case generation via ioco checking up to depth 10 for the PC_.UML model. All
values are given in minutes unless otherwise noted.

14 129

12 111

(o]

)]

mutants [%]

I

1.2
0
o e

CAS_AS CAS_UML PC_AS PC_UML

N

Figure 10.20: Percentage of mutants that are conforming according to our combined refinement
and ioco check, but which are revealed to be not conforming in a pure ioco check.

state computation times without log file writing any more.

We also tried to generate test cases with Ulysses using the same search depth of 10. However, as for
the PC_AS model, the memory consumption exceeded the available 8 GB of RAM and we aborted.

10.4 Discussion

We conclude this chapter by summarising the findings from our four experiments.

As pointed out in Section 10.2.1, our combined conformance check possibly misses some test cases
as it might wrongly classify certain mutants as conforming, although they are not ioco-conform to the
original model. Hence, it does not create a test case for these mutants and the generated test suite
is an under-approximation of a full ioco test suite. As can be seen from Figure 10.20, this applied
to almost 13% of the CAS_AS model mutants, while this was not the case for any of the CAS_.UML
model mutants. For PC_AS, 11% of the model mutants were missed, while for the PC_UML model the
percentage was only 1.2%. Note that for the particle counter models, these numbers are lower bounds
as the ioco checks were performed with lower exploration depths and hence classified some mutants
as conforming, although they are possibly non-conforming in higher depths. However, it seems that

Chapter 10. Combining Refinement and Input-Output Conformance 140

8
6.8
7 5 6.1
6)
X 5
2 4
g, 2.7
£
2
1
0 -
CAS_AS CAS_UML PC_AS PC_UML

Figure 10.21: Percentage of non-refining model mutants that did not propagate to an ioco differ-

ence.

2.0 1.9
o ref. ioco Mref. +ioco 1.7
2
€ 15
8
>
£
@
o 10
pn 0.8
£
B
(]
@ 05 o3 %4 03
5 R
>
"’]

0.0

CAS_AS CAS_UML

Figure 10.22: Comparison of the average computation times per mutant for the CAS. An explo-
ration depth of 20 steps was used in each case.

the action systems generated from UML models have a beneficial structure that supports our approach.
We investigated the CAS_UML model and found a plausible explanation: many intermediate results are
saved in state variables and most mutations cause different states, which are detected by our refinement
relation. Anyway, our under-approximation did in effect not lower the fault coverage of the generated
test suites. For each model, all of the missed mutants were covered by other test cases generated by our
combined conformance check.

Furthermore, the assumption that is underlying our idea of combining refinement and ioco holds for
our use cases: non-refinement propagates to an ioco violation in most cases. The percentages of model
mutants where this is not the case is depicted in Figure 10.21. For each model and the given set of
mutants, less than 7% of the non-refining mutants do not violate the ioco relation after they have shown
non-refinement. Hence, for more than 93% of the model mutants, our assumption holds. As can be seen
from Figures 10.9, 10.12, 10.15, and 10.18, the propagation only requires up to 5 steps for the majority
of the cases.

Finally, our experiments demonstrated that our combination of refinement and ioco is essential for
complex models. For the simple CAS, our combined refinement and ioco check was only slightly faster
than a pure ioco check. Figure 10.22 summarises the average time per model mutant for both CAS mod-
els. It compares the ioco check with our combined refinement/ioco check and also states the computation
times achieved by our pure refinement check, which were presented in the previous chapter. For both
CAS models, the ioco check is almost as fast as our combined conformance check. However, for the
particle counter models, it turned out that our combined approach is essential in order to cope with such

Chapter 10. Combining Refinement and Input-Output Conformance 141

120
g ref. Mioco Mref. +ioco 102
L2, 100]
-
[=
S
s 80
€
8 60 —8
[}
£
£ 4w 36.4 36.4
[24,5
©
g 20]
° 0.6

0
PC_AS PC_UML

depth 30 20 30+20 15 10 15+5

Figure 10.23: Comparison of the average computation times per mutant for the particle counter.
Note that the exploration depths vary. They are stated at the bottom of the diagram.

complex models. Figure 10.23 compares the average computation time per model mutant for the particle
counter models. Our combined approach reduces the computation time by more than 30% for the PC_AS
model, and by more than 50% for the PC_UML model. Note that for the particle counter, the test suites
generated by our combined approach turned out to be even stronger than those produced by the ioco
checker. They achieve a higher mutation score on the given set of model mutants. The reason is that the
exploration limits for the ioco checks were smaller. The used maximum depths are summarised at the
bottom of the diagram.

Overall, we conclude that our combination is a valuable alternative to a stand-alone ioco check. We
admit that for small systems like the CAS, it is not beneficial as a full ioco check is feasible. However, for
complex systems like the particle counter, it can drastically decrease the computation time, while at the
same time the exploration depths and hence the fault coverage of the mutated models can be increased.
For the most complex model (PC_UML), the computation time was decreased by more than 50%, while
223 more mutated models were detected.

In the next chapter, we address the problem of the high redundancy in the generated test suites and
conduct our final experiments, which include the execution of the generated test cases.

Chapter 10. Combining Refinement and Input-Output Conformance 142

11 Final Optimisations and Experiments

The experiments with the particle counter presented in this chapter are part of the
evaluation of the TRUFAL project and are joint work with AIT and AVL. The
results will be documented in the TRUFAL Deliverable D5-1.

In this chapter, we describe our two last optimisation approaches and report on experimental results
for the CAS and the particle counter including test case execution results.

11.1 Final Optimisations

11.1.1 Kill Check with Existing Test Cases

For MoMuT::UML’s existing test case generation backend Ulysses, checking whether already generated
test cases kill a given model mutant proved to be a valuable optimisation [10]. We adopted this approach
for our backend. The main benefit is that we avoid the generation of redundant test cases. As pointed
out in Chapter 8, our implementation generates a large set of test cases that contains many duplicates.
For example, 80% of the test cases generated from the plain action system modelling the CAS were
duplicates and could be removed after they had been generated. For the plain action system of the
particle counter, the ratio was almost the same: 90% of the generated test cases were duplicates.

Instead of generating test cases and removing them later, we aim for the avoidance of redundancy in
advance. The basic idea is to check whether an already existing test case kills a model mutant. If this
is the case, no additional test case will be generated. If the model mutant cannot be killed, a new test
case will be generated for this mutant. This corresponds to the test case construction strategy S5 of the
Ulysses backend [10].

In the following, we integrate this kill check into our combined refinement/ioco check, which was
presented in the previous chapter. However, in general the concept is applicable to a pure refinement
check or to a stand-alone ioco check as well. Algorithm 11.1 gives an overview of our kill check inte-
grated into the refinement/ioco check. As input, it takes the original action system as and its initial state
1nit, the set of mutated action systems mutants, the maximum depths for the refinement and ioco check
(maxRef and maxloco respectively), and finally the directory used for storing the test cases (tc_dir).
At first, we calculate the reachable states for the refinement check (Line 1). This works analogously to

Algorithm 11.1 tcg WithKillCheck(as, init, mutants, maxRef , maxloco, tc_dir)

1: states := findAllStates(as, init, mazRef)
2: for all asm € mutants do

3: forall {c € tc_dir do

4 verdict := exec(tc, asm, init)

5: if verdict = fail then
6

7

8

9

break
end if
end for
if verdict # fail then
10: reflocoTcg(as, init, asm, states, mazxloco, tc_dir)
11: endif
12: end for

143

Chapter 11. Final Optimisations and Experiments 144

Algorithm 10.1. For each mutant (Line 2), the test cases in the given directory are iterated (Line 3).
The current test case tc is executed on the given mutant asm (Line 4). If it fails, we stop the kill check
(Line 6). Hence, we do not necessarily execute all existing test cases, but stop when the first test case
fails on the mutant. If no test case kills the mutant, i.e., in Line 9 the verdict is not fail, we start our
test case generation (Line 10). The reflocoT'cg function performs our combined refinement and ioco
check. In case of non-conformance, it constructs a test case. This test case is saved in the directory
tc_dir, where it is available for the kill check performed on the following model mutants. In contrast to
Algorithm 10.1, reflocoTcg considers only one mutant and takes the pre-computed, reachable states as
input. If a test case killed the mutant, i.e., the condition in the if statement in Line 9 evaluates to false,
we do not generate an additional test case for this mutant.

The exec function used in Algorithm 11.1 relies on the ioco theory (cf. Section 3.2), where the
execution of a test case T'C' on an implementation I is expressed by the synchronous parallel execution
of the test case with the implementation — denoted as 7’C' || I. An ioco test case is an LTS with
inputs and outputs that has special properties (Definition 8.1). In the following, we denote this kind
of LTSs as TT'S(Ly, Lo) (test transition systems). Furthermore, ioco presumes weakly input-enabled
implementations (cf. Section 3.2.1), i.e., implementations belong to the class of Input Output Transition
Systems (IOTSs) (Definition 3.19) and are denoted by IOT'S(Ly, Lp). Remember that L; represents
the input alphabet and Lo denotes the output alphabet. In this work, we take the view of the SUT,
i.e., inputs are inputs to the SUT and controllable by the tester, and outputs are outputs from the SUT,
which are observable by the tester. The synchronous parallel execution is a function TT'S(Ly, Lop) X
IOTS(Lr,Lo) — LTS(L;,Lo U {d}) where the resulting LTS represents the executed sequence of
events, i.e., the test log of the test run. 7'C' || [is defined by the following inference rules [192]:

5 .6
LTy a ., . a. . /
i — i 1 t—t i—i aeLiULo (2) t—1t 11— 3)

£ it £ -t £t

Note that the states of T'C' and I are represented by t and ¢ respectively. Unprimed states (¢ and
i) denote the start state of a transition, primed states (' and ") represent the end state of a transition.
Initially, ¢ and ¢ are the initial states of the test case and the implementation respectively. Rule (1)
deals with internal actions in the implementation. The according transition is consumed and the test
case, which does not contain internal actions, does not move on. Rule (2) expresses synchronisation on
common events. As the SUT is input-enabled, it accepts all inputs from the test case. Vice versa, the
test case accepts all possible outputs from the SUT (cf. Definition 8.1). Hence, no deadlocks can occur.
Finally, Rule (3) deals with quiescence (Definition 3.16). If the test case allows for quiescence, and the
SUT does neither provide internal nor output actions, then the §-action in the test case is consumed and
the implementation remains in its current state. Test execution stops if a terminal state in the test case
is reached. Remember that every terminal state in a test case represents a verdict (Definition 8.1). The
verdict of the test run is determined by the reached terminal state’s verdict.

Note that the implementation may behave non-deterministically. As a consequence, different test
runs of the same test case on the same implementation may result in different verdicts. An implemen-
tation passes a test case if and only if all possible test runs do not lead to a fail verdict. Hence, when
dealing with non-deterministic implementations, each test case must be executed several times in order
to reveal all possible non-deterministic behaviours of the implementation. Note that this only works if
the fairness assumption, which is an assumption of the ioco theory, holds (cf. Section 3.2.1). It states that
a non-deterministic implementation eventually shows all of its non-deterministic behaviours.

In our case, we check whether a test case kills a given mutated action system. Hence, the implemen-
tation is represented by an action system, which we explore on the fly during test case execution to gain
its LTS transitions. In principle, this exploration has already been described in Section 8.1. However,

Chapter 11. Final Optimisations and Experiments 145

note that the model mutant is not necessarily input-enabled. Hence, we make the LTS input-enabled by
angelic completion, which causes unknown inputs to be always accepted, but ignored (cf. Section 3.2).

Furthermore, we have to consider non-determinism in the model mutant. In contrast to testing a real
implementation, we are not reliant on the re-execution of the test case under the fairness assumption as
described above. As we explore the state space of the model mutant, we can systematically test all possi-
ble non-deterministic behaviours of the model mutant. In Prolog, this is implemented straightforwardly
via Backtracking. If all of the behaviours in the model mutant lead to a pass or inconclusive verdict, the
test case does not kill the model mutant. We move on to the next test case, or if all test cases have already
been executed on the mutant, we start our mutation-based test case generation to create a new test case
for this mutant (provided that the mutant is not equivalent). Note that the above rules assume explicit
fail verdicts in the test cases. However, fail verdicts are implicit in our test cases. Hence, we reach a fail
verdict whenever none of the above rules applies and we are not in a pass or inconclusive state. If this is
the case for one of the non-deterministic behaviours of the model mutant, the mutant is killed by the test
case and we do not generate an additional test case.

11.1.2 Combination with Random Test Cases

In addition to the rather costly mutation-based test case generation, we also implemented a random test
case generation. Therefor, we explore the original action system and randomly choose one of the enabled
actions. In this way, we generate a random trace through the model, which we extend to a test case like
we construct test cases from traces to unsafe states (cf. Chapter 8). The generation of a random test suite
requires two parameters from the user: the number of desired random test cases and their length, i.e., the
number of actions leading to a pass verdict.

MoMuT::UML offers an option to combine random test case generation with model-based mutation
testing. It first generates a set of random test cases as described above. Then, a kill check is performed
as described in Section 11.1.1. Finally, the surviving model mutants are used as input for the more
complex mutation-based test case generation. In principle, this concept works for arbitrary test suites.
For example, a given set of manually designed test cases or a test suite based on the transition coverage
of the original test model or the implementation can be used instead of a random test suite.

In the following sections, we report on experiences with purely mutation-based test suites with ac-
tivated kill checks, with pure random test suites, and with the combination of random and model-based
mutation testing as described above — again with activated kill checks. We execute these test suites on a
set of faulty implementations to evaluate their effectiveness. We start with the CAS use case.

11.2 Experiments with the Car Alarm System

11.2.1 Test Case Generation

We generate test cases for the CAS in the final MoMuT::UML setting, i.e., we generate test cases from
the complex action system generated by MoMuT::UML. This model was referred to as CAS_UML in
the previous chapters. Furthermore, we reuse the 162 model mutants already created for our earlier
experiments. We use our combined refinement and ioco check, which we presented in the previous
chapter, with search depths of 20 steps each. However, we now additionally perform the kill check
described in Section 11.1.1, i.e., we check whether already generated test cases kill a model mutant and
only generate a new test if this is not the case. This leads to a mutation-based test suite, which we call M
in the following.

Furthermore, we generate a random test suite as described in Section 11.1.2, which we refer to as
R in the following. We use a similar setting as in former experiments with Ulysses [10], i.e., since the

Chapter 11. Final Optimisations and Experiments 146

M R C
max. expl. depth for ref.+ioco 20+ 20 - 20+ 20
max. expl. depth for rand. - 150 150
random tests [#] - 3 1
model mutants [#] 162 162 162
survived model mutants [#] 17 31 17
test cases [#] 16 3 7
overall computation time [min] 7 0.5 8
time for finding states [sec] 5 - 5
avg. time — generate TC [sec] 4.8 10.7 5.3
avg. time — survived mutant [sec] 5.6 - 5.8
avg. time — kill mutant with TC [sec] 1.9 - 2.3

Table 11.1: Test case generation via the combined refinement/ioco check with activated kill check
for the CAS_UML model.

CAS model is cyclic, we generate three long random test cases: one with 50 steps of random traversal,
one with 100 steps, and one with 150 steps. However, note that the experiments with Ulysses were based
on a different model of the CAS, which was deterministic and only allowed one particular sequence of
the actions for activating the alarms (first the flash is turned on, then the sound). Similarly, the order for
turning the alarms off again was fixed in the previous model: the sound is turned off first, followed by
the deactivation of the flash lights. In contrast, our version of the CAS model is more abstract as it allows
arbitrary orders of these actions — granting some implementation freedom.

Finally, we combine random testing with mutation testing. We will call the resulting test suite C' in
the following. Again, we use a similar setting as in the former Ulysses experiments [10]. We generate
one test case based on a random traversal of 150 steps. Subsequently, we start our combined refinement
and ioco check with search depths of 20 steps each. It also performs the kill check, i.e., it checks whether
already existing test cases (including the random test) kill a model mutant.

Table 11.1 states the most important metrics on the three test suites. The first two rows summarise
the exploration depths, which were already described above. Note that the depth required for finding all
states of the CAS_UML model is 17 steps (cf. Table 9.1). Hence, our specified exploration depth of 20
for the refinement check allows for the full exploration of the state space of the model. The next two
rows are a recap of the number of random tests and the number of model mutants. Note that for the
random test suite R, these mutants were not used for the test case generation. However, we determined
how many of these mutated models could not be killed by the random test suite. The number of survived
model mutants is stated in the next row. Both M and C cannot kill 17 mutants. Clearly, test suite R has
the highest number of survived model mutants. For M and C, the model mutants that did not survive
were either killed by an existing test case or they led to a new test case. Test suite M consists of 16 test
cases, R comprises 3 test cases, and C contains 7 test cases (one random and 6 mutation-based test cases).
Note that test suite C is smaller than test suite M, but detects the same number or even more of the model
mutants compared to the larger test suite M. Hence, the combination of random testing with mutation-
based testing improves the quality of the generated test suites with respect to model mutation coverage
and with respect to the size of the test suite.

The lengths of the test cases in test suite M are shown in Figure 11.1. The longest test case consists
of 13 consecutive actions. There are no short test cases with length 1 or 2. This is due to the performed
kill check. The mutations that lead to such short test cases were covered by longer test cases that had
been generated before. For test suite C, the lengths of the test cases are depicted in Figure 11.2. The
maximum length of the test cases is determined by the random test, which has a length 150 steps. Again,
short test cases were not generated due to existing longer test cases. For test suite R, the lengths of the

Chapter 11. Final Optimisations and Experiments 147

test cases [#]
w

0 O 0

1 2 3 4 5 6 7 8 9 10 11 12 13
length

Figure 11.1: Overview of the lengths of the test cases in test suite M for the CAS.

test cases [#]

0O 0 O 0 0 o0 0

1 2 3 4 5 6 7 8 9 10 11 12 150
length

Figure 11.2: Overview of the lengths of the test cases in test suite C for the CAS.

test cases are 50, 100, and 150 steps as specified as input for the random test generation. An exemplary
test case for the CAS has already been shown in Figure 8.2.

The subsequent rows of Table 11.1 report on the required computation times. The overall computa-
tion time states the overall time required for generating each test suite. The generation of the test suites
involving conformance checking show almost equally long runtimes: approximately 7 minutes for test
suite M and 8 minutes for test suite C. Unsurprisingly, the random test case generation is much faster
than our mutation-based test case generation. The three random test cases could be generated in half a
minute. One part of the overall computation time for test suite M and C consists of the time for the state
space exploration, which forms the basis of our refinement check for all mutants (cf. Section 7.1.3). It is
only a small fraction of the overall computation time (around 5 seconds). Finally, we state the average
time required to generate one test case for each test suite. For M and C, we furthermore give values for
the average time to process a surviving mutant. Finally, we calculated the average time required to kill
a mutant with an existing test case. On average, the check whether an existing test case kills a model
mutant requires less than half of the time needed to generate a test case. Unfortunately, the computation
times of these experiments are not directly comparable to the computation times of our previous experi-
ments presented in Section 10.3. The reason is that the computer used for the previous experiments was
not available any more. Hence, the results presented above were generated on a MacBook Pro with an
Intel i7 dual-core processor (2.8 GHz) and 8 GB RAM with a 64-bit operating system. This hardware
is a little slower than the PC used for the previous experiments, which was equipped with an Intel i7
quad-core processor with 3.4 GHz.

Chapter 11. Final Optimisations and Experiments 148

In the following, we discuss the execution of our generated test suites on different faulty implemen-
tations of the CAS to assess their fault detection capabilities.

11.2.2 Test Case Execution
System under Test and Test Driver

For test case execution, we reuse a Java implementation of the CAS, which has been developed for the
evaluation of test suites generated by MoMuT::UML’s existing backend Ulysses [10]. Note that this
implementation is deterministic, i.e., it fixes the order for turning the alarms on and off. The flash is
always turned on before the sound, and the sound is always turned off before the flash.

The implementation defines Java interfaces for the SUT and the environment to facilitate the inter-
action between SUT and test driver. The interface of the SUT declares a method for each of the signals
Lock, Unlock, Close, and Open specified in the testing interface (cf. Figure 1.3). Since the implementa-
tion uses simulated time, the interface also declares a tick method that is called by the environment, i.e.,
the test driver, to communicate to the SUT that one unit of time has passed. The test driver implements
the environment interface, which declares callback methods for turning the flash and sound on and off as
well as for arming and disarming the system (cf. Figure 1.3).

The test driver parses the abstract test cases, which have to be provided in the Aldebaran format. In
case of a controllable action, it calls the corresponding method of the SUT. The SUT can respond to
the test driver by means of callback methods. These calls are recorded by the test driver. Whenever the
test driver parses an observable action, this action is compared to the oldest recorded call of a callback
method. If the labels and optional parameters match, the execution of the test case is continued. Oth-
erwise it is aborted and the execution of this test case results in a fail verdict. As already mentioned,
the implementation uses simulated time. For actions incorporating the passage of time, the tick method
is called repeatedly. If the specified amount of time, i.e., a number of ticks, has passed, the test driver
continues. If no unspecified behaviour could be detected and the end of the test case is reached, the test
run is finished. Remember that each sink state in a test case is a verdict state, i.e., pass or inconclusive
(cf. Chapter 8).

Faulty SUTs

We used classical program mutation testing (cf. Section 4.2) to evaluate the effectiveness of the different
test suites. Therefor, we reuse a set of 38 faulty SUTs from previous experiments [10], which were
generated with pJava (version 3) [155]. All traditional mutation operators (method-level operators) have
been applied. In total, pJava created 72 mutated implementations. After careful manual inspection, 8 of
these mutated implementations were found to be equivalent to the original program. As the mutation
score (Definition 4.9) is based on the number of non-equivalent mutants, the equivalent mutants were
removed. Further 26 mutated implementations were found to be redundant, i.e., equivalent to other
mutated implementations. In order to achieve a meaningful mutation score, they have been removed as
well. In this way, 38 different faulty implementations of the CAS remained.

Results

Figure 11.3 summarises our results. The three bars on the left-hand side show the mutation scores
(Definition 4.9) achieved by our three test suites when run on the 38 faulty implementations of the CAS.
They are below 75% for each test suite. One reason for these rather low mutation scores is that many
test runs result in inconclusive verdicts. For the survived faulty SUTs, 4 test cases (25%) of test suite
M always resulted in inconclusive. For test suite C, also 4 test cases always led to inconclusive for the

Chapter 11. Final Optimisations and Experiments 149

100

90 ooy 842 842 868 g4,
80 73.7

70

60

50

40

30

20

10

mutation score [%)]

M R C M1 R1 C1 Ulysses

Figure 11.3: Mutation scores achieved by our test suites when executed on 38 faulty CAS imple-
mentations.

survived faulty SUTs. This is even a percentage of 57% of all tests in C. Furthermore, all 3 test cases
of the random test suite result in inconclusive for the survived SUTs. This is due to the fact that we
generate one linear test case (Definition 8.2) per unsafe state. Remember that the used model of the CAS
allows for arbitrary orders for turning the alarms on and off. In contrast, the used implementations are
deterministic, i.e., have fixed orders for these actions. If our linear test cases do not include the sequence
as used in the implementation, but the other order, then our test cases are not executed to the end and
result in inconclusive verdicts, which means that they do not kill.

For all of our test cases, we manually changed all sequences for turning the alarms on and off to
the order used by the implementations. We named the resulting test suites M/, RI, and C/ respectively.
Thereby, no test run results in inconclusive any more and the mutation scores improved as can be seen
from Figure 11.3. However, we still do not achieve a mutation score of 100%, i.e., we cannot detect
all 38 non-equivalent mutated implementations. We cross-checked these results with a mutation-based
test suite generated by Ulysses. As each model is fully explored, all non-equivalent model mutants are
correctly identified. We used a setting for Ulysses, such that test cases are generated for each unsafe
state of each non-equivalent mutant. Note that Ulysses creates adaptive test cases (Definition 8.3) and
hence does not face the problem of inconclusive verdicts for this model. Even with this comprehensive
test suite, not all faulty SUTSs could be killed. We conclude that the set of model mutations used for our
model-based mutation testing approach is not rich enough. The test suite M/ and the test suite by Ulysses
cannot detect the same 6 faulty SUTs. The best mutation score is achieved by C/, which incorporates
one random test case that is able to kill one of the 6 faulty SUTs that were missed by M and the Ulysses
test suite. Hence, the combination of random and mutation testing is beneficial for this use case. This is
in line with results from experiments with Ulysses [10] where the combination of random and mutation
testing also showed to be advantageous. Test suite R/ also misses only 6 faulty SUTs — however, not the
same set as the other test suites.

From the above described results, we draw the following conclusions. First of all, for non-deter-
ministic models, the generation of one linear test case per unsafe state potentially reduces the quality
of the test suites. In particular, this is the case when the test cases are executed against a deterministic
implementation. Note that when executed against a non-deterministic implementation, we could rerun
our test cases until the SUT eventually shows the outputs specified in the test case that lead either to
a pass or fail verdict — given that the fairness assumption holds (cf. Section 3.2.1). Furthermore, this
experiment pointed out that the choice of the fault models, i.e., the model mutation operators is crucial,
and that there is still room for improvement in the MoMuT::UML tool. Finally, our experiments with
the CAS indicate that the combination of random and mutation-based test case generation is beneficial.

Chapter 11. Final Optimisations and Experiments 150

Initial_bottom when not Manual / send Online DilutionSelection / setDilution
/ send Offline
SetManual (~ Manual A SetRemote / send Online (Remote Y\ SetRemote
entry / entry /
body = Manual = true; body = Manual = false;
A\ J A\ J

f \ SetManual / send Offline

DilutionSelection, LeakageTest, ResponseCheck, SetPurge, SetZeroPoint, StoplntegralMeasurement, StartintegralMeasurement / send RejectOF

Figure 11.4: The orthogonal region modelling the communication mode changes of the particle
counter.

The combined test suite achieved the highest mutation score on our 38 faulty SUTs. In the following, we
report on results for the particle counter and check whether our conclusions drawn from the simple CAS
use case also apply for a more complex system.

11.3 Experiments with the Particle Counter

11.3.1 Test Model

The experiments for the particle counter (cf. Section 1.6.2) with our final tool setting use an updated
UML model. Modelling is usually an iterative process. Within the TRUFAL project, the UML model
of the particle counter was created by AIT Vienna, while the use case itself comes from the industrial
partner AVL. Hence, a lot of communication and clarification was required until a correct model was
established. At the time of our previous experiments with the particle counter, the model was still subject
to changes. In the meantime, it could be finalised. In principle, the model still represents the same
functionalities and only small changes concerning details of the system behaviour were required. For
example, the particle counter does not become busy at each change of the operating state in the updated
model. Furthermore, the preliminary UML model was created with Papyrus MDT, which was the only
UML editor supported by MoMuT::UML in the early phase of the TRUFAL project. Later on, support
for Visual Paradigm (version 10.2) has been added and the final UML model of the particle counter
has been created with Visual Paradigm. This was a requirement by AVL, who internally uses Visual
Paradigm as their standard UML modelling tool.

As already explained in Chapter 9, a UML test model for MoMuT::UML comprises a class diagram
specifying the testing interface (Definition 2.9), and a state machine modelling the system behaviour.
In the final particle counter model, the state machine consists of three orthogonal regions: one for the
operating state, one for switching between busy/ready, and one for the communication modes (manu-
al/remote). The latter is shown in Figure 11.4. It is the simplest of the three regions. The orthogonal
region modelling the operating state changes is the most complex region and exceeds an A4 page. A
detailed description of the whole model goes beyond the scope of this thesis. However, to give an idea
of the complexity of the model, we roughly describe the state machine in the following. The whole
state machine consists of 19 states (5 nested into the top-level states and further 7 nested into these)
and 39 transitions (excluding initial transitions). Transitions are triggered by signal receptions from the
outside, by changes of internal variables, or by progress of time. As already mentioned in Chapter 9,
the Object Constraint Language (OCL) is used to express guards on variables and on states of other re-
gions. Furthermore, transition effects and entry/exit actions send outgoing signals or change the value of
internal variables.

Similarly as for the intermediate particle counter model used in our previous experiments (cf. Ta-
ble 9.1), we again estimate the approximate complexity of the model on the level of the generated action

Chapter 11. Final Optimisations and Experiments 151

intermediate UML model final UML model
actions [#] 109 139
state variables [#] 74 87
possible states [#] 1.2-103 2.7 1036
mutated versions [#] 1185 3103

Table 11.2: Metrics describing the intermediate and the final UML models of the particle counter.

system. Table 11.2 relates metrics describing the intermediate UML model of the particle counter with
the final UML model. According to these metrics, the model became more complex. The number of
actions increased from 109 to 139. While the intermediate model defines 74 state variables, the final
model uses 87 state variables. Considering the types of these state variables, which are either Boolean or
bounded integers, the state space of the final model is larger than that of the intermediate model (1.2-103*
compared to 2.7 - 103 states). However, not all of these states are reachable from the initial state. For
the intermediate model, we explored the system up to a depth of 25 and found out that there are 850 000
states actually reachable up to this depth and that there were still states to explore, i.e., this is a lower
bound for the number of reachable states. This exploration required 4 days on a server machine with
30 GB RAM. This is also the reason why we did not repeat this analysis of the state space for the final
model. The model metrics stated in Table 11.2 suggest that there are at least as many states reachable
in the final model and that the exploration depth is again greater than 25 steps. For the intermediate
UML model, MoMuT::UML generated 1185 mutated models. This value increased considerably for
the final UML model. However, this is not solely caused by the model itself, but also by the fact that
MoMuT::UML changed a mutation operator. Previously, effects of transitions were replaced by other
possible effects leading to O(n?) mutations with n being the number of transition effects in the model.
However, this mutation operator was only applied on transitions with effects. In the new version, this
mutation operator also adds all possible effects to transitions that did not have an effect before, which
considerably increased the number of mutants for the particle counter model.

Finally, note that the modelled behaviour is deterministic, i.e., there are no choices between output
actions of the system. As a consequence, the generated test cases are all strictly linear without any
inconclusive verdicts. Hence, the problem with linear test cases that include many inconclusive verdicts,
which we encountered during execution on the deterministic CAS implementations (cf. Section 11.2.2),
does not affect the particle counter case study.

In the following, we report on the test case generation for the final UML model of the particle counter.
Therefor, we use the MoMuT::UML tool chain with the backend developed in the course of this thesis.

11.3.2 Test Case Generation

Like for the CAS, we again generated three test suites M, R, and C. The test suite M is mutation-based,
the test suite R is randomly generated, and C is a combined random/mutation test suite. To generate M
and C, we used our combination of refinement and ioco as presented in Section 10. Furthermore, the kill
check presented in Section 11.1.1 has been activated.

The test case generation experiments were designed together with AIT, who also considerably con-
tributed to the analysis of the results. Furthermore, the generation of all test suites was conducted at AIT,
who dispose of a computer equipped with about 190 GB RAM and two 6-core Intel Xeon processors
(3.47 GHz), running a 64-bit Linux (Debian 7.1). The system supports hyper-threading. Hence, 24 logi-
cal cores were available. To use the full capacity of such powerful systems, MoMuT::UML supports test
case generation with multiple workers, which run in parallel. This can be easily achieved by partitioning
the full set of model mutants into several sub-sets, which are processed in parallel. The user only needs to

Chapter 11. Final Optimisations and Experiments 152

M R C
max. expl. depth for ref. + ioco check 18 +7 - 20+5
max. expl. depth for rand. - 25 20
random tests [#] - 238 20
model mutants [#] 3103 3103 3103
model mutants killed by rand. TC [#] - 2173 1819
survived model mutants [#] 552 930 683
test cases [#] 67 (+9) 238 (+2) 57 (+7)
overall computation time [h] 44.1 1.7 67.6
parallel backend workers [#] 21 1 21
time — gen. mutants [min] 14.2 - 15.5
time — gen. action systems [min] 13.1 0.02 12.0
time for finding states (ref. check) [h] 3.9 - 94
avg. time — generate TC [min] 12.7 0.43 26.8
avg. time — survived mutant [min] 22.7 - 24.4
avg. time — kill mutant with TC [min] 2.98 - 2.70

Table 11.3: Details on the test case generation for the mutation (M), random (R), and the combined
(C) test suites for the particle counter.

state the desired number of workers. This parallelisation sometimes causes race conditions. Each worker
uses the same directory for storing the generated test cases. If the kill check is activated, this directory
contains the test cases that need to be checked for their ability to kill the currently processed mutant. If
one worker saves a test case into the directory, while another mutant has already finished its kill check
and also generates a test case, this can lead to duplicate test cases depending on the processed mutants.

Table 11.3 presents the most important metrics for each of the three test suites. The first two rows
show the maximum exploration depths. As can be seen, the overall maximum depth for the mutation-
based test case generation was 25 steps. However, the balance between the refinement and ioco depths
varied. The rationale behind these varying depths was to examine the relative effect of these two bounds
on the test case generation. In total, 3103 model mutants were generated. The test suites R and C, which
both include random tests, are able to kill 70% and 59% of the model mutants with the random tests only.
The different effectiveness of the random tests of these two test suites can be explained by the different
lengths (25 vs. 20) and number (238 vs. 20) of the random tests. Considering all generated test cases,
test suite M cannot kill 552 model mutants, test suite R cannot kill 930 mutated models, and 683 model
mutants are not killed by test suite C. An examination of the test suites M and C showed that this is due
to the reduced depth of the ioco check for C. This prevented C from finding 6 test cases, which could
be generated by M. Note that not all of these survived mutants are necessarily equivalent mutants as we
could not fully explore the state space of the model. The three test suites differ in the number of test cases
and in the maximum length of the test cases. Test suite M comprises 67, R 238, and C 57 unique tests
that can be executed on the SUT. In Table 11.3, the number in brackets states the number of duplicates
in M and C, which are caused by the race condition between multiple worker threads generating tests in
MoMuT::UML. For test suite R, the number in brackets states that 2 out of 240 generated random tests
are not applicable to the SUT due to the abstraction of time in the model: the model assumes that some
of the actions take no time, while in reality, the device might need some time to process these actions.

Figure 11.5 gives an overview of the lengths of the unique test cases in test suite M. The maximum
length of the generated test cases is 19. There are no test cases with a length between 1 and 3 steps.

Chapter 11. Final Optimisations and Experiments 153

14

12

10

~ O o

unique test cases [#]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
length

Figure 11.5: Overview of the lengths of the unique test cases in test suite M for the final particle
counter model.

25

20

15

10

unique test cases [#]

0 0 0 0 0 0 0 O
0\\\\\\\\

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
length

Figure 11.6: Overview of the lengths of the unique test cases in test suite C for the final particle
counter model.

This can be explained by the kill check. All mutations in these depths are covered by longer test cases
that have been generated before. For test suite C, the lengths of the unique test cases is depicted in
Figure 11.6. Here, the maximum length is determined by the random test cases, which were limited to
20 steps. Again, there are no short test cases. In this test suite, the shortest test case has a length of 9
steps. The mutations in more shallow depths have all been covered by random test cases or by longer

mutation-based test cases that have been generated before. For the random test suite R, all test cases have
a length of 25 steps.

An exemplary test case for the final particle counter model is depicted in Figure 11.7. It is a direct
graphical representation of the textual test case in Aldebaran format produced by MoMuT::UML. The
test case does not contain inconclusive verdicts. As already pointed out, this is the case for all tests for
the particle counter. Fail verdicts are implicit: every reaction from the SUT that is not specified in the
test case leads to a fail verdict. Note that the first parameter of each action denotes time. For controllable
actions, it states the number of time units the tester has to wait before sending the input to the SUT. For
observable actions, it denotes the period of time in which the SUT may deliver a specified output.

Initially, the system is ready, in operating state Pause — SPAU, and offline. This is reflected by the
first three events in the test case depicted in Figure 11.7. Then, it requests the system to switch to the
Standby operating state. This entails a sequence of outputs from the system: it becomes busy, moves to

Chapter 11. Final Optimisations and Experiments 154

obs StatusReady(0)

obs SPAU _state(0)

obs Offline(0)

ctr SetStandby(0)

obs StatusBusy(0)

obs STBY _state(0)

obs Online(0)

obs StatusReady(30)

ctr StartMeasurement(0)
obs StatusBusy(0)

obs SMGA _state(0)

obs StatusReady(30)

ctr StartIntegralMeasurement(0)
obs SINT _state(0)

ctr SetStandby(0)

obs STBY _state(0)

Creet—— 00— 00— 00— 00+ 00+ 00— 00— 0+ 00—

pass

Figure 11.7: A sample test case for the particle counter.

operating state Standby (STBY), switches to the remote mode (online), and finally becomes ready within
30 seconds. The next input to the SUT starts the measurement of the current particle concentration.
Again, a sequence of observations similar to the previous one is triggered. Being ready and in operating
state measurement (SMGA), the system must accept the command that starts integral measurement, i.e.,
cumulative particle measurement. In this case, the system does not become busy, but directly switches
to the according operating state (SINT). Finally, measurement is stopped by returning to the Standby
(STBY) state.

The second part of Table 11.3 gives information on the required computation times. The overall
computation times comprise the creation of model mutants in the form of OOASs, the mapping to action
systems, and the actual test case generation performed by our backend. The latter takes advantage of
21 parallel workers for test suites M and C. Note that the computation times for M and C are not directly
comparable due to the different exploration depths. The time required for mutant generation and the
mapping of the OOASs to action systems are stated separately in the table. Note that for test suite R, no
model mutants are generated and that hence only the original action system is translated into an action
system. Furthermore, we state the time required for exploring the state space of the model up to the given
depths for the refinement check. For test suite M, the model is explored up to depth 18. This requires

Chapter 11. Final Optimisations and Experiments 155

Computation Time Fault Coverage
5% 2%
18%

S
o 35%
2
‘5
b 60%
4 X
e \ 80%

No Test Generated: Equivalent

No Test Generated: Already Covered .

New Test Generated 4%

8% 6%

@)
]
'S5 43%
g 53%
Q
[

86%

Figure 11.8: Test case generation for the particle counter: breakup of the computation time and the
final fault coverage.

approximately 3.9 hours. For test suite C, the depth is 20 instead of 18, which increases the time to 9.4
hours. The last three rows give average values for the time required for creating one new test case, for
processing a surviving mutant, and the time needed for checking whether an existing test already kills a
model mutant.

Figure 11.8 shows a detailed breakup of the computation time and fault coverage for test suite M
and the mutation-part of test suite C. More than 60% of the total test case generation time is spent on
checking equivalent (surviving) model mutants. Note that this percentage is even higher for strategy C
since the 20 random tests already kill many non-equivalent mutants, which are not considered in the
mutation-based test case generation. Regarding fault coverage, it can be seen that for test suite M, 80%
of the model mutants are covered by test cases generated from 2% of the model mutants. The combined
test suite C shows a better ratio due to the random tests, which remove a lot of model mutants. However,
test cases from 4% of the mutants still cover 43% of all model mutants. This data demonstrates that
MoMuT::UML’s mutation engine needs to be improved to generate more meaningful and less redundant
model mutants.

Although we allowed for a refinement search depth of up to 20, none of the model mutants showed a
refinement-depth greater than 17. Changing the maximum depth for the ioco check showed more effect.
While almost all test cases were found at an ioco-depth of less than 3, there were 4 tests that needed a
depth of 7 steps for the ioco check. Further analysis of the data indicates that our bounds were not high
enough to find all possible test cases. For example, in some instances the random tests of C were able to
kill mutants deemed equivalent by M.

We also attempted to generate test suite C using MoMuT::UML’s existing backend Ulysses, but
otherwise using the same setup. While our backend combining refinement and ioco proved to be CPU-
bound, i.e., there was no danger of running out of RAM, Ulysses was unable to finish the task as the
memory consumption of 21 parallel workers occasionally exceeded 190 GB. Even with many of the
parallel computations being prematurely aborted, the computation time exceeded 144 hours.

Chapter 11. Final Optimisations and Experiments 156

11.3.3 Test Case Execution
System under Test

The three test suites are executed on a simulation of the particle counter device instead of a physical
device, which is less complex and less expensive. Furthermore, it facilitates fault injection, which is
used for the systematic evaluation of our test suites. AVL uses virtual testbeds, where the combustion
engine as well as the measurement device are simulated by real-time software. The simulation of the
particle counter is modelled in MATLAB Simulink'> and compiled to a real-time executable. Thereby,
two computers are used at AVL: one runs the simulation, the other one the test driver and the client for
communication with the simulated SUT. In this way, the remote communication is included in testing.
In this work, we test this simulation of the particle counting device. However, the generated test cases
can of course also be executed on the physical device.

Concretion of the Abstract Test Cases and Test Execution Setup

As explained in Section 4.1.1, the abstract test cases derived from the test model need to be concretised
in order to be executed on the SUT. For the CAS, a special test driver has been used that performs
this adaptation on the fly during test execution. As the existing test infrastructure of AVL is based on
concrete unit tests, a different approach has been taken for the particle counter: the abstract test cases
are mapped to concrete test cases in the form of NUnit'® test methods. Transforming the events of the
abstract test cases into concrete method calls in the NUnit tests proved to be straightforward and has
been implemented via simple XML-configured text substitutions. For example, the test case shown in
Figure 11.7 is mapped to the C# test method shown in Listing 11.1. Controllable events are directly
mapped to method calls of the SUT’s interface. Observable events are not as simple to map. Since
the SUT does not actively report state changes, observable actions have to be implemented via repeated
polling of the system’s state (these methods all start with WaitFor, e.g., WaitForReady). If the desired
state is not reached within a specified time span, the method throws an exception causing a fail verdict.
Unfortunately, repeated polling of the complete SUT state turned out to be too expensive. Therefore,
our testing approach had to be weakened and only the state variables of the SUT related to the expected
observable events are polled. As a consequence, the execution of a test will yield a pass verdict even
if the SUT produces additional, unspecified outputs to the expected one. This change, which we could
not circumvent within the project, limits the ability of our test suites to reveal failures via the coupling
effect (cf. Definition 4.8). Furthermore, it implies that we cannot guarantee that the ioco relation holds
between the SUT and the model — not even with exhaustive testing. Note that the translation of abstract
into concrete test cases has been implemented by AVL and that the test cases were directly executed
at AVL. The mapping of abstract to concrete test cases was implemented in the course of a bachelor
thesis [26]. The thesis describes this mapping and the test execution setup in detail.

Test Execution Results on the SUT

The generated test cases were executed on the simulation of the device as described above and effectively
revealed several failures. Although the simulation was in use for several years already, these tricky bugs
had not been identified so far. In the following, we give an overview of the errors.

The first class of errors relates to changes of the operating state, which should not be possible when
the device is busy. In the first case, the simulation allowed a switch from the operating state Pause
to Standby, although the device was busy. The second issue concerned the activation of the integral

Bhttp://www.mathworks.co.uk/products/simulink (last visit 2014-04-18)
Bhttp://www.nunit .org (last visit 2014-04-18)

http://www.mathworks.co.uk/products/simulink
http://www.nunit.org

Chapter 11. Final Optimisations and Experiments 157

1 public void CMB_AVL489_MUTATION_guard_false__ transition_9()
2 {

3 avl489.WaitForReady (1) ;

4 avl489.WaitForState (AVL489.States.Pause, 0);

5 avl489.WaitForManual (1) ;

6 av1489.Standby () ;

7 avl489.WaitForBusy (1) ;

8 avl489.WaitForState (AVL489.States.Standby, 0);

9 avl489.WaitForRemote (1) ;

10 avl489.WaitForReady (1) ;

11 avl489.StartMeasurement () ;

12 avl489.WaitForBusy (1) ;

13 avl489.WaitForState (AVL489.States.Measurement, O0);

14 avl489.WaitForReady (1) ;

15 av1l489.StartIntegralMeasurement () ;

16 avl489.WaitForState (AVL489.States.IntegralMeasurement, 0);
17 av1489.Standby () ;

18 avl489.WaitForState (AVL489.States.Standby, 0);

Listing 11.1: The C# test case corresponding to the abstract test case of Figure 11.7.

M R C
test cases [#] 67 238 57
execution time on original SUT [h] 0.5 1.6 0.5
execution time on all faulty SUTs [h] 7.9 27.4 8.1
survived faulty SUTs [#] 4 6 3
mutation score [%] 75 62.5 81.3

Table 11.4: Test case execution results for the faulty SUTs of the particle counter.

measurement of the number of particles over a period of time. If the device is measuring the current
particle concentration and is still busy, the system must reject the request for cumulative measurement.
However, the simulation accepted the command.

Further issues in the simulation were encountered by sending many inputs to the SUT in a short
period of time. The simulation accepted them without any error messages, creating the impression that
the inputs were processed. However, in reality, the inputs were absorbed and ignored. The correct
behaviour would be to emit appropriate error messages.

However, not only the simulation of the device was erroneous but also the client for remote control
of the device. The client did not correctly receive all error messages from the simulation. If the device
is offline and receives the command to change the dilution value, the device returns the error message
RejectOffline. In this particular case, the error messages were not recorded by the client.

Systematic Evaluation of the Test Suites

After the bugs described above had been fixed, a set of artificial faults were manually injected to evaluate
the fault detection capabilities of the test suites M, R, and C. The artificial faults cover a range of easy-
to-detect failures to very particular ones as will be seen later. In total, 16 faulty implementations have
been prepared by AVL.

Two computers are needed for test case execution. The first one simulates the particle counter device

Chapter 11. Final Optimisations and Experiments 158

o
o

[0
o

~
o

D
o

wv
o

S
o

Killing Tests [#]

w
o
|

S
\

L
]
-
:

|
-
—
-
-
.
a

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

M| 3 3 3 40 18 2 0 2 0 0 4 18 9 10 0

R 0 0 37 81 19 1 0 1 0 20 3 5 0 54 38
mC 3 1 1 43 19 2 0 0 0 1 18 8 7 1

ID of Faulty SUT

Figure 11.9: Evaluation results for the three test suites generated for the particle counter.

and runs the real-time simulation of the device, using about 300 MB RAM. The second one is running
the test driver communicating with the simulated device. The test driver and the client for remote com-
munication with the simulated measurement device require one core and about 1 GB of RAM. Both
computers are running Windows 7 (64-bit). Table 11.4 summarises the test suite evaluation runs. As
can be seen in the table, running the random test suite R took roughly three times as long as any of the
two remaining test suites. Besides being most expensive when run, it also has the lowest mutation score
(Definition 4.9). Note that we do not have equivalent SUT mutants as we did not apply mutation opera-
tors, but deliberately injected faults in the SUT. The combination of random and mutation tests achieved
the best results in this evaluation. Test suite C does not only have the lowest number of test cases, but
also the highest mutation score. The execution time on the faulty SUTs varies depending on how many
tests fail. If a test case fails, the test run is finished after the fail verdict. If this happens at the beginning
or in the middle of a test case, the test case is not fully executed to its end and needs less execution time.

Figure 11.9 highlights the results in more detail. In particular, the diagram shows that two of the
faulty SUTs (number 7 and 9) were not found by any of the tests. These two artificial faults disable
the ability to switch the system online in specific operating states, which can only be reached within a
sequence of at least 8 and 9 steps. The faulty SUT with number 8 shows the same behaviour, but in an
operating state that is easier to reach. Since the affected functionality is split across multiple regions,
there is no simple model mutation directly emulating this type of problem. Hence, we identified a
weakness in our model-mutation operators. Note that this was already identified in the evaluation of the
test suites for the CAS. The missing model mutations cause our mutation-based test suites to miss test
cases that cover these errors. At the same time, the failures were very unlikely to be revealed by random
testing as they were buried deep in the model. A comparison of the test suites M and C revealed that C
could have achieved an even higher mutation score if the depth for the ioco check had not been restricted
to 5 (for the generation of test suite M a depth of 7 has been used). Furthermore, it was checked whether
the test environment’s inability to observe the full state of the SUT had adverse effects on test suites M
and C, which was indeed the case. One example is faulty SUT number 16. It is not killed by test suite
M due to the used test execution setup. Given full observability of the SUT’s state, test suite M would
kill this faulty SUT. Test suite C kills this mutant despite the restricted observations as one random test
detects the failure.

Chapter 11. Final Optimisations and Experiments 159

11.4 Discussion

From our experiments with the particle counter, we conclude that fault-based test case generation is ex-
pensive, but it leads to high-quality test suites. Our test cases effectively revealed several subtle failures
that have neither been found by manual testing nor by operation of the system over several years. Fur-
thermore, mixing random and mutation-based test suites combines the best of two worlds: random tests
are generated with relatively low efforts and mutation-based test case generation complements the test
suite such that a given set of modelled faults is covered. That this combination is beneficial could already
be seen from our experiments with the CAS (cf. Section 11.2.2). Furthermore, this confirms our earlier
work with the Ulysses backend, where we came to the same conclusion [10].

Nevertheless, none of our three test suites was able to detect all injected faults — neither for the CAS
nor for the particle counter. For the particle counter, the test execution environment is restricted due to
technical reasons that we could not circumvent. We can only check for outputs expected by a test case,
but not for unexpected outputs. This restriction decreases the fault detection capabilities of our tests.

Furthermore, we identified that none of our model mutants covers a particular faulty SUT of the par-
ticle counter. For the CAS, several faulty SUTs have not been detected due to missing model mutations.
On the other hand, an analysis of the existing model mutants for the particle counter showed that too
many similar model mutations are generated: 80% of the model mutants were killed by test cases gener-
ated from only 2% of the model mutants. Moreover, as in most mutation testing approaches, equivalent
mutants are hindering: they consume 60% or more of the overall computation time. Hence, the choice
of the fault models, i.e., the model mutation operators is crucial for the success of model-based muta-
tion testing and there is still room for improvement in the MoMuT::UML tool. However, the mutation
operators for UML models are implemented in the frontend and are not directly in the focus of this thesis.

Additionally to the applied model mutation operators, the quality of the modelled faults is also
strongly influenced by the model itself. Depending on the used modelling style and model elements,
different mutation operators are applicable leading to varying sets of model mutants. In turn, this results
in different test suites with different fault detection capabilities [189]. Again, model creation is not the
main topic of this work, but important for the success of our overall approach.

Finally, from the CAS case study, we found another issue that directly affects our test case generation
tool. For non-deterministic models like the used CAS model, the generation of one linear test case per
unsafe state potentially reduces the quality of the test suites. In particular, this is the case when the
test cases are executed against a deterministic implementation. Note that when executed against an
implementation that is as non-deterministic as the test model, we could rerun our test cases until the SUT
eventually shows the outputs specified in the test case leading either to a pass or fail verdict — given that
the fairness assumption holds (cf. Section 3.2.1). For the particle counter, this was not an issue as all
test cases for this system are strictly linear and do not contain inconclusive verdicts. Nevertheless, this
problem must be addressed in future work, e.g., by generating adaptive test cases similar as implemented
by Ulysses or by a set of linear test cases, which is sufficient for deterministic SUTs.

Chapter 11. Final Optimisations and Experiments 160

12 Related Work

Parts of this chapter are based on our publications listed in Section 1.7.2.

Where appropriate, related work has already been discussed in earlier chapters. The mostly related
work is the Ulysses tool, which was the original test case generation backend of the MoMuT::UML
tool chain. It has already been described in Chapter 9. Furthermore, where appropriate, we referred to
Ulysses throughout the thesis. Conformance relations related to our notion of refinement and to Input-
Output Conformance (ioco) have been discussed in Chapter 3. Furthermore, formalisms related to action
systems have been reviewed in Section 5.4. Regarding constraint-based test case generation, we already
pointed out that many approaches rely on the SSA form (cf. Section 6.4.2). In the following, we give a
broader overview of related work.

Automated test case generation is a wide and active field of research. A recent survey [24] gives an
overview of the most prominent techniques for automated test case generation:

* structural testing using symbolic execution
* Model-Based Testing (MBT)

e combinatorial testing

* (adaptive) random testing

* search-based testing

Note that this list is not exhaustive and that techniques may be combined to form an automated software
test case generation approach. As it is most relevant to this work, we review MBT, which is sometimes
also called specification-based testing, in the next section. Subsequently, we concentrate on fault-based
test case generation including both model-based approaches and white-box techniques.

12.1 Model-Based Testing

There exist various surveys [80, 84, 113, 5, 24] and books [56, 194, 209] on MBT. Furthermore, confer-
ences and seminars are held on MBT, e.g., seminars at Schloss Dagstuhl [56, 52, 105].

There is no generally accepted classification of MBT approaches. The survey on automated test case
generation [24] considers three main tracks followed in MBT:

* axiomatic approaches (including pre-/post-conditions)
* Finite State Machine (FSM) approaches

e Labelled Transition System (LTS) approaches relying on variants of ioco (cf. Section 3.2) and
alternatively on alternating simulation [21] in the framework of interface automata

Hierons et al. [113] use a more fine-grained classification. They call the axiomatic approach described
above algebraic languages, which are sometimes also referred to as abstract data types [84]. Further-
more, they consider model-based languages, which describe a system by means of possible states and
operations that change these states, e.g., VDM [134], Z [184], or B [1]. These model-based languages
possibly span an infinite state space — in contrast to finite state-based languages, which include FSMs and
also Extended Finite State Machines (EFSMs) that incorporate additional internal data [148]. Moreover,
LTSs are not solely considered as a category of their own, but as a formalism that can be used to describe

161

Chapter 12. Related Work 162

the semantics for process algebra state-based systems like CSP [118, 175] or LOTOS [44]. Finally, hy-
brid languages for modelling systems that incorporate both discrete and continuous behaviour form a
class of modelling languages. Aichernig et al. [84] introduce another category for Kripke structures and
temporal logic for test case generation via model checking.

All of the above mentioned surveys do not only review different modelling techniques, but also give
an overview of corresponding test case generation approaches. Furthermore, we refer to Fraser et al. [95]
for more details on test case generation using model checkers, and to Lee and Yannakakis [148] for test
case generation techniques from FSMs. In the following, we give a brief overview of related model-based
testing tools.

12.1.1 Model-Based Testing Tools

At present, there exist numerous MBT tools — both non-commercial and commercial. An early overview
of MBT tools was given by Hartman in 2002 [111]. Since then, more and more tools became available
while others were stopped from being actively developed and maintained. In 2007, Utting and Legeard
gave an updated overview [194]. In 2010, a review of model-based testing tool support has been pub-
lished in the form of a technical report [182]. An online summary of open source/open binary tools for
MBT was provided by Binder in 2012 [41].

In Section 4.1.3, we presented a taxonomy of MBT approaches by Utting et al. [195], which is based
on several dimensions including the used modelling paradigm, test selection criteria, test generation
technology, and test execution (cf. Figure 4.3). We already classified our approach using this taxonomy
in Section 4.1.3. In the following, we briefly present related MBT tools and set them into context using
the taxonomy. Thereby, we use the modelling formalism as main dimension.

Action Systems and Related Formalisms

Besides the Ulysses tool, we are not aware of any mutation-based test case generation approaches directly
based on action systems. Some tools rely on similar formalisms. However, none of them uses mutations
for test case generation.

In the course of our brief review on formalisms related to action systems (Section 5.4.4), we already
mentioned ProB [152]. It is a simulator and model checker for the B-method including Event-B, which
is closely related to the action system formalism. ProB can also be used for test case generation [203].
Two kinds of test purposes may be specified to guide test case generation: (1) either a predicate that has
to be fulfilled in the end state of the test case (with limited length), or (2) a certain operation that has to
be covered by the test cases. In this way, transition coverage can be specified as a test goal. Furthermore,
the animation feature of ProB has been used indirectly for test case generation using test scenarios [156].
Both of the above mentioned test case generation approaches using ProB perform offline testing. Like
the test case generator presented in this work, ProB is implemented in SICStus Prolog. For future work
on our tool, it would be interesting to enhance our approach to support Event-B models.

Another formalism related to action systems is Circus (cf. Section 5.4.7). A test case generation
tool for Circus specifications based on theorem proving has been presented recently [90]. Similarly to
our approach, the formal semantics of the language is defined via UTP. An according testing theory is
formalised for the Isabelle/HOL [164] theorem prover and integrated into an own testing environment for
Circus. Two conformance relations are applied: traces inclusion and deadlocks reduction (cf. Chapter 3).
Currently, the tool generates so-called symbolic tests for all traces up to a given length. Furthermore,
each of these traces is instantiated once — either randomly or by SMT solvers like Z3 [76].

Furthermore, the SpecExplorer tool by Microsoft [198, 106] uses a modelling formalism that is com-
parable to action systems: model programs. They are state-oriented and guarded update rules are used to

Chapter 12. Related Work 163

manipulate the state. Like the actions in our notion of action systems, these guarded update rules are la-
belled. In SpecExplorer, these labels are called actions and directly correspond to method invocations on
a test adapter or on the SUT. Like our actions, SpecExplorer’s actions may be parameterised and are dis-
tinguished between inputs and outputs. Another similarity to our work is that SpecExplorer also allows
for non-deterministic models. However, in contrast to our approach, SpecExplorer is not mutation-based,
but uses test purposes to restrict the state space to a finite subset that can be explored for test case genera-
tion. The underlying theory is based on interface automata and alternating simulation [21]. SpecExplorer
supports both offline and online testing.

UML State Machines

In the following, we give a brief overview of MBT based on UML state machines to relate to the overall
MoMuT::UML approach. For more details, we refer to a recent literature review [5].

A lot of research has been conducted on automated test case generation from UML state machines.
However, none of these works is mutation-based. Indeed, there has been previous work on mutation
testing of UML state machines, but in terms of model validation [89]. It seems that the MoMuT::UML
approach is the first that actually generates test cases from mutated UML state machines.

One of the first tools for test case generation from UML state machines was based on various cover-
age criteria [167]. Following this lead, many other approaches also concentrated on coverage-based test
case generation. For example, Kansomkeat and Rivepiboon flatten the UML state machines and generate
test sequences covering all transitions [136]. In contrast to our MoMuT::UML, the used state machines
are simpler as orthogonality is not supported. Frohlich et al. [96] systematically transform use cases into
UML state machines and generate test suites with a given coverage level by applying Al planning meth-
ods. Another tool that can be used for test case generation from UML state machines is AGATHA [39].
It accepts specifications written in different languages, e.g., UML. Each specification is transformed
into an internally used Symbolic Transition System (STS) formalism. This translation is a similar con-
cept as used in our MoMuT::UML tool chain, where UML models are transformed into action systems.
STSs enrich LTSs with variables. In analogy to FSMs and EFSMs, AGATHA refers to STSs as EIOLTS
(Extended Input Output Labelled Transition Systems). As a test generation technique, AGATHA uses
symbolic execution to provide an exhaustive symbolic path coverage. To generate concrete input values
for the symbolic paths, a constraint solver is used. Each symbolic path is considered as an equivalence
class. Hence, they instantiate each symbolic path once, i.e., generate one set of satisfying assignments
for each symbolic path.

Apart from coverage criteria, also test purposes have been employed for test generation from UML
state machines. For example, Seifert [180] developed the TEAGER tool. The test purposes are based on
given inputs and the tool calculates the according outputs to form test cases. The test purposes are either
fixed input sequences or models using probabilities to represent varying behaviours of the environment.
The tool offers offline test execution. Also Gnesi et al. derive test cases using test purposes [102]. The ap-
proach is founded on a formal semantics in the form of LTSs with inputs and outputs (cf. Definition3.12)
and uses a conformance relation similar to ioco. In contrast to MoMuT::UML, OCL expressions, time
triggers, and events with parameters are not supported.

Other approaches rely on random test generation. For example, Schwarzl et al. [177] generate ran-
dom tests from UML state machines. They define extended symbolic transition systems (ESTSs), which
extend STSs by incorporating timed behaviour via transition execution times and delay transitions. UML
state machines can be transformed into ESTSs in a straightforward manner. In this work, only determin-
istic ESTSs are considered, the framework is based on alternating simulation. The tool uses a random
strategy for test case generation and supports online and offline testing. Later on, they extended their
approach to test purposes in the form of transitions that shall be covered by a test case [179]. In previous

Chapter 12. Related Work 164

work, they used STSs and an according symbolic ioco testing theory [178].

Besides academia, also commercial companies provide tools for test case generation from UML state
machines [194]. Smartesting Certifylt [183, 149] combines constraint solving, proofs, and symbolic exe-
cution for test case generation. For test selection, the user may choose between various coverage criteria
or may provide test purposes. The tool generates test cases in various formats that can be executed
offline. In contrast to MoMuT::UML, it does not support non-determinism in the models. Conformiq
Designer (formerly Qtronic) [72, 123] is based on an exploration algorithm to achieve a given coverage
goal (requirements/structural coverage). Like Smartesting Certifylt, the generated test cases are pro-
vided in numerous formats for offline execution and non-determinism is not supported. Automatic Test
Generation (ATG) [58] is an add-on for IBM’s UML tool Rational Rhapsody [125]. According to the
product homepage [58], the given UML model is automatically analysed to gain information about the
structure and behaviour of the model. “This knowledge is used for the computation of a large number of
test cases” [58]. These test cases are executed offline.

Labelled Transition Systems

A tool directly based on the original ioco theory of Tretmans [191] is TorX [193]. Its successor tool
JTorX [37] is implemented in Java and uses an updated ioco testing theory [192]. Both perform online
testing and accept either directly LTSs in various formats or formalisms that can be mapped to LTSs,
e.g., LOTOS process algebra specifications [44]. While TorX performs random testing, JTorx allows for
user-defined test purposes. The algorithm implemented by TorX has been modified in order to work with
symbolic models, so-called Symbolic Transition Systems (STSs), by Frantzen et al. [92].

A variant of the ioco conformance relation is used in TGV [126]. In contrast to TorX/JTorX, TGV is
an offline testing tool. As specification language, TGV allows for various notions that have an underlying
LTS semantics, e.g., LOTOS [44]. Test purposes are used to guide the test case generation. They are
represented as LTSs with inputs and outputs with special states indicating whether to follow or truncate
the exploration of the state space at this point. A follow-up tool of TGV is STG [68]. It works with a
kind of STS, which is very similar to those introduced by Frantzen et al. [92] for TorX.

Furthermore, STSs were adopted by the AGATHA tool [39], which we already mentioned in the
previous section on UML state machines. AGATHA is based on the symbolic execution of STSs. We
followed a similar approach in our previous work [133]. However, instead of covering all symbolic
paths, which is impractical for complex systems, we allowed the user to restrict the search space by test
purposes. This was performed by calculating the synchronous product of the specification and a test
purpose, which was then symbolically executed to generate test cases. Note that we used the STG tool
mentioned above to produce the synchronous product.

Finally, we refer to the UPPAAL tools [112] that are focusing on model-based testing of real-time
systems. They rely on timed automata and a variant of ioco, which is called relativised timed input
output conformance (rtioco). The tool COVER performs offline testing based on test purposes or coverage
criteria that are specified as observer automata. It is limited to deterministic systems. In contrast, TRON
is an online testing tool especially targeting non-deterministic systems. Both tools rely on the UPPAAL
model checking engine. In contrast to COVER and TRON, we only support a limited notion of time in
our action systems.

12.2 Fault-Based Test Case Generation

In the previous section, we did not consider fault-based MBT approaches. We will discuss them here
together with white-box mutation testing approaches.

Chapter 12. Related Work 165

12.2.1 Model-Based Mutation Testing

Model-based mutation testing has been applied to many modelling formalisms. One of the first models
to be mutated were predicate-calculus specifications [59]. Test cases were applied on a set of mutated
specifications to assess the fault detection capabilities of the test suite. In this way, the user was encour-
aged to generate test cases until all mutated specifications were found or until there were only equivalent
specifications left. Hence, this approach is very similar to classical program mutation testing (cf. Sec-
tion 4.2), but is based on specifications. Another early work in the field of model-based mutation testing
was conducted by Stocks [187]. He defined a set of mutation operators for formal Z specifications, e.g.,
operator replacements, and presented criteria for the generation of distinguishing test cases. However,
this approach has not been automated.

Later on, model checkers were available to check temporal formulae expressing equivalence be-
tween original and mutated models. In case of non-equivalence, this leads to counterexamples that serve
as test cases [22, 42, 94]. This is very similar to our approach. However, in contrast to this equivalence
check, we check for refinement and ioco respectively. Thus, we allow for non-deterministic models.
Nevertheless, there also exist approaches using model checkers that take non-determinism and the in-
volved difficulties into account. Okun et al. suggest to synchronise non-deterministic choices in the
original and the mutated model via common variables to avoid false positive counterexamples [170].
Boroday et al. propose two approaches that cope with non-determinism: modular model checking of
a composition of the mutant and the specification, and incremental test generation via observers and
traditional model checking [46]. A further model-checker based test case generation approach that
considers non-determinism [165] uses the model checker/refinement checker for Failures-Divergence
Refinement (FDR) (cf. Section 3.1.3) for the CSP process algebra [175]. This work allows test case
generation via test purposes, but not by model mutation. As already mentioned in Section 10.1, the first
who used an ioco checker for model-based mutation testing were Weiglhofer and Wotawa. They worked
with LOTOS specifications [200]. Later on, Ulysses has followed (cf. Section 9.1).

Our constraint-based refinement check is very similar to previous work on pre-/post-condition speci-
fications. Aichernig and Pari Salas [19] set up a framework for model-based mutation testing using spec-
ifications in the form of contracts with pre- and post-conditions. They defined the underlying semantics
via UTP designs. Conformance was defined in terms of refinement, which means in this setting that
pre-conditions are weakened and post-conditions are strengthened (cf. Section 3.1.5). A tool has been
implemented for OCL specifications based on a customised constraint solver. Later on, this approach has
been adopted for Spec# specifications [139]. Spec# is a specification language by Microsoft that extends
C#. It is also used in Microsoft’s SpecExplorer tool mentioned above. Compared to our work, the above
mentioned approaches dealt with transformational systems (cf. Definition 2.10). In contrast to reactive
systems (cf. Definition 2.11) like action systems, they did not need to consider reachability issues.

The general theory behind model-based mutation testing with UTP’s designs and refinement has
been elaborated by Aichernig and He [12]. They present a so-called non-deterministic normal form that
is very similar to our normal form for actions, which was introduced to allow for quantifier elimination
(cf. Section 6.4.2). Furthermore, they instantiated the theory for a limited programming language having
similarities with action systems. Instead of a do-od loop like in action systems, they allow for recursion.
For the refinement check, recursion is considered up to a given upper bound.

Model-based mutation testing has also been applied to FSMs. For example, El Fakih et al. [87] rep-
resent many mutants in one mutation machine and generate test cases such that the considered mutations
are covered. Hierons and Merayo [114] developed a model-based mutation testing theory for probabilis-
tic FSMs that extend FSMs by assigning probabilities to the transitions. They present mutation operators
and show how to generate distinguishing test cases. Furthermore, they use statistic sampling methods
to estimate the probabilities of the SUT with sufficient precision. Later on, they extended their work to
probabilistic and stochastic FSMs [115]. Using stochastic time, the time consumed between applying an

Chapter 12. Related Work 166

input and receiving an output is given by random variables. Hence, it can be specified that an action will
be performed within a certain amount of time units with a certain probability. The authors prove that
deciding whether two probabilistic FSMs (or probabilistic stochastic FSMs respectively) are equivalent
can be performed in polynomial time. Therefore, the equivalent mutants problem is not an issue in their
approach.

Recently, colleagues adopted model-based mutation testing for real-time systems [18]. They rely
on deterministic input/output timed automata, which are inspired by UPPAAL’s timed automata [112].
As conformance relation, they use timed input-output conformance as introduced by Krichen and Tri-
pakis [143]. The conformance check is implemented via bounded model checking with SMT solvers.

Another field of application for model-based mutation testing is security testing. For example, Wim-
mel and Jiirjens [204] automatically generate test cases based on attack scenarios by applying mutation
operators on formal security models for the AUTOFOCUS tool [122]. They use a constraint solver to find
test sequences that satisfy mutated models represented as predicates over traces, but do not satisfy given
security requirements. Dadeau et al. [74] use model-based mutation testing for security protocols. They
present a set of mutation operators for the High-Level Protocol Specification Language (HLPSL) that
are motivated by common protocol flaws. The mutation operators were applied on protocols supported
by the AVISPA verification tool [25]. It has a rich library of security problems for certain protocols.
For the given model mutants, it decides whether they are unsafe with respect to its known security prob-
lems. If this is the case, it delivers an attack trace exploiting the found vulnerability, which serves as a
test case. The AVISPA tool uses an internal representation of the HLPSL specification that is basically
an infinite-state transition system that facilitates formal analysis. The tool provides several backends
employing different techniques, e.g., an on-the-fly model checker, a SAT-based model checker, and a
constraint-logic-based attack searcher. The latter has been used by Dadeau et al. [74].

12.2.2 White-Box Approaches

Besides black-box testing, mutation-based test generation has also been conducted as white-box testing,
i.e., on the source-code level, where no non-determinism has to be considered. In the early 1990s, Of-
futt [166] proposed a technique called constraint-based test data generation. It uses symbolic execution
in order to generate constraints on the input values such that the path leading to the mutation (error) is
found. Similarly, Wotawa et al. use the SSA form of Java-like programs to express their semantics and
generate distinguishing test cases [208]. Brillout et al. generate C code from mutated Simulink models
and distinguishing test cases are derived by the use of bounded model checking on the C-code level [51].
Furthermore, test case generation techniques based on constraints that do not consider mutations have
been proposed. For example, Gotlieb et al. rely on structural criteria for test data generation via the SSA
form. They work with constraint solving [103] and Constraint Logic Programming (CLP) [104].

As can be seen from our review of related work, there exist various works that are overlapping with
our approach in one or several aspects. However, besides of Ulysses, we are not aware of automated test
case generation approaches that are based on the action system formalism. Furthermore, no model-based
mutation testing approaches were combining weak and strong mutation testing before as we proposed in
Chapter 10.

13 Conclusion

In this thesis, we covered automated test case generation for reactive software systems. The chosen
approach is called model-based mutation testing. In particular, we focused on the required conformance
check. In this chapter, we provide a summary of the previous chapters including our main conclusions.
Finally, we give an outlook on future work.

13.1 Summary and Conclusions

In the introduction, we gave an overview of the research context and requirements for this work that
were partly predetermined by an existing tool chain called MoMuT::UML. Furthermore, we introduced
two industrial use cases from the automotive domain, a car alarm system and a particle counting device,
which were used throughout the thesis.

Next, we briefly discussed the software testing background and conformance relations. In particular,
we focused on the conformance relations used in this work: refinement and Input-Output Conformance
(ioco). We also gave an overview of related conformance relations.

The following chapter dealt with model-based mutation testing. First, we focused on model-based
testing and discussed its advantages and possible drawbacks. Furthermore, we introduced classical pro-
gram mutation testing. Finally, we presented the combination of these two concepts: mutation is used on
the modelling level and test cases are generated such that all non-conforming model mutants are killed.
Mutation testing relies on two assumptions: the competent programmer hypothesis and the coupling ef-
fect. Model-based mutation testing additionally assumes that the mutated models sufficiently represent
realistic faults in the SUT. Hence, the success of model-based mutation testing highly depends on the
model mutations. However, they are out of the scope of this thesis as they are provided externally by the
frontend of the MoMuT::UML tool chain. Instead, this work focused on the second issue of model-based
mutation testing: the conformance check that is required in order to generate distinguishing test cases.

Before the presentation of our conformance checking approaches, we introduced action systems as
the modelling formalism used in this work. We gave an overview of classical action systems as known
from the literature. Afterwards, we concentrated on the variant of action systems that is used in this
work. We started with a subset of the language, which we called plain action systems, and extended
this subset to the full language that needs to be supported in order to interact with the MoMuT::UML
tool chain. The full action system language was called complex action systems. Typically, the seman-
tics of action systems is expressed via weakest pre-conditions. In this work, we defined a predicative
semantics that is close to a constraint satisfaction problem. This facilitates the use of modern constraint
and SMT solvers. Finally, this chapter showed the relation of our predicative semantics to the weakest
pre-condition semantics and gave an overview of formalisms that are related to action systems.

The following chapters concentrated on our refinement checking approach. Our predicative seman-
tics for action systems was used to encode the refinement check between an original and a mutated action
system as a constraint satisfaction problem. As action systems are reactive systems, we have to consider
reachability issues. Therefore, we reduced the general refinement problem of action systems to a step-
wise simulation problem only considering the execution of one iteration of the do-od block. To reduce
the size of the constraints to be solved, we exploited the disjunctive structure of the do-od block of plain
action systems. Although we achieved promising results for the smaller car alarm system case study, the
more complex particle counter use case revealed performance problems.

Therefore, we developed a set of optimisations, which were presented and evaluated on the two use
cases in Chapter 7. We experimented with different search strategies of the used constraint solver, applied

167

Chapter 13. Conclusion 168

syntactic instead of semantic mutation detection for the minimisation of the constraints, introduced the
pre-computation of the state space in order to efficiently deal with a large set of mutated models, and
finally applied incremental solving techniques. Overall, this lead to a very efficient implementation of
our refinement checker for action systems. For our two use cases, we could reduce the computation times
by more than 90% compared to our basic implementation.

If a mutated action system does not refine the original action system, our refinement checker provides
a counterexample trace witnessing non-refinement. We extended our refinement checker to a test case
generator, which creates test cases from the counterexamples. Therefore, we augment the given trace to
the unsafe state with verdicts to form a valid test case. We generate so-called linear test cases that only
consider one path to an unsafe state. If the system under test is non-deterministic, it may deviate from
this path during execution. This is handled via inconclusive verdicts. They indicate that the system under
test behaved correctly, but did not allow to reach the goal of the test case in this test run.

In the previous chapters, our refinement-based test case generator worked with plain action systems.
For the integration into the MoMuT::UML tool chain, we needed to extend our tool to support the com-
plex action systems produced by MoMuT::UML’s frontend from the UML input models. By means of
the car alarm system and the particle counter use cases, we demonstrated that MoMuT::UML’s fron-
tend introduces additional complexity into the action system models that need to be processed by our
test case generator. In principle, this was not a surprise, but the actual dimension was astonishing. The
complex action systems produced by MoMuT::UML are several orders of magnitude more complex than
manually-designed plain action systems that model exactly the same behaviour. Hence, the transfor-
mations performed in MoMuT::UML’s frontend should be reconsidered and investigated for potentials
to reduce the complexity of the resulting action systems as this is an important factor for the overall
performance of model-based mutation testing with MoMuT::UML.

The following chapter introduced a combination of refinement and ioco checking that was motivated
by two reasons. First of all, despite its efficiency, our notion of refinement is not completely satisfying
the needs of model-based mutation testing. The ioco relation is more suitable for various reasons, which
we explained in detail. However, previous work has shown that ioco checking is rather demanding in
terms of runtime and memory consumption. To counteract, we use our optimised refinement check as a
preprocessing step for the efficient computation of an under-approximation of an ioco test suite. Instead
of performing a full ioco check between the original and a mutated model, we first perform a refinement
check. Only in case of non-refinement, the ioco check is initiated from the point where non-refinement
has been detected. In this way, the subsequent ioco check is more targeted to those parts of the system
that are actually affected by the mutation. Our combined conformance check is slightly weaker than a
full ioco check. Hence, the generated test suite is an under-approximation of the test suite produced by
a stand-alone ioco check. However, it turned out that our combined conformance check is a valuable
alternative to a stand-alone ioco check. For small systems like the car alarm system, it is not necessarily
beneficial as a full ioco check is feasible. However, for complex systems like the particle counter, it could
drastically decrease the computation time, while at the same time the exploration depths and hence the
fault coverage of the mutated models could be increased.

All of the experiments with our test case generator resulted in large test suites that contained a
substantial amount of redundant test cases. We addressed this problem by performing a so-called kill
check. It checks whether already existing test cases are able to kill a given mutant. If this is the case, no
additional test case will be generated. Furthermore, we combined our mutation-based test case generation
with relatively cheap random testing. The random tests served as initial test suite that already covers
many mutated models. In this way, the more costly mutation-based test case generation needs to be
performed only for the remaining mutants. This preserves fault detection on the mutated models, saves
computation time, and also turned out to potentially increase the fault detection rate of the test suite if
the model is too complex to be fully explored.

Chapter 13. Conclusion 169

For our final experiments with the car alarm system and the particle counter, we generated three test
suites each: a mutation-based test suite, a random test suite, and a random- and mutation-based test suite.
We executed the resulting test suites on an implementation of the car alarm system and on the simulation
of the particle counter that is used in daily business by our industrial partner. For the particle counter,
several subtle failures that have neither been found by manual testing nor by operation of the system over
several years have been revealed. Furthermore, we evaluated the fault detection capabilities of our test
suites on several faulty systems. Although achieving acceptable mutation scores, none of the generated
test suites was able to detect all introduced faults. This is due to several reasons that we reconsider in the
following.

First of all, the model mutations implemented by MoMuT::UML’s frontend are not comprehensive
enough to model all possible faults in the implementations. On the other hand, our experiments showed
that many model mutants lead to redundant test cases. Hence, the model mutations need to be revised.
For the particle counter, the test execution environment had to be restricted due to technical reasons that
we could not circumvent. In this way, the observations that could be made by the tester were restricted
and decreased the fault detection capabilities of our tests. Finally, the car alarm system revealed an issue
that directly affects our test case generation tool. For non-deterministic models like the car alarm system
model, our strategy to generate one linear test case per unsafe state potentially reduces the quality of
the test suites. In particular, this is the case when the test cases are executed against a deterministic
implementation. Hence, future work will definitely include the generation of several linear test cases for
one unsafe state or of adaptive test cases that incorporate all paths to an unsafe state in one test case.

Our test case generation tool is an improvement over MoMuT::UML’s existing test case generation
backend Ulysses in the sense that it can process models that are not feasible for Ulysses. For example, for
our final experiments with the particle counter, we attempted to generate test cases with Ulysses using
the same search depth. However, Ulysses was unable to finish the task as the memory consumption
exceeded 190 GB. Hence, our tool makes a valuable contribution to automated test case generation for
industrial-sized models. Our industrial partner AVL plans to use the tool in future projects.

Reconsidering the thesis statement made in the introduction, we conclude that the applicability of
model-based mutation testing could indeed be improved by careful selection of the conformance relation,
and by using symbolic techniques and modern constraint and SMT solvers to check it. In particular, we
believe that the combination of our highly optimised refinement check with an ioco check is a promising
approach. We believe that this thesis makes a valuable contribution to the field of model-based mutation
testing. However, the problem is far from being solved completely, as discussed in the next section.

13.2 Future Work

Although we achieved satisfying results for our two industrial use cases, we are interested in further case
studies to see how our tool works for different kinds of systems.

One of the most important items for future work is the improvement of our test case construction
approach. As discussed above, our approach currently generates one linear test case per unsafe state.
This causes problems during test case execution as pointed out in our final experiments with the car
alarm system. As a first step, we plan to generate several linear test cases per unsafe state. This solves the
problems for deterministic implementations. For non-deterministic implementations, it is more beneficial
to produce adaptive test cases, which dynamically adapt to the actual outputs from the system under test.
In this way, inconclusive verdicts are only issued if there is no possibility to reach the test goal any more.

A further branch for future work is to enhance our notion of refinement to better fit the needs of
our combined refinement and ioco check. If we incorporate quiescence, distinguish between input and
output actions, and consider input-enabledness of the system under test in our refinement check, we

Chapter 13. Conclusion 170

would strengthen our combined notion of conformance. If we furthermore consider all unsafe states that
can be found by refinement, we would not under-approximate any more, but generate a test suite that is
equivalent to a test suite generated by a stand-alone ioco check from the same set of mutants.

There are many other points in our approach that allow for experimentation. It would be interesting
to compare our currently implemented breadth-first search with a depth-first search. This would lead to
longer test cases. It should be investigated whether these longer test cases are more effective in detecting
failures. However, if long test cases fail, the task of debugging is harder for the software engineers than
if a short test case fails. This motivated our choice to start with a breadth-first search.

Furthermore, our conformance checking approach could delegate more work to the used constraint or
SMT solver. For instance, we could adopt bounded model checking techniques and incrementally unroll
the do-od block into one constraint system. In this way, we would not need to explicitly explore the states
of the model. However, first experiments with the initially used constraint solver did not show promising
results. In the meantime, we integrated Microsoft’s SMT solver Z3, which may perform better for such
large constraint systems. Furthermore, it would be interesting to investigate whether recent developments
in model checking, such as IC3 [49], are applicable in our setting.

Moreover, there is also a lot of room for improvement in our implementation. We plan to integrate
further constraint and SMT solvers and evaluate whether they are more efficient for our application. We
also think that it would be beneficial for the overall MoMuT::UML approach to incorporate richer data
types such as lists, which are already supported by Ulysses. Another interesting topic is the parallelisa-
tion of our implementation. MoMuT::UML offers a very basic parallelisation functionality by dividing
the overall set of model mutants into subsets that are handed over to several instances of our test case
generator. However, parallelisation could already be used earlier inside our test case generation tool.
For example, the exploration of the reachable states or the checks whether the reached states are unsafe
could be performed in parallel. Unfortunately, SICStus Prolog does not support parallelisation. Hence,
it might be required to re-implement our tool in another programming language.

We furthermore plan to design a more general syntax for action systems that is not leaned against
Prolog-specific notations. This would facilitate to directly use our action systems as a modelling lan-
guage. Another possibility would be to extend our test case generator to be able to process Event-B
models [2], which have many similarities with action systems.

Last but not least, we should turn to the frontend to further improve the overall model-based muta-
tion testing approach implemented in MoMuT::UML. The model mutation operators need to be revised
to reduce redundancies and to result in a representative set of faulty models. Furthermore, it should be
investigated whether the transformations from the UML input models into action systems can be im-
proved such that the action systems, which need to be processed by our test case generator, become less
complex.

In conclusion, although the work presented in this thesis contributed to the state of the art in model-
based mutation testing, there is still a lot of research to be done.

Bibliography

[1] Jean-Raymond Abrial. The B-Book - Assigning Programs to Meanings. Cambridge University
Press, 1996. (Cited on pages 18, 56 and 161.)

[2] Jean-Raymond Abrial. Modeling in Event-B - System and Software Engineering. Cambridge
University Press, 2010. (Cited on pages 18, 56 and 170.)

[3] Jean-Raymond Abrial, Michael Butler, Stefan Hallerstede, Thai Son Hoang, Farhad Mehta, and
Laurent Voisin. Rodin: an open toolset for modelling and reasoning in Event-B. [International
Journal on Software Tools for Technology Transfer (STTT), 12(6):447-466, 2010. (Cited on
page 56.)

[4] Allen Troy Acree. On Mutation. PhD thesis, Georgia Institute of Technology, 1980. (Cited on
page 36.)

[5] Manuj Aggarwal and Sangeeta Sabharwal. Test case generation from UML state machine dia-
gram: A survey. In Proceedings of the 3rd International Conference on Computer and Communi-
cation Technology (ICCCT 2012), pages 133—-140. IEEE, 2012. (Cited on pages 161 and 163.)

[6] Bernhard K. Aichernig. Model-based mutation testing of reactive systems - from semantics to
automated test-case generation. In Theories of Programming and Formal Methods- Essays Ded-
icated to Jifeng He on the Occasion of His 70th Birthday, volume 8051 of LNCS, pages 23-36.
Springer, 2013. (Cited on page 40.)

[7] Bernhard K. Aichernig, Harald Brandl, Elisabeth Jobstl, and Willibald Krenn. Model-based mu-
tation testing of hybrid systems. In Revised Selected Papers of the Sth International Symposium
on Formal Methods for Components and Objects (FMCO 2009), volume 6286 of LNCS, pages
228-249. Springer, 2010. (Cited on pages 4, 8 and 102.)

[8] Bernhard K. Aichernig, Harald Brandl, Elisabeth Jobstl, and Willibald Krenn. Efficient mutation
killers in action. In Proceedings of the IEEE 4th International Conference on Software Testing,
Verification and Validation (ICST 2011), pages 120-129. IEEE, 2011. (Cited on pages 4, 8, 9
and 102.)

[9] Bernhard K. Aichernig, Harald Brandl, Elisabeth Jobstl, and Willibald Krenn. UML in action:
a two-layered interpretation for testing. ACM SIGSOFT Software Engineering Notes, 36(1):1-8,
2011. (Cited on pages 4, 8 and 102.)

[10] Bernhard K. Aichernig, Harald Brandl, Elisabeth Jobstl, Willibald Krenn, Rupert Schlick, and
Stefan Tiran. Killing strategies for model-based mutation testing. Software Testing, Verification
and Reliability (STVR), 2014. (Cited on pages 4, 9, 17, 43, 77, 97, 99, 102, 118, 119, 130, 143,
145, 146, 148, 149, 159 and 187.)

[11] Bernhard K. Aichernig, Harald Brandl, and Willibald Krenn. Qualitative action systems. In Pro-
ceedings of the 11th International Conference on Formal Engineering Methods (ICFEM 2009),
volume 5885 of LNCS, pages 206-225. Springer, 2009. (Cited on pages 55 and 102.)

[12] Bernhard K. Aichernig and Jifeng He. Mutation testing in UTP. Formal Aspects of Computing,
21(1-2):33-64, 2009. (Cited on pages 59 and 165.)

[13] Bernhard K. Aichernig and Elisabeth Jobstl. Efficient refinement checking for model-based mu-
tation testing. In Proceedings of the 12th International Conference on Quality Software (QSIC
2012), pages 21-30. IEEE, 2012. (Cited on pages 7, 8, 29, 41, 59 and 79.)

171

Bibliography 172

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Bernhard K. Aichernig and Elisabeth Jobstl. Towards symbolic model-based mutation testing:
Combining reachability and refinement checking. In Proceedings of the 7th Workshop on Model-
Based Testing (MBT 2012), volume 80 of Electronic Proceedings in Theoretical Computer Science
(EPTCS), pages 88-102, 2012. (Cited on pages 7, 29, 41, 59 and 75.)

Bernhard K. Aichernig and Elisabeth Jobstl. Towards symbolic model-based mutation testing:
Pitfalls in expressing semantics as constraints. In Workshops Proceedings of the 5th International
Conference on Software Testing, Verification and Validation (ICST 2012), pages 752-757. IEEE,
2012. (Cited on pages 7, 29, 41 and 59.)

Bernhard K. Aichernig, Elisabeth Jobstl, and Matthias Kegele. Incremental refinement checking
for test case generation. In Proceedings of the 7th International Conference on Tests and Proofs
(TAP 2013), volume 7942 of LNCS, pages 1-19. Springer, 2013. (Cited on pages 8, 29, 41
and 79.)

Bernhard K. Aichernig, Elisabeth Jobstl, and Stefan Tiran. Model-based mutation testing via
symbolic refinement checking. Science of Computer Programming, 2014. To appear. (Cited on
pages 8, 79 and 93.)

Bernhard K. Aichernig, Florian Lorber, and Dejan Nickovic. Time for mutants - model-based
mutation testing with timed automata. In Proceedings of the 7th International Conference on
Tests and Proofs (TAP 2013), volume 7942 of LNCS, pages 20-38. Springer, 2013. (Cited on
page 166.)

Bernhard K. Aichernig and Percy Antonio Pari Salas. Test case generation by OCL mutation and
constraint solving. In Proceedings of the 5th International Conference on Quality Software (QSIC
2005), pages 64-71. IEEE, 2005. (Cited on page 165.)

Bowen Alpern, Mark N. Wegman, and F. Kenneth Zadeck. Detecting equality of variables in pro-
grams. In Conference Record of the 15th Annual ACM Symposium on Principles of Programming
Languages (POPL 1988), pages 1-11. ACM, 1988. (Cited on pages 46 and 69.)

Rajeev Alur, Thomas A. Henzinger, Orna Kupferman, and Moshe Y. Vardi. Alternating refinement
relations. In Proceedings of the 9th International Conference on Concurrency Theory (CONCUR
1998), volume 1466 of LNCS, pages 163—178. Springer, 1998. (Cited on pages 28, 161 and 163.)

Paul Ammann, Paul E. Black, and William Majurski. Using model checking to generate tests
from specifications. In Proceedings of the 2nd International Conference on Formal Engineering
Methods (ICFEM 1998), pages 46-54. IEEE, 1998. (Cited on page 165.)

Paul Ammann and Jeff Offutt. Introduction to Software Testing. Cambridge University Press,
2008. (Cited on pages 1, 11, 12, 14 and 37.)

Saswat Anand, Edmund K. Burke, Tsong Yueh Chen, John A. Clark, Myra B. Cohen, Wolfgang
Grieskamp, Mark Harman, Mary Jean Harrold, and Phil McMinn. An orchestrated survey of
methodologies for automated software test case generation. Journal of Systems and Software,
86(8):1978-2001, 2013. (Cited on page 161.)

Alessandro Armando, David A. Basin, Yohan Boichut, Yannick Chevalier, Luca Compagna, Jorge
Cuéllar, Paul Hankes Drielsma, Pierre-Cyrille Héam, Olga Kouchnarenko, Jacopo Mantovani, Se-
bastian Mdodersheim, David von Oheimb, Micha&l Rusinowitch, Judson Santiago, Mathieu Tu-
ruani, Luca Vigano, and Laurent Vigneron. The AVISPA tool for the automated validation of
internet security protocols and applications. In Proceedings of the 17th International Conference

Bibliography 173

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

on Computer Aided Verification (CAV 2005), volume 3576 of LNCS, pages 281-285. Springer,
2005. (Cited on page 166.)

Jakob Auer. Automated integration testing of measurement devices — a case study at AVL List
GmbH. Bachelor’s thesis, Graz University of Technology, 2013. http://trufal.files.
wordpress.com/2013/11/auerjakob_trufal_bachelorarbeit_final.pdf (last visit
2014-04-18). (Cited on page 156.)

Ralph Back, Martin Biichi, and Emil Sekerinski. Action-based concurrency and synchronization
for objects. In Proceedings of the 4th AMAST Workshop on Real-Time Systems, Concurrent, and
Distributed Software (ARTS 1997), volume 1231 of LNCS, pages 248-262. Springer, 1997. (Cited
on page 56.)

Ralph-Johan Back and Reino Kurki-Suonio. Decentralization of process nets with centralized
control. In Proceedings of the 2nd Annual ACM SIGACT-SIGOPS Symposium on Principles of
Distributed Computing (PODC 1983), pages 131-142. ACM, 1983. (Cited on pages 2, 4 and 41.)

Ralph-Johan Back and Reino Kurki-Suonio. Distributed co-operation with action systems. ACM
Transactions on Programming Languages and Systems, 10(4):513-554, 1988. (Cited on page 41.)

Ralph-Johan Back, Luigia Petre, and Ivan Porres. Continuous action systems as a model for hybrid
systems. Nordic Journal of Computing, 8(1):2-21, 2001. (Cited on page 55.)

Ralph-Johan Back and Kaisa Sere. Stepwise refinement of action systems. Structured Program-
ming, 12:17-30, 1991. (Cited on pages 41, 42 and 60.)

Ralph-Johan Back and Kaisa Sere. Action systems with synchronous communication. In Proceed-
ings of the Working Conference on Programming Concepts, Methods and Calculi (PROCOMET
1994), volume A-56 of IFIP Transactions, pages 107-126. North-Holland, 1994. (Cited on
page 41.)

Ralph-Johan Back and Joakim von Wright. Trace refinement of action systems. In Proceedings of
the 5th International Conference on Concurrency Theory (CONCUR 1994), volume 836 of LNCS,
pages 367-384. Springer, 1994. (Cited on pages 41, 42 and 43.)

Ralph-Johan Back and Joakim von Wright. Refinement Calculus - A Systematic Introduction.
Graduate Texts in Computer Science. Springer, 1998. (Cited on page 18.)

Clark Barrett, Aaron Stump, and Cesare Tinelli. The SMT-LIB Standard Version 2.0. Technical
report, Department of Computer Science, The University of Iowa, September 2012. http://

smtlib.cs.uiowa.edu/papers/smt—-lib-reference-v2.0-r12.09.09.pdf (last visit
2014-04-18). (Cited on page 106.)

Boris Beizer. Software Testing Techniques. International Thomson Computer Press, 2nd edition,
1990. (Cited on pages 31 and 32.)

Axel Belinfante. JTorX: A tool for on-line model-driven test derivation and execution. In Pro-
ceedings of the 16th International Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS 2010), volume 6015 of LNCS, pages 266-270. Springer, 2010. (Cited
on pages 119 and 164.)

Gilles Bernot. Testing against formal specifications: A theoretical view. In Proceedings of the In-
ternational Joint Conference on Theory and Practice of Software Development (TAPSOFT 1991),
volume 494 of LNCS, pages 99-119. Springer, 1991. (Cited on page 17.)

http://trufal.files.wordpress.com/2013/11/auerjakob_trufal_bachelorarbeit_final.pdf
http://trufal.files.wordpress.com/2013/11/auerjakob_trufal_bachelorarbeit_final.pdf
http://smtlib.cs.uiowa.edu/papers/smt-lib-reference-v2.0-r12.09.09.pdf
http://smtlib.cs.uiowa.edu/papers/smt-lib-reference-v2.0-r12.09.09.pdf

Bibliography 174

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

Céline Bigot, Alain Faivre, Jean-Pierre Gallois, Arnault Lapitre, David Lugato, Jean-Yves Pier-
ron, and Nicolas Rapin. Automatic test generation with AGATHA. In Proceedings of the 9th
International Conference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS 2003), volume 2619 of LNCS, pages 591-596. Springer, 2003. (Cited on pages 163
and 164.)

Robert V. Binder. Testing Object-Oriented Systems: Models, Patterns, and Tools. Addison-
Wesley, 1999. (Cited on page 29.)

Robert V. Binder. Open source tools for model-based testing, April 2012. http:
//robertvbinder.com/open-source-tools-for-model-based-testing (last visit

2014-04-18). (Cited on page 162.)

Paul E. Black, Vadim Okun, and Yaacov Yesha. Mutation Testing for the New Century, chap-
ter Mutation of Model Checker Specifications for Test Generation and Evaluation, pages 14-20.
Kluwer Academic Publishers, 2001. (Cited on page 165.)

Joshua Bloch. Extra, extra - read all about it: Nearly all binary searches and mergesorts are bro-
ken. Google Research Blog, June 2006. http://googleresearch.blogspot.co.at/2006/
06/extra—extra-read-all-about-it—-nearly.html (last visit 2014-04-18). (Cited on
page 12.)

Tommaso Bolognesi and Ed Brinksma. Introduction to the ISO specification language LOTOS.
Computer Networks, 14:25-59, 1987. (Cited on pages 21, 162 and 164.)

Marcello M. Bonsangue, Joost N. Kok, and Kaisa Sere. An approach to object-orientation in
action systems. In Mathematics of Program Construction (MPC 1998), volume 1422 of LNCS,
pages 68-95. Springer, 1998. (Cited on pages 4, 54 and 55.)

Sergiy Boroday, Alexandre Petrenko, and Roland Groz. Can a model checker generate tests for
non-deterministic systems? Electronic Notes in Theoretical Computer Science, 190(2):3-19,
2007. (Cited on page 165.)

Cari Borras. Overexposure of radiation therapy patients in panama: Problem recognition and
follow-up measures. Revista Panamericana de Salud Piiblica, 20(2-3):173—-187, 2006. (Cited on

page 1.)

Jean-Louis Boulanger. Static Analysis of Software: The Abstract Interpretation. Wiley, 2011.
(Cited on page 11.)

Aaron R. Bradley. SAT-based model checking without unrolling. In Proceedings of the 12th
International Conference on Verification, Model Checking, and Abstract Interpretation (VMCAI
2011), volume 6538 of LNCS, pages 70-87. Springer, 2011. (Cited on page 170.)

Harald Brandl, Martin Weiglhofer, and Bernhard K. Aichernig. Automated conformance verifica-
tion of hybrid systems. In Proceedings of the 10th International Conference on Quality Software
(QSIC 2010), pages 3—12. IEEE, 2010. (Cited on pages 4, 43, 95, 102 and 118.)

Angelo Brillout, Nannan He, Michele Mazzucchi, Daniel Kroening, Mitra Purandare, Philipp
Riimmer, and Georg Weissenbacher. Mutation-based test case generation for Simulink models. In
Revised Selected Papers of the 8th International Symposium on Formal Methods for Components
and Objects (FMCO 2009), volume 6286 of LNCS, pages 208-227. Springer, 2010. (Cited on
page 166.)

http://robertvbinder.com/open-source-tools-for-model-based-testing
http://robertvbinder.com/open-source-tools-for-model-based-testing
http://googleresearch.blogspot.co.at/2006/06/extra-extra-read-all-about-it-nearly.html
http://googleresearch.blogspot.co.at/2006/06/extra-extra-read-all-about-it-nearly.html

Bibliography 175

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

Ed Brinksma, Wolfgang Grieskamp, and Jan Tretmans, editors. Perspectives of Model-
Based Testing, number 04371 in Dagstuhl Seminar Proceedings. Internationales Begegnungs-
und Forschungszentrum fiir Informatik (IBFI), Schloss Dagstuhl, Germany, 2005. http://
drops.dagstuhl.de/portals/index.php?semnr=04371 (last visit 2014-04-18). (Cited
on page 161.)

Ed Brinksma and Jan Tretmans. Testing transition systems: An annotated bibliography. In 4th
Summer School on Modeling and Verification of Parallel Processes (MOVEP 2000), volume 2067
of LNCS, pages 187-195. Springer, 2001. (Cited on page 26.)

Laura Branddn Briones and Ed Brinksma. A test generation framework for guiescent real-time
systems. In 4th International Workshop on Formal Approaches to Software Testing (FATES 2004),
volume 3395 of LNCS, pages 64-78. Springer, 2004. (Cited on page 26.)

Frederick P. Brooks. The Mythical Man-Month: Essays on Software Engineering. Addison-
Wesley, 1975. (Cited on page 1.)

Manfred Broy, Bengt Jonsson, Joost-Pieter Katoen, Martin Leucker, and Alexander Pretschner,
editors. Model-Based Testing of Reactive Systems, volume 3472 of LNCS. Springer, 2005. (Cited
on pages 1, 33, 161, 181 and 183.)

Roberto Bruttomesso, Edgar Pek, Natasha Sharygina, and Aliaksei Tsitovich. The OpenSMT
solver. In Proceedings of the 16th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS 2010), volume 6015 of LNCS, pages 150-153.
Springer, 2010. (Cited on page 81.)

BTC AG. IBM Rational Rhapsody Automatic Test Generation Add On. http://www.btc-ag.
com/de/SID-C29E7A70-8828B9BE/3006.htm (last visit 2014-04-18). (Cited on page 164.)

Timothy A. Budd and Ajet S. Gopal. Program testing by specification mutation. Computer Lan-
guages, 10(1):63-73, 1985. (Cited on page 165.)

Timothy Alan Budd. Mutation Analysis of Program Test Data. PhD thesis, Yale University, 1980.
(Cited on page 36.)

Michael J. Butler. A CSP Approach to Action Systems. PhD thesis, University of Oxford, 1992.
(Cited on pages 46 and 49.)

Mats Carlsson, Greger Ottosson, and Bjorn Carlson. An open-ended finite domain constraint
solver. In Proceedings of the 9th International Symposium on Programming Languages: Im-
plementations, Logics, and Programs (PLILP 1997), volume 1292 of LNCS, pages 191-206.
Springer, 1997. (Cited on pages 71, 74 and 79.)

Ana Cavalcanti, Augusto Sampaio, and Jim Woodcock. Refinement: An overview. In PSSE 2004
[64], pages 1-17. (Cited on page 20.)

Ana Cavalcanti, Augusto Sampaio, and Jim Woodcock, editors. Refinement Techniques in Soft-
ware Engineering, volume 3167 of LNCS. Springer, 2006. (Cited on pages 18, 19 and 175.)

K. Mani Chandy and Jayadev Misra. Parallel Program Design: A Foundation. Addison-Wesley,
1988. (Cited on page 56.)

Brian Chess and Jacob West. Secure Programming with Static Analysis. Pearson Education, 2007.
(Cited on page 11.)

http://drops.dagstuhl.de/portals/index.php?semnr=04371
http://drops.dagstuhl.de/portals/index.php?semnr=04371
http://www.btc-ag.com/de/SID-C29E7A70-8828B9BE/3006.htm
http://www.btc-ag.com/de/SID-C29E7A70-8828B9BE/3006.htm

Bibliography 176

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

Alessandro Cimatti, Alberto Griggio, Bastiaan Joost Schaafsma, and Roberto Sebastiani. The
MathSATS5 SMT solver. In Proceedings of the 19th International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems (TACAS 2013), volume 7795 of LNCS, pages
93-107. Springer, 2013. (Cited on page 81.)

Duncan Clarke, Thierry Jéron, Vlad Rusu, and Elena Zinovieva. STG: A symbolic test generation
tool. In Proceedings of the 8th International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS 2002), volume 2280 of LNCS, pages 470—475. Springer,
2002. (Cited on pages 119 and 164.)

Edmund Clarke, Armin Biere, Richard Raimi, and Yunshan Zhu. Bounded model checking using
satisfiability solving. Formal Methods in System Design, 19(1):7-34, 2001. (Cited on page 77.)

Edmund Clarke, Daniel Kroening, and Flavio Lerda. A tool for checking ANSI-C programs. In
Proceedings of the 10th International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS 2004), volume 2988 of LNCS, pages 168—176. Springer, 2004.
(Cited on pages 46 and 69.)

Edmund M. Clarke, Orna Grumberg, and Doron Peled. Model Checking. MIT Press, 1999. (Cited
on page 11.)

Conformig. Conformiq Designer. http://www.conformiq.com/products/
conformig-designer (last visit 2014-04-18). (Cited on page 164.)

John Cooke. Constructing Correct Software. Springer, 2nd edition, 2005. (Cited on page 18.)

Frédéric Dadeau, Pierre-Cyrille Héam, and Rafik Kheddam. Mutation-based test generation from
security protocols in HLPSL. In Proceedings of the 4th International Conference on Software Test-
ing, Verification and Validation (ICST 2011), pages 240-248. IEEE, 2011. (Cited on page 166.)

Brian A. Davey and Hilary A. Priestley. Introduction to Lattices and Order. Cambridge mathe-
matical text books. Cambridge University Press, 2nd edition, 2002. (Cited on pages 17 and 18.)

Leonardo de Moura and Nikolaj Bjgrner. Z3: An efficient SMT solver. In Proceedings of the 14th
International Conference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS 2008), volume 4963 of LNCS, pages 337-340. Springer, 2008. (Cited on pages 81
and 162.)

Willem-Paul de Roever and Kai Engelhardt. Data Refinement: Model-Oriented Proof Methods
and Their Comparison. Cambridge University Press, 1998. (Cited on page 18.)

Richard A. DeMillo, Richard J. Lipton, and Frederick G. Sayward. Hints on test data selection:
Help for the practicing programmer. [EEE Computer, 11(4):34-41, 1978. (Cited on pages 34
and 36.)

Richard A. DeMillo and A. Jefferson Offutt. Experimental results from an automatic test case
generator. ACM Transactions on Software Engineering and Methodology (TOSEM), 2(2):109—
127, 1993. (Cited on page 36.)

Arilo C. Dias Neto, Rajesh Subramanyan, Marlon Vieira, and Guilherme H. Travassos. A survey
on model-based testing approaches: A systematic review. In Proceedings of the 1st ACM Interna-
tional Workshop on Empirical Assessment of Software Engineering Languages and Technologies
(WEASELTech 2007), pages 31-36. ACM, 2007. (Cited on pages 1, 33 and 161.)

http://www.conformiq.com/products/conformiq-designer
http://www.conformiq.com/products/conformiq-designer

Bibliography 177

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

Edsger W. Dijkstra. The humble programmer. Communications of the ACM, 15(10):859-866,
1972. (Cited on pages 12 and 40.)

Edsger W. Dijkstra. A Discipline of Programming. Prentice Hall, 1976. (Cited on pages 19, 41
and 42.)

Mark Dowson. The ARIANE 5 software failure. ACM SIGSOFT Software Engineering Notes,
22(2):84, 1997. (Cited on page 1.)

Bernhard Aichernig (editor). MOGENTES Deliverable D1.2: State of the Art Survey —
Part a: Model-based Test Case Generation Techniques. https://www.mogentes.eu/public/
MOGENTES_1-19a_1.1r_D1.2_Survey_Part—a.pdf (last visit 2014-04-18), 2008. (Cited
on pages 161 and 162.)

Daniel Kroening (editor). MOGENTES Deliverable D3.2b: Modelling Languages (Final Ver-
sion). https://www.mogentes.eu/public/deliverables/MOGENTES_3-13_1.0r_D3.
2b_ModellingLanguages.pdf (last visit 2014-04-18), 2010. (Cited on page 102.)

Georg Weissenbacher (editor). MOGENTES Deliverable D3.1b: Fault Models (Final Ver-
sion). https://www.mogentes.eu/public/deliverables/MOGENTES_3-09_1.0r_D3.
1b_Fault_Models_Mutations.pdf (last visit 2014-04-18), 2009. (Cited on page 102.)

Khaled El-Fakih, Rita Dorofeeva, Nina Yevtushenko, and Gregor von Bochmann. FSM-based
testing from user defined faults adapted to incremental and mutation testing. Programming and
Computer Software, 38(4):201-209, 2012. (Cited on page 165.)

Mats Carlsson et al. SICStus Prolog User’s Manual (Release 4.2.3). Swedish Institute of Computer
Science, PO Box 1263, SE-164 29 Kista, Sweden, October 2012. http://sicstus.sics.se/
sicstus/docs/latest4/pdf/sicstus.pdf (last visit 2014-04-18). (Cited on page 106.)

Sandra Camargo Pinto Ferraz Fabbri, José Carlos Maldonado, Paulo Cesar Masiero, Marcio Ed-
uardo Delamaro, and W. Eric Wong. Mutation testing applied to validate specifications based on
statecharts. In Proceedings of the 10th International Symposium on Software Reliability Engi-
neering (ISSRE 1999), pages 210-219. IEEE, 1999. (Cited on page 163.)

Abderrahmane Feliachi, Marie-Claude Gaudel, Makarius Wenzel, and Burkhart Wolff. The Circus
testing theory revisited in Isabelle/HOL. In Proceedings of 15th International Conference on
Formal Engineering Methods (ICFEM 2013), volume 8144 of LNCS, pages 131-147. Springer,
2013. (Cited on page 162.)

International Organization for Standardization. Information technology — Open Systems Intercon-
nection — Conformance testing methodology and framework. International Standard ISO/IEC
9646. International Organization for Standardization, Geneva, Switzerland, 1991. (Cited on
page 17.)

Lars Frantzen, Jan Tretmans, and Tim A.C. Willemse. Test generation based on symbolic specifi-
cations. In Revised Selected Papers of the 4th International Workshop on Formal Approaches to
Software Testing (FATES 2004), number 3395 in LNCS, pages 1-15. Springer, 2005. (Cited on
page 164.)

Lars Frantzen, Jan Tretmans, and Tim A.C. Willemse. A symbolic framework for model-based
testing. In Proceedings of the Ist Combined International Workshops on Formal Approaches to
Software Testing and Runtime Verification (FATES 2006 and RV 2006), volume 4262 of LNCS,
pages 40-54. Springer, 2006. (Cited on pages 26 and 29.)

https://www.mogentes.eu/public/MOGENTES_1-19a_1.1r_D1.2_Survey_Part-a.pdf
https://www.mogentes.eu/public/MOGENTES_1-19a_1.1r_D1.2_Survey_Part-a.pdf
https://www.mogentes.eu/public/deliverables/MOGENTES_3-13_1.0r_D3.2b_ModellingLanguages.pdf
https://www.mogentes.eu/public/deliverables/MOGENTES_3-13_1.0r_D3.2b_ModellingLanguages.pdf
https://www.mogentes.eu/public/deliverables/MOGENTES_3-09_1.0r_D3.1b_Fault_Models_Mutations.pdf
https://www.mogentes.eu/public/deliverables/MOGENTES_3-09_1.0r_D3.1b_Fault_Models_Mutations.pdf
http://sicstus.sics.se/sicstus/docs/latest4/pdf/sicstus.pdf
http://sicstus.sics.se/sicstus/docs/latest4/pdf/sicstus.pdf

Bibliography 178

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

Gordon Fraser and Franz Wotawa. Using model-checkers for mutation-based test-case generation,
coverage analysis and specification analysis. In Proceedings of the International Conference on
Software Engineering Advances (ICSEA 2006), pages 16-22. IEEE, 2006. (Cited on page 165.)

Gordon Fraser, Franz Wotawa, and Paul Ammann. Testing with model checkers: a survey. Soft-
ware Testing, Verification and Reliability (STVR), 19(3):215-261, 2009. (Cited on page 162.)

Peter Frohlich and Johannes Link. Automated test case generation from dynamic models. In
Proceedings of the 14th European Conference on Object-Oriented Programming (ECOOP 2000),
volume 1850 of LNCS, pages 472—-492. Springer, 2000. (Cited on page 163.)

Simson Garfinkel. History’s worst software bugs. http://archive.wired.com/software/
coolapps/news/2005/11/69355 (last visit 2014-04-18), 2005. (Cited on page 1.)

Christophe Gaston, Robert M. Hierons, and Pascale Le Gall. An implementation relation and test
framework for timed distributed systems. In Proceedings of the 25th International Conference on
Testing Software and Systems (ICTSS 2013), volume 8254 of LNCS, pages 82-97. Springer, 2013.
(Cited on page 26.)

Marie-Claude Gaudel. Testing can be formal, too. In Proceedings of the 6th International Joint
Conference CAAP/FASE on Theory and Practice of Software Development (TAPSOFT 1995), vol-
ume 915 of LNCS, pages 82-96. Springer, 1995. (Cited on page 12.)

Marie-Claude Gaudel. Checking models, proving programs, and testing systems. In Proceedings
of the 5th International Conference on Tests and Proofs (TAP 2011), volume 6706 of LNCS, pages
1-13. Springer, 2011. (Cited on page 12.)

Ian P. Gent, Peter Nightingale, Andrew Rowley, and Kostas Stergiou. Solving quantified constraint
satisfaction problems. Artificial Intelligence, 172(6-7):738-771, 2008. (Cited on page 70.)

Stefania Gnesi, Diego Latella, and Mieke Massink. Formal test-case generation for UML state-
charts. In ICECCS, pages 75-84. IEEE, 2004. (Cited on page 163.)

Arnaud Gotlieb, Bernard Botella, and Michel Rueher. Automatic test data generation using con-
straint solving techniques. In Proceedings of the International Symposium on Software Testing
and Analysis (ISSTA 1998), pages 53-62. ACM, 1998. (Cited on pages 46, 69 and 166.)

Arnaud Gotlieb, Bernard Botella, and Michel Rueher. A CLP framework for computing structural
test data. In Proceedings of the 1st International Conference on Computational Logic (CL 2000),
volume 1861 of LNCS, pages 399—413. Springer, 2000. (Cited on page 166.)

Wolfgang Grieskamp, Robert M. Hierons, and Alexander Pretschner, editors. Model-Based Test-
ing in Practice, number 10421 in Dagstuhl Seminar Proceedings. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, Germany, 2011. http://drops.dagstuhl.de/portals/index.
php?semnr=10421 (last visit 2014-04-18). (Cited on page 161.)

Wolfgang Grieskamp, Nicolas Kicillof, Keith Stobie, and Victor A. Braberman. Model-based
quality assurance of protocol documentation: tools and methodology. Software Testing, Verifica-
tion and Reliability, 21(1):55-71, 2011. (Cited on page 162.)

RAISE Method Group. The RAISE development method. BCS Practitioner Series. Prentice Hall,
1995. (Cited on pages 18 and 19.)

Penny Grub and Armstrong A. Takang. Software Maintenance: Concepts and Practice. World
Scientific Publishing, 2nd edition, 2003. (Cited on page 1.)

http://archive.wired.com/software/coolapps/news/2005/11/69355
http://archive.wired.com/software/coolapps/news/2005/11/69355
http://drops.dagstuhl.de/portals/index.php?semnr=10421
http://drops.dagstuhl.de/portals/index.php?semnr=10421

Bibliography 179

[109] Richard G. Hamlet. Testing programs with the aid of a compiler. /EEE Transactions on Software
Engineering, 3(4):279-290, 1977. (Cited on pages 34 and 36.)

[110] David Harel and Amir Pnueli. On the development of reactive systems. In Logics and Models of
Concurrent Systems, volume F13 of NATO ASI Series, pages 477-498. Springer, 1985. (Cited on
page 12.)

[111] Alan Hartman. Model based test generation tools. Technical report, AGEDIS Consortium,
2002. http://www.agileconnection.com/sites/default/files/article/file/
2012/%XDD6047filelistfilenamel_0.pdf (last visit 2014-04-18). (Cited on page 162.)

[112] Anders Hessel, Kim G. Larsen, Marius Mikucionis, Brian Nielsen, Paul Pettersson, and Arne
Skou. Testing real-time systems using UPPAAL. In Formal Methods and Testing, An Outcome of
the FORTEST Network, Revised Selected Papers, volume 4949 of LNCS, pages 77-117. Springer,
2008. (Cited on pages 26, 33, 119, 164 and 166.)

[113] Robert M. Hierons, Kirill Bogdanov, Jonathan P. Bowen, Rance Cleaveland, John Derrick, Jeremy
Dick, Marian Gheorghe, Mark Harman, Kalpesh Kapoor, Paul Krause, Gerald Liittgen, Anthony
J. H. Simons, Sergiy A. Vilkomir, Martin R. Woodward, and Hussein Zedan. Using formal spec-
ifications to support testing. ACM Computing Surveys, 41(2):9:1-9:76, 2009. (Cited on pages 1,
18, 28, 32, 33 and 161.)

[114] Robert M. Hierons and Mercedes G. Merayo. Mutation testing from probabilistic finite state
machines. In 3rd Workshop on Mutation Analysis (Mutation 2007), pages 141-150. IEEE, 2007.
(Cited on page 165.)

[115] Robert M. Hierons and Mercedes G. Merayo. Mutation testing from probabilistic and stochastic
finite state machines. Journal of Systems and Software, 82(11):1804-1818, 2009. (Cited on
page 165.)

[116] Robert M. Hierons, Mercedes G. Merayo, and Manuel Nufiez. Implementation relations and test
generation for systems with distributed interfaces. Distributed Computing, 25(1):35-62, 2012.
(Cited on page 26.)

[117] C.A.R. Hoare. An axiomatic basis for computer programming. Communications of the ACM,
12(10):576-580, 1969. (Cited on page 11.)

[118] C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985. (Cited on pages 49,
57 and 162.)

[119] C.A.R. Hoare and Jifeng He. Unifying Theories of Programming. Prentice Hall, 1998. (Cited on
pages 19, 20, 26, 46, 51, 53 and 57.)

[120] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to Automata Theory,
Languages, and Computation. Addison-Wesley, 2nd edition, 2001. (Cited on pages 24 and 94.)

[121] William E. Howden. Weak mutation testing and completeness of test sets. IEEE Transactions on
Software Engineering, 8(4):371-379, 1982. (Cited on page 36.)

[122] Franz Huber, Bernhard Schitz, Alexander Schmidt, and Katharina Spies. AutoFocus: A tool for
distributed systems specification. In Proceedings of the 4th International Symposium on Formal
Techniques in Real-Time and Fault-Tolerant Systems (FTRTFT 1996), volume 1135 of LNCS,
pages 467-470. Springer, 1996. (Cited on page 166.)

http://www.agileconnection.com/sites/default/files/article/file/2012/XDD6047filelistfilename1_0.pdf
http://www.agileconnection.com/sites/default/files/article/file/2012/XDD6047filelistfilename1_0.pdf

Bibliography 180

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

Antti Huima. Implementing Conformiq Qtronic. In Proceedings of the 19th International Confer-
ence on Testing of Software and Communicating Systems (TestCom/FATES 2007), volume 4581
of LNCS, pages 1-12. Springer, 2007. (Cited on page 164.)

Shamaila Hussain. Mutation clustering. Master’s thesis, King’s College London, 2008. (Cited on
page 36.)

IBM. Rational Rhapsody Family. http://www—03.ibm.com/software/products/en/
ratirhapfami (last visit 2014-04-18). (Cited on page 164.)

Claude Jard and Thierry Jéron. TGV: Theory, principles and algorithms. International Journal
on Software Tools for Technology Transfer (STTT), 7(4):297-315, 2005. (Cited on pages 1, 119
and 164.)

Hannu-Matti Jarvinen and Reino Kurki-Suonio. DisCo specification language: marriage of ac-
tions and objects. In Proceedings of the 10th International Conference on Distributed Computing
Systems (ICDCS 1991), pages 142-151. IEEE, 1991. (Cited on page 55.)

Changbin Ji, Zhenyu Chen, Baowen Xu, and Zhihong Zhao. A novel method of mutation cluster-
ing based on domain analysis. In Proceedings of the 21st International Conference on Software
Engineering and Knowledge Engineering (SEKE 2009), pages 422-425. Knowledge Systems In-
stitute, 2009. (Cited on page 36.)

Yue Jia and Mark Harman. Constructing subtle faults using higher order mutation testing. In
Proceedings of the 8th IEEE International Working Conference on Source Code Analysis and
Manipulation (SCAM 2008), pages 249-258. IEEE, 2008. (Cited on page 36.)

Yue Jia and Mark Harman. An analysis and survey of the development of mutation testing. /[EEE
Transactions on Software Engineering, 37(5):649-678, 2011. (Cited on pages 34, 35, 36 and 39.)

Elisabeth Jobstl. Automating test case generation from transition systems via symbolic execution
and SAT solving. Master’s thesis, Graz University of Technology, 2009. (Cited on pages 8
and 29.)

Elisabeth Jobstl. Symbolic model-based mutation testing. http://ejoebstl.files.
wordpress.com/2011/07/fm_phd.pdf (last visit 2014-04-18), 2011. Presented at the Doc-
toral Symposium of the 17th International Symposium on Formal Methods (FM 2011). (Cited on

page 8.)

Elisabeth Jobstl, Martin Weiglhofer, Bernhard K. Aichernig, and Franz Wotawa. When BDDs
fail: Conformance testing with symbolic execution and SMT solving. In Proceedings of the 3rd
International Conference on Software Testing, Verification and Validation (ICST 2010), pages
479-488. IEEE, 2010. (Cited on pages 8 and 164.)

Cliff B. Jones. Systematic software development using VDM. Series in Computer Science. Prentice
Hall, 2nd edition, 1990. (Cited on pages 18 and 161.)

Cem Kaner, James Bach, and Bret Pettichord. Lessons Learned in Software Testing - a Contex-
Driven Approach. Wiley, 2002. (Cited on page 14.)

Supaporn Kansomkeat and Wanchai Rivepiboon. Automated-generating test case using UML
statechart diagrams. In Proceedings of the 2003 Annual Research Conference of the South African
Institute of Computer Scientists and Information Technologists on Enablement through Technology
(SAICSIT 2003), pages 296-300, 2003. (Cited on page 163.)

http://www-03.ibm.com/software/products/en/ratirhapfami
http://www-03.ibm.com/software/products/en/ratirhapfami
http://ejoebstl.files.wordpress.com/2011/07/fm_phd.pdf
http://ejoebstl.files.wordpress.com/2011/07/fm_phd.pdf

Bibliography 181

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

Joost-Pieter Katoen. Labelled transition systems. In Broy et al. [56], pages 615-616. (Cited on
page 49.)

James C. King. A new approach to program testing. In Proceedings of the International Confer-
ence on Reliable Software, pages 228-233. ACM, 1975. (Cited on page 74.)

Willibald Krenn and Bernhard K. Aichernig. Test case generation by contract mutation in Spec#.
In Proceedings of the 5th Workshop on Model-Based Testing (MBT 2009), volume 253(2) of Elec-
tronic Notes in Theoretical Computer Science (ENTCS), pages 71-86. Elsevier, 2009. (Cited on
page 165.)

Willibald Krenn, Rupert Schlick, and Bernhard K. Aichernig. Mapping UML to labeled transition
systems for test-case generation - a translation via object-oriented action systems. In Revised
Selected Papers of the 8th International Symposium on Formal Methods for Components and
Objects (FMCO 2009), volume 6286 of LNCS, pages 186-207. Springer, 2010. (Cited on pages 4,
43, 50, 55, 101 and 102.)

Moez Krichen and Stavros Tripakis. Black-box conformance testing for real-time systems. In Pro-
ceedings of the 11th International Workshop on Model Checking Software (SPIN 2004), volume
2989 of LNCS, pages 109-126. Springer, 2004. (Cited on page 26.)

Moez Krichen and Stavros Tripakis. Interesting properties of the real-time conformance relation.
In Proceedings of the 3rd International Colloquium on Theoretical Aspects of Computing (ICTAC
2006), volume 4281 of LNCS, pages 317-331. Springer, 2006. (Cited on page 26.)

Moez Krichen and Stavros Tripakis. Conformance testing for real-time systems. Formal Methods
in System Design, 34(3):238-304, 2009. (Cited on page 166.)

Benjamin Kuipers. Qualitative Reasoning: Modeling and Simulation with Incomplete Knowledge.
MIT Press, 1994. (Cited on page 55.)

Matt Lake. Epic failures: 11 infamous software bugs. http://www.computerworld.com/s/
article/9183580/Epic_failures_11_infamous_software_bugs (last visit 2014-04-
18), 2010. (Cited on page 1.)

Leslie Lamport. The temporal logic of actions. ACM Transactions on Programming Languages
and Systems (TOPLAS), 16(3):872-923, 1994. (Cited on page 57.)

Kim G. Larsen, Marius Mikucionis, Brian Nielsen, and Arne Skou. Testing real-time embedded
software using UPPAAL-TRON: an industrial case study. In Proceedings of the Sth ACM Interna-
tional Conference On Embedded Software (EMSOFT 2005), pages 299-306. ACM, 2005. (Cited
on pages 26 and 33.)

David Lee and Mihalis Yannakakis. Principles and methods of testing finite state machines —
a survey. Proceedings of the IEEE, 84(8):1090-1123, 1996. (Cited on pages 161 and 162.)

Bruno Legeard and Arnaud Bouzy. Smartesting Certifylt: Model-based testing for enterprise
IT. In Proceedings of the 6th International Conference on Software Testing, Verification and
Validation (ICST 2013), pages 391-397. IEEE, 2013. (Cited on page 164.)

Grégory Lestiennes. Contributions au test de logiciel basé sur des spécification formelles. PhD
thesis, Université de Paris-Sud, 2005. (Cited on page 26.)

http://www.computerworld.com/s/article/9183580/Epic_failures_11_infamous_software_bugs
http://www.computerworld.com/s/article/9183580/Epic_failures_11_infamous_software_bugs

Bibliography 182

[151] Grégory Lestiennes and Marie-Claude Gaudel. Test de systemes réactifs non réceptifs. Journal
Européen des Systemes Automatisés, Modélisation des Systemes Réactifs, 39(1-3):255-270, 2005.
(in French). (Cited on page 26.)

[152] Michael Leuschel and Michael J. Butler. ProB: an automated analysis toolset for the B method.
International Journal on Software Tools for Technology Transfer (STTT), 10(2):185-203, 2008.
(Cited on pages 56 and 162.)

[153] Wen ling Huang and Jan Peleska. Exhaustive model-based equivalence class testing. In Proceed-
ings of the 25th International Conference on Testing Software and Systems (ICTSS 2013), volume
8254 of LNCS, pages 49—64. Springer, 2013. (Cited on page 1.)

[154] Hans J. Litteck and Peter J.L. Wallis. Refinement methods and refinement calculi. Software
Engineering Journal, 7(3):219-229, May 1992. (Cited on page 18.)

[155] Yu-Seung Ma, Jeff Offutt, and Yong Rae Kwon. MulJava: an automated class mutation system.
Software Testing, Verification and Reliability (STVR), 15(2):97-133, 2005. (Cited on page 148.)

[156] Qaisar A. Malik, Johan Lilius, and Linas Laibinis. Scenario-based test case generation using
Event-B models. In Proceedings of the Ist International Conference on Advances in System
Testing and Validation Lifecycle (VALID 2009), pages 31-37. IEEE, 2009. (Cited on pages 56
and 162.)

[157] Aditya P. Mathur. Performance, effectiveness, and reliability issues in software testing. In Pro-
ceedings of the 15th International Conference on Computer Software and Applications (COMP-
SAC 1991), pages 604—-605. IEEE, 1991. (Cited on page 36.)

[158] Stefan Mohacsi and Johannes Wallner. A hybrid approach for model-based random testing. In
Proceedings of the 2nd International Conference on Advances in System Testing and Validation
Lifecycle (VALID 2010), pages 10-15. IEEE, 2010. (Cited on page 1.)

[159] Carroll Morgan. Of wp and CSP. In Beauty Is Our Business - A Birthday Salute to Edsger W.
Dijkstra, Texts and Monographs in Computer Science, pages 319-326. Springer, 1990. (Cited on
page 46.)

[160] Carroll C. Morgan. Programming from Specifications. Series in Computer Science. Prentice Hall,
1990. (Cited on page 18.)

[161] Hanspeter Mossenbock and Niklaus Wirth. The programming language Oberon-2. Structured
Programming, 12(4):179-196, 1991. (Cited on page 56.)

[162] Glenford J. Myers. The Art of Software Testing. Wiley, 3rd edition, 2011. (Cited on pages 1, 12
and 14.)

[163] Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Principles of Program Analysis.
Springer, 1999. (Cited on page 11.)

[164] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL — A Proof Assistant for
Higher-Order Logic, volume 2283 of LNCS. Springer, 2002. (Cited on page 162.)

[165] Sidney Nogueira, Augusto Sampaio, and Alexandre Mota. Guided test generation from CSP
models. In Proceedings of the 5th International Colloquium on Theoretical Aspects of Computing
(ICTAC 2008), volume 5160 of LNCS, pages 258-273. Springer, 2008. (Cited on page 165.)

Bibliography 183

[166]

[167]

[168]

[169]

[170]

[171]

[172]

[173]

[174]

[175]

[176]

[177]

[178]

A. Jefferson Offutt. An integrated automatic test data generation system. Journal of Systems
Integration, 1(3):391-409, 1991. (Cited on page 166.)

A. Jefferson Offutt and Aynur Abdurazik. Generating tests from UML specifications. In Proceed-
ings of the 2nd International Conference on The Unified Modeling Language - Beyond the Stan-
dard (UML 1999), volume 1723 of LNCS, pages 416-429. Springer, 1999. (Cited on page 163.)

A. Jefferson Offutt and Stephen D. Lee. How strong is weak mutation? In Proceedings of the
Symposium on Testing, Analysis, and Verification (TAV 1991), pages 200-213. ACM, 1991. (Cited
on page 37.)

A. Jefterson Offutt, Gregg Rothermel, and Christian Zapf. An experimental evaluation of selective
mutation. In Proceedings of the 15th International Conference on Software Engineering (ICSE
1993), pages 100-107. IEEE, 1993. (Cited on page 36.)

Vadim Okun, Paul E. Black, and Yaacov Yesha. Testing with model checker: Insuring fault
visibility. In Proceedings of the International Conference on System Science, Applied Mathemat-
ics & Computer Science, and Power Engineering Systems, pages 1351-1356, 2003. (Cited on
page 165.)

Alexandre Petrenko, Nina Yevtushenko, and Jiale Huo. Testing transition systems with input and
output testers. In Proceedings of the 15th International Conference Testing of Communicating
Systems (TestCom 2003), volume 2644 of LNCS, pages 129-145. Springer, 2003. (Cited on
page 93.)

Alexander Pretschner and Jan Philipps. Methodological issues in model-based testing. In Broy
et al. [56], pages 281-291. (Cited on pages 29, 30, 31 and 33.)

Heinz Riener, Roderick Bloem, and Gorschwin Fey. Test case generation from mutants using
model checking techniques. In Workshops Proceedings of the 4th International Conference on
Software Testing, Verification and Validation (ICST 2011), pages 388-397. IEEE, 2011. (Cited
on pages 46, 67 and 69.)

Mauno Ronkko, Anders P. Ravn, and Kaisa Sere. Hybrid action systems. Theoretical Computer
Science, 290(1):937-973, 2003. (Cited on page 55.)

Andrew W. Roscoe. The theory and practice of concurrency. Prentice Hall, 1998. (Cited on
pages 19, 49, 57, 162 and 165.)

Rupert Schlick, Wolfgang Herzner, and Elisabeth Jobstl. Fault-based generation of test cases
from UML-models - approach and some experiences. In Proceedings of the 30th International
Conference on Computer Safety, Reliability, and Security (SAFECOMP 2011), volume 6894 of
LNCS, pages 270-283. Springer, 2011. (Cited on page 8.)

Christian Schwarzl, Bernhard K. Aichernig, and Franz Wotawa. Compositional random testing
using extended symbolic transition systems. In Proceedings of the 23rd International Conference
on Testing Software and Systems (ICTSS 2011), volume 7019 of LNCS, pages 179-194. Springer,
2011. (Cited on page 163.)

Christian Schwarzl and Bernhard Peischl. Test sequence generation from communicating UML
state charts: An industrial application of symbolic transition systems. In Proceedings of the 10th
International Conference on Quality Software (QSIC 2010), pages 122—-131. IEEE, 2010. (Cited
on page 164.)

Bibliography 184

[179] Christian Schwarzl and Franz Wotawa. Test case generation in practice for communicating em-
bedded systems. Elektrotechnik und Informationstechnik, 128(6):240-244, 2011. (Cited on
page 163.)

[180] Dirk Seifert. Conformance testing based on UML state machines. In Proceedings of the 10th
International Conference on Formal Engineering Methods (ICFEM 2008), volume 5256 of LNCS,
pages 45-65. Springer, 2008. (Cited on page 163.)

[181] Emil Sekerinski and Kaisa Sere. A theory of prioritizing composition. The Computer Journal,
39(8):701-712, 1996. (Cited on pages 49, 55 and 107.)

[182] Muhammad Shafig and Yvan Labiche. A systematic review of model-based testing tool sup-
port. Technical Report SCE-10-04, Carleton University, May 2010. http://squall.sce.
carleton.ca/pubs/tech_report/TR_SCE-10-04.pdf (last visit 2014-04-18). (Cited on
page 162.)

[183] Smartesting. Smartesting Certifylt. http://www.smartesting.com/en/product/
certify-it (last visit 2014-04-18). (Cited on page 164.)

[184] J.M. Spivey. The Z Notation — a Reference Manual. Prentice Hall, 2nd edition, 1992. (Cited on
page 161.)

[185] Herbert Stachowiak. Allgemeine Modelltheorie. Springer, 1973. (in German). (Cited on page 30.)

[186] Leon Sterling and Ehud Shapiro. The Art of Prolog — Advanced Programming Techniques. MIT
Press, 2nd edition, 1994. (Cited on pages 71 and 82.)

[187] Philip Alan Stocks. Applying formal methods to software testing. PhD thesis, Department of
computer science, University of Queensland, 1993. (Cited on page 165.)

[188] Stefan Tiran. The Argos manual. Technical Report IST-MBT-2012-01, Institute for Software
Technology — Graz University of Technology, 2012. https://online.tugraz.at/tug_
online/voe_main2.getVollText?pDocumentNr=275803&pCurrPk=67399 (last visit
2014-04-18). (Cited on page 55.)

[189] Stefan Tiran. On the effects of UML modeling styles in model-based mutation testing. Master’s
thesis, Graz University of Technology, 2013. (Cited on page 159.)

[190] Jan Tretmans. A Formal Approach to Conformance Testing. PhD thesis, University of Twente,
1992. (Cited on page 17.)

[191] Jan Tretmans. Test generation with inputs, outputs and repetitive quiescence. Software - Concepts
and Tools, 17(3):103-120, 1996. (Cited on pages 4, 21, 24, 25, 28, 93, 94 and 164.)

[192] Jan Tretmans. Model based testing with labelled transition systems. In Formal Methods and
Testing, volume 4949 of LNCS, pages 1-38. Springer, 2008. (Cited on pages 21, 27, 28, 32, 93,
144 and 164.)

[193] Jan Tretmans and Ed Brinksma. TorX: Automated model-based testing. In Proceedings of the
1st European Conference on Model-Driven Software Engineering, pages 31-43, 2003. (Cited on
pages 1 and 164.)

[194] Mark Utting and Bruno Legeard. Practical Model-Based Testing — A Tools Approach. Morgan
Kaufmann Publishers, 2007. (Cited on pages 1, 14, 29, 30, 31, 32, 33, 161, 162 and 164.)

http://squall.sce.carleton.ca/pubs/tech_report/TR_SCE-10-04.pdf
http://squall.sce.carleton.ca/pubs/tech_report/TR_SCE-10-04.pdf
http://www.smartesting.com/en/product/certify-it
http://www.smartesting.com/en/product/certify-it
https://online.tugraz.at/tug_online/voe_main2.getVollText?pDocumentNr=275803&pCurrPk=67399
https://online.tugraz.at/tug_online/voe_main2.getVollText?pDocumentNr=275803&pCurrPk=67399

Bibliography 185

[195]

[196]

[197]

[198]

[199]

[200]

[201]

[202]

[203]

[204]

[205]

[206]

[207]

Mark Utting, Alexander Pretschner, and Bruno Legeard. A taxonomy of model-based testing
approaches. Software Testing, Verification and Reliability (STVR), 22(5):297-312, 2012. (Cited
on pages 1, 33, 34 and 162.)

Michiel van Osch. Hybrid input-output conformance and test generation. In Formal Approaches
to Software Testing and Runtime Verification (FATES/RV), volume 4262 of LNCS, pages 70-84.
Springer, 2006. (Cited on page 26.)

Margus Veanes and Nikolaj Bjgrner. Alternating simulation and I0CO. In Proceedings of the
22nd International Conference on Testing Software and Systems (ICTSS 2010), volume 6435 of
LNCS, pages 47-62. Springer, 2010. (Cited on page 28.)

Margus Veanes, Colin Campbell, Wolfgang Grieskamp, Wolfram Schulte, Nikolai Tillmann, and
Lev Nachmanson. Model-based testing of object-oriented reactive systems with Spec Explorer.
In Formal Methods and Testing, volume 4949 of LNCS, pages 39-76. Springer, 2008. (Cited on
pages 1 and 162.)

Martin Weiglhofer and Bernhard K. Aichernig. Unifying input output conformance. In Pro-
ceedings of the 2nd International Symposium on Unifying Theories of Programming (UTP 2008),
volume 5713 of LNCS, pages 181-201. Springer, 2010. (Cited on pages 25 and 26.)

Martin Weiglhofer and Franz Wotawa. “”On the fly” input output conformance verification. In
Proceedings of the IASTED International Conference on Software Engineering, pages 286-291.
ACTA Press, 2008. (Cited on pages 118 and 165.)

Stephan Weillleder. Test Models and Coverage Criteria for Automatic Model-Based Test Gener-
ation with UML State Machines. PhD thesis, Humboldt Universitit zu Berlin, 2009. (Cited on

page 1.)

Jesse Whittemore, Joonyoung Kim, and Karem Sakallah. SATIRE: A new incremental satisfiabil-
ity engine. In Proceedings of the 38th annual Design Automation Conference (DAC 2001), pages
542-545. ACM, 2001. (Cited on page 81.)

Sebastian Wieczorek, Vitaly Kozyura, Andreas Roth, Michael Leuschel, Jens Bendisposto, Daniel
Plagge, and Ina Schieferdecker. Applying model checking to generate model-based integration
tests from choreography models. In Proceedings of the 21st IFIP International Conference on
Testing of Communicating Systems and the 9th International Workshop on Formal Approaches to
Testing of Software (TESTCOM/FATES 2009), volume 5826 of LNCS, pages 179-194. Springer,
2009. (Cited on pages 56 and 162.)

Guido Wimmel and Jan Jiirjens. Specification-based test generation for security-critical systems
using mutations. In Proceedings of the 4th International Conference on Formal Engineering
Methods (ICFEM 2002), volume 2495 of LNCS, pages 471-482. Springer, 2002. (Cited on
page 166.)

Niklaus Wirth. The programming language Pascal. Acta Informatica, 1:35-63, 1971. (Cited on
page 56.)

Niklaus Wirth. Programming in Modula-2. Springer, 1982. (Cited on page 56.)

Jim Woodcock and Jim Davies. Using Z: Specification, Refinement, and Proof. Prentice Hall,
1996. (Cited on page 57.)

Bibliography 186

[208] Franz Wotawa, Mihai Nica, and Bernhard K. Aichernig. Generating distinguishing tests using
the Minion constraint solver. In Workshops Proceedings of the 3rd International Conference on
Software Testing, Verification and Validation (ICST 2010), pages 325-330. IEEE, 2010. (Cited
on pages 46, 67, 69 and 166.)

[209] Justyna Zander, Ina Schieferdecker, and Pieter J. Mosterman, editors. Model-Based Testing for
Embedded Systems. Computational Analysis, Synthesis, and Design of Dynamic Systems. CRC
Press, 2011. (Cited on page 161.)

Appendix

A Full Action System Model of the Car Alarm System

The following listing shows the full Prolog source code of an action system modelling the CAS. Parts
of it have been presented earlier in this work in Listing 5.1. A few minor differences to this earlier
presentation are commented in the listing below. Firstly, the standard notation for non-deterministic
choice (operator |]) and sequential composition (operator ;) have been used so far. In the concrete
Prolog syntax below, Prolog’s operators for conjunction and disjunction have been used as they naturally
represent these concepts. Hence, Prolog’s disjunction (; operator) represents non-deterministic choice.
Prolog’s conjunction operator (, operator) represents sequential composition. This notation stems from
the original language designed in MOGENTES for the Ulysses tool [10]. A further minor difference to
the presentation above concerns syntactic parts that are ignored by the tools developed throughout this
thesis. They only concern Ulysses, which also works with this syntax.

1 % namespace “as” indicates that we deal with a specification model
2 % (namespace “asm” would be used for a mutated model)

3 :— module(as, [var/2, input/1]).

4 9% library for constraint logic programming over finite domains
5 % (required for conditions in guards)

6 :— use_module(library (clpfd)).

7 :— public(as/0).

8 :— dynamic(as/0).

9 :— dynamic(type/2).

10

11 % type definitions

12 % ignore labeling part for integer—based types (relict from Ulysses)
13 type(enum_State, X) :— X in 0..7, labeling ([],[X]).

14 type(int_-0_-4, X) :— X in 0..4, labeling ([],[X]).

15 type(int, X) :— X in 0..270, labeling ([], [X]).

16 type(bool, X) :— member(X, [true, false]).

17

18 % types of state variables

19 var([aState], enum_State).

20 var ([fromAlarm, fromArmed], int_0_4).

21 var ([fromSilentAndOpen, flashOn, soundOn], bool).

22

23 % state definition

24 state_def ([aState, fromAlarm, fromArmed, fromSilentAndOpen, flashOn, soundOn]).
25

26 % initial state

27 init([6, O, 0, false, false, false]).

28

29 % controllable actions

30 input([’Close’, ’Lock’, ’Open’, ’Unlock’]).

31

32 % observable actions

33 output ([>ArmedOff’, ArmedOn’, ’FlashOff’, ’FlashOn’, ’“SoundOff’, ’SoundOn’]).
34

35 % action system

36 as :—

37 % no methods used in this action system

38 methods (

39 none

40)

41

187

Appendix . Appendix 188

)}
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100

101

102

non—deterministic choice: denoted by [] previously in this work
is represented by Prolog’s OR operator (semicolon ;)

sequential composition: denoted by ; previously in this work
is represented by Prolog’s AND operator (comma ,)
actions (
>ArmedOff’ (Wait_time) :: (fromArmed #= 1) =>
(

((aState #= 4) => (fromArmed := 0))

((aState #= 1) => (fromArmed := 2))

)
>ArmedOn’ (Wait_time) :: (true) =>
(((Wait_time #= 20 #/\ aState #= 3) => (aState := 2))
;((Wait,time #= 0 #/\ aState #= 2 #/\ fromSilentAndOpen #= true) =>
(fromSilentAndOpen := false))
)

>Close’ (Wait_time) ::(true) =>
(
((aState #= 6 #/\ fromAlarm #= 0) => (aState := 4))

b}

((aState #= 5) => (aState := 3))

((aState #= 7 #/\ fromAlarm #= 0) =>
(fromSilentAndOpen := true, aState := 2))
)

>FlashOff’ (Wait_time) ::(flashOn #= true) =>
(
((fromAlarm #= 1 #/\ Wait_time #= 0) =>
(fromAlarm := 3, fromArmed := 0, flashOn := false))

((aState #= 0 #/\ fromAlarm #= 2 #/\ Wait_time #= 270) =>
(aState := 7, fromAlarm := 3, fromArmed := 0, flashOn := false))

((fromAlarm #= 3 #/\ Wait_time #= 0) =>

(fromAlarm := 0, fromArmed := 0, flashOn := false))
)
>FlashOn’ (Wait_time) ::(flashOn #= false) =>
(
((aState #= 1 #/\ fromArmed #= 2) => (fromArmed := 3, flashOn := true))
((aState #= 1 #/\ fromArmed #= 3) => (fromArmed := 4, flashOn := true))
)
Lock’ (Wait_time) ::(true) =>
(
((aState #= 6 #/\ fromAlarm #= 0) => (aState := 5))
((aState #= 4 #/\ fromArmed #\= 1) => (aState := 3, fromArmed := 0))
)
’Open’ (Wait_time) ::(true) =>
(
((aState #= 4 #/\ fromArmed #\= 1) => (aState := 6, fromArmed := 0))

((aState #= 3 #/\ fromArmed #\= 1) => (aState := 5, fromArmed := 0))

103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Appendix . Appendix 189
((aState #= 2 #/\ fromSilentAndOpen #= false) =>
(aState := 1, fromArmed := 1))
)
>SoundOff’ (Wait_time) ::(soundOn #= true) =>
(
((fromAlarm #= 1 #/\ Wait_time #= 0) =>
(fromAlarm := 3, fromArmed := 0, soundOn := false))
((aState #= 0 #/\ fromAlarm #= 2 #/\ Wait_time #= 270) =>
(aState := 7, fromAlarm := 3, fromArmed := 0, soundOn := false))
((fromAlarm #= 3 #/\ Wait_time #= 0) =>
(fromAlarm := 0, fromArmed := 0, soundOn := false))
((Wait_time #= 30 #/\ aState #= 1 #/\ fromArmed #= 4) =>
(aState := 0, fromAlarm := 2, fromArmed := 0))
)
>SoundOn’ (Wait_time) ::(soundOn #= false) =>
(
((aState #= 1 #/\ fromArmed #= 2) => (fromArmed := 3, soundOn true))
((aState #= 1 #/\ fromArmed #= 3) => (fromArmed := 4, soundOn true))
)
>Unlock’ (Wait_time) :: (true) =>
(
((aState #= 5 #/\ fromAlarm #= 0) => (aState := 6))
((aState #= 3) => (aState := 4))
((aState #= 7 #/\ fromAlarm #= 0) =>
(aState := 6, fromAlarm := 0, fromArmed := 0))
((aState #= 2 #/\ fromSilentAndOpen #= false) =>
(aState := 4, fromArmed := 1, fromSilentAndOpen := false))
((aState #= 1 #/\ fromArmed #= 4) =>
(aState := 6, fromAlarm := 1, fromArmed := 0))
((aState #= 0 #/\ fromAlarm #\= 4) =>
(aState := 6, fromAlarm := 1, fromArmed := 0))
)
)
dood (
>Close ’ (0)
; "Open’ (0)
; "Lock’ (0)
; “Unlock’ (0)
; [Tl:int]: ArmedOn’ (T1)
; "ArmedOff’ (0)
; "FlashOn’ (0)
; [T2:int]:’ FlashOff’ (T2)
; "SoundOn’ (0)
; [T3:int]:’SoundOff’ (T3)
),

162
163

qdes (none). % ignore (relict from Ulysses)

Appendix . Appendix 190

B Extended Tables

This appendix contains extended versions of some tables that stated arithmetic mean values. They are
extended by values for the quartiles Q1/Q2/Q3. @1 represents the first quartile, i.e., quantile with
q = 0.25.)2 is the second quartile, i.e., the quantile with ¢ = 0.5, which is the median. (03 represents
the third quartile, i.e., quantile with ¢ = 0.75. The most interesting values were already mentioned in
the text describing the original tables.

1: find mutated action 2: reach & non-refine total

CAS_1 by 23 18 41

10} 0.11 0.09 0.2

Q1/Q2/Q3 0.02/0.03/0.05 0.02/0.08/0.14 0.05/0.13/0.18

max 13 0.37 13
CAS_10 by 160 19 179

1) 0.77 0.09 0.86

Q1/Q2/Q3 0.02/0.03/0.06 0.02/0.09/0.15 0.05/0.13/0.19

max 127 0.38 127
CAS_100 X 32.4 min 23 33 min

10) 9.39 0.11 9.5

Q1/Q2/Q3 0.03/0.04/0.06 0.02/0.10/0.17 0.06/0.15/0.23

max 28 min 0.49 28 min
CAS_1000 X 42h 18 4.2 h

10} 73 0.09 73

Q1/Q2/Q3 0.02/0.04/0.05 0.02/0.08/0.14 0.05/0.12/0.17

max 34h 0.35 34h

Table B.1: Extended version of Table 6.1 (values for quartiles are added). All values are given in

seconds unless otherwise noted.

191

Appendix

Appendix .

“PAJOU ISIMIIYIO SSIA[UN SPUOIAS UT USAIS oIk sanfeA [y “(Pappe a1 sa[nienb J0J sanfea) [/ 9[qe, JO UOISIOA PapualXy :g'g 9|gel

97’0 6C°0/IC0/€1T0 1CO0 T | 9.0 Ov0/1€0/8T°0 €0 a9 80 0£°0/€TO/V1°0 CCO0 9 |80 0£°0/CC0/€1'0 ITO SP |80}
¢e0 €10/80°0/c00 600 8I 90 610/<I0/€00 €10 LT 9¢°0 ¥1'0/60°0/C00 1°0 0C |8¢0 ¥1°0/60°0/C0°0 600 0C| ¢ :wnww
9C°0 LI'O/€1°0/80°0 CI'0 ¥C | LEO ¥C0/81°0/C1°0 LIO 99 LT0 8T°0/71°0/60°0 CI°0 9C |9C°0 8I'0/71°0/600 CI'0 ST| 1
¢9°0 LT0/0C0/€T0 CTO0 OF | ¥80 8E0/8C0/LT°0 8CTO 8S €9°0 8C°0/CTO/CT0 TO TP (990 8CO/ITO/CI0 ICO €F | 1BI0)
97'0 ¥1°0/80°0/20°0 600 81 | 290 610/11°0/C0°0 CI°0 9¢ LY'0 ¥1°0/80°0/20°0 600 61 |6¥°0 S1°0/80°0/C00 600 61| T dn-of
9C°0 91°0/C1°0/80°0 TT°0 ¢C | €€0 <CC0/9T0/TT0 91°0 [43 9C°0 91°0/CT°0/80°0 TT°0 €T |CE0 LT'O/CT0/80°0 CI'0 vC| 1
9¢°0 LE0/0C0/91T°0 LTO 9§ | 680 <TSO/1¥°0/€C0 60 08 19°0 8¢°0/0€°0/L1°0 LTO LS |95°0 8C°0/0€°0/LT0 LTO LS|T[€10)
ge0 €1'0/80°0/200 600 6l IS0 61°0/11°0/€0°0 €1°0 9¢ LEO ¥1°0/80°0/C0°0 600 61 |8€°0 €1°0/80°0/20°0 600 61| ¢ QBMM
9¢'0 92°0/CC0/€1'0 810 LE | €50 LE0/0L0/81°0 9C°0 123 L0 9C°0/CC0/vT0 81'0 8¢ [S€°0 9C°0/CC0/T0 81'0 8¢| 1
L9°0 €€0/ST0/ET°0 ¥T°0 6F 't Lyo/se0/61°0 ¥€°0 0L 89°0 €€°0/9C0/vT°0 ¥2°0 0§ [89°0 €£0/9C0/T0 ¥C'0 6¥|[BI0)
Y70 v1°0/80°0/C0°0 600 &I | SLO 610/11°0/200 CI°0 4 S¥'0 ¥1°0/80°0/C0°0 600 8I |9%¥'0 ¥1°0/80°0/C0°0 600 81| T dn-g3
€0 CTOLTO/IT0 ST'0 TI€ | ev0 1€0/4vC0/ST°0 CT0 S 1€°0 €C0/8T°0/11°0 SI'0 <€ |1€°0 CTO/LTO/IT0 ST°0 Tg| 1
605 LI'0/C1°0/SO0 8SC ¥e€S | SL STO/LI0/800 vSO0 TIL |€€¢ 81°0/€1°0/900 910 TI€ (€90 8I0/€1°0/SO°0 €1°0 LT |TBIO}
Y0 €1°0/80°0/C0°0 800 LI | L¥'O 610/11°0/€0°0 CI°0 ¥e Y0 €1°0/80°0/20°0 60°0 81 |S€'0 €1°0/80°0/C0°0 600 81| ¢ -.MMMM
605 90°0/€0°0/c0°0 ST LIS SL 80°0/50°0/€0°0 0 L8 §T’S 90°0/¥0°0/C0°0 LOO €I [SSO SO0/+70°0/C00 ¥00 6| 1
Uy'e LTO/CI0/SO0 €L YTP|uge ¢T°0/S1°0/900 S6 UWWMEE | LT] 61°0/€1°0/S0°0 98°0 6LL| €I 81°0/€1°0/S0°0 TO 1Ty | [EI0)
¢e0 v1'0/80°0/c00 600 8L | 6¥0 LI0/01°0/C00 IT°0 € 8¢'0 S1°0/60°0/0°0 60°0 61 |LE°0 ¥1°0/80°0/20°0 600 81| ¢ -.E@Qh
Uv'e S00/+0°0/C00 €L UTY U C 90°0/#0°0/€0°0 6£°6 UMW CE| LTI 90°0/€0°0/20°0 LL'O 09T €1 S0°0/€0°0/200 TT°0 €C| 1
xew £0/e9/tO ¢ X | xew EQ/ED/ID) ¢ R |xew £/t ¢ X |xew EO/O/O ¢ X

0001"SVD 00I"SVD 01"SVD ["SVD

192

CAS_1 CAS_10 CAS_100 CAS_1000

Y ¢ @Q1/Q2/Q3 max| X ¢ Q1/Q2/Q3 max| X ¢ Q1/Q2/Q3 max| ¥ ¢ Q1/Q2/Q3 max

leftm- 1 (054 O 0/0/0 0.08(0.57 0 0/0/0 007048 O 0/0/0 0071051 O 0/0/0 0.08
up total| 20 0.1 0.02/0.09/0.15 1.25| 20 0.1 0.02/0.08/0.15 1.23| 20 0.1 0.02/0.08/0.14 1.24| 20 0.1 0.02/0.09/0.15 1.22
leftm- 1 (057 O 0/0/0 0081052 0 0/0/0 0.081054 0 0/0/0 0.09| 06 O 0/0/0 0.08
down otal| 19 0.09 0.02/0.08/0.14 0.39| 20 0.1 0.02/0.09/0.15 0.4 | 20 0.1 0.02/0.09/0.15 0.47| 20 0.09 0.02/0.09/0.14 0.4
f-up 1 07 0 0/0/0 026(0.69 0 0/0/0 0241085 0 0/0/0 03310.86 0 0/0/0.01 0.26
total | 19 0.09 0.02/0.08/0.14 0.48| 19 0.09 0.02/0.08/0.14 0.47| 23 0.11 0.02/0.09/0.16 0.49| 23 0.11 0.02/0.10/0.16 0.59

ff- 1 08 0 0/0/0 031081 O 0/0/0 028109 0 0/0/0 031(096 0 0/0/0.01 0.29
down oeal | 20 0.09 0.02/0.09/0.14 0.38| 19 0.09 0.02/0.09/0.13 0.37| 23 0.11 0.02/0.10/0.17 0.45| 22 0.11 0.03/0.10/0.15 0.45
ffe-up 1 069 O 0/0/0 0.191056 0 0/0/0 0181 0.7 0 0/0/0 0211065 O 0/0/0 0.21
total| 19 0.09 0.02/0.08/0.14 0.48| 19 0.09 0.02/0.08/0.13 0.46| 23 0.11 0.02/0.10/0.17 0.49| 20 0.1 0.02/0.08/0.15 0.47

ffc- 1 1071 O 0/0/0 0211055 0 0/0/0 021063 O 0/0/0 0211056 0 0/0/0 0.19
down oa1| 20 0.1 0.02/0.09/0.15 0.37| 19 0.09 0.02/0.09/0.14 0.36| 21 0.1 0.02/0.09/0.16 0.37| 19 0.09 0.02/0.09/0.13 0.37

Appendix

Appendix .

Table B.3: Extended version of Table 7.2 (values for quartiles are added). All values are given in seconds.

Appendix . Appendix

. semantic syntactic
Algorithm 7.1
by mutants by 1) Q1/Q2/Q3 max
1 >598h 23.8 0.04 0.02/0.02/0.03 3.6
leftm.-
u‘; o 2 > 41 22h 115 0.16/220/19.82 52.9
total >6h 5/672 22h 11.6 0.19/2.23/19.84 53.0
1 >599h 18.8 0.03 0.02/0.02/0.02 2.9
leftm.-
eitm 2 > 1 18h 9.6 0.14/125/13.48 44.1
down
total >6h 4/672 1.8h 9.6 0.16/1.28/13.49 441
1 > 5.98h 17.0 0.03 0.02/0.02/0.02 0.6
ff-up 2 > 87 1.9h 10.2 0.14/1.72/17.15 394
total >6h 71672 19h 10.2 0.16/1.74/17.16 394
1 >596h 16.0 0.02 0.02/0.02/0.02 0.29
ff-
2 > 2.4 min 22h 11.9 0.16/1.48/18.58 47.2
down
total >6h 8/672 2.2h 11.9 0.18/1.50/18.60 47.2
1 >597h 16.9 0.03 0.02/0.02/0.02 0.6
ffc-up 2 > 1.4 min 19h 10.2 0.14/1.72/17.13 394
total >6h 6/672 19h 10.2 0.16/1.74/17.15 394
1 >597h 15.8 0.02 0.01/0.02/0.02 0.3
ffc-
dC 2 > 1.6 min 22h 11.8 0.16/1.47/18.50 46.9
own
total >6h 7/672 2.2h 11.8 0.18/1.49/18.51 46.9

Table B.4: Extended version of Table 7.4 (values for quartiles are added). All values are given in

seconds unless otherwise noted.

193

194

[ffc-up leftmost-down
by ¢ Q1/Q2/Qs3 max by ¢ Q1/Q2/Qs3 max
Algorithm 7.1 total 19h 10.2 0.16/1.74/17.15 394 1.8h 9.6 0.16/1.28/13.49 44.1
reach 514 0.07 - - 52.7 0.08 - -
Algorithm 7.2 find unsafe 44.1 min 39 0.06/0.74/6.75 17.0 42.8 min 3.8 0.06/0.58/5.52 17.4
total 45.1 min 4.0 - - 43.8 min 4.0 - -
Algorithm 7.4 total 32.1 min 2.9 0.03/0.31/3.86 18.3 33.2 min 3.0 0.04/0.30/3.15 17.3
reach 22.4 0.03 - - 27.01 0.04 - -
Algorithm 7.3 find unsafe 1.6 min 0.2 0.02/0.03/0.18 2.23 1.7 min 0.2 0.02/0.04/0.17 1.5
total 2.0 min 0.2 - - 2.2 min 0.2 - -

Table B.5: Extended version of Table 7.5 (values for quartiles are added). All values are given in seconds unless otherwise noted.

Appendix

Appendix .

	List of Figures
	List of Tables
	List of Algorithms
	List of Listings
	Abbreviations
	1 Introduction
	1.1 Motivation
	1.2 Model-Based Mutation Testing
	1.3 Problem Statement
	1.4 Thesis Statement
	1.5 Research Context
	1.5.1 The MoMuT::UML Tool Chain

	1.6 Use Cases
	1.6.1 Car Alarm System
	1.6.2 Particle Counter

	1.7 Contributions and Publications
	1.7.1 Contributions
	1.7.2 List of Publications

	1.8 Structure of this Thesis

	2 Software Testing Background
	2.1 Verification and Validation
	2.2 Software Testing
	2.3 Software Testing Approaches

	3 Conformance
	3.1 Refinement
	3.1.1 Axiomatic Refinement
	3.1.2 Traces Refinement
	3.1.3 Failures(-Divergences) Refinement
	3.1.4 Weakest-Pre-condition Refinement
	3.1.5 Relational Refinement

	3.2 Input-Output Conformance
	3.2.1 Assumptions of ioco
	3.2.2 Other Conformance Relations for Labelled Transition Systems

	3.3 Classifying Conformance Relations

	4 Model-Based Mutation Testing
	4.1 Model-Based Testing
	4.1.1 The Model-Based Testing Process
	4.1.2 Benefits and Limitations of Model-Based Testing
	4.1.3 A Taxonomy of Model-Based Testing

	4.2 Mutation Testing
	4.3 Model-Based Mutation Testing

	5 Action Systems
	5.1 Classical Action Systems
	5.2 Action Systems in this Work
	5.2.1 An Action System Modelling the Car Alarm System
	5.2.2 Plain Action Systems
	5.2.3 Complex Action Systems

	5.3 Relating Predicates and Weakest Pre-Conditions
	5.4 Extensions and Related Formalisms
	5.4.1 Object-Oriented Action Systems
	5.4.2 Action Systems for Hybrid System Modelling
	5.4.3 Action-Oberon
	5.4.4 Event-B
	5.4.5 UNITY
	5.4.6 Temporal Logic of Actions (TLA)
	5.4.7 Circus

	6 Refinement Checking of Action Systems
	6.1 Model-Based Mutation Testing using Refinement
	6.2 Non-Refinement of Action Systems
	6.3 Refinement Checking of Action Systems
	6.3.1 Finding a Mutated Action
	6.3.2 Reaching an Unsafe State

	6.4 Pitfalls
	6.4.1 Conformance Relation
	6.4.2 Semantics
	6.4.3 Constraint Logic Programming

	6.5 Illustration with the Car Alarm System
	6.6 Experimental Results
	6.6.1 Car Alarm System
	6.6.2 Particle Counter

	7 Efficiency in Refinement Checking
	7.1 Optimisation Techniques
	7.1.1 Variable and Value Selection Heuristics
	7.1.2 Mutation Detection Strategies
	7.1.3 Pre-computation of Reachable States
	7.1.4 Incremental Solving
	7.1.5 Analysis of Optimisations

	7.2 Experiments with the Car Alarm System
	7.2.1 Variable and Value Selection Heuristics
	7.2.2 Mutation Detection Strategies
	7.2.3 Pre-computation of Reachable States
	7.2.4 Incremental Solving

	7.3 Experiments with the Particle Counter
	7.3.1 Variable and Value Selection Heuristics and Mutation Detection Strategies
	7.3.2 Pre-computation of Reachable States and Incremental Solving

	8 Test Case Construction
	8.1 Test Case Construction Approach
	8.2 Experimental Results
	8.2.1 Car Alarm System
	8.2.2 Particle Counter
	8.2.3 Comparison of Results

	9 Integration into the MoMuT::UML Tool Chain
	9.1 MoMuT::UML
	9.1.1 Frontend
	9.1.2 Backend

	9.2 Required Extensions
	9.2.1 Class Data Types
	9.2.2 Methods
	9.2.3 Prioritising Composition
	9.2.4 Sequential Composition in the do-od Block
	9.2.5 Internal Actions
	9.2.6 Integration of the SMT Solver Z3

	9.3 Complexity of Action Systems Generated by MoMuT::UML
	9.4 Experimental Results
	9.4.1 Car Alarm System
	9.4.2 Particle Counter

	9.5 Discussion

	10 Combining Refinement and Input-Output Conformance
	10.1 Checking for Input-Output Conformance
	10.2 Combination of Refinement and Input-Output Conformance
	10.2.1 Under-Approximation

	10.3 Experimental Results
	10.3.1 Car Alarm System
	10.3.2 Particle Counter

	10.4 Discussion

	11 Final Optimisations and Experiments
	11.1 Final Optimisations
	11.1.1 Kill Check with Existing Test Cases
	11.1.2 Combination with Random Test Cases

	11.2 Experiments with the Car Alarm System
	11.2.1 Test Case Generation
	11.2.2 Test Case Execution

	11.3 Experiments with the Particle Counter
	11.3.1 Test Model
	11.3.2 Test Case Generation
	11.3.3 Test Case Execution

	11.4 Discussion

	12 Related Work
	12.1 Model-Based Testing
	12.1.1 Model-Based Testing Tools

	12.2 Fault-Based Test Case Generation
	12.2.1 Model-Based Mutation Testing
	12.2.2 White-Box Approaches

	13 Conclusion
	13.1 Summary and Conclusions
	13.2 Future Work

	Bibliography
	Appendix
	A Full Action System Model of the Car Alarm System
	B Extended Tables

